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Abstract

Ultrasound (US) allows non-invasive and ultra-high frame rate imaging
procedures at reduced costs. Cardiac, abdominal, fetal, and breast imaging
are some of the applications where it is extensively used as diagnostic tool.

In a classical US scanning process, short acoustic pulses are transmitted
through the region-of-interest of the human body. The backscattered echo
signals are then beamformed for creating radiofrequency(RF) lines. Beam-
forming (BF) plays a key role in US image formation, influencing the reso-
lution and the contrast of final image.

The objective of this thesis is to model BF as an inverse problem, relating the
raw channel data to the signals to be recovered. The proposed BF framework
improves the contrast and the spatial resolution of the US images, compared
with the existing BF methods.

To begin with, we investigated the existing BF methods in medical US
imaging. We briefly review the most common BF techniques, starting with
the standard delay-and-sum BF method and emerging to the most known
adaptive BF techniques, such as minimum variance BF.

Afterwards, we investigated the use of sparse priors in creating original two-
dimensional beamforming methods for ultrasound imaging. The proposed
approaches detect the strong reflectors from the scanned medium based on
the well-known Bayesian Information Criteria used in statistical modeling.

Furthermore, we propose a new way of addressing the BF in US imaging,
by formulating it as a linear inverse problem relating the reflected echoes to
the signal to be recovered. Our approach offers flexibility in the choice of
statistical assumptions on the signal to be beamformed and it is robust to
a reduced number of pulse emissions.

At the end of this research, we investigated the use of the non-Gaussianity
properties of the RF signals in the BF process, by assuming ↵-stable statis-
tics of US images.
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RESUME ETENDU

Introduction

L’imagerie ultrasonore (US) est l’une des techniques d’imagerie médicale qui con-

nait les développements les plus rapides notamment grâce à ses propriétés non invasives,

ses méthodes d’acquisition rapides, et son coût modéré. L’imagerie cardiaque, abdom-

inale, fœtale, ou mammaire sont quelques-unes des applications où elle est largement

utilisée comme outil de diagnostic.

En imagerie US classique, des ondes acoustiques sont transmises à une région d’intérêt

du corps humain. Les signaux d’écho rétrodiffusés, également appelés données brutes,

sont ensuite traités pour créer des lignes radiofréquences (RF). La formation de voies

(FV) joue un rôle clé dans l’obtention des images US, car elle influence la résolution

et le contraste de l’image finale. La méthode standard en formation de voies dite DAS

("delay-and-sum") consiste à retarder et à pondérer les échos réfléchis avant de les

moyenner. Les méthodes de FV existantes utilisent des poids fixes ou adaptatifs pour

le moyennage. L’objectif de ce travail est de modéliser la formation de voies comme un

problème inverse liant les données brutes aux signaux RF. Le modèle de formation de

voies proposé ici améliore le contraste et la résolution spatiale des images échographiques

par rapport aux techniques de FV existants.

Le premier chapitre de cette thèse donne le cadre théorique de l’imagerie US. En

premier lieu, nous presentons les caractéristiques des signaux US, et fournissons une

analyse de la propagation des ondes. Ensuite, nous présentons l’imagerie médicale US,

et la manière dont les images sont affichées. Enfin, la formation de voies est introduite

et les principales méthodes de formation de voies sont brièvement décrites, ainsi que

leurs limites.

Le second chapitre présente l’état de l’art des méthodes de formation de voies ex-

istantes en imagerie médicale ultrasonore. Nous passons brièvement en revue les tech-

niques de formation de voies les plus courantes, en commençant par la méthode dite

DAS, puis les techniques émergentes les plus connues de formation de voies adaptatives,

en mettant l’accent sur la méthode à variance minimale (MV) ainsi que ses variantes.



Une comparaison détaillée des différentes méthodes de formation de voies est ensuite
présentée.

Le troisième chapitre propose l’utilisation des signaux qui exploitent une représen-
tation parcimonieuse de l’image US. Notre méthode est basée sur la création de méth-
odes de formations de voies originales en deux dimensions pour l’imagerie US. Les
approches proposées détectent les réflecteurs forts du milieu à imager sur la base de
critères bayésiens bien connus et utilisés dans la modélisation statistique. En outre, ils
permettent une sélection du niveau de bruit dans l’image finale BF.

Dans le quatrième chapitre, nous proposons une nouvelle façon d’aborder la forma-
tion de voies en imagerie US, en la formulant comme un problème inverse linéaire liant
les échos réfléchis au signal final. Notre approche présente deux avantages majeurs : i)
sa flexibilité dans le choix des hypothèses statistiques sur le signal avant la formation
de voies (les statistiques Laplaciennes et Gaussiennes) et ii) sa robustesse à un nombre
réduit d’impulsions d’émissions. Le cadre proposé est souple et permet de trouver un
compromis entre la suppression du bruit et la netteté de l’image résultante. Nous il-
lustrons la performance de notre approche à la fois sur des données simulées et sur des
données in vivo de carotide et de thyroïde.

Dans le cinquième chapitre, nous présentons une nouvelle méthode de formation de
voies pour l’imagerie médicale US basée sur l’utilisation de caractéristiques statistiques
des signaux supposées ↵-stable. Bien que le traitement du signal US se soit largement
appuyé pendant de nombreuses années sur l’hypothèse Gaussienne, il a été montré
que les échos RF peuvent être modélisés avec plus de précision par une loi statistique
à "queue lourde". Par exemple, les propriétés statistiques des signaux RF peuvent
être considérés, d’après le théorème central limite generalisé, ↵-stables. La principale
contribution de ce chapitre est l’utilisation des propriétés non-gaussiennes des signaux
RF dans le processus de formation de voies. Il s’agit de la première tentative considérant
spécifiquement une distribution ↵-stable, pour la formation de voies en imagerie US.

Enfin, le sixième chapitre présente les contributions de la thèse et les perspectives.



Chapitre 1 : L’imagerie ultrasonore

Principe de l’imagerie ultrasonore

Sonde 
ultrasonore

Diffuseurs
dans le milieu

Propagation de l'onde 
dans le milieu

Echos réfléchis

Données brutesExcitation

(a) (b) (c)

Ondes ultrasonores
émises dans le

milieu

Figure 1: Principe de l’imagerie US : (a) une impulsion électrique (excitation) est trans-
mise au transducteur piézoélectrique qui la transforme en une onde US; (b) l’onde se
propage et interagit avec le milieu; (c) les ondes réfléchies reçues par le transducteur sont
converties en signaux électriques (données brutes).

Le principe de l’imagerie ultrasonore (US) est illustré à la Fig. 1. Il repose sur
l’interaction entre les ondes US et le milieu qui contient les diffuseurs. Ces dernières
sont produites à l’aide de matériaux piézoélectriques constituant la sonde US et sont
émises en direction du milieu (Fig. 1(a)). Au cours de leur propagation à travers le
milieu, des phénomènes de réflexion et de transmission se produisent à l’interface de
milieux ayant différentes impédances acoustiques. De plus, l’amplitude de l’onde US
est atténuée en raison des phénomènes d’absorption et de diffusion [Kuttruff, 1991].

Actuellement, la grande majorité des sondes US sont constituées de plusieurs élé-
ments disposés linéairement ou sectoriellement. Ils permettent à la fois l’émission des
ondes US et la réception des échos réfléchis par le milieu (Fig. 1(b)). Ces échos, trans-
formés en signaux électriques puis numérisés, représentent les données brutes acquises
par le système US (Fig. 1(c)). Afin d’améliorer la résolution spatiale, le rapport signal



sur bruit, ainsi que le contraste des images, des méthodes de formation de voies sont
appliquées aux données US brutes pour produire des signaux radiofréquences (RF).

Visualisation des images ultrasonores

Pour des raisons de lisibilité, les images RF sont finalement converties en images en mode
B (brillance), à l’aide de post-traitements classiques tels que le filtrage passe-bande, la
détection d’enveloppe et la compression logarithmique. Afin de pouvoir comparer les
résultats proposés dans cette thèse avec les techniques de formations de voies existantes,
nous utiliserons les mesures les plus courantes de qualité d’image : le rapport de con-
traste (RC) [Xu et al., 2014a], le rapport contraste sur bruit (RCB) [Rindal et al., 2014],
et le rapport signal sur bruit (RSB) [Jensen and Austeng, 2014].

Formation de voies en imagerie ultrasonore

Les techniques de formation de voies jouent un rôle majeur dans la qualité des im-
ages US [Van Veen and Buckley, 1988]. La méthode couramment employée en imagerie
US utilise les opérations classiques de retard et somme dite DAS (delay-and-sum)
[Thomenius, 1996]. Avec cette méthode, les donées brutes reçues par les éléments de
la sonde sont d’abord focalisées afin de compenser les retards dus aux différences de
temps de propagation, avant d’être sommées en les pondérant par des coefficients. Ces
coefficients forment la fenêtre d’apodisation en réception. Malgré son avantage lié es-
sentiellement à sa rapidité, la méthode par retard et somme ne permet pas d’obtenir
une résolution spatiale et un contraste optimal. Afin d’améliorer la qualité des images
RF, de nombreux travaux existant proposent d’adapter les fenêtres d’apodisation aux
données, ou autrement dit de les estimer à partir des données brutes. L’une des méth-
odes les plus utilisées est celle du filtre de Capon [Capon, 1969]. Son rôle est d’appliquer
une fenêtre d’apodisation optimale afin d’estimer la forme d’onde du signal désiré aussi
précisément que possible, tout en rejetant les signaux indésirables. D’autres exemples
de formeurs de faisceaux adaptatifs sont les techniques MUSIC [Schmidt, 1981] et Max-
imum Likelihood (ML)([Krim and Viberg, 1996, Stoica and Sharman, 1990]).



Chapitre 2 : La formation de voie dans l’imagerie médicale

ultrasonore : état de l’art

La formation de voies (FV) permet d’amplifier les signaux réfléchis depuis des posi-
tions connues, tout en atténuant les signaux provenant de positions indésirables. Ceci
est classiquement réalisé en retardant et en appliquant des poids spécifiques aux sig-
naux réfléchis. Les formeurs de voies peuvent être soit indépendants des données (fixes),
dépendants des données (adaptatifs), en fonction du calcul des poids appliqués aux sig-
naux réfléchis.

Formation de voies non-adaptative

La formation de voies par retard et somme, dite DAS (delay-and-sum), sélectionne les
poids wDAS indépendamment des données :

wDAS =

1

M

, (1)

où 1 est un vecteur colonne de longueur M constitué de "un" car les données brutes
ont été focalisées à l’aide de retards.

Nous considérons ci-après le schéma d’acquisition classique où une série de K voies
focalisées est transmise avec M éléments. Les K voies focalisées sont transmises avec des
angles d’incidence différents ✓k, k = 1, · · · ,K. L’image finale RF US est un ensemble de
lignes RF. Chacune d’elle étant le résultat de la formation de voies à partir des signaux
RF bruts provenant d’une émission dans la direction ✓k, k 2 {1, . . . ,K}, en utilisant M
éléments du transducteur. La formation de voies classique par retard et somme peut
être exprimée comme suit :

ˆsk = wHyk, (2)

où yk 2 CM⇥N sont les données brutes compensées en temps reçues par le m-ième
élément de la sonde US, et correspondant à l’émission dans la direction ✓k, et w est le
vecteur des poids du formateur de voies et de taille M ⇥ 1.

Formation de voies adaptative

Bien que la formation de voies par retard et somme utilise des poids fixes, le but de
la formation de voies à variance minimum (MV) est d’appliquer un ensemble de poids
dépendant des données (d’où le nom adaptatif). Ceci afin d’estimer la forme d’onde



du signal désiré aussi précisément que possible, tout en rejetant les signaux parasites.
L’expression des poids utilisés par la MV est :

wMV =

R�1

k 1

1TR�1

k 1
, (3)

où Rk est la matrice de covariance. Il est à noter que dans la pratique, une simple
estimation de la matrice de covariance peut être faite. Celle-ci peut être mal condition-
née et ainsi engendrer des résultats moins bons que ceux de la méthode par retard et
somme.

Afin d’améliorer la robustesse de la formation de voies MV, différentes techniques
ont été proposées dans la littérature : sous-matrice d’étalement (pour décorréler des
signaux cohérents), moyenne temporelle (pour conserver des statistiques de speckle),
rehaussement de la diagonale (pour améliorer la robustesse de l’inversion de la matrice
de covariance), pondération par facteur de cohérence (pour augmenter la résolution
et le contraste de l’image obtenue après l’application de la méthode MV), ou encore
utilisation de sous-bandes de fréquences.

La formation de voies dans d’autres domaines

Un problème particulier résolu par la formation de voie est la localisation de sources
(en particulier sur la direction d’arrivée). Le problème inverse sur lequel est basé le
problème de la localisation des sources peut être exprimé comme suit :

y = T (x) + n, (4)

où x 2 X est inconnu, y 2 Y est le vecteur des mesures (observations), X, sont des
espaces de Hilbert, et n est un bruit blanc gaussien. Le but est de trouver x à partir
de y connaissant la transformation T . La solution de (4) est généralement présentée
comme :

ˆx = argmin

x

(ky � T (x)k2
2

+ P (x)), (5)

où le premier terme, ky � T (x)k2
2

est le terme d’attache aux données, et P (x) est une
fonction traduisant les connaissances à priori sur x. Ce terme est aussi appelé le terme
de régularisation. Dans cette thèse, nous avons modélisé le problème de FV en imagerie
médicale US en utilisant le problème inverse formulé dans (4) et nous avons appliqué
différentes techniques de régularisation dans le but de résoudre (5).



Chapitre 3 : Formation de voies par detection des échos

forts en imagerie ultrasonore

Dans ce chapitre, nous proposons une méthode de formation de voies qui exploite
une représentation parcimonieuse des images RF. Une détection automatique des forts
échos susceptibles de représenter les frontières entre les organes ou des structures hy-
peréchogènes a été effectuée en réalisant un compromis entre la parcimonie spatiale de
ces structures et la forme des données brutes. L’image ainsi obtenue est par la suite
combinée linéairement avec une image classiquement formée, afin de garder le speckle
habituel des images. Nous avons montré à travers des résultats de simulations réalistes
et un résultat expérimental sur fantôme (matériau de test) que la méthode proposée
améliore le contraste et le rapport signal sur bruit comparé à des approches de formation
de voies classiques.

Formation de voies proposée

La détection est basée sur un compromis entre la parcimonie spatiale des images obtenues
et le respect des données brutes. Le modèle parcimonieux de l’image RF considéré s’écrit
sous la forme suivante [Tur et al., 2011] :

S(x, n) =
PX

p=1

aphp(x� xp, n� np),

x = x

1

, · · · , xM et n = 1, · · · , N,

(6)

avec n et x les variables spatiales respectivement axiales (dans la direction de propa-
gation des ondes) et latérales, S(x, n) la représentation parcimonieuse de l’image RF
après formation des voies, (xp, np) avec p = 1 · · ·P les positions spatiales des P plus
forts diffuseurs du milieu imagé. Les ap représentent les amplitudes des diffuseurs et
hp(x, n) sont les formes d’ondes réfléchies par chaque diffuseur.

Dans notre modèle, les positions, les amplitudes et les réponses produites par chaque
diffuseur sont considérées inconnues et seront estimées. La parcimonie est liée au fait
que le nombre de diffuseurs forts K est très faible dans la grille spatiale 2D des positions
considérées initialement par le formeurs de voies. Notre méthode est constituée de deux
étapes. La première détecte un fort diffuseur potentiel en se basant sur l’image RF for-
mée par l’approche par retard et somme ou par variance minimum. La deuxième étape
valide ce choix en évaluant l’évolution d’une fonction de coût faisant appel aux données



brutes. A chaque itération, le nouveau diffuseur détecté est accepté selon une fonction
de coût dont l’objectif est de trouver un compromis entre un faible nombre d’échos
forts et le respect des données brutes. Cette fonction, inspirée du critère d’information
Bayesien [Konishi and Kitagawa, 2008] est adaptée à l’imagerie US.

Expériences

Les approches proposées, nommées USBIC (basées sur le retard et la somme) et M-
USBIC (basé sur la variance minimum), ont été évaluées sur trois différents exemples
simulés en utilisant le programme de simulation Field II et des acquisitions sur des
fantômes US. Le premier milieu simulé est basé sur une hypothèse de réflecteurs parci-
monieux. Le second est basé sur des données simulées à partir d’un milieu contenant
des réflecteurs parcimonieux, un kyste, et du speckle, en utilisant une sonde multi-
éléments. Le troisième exemple représente la simulation d’une image cardiaque en vue
apicale 4-chambre (A4C), comme suggérée dans [Alessandrini et al., 2012]. Les données
expérimentales ont été acquises avec une plateforme de recherche Ultrasonix MDP.

Résultats

La première simulation consiste en un milieu contenant 14 réflecteurs parcimonieux,
alignés latéralement à �2 mm et 2 mm. Le milieu ne contient pas du speckle. Dans
la simulation, nous avons évalué le potentiel des méthodes proposées à détecter avec
précision les réflecteurs forts dans des milieux parcimonieux. Les résultats montrent que
l’ensemble des 14 réflecteurs positionnés parcimonieusement est détecté aux positions
correctes. La deuxième simulation contient des réflecteurs forts et un kyste dans un
milieu avec du speckle. Le principal avantage de notre méthode est d’améliorer le
contraste pour des structures hyperéchogènes. Cependant, en ajoutant le speckle sur
des images finales, malgré une réduction du contraste, nous parvenons à maintenir un
contraste voisin de celui obtenu par des techniques de formation de voies existantes.
Troisièmement, les résultats de formation de voies sur une vue A4C simulée montrent
que les méthodes proposées améliorent le contraste des structures du ventricule, tout en
conservant leurs formes. Enfin, en les appliquant sur des données expérimentales, nous
avons montré que la méthode proposée offre un meilleur compromis entre le contraste
et la préservation du speckle, comparée aux formateurs de voies par retard et somme et
à variance minimum.



Chapitre 4 : Formation de voies en imagerie ultrasonore

par un problème inverse régularisé

Dans ce chapitre, nous proposons d’effectuer la formation de voies en imagerie ul-

trasonore par un problème inverse régularisé basé sur un modèle linéaire reliant les

échos réfléchis au signal final recherché. La contribution majeure de ce chapitre est

l’amélioration des techniques de formation de voies existantes en combinant le mod-

èle direct proposé formulé suivant la direction latérale des images avec une approche

d’inversion régularisée. De plus, la méthode proposée permet de réduire fortement le

nombre d’émissions US requises.

En premier lieu, les statistiques laplaciennes (`
1

) et gaussiennes (`
2

), deux des régu-

larisations les plus courantes dans de tels problèmes d’imageries, seront considérées ici

([Chen et al., 1998, Tikhonov, 1963]). En second lieu, nous avons également appliqué

à notre cadre, une méthode de régularisation complexe combinant `

1

et `

2

, appelée

régularisation « elastic-net » [Zou and Hastie, 2005]. En outre, notre méthode ouvre

de nouvelles perspectives pour les termes de régularisation plus complexes (par exem-

ple, [Chen et al., 2016a, Michailovich and Rathi, 2015]) pour améliorer davantage les

résultats.

Formation de voies proposée

La méthode proposée est appliquée séquentiellement de la même manière à chaque

échantillon (profondeur). Pour chaque profondeur n, nous souhaitons estimer le signal

correspondant à un réflecteur en fonction de son emplacement, qui contiendra des pics

dominants à la position des réflecteurs. Nous rappelons ici que nous utilisons le même

mode d’acquisition que celui décrit dans le Chapitre 2, où une série de K voies focalisées

sont transmises avec M éléments, avec des angles d’incidence différents ✓k, k = 1, · · · ,K.

Comme il s’agit de plusieurs directions, pour réduire la complexité élevée, nous pro-

posons d’utiliser les données formées par la méthode par retard et somme au lieu de les

former à partir des données brutes. Ensuite, nous utilisons un outil couramment util-

isé dans les approches de localisation des sources permettant de réduire la complexité

de calcul [Fuchs, 1996, Tian and Van Trees, 2001]. Plus précisément, pour chaque pro-

fondeur n, nous projetons les données obtenues lors de la formation de voies par retard



et somme dans un nouvel espace de formation de voies representé par les matrices A et

ABS .

Notre modèle est formulé ainsi :

z[n] = (AH
BSA)x[n] +DHg[n], (7)

où z[n] 2 CP⇥1 est le vecteur transformé formé par l’échantillonnage des lignes latérales

formées par la methode par retard et somme sur une grille de P positions, D de taille

K⇥P est une matrice de décimation, x[n] de taille K⇥1 est le profil latéral à estimer à

la profundeur n, et A respectivement ABS sont les matrices de projection des capteurs

vers les reflecteurs dans le milieu et des reflecteurs vers les capteurs.

Une façon d’inverser le problème est d’utiliser des techniques standards de régularisa-

tion. En considérant que le signal x[n] suit les statistiques laplaciennes, la minimisation

de la fonction de coût s’écrit :

x[n] = argmin

x[n]
(||z[n]� (AH

BSA)x[n]||2
2

+ �||x[n]||
1

), (8)

où ||·||
1

désigne la norme `
1

. Nous avons utilisé l’outil d’optimisation YALL 1 [Zhang, 2009]

pour résoudre (8).

Expériences

Les approches proposées, appelées de façon générique dans ce chapitre : « Base Pursuit

beamforming » (BP BF), « Least Squares beamforming » (LS BF), et « Elastic-Net

beamforming » (EN BF), ont été évaluées en utilisant des données simulées et des

données expérimentales in vivo de la carotide et de la thyroïde.

Résultats

Nous présentons les résultats de formation de voies sur des données de la thyroïde avec

une tumeur. Nous pouvons observer que contrairement à l’image DAS, où la tumeur est

difficile à distinguer (voir Fig. 2(a)), les méthodes proposées (BP, LS, et EN) améliorent

la visualisation des principales structures, et renforcent les bords de la tumeur (voir

Fig. 2(b)-(d)).
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Figure 2: Les résultats de la formation de voies (a) par retard et somme, (b) BP, (c) LS,
et (d) EN (� = 0.8) sur des données in vivo de la thyroïde avec une tumeur.

Conclusions

Contrairement aux techniques existantes qui utilisent des poids adaptatifs, nous avons
regularisé notre problème inverse de formation de voies en utilisant des hypothèses
statistiques laplaciennes, gaussiennes, et « elastic-net ». La FV à base de régularisation
proposée permet de réduire fortement le nombre de transmissions US (par un facteur
cinq dans nos exemples), tout en améliorant la qualité des images formées en termes de
résolution et de contraste par rapport aux formeurs de voies existants.



Chapitre 5 : Formation de voies en imagerie ultrasonore

utilisant une loi stable

Dans ce chapitre, nous présentons une nouvelle méthode de formation de voies

basée sur la caractérisation statistique des signaux par des distributions ↵-stable. La

principale contribution présentée dans ce chapitre est l’utilisation des propriétés non

gaussiennes des signaux RF dans le processus de formation de voies (voir par exem-

ple [Pereyra and Batatia, 2012, Alessandrini et al., 2011, Zhao et al., 2016b]). A notre

connaissance, ceci est la première tentative de considérer spécifiquement une distribu-

tion ↵-stable pendant la formation de voies en imagerie US.

Formation de voies proposée

Le modèle linéaire direct présenté dans le Chapitre 4 est ici inversé en utilisant une régu-

larisation par pseudo-norme plus générale `p, avec p automatiquement lié au paramètre

↵ estimé à partir des données brutes [Achim et al., 2015]. Notre solution de FV est

basée sur l’hypothèse d’une distribution ↵-stable des signaux US. La loi stable est une

généralisation de la distribution gaussienne (pour ↵ = 2, la distribution stable est ré-

duite à la distribution gaussienne) [Shao and Nikias, 1993].

Dans [Achim et al., 2015], il a été montré que la régularisation par norme `p est bien

adaptée pour reconstruire des signaux suivant une distribution ↵-stable symétrique

(S↵S). En outre, il a été démontré que le choix optimal pour le paramètre p est

plus petit, mais aussi proche que possible de ↵ [Achim et al., 2015], généralement p =

↵ � 0, 01. Selon le degré de parcimonie du milieu, la valeur de p, directement liée

à ↵ estimée à partir de y (soit p = ↵ � 0, 01) peut prendre des valeurs plus petites

que 1. Dans ce cas, la fonction de coût à minimiser devient non convexe. Plusieurs

solutions pour résoudre ces problèmes non convexes existent dans la littérature. Dans

ce travail, nous avons utilisé l’algorithme d’optimisation semi-quadratique proposé dans

[Cetin and Karl, 2001].

