
HAL Id: tel-01507059
https://theses.hal.science/tel-01507059

Submitted on 12 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multimodal vibration damping of structures coupled to
their analogous piezoelectric networks

Boris Lossouarn

To cite this version:
Boris Lossouarn. Multimodal vibration damping of structures coupled to their analogous piezoelectric
networks. Structural mechanics [physics.class-ph]. Conservatoire national des arts et metiers - CNAM,
2016. English. �NNT : 2016CNAM1062�. �tel-01507059�

https://theses.hal.science/tel-01507059
https://hal.archives-ouvertes.fr


CONSERVATOIRE NATIONAL
DES ARTS ET MÉTIERS
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Abstract

Structural vibrations can be reduced by benefiting from the electromechanical coupling

that is offered by piezoelectric materials. In terms of passive damping, piezoelectric shunts

allow converting the vibration energy into electrical energy. Adding an inductor in the

circuit creates an electrical resonance due to the charge exchanges with the piezoelectric

capacitance. By tuning the resonance of the shunt to the natural frequency of the mechan-

ical structure, the equivalent of a tuned mass damper is implemented. This strategy is

extended to the control of a multimodal structure by increasing the number of piezoelectric

patches. These are interconnected through an electrical network offering modal properties

that approximate the behavior of the structure to control. This multi-resonant network

allows the simultaneous control of multiple mechanical modes. An adequate electrical

topology is obtained by discretizing the mechanical structure and applying the direct elec-

tromechanical analogy. The analogous network shows inductors and transformers, whose

numbers and values are chosen according to the frequency band of interest. After focusing

on the design of suitable magnetic components, the passive control strategy is applied to

the damping of one-dimensional structures as bars or beams. It is then extended to the

control of thin plates by implementing a two-dimensional analogous network.

Keywords : Vibration control, Multimodal damping, Passive control, Piezoelectric cou-

pling, Resonant shunt, Periodic array, Analogous electrical network, Design of magnetic

components
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Résumé court en français

L’amplitude vibratoire d’une structure mince peut être réduite grâce au couplage

électromécanique qu’offrent les matériaux piézoélectriques. En termes d’amortissement

passif, les shunts piézoélectriques permettent une conversion de l’énergie vibratoire en

énergie électrique. La présence d’une inductance dans le circuit crée une résonance électrique

due à l’échange de charges avec la capacité piézoélectrique. Ainsi, l’ajustement de la

fréquence propre de ce shunt résonant à celle de la structure mécanique équivaut à la mise

en œuvre d’un amortisseur à masse accordée. Cette stratégie est étendue au contrôle d’une

structure multimodale par multiplication du nombre de patchs piézoélectriques. Ceux-ci

sont interconnectés via un réseau électrique ayant un comportement modal approximant

celui de la structure à contrôler. Ce réseau multi-résonant permet donc le contrôle si-

multané de plusieurs modes mécaniques. La topologie électrique adéquate est obtenue

par discrétisation de la structure mécanique puis par analogie électromécanique directe.

Le réseau analogue fait apparâıtre des inductances et des transformateurs dont le nom-

bre et les valeurs sont choisis en fonction de la bande de fréquences à contrôler. Après

s’être penché sur la conception de composants magnétique adaptés, la solution de contrôle

passif est appliquée à l’amortissement de structures unidimensionnelles de type barres ou

poutres. La stratégie est ensuite étendue au contrôle de plaques minces par mise en œuvre

d’un réseau électrique bidimensionnel.

Mots clés : Contrôle vibratoire, Amortissement multimodal, Contrôle passif, Couplage

piézoélectrique, Shunt résonant, Structure périodique, Réseau électrique analogue, Con-

ception de composants magnétiques
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Résumé étendu en français

I Introduction

Le shunt résonant [2], constitué d’une inductance et d’un patch piézoélectrique collé

sur la structure à contrôler, peut être vu comme l’analogue électrique d’un amortisseur

