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des branches à l’intérieur des disques; (b) le dual de la Triangulation
régulière contient toutes les branches dans l’espace poral. . . . . . . . . . 138

7.19 Triangulation régulière en trois dimensions (a) et en deux dimensions (b). 139
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Abstract

The situation of two immiscible fluids flow through a deformable granular material is
widely encountered in nature and in many areas of engineering and science. To un-
derstand the physical evolution of the multiphase system is of great importance for the
applications. It requires the knowledge of all component phases, their distribution and in-
teractions. A pore-scale coupled hydromechanical model is presented in this thesis based
on previous work, aiming at simulating the quasi-static drainage of deformable granular
materials. The model combines a pore network approach and the discrete element method
(DEM) for the fluids and grains, respectively. A local criterion for determining the local
movements of the fluids interfaces established to approximate the role of the local pore
geometry on capillarity and namely on the forces exerted on the solid grains inside each
pore. Special attentions have been paid to the entrapment events of the receding fluid
and to the preferential invasion along the boundaries. The model is validated through
comparisons with experimental results (water retention curves). We apply the model for
examining two issues: (1) finite size effects and the concept of representative elementary
volume (REV); (2) Bishop’s effective stress parameter χ and the relationship between
macro-scale effective stress and micro-scale contact stress. Finally, an extension to the
pendular regimes is proposed and first results are presented and analyzed.

Key words: granular material, hydromechanical coupling, pore network, two-phase
flow, drainage, unsaturated granular materials, discrete element method, effective stress

xiii



xiv



Résumé

Les situations où deux fluides non miscibles sont présents dans un matériau granulaire
déformable sont largement rencontrées dans la nature et dans de nombreux domaines
de l’ingénierie et de la science. Comprendre l’évolution de tels systèmes multiphases
nécessite la connaissance de toutes les phases, leur distribution et interactions. Un modèle
micro-hydromécanique couplé est présenté dans cette thèse sur la base de travaux précédents,
visant à simuler le drainage quasi-statique de matériaux granulaires déformables. Il com-
bine une approche de type réseau de pores et la méthode des éléments discrets (DEM) pour
les fluides et les grains respectivement. Un critère local de mouvement d’interfaces fluides
est établi, afin d’approximer au mieux le rôle de la géométrie porale sur les phénomènes
capillaires et notamment les forces exercées sur les grains solides à l’intérieur de chaque
pore. Une attention particulière est dédiée aux événements de piégeage du fluide drainé
et à l’invasion préférentielle le long des bords du domaines. Le modèle est valide par
la comparaison avec des résultats expérimentaux (courbes de rétention d’eau). Nous ap-
pliquons le modèle pour étudier deux questions: (1) les effets de taille finie et à la ques-
tion du volume élémentaire représentatif (REV); (2) le paramètre de contrainte effective
de Bishop et la relation entre contrainte effective macroscopique contrainte de contact mi-
cromécanique. Finalement, une extension du modèle au régime pendulaire est présentée
et des premiers résultats sont présentés et discutés.

Mots clés: matérieu granulaire, couplage hydromécanique, réseau de pores, écoulement
biphasique, drainage, saturation partielle, méthode des éléments discrets, contrainte effec-
tive
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General Introduction

The situation of two immiscible fluids flow through a deformable granular material is
widely encountered in nature and in many areas of engineering and science. This in-
cludes the soil mechanics, ground water hydrology, petroleum engineering, food industry,
biomedical technology, etc. To understand the physical evolution of the multiphase sys-
tem is of great importance for the applications. It requires the knowledge of all component
phases, their distribution and interactions.

The motion of the fluid phases of the system is termed as two-phase flow in hydrome-
chanics, in which the flow includes the movement of each individual fluid and the move-
ment of the fluid-fluid interface. In the quasi-static regime, the flow can be simplified to
the motion of the interface only and viscous effects can be neglected. One-phase flow
can be described by Darcy’s law and the generic motion of the fluid can be formulated
by the Navier-Stokes equations. The difficulties arise when describing two-phase flow in
the complex space of porous media. The microscopic interactions between the two fluids
cause local fluctuations. As a consequence, one fluid may be replaced or entrapped by an-
other fluid, finally. How to define such local fluctuations depend on not only the properties
of the fluids themselves but also the properties of the space (i.e., boundary conditions). As
a solution, pore-scale models can idealize the space as a network of pore bodies connected
by narrow throats. Then the local criteria can be defined to formulate the local fluctuations
associated to the pores. A proper network should decompose the space in a natural and
simple way and preserve its geometrical characteristics. A decent local criteria should
balance the accuracy and the efficiency, especially, when the fluid space may be changed
due to the deformation of the solid skeleton.

Considering the solid phase, unsaturated soil is a special case of the multiphase sys-
tem. The deformation or other mechanical behaviors of the soil are usually related to
the definition of the effective stress. The classical continuum-based methods usually treat
the effects of the fluids following empirical relations, namely, suction - saturation curves
and their evolution with strain, relative permeability, and effective stress. At micro-scale,
the motion of single solid grain is formulated by Newton’s law of motion. Assigning a
proper contact definition between the neighboring grains, we can obtain the macro-scale
deformation. The discrete element method (DEM) provides a relevant framework in mod-
eling such evolution. Considering the effects of the fluids on a single solid particle at the
micro-scale, we need to formulate the fluid forces acting on this particle in terms of flu-
ids pressure and interfacial tension. Thus a direct link should be established between the
motion of the fluids and the properties of the solid grains.

To conclude, solving coupled flow-deformation problems need to map a network on a
given set of solid grains. The mechanical coupling requires a direct and explicit link be-
tween the network geometry and the positions of the solid grains, and the computational
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General Introduction

cost of updating the network should be kept as small as possible. Recently, a pore-scale
approach has been found to be an effective approach for simulating hydromechanical cou-
plings in deformable porous media with one-phase flow of a pore fluid (Chareyre et al.,
2012; Tong, A.T. et al., 2012; Catalano et al., 2014; Scholtès et al., 2015). Therein, the
basic idea was to combine the discrete element method (DEM) and a pore-scale model
for, respectively, the granular solid phase and a viscous pore fluid. Termed PFV-DEM
(PFV for “pore-scale finite volumes”) the coupling was applying concepts coming from
the pore-network methods to a Lagrangian mesh following the movements of the solid
particles, allowing the simulation of mechanical responses of Representative Elementary
Volumes (REV) of porous solids. This is the cornerstone of the thesis.

In this work, we will propose a pore-scale hydromechanical coupled model for par-
tially saturated porous media, termed as “2PFV-DEM” (two-phase pore-scale finite vol-
ume - discrete element method) model. It is designed specifically for simulating the quasi-
static two-phase flow of drainage through deformable granular materials. The coupling
scheme is similar to the strategy of PFV-DEM, where the actions of the fluids are repre-
sented by a network and the motion of solid phase is handled by DEM. The quasi-static
flow is expressed by a sequence of individual equilibrium states, in which the motion of
the fluids interface is highlighted. Special attention will be paid to the local criterion, i.e.,
the determination of a local threshold value. We focus on the faithful approximation of
phases geometry and of the fluid pressures and interfacial tension acting on solid grains
within each pore, and on the displacement of interfaces during drainage.

Two special features will be implemented in the model with respect to the reality of
drainage phenomena and experimental setup. (I) In short-term, the receding fluid is al-
lowed to be trapped by the invading fluid without motion. It will lead to the localizations
in terms of fluid pressure and saturation. In long-term, the receding fluid is drained com-
pletely. (II) A preferential invasion along the boundaries of the sample is allowed with
respect to the observations of some micro-scale experiments.

We will apply this model to solve two issues.

• Finite size effects. Microscale imaging techniques together with pore scale numeri-
cal models are promising tools for gaining insight into the governing mechanisms of
two-phase flow in such systems. However, both experimental techniques and com-
putational methods have severe limitations in terms of sample size, which raises
questions about possible finite size effects. We will apply the model to assess the
size effects and boundary effects with a series of primary drainage tests.

• Effective stress. The concept of effective stress is one of the fundamental concepts
of soil science. The expression of effective stress for unsaturated soil (or the stress
frameworks for unsaturated soil) is still not clear. For granular materials, how to
build the link between the micro-stress/contact stress and effective stress is a hot
topic. In the survey, we will follow Bishop’s expression to examine the relations
between Bishop’s parameter and saturation from macro and micro points of view.

As an extension of the model, we will combine the liquid bridge model of pendular regime
(Scholtès et al., 2009; Scholtès et al., 2009a; Chalak, 2016) with the current implementa-
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General Introduction

tion. The capillary effects of the liquid bridge will be examined in terms of the saturation
of the fluid and the deformation of the solid skeleton.

This thesis is organized in seven chapters grouped in three parts.
Part I introduces primarily the reader to the physics and mechanics of partially sat-

urated granular material. The properties of the fluid phases are introduced based on the
knowledge of two-phase flow in hydrology, where the algorithm and numerical methods
are also reviewed (chapter 1). In chapter 2, the multiphase system is treated as the special
case of unsaturated soil. The mechanical behaviors of the solid skeleton are reviewed.
The stress framework and constitutive modeling of unsaturated soil are discussed.

part II concerns the description of the 2PFV-DEM coupled model, organized in two
chapters. A first one (chapter 3) presents the details of the model, where the governing
equations, drainage criteria and the coupling with the DEM are elaborated. A second one
(chapter 4) shows the implementation of the model, which is based on an open-source
code YADE platform. The functions of the model are presented by a simple test. A
validation follows.

part III presents the applications and extension of the model. Chapter 5 focus on the
issues related to size effects and boundary effects. Chapter 6 is devoted to the examina-
tion of Bishop’s effective stress parameter χ , where the relations between macro-scale
effective stress and micro-scale contact stress are investigated as well. The last chapter
presents the extensions, where the liquid bridge model of pendular regime is extended
into the current implementation.
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General Introduction

Abstract
The study of the physics of fluid/fluids through deformable granular materials is of

great importance in many areas of engineering and science, which include the soil me-
chanics, ground water hydrology, petroleum engineering, food industry, biomedical tech-
nology, etc. It covers a wide range of applications at different space-scales and time-
scales, from the macro-scale such as oil recovery (103− 105 m) to micro-scale such as
biological systems (10−5− 10−3 m), and from long-time scale such as the organic con-
taminant dissolution study (longer than many decades) to short-time scale such as the
“Haines jump” phenomenon in pore space (within few seconds). In all of these systems,
the aggregate of porous media consists of the solid skeleton and two or more immiscible
fluids. For different communities of science, the researchers may focus on different as-
pects of the complex aggregate system. For instance, in soil mechanics, the researchers
term the aggregate materials as “unsaturated soils”, in which “unsaturated” is used for
illustrating the degree of pore water saturation. They are mainly interested in the mechan-
ical behaviors of the solid skeleton. On the other hand, the scientists in fluid mechanics
mainly focus on the hydraulic behaviors of the fluid/fluids of the pore space, such as the
pressure and distribution of the fluids. Also, in different communities, the same physi-
cal phenomenon or variable may be described by different terminologies, for example,
the matric suction and capillary pressure are both used for describing the difference in
pressure across the interface between two immiscible fluids.

In the thesis, we aim to model the physical interactions between the solid phase and
two immiscible fluid phases. The properties of all components are equally important to
us. Thus, the literature review is twofold. We will separately review the physics and
mechanics of different components of the granular porous media, in which the theory
behind the fluids is mainly from the community of hydrology and the properties of the
solid phase is in the context of soil science.
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Chapter 1

Two-phase flow in granular porous
media

1.1 Physics of two-phase flow
In fluid mechanics, two-phase flow is a flow involving two immiscible fluids usually in a
pipe. It is a particular example of multiphase flow. Two-phase flows in granular porous
media are almost universally encountered in nature and in various applications of mechan-
ical engineering and industry, such as the air/water fluids in unsaturated soil, water/oil
fluids or water/gas fluids in petroleum engineering, blood/other body fluid in biochemical
engineering, etc. To understand and model the physics of the interactions between fluid,
fluid and solid phases is of great importance for such applications. The difficulty lies in
the complex structure of the pore space constituted by the discrete (deformable and poly-
disperse) solid phase, in which the hydraulic boundary conditions can not be accurately
determined. Even though the fluids through a single pipe is given by simple equations,
the network of the pipes is impossible to know in detail.

1.1.1 Solid structure and one-phase flow
Two important quantities are usually used to describe the properties of the granular porous
medium: the porosity φ and the permeability κ .

φ =
Vv

Vt
(1.1)

where Vv is the volume of void pore space and Vt is the total or bulk volume of material,
including the solid and void components. The void space of the medium can be artificially
decomposed into pore bodies (large voids) connected by pore throats (narrow voids). The
geometrical idealization of the pore body and the pore throat in numerical implementation
(mainly related to pore scale approaches) will be reviewed in next section. The perme-
ability describes the ability of a porous material to allow fluid to flow through it. It is
related to the porosity, the shapes of the pores and the level of connectedness, i.e., the
geometry of the medium. Permeability is a property of the porous media only, not the
fluid. The proportionality constant for the fluid through a porous media is termed as hy-
draulic conductivity. It depends on not only the geometry of solid structure (i.e., intrinsic
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Part I Chapter 1 - Two-phase flow in granular porous media

permeability) but also the property and the amount of the fluid.

Consider flow of one fluid through a porous medium, the dynamic property of the fluid
can be characterized by the dynamic viscosity µ . It measures the local resistance of the
fluid to the rate of shear strain. The flow phenomena is formulated by Darcy’s law,

u =−κ

µ
(∇p−ρg) (1.2)

where u is the flux and ∇p is the pressure gradient vector. Darcy’s law is only valid for
slow, viscous flow (typically flows with a Reynolds number less than one).

The generic motion of fluid can be described by the Navier-Stokes (N-S) equations.
These equations are established by applying Newton’s second law to fluid motion, to-
gether with the assumption that the fluid stress is the sum of a diffusing viscous term and
an isotropic pressure term. The N-S equations for irrotational flow can be written as:

∂ρ f

∂ t
+∇ · (ρ f u) = 0 Continuity Equation (1.3)

∂u
∂ t

+(u ·∇)u =− 1
ρ f

∇p+F+
µ

ρ f
∇

2u Equation of Motion (1.4)

ρ f (
∂ζ

∂ t
+u ·∇ζ )−∇ · (KH∇T )+ p∇ ·u−µ∇

2u = 0 Conservation of Energy (1.5)

where ρ f =local density of the fluid, u =flow velocity, F =external force per unit mass,
p =pressure of the fluid, ζ =thermodynamic internal energy, KH =heat conduction coef-
ficient and ∂

∂ t refers to the time rate of change at a fixed point in the fluid. Usually, the N-S
equations are too complicated to be solved in a closed form. However, some special cases
can be simplified and derived. For instance, in case of incompressible fluids (constant ρ f ),
the Continuity Equation reduces to:

∇ · u = 0 (1.6)

1.1.2 Two-phase flow

For the system of immiscible two-phase flow in a porous medium, each of fluids is con-
sidered to have a separately defined volume fraction and velocity field. The flow includes
not only the movement of each individual fluid phase itself but also the movement of the
interfaces between different phases. The contact angle quantifies the wettability of the
solid phase surface to the fluid phases through the Young equation. From the contact an-
gle, one can tell which fluid is nonwetting phase (NW-phase) and which fluid is wetting
phase (W-phase) relative to the solid phase (S-phase). If the NW-phase invades the pore
space and displaces the W-phase, this procedure is termed as “drainage” (for instance,
the drying process in soil science); and if the flow is in opposite sequence, it is referred
as “imbibition”. The difference between NW-phase pressure pn and W-phase pressure
pw is termed “capillary pressure” pc, i.e., pc = pn− pw. The force acting on the NW/W
interface is referred as “capillary force”.
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Part I Chapter 1 - Two-phase flow in granular porous media

Dynamic characteristics

The dynamic properties of the two-phase flow systems can be described by two dimen-
sionless numbers, the capillary number Ca and the viscosity ratio M ,

Ca =
µv
γ
, M =

µinv

µ
(1.7)

where µinv is the viscosity of the invading phase, µ is the viscosity of receding phase, v
is the average velocity of the receding phase, and γ is the interfacial tension between the
two fluid phases (Lenormand et al., 1988; Lenormand, 1990). If Ca is very small (usually
said less than 10−5), the flow is dominated by capillary forces whereas for high value of
Ca the capillary forces are negligible compared to the viscous forces. It is worth noting
that Ca is usually considered as a macroscopic parameter, which can not be applied at pore
scale. That is because the velocity of fluids can be significantly different at macro-scale
and pore-scale (Lu et al., 1995; Joekar-Niasar and Hassanizadeh, 2012).

The viscosity ratio, which is determined by the types of fluids (M > 1, referred as
favorable; M < 1, referred as unfavorable), can affect the characteristics of the flow and
the entrapment of the fluid. Fig.1.1 illustrates the displacement of a W-phase by a NW-
phase (i.e., drainage) in the absence of buoyancy forces at different Ca and M. Several
flow regimes can be observed. If Ca is small and M is favorable, the NW-phase distributes
in the form of capillary fingering (Fig.1.1a); if Ca is large and M is favorable, a stable
front can be observed (Fig.1.1c). For unfavorable M, viscous fingering occurs (Fig.1.1b)
and the invasion front is not stable if larger pressure gradient is applied (Vizika et al.,
1994; Joekar-Niasar and Hassanizadeh, 2012).

States of fluid content

Let us consider a typical two-phase flow system in soil mechanics, i.e., water/air/soil, in
which we assume the water is the W-phase and the air is NW-phase. It is well known
the cohesion of the soil depends on the amount of water in the system. Also the water
may exist in the pore space with different geometrical shapes (i.e., mensici) if its content
varies. Thus a qualitative classification of the liquid content is commonly made. The
following four regimes have been distinguished (Newitt and Conway-Jones, 1958; Iveson
et al., 2001; Mitarai and Nori, 2006),

• Pendular regime: At low moisture level, the particles are held together by lens-
shaped rings of liquid (liquid bridge).

• Funicular regime: Liquid bridges around the contact points and liquid-filled pores
coexist. Both contribute to the cohesion of the medium.

• Capillary regime: Most pores are filled with the liquid, but the liquid bridges and
clusters of isolated liquid also exist. The air pressure is larger than liquid pressure,
thus the capillary pressure still results in a cohesive interaction between particles.

• Slurry regime: The liquid pressure is equal to, or higher than, the air pressure. No
cohesive interaction appears between particles.

7
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Figure 1.1: Schematic representation of phase diagram showing various flow regimes under
different viscosity ratio and capillary number, after Joekar-Niasar and Hassanizadeh (2012),
originally based on Lenormand (1990); Lenormand et al. (1988); Sinha and Wang (2007)

So far only the pendular regime has been investigated systematically from a microme-
chanical point of view. We will review this in next section.

In the thesis, since we also want to implement the pendular regime into the model, the
algorithm of pendular regime will be recalled briefly. We will present this in chapter 7.

1.2 Numerical models for two-phase flow in (deformable)
porous media

As reviewed in previous section, Darcy’s Law and N-S equations formulate the physics of
one-phase flow at different scales, which are essentially based on the similar conservation
theory of macroscopic properties (i.e., mass, momentum, energy, etc.). Consequently,
researchers tried to apply such theory on two-phase flow. The main difficulty is how to
describe the local fluctuations induced by the microscopic interactions between the two
fluids (capillary force dominated or viscous force dominated). The movement of one fluid
affects the boundary conditions of the other fluid. Moreover, if the structure of the porous
media is deformable, the coupling scheme will be extremely complicated.

In general, there are several approaches at three different scales available for simulat-
ing two-phase fluid flows (including the solid-fluids couplings).
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1.2.1 Macro-scale continuum models
Macro-scale continuum models are used to solve the pressure and the saturation of wet-
ting or nonwetting phases in most field-scale applications. By following the conservation
theory, the local fluctuations at microscale in two-phase flow have been formulated in
a variety of ways, mostly incorporated in Darcy’s Law. The Buckley-Leverett theory is
the famous one of them. It follows the mass conservation and assumes that the capillary
pressure is a function of water (W-phase) saturation only, and the flow is linear and in
steady-state (Buckley et al., 1942). As summarized by Joekar-Niasar and Hassanizadeh
(2012), the following system of equations should be solved for a rigid porous medium and
incompressible two-phase flow in the framework of Buckley-Leverett theory,

φ
∂ sα

∂ t
+∇ ·uα = 0, α = n,w mass balance (1.8)

uα =− 1
µα

kαK(∇pα −ρ
αg), α = n,w Darcy’s Law (1.9)

sw + sn = 1 pore volume conservation (1.10)
pc = pn− pw = f (sw), dpc/dsw = 0 Buckley-Leverett’s assumption (1.11)

where φ =porosity, sα =the saturation of phase α , uα =velocity of phase α , µα =viscosity
of phase α , kα =the relative permeability of phase α , K =intrinsic permeability tensor,
and w and n refer to the wetting and nonwetting phases.

In hydrodynamics, the researchers mainly focus on the evolution of flow of the fluids,
and are rarely interested in the deformation of the porous medium for macro-scale mod-
eling. The majority of work about solid-fluids couplings is usually found in soil science,
which will be reviewed in the next chapter. Those coupling schemes are based on em-
pirical relations describing, namely, capillary pressure - saturation (pc− sw) curves and
their evolution with strain, relative permeability, and effective stress. Such methods have
acceptable computational costs for large problems, but the empirical laws therein have
well known issues. Namely, hysteretic effects are very difficult to model and an accepted
effective stress framework is still absent.

1.2.2 Micro-scale continuum methods
The mciro-scale continuum methods, which include lattice Boltzmann method, volume
of fluid method, smoothed particle hydrodynamics method and level set method, do not
rely on such empirical relations. They are promising approaches for getting accurate
results at very small scales and gaining understanding of the phenomena observed at the
macroscale. However, they usually have high computational cost.

Lattice Boltzmann method

Lattice Boltzmann method (LBM) (or thermal lattice Boltzmann method (TLBM)) is a
relatively new approach for simulating fluid flows and modeling physics of fluids in com-
putational fluid dynamic (CFD). Unlike conventional CFD methods, which are based
on discretization of macroscopic continuum equations (i.e., mass, momentum, and en-
ergy), LBM is based on microscopic models and mesoscopic kinetic equations (Chen and
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Doolen, 1998). It is assumed that the fluid consists of fictive particles, and such particles
perform consecutive propagation and collision processes over a discrete lattice mesh. In
recent decade, Considerable work has been made through LBM to solve the problems
related to two-phase or multi-phase flow. For instance, Gunstensen et al. (1991) pro-
posed a multi-component LBM on the basis of two-component lattice gas model; Shan
and Chen (1993) developed a LBM model with mean-field interactions for multi-phase
flow; Swift et al. (1996) proposed a LBM model based on the free-energy approach,
etc. In addition, the LBM has several computational advantages over other conventional
CFD methods, including parallelization of the algorithm (Chen and Doolen, 1998), han-
dling complex boundary conditions (Noble et al., 1995; Zou and He, 1997; Chen and
Doolen, 1998; Mei et al., 1999), incorporation with microscopic interactions and simplic-
ity of programming. Of course, some limitations are still blocking the implementation of
LBM, namely, it is difficult to simulate the flows with high-Mach number and a consistent
thermo-hydrodynamics scheme is still missing.

Volume of fluid method

Volume of fluid (VOF) method belongs to the class of Eulerian methods, first proposed
by Hirt and Nichols (1981). In VOF, a scalar indicator function between zero and one,
termed as volume fraction is employed to distinguish between two different fluids. Thus
the free surface (i.e., fluid-fluid interface) can be tracked and located. However, VOF is
not a standard method for solving flow problems.The N-S equations usually need to be
incorporated to describe the motion of the flow of each fluid. VOF usually does not need
high computational cost and programming friendly. Several models have been established
by combining different flow solvers in the framework of VOF (Gueyffier et al., 1999;
Welch and Wilson, 2000; Gopala and van Wachem, 2008; Raeini et al., 2012).

Smoothed particle hydrodynamics method

Smoothed-particle hydrodynamics (SPH) is a mesh-free particle method based on La-
grangian formulation. The underlying idea is to decompose the fluid into a set of discrete
elements (termed as “particles”) with a spatial distance (termed as “smoothing length”).
Their properties are described by a kernel function (Liu et al., 2003; Fulk and Quinn,
1996). The governing equations are established based on these discrete particles to com-
pute the local physical variable (density, velocity, acceleration, etc.). The motion of the
fluids is represented by the motion of particles, thus the fluid-fluid interface is not ex-
plicitly tracked and located. In recent years, extensive applications have been made in a
wide range of areas of engineering and science, including the two-phase flow of hydrody-
namics (Monaghan and Kocharyan, 1995; Morris, 2000; Colagrossi and Landrini, 2003;
Tartakovsky and Meakin, 2005, 2006). The main disadvantage of SPH is that it requires
large numbers of particles to reproduce the physical phenomena at the same scale, which
makes the computational cost relatively expensive.