Expériences

Afin d’évaluer la méthode de FV proposée (notée FV ↵-stable), nous avons utilisé à

la fois des données simulées et in vivo. Les données simulées contiennent 3 diffuseurs

situés à 50 mm de profondeur et une structure de kyste anéchoïque de 10 mm de rayon
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Figure 3: Les résultats de la formation de voies (a) par retard et somme, (b) à variance
minimum (c) LS, et (d) ↵-stable sur des données simulées contenant 3 réflecteurs et un
kyste hypoéchogène.

situé à 80 mm de profondeur, noyés dans du speckle. Les émissions correspondaient à

52 ondes planes (pour la méthode proposée) et à 260 ondes planes (pour les méthodes

de formation de voies par retard et somme et à variance minimum) transmises avec des

angles compris entre -30� et 30�. Les données in vivo représentent la glande thyroïde

d’un sujet atteint d’une tumeur maligne. L’acquisition a été réalisée avec un système

clinique d’échographie Sonoline Elegra modifié à des fins de recherche, et équipé d’un

transducteur en réseau linéaire Siemens Medical Systems 7.5L40 P / N 5260281-L0850

émettant des séries d’ondes focalisées.

Résultats

Nous présentons ici les résultats de FV des données simulées contenant 3 réflecteurs et

un kyste hypoéchogène. Nous pouvons observer que la formation de voies par retard

et somme (Fig. 3(a)) n’est pas en mesure de résoudre la dimension du kyste circu-

laire. En effet, le kyste apparaît plus étroit que sa dimension d’origine, en raison de la

faible résolution fournie par la formation de voies par retard et somme. La méthode à

variance minimum (Fig. 2(b)) et la LS (Fig. 2(c)) fournissent de meilleurs résultats, à

savoir une dimension du kyste plus proche de sa dimension réelle. Toutefois, lorsque

nous utilisons une formation de voies ↵-stable (Fig. 2(d)), nous obtenons de meilleurs

résultats en termes de résolution spatiale, de contraste , par rapport aux méthodes par

retard et somme, à variance minimum et LS. Nous notons que les méthodes par retard

et somme et à variance minimum ont utilisé des données brutes obtenues avec cinq fois

plus d’émissions US que notre méthode (i.e 260 ondes planes). Grâce à cet exemple,



nous avons montré le potentiel de notre méthode à travailler avec un nombre réduit
d’émissions.

Conclusions

Dans ce chapitre, nous avons proposé une nouvelle méthode de formation de voies en
généralisant le modèle proposé précédemment (présentée dans le Chapitre 4). Notre
méthode utilise une régularisation par pseudo-norme `p pour résoudre notre problème
inverse. De plus, p est calculé automatiquement en le reliant aux statistiques ↵-stables
des images US. Ainsi, notre méthode, contrairement aux approches à variance minimale,
ne nécessite qu’un seul réglage des paramètres. Elle pourrait également être d’un intérêt
dans d’autres domaines d’application tels que l’estimation de la direction d’arrivée. Les
travaux futurs porteront sur l’évaluation d’autres stratégies d’acquisition (par exemple,
émissions d’ultrasons dans des directions aléatoires) ou encore sur la prise en compte des
termes de régularisation communs pour la reconstruction conjointe de plusieurs lignes
latérales.



Introduction

Ultrasound (US) imaging is one of the most fast-developing medical imaging tech-

niques, allowing non-invasive and ultra-high frame rate procedures at reduced costs.

Cardiac, abdominal, fetal, and breast imaging are some of the applications where it is

extensively used as diagnostic tool.

In a classical US scanning process, short acoustic pulses are transmitted through

the region-of-interest of the human body. The backscattered echo signals, also called

raw channel data, are then processed for creating radiofrequency (RF) beamformed

lines. Beamforming (BF) plays a key role in US image formation, influencing the

resolution and the contrast of final image. The standard way of BF is to delay and

weight the reflected echoes before averaging them. Most of the existing BF methods

are using fixed (data-independent) or adaptive (data-depended) weights. The focus of

these methods is to calculate the weights applied to the reflected echoes, such that only

the signals of interest are preserved. Data-independent BF methods provide results with

low resolution and contrast. The results are improved by data-dependent BF methods.

However, their computation complexity is high and they are not adequate for real-time

applications.

The objective of this work is to model BF as an inverse problem, relating the raw

channel data to the signals to be recovered. The proposed BF framework improves the

contrast and the spatial resolution of the US images, compared with the existing BF

methods.

The first chapter of the thesis provides the background of ultrasound imaging.

Firstly, it illustrates the characteristics of US signals, and analyzes the propagating

waves. Secondly, beamforming technique is introduced. Then, the main source localiza-

tion methods are briefly described, together with their limitations. Thirdly, we present

the medical US imaging, and the way the US images are displayed.

xxxv



The second chapter provides the state-of-the-art of the existing BF methods in
medical US imaging. We briefly review the most common beamforming techniques,
starting with the standard delay-and-sum (DAS) BF method and emerging to the most
known adaptive BF techniques, with focus on the minimum variance (MV) BF and its
improvements. A detailed comparison between the presented BF methods is presented.

The third chapter investigates the use of sparse priors in creating original two-
dimensional beamforming methods for ultrasound imaging. The proposed approaches
detect the strong reflectors from the scanned medium based on the well-known Bayesian
Information Criteria used in statistical modeling. Moreover, they allow a parametric
selection of the level of speckle in the final beamformed image.

In the fourth chapter, we propose a new way of addressing the BF in US imaging,
by formulating it as a linear inverse problem relating the reflected echoes to the signal
to be recovered. Our approach presents two major advantages: i) its flexibility in
the choice of statistical assumptions on the signal to be beamformed (Laplacian and
Gaussian statistics are tested herein) and ii) its robustness to a reduced number of
pulse emissions. The proposed framework is flexible and allows for choosing the right
trade-off between noise suppression and sharpness of the resulted image. We illustrate
the performance of our approach on both simulated and experimental data, with in vivo
examples of carotid and thyroid.

In the fifth chapter, we present a new beamforming method for ultrasound medical
imaging based upon the statistical characterization of the ultrasound signals by ↵-stable
distributions. In the chapter four we have reformulated BF in US imaging as a linear
inverse problem, associating the raw channel data to the RF signals to be recovered.
While US signal processing has widely relied for many years on the assumption of
Gaussianity it was shown that RF echoes can be more accurately modelled by a power-
law shot noise model. For example, the statistical properties of the RF signals were
related, based on the generalized central limit theorem, to ↵-stable distributions. The
main contribution of this chapter is the use of the non-Gaussianity properties of the RF
signals in the beamforming process. This is the first attempt of specifically considering
an ↵-stable distribution while beamforming the received echoes in US imaging.

Finally, the sixth chapter discusses the contributions of the thesis and the future
works.
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1. ULTRASOUND IMAGING

Before we discuss about the beamforming process and contributions we proposed, it

is necessary to present the main principles of ultrasound imaging. Thus, we start the first

chapter of the manuscript by presenting the most important aspects of ultrasound (US)

imaging, which are very important for a good understanding of the material presented

in this thesis. Firstly, the principle of ultrasound imaging is described, together with

the basic physical phenomenon. Then, the techniques for US image visualization, with

focus on medical US imaging are presented. Finally, the basics of beamforming (BF)

are introduced, and some of the most common BF techniques are described.

1.1 Ultrasound imaging principles

We start this chapter by describing the basic principle of US imaging, including sound

propagation and classical scanning methods of the medium.

1.1.1 Principle of ultrasound imaging

Ultrasonic field has been extensively developing since 1970s and it represents approxi-

mately 25% of all medical imaging examinations performed in the world at the beginning

of 21st century [(IAEA), 2014]. There exist distinct fields of study within ultrasonics,

with different applications, as: underwater acoustics, applications for monitoring and

control, medical ultrasonics for therapy, diagnosis, surgery, biotechnology, nanotechnol-

ogy, and defense. All these domains are in continuous development.

Ultrasound signals are acoustical waves with frequencies in the range 20 kHz to

1 GHz. These waves are produced by electrically exciting a piezoelectric transducer

which is capable of generating and detecting ultrasound energy. Note that the same

transducer is used for both transmission and reception of the ultrasound waves in the

medium. In function of their frequencies, the acoustic waves can be classified as:

• Infrasounds: f  20 Hz. These sound waves cannot be perceived by human ear.

Their main application is monitoring the earthquakes.

• Audible sounds: 20 Hz  f  20 kHz. This is the hearing range of frequencies

in humans and most of the animals.

2



1.1 Ultrasound imaging principles

Transducer

Emitted 
ultrasound wave

Scatterers 
in the medium

Propagation of the 
wave through the medium

Echoes

Raw channel 
dataExcitation

(a) (b) (c)

Figure 1.1: The principle of ultrasound imaging: (a) an electrical pulse (excitation) is
transmitted to the piezoelectric transducer, transforming the pulse into an ultrasound wave;
(b) the wave propagates and interacts with the medium; (c) the reflected waves received
by the transducer are transformed in electrical signals (raw channel data).
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1. ULTRASOUND IMAGING

C C C C

D D D D
distance

pressure

C C C CD D D D

+∆P

∆P-

Figure 1.2: Propagation of a 1D longitudinal wave in homogeneous, loss-less medium.
The pressure p(x, t) is alternatively compressed (C) and expanded (D).

• Ultrasounds: 20 kHz  f  1 GHz. They contain frequencies higher than

the upper audible limit of human hearing. Their main application domains are

industry and medicine.

• Hypersounds: f � 1 GHz. They are also called ’microwave acoustics’. A

quantitative investigation of such waves can be done using Bragg diffraction

[Kuttruff, 1991].

Fig. 1.1 presents the basic principle of ultrasound imaging. Firstly, acoustic waves

(vibrations) are generated (Fig. 1.1(a)). The emitted ultrasound waves are propagating

and interacting to the medium (Fig. 1.1 (b)). Due to the interaction and due to the

inhomogeneities that are present within the medium, some reflected and diffused waves

will rise. These echoes propagate back towards the transducer, which will translate them

in electrical signals (raw channel data) proportional with the received echoes (Fig. 1.1

(c)).

Until here, we presented the basic principle of ultrasound imaging, without taking

into account the properties of sound, their propagation laws, the design of the trans-

ducers, or aspects about how we can visualize the signals reflected from the medium.

Leaving out the details, the next few sections will present the sound and transducer

properties, for a better understating of the principle of interaction between the sound

and the particles in the propagating medium. For a more thorough covering of the

material presented in this section the reader is referred to [(IAEA), 2014].
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1.1 Ultrasound imaging principles

1.1.2 Sound propagation in medium

We present here the main properties of the sound and the way it interacts with the

medium, by emphasizing the phenomena of propagation, reflection, transmission, scat-

tering, absorption, and attenuation.

The tissue is a medium where sounds propagate and where exchange between kinetic

and potential energy takes place. In biological tissues and water, we primarily find

longitudinal waves. This type of waves is propagated by the tissue particles that are

alternatively compressing and decompressing, as illustrated in the Fig. 1.2.

The propagation phenomenon can be described by the wave equation. A wave in

homogeneous medium without attenuation, at a position (x, y, z) of the propagating

space and at a time t can be described by a second-order differential equation:

r2

p� 1

c

2

@

2

p(x, y, z, t)

@t

2

= 0, (1.1)

where r2 is the Laplacian operator and r2

p =

@2

@x2 p +
@2

@y2
p +

@2

@z2
p and c is the speed

of sound in the medium and has the expression:

c =

1

p
⇢

, (1.2)

where ⇢ is the medium density and [Pa�1] the medium compressibility. The average

speed of sound in the human body is 1540 m/s. It is slowest in air/gasses and fastest

in solids. The values of speed of sound in different biological materials are described in

Table 1.1.

The other parameters of the Table 1.1 will be introduced later in the manuscript.

When the wave propagates in one direction, for example x direction, it is re-

ferred to as plane wave. In this case, the propagation equation (1.1) become (e.g.,

[Angelsen, 2000b, Angelsen, 2000a]):

@

2

p(x, t)

@x

2

� 1

c

2

@

2

p(x, t)

@t

2

= 0, (1.3)

where p(x, t) represents the pressure that is function of the position x and time t.

One solution of (1.3), important for this work, in the case of plane wave equation

given by:
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1. ULTRASOUND IMAGING

Material c(m/s) Z(kg·m�2·sec�1

)⇥ 10

�4 dB/cm at 1 MHz
Air 330 0.0004 12

Water 1480 1.48 0.0022
Fat 1450-1460 1.34-1.38 0.52

Brain 1560 1.55 0.85
Liver 1555-1570 1.65 0.96

Kidney 1560 1.62 1.0
Spleen 1570 1.64 1.0
Blood 1550-1560 1.61-1.65 0.17
Muscle 1550-1600 1.62-1.71 1.2

Lens of eye 1620 1.85 2.0
Skull bone 3360-4080 6.0-7.8 11.3

Table 1.1: Speed of ultrasound c, specific acoustic impedance Z, and attenuation coeffi-
cients µ (at 1-MHz) for some selected materials [(IAEA), 2014].

p(x, t) = Ae

j(!t�kx)
, (1.4)

where A is the amplitude of the propagating signal, !
2⇡ is the frequency, and k =

!
c is the

wavenumber. The name of plane wave equation is given by the fact that the wavefronts

form planes in the 3-D space. Note that (1.4) is defined for one spatial dimension.

Considering that the plane wave in (1.4) propagates through the medium and is

reflected, the measured signal at the sensor is defined as:

y(t) = Ae

j(!t�kx)
. (1.5)

The acoustic properties of the medium are characterized by the acoustic impedance,

which can be seen as the opposition to the flow of sound through a surface. The acoustic

impedance, Z, similar to the electric impedance, allows the characterization of a medium

based on its density, ⇢, and the speed of sound in that medium:

Z = ⇢c. (1.6)

The commonly used unit to quantify the specific acoustic impedance is the rayl,

and it is defined as 1[rayl] = 1[kg·m�2·s�1]. The specific acoustic impedance of some

selected biological tissues are presented in Table 1.1.
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1.1 Ultrasound imaging principles

interface

θi θr

θt

medium 1
medium 2

Figure 1.3: Transmission and reflection of an acoustic wave on a planar interface between
two media with different acoustic impedances (Z1 for medium1 and Z2 for medium2, Z1 6=
Z2); ✓i - angle of incidence and ✓r - angle of reflection, where ✓i = ✓r; ✓t-different, because
the speed of sound is different in the medium2.

1.1.2.1 Reflection and transmission

During the propagation, sound can travel different types of tissues. In this case, reflec-
tion or transmission phenomena may occur which are described in this section.

Through the propagation of the wave in the medium, a portion of the incident
energy (Ii) is reflected (Ir), while the second portion is transmitted (It), as illustrated
in Fig. 1.3. The reflection coefficient ↵R is used to measure the reflection between two
adjacent tissues with different impedances, Z

1

and Z

2

:

↵R =

Ir

Ii
=

(

Z2
cos ✓t

� Z1
cos ✓i

)

2

(

Z2
cos ✓t

+

Z1
cos ✓i

)

2

. (1.7)

The sound wave that is not reflected, will be transmitted into the medium. The
transmission coefficient ↵T is expressed as:

↵T =

It

Ii
= 1� ↵R. (1.8)

The equations governing the angles of incidence ✓i, reflection ✓r, and transmission
✓t, are the following:

✓i = ✓r,

sin ✓i

sin ✓t
=

c1

c2

,

(1.9)

where c1 and c2 are the sound velocities in the medium 1, respectively medium 2.
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1. ULTRASOUND IMAGING

interface

Reflection Scattering Scattering

Figure 1.4: The difference between reflection and scattering phenomena.

In the case when ✓i = ✓t = 0, we can rewrite (1.7) depending just on the ratio

between Z

1

and Z

2

:

↵R =

Ir

Ii
=

(Z

2

� Z

1

)

2

(Z

2

+ Z

1

)

2

. (1.10)

Considering a soft tissue as interface, by using the values of the specific acoustic

impedance in the Table 1.1, it can be shown that the intensity of the reflected ultrasound

wave at some interface can reach 0.1% of the incident intensity. The reflection on

other types of interfaces (e.g., skull bone) can be higher due to higher specific acoustic

impedance.

1.1.2.2 Scattering, absorption, and attenuation

We saw that reflection occurs at flat, smooth interfaces, where the transmitted wave

is reflected in a single direction depending on the angle of incidence. However, in

biological tissues, the interface is not always perfectly smooth, thus the phenomenon of

scattering (or diffuse reflection) may occur. Scattering also occurs when the dimension

of the target is negligible to the wavelength (e.g., blood cells). The difference between

reflection and scattering is illustrated in the Fig. 1.4.

Attenuation represents the loss in energy (intensity) of the propagating ultrasound

wave due to scattering and absorption processes. Typically it is approximated by an

exponential function of the distance x and it depends linearly on the initial intensity

[Angelsen, 2000b]:

I(x) = I(0)e

�µx
, (1.11)

where µ[dB/cm] is the intensity attenuation coefficient, measured in decibels per cen-

timeter. The attenuation depends on the type of the tissue and is proportional to

the frequency f . Table 1.1 contains the values of the attenuation coefficients µ for a
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1.1 Ultrasound imaging principles

1 MHz ultrasound signal for some selected materials. Low frequency will permit the

investigation of deeper located parts of a body, at the price of the degradation of the

axial resolution (detailed in the Section 1.2.2) which is inversely proportional to the

frequency.

In US imaging system, as echoes are attenuated with the depth, time gain com-

pensation (TGC) is applied to the signal. TGC is used to compensate the effects of

absorption. Gain is applied to the signal as function of time (distance).

1.1.2.3 Speckle

Scattering occurs when the dimension of the target is negligible to the wavelength (see

Section 1.1.2.2).

The speckle pattern is the result of the scattering process of the incident ultrasound

wave that propagates through medium’s scatterers (see Section 1.1.2.2). The speckle

texture appears due to the diffuse reflexion, the resulting waves interacting both through

the constructive and destructive interferences.

1.1.3 Transducers

In the Section 1.1.2 we characterized sound and described the phenomena that arise

when it propagates through a medium and interacts with it. However, in ultrasonic

systems, the transducers are the emitters and receivers of sounds. Thus, in this section

we present the main components of a transducer and its properties.

Transducers are the key component of an ultrasound system, being capable of gen-

erating and detecting ultrasonic energy. In ultrasound systems, the typical conversions

are electrical to ultrasonic energy (in transmission), or ultrasonic to electrical energy

(in reception) [Ensminger and Bond, 2011]. In transmission, the transducer can be

seen as a loudspeaker, transmitting acoustic pulses which will propagate in the body

(Fig. 1.1(a)). In reception, it acts as a microphone, recording the echoes received from

the body and converting them into electrical signals (Fig. 1.1(c)). The resulting signals

are then beamformed and presented as an ultrasound image. We delay the details of

beamforming process and ultrasound image visualization until see Section 1.3, respec-

tively Section 1.2.
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Active elements

Scanning area
Beam profile

(a) (b) (c)

Figure 1.5: Principle of electronic sweeping with (a) linear array, (b) convex array, and
(c) phased array.

Transducer can be seen as a piezoelectric sensor. Piezoelectric effects are defined

in the American Institute of Physics Handbook [Dwight E. Gray, 1957] as "the phe-

nomena of separation of charge in a crystal by mechanical stresses and the converse".

Transducers are usually composed as arrays of small piezoelectric crystals. The array

configuration plays a major role in the dynamic focusing and in the electronic beam-

forming. However, the topics of focusing and beamforming are very challenging and we

discuss them in Section 1.3.

However, before describing beamforming, it is important to present the main con-

figurations of the transducer array, how their configuration can influence the scanned

region of interest, and the main medical applications of each configuration. In the next

section we touch upon these topics.

1.1.4 Scanning

The first ultrasound probes were composed of a single piezoelectric crystal and the

images were formed by mechanically rotating or translating the probe. Nowadays, the

probes includes a large number (ranging between 64 to 512) of piezoelectric crystals.

Instead of using mechanical rotation or translation, electronic sweeping or steering is

used. Exciting few adjacent crystals by an electric pulse, will produce an ultrasound

beam. In the classical scanning process, the echoes reflected by the scanning medium

will be received by the same number of crystals. We will touch upon the topic of the

number of the elements used in the transmission or reception in Section 1.1.5.

10



1.1 Ultrasound imaging principles

Typically, the ultrasound transducers can be found in three main configurations:

linear, convex, or phased arrays. Fig. 1.5 illustrates the three configurations and the

electronic sweeping for each case. In general, the convex and phased array configurations

are also named sector arrays, since they will provide sector scans. Linear arrays will

provide rectangular scans.

Rectangular scans (images) are obtained by using linear transducers that have the

piezoelectric crystals arranged in a line (Fig. 1.5(a)). One reflected pulse results from

each different subaperture composed of a number of active elements of the transducer.

This subaperture is shifted over a region of interest in the body. The shape of the field

of view (FOV) is rectangular, so the resulted 2D images are also rectangular. Such

a probe can be used, for example, for investigation of shallow objects (e.g., carotid

arteries, thyroid, or cysts in the liver).

Sector scans are produced using convex or phased arrays. Generally, it uses 100-200

beams that are steered (mechanically or electronically) with different angles. The angles

are defined by delaying the signals transmitted by each element. The FOV is enlarged

due to their capability of producing a fan-shaped field of view.

By using convex arrays, the piezoelectric crystals are arranged on a convex sur-

face. Thus, a larger area than the one obtained using linear arrays can be scanned

(Fig. 1.5(b)). The principle of shifting the active transducer’s subaperture over the

probe is the same as for linear array. This type of configuration is generally used for

heart and abdomen investigations.

Phased arrays permit reducing the number of elements of transducer, while obtain-

ing a large FOV (Fig. 1.5(c)). All the probe’s elements are used in transmission and

reception. To control the direction of the beam, the emitted (and/or received) signals

are delayed.

The 3D scanning can be obtained either by using piezoelectric elements arranged in

a rectangular grid form, or by mechanically moving a 2D US probe. This configuration

allows the steering of the ultrasound beam in two directions, creating a 3D FOV.

1.1.5 Imaging modalities

In Section 1.1.4 we discussed about the common configurations of the elements of an

transducer: linear, convex, or phased arrays. Moreover, Fig. 1.5 illustrates that in the

case of linear and convex arrays, just some elements of the probe are used in transmission

11



1. ULTRASOUND IMAGING

1 2 3 256

(a) (b)

1

Figure 1.6: Ultrasound imaging modalities: (a) conventional and (b) plane-wave imaging.

or reception. In fact, we will see in this section that Fig. 1.5(a)-(b) illustrate the
standard scanning modality. Besides the standard modality, we introduce plane-wave
imaging modality which is of great interest for applications involving high frame rates.
Both modalities are presented next in this section.

Fig. 1.6 presents the two aforementioned imaging modalities in ultrasound imag-
ing. The standard US imaging Fig. 1.6(a) sequentially scans the medium using focused
beams. Each focus beam will allow the reconstruction of one image line. A typical 2D
US image contains multiple lines (64 to 512). The frame rate of the imaging depends
on the time required to transmit, receive and process the reflected echoes (beamforming
process). At maximum depth, dp, the pulse repetition interval, TR is:

TR � 2dp

c

. (1.12)

Thus, the pulse repetition rate, fR is:

fR =

1

TR
. (1.13)

If K emissions are required to form an US image, the image frame rate is calculated as:

F =

1

KTR
. (1.14)
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Figure 1.7: General ultrasound scanning process.

Some applications require higher frame rates (for example, the echography, for heart
motion analysis). To increase the frame rate and decrease acquisition time, plane-
wave imaging can be a great solution. Plane-wave imaging uses all the elements in
transmission/reception to construct an US image. Of course, this image have lower
resolution than the one obtained in standard US imaging Fig. 1.6(b). However, the
resolution of the image can be increased by compounding, by using several steered
emissions (e.g., [Zhao et al., 2015a]). More details about the resolution of ultrasound
imaging and the main used image quality metrics of US imaging are discussed in Section
1.2.2, respectively Section 1.2.3.

1.2 Ultrasound image visualization

Before we discuss about the US imaging quality and the common metrics used to mea-
sure the resolution and the contrast of an US image, it is important to understand the
techniques of US image visualization.

