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Summary

This thesis explores the last evolutions on image denoising, and attempts to set a new and
more coherent background regarding the different techniques involved. In consequence, it
also presents a new image denoising algorithm with minimal artifacts and the best PSNR
performance known so far.

A first result that is presented is DA3D, a frequency-based guided denoising algorithm
inspired form DDID [Knaus-Zwicker 2013]. This algorithm achieves good results not only
in terms of PSNR, but also (and especially) with respect to visual quality. DA3D works
particularly well on enhancing the textures of the images and removing staircasing effects.
DA3D works on top of another denoising algorithm, that is used as a guide, and almost
always improve its results. In this way, frequency-based denoising can be applied on top of
patch-based denoising algorithms, resulting on a hybrid method that keeps the strengths of
both. The experiments demonstrate that, contarily to what was thought, frequency-based
denoising can beat state-of-the-art algorithms without presenting artifacts. In this work
DA3D is presented, and ad-hoc shrinkage curves are computed depending on the algorithm
used as guide.

The second result presented is Multi-Scale Denoising, a multiscale framework applica-
ble to any denoising algorithm. A qualitative analysis shows that current denoising algo-
rithms behave better on high-frequency noise. This is due to the relatively small size of
patches and search windows used in these single scale algorithms. Instead of enlarging
those windows, that can cause other sorts of problems, the work proposes to decompose
the image on a pyramid, with the aid of the Discrete Cosine Transformation. We introduce
a new reconstruction scheme in the pyramid avoiding the appearance of ringing artifacts.
This method removes most of the low-frequency noise, and improves both PSNR and visual
results for smooth and textured areas.

A third main issue addressed in this thesis is the evaluation of denoising algorithms.
Experiences indicate that the PSNR is not always a good indicator of visual quality for de-
noising algorithms, since, for example, an artifact on a smooth area can be more noticeable
than a subtle alteration in a texture. A new metric is proposed to improve on this matter. In-
stead of a single value, a “Smooth PNSR” and a “Texture PSNR” are presented, to measure
the result of an algorithm for those two types of image regions. We claim that a denoising
algorithm, in order to be considered acceptable, must at least perform well with respect to
both metrics. Following this claim, an analysis of current algorithms is performed, and it is
compared with the combined results of the Multi-Scale Framework and DA3D. We found
that the optimal solution for image denoising is the application of a frequency shrinkage,
applied to regular regions only, while a multiscale patch based method serves as guide.
This seems to resolve a long standing question for which DDID gave the first clue: what is
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the respective role of frequency shrinkage and self-similarity based methods for image de-
noising? We describe an image denoising algorithm that seems to perform better in quality
and PSNR than any other based on the right combination of both denoising principles.

In our last contribution, a study on the feasibility of external denoising is carried out,
where images are denoised by means of a big database of external noiseless patches. This
follows a work of Levin and Nadler, in 2011, that claims that optimal Bayesian patch de-
noising is reachable by a simple integral formula provided it is applied to a gigantic and
representative patch database. We prove by a mathematical argument combined with em-
pirical observations on the space of patches that this space can be factorized, thereby re-
ducing considerably the number of patches needed in order to compute the integral on the
space of patches.



Résumé

Cette these explore les dernieres évolutions du débruitage d’images, et elle essaie de dé-
velopper une vision synthétique des techniques utilisées jusqu’a présent. Elle aboutit & un
nouvel algorithme de débruitage d’image évitant les artefacts et avec un meilleur PSNR que
tous les algorithmes que nous avons pu évaluer.

La premiere méthode que nous présentons est DA3D, un algorithme de débruitage fré-
quentiel avec guide, inspiré de DDID [Knaus-Zwicker 2013]. La surprise de cet algorithme,
c’est que le débruitage fréquentiel peut battre 1'état de 'art sans produire artefacts. Cet
algorithme produit des bons résultats non seulement en PSNR, mais aussi (et surtout) en
qualité visuelle. DA3D marche particulierement bien pour améliorer les textures des images
et pour enlever les effets de staircasing. DA3D, guidé par un autre algorithme de débruitage
améliore presque toujours le résultat de son guide. L’amélioration est particuliérement nette
quand le guide est un algorithme a patchs, et alors on combine deux principes différents :
auto-similarité suivi de seuillage fréquentiel.

Le deuxieme résultat présenté est une méthode universelle de débruitage multi-échelle,
applicable a tout algorithme. Une analyse qualitative montre en effet que les algorithmes
de débruitage a patchs éliminent surtout les hautes fréquences du bruit, a cause de la
taille limitée des voisinages traités. Plutot que d’agrandir ces voisinages nous décomposons
I'image en une pyramide basée sur la transformée en cosinus discrete, avec une méthode de
recomposition évitant le ringing. Cette méthode traite le bruit a basse fréquence, et améliore
la qualité de I'image.

Le troisiéme probléme sérieux que nous abordons est ’évaluation des algorithmes de
débruitage. Il est bien connu que le PSNR n’est pas un indice suffisant de qualité. Un artefact
sur une zone lisse de 'image est bien plus visible qu'une altération en zone texturée. Nous
proposons une nouvelle métrique basée sur un Smooth PSNR et un Texture PSNR, pour
mesurer les résultats d’un algorithme sur ces deux types des régions. Il apparait qu'un
algorithme de débruitage, pour étre considéré acceptable, doit avoir des bons résultats pour
les deux métriques. Ces métriques sont finalement utilisées pour comparer les algorithmes
de l'état de I'art avec notre algorithme final, qui combine les bénéfices du multi-échelle et
du filtrage fréquentiel guidé.

Les résultats étant tres positifs, nous espérons que la these contribue a résoudre un vieux
dilemme, pour lequel la méthode DDID avait apporté de précieuses indications : comment
choisir entre le seuillage fréquentiel et les méthodes basées sur 1’auto-similarité pour le
débruitage d’images? La réponse est qu’il ne faut pas choisir.

Cette these termine avec quelques perspectives sur la faisabilité du débruitage “exter-
ne”. Son principe est de débruiter un patch en utilisant une grande base de données externe
de patches sans bruit. Un principe bayésien démontré par Levin et Nadler en 2011 implique
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que le meilleur résultat possible serait atteint avec cette méthode, a condition d’utiliser tous
les patches observables. Nous donnons les arguments mathématiques prouvant que l'es-
pace des patches peut étre factorisé, ce qui permet de réduire la base de données de patches
utilisés d"un facteur au moins 1000.
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Chapter 0

Introduction

This thesis explores the last evolutions on image denoising, and attempts to set a new and
more coherent background regarding the different techniques involved. In consequence, it
also presents a new image denoising algorithm with minimal artifacts and the best PSNR
performance known so far.

A first result that is presented is DA3D, a frequency-based guided denoising algorithm
inspired form DDID [Knaus-Zwicker 2013]. This algorithm achieves good results not only
in terms of PSNR, but also (and especially) with respect to visual quality. DA3D works
particularly well on enhancing the textures of the images and removing staircasing effects.
DA3D works on top of another denoising algorithm, that is used as a guide, and almost
always improve its results. In this way, frequency-based denoising can be applied on top of
patch-based denoising algorithms, resulting on a hybrid method that keeps the strengths of
both. The experiments demonstrate that, contarily to what was thought, frequency-based
denoising can beat state-of-the-art algorithms without presenting artifacts. In this work
DA3D is presented, and ad-hoc shrinkage curves are computed depending on the algorithm
used as guide.

The second result presented is Multi-Scale Denoising, a multiscale framework applica-
ble to any denoising algorithm. A qualitative analysis shows that current denoising algo-
rithms behave better on high-frequency noise. This is due to the relatively small size of
patches and search windows used in these single scale algorithms. Instead of enlarging
those windows, that can cause other sorts of problems, the work proposes to decompose
the image on a pyramid, with the aid of the Discrete Cosine Transformation. We introduce
a new reconstruction scheme in the pyramid avoiding the appearance of ringing artifacts.
This method removes most of the low-frequency noise, and improves both PSNR and visual
results for smooth and textured areas.

A third main issue addressed in this thesis is the evaluation of denoising algorithms.
Experiences indicate that the PSNR is not always a good indicator of visual quality for de-
noising algorithms, since, for example, an artifact on a smooth area can be more noticeable
than a subtle alteration in a texture. A new metric is proposed to improve on this matter. In-
stead of a single value, a “Smooth PNSR” and a “Texture PSNR” are presented, to measure
the result of an algorithm for those two types of image regions. We claim that a denoising
algorithm, in order to be considered acceptable, must at least perform well with respect to
both metrics. Following this claim, an analysis of current algorithms is performed, and it is
compared with the combined results of the Multi-Scale Framework and DA3D. We found
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Chapter 0. Introduction

that the optimal solution for image denoising is the application of a frequency shrinkage,
applied to regular regions only, while a multiscale patch based method serves as guide.
This seems to resolve a long standing question for which DDID gave the first clue: what is
the respective role of frequency shrinkage and self-similarity based methods for image de-
noising? We describe an image denoising algorithm that seems to perform better in quality
and PSNR than any other based on the right combination of both denoising principles.

In our last contribution, a study on the feasibility of external denoising is carried out,
where images are denoised by means of a big database of external noiseless patches. This
follows a work of Levin and Nadler, in 2011, that claims that optimal Bayesian patch de-
noising is reachable by a simple integral formula provided it is applied to a gigantic and
representative patch database. We prove by a mathematical argument combined with em-
pirical observations on the space of patches that this space can be factorized, thereby re-
ducing considerably the number of patches needed in order to compute the integral on the
space of patches.

Finally, secondary results are presented. A brief study of how to apply denoising algo-
rithms on real RAW images is performed. An improved, better performing version of the
Non-Local Bayes algorithm is presented, together with a two-step version of DCT Denois-
ing. The latter is interesting for its extreme simplicity and for its speed.

In this introduction we give a brief overview of the chapters of this work.

0.1 Chapter 1: DA3D and the Dual Domain Methods

Image denoising is one of the fundamental image restoration challenges [40]. It consists
in estimating an unknown noiseless image y from a noisy observation x. We consider the
classic image degradation model

y =x+n, )

where the observation y of the image x is contaminated by an additive white Gaussian
noise n of variance 0.

All denoising methods assume some underlying image regularity. Depending on this
assumption they can be divided, among others, into transform-domain and spatial-domain
methods.

Transform domain methods work by shrinking (or thresholding) the coefficients of some
transform domain [18,34,51]. The Wiener filter [60] is one of the first such methods operat-
ing on the Fourier transform. Donoho et al. [11] extended it to the wavelet domain.

Space-domain methods traditionally use a local notion of regularity with edge-preserving
algorithms such as total variation [49], anisotropic diffusion [41], or the bilateral filter [56].
Nowadays however spatial-domain methods achieve remarkable results by exploiting the
self-similarities of the image [2]. These patch-based methods are non-local as they denoise
by averaging similar patches in the image. Patch-based denoising has developed into at-
tempts to model the patch space of an image, or of a set of images. These techniques model
the patch as sparse representations on dictionaries [10, 14, 35, 36, 64], using Gaussian Scale
Mixtures models [45,46, 67], or with non-parametric approaches by sampling from a huge
database of patches [32,33,39,43].

Current state-of-the-art denoising methods such as BM3D [7] and NL-Bayes [27] take
advantage of both space- and transform-domain approaches. They group similar image
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0.1. Chapter 1: DA3D and the Dual Domain Methods

Figure 1 — lllustration of DDID’s preprocessing of a patch. The kernel k is computed using the guide
g. In the modified patch y,, all object discontinuities have been removed, leaving only the texture
information corresponding to the object selected by the kernel k. The removed pixels are replaced
by the average of the meaningful portion of the patch.

patches and jointly denoise them by collaborative filtering on a transformed domain. In
addition, they proceed by applying two slightly different denoising stages, the second stage
using the output of the first one as its guide.

Some recently proposed methods use the result of a different algorithm as their guide
for a new denoising step. Combining for instance, nonlocal principles with spectral decom-
position [55], or BM3D with neural networks [5]. This allows one to mix different denois-
ing principles, thus yielding high quality results. DDID [22] is an iterative algorithm that
uses a guide image (from a previous iteration) to determine spatially uniform regions to
which Fourier shrinkage could be applied without introducing ringing artifacts. Several
methods [21,23,42] use a single step of DDID with a guide image produced by a different
algorithm. This yields much better results than the original DDID. The reason for their suc-
cess is the use of large (31 x 31) and shape-adaptive patches. Indeed, the Fourier shrinkage
works better on large stationary blocks.

Unfortunately, DDID has a prohibitive computational cost, as it paradoxically denoises
a large patch to recover a single pixel. Moreover, contrary to other methods, aggregation
of these patches doesn’t improve the results since it introduces blur. We show in this paper
that these two problems can be solved by introducing a new patch selection, accompanied
by a weighted aggregation strategy.

Our first chapter presents DA3D (Data Adaptive Dual Domain Denoising), a new “last
step” denoising method that performs frequency domain shrinkage on shape-adaptive and
data-adaptive patches. DA3D consistently improves the results of state-of-the-art methods
such as BM3D or NL-Bayes with little additional computation time.

Our second contribution in DA3D further improves the quality of the results by adapt-
ing the processing to the underlying data. The apparition of the staircasing is well known
for non-local methods [3]. To mitigate the influence of such artifacts present in the guide im-
age, we use a first order non-linear local kernel regression [53,54] to estimate, for each patch,
an affine approximation of the image coherent with the data within the patch. The denois-
ing is then performed with respect to this approximation. This data-adaptive approach
is another innovation enabled by the use of large patches, and it noticeably improves the
quality of the results on smooth regions of the image.

Section 1.4 recalls the DDID post-process and develops an explanation of its efficiency,
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Chapter 0. Introduction

Method | =5 | 0=10 | 0=25 | 0=40 | 0 =80
39.55 | 36.01 | 31.79 | 29.23 | 26.83
BM3D | 39.59 | 36.23 | 32.15 | 29.95 | 27.00
+0.05 | +0.22 | +0.36 | +0.72 | +0.16
39.20 | 3591 | 31.88 | 29.75 | 26.41
DDID | 39.11 | 35.87 | 31.99 | 29.98 | 26.85
-0.09 | -0.04 | +0.11 | +0.23 | +0.43
39.77 | 36.09 | 31.71 | 29.35 | 26.64
NLB 39.67 | 36.26 | 32.18 | 30.09 | 26.74
-0.10 | +0.16 | +0.47 | +0.74 | +0.11
39.26 | 3590 | 3198 | 29.90 | 26.60
NLDD | 39.17 | 35.87 | 31.99 | 29.97 | 26.63
-0.09 | -0.04 | +0.02 | +0.07 | +0.03
39.03 | 35.81 | 32.05 | 30.10 | 27.00
PID 38.99 | 35.80 | 32.03 | 30.02 | 26.83
-0.04 | -0.02 -0.02 -0.08 -0.17

Table 1 — Average PSNR comparison between state-of-the-art methods for color images. The first
line of each row shows the average PSNR obtained by denoising the test images. The second line
shows the average PSNR of DA3D using the corresponding denoising algorithm to generate the
guide. The third line shows the average improvement due to DA3D. The best result for each noise
level is shown in bold, and the ones within a range of 0.2 dB are shown in gray.

illustrated in Figure 1, where it becomes apparent that the method manages to denoise
separately each texture patch, while avoiding th einterference of edges and other neigh-
boring textures. Sections 1.5 and 1.6 present the DA3D algorithm, first describing the pro-
posed sparse aggregation, then the data-adaptive patches. The performance of DA3D is
extensively validated in the experiments of section 1.7, where it becomes apparent that it
improves significantly the result of most denoising algorithms, as shown in Table 1.

0.2 Chapter 2: A Multi-Scale Denoising Framework

In Chapter 1, we provided a new view on frequency transform thresholding, showing that
it could perform excellently as the last step of any patch based denoising algorithm. In
Chapter 2 we address another question left untreated by most state of the art denoising al-
gorithms. We observed that most of them limit their action to a limited pixel neighborhood.
This clearly means that low frequency noise remains untreated, as made clear in Figure 2.
This is a drawback that yields very visible artifacts in flat areas, as we shall check in the
experimental part of this chapter, and in our experimental study of Chapter 3. Thus, in
this chapter we provide a new perspective of another principle: the multi-scale represen-
tation. This principle has already been explored in [4,15]. Even though the results were
only partially satisfying, the ideas presented are simple and promising. The main problem
with their approach is that in higher scales, the noise becomes correlated, thus reducing the
performance of standard algorithms. Another work that tries to use a multi-scale model
is [47]. The difference with our work is that [47] does not use classical denoising algorithm
in the process and that it does not avoid artifacts in the recomposition.
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0.2. Chapter 2: A Multi-Scale Denoising Framework

Single scale Multiscale
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Figure 2 — DCT transform of the result of various denoising algorithms applied to an image of pure
white noise, with and without the Multi-Scale Framework. Notice that there is still noise remaining in
the upper left corner of the Single Scale version, that contains the low frequencies of the image. In
the Multi-Scale version, the residual noise is much more uniform across frequencies.
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Chapter 0. Introduction

Noise Best single-scale Best multi-scale Gain
o =10 | 38.59dB BM3D 38.71dB NLB +0.12dB
oc=20 | 3497dB  BM3D | 35.09dB NLB +0.12dB
oc=30 | 32.87dB  BM3D | 33.07dB NLB +0.20dB
oc=40 | 31.37dB  BM3D | 31.65dB NLB +0.28dB
o =50 | 30.30dB NLBIPOL | 30.61dB NLB +0.31dB
o=60 | 29.32dB NLBIPOL | 29.75dB NLB +0.43dB
o =70 | 28.65dB BM3D 29.02dB NLB +0.37dB
oc=380 | 2797dB  BM3D | 28.40dB NLB +0.43dB
o =90 | 27.30dB BM3D 27.86dB NLB +0.56dB
o =100 | 26.75dB NLBIPOL | 27.46dB NLBIPOL | +0.71dB

Table 2 — Results with the best settings for every algorithm. The results are an average over the
images of Figure 2.10.

The multi-scale representation is also intrinsically present in wavelet-based denoising
algorithms [11, 18,34, 45]. It is also present in [52], where the KSVD algorithm is applied
on a wavelet decomposition of the image. The improvement over a single scale KSVD is
important, especially for high PSNR, but since the wavelet decomposition does not allow
for a conservative recomposition, the authors need what they call a fusion strategy, in order
to reduce the artifacts.

Denoising a multi-scale pyramid is a way to process more information to reach a better
result. Other efforts have been made to provide more input to denoising algorithm. In
particular, it is worth citing [5, 65], that try to improve the results of a denoising algorithm
by using an external database of similar images.

In Chapter 2 we present a new multi-scale framework that can be applied to any other
existing denoising algorithm, consistently improving its results (see Table 2). The frame-
work uses a simple DCT pyramid, and is not computationally demanding.

Simply using the DCT pyramid may lead to ringing artifacts. We solve this issue by
introducing what we call conservative recomposition, which allows to keep the advantages of
the pyramid while avoiding its problems.

The result is a way of transforming any denoising algorithm into a multi-scale one, with
improvements both in visual quality and PSNR, and with little additional cost.

0.3 Chapter 3: Quality Criteria for Image Denoising

Usually the performance of denoising algorithms is measured in terms of PSNR. Another
famous quality index is the SSIM [58]. Unfortunately, neither of the two methods is closely
correlated with the visual quality, since they are not sensitive enough to artifacts.

Different denoising algorithms behave differently on textures and flat areas of images.
Measuring the PSNR of the result may be misleading, since an algorithm can provide a
good result on the former and a bad one on the latter, or vice versa. Therefore, we propose
to decouple the quality measure of a result in two values: the flat PSNR (or fPSNR) and
the texture PSNR (or tPSNR), using a smoothness map (Figure 3) to discriminate flat and
textured regions of an image.
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Figure 3 — Example of smoothness map.
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[on-LoclaI Bayes] |

R

(Non-Local Bayes] ~ (Non-Local Bayes]|

[Multiscale recomposition]

Figure 4 — Scheme of the da3d_ms denoising method that combines Non-Local Bayes, DA3D and
the Multi-Scale Framework. The values for the multiscale recompositions are the one used for Non-
Local Bayes in Chapter 2 (0.5 for o = 10 and ¢ = 20, 0.6 for ¢ = 40 and 0.7 for ¢ = 70). DA3D
is applied using the result of Non-Local Bayes as guide only on the finer scale. Applying DA3D to
coarser scale degrades the results due to the presence of ringing in the DCT pyramid.
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We applied the metrics discussed in this chapter to the results of the most common
denoising algorithms.

Both Chapter 1 and Chapter 2 present a method to improve the result of other denoising
algorithms. In this section, we present two different ways to combine both of them, in order
to get a better performing denoising algorithm.

Since both DA3D and the Multiscale framework need a “baseline” algorithm to work,
we chose to focus on Non-Local Bayes [27] and BM3D [7]. The first algorithm is particularly
suited for both DA3D and the Multiscale framework, since it has relatively few artifacts and
a smooth result, while we decided to included the second to offer a fair comparison with
what is still considered the state-of-the-art.

In order to combine DA3D and the Multiscale framework, there are fundamentally two
possibilities: apply DA3D first, or apply the Multiscale framework first. We present them
both. Figure 4 gives the diagram of the winning combination.

0.4 Chapter 4: External Denoising

A recent seminal paper on the absolute bounds of image denoising [32] proposes a patch
denoising method effectively realizing the minimal mean square error, given all the known
image patches. It is extremely important to reach these absolute limits, but they require
processing a limitless database. In the above mentioned paper this database had 10 billion
patches. In this paper we demonstrate that by factorizing the patch space the method can
be sped up by a factor of more than a thousand, while maintaining the theoretical claim
that the method is optimal. Using the method on real images demonstrates its potential to
beat the state of the art, as it performs better on difficult patches.

By “Shotgun” patch denoising methods, we mean methods that intend to denoise patches
by a fully non-local algorithm, in which the patch is compared to a patch model obtained
from a very large patch set, assuming they represent “all possible natural image patches”.

For example, Zoran and Weiss [67] introduced the EPLL algorithm, in which they learn
the patch space distribution from a mixture of Gaussians trained with 2 x 10° patches. Then,
they use this model as a prior for denoising patches by trying to maximize the Expected Patch
Log Likelihood, instead of denoising each patch separately. To do this, they minimize a cost
function using an optimization method called “Half Quadratic Splitting” [48]. Zontak and
Irani [66] analyzed the denoising performance using patches extracted from the same im-
age, or what they call internal patch searches, against extracting “external” patches from a
huge database. They concluded that similar patches tend to recur much more frequently in-
side the same image than in any random external collection of natural images. Furthermore,
internal patch redundancy rapidly decays with the growth of the spatial distance from the
patch, and its gradient content. Finally, they observed that finding an equally good exter-
nal representative patch for every patch of an image, requires a huge external database,
which makes the denoising problem computationally intractable. Lee et al. [31] used the
Bayesian framework to derive an MMSE non-local image denoising algorithm, that uses
both internal image patches as well as an external codebook with noiseless patches. They
perform denoising by normalizing the patch-space by the mean, an idea which will be fur-
ther exploited here. Several “shotgun” methods have been recently applied in other image
processing tasks, such as scene completion [19] (using 2.3 million images), or scene recog-
nition [57] (using 80 million 32 x 32 patches).
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(a) Image 1 (b) Image 2

(c) NSD (d) NSD

(e) BM3D (f) BM3D

(9) NL-Bayes (h) NL-Bayes

Figure 5 — Results and comparison of denoising methods (PSNR values in parenthesis).
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DB Size | Shotgun method | NSD
10000 23.47 dB 26.79 dB
100000 25.92 dB 27.32dB

4000000 27.66 dB 28.06 dB

Table 3 — Average PSNR obtained after denoising 3500 patches with a fixed Database size.