Level set method

The level set methods (LSMs), introduced by Osher and Sethian (1988), are computa-
tional techniques for tracking and analyzing the motion of an interface in two or three
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dimensions. In LSM, the interface is represented by the zero contour of a signed distance
function, termed as the level set function. The motion of the interface is governed by a dif-
ferential equation for the level set function. LSM can automatically track the topological
changes and obtain high order of accuracy. Thus, they are suitable for implementations in
simulating the physics of two-phase flow (Sussman et al., 1994, 1999; Olsson and Kreiss,
2005; Di et al., 2007). The drawback of LSMs is that they are not conservative. For in-
compressible two-phase flow, loss or gain of mass might happen.

There are still many other micro-scale continuum methods that have not been reviewed
in this section (for instance, front tracking method). In general, most of above methods
also mainly focus on the motion of the fluids, rarely modeling the interactions between
fluids and solid structure.

1.2.3 pore-scale methods

The third category of methods for simulating the two-phase flow is the family of pore-
scale approaches. Pore-network models are the majority. Pore-network models introduce
an intermediate scale at which pore bodies are identified. They enable the simulation of
larger domains compared to micro-continuum models. They idealize the porous medium
as a network of pore bodies connected by narrow throats. Pore-network modeling was
pioneered by Fatt (see Fatt (1956) and companion papers), who derived capillary pressure
and saturation (pc− sw) curves of primary drainage and computed pore size distributions
in a network of interconnected pores. Since then, a number of different researchers have
contributed to the current understanding of two-phase flow using pore-network models.

Network topology and geometry

Pore network models represent the continuous interconnected pore space by discrete net-
works of pores and throats. The topology is mathematically concerned with the properties
of the pore space that are preserved under continuous deformations. It can be defined by
two characteristics (Joekar-Niasar and Hassanizadeh, 2012): (1) the spatial location of
pore bodies and (2) the connectivity of pore elements. Consequently, four categories of
network topologies can be distinguished: structured regular (in majority), structured irreg-
ular (e.g., Koplik and Lasseter, 1985; Mogensen and Stenby, 1998), unstructured regular
(e.g., King, 1987; Blunt and King, 1991) and unstructured irregular (very few), as illus-
trated in Fig.1.2.

Beside the topology, the geometries of pore bodies and throats can also affect the
hydraulic behavior of the system. Two porous media with the same topology can have
significant different properties (Joekar-Niasar et al., 2010b). The shape of the pores have
been approached by regular geometries (e.g., cubic (Joekar-Niasar et al., 2010a; Raoof
and Hassanizadeh, 2013) or spherical (Koplik and Lasseter, 1985)) and the shape of the
pore throats by cylinders with various cross-sectional shapes (e.g., circular (Dias and Pay-
atakes, 1986; Koplik and Lasseter, 1985) or triangular (Al-Gharbi and Blunt, 2005)) or
with parallel pipes (Hughes and Blunt, 2000; Joekar-Niasar et al., 2010a). Angular cross
sections have been proposed by some authors to reflect the phenomena of corner flow and
the crevices occupied by the wetting phase. Statistically representative pore networks of
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Figure 1.2: Classification of pore network topologies: (a) structured regular, (b) structured
irregular (red color illustrates isolated pores), (c) unstructured regular, and (d) unstructured
irregular, after Joekar-Niasar and Hassanizadeh (2012).
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this kind can be generated to represent real porous samples (Khaksar et al., 2013; Rostami
et al., 2015; Nikooee et al., 2014).

Other work focuses on mapping directly the pore space of real granular materials, a
problem pioneered by Bryant and Blunt (Bryant and Blunt, 1992) (see also Bryant et al.,
1993a,b), who constructed a network mapping an experimental specimen of packed mono-
sized spheres. As imaging techniques reach smaller and smaller scales (Culligan et al.,
2004; Khaddour et al., 2013), there is a growing interest in this problem and many pore-
network extraction algorithms are being developed. They include the multi-orientation
scanning method (Zhao et al., 1994), medial axis-based algorithms (Lindquist et al., 1996;
Sheppard et al., 2005; Prodanović et al., 2006), Delaunay/Voronoi diagram-based methods
(Bryant and Blunt, 1992; Øren and Bakke, 2003), or the method of maximal ball (Silin
et al., 2003; Silin and Patzek, 2006)).

Solving coupled flow-deformation problems similarly requires to map a network di-
rectly on a given set of solid particles. Moreover mechanical coupling requires a direct
and explicit link between the network geometry and the positions of the solid grains, and
the computational cost of updating the network should be kept as small as possible. The
Delaunay/Voronoi methods, which introduce a simple duality between the solid element
and the void space, are suitable for such implementation. The very few existing models
coupling a pore-network with a deforming material also adopted this methodology (in two
dimensions (Jain and Juanes, 2009; Kharaghani et al., 2012), hence mainly qualitative).

A three-dimensional pore-scale approach termed PFV (Chareyre et al., 2012) has been
proposed to effectively solve flow problems with a single fluid phase. Therein, the fluid
flow was modeled using a pore-scale finite volume scheme (PFV) which shares many
features with conventional pore-network methods. The method has proven effective in the
context of coupled flow-deformation problems (Tong, A.T. et al., 2012; Catalano et al.,
2014; Scholtès et al., 2015).

Algorithms

The conservation equations Eq.1.8-1.11 in the framework of Buckley-Leverett theory
can formulate the physics of two-phase flow at macro-scale, but they are not suitable
for the pore-scale modeling. A consistent adaptation is required.Joekar-Niasar and Has-
sanizadeh (2012) classified the approaches for solving two-phase flow into two general
categories: single-pressure algorithm and two-pressure algorithm, assuming the flow in
the pore throat has low Reynolds number (i.e., the inertial effects are negligible) and the
solid structure is rigid. In single-pressure models, each pore body or throat can be occu-
pied by only one fluid phase, thus only one pressure is assigned. (Although the pore body
or throat may be occupied by both fluids, an equivalent single fluid with single pressure
is introduced); In two-pressure models, a pore body is allowed to be filled by two fluids
with individual pressure, i.e., a local capillary pressure can exist in a pore. Subsequently,
Joekar-Niasar and Hassanizadeh (2012) summarized the adaptation of Buckley-Leverett’s
framework for pore scale models as follows,
(1) For single-pressure models, a pore body i connects to a pore body j through a pore
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throat i j,
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where Vi is the volume of pore body i, sw
i , sw

j are the wetting saturation of i and j, Qi j is the
total volumetric flux from i to j, Ki j [M−1L4T ] is the equivalent hydraulic conductivity as
a function of the pore throat radius, pore throat length and fluid viscosities. ∆i j is related
to the pressures of pore bodies i, j and throat i j (Koplik and Lasseter, 1985; van der Marck
et al., 1997), pc

i j is the entry capillary pressure of pore throat i j. ri j is the radius of pore
throat i j.
(2) For two-pressure models, a pore body i is filled by two fluids,
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sw
i + sn

i = 1 pore volume conservation (1.18)
pc
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i − pw

i = f (sw
i ) (1.19)

where Kα
i j is the hydraulic conductivity for phase α .

In the thesis, the method we will propose belongs to the single-pressure algorithm.
One important issue in the method is how to solve the entry capillary pressure of pore
throat, pc

i j. Considering a pore body occupied by W-phase, the nonwetting phase can only
invade the body through the throat when the local capillary pressure surpass the entry
capillary of that throat. Entry capillary pressure can be determined by following the MS-
P (Mayer-Stowe-Princen) method, which employs the balance of forces on the NW-W
interface (Mayer and Stowe, 1965; Princen, 1969). The balance can be written as,

∑F = Fc +Ft = 0 (1.20)

where Fc is the capillary force acting on the area of W/NW interface and Ft is the tension
force acting on the contact lines between different phases. Based on this method, the
entry capillary pressure for throats with different irregular shapes can be obtained (Mason
and Morrow, 1991; Ma et al., 1996; Fenwick et al., 1998; Van Dijke and Sorbie, 2006;
Joekar-Niasar et al., 2010b). In the thesis, we also employ this approach to calculate the
entry capillary pressure of our model, which will be elaborated in next chapter.

Other hydromechanical coupling models at pore-scale

Some models may not focus on the physical interactions between the fluids; instead they
take the solid particles as the main objects of study. They employ different modeling
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Figure 1.3: Illustration of a liquid bridge between two particles under pendular regime, after
Scholtès et al. (2009a).

techniques adopted for the description of fluid flow within the medium, to be then coupled
with the DEM. (These models technically belong to the particle scale approaches. We put
them into the category of pore scale to review since their scales are at the same level.) The
liquid bridge models for describing the pendular regime of fluids are typical ones.

As mentioned in section.1.1.2, in a NW/W/S phases system, namely a air/water/soil
system of soil science, the water will exist in the form of liquid bridges between soil par-
ticles when the moisture level is low. Such system can be conceptualized as shown in
Fig.1.3. The cohesive effects between two soil particles in contact or closed via a pen-
dular bridge arise from the sum of three effects: the water surface tension acting at the
water-soil boundary, the force exerted by the capillary pressure in the bridge itself and
the buoyancy force resulting from the partial immersion of the particles (Fisher, 1926).
The last item is negligible for particles smaller than 1 mm in diameter (Princen, 1968).
Quantitatively, the total force is determined by the volume of liquid bridge, surface ten-
sion, contact angle and the separation distance between the two particles. Based on the
conceptual model of Fig.1.3 (in 2D or 3D), the total force has to be numerically solved
using various mathematical methods. The relationships between liquid content, cohesion
force and separation distance have also been established. Consequently, the couplings
with DEM could be well implemented (Hotta et al., 1974; Ennis et al., 1990; Lian et al.,
1993; Li, 2003; Scholtès et al., 2009; Scholtès et al., 2009a).

In the thesis, the model we will propose mainly focuses on funicular regime. But it
can be extended to cover the pendular regime with no difficulty. We will present this work
in chapter 7, where the algorithm of pendular model will be recalled in detail.

Under the mechanical framework (i.e., based on the geometry and motion of the solid
phase), two-phase flow in porous media under the pendular regime has been systemat-
ically investigated. The hydromechanical coupling models have been successfully es-
tablished. However, rarely models related to the funicular regime or the evolution be-
tween different regimes can be found, except those developed by Slowik et al. (2009),
Kharaghani et al. (2011, 2012). Slowik et al. (2009) proposed a model to describe the
evolution from slurry regime to pendular regime (i.e., drying), in which capillary effects
are formulated and the induced motion of the solid phase is simulated. This model is
constrained in two-dimension, hence mainly qualitative. Kharaghani et al. (2012) pro-
posed two models for simulating the mechanical effects during drying, which mainly
reproduced the capillary effects under the funicular regimes. In Kharaghani et al. (2012),
an irregular pore network model has been established using Voronoi diagram. The cap-
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Figure 1.4: Calculation of capillary force based on a Voronoi diagram. (a) A Voronoi cell
with projection of vertices on a particle (b) Calculation of a subdomain of the particle, after
Kharaghani et al. (2012).

illary force can be accurately calculated based on the network topology (see Fig.1.4),
however, this model is also constrained in two dimensions and the solid particles must be
monosized. In Kharaghani et al. (2011), a three dimensions model is proposed, but the
structure of the solid phase is strictly regular (see Fig.1.5). To our knowledge, no three-
dimensional models with polydisperse-sized particles have been developed for simulating
the hydromechanical couplings of two-phase flow in porous media.
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Figure 1.5: Evolution of capillary forces during drying (the viscous effects are negligible).
(a) Saturation of W-phase sw = 1.0, (b) sw = 0.9, (c) sw = 0.6 and (d) sw = 0.3. Gray cylinders
represent empty pores, and dark blue is for liquid; capillary forces are presented by red cones,
and cone size scales with force magnitude, after Kharaghani et al. (2011).
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Chapter 2

Physics and mechanics of unsaturated
granular materials

2.1 Introduction
In soil mechanics, an aggregate which consists of the solid porous medium and two immis-
cible fluids is termed “unsaturated soil”. The fluid phases are usually air and water. The
qualifier “unsaturated” (or alternatively, “partially saturated”) illustrates that the degree of
pore water saturation is any value less than unity. We generalize the primary knowledge
of unsaturated soil to review the physics and mechanics of unsaturated granular materials.

An unsaturated soil is originally defined as a three phases system, i.e., a certain type
of soil, pore water and pore air. The “porosity” (Eq.1.1) is used to measure the void (i.e.,
“empty”) spaces in the soil. It is one of the primary physical terms for characterizing and
classifying the different soils. Considering the water space, the content of pore water can
be evaluated by the term of “water saturation” or “degree of saturation” sw(%),

sw =
Vw(100)

Vv
(2.1)

where Vw is the volume of water. For other unsaturated granular materials, the saturation
may be referred as the content of different fluids.

Then, the researchers realized that it might be more correct to recognize the existence
of a fourth phase in unsaturated soils, namely, the water-air interface or “contractile skin”
(Fredlund and Morgenstern, 1977) (see Fig.2.1). The most distinctive property of the
contractile skin is that it can exert a tensile pull. It behaves like a thin rubber membrane
pulling the solid particles together, forming a fixed partition between the air and water
phases, and leading to volumetric shrinkage under no changes of total stress while the soil
specimen undergoes drying (Fredlund and Rahardjo, 1993). In the four-phase system,
the two fluid phases (air and water) continuously flow under the influence of a stress
gradient, and the other two phases (solid particles and contractile skin) deform and come
to equilibrium under the influence of a stress gradient (Fredlund et al., 2012).

Classical soil mechanics and geotechnical engineering usually treat the solid phase as
either dry (pores filled with air, sw = 0%) or saturated (pores filled with water, sw = 100%).
Unsaturated soil is much more complex, not only because of the existence of two fluid
phases in which their distribution and movements are heterogeneous and disorganized, but
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Figure 2.1: Components of unsaturated soil with continuous air phase (Fredlund et al., 2012).

also the effects of contractile skin which make the mechanical behaviors of solid structure
unpredictable. By following the theory of saturated soil mechanics, the unsaturated soil
mechanics began to emerge during the late 1970s and continues today. As summarized
by Fredlund (2005), there are six challenges to the implementation of unsaturated soil
mechanics. Two of them are highly related to the numerical modeling,

• To discover appropriate stress state variables for describing the physical behavior
of unsaturated soils

• To develop (and test for uniqueness) constitutive relations suitable for describing
unsaturated soil behavior

The literature reviews will focus on the above two issues.

2.2 Stress variables

2.2.1 A single effective stress
At early stage of soil mechanics, (Terzaghi, 1936) introduced the concept of effective
stress for the particular case of saturated soil. He stated the principle of effective stress in
the following terms:1

“The stresses in any point of a section through a mass of soil can be computed
from the total principal stresses σ1, σ2, σ3 which act in this point. If the voids
of the soil are filled with water under a stress u, the total principal stresses
consist of two parts. One part, u, acts in the water and in the solid in every
direction with equal intensity. It is called the neutral stress (or the porewater
pressure). The balance σ ′1 = σ1−u, σ ′2 = σ2−u, σ ′3 = σ3−u represents an
excess over the neutral stress u and it has its seat exclusively in the solid phase
of the soil. This fraction of the total principal stresses will be called effective
principal stresses [..] A change in the neutral stress u produces practically
no volume change and has practically no influence on the stress conditions

1Using the nomenclature adopted by Skempton (1960)
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for failure. [..] Porous materials (such as sand, clay and concrete) react to
a change of u as if they were incompressible and as if their internal friction
were equal to zero. All the measurable effects of a change of stress, such as
compression, distortion and a change of shearing resistance are exclusively
due to changes in the effective stresses σ ′1, σ ′2, σ ′3. Hence every investigation
of the stability of a saturated body of soil requires the knowledge of both the
total and the neutral stresses.”

The concept of effective stress forms the fundamental basis for studying saturated
granular media mechanics and has been well accepted. Biot continued Terzaghi’s con-
cept and proposed a general theory of consolidation for a fluid-saturated porous medium
with occluded air bubbles, where the fluid/solid phases were treated as one body and the
coupling terms were solved separately (Biot, 1941). Unsaturated porous media behavior
is more complex. The state of stress in unsaturated materials is fundamentally different.
The difficulties lies on how to consider the variable effects of water content and the role
of contractile skin.

According to Terzaghi’s theory, the stress state variable for a saturated material can be
expressed in the form of an equation:

σ
′
i j = σi j− pw (2.2)

where σ ′i j is the effective stress, σi j is the total stress, and pw is the pore water pressure.
It is desirable to extend this concept to unsaturated materials. Numerous attempts have
been made to develop a similar expression, in which all proposed equations have provided
a single-valued effective stress or one stress state variable. This work was pioneered by
Bishop (1960) and Bishop and Blight (1963). They proposed a tentative expression:

σ
′
i j = (σi j− pn)+χ(pn− pw) (2.3)

where pn is pore air pressure and χ is a parameter related to the degree of saturation. The
parameter χ is termed the effective stress parameter. The magnitude of the χ parameter
is 1 for a fully saturated material and 0 for a dry material. Similar expressions have also
been given by Aitchison and Donald (1956) and Jennings (1961). Such expressions in-
deed enable to describe a simple transition from fully saturated states, in which Terzaghi’s
expression is covered, to partially saturated and completely dry states. Determination of χ

and its dependency on the amount of water in the system is essential to evaluate the effec-
tive stress in unsaturated porous media. Bishop and Donald (1961) and Bishop and Blight
(1963) performed experiments on cohesionless silt and compacted soils, respectively, to
obtain the evidence for the validity of Eq.2.3 (see Fig.2.2).

The early experimental efforts were primarily concerned with determining the rela-
tionship between χ and the degree of saturation, sw. Figure.2.2 shows a series of rela-
tionships between χ and sw for a wide range of soil types (Bishop et al., 1960; Bishop
and Donald, 1961; Jennings and Burland, 1962; Zerhouni, 1991). All curves evidence a
seemingly trend for χ to follow the variations of sw. However, no unique relationship can
be found. Even though, some researchers started to propose the empirical expressions.
Schrefler (1984) first raised the following simple expression:

χ = sw (2.4)
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Figure 2.2: The relationship between effective stress parameter χ and the degree of saturation
for a number of different soils in Zerhouni (1991) and review Nuth and Laloui (2008).

However, authors argued that such identity was not able to describe the ranges of satura-
tion out of 20%-80%. Aitchison et al. (1985) proposed the following fitted expression,

χ =

{
1 if sw = 1
(α/sw)se if sw < 1 (2.5)

where se denotes the air entry suction and α denotes a coefficient varying from 0.3 to
0.35. More recently, Khalili et al. (2004) proposed that χ might be related to the current
stress and stress history. He suggested to obtain the relationship by plotting χ against the
ratio of matric suction over the air entry value. Khalili and Khabbaz (1998) wrote the
following identity:

χ =

{
( sw

se
)−0.55 if sw > se

1 if sw 6 se
(2.6)

The definition of the effective stress has brought about some achievements in describ-
ing the shear strength of unsaturated materials, but it has not led to great success in mod-
eling the general mechanical behavior. The limitations of the single effective stress were
first reported by Jennings and Burland (1962). They argued that the “effective stress prin-
ciple” failed to explain the collapse phenomenon upon wetting in unsaturated soils. A se-
ries of consolidation tests on several unsaturated soils were performed. The results showed
that all samples collapsed upon flooding (i.e., reducing suction), rather than expanding as
is implied by the effective stress principle. Authors concluded that it is inappropriate to
combine (σi j− pn) and (pn− pw) into a single equation (Burland, 1965; Aitchison, 1965;
Matyas and Radhakrishna, 1968; Brackley, 1971; Fredlund and Morgenstern, 1977).

Such early debates, prior to the 1990s, were mainly formulated within the context of a
fully elastic (linear or not) theoretical framework. More recently, the authors argued that
the plastic deformations such as collapse can be readily expressed within a single effective
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stress framework by defining the yield surface as a function of suction (Kohgo et al., 1993;
Modaressi and Abou-Bekr, 1994; Bolzon et al., 1996; Loret and Khalili, 2000; Khalili and
Loret, 2001).

2.2.2 Independent stress variables

Besides the limitations described above, the essential question about the single-valued
effective equation lies on the philosophical difficulty in justifying the use of soil properties
in the description of the stress state. Morgenstern (1979) stated,

“The effective stress is a stress variable and hence related to equilibrium con-
siderations alone. Bishop’s effective stress equation contains a parameter, χ ,
that bears on constitutive behavior. This parameter is found by assuming that
the behavior of a soil can be expressed uniquely in terms of a single effective
stress variable and by matching unsaturated behavior with saturated behav-
ior in order to calculate χ . Normally, we link equilibrium considerations to
deformations through constitutive behavior and do not introduce constitutive
behavior directly into the stress variable.”

In 1960s and 1970s, many researchers realized that it is possible to use a multiple
stress variable approach to model unsaturated materials behaviors rather than combining
them into one single effective stress expression. This work was pioneered by Coleman
(1962), who proposed the use of the net axial and radial stresses and the net pore water
pressure to represent triaxial stress states. He suggested to express the volumetric strain
as follows,

−dV
V

=−C21(dpw−dpn)+C22(d(
1
3
(σ1 +2σ3))−dpn)+C23(dσ1−dσ3) (2.7)

where V is the overall volume, σ1 is the axial total stress, σ3 the lateral total stress, and
C21, C22, C23 are independent parameters related to the material characteristics. Bishop
and Blight (1963) plotted the volume changes under all-round pressure by using the in-
dependent stress variables (see Fig.2.3). Numerous researchers also implied the similar
ways to describe the volumetric behavior (Matyas and Radhakrishna, 1968; Aitchison and
Martin, 1973; Fredlund and Morgenstern, 1976).

Fredlund and Morgenstern (1977) then further examined the description of the stress
state within the context of multiphase continuum mechanics. They postulated the unsat-
urated soil as a four-phase system, in which the air-water interface (i.e., “the contractile
skin”) was considered as a independent phase. Their theoretical analysis concluded that
“...any two of three possible normal stress variables can be used to define the stress state.”
The possible combinations are: (1) (σi j− pw) and (pn− pw); (2) (σi j− pn) and (pn− pw);
and (3) (σi j− pn) and (σi j− pw).

Such statement was also verified experimentally, in which a series of null test was per-
formed. Through increasing each item of the combined stresses by the same amount, the
experimental data indicated no overall volume change or water volume change. Among
these three couples of variables, it was the combination (1) that proved to be the easiest
to apply in engineering practice. From the physical point of view, the net stress (σi j− pn)
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Figure 2.3: Volumetric characteristics expressed by independent stress variables in Bishop
and Blight (1963)

accounts for the external loading, such as excavations or fills; the matric suction (pn− pw)
can be considered as the consequence of climatic environment changing.

After the long-time debates on the stress framework for unsaturated soils, the inde-
pendent stress variable approach has been proved to be an appropriate way for advanced
constitutive modeling of unsaturated soils. (Although several forms of single effective
stress framework are still possible.) It can produce a more meaningful description of
unsaturated soil characteristics. The stress state variables can be used to formulate consti-
tutive relations to describe the shear strength behavior and volumetric behavior.

2.3 Aspects of unsaturated granular materials behavior

Before we review the constitutive relationship of unsaturated porous media, it is necessary
to summarize the basic features of the mechanical behaviors. In the field of unsaturated
soil mechanics, the researchers mainly focus on three issues: (1) the volumetric behavior;
(2) the strength behavior, and (3) the hydraulic behavior (Sheng et al., 2008).