In Section 1.1 we presented the principle of US imaging, from the excitation of the
transducer, through the interaction between the acoustic waves with the particles in the
medium, until the formation of the raw channel data (see Fig. 1.1). The entire scanning
process, after the reception of the raw channel data by the transducer, is illustrated
in the Fig. 1.7. Thus, BF techniques are applied to raw channel data to form the

13



1. ULTRASOUND IMAGING

radiofrequency (RF) data. Since the topic of BF is the main attraction of this work, we

delay the details about BF techniques until Section 1.3, where the main BF categories

are presented. In this way, we will continue the discussions from Section 1.3 to Chapter

2, where we present the main BF techniques applied to medical US. However, before

describing BF, we shall discuss about how ultrasound imaging is visualized.

After receiving the echoes (raw channel data) reflected by the tissues (medium) us-

ing the principle described in Fig. 1.1, BF in reception is applied in order to improve

the spatial resolution, the signal-to-noise ratio, and the contrast of the images. The

US images that result after the BF process, are called RF images, and are the result

of juxtaposing multiple RF signals. For visualization reasons, the RF images are then

converted into B (brightness) mode images, using conventional post-processing tech-

niques such as band-pass filtering, envelope detection, logarithmic compression, and

scan conversion. These techniques will be briefly described in the following paragraphs.

Let us denote with si(n) the RF signal formed after beamforming the raw channel

data corresponding to the emission i, n = 1, · · ·N , where N is the length of the signal

recorded over time at a sampling rate fs. The reconstruction of the B-mode image start-

ing from the RF signals (signals obtained after the beamforming process) is described

in Fig. 1.8.

1.2.1 Image visualization modes

As stated in Section 1.1.4, the first US probes were composed of a single piezoelectric

crystal, acting as both a transmitter and a receiver. Thus, a single signal could be

recorded at a particular time instance and was displayed as time series, corresponding

to a one-dimensional scan. This type of visualization is called amplitude mode (A-mode)

imaging.

The most common type of imaging is the brightness mode (B-mode), illustrated in

the Fig. 1.8. The image points are displayed in an rectangular grid, in gray scale with

brightness proportional with the amplitude of the reflections.

The newest technology is the three-dimensional (3D) imagining, that uses two-

dimensional (2D) transducer arrays.

Other US imaging modes can be also found: motion mode (M-mode) displays the

echoes from one scan line over time; colorflow presents the velocities of the blood flow;

14
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illustrated in the right side of the figure.
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Figure 1.9: The spatial coordinate system for illustrating the axial and lateral resolution
configuration of an 1-D ultrasound transducer array. The transducer is divided into ele-
ments in the lateral direction. The transmitted US wave propagates in the axial direction.

harmonic imaging shows the image harmonics generated by non-linear propagation.

These and other imaging techniques are detailed in e.g., [Merton, 1997, Jensen, 2007].

1.2.2 Image resolution

Ultrasound image quality is strongly influenced by the spatial resolution (both axial

and lateral resolution). Fig. 1.9 illustrates the spatial coordinate system for describing

spatial resolution of an 1-D ultrasound transducer.

Axial resolution is the capability to distinguish between two structures lying in the

direction of the propagation of the ultrasound beam. Axial resolution depends on the

speed of sound, c, and the bandwidth of the ultrasound probe, B, [Foster et al., 2000]:

rax =

2c

B

. (1.15)

Usually, for central frequencies of 3�3.5 MHz, the axial resolution is about 0.2 mm.

Lateral resolution is the ability to distinguish between two structures lying in

the lateral direction. Lateral resolution depends directly on wavelength,�, and focal

distance, Lf , and it depends inverse directly on the diameter of the ultrasound probe,

D, [Foster et al., 2000]:

16



1.2 Ultrasound image visualization

rlat = �

Lf

D

, (1.16)

Thus, thinner the beam, better the lateral resolution. It also depends on the geom-
etry of the transducer, the frequency, and the focal point. Beamforming (i.e., DAS BF,
see Fig. 2.3) can be used to focus the ultrasound beam in order to obtain the optimal
resolution in the region of interest. Moreover, dynamic focusing allows the focus of the
beam on multiple points along a given direction.

1.2.3 Image quality metrics

We conclude the part of this section devoted to US image visualization by describing the
most common US image quality metrics that are used in this dissertation to compare
between the results proposed and existing BF techniques. In this work, they were
computed based on the envelope-detected signals independent of image display range.
Based on two regions R

1

and R

2

belonging to two different structures, the contrast ratio
(CR) is defined as e.g., [Xu et al., 2014a]:

CR = |µR1 � µR2 |, (1.17)

where µR1 and µR2 are the mean values in the region R

1

, respectively R

2

.

The contrast-to-noise ratio (CNR) is defined as e.g., [Rindal et al., 2014]:

CNR =

|µR1 � µR2 |q
�

2

R1
+ �

2

R2

, (1.18)

where �R1 and �R2 are the standard deviations of intensities in R

1

, respectively R

2

.

Basically, CNR and CR compare a region of interest (ROI) to the level of the
background. The greater the CR and CNR, the more perceptible the structure in the
medium and better the contrast of US images.

The signal-to-noise ratio (SNR) is defined as the ratio between the mean value µ

and the standard deviation � in homogeneous regions e.g., [Jensen and Austeng, 2014]:

SNR =

µ

�

. (1.19)

Higher levels of SNR indicate grater useful information compared to noise. Thus, in
US imaging, grater values of SNR are preferable.
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1. ULTRASOUND IMAGING

The resolution gain (RG) is defined in [Taxt and Strand, 2001] as the ratio between
the normalized autocorrelation function with values higher than 3 dB (computed for
the DAS beamformed image in our case), over the normalized autocorrelation function
(higher than 3 dB) of the images formed by using the other BF methods. Note that a
value of RG > 1 needs to be achieved for achieving a better resolution than classical
beamformers.

1.3 Introduction to beamforming

A general discussion about beamforming (BF) in US imaging is described in this section.
Then, we describe it in more detail in Chapter 2, where we present the state of the art
of the BF techniques used in medical US imaging.

The beamformer (or spatial filter) [Van Veen and Buckley, 1988] is the ultrasound
system’s "engine", being the main component responsible for image formation. Its
benefit is twofold:

• Steer or focus the ultrasound transducer towards a signal coming from a specific
point, usually called focal point.

• Improve the contrast, spatial resolution and the signal-to-noise ratio of the ultra-
sound image.

BF enables the selectivity of acoustic signals reflected from some known positions, while
attenuating the signals from other positions. This is classically done by delaying (fo-
cusing) and applying some specific weights to the reflected signals. All these concepts
and examples of beamformers will be presented in the Chapter 2.
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2. BEAMFORMING IN MEDICAL ULTRASOUND IMAGING: STATE
OF THE ART

In this chapter we describe the standard beamforming method (data-independent),

which consist in focusing (delaying) and weighting the raw channel data before averaging

them. Then, we present the adaptive beamformers and their main issues. Finally, we

briefly describe how beamforming could be modelled in other domains.

2.1 Focusing

One of the first major steps in beamforming is focusing. In transmission, delays are

applied to control the contributions coming from all transducer’s elements to hit a given

point, called focal point in emission. In reception, the echoes received by the elements

(raw channel data) are delayed such that they sum contributions coming from the same

given point of the medium (focal point in reception).

X

Y

Centered element
(x0, y0, z0) 

Focal point
(xf, yf, zf) 

ith element
(xi, yi, zi) 

ri 
rc

M active elements

ri∆

Figure 2.1: Spatial 2D configuration. The US probe contains M active elements with
the central element is illustrated in blue. The distance from the i-th element to the focal
point is ri. The distance from the central element to the focal point is rc. The delay that
is applied to the signal emitted by the i-th element is �ri. In (2.4), the pressure denoted
p0(x, y, z, t) refers to the one corresponding to the central element, highlighted by blue.

To calculate the delays, the ray acoustics theory can be used [Jensen, 1999]. Fig. 2.1

describes the main elements used in the calculation of the delay, �ri in order to hit the

i-th element to focal point. The distance from the i-th element to the point of interest,

S(x, y), is:
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2.2 Main ultrasound imaging elements

ri =

q
(xi � xf )

2

+ (yi � yf )
2

+ (zi � zf )
2

, (2.1)

where (xi, yi, zi) is the center of the i-th element and (xf , yf , zf ) is the position of the
focal point. The central element of the transducer is situated at the position (x

0

, y

0

, z

0

),
and its distance to the focal point, rc, is expressed as:

rc =

q
(x

0

� xf )
2

+ (y

0

� yf )
2

+ (z

0

� zf )
2

. (2.2)

Thus from (2.1) and (2.2), the delay needed to be applied to the i-th element in
order to compensate the time of flight is equal to:

�ti =
1

c

�ri =
1

c

(rc � ri), (2.3)

where c is the speed of sound in the medium. Thus, the selection of each focal point
can be done using the delays expressed in (2.3), but under the assumption of constant
c.

2.2 Main ultrasound imaging elements

range n

M-element US probe

lateral
scanline

beamformed
RF line 

Ax
ial

Lateral

Figure 2.2: The main US imaging elements to model beamforming.

Fig. 2.2 presents the main elements used to model the beamforming process. We
will extensively use this elements to mathematically describe the different BF methods
presented in this dissertation.
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Figure 2.3: Principle of delay-and-sum (DAS) beamformer for (a) emit and (b) receive.

We consider, without loss of generality, the particular setup of an M -element US

probe (M can be also the number of the active elements of the probe). A series of K

focused beams are transmitted with different incident angles ✓k, k = 1, · · · ,K. The

returning echoes are recorded using the same US probe, being time-delayed, such that

the time-of-flight is compensated, so that the backscatter from the point of interest is

summed up coherently. If we consider that each of the recorded raw signal after the

time-delay compensation has N time samples, the size of the recorded data from all the

K directions will be M ⇥N ⇥K.

2.3 Data-independent beamforming: DAS

After focusing the raw data, different weights are applied to the focused data. De-

pending on the calculation of the weights applied to the output array of the reflected

signals, beamformers can be either data-independent (fixed), or data-dependent (adap-

tive). We present hereafter the most common data-independent beamforming method,

called delay-and-sum (DAS), see for e.g., [Thomenius, 1996].
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2.3 Data-independent beamforming: DAS

The principle of DAS BF is illustrated in the Fig. 2.3 for both emit and receive.
In emission, (Fig. 2.3(a)), both the amplitude (through weighting) and the time of

excitation (through delays) are controlled at each transducer’s element, such that the
weighted and delayed transmitted pulses add up constructively in the focal point. The
expression of the pressure field is:

P (x, y, z, t) =

MX

i=1

wip0(x� xi, y � yi, z � zi, t��ti), (2.4)

where (x, y, z) represents the spatial location, t represents the time, M is the total
number of elements, wi is the weight of the i-th element, centered at the position xi, yi,

and zi, �ti is the time delay applied to the signal that excited the i-th element, and p

0

is
the pressure field generated by one element with center at the origin of the coordinate
system. Because all the elements of the US probe are identical, each of the element
can be expressed as function of the centered element’s pressure (the central element is
highlighted in blue in Fig. 2.1).

In reception, (Fig. 2.3(b)), the echoes received by the elements of US probe, also
called raw channel data, are focused (delayed) in order to compensate the delays due to
the time-of-flight differences. Then, the resulting signals are weighted (using a weighting
function, also called apodization function) and further summed up to form one RF
signal. The applied weights form the apodization window in reception.

Beamforming is more flexible in reception than in emission. In emission, once the
elements have been excited, we cannot control anymore the process of beamforming.
However, in receive, the raw channel data can be stored and the weighting functions
can be selected function of the recorded data, according to the depth.

To mathematically model DAS BF, we consider hereafter the classical acquisition
scheme presented in the Section 2.2, where a series of K focused beams is transmitted
with M elements (Fig. 2.2). The final RF US image is a collection of RF beamformed
lines, each of which being the result of beamforming the raw RF signals coming from
an emission in the direction ✓k, k 2 {1, . . . ,K}, using M elements of the transducer.
The classical DAS BF can be expressed as:

ˆsk(n) = wH
(n)y

(k)
d (n) =

MX

m=1

wm(n)y(k)
m (n��m(n))

n = 1, · · · , N, k = 1, · · · ,K,

(2.5)
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where �m(n) is the time delay for focusing at the point of interest sample, being depen-
dent on the distance between the m-th element and the point of interest, wm are the
BF weights, y(k)

m 2 CN⇥1 is the raw channel data received by the m-th element of the
US probe, corresponding to the emission steered at angle ✓k, and (·)H represents the
conjugate transpose. Note that where y

(k)
d 2 CM⇥N is the time-compensated version of

y
(k)
m . A simplified form of (2.5) can be formulated as:

ˆsk = wHyk, (2.6)

where yk 2 CM⇥N is the time-compensated version of y(k)
m in (2.5) for the k-th emission

(for the sake of generality, we consider yk to be complex-valued data), and w is the
vector of the beamformer weights of size M ⇥ 1.

DAS BF selects the weights independent on data, solving:

min

w

wHw, such that wH1 = 1, (2.7)

where 1 is a length M column-vector of ones since the raw channel data was focused
using time-delays. The solution of (2.7) is:

wDAS =

1

M

. (2.8)

If we replace (2.8) in (2.6) we get:

ˆsk =

1

M

1Tyk, (2.9)

where {·}T denotes the transpose. A common technique used in US is to apply weighting
functions such as Hanning, or Hamming apodizations to (2.9) to further reduce the
sidelobes of ˆsk, resulting in improved contrast of the beamformed image, at the cost of
a slight lateral spatial resolution degradation.

2.4 Data-dependent beamforming

The fact of beamforming dependently on the raw channel data is called adaptive beam-
forming. Adaptive beamformers calculate the weights from the statistics of the received
data in order to converge to an optimal response in terms of maximization of the SNR
at the beamformer output. Thus, the contributions of the noise and the signals that
arrive from other directions than the desired one are minimized.
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Figure 2.4: Principle of Capon (Minimum Variance) beamforming in reception.

The main challenge in applying adaptive BF to medical ultrasound imaging is the

correlation between the signal and the interference. The signal and the interference are

highly correlated, due to the fact that the US probe is receiving echoes reflected by the

same region of interest. There are different techniques to deal with correlation, that

will be discussed in the next sections.

2.4.1 Capon or minimum variance beamformer

The classic DAS beamforming (Fig. 2.3) has the weights independent of the transmitted

pulses (in emission) or raw channel data (in reception).

In reception, the idea of adaptive beamforming is to use the received echoes (raw

channel data) to calculate the weights. One of the most widely used methods is Capon

filter, also called Minimum Variance (MV) [Capon, 1969]. While the DAS beamformer

uses fixed data-independent weights, w, the aim of MV is to apply an optimal set of

weights in order to estimate the desired signal waveform as accurately as possible, while

rejecting the interfering signals. Fig. 2.4 illustrates the beamforming process when MV

method is used. The optimal weights in the sense of MV, can be obtained from the

expression of the signal-to-interference-plus-noise ratio (SINR) [Li and Stoica, 2006]:

SINR =

�

2

s |wHa|2

wHRkw
, (2.10)

where R of size M ⇥M is the interference-plus-noise covariance matrix, �2

s is the signal

power and a the steering vector. To have a maximum SINR, the output interference-

plus-noise power is minimized, while maintaining a distortionless response to the desired

signal:
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subarray 1

subarray 2

subarray (M- L+1) 

M elements
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Figure 2.5: Subbarray division. The M elements of the array are divided into overlapping
subarrays of length L. Then, the spatial covariance matrices of the M � L + 1 subarrays
are averaged.

min

w

wHRkw, such that wH1 = 1. (2.11)

Therefore, the solution of (2.11), also called the minimum variance distortionless re-

sponse beamformer, is:

wMV =

R�1

k 1

1TR�1

k 1
. (2.12)

As in practical situation the analytical form of Rk is not known, it is usually replaced by

the estimated covariance matrix derived from P received samples (snapshots), denoted

by ˆRk:

ˆRk =

1

P

PX

p=1

yk(p)y
H
k (p). (2.13)

In order to decorrelate the coherent signals received from the M elements, the subarray-

averaging (spatial averaging) method is generally used (see Fig. 2.5). Specifically, the

linear array of M elements is divided into M�L+1 overlapping subarrays of size L, and

the covariance matrices from all subarrays are averaged [Synnevag et al., 2007a]. Usu-

ally, a value of L  M
2

will ensure that the covariance matrix is invertible. However, it

was shown that when using subarray-averaging technique, the tissue may appear less ho-

mogeneous and may give different statistics compared with DAS [Synnevag et al., 2007b].

To retain the speckle statistics, the temporal averaging (corresponding to depth) was

introduced in [Synnevag et al., 2009]. The authors of [Synnevag et al., 2009] suggested
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a temporal averaging over 2T +1 time samples. By applying both spatial and temporal
averaging, the equation of the estimated covariance matrix becomes:

˜Rk(t) =
1

(2T + 1)(M � L+ 1)

TX

t=�T

M�L+1X

l=1

y
(l)
k (t)y

(l)
k (t)

H
, (2.14)

where y
(l)
k is the dynamically focused raw channel data corresponding to the l-th sub-

array of size L.
By averaging both in the spatial (lateral direction) and temporal (axial direction)

domains, the resolution can be further improved, with no contrast degradation. The
adaptive weights are calculated by replacing ˜Rk in (2.12). These weights will be then
used in (2.6) in order to obtain the RF signals after MV beamforming. Thus, the RF
signals of the MV beamformer can be expressed as:

˜sk = wH
MV yk, (2.15)

Note that the constraint in (2.11) assures that only the waves reflected from the focal
point are passed with unit gain, the others being suppressed. However, phase aberra-
tions may occur, resulting in targets that may appear out of the focus. These reflections
will be minimized by using a robust MV beamformer. To increase the robustness of
MV beamforming, different techniques exist in the literature, that are able to constrain
the level of supression outside the focal point. In Section 2.4.2 we discuss and compare
the most common approaches.

2.4.2 Improved MV beamformer approaches

In the next sections we discuss three of the most common techniques to improve the
robustness of the MV beamformer: diagonal loading, coherence factor, and the use of
frequency subbands.

2.4.2.1 Diagonal loading

One way to increase the robustness of MV beamformer is to apply the diagonal load-
ing (DL) technique before the inversion of the estimated covariance matrix in 2.11
[Synnevag et al., 2007a]. This technique consists in adding a constant, ✏, to the es-
timated covariance matrix, such that ˜Rk becomes ˜Rk + ✏I, where I is the identity
matrix. There exist different methods to compute the value of ✏ (see more details in
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[Li et al., 2003]), but the most common way is to fix ✏ to be proportional to the power
of the received signals:

✏ = � · tr{ ˜Rk}I, (2.16)

where � is a constant and tr{·} is the trace operator. In [Synnevag et al., 2007a] a
robust solution is obtained when � =

1

L . Thus, by replacing (2.16) in (2.12), the
expression of the weights when diagonal loading technique and temporal and spatial
averaging are applied, becomes:

w
(DL)
MV =

(

˜Rk +
�

L tr{ ˜Rk}I)�11

1T ( ˜Rk +
�

L tr{ ˜Rk}I)�11
. (2.17)

In order to obtain the RF signals, the weights obtained in the (2.17) are replaced in
(2.15).

2.4.2.2 Coherence factor weighting

In [Asl and Mahloojifar, 2012, Asl and Mahloojifar, 2009], the robustness of the MV
beamformer was increased by combining it with the coherence factor (CF) weighting.
However, CF weighting can also be applied as extension to DAS beamforming, increasing
the resolution and the contrast of the resulted image compared with DAS. It was shown
that the resolution and the contrast of the final image are improved. The CF technique
is used as an extension to MV, being based on the spatial spectrum of the aperture
data. Basically, it represents the ratio of the mainlobe energy to the total energy and it
is used as an index of the focusing quality [Li and Li, 2003], being referred also as the
Mallart-Fink focusing factor [Mallart and Fink, 1994] (2.18). Even if the resolution and
the contrast of the images are improved, [Xu et al., 2014b] showed that the resulting
images may be altered due to the low SNR and SINR. Thus, they proposed the spatio-
temporally smoothed coherence factor (StS-CF), which is a variant of the CF applied
on raw channel data that was previously divided in subarrays in the lateral direction, as
shown in the Fig. 2.5, and temporally divided. In this way, the artifacts stemming from
low SNR and SINR are attenuated. The equation of the spatio-temporally smoothed
CF is written as:

CF =

|
PM

m=1

yk(m)|2

M

PM
m=1

|yk(m)|2
. (2.18)
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Figure 2.6: Comparison between (a) DAS, (b) DAS+CF, (c) MV, and (d) MV+CF. For
simulations, an US probe of M = 64 active elements was used. Subarray-averaging method
was applied to MV with subarrays of size L = 32. In this case, no temporal averaging was
used, so K = 0.

Thus, (2.15) can be re-written as follows after applying CF weighting:

˜s
(CF )

k =

CF

M � L+ 1

wH
MV yk. (2.19)

Fig. 2.6 shows the comparison between DAS BF (Fig. 2.6(a)) and MV BF (Fig. 2.6(c))

and the effect of applying the CF weighting for both DAS BF (Fig. 2.6(b)) and MV

BF (Fig. 2.6(d)). We can observe that the best result is obtained when MV with CF

weighting is used (Fig. 2.6(d)). Note that the aforementioned BF methods were tested

on a simulated medium that contains 14 punctual scatterers, laterally aligned in pairs

of two, at lateral positions of �2 mm and 2 mm. The BF methods used in this exam-

ple were implemented by the author of the dissertation. The simulated medium was

obtained using the Field II simulation program [Jensen and Svendsen, 1992].

Fig. 2.7 illustrated the lateral profiles at depth 50 mm (Fig. 2.7(a)) and depth 70

mm (Fig. 2.7(b)) corresponding to the Fig. 2.6. We can observe that the narrower

mainlobes are obtained by using MV with CF weighting.

Note that other solutions exist in the literature to improve the classical CF weighting.

For example,[Nilsen and Holm, 2010] addressed CF weighting using Wiener postfilter
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Figure 2.7: Comparison of the lateral profiles at (a) 50 mm and 70 mm from Fig. 2.6.

for DAS beamforming. Hovewer, was shown in [Xu et al., 2014b] that StS-CF provides

better results in terms of contrast, resolution, and robustness to low SINR.

2.4.2.3 Frequency subbands

Another approach to improve the robustness of the MV beamformer was proposed by

Holfort et al. in [Holfort et al., 2009]. Using the discrete Fourier transform (DFT)

they transform the raw channel data into frequency subbands and calculates a set of

complex apodization weights for each frequency subband. Compared with DAS, they

obtain an increase of contrast and lateral resolution even in the case of plane-wave

US imaging (when only one emission is used). However, Diamantis et al. provide

in [Diamantis et al., 2014] a comparison between the temporal and frequency subband

approaches of MV for US images and show that there are insignificant differences, in

terms of spatial resolution and contrast. Even more, the frequency subband MV solution

needs up to three times more calculations than the temporal one. Moreover, Rindal et

al. contest the improvement in contrast related to MV, and show that the improvement

is rather due to the increase in lateral resolution [Rindal et al., 2014].
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2.5 Subspace methods: MUSIC

MUSIC beamformer [Schmidt, 1981] is the most known method in the category of

eigenspace-based beamformers. Its main development is based on the idea of separating

the eigenspace of the covariance matrix of the raw channel data into signal and noise

components using prior information about the covariance of the noise. The covariance

matrix, R is decomposed as:

R = U⇤UH
= U s⇤sU

H
s +Un⇤nU

H
n = U s⇤sU

H
s + �

2UnU
H
n ,

(2.20)

where U and ⇤ are the eigenvalue decomposition of R, and U s,Un,⇤s, and ⇤n =

�

2IM�K are the partitions of the eigenspectrum into signal plus noise and signal sub-

spaces. K in this case, is the number of the point reflectors (scatterers) in the medium.

To calculate the optimal weights w in the adaptive process in Fig. 2.4, the value of R

obtained after applying (2.20), is replaced in (2.12). The limitation of this method is

that the number of the point reflectors, K, needs to be strictly less than the number

of the elements of the transducer, K < M . Note that, because of the large number

of scatterers in the medium, the assumption of K < M can hardly be guaranteed in

medical US.

MUSIC beamformer is commonly used in source localization applications (typically

in wireless communications, radar, sonar, and exploration seismology) [Chen et al., 2002].

The results of such beamformer consist in sharp peaks at the estimated source locations.

More details about its application to medical ultrasound are discussed in Chapter 2.