Let us now turn on the search for absolute bounds for the image denoising. The Cramer-
Rao type lower bounds on the attainable RMSE performance given by Chaterjee and Mi-
lanfar [6] are optimistic: they allow for the possibility of a significant increase in denoising
performance for a wide class of images at certain SNRs, in particular, for synthetic piece-
wise constant images. Yet, a recent paper by A. Levin and B. Nadler [32] provides a second
answer to the question of absolute limits raised by [6]. This seminal paper uses a shotgun
denoising method to approach the bounds, which is loosely based on the NL-means algo-
rithm, with adequate parameters to account for a Bayesian linear minimum mean square
estimation (LMMSE) of the noisy patch given a database of 10'° noiseless patches. The
only and important difference is that similar patches are searched on a database of patches,
instead of on the image itself. Furthermore, by a simple mathematical argument and inten-
sive simulations on the patch space, the authors are able to estimate the best average estima-
tion error attainable by any patch-based denoising algorithm (to be more specific, it is the best
average estimation error knowing a single patch and all the observed; but most denoising
algorithms actually also use the knowledge of overlapping patches in the image to denoise
it). After performing experimentation, and comparing them with state-of-the-art denois-
ing algorithms, they conclude that results might be within 0.1dB of the optimal possible
denoising method, at least when using small patch sizes or under big amounts of noise,
therefore leaving no further room for improvement. They propose increasing the support
size to obtain better PSNR values. Yet, due to the curse of dimensionality, non-parametric
techniques won't be able to find good similar patches. This leads the authors to give up a
shotgun method, and to switch again to parametric approaches. However, a limitation of
this work is that computational constraints restricted the experimentation to small patches.
Hence real bounds independent of patch size are still unknown.

In [33], the same authors study the dependence of denoising error on patch size. Sim-
ilarly to Zontak and Irani [66], they conclude that when increasing window size, patches
with more detail require a significantly larger database, and that the gain from doing so is
very small. At the same time, the opposite happens with smoother patches: increasing the
window size is much more rewarded in the final denoising performance. This leads them to
propose an adaptive strategy using variable window sizes depending on local patch com-
plexity. Finally, they again explore the fundamental limits of denoising, with an infinite
window size and assuming a perfect natural image prior. To do this, they use a simplified
dead leaves image formation model and combine it with a scale invariance assumption for
natural images, which implies a power-law convergence. Using this power-law to model
the PSNR with respect to the window size, they fit the model and extrapolate its result to
obtain optimal denoising bounds. They conclude that there is still some room for improve-
ment (around 1dB).

In Chapter 4, we stick to the first shotgun approach [32] and intend to render it feasible
by accelerating considerably the computation of their Monte Carlo integral. The proposed
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algorithm attains similar results using less computational resources and in shorter time. To
achieve this, a smaller probability space is used by factorizing the space of patches. This
allows to work with entire equivalence classes of patches instead of single patches, thus
permitting a significant decrease of the number of needed computations and a reduction of
the required memory. Following this, a comparison is made between our algorithm and two
state-of-the-art methods, the BM3D algorithm [7,26] and the Non Local Bayes method [27]
showing how our method outperforms both for the task of denoising complex patches.

0.5 Publications related to this thesis

e Nicola Pierazzo and Martin Rais. Boosting Shotgun Denoising By Patch Normaliza-
tion. IEEE International Conference on Image Processing (ICIP), 2013.
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and Data Adaptive Dual Domain Denoising. IEEE International Conference on Image
Processing (ICIP), 2015.
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main Methods for Image Denoising. To be submitted.

e Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo. Combining Dual Domain
and Multiscale Methods for Image Denoising. To be submitted.

e Nicola Pierazzo. Multi-Scale DCT Denoising. Image Processing On Line (IPOL), To be
submitted.

22



Chapitre 0

Introduction en Francais

Cette these explore les dernieres évolutions sur le débruitage d’images, et tente d’établir un
fond nouveau et plus cohérent concernant les différentes techniques impliquées. En consé-
quence, il présente également un nouvel algorithme de débruitage d’image avec des arte-
facts minimes et la meilleure performance PSNR connue jusqu'’ici.

Un premier résultat présenté est DA3D, un algorithme de débruitage guidé basé sur
la fréquence inspiré de la forme DDID [Knaus-Zwicker 2013]. Cet algorithme atteint de
bons résultats non seulement en termes de PSNR, mais aussi (et surtout) en ce qui concerne
la qualité visuelle. DA3D fonctionne particulierement bien en améliorant les textures des
images et en supprimant les effets d’escalade. DA3D travaille sur un autre algorithme de
débruitage, qui sert de guide, et presque toujours améliorer ses résultats. De cette fagon,
le débruitage basé sur la fréquence peut étre appliqué au-dessus des algorithmes de dé-
bruitage basés sur des patchs, résultant d"'une méthode hybride qui maintient les forces des
deux. Les expériences démontrent que, a la suite de ce qui a été pensé, le débruitage basé
sur la fréquence peut battre des algorithmes de pointe sans présenter d’artefacts. Dans ce
travail, DA3D est présenté, et les courbes de retrait ad hoc sont calculées en fonction de
l’algorithme utilisé comme guide.

Le deuxieme résultat présenté est Denoising multi-échelle, un cadre multi-échelle appli-
cable a tout algorithme de débruitage. Une analyse qualitative montre que les algorithmes
de débruitage actuels se comportent mieux sur le bruit haute fréquence. Cela est dii a la
taille relativement petite des correctifs et des fenétres de recherche utilisés dans ces algo-
rithmes a une seule échelle. Au lieu d’agrandir ces fenétres, cela peut causer d’autres sortes
de problémes, le travail propose de décomposer 1'image sur une pyramide, a 1'aide de la
Transformation de Cosinus Discrete. Nous introduisons un nouveau schéma de reconstruc-
tion dans la pyramide en évitant I’apparition d’artefacts de sonnerie. Cette méthode élimine
la plupart des bruits de basse fréquence et améliore a la fois le PSNR et les résultats visuels
pour les zones lisses et texturées.

Une troisiéme question principale abordée dans cette these est I’évaluation des algo-
rithmes de débruitage. Les expériences indiquent que le PSNR n’est pas toujours un bon
indicateur de qualité visuelle pour les algorithmes de débruitage, puisque, par exemple, un
artefact sur une surface lisse peut étre plus perceptible qu'une modification subtile d'une
texture. Une nouvelle mesure est proposée pour améliorer la situation. Au lieu d"une seule
valeur, un «PNSR lisse» et un «PSNR de texture» sont présentés pour mesurer le résul-
tat d’un algorithme pour ces deux types de régions d'image. Nous prétendons qu'un al-
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gorithme de débruitage, pour étre considéré comme acceptable, doit au moins bien fonc-
tionner en ce qui concerne les deux métriques. A la suite de cette affirmation, une analyse
des algorithmes actuels est effectuée, et elle est comparée avec les résultats combinés du
cadre multi-échelle et DA3D. Nous avons trouvé que la solution optimale pour le débrui-
tage d’image est 'application d'un rétrécissement de fréquence appliqué uniquement aux
régions réguliéres, alors qu'une méthode basée sur un patch multi-échelles sert de guide.
Cela semble résoudre une question de longue date pour laquelle DDID a donné le premier
indice : quel est le role respectif des méthodes de rétrécissement de fréquence et d’auto-
similarité basées sur le débruitage d’image? Nous décrivons un algorithme de débruitage
d’image qui semble avoir un meilleur rendement en qualité et PSNR que tout autre basé
sur la bonne combinaison des deux principes de débruitage.

Dans notre derniere contribution, une étude sur la faisabilité de débruitage externe est
réalisée, ol1 les images sont débruitées au moyen d’une grande base de données de patchs
externes silencieux. Ceci suit un travail de Levin et Nadler, en 2011, qui prétend qu'un
débruitage bayésien optimal est accessible par une formule intégrale simple a condition
qu’il soit appliqué a une base de données de patchs gigantesque et représentatif. Nous
démontrons par un argument mathématique combiné & des observations empiriques sur
’espace des patchs que cet espace peut étre factorisé, réduisant ainsi considérablement le
nombre de patchs nécessaires pour calculer I'intégrale sur 1’espace des patchs.

Enfin, des résultats secondaires sont présentés. Une breve étude de la facon d’appliquer
des algorithmes de débruitage sur de vraies images RAW est effectuée. Une version amé-
liorée et performante de 1’algorithme Non-Local Bayes est présentée, ainsi qu'une version
en deux étapes de DCnoDenoising. Ce dernier est intéressant pour son extréme simplicité
et pour sa rapidité.

Dans cette introduction, nous donnons un bref apercu des chapitres de ce travail.

0.1 Chapitre 1: DA3D et les méthodes a double domaine

Le débruitage d’image est 'un des défis fondamentaux de la restauration d’images [40]. Il
consiste a estimer une image inconnue silencieuse y a partir d"une observation bruyante x.
Nous considérons le modele classique de dégradation d’image

y =x+n, 1)

ol 'observation y de I'image x est contaminée par un bruit Gaussien blanc additif n de
variance 2.

Toutes les méthodes de débruitage supposent une certaine régularité de 1'image sous-
jacente. En fonction de cette hypothése, ils peuvent étre divisés, entre autres, en domaines
de transformation et de domaine spatial.

Les méthodes de domaine de transformation fonctionnent en réduisant (ou en limitant)
les coefficients de quelque domaine de transformation [18, 34, 51]. Le filtre de Wiener [60]
est I'une des premieres méthodes de ce type opérant sur la transformée de Fourier. Donoho
et al. [11] 'ont étendue au domaine d’ondelettes.

Les méthodes spatiales utilisent traditionnellement une notion locale de régularité avec
des algorithmes de préservation des arétes comme la variation totale [49], la diffusion ani-
sotrope [41], ou le filtre bilatéral [56]. Aujourd’hui, cependant, les méthodes spatiales at-
teignent des résultats remarquables en exploitant les auto-similitudes de I'image [2]. Ces
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FIGURE 1 — lllustration du prétraitement d’un patch par DDID. Le noyau & est calculé en utilisant le
guide g. Dans le patch modifié y,,, toutes les discontinuités d’objets ont été supprimées, laissant
seulement l'information de texture correspondant a I'objet sélectionné par le noyau k. Les pixels
supprimés sont remplacés par la moyenne de la partie significative du patch.

méthodes basées sur des patchs sont non locales puisqu’elles sont débruitées en faisant
la moyenne de patchs similaires dans 1'image. Le débruitage basé sur les patchs s’est dé-
veloppé en tentatives de modélisation de 1'espace patch d’une image ou d’un ensemble
d’images. Ces techniques modélisent le patch en tant que représentations éparses sur les
dictionnaires cite Elad2006, Mairal2008, Mairal2009, Yu2010, Dong2013, en utilisant des
modeles de Mélanges d’Echelle Gaussienne [45,46,67] ou avec des approches non paramé-
triques Base de données de patches [32,33,39,43].

Les méthodes actuelles de débruitage a 1’état de l’art telles que BM3D [7] et NL-Bayes
[27] tirent parti des approches spatiale et de transformation. Ils regroupent des patchs
d’image semblables et les suppriment conjointement par filtrage collaboratif sur un do-
maine transformé. De plus, ils procedent par 1'application de deux étages de débruitage
légerement différents, le second utilisant la sortie du premier comme guide.

Certaines méthodes récemment proposées utilisent le résultat d’un algorithme diffé-
rent comme guide pour une nouvelle étape de débruitage. Combinant par exemple des
principes non locaux avec la décomposition spectrale [55], ou BM3D avec des réseaux de
neurones [5]. Cela permet de mélanger différents principes de démontage, donnant ainsi
des résultats de haute qualité. DDID [22] est un algorithme itératif qui utilise une image
guide (a partir d"une itération précédente) pour déterminer des régions spatialement uni-
formes auxquelles le retrait de Fourier pourrait étre appliqué sans introduire d’artefacts de
sonnerie. Plusieurs méthodes [21,23,42] utilisent une seule étape de DDID avec une image
de guide produite par un algorithme différent. Cela donne de bien meilleurs résultats que
le DDID original. La raison de leur succeés est 1'utilisation de grandes (31 x 31) et la forme
de patchs adaptatifs. En effet, le retrait de Fourier fonctionne mieux sur de grands blocs
stationnaires.

Malheureusement, DDID a un cofit de calcul prohibitif, car elle débruite paradoxale-
ment un grand patch pour récupérer un pixel unique. De plus, contrairement a d’autres
méthodes, 'agrégation de ces patchs n’améliore pas les résultats puisqu’elle introduit le
flou. Nous montrons dans cet article que ces deux problemes peuvent étre résolus en intro-
duisant une nouvelle sélection de patch, accompagnée d'une stratégie d’agrégation pondé-
rée.

Notre premier chapitre présente le DA3D (Data Adaptive Dual Domain Denoising),
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Method | =5 | 0=10 | 0=25 | 0=40 | 0 =80
39.55 | 36.01 | 31.79 | 29.23 | 26.83
BM3D | 39.59 | 36.23 | 32.15 | 29.95 | 27.00
+0.05 | +0.22 | +0.36 | +0.72 | +0.16
39.20 | 3591 | 31.88 | 29.75 | 26.41
DDID | 39.11 | 35.87 | 31.99 | 29.98 | 26.85
-0.09 | -0.04 | +0.11 | +0.23 | +0.43
39.77 | 36.09 | 31.71 | 29.35 | 26.64
NLB 39.67 | 36.26 | 32.18 | 30.09 | 26.74
-0.10 | +0.16 | +0.47 | +0.74 | +0.11
39.26 | 3590 | 3198 | 29.90 | 26.60
NLDD | 39.17 | 35.87 | 31.99 | 29.97 | 26.63
-0.09 | -0.04 | +0.02 | +0.07 | +0.03
39.03 | 35.81 | 32.05 | 30.10 | 27.00
PID 38.99 | 35.80 | 32.03 | 30.02 | 26.83
-0.04 | -0.02 -0.02 -0.08 -0.17

TABLE 1 — Comparaison moyenne de PSNR entre les méthodes de pointe pour les images en
couleur. La premiere ligne de chaque rangée montre la PSNR moyenne obtenue en débruitant
les images de test. La seconde ligne représente le PSNR moyen de DA3D en utilisant I'algorithme de
débruitage correspondant pour générer le guide. La troisieme ligne montre I'amélioration moyenne
due a DA3D. Le meilleur résultat pour chaque niveau de bruit est indiqué dans bold, et ceux dans
une plage de 0.2 dB sont affichés en gris.

une nouvelle méthode de débruitage “last step” qui effectue le rétrécissement du domaine
fréquentiel sur les patchs adaptatifs et adaptés aux données. DA3D améliore constamment
les résultats des méthodes de pointe telles que BM3D ou NL-Bayes avec peu de temps de
calcul supplémentaire.

Notre deuxiéme contribution dans DA3D améliore encore la qualité des résultats en
adaptant le traitement aux données sous-jacentes. L’apparition de 'escalier est bien connue
pour les méthodes non locales [3]. Pour minimiser 1'influence de tels artefacts présents dans
I'image guide, nous utilisons une régression linéaire non linéaire de premier ordre [53, 54]
pour estimer, pour chaque patch, une approximation affine de I'image cohérente avec les
données dans le piéce. Le débruitage est alors réalisé par rapport a cette approximation.
Cette approche adaptée aux données est une autre innovation permise par l'utilisation de
grands correctifs et améliore sensiblement la qualité des résultats sur des régions lisses de
I'image.

La section 1.4 rappelle le post-process DDID et développe une explication de son effi-
cacité, illustrée dans la Figure 1, ou il devient évident que la méthode sépare chaque patch
de texture, tout en évitant l'interférence des bords et d’autres textures voisines. Les sections
1.5 et 1.6 présentent 1’algorithme DA3D, décrivant d’abord 1'agrégation éparse proposée,
puis les patchs adaptatifs de données. La performance de DA3D est largement validée dans
les expériences de la section 1.7, o1 il devient évident qu’il améliore significativement le
résultat de la plupart des algorithmes de débruitage, comme le montre le tableau 1.
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0.2 Chapitre 2 : Un cadre de débruitage multi-échelle

Dans le chapitre 1, nous avons fourni une nouvelle vue sur le seuillage de la transformée de
fréquence, montrant qu’il pourrait performer de maniére excellente comme derniére étape
de n'importe quel algorithme de débruitage basé sur un patch. Dans le Chapitre 2 nous
adressons une autre question non traitée par la plupart des algorithmes de débruitage de
I’état de I’art. Nous avons observé que la plupart d’entre eux limitent leur action a un voi-
sinage pixel limité. Cela signifie clairement que le bruit a basse fréquence reste non traité,
comme le montre clairement la figure 2. C’est un inconvénient qui produit des artefacts tres
visibles dans les zones plates, comme nous le verrons dans la partie expérimentale de ce
chapitre, et dans notre étude expérimentale du chapitre 3. Ainsi, dans ce chapitre, nous pro-
posons une nouvelle perspective d"un autre principe : la représentation a plusieurs échelles.
Ce principe a déja été exploré dans [4,15]. Méme si les résultats ne sont que partiellement
satisfaisants, les idées présentées sont simples et prometteuses. Le probleme principal de
leur approche est que dans les échelles supérieures, le bruit devient corrélé, ce qui réduit
la performance des algorithmes standard. Un autre travail qui tente d’utiliser un modele
multi-échelle est [47]. La différence avec notre travail est que [47] n"utilise pas d’algorithme
classique de débruitage dans le processus et qu’il n’évite pas les artefacts dans la recompo-
sition.

La représentation multi-échelle est aussi intrinséquement présente dans les algorithmes
de débruitage a base d’ondelettes [11,18,34,45]. Il est également présent dans [52], ot11’algo-
rithme KSVD est appliqué sur une décomposition en ondelettes de I'image. L’amélioration
par rapport a une seule échelle KSVD est importante, en particulier pour les PSNR élevés,
mais puisque la décomposition en ondelettes ne permet pas une recomposition conserva-
trice, les auteurs ont besoin de ce qu’ils appellent une stratégie de fusion, afin de réduire les
artefacts.

Débruiter une pyramide multi-échelle est un moyen de traiter plus d’informations pour
atteindre un meilleur résultat. D’autres efforts ont été faits pour fournir plus d’informations
a l’algorithme de débruitage. En particulier, il convient de citer [5,65], qui essaie d’amélio-
rer les résultats d’un algorithme de débruitage en utilisant une base de données externe
d’images similaires.

Dans le chapitre 2, nous présentons une nouvelle structure multi-échelle qui peut étre
appliquée a tout autre algorithme de débruitage existant, améliorant constamment ses ré-
sultats (voir Tableau 2). Le cadre utilise une simple pyramide DCT et n’est pas exigeant en
termes de calcul.

Simplement en utilisant la pyramide DCT peut conduire a des artefacts de sonnerie.
Nous résolvons ce probléeme en introduisant ce que nous appelons recomposition conserva-
trice, ce qui permet de conserver les avantages de la pyramide tout en évitant ses problemes.

Le résultat est un moyen de transformer n’importe quel algorithme de débruitage en un
multi-échelle, avec des améliorations tant en qualité visuelle et PSNR, et avec peu de cofit
supplémentaire.

0.3 Chapitre 3 : Critéres de qualité pour le débruitage d'image

Habituellement, la performance des algorithmes de débruitage est mesurée en termes de
PSNR. Un autre indice de qualité célébre est le SSIM [58]. Malheureusement, aucune des
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FIGURE 2 — DCT du résultat de divers algorithmes de débruitage appliqués a une image de bruit
blanc pur, avec et sans le cadre multi-échelle. Notez qu'il reste du bruit dans le coin supérieur
gauche de la version Single Scale, qui contient les basses fréquences de I'image. Dans la version
multi-échelle, le bruit résiduel est beaucoup plus uniforme a travers les fréquences.
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Noise Best single-scale Best multi-scale Gain
o =10 | 38.59dB BM3D 38.71dB NLB +0.12dB
oc=20 | 3497dB  BM3D | 35.09dB NLB +0.12dB
oc=30 | 32.87dB  BM3D | 33.07dB NLB +0.20dB
oc=40 | 31.37dB  BM3D | 31.65dB NLB +0.28dB
o =50 | 30.30dB NLBIPOL | 30.61dB NLB +0.31dB
o=60 | 29.32dB NLBIPOL | 29.75dB NLB +0.43dB
o =70 | 28.65dB BM3D 29.02dB NLB +0.37dB
oc=380 | 2797dB  BM3D | 28.40dB NLB +0.43dB
o =90 | 27.30dB BM3D 27.86dB NLB +0.56dB
o =100 | 26.75dB NLBIPOL | 27.46dB NLBIPOL | +0.71dB

TABLE 2 — Résultats avec les meilleurs parametres pour chaque algorithme. Les résultats sont une
moyenne sur les images de la figure 2.10.

deux méthodes n’est étroitement corrélée avec la qualité visuelle, puisqu’elles ne sont pas
suffisamment sensibles aux artefacts.

Différents algorithmes de débruitage se comportent différemment sur les textures et
les zones planes d’images. La mesure du PSNR du résultat peut étre trompeuse, car un
algorithme peut fournir un bon résultat sur le premier et un mauvais sur celui-ci, ou vice
versa. Par conséquent, nous proposons de découpler la mesure de qualité d'un résultat en
deux valeurs : la PSNR plate (ou fPSNR) et la texture PSNR (ou tPSNR), en utilisant une
carte de fluidité (Figure 3) pour discriminer des régions planes et texturées d’une image.

Nous avons appliqué les parameétres décrits dans ce chapitre aux résultats des algo-
rithmes de débruitage les plus courants.

Le chapitre 1 et le chapitre 2 présentent une méthode pour améliorer le résultat d’autres
algorithmes de débruitage. Dans cette section, nous présentons deux facons différentes de
combiner les deux, afin d’obtenir un meilleur algorithme débruitage de performance.

Puisque DA3D et le framework Multiscale ont besoin d'un algorithme "baseline" pour
fonctionner, nous avons choisi de nous focaliser sur Bayes non local [27] et BM3D [7]. Le
premier algorithme est particulierement adapté au DA3D et au framework Multiscale, car
il a relativement peu d’artefacts et un résultat lisse, alors que nous avons décidé d’inclure
le second pour offrir une comparaison équitable avec ce qui est encore considéré comme
I’état de lart.

Afin de combiner DA3D et le framework Multiscale, il y a fondamentalement deux pos-
sibilités : appliquer DA3D en premier ou appliquer le framework Multiscale en premier.
Nous les présentons tous les deux. Figure 4 donne le diagramme de la combinaison ga-
gnante.