2.3.1 Volumetric change

The volume changes of an unsaturated granular material can be caused either by the
changes of external confining stress or by the changes of internal fluids potential (for in-
stance, changing the matric suction). The volume changes of an unsaturated material can
be expressed in terms of deformations or relative movement of the phases of the aggregate
(i.e., the relative contents of fluid phases).
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Loading/unloading at constant suction

The volume change characteristics induced by changes of confining stress have been ex-
tensively learned through different forms of loading conditions, such as isotropic, uni-
axial, triaxial, oedometeric loading/unloading, etc (Biot, 1941; Coleman, 1962; Matyas
and Radhakrishna, 1968; Barden, 1965; Maâtouk et al., 1995; Wheeler and Sivakumar,
1995). Generally, given a certain constant suction, sample shows gradual decrease in its
volume when loaded; the sample swells when it is unloaded. During loading, the vol-
ume change is irreversible (i.e., plastic) if the sample is passing a yield stress. That is
nothing special for the materials. For an identical sample loaded at different suction lev-
els, the yield stress increases with increasing suction. Quantitatively, the volume changes
behavior of unsaturated materials is usually described as a function of net stress and suc-
tion (including the wetting/drying cases of the next section). A series of expressions for
formulating the stress-deformation relations under different loading/unloading conditions
have been established using mathematical or semiempirical approaches (Fredlund et al.,
2012; Chou and Pagano, 1967; Fung, 1965; Fredlund and Morgenstern, 1976; Alonso,
1993; Pham, 2005). Such relations can be used to predict the volume changes (including
overall volume change and phase volume changes) that caused by the changes of stress
state variables.

Drying/wetting at constant net stress

During drying (increasing suction), the volume of sample usually first decreases. For the
materials with low plasticity, it is generally accepted that the volume change is small and
reversible (i.e., the sample first shrinks then swells). At high level of suction, the plastic
deformation may happen (i.e., the sample shrinks only).

The wetting cases are more complex. If it is performed (by decreasing suction) at low
level of net stress, the sample swells. However, if the net stress is in high value, the volume
shows a reduction, which is commonly termed as “collapse” (compression). Alonso et al.
(1987) proposed the Loading-Collapse (LC) yield curve to reproduce such phenomenon,
in which the deformation was treated as plastic behavior when the stress state reached the
LC curve. This proposal was later employed in developing of the Barcelona Basic Model
(BBM) (Alonso et al., 1990).

2.3.2 Strength behavior
Although the debates on universal stress framework were still lasting, the researchers have
already started to formulate the shear strength of unsaturated granular materials using
different stress variables.

Based on the single effective stress approach proposed by Bishop (1960), Bishop et al.
(1960) extended the Mohr-Coulomb failure criterion to get the following equation for
shear strength of an unsaturated material:

τ = c′+(σ − pn) tanφ
′+χ(pn− pw) tanφ

′ (2.8)

where τ is the shear strength of the material, c′ is the effective cohesion, φ ′ is the angle of
shearing resistance and χ is Bishop’s effective stress parameter.
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Based on the independent stress variables framework, Fredlund et al. (1978) used net
stress and matric suction to formulate the shear strength. They suggested the following
expression:

τ = c′+(σ − pn) tanφ
′+(pn− pw) tanφ

b (2.9)

where (σ − pn) is the normal net stress on the failure plane, c′ and φ ′ are the cohesion
intercept and friction angle respectively for saturated conditions and φ b is the friction an-
gle with respect to suction. It was assumed that both φ ′ and φ b are independent variables.
If φ b is a constant, the above expression predicts a linear increase of shear strength with
suction. However, the subsequent experimental research showed that such relationship is
nonlinear (Escario and Saez, 1986; Gan et al., 1988). Fredlund et al. (1987) suggested that
φ b is equal to φ ′ at low level of suction (the material remains saturated) and φ b decreases
with increasing suction as the material becomes unsaturated.

Khalili and Khabbaz (1998) employed a two stress state variables approach for the
prediction of the shear strength with the form of Eq.2.8, in which the effective stress
parameter was expressed by Eq.2.6. Alonso et al. (2010) used the information of the
water retention curves of different soils to predict the shear strength by the following
expression,

τ = c′+[(σ − pn)+Se
r(pn− pw)] tanφ

′ (2.10)

where Se
r is termed the effective degree of saturation.

2.3.3 Water retention curve

The relationship between the suction (matric or total suction) and the water content (volu-
metric or gravimetric) is termed as a “water retention curve” (WRC) or “soil water charac-
teristics curve” (SWCC) (or “capillary pressure-saturation (pc− sw) curve” in two-phase
flow)2. The main purposes of WRC are to predict the soil water storage, water supply
to the plants and soil aggregate stability. Considerable work has been done on various
aspects of WRC in soil science (Mualem, 1974; Fredlund et al., 1994; Croney, 1952;
Leong and Rahardjo, 1997; Hassanizadeh et al., 2002). Fig.2.4 shows the typical WRCs
expressed in terms of degree of saturation sw and suction pc, in which the sw− pc curves
during the wetting and drying process are following different paths. Such phenomenon is
termed “hydraulic hysteresis”.

Although no unique relationship between suction and water content can be estab-
lished, numerous constitutive expressions have been proposed to characterize the water
retention response based on the experimental measurements, specifically formulating the
main drying curve or the main wetting curve (Gardner, 1958; Brooks and Corey, 1964;
Brutsaert, 1967; Campbell, 1974; Van Genuchten, 1980; Fredlund and Xing, 1994; Pham
et al., 2005). In most of these expressions, one parameter bears a relationship to the air-
entry value and a second parameter is related to the rate of soil desaturating. A third
parameter may be introduced in some expressions to allow the curves to follow a different
slope at low level of suction. For instance, Van Genuchten (1980) proposed the following

2Technically, WRC should be classified as the hydraulic content of the previous chapter, however, it is
highly related to the mechanical behavior and the empirical constitutive relations of unsaturated soil in soil
mechanics. Thus, we put the reviews in this section.
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Figure 2.4: Typical water retention curve for a granular material, after Al-Sharrad (2013).

expression,

θ(ψ) = θr +
θs−θr

[1+(α|ψ|)n]1−1/n
(2.11)

where, θ(ψ) is the water retention curve [L3L−3]; |ψ| is suction pressure ([L] or cm of
water); θs is saturated water content [L3L−3]; θr is residual water content [L3L−3]; α is
related to the inverse of the air entry suction, α > 0 ([L−1, or cm−1); n is a measure of the
pore-size distribution, n > 1 (dimensionless).

2.4 Constitutive modeling of unsaturated soils

The mechanical constitutive law describes the strain and stress behaviors of the material
and plays an essential role for the numerical implementation. In general, constitutive
laws for unsaturated soils can be divided into two categories: elastic and elastoplastic
models. Fig.2.5 shows an overview of some common types of constitutive models, which
are summarized by Fredlund et al. (2012). Elastic models for unsaturated soils are usually
based on the extensions of Hooke’s law (Fredlund and Morgenstern, 1976). They are easy
to implement within numerical analysis, however, they can not describe the irrecoverable
strains. Thus, the elastoplastic models emerged.

In the context of continuum mechanics, the first complete elastoplastic model for un-
saturated soils is the Barcelona Basic Model (BBM) (Alonso et al., 1990), which is based
on the theoretical framework proposed by Alonso et al. (1987). A more summary form
can also be found in Gens et al. (1989). BBM is intended for unsaturated soils which
are slightly or moderately expansive, such as unsaturated sands, silts, clayey sands, and
clays of low plasticity. The motivation of the development of BBM was to implement the
mechanics and characteristics of unsaturated soils into the mature modeling of saturated
soils. It is assumed that the net stress and suction are the fundamental variables.
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Figure 2.5: Stress-strain constitutive models for unsaturated soils, summarized by Fredlund
et al. (2012).

Fig.2.6 illustrates the essential idea. It depicts a three dimensional yield surface in
p− q− pc space, where p is the mean net stress, q is (σ1−σ3) and pc is suction (see
Fig.2.6). Under saturated conditions (i.e., pc = 0), the yield surface corresponds to the
Modified Cam-Clay (MCC) ellipse. With the increasing of suction, (i.e., unsaturated
regimes are obtained,) the size of the elastic domain increases. The link between satu-
rated and unsaturated regimes is the rate of increase, which is represented by the loading-
collapse (LC) curves. The elastic domain is limited by yield limit related to suction in-
crease (SI). This limit is determined by the maximum previously experienced suction.

The BBM accounts for the stiffness changes of the soil induced by suction changes
and is able to reproduce many mechanical features of unsaturated soils, such as wetting-
induced swelling or collapse. After that, a large number of other elastic-plastic models
followed (e.g., Josa et al. (1992); Wheeler and Sivakumar (1995); Cui and Delage (1996)
among many others). Most of them are based on the same fundamental principles, sought
to improve some shortcomings of BBM.

A common feature of these models is that they employed the net stress as the stress
variable for establishing the constitutive laws. As summarized by Gens et al. (2006), in
general, three categories of models could be identified depending on the choice of stress
variables for formulating the constitutive relationships: (1) net stress (the above models);
(2) net stress plus a function of suction but not of degree of saturation (Kohgo et al., 1993;
Modaressi and Abou-Bekr, 1994; Loret and Khalili, 2002; Russell and Khalili, 2006) and
(3) net stress plus a combined function of suction and degree of saturation (Bolzon et al.,
1996; Jommi, 2000; Sheng et al., 2004; Tamagnini, 2004; Wheeler et al., 2003).
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Figure 2.6: Three-dimensional representation of the yield surface in the BBM, after Alonso
et al. (1990).
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Conclusions
The phenomenon of two immiscible fluids through a deformable granular material is
widely encountered in nature and in many areas of engineering and science. To understand
the physics, i.e., the interactions between fluid, fluid and solid phases, is of importance
for its applications. To reproduce the hydromechanical couplings of the complex system
requires the knowledge of each component phase. Thus in this part, the literature reviews
have been presented from two aspects.

The knowledge of the components of fluid phases has been reviewed in the context of
two-phase flow of hydromechanics. The physical properties of two-phase flow, such as
the dynamic characteristics and the states of the fluid, have been recalled. For the numeri-
cal aspect, three major categories of methods have been introduced based on the different
scale references. The family of pore scale methods have been discussed in detail, where
we focused on the pore-network modeling. The governing equations for the motion of
the fluid phases have been reviewed on basis of conservation theory. In addition, we have
introduced several other pore scale approaches for the hydromechanical couplings. Their
limitations have been recalled.

The physics and mechanical properties of solid phase have been introduced on basis
of the knowledge from soil science, where the system is termed as unsaturated soil. The
basic features of the mechanical behaviors of unsaturated soil have been reviewed from
three aspects. Such behaviors will be reproduced later with our model in the thesis. Two
main issues which are related to the numerical modeling have been recalled.

• Stress framework The single effective stress framework is on basis of Bishop’s
expression, where the effective stress parameter has been formulated by many re-
searchers. In chapter 6 and 7, we will recall this term and investigate its relationship
with the saturation. The independent stress variables framework has proven effec-
tive in establishing advanced constitutive relationship for unsaturated soil.

• Constitutive modeling The elastoplastic constitutive modeling is the mainstream.
In continuum-based background, the Barcelona Basic Model (BBM) has been con-
sidered as an appropriate framework for modeling the elastoplastic behaviors. Many
constitutive models have been developed based on BBM. Depending on the imple-
mentation of different stress variables in the models, three categories elastoplastic
constitutive laws have been distinguished.

Solving the hydromechanical couplings, a direct link between the hydraulic and me-
chanical responses is also required. The macro-scale continuum based models usually
employ empirical relationships. The current micro-scale and pore-scale methods usually
only focus on the motion of the fluid phases, considering the solid structure motionless. In
the next part, we will present a new hydromechanical couplings scheme at the pore-scale,
where the solid phase is deformable and an explicit link between the fluids and the solid
structure can be found.
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Chapter 3

The two-phase pore-scale finite volume
modeling

In this chapter, we will propose a pore-scale model aiming to simulate the hydraulic and
mechanical behaviors of unsaturated deformable granular materials. Specially, the model
is designed for the quasi-static two-phase flow of drainage. We term this approach as “two
phase pore-scale finite volume - discrete element method” coupling scheme, or “2PFV-
DEM” model.

In the model, the unsaturated granular material is idealized to be a system com-
posed by the spherical particles and two immiscible fluids, or termed the wetting/non-
wetting/solid (W-NW-S) phases system. The underlying idea of 2PFV-DEM model is
to combine a pore-scale network and the DEM for the fluid phases and the solid phase,
respectively. The 2PFV component of the model follows a partitioned approach and is
intended to provide a tool for the analysis of the behavior of two-phase flow of drainage.
The DEM framework offers the possibility of modeling micro-mechanical behaviors by
defining the mechanical properties of the individual interactions between particles. The
hydro-mechanical coupling is ensured by an explicit topology of pore-scale network.

This first chapter will be devoted to the description of the model, in which the coupling
strategy and the resolution of each component will be elaborated. The next chapter will
present the implementation of the model. Some primary results will also be shown.

3.1 Pore-scale network
As mentioned in the general introduction, solving coupled flow-deformation problems
need to map a network on a given set of solid grains. The mechanical coupling requires
a direct and explicit link between the network geometry and the positions of the solid
grains, and the computational cost of updating the network should be kept as small as
possible. It makes the Delaunay/Voronoi methods best candidates since they introduce a
simple duality between the solid objects and the void space.

Delaunay triangulations and their dual Voronoi diagram are widely used in computer
science and many other areas related to computational geometry (Aurenhammer, 1991).
In the area of granular materials, Delaunay triangulation has been applied for domain de-
compositions of sphere packings in order to define the micro-scale mechanical properties,
such as strain and stress (Calvetti et al., 1997; Bagi, 2006; Jerier et al., 2010). For mono-
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Figure 3.1: Comparison of triangulations and their dual Voronoi graph in two dimensions. (a)
the dual graph of Delaunay triangulation has branches inside discs; (b) the dual of the Regular
Triangulation has all branches in the pore space.

sized sphere packings, the Voronoi diagram is able to decompose the void space properly.
However, for poly-disperse sized packing, this approach presents some shortcomings. No-
tably, the branches (in 2D) or facets (in 3D) of Voronoi cell may cross non-void regions,
as illustrated in Fig.3.1a. In order to overcome such limitation, “Regular triangulation”
method was proposed for the decomposition of the spheres of different sizes.

Regular Triangulation, also known as weighted Delaunay triangulation or power di-
agram, generalises the classical Delaunay triangulation to weighted points, where the
weight accounts for the size of each sphere (Edelsbrunner and Shah, 1996). Typical ex-
amples are shown in Fig.3.2, where the tetrahedra define pore bodies and the facets cor-
respond to the pore throats. The dual Voronoi graph of regular triangulation (also known
as Laguerre graph or radical Voronoi graph) is based on radical planes and it is entirely
contained in the void space. This is an appropriate feature to describe the flow path within
the pore space, as opposed to the classical Delaunay/Voronoi graphs (see Fig.3.1b).

Based on the decomposition of Regular Triangulation, a pore is defined as the pore
space surrounded by four solid spheres whose centres are the vertices of the corresponding
tetrahedron. The volume of the pore body corresponds to the irregular cavity within the
tetrahedron (see Fig.3.3(a)). The shape of a pore throat is defined by the cross sectional
area extending within a tetrahedral facet (Fig.3.3(b)). The throat does not enclose any
volume, but it will play a key role when defining the entry capillary pressure of an invading
non-wetting phase (NW-phase).

Since each pore corresponds to a tetrahedron, it has four neighbours, resulting in a lat-
tice of connectivity equal to four. Relatively similar networks can be found in other mod-
els (Mason, 1971; Mason and Mellor, 1995; Bryant et al., 1993a; Gladkikh and Bryant,
2003), yet the decomposition techniques therein are restricted to uniform particle sizes by
the choice of Delaunay triangulation. Regular triangulation extends the approach to poly-
disperse spheres. Its mathematical definition is limited to geometrical arrangements of
non-overlapping or moderately overlapping spheres. More precisely the maximum over-
lap is when the centre of one sphere enters another sphere, in this occurrence the regular
triangulation would be undefined. Since repulsive forces at contacts prevent such over-
laps when the assembled spheres represent solid grains, the regular triangulation that is
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Figure 3.2: Regular triangulation in three dimensions (a) and two dimensions (b).

adopted is always defined.
In order to explain the governing equations of the couplings, hereafter we introduce

the symbolic representation of pore geometry. Ω denotes a full domain occupied by a
porous material, in which Γ, Φ and Θ are the domains occupied respectively by the S,
NW and W phases: Ω = Γ∪Φ∪Θ, Γ∩Φ = /0, Γ∩Θ = /0 and Φ∩Θ = /0 (Φ and Θ are
also called “NW pores” and “W pores”). The NW-W interface of the two-phase problem
in full domain can be expressed by Φ∩Θ, and the NW-W-S phase interfacial contact lines
can be written by Φ∩Θ∩Γ.

We denote by Nc the number of tetrahedral cells in the regular triangulation of the
sphere packing, and by Ωi the domain defined by tetrahedron i: Ω = ∪Nc

i=1Ωi. Similarly,
Ns is the number of spheres, and Γk the domain occupied by sphere k, so that Γ =∪Ns

k=1Γk.

3.2 Fluid phases

3.2.1 Local rules
In the absence of gravity the movement of immiscible phases occurs in different regimes
distinguished by the relative contribution of viscous stresses and surface tension. As in-
troduced in section.1.1.2, the balance between the two depends on two dimensionless
numbers, the viscosity ratio M and the capillary number Ca (Lenormand et al., 1988;
Lenormand, 1990). The limit of “quasi-static” flow corresponds to Ca = 0, a situation in
which the viscous effects can be neglected.

The model we propose aims at simulating the slow primary drainage of air-water sys-
tems, or more generally non-wetting/wetting (NW-W) systems. We assume a quasi-static
regime and a perfect wetting of the solid (S-phase) by the wetting phase (W-phase). Con-
sistently, the fluid pressure is piecewise uniform in every set of pores occupied by a certain
phase and connected through this particular phase, i.e. one fluid cluster has only one fluid
pressure (it applies for both the W and the NW phases). For drainage, the invade NW-
phase is a single cluster of fluid, however, the receding W-phase can be separated into
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Figure 3.3: Pore geometry. (a)A pore defined by tetrahedral element of the finite volume
decomposition. (b)Definition of a pore throat geometry. rc is the curvature of meniscus; Lnw

is the length of contact line between NW and W phases; Lns is the length of contact line
between NW and S phases. Le f f = ∑(Lnw +Lns), in which Le f f is termed effective entry pore
throat perimeter. Ae f f is the planar project area of NW-W interface, and is termed effective
entry pore throat area.

many clusters. We can assume such wetting clusters are all connected by the wetting
phase film, then consequently all wetting clusters have the same value of pressure. Ei-
ther we can assume the wetting clusters are independent and physically isolated by the
NW-phase. The local W-phase pressure can differ from the reservoir pressure. Such two
different assumptions will lead to two different hydraulic response. We will further ex-
plain and define them in next section.

The drainage process is controlled by the capillary pressure pc, i.e., the pressure differ-
ence between the NW-phase and W-phase: pc = pn− pw. In quasi-static flow, the invasion
of a pore body can be seen as an instantaneous event in which the interface moves from
one throat to the next ones by a so-called Haines jump (see Fig.3.4). Thus the interfaces
are always located near the throats in the simulation, practically. When a pore saturated
by the W-phase is adjacent to another pore already invaded by the NW-phase, the stability
of the W-NW interface at the corresponding throat depends on the entry capillary pres-
sure pc

e associated to the throat (see next section). Because the entry capillary pressure of
the pore body is smaller than that of the pore throat, the body is filled by the NW-phase
spontaneously as soon as pc > pc

e.
If pc > pc

e, the pore is drained. In principle, a certain amount of the receding W-
phase can be left behind in the invaded domain in the form of disconnected pendular rings
(Scholtès et al., 2009; Scholtès et al., 2009a). At this stage we neglect the volume of
such rings when determining the total volume of each phase. Neither do we consider
the presence of W-phase in the corners of the throats (a situation sometimes considered
for prismatic pore throats) as it would make little sense in sphere packings. To sum up,
the pore space is entirely contained in the pore bodies and the saturation of one pore is
simply binary, i.e., it equals 0 or 1 depending on which phase is present. Obviously,
some real situations may differ significantly from such idealization. The residual satu-
ration in particular may be modified by imperfect wettability, leaving some pores only
partially drained, or by viscous effects - especially for high viscosity fluids such as oils.
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Figure 3.4: The displacement of NW-W interface between two equilibrium states, from (a)
pc < pc

e to (b) pc > pc
e (in 2D for clarity).

The comparison with experiment in section 4.2.3 suggests that the simplifications may be
acceptable for a first approach of some air-water systems. Further model refinement will
be necessary for simulating more general conditions.

3.2.2 Pore invasion model
Numerically, we consider the solid phase of the unsaturated granular material as a random
dense packing of poly-disperse spheres. Such packing will be generated with the DEM
method (Šmilauer et al., 2015). The network representation of pore space can be obtained
by using the Regular Triangulation as mentioned in previous section. The main numerical
work for defining the 2PFV component is twofold. (1) Locally, define the algorithm for
drainage of a single pore (i.e., determine pc

e). (2) Globally, define the logic of drainage
sequences of all pores.

Determination of entry capillary pressure

The drainage process is assumed in quasi-static regime, so pc is applied into porous media
to result from one equilibrium state to another. In fluid statics, a relationship between
capillary pressure, pc, interfacial tension, γnw, and mean curvature of the NW-W interface,
C, is given by the Young-Laplace equation

pc = 2C γ
nw. (3.1)

C can be expressed in terms of the principal radii of curvature of the meniscus (r1 and r2)
by

2C = (
1
r1

+
1
r2
) (3.2)

This is a starting point for defining pc
e, yet r1 and r2 are difficult to define precisely for an

interface near a pore throat of complex geometry. Approximations are necessary.
We propose to determine pc

e based on MS-P (Mayer-Stowe-Princen) method, which
employs the balance of forces on the NW-W interface (Mayer and Stowe, 1965; Princen,
1969). The balance reads

∑F(pc) = Fc(pc)+Ft(pc) = 0 (3.3)
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Figure 3.5: (a) Construction of subdomain Ωi j, the pore of Ωi is occupied by NW-phase (Φi),
the pore of Ω j is occupied by W-phase (Θ j); (b) Two-phase fluid pressure and interfacial
tension on S-phase. (in 2D for clarity).

where Fc is the capillary pressure acting on the interface and Ft is the total tension force
on multi-phase lines. pc

e is the value of pc such that ∑F(pc) = 0. This method for de-
termining pc

e follows Ma et al. (1996); Prodanović and Bryant (2006) and Joekar-Niasar
et al. (2010b). Therein, the MS-P method is applied to cylindrical throats. Our situa-
tion is more complex since the cross sectional shape is changing along the flow path. By
employing the MS-P method we de facto assume that pc

e is the same as in a cylindrical
throat tangent to the solid phase at the narrowest cross section, an assumption which will
be evaluated in section 4.2.3. For completeness, we recall the generic aspect of the MS-P
method hereafter.

Figure3.3(b) shows the typical geometry of a pore throat and the parts occupied by
the different phases and interfaces. If pc increases the region occupied by the NW-phase
grows, pushing the W-phase further toward the corners of the throat. The longitudinal cur-
vature of the W-NW interfaces is supposed to approach zero as pc approaches pc

e (Joekar-
Niasar et al., 2010b), i.e., r1 → +∞ in Eq.3.2. Assuming that both phases pressure are
uniform around the throat, the remaining cross-sectional curvature r2 must take the same
value for all three W-NW interfaces (based on Eqs. 3.1-3.2). This value is denoted by rc

and it is related to the entry capillary pressure

pc
e =

γnw

rc (3.4)

Let us start from the simple case and assume domain Ωi j is involving a local drainage
event, in which the void space in tetrahedron Ωi is occupied by NW-phase Φi (i.e., Φi is a
non-wetting pore), the void space in tetrahedron Ω j is occupied by W-phase Θ j (i.e., Θ j
is a wetting pore) and Si j is the common facet of Ωi and Ω j, as shown in Fig.3.5a. The
pressure face NW-W interface domain Φi∩Θ j can be written:

Fc
i j =

∫
∂Φi∩Θ j

(pn
i − pw

j )nds (3.5)

Since the integral on the irregular NW-W interface could be computationally expensive,
it can be solved by projecting the phases pressures on the conjugate planar part (i.e., the
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pore throat section),
Fc

i j = Ae f f
i j (pn

i − pw
j )n (3.6)

where Ae f f
i j is the projected area of NW-W interface on common facets of Ωi and Ω j, i.e.,

the projected area of ∂Φi∩Θ j on Si j (see Fig.3.3b).
The interfacial tension force on NW-W-S contact lines Ft

i j can be written,

Ft
i j =

∫
∂ wΦi∩Θ j∩Si j

γ
nw ndl +

∫
∂ sΦi∩Θ j∩Si j

γ
ns ndl−

∫
∂ sΦi∩Θ j∩Si j

γ
ws ndl (3.7)

The multiphase interfacial tensions, γns, γws and γnw have a relationship with contact angle
θ , defined by Young’s equation,

γ
ns = γ

nw cosθ + γ
ws (3.8)

Under a perfectly wetting assumption, i.e., θ = 0, then Eq.3.7 can be written,

Ft
i j =

∫
∂ wΦi∩Θ j∩Si j

γ
nw ndl +

∫
∂ sΦi∩Θ j∩Si j

γ
nw ndl = Le f f

i j γ
nw n (3.9)

in which, Le f f
i j is total length of contact lines (also is the perimeter of entry pore throat

section).
All terms of Eq.3.6 and Eq.3.9 can be expressed as functions of rc (see Appendix),

so that the equilibrium equation Eq.3.3 is an implicit definition of rc
e, the value of rc for

which the equation is satisfied (noting that ∑F is a monotonic function of rc):

∑F(rc) = Fc(rc)+Ft(rc) = 0 (3.10)

Solving the equation numerically gives rc
e. In turn pc

e can be determined using Eq.3.4.