2.6 Parametric methods: Maximum Likelihood

Maximum Likelihood (ML) beamformers are based on models containing parameters

to be estimated and a variety of assumptions need to be taken into account (see e.g.,

[Krim and Viberg, 1996, Stoica and Sharman, 1990]). One possible assumption can be

the shape of the signals, that can be modeled as deterministic or using statistical as-

sumptions. Noise is usually modeled as stationary Gaussian. An example of an ML

beamformer penalty function is:

LML(✓) = || ˆR�R||2F = || ˆR� (ASAH
+ �

2I)||2F , (2.21)
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Figure 2.8: Comparison between DAS, MV, MUSIC, and ML beamformers performance
to localize two sources (scatterers) in the medium.

where || · ||F is the Frobenius norm, ✓ contains the locations for all K sources (or

scatterers) in the medium, ✓ = [✓

1

, · · · , ✓K ], �

2 is the variance of the noise, I is

the identity matrix, and A is the array manifold vector A = [a
1

· · ·ak]
T , with ai =

[1 e

�j!�ti · · · e�j!(M�1)�ti
]

T . The aim of ML beamformer is to find ✓ such that the

penalty function in (2.21) is minimized.

The computational complexity is higher than for the aforementioned beamformers,

but the benefits of ML beamformers consist in the ability to resolve coherent signals.

Fig. 2.8 compares the performances of DAS, MV, MUSIC, and ML beamformers to

detect sources located at angles ✓ = 60

� and ✓ = 70

�. The beamformers operated on a

linear array with 15 elements and �
2

spacing between the elements (� is the wavelength).

We can observe that the best localization of the two sources in this example, is obtained

when using ML beamformer.

2.7 Beamspace beamforming

Starting from the MV BF method presented in Section 2.4.1, re-named element-space

based Capon (ES-Capon) in [Nilsen and Hafizovic, 2009], Nilsen et al. proposed a

beamspace beamformer (BS-Capon) that allowed reducing the computational complex-

ity of the MV BF by a ratio of 3.
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The beamspace transformation is expressed as follows:

ykBS
= Byk, (2.22)

where B = [b
1

, · · · , bM ]

T is the M ⇥M Butler matrix whose elements are defined as:

bmn =

1p
M

e

j 2⇡
M (m� 1

2 )n
. (2.23)

B is an unitary matrix (BBH
= BHB = IM⇥M ), equivalent to an M-point discrete

Fourier transform (DFT) matrix. IM⇥M is the identity matrix of size M ⇥M .

The transformation in (2.22) is applied to all signals and weights vectors in the

element-space (ES) to find their beamspaced version. Therefore, the weights of ES-

Capon BF are formed by solving:

min

wBS
wH

BSRBSwBS , such that wH
BSe1 = 1. (2.24)

The solution of (2.24) is:

wBS =

R�1

BSe1

e

T
1

R�1

BSe1

, (2.25)

where RBS = E[ykBS
yH
kBS

] is the covariance matrix of ykBS
and em is a M ⇥ 1 vector

having the value 1 in the m-th position and zero in all other positions. Finally, we can

state that BS-Capon BF can be seen as the description of the Capon filter from (2.12)

in the Fourier domain.

As stated before in this section, in the case of DAS, MV, and BS-Capon BF, the

final RF US image is a collection of RF beamformed lines, each of which being the

result of beamforming the raw RF signals coming from a focused wave emission in the

direction ✓k, k 2 {1, . . . ,K}, using the M elements of the transducer.

2.7.1 Multi-beam beamforming

Recently, to improve the MV BF, Nilsen et al. proposed a beamspace adaptive beam-

former, BS-Capon. Unlike MV BF, they based their BF method on orthogonal beams

formed in different directions [Nilsen and Hafizovic, 2009]. This technique was also

applied by Jensen et al. to develop an adaptive beamformer based on multibeam co-

variance matrices [Jensen and Austeng, 2012], called multi-beam Capon beamformer.
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Figure 2.9: Phase shift compensation of the focused raw channel data.

In their work, a covariance matrix is calculated for each range in the image, based on

the idea that the beams were transmitted with different angles. Thus, the authors of

[Jensen and Austeng, 2012] were able to reduce the computation time of MV BF, while

improving the resolution of point-like reflectors.

Jensen et. al. used beamspace processing described in Section 2.7 for reducing the

dimensionality of the data, and proposed a new approach of Capon BF, called multi-

beam Capon BF [Jensen and Austeng, 2012]. For more convenience, let us briefly recall

their approach. For a given range (depth) n (see Fig. 2.2), let us select its corresponding

lateral scanline. Since the signals ykBS
have been focused in axial direction (by applying

time delays) before being beamformed, we just need to compensate the phase-shifts

based on the distances from the samples of the lateral scanline (equivalent, in our case,

with K, the number of beam directions).

The compensation of the phase-shifts, ��m, with m = 0, · · · ,M � 1 is depicted in

Fig. 2.9, assuming that the time-compensated data reaches the elements at angle ✓k.

We consider the first elements as reference, so its phase-shift is 0. Thus, based on the

far-field assumption, the complex exponential version of the manifold vector for a given

direction k, that corresponds to the incident angle ✓k, can be formulated as (see e.g.,

[Jensen and Austeng, 2012, Kautz and Zoltowski, 1996]):

a✓k = [1 e

�j⇡ sin(✓k) · · · e�j(M�1)⇡ sin(✓k)
]

T
. (2.26)

Thus, by using phase shifts, for focusing along a lateral scanline, contrarily to the matrix

RBS used in BS-Capon, for a given range n, the covariance matrix R[n] will cover all the
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directions ✓k, k = 1, · · · ,K. Therefore, the weights corresponding to a given direction

✓ and a range n will be formed by solving:

min

w

wHR[n]w, such that wHa✓,n = 1, (2.27)

having the solution:

w✓,n =

R�1

[n]a✓,n

aT
✓,nR

�1

[n]a✓,n

. (2.28)

These weights are then applied to calculate the signal corresponding to a lateral scanline,

at a range n.

2.8 User parameter-free beamforming approaches: IAA

Iterative Adaptive Approach (IAA), referred to as user free-parameter adaptive BF, was

firstly applied in US medical imagining for an accurate estimation of the blood velocity

spectrum using only few transmissions [Gudmundson et al., 2011]. Jensen and Austeng

compared IAA BF for medical US imaging with DAS and proved better resolution of

point targets and better geometry of the cyst-like structures [Jensen and Austeng, 2014].

Unfortunately, the main disadvantage of IAA is that requires much more computations

than MV.

Based on the beamspace processing technique (see Section 2.7) and on the calcu-

lation of the multibeam covariance matrix discussed in the Section 2.7.1, Jensen et al.

applied IAA [Yardibi et al., 2008] to US medical imaging, [Jensen and Austeng, 2014].

Following this recent work, a covariance matrix, ¯R[n] based on ¯

K potential reflectors

placed across a considered lateral scanline, was defined as:

¯R[n] =

¯KX

k=1

|yBS [n]|2a✓a
T
✓ = ABSPAT

BS , (2.29)

with yBS [n] 2 CNb⇥ ¯K the beamspaced time-delayed raw channel data at a given range

n, before applying the phase-shift transform. A is the matrix containing the manifold

column-vectors defined in (2.26), and P a diagonal matrix with the elements of |yBS [n]|2

along its diagonal.

The values of P are then iteratively updated and calculated by taking into account

the weights corresponding to a lateral scanline, following (2.28). Finally, P is used to
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Input: The sample covariance matrix, ˆR, see (2.13).
Output: Amplitude squared matrix, P .
1) Initial estimate of the power of each reflector by applying matched spatial
filtering ) the squared version of DAS BF:

P
(init)
✓ = aT

✓
ˆRa✓. (2.30)

2) Iterate the following steps:

• Use P in (2.29) ) ¯R.

• The adaptive weights are calculated based on (2.28) ) wT
✓,n.

• The weights are used in (2.30) to update P :

P ✓ = wT
✓,n

ˆRw✓,n. (2.31)

Until the algorithm converges. The diagonal of P contains the contribution of
each potential reflector.

Algorithm 1: IAA algorithm applied to US imaging [Jensen and Austeng, 2014].

estimate the amplitude of each reflector of the IAA BF result. This is described in

Algorithm 1.

Contrarily of DAS, MV and BS-Capon BF where, to form the final beamformed

image, the RF lines are juxtaposed in the lateral direction, multi-beam Capon and

IAA BF are axially juxtaposing the beamformed lateral scanlines to form the final

beamformed image.

Fig. 2.10 illustrates the comparison between the aforementioned BF methods. The

simulated data contains 6 point reflectors (4 axially aligned at the lateral distance of

0 mm and 2 laterally aligned at axial distance of 50 mm, horizontally separated by 1

mm). An hypoechoic cyst (the black circle of diameter 5 mm, centered axially at 50

mm and laterally at 15 mm) was simulated. A phased array probe of 64 elements was

used, with central frequency, f

0

, of 3 MHz. When using DAS BF, see Fig. 2.10(a),

we can observe that the point reflectors are hardly distinguished from speckle, and the

geometry of the cyst is not well defined. MV (Fig. 2.10(b)) and multi-beam Capon

(Fig. 2.10(c)) beamformers give better result in terms of contrast and resolution of the

point-like reflectors (see the reflector situated at depth 40 mm). The geometry of the

cyst is also well resolved. Finally, with IAA BF (Fig. 2.10(d)), as stated previously in

36



2.8 User parameter-free beamforming approaches: IAA

DAS

Ax
ia

l d
is

ta
nc

e 
[m

m
]

−30 −20 −10 0 10 20 30

25

30

35

40

45

50

55

60

65

70

MV

−30 −20 −10 0 10 20 30

multi−beam Capon

−30 −20 −10 0 10 20 30

IAA

−30 −20 −10 0 10 20 30 −60

−50

−40

−30

−20

−10

0

−60

−50

−40

−30

−20

−10

0

[dB]
Lateral distance [mm]

(a) (b)

(c) (d)

[dB]
Lateral distance [mm]

Ax
ia

l d
is

ta
nc

e 
[m

m
]

25

30

35

40

45

50

55

60

65

70

Figure 2.10: Simulated cyst phantom and point reflectors, using an 64-element, 3-MHz
phased array. (a) DAS, (b) MV (L=32, T=10), (c) multi-beam Capon (L=32), (d) IAA.
At depth 50 mm there are two point reflectors horizontally aligned, with a distance of 1
mm between them.
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Figure 2.11: Lateral profiles at 50 mm of the beamformed images in Fig. 2.10.

Table 2.1: CR, CNR, and SNR values for beamformed images in Fig. 2.10

BF Method CR[dB] CNR SNR

DAS 22.54 3.22 1.05
MV 29.74 2.87 0.54
multi-beam Capon 29.38 2.91 0.54
IAA 21.56 3.25 1.09

this section, the point reflectors are better resolved than DAS, MV, and multi-beam

Capon (see for e.g. the point reflectors at depth 40 mm and 60 mm), while the structure

of the speckle is maintained.

Fig. 2.11 contains the lateral profiles at depth 50 mm of the images in Fig. 2.10.

Note that DAS BF is not capable to distinguish between the 2 close point reflectors,

separated by 1 mm. However MV, multi-beam Capon, and IAA can resolve them until

almost �40 dB. Regarding the cyst-like structure, we can observe that only MV and

multi-beam Capon are capable to resolve its original geometry, with the exact diameter

of 10 mm. In this example, DAS and IAA produce a cyst with the diameter less than

10 mm.

In Table 2.1 the values of CR, CNR, and SNR (see their definition in Section 1.2.3)

are calculated for each BF method. The R

1

and R

2

regions are highlighted (with blue

color) in Fig. 2.10(a). We can observe that while MV gives the best result in terms of
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CR, it also degrades the SNR. However, IAA improves the CNR, while maintaining a
good SNR level.

2.9 Compressive sampling beamforming

Sparse modelling gained a special interest in medical US, as for example in the appli-
cations that concern compressive sensing (CS), e.g., [Quinsac et al., 2010]. Based on

compressive sampling, a frequency domain beamforming method was also proposed,
called compressed beamforming [Chernyakova and Eldar, 2014]. This method allowed
to reduce the number of samples needed to beamform an image containing strong reflec-
tors, while exploiting the low bandwidth of the US signals. Tur et al. [Tur et al., 2011]
modelled the echoes reflected by multiple reflectors located at unknown position in the

medium, as a sum of a small number of pulses with known shapes. Based on this,
Wagner et al. [Wagner et al., 2012] proposed a two-dimensional reconstruction method
for US imaging, called "compressed beamforming". They used multiple array elements
in receive and beamformed the sub-Nyquist received samples.

A time domain implementation of CS used in beamforming process is described in
[David et al., 2015a]. Their approach is capable of reducing the number of transmissions
and the number of the receiving elements in receive, while decreasing the sampling
frequency. Firstly, they performed a 1D simulation to demonstrate that CS preserves

resolution even if the number of the elements of US probe in reception is reduced.
Then, they applied time domain CS to 2D images, by formulating beamforming as a
matrix multiplication, linking the raw channel data, denoted in their paper by R and
the image to be recovered, I, by using the expression: R = GI, where G is a linear
operator, defined by simulating the Green’s functions. They also applied their method

on cardiac datasets [David et al., 2015b].

2.10 Beamforming in other domains

As stated in Chapter 1, beamforming has many practical applications: in wireless com-
munications, radar, sonar, underwater acoustics, applications for monitoring and con-
trol. One particular problem solved by beamforming is source localization (with accent

on the direction of arrival). Basically, the aim is to find the location of the waves
that are impinging on the array of sensors. Concretely, we are interested in finding

39



2. BEAMFORMING IN MEDICAL ULTRASOUND IMAGING: STATE
OF THE ART

the location of each scatterers in Fig. 1.1(c), based on the data they are reflecting and

that is received by the array of sensors. Of course, this is challenging in practice, since

the estimation needs to be robust in noisy conditions and to take into account the

correlation of the sources. Of course, several solutions have been already discussed to

estimate the direction of arrival (see Section 1.3) that treat the estimation as a direct

problem. However, source location was also modeled as an inverse problem (see for e.g.

[Malioutov et al., 2005, Malioutov et al., 2002, Malioutov et al., 2003]).

2.10.1 Mathematical formulation of inverse problems

Generically, the inverse function on which the source localization problem is based can

be expressed as:

y = T (x) + n, (2.32)

where x 2 X is unknown, y 2 Y is the vector of measurements (observations), X, Y

are Hilbert spaces, and n is generally assumed to be a white Gaussian noise. The

aim is to find x from y knowing the transformation T . However, the mapping from

y to x can generate multiple difficulties as: lack of solutions, non-unique solutions,

or discontinuous dependence of the solution on the observation. In these cases, the

problem becomes ill-posed. The solution of (2.32) consists in regularizing the ill-posed

problem as:

ˆx = argmin

x

(ky � T (x)k2
2

+ P (x)), (2.33)

where the first term, ky � T (x)k2
2

is the data-fidelity term, and P (x) is a function

related to the prior information one has on x. P (x) is thus the regularization term and

contains a parameter that balances the two terms of (2.33). Moreover, P (x) can be

either convex or non-convex. We will see in Chapter 4 that the regularization plays a

very important role in the quality of the solutions. Generally, regularization is using

some prior assumptions about x to solve the ill-posed problem in (2.33), see, e.g.,

[Engl et al., 1996]. [Tikhonov, 1963] was the first to deal numerically with ill-posedness

by introducing regularization. In this dissertation we investigate different numerical

optimization tools to solve the inverse problem in (2.33).

Note that the model presented in (2.32) has already practical applications in US

imaging, for different post-processing (directly on the beamformed image) techniques.

Some examples are: deconvolution (e.g., [Michailovich and Tannenbaum, 2007] and
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2.10 Beamforming in other domains

[Chen et al., 2016b]), despeckling (see e.g. [Michailovich and Tannenbaum, 2006]), and
super-resolution (see e.g. [Morin et al., 2013]) techniques.

2.10.2 Beamforming as inverse problem in medical ultrasound imag-

ing

In this thesis we modeled beamforming in medical ultrasound imaging by using the in-
verse problem formulated in (2.32) and we applied different regularization techniques in
order to solve (2.33). How the regularization function is formed, details about the regu-
larization parameter, and the differences from source localization methods, are explained
in the next chapters, where we describe in details the contributions of this dissertation.
The advantages of using such a formulation are the improvement in contrast and spatial
resolution of the beamformed image and the formulation of beamforming based on a
general mathematical model. Moreover, the proposed frameworks are flexible and allow
for choosing the right trade-off between noise suppression and sharpness of the resulted
image.

In contrast to existing BF methods in US imaging using regularized inverse problem
approaches (see e.g., [Lavarello et al., 2006, Lingvall, 2004, Lingvall and Olofsson, 2007,
Madore and Meral, 2012, Viola et al., 2008, Wan and Ebbini, 2009]), our methods does
not use the system point spread function (PSF) in the direct model or in the inver-
sion process. Thus, the proposed BF techniques does not require any experimental
measurement (e.g., [Ellis et al., 2010]) or estimation of the PSF (e.g., [Jensen, 1992,
Michailovich and Tannenbaum, 2007, Zhao et al., 2015b]). Basically, in the proposed
frameworks, the observation data y is the raw channel data of the US system, while the
structures of T (x) and P (x) are differently formulated in each of the three contribu-
tions, in function of the application and aims of the proposed beamforming methods.
We present in details each of the contributions in Chapters 3, 4, and 5.
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Strong reflector-based beamforming in

medical ultrasound imaging

This chapter is based on the journal paper [Szasz et al., 2016c]. Part of this chapter

was also published in [Szasz et al., 2014] and [Szasz et al., 2015].
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3. STRONG REFLECTOR-BASED BEAMFORMING IN MEDICAL
ULTRASOUND IMAGING

3.1 Introduction

This chapter investigates the use of sparse priors in creating original two-dimensional

beamforming methods for ultrasound imaging. The proposed approaches detect the

strong reflectors from the scanned medium based on the well known Bayesian Informa-

tion Criteria used in statistical modeling. Moreover, they allow a parametric selection

of the level of speckle in the final beamformed image.

Firstly, we propose a sparse signal representation by extending the DAS BF method

presented in Section 2.3 with BIC (Bayesian Information Criteria) selection criteria.

Then, we extend MV BF method presented in Section 2.4.1 with BIC in order to

exploit the advantages of the MV BF to our sparse modeling. Finally, we propose

a new method that computes the final beamformed image by combining the sparse

representation with the DAS and MV beamformed results. Compared with DAS and

MV, we increase the contrast while preserving the speckle (that frequently contain

important clinical information) in the final beamformed image.

3.2 Beamforming with sparse priors

Based on the beamforming methods reviewed in Chapter 2, the proposed method con-

sists in detecting and reinforcing the strong reflectors in the RF images. In practice,

these reflectors may be associated to the tissue boundaries or the small hyperechoic

structures (see, e.g., [Tur et al., 2011], [Wagner et al., 2012]).

As we will explain below, the strong reflector detection is based on the minimiza-

tion of the Bayesian Information Criteria (BIC), balancing between data fidelity and a

sparsity-based penalization term [Konishi and Kitagawa, 2008].

3.2.1 Sparse strong reflector model

The strong reflector model of an RF image S, considered herein as a collection of M

RF lines each one having N samples, is given as:

S(x, n) =
PX

p=1

aphp(x� xp, n� np),

x = x

1

, · · · , xM and n = 1, · · · , N,

(3.1)
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3.2 Beamforming with sparse priors

where n stands for the time or axial (longitudinal) direction, x is the lateral direction

variable, and S(x, n) is the beamformed RF image. (xp, np), with p = 1, · · · , P are the

positions of the P strong reflectors to be detected during the proposed beamforming

process. We denote with ap the amplitudes of the strong reflectors and with hp(x, n) the

backscattered pulse corresponding to the strong reflector p, both supposed unknown and

to be estimated. In this case the term sparsity is related to the relatively low number

of strong reflectors to be detected by the proposed method.

3.2.2 Strong reflector detection and parameter estimation

In this section, we describe the proposed process of strong reflector detection and pa-

rameter estimation. The proposed method is mainly divided in two steps: the detection

step, based on the previously beamformed RF lines, finds the strong reflectors taking

into account the amplitudes of the RF signals. Then, the validation step uses the raw

channel data to confirm the previously detected reflectors through the BIC criteria. The

main reason of processing the detection of the strong reflectors on beamformed data

instead of raw channel data is related to the SNR that is naturally higher on standardly

beamformed data compared to raw channel data. Thus, we expect that the results are

less affected by the low SNR when detecting the peaks on DAS or MV images.

For the ease of understanding, we use the same notations as in Chapter 2, corre-

sponding to a classical pulse echo US image (see Section 1.1.5). The raw channel data

is collected with the corresponding M elements (which can represent either the active

elements of the probe of all the elements of the probe), resulting into a data matrix of

size M ⇥ N , denoted by Y
(k)
d . More precisely, y(k)

d (n) is a M ⇥ 1 line corresponding

to emission number (k) and to depth n, after the dynamic focalisation of the received

echoes. As explained in the Section 2.3 and Section 2.4.1, the total amount of raw

channel data is used in non-adaptive BF process to obtain the DAS beamformed RF

image denoted herein by ˆS, or in an adaptive BF process to form the MV beamformed

RF image denoted herein by ˜S. We denoted in Section 2.3 by ˆsk, and in Section 2.4.1

by ˜sk the k

th RF signals extracted from ˆS, respectively ˜S. Our strong reflector de-

tection and parameter estimation method uses both the raw channel data Y
(k)
d , and

the beamformed RF images ˆS or ˜S. Both proposed approaches, using the DAS or

MV beamformed RF images, are similar and will be referred as USBIC, respectively

M-USBIC in the reminder of this chapter.
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Two main steps are used within the proposed method. The first step uses ˆS or ˜S

to detect a potential strong reflector (its position, amplitude, and pulse response). The

second step validates this choice and estimation based on a cost function implying the

raw channel data. The first and the second steps are alternatively repeated until the

algorithm stops (the minimum of BIC is reached). Moreover, an initial one-dimensional

(1D) approach is followed by a two-dimensional (2D) refinement, both using the two

aforementioned steps. In the following, we describe only the steps required to form the

USBIC beamformed RF image (denoted with S(P ) in this chapter). In this case we use

as input the DAS beamformed RF image ˆS, and the raw channel data Y
(k)
d . The steps

to form the M-USBIC beamformed RF image (when the MV beamformed RF image
˜S and the Y

(k)
d are the inputs) are identical with the ones required to form USBIC

beamformed RF image.

3.2.2.1 1D initialization procedure:

For each beamformed RF line ˆsk at lateral position xk the strong reflector detection

and validation are iterated. For iteration p, the two steps are process as follows:

Step 1 - Strong reflector detection

np = argmax

n\{n1,··· ,np�1}
(|ˆsk(n)|),

ap = |ˆsk(np)|,

hp(xk, n) =
ˆS(xk, n) �wh

(n),

n = [np �
⌧pulse · fs

2

, · · · , np +
⌧pulse · fs

2

],

(3.2)

where np is in the interval {1, . . . , N}, ˆS(xk, n) is the DAS beamformed image, w
h

is

a Hanning window, ⌧pulse is the predefined pulse length (equal to twice the excitation

length in this dissertation), fs is the sampling frequency, � defines the Hadamard prod-

uct, and argmax stands for the argument of the maximum. The current form of the

detected strong reflector RF signal, after p iterations, is:

s
k

(p) , S(p)
(xk, n) =

pX

l=1

alhl(xk, n), (3.3)

where s
k

(p) is the k � th column of the RF image S(p)
(x, n), at the iteration p.
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3.2 Beamforming with sparse priors

Step 2 - Validation In the second step of each iteration, a cost function is calculated

balancing between on the one hand, the data fidelity between the current RF model

in (3.3) and the raw channel data and on the other hand, the sparsity of the strong

reflectors. The BIC evaluation criterion [Konishi and Kitagawa, 2008] is one of the most

used information criteria in statistics, having the role of assessing the closeness between

the predictive distribution defined by a statistical model and the true distribution. A

statistical model uses the observed data to approximate the true distribution of certain

probabilistic events. Let g(vn|ˆ✓) be a statistical model estimated by the maximum

likelihood method. Than, the BIC criterion is defined as:

BIC(n) = �2 log g(vn|ˆ✓) + p log n, (3.4)

where ✓ is the unknown parameter, ˆ✓ is its estimator, and vn are the observations, vn =

{v
1

, v

2

, · · · , vn}. Inspired from the application of BIC with IAA for obtaining sparsity by

estimating the number of sources in array processing, described in [Yardibi et al., 2010],

BIC was adapted herein to US imaging. The cost function f

1D(p) has the following form:

f

1D(p) =

data fidelityz }| {
log(ks

k

(p) · 1> � y
(k)
d k2

2

)+ �p log(N)| {z }
sparsity constraint

, (3.5)

where � is an user-defined parameter fixing the compromise between the data attach-

ment and the sparsity. Even if the automatic choice of the � is out of the scope

of this chapter, note that there exist in literature several approaches that automat-

ically determine the value of this kind of hyperparameter, e.g., [Candes et al., 2008,

Dobigeon et al., 2012, Galatsanos and Katsaggelos, 1992, Ramani et al., 2012].