0.4 Chapitre 4 : Débruitage externe

Un document séminal récente sur les limites absolues de la débruitage d’image [32] propose
une méthode de dénoisage de patch qui réalise effectivement I’erreur quadratique moyenne
minimale, étant donné tous les patchs d'image connus. Il est extrémement important d’at-
teindre ces limites absolues, mais ils nécessitent le traitement d’une base de données illi-
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FIGURE 3 — Exemple de carte de fluidité.
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[Multiscale decomposition]

[Non-LocaI Bayes] |

(Non-Local Bayes] ~ (Non-Local Bayes)

[Multiscale recomposition]

FIGURE 4 — Schéma de la méthode de débruitage da3d_ms qui combine non local Bayes, DA3D et
le cadre multi-échelle. Les valeurs pour les recompositions multiscalaires sont celles utilisées pour
les Bayes non locales dans le chapitre 2 (0.5 pour ¢ = 10 et ¢ = 20, 0.6 pour ¢ = 40 et 0.7 pour
o = 70). DA3D est appliqué en utilisant le résultat de Non-Local Bayes comme guide uniqguement
sur I'échelle plus fine. Lapplication de DA3D a une échelle plus grossiére dégrade les résultats en
raison de la présence de sonnerie dans la pyramide DCT.
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DB Size | Shotgun method | NSD
10000 23.47 dB 26.79 dB
100000 25.92 dB 27.32dB

4000000 27.66 dB 28.06 dB

TABLE 3 — Moyenne PSNR obtenue aprés débruitage de 3500 patchs avec une taille de base de
données fixe.

mitée. Dans le document susmentionné, cette base de données comportait 10 milliards de
correctifs. Dans cet article, nous démontrons qu’en factorisant 1’'espace de patch, la mé-
thode peut étre accélérée par un facteur de plus de mille, tout en maintenant la prétention
théorique que la méthode est optimale. L'utilisation de la méthode sur les images réelles
démontre son potentiel pour battre I'état de l'art, car il fonctionne mieux sur les patchs
difficiles.

Par “shotgun”, on entend des méthodes qui ont I'intention de débruiter les patchs par
un algorithme totalement non local, dans lequel le patch est comparé a un patch Modele
obtenu a partir d'un ensemble de patchs tres grand, en supposant qu'ils représentent “tous
les correctifs d’image naturels possibles”.

Par exemple, Zoran et Weiss [67] ont introduit 1’algorithme EPLL, dans lequel ils ap-
prennent la distribution d’espace de patch a partir d’'un mélange de gaussiens formés avec
des patchs de 2 x 10°. Ensuite, ils utilisent ce modele comme un préalable pour débruiter
les correctifs en essayant de maximiser la Expected Patch Log Likelihood, au lieu de débruiter
chaque patch séparément. Pour ce faire, ils minimisent une fonction de cofit en utilisant une
méthode d’optimisation appelée “Half Quadratic Splitting” [48]. Zontak et Irani [66] ont
analysé la performance de débruitage en utilisant des patchs extraits de la méme image, ou
ce qu’ils appellent des recherches de correctifs internes, contre 1’extraction de correctifs “ex-
ternes” a partir d"une base de données géante. Ils ont conclu que les patchs semblables ont
tendance a se reproduire beaucoup plus souvent a l'intérieur de la méme image que dans
toute collection externe aléatoire d’images naturelles. En outre, la redondance de patch in-
terne décroit rapidement avec la croissance de la distance spatiale a partir du patch, et sa
teneur en gradient. Enfin, ils ont observé que la recherche d"un patch représentatif externe
aussi bon pour chaque patch d’une image, nécessite une énorme base de données externe,
ce qui rend le probleme de débruitage computacionalement intraitable. Lee et al. [31] a uti-
lisé le cadre bayésien pour dériver un algorithme de débruitage d’image non locale MMSE,
qui utilise a la fois des correctifs d’image internes ainsi qu'un codebook externe avec des
correctifs sans bruit. Ils effectuent le débruitage en normalisant I’espace-patch par le moyen,
une idée qui sera encore exploitée ici. Plusieurs méthodes “shotgun” ont été récemment ap-
pliquées dans d’autres taches de traitement d’image, telles que I’acheévement des sceénes [19]
(en utilisant 2,3 millions d’images) ou la reconnaissance de scénes [57] (avec 80 millions de
patches 32 x 32).

Passons maintenant a la recherche de limites absolues pour le débruitage d’image. Les
limites inférieures du type Cramer-Rao sur la performance RMSE atteignable donnée par
Chaterjee et Milanfarci Chatterjee2010 sont optimistes : elles permettent la possibilité d'une
augmentation significative de la performance de débruitage pour une large classe d'images
a certains SNR, en particulier, Pour des images synthétiques par morceaux synthétiques.
Pourtant, un article récent de A. Levin et B. Nadler [32] fournit une deuxiéme réponse a
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(a) Image 1 (b) Image 2

(c) NSD (d) NSD

(e) BM3D (f) BM3D

(9) NL-Bayes (h) NL-Bayes

FIGURE 5 — Résultats et comparaison des méthodes de débruitage (valeurs PSNR entre paren-
theses).
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la question des limites absolues soulevées par [6]. Ce document séminal utilise une mé-
thode de dérogation de fusil de chasse pour approcher les limites, qui est librement basé
sur l'algorithme NL-moyens, avec des paramétres adéquats pour tenir compte d"une esti-
mation minimale moyenne linéaire bayésienne carrée (LMMSE) du patch bruyant donné
une base de données de 10'° patchs sans bruit. La seule et importante différence est que
les correctifs similaires sont recherchés sur une base de données de correctifs, au lieu de sur
I'image elle-méme. De plus, grace a un argument mathématique simple et & des simulations
intensives sur 1'espace du patch, les auteurs sont capables d’estimer la meilleure erreur d’es-
timation moyenne atteignable par tout algorithme de débruitage par patch (pour étre plus précis,
c’est la meilleure erreur d’estimation moyenne connaissant un seul patch et tous les obser-
vés; mais la plupart des algorithmes de débruitage utilisent réellement la connaissance des
patchs chevauchants dans 1'image pour le débruiter). Apres avoir effectué une expérimen-
tation et les comparer avec des algorithmes de débruitage a la fine pointe de la technologie,
ils concluent que les résultats pourraient étre inférieurs a 0.1dB de la méthode de débrui-
tage optimale possible, au moins en utilisant de petites tailles de patch ou sous de grandes
quantités de bruit. Aucune autre marge d’amélioration. Ils proposent d’augmenter la taille
du support pour obtenir de meilleures valeurs de PSNR. Pourtant, en raison de la malé-
diction de la dimensionnalité, les techniques non paramétriques ne seront pas capables de
trouver de bons patchs similaires. Cela conduit les auteurs a renoncer a une méthode de
fusil de chasse, et a revenir a des approches paramétriques. Cependant, une limitation de
ce travail est que les contraintes de calcul limitaient I'expérimentation a de petits correc-
tifs. Par conséquent, les limites réelles indépendamment de la taille du patch sont encore
inconnues.

Dans [33], les mémes auteurs étudient la dépendance de 'erreur de débruitage sur la
taille du patch. De la méme maniere que Zontak et Irani [66], ils concluent que, lorsqu’on
augmente la taille de la fenétre, les patchs avec plus de détails nécessitent une base de don-
nées beaucoup plus grande et que le gain est tres faible. Dans le méme temps, le contraire se
produit avec des correctifs plus lisses : 'augmentation de la taille de la fenétre est beaucoup
plus récompensé dans la performance finale débruitage. Ceci les ameéne a proposer une
stratégie adaptative utilisant des tailles variables de fenétre selon la complexité locale de
correctif. Enfin, ils explorent & nouveau les limites fondamentales de débruitage, avec une
taille de fenétre infinie et en supposant une image naturelle parfaite avant. Pour ce faire,
ils utilisent un modele simplifié de formation d’images de feuilles mortes et la combinent
avec une hypothese d’invariance d’échelle pour des images naturelles, ce qui implique une
convergence en loi de puissance. En utilisant cette loi de puissance pour modéliser le PSNR
par rapport a la taille de fenétre, ils s’adaptent au modele et extrapolent son résultat pour
obtenir des limites de débruitage optimales. Ils concluent qu’il ya encore place a améliora-
tion (autour de 1dB).

Dans le chapitre 4, nous nous en tenons a "approche du premier canon [32] et avons
l'intention de le rendre possible en accélérant considérablement le calcul de leur intégrale
de Monte Carlo. L'algorithme proposé obtient des résultats similaires en utilisant moins
de ressources informatiques et en moins de temps. Pour ce faire, un espace de probabilité
plus petit est utilisé en factorisant I'espace des patchs. Cela permet de Fonctionnent avec
des classes d’équivalence entiéres de patchs au lieu de patchs simples, ce qui permet une
diminution significative du nombre de calculs nécessaires et une réduction de la mémoire
requise. Une comparaison est faite entre notre algorithme et deux méthodes a la fine pointe
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de la technologie, 1’algorithme BM3D [7,26] et la méthode Non Local Bayes [27] montrant
comment notre méthode surpasse a la fois pour 1’algorithme Tache de débruiter les patchs
complexes.
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Chapter 1

DA3D and the Dual Domain Methods

This chapter presents DA3D (Data Adaptive Dual Domain Denoising), a “last step denoising”
method that takes as input a noisy image and as a guide the result of any state-of-the-art denois-
ing algorithm. The method performs frequency domain shrinkage on shape and data-adaptive
patches. Unlike other dual denoising methods, DA3D doesn’t process all the image samples,
which allows it to use large patches (64 x 64 pixels). The shape and data-adaptive patches are
dynamically selected, effectively concentrating the computations on areas with more details, thus
accelerating the process considerably. DA3D also reduces the staircasing artifacts sometimes
present in smooth parts of the guide images. The effectiveness of DA3D is confirmed by ex-
tensive experimentation. DA3D improves the result of almost all state-of-the-art methods, and
this improvement requires little additional computation time.

1.1 Introduction

Image denoising is one of the fundamental image restoration challenges [40]. It consists
in estimating an unknown noiseless image y from a noisy observation x. We consider the
classic image degradation model

y =x-+n, (1.1)
where the observation y of the image x is contaminated by an additive white Gaussian
noise n of variance o2.

All denoising methods assume some underlying image regularity. Depending on this
assumption they can be divided, among others, into transform-domain and spatial-domain
methods.

Transform domain methods work by shrinking (or thresholding) the coefficients of some
transform domain [18,34,51]. The Wiener filter [60] is one of the first such methods operat-
ing on the Fourier transform. Donoho et al. [11] extended it to the wavelet domain.

Space-domain methods traditionally use a local notion of regularity with edge-preserving
algorithms such as total variation [49], anisotropic diffusion [41], or the bilateral filter [56].
Nowadays however spatial-domain methods achieve remarkable results by exploiting the
self-similarities of the image [2]. These patch-based methods are non-local as they denoise
by averaging similar patches in the image. Patch-based denoising has developed into at-
tempts to model the patch space of an image, or of a set of images. These techniques model
the patch as sparse representations on dictionaries [10, 14, 35, 36, 64], using Gaussian Scale
Mixtures models [45,46, 67], or with non-parametric approaches by sampling from a huge
database of patches [32,33,39,43].
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Current state-of-the-art denoising methods such as BM3D [7] and NL-Bayes [27] take
advantage of both space- and transform-domain approaches. They group similar image
patches and jointly denoise them by collaborative filtering on a transformed domain. In
addition, they proceed by applying two slightly different denoising stages, the second stage
using the output of the first one as its guide.

Some recently proposed methods use the result of a different algorithm as their guide
for a new denoising step. Combining for instance, nonlocal principles with spectral decom-
position [55], or BM3D with neural networks [5]. This allows one to mix different denois-
ing principles, thus yielding high quality results. DDID [22] is an iterative algorithm that
uses a guide image (from a previous iteration) to determine spatially uniform regions to
which Fourier shrinkage could be applied without introducing ringing artifacts. Several
methods [21,23,42] use a single step of DDID with a guide image produced by a different
algorithm. This yields much better results than the original DDID. The reason for their suc-
cess is the use of large (31 x 31) and shape-adaptive patches. Indeed, the Fourier shrinkage
works better on large stationary blocks.

Unfortunately, DDID has a prohibitive computational cost, as it paradoxically denoises
a large patch to recover a single pixel. Moreover, contrary to other methods, aggregation
of these patches doesn’t improve the results since it introduces blur. We show in this paper
that these two problems can be solved by introducing a new patch selection, accompanied
by a weighted aggregation strategy.

Contribution. This chapter presents DA3D (Data Adaptive Dual Domain Denoising),
a new “last step” denoising method that performs frequency domain shrinkage on shape-
adaptive and data-adaptive patches. DA3D consistently improves the results of state-of-
the-art methods such as BM3D or NL-Bayes with little additional computation time.

Our second contribution in DA3D further improves the quality of the results by adapt-
ing the processing to the underlying data. The apparition of the staircasing is well known
for non-local methods [3]. To mitigate the influence of such artifacts present in the guide im-
age, we use a first order non-linear local kernel regression [53,54] to estimate, for each patch,
an affine approximation of the image coherent with the data within the patch. The denois-
ing is then performed with respect to this approximation. This data-adaptive approach
is another innovation enabled by the use of large patches, and it noticeably improves the
quality of the results on smooth regions of the image.

Section 1.4 recalls the DDID post-process. Sections 1.5 and 1.6 present the DA3D al-
gorithm, first describing the proposed sparse aggregation, then the data-adaptive patches.
The performance of DA3D is extensively validated in the experiments of section 1.7.

1.2 Related Work

The DDID algorithm [22] adapts the denoising patches (or blocks) to the shapes of the guide
image and denoises them via Fourier shrinkage. The original algorithm iterated the process
to obtain a guide image for the next step improving the results over consecutive iterations.
However, the initial guide image is initialized with the noisy image, which generates con-
siderable artifacts [42]. Several methods [21, 23, 42] use a single step of DDID as a “last
step” denoising, yielding much better results. The reasons for the success of these methods
are their large (31 x 31) and shape-adaptive patches. Indeed, the Fourier shrinkage works
better on large stationary blocks. On this line, DA3D re-introduces aggregation showing
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(a) Original (b) Noisy (c) Guide: NL-Bayes

(d) DDID step

(g) Sparse samples (h) DA3D samples

Figure 1.1 — Results of applying different post-processing steps on the same image (with noise
o = 25). The guide was produced with Non-Local Bayes. Figs. (g) and (h) show the centers of the
blocks used for denoising (e) and (f) respectively (with 7 = 2). Image (d) was generated with 31 x 31
blocks, while for (e) and (f) 64 x 64 blocks were used. Notice in (e) and (f) the difference on the cheek
and the forehead of the girl. Also, notice that in this case, with many smooth areas, the amount of
patches used in the process is small (1.52% in the case of DA3D.
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(d) DDID step

L i

(g) Sparse samples (h) DA3D samples

Figure 1.2 — Results of applying different post-processing steps on the same image (with noise
o = 25). The guide was produced with Non-Local Bayes. Figs. (g) and (h) show the centers of the
blocks used for denoising (e) and (f) respectively (with 7 = 2). Image (d) was generated with 31 x 31
blocks, while for (e) and (f) 64 x 64 blocks were used. Unlike Fig. 1.1, DA3D uses a bigger portion of
the image patches to denoise the image. This is due to a prominence of textured areas.
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that these large blocks are also valid in the vicinity of the current pixel. This accelerates the
process considerably and allows to use even larger (64 x 64) patches, which in turn leads to
improved results.

Other shape adaptive denoising methods [8,9] build nonlocal groups of similar patches
to collectively denoise them. However the considered shape adaptive patches are usually
small (contained in an 8 x 8 block for BM3D-SAPCA). Although DA3D doesn’t consider
groups of patches, the patches are much larger allowing to extract more information about
the underlying image structure. The process of DA3D is somehow complementary to the
collaborative denoising, since it is better adapted to recover textures but relies on the struc-
tures provided in the guide image.

Among the guided approaches, the Global Image Denoising [55] is interesting because
it takes the filter associated to a nonlocal method such as BM3D or NLM and approximates
its principal eigenvectors. The filter obtained by combining these eigenvectors can average
pixels from the entire image. The authors show that this method can obtain almost perfect
results when the ideal guide image (noiseless) is used. DA3D uses large blocks but pro-
cesses them in a transformed domain. We will see in the experiments that this yields better
results when the guide is not perfect.

Locally adaptive regression kernel (LARK) [53,54] extends the bilateral filtering [56]
to data-adaptive filtering. LARK estimates the dominant orientation of the data at each
point, and then applies a local steerable kernel with the estimated orientation. DA3D’s
affine regression (see Section 1.6) can be seen as a data-adaptive cross bilateral filter kernel.
However instead of filtering using this kernel we use it to model the local smoothness of
the image.

1.3 The Artifacts of Denoising Algorithms and their interpreta-
tion

The problem of image denoising is inherently ill-defined. The various algorithms designed
to solve this problem must rely on some prior knowledge about the model of the image, in
order to differentiate it from the noise [28]. The vast majority of modern denoising algo-
rithms are patch-based, frequency-based or a combination of the two.

Patch-based algorithms exploit the self-similarity model, that takes into account the fact
that natural images often present repeated elements. The idea behind patch-based algo-
rithms is that, by grouping together similar patches, a model for those patches can be de-
duced. This model can be used to reduce the noise. The first, most famous denoising algo-
rithms using self-similarity is Non-Local Means [2], where the similar patches are simply
averaged in order to denoise. Relying on similar patches yields very good results, espe-
cially near edges and geometric structures; however, the results on textures can be blurry
(see Fig. 1.3(c)), since the hypothesis of perfect self-similarity is often too strong. Recently,
patch-based denoising has developed into attempts to model the patch space of an im-
age, or of a set of images. These techniques model the patch as sparse representations on
dictionaries [10, 14, 35, 36, 64], using Gaussian Scale Mixtures models [45, 46, 67], or with
non-parametric approaches by sampling from a huge database of patches [32,33,39,43].

Other algorithms are frequency based. These algorithms suppose a certain degree of regu-
larity on the image, and therefore they try to represent its patches in a basis that “sparsifies”

41



Chapter 1. DA3D and the Dual Domain Methods

(a) Original (b) Noisy (c) Non-Local Means

(g) DCT on texture (h) Non-Local Bayes 2 (i) Non-Local Bayes 2 + DA3D

Figure 1.3 — Comparison of different denoising principles. Details of this image are shown in Fig. 1.4
and Fig. 1.5. In Non-Local Means, the results on textures can be blurry, since the hypothesis of
perfect self-similarity is often too strong. Frequency-based algorithms like DCT Denoising fail near
edges, by showing strong ringing artifacts. This is due to the fact that edges are non-smooth, and
patches containing them do not have a sparse representation in the DCT basis.
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(a) Original (b) Noisy (c) Non-Local Means

(d) DCT denoising (e) BM3D (f) Non-Local Bayes

(g) DCT on texture (h) Non-Local Bayes 2 (i) Non-Local Bayes 2 + DA3D

Figure 1.4 — Comparison of different denoising principles and their best representative algorithms.
Detail of borders and high-contrast textures. Notice that in DA3D removes all the artifacts from
Non-Local Bayes, and at the same time it improve the contrast in textures.
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(a) Original (b) Noisy (c) Non-Local Means

(d) DCT denoising (e) BM3D (f) Non-Local Bayes

(g) DCT on texture (h) Non-Local Bayes 2 (i) Non-Local Bayes 2 + DA3D

Figure 1.5 — Comparison of different denoising principles and algorithms. Detail of smooth and
textured areas.
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(a) Smooth signal (b) DCT of smooth signal

(c) Signal with discontinuity (edge) (d) DCT of signal with discontinuity

Figure 1.6 — Behaviour of DCT coefficients. Signals containing discontinuities have their energy less
concentrated in the DCT domain. This makes the DCT basis less effective for denoising purposes
in presence of edges.
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them [18, 34, 51]. Since white noise is unaffected by an orthogonal change of basis, in the
transform domain the signal regarding the image is concentrated in few frequencies, while
the noise itself remains evenly distributed, and therefore can be easily removed (for exam-
ple, by a simple thresholding or with a Wiener filter [60]). A simple algorithm that uses this
model is DCT denoising [63], that uses the DCT basis and a Wiener filter on the coefficients.
The DCT basis has the property that smooth signals have most of the energy concentrated
on the low frequencies. The problem with frequency-based denoising is that, sometimes,
the patches do not follow the model that works well with the basis. For DCT denoising,
in Fig. 1.3(d), the failures of the algorithm are evident near the edges. This follows from
the fact that edges are non-smooth parts of the image, and patches containing them have
their energy less concentrated in the DCT domain (as shown in Fig. 1.6). Denoising by
DCT thresholding therefore reverberates around the edges, creating oscillations known as
Gibbs effect. The class of frequency based algorithms is not limited to the DFT or DCT basis.
Similar Gibbs effects are observed with algorithms that perform filtering in other wavelet
domains [11].

Modern algorithms try to use both self-similarity and frequency priors, to achieve better
results. Among them, the most famous is BM3D [7], that denoises blocks of similar patches
in the DCT domain. Since the patches are denoised together, this effectively allows to take
into account their similarity. BM3D is nowadays considered as one of the best denoising
algorithms, and it has very good results in terms of PSNR. Its main drawback is that, since
it uses the DCT basis for the thresholding operation, it can still present Gibbs artefacts
around the edges (as in Fig. 1.3(e)).

An evolution of BM3D that uses an adaptive Bayesian model instead of the fixed DCT
basis used in BM3D is Non-Local Bayes. This algorithm presents fewer artifacts than BM3D,
especially in smooth areas, and has a similar performance in terms of PSNR. Compared to
BM3D, Non-Local Bayes loses some contrast in textures.

A simple attempt to “correct” the issues of frequency-based denoising (namely, the
Gibbs effect), is to apply the denoising on a regularized version of the image, where the
edges have been removed. Fig 1.3(g) shows this attempt, where DCT denoising has been
applied on the Texture of the Cartoon+Texture decomposition presented in [25]. The results
shows significantly fewer ringing artifacts, but the overall quality of the image is still sub
par.

DAB3D applied tho the result of a patch-based denoising algorithm such as Non-Local
Bayes gives the best result in terms of both PSNR and visual quality. Notice in particular
the results near borders and textures (Fig. 1.4 and 1.5).

1.4 Interpreting the performance of a Dual Domain Image De-
noising step

A DDID step is a single iteration of the DDID algorithm [22], but it can also be used as a
last denoising step for other methods [21,42]. This section, along with the pseudocode in
Table 1, summarizes it.

This interpretation differs from the one originally proposed by Knaus and Zwicker [22],
but it leads to the same exact algorithm. The original interpretation of DDID splits the
image into a low- and a high-contrast layer, which are treated respectively with a spatial
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k

Figure 1.7 — lllustration of DDID’s preprocessing of a patch. The kernel k is computed using the
guide ¢. In the modified patch y,, all object discontinuities have been removed, leaving only the
texture information corresponding to the object selected by the kernel k. The removed pixels are
replaced by the average of the meaningful portion of the patch.

and a frequency domain method. In this work instead, the spatial domain filtering is seen
as a pre-processing to improve the frequency domain denoising.

To denoise a pixel p from the noisy image y the DDID step extracts a 31 x 31 pixel block
around it (denoted y) and the corresponding block g from the guide image g.