Drainage and entrapment of W-phase

Globally, the drainage sequence of all pores is determined by their connectivity, i.e., the
topological network. In order to explain the invasion logic of 2PFV model, we represent
the 3-D network by using a 2-D lattice mapping (see Fig.3.6). The pore bodies and the
throats are represented by squares and linear connections respectively. (The solid phase
is not shown in the figure, for clarity.) Different flags are assigned to the pores to reflect
the individual state of saturation (0 or 1) and whether a particular pore or a group of pores
is directly connected to one of the main reservoirs. A search algorithm is employed for
updating those states during invasion.

Initially, the sample is fully saturated. We assume the top and bottom boundaries
are connected to NW and W reservoirs, respectively. The effect of gravity is ignored.
Drainage starts by decreasing the W-phase pressure pw of the W reservoir while the NW-
phase pressure pn in the NW reservoir is kept constant (thus increasing pc). A search is
executed on the pore throats which separate the phases. The throat with lowest pc

e is where
the first displacement of the interface will occur (Haines jump), leading to the invasion of
a first pore by the NW phase. As soon as this pore is invaded the NW phase reaches new
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Figure 3.6: Illustration of boundary conditions, NW-phase invasion and W-phase trapping in
the network (in 2D mapping for clarity).

throats, possibly triggering a recursive cascade of Haines jumps and invading more than
one pore for one single value of applied pw, until no more throats satisfy pc

e < pc. It leads
to discontinuous changes of the W-phase content which have been also observed in exper-
iments (Culligan et al., 2004). When the simulation reaches the new stable configuration
for a certain applied pc, the state flags are updated for the next step of drainage.

As the NW-phase is invading, the W-phase may form clusters of pores which are
disconnected from the W reservoir (such W-phase clusters are also disconnected with
each other). In order to identify these entrapment events, a dynamic search algorithm
is employed after each drainage event. Geometrically, each individual W-phase cluster is
indeed isolated by the NW-phase; physically, their connectivity may need further assump-
tions and discussions.

In short periods of time, we assume that there is no film flow or evaporation in the
model, thus the disconnected regions remain saturated by a fixed amount of the W-phase
throughout subsequent increases of pc. In 2PFV model, we label this drainage mode as
“with-trap” drainage. Such assumption is acceptable for sufficiently fast drainage. It is
worth noting that the W-phase is assumed to be incompressible, thus the geometry of the
W-phase and NW-W interfaces for disconnected regions remains unchanged throughout
the next steps of drainage. According to Eq.3.1, pc will also remain the same because
of unchanged NW-W interfacial curvature. Since the disconnections of different regions
may happen at different times of the drainage, every disconnected region has its own local
value of pw ultimately, i.e., the localization of pc (consistently with Harris and Morrow
(1964) for instance). To sum up, in “with-trap” drainage, we assume:

1. Physical disconnection between individual W-phase clusters is possible. The flux
exchange between disconnected clusters is not allowed. It may lead to a non-zero
residual saturation and to different pressure in different disconnected regions.

2. The local capillary pressure is subjected to the invasion sequence, which is essen-
tially determined by the geometry of the pores. Pressure is not exchanged between
disconnected clusters.
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In long terms, this simplification may lead to slightly overestimate the W-phase con-
tent of samples subjected to pc. Since under dry conditions, the mobilization of the
trapped cluster can still be observed even if it has been disconnected from its reservoir.
The possible cause of this transport would relay on surface potential and thermodynamic
potential (Aslyng, 1963; Nitao and Bear, 1996; Tuller et al., 1999; Likos and Jaafar, 2013).
Thus, we also develop another drainage model, termed “without-trap” drainage. In this
case, we assume all isolated W-phase clusters are connected to the W-phase reservoir by
the films and provide that mass transfer to or from the pendular rings is possible. Con-
sequently, the diversity of inner pressure of different disconnected clusters will become
inconspicuous because of the film transport. We assume that the pressure of each isolated
domain is equal to the pressure of W-phase reservoir, for simplicity. To summarize, in
“without-trap” drainage:

1. Mass can be exchanged between individual W-phase clusters. The disconnected
W-phase can be drained eventually. Consequently, the residual saturation is 0.

2. The distribution of capillary pressure is uniform, which is equal to the pressure
difference of reservoirs.

Although we artificially classify the connectivity of individual W-phase clusters/reser-
voir into two cases, the purposes can be seen from the physical point of view. The “with-
trap”/“without-trap” drainages can be considered as the undrained/drained test conditions
of soil mechanics, separately.

Boundary conditions

The boundary conditions are defined from two different aspects: the geometrical consid-
eration of the network and the realistic requirements. In DEM simulation, the rigid walls
are usually introduced to represent the boundaries in order to easily assign the boundary
loading/unloading conditions. However, such definition will increase the complexity of
the regular triangulation generation. To solve this limitation, we follow the strategy of
Chareyre et al. (2012) and Catalano (2012), in which the “fictitious” sphere with near-
infinite radius is introduced to replace the rigid wall when generating the network. Fig.3.7
depicts such definition in 2D. (Also see Fig.3.1b, assuming R→ +∞, P′1, P1, P2 and P′2
become aligned.) Fig.3.8 and Fig.3.9 show the definition of pore body and throat at the
boundaries. The main advantage of this method is that it will not introduce new geomet-
rical terms. The definition of pores shape and connections in proximity to the boundaries
don’t need introduce any additional assumptions. All algorithms above are suitable to
handle the pores near the boundaries. Consequently, the resultant fluid forces at bound-
aries can also easily be assigned. A more detailed definition of the pores shape at the
boundaries can be found in Catalano (2012).

From a practical point of view, the objective of 2PFV-DEM is to mimic the realistic
drainage tests on finite-sized samples. The invasion of NW-phase starts from one side of
the sample and the W-phase is drained from another side. Thus, we define the pores near
these two boundary sides connecting to the NW and W reservoirs, respectively. They will
remain in the initial state throughout the drainage simulations (i.e., constantly occupied
by the same phase). Correspondingly, the calculation of saturation will not involve the
volume of these boundary pores.
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Figure 3.7: The definition of boundary condition by using “fictitious spheres”, after Catalano
(2012)

Figure 3.8: Pores at boundaries ,following Catalano (2012). (a) One fictitious, (b) Two ficti-
tious and (c) three fictitious.
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Figure 3.9: Pore throat at boundaries (a) 1 boundary + 2 spheres and (b) 2 boundaries + 1
sphere

Figure 3.10: The fluid boundary condition of 2PFV model (in 2D for clarity).
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Special attention has been paid to the connectivity of side boundary pores and throats
(located between a vertical wall and the first layer of spheres along this wall, see fig.3.10).
It will be seen that they can play a dominant role in the drainage process, in agreement
with Chandler et al. (1982) (more discussion will be presented in Section 5.4).

In the model, we can decide whether such pores should be available for invasion or just
disregarded and not participating to the system. We term them “open-side” drainage and
“closed-side” drainage, separately. The latter case is hardly related to any realistic test
condition although it may mimic the effect of a rough boundary or membrane boundary. It
is introduced to enable interesting comparisons, mainly. The calculations of saturation are
adapted to the different scenarios and exclude the boundary pores when they are closed.

3.3 Forces on the solid phase
During the drainage, the re-distribution of fluid phases will cause mechanical response on
the solid phase. The main work for this section is to formulate the fluid forces induced by
such evolution.

The total force Fk generated on particle k by the two-phase fluid includes the effects
of fluids pressures p and S-NW-W interfacial tensions γ ,

Fk =
∫

∂Γk

pnds+
∫

∂Φ∩Θ∩Γk

γ ndl = Fc,k +Ft,k (3.11)

According to the Regular Triangulation of the structure, the network topology not only
decomposes the void space of fluids but also discretizes the volume of particles. The
forces Fc,k and Ft,k can be separately solved based on the geometry of pores and throats .

3.3.1 Integration of fluid-phase pressure
As mentioned in previous section, we assume that one pore can only be filled by a single
fluid phase at the same time. Assuming pore i is incident to particle k (see Fig.3.5), the
fluid force Fc,k

i induced by i on k can be written,

Fc,k
i =

∫
∂Γk∩Ωi

pi nds =


∫

∂Γk∩Φi

pn
i nds : if Ωi is occupied by NW-phase (i.e., pi = pn

i )∫
∂Γk∩Θi

pw
i nds : if Ωi is occupied by W-phase (i.e., pi = pw

i )

(3.12)
Again, computing such integrals on spherical triangles in 3D could be computationally

expensive. We project the pressure on the conjugate planar parts (angular sectors) of the
closed domain Γk ∩ ∂Ωi, whose trace in the plane of Fig.3.5(b) corresponds to segments
OkOk

′ and OkOk
′′.

3.3.2 Integration of interfacial tension
The interfacial tension is only taken into account when solid phase contacts with both
NW-phase and W-phase. To integrate the interfacial tension forces, we keep using the
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symbolic labels of Fig.3.5, in which Ωi j is involving the S-NW-W contacting scenario.
We first define the total tension force Ft

i j applied on the solid phase in Ωi j. Since Ωi j

intersects three spheres, Ft
i j will have to be later split into three terms. Ft

i j is defined as:

Ft
i j =

∫
∂Φi∩Θ j∩Si j

γ ndl (3.13)

which has been obtained by following Eq.3.7 and Eq.3.9 when calculating pc
e, but it can

not be directly utilized here. Because at the instance of NW-phase invading through the
pore throat, the contour of throat, i.e., the contact lines in Fig.3.3(b), is in a transient state.
The pore will be drained simultaneously, leading to the length of NW-S contact lines
Lns increasing and the length of W-S contact lines Lws decreasing. The NW-W interface
extends into the pore body by covering the particles. So the interfacial tension force on
S-phase need to be redefined by,

Ft∗
i j =

∫
∂ sΦi∩Θ j

γ
nw ndl (3.14)

in which the new NW-W-S contact lines have to be defined. Such contact lines are ir-
regular and difficult to be determined. But the new balance of NW-W interface can be
obtained by,

∑Fi j = Fc∗
i j +Ft∗

i j = 0 (3.15)

where Fc∗
i j is the phase pressure effects. Fc∗

i j can be estimated by projecting on Si j with,

Fc∗
i j =

∫
∂Φi∩Θ j

(pn− pw)nds' A f
i j(pn− pw)n (3.16)

in which, A f
i j is the pore throat sectional area conjugating facet Si j. Combining Eq.3.14-

3.16, the total tension force can be obtained:

Ft∗
i j =−A f

i j(pn− pw)n (3.17)

In order to define the interfacial tension force applied on each of the three spheres inter-
secting Ωi j, it is assumed that the force on sphere k is proportional to the contact line on
that sphere contained in the subdomain. If δ k

i j denotes the length of the curved contact
line ∂Γk∩Si j, the force on sphere k then reads:

Ft∗,k
i j = Ft∗

i j
δ k

i j

∑
3
k=1 δ k

i j
(3.18)

Note that when iterating over all domains Ωi adjacent to one particle , the integral on
interfacial contact line of δ k

i j length should be calculated only once.
Finally, the total force on one particle is obtained by summing interfacial tension and

pressure forces from all incident facets and contact lines:

Fk = ∑
(i j)incident

{Fc,k
i +Ft∗,k

i j } (3.19)
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Figure 3.11: Computation cycle of a DEM model.

3.3.3 Coupling with DEM
After solving the fluid forces on solid phase, the DEM framework can be employed for
handling the mechanical couplings. According to the principles of DEM (Cundall and
Strack, 1979),

“the equilibrium contact forces and displacements of a stressed assembly of
particles are found through a series of calculations tracing the movements
of individual particles. These movements are the results of the propagation
through the medium of disturbances originating at the boundaries: a dynamic
process. The speed of propagation is function of the physical properties of the
discrete medium.”

Fig.3.11 depicts such principles, in which the computational cycle of the DEM computa-
tion is shown.

In the 2PFV-DEM coupling, the hydraulic and mechanical behaviors are both assumed
in the quasi-static regime, in which the displacements of W-NW interface and the forces
induced by such displacements are only considered in a sequences of individual equi-
librium states. We assume during each transient moment the capillary effects, i.e., the
forces induced by the two fluid phases are constant. Such forces can be considered as
“the medium of disturbances” and will be directly taken into account for solving “the
equilibrium contact forces and displacements”. To sum up, the mechanical response of
the unsaturated granular media can be considered as the sum effects of the dry granular
medium mechanical behavior and the two-phase fluid capillary actions.

Computation cycle

As mentioned in the introduction of this chapter, the solid particles are idealized as spheres
interacting with each other. In an oriented space of dimensions i (i = 1,2,3 in 3D), each
sphere can be identified by its radius R, mass m and moment of inertia Ii. The motion of
a sphere can be characterized by its position xi, translational velocity ẋi and rotational ve-
locity ωi. The translational and rotational accelerations can be calculated by the Newton’s
second law of motion:

ẍi = Fi/m (3.20)

ω̇i = Mi/Ii (3.21)
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where Fi and Mi are the forces and moments applied to each particle. Considering the
couplings, Eq.3.20 can be expressed by:

mẍi = Fc
i +mg+F f

i (3.22)

where Fc
i and F f

i are the contributions of contact forces and fluid force, respectively, and
g is the gravitational acceleration. Fc

i is defined by the interaction law which will be
described in next section. F f

i can be obtained by following Eq.3.19.
To follow the evolution of the system in time, particles position are updated at each

time step ∆t by integration of the accelerations ẍi and ω̇i according to a first-order centered
finite difference scheme. We have:

ẋ[t+∆t/2]
i = ẋ[t−∆t/2]

i +(ẍ[t]i +g) ·∆t

ω
[t+∆t/2]
i = ω

[t−∆t/2]
i + ω̇

[t]
i ·∆t (3.23)

where ẋi and ω̇i are evaluated at time t +∆t/2. The new particles position at time t +∆t
are calculated by:

x[t+∆t]
i = x[t]i + ẋ[t+∆t/2]

i ·∆t (3.24)

Once the new position of each particle is obtained, the list of interactions will be updated.
Consequently, the new interaction forces will be computed.

Contact definition

The contact model determines the micro-scale force-displacement relationship of the in-
teractions, by which the contact force can be obtained. In the simplest case, the relation-
ship is defined by a normal stiffness kn, a tangential stiffness kt and an inter-granular fric-
tion angle φc, i.e., the traditional Cundall’s linear elastic-plastic law (Cundall and Strack,
1979). For current implementation, there is no need to increase the complexity of the
contact law. Thus, we keep using the simplest law hereafter. For other types of contact
definitions in DEM, the coupling scheme is also allowed.

The contact force between two particles is the function of local displacement and local
mechanical properties of the two particles. For the displacement, it can be expressed by
the reference of particle geometry, i.e., the particles distance. We consider the negative
distance as a “overlap”, in which the two particles contact with each other. Such overlap
reflects the deformation near the contact and can be formulated. In the simplest case, we
define the normal particle displacement δc with the overlap by the following condition:

δc =

{
Un Un < 0

0 Un ≥ 0 (3.25)

where Un is the overlap, or termed intergranular distance (see Fig.3.12a).
The components of contact force can be formulated by following Cundall and Strack

(1979) (see fig.3.12b). The normal component Fn is defined by:

Fn = Fnn = knδcn (3.26)
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Figure 3.12: (a) Definition of normal particle displacement. (b) Normal and shear stiffnesses
at contacts.

The tangential component Fs is computed at each time step as function of the increment
of tangential relative displacement ∆us:

∆Fs = Fst = kt∆ust → Fs
(t) = Fs

(t−∆t)+∆Fs
(t) (3.27)

The normal stiffness kn can be expressed by the global stiffness modulus E, and the har-
monic mean of the interacting spheres’ radius, R1 and R2, as follows:

kn = 2E · R1 ·R2

R1 +R2
(3.28)

The shear stiffness kt is defined as a fraction a of kn, i.e.,

kt = akn (3.29)

The shear strength of the contact is defined by the Coulomb’s criterion. We denote Fs
as the upper limit of the tangential force, it should satisfy the following condition:

‖ Fs ‖≤ Fntanφc (3.30)

where tanφc is the intergranular friction angle. To sum up, the constitutive relationship
can be depicted by Fig.3.13.

Conclusions
The pore-scale network has been established using the Regular Triangulation method.
The local rules and governing equations have been shown. Two modeling assumptions,
i.e., the short-term/with-trap and long-term/without-trap simulations, have been proposed.
The hydromechanical coupling strategy has been elaborated. The detailed implementation
is explained in next chapter.
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Figure 3.13: Elastic-plastic contact model. Normal (a) and tangential (b) interaction law
(Catalano, 2012)
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Chapter 4

Implementation and model test

4.1 Implementation

4.1.1 The open-source code YADE
The implementation of 2PFV-DEM model is based on the open-source code “Yet Another
Dynamical Engine” (YADE) platform. The code YADE is an extensible open-source
framework for discrete numerical models, focused on Discrete Element Method. The
computation parts are written in c++ using flexible object model. Python is used for
rapid and concise scene construction, simulation control, postprocessing and debugging
(Šmilauer et al., 2015). Thanks to the open source licensing (GNU General Public Li-
cense), the developers and users of Yade, the capability of the code is continuously in-
creasing.

4.1.2 Coupling design
Network definition

The network generation has been implemented in C++ as part of YADE, with the help of
“The Computational Geometry Algorithms Library” (CGAL) (Boissonnat et al., 2000).
CGAL ensures exact predications and constructions, and provides very efficient algo-
rithms for regular triangulation (Liu and Snoeyink, 2005). Initially, the regular trian-
gulation and its dual Voronoi tessellation were proposed for solving the one-phase flow
problems (Chareyre et al., 2012). Concerning the requirements for two-phase flow, cur-
rently only the regular triangulation is involved in the model. The network generation
has been complemented with the set of functions for the determination of entry capil-
lary pressure (Eq.3.10), updating the state flags and connectivity flags (section 3.2.2), and
determination of fluid forces on the solid particles (Eq.3.19).

It is worthwhile to clarify that the current network definition in 2PFV-DEM model is
static. We suppose that during the drainage only elastic deformation of small amplitude
will be generated on the solid skeleton. Thus, the topology between solid phase and fluid
space is considered to be fixed, although the solid grains may move due to the actions of
intergranular contact forces. Consequently, the volume and geometry of the pores will not
change for the computation. The movement of solid particles is simulated using DEM. As
a result, the elastic deformation of the solid skeleton can be obtained. These assumptions
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will be held hereafter in the thesis. They may be relaxed in future extensions of the current
model.

Implementation of 2PFV

After the network generation, the 2PFV model is ready to be implemented. Fig.4.1 shows
the flow chart for the 2PFV model only. Since the network topology is fixed, the geometry
dependent terms, such as the volume of the pores and the entry capillary pressure of
the throats, can be pre-calculated and saved with the topology information in the step
“Network generation”. As mentioned in section 3.2.2, in the “update boundary condition”
step, the hydraulic boundary conditions are controlled by changing the fluids pressure of
the reservoirs. The drainage and entrapment detection are implemented in the step “Two-
phase flow calculation”. With the help of the recursion algorithm, the drainage procedure
can be expressed by changing the information of saturation, pressure and connectivity flag
for each pore. The fluid forces on solid phase are determined by following the algorithm
of section 3.3. Finally, the 2PFV model can be coupled with DEM by following Eq.3.22.
Fig.4.2 shows a schematized view of the final coupled algorithm.

As mentioned in section 3.2.2, considering the possibility of connections between
individual W-phase clusters, both “with-trap” and “without-trap” drainage are imple-
mented in the model. Considering the side boundaries conditions in which the side pores
may be available for invasion or not, the options of ‘“open-side” and “closed-side” are
also implemented.

Yade uses Python language for simulation control. The following code fragment (List-
ing 4.1) illustrates how the 2PFV module is introduced in a simulation setup (in Yade it
appears as one optional engine). This example is a sub-part of the script used for the sim-
ulation presented in the thesis.

Listing 4.1: Introducing the 2PFV engine in a coupled DEM simulation

##The preamble of the script should setup a regular DEM simulation,

defining particles properties and boundary conditions

##Instantiate a two-phase engine

unsat=UnsaturatedEngine()

##set boundary conditions for the fluid phases, the drainage is controlled

by decreasing W-phase pressure (pw) and keeping NW-phase pressure (pn

) constant.

unsat.bndCondIsPressure=[0,0,1,1,0,0]

unsat.bndCondValue=[0,0,pw_initial,pn,0,0]

unsat.isPhaseTrapped=True #if True, "with-trap" drainage; if False, "

without-trap" drainage.

unsat.isInvadeBoundary=True #if True, "open-side"; if False, "closed-side

".

unsat.initialization()

unsat.surfaceTension = surfaceTension
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Figure 4.1: The 2PFV algorithm (one invasion step)

##start the invasion, the data of pc-sw-strain will be written into

pc_sw_strain.txt

file=open(’pc_sw_strain.txt’,"w")

for pw in arange(pw_initial,pw_end,pw_step): #decrease pw progressively

from pw_initial to pw_end, with a step of pw_step

unsat.bndCondValue=[0,0,pw,pn,0,0]

unsat.invasion()

unsat.computeCapillaryForce()

# Add the fluid and interfacial forces to the total force on each body

for b in O.bodies:

O.forces.addF(b.id, unsat.fluidForce(b.id), True)

# then integrate the dynamics with these additional forces until a new

equilibrium state is reached

while 1:

O.run(1000,True)

unb=unbalancedForce()

if unb<0.01:

break

file.write(str(pn-pw)+" "+ str(unsat.getSaturation(True))+" "+str(-triax

.strain[1]-ei1_initial)+"\n")

file.close()

To summarize, the library CGAL was employed for the triangulation procedure to
build the explicit topological links between the fluid phases and solid structure. The
invasion criterion for fluid phases was formulated and implemented based on the pore
network. In turns the resulted fluid forces on solid phase was obtained. Such forces were
coupled with the discrete element method by following the law of motion and has been
implemented in the open-source code YADE. The mechanics of solid phase finally has
been modeled.

4.2 Model test
In this section, we show an example simulation with the 2PFV-DEM model, in which
the primary drainage test will be performed. The main objects are to obtain the capillary
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Figure 4.2: Computation cycle of 2PFV-DEM

pressure-saturation (pc− sw) curve (or termed “water retention curve” (WRC) in unsatu-
rated soil mechanics) and to reproduce the evolution of the deformation of solid skeleton.

4.2.1 Numerical setup

The sample of the test is composed of poly-disperse spheres, which is generated by the
DEM software Yade (Šmilauer et al., 2015). We assume the top and bottom boundaries
of the sample are connected to the NW-reservoir and W-reservoir, respectively. There
are no flux or pressure exchange between the side boundaries and the bulk. However, the
NW-phase can invade the side pores through the throats near the boundaries or through the
throats inside the bulk from the NW-reservoir, i.e., “open-side” drainage is performed. We
also want to present the effects of the connectivity between the W-reservoir and W-phase
clusters, so both “with-trap” drainage and “without-trap” drainage are simulated.

We assume the initial state for phases pressures is: pc = pn− pw = 0, corresponding to
the saturated scenarios. Drainage is carried out by decreasing pw in a stepwise manner and
keeping pn constant. The simulation is performed under the oedometer test conditions,
in which the one-dimensional deformation induced by drainage is observed. To simulate
these conditions, rigid confining walls are introduced to prevent lateral displacement of
the sample. The bottom is fixed. The top is a free plane, and its confining stress is kept
constant as the initial state.

For more generality, the simulation results are all given in dimensionless forms here-
after. The capillary pressure pc can be normalized by,

pc =
pcD
γnw (4.1)

in which, pc is termed normalized capillary pressure, γnw is NW-W interfacial tension and
D is the average sphere size.
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Figure 4.3: The water retention curves (pc− sw) of drainage simulation. The sample is a
dense cubic packing of 1000 spheres.