For each RF line, Step 1 and Step 2 are iterated until the cost function in (3.5)

starts to increase (i.e. f

1D(p + 1) > f

1D(p)). Note that the data fidelity term is not

related to already beamformed RF lines, but to the raw channel data (native data

received by each element of the US probe), at each iteration, having the dimension

M⇥N . Let us denote by  the set of all the strong reflector positions detected from all

individual RF lines. Applied on each RF line, the algorithm tends to overestimate the

number of strong reflectors. Moreover and more important, it does not ensure a spatial

coherence between the neighboring RF lines. For this reason, a 2D approach follows

the 1D method, and is presented bellow. It will choose a subset of strong reflectors of
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 respecting a 2D BIC criteria. The main advantage of applying the 1D approach is

to speed up (at least three times in our experiments) the 2D process that will have as

input just the potential strong reflectors detected previously by the 1D method for each

RF line.

3.2.2.2 2D refinement procedure:

For the refinement of the previously detected reflectors (by the 1D approach) we use

the set  , representing all the strong reflectors positions of all the RF lines. For all

strong reflectors detected in the 1D approach, an 2D - adapted BIC criteria is applied.

The process of the 2D refinement iteratively gathers the best positions from the set  ,

as follows:

np = argmax

n2 \{n1,··· ,np�1}
(an), (3.6)

where an is expressed in (3.2). The selected strong reflectors are plugged into the 2D

BIC criteria, given by:

f

2D(p) =

data fidelityz }| {

log(

MX

k=1

ks
k

(p) · 1> � y
(k)
d k2

2

)+ �p log(N)| {z }
sparsity constraint

, (3.7)

where s
k

(p) is defined in (3.3). The 2D validation step is iterated until the function

f

2D(p) starts to increase, similar as for the 1D initialization approach. Moreover, as

stated in Section 3.2.2.1, the data fidelity term for the 2D approach is composed of

all the focused raw channel data corresponding to all emissions, having the dimension

M ⇥M ⇥N .

3.2.3 Final image computation

As we will show in the results section, the method introduced in the Section 3.2.2

has a good ability to detect the strong reflectors and to provide a sparse version of

the RF image. However, it does not preserve the speckle characteristics, that can

contain clinical information, in the case when the examined medium is not sparse. For

this reason, we propose to further combine our sparse RF image with the one that is

classically beamformed with DAS or MV, as shown below. If the DAS RF image ˆS is
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3.3 Experiments

used (for strong reflector detection and final image combination), we call the resulted

image USBIC. If the MV RF image ˜S is used, we call it M-USBIC. Hence, the final

USBIC beamformed image can be expressed as:

SUSBIC = � · Ŝ + (1� �) · S(P )

, (3.8)

where S(P ) is the beamformed image obtained using our sparse strong reflector model

and is defined in (3.1), � is the parameter that control the level of speckle in the final

image, and P is the number of the strong reflectors detected after the p iterations.

Similar, the M-USBIC has the following expression:

SM�USBIC = � · S̃ + (1� �) · S(P ) (3.9)

Note that S(P ) be obtained either by using the DAS beamformed image (in the case

of USBIC, or starting from the MV beamformed image (in the case of M-USBIC).

3.3 Experiments

In order to evaluate the proposed USBIC and M-USBIC BF approaches, we have

considered three different simulated examples using the Field II simulation program

[Jensen and Svendsen, 1992] and one recorded ultrasound phantom data. The first sim-

ulated medium is based on a sparse assumption of the reflectors. The second one is

based on simulated data from scenes of point-targets and scenes of cysts in speckle con-

sidering a phased array imaging technique. The third example represents the simulation

of a cardiac image (the amplitudes of the scatterers were related to the grey levels of

an Apical 4 Chambers (A4C) view image, as suggested in [Alessandrini et al., 2012]).

The experimental data was acquired with an Ultrasonix MDP research platform. The

simulation and experimental parameters are resumed in the Table 3.1.

For all the following examples, the improved version of MV BF was used, the one

that gives the best results in [Asl and Mahloojifar, 2009], with spatial averaging with

L = M/2 = 32, temporal averaging T = 10, and the diagonal loading factor � =

1/L. The B-mode image computation was processed in a standard manner and in

the same way for all the resulted images: Hilbert-based demodulation and logarithmic

compression (see Section 1.2).
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3.3.1 Simulated point reflectors
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A scanned grid with 14 point reflectors was simulated, laterally aligned in pairs of
two and separated by 4 mm. They are located at axial depths ranging from 40 to 80
mm, with a transmit focus at 50 mm and a dynamic receive focalisation.

3.3.2 Simulated point reflectors and cyst data

For this type of simulation the medium was scanned with a 7 MHz 128-element phased
array transducer with �/2, � being the wavelength, spacing and Hanning apodization.
A two-cycle sinusoidal was used as excitation and the transmit focus was set to 60 mm.
We adopted a dynamically receive focalisation ranging from 5 to 150 mm. The images
consist in 128 lines with 0.7 degrees between consecutive lines. The medium consists
in several circular cysts: an anechoic one with radius 2 mm, a hyperechoic one with
radius 3 mm, an echoic one with radius 2 mm and one hypo-echoic with radius 1.5 mm.
It also contains nine point reflectors situated at different positions. The scatterers are
uniformly random distributed within the phantom cyst, and the scatterer amplitudes
are Gaussian distributed with a standard deviation determined by the scatterer map,
with the amplitude of the scatterers mapped to the intensity given through a bitmap
image.

3.3.3 Simulated cardiac apical view image

The Apical 4 Chambers (A4C) view is a well exploited perspective in echocardiography,
containing information about the left ventricle (LV) and right ventricle (RV) of the
heart. A 3.75 MHz 64-elements transducer sectorial probe was used to obtain the
simulated data which holds information about the LV, the scatterers having uniform
random positions. The sampling frequency is 40 MHz, the view angle 66�, the transmit
focus point is set to 65 mm, and a pitch equal with half of one wavelength is used
to avoid grating lobes effects. The final image is ultra-realistic, the amplitudes being
related to an in-vivo cardiac image [Alessandrini et al., 2012]. For both point reflectors
with cyst data (Section 3.3.2) and cardiac image simulations, the number of scatterers
was sufficiently large to produce fully developed speckle.

3.3.4 Recorded phantom data

The phantom data was recorded using the Ultrasonix MDP research platform equipped
with the parallel channel acquisition system SonixDaq and the linear L14-W/60 Prosonic c�
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(Korea) ultrasonic probe having 128 elements with height of 4 mm, sub-element width

of 0.093 mm, and kerf of 0.025 mm. The central frequency is f
0

= 7 MHz and the sam-

pling frequency is fs = 40 MHz. The scanned medium is a general-purpose ultrasound

phantom CIRS Model 054GS.

3.4 Results and discussion

This section presents the results of applying the proposed methods on both simulated

and in vivo data. Three conventional image quality metrics were calculated: CR index,

CNR, and SNR. Their definition is given in Section 1.2.3.

3.4.1 Sparsely located point reflectors

With this simulation we evaluated the potential of the proposed methods to precisely

detect the strong reflectors in sparse mediums. The results prove that all the 14 sparsely

located reflectors are detected at correct positions. The beamformed responses are illus-

trated in the Fig. 3.1. One can observe that using DAS BF with a Hanning apodisation

window (Fig. 3.1(a)) produces results with poor lateral resolution and high sidelobes.

Although MV offers better resolution, the sidelobes are still remarkable, Fig. 3.1(b).

Clearly, Fig. 3.1(c) and Fig. 3.1(d) present superiority over DAS and MV BF in terms

of lowering the sidelobes of the final image. These results validate that USBIC and

M-USBIC beamformers correctly detect the strong reflectors in a sparse medium. For

a sparse medium USBIC and M-USBIC give a good approximation of the reflectors’

position. � can range between 0.8 and 1 for a perfect detection of the number of reflec-

tors. Since we are dealing with a sparse medium with no speckle, � was set to 0 for this

result.

Note that, even if the amplitude of the response of the reflectors obtained with DAS

is decreasing with depth (see Fig. 3.1(a)), the proposed method is able to detect the 14

reflectors placed at different depths. Contrarily, a simple thresholding method would

firstly select the positions corresponding to the sidelobes of the first reflected echoes

before selecting the position corresponding to scatterers at higher depths.

In the Fig. 3.2 we reinforce the conclusions related to the capability of the strong re-

flector based approaches to eliminate the sidelobes by drawing the lateral variation of the

beamformed responses at axial depth of 50 mm (Fig. 3.2(a)) and 70 mm (Fig. 3.2(b)).
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Figure 3.1: (a) DAS, (b) MV, (c) USBIC, and (d) M-USBIC BF results of 14 sparsely
located reflectors.
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Figure 3.2: Lateral variations of the images from the Fig. 3.1 at (a) depth 50 mm and
(b) 70 mm.

We can clearly observe the ability of USBIC and M-USBIC to correctly detect the iso-

lated scatterers, compared to the relatively large mainlobe and high sidelobes generated

by standard beamforming techniques.

3.4.2 Point reflectors and cyst data

Fig. 3.3 presents the BF results of a simulated medium with the phased array imaging

technique. The image quality metrics are detailed in the Table 3.2. We calculate CR

and CNR on anechoic and hyperechoic cysts (in Fig. 3.3(a), they are delimited by white

circles). For both cases the R

2

regions are the black circles situated at the same depth

with the bounded cysts, as suggested in [Rindal et al., 2014]. For the calculation of the

SNR, the ROIs are all the black encircled regions together with the gray surrounded

region. The SNR was calculated for each region and the final value is the average of

the three SNRs. As stated in [Rindal et al., 2014], while the ROIs of the cysts are

chosen exactly at the limit of the cysts (Fig. 3.3(a)), we are not greatly enhancing

the contrast by using MV (Fig. 3.3(b)), compared with DAS. On the other hand, by

using USBIC or M-USBIC BF, it is normal to have a decrease in CR and CNR in

comparison with DAS and MV when dealing with the anechoic cyst, since their aim

is to remove speckle in the final image. Besides, evaluated for hyperechoic cyst and

compared with DAS, M-USBIC has an improvement of more than 10 dB and of 1.6 in

CR, respectively CNR, Table 3.2. With USBIC we can maintain a good CR even for

55



3. STRONG REFLECTOR-BASED BEAMFORMING IN MEDICAL
ULTRASOUND IMAGING

.aD .bD

.cD .dD

.fD.eD

.gD .hD

−50 0 50−50

60

80

100

0 50

−50 0 50−50

60

80

100

0 50
Lateral distance [mm]

A
x
ia

l 
d
is

ta
n
c
e
 [
m

m
]

20

40

Lateral distance [mm]

M−USBIC .λ=70, γ=0D

M−USBIC .λ=70, γ=0.7D

−50 0 50−50

60

80

100

0 50
−50

−40

−30

−20

−10

0

Lateral distance [mm]

A
x
ia

l 
d
is

ta
n
c
e
 [
m

m
]

20

40

Lateral distance [mm]

−50

−40

−30

−20

−10

0

USBIC .λ=10D M−USBIC .λ = 70D

−50

−40

−30

−20

−10

0

Lateral distance [mm]

A
x
ia

l 
d
is

ta
n
c
e
 [
m

m
]

20

40

Lateral distance [mm]

Lateral distance [mm]

A
x
ia

l 
d
is

ta
n
c
e
 [
m

m
]

DAS

−50 0 50

20

40

60

80

100

−50 0 50
−50

−40

−30

−20

−10

0
MV

Lateral distance [mm]

USBIC .λ=10, γ=0D

USBIC .λ=10, γ=0.5D

Figure 3.3: Results of (a) DAS, (b) MV, (c) USBIC with � = 10, and � = 0, (d) M-
USBIC with � = 70 and � = 0, (e) USBIC with � = 10, � = 0.5, and (f) M-USBIC with
� = 70 and � = 0.7, (g) USBIC with � = 10, and (h) M-USBIC with � = 70 on a simulated
medium using the phased array imaging technique. The image quality metrics: CR, CNR,
and SNR are given in the Table 3.2.
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anechoic cyst, while increasing by more than 10 dB the CR of the hyperechoic cyst,

Fig. 3.3(d). Moreover, the proposed methods provide a trade-off between increasing the

contrast and maintaining the speckle in the beamformed images, producing a gain of 4 in

SNR when using M-USBIC BF (Fig. 3.3(f)) and of 0.7 when using USBIC (Fig. 3.3(e)),

in comparison with DAS. Varying the parameters � and � allows the control of the

number of the strong reflectors and the speckle information in the final image. We need

to precise that the results are not too sensitive to the choice of �. A change with an

order of 10 must be chosen in order to have some remarkable differences between the

final results. However, the higher � is, the more the speckle will be eliminated. This

can highly affect the final result, while the speckle contains important information by

delimiting the anechoic cyst. As solutions, we can decrease the value of �, or increase

the value of �, that represents the percentage in the final image of the level of speckle

present in DAS (in the case of USBIC) or MV (in the case of M-USBIC) results. For

this example, USBIC BF with � = 10 and � = 0.5, and M-USBIC BF with � = 70 and

� = 0.7 perform the best results in terms of preserving the speckle while increasing the

contrast of the final image.

The main issue of using a low � parameter is that the contrast of anechoic cysts

tends to be attenuated with the decrease in �. A simple way to overcome this issue is

to choose � =

1

2

that is, to give the weight to each term in (3.8) and (3.9) which is a

fair (and easy to achive) compromise. For example, by adding the images in Fig. 3.3(a)

and Fig. 3.3(c) we obtain the result in Fig. 3.3(g). Similarly, by summing the images

in Fig. 3.3(b) and Fig. 3.3(d) results into the image in Fig. 3.3(h). From Fig. 3.3(g)

and Fig. 3.3(h) we can observe that the anechoic cyst is better defined compared with

the results when the images obtained with USBIC and M-USBIC are weighted with

�. This observation is enforced by the results of CR, CNR and SNR from Table 3.2,

where for USBIC (� = 10) the values of CR and CNR for the anechoic cyst are very

close to the ones for DAS image, while the SNR is improved. Moreover, the hyperechoic

cyst has better contrast than DAS, but not so important as when using the weighting

parameter � for computing the final result. Similar remarks can be formulated for M-

USBIC (� = 70) that preserves the low echoic region in the beamformed image. Thus,

even if the aim of the proposed methods are to detect the strong reflectors present in the

medium, if there exist anechoic structures, they can be preserved, by adding the speckle
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Table 3.2: CR, CNR and SNR values of the beamformed images using the simulated
point reflectors and cyst data medium, Fig. 3.3

Anechoic cyst Hyperechoic cyst Black-circle

BF method CR [dB] CNR CR [dB] CNR SNR

DAS 29.785 5.120 33.703 2.621 3.061
MV 21.953 5.290 34.712 2.980 3.770
USBIC (� = 10, � = 0) 10.469 3.710 47.586 4.233 3.912
USBIC (� = 10, � = 0.5) 23.391 5.315 39.634 3.281 3.701
USBIC (� = 10) 25.223 5.273 38.052 3.082 3.570
M-USBIC (� = 10, � = 0) 0.185 0.693 54.320 5.557 6.365
M-USBIC (� = 70, � = 0.7) 8.875 4.943 45.435 4.348 7.042
M-USBIC (� = 70) 15.102 5.213 40.524 3.702 5.044

from the DAS or MV images to the USBIC, respectively M-USBIC results, without any

weighting parameter �.

The previous observations are enforced by Fig. 3.4, where the lateral profiles around

the anechoic (Fig. 3.4(a)) and hyperechoic (Fig. 3.4(b)) cysts are drawn. For this figure

we considered USBIC with � = 10 and � = 0.5 (Fig. 3.3(e)), and M-USBIC with � = 70

and � = 0.7 (Fig. 3.3(f)). We can observe that the lateral profile when using USBIC is

comparable with MV, and has wider mainlobe than DAS in the case of anychoic cyst’s

profile (Fig. 3.4(a)), while its propose is to eliminate speckle around the cyst. M-USBIC

is eliminating even more the speckle, so the hyperechoic cyst will be enlarged. However,

for anechoic cysts M-USBIC provides the narrower mainlobe, the cyst appearing more

well defined in the Fig. 3.3(f). The lateral profiles when using USBIC and M-USBIC

have lower average in amplitude, due to the fact that only one fraction (1 � �) of the

DAS and MV beamformed images are added to the image S (USBIC or M-USBIC),

see (3.8) and (3.9). Thus, we may remark that the main advantage of our method

is to improve the contrast of hyperechoic structures, based on the detection of strong

reflectors. However, by adding speckle to the final images, despite a reduction of this

contrast gain, we manage to maintain a contrast of hypoechoic structures close to the

one provided by existing beamforming techniques.

For this example, USBIC with � = 10 corresponding to the image in Fig. 3.3(c),

required 8783 iterations, that is equivalent to the number of the detected reflectors,
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Figure 3.4: Lateral profiles of the images from the Fig. 3.3. (a) The lateral profile at
the axial depth of 40 mm, that intersects the anechoic cyst; (b) The lateral profile at the
axial depth of 70 mm, that intersects the hyperchoic cyst. The lateral profiles were drawn
considering USBIC with � = 10 and � = 0.5 (Fig. 3.3(e)), and M-USBIC with � = 70 and
� = 0.7 (Fig. 3.3(f)).
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Table 3.3: CR, CNR and SNR values of the beamformed images using the simulated
cardiac apical view medium, Fig. 3.6

BF method CR[dB] CNR SNR

DAS 10.938 1.209 1.285
MV 10.366 0.663 0.609
USBIC (� = 50, � = 0) 35.210 1.478 0.321
USBIC (� = 50, � = 0.5) 14.975 1.475 1.055
M-USBIC (� = 25, � = 0) 33.110 1.092 0.272
M-USBIC (� = 25, � = 0.5) 12.283 0.733 0.569

while M-USBIC dissociated 1982 strong reflectors, when � = 70 (corresponding to the
result in Fig. 3.3(d)). The two plots corresponding to USBIC and M-USBIC for this
case are drawn in the Fig. 3.5. We have also depicted the case when M-USBIC is used
with � = 10, for comparing the impact of keeping the same value of � on the two
methods. We can observe that for the same �, M-USBIC tends to detect less strong
reflectors (2050), dissociating better than USBIC the strong reflectors from the speckle.
This is due to the increase in CR, CNR, and SNR of MV, compared with DAS. We also
emphasize that the number of strong reflectors detected with M-USBIC only slightly
decreases when � changes from 10 to 70.

3.4.3 Cardiac apical view image

The results of beamforming on a simulated A4C view cardiac medium are illustrated in
the Fig. 3.6. To compute CR and CNR, R

1

was defined as the region inside the white
rectangle around the position 58 mm (axial) and -10 mm (lateral) from the Fig. 3.6(a)
together with the R

2

(the region inside the white rectangle around 8 mm (axial), situated
at the same depth as R1). For SNR, the regions surrounded by the black rectangles were
chosen. The SNR was calculated according to (1.19) for each region and the average
value was extracted. Table 3.3 lists the CR, CNR, and SNR values for each BF method.

In coherence with the conclusions stated in [Rindal et al., 2014], MV does not exhibit
a higher contrast than DAS when selecting a small ROI, see Table 3.3. Contrarily, we
obtain an improvement in CR of more than 20 dB with USBIC and M-USBIC, compared
with DAS and MV, Fig. (3.6(c) and Fig. (3.6(d). Of course, in these situations, due
to the elimination of the level of speckle, the SNR is much smaller than for DAS and
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Figure 3.6: Results of (a) DAS, (b) MV, (c) USBIC with � = 50, and � = 0, (d) M-
USBIC with � = 25 and � = 0, (e) USBIC with � = 50, and � = 0.5, and (f) M-USBIC
with � = 25 and � = 0.5 on a simulated cardiac apical view image. The image quality
metrics: CR, CNR, and SNR are given in the Table 3.3. In (a) we marked the regions used
for the calculation of CR, CNR, and SNR.
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MV. Our empirical experience shows that a value of � ⇡ 50 is optimal in terms of

contrast and visual perception of the resulted beamformed image when we use USBIC

BF approach (Fig. (3.6(e)), and a value of � ⇡ 25 for M-USBIC BF (Fig. (3.6(f)).

When dealing with a non-sparse medium, � is an important parameter that regulates

the appearance of the final image, by controlling the level of speckle. A value of � = 0

will result in an image with almost no speckle, Fig. 3.6(c) and Fig. 3.6(d). A small value

of � is sufficient for obtaining a trade-off between the contrast enhancement and retain

of speckle information in final image. As � increases, the contrast of the image is getting

closer to the values of DAS, or MV beamformed images. For this simulated medium, the

choice of the parameters was influenced on offering continuity of the ventricle structures,

while increasing as much as possible the contrast of the final image. USBIC BF achieve

the best results with � = 50 and � = 0.5, while for M-USBIC we obtained the best

outcome with � = 25 and � = 0.5.

In practical situations, the choice of the hyperparameters � and � may be a difficult

task. When dealing with optimization problems, the parameter � is usually employed,

to balance between the prior information of the strong reflectors and the data fidelity.

We may remark that in most of the optimization problems such a hyperparameter is

employed. See for example the well-known Least Absolute Shrinkage and Selection

Operator (LASSO) problem [Tibshirani, 1996], where such a parameter balances be-

tween the `

1

and `

2

norms or algorithms such as Orthogonal Matching Pursuit (OMP)

[Tropp and Gilbert, 2007] (similar to our approach in the sense of the idea of minimiz-

ing a `

0

pseudo norm) where the stop criterion is either the predefined number of atoms

or the value of the residuals.

On the other hand, the choice of � may depend on the application and on the

necessity of visualizing the speckle noise in homogeneous regions or not. Its values are

in the range [0, 1], where for 0, no influence of the beamformed data is added to the final

result, while for 1 all the speckle information from the beamformed data is added to the

final result. Fig. 3.7 shows how the parameters � and � influence the values of CNR

and SNR of the beamformed image in the case of USBIC (Fig. 3.7(a) and Fig. 3.7(b))

and M-USBIC (Fig. 3.7(c) and Fig. 3.7(d)). As expected, we can observe that � has

a great influence on SNR, that is increasing with the value of �. This is related to

the fact that � is influencing the level of speckle in the final image, by adding to the

USBIC or M-USBIC beamformed image a percentage of the DAS or MV beamformed
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Figure 3.7: The variation of the CNR and SNR versus the parameters � and � when
USBIC BF method ((a) and (b)), and M-USBIC BF method ((c) and (d)) are applied to
the cardiac view simulation detailed in the Section 3.3.3

.
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image, as discussed in the Section 3.2.3. One can observe that the value of speckle is

on one hand influenced by the l

2

-norm data fidelity term and on the other hand, by the

hyperparameters � and �. However, the parameter � has further impact on the value of

CNR. For example, when applying USBIC BF, a value of � = 50 and a low � results in

a maximum of CNR, while for the other values of �, the CNR degrades, see Fig. 3.7(a).

This is not true in the case of M-USBIC, where the influence of � is more important

that the one of �, Fig. 3.7(c). This is due to initial decrease of the level of speckle when

applying MV BF.

3.4.4 Recorded experimental data

Applied on experimental data, the results of the aforementioned BF methods are illus-

trated in Fig. 3.8. To calculate CR and CNR, R
1

is represented in the region surrounded

by the white ellipse in the Fig. 3.8(a) and R

2

is inside the black ellipse situated at the

same depth as R
1

. The three black ellipses from Fig. 3.8(a) indicate the regions used to

calculate the SNR. For each ellipse its corresponding SNR is calculated, the final SNR

value being calculated as the average of the three values of SNR. The values of CNR

and SNR for this example are resumed in the Table 3.4. Indeed, the small contrast im-

provement (of 0.1 dB, compared with DAS) in the case of MV may be due to the gain

in resolution as stated in [Rindal et al., 2014], the level of speckle, measured by SNR,

decrease. On the other hand, when using MV BF (Fig. 3.8(b)) the point-like structures

are much well defined. We can observe that the tendency of the proposed method on

the experimental data is to eliminate the speckle from higher depths, (Fig. 3.8(c) and

Fig. 3.8(d)). As consequence, we need a relatively high value of � in order to ensure

continuity in the final image (� = 0.7), as in the Fig. 3.8(e) and Fig. 3.8(f). Moreover,

by increasing � we can achieve better SNR while preserving a good contrast. In the case

of USBIC, the beamformed image with the best trade-off between contrast and speckle

preservation was obtained with � = 10 and � = 0.7, while M-USBIC performed better

when � = 5 and � = 0.7.