The blocks are processed to eliminate discontinuities that may cause artifacts in the sub-
sequent frequency-domain denoising. To that end, the weight function £ is derived from
g. The weights identify the pixels of the block belonging to the same object as the center p.
This weight function has the form of the bilateral filter [56,61]

2 2
K@) = exp (_ 'g“—’)v;,%(p)' ) ox (_ \q2—o_§\ ) 12)

The first term in this function is the range kernel, and it is used to identify the pixels be-
longing to the same structure as p, by selecting the ones with a similar color in the guide.
The parameter v, is chosen empirically in [22] and it is equal to 0.7, and o is the standard
deviation of the noise. The way (1.2) is constructed means that, when there is less noise, a
much more uniform, albeit smaller, area is taken into account.

The second term of (1.2) is the spatial kernel, and it removes the periodization disconti-
nuities associated with the Fourier transform. This term does not depend on the noise, but
it is roughly related to the size of the block and in [22] it is set to 7.0.

As said in Section 1.3, denoising by filtering Fourier coefficients presents problems in
presence of edges (due to the Gibbs phenomenon). To avoid that, the blocks are made
as regular as possible, by removing the parts that are not selected by % (and therefore not
relevant to the denoising of the central pixel). First, the average of the “relevant” part of
both the noisy and the guide blocks is computed:

5= Lkyla) PEpILICI0} (1.3)

2 k(q) > k(9)
where the sums are computed over N, the domain of the d x d block centered at p. After
that, the parts of the block not taken into account by & are set to the respective average. The
resulting modified block is

Ym(q) = k(9)y(q) + (1 — k(q))3. (1.4)
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As illustrated in Fig. 1.7 the block ¥, is similar to y in the parts belonging to the same object
as the central pixel (including the noise) and smooth in the rest. The same procedure is
applied to the block extracted from the guide

gm(q) = k(q)g(q) + (1 — k(q))g- (1.5)

In this way the “relevant” part of the blocks (similar to the central pixel) is retained by v,
and g,,, and their average value is assigned to the rest.

At this point, y,,, and g,, are two patches, built in the same way, in which discontinuities
have been strongly reduced and only information “relevant” to denoise the central pixel has
been kept. It is therefore safe to apply the Fourier transform and to continue the process in
the frequency domain

G(f) =) exp (—W)gm@, (1.6)
qEN,
2in(q —p)f
S(f) = exp | ————— |ym(q). (17)
3 e (-2

Assuming that y contains an additive white Gaussian noise of variance o2, the amount of
noise present in ¥, only depends on k. In particular, for a pixel ¢, ¥, (¢) contains a noise
equal to 0?k(q). An interesting property of the Fourier transform is that the noise in every
pixel is evenly distributed over all frequencies. Thus every frequency of S has Gaussian
noise with the same variance

a]% =0’ Z k(q)>. (1.8)
q€N,
The patch is then denoised by shrinking its Fourier coefficients S( f) by the shrinkage factor
{1 if f=0,
K(f) = V1% . (1.9)
exp <— GOP otherwise,

where + is a parameter of the algorithm, and it is determined in [22] to be 0.8. Section 1.9
deals with the problem of shrinkage in more detail. The denoised value of the central pixel
is finally recovered by reversing the Fourier transform. Inverting equation (1.4) is unneces-
sary, since k(p) = 1.

Equations (1.6-1.10) are slightly different from the ones presented in [22]. In fact, it
can be easily proved that G(f) and S(f) differ from the ones presented in the original pa-
per only at the zero frequency. This frequency is then restored after the shrinkage. In
the presented version, the zero frequency is left untouched by the shrinkage, by imposing
K(0) = 1. Since discontinuities have been removed from the blocks, filtering in the Fourier
domain doesn’t introduce ringing, which is a major advance made by DDID in transform
thresholding methods.

Finally, the denoised value of the central pixel is recovered by reversing the Fourier
transform. Since the inverse Fourier transform evaluated in the center of the patch is the
average of the frequencies, the central pixel’s value can be computed as

o(p) = 5 S SUEW). (1.10)
f
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Algorithm 1 Pseudo-code for DDID step, Sparse DDID and DA3D. The lines used only
in the DDID step are highlighted in blue. Bullets show the operations of each algorithm.
Variables in bold denote whole images, while italics denote single blocks. Multiplication
and division are pixel-wise.

=
Q
@

Input: y (noisy image), g (guide)
Output: denoised image

e o [Sparse

e ¢ DA3D

w0
out «+ 0
for all pixels p € y do
while min(w) < 7 do
p < arg min(w)
y < EXTRACTPATCH(y, p)
g < EXTRACTPATCH(g, p)
/ / regression weight, eq. 1.12
K;eqg <+ COMPUTEKREG(g)
/ / regression plane, eq. 1.11
P ¢ argminp 3 [y(q) — P(q)]* - Kreg(q)
y <y — P // subtract plane from the block
g < g— P // and from guide
k < COMPUTEK(g) // eq. 1.2

Ym < k-y+(1—k)- Ezk:(li)(zl/)(l)
gm — k- g+ (1—Fk) - (2LDgO
Y < DFT(ym)
G < DFT(gnm)
07 0® 3 k(q)®

2
K < COMPUTESHRINKAGEFACTOR <|G¢(7f)|> // shrinkage

2
¥
Tm < IDFT(K -Y)
// revert line 13

T [:cm -—(1-k) <Z£(]?(%(l))} /k

x < x + P // add plane back to the block

aggw < k- k // aggregation weight

out(p) + EXTRACTCENTRALPIXEL(z,)

// accumulate patch in the correct position

w < ADDPATCHAT(p, w, aggw)

out + ADDPATCHAT(p, out, aggw - )
return out
return out/w

2 k()
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This process is repeated for every pixel of the image.

For color images, k is computed by using the Euclidean distance, while the shrinkage is
done independently on each channel of the YUV color space. For more details about DDID
refer to [22,42]. An example of the result is shown in Fig. 1.2(d).

1.5 Sparse DDID step

The DDID step explained in section 1.4 is slow in practice because it has to process a block
for every pixel. In fact, each pixel is denoised several times, but the result is discarded every
time that it is not in the center of the current block. Since the denoising remains valid for
all pixels in the “relevant” part of the block, we propose to aggregate the processed blocks
to form the final result. As a result only a small number of blocks needs to be processed,
thus accelerating the algorithm considerably. Note that since the processing is done with
the modified block, line 13 of Table 1 must be reverted to obtain the denoised block (line
20).

In our selection-aggregation process, the image is treated by color-coherent blocks and
the results are aggregated with weights deduced from the guide image. This weighted av-
erage can also be seen as the interpolation of the denoised image from a subset of processed
blocks [1,12,16]. We found that the best aggregation weights are the squares of the weights
(1.2).

We now describe the greedy approach used for selecting the image blocks to be pro-
cessed. At each iteration a weight map w with the sum of the aggregation weights is
updated. This weight map permits to identify the pixel in the image with the lowest ag-
gregation weight, which will be selected as the center of the next block to process (line 5
of Table 1). This process iterates until the total weight for each pixel becomes larger than
a threshold 7. The weight function k is always equal to 1 in the center, so the algorithm
always terminates. The procedure is detailed in Table 1. This variant is faster to execute
than a single DDID step, since only a small number of blocks are actually processed. This
allows bigger patches to be used, that in turn gives better results in terms of denoising
quality. Experimentally, good results are achieved with patches as large as 64 x 64, which
is to be contrasted to patch based methods using mostly 8 x 8 patches. An example of the
result is shown in Fig. 1.2(e). The total number of processed blocks depends on the image
complexity. The centers of the effectively processed blocks are shown in Fig. 1.2(g). They
concentrate on edges and details.

1.6 Data Adaptive Dual Domain Denoising

We now address a main drawback of the weight function (1.2), used for the bilateral filter
and for many bilateral-inspired filters, including patch based methods. This weight func-
tion selects pixels of the block with a similar value. As a result, Sparse DDID works by
processing parts of the image that are piecewise constant, considering the image as com-
posed by many “flat” layers. This model is not well adapted for images that contain gra-
dients or shadings, as the same smooth region may be split in many thin regions. The
previous method can be extended to “normalize” each patch by subtracting an estimation
of the gradient around the patch center. In practice, this means estimating an affine model
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denoised y,, output for aggregation

Figure 1.8 — Steps of the DA3D algorithm. This figure shows what happens to a noisy patch taken
in a natural image, containing an edge. The arrows indicate the elements needed to compute every
step of the algorithm. Notice that, thanks to the weight function, the useful part of the patch is kept,
while the discontinuities are completely removed. See Fig. 1.9 for the steps on the white part of the

patch and Fig. 1.10 for the steps on texture.

51



Chapter 1. DA3D and the Dual Domain Methods

denoised y,, output for aggregation

Figure 1.9 — Steps of the DA3D algorithm. This figure shows what happens to a noisy patch taken
in a natural image, containing an edge. The arrows indicate the elements needed to compute every
step of the algorithm. Notice that, thanks to the weight function, the useful part of the patch is kept,
while the discontinuities are completely removed. See Fig. 1.8 for the steps on the white part of the

patch and Fig. 1.10 for the steps on texture.
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Y Ereg g
y—p p g—po
r.>
Ym k 9m
denoised y,, output for aggregation

Figure 1.10 — Steps of the DA3D algorithm, for a patch containing only a texture. The arrows indicate
the elements needed to compute every step of the algorithm. Notice that, thanks to the weight
function, the useful part of the patch is kept, while the discontinuities are completely removed. See

Fig. 1.8 and Fig. 1.9 for the steps near an edge.
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of the block, as proposed in [54], which can be computed using a weighted least squares
regression

. _ 2 )
min > (@) = P(@)] - Kreg(q), (1.11)
where the sum is computed over the domain of y and K, is a bilateral weight function
9(a) —9@)* _ la—»p’
Kreg(q) = exp (‘ 02 T oog2 | (1.12)

which selects the parts of the block that gets approximated by P. To ensure that the central
pixel gets denoised, the constraint P(p) = g(p) is also added. Since the weights K., should
capture the overall shape of the block, they are computed using a larger range parameter
than the bilateral weight function in (1.2). It is worth noting that although K., uses the
guide to select the parts of the block in which to perform the estimation, the regression is
performed directly on the noisy data y, thus allowing to correct any staircasing effect al-
ready present in the guide. The parameters o, and ,, are specific of the algorithm. The
case of color images is identical, since (1.11) is separable and can be computed indepen-
dently on every channel.

Once estimated, the local plane P is subtracted from the patch, effectively removing
shades and gradients. Then the standard DDID step is used to denoise the block and at the
end the plane is added back. The whole procedure is detailed in Table 1 (lines 8-11, 21). An
real example of the algorithm run on a patch is shown in Fig. 1.8-1.9-1.10.

An example of the result is shown in Fig. 1.2(f). Observe that the result presents fewer
staircasing effect and has a larger PSNR. In addition, fewer blocks are treated to denoise the
gradients (Fig. 1.2(h)).

1.7 Experiments

Our implementation of the DA3D algorithm (available in the support website [44]) has
been tested against the set of images shown in Fig. 1.11. For +, and vy, the parameters
of DDID [22] were kept (7, = 0.7, 74 = 0.8), but since DA3D does not need to process
all patches, the size of the patches themselves was chosen as 64 x 64, with o5 = 14. The
parameters 7 = 2, 05, = 20 and vy, = 7 were chosen experimentally on images outside the
test database.

The DA3D method was applied to the results of several state-of-the-art algorithms. Each
method was tested with noises of o = 5,10, 25, 40, 80. The results are summarized in Ta-
ble 1.1.

DAS3D improves the PSNR of every algorithm except NLDD and PID (which is to be
expected, since they are based on a similar shrinkage strategy). This improvement is more
marked with higher noises, which makes sense since the parameters of DDID were opti-
mized for medium to high noise. It is worth mentioning that DA3D is even able to im-
prove over BM3D-SAPCA, which is considered the best denoising algorithm up to date for
grayscale images. Similar results are obtained using SSIM [58] as metric.

In general BM3D+DA3D (DA3D using BM3D as guide) offers one of the best perfor-
mances with a reasonable computational cost. As an example the results of the best two
performing methods for the image “Montage” are shown in Fig. 1.12, along with the result

54



1.7. Experiments

Hello YW arld

Figure 1.11 — Test images used in the experiments. No parameter learning or fitting was performed
on this database. The image were chosen to include different features normally found in natural
images, i.e. smooth areas, textures and geometric elements.
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Method 0=5]0=10|0=25| 0=40 | 0=80

BM3D 38.43 | 34.94 | 30.58 | 28.27 | 24.69
- 38.39 | 34.95 | 30.67 | 28.41 | 25.09
SAPCA [8] | -0.04 | +0.01 | +0.10 | +0.14 | +0.39
38.24 | 34.70 | 30.37 | 27.99 | 24.94
BM3D [7] 38.24 | 34.78 | 30.54 | 28.23 | 25.03
+0.00 | +0.08 | +0.16 | +0.24 | +0.09
3795 | 3455 | 30.34 | 28.05 | 24.68
DDID [22] | 3790 | 34.52 | 30.39 | 28.16 | 24.84
-0.04 | -0.03 | +0.05 | +0.11 | +0.16
3791 | 34.29 | 2990 | 27.64 | 24.46
EPLL [67] | 37.92 | 34.39 | 30.21 | 28.04 | 24.80
+0.01 | +0.10 | +0.31 | +0.40 | +0.34
35.07 | 33.54 | 29.19 | 26.87 | 23.45
G-NLM [55] | 35.67 | 33.97 | 29.77 | 27.49 | 24.10
+0.60 | +0.43 | +0.58 | +0.63 | +0.65
38.29 | 34.75 | 30.35 | 28.07 | 24.78
LSSC [35] 38.34 | 34.88 | 30.61 | 28.32 | 24.97
+0.05 | +0.13 | +0.27 | +0.25 | +0.19

MLP 34.63 | 30.44
+ 34.78 | 30.61
BM3D [5] +0.15 | +0.17

38.19 | 34.62 | 30.13 | 27.86 | 24.45
NLB [27] 38.20 | 34.72 | 30.38 | 28.14 | 24.78
+0.02 | +0.10 | +0.25 | +0.28 | +0.33
38.12 | 34.62 | 30.30 | 28.11 | 24.83
NLDD [42] | 38.09 | 34.60 | 30.29 | 28.09 | 24.77
-0.04 | -0.02 | -0.01 | -0.02 | -0.05
37.31 | 33.58 | 28.97 | 26.50 | 22.72
NLM [2] 37.49 | 3398 | 29.66 | 27.45 | 24.17
+0.18 | +0.40 | +0.69 | +0.95 | +1.44
3797 | 3456 | 30.38 | 28.18 | 24.99
PID [23] 3790 | 3448 | 30.28 | 28.08 | 24.81
-0.07 | -0.08 | -0.10 | -0.11 | -0.18
38.31 | 34.78 | 30.39 | 28.16 | 25.00
SAIST [10] | 38.31 | 34.82 | 30.53 | 28.27 | 25.07
-0.01 | +0.04 | +0.14 | +0.11 | +0.07

Table 1.1 — Average PSNR comparison between state-of-the-art methods on grayscale images.
The first line of each row shows the average PSNR. The second line shows the average PSNR of
DA3D using the corresponding algorithm to generate the guide. The third line shows the average
improvement due to DA3D. The best result for each noise level is shown in bold, and the ones within
a range of 0.2 dB are shown in gray. MLP+BM3D only works for some specific levels of noise, the
other levels are left blank.
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Hello Warld ,, Hello World

(c) PID (d) BM3D+DA3D

Figure 1.12 — Denoising results for Montage, o = 25. Staircasing effects are present in (b) and (c),
and they are significantly reduced in (d) by DA3D.
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Method c=5|0c=10|0=25| 0=40 | 0=80
39.55 | 36.01 | 31.79 | 29.23 | 26.83
BM3D [7] 39.59 | 36.23 | 32.15 | 29.95 | 27.00
+0.05 | +0.22 | +0.36 | +0.72 | +0.16
39.20 | 3591 | 31.88 | 29.75 | 26.41
DDID [22] | 39.11 | 35.87 | 31.99 | 29.98 | 26.85
-0.09 | -0.04 | +0.11 | +0.23 | +0.43
39.77 | 36.09 | 31.71 | 29.35 | 26.64
NLB [27] 39.67 | 36.26 | 32.18 | 30.09 | 26.74
-0.10 | +0.16 | +0.47 | +0.74 | +0.11
39.26 | 3590 | 31.98 | 29.90 | 26.60
NLDD [42] | 39.17 | 35.87 | 31.99 | 29.97 | 26.63
-0.09 | -0.04 | +0.02 | +0.07 | +0.03
39.03 | 35.81 | 32.05 | 30.10 | 27.00
PID [23] | 38.99 | 35.80 | 32.03 | 30.02 | 26.83
-0.04 | -0.02 -0.02 -0.08 -0.17

Table 1.2 — Average PSNR comparison between state-of-the-art methods for color images. The first
line of each row shows the average PSNR obtained by denoising the test images. The second line
shows the average PSNR of DA3D using the corresponding denoising algorithm to generate the
guide. The third line shows the average improvement due to DA3D. The best result for each noise
level is shown in bold, and the ones within a range of 0.2 dB are shown in gray.

of BM3D+DA3D. The latter outperforms the other algorithms in terms of PSNR and image
quality. Despite having a high PSNR value, the result of the other two algorithms present
artifacts close to the edges and some staircasing (BM3D-SAPCA in particular).

Table 1.2 shows the results obtained for color images. In this case fewer algorithms
have been tested since most methods only work for grayscale images. While for small noise
levels DA3D does not improve the PSNR of the existing methods, for higher noise levels the
gain is considerable. In the case of BM3D and NL-Bayes, this improvement is even larger
than for grayscale images. As in the grayscale case, NLDD and PID are not improved (or
just marginally improved) by DA3D. Results for SSIM are available in the supplementary
materials [44].

Fig. 1.13 shows the two best denoising results for the image “Dice”, along with the
result of BM3D+DA3D. Most of the artifacts generated by BM3D disappear with the post-
processing, and at the same time the edges becomes sharper and the gradients smoother.

1.7.1 Comparison with other last-step denoising methods

Figure 1.14 compares the result of three algorithms: DA3D, G-NLM [55] and the third itera-
tion of DDID [22] (as done in NLDD [42]). The PSNR gain over Non-Local Means is shown
for every algorithm and for every image in the test set. Non-Local Means has been chosen
as a guide to make a fairer comparison, since it is the one used in G-NLM. It can be seen
that DA3D achieves better results for all levels of noise. Furthermore, especially in case of
low noise (o < 10), DA3D consistently improves the result.

58



1.7. Experiments

(a) Original (b) BM3D

38.999 dB 40.303 dB

(c) NL-Bayes (d) BM3D+DA3D

Figure 1.13 — Denoising results for Dice, o = 25.
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Figure 1.14 — PSNR gain for three different “last step” denoising methods. NLM was used to generate
the guide. Each dot represents an image of the test set. Note that DA3D does not only improve the
results on average, but it does it consistently.

1.8 Reducing the computational complexity

The algorithm, as it is described in the previous sections, can be slow if implemented
naively. In particular, keeping track of the minimum weight (Algorithm 1, lines 4-5) can
require scanning the whole image. In addition, the matter of parallel processing was not
addressed. This section deals with those two problems.

1.8.1 Copying the guide

We observed that if the patch being processed by DA3D does not contain enough informa-
tion, then the frequency processing does not improve the overall result. Therefore, when &
(computed in Algorithm 1, line 12) has a total weight below a certain threshold 7, the patch
is not further processed and its guide value is used for the aggregation.

We found that a value of n = 10 allows a substantial speed-up, especially on heavily
textured images, without significant changes to the result.

1.8.2 Tracking the minimum weight

In our first implementation, we selected the position with the lowest aggregation weight (as
explained in Section 1.5) with a simple linear search. This approach shows its limits when
the size of the image increases. Selecting a new block to process requires approximately
O(n) operations, with n the number of pixels of the image. Therefore, under the reasonable
assumption that the number of processed blocks is a fraction of the total (from the original
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MIN

Figure 1.15 — Schema of the quad-tree used in DA3D to keep track of the minimum weight. Each
node of the tree contains the minimum value of its four children. In order to retrieve the position of
the minimum value, one has simply to traverse the tree from the root to the leaf, always choosing
one of the children with the minimum value.

article, between 1% and 20%), and since the denoising of a block is performed in a bounded
time, the complexity of the algorithm is O(n?).

We therefore propose to use a quad-tree to keep track of the minimum. The weight
map w is in the leaves of the tree, and every node contains the minimum value of its four
children. This can also be interpreted as a multi-scale version of w, built using a min filter.
The space complexity for this data structure is
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because every “layer” of the tree contains a fourth of the values of the previous one.

In order to retrieve the position of the minimum value, one has simply to traverse the
tree from the root to the leaf, always choosing one of the children with the minimum value.
This guarantees that the chosen pixel is a global minimum for w, and has time complexity
O(logn).

To update the tree, it suffices to update the appropriate leaves, and then recompute the
minima in the upper nodes until the top. Since the aggregation is done one patch at a time,
it is simple to calculate which nodes need to be updated, thus avoiding to recompute the
values for areas in which w has not changed. The time complexity for this update is O(k),
where £ is the number of pixels of the patch that is being aggregated. Since k is constant,
the aggregation does not increase the complexity of the algorithm.

One could be tempted to update the values one by one. Although this could be simpler
to implement, it is slower, having a time complexity of O(klogn). Using this data structure
instead, the total complexity of the algorithm becomes O(nlogn), which allows to denoise
bigger images.
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BM3D
Size | Global | SAPCA | NLB | PID | BM3D | SAIST | MLP | EPLL | DDID | +DA3D

256x256 | 357s | 639s |048s|188s| 1.26s | 37.8s |16.5s|71.7s| 526s | 1.52s
512x512 | 3359s | 2490s |0.80s|725s| 494s | 140s | 60.7s | 272s | 20.4s | 5.59s

Table 1.3 — Average running time depending on image size between grayscale denoising methods.
The experiments were performed on a 8-core 2.67GHz Xeon CPU. Every algorithm was tested using
its official implementation. For DA3D the implementation available at [44] was used.

1.8.3 Parallel processing

Since DA3D selects the patches to denoise in a greedy fashion, it is impossible to know
where the next patch will be prior to the aggregation step of the current one. This makes
parallelization more complex than in other denoising algorithms.

In order to denoise a pixel p, the algorithm uses the other pixels inside a (64 x 64)
window, all the pixels needed to denoise p are at a distance of at most 32. This makes the
algorithm local, and allows to solve the problem of parallelism by just dividing the image in
tiles. Each tile can be denoised separately, and then the results can be combined together.

It is clear that the patches chosen in this way will not correspond exactly to the patches
chosen without parallelism. The main difference can be an over-sampling of the areas near
the edges, since the weights from a neighboring tile are not taken into account. This could
result in a slight overhead in the processing time. However, the experiments show that the
overhead is negligible, and the results of the simple and parallel versions of the algorithm
are identical from a practical standpoint. With bigger images, the overlap area becomes
smaller, therefore the factor of acceleration becomes even closer to the number of proces-
Sors.

1.8.4 Running time

The time needed to run the analyzed algorithms is summarized in Table 1.3. Using DA3D
as a post-processing method demands little additional time, while the gain is substantial
(in PSNR and in visual quality). For example, BM3D + DA3D turns out to take 1.52s, while
BM3D alone requires 1.26s. Therefore, while BM3D+DA3D is comparable to BM3D-SAPCA
in terms of performance, its computation is more than 200 time faster.