4.2.2 Results and discussions

Normalized capillary pressure - saturation relationship

A series of test on cubic packings has been performed. For both “with-trap” and “without-
trap” simulations, the normalized capillary pressure - saturation (pc− sw) curves have
been achieved as shown in Fig.4.3. The evolution of W-phase retention are similar. The
sample is saturated until the first entry of NW-phase. The corresponding pc may be termed
“air entry value/suction” in some macro-scale continuum-based models. Then sw shows
discontinuous reduction, because the distribution of pc

e is heterogeneous. The gradients
of sw, i.e., the localization of sw will be discussed in chapter 5. The sharp decrease of sw

during 6.5 < pc < 11.0 can be considered as the consequence of the recursive cascade of
“Haines jumps”. The main difference between two drainage simulation is the residual W-
phase saturation, in which sw ' 0.18 in “with-trap” drainage and sw→ 0 in “without-trap”
drainage.

Invasion characteristics

We observe the characteristics of NW-phase invasion by cutting a slice of one sample, as
shown in Fig.4.4. When increasing pc, the invasion starts from the pore with larger throat,
in which the entry capillary pressure is smaller (see slice.(a)). We can observe that the
NW-phase invades the side pores first as shown in slice.(a) and (b). That is because the
throats at the boundaries are composed by the regular sphere(s) and the fictitious sphere(s)
with near-infinite radius (see Fig.3.9). The pc

e of these throats is in average smaller than
that of throats in the bulk. We will further analyze the boundary effects in section 5.4.
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Figure 4.4: The process of drainage (400 particles), NW-phase invade from top. Brown (gray)
is solid phase, blue (black) is W-phase, and light cyan (white) is NW-phase, see color version
of this figure in the HTML.

Comparing slices.(b) and (c) shows that under certain circumstances even a very small
change in capillary pressure can cause a significant displacement of the NW-W interfaces.
For such event, Haines jumps go through large cluster of pores, causing a sharp decrease
of W-phase content. Slice.(d) shows the end of the simulation in “with-trap” drainage,
in which all the remaining W-phase is in the form of disconnected clusters entrapped by
the NW-phase. However, the W-phase will be completely drained if the “without-trap”
drainage is performed.

Distribution of fluid pressure

In “with-trap” drainage, the model is neglecting W-phase transport by film flow or evapo-
ration, these disconnected phases will never disappear. As explained in section 3.2.2, the
trapping sequences result in a different pw in each disconnected cluster. An example of
this feature is shown in Fig.4.5.
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Figure 4.5: Distribution of capillary pressure in “with-trap” mode of drainage. Brown circle
is solid phase, light region is NW-phase pressure pn, dark regions are W-phase pressures pw,
see color version of this figure in the HTML.

The results lead us to conclude that the definition of capillary pressure is not only
a macro-scale terminology but also has micro-scale interpretations. In most macro-scale
continuum-based models, the micro-scale capillary pressure/suction is seldom mentioned.
Usually, it is considered as an input parameter at macro-scale, which is only related to the
reservoirs (i.e., hydraulic boundary conditions). In 2PFV model, the micro-scale capillary
pressure is a consequence of the drainage. (Essentially, it is determined by the micro-
structure of pore space.) In Fig.4.5, from the pressure distribution we can determine the
order of the disconnections, with the larger pw corresponding to earlier entrapment. The
localization of capillary pressure is not only an important characteristic of the hydraulic
evolution, but also affects the mechanical behavior of solid skeleton. We will further
discuss this in chapter 6.

By contrast, a simpler case, the disconnected clusters of W-phase may be evacuated
in long terms leading to complete drainage in the “without-trap” drainage simulation. In
this situation, the pressure exchange and mass transfer between different W-phase clusters
are allowed. Consequently, the pressures of W-phase clusters have the same value in each
invasion event. A profile is shown in Fig.4.6.

Deformation of solid skeleton

The forces on solid particles induced by the fluids have been formulated in Section.3.3.
Fig.4.7 depicts the effects of such fluid forces. In zoom (b), the forces are caused by
the disconnected W-phase, and the involved solid particles are attracted under funicular
regime by the capillary pressure. Zoom (c) shows the fluid forces near the W-phase front.
Such fluid forces result in the macroscopic deformation. In this situation, there are nearly
no sliding contacts and the response can be considered elastic.

The evolution of one-dimensional deformation is shown in Fig.4.8, in which the rela-
tionship between strain component - normalized capillary pressure (ε11− pc) is reported.
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Figure 4.6: Distribution of capillary pressure in “without-trap” mode of drainage. Brown
circle is solid phase, light region is NW-phase pressure pn, dark regions are W-phase pressures
pw, see color version of this figure in the HTML.

In both “with-trap” and “without-trap” tests, the results are similar, in which the samples
first shrink and then swell.

Under the elastic regime, the sample can recover its shape if the W-phase is drained
completely (i.e., without-trap drainage). If the W-phase is trapped by NW-phase in the
medium, the sample can not swell back to its shape even the capillary pressure grows.
In general, the shape of the sample shrinks at the end in this situation. The theoretical
analysis of the deformation in detail will be presented in chapter 6.

4.2.3 Comparison with experiments
We verify the model by comparing the simulation results with experimental data from a
quasi-static drainage experiment in a synthetic porous medium of Culligan et al. (2004).
Unfortunately, we could not find more micro-scale/pore-scale experimental data related
to the deformation of solid skeleton in Culligan et al. (2004) or other literatures. Thus, the
comparison mainly focus on the hydraulic results, i.e., the capillary pressure - saturation
relationship.

Numerical setup

In experiment of Culligan et al. (2004), the measurements were done on packed glass
beads, contained in a column of 70 mm in length and 7 mm in diameter. The particle
size distribution (PSD) of the glass beads was as in Table. 4.1, and the porosity is 0.34.
The drainage was carried out by pumping water out of the porous medium. X-ray to-
mography was used to image only a small part of the column (a cubic box of size 5 mm
approximately) to determine capillary pressure-saturation (pc− sw) relationships.

Due to some properties of the regular triangulation, generating the pore-space decom-
position for a column of circular cross-section (as in the experiment) would have been
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Figure 4.7: Forces acting on solid particles induced by NW-W phase pressure and surface
tension. Forces are shown in red arrows. Brown (gray) is solid phase, blue (black) is W-
phase, and light cyan (white) is NW-phase, see color version of this figure in the HTML. (b)
forces acting from disconnected W-phase. (c) forces acting from W-phase front. (in 2D for
clarity)

Figure 4.8: The relationship between normalized capillary pressure and one-dimensional
deformation (pc−ε11) in drainage simulation under the oedometer test conditions. The sample
is a dense cubic packing of 1000 spheres.
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Weight(%) Diameter(mm)
30 1-1.4
35 0.850
35 0.600

Table 4.1: Particle size distribution of the experiment

excessively complex in the present state of the algorithms. Instead, cuboid samples are
generated, with the same average properties as the experiments in terms of PSD and poros-
ity. The simulated packings are connected to the NW reservoir at the top, and to the W
reservoir at the bottom, as in figure 3.6. The drainage process is simulated by imposing a
progressive increase of the NW-phase pressure in the NW-reservoir (and keeping the W-
phase pressure constant). There is no gravity in the model. Since gravitational problems
are equivalent to non-gravitational ones if piezometric pressure is used in lieu of absolute
pressure, it does not induce a loss of generality as long as gravity does not modify the
curvature of the interfaces (a rather good approximation for air-water systems with grain
size below 1 mm (Pitois et al., 2001)).

Due to capillary fingering, the situation at the boundaries of the window accessible
by tomography is difficult to define precisely. In the simulation, it may be assumed that
only a few large pores of the boundaries are connected to the invading phase reservoir
(reflecting fingering in that part of the column not scanned, with some fingers reaching
the scan region). Conversely, it may be assumed that all pores of the boundary associated
to the NW-phase reservoir are occupied by the NW-phase. The two variants could lead to
significant differences in the results in some circumstances (Joekar-Niasar et al., 2010b).
In our case, preferential invasion along the boundaries (an effect which we will discuss
in details in section 5.4) reduces significantly the influence of the reservoir connectivity.
For the sake of simplicity we use the last assumption, i.e., uniform boundary conditions
on the top and bottom faces of the box.

For one simulation, a cubic box of size 5.0 mm×6.0 mm×5.0 mm is defined in which
400 spheres are densely packed. Consistently with the experimental setup, where the
boundaries are smooth and rigid, we suppose that the NW-phase can invade along the
side boundaries (the “open-side” condition). According to the experimental results, the
residual saturation is not zero. Thus, we apply the “with-trap” condition in the simulation.

The random packings are generated by DEM simulations. The PSD and porosity
are defined as in the experiment. In order to reach the target value of porosity we em-
ploy a growth algorithm based on the REFD method (radius expansion-friction decrease)
(Chareyre et al., 2002). This dynamic compaction method lets one control the porosity
and it gives statistically homogeneous and isotropic microstructures. After this generation
phase, the positions of the spheres are fixed. They don’t move further during the drainage
phase. For more generality, the data from experiment and simulations are all given in
dimensionless forms, in which pc is normalized by Eq.4.1.
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Figure 4.9: Comparison between simulation and experiment for primary drainage pc− sw

curves. The number of observations of simulation is 100.

Results and discussion

Using the technique described above, we compute the primary drainage process for 100
random packings having the same PSD and porosity. Fig.4.9 presents the results of these
simulations, in which we gather all scattered (pc,sw) points of each simulation in one
image. As shown in Fig.4.9, although all packings share the same macro-scale parameters,
the pc− sw curves still have a distinct variability. Especially, the residual saturation can
differ significantly from one sample to another. This erratic dispersion could be reduced
by enlarging the sample size. This trend will be discussed in chapter 5. For the moment
we keep the number of particles approximately equal to the number of particles in the
scanned domain of the experiment.

The pc− sw curves show a rather good agreement between the simulations and the
experiments. The experimental data points are in the range of simulation (pc,sw) scatters,
although the averaged curve differs slightly from the experimental one. It can be explained
by the simplifications done in the drainage model, by the fact that the real conditions are
not well reflected in the boundary conditions of the subdomain or of the sample itself
(cubic packing versus circular cross-section).
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Conclusions
In this part, we have presented a pore-scale hydromechanical coupling scheme, termed as
2PFV-DEM model. This model is devoted to simulate the quasi-static two-phase flow in
deformable poly-disperse granular materials, specially for the primary drainage of initially
saturated media. The idea of the model is to combine a pore-scale network and the DEM
for the fluid phases and the solid phase, respectively. The network has been established
using the Regular Triangulation and it explicitly links the geometry of the fluid space and
the positions of the solid grains.

• In the proposed decomposition the pore throats are planar objects defined by the
facets of the triangulation, while all the pore space is contained in the volume of the
pore bodies. Drainage occurs by a recursive invasion of the pores when the capillary
pressure exceeds the local threshold values (“entry capillary pressure”). Theoreti-
cal formulas for calculating geometrical properties and entry capillary pressure for
given pores have been developed by extending the Mayer and Stowe-Princen (MS-
P) theory of drainage.

• The capillary forces induced by the motion of the fluid/fluid interface have been
formulated based on the topology of the network. Such forces have been directly
taken into account for solving the equilibrium contact forces and displacements
of the solid grains in the framework of DEM. As a consequence, the macro-scale
deformation of solid structure has been obtained.

• One key model attribution is its capability to trap the receding W-phase. Consider-
ing the possible drainage procedures (under a short-term or a long-term), the model
allows two options: (1) allowing that the receding W-phase is able to be trapped
by the NW-phase and results in a residual saturation and a localization of capillary
pressure; (2) assuming the W-phase is drained completely. Another model feature
is its optional side boundary conditions. To accommodate different experimental
situations, the pore throats of the side boundary can be considered open or closed.

• The model has been implemented in C++ as a module of the open-source code
YADE-DEM. A series of drainage tests has been performed under the oedometer
conditions. The results of the wetting phase retention curve and the one-dimensional
solid deformation has been reported, in which the solid skeleton showed first shrink-
ing and then swelling. The hydraulic component has been verified by comparing
with the experimental data of Culligan et al. (2004). The simulations are in good
agreement with experiments in terms of pc− sw relation.
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Applications of the model
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Chapter 5

Finite size effects and the representative
elementary volume

5.1 Introduction
1In practice one never deals with infinite systems and it is necessary to understand the
effects of sample size, sample shape, and gradients of state variables. This difficulty exists
in both experiments and numerical simulations of - so called - representative element
volume (REV). It is amplified in the context of microscale experiments and simulations
since they tend to study domains of smaller size compared to conventional lab or field
experiments.

REV often refers to a sample size sufficiently large to provide statistical robustness to
an averaging procedure (Bear, 1972). This definition is rather clear and its application is
straightforward if the variable of interest is the average porosity of a statistically homo-
geneous material, for instance. In such case statistics generated by sub-sampling a large
domain are enough to determine variance reduction as a function of size: the variance σ2

decreases as α/V as soon as V � α , where α depends on the size of the heterogeneities
and V is the sampled volume (σ is the standard deviation). Defining the volume by the
number of spheres it contains leads to an equivalent proportionality between σ and 1/

√
N.

Knowing α , the REV size depends only on the decision of which variance it tolerated for
a single measurement. Moreover, the excessive variability of results on small samples can
always be mitigated by averaging the results on many samples.

It is very important to note that in the above context the minimal REV size is not a
fixed value. It depends strongly on the tolerated deviation (a tolerated standard deviation
decreased by 10 results in REV volume multiplied by 100). This is overlooked in many
papers in which some differences are said “negligible” without a clear definition of how
small “negligible” is, which makes the determination of α impossible.

Two phase flow (among other processes) adds complexity to the problem in a way
which is not always very well acknowledged. The question is not only to control the
scattering of results, but also to make sure that the drainage process itself is not influenced
by the size (and shape) of the sample. In other words there is a need to know if, for
a particular pc imposed on samples, the saturation will be simply distributed around a

1This chapter has been published as part of journal paper Yuan et al. (2015b)
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unique size-independent mean value, or if the mean value itself can be biased by the
sample size. In this chapter we examine both aspects, i.e., 1) how samples of different
sizes result in different values in average and 2) how the results on sub-samples fluctuate
around the mean. The effect of sample shape is analyzed in the last part.

5.2 Sample size
We report a series of drainage tests with different sizes of cubic samples using 2PFV-
DEM model. The number of spheres (N) ranges from 100 to 40,000, and for every N the
simulations are repeated on 100 different sphere assemblies. For a given N the samples
only differ in the positions of individual spheres. Porosity and PSD are the same as in the
previous section. We assume the receding W-phase can be disconnected from its reservoir
by the NW-phase, i.e., “with-trap” drainage is performed. Both “open-side” and “closed-
side” modes are considered in the tests for comparisons. The same averaging technique
as shown in section 4.2.3 is used to manipulate the statistical results, i.e., for each size of
sample, an averaged pc− sw curve is achieved based on the 100 observations. For each pc

value the standard deviation σ(sw) of saturation is calculated.
As seen in Fig.5.1 and Fig.5.2, the averaged pc− sw curves for different sizes are

clearly distinct. In open-side drainage, the shift of the pc− sw curve with N is monotonic.
Under the same pc, a larger N results in a larger sw. In closed-side mode, the effect
of N is more complex. The curves are not simply shifted as they intersect each other.
Drainage starts for smaller pc values in small samples. There is a transition near pc = 10
(corresponding to sw ' 0.7), after which the ordering of the curves is reverted and small
samples have larger degrees of saturation. A second inversion occurs before reaching
the residual saturation (pc ' 16). The shapes of the curves are clearly different between
Fig.5.1 and Fig.5.2 for 0.9 > sw > 0.2. In open-side drainage, all curves have very similar
slopes while in closed-side drainage smaller samples have more shallow slopes.

In both drainage modes larger samples have larger residual saturation. A result which
might be explained by the possibility to form clusters of trapped W-phase of larger sizes
in larger samples (it may also explain the shift of the curves in Fig.5.1).

In Fig.5.1 and Fig.5.2, the σ(sw)−N curves show how larger samples narrow the
distribution of sw on different samples. The peaks of σ(sw) correspond to the major
evolution of sw, when small changes of pc lead to the recursive invasion of many pores.
This dispersion is much smaller in open-side mode. The decreasing trend of σ(sw) and N
in open-side mode is illustrated for selected values of saturation, sw = 0.4 and sw = 0.2.
The σ(sw)− 3

√
N curves are reported on Log-Log axes in Fig.5.3. 3

√
N can be interpreted

as the edge length of a cubic domain containing N spheres. In the figure, fitting equations
following conventional variance reduction are superimposed. They agree with the data in
a satisfying manner for the larger sizes.

σ(sw) =
0.6√

N
(5.1)

when sw = 0.2; and

σ(sw) =
2.4√

N
(5.2)
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Figure 5.1: Average pc − sw curve as a function of sample size in open-side mode (100
repeated simulations for each case). See colour version of this figure online.

Figure 5.2: Average pc− sw curve as a function of sample size in closed-side mode (100
repeated simulations for each case). See colour version of this figure online.
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Figure 5.3: The relationship between standard deviation of saturation and packing size (in
open-side drainage mode).
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when sw = 0.4.
Regardless of the drainage mode at the boundaries, it can be concluded that the average

sw is significantly biased for N < 20,000, and the bias is significantly larger than the
standard deviation. For instance, the standard deviation of residual saturation for N = 100
is of the order of 0.02 (0.13 when sw = 0.4) while the difference with N = 40000 in terms
of the average residual saturation is about 0.1 (0.34 for the value of pc corresponding to
sw = 0.4 in the large sample). The difference in sw between N = 20,000 and N = 40,000
is 0.002 at residual saturation, and 0.02 near sw = 0.4. Open-side conditions seem to
give more robust measurements. They preserve the general shape of the pc− sw curves
for every N and the standard deviation is decreased. Interestingly, it suggests that the
simulations compared well with the experiments (previous section) only because they
were both biased in the same way (N ≈ 400 spheres in both cases), while simulating
larger samples would have led to a worse agreement.

5.3 Subsampling
In order to examine the sub-sampling problem, we used a large sample of 64,000 spheres
in which we defined a set of points (64 vertices of a cubic 4×4×4 array) to be the centers
of subdomains. The porosity and saturation per subdomain are analyzed for different sizes
of the subdomains. The PSD and average porosity are the same as in previous sections.
Like before the subdomain size is defined by 3

√
N where N is the number of sphere per

subdomain (in average). Based on the conclusion of previous section, we examine only
the open-side drainage mode.

The average quantities obtained in each subdomain are plotted as functions of 3
√

N
and superimposed in Fig.5.4 and Fig.5.5. As expected, the porosity of every subdomain
converges steadily to the global porosity of the sample as N increases. The evolution of
the sw

sub values is more erratic. It shows strong oscillations for the smaller sizes, much
more scattering than porosity, and some subdomains hardly converge to a general trend
even for 103 spheres. Obviously this can be explained by large single-phase clusters.

Fig.5.6 reports the evolution of σ(φsub) and σ(sw
sub) as functions of 3

√
N. The fact that

σ(φsub)< σ(sw
sub) implies that the minimal REV size for saturation is clearly much larger

than what could be used for estimating porosity. A conclusion also reached by Hilpert and
Miller (2001), in which standard deviations of similar magnitude are reported. Fig.5.6 also
shows trend lines of the form α/

√
N, where α is adjusted for each series of points. The

σ(sw
sub)−

3
√

N is very well described by

σ(φsub) =
0.065√

N
. (5.3)

The evolution of σ(sw
sub) does not follow such a simple form. Trying to adjust α using the

data from the largest samples (fig.5.6) suggests

σ(sw
sub) =

2.3√
N

(5.4)

for sw
sub = 0.4, and

σ(sw
sub) =

0.68√
N

(5.5)
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when sw
sub = 0.2. The expressions are very close to the ones found in previous section.

The large differences between those standard deviations are easily explained. At
higher saturation (sw

sub = 0.4), capillary fingerings results in large single-phase patches
(see Fig.5.7). Hence the average saturation computed in a particular subdomain is strongly
influenced by the position of its center. If the subdomain is too small, it may even be en-
tirely occupied by one of the phases cluster. The condition that the sampled volume must
be larger than the heterogeneities is never satisfied, which leads to the poor agreement
with the 1/

√
N trend. This does not happen for porosity, since every solid particle is

surrounded by a certain amount of pore space (especially for spherical shapes).
At lower saturation (sw

sub = 0.2) the receding W-phase is present mainly in the form
of disconnected patches (Fig.5.8). These patches are larger than a particle diameter but
smaller than the patches observed at sw

sub = 0.4. The standard deviation is clearly reduced
and the 1/

√
N trend is nearly acceptable for the largest samples. The α-values which

appear in the fitting equations (0.065 for σ(φsub) versus 0.68 for σ(sw
sub) for sw

sub = 0.2)
suggest that the heterogeneities of the phase distribution have a characteristic volume one
hundred times larger than the heterogeneities of the void space. A result consistent with
the image of Fig.5.8 where we may accept 5 particle diameters (53 ' 100) to reflect the
typical distance separating the disconnected patches. The poor fit obtained with 1/

√
N

evolution suggests that even the largest subsample (1000 spheres) is far below an accept-
able REV size when sw

sub > 0.4. We did not proceed to larger sizes since the subdomains
would overlap each other or reach the boundaries. The strong size dependency of satura-
tion near the percolation threshold (the value of pc for which the NW-phase reaches the
W-reservoir) is actually a known issue: the size of the largest patch tend to increase as
the sample size is increased (de Gennes and Guyon, 1978; Lenormand and Bories, 1980;
Wilkinson and Willemsen, 1983), hence the REV question in itself is ill-posed. This is
a rather challenging problem for defining macroscale properties. We shall not enter this
debate here as it would need more investigation (possibly using our model). The reader
may refer to Hilpert and Miller (2001) for a fractal approach of the problem. Here we
retain that the standard deviation seems to reach a normal trend at least at low saturation.

5.4 Boundary conditions and aspect ratio

In this section, we analyze the effects of the side boundary conditions and the sample
shape. Since circular columns are out of reach of our current algorithm we only discuss
the shape effect in terms of the aspect ratio of rectangular boxes. The samples are made
of 40000 spheres with the same porosity and PSD as before. They are prepared with
different ratio of cross-sectional side-length L over height H (H/L =0.5, 1.0 and 5.0).

A sub-sampling is done by dividing the column in 10 layers perpendicular to the
drainage direction. These layers are indexed from ID-1 (connected to W-phase reser-
voir) to ID-10 (connected to NW-phase reservoir), as shown in Fig.5.9. Since the random
positioning of spheres can influence the results, as illustrated in section 4.2.3 (see Fig.4.9),
we report results averaged in each layer for different samples. In order to describe the in-
vasion of the NW-phase, we define the NW-phase penetration depth Dp as the maximum
vertical distance between the NW-reservoir and the NW-W interface. This penetration
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Figure 5.4: Micro-porosity versus averaging subdomain size. φsub = 0.34

depth is normalized as

D∗ =
Dp

H
(5.6)

in which H is the height of specimen. Both open-side and closed-side drainage modes are
simulated. The pc and sw values are recorded for the entire packing and per layer.

5.4.1 Effect of side boundary connectivity

In open-side drainage, the NW-phase can invade all pores, including the pores in contact
with the side boundaries of the container. In closed-side conditions, the invasion is only
allowed in the inner part of the sample. Examining early stages of the open side drainage
reveals a preferential invasion starting along the boundaries (Fig.5.10(a)). This tendency
has been also observed in experiments on glass beads (Khaddour et al., 2013), as shown
in Fig.5.10(b). Simply, the throats formed by two spheres in contact with a flat surfaces
tend to be larger than the throats found in the rest of the microstructure (i.e., between 3
spheres). It is consistent with previous findings on anomalous porosity due to wall effects
(Marketos and Bolton, 2010) and it leads to lower values of pc

e along the boundaries,
hence preferential invasion. In a second step the invading phase percolate to the inner part
starting from all boundaries of the samples (W-reservoir excepted).

It is worth noting that this drainage sequence may not be generalized to every granular
material since the experiments in Khaddour et al. (2013) did not show the same evolution
with grains of irregular shapes (Fig.5.10(c), Hostun sand). Angular or elongated grains
thus seem less prone to form large throats near the walls of the container.