à masse accordée. En effet, lorsque la fréquence de résonance électrique est réglée sur

une résonance mécanique, un transfert énergétique génère une réduction de l’amplitude

vibratoire. L’utilisation d’un réseau de patchs périodiques multiplie le nombre de shunts

nécessaires, mais a l’avantage de limiter les problèmes d’annulation de charges qui pour-

raient se produire avec des patchs aux dimensions proches des longueurs d’onde con-

sidérées. Cette solution a été appliquée au contrôle de barres [4], de poutres [46] ou

encore de plaques [50]. Cependant, chaque shunt résonant n’est efficace que sur une

bande de fréquences étroite et, même en considérant des composants magnétiques à haute

perméabilité, les valeurs d’inductance nécessaires peuvent s’avérer trop élevées pour per-

mettre une mise en œuvre purement passive. Il est pourtant possible de réduire les

spécifications d’inductance et de proposer un contrôle large bande en considérant une

interconnexion des patchs piézoélectriques plutôt que des shunts indépendants. Cette

stratégie fut explorée par Maurini et al. qui ont comparé plusieurs architectures de réseaux

périodiques [17]. Il est finalement observé qu’un amortissement multimodal nécessite le

couplage de la structure à contrôler à son analogue électrique. Des solutions de contrôle

piézoélectrique par réseau analogue passif ont ainsi été proposées pour des poutres [21]

et des plaques [24]. Malgré tout, les résultats présentés restent théoriques et prennent en

compte un réseau électrique homogénéisé, ce qui s’éloigne des applications pratiques pour

lesquelles le nombre de composants électriques est limité.

Ce résumé étendu synthétise la démarche théorique ainsi que les principaux résultats

expérimentaux de l’application de la stratégie d’amortissement piézoélectrique analogue à

des cas de barres, poutres et plaques. L’élaboration d’un modèle discret approximant la

structure continue à contrôler rend possible l’utilisation de l’analogie électromécanique di-

recte qui conduit au réseau électrique analogue [30, 74]. Ce réseau électrique est synthétisé

expérimentalement à partir de composants magnétiques passifs puis couplé à la struc-
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II. CONTRÔLE VIBRATOIRE PAR SHUNT PIÉZOÉLECTRIQUE RÉSONANT
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Figure 2: Module de la fonction de transfert H(ω) - (· · · ) en circuit ouvert (résistance
infinie), (- -) avec l’inductance optimale et une résistance nulle, (—) avec l’inductance
optimale et la résistance optimale.

À partir du modèle de la Figure 1(b), il est possible de définir la fonction de transfert
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oùKD est la raideur de la structure en circuit ouvert, ωe = 1/
√
LCε représente la pulsation

de résonance électrique, ξe =
R

2

√

Cε

L
est le coefficient d’amortissement et ωO =

√

KD

m
est

la pulsation de résonance de la structure mécanique en circuit ouvert. Une optimisation

de type H∞ qui consiste à minimiser le maximum du module de la fonction de transfert

selon le critère min
L,R

(

max
ω

|H(ω,L,R)|
)

permet de définir des valeurs optimales pour les

composants du shunt électrique [43]:

L =
1

Cεω2
O

and R =

√

3

2

kc
CεωO

, (2)

où kc =

√

ω2
O − ω2

S

ω2
S

avec ωS =

√

KE

m
la pulsation de résonance de la structure quand les

patchs sont court-circuités. Le tracé du module de la fonction de transfert de l’Eq. (1)

permet d’observer l’effet du shunt résonant sur la dynamique vibratoire. Ceci est représenté

sur la Figure 2 où l’on remarque que l’ajout d’une inductance dédouble la résonance initiale

mais que la résistance permet ensuite de réduire simultanément l’amplitude vibratoire des

deux maxima.