1.9 Learning the Shrinkage Curve

In DA3D the shrinkage is performed via a simple exponential dampening, the same that is
used in DDID. Since DA3D is conceived to be applied on top of another algorithm, we can
expect to have a better result if the shrinkage function is adapted to the guide. In order to
compute a better shrinkage curve, we trained the algorithm on the dataset of Figure 1.16.
For each algorithm, and for each noise level (since most algorithms behave differently
for different noise levels), the perfect curve to maximise the global PSNR was computed as
a look-up table. Similarly to the equation in line 18, we searched a function dependent on
G(I*
0’? ’
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Figure 1.16 — Images used to train the shrinkage curve.

Figure 1.17 — The frequencies of the patch are divided in two sets.

Since most denoising algorithms have different performances depending on the fre-
quency, another way to improve the result is to train different functions for high and low
frequencies. Therefore, we decided to divide the frequencies in two groups, and to train
the two shrinkage functions as look-up tables. In order to find the best function, we opti-
mized its value on the entries of the tables one by one, and we repeated the process until
convergence.

The resulting shrinkage curves for six different algorithms are shown in Figures 1.18-
1.23, and the comparison between the original version of DA3D and the version with adapted
curves is shown in Table 1.4.

From the results, two main observations can be made. First, for most algorithms, the
“optimal” shrinkage curve resembles to a hard thresholding in the case of high frequencies,
while the shape of the low frequency curve varies from algorithm to algorithm.

Second, and more important, the optimization of the shrinkage curve appears less im-
portant than expected. From Table 1.4, it looks like the improvement due to the learning
process is not consistent. Moreover, sometimes the optimal curves are decreasing in some
part. This should not happen in theory. An explanation for those two facts can be given.
These results indicate that the effectiveness of DA3D lies more on the bilateral weight and
on the sparse aggregation than on the shrinkage step itself. While conducting the experi-
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Figure 1.18 — Optimal shrinkage curves for BLS-GSM.
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1 1
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Figure 1.19 — Optimal shrinkage curves for DCT denoising.
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Figure 1.20 — Optimal shrinkage curves for Non-Local Means.
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Figure 1.21 — Optimal shrinkage curves for K-SVD.
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Figure 1.22 — Optimal shrinkage curves for BM3D.
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Figure 1.23 — Optimal shrinkage curves for Non-Local Bayes.
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oc=10 PNSR With DA3D Custom Curves
BLS-GSM 3564 | 36.70 | +1.06 | 36.68 | +1.04
DCT Denoising 36.31 3694 | +0.63 | 36.78 +0.48
Non-Local Means | 35.79 | 36.64 | +0.86 | 36.25 | +0.46
K-SVD 36.35 | 37.06 | +0.71 | 36.60 | +0.25
BM3D 37.03 | 37.74 | +0.72 | 38.00 | +0.97
Non-Local Bayes | 36.80 | 37.68 | +0.88 | 37.94 | +1.14

o=20 PNSR With DA3D Custom Curves
BLS-GSM 3199 | 3349 | +1.51 | 3346 | +1.47
DCT Denoising 32.87 | 33.78 | +0.91 | 33.80 | +0.94
Non-Local Means | 32.35 | 33.70 | +1.35 | 33.70 | +1.35
K-SVD 3259 | 33.74 | +1.15 | 33.20 | +0.61
BM3D 33.69 | 34.25 | +0.55 | 34.18 | +0.49
Non-Local Bayes 33.78 | 34.24 | +0.46 | 34.18 | +0.40

o =40 PNSR With DA3D Custom Curves
BLS-GSM 28.67 | 3050 | +1.83 | 30.44 | +1.77
DCT Denoising 29.55 | 30.60 | +1.04 | 30.57 | +1.02
Non-Local Means | 28.83 | 3055 | +1.72 | 3058 | +1.74
K-SVD 2945 | 30.62 | +1.17 | 29.77 | +0.32
BM3D 2999 | 31.33 | +1.34 | 31.41 | +1.43
Non-Local Bayes | 29.96 | 31.40 | +1.45 | 31.24 | +1.28

o=1T70 PNSR With DA3D Custom Curves
BLS-GSM 26.37 | 28.13 | +1.76 | 28.05 | +1.69
DCT Denoising 27.16 | 28.02 | +0.86 | 27.88 | +0.72
Non-Local Means | 26.06 27.53 +1.46 | 28.03 +1.97
K-SVD 2697 | 2799 | +1.01 | 2756 | +0.58
BM3D 28.18 | 28.58 | +0.40 | 28.55 | +0.38
Non-Local Bayes | 27.69 | 28.36 | +0.67 | 28.42 | +0.74

Table 1.4 — Difference in performance between standard DA3D and the version with tuned shrink-
age curves. The results are contrasting, and show that the performance varies with the database.
This suggests that the effectivness of DA3D lies more on the bilateral weight and on the sparse
aggregation than on the shrinkage step itself.
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ments to compute the optimal curves, we observed that even big changes in the parameters
were reflected in small improvements on the overall PSNR.

Moreover, the patches that are more affected by an optimal shrinkage curve are the ones
with a big support. At the same time, if a patch has a big support (or, in other terms, a
large weight k), it means that the patch is mostly flat. A mostly flat patch will have almost
all its coefficients already close to zero, so changing the shrinkage curve will not yield a big
difference.

1.10 Conclusions

This chapter presented DA3D, a fast Data Adaptive Dual Domain Denoising algorithm for
“last step” processing. It performs frequency domain shrinkage on shape and data-adaptive
patches. The key innovations of this method are a sparse processing that allows bigger
blocks to be used and a plane regression that greatly improves the results on gradients and
smooth parts. The experiments show that DA3D improves the results of most denoising
algorithms with reasonable computational cost, achieving a performance superior to the
state-of-the-art.
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Chapter 2

A Multi-Scale Denoising Framework

We reconsider in this chapter the class of patch based denoising algorithms and prove that they
underperform at coarse scale. We solve this problem by applying them at several scales in a
multiscale structure. The main technical issue is to maintain a white noise at the low scales, which
implies applying a hard frequency cut-off, yet avoiding the Gibbs reconstruction artefacts caused
by this cut-off. We solve this dilemma by applying after denoising at all scales a “soft fusion”
of the scales, that only retains the lower frequencies of each scale with the exception, of course,
of the finest scale. This eliminates the frequency involved in ringing artefacts. This method is
demonstrated on several denoising algorithms. It gives a significant PSNR improvement for all
of them. The visual aspect improves also significantly by removing staircasing artifacts and low
frequency bumps.

As we shall see in Chapter 3, this multiscale improvement is complementary to DA3D, presented
in Chapter 1. In Chapter 3 we shall explore systematically how both image denoising improve-
ments can be combined to yield the best PSNR with minimal artefacts. In the present chapter,
for a sake of clarity, we limit ourselves to demonstrate how our new multiscale framework is
effective on classic algorithms.

2.1 Introduction

In the preceding chapter, we provided a new view on frequency transform thresholding,
showing that it could perform excellently as the last step of any patch based denoising al-
gorithm. In this chapter we address another question left untreated by most state of the art
denoising algorithms. We observed that most of them limit their action to a limited pixel
neighborhood. This clearly means that low frequency noise remains untreated. This is a
drawback that yields very visible artifacts in flat areas, as we shall check in the experimen-
tal part of this chapter, and in our experimental study of Chapter 3. Thus, in this chapter
we provide a new perspective of another principle: the multi-scale representation. This
principle has already been explored in [4,15]. Even though the results were only partially
satisfying, the ideas presented are simple and promising. The main problem with their ap-
proach is that in higher scales, the noise becomes correlated, thus reducing the performance
of standard algorithms. Another work that tries to use a multi-scale model is [47]. The dif-
ference with our work is that [47] does not use classical denoising algorithm in the process
and that it does not avoid artifacts in the recomposition.

The multi-scale representation is also intrinsically present in wavelet-based denoising
algorithms [11, 18,34, 45]. It is also present in [52], where the KSVD algorithm is applied
on a wavelet decomposition of the image. The improvement over a single scale KSVD is
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important, especially for high PSNR, but since the wavelet decomposition does not allow
for a conservative recomposition, the authors need what they call a fusion strategy, in order
to reduce the artifacts. In [13] the authors propose to reduce the artifact in wavelet-based
denoising by using a constrained total variation minimization.

Denoising a multi-scale pyramid is a way to process more information to obtain a better
result. Other efforts have been made to provide more input to denoising algorithm. In
particular, it is worth citing [5, 65], that try to improve the results of a denoising algorithm
by using an external database of similar images.

2.1.1 Owur contribution

In this chapter we present a new multi-scale framework that can be applied to any other
existing denoising algorithm, consistently improving its results. The framework uses a
simple DCT pyramid, and is not computationally demanding.

Simply using the DCT pyramid may lead to ringing artifacts. We solve this issue by
introducing what we call conservative recomposition, which allows to keep the advantages of
the pyramid while avoiding its problems.

The result is a way of transforming any denoising algorithm into a multi-scale one, with
improvements both in visual quality and PSNR, and with little additional cost.

2.2 A Multi-scale Framework

We take the classic assumption [20] that the statistics of natural images are invariant to
a change of scale. A possible justification for this is that scenes are equally likely to be
viewed from different distances. A classic theoretical model for scale invariance can be
found in [30]. The scale invariance assumption is used for several multi-scale algorithms,
such as [4,45].

Local and non-local denoising methods, because of the size of patches and search win-
dows, are usually better at removing high-frequency noise, while they underperform at low
frequencies. In order to corroborate this claim, we show in Figure 2.1 the frequency distri-
bution of the result of some popular denoising algorithms on an image composed only of
white noise, together with the results for our multi-scale version of those algorithms pro-
posed in this paper.

Historically, wavelet thresholding was a common way of denoising every scale of an
image, but it has proven difficult to extend, and currently it is surpassed by modern patch-
based method. Nevertheless, the study of wavelet methods for thresholding is a first suc-
cessful attempt at multiscale image denoising, and it has great value as a source of inspira-
tion.

Given any sort of multiscale representation of an image, a possible way of exploiting it
in order to improve the performance of the denoising is to apply the denoising algorithm
at each scale, and then to recompose the image while keeping duplicate information from
the lowest scale when available.

There are two restrictions to this: first, we need every layer of the multiscale representa-
tion to have white Gaussian additive noise; second, we need a practical and effective way
of joining the different scales together to obtain the final result.
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Figure 2.1 — DCT transform of the result of various denoising algorithms applied to an image of pure
white noise, with and without the Multi-Scale Framework. Notice that there is still noise remaining in
the upper left corner of the Single Scale version, that contains the low frequencies of the image. In
the Multi-Scale version, the residual noise is much more uniform across frequencies.
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221 DCT pyramid

A way of satisfying both of those conditions is to use a DCT Pyramid. The Discrete Cosine
Transform, or DCT given in (2.1) is a real separable orthogonal transform. For 2-D signals,
the DCT can be computed by applying (2.1) to the rows and the columns. Its inverse is the
IDCT (2.2).

1= 1\ &
Y, = N Z(:)chos |:7T <j+2) N]’ (2.1)
"~ N-1 1
Xk:Yo+2jZlecos[7r<k:+2>N} (2.2)

The DCT of an image (as in Figure 2.1) has the coefficients relative to the low frequencies
in the upper-left corner. Moreover, it transforms additive Gaussian white noise in additive
Gaussian white noise.

Therefore, the DCT transform can be used to form a multiscale representation of an
image. The downsampling of the image is simply done by extracting the low frequencies
from the DCT transform of the image, and by computing the IDCT on just those frequencies.
Each layer of the pyramid has half the width and half the length of the previous one.

Using (2.1) and (2.2) for this procedure keeps the values of the image on the same range.
On the other hand, the standard deviation of the noise gets halved at each successive scale.
This makes sense in retrospect, since zooming out an image is a way to reduce its noise.

This representation has the advantage that, since an additive white Gaussian noise re-
mains so under the DCT transform, the model of the noise remains the same in every layer
of the pyramid. Thus, no particular adaptation of the denoising algorithm is needed to de-
noise the coarse layers. This is a very important property, since it allows a straight-forward
extension of any denoising algorithm. Recomposing the pyramid is trivial, since it can be
reduced to substituting the low frequencies of a layer with the frequencies of the coarser
layer.

The drawback of this model is that, since each layer is essentially the result of the convo-
lution of the previous one with a sinc-like function, ringing artifacts due to the Gibbs effect
can appear in the result. If the denoising algorithms alters the high frequencies of the upper
layer, the recomposition can present some unpleasant artifacts.

2.2.2 Conservative recomposition

We have to consider that the ringing artifacts are formed when two consecutive layers of the
pyramid do not merge properly. To solve this issue, we found an easy and tentatively new
solution. In the recomposition, we just consider the lower frequencies of the upper layers.
Those frequencies are selected by a parameter, that is specific of the denoising algorithm
used with the framework.

This conservative recomposition is the main reason why we cannot use a pyramid based
on a wavelet decomposition. Since in the wavelet base the frequencies are in discrete group,
there is no way to discard a part of them to better improve the fusion of the layers.
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(a) Layer O (b) Layer 1

(c) Layer 2 (d) Layer 3

(e) Layer 4 (f) Layer 5

Figure 2.2 — Ringing artifacts in the upper layer of the DCT pyramid. The layers are resized for easier
comparison. Since keeping all the coefficients in the low frequency of the DCT is comparable to a
convolution with a sinc function, the ripples are visible in the upper layer.
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Algorithm 2 Pseudo-code for the Multi-Scale Framework.

1: function MULTISCALE(input, Opnoise, Mscaless Jrec)

2:

10

17:
18:
19:
20:

21

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

3
4
5
6:
7
8
9

result < NULL

for scale < Ngegres — 1,...,0do

layer <— EXTRACTSCALE(input, scale)
tmp < DENOISE(layer, o poise/25°U¢)
result <— MERGECOARSE(tmp, result, frec)

end for
return result

. end function

: function EXTRACTSCALE(image, scale)
11:
12:
13:
14:
15:
16:

w, h < SIZE(image)

Wout — Lw/QscaleJ

hout — Lh/zscaleJ

freq < DCT(image)
tmp < ZEROS(Wout, Rout)

fori < 0,...,hout — 1,7+ 0,...,Wout — 1 do

tmpli, j] < freqli, ]
end for
return IDCT(tmp)

end function

if coarse = NULL then
return image

else
freq < DCT(image)
tmp < DCT(coarse)
w, h < SIZE(coarse)
Wree < W+ frec

hrec —h- frec

: function MERGECOARSE(image, coarse, frec)

fori < 0,...,hpec— 1,7+ 0,...,Wree — 1 do

freqli, j] < tmpli, j]
end for
return IDCT(freq)
end if

35: end function
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2.2.3 Algorithm

The pseudocode for the Multiscale Framework is shown in Algorithm 2, and a scheme
showing the procedure for a sample image is shown in Figure 2.3.

In Algorithm 2, the support function EXTRACTSCALE(image, scale) is used to extract
a specific level from the DCT pyramid. The level 0 is the input image itself, and every
other level is half the size of the previous one. Conversely, the support function MERGE-
COARSE(image, coarse, frec) is used to join together two different levels. The low frequency
of image get replaced by the ones from coarse, in a ratio proportional to f;.. Finally, MUL-
TISCALE(input, Onoise, Nscales, frec) performs the whole denoising process, using the previ-
ous two functions. Here DENOISE(image, o) is the denoising algorithm that is used with
the framework.

Since each layer of the pyramid contains a quarter of the pixels of the previous one,
the time needed to denoise the pyramid is similar to the time needed for a single-scale
denoising. In fact, we observed in our experiments that the overhead is mainly due to the
DCT transform, which is fast to compute [59].

2.3 Parameters of Multi-Scale Algorithms

In order to test the multi-scale framework, we first computed the best parameters for five
classic denoising algorithms. The only parameters of the Multiscale Framework are the
number of scales and the recomposition factor. To find the best values for different values
of noise, we tried different combinations over the set of images in Figure 2.4. The internal
parameters of the single algorithms were not modified.

2.3.1 Non-Local Means

We tried to use the Non-Local Means Denoising Algorithm [2] within our multi-scale frame-
work. We tested it for various amounts of noise, and for various parameters of the frame-
work. The results are in Figure 2.5. It is interesting to notice that different amounts of noise
call for different parameters. This is to be expected, since the denoising algorithm utilizes
different internal parameters depending on the kind of noise.

2.3.2 K-SVD

K-SVD [14, 29] Denoising uses sparse representations of the image patches in terms of a
learned dictionary. It is an effective method, with good results. We tested it to find the best
parameters within the multiscale framework. The results are in Figure 2.6. One can see that
the K-SVD algorithm, when the noise is over o = 20, benefits from the application of the
framework.

2.3.3 DCT denoising

DCT Denoising [63] is a simple two-step denoising algorithm. It is very fast, but in general
it is not regarded as the one with the best results. We included it in our testing because
we wanted to see how much we could improve the result of a really simple algorithm. In
order to further speed it up, we reduced the size of the patches to 4 x 4, instead of the
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Conservative recomposition

I
7

IDCT DCT
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Denoiser Denoiser Denoiser

IDCT

Decomposition
Figure 2.3 — Scheme of the Multi-Scale Framework with three levels. Notice that not all the fre-

quencies of the upper layers are used for the recomposition. This is done in order to avoid ringing
artifacts. The single denoising steps can be performed by any existing denoising algorithm.
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Figure 2.4 — Images used to find the best parameters of each multi-scale algorithm.

suggested 16 x 16. The results with different parameters for the Multi-Scale Framework are
in Figure 2.7. Notice that the best results are obtained with a large number of scales. This is
also due to the choice of using the algorithm with small patches, that allows the algorithm
to only “see” the high frequency noise.

2.34 BM3D

BMS3D [7] is considered the reference for denoising algorithms. Even though it can provide
results that contain artifacts, especially with high levels of noise, it provides high PSNR
values and overall a good image quality. The results with different parameters are provided
in Figure 2.8. It may be worth noticing that for low values of noise (¢ = 10) the best results
are obtained with only one scale, i.e. with the original algorithm. This may be due to
the fact that BM3D is highly optimized, especially for low levels of noise, and because the
Multi-Scale Framework is only marginally useful with those levels of noise, since the upper
layers are almost noise-free.

2.3.5 Non-Local Bayes

Non-Local Bayes [27] is a two-step denoising algorithm. It is currently considered a state-
of-the-art algorithm, it is fast and it provides good results, both visually and in terms of
PSNR. The results of the testing are shown in Figure 2.9.

24 Results

In Section 2.3, we have tried different parameters for a few denoising algorithms, in order to
select the best ones. To test the Multi-Scale Framework, we used a different dataset (shown
in Figure 2.10). This was necessary in order to understand if the parameters found were
really consistent.

We tried the algorithm and the noise levels of Section 2.3. For each algorithm and noise
we selected the parameters which gave the best results in the dataset of Figure 2.4, and we
applied them. The results are shown in Table 2.1.
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Figure 2.5 — Average PSNR with different parameters of the Multi-Scale Framework applied to the
Non-Local Means denoising algorithm. The integers on the left of each figure (1, 2, ..., 5) represent
the number of scales n.qs Uused in Algorithm 2. The value at the bottom is the fraction f,... of low
frequencies at each scale being used in the recomposition.
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Figure 2.6 — Average PSNR with different parameters of the Multi-Scale Framework applied to the K-
SVD denoising algorithm. The integers on the left of each figure (1, 2, ..., 5) represent the number
of scales ngcq1es Used in Algorithm 2. The value at the bottom is the fraction f.... of low frequencies
at each scale being used in the recomposition.
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PSNR with 0 =10 PSNR with =20
5 36.32 32.8
36.24 32.6
4 36.16 4 32.4
3 32'83 3 32.2
35.92 gi'g
2 35.84 2 :
1 3576 4 31.6
35.68 31.4
05 0.6 0.7 0.8 0.9 05 0.6 0.7 08 09 1.0
PSNR with 0 =30 PSNR with o =40
5 30.75 o 29.4
30.50 290.1
4 30.25 4 28.8
29.75 :
29.50 27.9
2 29.25 2 27.6
1 29.00 1 %;g
28.75 :
05 06 0.7 08 09 1.0 05 0.6 0.7 08 09 1.0
PSNR with 0 =50 PSNR with o =60
28.4 27.6
> 280 ° 27.2
26.8
4 276 4 26.4
27.2
3 26.8 3 26.0
: 25.6
2 26.4 2 25.2
26.0 24.8
1 25.6 1 24.4
05 06 0.7 08 09 1.0 05 0.6 07 08 09 1.0
PSNR with 0 =70 270 PSNR with o =80
5 265 5 26.0
25.5
4 260 4
255 25.0
3 250 3 24.5
545 24.0
2 - 2 23.5
1 235 1 22.5
05 06 0.7 08 09 1.0 05 0.6 07 08 09 1.0
PSNR with 0 =90 PSNR with ¢ =100
5 25.5 5 25.2
25.0 24.6
4 24.5 4 24.0
24.0 23.4
3 235 3 22.8
23.0
2 38 2 222
1 22.0 1 510