The effect of side boundary conditions can be further investigated by comparing the
invasions under different assumptions. At the beginning of invasion, the layer saturation
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Figure 5.5: Micro-saturation versus averaging subdomain size. (a): sw
sub = 0.4, (b): sw

sub = 0.2.
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Figure 5.6: Statistics of saturation and porosity versus size of the averaging subdomain.
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Figure 5.7: Right: a slice through a sample at sw
sub = 0.4 (the top boundary is connected to

the NW reservoir), in which strong capillary fingering can be observed. Left: zoom on two
subdomains used in the averaging procedure.

Figure 5.8: Right: a slice through a sample at sw
sub = 0.2 (the top boundary is connected

to the NW reservoir), in which patches of trapped W-phase are visible. Left: zoom on two
subdomains used in the averaging procedure.
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Figure 5.9: Numerical setup and indexed layers.The bottom of Layer-01 is connected to the
W-phase reservoir, the top of Layer-10 is connected to the NW-phase reservoir.

Figure 5.10: Comparison of invasion between a simulation in open-side drainage and the
experiments of Khaddour et al. (2013). (a) Simulation (dark blue: W-phase, yellow: NW-
phase). (b) experiment on glass beads. (c) experiment on Hostun sand (gray: glass beads/sand,
dark blue: water, white: air).
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is very heterogeneous, with low saturation near the NW reservoir and high saturation near
the W reservoir. This phenomenon can be observed in both drainage modes as shown in
Fig.5.11 (pc = 8.0) and Fig.5.12 (pc = 9.0), where saturation decreases almost only in the
top layer. This effect is less pronounced in open-side mode. By comparing the distribution
of sw for the same aspect ratio of specimens, i.e., Fig.5.11(a) vs Fig.5.12(a), Fig.5.11(b) vs
Fig.5.12(b), and Fig.5.11(c) vs Fig.5.12(c), it is found that the W-phase retention is much
more homogeneous if the side boundaries can be invaded, as could be expected from the
aforementioned two-step sequence of invasion. In closed-side mode, the NW-phase can
only invade layer by layer, leading to a stronger saturation gradient in intermediate steps.
Finally, the residual saturation is approximately homogeneously distributed in all layers.

The evolution of saturation and penetration with capillary pressure are shown in Fig.5.13
and Fig.5.14. It is found that the NW-phase invasion in open-side mode starts at lower
values of pc, this is due to large pores along the boundaries. The evolution of D∗ confirms
the two-step sequence in open-side drainage: the main evolution of saturation happens
after NW-phase percolation through the entire sample, i.e., after D∗ = 1.0. With closed-
side drainage the main evolution of sw is accompanied by the increase of D∗. Again, the
results are less scattered when the side boundaries can be invaded.

5.4.2 Effect of aspect ratio

In Fig.5.13 or Fig.5.14, for a given pc, the NW-phase invade more deeply for smaller H/L
ratio. This is consistent with the W-phase profiles of Fig.5.11 and Fig.5.12, which show a
lower saturation for smaller aspect ratio. This applies equally well to residual saturation,
which suggests more W-phase trapping for larger H/L.

This effect is less significant in open-side drainage for the layers 3-7 (Fig.5.11). In this
case most of the difference in sample saturation comes from those layers within a short
distance from the reservoirs. A large H/L tends to reduce the fraction of the total volume
which is exposed to this near-reservoir situation, hence for H/L = 5 even layers 1 and 10
only slightly deviate from the global average.

In closed-side drainage, on the other hand, a smaller H/L tends to produce slightly
more homogeneous phase distribution - even though it remains rather heterogeneous for
0.4 < Sr < 1 (Fig.5.12). This evolution is dominated by a main percolation event, cor-
responding to large gradients of saturation. After the first percolation (i.e., as soon as
D∗ = 1) a progressive homogenization of the phases distribution occurs until residual sat-
uration is reached. As percolation occurs a bit earlier at low H/L, the homogenization
phase starts earlier too. In any case, closed-side boundary conditions do not provide a
robust base for evaluating the pc− sw relation for sw > 0.4 in primary drainage, given the
large heterogeneity of the phase distribution.

Conclusions

The goal of this chapter was to assess size effects and boundary effects on primary
drainage when testing small samples - a key question when designing small scale exper-
iments and simulations. We examined separately the statistics from samples of different
sizes, then those from subsamples of a single large sample. The main conclusions are:
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Figure 5.11: Saturation distribution of different layers under certain capillary pressures in
open-side drainage.
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Figure 5.12: Saturation distribution of different layers under certain capillary pressures in
closed-side drainage.
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Figure 5.13: Comparison between different aspect ratios of simulations for sw− pc curves
and D∗− pc curves in open-side drainage

Figure 5.14: Comparison between different aspect ratios of simulations for sw− pc curves
and D∗− pc curves in closed-side drainage
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• The standard deviation of sw in repeated simulations of primary drainage roughly
follow a simple variance reduction law with increasing sample size, i.e., σ(sw) '
2.4/
√

N for the maximum deviation (when sw is close to 0.4) and σ(sw)' 0.6/
√

N
at residual saturation. The orders of magnitude of σ(sw) are in agreement with
Hilpert and Miller (2001) in which 2500 was suggested as a sufficient number of
spheres, corresponding to a maximum deviation of σ(sw) = 0.048 with our expres-
sion.

• Standard deviation should not be the unique criterion for evaluating the represen-
tativity. Indeed the sample size can be the cause of significant bias in the average
result. The saturation decreases with decreasing sample size. For 2500 spheres for
instance, the difference may reach 0.3 based on our results (for sw ' 0.4), i.e., much
more than the standard deviation found for this particular size. We found that at
least 20000 spheres must be used in order to reduce the bias below 0.02.

• Boundary conditions also affect the result significantly. The paradox is that the
strong boundary effects observed when preferential invasion occurs along the bound-
aries lead to more robust evaluations of the pc− sw relation overall. When this phe-
nomenon is not present the shape of the pc− sw curve is more sensitive to sample
size and the phase distribution always show strong gradients of saturation. A similar
problem would most likely appear with periodic boundary conditions.

The need to compute large samples clearly shows the need for efficient numerical tech-
niques such as the pore-network methods. It justifies a posteriori our attempt to develop
a fast pore-scale method for coupled hydromechanical problems.

We suggest a few guidelines for further attempts to compare simulations and small
scale experiments:

• The comparisons should be done on samples of similar sizes, ideally similar shapes,
and with the same boundary conditions. Even below the REV size, this can lead to
relevant model validations provided that the inherent variability is kept in mind.

• The experiments should be designed and reported in such a way that the boundary
conditions can be accurately reproduced in a model. Scanning a small window in a
long column is detrimental for this reason.

• Ideally, the position and size of each grain should be provided to eliminate the main
source of variability, this is within reach of recent techniques (Andò et al., 2012).

The above conclusions apply to well controlled small-sized specimen of granular ma-
terial with statistically homogeneous distribution of porosity. The extrapolation to con-
ventional lab or field experiments should be done with care. Preferential boundary in-
vasion may occur in some real tests but it could be a peculiar feature of spherical (or
well-rounded) grains only. If this boundary invasion is not present, then the lab tests may
be more similar to our closed-boundary case, which suggest the occurrence of strong gra-
dients of saturation in the samples. It raises difficult questions on the interpretation of lab
tests: is an average sw relevant when strong gradients of sw are present? More generally,
our results underline a known feature: the key role of heterogeneities (in our case the
boundaries) in the drainage process. Every heterogeneity of a soil sample (be it intrinsic
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or due to a particular sampling technique) may strongly influence its water retention prop-
erties. Likewise, heterogeneities at the field scale (soil composition, roots, wormholes,...)
may play a dominant role in the transfers.
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Chapter 6

Bishop’s effective stress parameter

As reviewed in section 2.2, the debate on the most appropriate stress frame work for un-
saturated soils has lasted for several decades. Several forms of adequate stress variables,
either in single-variable form or independent variables form, are still possible. The ex-
pression of Bishop’s effective stress parameter χ also have been established in various
forms, for instance, Eq.2.4-2.6. The uniqueness of relationship between χ and satura-
tion sw has often been questioned. Most of these expressions are based on the results of
experimental tests, in which both the test sample and the measured variables are at macro-
scale. The effects of heterogeneity might be concealed. Besides, the deformation induced
by loading/unloading or drying/wetting is often in elastoplastic regime, which introduces
more uncertainties.

In this chapter, we will examine χ from the simplest case using the 2PFV-DEM model.
A drainage test will be performed under the oedometer test conditions, in which only one-
dimensional elastic deformation will be generated. χ will be derived and analyzed from
macro and micro viewpoints. The relationship between χ and sw will be analyzed in
detail.

6.1 Simulation setup

The simulation follows the setup of model test in section 4.2, i.e., the drainage is per-
formed under the oedometer test conditions, in which only one-dimensional deformation
of the solid skeleton is allowed. However, based on the conclusions of previous chapter,
the size of sample for testing in this chapter is relative larger than previous ones, in which
we consider the cubic packing contains 40,000 particles. (In section 4.2, the test aims to
show the basic functions of the model, thus the sample only contains < 1000 particles
for efficiency.) The initial porosity of the sample is 0.34. The particle size distribution
(PSD) follows Tab.4.1. The top and bottom of the sample connect to the NW-reservoir and
W-reservoir, respectively. The sample is initially saturated, assuming pc = pn− pw = 0.
Drainage is controlled by decreasing pw and keeping pn constant. We assume the W-phase
can be trapped by the NW-phase, i.e., “with-trap” drainage is performed.
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6.2 Recall pc− sw− ε11 relationship
Let us recall the hydraulic and mechanical response as reported in section 4.2. Similarly,
we obtain the results for the large packings. We superpose them in one figure, where the
evolution of normalized capillary pressure-saturation-one dimensional strain (pc− sw−
ε11) is reported, as shown in Fig.6.1.

A water retention curve has been achieved by the model, in which pc is controlled to
increase gradually. The saturation sw shows discontinuous reduction, because the distri-
bution of pc

e is heterogeneous. The sharp decrease of sw during 9.5 < pc < 11.5 can be
considered as the consequence of “Haines jumps”.

From the evolution of ε11, we can observe that the sample first shrinks and then swells.
In the beginning, before the first entry of NW-phase (i.e., pc < 8.0), the ε11− pc relation-
ship is linear. It can be explained by Terzaghi’s effective stress principle for saturated
conditions (i.e., Eq.2.2). The decrease of pw leads to the increase of σ ′i j. Then the sample
keeps shrinking until reaching the peak during 8.0 < pc < 9.8. In this stage, the porous
media is still highly saturated, and most of the solid particles are immersed in the W-
phase. Thus, the deformation is still mainly dominated by the σ ′ of saturated macroscopic
scenario. However, the relationship of pc− ε11 is not linear any more.

In the third stage (9.8 < pc < 14.2), with the W-phase receding, the solid skeleton
becomes dry. We assume pn is constant, the effective stress for dry scenario is,

σ
′
i j = σ

net
i j (6.1)

where σnet
i j is the “net” stress, σnet

i j = σi j− pn. It is the same as in the initial state (i.e.,
when pn = pw). Thus, the sample is swelling. The nonlinear relationship of pc− ε11 can
be explained by the heterogeneous NW-phase invasion (also see Fig.5.7). In the last stage
(pc > 14.2), clusters of disconnected W-phase are formed because of entrapment. Since
we assume there are no flux/pressure exchanges between separated clusters, ε11 will be
constant. The deformation induced by capillary effects will not be completely eliminated.

6.3 Reproducing the expression of effective stress param-
eter

Karl Terzaghi introduced the concept of effective stress for the particular case of saturated
soil mechanics. Considerable efforts have been made to extend this concept to the un-
saturated porous media. Retrospectively, such extension work was pioneered by Bishop
(1960) and Bishop and Blight (1963), who extended Eq.2.2 to a general form, Eq.2.3. As
a matter of fact, lots of following modified approaches can be consider as the extensions
of Eq.2.3.

Experimentally, no unique relationship between χ and sw can be found for all porous
media (Bishop et al., 1960; Bishop and Blight, 1963; Jennings, 1961; Zerhouni, 1991).
Also, different deformation regimes (i.e., elastic or elastic-plastic) can lead to different
relationships. We will base on Bishop’s equation and derive the expression of χ from
the macroscopic and microscopic views. Since we only focus on the one dimensional
deformation, Eq.2.3 can be simplified by,

σ
′
11 = (σ11− pn)+χ(pn− pw) = σ

net
11 +χ pc (6.2)
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Figure 6.1: The relationship between normalized capillary pressure-saturation-strain (pc−
sw− ε11) during drainage simulation under the oedometer conditions.

6.3.1 Macroscopic view
For Terzaghi, the term “effective” meant the calculated stress that was effective in mov-
ing soil, or causing displacement. Following this definition, the effective stress σ ′ for
unsaturated regime can be expressed by the macroscopic deformation, i.e.,

σ
′
11 = Eε11 (6.3)

where E is the elastic modulus. Thus, χ in Eq.6.2 can be expressed by,

χ
M =

Eε11−σnet
11

pc (6.4)

where χM is the macroscopic view of χ .

6.3.2 Microscopic view
The effective stress can also be investigated by microscopic analysis (Catalano et al.,
2014; Scholtès et al., 2015). For porous media, the microscopic stress associated to one
particle is defined as a sum over the contacts on the basis of particle-centered volumes Vσ∗

(see Fig.6.2) (Bagi, 1996; Drescher and De Jong, 1972),

σ
∗ =

1
Vσ∗

∑
k

Xc,k⊗ fc,k (6.5)

where Xc,k is a contact point, fc,k is the corresponding force and Vσ∗ is the reference
volume associated to the particle in the Voronoi tessellation. Note that σ∗ does not reflect
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Figure 6.2: Particle-centered domain for the definition of effective stress σ∗ at the particles
scale

the average stress in this solid particle. To obtain the average stress of one particle, we
should divide by the volume of the particle instead of Vσ∗ in Eq.6.5. In addition, the stress
applied by the fluid(s) on the contour(s) and the interfacial tension (if exists) on the contact
line should be accounted for. Instead, σ∗ reflects the external loading that acts through the
contact network. It can be considered as the micro-scale analogy of Terzaghi’s effective
stress. For saturated scenarios, the equivalence between them has been evaluated in the
oedometer test simulation and the results are in good agreement (Catalano et al., 2014).
Following this strategy, we also consider σ∗ as the micro-scale analogy of Terzaghi’s
effective stress for unsaturated porous media. Then the stress tensor for entire sample, σ c,
can be calculated by averaging σ∗ of all particles. Hence,

σ
′
11 ≈ σ

c
11 (6.6)

Finally, another expression of χ can be given from the point view of the contact forces of
particles,

χ
m =

σ c
11−σnet

11
pc (6.7)

6.3.3 Results

Effective stress parameter

We report the results of χM and χm and compare them with the original expression χ =
sw in Fig.6.3. As is shown, the variations of both forms of χ are very similar. (The
normalized error χM−χm

χM is less than 1%; for without-trap simulation, the error is less than
10%, see the details in the next chapter Fig.7.14 and Fig.7.16.) We can not explicitly claim
that the both expressions are exactly equivalent, but the micromechanical contact forces
indeed can be verified as another way for describing the effective stress of unsaturated
porous media.
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Figure 6.3: Variation of effective stress parameter χ with saturation for simulation results
and experimental data. Simulation values are calculated from drainage test of a dense packing
(40,000 spheres) under the oedometer test conditions.

The simulated values of χM and χm lie above the χ = sw line. They show a trend of
breaking down when the sw is in a low level. That is because at this stage the W-phase
mainly exists in the form of trapped clusters in the pore space. A large amplitude of
increase of pc will not significantly change the deformation of the solid skeleton. Such
simulation results are qualitatively similar to the experimental data of Breahead silt (Don-
ald, 1961) and Vaich moraine (Bishop and Blight, 1963).

Elastic regime confirmation

It is worthwhile to emphasize that the high equivalence of χM and χm (or, Eε11 and σ c
11)

is on basis of a strong assumption. In 2PFV-DEM model, we assume the deformation
of solid skeleton is of small amplitude in order to ensure that the assumption of static
RT network is valid. This is also the precondition of Eq.6.3. It is necessary to confirm
the mechanical evolution is in elastic regime. We plot the evolution of strain and contact
stress in Fig.6.4. As is shown, their relationship is linear and reversible.

A similar simulation is performed on a loose packing of sample, in which the sample
consists of the same size of particles. The drainage is controlled under the same condi-
tions. We repeat the calculation of χM and χm following the same method of the previous
section. The results are reported in Fig.6.5. As is shown, χM and χm are clearly not equiv-
alent any more. That is because the deformation of the solid skeleton is not reversible in
this case (see Fig.6.6). A constant value of oedometric modulus is not valid, thus Eq.6.3
is violated. Consistently, the result of χm can not be objectively evaluated through χM.
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Figure 6.4: A linear and reversible evolution of strain and contact stress during the drainage.
The sample first shrinks, then swells.

Figure 6.5: Variation of effective stress parameter χ with saturation for simulation results.
Simulation values are calculated from drainage test of a loose packing (40,000 spheres) under
the oedometer test conditions.
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Figure 6.6: An irreversible evolution of strain and contact stress during the drainage. The
sample first shrinks, then swells.

6.4 Micromechanical investigation on the effective stress
parameter and saturation

In this section, we investigate the relationship between the effective stress parameter and
saturation at micro scale, where micro-scale effective stress parameter is denoted as χ and
micro-scale saturation is denoted as sw. The results are on basis of elastic deformation of
the solid skeleton.

We estimate the effective stress at a certain depth by averaging the stress tensors of
solid phase located near this depth with Eq.6.5. Such local stress tensor is denoted by σ c,
i.e., σ ′11 ≈ σ c

11. The micro-scale expression of effective stress parameter can be written
as,

χ =
σ c

11−σnet
11

pc (6.8)

Similarly, the micro saturation sw (local saturation at a certain depth) can also be obtained
using the average technique.

We report the results of χ and sw in Fig.6.7. From the evolution of sw, we can clearly
see the propagation of NW-phase invasion. In the beginning, the distribution is very
heterogeneous, with low sw near the NW reservoir and high sw near the W reservoir (see
Fig.6.7(a) and (b)). The main evolution of sw happens after NW-phase percolation through
the entire sample, which leads to the small heterogeneity of the phase distribution. But
the localization is still notable (see Fig.6.7(c), also Fig.5.7). This is mainly due to the
various geometry of the pore throats, which result in various pc

e. With the increase of pc,
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clusters of W-phase are formed. They are disconnected from the W-reservoir and will be
accounted as the residual saturation. As shown in Fig.6.7(d), at the end, the distribution
of residual saturation is roughly homogeneous, except for the boundary ranges.

If we observe the evolution of χ , it is quite similar to sw. In the initial stage, the χ

of top layer is smaller than the rest parts. Then major evolution appears with a strong
localization. Finally, χ tends to homogeneous. Such correlation can be explained by the
physical interactions of the fluids and solid. χ is expressed in term of contact stress, which
is affected by the capillary effects (i.e., fluids and interfacial tension) under the equilib-
rium states. Mathematically, the capillary effects are the consequences of the variations
of geometrical items (i.e., W/NW-S contact areas, W-NW-S contact lines) and physical
items (i.e., pw and pn). The evolution of sw leads to such variations. Thus, they change
consistently. To conclude, the macro-scale correlation of effective stress parameter and
W-phase saturation can be interpreted from the micro-scale perspective.

Since we assume the saturations of the reservoirs are kept constant, the boundary
effects can be observed in the top and the bottom domains of the sample, as shown in
Fig.6.7c and d. We neglect such effects by filtering out the data of top and bottom do-
mains, then the relationship between χ and sw can be reported by following the evolution

of pc, as shown in Fig.6.8. From the results, we can see the similar evolution to Fig.6.3.
It is worthwhile to note that the current expression of χ is based on macro-scale pc,

where pc is the pressure difference between reservoirs. However, the micro-scale capillary
pressure is localized as well because of the entrapment of W-phase at different time. If
we use pc to denote the micro-scale capillary pressure, in order to keep the consistency of
the microscopic analysis, Eq.6.8 should be corrected by,

χ =
σ c

11−σnet
11

pc (6.9)

Then we can revise the microscopic evolution of effective stress parameter and satura-
tion as shown in Fig.6.9. From the results, we can observe a unique trend in the evolution
of the effective stress parameter as a function of saturation.

Conclusions
This chapter was devoted to investigate the relationship between Bishop’s effective stress
parameter χ and the saturation of the wetting phase sw. A primary drainage test has been
performed on a large dense sample under oedometer conditions. The results of normalized
capillary pressure - saturation - one dimensional deformation (pc− sw− ε11) have been
recalled in detail.

From macroscopic view, χ has been derived on basis of the average (macroscale)
deformation. From microscopic view, χ has been expressed in terms of the contact stress
between solid grains. Their values are quite similar. The strain is consistent with the
change of the contact stress. Thus, this feature highlighted by Scholtès et al. (2009a), can
be extended to some extend to the intermediate range of saturation, i.e., using the contact
stress to calculate the effective stress.
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Figure 6.7: Drainage simulation under oedometer test conditions. Evolution of local normal-
ized effective stress and local saturation. (a) pc = 9.05; (b) pc = 11.35; (c) pc = 11.90; (d)
pc = 16.20.
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Figure 6.8: The relationship between micro effective stress parameter and micro saturation.
Derivation is based on macro pc, i.e., the pressure difference between reservoirs.

Figure 6.9: The relationship between micro effective stress parameter and micro saturation.
Derivation is based on the local capillary pressure.
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Further more, the local effective stress parameter and local saturation have been ob-
tained by local averaging. We can observed a unique trend in the evolution of the effective
stress parameter as a function of saturation.
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Chapter 7

Toward the pendular regime

7.1 Introduction
Let us recall the physics of drainage. In the quasi-static regime, capillary pressure pc

is applied into the porous media to result in the motion of W-NW interface from one
equilibrium state to another. The invasion of a local pore depends on the local entry
capillary pressure pc

e, which is to be compared to the present capillary pressure pc. If
pc > pc

e, the pore is drained and W-NW interface reaches new throats. It possibly triggers
a recursive cascade of Haines jumps and more than one pores will be drained, until no
more throats satisfy pc > pc

e. During the invasion events, the W-phase clusters may be
disconnected from the W-reservoir by the NW-phase.

• On short timescales, each disconnected cluster is stationary. The value of pc in the
cluster is independent of the imposed pc. Its volume is fixed.

• On long timescales, the mass transfer between individual clusters through the wet-
ting film or by vapor transport is possible. pc is uniform.

In previous chapters, we have already presented the “with-trap” and “without-trap”
simulations corresponding to the short-term and long-term cases, respectively. Therein,
we assumed until now that the saturation of one pore is simply binary, i.e., it equals 0 or
1 depending on which phase is present. The W-phase clusters exist exclusively under the
funicular regime.

Practically, after the NW-phase invading a pore, a certain amount of W-phase can be
left between solid grains in the form of pendular rings (see the difference in Fig.7.1, from
(a) to (b) and from (a) to (c)). The rings follow above rules for the short and long terms,
i.e., in short terms (with-trap simulations), each pendular ring is also independent, its
volume is constant and pc is localized; in long terms (without-trap simulations), the rings
are connected with each other by the film flow and pc is uniform. The pendular bridge
modeling has been extensively used to simulate the rings by many researchers (Hotta
et al., 1974; Ennis et al., 1990; Lian et al., 1993; Li, 2003; Scholtès et al., 2009; Scholtès
et al., 2009a), as reviewed in section 1.2.2.

In this chapter, we will extend the 2PFV-DEM model to pendular regime and imple-
ment the pendular bridge model based on Scholtès et al. (2009), Scholtès et al. (2009a)
and Chalak (2016). The content is organized as follows. We first briefly introduce the
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Figure 7.1: The displacement of NW-W interface between two equilibrium states. From (a)
to (b), the pendular bridge is not considered in previous chapters; from (a) to (c), the pendular
bridge exists, practically. (in 2D for clarity).
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Figure 7.2: Illustration of a liquid bridge between two particles in pendular regime model.
(a) global geometry and (b) details of the bridge, following Scholtès et al. (2009) and Scholtès
et al. (2009a)

pendular bridge model. The key governing equations and assumptions will be reviewed.
Then the logic of the extension and implementation will be elaborated. At last, we will
apply the extended model to repeat the simulation of previous chapters and the effective
stress parameter will be re-examined briefly.