II.2 Limites de mise en œuvre pratique

Les limites de la technique du shunt résonant apparaissent lors de sa mise en application

pratique. En effet, pour un contrôle vibratoire basse fréquence, les valeurs d’inductances

nécessaires sont souvent bien supérieures à celles proposées dans les gammes de composants
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II. CONTRÔLE VIBRATOIRE PAR SHUNT PIÉZOÉLECTRIQUE RÉSONANT

Figure 4: Trois types d’inductance: (a) Composant standard bobiné sur un cylindre en
ferrite. (b) Inductance bobinée sur pot en ferrite RM. (c) Inductance bobinée sur tore
nanocristallin.
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Figure 5: Résultats expérimentaux: (a) Amortissement du premier mode de flexion avec
le tore nanocristallin (1800 tours) - (· · · ) circuit ouvert, (- -) avec inductance mais pas
de résistance additionnelle, (—) avec inductance et résistance additionnelle de 6.7 kΩ.
(b)Amortissement du deuxième mode de flexion avec le pot en ferrite (613 tours) - (· · · ) cir-
cuit ouvert, (- -) avec inductance mais pas de résistance additionnelle, (—) avec inductance
et résistance additionnelle de 1.8 kΩ.

donc nécessaire de se tourner vers des circuits magnétiques à haute perméabilité qui per-

mettent d’atteindre des valeurs d’inductance élevées avec un bobinage à nombre de tours

limité. Deux circuits magnétiques fermés sont considérés: un pot en ferrite de type RM10

et un tore nanocristallin. Le premier, représenté sur la Figure 4(b) permet d’atteindre les

6.5 H requis pour le contrôle du second mode en bobinant 613 tours de fil. Pour le premier

mode, un tore nanocristallin avec 1800 tours devient nécessaire et permet d’atteindre une

valeur d’inductance de 330 H.

La conception de ces composants passifs est validée par une mise en œuvre au sein du

shunt piézoélectrique contrôlant la poutre (Figure 3(a)). Un amortissement significatif est

observé sur la Figure 5 pour les deux premiers modes de flexion. Ceci montre que malgré

les contraintes pratiques associées aux valeurs optimales pour les constituants d’un shunt

résonant, il est possible de concevoir des composants dédiés qui permettre une mise en

application de la stratégie de contrôle avec un dispositif purement passif.

15



III. AMORTISSEMENT MULTIMODAL D’UNE BARRE

III Amortissement multimodal d’une barre

Le contrôle vibratoire par shunt résonant est étendu à l’amortissement multimodal

par couplage analogue. L’analogue électrique d’une barre est obtenu par discrétisation

d’un milieu de propagation longitudinal puis application de l’analogie électromécanique

directe. Le réseau électrique obtenu vient ensuite interconnecter un ensemble de patchs

piézoélectriques de manière à réduire l’amplitude vibratoire de la barre à contrôler sur une

large plage de fréquences.

III.1 Discrétisation du milieu mécanique

Un milieu mécanique de type barre soumis à une propagation longitudinale est car-

actérisé par une équation différentielle qui s’écrit sous la forme

ρ
∂2u(x, t)

∂t2
= Y

∂2u(x, t)

∂x2
, (3)

où x représente la variable d’espace, t la variable de temps et u(x, t) = U(x)g(t) est le

déplacement longitudinal, g(t) représentant une évolution harmonique. Les constantes ρ

et Y sont respectivement la densité du milieu propagatif et son module de Young. Avec

S l’aire de la section de la barre, N définit l’effort normal selon

N(x) = Y SU ′(x)
−ρSω2U(x) = N ′(x)

. (4)

Ainsi, une méthode des différences finies permet de définir le système d’équations

NI = K(UR − UL)
−m

2 ω
2UL = NI −NL

−m
2 ω

2UR = NR −NI

, (5)

où m = ρSa et K = Y S/a quand a est la longueur de la portion de barre discrétisée. Ce

système peut être représenté par le modèle discret de la Figure 6(a) en considérant que

NI correspond à l’effort dans le ressort de raideur K. Ce modèle correspond finalement

−NL

UL

Km

2

m

2

m

2

−NR

UR

(a)

−NL −NR

U̇L U̇R

1

K

m

2

m

2

(b)

Figure 6: Cellules élémentaires pour la propagation longitudinale: (a) Portion de barre
discrétisée. (b) Analogue électrique d’une portion de barre.
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III. AMORTISSEMENT MULTIMODAL D’UNE BARRE

à l’approximation discrète d’une portion de barre en traction-compression. La succession

de n cellules élémentaires de ce type offre donc un modèle discrétisé pour une barre de

longueur l = na. Ce modèle est valide tant que la longueur d’onde considérée est grande

devant la longueur a d’une cellule élémentaire. Pour des problèmes d’analyse vibratoire,

une limite peut être fixée à un minimum de dix cellules par longueur d’onde.