05 06 0.7 0.8 0.9 . 05 06 0.7 0.8 09

Figure 2.7 — Average PSNR with different parameters of the Multi-Scale Framework applied to the
DCT denoising algorithm. The integers on the left of each figure (1, 2, ..., 5) represent the number
of scales ngcq1es Used in Algorithm 2. The value at the bottom is the fraction f.... of low frequencies
at each scale being used in the recomposition.
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Figure 2.8 — Average PSNR with different parameters of the Multi-Scale Framework applied to the
BMS3D denoising algorithm. The integers on the left of each figure (1, 2, ..., 5) represent the number
of scales ngcq1es Used in Algorithm 2. The value at the bottom is the fraction f.... of low frequencies
at each scale being used in the recomposition.
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Figure 2.9 — Average PSNR with different parameters of the Multi-Scale Framework applied to the
Non-Local Bayes denoising algorithm. The integers on the left of each figure (1, 2, ..., 5) represent
the number of scales n.qs Uused in Algorithm 2. The value at the bottom is the fraction f,... of low
frequencies at each scale being used in the recomposition.
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Noise Non-Local Means K-SVD Denoising
single multi gain single multi gain
o =10 | 36.59dB | 36.74dB | +0.15dB | 38.18dB | 38.18dB | +0.00dB
o =20 | 32.59dB | 33.20dB | +0.61dB | 34.05dB | 34.49dB | +0.43dB
o =30 | 30.50dB | 31.33dB | +0.83dB | 32.06dB | 32.07dB | +0.01dB
o =40 | 28.84dB | 29.98dB | +1.14dB | 30.42dB | 30.97dB | +0.55dB
o =50 | 27.57dB | 28.87dB | +1.31dB | 29.19dB | 29.81dB | +0.61dB
o =60 | 26.75dB | 28.19dB | +1.44dB | 28.17dB | 28.95dB | +0.78dB
o =70 | 25.93dB | 27.48dB | +1.55dB | 27.65dB | 28.32dB | +0.67dB
o =380 | 25.24dB | 26.85dB | +1.61dB | 26.97dB | 27.72dB | +0.75dB
o =90 | 24.66dB | 26.31dB | +1.65dB | 26.36dB | 27.14dB | +0.78dB
o =100 | 24.15dB | 25.83dB | +1.68dB | 25.82dB | 26.69dB | +0.87dB
. DCT Denoising BM3D
Noise
single multi gain single multi gain
o =10 | 37.43dB | 37.86dB | +0.43dB | 38.59dB | 38.59dB | +0.00dB
o =20 | 33.04dB | 34.05dB | +1.00dB | 34.97dB | 34.96dB | -0.01dB
o =230 | 30.38dB | 31.89dB | +1.52dB | 32.87dB | 32.91dB | +0.04dB
o =40 | 28.42dB | 30.40dB | +1.98dB | 31.37dB | 31.46dB | +0.09dB
o =50 | 26.85dB | 29.25dB | +2.40dB | 30.22dB | 30.36dB | +0.14dB
o =60 | 25.55dB | 28.32dB | +2.78dB | 29.12dB | 29.31dB | +0.19dB
o="70 | 24.42dB | 27.56dB | +3.13dB | 28.65dB | 28.84dB | +0.19dB
o =380 | 23.44dB | 26.88dB | +3.44dB | 27.97dB | 28.20dB | +0.23dB
o =90 | 22.57dB | 26.29dB | +3.73dB | 27.30dB | 27.59dB | +0.29dB
o =100 | 21.78dB | 25.76dB | +3.98dB | 26.32dB | 26.74dB | +0.42dB
Noise Non-Local Bayes Non-Local Bayes (IPOL)
single multi gain single multi gain
o =10 | 38.58dB | 38.71dB | +0.13dB | 37.97dB | 38.17dB | +0.20dB
o =20 | 34.75dB | 35.09dB | +0.35dB | 34.49dB | 34.75dB | +0.25dB
o =30 | 32.49dB | 33.07dB | +0.58dB | 32.23dB | 32.62dB | +0.39dB
o =40 | 30.88dB | 31.65dB | +0.77dB | 30.61dB | 31.23dB | +0.62dB
o =50 |29.65dB | 30.61dB | +0.97dB | 30.30dB | 30.53dB | +0.22dB
o =60 | 28.65dB | 29.75dB | +1.09dB | 29.32dB | 29.62dB | +0.30dB
o="70 | 27.83dB | 29.02dB | +1.19dB | 28.57dB | 28.93dB | +0.36dB
o =280 | 27.14dB | 28.40dB | +1.26dB | 27.87dB | 28.33dB | +0.46dB
o =90 | 26.56dB | 27.86dB | +1.30dB | 27.27dB | 27.78dB | +0.51dB
o =100 | 26.05dB | 27.39dB | +1.34dB | 26.75dB | 27.46dB | +0.72dB

Table 2.1 — Results with the best settings for every algorithm. The results are an average over the
images of Figure 2.10.
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Noise Best single-scale Best multi-scale Gain
o =10 | 38.59dB BM3D 38.71dB NLB +0.12dB
oc=20 | 3497dB  BM3D | 35.09dB NLB +0.12dB
o =30 | 32.87dB BM3D 33.07dB NLB +0.20dB
o =40 | 31.37dB BM3D 31.65dB NLB +0.28dB
o =50 | 30.30dB NLBIPOL | 30.61dB NLB +0.31dB
o =60 | 29.32dB NLBIPOL | 29.75dB NLB +0.43dB
o=70 | 28.65dB  BM3D | 29.02dB NLB +0.37dB
oc=2380 | 2797dB  BM3D | 28.40dB NLB +0.43dB
oc=90 | 27.30dB  BM3D | 27.86dB NLB +0.56dB
o =100 | 26.75dB NLBIPOL | 27.46dB NLBIPOL | +0.71dB

Table 2.2 — Results with the best settings for every algorithm. The results are an average over the
images of Figure 2.10.

We can see from the table that the Multi-Scale Framework consistently improves the
results of the single-scale version of every algorithm. The only exception is BM3D, that save
for o = 40 has almost the same results in the single- and multi-scale version. This could
be explained by the fact that, although BM3D has very good PSNR results, it produces
artifacts. These artifacts can be amplified in the multi-scale version, so the advantages of
the multi-scale are lost.

To judge the visual quality, some of the results for a noise of & = 40 are available in
Figures 2.11-2.22. It can be seen that the multi-scale counterpart of each algorithm generally
increases the contrast and enhances lower-scale details. This is due to the fact that within
this framework those details are better denoised.

In particular, observe how in the more complex algorithms (K-SVD, BM3D and Non-
Local Bayes), the multi-scale version does indeed remove the low-frequency noise. This is
particularly evident in smooth areas (Figures 2.12, 2.16, 2.18), but it is also visible within ge-
ometric patterns (Figure 2.24). Also, for geometric structures, the multi-scale better recovers
the edges. A special mention should be done for Figure 2.20. The multi-scale version of the
algorithm recovers some lines inside the windows of the building. At a first glance, this
may look like the presence of ringing artifacts. In reality, looking at the original image, one
can see that those structures are present in the original image too. No single-scale algorithm
was able to retrieve them.

2.5 Conclusion

In this chapter we have reconsidered patch based denoising methods by observing that
they lacked a natural multiscale structure. We proved that they underperform at lower
scales. Extending them to make multiscale implied a multiscale representation that keeps
white noise at all scales. We found that a DCT pyramid was the most evident way to pro-
ceeed, but had never been used, probably because of Gibbs effects caused by hard frequency
thresholding. Our solution is to have a soft multiscale fusion that discards the high frequen-
cies of the lower scales. We observed significant PSNR and visual quality improvements.
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Nevertheless, this is not the end of the story. Indeed we used algorithms which have their
parameters optimized for a single scale usage. Clearly immersing them in multiscale struc-
ture will lead to different parameter choices and probably to further improvements. We
also thought of using wavelet bases, but found that they were not compatible with our soft
multiscale fusion.
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DCT Denoising

Figure 2.11 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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NL-Bayes MS NL-Bayes

Figure 2.12 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Figure 2.13 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Figure 2.14 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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DCT Denoising

MS NL-Means

Figure 2.15 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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MS NL-Bayes

Figure 2.16 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Figure 2.17 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Figure 2.18 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Noisy, o = 40

DCT Denoising MS DCT Denoising

MS NL-Means

Figure 2.19 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Figure 2.20 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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DCT Denoising . ..-‘-" | IMS DCT Denoising

MS NL-Means

Figure 2.21 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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| IMS NL-Bayes

Figure 2.22 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Figure 2.23 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Figure 2.24 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Figure 2.25 — Results of Single- and Multi-Scale algorithms applied to different images. The details
are taken from the set of test images in Figure 2.10.
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Figure 2.26 — Results of Single- and Multi-Scale algorithms applied to different images. The details

are taken from the set of test images in Figure 2.10.
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Chapter 3

Quality Criteria for Image Denoising

PSNR is the most used metric in the evaluation of denoising algorithm. In this chapter we try to
find a metric that better discriminates the weakness and strength of each denoising algorithm, to
allow a more fair comparison. Using this new metric, we find ways to combine the algorithms of
Chapter 1 and Chapter 2 that uses the strength of the two. These methods are compared in terms
of both the PSNR and the new metric.

Usually the performance of denoising algorithms is measured in terms of PSNR. An-
other famous quality index is the SSIM [58]. Unfortunately, neither of the two methods is
closely correlated with the visual quality, since they are not sensitive enough to artifacts.

Different denoising algorithms behave differently on textures and flat areas of images.
Measuring the PSNR of the result may be misleading, since an algorithm can provide a
good result on the former and a bad one on the latter, or vice versa. Therefore, we propose
to decouple the quality measure of a result in two values: the flat PSNR (or fPSNR) and the
texture PSNR (or tPSNR).

In order to do that, it is necessary to define a method to detect the smooth areas of an
image.

3.1 Detection of smooth areas

By smooth area we mean a part of the image that is regular and without texture. A simple
way to define it is:

Definition 1. A smooth area is an area of the image which is close to its affine regression surface.

From this definition, we can find a smoothness of a noiseless image, simply constructing
a local smooth approximation and computing its distance, as in Algorithm 3. The smooth-
ness is computed for each pixel of each 16 x 16 patch as the distance between the pixels
themselves and the regression plane of the patch. Then the global smoothness is computed
by aggregating each patch by keeping, for each pixel, this minimum value. This is done
in order to avoid false detections when, for example, a patch is composed of two different
smooth parts. This aggregation allows each pixel to be declared smooth, since there exists
a patch that includes the pixel itself without containing the edge.

This algorithm generates a result as the ones in Figures 3.1-3.2. Its pseudocode is listed
in Algorithm 3.
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Figure 3.1 — Example of smoothness map.
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3.1. Detection of smooth areas

Figure 3.2 — Example of smoothness map.
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Algorithm 3 Pseudo-code for the detection of Smooth Areas.
1: function SMOOTHDETECTOR(image, level)

2: result < 2-D, one-channel image of +oo with the same size as image

3 for all pixels p € image do

4 y < EXTRACTPATCH(image, p) > 16 x 16 patch
5 P < LEASTSQUARESREGRESSION(y, level)

6: d < 2-D, one-channel patch with the same size as y

7 for all pixels ¢ € y do

8 d(q) < lly(q) — P(q)ll, > Norm computed along channels
9: end for
10: result «— AGGREGATEWITHMIN(p, result, d)
11: end for
12: return result

13: end function

3.2 fPSNR and tPSNR

With the mask of the smooth areas, one can easily define a quality measure for both the
smooth and textured zones. Since the result of Algorithm 3 is a positive number, we must
define a threshold in order to decide if an area of the image is smooth. To allow more
flexibility, we define two thresholds, 71 and 73, with 71 < 7 and such that

o If the smoothness is < T the area is considered smooth.
o If the smoothness is > 75 the area is considered texture.

o If the smoothness is between 71 and 75, the area is considered “mixed”.

In other words, we can define a smoothness coefficient as

1 ifr<m
sc(x) = E:i fr<z<m (3.1)
0 if7'2<l'

Having identified the different areas of the image, we can easily (re-)define the quality
measures of a reconstructed image y as:

o Yse(@)|ly - vl FfMSE

MSE — PSNR = —10log,, -2~ 2
= se(@) |y — ¥l tMSE

tMSE — tPSNR = —101 )
Dy -l B MSE

MSE(y,y) = 1 PSNE = —10logy — (3.4)

The pseudo-code used to compute this measure is in Algorithm 4. It is worth noticing
that, differently from the “standard” PSNR, both the fPSNR and the tPSNR are not sym-
metric functions, since the smoothness map needs to be computed on the original, clean
image.
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Algorithm 4 Pseudo-code for the computation of the the flat PSNR, the texture PNSR, and

the PSNR.
1: function QUALITYMEASURES(y, ¥)
2 fSum + 0

3: fW+0
4: tSum < 0
5: tW + 0
6: sm < SMOOTHDETECTOR(y, linear)
7: for all pixels p € image do
8: d+ |ly(p) —y(»)| > Average of square distances over channels
1 if sm(p) <7y
9: sC +— w fr<z<mn
T2 —T1
0 if 79 < sm(p)
10: fSum < fSum + sc-d
11: W — fW + sc
12: tSum < tSum + (1 — sc) - d
13: tW < tW + (1 — sc)

14: end for

15: fMSE « fSum/fW

16: tMSE < tSum/tW

17: MSE « (fSum + tSum)/(fW + tW)

18 fPSNR <+ —10log,o(fMSE/255%)
19:  tPSNR <+ —10log,,(tM SE/255?%)
200 PSNR < —10log,,(MSE/255%)
21: return (fPSNR,tPSNR, PSNR)
22: end function

In addition, since the M SE can be seen as a convex combination of the fMSFE and the
tMSE, we can conclude that the PSN R always lies between the fPSNR and the tPSNR.

3.3 Evaluation of existing denoising algorithms

We applied the metrics discussed in this chapter to the results of the most common denois-
ing algorithms. The results are shown in Tables 3.1-3.2. The tables show the comparison
between the “standard” algorithms and their multi-scale version, using the framework of
Chapter 2. The comparison were made on the results of the algorithms in the dataset of
Figure 2.10.

It is interesting to notice that the multiscale framework improves both flat areas and
textures. The algorithms for which the framework is most effective are DCT Denoising and
Non-Local Bayes. This is due to different reasons. DCT Denoising shows a big improve-
ment since the patches used in the algorithm are 4 x 4. This means that the low frequency
noise is left untouched. Non-Local Bayes is improved by the multiscale framework because
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of its smooth results, that do not present artifacts. Even if the performance of Non-Local
Bayes is comparable with the one of BM3D for their single-scale versions, BM3D presents
artifacts along edges and on smooth areas, resulting in a more problematic recomposition,
and in a relatively smaller improvement.

3.4 Combining different denoising techniques

Both Chapter 1 and Chapter 2 present a method to improve the result of other denoising
algorithms. In this section, we present two different ways to combine both of them, in order
to get a better performing denoising algorithm.

Since both DA3D and the Multiscale framework need a “baseline” algorithm to work,
we chose to focus on Non-Local Bayes [27] and BM3D [7]. The first algorithm is particularly
suited for both DA3D and the Multiscale framework, since it has relatively few artifacts and
a smooth result, while we decided to included the second to offer a fair comparison with
what is still considered the state-of-the-art.

In order to combine DA3D and the Multiscale framework, there are fundamentally two
possibilities: apply DA3D first, or apply the Multiscale framework first. We present them
both.

3.4.1 DA3D first, then Multiscale

The first method consists in applying the Multiscale framework on the noisy image, but
applying DA3D to the finest level of the pyramid. The scheme for this method is shown
in Figure 3.3. One might be tempted to apply DA3D to every layer of the pyramid. This
does not work, since DA3D only works when the guide is smooth and does not have ring-
ing. As explained in Chapter 2, the upper layers of the DCT pyramid have ringing around
edges, therefore applying DA3D to those layers would actually worsen the result. We shall
indicate this method as da3d_ms (da3d followed by a multiscale recomposition).

3.4.2 Multiscale as guide for DA3D

A second method consists in using the result of the multiscale algorithm as a guide for
DA3D. This works well, since the guide provided to DA3D is better than the simple algo-
rithm. An issue with this method is that, even if DA3D uses big 64 x 64 patches, some
low-frequency noise remains in the result. To get rid of it, a second pass of the multiscale
framework is needed. Since just the very low frequency noise is reintroduced, in this second
step only the coarsest level of the pyramid is used for the recomposition. The scheme for
this method is shown in Figure 3.4. We shall indicate this method as ms_da3d (multiscale,
followed by da3d, followed by a second step of multiscale).

3.4.3 Results

Those two techniques are compared for the test set of Figure 3.5. These images are relatively
noise-free, since they were all taken in conditions of good light and low ISO values with a
good camera, and they were afterwards resized to eliminate the residual noise. They were
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oc=10 fPSNR tPSNR PSNR
Non-Local Means | 40.03 dB | 34.98 dB | 36.59 dB
Multi-Scale 39.96dB | 35.19dB | 36.74 dB
Difference -0.07dB | +0.21dB | +0.15dB
DCT Denoising | 39.48 dB | 36.28 dB | 37.43 dB
Multi-Scale 40.78 dB | 36.39 dB | 37.86 dB

Difference +1.30dB | +0.11dB | +0.43 dB

KSVD 40.84 dB | 36.81 dB | 38.18 dB
Multi-Scale 40.84 dB | 36.81 dB | 38.18 dB
Difference +0.00dB | +0.00dB | +0.00 dB

NL-Bayes (IPOL) | 40.98 dB | 36.46 dB | 37.97 dB
Multi-Scale 41.01dB | 36.72dB | 38.17 dB
Difference +0.03dB | +0.25dB | +0.20 dB
Non-Local Bayes | 41.72dB | 37.05dB | 38.58 dB
Multi-Scale 41.70 dB | 37.22dB | 38.71dB

Difference -0.02dB | +0.17dB | +0.13dB
BM3D 4148 dB | 37.13dB | 38.59 dB

Multi-Scale 4148 dB | 37.13dB | 38.59 dB

Difference +0.00dB | +0.00 dB | +0.00 dB
o=20 fPSNR tPSNR PSNR

Non-Local Means | 36.46 dB | 30.90 dB | 32.59 dB
Multi-Scale 36.67dB | 31.59dB | 33.20 dB
Difference +0.21dB | +0.69dB | +0.61 dB

DCT Denoising | 34.79dB | 32.03dB | 33.04 dB
Multi-Scale 37.26dB | 32.50dB | 34.05 dB

Difference +2.47 dB | +0.47 dB | +1.00 dB

KSVD 36.56 dB | 32.75dB | 34.05 dB
Multi-Scale 37.79dB | 3293 dB | 34.49 dB
Difference +1.23dB | +0.18 dB | +0.43 dB

NL-Bayes (IPOL) | 37.79 dB | 32.92dB | 34.49 dB
Multi-Scale 38.09dB | 33.16 dB | 34.75 dB
Difference +0.30dB | +0.24 dB | +0.25dB

Non-Local Bayes | 38.58 dB | 33.05dB | 34.75 dB
Multi-Scale 38.65dB | 33.45dB | 35.09 dB

Difference +0.07dB | +0.41 dB | +0.35 dB

BM3D 38.19dB | 33.41dB | 34.97 dB
Multi-Scale 38.31dB | 33.38dB | 34.96 dB
Difference +0.12dB | -0.04dB | -0.01 dB

Table 3.1 — Showing fPSNR, tPSNR and PSNR for various algorithms. The normal version is com-
pared with the multiscale version using the framework of Chapter 2.
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o =40 fPSNR tPSNR PSNR
Non-Local Means | 33.22dB | 27.05dB | 28.84 dB
Multi-Scale 33.93dB | 28.27 dB | 29.98 dB
Difference +0.70dB | +1.22dB | +1.14 dB
DCT Denoising 29.67dB | 27.64 dB | 28.42 dB
Multi-Scale 33.76 dB | 28.83dB | 30.40 dB

Difference +4.08dB | +1.19dB | +1.98 dB

KSVD 33.68dB | 28.90dB | 30.42 dB
Multi-Scale 3491dB | 29.26 dB | 30.97 dB
Difference +1.23dB | +0.36 dB | +0.55 dB

NL-Bayes (IPOL) | 34.04 dB | 29.01 dB | 30.61 dB
Multi-Scale 3494 dB | 29.56 dB | 31.23 dB
Difference +0.89dB | +0.55dB | +0.62 dB
Non-Local Bayes | 35.38dB | 29.06 dB | 30.88 dB
Multi-Scale 35.68 dB | 29.91 dB | 31.65 dB

Difference +0.30dB | +0.85dB | +0.77 dB
BM3D 34.71dB | 29.79dB | 31.37 dB

Multi-Scale 35.11dB | 29.80dB | 31.46 dB

Difference +0.40dB | +0.01 dB | +0.09 dB
o=170 fPSNR tPSNR PSNR

Non-Local Means | 30.63 dB | 24.08 dB | 25.93 dB
Multi-Scale 31.58dB | 25.74dB | 27.48 dB
Difference +0.95dB | +1.66 dB | +1.55 dB

DCT Denoising 2528 dB | 23.85dB | 24.42 dB
Multi-Scale 30.75dB | 26.04 dB | 27.56 dB

Difference +5.47dB | +2.19dB | +3.13 dB

KSVD 31.26 dB | 26.04 dB | 27.65dB
Multi-Scale 32.71dB | 26.52dB | 28.32dB
Difference +1.45dB | +0.47 dB | +0.67 dB

NL-Bayes (IPOL) | 33.06 dB | 26.75dB | 28.57 dB
Multi-Scale 33.12dB | 27.16 dB | 28.93 dB
Difference +0.06 dB | +0.41 dB | +0.36 dB

Non-Local Bayes | 32.50dB | 26.00dB | 27.83 dB
Multi-Scale 33.39dB | 27.22dB | 29.02 dB

Difference +0.89dB | +1.22dB | +1.19 dB

BM3D 32.02dB | 27.07 dB | 28.65 dB
Multi-Scale 32.71dB | 27.15dB | 28.84 dB
Difference +0.70dB | +0.07 dB | +0.19 dB

Table 3.2 — Showing fPSNR, tPSNR and PSNR for various algorithms. The normal version is com-
pared with the multiscale version using the framework of Chapter 2.
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3.4. Combining different denoising techniques

[on-LoclaI Bayes] |

R

(Non-Local Bayes] ~ (Non-Local Bayes]|

[Multiscale recomposition]

Figure 3.3 — Scheme of the da3d_ms denoising method that combines Non-Local Bayes, DA3D
and the Multi-Scale Framework. The values for the multiscale recompositions are the one used for
Non-Local Bayes in Chapter 2 (0.5 for ¢ = 10 and ¢ = 20, 0.6 for ¢ = 40 and 0.7 for o = 70). DA3D
is applied using the result of Non-Local Bayes as guide only on the finer scale. Applying DA3D to
coarser scale degrades the results due to the presence of ringing in the DCT pyramid.
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[Multi;cale decoosition]
|
-
| n-LocaI Bayes) .. [Non-LocaI Bayes] [Non-LocaI Bayes)
| |

[Multiscale recomposition] guide DA3D

[ .
[Replace low frequencies]

Figure 3.4 — Scheme of the ms_da3d denoising method that combines Non-Local Bayes, DA3D
and the Multi-Scale Framework. The values for the first multiscale recompositions are the one used
for Non-Local Bayes in Chapter 2 (0.5 for 0 = 10 and o = 20, 0.6 for o = 40 and 0.7 for o = 70).
The second recomposition uses the same parameters, but it only merge the coarser level. DA3D is
applied using the result of Multiscale Non-Local Bayes as guide, and the lower frequencies of the
result of the first part are reinjected in the final result.
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Figure 3.5 — Images used in the experiments.
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taken from RAW sources, therefore they do not present compression artifacts. All images
have about 1.4 MPixels after the resizing.

The results for different levels of noise using Non-Local Bayes as the base algorithm are
shown in Tables 3.3-3.6. These results are worth commenting: it is clear that DA3D is the
best method to improve the results on the flat areas, while only marginally improving the
results on textures. Conversely, using the multiscale framework boosts the result quality
on textures, with a small improvement on flat areas. This fact is not obvious from the
PSNR values alone, and it shows that a finer metric allows to appreciate different aspects of
denoising results. The two combined methods, da3d_ms and ms_da3d, balance the strength
of the two algorithms. Even if they do not excel in neither flat areas or textures, they present
good results in all areas, and in general a more pleasant visual result. In particular, we
observed that when the noise has standard deviation of 10 or 20, the best compromise is
achieved by da3d_ms, while for noise of 40 and 70 the best results come from ms_da3d. This
also confirms the fact that DA3D was conceived to treat medium-to-high noise levels, so
applying it at the end gives the best results in this case.

The same results using BM3D as the base algorithm are presented in Tables 3.7-3.10.
In this case one can see that, since the output of BM3D contains artifacts, the multiscale
framework fails to improve the results significantly. Therefore, the best result (except maybe
for small values of noise, like o = 10) are attained by DA3D.

Introducing new metrics, as FPSNR and TPSNR, is needed in order to evaluate the re-
sults of denoising algorithms more objectively. Images 3.6-3.7 show some examples of re-
sults in details that are commonly “hard” to denoise, to show how the algorithms behave
in these cases.