7.2 Description of the pendular bridge model
In, namely, Soulie et al. (2006), Scholtès et al. (2009) and Chalak (2016), the unsaturated
granular material is assumed in the pendular state, in which the W-phase inside the sample
is exclusively composed by discontinuous menisci (i.e., liquid bridges). As mentioned
in Section 3.2.2, the Young-Laplace equation describes the capillary pressure difference
sustained across the interface between two static fluids, due to the phenomenon of surface
tension. Combining Eq.3.1 and Eq.3.2 gives:

pc = γ
nw(

1
r1

+
1
r2
) (7.1)

where the principal radii r1 and r2 are formulated 1
r1
= 1

y(x)
√

1+y′2(x)
and 1

r2
= y′′(x)

(1+y′2(x))3/2

in the Cartesian coordinates of Fig.7.2b. y(x) defines the profile of the W-NW interface,
and the x axis coincides with the axis of symmetry of the liquid bridge, passing through
the centres of the connected sphere. The corresponding liquid bridge volume V and inter-
granular distance D can be defined by Soulie et al. (2006),

V = π

∫ x2

x1

y2(x)dx− 1
3

πR3
1(1−acos(x1))

2(2+acos(x1))

−1
3

πR3
2(1−acos(x2))

2(2+acos(x2))

(7.2)

and
D = R2(1−acos(x2))+ x2 +R1(1−acos(x1))− x1 (7.3)

The capillary force Fcap due to a pendular bridge consists of two components: a force
due to the surface tension acting on the W-NW-S contact line and a force due to suction

97



Part III Chapter 7 - Extension with pendular regime

effects on the W-S interface. (A buoyancy force due to the partial submersion of the
spheres may be considered, but it is negligible for spheres less than 1 mm in diameter
(Princen, 1968).) It can be calculate by,

Fcap = πy2 pc +
2πy√
1+ y′2

γ
nw (7.4)

The pendular bridge model is based on solving Eq.7.1 numerically to determine the
secondary variables (Eqs.7.2-7.4). The system can be expressed by,{

Fcap = Fcap(D,R1,R2,γ
nw, pc)

V =V (D,R1,R2,γ
nw, pc)

(7.5)

or {
Fcap = Fcap(D,R1,R2,γ

nw, pc)
pc = pc(D,R1,R2,γ

nw,V )
(7.6)

Two modeling assumptions are possible:
(1) For the short-term/with-trap simulation, the volume of a pendular bridge V is assumed
constant since the bridge is formed. The initial local pc is subjected to the invasion se-
quence. Subsequently, the evolution of local pc can be solved using Eq.7.6.
(2) For the long-term/without-trap simulation, mass transfer between the bridges is al-
lowed. pc is uniform and equals to the pressure difference of the reservoirs. V can be
solved using Eq.7.5.

The model has already been implemented as part of Yade by Scholtès et al. (2009),
Scholtès et al. (2009a) and Chalak (2016). For the implementation, in order to efficiently
solve the above equations, an interpolation scheme on a set of discrete solutions of the
Laplace equation has been developed to link directly pc to Fcap and V for a given sphere-
pair configuration (R1,R2,D). Fig.7.3 illustrates the evolution of the capillary force with
the relative displacement between two interacting particles. Fcap is maximum for parti-
cles strictly in contact (D = 0), and Fcap is considered constant for the range of elastic
deformation (D 6 0), assuming D to be very small compared with the particles radii. The
maximum distance Drupture corresponds to the minimum D value from which the Young-
Laplace equation has no solution.

7.3 Extending 2PFV to the pendular regime model

7.3.1 Algorithm
As mentioned in section 3.2.1, after the NW-phase invading a pore, we assumed the pore
was completely drained in 2PFV-DEM model. Now we consider that a certain amount of
W-phase is left between solid grains in the form of pendular rings. Fig.7.4 illustrates the
extensions, in which the pendular bridge model is superposed on the network of 2PFV.

Sequence of drainage events

The drainage logic of extended 2PFV is the same as that of 2PFV, i.e., the invasion of
single pore is determined by the relationship between pc and pc

e, and the invasion sequence
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Figure 7.3: Evolution of the capillary force Fcap with the inter-granular distance D for a given
capillary pressure value: a meniscus can form for D<Dcreation and breaks off for D>Drupture,
following Scholtès et al. (2009a)

.

is based on the topology of network. After each invasion event, a search algorithm is ran
to find out the potential sphere-pair, which is may form a pendular bridge. The algorithm
is operated on the edges of the tetrahedra of the network, which links the centers of two
neighboring spheres (sphere-pair), for instance, O1O2, O1O3, O2O3 etc. in Fig.7.4. The
sphere-pair leads to a potential bridge if all the neighboring pores have been invaded by
the NW-phase. For example, in Fig.7.4 O1O2 is a potential sphere-pair, but O2O3 and
O3O4 are not. Then the algorithm of the pendular bridge model (see previous section)
is performed on each potential sphere-pair to determine if the liquid bridge can exist for
the particular set {pc, D, R1, R2, γ}. The evolution of the volume and the pressure of the
pendular bridges and funicular clusters follow the same rules, i.e., a long-term (with-trap)
drainage or a short-term (without-trap) drainage.

Mechanical component

In mechanical aspect, the capillary force Fcap of the pendular regime can be solved by fol-
lowing the algorithm of the previous section (Eq.7.5 and 7.6) . Fcap is taken into account
in the time-integration by adding a pendular term to Eq.3.22, i.e.,

mẍi = Fc
i +mg+F f un

i +F pen
i (7.7)

where F f un
i and F pen

i are the capillary forces of the funicular regime and pendular regime,
respectively.

7.3.2 Implementation
We have implemented the extended model in Yade-DEM. Fig.7.5 shows the flow chart de-
scribing the extended 2PFV algorithm. The logic is similar with the flow chart of Fig.4.1.
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Figure 7.4: Illustration of the extended 2PFV model with the pendular bridge model, in 2D
for clarity. (a) unsaturated granular material and the pore network of pore space. (b) the
funicular cluster is modeled by 2PFV method. (c) the pendular bridge is modeled by Scholtès
et al. (2009) and Chalak (2016)

.
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Figure 7.5: The extended 2PFV algorithm (one invasion step)

The following code fragment (Listing 7.1) shows how the extended 2PFV model is
introduced in a simulation.

Listing 7.1: Introducing the extended 2PFV engine in a coupled DEM simulation

# The preamble of the script should setup a regular DEM simulation,

defining particles properties and boundary conditions

# Instantiate a pendular liquid bridge model engine, which can be defined

inside the calculation cycle.

O.engines=[

#...

Law2_ScGeom_CapillaryPhys_Capillarity1(label=’pen’),

#...

]

# Instantiate a funicular model engine.

fun=UnsaturatedEngine()

##set boundary conditions for the fluid phases, the drainage is controlled

by decreasing W-phase pressure (pw) and keeping NW-phase pressure (pn

) constant.

fun.bndCondIsPressure=[0,0,1,1,0,0]

fun.bndCondValue=[0,0,pw_initial,pn,0,0]

fun.isPhaseTrapped=True #if True, "with-trap" drainage; if False, "without

-trap" drainage.

fun.initialization()

fun.surfaceTension = surfaceTension

pen.imposePressure=False #If True, the pressure is imposed on all liquid

bridges, i.e., "without-trap"; if False, the volume is assigned on

each liquid bridge and is kept constant, i.e., "with-trap".
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##create a list for handling the sphere-pairs

pairLists=[[]]

countPair=0

##start the invasion, the data of pc-sw-strain will be written into

pc_sw_strain.txt

file=open(’pc_sw_strain.txt’,"w")

for pw in arange(pw_initial,pw_end,pw_step): #decrease pw progressively

from pw_initial to pw_end, with a step of pw_step

fun.bndCondValue=[0,0,pw,pn,0,0]

#calculation the two-phase flow of funicular regime

fun.invasion()

#calculation the two-phase flow of pendular regime, by searching the

potential sphere-pair and assgining a liquid bridge

pairLists.append(fun.getPotentialPendularSpheresPair())

countPair+=1

newList=list(set(pairLists[countPair]).difference(set(pairLists[

countPair-1])))

for pair in newList:

if O.interactions.has(pair[0],pair[1]):

if pair[0]>5 and pair[1]>5:

O.interactions[pair[0],pair[1]].phys.computeBridge=True

O.interactions[pair[0],pair[1]].phys.capillaryPressure=-fun.

bndCondValue[2]

fun.computeCapillaryForce()

# Add the fluid and interfacial forces (of the funicular regime) to the

total force on each body

for b in O.bodies:

O.forces.addF(b.id, fun.fluidForce(b.id), True)

# then integrate the dynamics with these additional forces, where the

capillary forces of the pendular regime will be calculated, until a

new equilibrium state is reached

while 1:

O.run(1000,True)

unb=unbalancedForce()

if unb<0.01:

break

file.write(str(pn-pw)+" "+ str(fun.getSaturation(True)+getPenSaturation

())+" "+str(-triax.strain[1]-ei1_initial)+"\n")

file.close()

7.4 Numerical simulation
In this section we apply the extended 2PFV-DEM model to simulate a series of drainage
process in order to investigate the effects of pendular bridges. The original 2PFV-DEM
model and the pendular bridge model are also applied for comparison. The numerical
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Figure 7.6: The evolution of menisci number of different models and water retention curve.
Pen denotes pendular regime model (i.e., the liquid bridge in previous section); Fun+Pen
denotes the extended 2PFV model, which includes funicular and pendular regimes. The water
retention curve is corresponding to the Fun+Pen model.

setup follows section.4.2.3. The sample contains 40,000 particles. The drainage is un-
der oedometer test conditions. Both “without-trap” and “with-trap” simulations are per-
formed. The results are reported as follows, in which the 2PFV model is marked as “Fun”
(funicular regime only), the pendular bridge model is marked as “Pen” (pendular regime
only) and the extended 2PFV model is marked as “Fun+Pen” (funicular and pendular
regimes), respectively.

7.4.1 Hydraulic results

Liquid bridge density

The amount of liquid bridges inside the sample not only affects the W-phase retention,
but also plays an important role for the mechanical response, such as the macroscopic
hysteresis in wetting and drying (Scholtès et al., 2009b). Thus the evolution of bridge
number with capillary pressure is reported in the results, as shown in Fig.7.6, in which
the average number of menisci per particle Nm (i.e., liquid bridge density) is obtained.
We perform the without-trap drainage tests using “Pen” model and “Fun+Pen” model
for comparison. The water retention curve of the “Fun+Pen” model is superposed in the
results for clarity of the evolution.

In the “Pen” model, the pendular bridges are superposed for all possible sphere-pairs.
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Figure 7.7: Water retention curves of different drainage models.

Thus, in the beginning Nm is relative high. With increasing pc, Nm decreases. That can
be explained by the rupture of bridges. In the “Fun+Pen” model, the bridges appear
only after the pores being drained. Thus, in the beginning no sphere-pairs are available
for pendular rings (i.e., Nm = 0). Then Nm increases rapidly when sw < 0.2. The curve
merges with “Pen” model when sw ≈ 0.03. That means the sample is completely under
the pendular regime. The simulations of “Pen” model and “Fun+Pen” model are exactly
the same scenario. Finally, Nm decreases as well because of the ruptures. But the liquid
bridge between two contact particles will never be erased.

Water retention curve

The water retention curves (WRC) are obtained with the different assumptions and re-
ported in Fig.7.7. For both “without-trap” and “with-trap” simulations, the effects of
pendular bridges are negligible as long as sw > 0.25. Since in this stage, very few bridges
can be formed between solid grains. Even when sw is relatively low, 0.25 < sw < 0.5,
for instance, most of the W-phase is in the funicular regime (see the liquid bridge density
in Fig.7.6). The remarkable effects of pendular bridges can only be found at the end of
drainage (sw < 0.2), in which more and more sphere-pairs are available for the formation
of bridges. At residual saturation, the volume of bridges contributes approximately to
0.03-0.05 in the total saturation.
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Discussions

The pendular bridge modeling has been widely used for the hydromechanical couplings
of unsaturated granular materials. Usually, in the initial state, the bridges are superposed
randomly for all possible sphere-pairs of the specimen (e.g., Scholtès et al., 2009; Chalak,
2016). Then different loading/unloading, or drying/wetting paths can be proceeded. But
how to obtained experimentally the initial state of the specimen is rarely mentioned. The
calibration of the pendular bridge model is usually focused on only a single sphere-pair.

If we compare the evolution of liquid bridge density for “Pen” model and “Fun+Pen”
model, we can find that before the collapse of both cases, the results of “Pen” model is
not realistic. The liquid bridge density is highly overestimated. Mathematically, we can
superposed the liquid bridges for all possible sphere-pairs, but the distribution may never
be obtained experimentally. This problem is rarely noticed in previous pendular bridge
models.

To conclude, the “Pen” (pendular only) model is only suitable for a pure pendular
regime, in which the overlap of menisci should not happen and the funicular cluster of W-
phase should not exist. We recommend the “Pen” model can only be valid for the sample
with a saturation sw < 0.05. The “Fun+Pen” model considers the funicular wetting phase
clusters and pendular rings separately, thus it can reproduce the entire evolution of the
W-phase.

7.4.2 Mechanical results

Deformation of solid skeleton

The relationship between capillary pressure and deformation are reported in Fig.7.8 and
Fig.7.9. For clarity, the WRC is also superposed in the figures. For both “with-trap” and
“without-trap” drainage, the evolution of deformation of “Fun+Pen” model is similar with
that of “Fun” model, i.e., the sample first shrinks then swells. The physical explanation
is also similar, as narrated in section 4.2.2. Here we only focus on the effects of pendular
bridges.

We also first identify the deformations of solid phase in two models are of small
amplitude and elastic in order to ensure the simulation results are valid. The confirma-
tion is shown in Fig.7.10, in which the strain-stress relationship (i.e., shrinking and then
swelling) during the drainage is linear and reversible.

The effects of pendular bridges can be found in the swelling stage of the drainage
when sw is less than 0.5. The capillary forces induced by pendular bridges (see Eq.3.22
and Eq.7.7) keeps the particles together. Comparing with the effects on WRC, i.e., the
volume of bridges contributes 0.03-0.05 of the saturation, the mechanical effects are more
remarkable, especially for “without-trap” simulation. In “with-trap” simulation, at the
end of drainage, the deformation induced by the pendular liquid bridges takes up approx-
imately 30%. In “without-trap” simulation, at the end of drainage, the deformation is
entirely controlled by the liquid bridges, and such deformation is clearly not negligible.
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Figure 7.8: The relationships between normalized capillary pressure, saturation and one-
dimensional deformation (pc-sw-ε11) in with-trap model, under the oedometer test conditions.
The WRC corresponds to the Fun+Pen model.
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Figure 7.9: The relationships between normalized capillary pressure, saturation and one-
dimensional deformation (pc-sw-ε11) in without-trap model, under the oedometer test condi-
tions. The WRC corresponds to the Fun+Pen model.
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Figure 7.10: The linear and reversible evolution of strain and contact stress during the
drainage using “Fun” model and “Fun+Pen” model. The samples first shrink, then swell.
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Microscopic interpretation

The effects of liquid bridges can also be analyzed from the microscopic point of view.
We calculate the capillary stress induced by the fluids on the basis of particle-centered
volumes using the method of Eq.6.5. The contributions from funicular W-phase clusters
and pendular W-phase bridges are calculated separately. The results are presented with
the same normalization as pc (see Eq.4.1), i.e.,

σ
f un

11 =
σ

f un
11 D
γnw ,σ pen

11 =
σ

pen
11 D
γnw (7.8)

where σ
f un

11 and σ
pen
11 are the capillary stress components caused by funicular clusters and

pendular bridges, respectively; σ
f un

11 and σ
pen
11 are their normalized values; D is the average

sphere size, and γnw is interfacial tension. The results of “with-trap” and “without-trap”
simulations are reported in Fig.7.11 and Fig.7.12, respectively.

In “with-trap” simulation, when the sample is saturated, the total of capillary stress
always equals to the capillary pressure (see Fig.7.11, the slope of the curve equals to 1 in
the beginning of drainage.). It can be explained by Terzaghi’s effective stress principle.
At this stage, σ

pen
11 = 0, since there are no pendular bridges. σ

f un
11 keeps growing until

reaching the peak value. Then σ
f un

11 decreases and σ
pen
11 increases. At the end of drainage,

σ
f un

11 and σ
pen
11 are constant, and the funicular component is larger than pendular.

In “without-trap” simulation, the evolutions of σ
f un

11 and σ
pen
11 are quite similar for the

beginning stages. But at the end, σ
f un

11 is approaching to 0 and the pendular component is
dominant, since only pendular bridges left.

To sum up, since the deformations of the solid phase in “Fun” model and “Pen” model
are both assumed elastic and the strain-stress relationship is linear (see Fig.7.10), the evo-
lution of the capillary stresses which are obtained on basis of micromechanical contact
forces can reflect the macro-scale deformation of the solid skeleton. Although the pendu-
lar liquid bridges contribute a small content of saturation, the induced capillary pressure
(i.e., σ

pen
11 ) is remarkable.

Re-examination of Bishop’s effective stress parameter

By following the procedures of section 6.3, we re-examine Bishop’s effective stress pa-
rameter χ using the extended 2PFV (Fun+Pen) model. Both with-trap and without-trap
simulations are performed. The macro expression χM and micro expressions χm are ob-
tained on basis of Eq.6.4 and Eq.6.7. We superpose the results of 2PFV (Fun) model for
comparison. The experimental data of Breahead silt (Donald, 1961) and Vaich moraine
(Bishop and Blight, 1963) is also included.

The results are reported in Fig.7.13 and Fig.7.15. In all cases, the values of χM and
χm are very similar. Both parameters are above the χ = sw line. Adding pendular bridges
increases χ .

In with-trap simulation, the parameters show a trend of breaking down at a low sw.
Without-trap, there is no such breakdown. Such difference is mainly induced by the dif-
ferent scenarios of capillary effects. As explain in section.6.3.3, when saturation is low,
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Figure 7.11: The relationship between the capillary stress and capillary pressure in with-trap
drainage. All variables have been normalized.
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Figure 7.12: The relationship between the capillary stress and capillary pressure in without-
trap drainage. All variables have been normalized.
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the increase of pc will not significantly change the deformation of the solid skeleton in
with-trap model, since it does not change the capillary pressure of the disconnected W-
phase. But if we assume the individual W-phase cluster/bridge always connects to the W-
reservoir (i.e., the without-trap model), then the capillary forces will always be affected
by the changes of pc, consequently, leading to a deformation.

We present the normalized difference, χM−χm

χM , for “Fun” and “Fun+Pen” models. The

difference χM−sw

χM for χ = sw is also superposed in the results, as show in Fig.7.14 and
Fig.7.16. We find out that,

• When sw > 0.3, in the funicular regime dominated scenarios (since few pendular
bridges can be formed, see Fig.7.6), the maximum error is less than 1% (for both
“Fun” and “Fun+Pen” models). When sw < 0.3, the error grows, but its maximum
value is less than 10% (for “Fun+Pen” model, in without-trap simulation the error
is less than 5%; in with-trap it is less than 1%). Thus, we conclude that the mi-
cromechanical contact stress can be used to estimate the effective stress under the
pendular and funicular regimes. Even in a pendular regime dominated scenario,
such estimation is still acceptable.

• The results suggest that χ = sw might be an acceptable approximation when the
saturation level is high. The error is increasing as pc increases and it reaches 70%
(35% for with-trap simulation) at low level of saturation.

Conclusions
In this chapter, we have extended the 2PFV-DEM scheme to the pendular regime, using
the pendular bridge model of Scholtès et al. (2009), Scholtès et al. (2009a) and Chalak
(2016).

• The pendular bridge model has been briefly reviewed, and, namely, the difference
between constant suction and constant volume assumptions have been commented.
They combine consistently with the “without-trap” and “with-trap” assumptions of
the 2PFV-DEM scheme, respectively. The implementation has been done within
YADE platform.

• We have repeated the primary drainage tests under the oedometer conditions simi-
lar to the tests of previous chapters in order to learn the effects of pendular liquid
bridges. The results show that the volume of liquid bridges contributes approxi-
mately 0.03-0.05 of the residual saturation (the residual saturation ≈ 0.2), and the
induced deformation is remarkable. For a “with-trap” drainage, the deformation
from pendular regime takes up 30%. For a “without-trap” drainage, the deforma-
tion from pendular regime dominates.

• Further more, we have re-examined Bishop’s effective stress parameter from macro-
scopic and microscopic views using the extended model. A noticeable increase of
χ compared with the “Fun” model has been observed due to the pendular bridges.
The values of χM and χm are not exactly the same, but the difference is very small

112



Part III Chapter 7 - Extension with pendular regime

Figure 7.13: Comparison of effective stress parameter between funicular regime model and
pendular+funicular regime model. The simulation is controlled by with-trap drainage.

Figure 7.14: Variation of χM−χm with saturation in with-trap simulations.
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Figure 7.15: Comparison of effective stress parameter between funicular regime model and
pendular+funicular regime model. The simulation is controlled by without-trap drainage.

Figure 7.16: Variation of χM−χm with saturation in without-trap simulations.
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(the error is less than 10%). We conclude that in the “funicular + pendular” regime
the micromechanical stress can be used to estimate the effective stress of the unsat-
urated granular materials. In the pure pendular regime, the error grows (this point
is highlighted by (Chalak, 2016)), but the estimation is still acceptable.

115



Part III Chapter 7 - Extension with pendular regime

116



Conclusions and Perspectives

The main objective of this thesis was to provide an efficient numerical methodology for
reproducing the hydraulic and mechanical behaviors of the partially saturated granular
media. We focused on a pore-scale coupled scheme, in which a decomposition technique
and the discrete element method (DEM) have been combined for the fluids and the solid
grains, respectively. An explicit link has been established between the geometry of the
pore space and the position of the grains. The model was specifically designed for simu-
lating the quasi-static drainage of large random poly-disperse sphere packings. By “large”
we imply problem with more than 104 solid grains, i.e., a size beyond reach of most con-
ventional coupled methods (DEM-LBM, DEM-SPH, etc.). This final chapter covers the
main conclusions of the research described in the thesis, together with perspectives for
future work on the improvement and extension of the current implementation.

Conclusions

In part 1, the literature review has presented the theoretical background relevant to com-
plex multiphase systems, in which each component phase has been introduced. We con-
cluded that the pore-scale modeling was an efficient and promising approach for hydraulic
simulations.

In part 2, we have presented the pore-scale approach in details, where the model was
termed “two-phase pore-scale finite volume - discrete element method” coupling scheme,
or “2PFV-DEM”. The solid phase has been idealized as a random dense packing of poly-
disperse spheres, which was generated with the discrete element method (DEM). The de-
composition of the pore space has been obtained using Regular Triangulation method. Un-
der the quasi-static regime, the model simulates only equilibrium states along a drainage
path with a uniform pressure field in each fluid. The drainage thus occurs through a recur-
sive invasion of the pores when the capillary pressure exceeds the local entry values. The
criterion for invading a local pore has been formulated based on Mayer-Stowe-Princen
(MS-P) method, which employed the balance of forces on the fluids interface. The reced-
ing wetting phase can either be disconnected from its reservoir by the nonwetting phase,
leading to a residual saturation or be drained completely at the end. We have considered
both situations. The capillary forces induced by the fluids pressure and interfacial ten-
sion have been evaluated and taken into account when solving the motion of the solid
grains with the DEM. The macro-scale deformation of simulated materials finally can be
obtained. We assumed that the deformation was of small amplitude and that it was not
causing great changes in the network. The current implementation is a one-way coupling.
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Under oedometer conditions, a series of primary drainage tests has been performed.
Taking the experimental data as reference, the capillary pressure - saturation curves (water
retention curves) obtained with the model are well predicted. During drainage, the solid
skeleton showed first shrinking then swelling.

With our current implementation the complete network generation is achieved in less
than 10 s for 64,000 spheres on a standard workstation (Intel Xeon 2.80GHz, executed on
one single core); the cost of an invasion step (finding the stable phase distribution corre-
sponding to one value of capillary pressure and calculating the fluid forces) depends on
the number of invaded pores hence fluctuates during a simulated drainage. For 64,000
spheres it never exceeds 1.0 s.

In part 3, we have applied the 2PFV-DEM model to approach two hydromechanical
issues.

• We acessed size effects and boundary effects on primary drainage when testing
small samples. Repeated simulations showed that the standard deviation of the sat-
uration follows a simple variance reduction law with increasing sample size. Stan-
dard deviation should not be the unique criterion for evaluating the representativity.
The sample size can be the cause of significant bias in the average result. We found
that at least 20,000 spheres must be used in order to reduce the bias below 0.02
in terms of the saturation for a give capillary pressure. For the boundary effects,
we found that the preferential invasion occurring along the boundaries led to more
robust evaluation of the capillary pressure - saturation relations, else the phase dis-
tribution always showed a strong gradient of saturation.