For enforcing the previous observations, the lateral profiles are provided in the

Fig. 3.9. We considered the case of USBIC with � = 10 and � = 0.7 (Fig. 3.8(e)),

and of M-USBIC with � = 5 and � = 0.7 (Fig. 3.8(f)). In the case of the lateral profile

that intersects the point-like reflectors, Fig. 3.9(a), we can observe that for MV and

M-USBIC the scatterers are well separated, M-USBIC eliminating as much as possible
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Figure 3.8: Results of (a) DAS, (b) MV, (c) USBIC with � = 1, and � = 0, (d) M-USBIC
with � = 5 and � = 0, (e) USBIC with � = 10, and � = 0.7, and (f) M-USBIC with � = 5

and � = 0.7 on recorded experimental data. The image quality metrics: CR, CNR and
SNR are given in the Table 3.4. In (a) we marked the regions used for the calculation of
CR, CNR and SNR.
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Table 3.4: CR, CNR and SNR values of the beamformed images by using the recorded
experimental data, Fig. 3.8

BF method CR [dB] CNR SNR

DAS 3.532 1.602 9.745
MV 3.641 1.085 6.443
USBIC (� = 1, � = 0) 6.448 1.943 7.258
USBIC (� = 10, � = 0.7) 5.034 1.952 8.702
M-USBIC (� = 5, � = 0) 4.013 1 5.408
M-USBIC (� = 5, � = 0.7) 4.105 1.745 9.434
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Figure 3.9: Lateral profiles of the images from the Fig. 3.8. (a) The lateral profile at the
axial depth of 28 mm, that intersects the point reflectors. The red arrows correspond to
the point-like reflectors indicated in the Fig. 3.8(a) by red arrows. (b) The lateral profile
at the axial depth of 40 mm, that intersects the massive cyst. We considered the case of
USBIC with � = 10 and � = 0.7 (Fig. 3.8(e)), and of M-USBIC with � = 5 and � = 0.7

(Fig. 3.8(f)).
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Table 3.5: Computational time required to beamform the images in the Fig. 3.1 and
Fig. 3.8

Computational time [min]

BF method Fig. 3.1 Fig. 3.8

DAS 0.075 0.215
MV 5.124 10.272
1D initialization - 72.763
USBIC 1.725 13.532

the speckle around them. By using the proposed BF method it is possible to distinguish

five point-reflectors (indicated by red arrows), while this is less evident in the case of

DAS and USBIC. In the Fig. 3.9(b), the profile related to the massive cyst is more

narrow than for DAS, MV and USBIC, so just the strongest reflectors inside the cyst

are kept.

Even if we are able to highly improve the contrast of the final image by reinforcing

the strong reflectors, the main advantage of DAS and MV over USBIC and M-USBIC

is the computational time in the case when the scanned medium is not sparse, since the

number of the iterations of the proposed methods increases directly with the number

of the strong reflectors inside the medium. For example, to obtain the beamformed

images from the Fig. 3.1, we directly applied the 2D refinement process (USBIC) to

the beamformed DAS image, as described in the Section 3.2.2.2, and we obtained a

computational time roughly two times lower than MV BF. The obtained values are

given in the Table 3.5. However, when more complex mediums are scanned, the 1D

initialization process, that is detecting the strong reflectors RF line by RF line, needs

to be added to speed up the 2D refinement step. The 1D initialization, described in the

Section 3.2.2.1, can be even 10 times longer than MV. However, since it is processed line

by line, standard parallel computing methods could highly reduce the computational

complexity. The 2D refinement method is comparable in time of computation with the

MV BF. The computational time values for obtaining the beamformed images from the

Fig. 3.8 are given in the Table 3.5, for the case of USBIC beamformer, and are obtained

without using any parallel computing. All the discussed methods were implemented

67



3. STRONG REFLECTOR-BASED BEAMFORMING IN MEDICAL
ULTRASOUND IMAGING

with Matlab R2013b, on an Intel i7 2600 CPU working at 3.40GHz.

3.5 Conclusions

As first contribution, we proposed a beamforming approach based on the detection of
the strong reflectors in US imaging. We validate the precision of the detection of the
number and the position of the reflectors in a sparse medium, and we evaluate the
proposed methods (USBIC and M-USBIC) on different types of simulated data and on
experimental data. For a less sparse medium, the � parameter is deciding the sparsity
level in the final beamformed image. Our empirical experience suggests that it can
be set between large intervals in a non-sparse medium. For example, by increasing the
value of � by a factor of 5, we favor the sparsity in the resulted image. After deciding the
best � in function of the desired experiment, the other parameter, � will set the level the
speckle in the final image. For non-sparse mediums, a value of � in the interval 0.5�0.8

offers the most coherent results, while enhancing the detected reflectors in the final
image. Hence, the strong reflector based BF methods allow region differentiation (for
example blood vessels, or cysts), while preserving speckle statistics that often contain
important clinical information. The main disadvantage of the proposed methods is
the high computational cost when dealing with highly non-sparse scanning mediums.
We should remark that the most computational expensive step is the 1D detection of
the strong reflectors. However, this step may be largely fasten by parallelly processing
the RF lines. The automatic choice of the hyperparamters such as the one balancing
between the data fidelity term and the sparsity of the strong reflectors, based for example
on existing cross-validation techniques such as [Galatsanos and Katsaggelos, 1992] or
[Ramani et al., 2012], is also a very interesting research track. Finally, the proposed
approach may be improved by the use of sparse prior in appropriate bases, other than
the direct strong reflection domain.

In Chapter 4 we proposed an improvement of this contribution, by modeling the
raw channel data as an inverse problem, but laterally, taking into account the position
of the elements of the US probe and the steering directions. This formulation allowed
us to formulate a beamforming framework where the sparsity constraint term in (3.5) is
modeled using some regularization techniques that take into account priors about the
statistical properties of the RF signals (based on the Gaussianity assumption).
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Beamforming through regularized inverse

problems in medical ultrasound imaging

This chapter is based on the journal paper [Szasz et al., 2016b]. Part of this chapter

was published in [Szasz et al., 2016d].
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4. BEAMFORMING THROUGH REGULARIZED INVERSE
PROBLEMS IN MEDICAL ULTRASOUND IMAGING

4.1 Introduction

With the second contribution, we proposed to perform beamforming in ultrasound imag-
ing through a regularized inverse problem based on a linear model relating the reflected
echoes to the signal to be recovered.

The work presented here uses a similar idea with multi-beam Capon (2.7.1) and IAA
(2.8) of beamforming range by range. However, inspired from the source localization
problems, we represent, for each range, the BF as a linear direct model relating the raw
samples to the desired lateral profile of the RF image to be beamformed. This formalism
allows us to invert the problem by imposing standard regularizations such as the `

1

or
`

2

-norms. These choices are motivated by the existing works in US image enhancement,
that are typically based on Laplacian (e.g., [Michailovich and Tannenbaum, 2007]) or
Gaussian (e.g., [Jirik and Taxt, 2008]) priors. Thus, the major contribution of this
chapter is the improvement of the existing beamforming techniques by combining the
proposed direct model formulated in the lateral direction of the images with a regularized
inversion approach. Moreover, we incorporated the proposed method with a beamspace
processing technique, in order to highly reduce the number of the required US emissions.

Firstly, Laplacian and Gaussian statistics, two of the most common regulariza-
tions in such imaging problems (including US imaging applications such as deconvo-
lution), are considered herein, allowing the reader to observe their influence on the re-
sults. Secondly, we also applied to our framework one complex regularization method,
proposed by Zou et al. called elastic-net regularization [Zou and Hastie, 2005]. Fur-
thermore, our method opens new tracks for more complex regularization terms (e.g.,
[Chen et al., 2016a, Michailovich and Rathi, 2015]) to further improve the results. Fi-
nally, the proposed approaches, generically named Basis Pursuit beamforming (BP BF),
Least Squares beamforming (LS BF), and elastic-net beamforming (EN BF) in this
chapter, were evaluated using different Field II simulated data and in vivo carotid and
thyroid experimental data. Finally we compared our BF techniques with four existing
beamformers: the conventional DAS, MV, multi-beam Capon, and IAA.

Our approach presents three major advantages:

• Flexibility: in the choice of statistical assumptions on the signal to be beam-
formed (Laplacian, Gaussian, and combination of these two statistics are tested
herein)
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M-element US probe

Ax
ial

Lateral

z1 z2 zP

Figure 4.1: The elements used to form the proposed model.

• Robustness: to a reduced number of pulse emissions.

• Robustness: to correlation of the sources.

Thus, the proposed framework is flexible and allows for choosing the right trade-off

between noise suppression and sharpness of the resulted image.

4.2 Beamforming through regularized inverse problems

4.2.1 Model formulation

The main elements used to model the proposed method are depicted in the Fig. 4.1. For

sake of simplicity, let us focus our problem at a time-sample (range) n. The proposed

BF method is sequentially applied in the same manner to each range. If yk[n] 2 CM⇥1

is the raw channel data after the compensation of the time-of-flight for the k-th steering

direction ✓k, we can form the steering vectors as in (2.26). Let A be the M⇥K steering

matrix containing the steering vectors in (2.26) for all ✓k directions, k = 1, · · · ,K:

A = [a✓1 ,a✓2 , · · · ,a✓K ]. (4.1)

Note that A is known and depends on the positions of the probe elements and on the

locations to beamform. Thus, it is independent on the actual positions of the reflectors.
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For each range n, we want to estimate the signal corresponding to a reflector as a
function of its location, that will contain dominant peaks at reflector positions. Thus,
the main difference from the multi-beam Capon beamforming method is that instead of
calculating the values of the weights w✓,n as in (2.28), that are further used to calculate
the reflector’s signal, we are directly estimating the corresponding signal by considering
the raw channel data yk[n] as observations. In other words, we want to obtain an esti-
mate of the reflected echo x[n] 2 CK⇥1 through the observations yk[n]. Unfortunately
one difficulty arises: since yk[n] is corresponding to only one emission, modeling our
problem using raw channel data as observations to estimate the reflectors, requires high
computational cost, since we are dealing with multiple directions. We recall that the
size of raw channel data in our problem at a range n, is M ⇥ K. To overcome this
issue, motivated by the results in [Malioutov et al., 2005] and [Fuchs, 1996], we pro-
pose to use the DAS beamformed data instead of the original raw channel data. In
addition to data dimensionality reduction, it was shown in [Malioutov et al., 2005] and
[Fuchs, 1996] that more accurate results may be achieved by proceeding in this way.
Thus, we can formulate our model as follows:

ˆs[n] = (AHA)x[n] + g[n], (4.2)

where ˆs[n] 2 CK⇥1 is a lateral scanline of the DAS beamformed image formed as
discussed in the Section 2.3, A is the steering matrix formed with (4.1), and g[n]

an additive white Gaussian noise. If we denote by ˆS the DAS beamformed image of
size K ⇥ N , formed by juxtaposing the DAS RF lines ˆsk expressed in (2.9) for all K
directions, we consider ˆs[n] the lateral scanline from ˆS taken at the time-sample (range)
n. Note that, since the transducers are emitting the same pulse, we assumed that x[n]

which is the unknown signal, is the same for all K emissions, and for all transmitters
(see, e.g., [Du et al., 2008]).

The role of the multiplication of the steering matrix A with its conjugate transpose
AH in (4.2) is to relate the position of the elements with the position of all K reflectors
on a scanline. This relation is a result of considering on the one hand that the elements
are impinging to the reflectors situated on the lateral scanline (the multiplication of
A with x[n]), while on the other hand the reflectors are impinging to the elements
through their reflected pulses (the multiplication with AH). Hence, the result of the
DAS beamformed scanline ˆs[n] is related to the unknown signal x[n] through a direct
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linear model. Fig. 4.1 offers a schematic representation of our model in (4.2). Thus,

after the compensation of the time-of-flight, the received raw channel data, y[n] at a

range n is formed by multiplying the steering matrix A with the desired signal x[n],

y[n] = Ax[n]. This multiplication could be sufficient for describing the proposed model

if we are considering the raw channel data y[n], as observations. However, since we are

using the DAS beamformed data instead of the original raw channel data, we further

take into account the geometrical relationship between the potential sources and the

elements of the probe (through the multiplication with AH).

4.2.2 Beamspace processing

In order to solve (4.2), we firstly apply beamspace processing, a common tool used in

source localization approaches that reduces the computational complexity, while im-

proving the resolution, and reducing the sensitivity to the position of the sensor (see,

e.g., [Fuchs, 1996, Tian and Van Trees, 2001]). Its main purpose in US is to reduce the

number of the US emissions, thus reducing the acquisition time and the computational

load required by the BF process. We should note that our method of transforming

the data into beamspace domain is totally different from the technique resumed in Sec-

tion 2.7. The main reason is that, by using the beamspace processing presented in

[Nilsen and Hafizovic, 2009], we need all the acquired raw channel data for applying

beamspace processing as described in (2.22). Hence, even if on one hand, the computa-

tional complexity required by the estimated covariance matrix inversion is reduced, on

the other hand, it is increased by the operations required to transform the entire set of

the raw channel data into its beamspaced correspondents.

To overcome this, we based our idea on the beamspace processing techniques pro-

posed in array processing (notably in source localization). More specifically, Malioutov

et al. [Malioutov et al., 2005] used a method that maps the data from full dimension

space of the directions (DS) into a lower dimension beamspace (BS) through a lin-

ear transform prior to source localization processing. In our case, for each range n

we project the data resulted by applying DAS BF, ˆs[n], in BS before beamforming it

through regularized inverse problems. To emphasize, ˆs[n] 2 CK⇥1 is projected on a

lateral sampled grid of P << K locations. In other words, the proposed BF method,

contrarily to all the other discussed BF methods, uses only P focused emitted beams

among all the K transmissions to beamform a particular lateral scanline of K samples.
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Thus, the number of emissions is reduced by a factor of K
P . This will result in a reduced

dimensionality of the data compared with the other BF methods, and an improved
computational complexity compared with MV, multi-beam Capon, and IAA.

Let z[n] 2 CP⇥1 be the beamspace transformed vector formed by sampling the DAS
beamformed lateral scanline ˆs[n] on a grid of P locations, see Fig. 4.1:

z[n] = DH
ˆs[n], (4.3)

where D of size K ⇥ P is the beamspace decimation matrix, that will reduce the
dimensionality of a vector from K⇥1 to P ⇥1. Hence, since the decimation factor is K

P ,
D has all elements zero, except the elements di,j with j =

K
P i, that will get the value

1. Similarly, the beamspaced steering matrix AH
BS of size P ⇥M is formed, composed

of the P beamspaced steering vectors:

AH
BS = DHAH (4.4)

Concretely, we form ABS 2 CM⇥P by taking from AH each K
P -th steering vector.

So, the model formed by (4.2) after applying beamspace processing, becomes:

z[n] = DH
ˆs[n] = (AH

BSA)x[n] +DHg[n], (4.5)

where x[n] of size K ⇥ 1 is the lateral profile at range n to be estimated. Thus, we can
see (4.5) as an inverse problem, where z[n] is the DAS beamformed data corresponding
to P < K emissions, and considered as the observation data.

4.2.3 Beamforming through regularized inverse problems

Given the ill-posedness of the direct model in (4.5), we propose hereafter to invert it
using standard regularization techniques. For achieving this, a cost function, denoted
by J(x[n]), consisting into the linear combination of two terms is considered. The first
term, denoted by J

1

(x[n]), represents the data attachment, while the second, denoted
by J

2

(x[n]), is the regularization prior:

J(x[n]) = J

1

(x[n]) + �J

2

(x[n]), (4.6)

where � is a scalar, called regularization parameter, that adjusts the trade-off between
the fidelity to the data and the regularization term. A large � will strongly favor the a
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priori about x[n], while a small � gives a high confidence to the observations. Keeping

in mind that the additional noise in (4.5) is Gaussian, the data attachment term is

expressed by an `

2

-norm, giving the following cost function:

J(x[n]) = ||z[n]� (AH
BSA)x[n]||2

2

+ �J

2

(x[n]). (4.7)

In this work, the choice of the regularization term J

2

(x[n]) is guided by the ex-

isting literature on statistical modelling of US images, previously applied to various

applications such as image deconvolution (e.g., [Michailovich and Tannenbaum, 2007,

Yu et al., 2012]). It has thus been shown that Laplacian and Gaussian statistics are

well adapted to model US images. For this reason, we give in the two following para-

graphs the mathematical derivations and beamforming results using `

1

-norm (the sum

of absolute difference) and `

2

-norm (or the Euclidean norm, that is the sum of squared

difference) regularization terms. We should note that while the first will promote sparse

solutions, the latter will promote smoother results.

The choice of a quadratic data fidelity term is related to the additive zero-mean

Gaussian assumption on the noise. We emphasize that the noise considered in this

work is different from the multiplicative speckle noise generally assumed to affect en-

velope images in ultrasound imaging. Instead, the additive noise considered in this

work affects the RF data and is caused by the acquisition process. The same model

has been previously used by several authors (e.g., [Michailovich and Tannenbaum, 2007]

and [Du et al., 2008]).

4.2.3.1 Laplacian statistics through Basis Pursuit (BP)

Considering that the signal x[n] to be beamformed follows Laplacian statistics, the

minimization of the cost function in (4.7) turns into the optimzation procedure in (4.8),

usually called Basis Pursuit (BP) in the literature [Chen et al., 1998].

xBP [n] = argmin

x[n]
(||z[n]� (AH

BSA)x[n]||2
2

+ �||x[n]||
1

), (4.8)

where || · ||
1

denotes the `

1

-norm. The minimization problem (4.8) is convex, hence

continuous, and has one global minima for any � > 0.

Herein, we used the well-known YALL1 to solve (4.8) [Zhang, 2009], a software

package that contains implementation of alternating direction method (ADM), that
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solves also BP. A comparison of the six most used BP implementations is done in
[Lorenz et al., 2015] and three of them were also compared in [Huang et al., 2010] with
application in underwater acoustics, where is shown that YALL1 gives best performances
for real-time applications.

4.2.3.2 Gaussian statistics through Least Squares (LS)

To achieve smooth solutions of the proposed BF method, we modeled our problem with
an `

2

-norm based minimization function, and we used the Tikhonov regularized least-
squared method (or rigid regression) for solving it [Tikhonov, 1963]. The cost function
is of the form:

xLS [n] = argmin

x[n]
(||z[n]� (AH

BSA)x[n]||2
2

+ �||x[n]||2
2

), (4.9)

where || · ||
2

denotes the `

2

-norm. For solving (4.9) we used its analytical solution:

xLS [n] = ((AH
BSA)

H
(AH

BSA) + �IK⇥K)

�1

(AH
BSA)

Hz[n], (4.10)

where IK⇥K denotes the identity matrix of size K ⇥K.
In order to obtain the BP and LS beamformed images, for each time sample n, with

n 2 {1, . . . , N}, we estimate its corresponding lateral scanline xBP [n] (using BP BF
method) or xLS [n] (using LS BF method), and we are juxtaposing all the obtained
scanlines, in the axial direction of the image.

4.2.3.3 Elastic-net (EN) regularization

In the following, we propose to solve the ill-posed inverse problem in (4.7) using the
following regularization referred to as elastic-net (EN) regularization:

xEN [n] = argmin

x[n]
(||z[n]� (AT

BSA)x[n]||2
2

+ �(||x[n]||2
2

+ ✏||x[n]||
1

)),

(4.11)

where || · ||
1

and || · ||2
2

denote the `

1

, respectively `

2

-norms. In our experiments, in order
to decrease the number of hyperparameters to tune, we considered �✏ = (1��), turning
the regularization term in (4.11) into:

pen(x[n]) = �||x[n]||2
2

+ (1� �)||x[n]||
1

, (4.12)
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where pen(x[n]) is the penalization term that influences the sparsity of the result.
Thus, for � = 0 the problem turns into a basis pursuit algorithm, while when � = 1

we obtain the Tikhonov regularization. In the following, let us denote by  2 CP⇥K

the measurement matrix formed as  = AT
BSA. Moreover, we define by S� the soft

thresholding operator, having the following function for any � > 0:

S�(t) =

8
><

>:

t� �
2

, if t <�
2

0, if | t | �
2

t+

�
2

, if t <��
2

(4.13)

Algorithm 2, based on [Mosci and Rosasco, 2010], describes the main steps used to min-
imize the function in (4.11). We remind that this optimization is done independently,
range by range, resulting into the consecutive lateral profiles of the final beamformed
image.

Input: �, z[n], 
Output: xp

[n]

initialization: x0

[n] = 0
// damping factor:
⌧ =

1

2��

// fix the step size using the matrix 2-norm of   T :
� =

1

normest(  T
)⇥1.1

while convergence not reached do
p := p+ 1;
xp

[n] = ⌧S�K�(x
p�1

[n] + � T
(z[n]� xp�1

[n]);
end

Algorithm 2: Elastic-net beamforming of one lateral profile via Iterative Soft Thresh-
olding.

4.3 Experiments
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4.3 Experiments

For evaluating the proposed BP BF and LS BF approaches, we considered different

types of simulated and experimental data. We compared our BF results with DAS

(Section 2.3), MV (Section 2.4.1), multi-beam Capon (Section 2.7.1), and IAA (Section

2.8) BF methods. The simulations were made using the Field II program (see e.g.,

[Jensen and Svendsen, 1992] and [Jensen, 2004]). The first simulation include a sparse

medium, the second one contains a circular hypoechoic cyst in a medium with speckle,

and the third one contains in a simulation of the Short Axis (SAx) view of a cardiac

image, as suggested in [Alessandrini et al., 2012]. The first experimental data consists

in a carotid that was recorded with an Ultrasonix MDP research platform. Finally,

the second experimental data contains a thyroid medium with a malignant tumor. The

thyroid data was recorded with the Sonoline Elegra clinical scanner, modified for re-

search purpose. The parameters of the simulated and experimental data are presented

in the Table 4.1. Note that for MV and multi-beam Capon beamformers, spatial and

temporal averaging, as well as diagonal loading technique are used for the estimation

of the covariance matrix, as discussed in the Section 2.4.1.

To evaluate the EN method, we considered two cases: one that contains simulated

data of point reflectors and an experiment that uses in vivo data of the healthy thyroid.

We compared our method with DAS, MV, BP and LS in the case of sparse medium,

and with DAS, BP, and LS in the case of in vivo data. The aim of this simulation is to

accentuate the differences with the BP and LS beamformers.

An important aspect is that, when applying BP, LS, and BF methods, five times

(KP = 5) less emissions were used in the beamforming process, by applying the beamspace

processing presented in the Section 4.2.2. This hangs on for all the examples we are

presenting in this chapter. For these examples, reducing five times the US transmissions

is optimal in terms of gain in resolution, while reducing computational time.

The values of the regularization parameter � for all the presented examples when

using BP and LS are grouped in the Table 4.1. The optimal value of � was chosen man-

ually. We emphasize that this was the case for all hyperparameters of all comparative

methods. Several studies exist in the literature for automatic estimation of the regu-

larization hyperparameter (e.g., [Chen et al., 2015, Galatsanos and Katsaggelos, 1992,

Ramani et al., 2012]) that can improve the robustness of the proposed methods, at in-

creased computational cost. Nonetheless, their implementation is beyond the scope of

this chapter.
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4.3.1 Parameters for the comparative methods

The results of MV beamforming were obtained by using the implementation described in

[Asl and Mahloojifar, 2009]. The length of the spatial averaging window, L was defined

as half of the number of the probe’s elements, i.e. L =

M
8

. A temporal window of

10 samples was used in our examples and the diagonal loading parameter was fixed to

� =

1

10L . The adaptive coherence method was applied to the MV BF method.

The results of multibeam-Capon were obtained by using the multi-beam approach

suggested in [Jensen and Austeng, 2012]. The K emissions were uniformly distributed

between ±30

�. The beamspace transform down to 33 dimensions was applied, able

to retain the variance for incoming narrowband far-field signals. The diagonal loading

factor was set to 0.01.

Finally, for IAA implementation we used the source code provided by the authors in

[Jensen and Austeng, 2014]. The number of iterations was set to 15 for our examples.