All the examples are available at http://dev.ipol.im/ pierazzo/CombinedDenoising/.
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3.4. Combining different denoising techniques

FPSNR
oc=10 nlb ms da3d da3d_ms ms_da3d
DSC_0767 | 46.79 dB 47.96 dB 47.89 dB 48.08 dB 48.24 dB
IMG 7113 41.58 dB 41.56 dB 41.65 dB 41.55 dB 41.65 dB
IMG_7626 | 45.02 dB 45.03 dB 45.29 dB 45.04 dB 45.27 dB
IMG_7627 | 40.91 dB 40.79 dB 41.14 dB 40.84 dB 40.95 dB
IMG_7673 | 42.49 dB 42.50 dB 42.68 dB 42.51 dB 42.69 dB
IMG_7739 40.48 dB 40.36 dB 40.45 dB 40.33 dB 40.42 dB
IMG_8275 | 39.42 dB 39.26 dB 39.51 dB 39.28 dB 39.49 dB
IMG_8336 | 43.77 dB 43.91 dB 44.09 dB 43.90 dB 44.02 dB
IMG_8339 | 42.90dB 4291 dB 43.16 dB 42.91 dB 41.20 dB
IMG_8586 40.62 dB 40.62 dB 40.67 dB 40.59 dB 40.70 dB
Average 42.40 dB 42.49 dB 42.65 dB 42.50 dB 42.46 dB

TPSNR
oc=10 nlb ms da3d da3d_ms ms_da3d
DSC_0767 | 39.62 dB 40.08 dB 39.60 dB 39.98 dB 39.89 dB
IMG_7113 | 35.98 dB 36.09 dB 35.81 dB 35.99 dB 35.92 dB
IMG_7626 38.53 dB 38.68 dB 38.32 dB 38.56 dB 38.49 dB
IMG_7627 | 36.39 dB 36.44 dB 36.20 dB 36.36 dB 36.28 dB
IMG_7673 36.33 dB 36.50 dB 36.14 dB 36.40 dB 36.30 dB
IMG_7739 | 36.54 dB 36.79 dB 36.45 dB 36.71 dB 36.61 dB
IMG_8275 36.43 dB 36.51 dB 36.29 dB 36.44 dB 36.41 dB
IMG_8336 | 37.46 dB 37.56 dB 37.29 dB 37.45 dB 37.40 dB
IMG_8339 | 39.71 dB 39.96 dB 39.74 dB 39.97 dB 39.16 dB
IMG_8586 | 36.22 dB 36.42 dB 36.00 dB 36.30 dB 36.19 dB
Average 37.32 dB 37.50 dB 37.18 dB 37.42 dB 37.26 dB

PSNR
oc=10 nlb ms da3d da3d_ms ms_da3d
DSC_0767 | 45.34 dB 46.25 dB 46.02 dB 46.28 dB 46.34 dB
IMG_7113 | 38.07 dB 38.15 dB 37.95 dB 38.07 dB 38.04 dB
IMG_7626 | 41.33 dB 41.44 dB 41.24 dB 41.35 dB 41.36 dB
IMG_7627 37.43 dB 37.46 dB 37.30 dB 37.40 dB 37.34 dB
IMG_7673 | 38.44 dB 38.57 dB 38.32 dB 38.50 dB 38.46 dB
IMG_7739 37.57 dB 37.76 dB 37.50 dB 37.69 dB 37.62 dB
IMG_8275 37.09 dB 37.13 dB 36.99 dB 37.07 dB 37.08 dB
IMG_8336 40.22 dB 40.34 dB 40.18 dB 40.26 dB 40.25 dB
IMG_8339 41.11 dB 41.27 dB 41.21 dB 41.28 dB 40.12 dB
IMG_8586 37.70 dB 37.86 dB 37.55 dB 37.76 dB 37.70 dB
Average 39.43 dB 39.62 dB 39.43 dB 39.57 dB 39.43 dB

Table 3.3 — Results using Non-Local Bayes as base algorithm, noise with o = 10. The best result of
each line is shown in bold, and the results inferior by less than 0.2 dB are shown in gray. From the
results is clear that DA3D is the best method to improve the results on the flat areas, while applying
the multiscale frameworks leads to an improvement in the textures of the images. For this level of
noise, the combination da3d_ms offers a good combination of texture quality and flat areas quality.
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FPSNR
o =20 nlb ms da3d da3d_ms ms_da3d
DSC_0767 43.17 dB 44.73 dB 44.67 dB 4494 dB 45.22 dB
IMG_7113 38.59 dB 38.57 dB 38.79 dB 38.60 dB 38.75 dB
IMG_7626 42.22 dB 42.35 dB 42.78 dB 42.36 dB 42.73 dB
IMG_7627 | 37.82dB 37.87 dB 38.37 dB 37.95 dB 38.21 dB
IMG_7673 | 39.70 dB 39.72 dB 40.03 dB 39.77 dB 40.03 dB
IMG_7739 37.85 dB 37.87 dB 38.06 dB 37.89 dB 37.97 dB
IMG_8275 | 36.23 dB 36.12 dB 36.56 dB 36.20 dB 36.48 dB
IMG_8336 | 40.72 dB 40.90 dB 41.18 dB 40.95 dB 41.20 dB
IMG_8339 39.28 dB 39.93 dB 40.05 dB 40.00 dB 39.06 dB
IMG_8586 | 37.63 dB 37.83 dB 37.91 dB 37.82 dB 37.93 dB
Average 39.32dB 39.59 dB 39.84 dB 39.65 dB 39.76 dB

TPSNR
o =20 nlb ms da3d da3d_ms ms_da3d
DSC_0767 35.21 dB 36.13 dB 35.45 dB 36.14 dB 36.04 dB
IMG_7113 | 31.93dB 32.29 dB 31.91 dB 32.23 dB 32.12 dB
IMG_7626 34.85 dB 35.12 dB 34.73 dB 34.98 dB 34.99 dB
IMG_7627 | 32.51dB 32.78 dB 32.41 dB 32.72 dB 32.63 dB
IMG_7673 | 32.38dB 32.78 dB 32.28 dB 32.70 dB 32.56 dB
IMG_7739 | 32.49 dB 33.06 dB 32.53 dB 32.94 dB 32.88 dB
IMG_8275 | 32.44 dB 32.75dB 32.46 dB 32.74 dB 32.71 dB
IMG_8336 | 33.60 dB 33.80 dB 33.51 dB 33.78 dB 33.71dB
IMG_8339 | 35.55dB 36.18 dB 35.81 dB 36.25 dB 35.88 dB
IMG_8586 32.29 dB 32.71 dB 32.22dB 32.61 dB 32.49 dB
Average 33.33 dB 33.76 dB 33.33 dB 33.71dB 33.60 dB

PSNR
o =20 nlb ms da3d da3d_ms ms_da3d
DSC_0767 | 41.43 dB 42.73 dB 42.39 dB 42.85 dB 42.96 dB
IMG_7113 34.24 dB 34.53 dB 34.27 dB 34.48 dB 34.43 dB
IMG_7626 | 37.86dB 38.09 dB 37.88 dB 37.99 dB 38.08 dB
IMG_7627 | 33.67 dB 33.90 dB 33.64 dB 33.86 dB 33.81 dB
IMG_7673 | 34.70 dB 35.03 dB 34.67 dB 34.98 dB 34.90 dB
IMG_7739 33.75 dB 34.24 dB 33.81 dB 34.14 dB 34.11 dB
IMG_8275 | 33.22dB 33.47 dB 33.29 dB 33.48 dB 33.49 dB
IMG_8336 36.58 dB 36.77 dB 36.61 dB 36.76 dB 36.76 dB
IMG_8339 | 37.13dB 37.77 dB 37.55 dB 37.83 dB 37.27 dB
IMG_8586 | 33.97 dB 34.35 dB 33.97 dB 34.28 dB 34.19 dB
Average 35.65 dB 36.09 dB 35.81 dB 36.07 dB 36.00 dB

Table 3.4 — Results using Non-Local Bayes as base algorithm, noise with o = 20. The best result of
each line is shown in bold, and the results inferior by less than 0.2 dB are shown in gray. From the
results is clear that DA3D is the best method to improve the results on the flat areas, while applying
the multiscale frameworks leads to an improvement in the textures of the images. For this level of
noise, the combination da3d_ms offers a good combination of texture quality and flat areas quality.
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FPSNR
o =40 nlb ms da3d da3d_ms ms_da3d
DSC_0767 39.42 dB 41.32 dB 41.14 dB 41.53 dB 42.00 dB
IMG_7113 | 35.64 dB 35.88 dB 36.22 dB 35.92 dB 36.11 dB
IMG_7626 | 38.77 dB 39.04 dB 39.68 dB 39.04 dB 39.57 dB
IMG_7627 | 34.62dB 34.87 dB 35.57 dB 34.94 dB 35.29 dB
IMG_7673 | 36.77 dB 36.99 dB 37.45 dB 37.05 dB 37.40 dB
IMG_7739 | 35.19 dB 35.57 dB 35.83 dB 35.61 dB 35.78 dB
IMG_8275 | 33.13dB 33.15dB 33.81 dB 33.24 dB 33.58 dB
IMG_8336 | 37.45dB 37.66 dB 38.14 dB 37.75 dB 38.09 dB
IMG_8339 35.47 dB 36.83 dB 36.92 dB 36.94 dB 36.47 dB
IMG_8586 | 34.87 dB 35.24 dB 35.37 dB 35.27 dB 35.40 dB
Average 36.13 dB 36.66 dB 37.01 dB 36.73 dB 36.97 dB

TPSNR
o =140 nlb ms da3d da3d_ms ms_da3d
DSC_0767 30.97 dB 32.26 dB 31.52dB 32.35dB 32.32dB
IMG_7113 | 27.83dB 28.76 dB 28.16 dB 28.70 dB 28.65 dB
IMG_7626 31.00 dB 31.39 dB 31.11dB 31.29 dB 31.41 dB
IMG_7627 | 28.75dB 29.33 dB 28.82 dB 29.29 dB 29.22 dB
IMG_7673 | 28.50 dB 29.27 dB 28.67 dB 29.22 dB 29.09 dB
IMG_7739 | 29.35dB 30.03 dB 29.33 dB 29.93 dB 29.75 dB
IMG_8275 | 28.39 dB 29.19 dB 28.78 dB 29.22 dB 29.22 dB
IMG_8336 | 29.53 dB 30.07 dB 29.79 dB 30.13 dB 30.11 dB
IMG_8339 | 31.36dB 32.65 dB 32.13 dB 32.71 dB 32.59 dB
IMG_8586 | 28.65dB 29.31 dB 28.72 dB 29.27 dB 29.13 dB
Average 29.43 dB 30.23 dB 29.70 dB 30.21 dB 30.15 dB

PSNR
o =40 nlb ms da3d da3d_ms ms_da3d
DSC_0767 | 37.48 dB 39.12 dB 38.67 dB 39.27 dB 39.50 dB
IMG_7113 | 30.34 dB 31.16 dB 30.71 dB 31.12 dB 31.11 dB
IMG_7626 | 34.09 dB 34.46 dB 34.36 dB 34.38 dB 34.59 dB
IMG_7627 | 29.97 dB 30.52 dB 30.13 dB 30.49 dB 30.46 dB
IMG_7673 | 30.95dB 31.65 dB 31.19 dB 31.62 dB 31.55 dB
IMG_7739 | 30.68 dB 31.31dB 30.73 dB 31.24 dB 31.10dB
IMG_8275 | 29.29 dB 30.00 dB 29.72 dB 30.03 dB 30.08 dB
IMG_8336 | 32.68 dB 33.15 dB 33.02 dB 33.22 dB 33.27 dB
IMG_8339 | 33.06 dB 34.37 dB 34.02 dB 34.44 dB 34.21 dB
IMG_8586 | 30.49 dB 31.11 dB 30.64 dB 31.08 dB 30.98 dB
Average 31.90 dB 32.68 dB 32.32dB 32.69 dB 32.69 dB

Table 3.5 — Results using Non-Local Bayes as base algorithm, noise with o = 40. The best result of
each line is shown in bold, and the results inferior by less than 0.2 dB are shown in gray. From the
results is clear that DA3D is the best method to improve the results on the flat areas, while applying
the multiscale frameworks leads to an improvement in the textures of the images. For this level of
noise, the combination ms_da3d offers a good combination of texture quality and flat areas quality.
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FPSNR
o="1T0 nlb ms da3d da3d_ms ms_da3d
DSC_0767 | 35.73 dB 38.36 dB 38.07 dB 38.56 dB 39.16 dB
IMG 7113 3291 dB 33.98 dB 33.98 dB 34.02 dB 34.15 dB
IMG_7626 | 34.99 dB 36.16 dB 36.53 dB 36.24 dB 36.75 dB
IMG_7627 | 31.74 dB 32.44 dB 33.07 dB 32.51 dB 32.78 dB
IMG_7673 | 33.94 dB 3491 dB 35.18 dB 34.98 dB 35.31 dB
IMG_7739 | 32.77 dB 33.61 dB 33.73 dB 33.67 dB 33.84 dB
IMG_8275 | 30.44 dB 30.92 dB 31.49 dB 30.99 dB 31.25dB
IMG_8336 | 34.17 dB 35.20 dB 35.46 dB 35.28 dB 35.56 dB
IMG_8339 32.04 dB 34.17 dB 34.14 dB 34.26 dB 34.08 dB
IMG_8586 | 32.56 dB 33.17 dB 33.32dB 33.21 dB 33.49 dB
Average 33.13 dB 34.29 dB 34.50 dB 34.37 dB 34.64 dB

TPSNR
oc="170 nlb ms da3d da3d_ms ms_da3d
DSC_0767 27.75 dB 29.25 dB 28.56 dB 29.32 dB 29.35 dB
IMG_7113 | 25.17 dB 26.27 dB 25.32 dB 26.22 dB 26.02 dB
IMG_7626 27.29 dB 28.15 dB 27.89 dB 28.21 dB 28.30 dB
IMG_7627 | 25.90 dB 26.73 dB 26.23 dB 26.74 dB 26.65 dB
IMG_7673 25.56 dB 26.67 dB 25.96 dB 26.65 dB 26.54 dB
IMG_7739 27.32 dB 27.97 dB 27.34 dB 27.95 dB 27.81 dB
IMG_8275 | 25.27 dB 26.51 dB 25.84 dB 26.52 dB 26.48 dB
IMG_8336 26.13 dB 27.21 dB 26.77 dB 27.24 dB 27.28 dB
IMG_8339 | 27.85dB 29.99 dB 29.32 dB 30.02 dB 30.05 dB
IMG_8586 | 26.05dB 26.81 dB 26.12 dB 26.78 dB 26.62 dB
Average 26.43 dB 27.55 dB 26.93 dB 27.56 dB 27.51 dB

PSNR
o="170 nlb ms da3d da3d_ms ms_da3d
DSC_0767 | 33.98 dB 36.13 dB 35.66 dB 36.27 dB 36.60 dB
IMG_7113 27.68 dB 28.77 dB 27.96 dB 28.73 dB 28.59 dB
IMG_7626 | 30.37 dB 31.29 dB 31.16 dB 31.36 dB 31.53 dB
IMG_7627 27.12 dB 27.93 dB 27.55 dB 27.95 dB 27.90 dB
IMG_7673 | 28.03dB 29.12 dB 28.53 dB 29.11 dB 29.06 dB
IMG_7739 28.59 dB 29.27 dB 28.73 dB 29.26 dB 29.16 dB
IMG_8275 | 26.22 dB 27.37 dB 26.84 dB 27.39 dB 27.39 dB
IMG_8336 | 29.30dB 30.37 dB 30.07 dB 30.41 dB 30.50 dB
IMG_8339 | 29.57 dB 31.71 dB 31.22 dB 31.75dB 31.73 dB
IMG_8586 | 27.95dB 28.68 dB 28.11 dB 28.66 dB 28.57 dB
Average 28.88 dB 30.06 dB 29.58 dB 30.09 dB 30.10 dB

Table 3.6 — Results using Non-Local Bayes as base algorithm, noise with ¢ = 70. The best result of
each line is shown in bold, and the results inferior by less than 0.2 dB are shown in gray. From the
results is clear that DA3D is the best method to improve the results on the flat areas, while applying
the multiscale frameworks leads to an improvement in the textures of the images. For this level of
noise, the combination ms_da3d offers a good combination of texture quality and flat areas quality.
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Original Non-Local Bayes

DA3D

Multiscale

MS_DA3D DA3D_MS

Figure 3.6 — Results of the different denoising methods treated in this chapters and in Tables 3.3-3.6,
with a noise of o = 40. The detail is taken from the set of test images in Figure 3.5. Notice the ringing
artifacts produced by DA3D near smooth edges. The da3d_ms algorithm manages to remove them,
and to provide the closest result to the original image.
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Non-Local Bayes “:L *

Figure 3.7 — Results of the different denoising methods treated in this chapters and in Tables 3.3-3.6,
with a noise of o = 40. The detail is taken from the set of test images in Figure 3.5. Notice how
Multiscale and da3d_ms are the best in recovering the texture of the bushes, while preserving the

edges.
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. Non-Local Bayes

Multiscale

Figure 3.8 — Results of the different denoising methods treated in this chapters and in Tables 3.3-3.6,
with a noise of o = 40. The detail is taken from the set of test images in Figure 3.5. Notice how
Multiscale and da3d_ms are the best in recovering the texture of the trees and the structure of the
buildings.
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Figure 3.9 — Results of the different denoising methods treated in this chapters and in Tables 3.3-3.6,
with a noise of o = 40. The detail is taken from the set of test images in Figure 3.5. Multiscale and
da3d_ms both perform well on the leaves, but da3d_ms has a slightly smoother result on the flat

area.



3.4. Combining different denoising techniques

Non-Local Bayes
o

Figure 3.10 — Results of the different denoising methods treated in this chapters and in Tables 3.3-
3.6, with a noise of ¢ = 40. The detail is taken from the set of test images in Figure 3.5. In the
window reflection, DA3D performs better than Multiscale on the edges. This advantage is kept on

both ms_da3d and da3d_ms.
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FPSNR
oc=10 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 | 46.89 dB 46.89 dB 48.14 dB 48.14 dB 47.81 dB
IMG_7113 | 41.24dB 41.24 dB 41.64 dB 41.64 dB 41.41dB
IMG_7626 44.61 dB 44.61 dB 45.36 dB 45.36 dB 44.86 dB
IMG_7627 | 40.75dB 40.75 dB 41.18 dB 41.18 dB 40.78 dB
IMG_7673 42.12 dB 42.12 dB 42.65 dB 42.65 dB 42.35 dB
IMG_7739 | 40.23 dB 40.23 dB 40.47 dB 40.47 dB 40.33 dB
IMG_8275 39.27 dB 39.27 dB 39.55 dB 39.55 dB 39.29 dB
IMG_8336 | 43.44 dB 43.44 dB 44.06 dB 44.06 dB 43.73 dB
IMG_8339 | 42.90dB 4290 dB 43.36 dB 43.36 dB 43.09 dB
IMG_8586 | 40.38 dB 40.38 dB 40.66 dB 40.66 dB 40.46 dB
Average 42.18 dB 42.18 dB 42.71 dB 42.71 dB 4241 dB

TPSNR
oc=10 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 40.20 dB 40.20 dB 40.07 dB 40.07 dB 40.13 dB
IMG_7113 35.93 dB 35.93 dB 35.84 dB 35.84 dB 35.87 dB
IMG_7626 38.29 dB 38.29 dB 38.45 dB 38.45 dB 38.37 dB
IMG_7627 36.25 dB 36.25 dB 36.22 dB 36.22 dB 36.21 dB
IMG_7673 36.24 dB 36.24 dB 36.18 dB 36.18 dB 36.21 dB
IMG_7739 36.77 dB 36.77 dB 36.62 dB 36.62 dB 36.69 dB
IMG_8275 36.44 dB 36.44 dB 36.38 dB 36.38 dB 36.39 dB
IMG_8336 37.51dB 37.51 dB 37.46 dB 37.46 dB 37.44 dB
IMG_8339 40.23 dB 40.23 dB 40.16 dB 40.16 dB 40.17 dB
IMG_8586 36.18 dB 36.18 dB 36.05 dB 36.05 dB 36.10 dB
Average 37.40 dB 37.40 dB 37.34 dB 37.34 dB 37.36 dB

PSNR
oc=10 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 | 45.60 dB 45.60 dB 46.36 dB 46.36 dB 46.18 dB
IMG_7113 37.95 dB 37.95 dB 37.98 dB 37.98 dB 37.95 dB
IMG_7626 41.04 dB 41.04 dB 41.35 dB 41.35 dB 41.16 dB
IMG_7627 37.29 dB 37.29 dB 37.32 dB 37.32dB 37.26 dB
IMG_7673 38.29 dB 38.29 dB 38.35 dB 38.35dB 38.31 dB
IMG_7739 37.71 dB 37.71 dB 37.64 dB 37.64 dB 37.67 dB
IMG_8275 37.07 dB 37.07 dB 37.07 dB 37.07 dB 37.03 dB
IMG_8336 40.17 dB 40.17 dB 40.30 dB 40.30 dB 40.20 dB
IMG_8339 41.44 dB 41.44 dB 41.56 dB 41.56 dB 41.47 dB
IMG_8586 37.62 dB 37.62 dB 37.58 dB 37.58 dB 37.58 dB
Average 39.42 dB 39.42 dB 39.55 dB 39.55 dB 39.48 dB

Table 3.7 — Results using BM3D as base algorithm, noise with & = 10. The best result of each line
is shown in bold, and the results inferior by less than 0.2 dB are shown in gray.
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FPSNR
oc=20 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 42.83 dB 43.98 dB 44.80 dB 4451 dB 44.88 dB
IMG_7113 | 38.06 dB 38.20 dB 38.73 dB 38.40 dB 38.58 dB
IMG_7626 41.32 dB 41.53 dB 42.76 dB 42.01 dB 42.20 dB
IMG_7627 | 37.65dB 37.59 dB 38.40 dB 37.86 dB 37.98 dB
IMG_7673 | 39.08 dB 39.26 dB 39.95 dB 39.52 dB 39.77 dB
IMG_7739 | 37.42dB 37.59 dB 37.94 dB 37.81 dB 37.86 dB
IMG_8275 | 36.01dB 36.01 dB 36.56 dB 36.21 dB 36.34 dB
IMG_8336 | 40.18 dB 40.39 dB 41.26 dB 40.72 dB 41.03 dB
IMG_8339 | 39.31dB 39.59 dB 40.22 dB 39.93 dB 39.89 dB
IMG_8586 | 37.38 dB 37.51 dB 37.87 dB 37.67 dB 37.73 dB
Average 38.92 dB 39.17 dB 39.85 dB 39.47 dB 39.62 dB

TPSNR
o=20 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 36.11 dB 36.19 dB 36.22 dB 36.25 dB 36.28 dB
IMG_7113 32.21 dB 32.20 dB 32.16 dB 32.20 dB 32.16 dB
IMG_7626 | 34.64 dB 34.54 dB 35.06 dB 34.83 dB 34.94 dB
IMG_7627 32.64 dB 32.53 dB 32.67 dB 32.62 dB 32.62 dB
IMG_7673 32.51 dB 32.50 dB 32.52 dB 32.55dB 32.54 dB
IMG_7739 33.26 dB 33.24 dB 33.18 dB 33.20 dB 33.16 dB
IMG_8275 32.69 dB 32.65 dB 32.75 dB 32.73 dB 32.73 dB
IMG_8336 33.75 dB 33.71 dB 33.84 dB 33.81 dB 33.80 dB
IMG_8339 36.29 dB 36.33 dB 36.49 dB 36.46 dB 36.44 dB
IMG_8586 32.51dB 32.47 dB 32.45 dB 32.48 dB 32.43 dB
Average 33.66 dB 33.64 dB 33.73 dB 33.71 dB 33.71 dB