III.2 Réseau électrique analogue

À partir de la cellule élémentaire discrétisée présentée sur la Figure 6(a), il devient

possible de définir l’analogue électrique d’une barre en traction-compression. Nous util-

isons ici l’analogie électromécanique directe [74] qui considère une équivalence entre une

force et une tension, ainsi qu’entre une vitesse et un courant électrique. Par conséquent,

une masse est équivalente à une inductance et une raideur est équivalente à l’inverse d’une

capacité électrique. L’analogue de la portion de barre discrétisée est donc représenté par

la Figure 6(b) qui montre une ligne d’inductances m/2 avec une connexion à la masse par

l’intermédiaire d’un condensateur de valeur 1/K.

Afin de faire apparâıtre un couplage multimodal destiné à l’amortissement large bande

d’une barre, celle-ci est couplée à son réseau électrique analogue par l’intermédiaire d’une

distribution périodique de patchs piézoélectriques. Le guide d’onde électromécanique qui

en résulte est représenté sur la Figure 7 où l’on peut observer que les patchs piézoélectriques

prennent le rôle du condensateur représenté sur la Figure 6(b). Il n’est donc nécessaire

d’ajouter qu’une ligne d’inductances L interconnectant les patchs successifs. La succes-

sion d’un nombre suffisant de cette cellule élémentaire permet de tendre vers un continuum

électrique qui représente l’analogue d’une barre en traction-compression. En ce qui con-

cerne les conditions aux limites électriques, une condition de bord libre impose la mise à

la masse d’une extrémité du réseau afin d’assurer l’analogie entre la structure mécanique

et le réseau électrique. De même, une condition de blocage revient à laisser un port ouvert

de façon à empêcher le passage du courant.

b

L L L L

hs

hp

lp

a

UL UR

L

2

L

2
q̇I

VI

b

Figure 7: Barre couplée à son réseau électrique analogue par l’intermédiaire d’une distri-
bution périodique de patchs piézoélectriques et cellule élémentaire associée.
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III. AMORTISSEMENT MULTIMODAL D’UNE BARRE

III.3 Conditions de couplage modal

L’objectif du couplage analogue est de synthétiser un milieu secondaire étant capable

d’approximer les modes de la structure à contrôler. Dans notre cas, le milieu secondaire est

le réseau électrique qui doit donc présenter les mêmes fréquences de résonance et les mêmes

formes modales que la barre considérée. Pour ce faire, une première condition est d’imposer

des connections électriques en bouts de réseau qui sont analogues aux conditions aux limites

mécaniques. Ensuite, la relation de dispersion du milieu électrique doit approximer la

relation de dispersion de la barre. Cette condition est vérifiée si le rapport de la raideur

sur la masse est égal dans les deux milieux propagatifs. Le milieu secondaire étant un

réseau électrique, on obtient

1

LCε
=

KE

m
, (6)

où KE représente la raideur d’une portion de barre quand les patchs sont court-circuités

et m est la masse de cette même portion de barre. La capacité piézoélectrique Cε est

imposée par la géométrie et le matériau des patchs et de la cellule élémentaire. C’est

donc l’inductance L qui est choisie, en fonction de la masse et de la raideur de la cellule

élémentaire, de façon à satisfaire le couplage modal.

III.4 Modélisation du système électromécanique

La condition de couplage modal de l’Eq. (6) se base sur un modèle discrétisé du

problème électromécanique. En effet, la cellule élémentaire de la Figure 7 peut être

représentée par le circuit électrique de la Figure 8 où le transformateur représente le cou-

plage piézoélectrique. Ici, l’analogie entre les domaines mécanique et électrique est évidente

car un couplage nul engendre deux lignes de propagation distinctes mais possédant la même

topologie. Pourtant, le milieu mécanique est en réalité continu et l’approximation discrète

ne peut se faire que pour des longueurs d’onde importantes devant la longueur de la cellule

−NL VR−NR VL

VIeVI

U̇L − U̇R e(U̇L − U̇R)