Note that for all the comparative methods, several parameters need to be carefully

tuned in order to obtain acceptable results. However, using the proposed approach,

only the regularization hyperparameter � needs to be set.

4.3.2 Simulated point reflectors

The medium for evaluation of BP and LS BF methods contains 5 point reflectors, 4 of

them aligned in pairs of 2 and separated by 4 mm, and the other laterally centered at

0 mm. They are located at axial depths ranging from 63 to 68 mm, with a transmit

focus at 65 mm and a dynamic receive focalisation.

The medium for evaluation of EN BF method contains 8 point reflectors arranged

between 35 mm and 55 mm in depth. Two of them are laterally centered at 0 mm, with

axial position at 40, respectively 45 mm. Three others are vertically aligned at �5 mm,

with axial positions at 35 mm, 45 mm, respectively 55 mm. Finally, the last three point

reflectors are vertically aligned at lateral position 5 mm, with axial positions of 35 mm,

45 mm, respectively 55 mm.

4.3.3 Simulated phantom data

To evaluate the accuracy, contrast and resolution of the aforementioned beamformers, a

hypoechoic cyst of radius 5 mm, located at the depth 80 mm, in a speckle pattern. The
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speckle pattern contains 50000 randomly placed scatterers, with Gaussian distributed

amplitudes. This example was inspired from the simulation of a synthetic kidney ex-

ample included in Field II software. The attenuation was not taken into account.

4.3.4 Simulated cardiac image

The SAx view is the cross-sectional view of the heart and is a well exploited perspective

in echocardiography, containing information about the left ventricle (LV) and right

ventricle (RV). In our simulation we visualize the LV. The transmit focus point is set

at 65 mm. The final image is ultra-realistic, the amplitudes being related to an in vivo

cardiac image [Alessandrini et al., 2012]. The number of scatterers was sufficiently large

to produce fully developed speckle.

4.3.5 In vivo data: carotid

The carotid ultrasound is a common procedure used to detect strokes or the risk of

strokes due to the narrowing of the carotid arteries. The data was acquired from a

healthy subject, with the Ultrasonix MDP research platform, attached with the par-

allel channel acquisition system, SonixDAQ. The linear ultrasonic probe L14-W/60

Prosonic c� (Korea) of 128 elements was used.

4.3.6 In vivo data: thyroid

The thyroid ultrasound is done to visualize the thyroid gland to detect possible tumors

or deformations. Two sets of data were acquired: first one, from a subject with a

tumor and the other one from a healthy subject. For both acquisitions we used the

clinical Sonoline Elegra ultrasound system modified for research purposes, and a 7.5L40

P/N 5260281-L0850 linear array transducer of Siemens Medical Systems, having the

characteristics described in Table 4.1.

4.4 Results and Discussion

This section presents the results of applying the proposed methods on both simulated

and in vivo data. Three conventional image quality metrics were calculated: CNR, SNR,

and RG. They were computed based on the envelope-detected signals independent of

image display range. Their definition is given in Section 1.2.3.
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4.4.1 Individual point reflectors

With this simulation we evaluate the potential of the proposed methods in sparse medi-

ums. The resulted beamformed images are illustrated in the Fig. 4.2. The result of

DAS BF is shown in Fig. 4.2(a). Using the MV BF, the lateral resolution is improved

compared with DAS, IAA, and LS BF (see Fig. 4.2(b)), and it is comparable with the

result of multi-beam Capon BF, Fig. 4.2(c). Concerning the IAA beamformed result,

as stated in [Jensen and Austeng, 2014], it gives better point-target resolvability than

DAS, Fig. 4.2(d). The proposed BP BF have the best resolution of the point-like re-

flectors, being able to perfectly detect the 5 reflectors, by obtaining the most narrower

mainlobes, due to the fact that BP results in a sparse representation of the beamformed

signals, Fig. 4.2(e). As expected, LS beamformer results in solutions that tend to be

smooth and regular, as in the Fig. 4.2(f).

Fig. 4.3 presents the lateral profiles of the compared BF methods at 65 mm. We

can observe that multi-beam Capon and MV are comparable in terms of lateral profiles,

but MV offers better delimitation of the two points. As observed, BP BF outperforms

the other BF methods, being able to perfectly resolve the two points, suppressing also

the sidelobes. Finally, LS BF gives the smoothest result.

The beamformed images for evaluating EN beamformer are depicted in the Fig. 4.4.

DAS BF (Fig. 4.4(a)) results in low lateral resolution, further improved by MV BF

(Fig. 4.4(b)). However, the best resolution of the target points is offered by the BP

BF (Fig. 4.4(c)) that perfectly detects the 8 reflectors. This observation is in coherence

with the fact that BP privileges sparsity in the results, through the Laplacian statistics.

LS BF (Fig. 4.4(d)) results in smoother solutions compared with BP BF, but with

better lateral resolution than MV. As expected, EN with � = 0.8 (Fig. 4.4(e)) produces

results similar with LS BF, since the hyperparameter � decides the level of smoothness

of the solutions, weighting the term related to `

2

-norm. Contrarily, EN with � = 0.2

(Fig. 4.4(e)) tends to the solution of BP BF. Note that for each simulation, � has been

set empirically to its best value.

The remarks above are confirmed by the Fig. 4.5 showing the lateral variation of the

beamformed responses at depth 45 mm. BP BF have the narrower mainlobes, offering

the best delimitation of the points. However, the two cases of EN BF are presenting
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Figure 4.2: (a) DAS, (b) MV, (c) multi-beam Capon, (d) IAA, (e) BP, and (f) LS BF
results of the simulation of individual point scatterers.
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Figure 4.3: Lateral profiles at 65 mm depth of the point reflectors represented in Fig. 4.2.

results that are varying between BP and LS, but with better spatial resolution of the

target points than DAS and MV.

4.4.2 Simulated hypoechoic cyst

The BF results of a hypoechoic cyst in a speckle pattern are shown in the Fig. 4.6.

We have highlighted with white circle the true borders of the cyst, in order to show

the accuracy of the proposed methods regarding the dimensionality of the scanned

structures.

The image quality metrics are detailed in Table 4.2. To calculate the CNR, we

have considered the region R

2

inside the hypoechoic cyst (the black region), and the

region R

1

inside the homogeneous speckle, at the same depth and with same dimension

as the region R

2

, as suggested in [Rindal et al., 2014]. The SNR was computed for

R

1

. For calculating RG, the whole image was considered. As expected, with DAS the

cyst appears more narrow due to the low resolution and its low capability of resolving

cyst-like structures inside the speckle pattern, Fig. 4.6(a). By using MV, we slightly

increase the contrast and the resolution in the final image compared with DAS, the

dimension of the cyst being closer to its real dimension, as shown in Fig. 4.6(b). Better
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BF results of a sparse medium.

85



4. BEAMFORMING THROUGH REGULARIZED INVERSE
PROBLEMS IN MEDICAL ULTRASOUND IMAGING

− −6 −4 −2 0 2 4 6 8
−25

−20

−15

−10

−5

0

8
Lateral distance [mm]

Lateral profiles at depth of 45 mm 

A
m

pl
itu

de
 [d

B
]

DAS
MV
BP
LS

EN uγ=0.8)

EN uγ=0.2)

Figure 4.5: Lateral profiles of Fig. 4.4 at depth 45 mm.

Table 4.2: CNR, SNR, and RG values for the simulated phantom in Fig. 4.6

BF Method CNR SNR RG

DAS 4.8 0.4 1
MV 5.3 0.61 3.64
multi-beam Capon 5.4 0.58 4.87
IAA 3.5 0.63 3.57
BP 6.5 0.62 8.72
LS 7.4 0.68 2.65
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Figure 4.6: (a) DAS, (b) MV, (c) multi-beam Capon, (d) IAA, (e) BP, and (f) LS BF
results of the hypoechoic cyst simulation.
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Figure 4.7: Lateral profiles at 80 mm depth of the cyst phantom represented in Fig. 4.2.

resolution is obtained when the multi-beam Capon is used, the RG being increased by a

factor of almost 1.4. The improve in resolution can be observed also in the delimitation

of the cyst region compared with the white circle that represents the real dimension

of the cyst, see Fig. 4.6(c). Compared with DAS, IAA increases the resolution of the

beamformed image, but not as much as MV or multi-beam Capon, Fig. 4.6(d). However,

a contrast degradation can be observed from Table 4.2. Finally, the proposed methods

are reflecting more correctly the real dimension of the cyst, especially when using the BP

BF, Fig. 4.6(e), this being in concordance with the high increase in resolution (with a

factor of 2 compared with MV) and contrast. As expected, LS tends to favor continuity

and smoothness, especially when dealing with the speckle pattern (see Fig. 4.6(f)), the

gain in resolution being less important. However, even so, it is more precise in reflecting

the dimensionality of the cyst. Note that in terms of SNR, in comparison with DAS,

all the other beamformers give better SNR, the best improvement being obtained with

LS BF which is also outperforming the other beamformers in terms of contrast.

Fig. 4.7 presents the lateral profiles of the results presented in the Fig. 4.6, where the

previous observations are confirmed. The curves in Fig. 4.7 are computed by averaging
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Figure 4.8: The variation of (a) CNR and (b) SNR versus � when BP method was applied
to the hypoechoic cyst simulation.

15 lateral profiles around depth 80 mm. The proposed methods, BP and LS, have larger
mainlobes than the other BF methods, that correspond to the true dimension of the
hypoechoic cyst. We can also confirm the increase in contrast presented in the Table 4.2
in case of BP and LS BF approaches.

Fig. 4.8 presents the variation of CNR and SNR parameters function of � hyper-
parameter. We can observe that a favorable compromise between CNR and SNR is
reached when � = 0.5. The value of CNR can be improved by increasing the value of �.
For example, when � = 0.9, CNR= 6.61, but the value of SNR is reduced, SNR= 0.55.
Similarly, decreasing the value of � will increase the value of SNR, while losing in CNR.

4.4.3 Simulated cardiac image

The results of beamforming the cardiac medium are shown in the Fig. 4.9. With this ex-
ample, we are interested in visualizing the LV region (hypoechoic), which is surrounded
by the hyperechoic regions containing the anterior and posterior walls of the heart as
well as the septum. The small echoic regions inside the LV region are the papillary
muscles, that due to the low contrast and resolution of the DAS beamformed image are
hard to be distinguished, Fig. 4.9(a). A better visualization of the walls is obtained with
MV (Fig. 4.9(b)) and multi-beam Capon (Fig. 4.9(c)), resulting also in an improved
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Figure 4.9: (a) DAS, (b) MV, (c) multi-beam Capon, (d) IAA, (e) BP, and (f) LS BF
results of the ultrarealistic simulation of a cardiac image.
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Table 4.3: CNR, SNR, and RG values for the simulated US cardiac beamformed images
in Fig. 4.9

BF Method CNR SNR RG

DAS 1.12 0.47 1
MV 0.90 0.56 3.56
multi-beam Capon 0.61 0.54 4.23
IAA 1.30 0.62 5.3
BP 1.45 1.75 9.89
LS 1.55 1.88 2.06

resolution, confirmed with a higher RG value (see Table 4.3). For the calculation of the

CNR, we considered R

1

the region inside the white square, situated at approximately 18

mm (laterally) and around 55 mm (axially), while R

2

is delimited by the black square,

around -20 mm (laterally) and 55 mm (axially). To compute SNR, the R

1

region was

considered.

An interesting observation is that the value of the CNR in the case of MV and multi-

beam Capon is not improved compared with DAS. This is explained by the results in

[Rindal et al., 2014], where it has been shown that the improvement of the contrast

directly depends on the high definition of the regions (the LV, the septum, and the

walls in our example). Since the amplitude of the reflectors from the walls and septum

are not so high compared with the region of LV that contains speckle, the contrast of

the final image is affected. However, IAA improve both the contrast and the resolution

of the image, presenting more defined regions, as shown in Fig. 4.9(d). Yet, the best

improvement of the resolution is obtained when we promote Laplacian BF solutions,

with BP BF, see Fig. 4.9(e), resulting in an improvement by a factor of 2 in RG compared

with MV and multi-beam Capon, and by a factor of almost 10 compared with DAS. Of

course, as expected, LS BF is highly improving the contrast and the SNR of the resulted

image, while the RG is lower than when using the other BF approaches, Fig. 4.9(f).

4.4.4 In vivo data: carotid

Fig. 4.10 presents the BF results of the studied beamformers, and in the Table 4.4 we

calculated their corresponding CNR, SNR, RG, and computational time values. In this
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Figure 4.10: (a) DAS, (b) MV, (c) multi-beam Capon, (d) IAA, (e) BP, and (f) LS BF
results of experimental carotid data.
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Table 4.4: CNR, SNR, RG, and computational time values for the experimental carotid
beamformed images from Fig. 4.10

BF Method CNR SNR RG Computation time [s]

DAS 1.84 1.46 1 4.5552
MV 2.24 1.43 1.25 122
multi-beam Capon 1.32 1.49 1.25 368
IAA 1.48 1.47 1.34 8.9266
BP 1.85 1.49 1.48 60.4320
LS 1.94 1.55 1.17 8.8692

example, the carotid is placed between 8 and 15 mm in the axial direction. In this

region, the interior of the carotid artery is the hypo-echoic structure surrounded by

the arterial walls (which are hyper-echoic). To calculate the CNR, we have considered

region R

2

inside the carotide (the white rectangle positioned at 0 mm laterally), and the

region R

1

inside the region of speckle (the black rectangle positioned at 0 mm laterally).

The SNR for R

1

was computed.

As observed, by using DAS BF is hard to distinguish between the interior of the

carotid and its walls, Fig. 4.10(a). This can be also explained by the fact that DAS

BF result represents the lower RG. A better visualization of the structures of interest

are obtained with MV and multi-beam Capon, that have similar RG values. However,

the contrast of the MV beamformed image is better, increasing the value of CNR by

a factor of ⇡ 1 compared to multi-beam Capon. We can observe that multi-beam

Capon is clearly defining the region inside the carotid, by reducing the level of speckle

inside it, cf. Fig. 4.10(c). The IAA beamformed image is comparable with the one

of multi-beam Capon, but it conserves better the speckle inside the carotid, offering a

better resolution and a better contrast of the image. With the proposed approaches,

however we are able to better distinguish the interior of the carotid artery, as well as its

walls, with a high gain in contrast and resolution resulted by applying BP BF. A loss

in resolution can be observed when using LS, compared with BP, due to the use of the

`

2

-norm regularization. Note that, due to the formulation of the proposed direct model

(4.2) that includes an additive noise, the proposed method is intrinsically denoising the

signal (e.g., the noise inside the carotid is reduced) through the inversion process (see
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Table 4.4). The denoising effect obtained by our BF approach does not suffer from any

spatial resolution loss, as it could be the case if the raw channel data or the beamformed

images were low-pass filtered.

Regarding the computational time, note that it is highly dependent on the length

of the acquired raw channel data. For this case, the number of ranges was around

N = 2500, and the proposed approaches were applied without a previous decimation

of the raw channel data. Of course, the standard parallel computing methods could

additionally improve the computational complexity, since the BF process is done for each

lateral scanline. All the discussed methods were implemented with Matlab R2013b, on

an Intel i7 2600 CPU working at 3.40GHz. Note that even so, LS BF is approaching the

time capabilities of DAS, being just twice slower than DAS. Moreover, BP is also faster

than MV. Thus, by using the discussed techniques for improving the computational

expense, makes the two proposed methods good candidates for real-time applications.

4.4.5 In vivo data: healthy thyroid

Fig. 4.11 presents the beamforming results of healthy thyroid data. The thyroid (echoic

region) is situated between the trachea and the carotid artery (laterally, between -20

mm and 30 mm approximately). Fig. 4.11 (a) illustrates the result obtained with DAS

BF. As expected, the contrast of the image is low and it is hard to distinguish the

thyroid structure from the trachea, especially in the upper-left part of the thyroid.

However, when BP (Fig. 4.11 (b)) and LS Fig. 4.11 (c) are used, the thyroid region is

easy to be identified, and the contrast of the image is increased. The best resolution

of the beamformed image while maintaining a relatively high level of SNR and CNR is

obtained with EN BF, see Fig. 4.11(d).

The values of CNR, SNR, and RG are depicted in the Table 4.5. To compute CNR we

considered region R

2

inside the thyroid (the black circle positioned at approximately

�10 mm laterally), and the region R

1

inside trachea (the white circle positioned at

approximately �40 mm laterally). The SNR for R

1

was computed. We can observe

that the best values of the CNR and SNR are obtained when LS method was applied,

the thyroid region being obvious to be discerned. The boundaries of the carotid artery

are also well defined, Fig. 4.11 (c).
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Figure 4.11: (a) DAS, (b) BP, (c) LS, and (d) EN (� = 0.8) BF results of healthy thyroid
in vivo data.

Table 4.5: CR, CNR, and SNR values for the in vivo healthy thyroid beamformed images
in Fig. 4.11

BF Method CNR SNR RG

DAS 0.55 0.22 1
BP 1.13 0.32 3
LS 1.56 0.64 2.5
EN (� = 0.8) 1.48 0.46 2.7
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Figure 4.12: (a) DAS, (b) BP, (c) LS, and (d) EN (� = 0.8) BF results of in vivo thyroid
data with tumor.

Table 4.6: CNR, SNR, and RG values for the in vivo thyroidal beamformed images from
Fig. 4.12

BF Method CNR SNR RG

DAS 0.71 0.62 1
BP 1.16 0.79 2.9
LS 1.32 0.86 1.5
EN 1.2 0.76 1.7
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4.4.6 In vivo data: thyroid with tumor

The beamformed results of the thyroid data with tumor are presented in the Fig. 4.12.

The malignant tumor with an irregular structure can be seen between the left lobe of

the thyroid (the hyper-echoic structure situated near the trachea) and the carotid artery

(the hypo-echoic circular structure with the center at approximately 33 mm (axially)

and 40 mm (laterally). We can observe that, contrarily to DAS beamformed image,

where the tumor is hard to be distinguished (see Fig. 4.12 (a)), the proposed methods

improve the visualization of the main structures, enhancing the edges of the tumor. The

values of CNR, SNR, and RG are depicted in the Table 4.6, where a gain in resolution

with a factor of almost 3 can be observed when using BP, compared with DAS, while

with LS we obtain a higher improvement in contrast and SNR than with BP BF. CNR

was computed by considering region R

2

inside the tumor (the black circle positioned at

0 mm laterally), and the region R

1

inside the left lobe of the thyroid (the white circle

positioned at approximately �20 mm laterally). The SNR for R

1

was computed. The

best value of RG is obtained by using RG BF (Fig. 4.12 (d)).

Note that the proposed framework was also tested on plane-wave imaging (see Sec-

tion 1.1.5). The results and the details about the used datasets are presented in the

Appendix A.

4.5 Conclusion

In this chapter, we have presented a new BF approach in US medical imaging, that

solves a regularized inverse problem based on a linear model relating, for each depth,

the US reflected data to the signal of interest. Contrarily to existing techniques that use

adaptive or non-adaptive weights to average the raw channel data in order to form RF

lines, we directly recover, for each depth, the desired signals using Laplacian, Gaussian,

and elastic-net statistical assumptions. The proposed regularization-based BF allows us

to take advantage of the beamspace processing that enables to highly reduce the number

of US transmissions (by a factor of five in our examples), while improving the quality

of the beamformed images compared to four existing beamformers. Multiple simulated

and experimental examples were presented, that compare our approach with DAS, MV,

multi-beam Capon, and IAA beamformers. We showed that our BF approaches, based

on Laplacian and Gaussian prior information, although based on the same model, are
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complementary in terms of result quality. Thus, Laplacian statistics are favoring sparse
results while the Gaussian law is offering more regular and smooth images. Moreover,
we showed that the elastic-net regularization takes advantages of both Laplacian and
Gaussian distributions, resulting in the best RG factor of the beamformed images. We
also proved through resolution gain, CNR and SNR image quality metrics, that we
obtained an important gain in spatial resolution and/or in contrast, while maintaining
a reasonable computational time compared to other existing techniques. In the next
chapter, we will consider other statistical assumptions, such as the generalized Gaussian
distribution, resulting in `p-norm minimization with the parameter p between 0 and 2.
Following the choice of p, this should guarantee a better compromise between the gain
in contrast and the improve of the spatial resolution (e.g., [Alessandrini et al., 2011],
[Zhao et al., 2014], and [Chen et al., 2016a]).

In Chapter 5 we model beamforming by assuming the non-Gaussianity of the RF
signals. Such formulations increase the robustness of the model proposed in this chapter,
while increasing the contrast and the resolution of the resulting images compared with
the existing BF methods in medical US imaging.
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Beamforming of stable distributed

ultrasound images

Part of this chapter was published in [Szasz et al., 2016a].
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5. BEAMFORMING OF STABLE DISTRIBUTED ULTRASOUND
IMAGES

In this chapter we present a new beamforming method for ultrasound medical imag-

ing based upon the statistical characterization of the ultrasound signals by ↵-stable

distributions.

In the Chapter 4 we have reformulated BF in US imaging as a linear inverse prob-

lem, associating the raw channel data to the RF signals to be recovered. Numerical

optimization routines have been employed to invert the resulting linear model based

on standard regularization terms such as `

1

-norm, `
2

-norm, and elastic net. While US

signal processing has widely relied for many years on the assumption of Gaussianity

[Wagner et al., 1987], the authors in [Kutay et al., 2001] showed that RF echoes can

be more accurately modelled by a power-law shot noise model. Later, this result has

been confirmed by other research groups. For example, the statistical properties of the

RF signals were related, based on the generalized central limit theorem, to ↵-stable

distributions [Pereyra and Batatia, 2012].

The main contribution presented in this chapter is the use of non-Gaussianity prop-

erties of the RF signals in the beamforming process (e.g., [Pereyra and Batatia, 2012],

[Alessandrini et al., 2011], and [Zhao et al., 2016b]). To the best of our knowledge,

this is the first attempt of specifically considering an ↵-stable distribution while beam-

forming the received echoes in US imaging. Thus, the direct linear model presented

in the Chapter 4 is herein inverted using a more general `p pseudo norm regular-

ization, with p automatically related to the parameter ↵ estimated from the data

[Achim et al., 2015]. Contrarily to [Achim et al., 2015], the proposed direct model and

the application (beamforming instead of compressive sampling) are different. Moreover,

in this work p is automatically tuned for each depth, while it was fixed for the entire

image in [Achim et al., 2015]. Given that p may take values smaller than 1, the result-

ing non-convex objective function was minimized by the half-quadratic optimization

algorithm [Cetin and Karl, 2001] in this work.

The proposed method was evaluated on ultrasound simulated and in vivo thyroid

data.

5.1 Acquisition setup

Fig. 5.1 presents the main elements used to derive the direct model on which is based

the proposed beamforming method.
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5.1 Acquisition setup

Figure 5.1: Main elements used to describe the proposed BF model.

We consider, without loss of generality, an M -element US probe that is sequen-

tially transmitting P US beams. The beams can be focused, divergent, or plane waves

[Tanter and Fink, 2014]. The reflected echoes are recorded with the same US probe

and are time-delayed, so that time-of-flight differences are compensated. Depending on

the exploration depth and on the sampling frequency, each recorded signal, after delay

compensation (i.e., focalization), has N time samples. Henceforth, unless otherwise

specified, all the developments are done for a given depth n (or sample n of the received

signal, see Fig. 5.1), with n = 1, · · · , N . For each emission p = 1, · · · , P , we consider

that Mp elements (1  Mp  M) are receiving the echoes. Note that in the case when

all elements of the US probe are active in reception, M
1

= M

2

= · · · = Mp = M . Let us

denote by yp 2 CMp⇥1 the raw channel data received by the Mp sensors, corresponding

to depth n. In this situation, the classical DAS BF can be expressed as:

y(p)
=

PMp

i=1

wiy
(i)
p

PMp

i=1

wi

, (5.1)

where y

(i)
p is the i

th element signal of yp, wi are fixed BF weights (e.g., Hanning or

Hamming windows) and y(p) is the DAS BF signal of the p

th emission corresponding

to the p

th element of vector, y 2 CP⇥1. Note that we consider in (5.1) the standard
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case, where the horizontal (lateral) grid density of the DAS BF image corresponds to
the number of US emissions. In other words, the data received for one emission serves
at beamforming one position in the scanning grid. The positions to be beamformed
with our method are highlighted by the symbol x and the positions corresponding to
DAS beamforming are drawn by the symbol � in Fig. 5.1. As we will explain in the
next section, the proposed BF method will consider a further laterally refined scanning
grid, as shown by the x symbols in Fig. 5.1.