PSNR
oc=20 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 41.53 dB 42.30 dB 42.80 dB 42.65 dB 42.88 dB
IMG_7113 34.36 dB 34.38 dB 34.46 dB 34.42 dB 34.43 dB
IMG_7626 | 37.48 dB 37.46 dB 38.14 dB 37.80 dB 37.93 dB
IMG_7627 33.75 dB 33.65 dB 33.87 dB 33.77 dB 33.78 dB
IMG_7673 34.69 dB 34.72 dB 34.85 dB 34.80 dB 34.84 dB
IMG_7739 34.34 dB 34.35 dB 34.36 dB 34.35 dB 34.32 dB
IMG_8275 33.40 dB 33.37 dB 33.53 dB 33.47 dB 33.49 dB
IMG_8336 | 36.55dB 36.57 dB 36.88 dB 36.73 dB 36.80 dB
IMG_8339 | 37.63 dB 37.75 dB 38.06 dB 37.95 dB 37.93 dB
IMG_8586 34.10 dB 34.10 dB 34.15 dB 34.13 dB 34.11 dB
Average 35.78 dB 35.87 dB 36.11 dB 36.01 dB 36.05 dB

Table 3.8 — Results using BM3D as base algorithm, noise with ¢ = 20. The best result of each line
is shown in bold, and the results inferior by less than 0.2 dB are shown in gray.
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FPSNR
oc=40 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 38.64 dB 40.33 dB 41.12 dB 41.27 dB 41.65 dB
IMG_7113 | 34.91dB 35.39 dB 35.96 dB 35.75 dB 36.01 dB
IMG_7626 37.26 dB 37.77 dB 39.42 dB 38.54 dB 39.24 dB
IMG_7627 | 34.20dB 34.30 dB 35.42 dB 34.74 dB 35.18 dB
IMG_7673 | 35.76 dB 36.39 dB 37.14dB 36.88 dB 37.26 dB
IMG_7739 | 34.58 dB 35.04 dB 35.61 dB 35.45 dB 35.67 dB
IMG_8275 | 32.64 dB 32.84 dB 33.60 dB 33.20 dB 33.56 dB
IMG_8336 | 36.50 dB 37.03 dB 38.04 dB 37.62 dB 38.09 dB
IMG_8339 | 35.36dB 35.98 dB 36.86 dB 36.58 dB 36.35 dB
IMG_8586 | 34.38 dB 34.80 dB 35.23 dB 35.13 dB 35.26 dB
Average 35.42 dB 35.99 dB 36.84 dB 36.52 dB 36.83 dB

TPSNR
oc=40 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 | 32.10dB 32.22 dB 32.47 dB 32.40 dB 32.42 dB
IMG_7113 28.71 dB 28.76 dB 28.79 dB 28.79 dB 28.76 dB
IMG_7626 | 30.76 dB 30.73 dB 31.54 dB 31.18 dB 31.43 dB
IMG_7627 29.18 dB 29.07 dB 29.39 dB 29.21 dB 29.25 dB
IMG_7673 29.03 dB 29.05 dB 29.18 dB 29.15 dB 29.11 dB
IMG_7739 30.15 dB 30.15 dB 30.12 dB 30.13 dB 30.00 dB
IMG_8275 | 29.09 dB 29.07 dB 29.34 dB 29.22 dB 29.26 dB
IMG_8336 29.92 dB 29.97 dB 30.28 dB 30.21 dB 30.24 dB
IMG_8339 | 32.26 dB 32.50 dB 32.90 dB 32.83 dB 32.75dB
IMG_8586 29.11 dB 29.10 dB 29.23 dB 29.17 dB 29.12 dB
Average 30.03 dB 30.06 dB 30.32 dB 30.23 dB 30.23 dB

PSNR
oc=40 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 | 37.40dB 38.53 dB 39.10 dB 39.15 dB 39.36 dB
IMG_7113 30.93 dB 31.07 dB 31.20 dB 31.16 dB 31.18 dB
IMG_7626 | 33.56 dB 33.66 dB 34.66 dB 34.19 dB 34.53 dB
IMG_7627 | 30.30 dB 30.21 dB 30.63 dB 30.39 dB 30.48 dB
IMG_7673 | 31.25dB 31.37 dB 31.59 dB 31.53 dB 31.55dB
IMG_7739 31.27 dB 31.34 dB 31.40 dB 31.39 dB 31.30 dB
IMG_8275 | 29.84 dB 29.85 dB 30.19 dB 30.03 dB 30.11 dB
IMG_8336 | 32.76 dB 32.93 dB 33.40 dB 33.25 dB 33.37 dB
IMG_8339 | 33.63 dB 34.00 dB 34.55 dB 34.42 dB 34.28 dB
IMG_8586 | 30.79 dB 30.86 dB 31.03 dB 30.97 dB 30.95 dB
Average 32.17 dB 32.38 dB 32.77 dB 32.65 dB 32.71dB

Table 3.9 — Results using BM3D as base algorithm, noise with & = 40. The best result of each line
is shown in bold, and the results inferior by less than 0.2 dB are shown in gray.
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FPSNR
oc="70 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 | 35.08 dB 37.09 dB 37.91 dB 38.30 dB 38.82 dB
IMG_7113 | 32.37dB 33.31 dB 33.78 dB 33.82 dB 34.08 dB
IMG_7626 | 33.99 dB 35.01 dB 36.31dB 35.91 dB 36.45 dB
IMG_7627 | 31.46 dB 31.86 dB 32.89 dB 32.39 dB 32.74 dB
IMG_7673 | 33.06 dB 34.12dB 34.84 dB 34.78 dB 35.27 dB
IMG_7739 | 32.23dB 33.02 dB 33.62 dB 33.57 dB 33.78 dB
IMG_8275 30.11 dB 30.58 dB 31.27 dB 31.01 dB 31.33 dB
IMG_8336 | 33.60 dB 34.42 dB 35.37 dB 35.13 dB 35.64 dB
IMG_8339 | 32.19dB 33.21 dB 34.00 dB 33.96 dB 33.96 dB
IMG_8586 | 32.09 dB 32.81 dB 33.22 dB 33.28 dB 33.42dB
Average 32.62 dB 33.54 dB 34.32 dB 34.22 dB 34.55 dB

TPSNR
oc="170 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 28.78 dB 29.09 dB 29.40 dB 29.36 dB 29.38 dB
IMG_7113 26.20 dB 26.26 dB 26.24 dB 26.24 dB 26.14 dB
IMG_7626 | 27.74dB 27.73 dB 28.39 dB 28.08 dB 28.24 dB
IMG_7627 26.61 dB 26.53 dB 26.84 dB 26.66 dB 26.66 dB
IMG_7673 26.48 dB 26.52 dB 26.66 dB 26.60 dB 26.57 dB
IMG_7739 27.95 dB 28.06 dB 28.04 dB 28.10 dB 27.94 dB
IMG_8275 | 26.40 dB 26.42 dB 26.63 dB 26.54 dB 26.52 dB
IMG_8336 27.13 dB 27.20 dB 27.50 dB 27.41 dB 27.44 dB
IMG_8339 | 29.16 dB 29.66 dB 30.08 dB 30.09 dB 30.11 dB
IMG_8586 26.64 dB 26.66 dB 26.76 dB 26.71 dB 26.63 dB
Average 27.31 dB 27.41 dB 27.65 dB 27.58 dB 27.56 dB

PSNR
oc="70 bm3d ms da3d da3d_ms ms_da3d
DSC_0767 | 33.92dB 35.34 dB 35.95 dB 36.15 dB 36.43 dB
IMG_7113 28.42 dB 28.65 dB 28.71 dB 28.72 dB 28.67 dB
IMG_7626 | 30.48 dB 30.72 dB 31.52dB 31.19 dB 31.42 dB
IMG_7627 | 27.70dB 27.69 dB 28.08 dB 27.86 dB 27.90 dB
IMG_7673 | 28.67 dB 28.88 dB 29.10 dB 29.04 dB 29.08 dB
IMG_7739 | 29.04 dB 29.26 dB 29.33 dB 29.38 dB 29.27 dB
IMG_8275 27.17 dB 27.25 dB 27.53 dB 27.41 dB 27.43 dB
IMG_8336 | 29.94 dB 30.20 dB 30.64 dB 30.51 dB 30.65 dB
IMG_8339 | 30.50 dB 31.18 dB 31.72 dB 31.72 dB 31.72dB
IMG_8586 | 28.35dB 28.50 dB 28.64 dB 28.61 dB 28.56 dB
Average 29.42 dB 29.77 dB 30.12 dB 30.06 dB 30.12 dB

Table 3.10 — Results using BM3D as base algorithm, noise with o = 70. The best result of each line
is shown in bold, and the results inferior by less than 0.2 dB are shown in gray.
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Chapter 4

External Denoising

A recent seminal paper on the absolute bounds of image denoising [32] proposes a patch de-
noising method effectively realizing the minimal mean square error, given all the known image
patches. It is extremely important to reach these absolute limits, but they require processing a
limitless database. In the above mentioned paper this database had 10 billion patches. In this pa-
per we demonstrate that by factorizing the patch space the method can be sped up by a factor of
more than a thousand, while maintaining the theoretical claim that the method is optimal. Using
the method on real images demonstrates its potential to beat the state of the art, as it performs
better on difficult patches.

4.1 Introduction

Recently the literature on image denoising has proposed extremely eficient methods [7,
26,28, 67] for this ill-posed problem, and has even started exploring its absolute theoreti-
cal limits [6,32]. There are two complementary early approaches to denoising, Fourier (or
frequency-based) methods, and Bayesian estimation methods. Fourier methods have been
extended in the past thirty years to other linear space-frequency transforms such as the
windowed DCT [62] or the many wavelet transforms [37]. Being first parametric and lim-
ited to rather restrictive Markov random field models [17], Bayesian methods are becoming
non-parametric. The idea for the recent non-parametric Markovian estimation methods is
that, in a textured image, the stochastic model for a given pixel can be predicted from a
local image neighborhood around it, which we shall call “patch”. This principle yielded
the image denoising algorithm called “non-local means” by Buades et al. [2]. The algorithm
was called “non-local” because it uses patches that are far away from the processed pixel,
and could even use patches taken from other images.

By “Shotgun” patch denoising methods, we mean methods that intend to denoise patches
by a fully non-local algorithm, in which the patch is compared to a patch model obtained
from a very large patch set, assuming they represent “all possible natural image patches”.

For example, Zoran and Weiss [67] introduced the EPLL algorithm, in which they learn
the patch space distribution from a mixture of Gaussians trained with 2 x 10° patches. Then,
they use this model as a prior for denoising patches by trying to maximize the Expected Patch
Log Likelihood, instead of denoising each patch separately. To do this, they minimize a cost
function using an optimization method called “Half Quadratic Splitting” [48]. Zontak and
Irani [66] analyzed the denoising performance using patches extracted from the same im-
age, or what they call internal patch searches, against extracting “external” patches from a
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huge database. They concluded that similar patches tend to recur much more frequently in-
side the same image than in any random external collection of natural images. Furthermore,
internal patch redundancy rapidly decays with the growth of the spatial distance from the
patch, and its gradient content. Finally, they observed that finding an equally good exter-
nal representative patch for every patch of an image, requires a huge external database,
which makes the denoising problem computationally intractable. Lee et al. [31] used the
Bayesian framework to derive an MMSE non-local image denoising algorithm, that uses
both internal image patches as well as an external codebook with noiseless patches. They
perform denoising by normalizing the patch-space by the mean, an idea which will be fur-
ther exploited here. Several “shotgun” methods have been recently applied in other image
processing tasks, such as scene completion [19] (using 2.3 million images), or scene recog-
nition [57] (using 80 million 32 x 32 patches).

Let us now turn on the search for absolute bounds for the image denoising. The Cramer-
Rao type lower bounds on the attainable RMSE performance given by Chaterjee and Mi-
lanfar [6] are optimistic: they allow for the possibility of a significant increase in denoising
performance for a wide class of images at certain SNRs, in particular, for synthetic piece-
wise constant images. Yet, a recent paper by A. Levin and B. Nadler [32] provides a second
answer to the question of absolute limits raised by [6]. This seminal paper uses a shotgun
denoising method to approach the bounds, which is loosely based on the NL-means algo-
rithm, with adequate parameters to account for a Bayesian linear minimum mean square
estimation (LMMSE) of the noisy patch given a database of 10'° noiseless patches. The
only and important difference is that similar patches are searched on a database of patches,
instead of on the image itself. Furthermore, by a simple mathematical argument and inten-
sive simulations on the patch space, the authors are able to estimate the best average estima-
tion error attainable by any patch-based denoising algorithm (to be more specific, it is the best
average estimation error knowing a single patch and all the observed; but most denoising
algorithms actually also use the knowledge of overlapping patches in the image to denoise
it). After performing experimentation, and comparing them with state-of-the-art denois-
ing algorithms, they conclude that results might be within 0.1dB of the optimal possible
denoising method, at least when using small patch sizes or under big amounts of noise,
therefore leaving no further room for improvement. They propose increasing the support
size to obtain better PSNR values. Yet, due to the curse of dimensionality, non-parametric
techniques won't be able to find good similar patches. This leads the authors to give up a
shotgun method, and to switch again to parametric approaches. However, a limitation of
this work is that computational constraints restricted the experimentation to small patches.
Hence real bounds independent of patch size are still unknown.

In [33], the same authors study the dependence of denoising error on patch size. Sim-
ilarly to Zontak and Irani [66], they conclude that when increasing window size, patches
with more detail require a significantly larger database, and that the gain from doing so is
very small. At the same time, the opposite happens with smoother patches: increasing the
window size is much more rewarded in the final denoising performance. This leads them to
propose an adaptive strategy using variable window sizes depending on local patch com-
plexity. Finally, they again explore the fundamental limits of denoising, with an infinite
window size and assuming a perfect natural image prior. To do this, they use a simplified
dead leaves image formation model and combine it with a scale invariance assumption for
natural images, which implies a power-law convergence. Using this power-law to model
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the PSNR with respect to the window size, they fit the model and extrapolate its result to
obtain optimal denoising bounds. They conclude that there is still some room for improve-
ment (around 1dB).

In this chapter, we stick to the first shotgun approach [32] and intend to render it feasible
by accelerating considerably the computation of their Monte Carlo integral. The proposed
algorithm attains similar results using less computational resources and in shorter time. To
achieve this, a smaller probability space is used by factorizing the space of patches. This
allows to work with entire equivalence classes of patches instead of single patches, thus
permitting a significant decrease of the number of needed computations and a reduction of
the required memory. Following this, a comparison is made between our algorithm and two
state-of-the-art methods, the BM3D algorithm [7,26] and the Non Local Bayes method [27]
showing how our method outperforms both for the task of denoising complex patches.

This chapter is organized as follows. Section 4.2 describes how the patch-space is factor-
ized. In Section 4.3, the Normalized Shotgun Denoising (NSD) algorithm is presented. Sec-
tion 4.4 provides experimental results and further comparisons with state-of-the-art meth-
ods. To finalize the paper, in section 4.5 some directions for future research are given.

4.2 Space factorization

Following [24], the probability space of all £ x k patches (€2, P(X)) can be factorized into the
product of three smaller subspaces, representing the shape, the brightness and the contrast
of the patch. The terms brightness and contrast can be easily translated to our model by
considering the average value of the patch and its standard deviation. Therefore, a patch x
with mean pix and standard deviation ox can be decomposed as

X = O-Xi + HX]‘ (4'1)

where 1 € Q is the patch with all values equal to 1 and % € (, the sample space of nor-
malized patches. The patch x contains all information about the shape, with zero mean
and standard deviation of 1. Then, we can factorize the patch space so that the underlying
probability density, which we shall call p(x), on a first approximation, becomes

p(x) = p(X)p7 (ox)p" (1ix) (4.2)
where p is the probability density of the normalized patch space, p* is a probability density
over the space of possible mean values and p? is a probability density over the possible
standard deviations.

The distribution of the average brightness of the patches p#, following [24], should be
“almost” uniform over the interval, except near the endpoints (because the only patches
with that mean are the flat ones). Also in [24], it is suggested that p” should have, at a first
approximation, an exponential distribution. Computing the parameter A from the exponen-
tial for finding the best distribution for natural images is easy, remembering that E[o] = 1,
so one can just approximate it as A = ﬁ

4.3 Denoising with normalized patches

The method chosen to speed up the denoising process is based on the possibility of fac-
torizing the space of patches. By factoring out the mean and the standard deviation, one
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should be able to use an entire equivalence class of patches for each patch in the database,
thus reducing both the amount of space needed and the time to compute the solution.

As stated by Levin and Nadler [32], if y is a noisy version of the original patch x, p(x)
its probability in the natural image patch space and o2 the variance of the noise, the best
MMSE estimator is given by

y

JP(y|x)xp(x)dx _ [ e 5 xp(x)dx
[ P(y|x)p(x)dx e ||x20y2n (x)dx

p(y) = (4.3)

Theorem 1. Normalized shotgun denoising (NSD) algorithm Let y be the noisy realization of
a k x k patch x with mean . Assume a white Gaussian noise with standard deviation o and let
X be the patch x normalized by mean and standard deviation, such as X = *_t=. Finally, let \ be
the estimated parameter for the exponential distribution of p°. Then assuming that the (non noisy)
patch density satisfies (4.1), the MMSE estimator (4.3) has a nonbiased discrete approximation as

= Yo (B4 ) X
Zi Vi

where x; are all available patches in a (large) image database and

+ iyl (4.4)

o — W 5 V}fg,
o N @5)
Vi = e<7> Vmerfe <—ﬁz>
and erfc stands for the complementary error function.
Sketch of Proof. Using (4.2), equation (4.3) approximates to
) ~ f(Xi, 0x, hx) (0xX 4+ pux1)duxdoy ) dp(x
g Ja S (C ) ) ) dp(%) (46)

ffl (ff f(iza Ox, NX)dede) dﬁ(f{)
with

- I e
f(Xiyox, pix) = € 207 * P () (4.7)
By using the law of large numbers as in [32], the integration over the normalized patch
space can be approximated with the average over a huge normalized patch database. Then,
by separating equation (4.6) into the sum of the following two terms

Zi Xi ff Uxf(iiao'mﬂx)dﬂxdax

4.8
Zi ff f(ila O-leJJx)d,ude'x ( )

" i M) i f (X )djixed

i JJ) PxJ \Xi, Ox, Px )AHx Q0%
Z 4.9
Zi ff f<ii70—xmux)d,uzxd0'x 1 ( )
and rewriting

f(Xi, 0%, px) = e(%) e_((%y)2 e_<¥)2 e_(%y}?“(ux) (4.10)

and using the fact that, following [24], p*(ux) can be expressed as a constant, we arrive to
the final formula of (4.4). O
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The denoising process is performed patch-wise and the results are aggregated using a
simple average of the estimates of each pixel.

4.4 Results

Using the algorithm devised in section 4.3, a test was conducted to see the performance of
this denoiser. Following the experiments of [32], 5000000 sample patches (of size 8 x 8) were
extracted from the LabelMe dataset [50]. To further reduce the noise and to remove JPEG
artifacts the images were low-passed and down-sampled by a factor of 8. The low-pass
filter used was Gaussian with a standard deviation of 6, to avoid aliasing artifacts. This
choice is motivated by [38].

The test was performed on two images, not included in the database, of 150 x 100 pix-
els. A Gaussian white noise with standard deviation 25 was added to the images, which
were then denoised using NSD and other state-of-the-art methods for comparison. The
computation took less than one day on an average PC. The results are shown in Fig. 4.1.

Although the result of the denoising process depends on the size of the database, the
convergence of the result is fast, as can be seen from the plot of the PSNR as a function of
the number of patches in Fig. 4.2.

While the results of this algorithm, at a first glance, may seem discouraging, it must be
remembered that the algorithm operates patch-wise. Therefore, the information about the
rest of the image is not used. This puts NSD on a different category with respect to the state
of the art. Thanks to its peculiarity, it can nevertheless perform better than traditional de-
noising algorithms in those areas for which “similar patches” are not present in the image.
This is tested in Fig. 4.3. As can be seen from the images, the algorithm presented in this
paper outperforms the state of the art algorithm BM3D in patches with small, non-repeated
textures, and could therefore be used, along a traditional denoising algorithm, to improve
the denoising in “difficult” areas of the image.

To further test this claim, we applied NSD only on patches that perform poorly with
BMB3D. This oracle gives an estimate of the best possible result attainable by combining the
two algorithms. The oracle was a simple comparison with the original, non-noisy image.
This, although clearly not applicable in the real case, demonstrates that a shotgun algorithm
can effectively outperform the state of the art on difficult (non self-similar) image parts. The
results of the “combined” denoising is shown in Table 4.1.

Method Image 1 | Image 2
NSD 28.17dB | 27.51 dB
BM3D 29.45dB | 29.88 dB
Combined | 29.73 dB | 30.30 dB

Table 4.1 — Results of combined denoising

As can be seen, the result obtained with this combination significantly outperforms
BM3D.

Another simple test we performed was to fix the database size and to evaluate the orig-
inal method [32] usign non-normalized patches with NSD. To do this, a set of 3500 random
patches were denoised individually by each method. In table 4.2 it can be seen how our
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(a) Image 1

(c) NSD (d) NSD

(e) BM3D (f) BM3D

(9) NL-Bayes (h) NL-Bayes

Figure 4.1 — Results and comparison of denoising methods (PSNR values in parenthesis).
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Figure 4.2 — Quality of the denoising, measured as PSNR, as a function of the database size.

algorithm obtains improved results using the same amount of patches in the database. This
improvement is logically diminished when bigger database sizes are used, however, for
reasonably sized databases, our algorithm still manages to outperform Shotgun NLM.

DB Size | Shotgun method [32] NSD
10000 23.47 dB 26.79 dB
100000 25.92 dB 27.32 dB

4000000 27.66 dB 28.06 dB

Table 4.2 — Average PSNR obtained after denoising 3500 random patches with a fixed Database
size.

4.5 Conclusions

As can be seen from the results, the proposed algorithm as-is does not outperform BM3D,
the current state-of-the-art. That said, since the method is local, it can be applied to single
patches instead of entire images. The use of an external database for the denoising process
can therefore be useful in particular applications. Other than that, the result of the combined
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(a) Image 1 (b) Image 2

Figure 4.3 — Comparison between NSD and BM3D. The center of the patches in which a better result
is achieved by the former are in green.

denoising is promising. It shows that there is still room for improving standard non-local
denoising algorithms in patches with a low self-similarity, the “hard” patches for those
algorithms.

Further developments should go in two different directions. First, a decision criterion
must be elaborated to combine NSD with other algorithms without the aid of an oracle.
Then, further efforts should be made to make this algorithm faster: while the factorization
gives a huge boost in speed with respect to the original method of [32], NSD is still too slow
compared to the other denoising algorithms.
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