• We examined Bishop’s effective stress parameter χ . The evolution of χ has been de-
rived from macroscopic deformation and microscopic variables, where the macro-
scopic expression uses the definition of effective stress and the microscopic expres-
sion is based on the contact stress between solid grains. The results show that both
ways lead to very similar results. We conclude that the micromechanical intergran-
ular stress can be considered as the micro-scale expression of effective stress. The
local effective stress parameter and local saturation have been obtained by local
averaging. A unique trend in the evolution of the effective stress parameter as a
function of saturation has been observed.

Lastly, the 2PFV-DEM scheme has been extended to include pendular bridges. The
capillary effects of liquid bridges have been systematically evaluated. The fluid in pendu-
lar state contributed to a small amount to the total saturation but the induced deformation
of the solid skeleton is remarkable. In this “funicular + pendular” regime, the microscopic
stress and effective stress have been found to be quite close again.

Perspectives
Our coupling scheme that combines a pore-scale network and the DEM for the fluid(s)
and solid grains respectively can be considered as an extensible platform for simulating
multiphase systems. In fact, our coupling is itself for a large part an extension of the PFV-
DEM coupling for one phase flow, introduced by earlier authors. The PFV-DEM model
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has been found to be an effective approach for one-phase flow in deformable granular
materials (PhD of Emanuele Catalano, Catalano (2012); Chareyre et al. (2012); Catalano
et al. (2014) and Donia Marzougui Marzougui et al. (2015); Marzougui (2014) in Labo-
ratoire 3SR). The current 2PFV-DEM has been applied to the quasi-static drainage in this
work, but it is not a strong requirement. Regarding the possible extensions of the current
implementation, several aspects can be mentioned.

Improvements, Extensions and Applications of 2PFV-DEM itself

Boundary conditions. The current boundary conditions of invasion consider that the
fluid can either go through the throats along the boundary or only flow inside the solid
bulk. The implementation of periodic boundary conditions is in progress and will offer an
interesting alternative to simulate boundary effects.
Dynamic regime. We assumed the drainage in quasi-static regime. This assumption
could be relaxed including dynamic situations, where the motion of fluids themselves
(both wetting and nonwetting phases) can be considered. For each individual fluid, its
motion (flux through pores) and the fluid pressure gradient can be obtained by the one-
phase PFV-DEM model without major difficulties. Significant steps in this direction have
been done already at Utrecht Environmental Hydrology group (PhD of Thomas Sweijen,
partly in collaboration).
Imbibition. The local motion of fluids interface can cause drainage or imbibition of a
pore. The local criteria are different. In drainage, the invasion is controlled by the entry
value of pore throat; in imbibition, it is decided by the entry value of pore body. Thus
if we adapt the local criterion, the 2PFV-DEM is able to simulate the imbibition. Also
the dynamic imbibition is possible. Again, this work is in progress at Utrecht University
(Sweijen et al., 2016).
Applications. We have applied the model to simulate the primary drainage under the oe-
dometer test conditions. In the future, we will employ the model or its extensions to learn
more hydromechanical evolutions, such as the volumetric and shear strength behaviors
under different loading/unloading or drying/wetting paths (especially the wetting collapse
behavior). Many interesting phenomena can now be approached by DEM simulations,
namely the capillary shrinkage cracking of particle aggregates can be reproduced.

Combinations with other approaches

Chapter 7 has presented a possible combination with the pendular bridge models, as de-
veloped by Scholtès et al. (2009); Scholtès et al. (2009a) and Chalak et al. (2016); Chalak
(2016) (former doctors of Laboratoire 3SR). Other pore-scale/grain-scale or micro-scale
continuum based methods can also been introduced for the combinations.
Local criteria We estimated the local threshold value (entry capillary pressure) for a
pore by following Mayer-Stowe-Princen (MS-P) method. Though qualitatively accept-
able based on comparisons with experimental water retention measurements, those local
values remain to be validated at the very small scale. The same remark applies for the ex-
pressions of the forces exerted on each solid grain. In the future, these local rules may also
be defined numerically by using Lattice-Boltzmann (LB) method (PhD of Puig Montella
Eduard in Laboratoire 3SR and Universitat Politècnica de Catalunya) or experimentally
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using tomography techniques (post-doc of Khan Faisal in Laboratoire 3SR). The invasion
logic is the same, but at micro-scale the entry value will be defined precisely based on
the geometry of the throat with LB method. This work is in progress by Puig Montella
Eduard.
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Calculation of capillary force and tension force for a pore
throat
1In this appendix, we give explicit expressions of the capillary force Fc and tension force
Ft acting at a pore throat.

We consider a pore throat (see Fig.7.17) defined by the radii and positions of neigh-
boring solid particles. For a particular radius of curvature rc of the NW interfaces and
in perfectly wetting condition (contact angle θ = 0) the contact line between NW and W
phases is tangent to the solid surface.

The area of the triangle ∆ABC can be written as follows:

A∆ABC =
1
2

bcsinα (7.9)

Using laws of cosines, we can write the following equations to solve α , β and γ in ∆ABC,

a2 = b2 + c2−2bccosα (7.10)

b2 = a2 + c2−2accosβ (7.11)

c2 = a2 +b2−2abcosγ (7.12)

Likewise, the areas and ϕi j in ∆AO3B, ∆BO1C and ∆AO2C can be obtained.
The total area of liquid bridge Alb within the throat’s section (the part occupied by the

W-phase) is

Alb = (A∆AO3B−0.5R2
1ϕ31−0.5R2

2ϕ32−0.5r2
cϕ33)

+(A∆BO1C−0.5R2
2ϕ12−0.5R2

3ϕ13−0.5r2
cϕ11)

+(A∆AO2C−0.5R2
1ϕ21−0.5R2

3ϕ23−0.5r2
cϕ22)

(7.13)

The area Ae f f corresponding to the invading NW-phase, and on which pc is exerted can
finally be evaluated as:

Ae f f = A∆ABC−Alb−0.5R2
1α−0.5R2

2β −0.5R2
3γ (7.14)

Combining Eq.(3.4), (3.6) and (7.14), an explicit expression of Fc is obtained.

1The algorithm of this section has been published as part of the conference proceeding Yuan et al.
(2015a)
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Figure 7.17: Cross section geometry of pore throat, the pore throat radius rc is determined
based on the balance of forces for non-wetting/wetting interface.

We now evaluate the force coming from the interfaces. Since θ = 0 in Eq.(3.9) for
perfect wetting, the total force on the interface line is

Ft(rc) = (Lnw +Lns)γ
nwn (7.15)

The contact lines Lnw and Lns can be obtained as follows:

Lnw = rcϕ11 + rcϕ22 + rcϕ33 (7.16)

Lns = R1(α−ϕ21−ϕ31)+R2(β −ϕ32−ϕ12)+R3(γ−ϕ13−ϕ23) (7.17)

Combining equations (7.15), (7.16) and (7.17) gives an explicit expression of Ft(rc).

Determination of lower and upper bounds of rc

For a particular geometry, we define lower and upper bounds for rc, denoted by [rmin,rmax].
The maximum value rmax is defined as the radius the circle inscribed between the solid
particles, i.e. the solution of Apollonius’s problem in Euclidean plane geometry. We solve
for rmax by using the algorithm of Chareyre et al. (2012).

The minimum value rmin is locally determined by the maximum distance between two
neighboring particles, which is obtained by:

rmin =
1
2

max{(a−R2−R3),(b−R1−R3),(c−R1−R2)} (7.18)

The bounds are used to initialize an iterative algorithm (dichotomy) which approximates
rc

e the value of rc which satisfies Eq.3.10. In a few cases (very flat triangles, for instance),
it can happen that the solution is out of the bounds, in which case we retain rmin to evaluate
rc

e.
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soils. Géotechnique, 40(3):405–430.

Alonso, E. E., Pereira, J.-M., Vaunat, J., and Olivella, S. (2010). A microstructurally
based effective stress for unsaturated soils. Géotechnique, 60(12):913–925.
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Khalili, N. and Loret, B. (2001). An elasto-plastic model for non-isothermal analysis of
flow and deformation in unsaturated porous media: formulation. International Journal
of Solids and Structures, 38(46):8305–8330.

Kharaghani, A., Metzger, T., and Tsotsas, E. (2011). A proposal for discrete modeling of
mechanical effects during drying, combining pore networks with dem. AIChE Journal,
57(4):872–885.

Kharaghani, A., Metzger, T., and Tsotsas, E. (2012). An irregular pore network model for
convective drying and resulting damage of particle aggregates. Chemical Engineering
Science, 75:267 – 278.

King, P. (1987). The fractal nature of viscous fingering in porous media. Journal of
Physics A: Mathematical and General, 20(8):L529.

Kohgo, Y., Nakano, M., and Miyazaki, T. (1993). Theoretical aspects of constitutive
modelling for unsaturated soils. SOILS AND FOUNDATIONS, 33(4).

129



Appendix

Koplik, J. and Lasseter, T. (1985). Two-phase flow in random network models of porous
media. Society of Petroleum Engineers Journal, 25(01):89–100.

Lenormand, R. (1990). Liquids in porous media. Journal of Physics: Condensed Matter,
2(S):SA79.

Lenormand, R. and Bories, S. (1980). Description d’un mécanisme de connexion de
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Paris.

Zhao, H. Q., Macdonald, I. F., and Kwiecien, M. J. (1994). Multi-orientation scanning:
A necessity in the identification of pore necks in porous media by 3-d computer recon-
struction from serial section data. Journal of Colloid and Interface Science, 162(2):390
– 401.

Zou, Q. and He, X. (1997). On pressure and velocity boundary conditions for the lattice
boltzmann bgk model. Physics of Fluids (1994-present), 9(6):1591–1598.

136
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Introduction Générale

La présence de deux fluides non miscibles dans un matériau granulaire déformable est
fréquente dans la nature et dans de nombreux domaines de l’ingénierie et de la science.
Pour comprendre l’évolution d’un tel système multiphase, il est nécessaire de connaı̂tre
les propriétés de chaque phase, leur distribution et leurs interactions aux interfaces.

Le mouvement des phases fluides du système (ou écoulement biphasique) inclue le
déplacement individuel de chaque fluide et le mouvement des interfaces fluide-fluide.
Dans le régime quasi-statique, le mouvement peut être au mouvement des interfaces
uniquement. Pour décrire l’écoulement dans l’espace complexe du milieux poreux, des
difficultés apparaissent. Les modèles à l’échelle des pore (pore-network) idéalisent l’espace
comme un réseau de pores séparés par des étranglements. Des critères locaux sont ensuite
définis pour conditionner les événements locaux.

Le mouvement des grains solides est déduit des lois du mouvement de Newton. Moyen-
nant des lois de contact appropriées entre grains voisins, nous pouvons obtenir la déformation
du squelette granulaire a l’échelle microscopique. La méthode des éléments discrets
(DEM) fournit un cadre pertinent pour l’intégration numérique de ce problème. Compte
tenu des effets des fluides sur chaque particule solide, nous devons formuler les forces
fluide agissant sur ces particule via la pression des fluides et la tension d’interface.

Le couplage mécanique nécessite un lien direct et explicite entre la géométrie du
réseau et les positions des grains solides. Récemment, une approche à l’échelle des pores
baptisée PFV-DEM a été considérée comme une approche efficace pour la simulation de
ces couplages dans les matériaux saturés Chareyre et al. (2012); Tong, A.T. et al. (2012);
Catalano et al. (2014); Scholtès et al. (2015). L’extension aux problèmes biphasiques est
le point clé de cette thèse.

Dans ce travail, nous proposons un modèle hydromécanique à l’échelle des pores pour
les milieux poreux partiellement saturés, appelé “ 2PFV-DEM ” (pore-scale two-phase
flow - discrete element method) modèle. Il est conçu principalement pour simuler le
drainage de matériaux granulaires déformables. Le schéma de couplage est similaire à
celui de la méthode PFV-DEM. L’évolution quasi-statique se traduit par une séquence
d’états d’équilibres successifs, dans laquelle le mouvement des interfaces est suivi. Nous
nous attachons à définir de la manière la plus fidèle possible la géométrie des phases pour
déterminer les forces engendrées par les pressions et la tension superficielle sur les grains
solides dans chaque pore.

Nous appliquons ce modèle pour étudier deux problèmes: (1) évaluer les effets de
la taille et des effets de bord avec une série de tests de drainage primaires; (2) suivre la
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Figure 7.18: Comparaison des triangulations et de leur graph dual de Voronoi en deux dimen-
sions. (a) le graphe dual de la triangulation de Delaunay contient des branches à l’intérieur
des disques; (b) le dual de la Triangulation régulière contient toutes les branches dans l’espace
poral.

contrainte effective en relation avec la saturation. Dans la dernière partie le modèle est
combiné à un modèle de pont liquide pendulaire développé indépendamment Scholtès
et al. (2009); Scholtès et al. (2009a); Chalak (2016). Les effets des ponts capillaires sont
analysés par comparaison avec le modèle 2PFV-DEM seul.

Le 2PFV-DEM modèle

Réseau de pores
La phase solide est considérée comme un arrangement dense et aléatoire de sphères poly-
disperses, généré par la méthode des éléments discrets. La représentation de l’espace poral
comme un réseau est obtenue en trois dimensions en utilisant la méthode de triangulation
régulière.

La triangulation régulière généralise la triangulation de Delaunay classique aux points
pondérés, ou le poids représente la taille de chaque sphèreEdelsbrunner and Shah (1996).
Cette triangulation est appropriée pour décrire le chemin d’écoulement dans l’espace des
pores, par opposition aux graph Delaunay/Voronoı̈ classiques (voir Fig.7.18). Des ex-
emples typiques sont présentés sur la Fig.7.19. Un pore est défini comme l’espace poral
entouré de quatre sphères solides, dont les centres sont les sommets du tétraèdre corre-
spondant. Le volume du pore correspond à la cavité irrégulière à l’intérieur du tétraèdre
(voir Fig.7.20 (a)). L’étranglement entre deux pores (ou “gorge”) correspond à la surface
contenue dans une facette tétraédrique (Fig.7.20 (b)).

Phases fluides
Règles de drainage

Nous supposons un régime quasi-statique et un mouillage parfait de la phase solide par
la phase de mouillage (phase W). Nous représentons le réseau en 3D, en utilisant une

138
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Figure 7.19: Triangulation régulière en trois dimensions (a) et en deux dimensions (b).

Figure 7.20: Géométrie des pores. (a) un pore tétrahédrique. (b) un étranglement. rc est
la courbure de l’interface; Lnw longeur de la ligne de contact entre phases NW et W; Lns

longueur de la ligne de contact NW-S. Le f f = ∑(Lnw +Lns) où Le f f est le perimetre effectif
de l’étranglement. Ae f f est l’aire d’entrée effective.
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Figure 7.21: Illustration des conditions aux limites, l’invasion de la phase NW et le piégage
de la phase W.

cartographie de réseau en 2D dans un soucis de clareté (voir Fig.7.21). Les pores et les
gorges sont représentés par des carrés et des connexions linéaires respectivement. Dans
un premier temps, l’échantillon est totalement saturé. Nous supposons que les limites
supérieures et inférieures sont connectées à des réservoirs NW et W, respectivement. Le
drainage commence en diminuant la pression de la phase W pw tandis que la pression pn

du réservoir NW est maintenue constante. Dès qu’un pore est envahi, la phase NW atteint
de nouveaux point d’étranglement, déclenchant éventuellement une cascade récursive de
“sauts de Haines”, et envahissant plus d’un pore pour une seule valeur de pw appliquée,
jusqu’à ce qu’il n’y ait plus aucune gorge satisfaisant pc

e < pc accessible à la phase NW.
Sur de courtes périodes de temps, nous supposons que la phase W peut être déconnectée

de son réservoir. Nous qualifions ce mode de drainage, le drainage “with-trap”. Alterna-
tivement, un drainage “no-trap” peut être supposé pour refléter l’évolution de long terme.
Dans le modèle, nous pouvons décider si les pores prôches de la limite latérale devraient
être disponibles pour l’invasion, ou tout simplement ignorées comme ne participant pas
au système. Nous appelons ces deux hypothèses “open boundary” et “closed-boundary”,
respectivement.

Détermination de la pression capillaire d’entrée

Nous proposons de déterminer pc
e basée sur la méthode MS-P (Mayer-Stowe-Princen),

qui emploie l’équilibre des forces sur l’interface NW-WMayer and Stowe (1965); Princen
(1969)

∑F(pc) = Fc(pc)+Ft(pc) = 0 (7.19)

où Fc est la pression capillaire agissant sur l’interface et F t est la force totale de tension
superficielle sur son contour. pc

e est la valeur de pc telle que ∑F(pc) = 0. Sous une
hypothèse de mouillage parfait cet équilibre conduit à

Ft
i j =

∫
∂ wΦi∩Θ j∩Si j

γ
nw ndl +

∫
∂ sΦi∩Θ j∩Si j

γ
nw ndl = Le f f

i j γ
nw n (7.20)
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Figure 7.22: (a) Construction d’un sous-domaine Ωi j, les pores de Ωi sont occupés par la
phase NW (Φi), le pore de Ω j est occupé par la phase W(Θ j); (b) La pression du fluide à deux
phases et la tension interfaciale sur la phase S. (En 2D pour la clarté).

dans laquelle, Le f f
i j est la longueur totale des lignes de contact. Tous les termes de Eq.7.20

peuvent être exprimés en fonction de rc, comme le suit,

∑F(rc) = Fc(rc)+Ft(rc) = 0 (7.21)

La résolution de l’équation numérique donne rc
e. À son tour, pc

e peut être déterminée.

Les phases solides

La force totale Fk induit sur la particule k par la présence des fluides comprend les effets
des pressions de fluides p et des tensions interfaciales S-NW-W γ ,

Fk =
∫

∂Γk

pnds+
∫

∂Φ∩Θ∩Γk

γ ndl = Fc,k +Ft,k (7.22)

Nous supposons qu’un pore ne peut être remplie que par une seule phase fluide. En
considérant les pores incidents à une particule k (voir Fig.3.5),

Fc,k
i =

∫
∂Γk∩Ωi

pi nds =


∫

∂Γk∩Φi

pn
i nds : if Ωi is occupied by NW-phase (i.e., pi = pn

i )∫
∂Γk∩Θi

pw
i nds : if Ωi is occupied by W-phase (i.e., pi = pw

i )

(7.23)
La force totale de tension F t

i j s’appliquant sur la phase solide dans le domaine Ωi j

s’exerce sur trois sphères différentes, et devra être divisée plus tard en trois termes. F t
i j est

défini comme le suit:

Ft
i j =

∫
∂Φi∩Θ j∩Si j

γ ndl, (7.24)
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résultat obtenu à partir de Eq.7.20 lors du calcul de pc
e. La force de tension interfaciale

sur la phase S dépends des longueurs des lignes de contact NW-W-S:

Ft∗
i j =

∫
∂ sΦi∩Θ j

γ
nw ndl (7.25)

d’où
∑Fi j = Fc∗

i j +Ft∗
i j = 0 (7.26)

où les Fc∗
i j sont les effets des pressions de phases.

Fc∗
i j =

∫
∂Φi∩Θ j

(pn− pw)nds' A f
i j(pn− pw)n (7.27)

dans lequel, A f
i j est l’aire de la gorge dans la facette Si j. La combinaison de Eq.7.25-7.27

donne la force de traction totale

Ft∗
i j =−A f

i j(pn− pw)n (7.28)

La force sur la sphère k s’écrit donc

Ft∗,k
i j = Ft∗

i j
δ k

i j

∑
3
k=1 δ k

i j
(7.29)

Enfin, la force totale sur une particule est obtenue en additionnant les forces de tension
interfaciales et de pression de toutes les facettes incidentes suivant

Fk = ∑
(i j)incident

{Fc,k
i +Ft∗,k

i j } (7.30)

Mise en œuvre
Le modèle 2PFV-DEM a été implémenté dans la plate-forme Yade. La génération du
réseau par triangulation régulière a été implémentée en C ++ et utilise la librairie CGAL-
Boissonnat et al. (2000).

Simulations numériques

Comparaison des courbes de rétention d’eau avec des essais corre-
spondants
Configuration de simulation

On vérifie le modèle en comparant les résultats de la simulation avec des données expérimentales,
provenant d’un essai de drainage en régime quasi-statique, dans un milieu poreux synthétique
Culligan et al. (2004). Une boı̂te cubique de taille 5.0 mm×6.0 mm×5.0 mm est définie,
dans laquelle 400 sphères sont placées. La distribution de taille (PSD - voir Tab.7.1) et la
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Weight(%) Diameter(mm)
30 1-1.4
35 0.850
35 0.600

Table 7.1: Distribution de la taille des particules de l’expérience.

porosité sont définies comme dans l’essai. Pour plus de généralité, les données de l’essai
et des simulations sont tous proposées sous la forme sans dimension, dans laquelle Pc est
normalisée par

pc =
pcD
γnw (7.31)

dans lequel, pc est appelée pression capillaire normalisée, γnw est la tension interfaciale
NW-W et D est la taille moyenne des sphères.

Résultats

Nous calculons le drainage primaire pour 100 arrangement aléatoires ayant la même PSD
et la même porosité. Fig.7.23 présente les résultats, dans lesquels nous recueillons tous
les points (pc,sw) épars de chaque simulation pour les superposer sur un même graph.
Comme le montre la Fig.7.23, les courbes pc− sw montrent un accord assez bon avec
l’expérience. Les données expérimentales sont dans la gamme de fluctuation des simula-
tions.

Nous observons la géométrie du processus d’invasion par des sections d’échantillon
dans la Fig.7.24. La comparaison des tranches (b) et (c) montre que dans certaines cir-
constances, même une très faible variation de la pression capillaire peut provoquer un
déplacement significatif des interfaces. La tranche.(d) indique la fin de la simulation,
où une saturation résiduelle est obtenue. Le champs de pression du fluide résiduel est
représenté sur la Fig.7.25.

Conclusions
L’objectif principal de cette thèse est de fournir une méthodologie numérique efficace pour
reproduire les comportements hydrauliques et mécaniques des matériaux partiellement
saturés. Nous nous sommes concentré sur une approche couplée à l’échelle des pores,
dans laquelle une technique de décomposition spatiale et la méthode des éléments discrets
(DEM) ont été combinées pour les fluides et les grains solides respectivement. Un lien
explicite a été établi entre la géométrie de l’espace poral et la position des grains.

Le modèle a été spécialement établi afin de simuler l’évolution quasi-statique des
phases lors du drainage. Sous conditions oedométriques, une série d’essais de drainage
primaire a été simulée. Les données expérimentales de référence (courbes de rétention
d’eau) sont prédites de manière satisfaisante.

Nous avons appliqué le modèle 2PFV-DEM pour aborder trois questions liées aux
couplages hydromécaniques (voir développements dans le corps de la thèse):
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Figure 7.23: Comparaison entre la simulation et l’expérience pour les courbes de drainage
primaire pc− sw (100 simulations superposées).

• Les effets de taille et les effets de bord: les résultats montrent que l’écart-type de la
saturation suit une loi simple de la réduction de variance avec l’augmentation de la
taille de l’échantillon. L’écart-type ne devrait pas être le seul critère pour évaluer la
représentativité; la taille de l’échantillon peut aussi être la cause de biais importants
sur les moyennes moyen. Nous avons constaté que au moins 20,000 sphères doivent
être utilisées afin de réduire le biais à moins de 0.02 en terme de saturation.

• Le paramètre de contrainte effective de Bishop χ: χ est exprimé selon des points de
vue macroscopique et microscopique. Les résultats montrent que les deux grandeurs
sont assez semblables. Nous concluons que la contrainte micromécanique de con-
tact peut être considérée comme l’analogue à micro-échelle de la contrainte effec-
tive macroscopique.

• En outre, le régime 2PFV-DEM a été étendu pour inclure les ponts liquides du
régime pendulaire et évaluer leur contribution. Bien que les ponts pendulaires con-
tribuent faiblement au volume total de fluide, ils contribuent de manière significative
à la déformation du squelette granulaire.

144
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Figure 7.24: Processus de drainage (400 particules), la phase NW envahie par le haut. Brown
(gris) est la phase solide, celle bleue (noir) est la phase W, et celle cyan claire (blanc) est la
phase NW.
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Figure 7.25: Distribution de la pression capillaire en mode de drainage ”avec-trap”. Le cercle
de Brown est en phase solide, la région en couleur claire signifie la pression pn en phase NW,
les régions en couleur sombres sont des pressions W en phase pw.
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