U̇L U̇R q̇L q̇R

1

KE

Cε

m

2
L

2

L

2

m

2

e : 1

Figure 8: Modèle discret de la cellule élémentaire électromécanique.
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III. AMORTISSEMENT MULTIMODAL D’UNE BARRE
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Figure 9: Modélisation de la partie mécanique du problème couplé: (a) Modèle discret.
(b) Modèle homogénéisé.
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Figure 10: Fonctions de réponse en fréquence pour une barre libre-libre constituée de 20
cellules élémentaires - (· · · ) pour le modèle discret, (—) pour le modèle homogénéisé.

élémentaire. La validité du modèle discret représenté sur la Figure 9(a) peut donc être

remise en question. Un modèle semi-continu est alors proposé pour prendre en compte le

couplage d’un réseau électrique discret à une structure mécanique continue.

Le modèle homogénéisé de la Figure 9(b) est comparé au modèle discret. L’exemple

considéré se base sur une succession de 20 cellules élémentaires identiques à celle représentée

sur la Figure 7. La structure est excitée longitudinalement à l’une de ses extrémités et on

mesure la vitesse de l’autre extrémité, celle-ci n’étant soumise à aucune force extérieure.

Le rapport entre la vitesse longitudinale et la force d’excitation permet de tracer la fonc-

tion de réponse en fréquence de la Figure 10. Au-delà de 10 kHz, on y observe une nette

différence entre les deux modèles considérés. Pour des conditions aux limites libre-libre,

cette fréquence correspond à une longueur d’onde approchant 10 fois la longueur de la

cellule élémentaire. On remarque ainsi que le modèle discret ne permet pas de prendre en

compte le phénomène de désaccordage entre les résonances du réseau électrique discret et

celles de la structure mécanique continue. Par conséquent, le modèle semi-continu qui se

base sur un milieu mécanique homogénéisé est nécessaire quand la longueur d’onde con-

sidérée approche ou devient inférieure à 10 cellules élémentaires. Ceci justifie le choix du

modèle semi-continu pour les comparaisons entre simulations et résultats expérimentaux

qui s’étendent jusqu’au quatrième mode longitudinal.
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III. AMORTISSEMENT MULTIMODAL D’UNE BARRE

Figure 11: Dispositif expérimental pour l’analyse de l’amortissement vibratoire longitudi-
nal: barre suspendue couplée à son réseau électrique analogue.

III.5 Validation expérimentale

Une barre en duraluminium d’un mètre de long et de section carré de 2 cm de côté est

munie de 20 paires de patchs piézoélectriques. Une paire de patchs offrant une capacité

électrique Cε = 35 nF, des inductances L = 2.8 mH sont choisies afin de satisfaire l’Eq. (6).

Comme illustré sur la Figure 11, la barre est suspendue par des câbles élastiques et excitée

par un pot vibrant à l’une de ses extrémités. Afin de respecter l’analogie avec une barre en

conditions libre-libre, la ligne d’inductance doit être connectée à la masse à chacune de ses

extrémités. Une tête d’impédance mesure la force du côté de l’excitation et un vibromètre

laser donne accès à la vitesse de déplacement de l’autre extrémité.

La fonction de réponse en fréquence, présentée sur la Figure 12, prouve l’efficacité

du dispositif en matière d’amortissement vibratoire multimodal. En effet, des réductions

d’amplitude supérieures à 20 dB sont observées pour les 4 premiers modes de traction-

compression. Ces performances pourraient même être améliorées en augmentant la dissi-

pation dans le réseau par ajout de résistances électriques. L’apparition de minima locaux

marqués traduit, en effet, un comportement de type amortisseur à masse accordée nette-
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Figure 12: Fonctions de réponse en fréquence pour la vitesse longitudinale en bout de
barre - (· · · ) réponse expérimentale sans contrôle, (—) réponse expérimentale avec contrôle
analogue, (−−) réponse simulée avec contrôle analogue.
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ment sous-amorti. Enfin, on remarque que le système électromécanique peut être modélisé

de façon adéquate car les simulations numériques, basées sur une approche par matrice de

transfert, concordent avec les résultats expérimentaux.