5.2 Beamforming of US images modelled as stable random

variables

5.2.1 Signal model

Let us denote by x the signal at depth n to be beamformed with the proposed method.
We denote by K the size of this vector (K � P ) as schematically highlighted in Fig. 5.1.
Note that the total number of sensors M , the number of emissions P , and the number
of lateral positions, K, on the scanned grid employed by the proposed method, are
independent of each other. For a given depth n, similar with (4.2) (in Section 4.2) the
model relating the received signal (raw channel data) yp 2 CMp⇥1 to the desired signal
x can be written as follows:

yp = (AH
p AT )x+ gp, (5.2)

where Ap 2 CM⇥Mp and AT 2 CM⇥K are standard steering matrices relating the US
probe element positions to the lateral positions on the scanline. More precisely, the
form of Ap is considering that the K reflectors to be beamformed are impinging on
Mp elements through their reflected pulses, while AT is relating the positions of the
M elements to the K reflectors, under the assumption that the elements are impinging
on the reflectors. We denoted by gp the additive white Gaussian noise affecting the
raw channel data and with (·)H the conjugate transpose. In the following, without loss
of generality, we will consider that all US probe elements are active in reception, i.e.,
A

1

= A
2

= · · · = Ap = A.

To reduce the dimensionality of the raw channel data, we applied beamspace pro-
cessing [Malioutov et al., 2005], a common tool in array processing. It has been shown
that in addition to reducing computational complexity sensitivity, beamspace process-
ing allows improving the signal-to-noise ratio (SNR) [Tanter and Fink, 2014]. In our
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5.2 Beamforming of US images modelled as stable random variables

case, DAS BF played the role of beamspace projection. Thus, while DAS only beam-
forms one position on the scanline for each emission, yp 2 CMp⇥1 in (5.2) becomes
a scalar after applying DAS BF. Moreover, by making analogy to synthetic focusing
[Jensen et al., 2006], y can be seen as the low resolution signal obtained by DAS, while
x is the high resolution signal of interest. Finally, arranging all these scalars in a vector
denoted by y 2 CP⇥1, the system of equations in (5.2) becomes:

y = (AHAT )x+ g, (5.3)

where AT 2 CM⇥K , A 2 CM⇥P , x 2 CK⇥1, and g 2 CK⇥1 have the same definition as
in (5.2).

In the following, let us denote � = AHAT , � 2 CP⇥K . Thus, the direct model
considered by our BF process becomes:

y = �x+ g. (5.4)

Note that the system to invert is underdetermined, and more generally the inverse
problem to solve is ill-posed, thus requiring regularization in order to obtain a valid
solution.

5.2.2 ↵-stable distributions model

As explained previously, our BF solution is based on the hypothesis of ↵-stable dis-
tributed US signals. We remind that the characteristic function of a symmetric ↵-stable
(S↵S) distribution has the form:

E(✓) = exp (j✓� � �|✓|↵), (5.5)

where ↵ 2 (0, 2] is the characteristic index, � 2 (�1,1) is the location parameter,
and � 2 R+ is the spread of the distribution. We emphasize that the stable law is a
generalization of the Gaussian distribution, thus for ↵ = 2 the stable distribution is
reduced to the Gaussian distribution [Shao and Nikias, 1993].

Interestingly, due to the stability property of this distribution and to the linear model
that relates x to y (5.4), we can conclude that if x is supposed to follow an S↵S, then y

can also be modelled by an S↵S with the same parameter ↵ [Achim et al., 2015]. This
observation has an important practical interest, allowing us to estimate the parameter ↵
corresponding to x from the observed vector y. In this work, we have used the method
in [Zolotarev, 1957] to estimate the parameter ↵ from the discrete measurements y.
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5.2.3 Model inversion via `p-norm regularization

We have recently shown, in a different application context (compressive sampling),
that the `p-norm regularization is well adapted to reconstruct S↵S-distributed signals
[Achim et al., 2015]. Moreover, it has been shown that the optimal choice for parameter
p is smaller but as close as possible to ↵ [Achim et al., 2015], typically p = ↵ � 0.01.
Following, this result, we propose herein to solve the BF problem in (5.4) by solving
the following minimization problem:

ˆx = argmin

x

(ky ��xk2
2

+ �kxkpp), (5.6)

where � is the regularization parameter balancing the trade-off between the fidelity to
the data and the regularization term.

Depending on the sparsity degree of the scanned medium, the value of p, directly
related to ↵ estimated from y (i.e., p = ↵ � 0.01), can take values smaller than 1. In
this case, the function (5.6) to be minimized becomes non-convex. Several solutions
to solve such non-convex problems exist in the literature (e.g., [Gould and Toint, 2002,
Nikolova et al., 2008, Nikolova et al., 2010]). In this work, we used the half-quadratic
optimization algorithm proposed in [Cetin and Karl, 2001], where a non-quadratic op-
timization problem is viewed as multiple quadratic problems. The main steps of the
proposed beamforming approach, for a particular depth n, are described in the pseudo-
code below:

Input: Raw channel data, yp 2 CMp⇥1.
Output: ↵-stable beamformed data, x 2 CK⇥1.
1) Apply DAS BF to yp using (5.1) ) y 2 CP⇥1.
2) Estimate ↵ from y.
3) Calculate p as: p = ↵� 0.01.
4) Solve (5.6) using half-quadratic optimization ) ˆx.

Algorithm 3: ↵-stable beamforming at depth n.

Because the objective function of lp-norm for p < 1 is not convex, and may converge
to local optima, some smooth local optimization techniques are required for solving it.
As solution to (5.6), in [Cetin and Karl, 2001] is proposed the half-quadratic regulariza-
tion method, where a non-quadratic optimization problem is view as multiple quadratic
problems. The algorithm can be seen as a quasi-Newton’s method and iterates the
following expression:
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H(x̂(i)
)x̂(i+1)

= 2�H
ˆy, (5.7)

where i is the iteration number, and:

H(x̂) , 2�H�+ �⇤(x̂)

⇤(x̂) , diag{ p

(|x̂i|2 + ✏)

1� p
2

}, (5.8)

where diag{·} is the diagonal matrix with diagonal elements defined in the brackets and

✏ is called the smoothing parameter and has an important impact in the final results of

BF. The algorithm stops when the following criteria is reached:

kx̂(i+1) � x̂(i)k2
2

kx̂(i)k2
2

< �, (5.9)

with � > 0 a very small constant.

5.3 Results and discussion

To evaluate the proposed BF method (denoted hereafter by ↵-stable BF), we used both

simulated and in vivo data. The simulated data contains 3 point reflectors at 50 mm in

depth and an anechoic cyst structure of 10 mm radius at 80 mm in depth, embedded

in speckle noise typical for US images. The simulated US probe had 64 elements, with

the pitch of 256 µm, the height of 5 mm, and the center frequency of 3 MHz. The

emissions corresponded to 52 steered plane waves (for the proposed method) and 260

steered plane waves (for DAS/MV BF methods), for angles between -30and30. The

raw channel data was obtained using the state-of-the art ultrasound simulator Field II

[Jensen, 2004].

The in vivo data represents the thyroid gland from a subject with a malignant

tumor. The acquisition was done with a clinical Sonoline Elegra ultrasound system

modified for research purposes, equipped with a Siemens Medical Systems 7.5L40 P/N

5260281-L0850 linear array transducer, emitting series of focalized waves.

Two of the most commonly used image quality metrics were calculated: the CNR

and CR [dB]. Their definition can be found in Section 1.2.3. Region R

1

corresponds

to a region inside the anechoic cyst structure for simulated data and to a region inside

the tumor for in vivo data. Region R

2

is inside the homogeneous surrounding speckle
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Table 5.1: CR, CNR, and FWHM values for simulated data beamformed images in
Fig. 5.2

BF Method CR[dB] CNR FWHM [mm]

DAS 58.22 6.40 1.55
MV 66.90 5.98 0.92
LS 56.41 6.08 1.29
↵-stable 69.74 7.65 0.32

for both types of data, at the same depth with the region R

1

. The results of simulated

data were compared with standard DAS and MV method in [Asl and Mahloojifar, 2009].

Moreover, we have also compared our results to those obtained with the same BF model

as the one proposed herein, but using a standard Tikhonov regularization (i.e. p equal to

2 in (5.6)) [Madore and Meral, 2012]. This method has been named LS (least-squares)

BF. Since the in vivo data was acquired with a clinical scanner, the raw channel data

necessary to apply MV was not accessible. Thus the results on in vivo data were only

compared with standard DAS and LS BF methods.

5.3.1 Simulated data with point reflectors and an anechoic cyst struc-

ture

Fig. 5.2 presents the BF results of the simulated data containing 3 point reflectors and

an hypoechoic cyst. The green circle represents the true border of the cyst. We can

observe that DAS BF (Fig. 5.2(a)) is not able to resolve the dimensionality of the circular

cyst. The cyst appears narrower than its original dimension, due to the low resolution

provided by DAS. MV (Fig. 5.2(b)) and LS BF (Fig. 5.2(c)) provide better resolved

results, i.e. the dimension of the cyst is closer to its real dimension. However, when

using ↵-stable BF (Fig. 5.2(d)) we obtain better result in terms of spatial resolution,

contrast, and resolution of the dimensionality of the scanned structures, compared with

DAS, MV, and LS. The gain in contrast can be observed in the Table 5.1, where ↵-

stable BF provides an improvement of 11.52 dB compared with DAS and of 2.84 dB

compared with MV. Note that DAS and MV used raw channel data resulting from 5

times more US emissions than our method (i.e. 260 plane waves), such as the density of

the beamforming grid was the same for all beamformers. With this example we showed
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Figure 5.2: Results of (a) DAS, (b) MV, (c) LS (Tikhonov), and (d) ↵�stable BF methods
on simulated data with point reflectors and an anechoic cyst structure. The image quality
metrics: CR, CNR, and FWHM are given in the Table 5.1.
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Fig. 5.2.
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Figure 5.4: The value of ↵ versus the axial distance in Fig. 5.2.

the ability of our method to work with reduced number of emissions. Of course, the

result of our method with 260 emissions would be at least as good as the one using 5

times less emissions (52).

Fig. 5.3 depicts the lateral profiles at depth 50 mm (passing through the 3 point

reflectors) obtained with the aforementioned BF methods. As expected, the 3 points

reflectors are better resolved by ↵-stable beamformer, having narrower mainlobe and

lower sidelobes compared with the other BF methods (we used FWHM - full width

at half maximum, in Table 5.1, as quantitative indicator). Note that the FWHM is

reduced at least 3 times using the proposed method compared with DAS, MV, and LS.

Fig. 5.4 illustrates the dependence of estimated parameter ↵ on the structures at

each depth of image in Fig. 5.2. We can observe that the minimum value of (↵ = 0.7)

is reached at depth 50 mm, where the 3 point reflectors are positioned, imposing sparse

conditions to the scanned medium. Moreover, a value of ↵ ⇡ 2 is reached at the depths

containing only homogeneous speckle structures, thus following a Gaussian distribution.

The ability of ↵ to adapt to the characteristics of the scanned medium is of high interest,

as it allows p to automatically adapt to its best value in the optimization process.

5.3.2 In vivo data: thyroid with malignant tumor

The results of the BF of the thyroid data with a malignant tumor can be observed

in the Fig. 5.5. The tumor (highlighted by the black arrow in Fig. 5.5(a)) is located
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Table 5.2: CR and CNR values for the in vivo thyroid beamformed images in Fig. 5.5

BF Method CR[dB] CNR

DAS 2.98 0.16
LS 2.72 0.22
↵-stable 4.26 0.24
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Figure 5.5: Results of (a) DAS, (b) LS, and (c) ↵�stable BF methods on in vivo data of
thyroid with malignant tumor (highlighted by the black arrow). The image quality metrics:
CR and CNR are given in the Table 5.2.
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in the left lobe of the thyroid, in the proximity of the carotid artery (the hypoechoic
(dark) circular structure). The values of CR and CNR metrics are presented in the
Table 5.2. Regarding the detection of the tumor, we can observe that by using DAS
BF (Fig. 5.5(a)) it is difficult to delimit the region of the tumor because of the poor
contrast and resolution of the image. The visual detection is improved when using LS
BF (Fig. 5.5(b)). Furthermore, due to the increase in contrast, the edges of the tumor
can be better visualized when using ↵-stable BF (Fig. 5.5(c)), compared with DAS
and LS BF. Note that the raw channel in vivo data was not accessible (only DAS RF
beamformed image was available), which may explain some banding artifacts visible on
the ↵-stable final image (Fig. 5.5(c)).

5.4 Conclusion

In this chapter, we proposed a new beamforming method, by generalizing the previously
proposed beamforming model (presented in the Chapter 4) in ultrasound imaging. Our
method uses an `p-norm regularization to solve the inverse problem on which our model
is based. Moreover, p is automatically calculated by relating it to the ↵-stable statistics
of US images. Thus, our method, in contrast to minimum variance approaches, does not
require any hyperparameter tunning and could also be of interest in other application
domains such as direction of arrival estimation. Future work will include the evalu-
ation of other acquisition strategies (e.g., ultrasound emissions in random directions)
or the consideration of joint regularization terms for the joint reconstruction of several
scanlines.
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6

General conclusions and further research

6.1 Brief summary of the contributions of this work

The goal of this thesis was to model beamforming in ultrasound imaging as an inverse

problem, relating the raw channel data to the signals to be recovered. This formulation

was inspired from the source localization techniques that were very exploited in the last

decades due to their different application areas. These techniques were developed to be

robust to limited data, noise and the correlation of the sources.

We firstly investigated the used of sparse priors in medical ultrasound, by creating

two-dimensional beamforming methods. With the proposed approaches, we were able to

detect the position and the amplitude of the strong reflectors from the scanned medium

by using the well-known Bayesian Information Criteria used in statistical modeling.

Moreover, the proposed methods allow a parametric selection of the level of speckle in

the final beamformed images. We showed, through simulated and recorded experimental

data, the ability of the proposed methods to precisely detect the number and the spatial

position of the strong reflectors in a sparse medium and to accurately reduce the speckle

and highly enhance the contrast in a medium with speckle. In all experiments, the

proposed approaches tend to preserve the speckle, which can be of major interest in

clinical examinations, where it can contain useful information. However, when dealing

with highly non-sparse scanning medium, we saw that our methods, since it examines

each potential strong reflector, require high computational cost.
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Secondly, we proposed a new framework for beamforming in medical ultrasound, by

formulating beamforming as a linear inverse problem relating the reflected echoes to

the signal to be recovered. This formalism allows us to invert the problem by imposing

standard regularization such as `
1

, `
2

-norms, or elastic-net. The stated inverse problem

is applied in lateral direction, contrarily with the most common beamforming methods

in medical ultrasound that apply beamforming in axial direction. Our approach presents

three major advantages: i) its flexibility in the choice of statistical assumptions on the

signal to be beamformed, ii) its robustness to a reduced number of pulse emissions

and iii) its robustness to correlation of the sources. Thus, the proposed framework

allows for choosing the right trade-off between noise suppression and sharpness of the

resulted image. We showed that the proposed beamforming approached, although based

on the same model, are complementary. Concretely, the method based on Laplacian

statistics enforces sparsity in the resulting ultrasound image, while the method based

on Gaussian law results in more smooth and regular ultrasound images. A compromise

between the two assumptions (Laplacian and Gaussian) can be obtained by using elastic-

net regularization. The proposed framework taking into account the aforementioned

statistic distributions was evaluated on both simulated and in vivo datasets and we

showed an increase in contrast and the spatial resolution of the resulted images compared

with four of the most efficient existing beamforming methods in medical ultrasound.

Finally, the third contribution was to model ultrasound medical imaging based on

the statistical characterization of the ultrasound signals by ↵-stable distributions. While

with the second contribution we took into account the Gaussianity assumption of the

ultrasound signals, recently, was shown that the ultrasound signals can be more ac-

curately modelled by a power-law shot noise model. In this work, we related the RF

signals to the ↵-stable distributions. To the best of our knowledge, this is the first at-

tempt to specifically consider an ↵-stable distribution while beamforming the received

echoes in US imaging. Thus, the direct model presented with the second contribution

was inverted using a more general `p pseudo norm regularization, with p automatically

related to the parameter ↵ estimated from the raw channel data. The main advantage

of this contribution is the fact that it does not require any hyperparameter tunning.

Moreover it could also be evaluated for other applications that solve source localization

problem.
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6.2 Suggestions for further research

6.2.1 Dictionary learning for sparse representation

Dictionary learning was already applied to 3D ultrasound imaging to reduce the vol-

ume of the data and speed up the acquisitions [Lorintiu et al., 2015]. Such dictionaries

will result in even sparser representations of the signals, being optimized for a family

of signals such as US images. In their work, they used K-SVD method to train the

dictionaries for US signals. The model proposed in Chapter 4 could also use dictionary

learning to learn about the characteristics of the US signals on each range.

6.2.2 Automatic estimation of hyperparameter p using a Bayesian

framework

In our work the estimation of the regularization parameter p was done by relating p to

the parameter ↵ estimated from the RF signals which we characterized using ↵-stable

distributions. Another method that is extensively used in image deconvolution, and can

be of interest in beamforming of ultrasound images, is the Bayesian framework which

could be used to estimate p in `p pseudo norm regularization problem. This framework

is called Bayesian Blind Deconvolution (see, e.g., [Vega et al., 2014, Zhou et al., 2015,

Zhao et al., 2016a]).

6.2.3 Joint time and space regularization

Our model presented in Chapter 4 and 5 is successively applied for each time sample

(range). The main drawback of treating each range separately is the fact that we are

not taking into account the correlation between the lateral scanlines. Thus, the results

may suffer from sensitivity to SNR.

An interesting idea could be the combination of multiple scanlines by using joint

regularization of several lateral scanlines [Chang et al., 2016]. Thus, multiple ranges

could be used in synergy, unlike solving the inverse problem range by range. This

technique was applied in source localization problem [Malioutov et al., 2005].

6.2.4 Combination with post-processing techniques

Our method is using raw channel data to model BF as an inverse problem. After

applying BF, to the raw channel data, RF signals are formed. However, there exist
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multiple techniques in ultrasound imaging that model RF lines as an inverse problem
using regularization. These techniques are usually called post-processing techniques.

Being flexible, the proposed BF framework can be combined with the existing post-
processing techniques, aiming to enhance the quality of the ultrasound images, such as
deconvolution [Chen et al., 2016a] or super-resolution [Cox and Beard, 2015].

6.2.5 Evaluation of other acquisition strategies

The proposed framework can be evaluated for other acquisition strategies such as com-
pressed acquisitions approaches used in compressive sampling [Liebgott et al., 2012].
Compressed acquisition mainly consists in randomly skipping the acquisition of several
raw data channels. Thus, the amount of data needed is decreased and the acquisition is
speed up. Integrating the compressed acquisition strategy with the framework proposed
in Chapter 4, that also decreases the number of emissions, could result in even higher
rates of acquisition. This could be of high interest in applications that require high
acquisition rates (for e.g., cardiac imaging).

6.2.6 Evaluation of the proposed methods on other types of US data

Finally, it can be noticed that the validation of the proposed methods was performed on
data containing healthy and pathological thyroid and healthy carotid. It is important
to evaluate their performance on other types of in vivo data, such as cardiac data.
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Appendix A

Results on plane-wave imaging

As stated in Section 1.1.5, there exist two common imaging modalities in medical US

imaging. Until this point, all the results were shown by using the standard US imaging

(Fig. 1.6(a)). Here, we test the proposed framework on plane-wave imaging (Fig. 1.6(b)).

In this section we used the datasets available during the PICMUS beamforming

challenge [IUS, 2016]. The datasets were designed to evaluate two image quality met-

rics: resolution and contrast. Moreover, they were designed to ensure that there is no

geometric distortion and that the speckle is preserved. Both simulated and experimen-

tal data were available. A Verasonics Vantage 256 platform was used to acquire data,

with a linear L11-4v probe with the characteristics stated in Table A.1.

The results of applying DAS BF (described in Section 2.3) and the proposed BP BF

(described in chapter 4) on the datasets proposed by the challenge for one plane-wave

emission are illustrated in the Fig. A.1 and Table A.2. DAS BF method proposed by

the challenge was used.

Table A.1: The characteristics of the L11-4v probe and of the transmit pulse

Pitch [mm] 0.3 Transmit frequency [MHz] 5.208
Element width [mm] 0.27 Sampling frequency [MHz] 20.832 MHz
Element height [mm] 5 Pulse bandwidth 67 %
Elevation focus [mm] 20 Transmit voltage 30 V

Number of elements [mm] 128 Excitation 2.5 cycles
Aperture [mm] 38.4
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Figure A.1: (a) DAS - simulation (resolution), (b) BP - simulation (resolution), (c)
DAS - experimental (resolution), (d) BP - experimental (resolution), (e) DAS - simulation
(contrast), (f) BP - simulation (contrast), (g) DAS - experimental (contrast), (h) BP -
experimental (contrast).

Table A.2: Mean resolution scores (axial & lateral) and contrast scores (dB) in Fig. A.1

BF Method and type Mean resolution (axial & lateral) Mean contrast (dB)
DAS - simulation Fig. A.1(a): 0.40 0.82 Fig. A.1(e): 9.72
BP - simulation Fig. A.1(b): 0.13 0.31 Fig. A.1(f): 12.73
DAS - experimental Fig. A.1(c): 0.57 0.89 Fig. A.1(g): 7.90
BP - experimental Fig. A.1(d): 0.35 0.57 Fig. A.1(h): 10.10
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For this example, we observed that BP BF results in improved resolution and con-
trast than LS BF. Thus, Fig. A.1 presents the comparison between DAS and BP beam-
formers. For simulated point reflectors, we can observe that in the case of plane-wave
imaging, DAS BF results in low resolution. It is hard to distinguish between the point
reflectors present in the scanned medium (Fig. A.1(a)) and it is hard to predict their
number. However, when using the proposed BP BF method (Fig. A.1(b)), the scatterers
are very well resolved, at the correct positions. Table A.2 reinforces this observation,
where we can observe that both axial and lateral resolutions are ⇡ 3 times higher when
using BP compared with DAS. In the case of experimental data we can also observe
an improvement in the spatial resolution when using BP (Fig. A.1(d)) compared with
DAS (Fig. A.1(c)). Note that an increase in spatial resolution can be obtained if the
value of � is increased, but at the cost of the degradation of the speckle’s characteristics.
Regarding the improvement of the contrast, we can observe that for both simulation
(Fig. A.1(e) and Fig. A.1(f)) and experimental datasets (Fig. A.1(g) and Fig. A.1(h)),
an improvement of ⇡ 3 dB can be obtained by using BP compared with DAS (see Table
A.2).
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Résumé

L’imagerie ultrasonore (US) permet de réaliser des axamens medicaux
non invasifs avec des méthodes d’acquisition rapides à des coûts modérés.
L’imagerie cardiaque, abdominale, fœtale, ou mammaire sont quelques-unes
des applications où elle est largement utilisée comme outil de diagnostic.

En imagerie US classique, des ondes acoustiques sont transmises à une région
d’intérêt du corps humain. Les signaux d’écho rétrodiffusés, sont ensuite
formés pour créer des lignes radiofréquences.
La formation de voies (FV) joue un rôle clé dans l’obtention des images
US, car elle influence la résolution et le contraste de l’image finale.

L’objectif de ce travail est de modéliser la formation de voies comme un
problème inverse liant les données brutes aux signaux RF. Le modèle de
formation de voies proposé ici améliore le contraste et la résolution spatiale
des images échographiques par rapport aux techniques de FV existants.

Dans un premier temps, nous nous sommes concentrés sur des méthodes de
FV en imagerie US. Nous avons brièvement passé en revue les techniques de
formation de voies les plus courantes, en commencent par la méthode par
retard et somme standard puis en utilisant les techniques de formation de

voies adaptatives.

Ensuite, nous avons étudié l’utilisation de signaux qui exploitent une
représentation parcimonieuse de l’image US dans le cadre de la forma-
tion de voies. Les approches proposées détectent les réflecteurs forts du
milieu sur la base de critères bayésiens.

Nous avons finalement développé une nouvelle façon d’aborder la formation
de voies en imagerie US, en la formulant comme un problème inverse

linéaire liant les échos réfléchis au signal final. L’intérêt majeur de notre
approche est la flexibilité dans le choix des hypothèses statistiques sur le
signal avant la formation de voies et sa robustesse dans à un nombre réduit
d’émissions.

Finalement, nous présentons une nouvelle méthode de formation de voies
pour l’imagerie US basée sur l’utilisation de caractéristique statistique des
signaux supposée ↵-stable.
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