IV Amortissement multimodal d’une poutre

La stratégie de contrôle vibratoire par couplage piézoélectrique analogue est appliquée

à une structure de type poutre. Comme dans le cas d’une barre, le modèle discret d’une

poutre permet de définir son analogue électrique. Celui-ci est assemblé avec des com-

posants passifs puis couplé à une poutre afin de réduire son amplitude vibratoire.

IV.1 Discrétisation du milieu mécanique

En considérant les hypothèses d’Euler-Bernoulli, la propagation transversale dans un

milieu de type poutre s’exprime de la façon suivante:

ρS
∂2w(x, t)

∂t2
= −Y I

∂4w(x, t)

∂x4
, (7)

où w(x, t) = W (x)g(t) représente le déplacement transversal alors que I est le moment

quadratique de la poutre considérée. L’Equation (7) peut être développée sous la forme

d’un système faisant intervenir les variables internesQ, M et θ représentant respectivement

l’effort tranchant, le moment fléchissant et le déplacement angulaire:

Q′(x) = −ρSω2W (x)
Q(x) = −M ′(x)

et
M(x) = Y Iθ′(x)
θ(x) = W ′(x)

. (8)

De la même manière que pour la détermination du modèle de barre discrétisé, une méthode

des différences finies appliquée à l’Eq. (8) conduit au modèle discret d’une portion de

poutre:
QR −QL = −mω2WI

QL = −MI −ML

a/2

QR = −MR −MI

a/2

et

MI = Kθ(θR − θL)

θL =
WI −WL

a/2

θR =
WR −WI

a/2

. (9)

Ce modèle est illustré par la Figure 13(a), où la masse m = ρSa est égale à la masse de la

portion de poutre etKθ = Y I/a correspond à sa raideur de flexion. Comme précédemment

pour la barre, la succession d’un nombre suffisant de cette cellule élémentaire offre un

modèle discret approximant le comportement dynamique d’une poutre en flexion.

IV.2 Réseau électrique analogue

L’analogie électromécanique directe appliquée au modèle discret de la Figure 13(a)

conduit à la cellule élémentaire électrique de la Figure 13(b). La masse de la cellule est de
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(a) (b)

Figure 13: Cellules élémentaires pour la propagation transversale: (a) Portion de poutre
discrétisée. (b) Analogue électrique d’une portion de poutre.

nouveau représentée par une inductance et sa raideur intervient au niveau d’un condensa-

teur. Cette portion de réseau est tout de même plus complexe car elle présente deux lignes

électriques séparées par des transformateurs de rapport a/2. Ceux-ci sont les analogues

des bras de levier de longueur a/2 qui traduisent les conditions de proportionnalité entre

les angles et les déplacements, ainsi qu’entre les moments et les efforts.

Le couplage d’une poutre à son réseau électrique analogue est représenté sur la Fig-

ure 14. Deux transformateurs de rapport â/2 peuvent être remplacés par un seul transfor-

mateur de rapport â et comme précédemment, aucun condensateur ne doit être ajouté car

on peut bénéficier de la capacité piézoélectrique. Une condition de bord libre à l’extrémité

d’une poutre impose à son analogue électrique une connexion à la masse du bout de la

ligne associée au moment fléchissant (M = 0) ainsi qu’à celle associée à l’effort tranchant

(Q = 0). D’autres conditions aux limites sont naturellement réalisables comme, par exem-

ple, une condition simplement appuyée qui nécessite une connexion à la masse de la ligne

associée au moment fléchissant (M = 0) et une ligne associée à l’effort tranchant laissée

ouverte (W = 0).

b
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Figure 14: Poutre couplée à son réseau électrique analogue par l’intermédiaire d’une dis-
tribution périodique de patchs piézoélectriques et cellule élémentaire associée.
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IV.3 Conditions de couplage modal

Comme pour la barre, le réseau électrique relatif à la propagation transversale doit

offrir des conditions aux limites analogues et une relation de dispersion similaire à celle de

la poutre à contrôler. Cette dernière condition revient à respecter l’égalité

1

â2
1

LCε
=

1

a2
KE

θ

m
, (10)

où â est le rapport de transformation des transformateurs du réseau électrique. La raideur

en flexion en court-circuit KE
θ , la masse m et la longueur a étant imposés par les car-

actéristiques de la poutre et Cε étant la capacité piézoélectrique, le réglage du réseau se

fait à travers le choix de l’inductance L et du rapport de transformation â.

IV.4 Validation expérimentale

L’analyse expérimentale de l’amortissement des vibrations transversales se base sur la

même structure que celle utilisée pour l’étude longitudinale. Cependant, l’excitation et

la mesure de vitesse sont ici transversales et le réseau est constitué d’une succession de

cellules élémentaires électriques telles que celle illustrée sur la Figure 14. Le dispositif

expérimental est présenté sur les Figures 15(a) et 15(b). Il fait apparâıtre la poutre en

conditions libre-libre ainsi que le réseau constitué de composants magnétiques passifs, in-

ductances et transformateurs, spécialement conçus pour l’application proposée. Le rapport

de transformation choisi étant â = 1, les inductances doivent être proches de L = 120 mH.

Pour ce faire, des ferrites RM à haute perméabilité permettent d’atteindre des facteurs de

qualité satisfaisants.

(a) (b)

Figure 15: Dispositif expérimental pour l’analyse de l’amortissement vibratoire transversal:
(a) Poutre suspendue couplée à son réseau électrique analogue. (b) Excitation transversale
exercée par un pot vibrant suspendu.

23



V. AMORTISSEMENT MULTIMODAL D’UNE PLAQUE MINCE

100 200 300 400 500 600 700 800 900 1000 1100 1200
−60

−50

−40

−30

−20

Fréquence (Hz)

V
ite

ss
e 

(d
B

)

Figure 16: Fonctions de réponse en fréquence pour la vitesse transversale en bout de poutre
- (· · · ) réponse expérimentale sans contrôle, (—) réponse expérimentale avec contrôle ana-
logue, (−−) réponse simulée avec contrôle analogue.

La réponse fréquentielle de la Figure 16 montre que les résultats expérimentaux con-

cordent avec le modèle basé sur une formulation par matrice de transfert. De plus, une

réduction de l’amplitude vibratoire est observée sur une large bande de fréquences. Con-

trairement aux résultats de la Figure 12, aucun minimum local n’est présent au niveau des

résonances de la réponse vibratoire. Ceci s’explique par le fait que les résistances internes

des transformateurs utilisés dans le réseau électrique sont non-négligeables et conduisent

à un système de contrôle légèrement sur-amorti.

V Amortissement multimodal d’une plaque mince

L’analogue électrique d’une poutre en flexion est étendu à un réseau bidimensionnel

pour le contrôle vibratoire d’une plaque mince. Le réseau obtenu est validé numériquement

puis expérimentalement avant d’être connecté à un ensemble de patchs piézoélectriques.

La mise en œuvre expérimentale montre le potentiel de cette stratégie de contrôle passif

en matière d’amortissement multimodal.

V.1 Modèle discret d’une portion de plaque carrée

Le comportement d’une plaque mince peut être décrit par la théorie de Kirchhoff-Love

qui conduit à

−D

(

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)

= ρh
∂2w

∂t2
, (11)

où x et y sont les deux variables d’espace, t la variable de temps et w = W (x, y)g(t)

le déplacement transversal. Pour une plaque de module de Young Y , de coefficient de

Poisson ν et d’épaisseur h, D = Y h3

12(1−ν2)
représente sa raideur en flexion. À partir de

l’Eq. (11), l’extension du cas de flexion unidimensionnelle conduit à un système d’équations
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faisant intervenir les variables internes Q, M et θ:

∂Qx

∂x
+

∂Qy

∂y
= −ρhaω2W

Qx = −∂M

∂x

Qy = −∂M

∂y

et

M = aD

(

∂θx
∂x

+
∂θy
∂y

)

θx =
∂W

∂x

θy =
∂W

∂y

. (12)

L’application de la méthode des différences finies à l’Eq. (12) permet ensuite d’obtenir

un ensemble d’équations discrètes qui définissent le modèle différences finies d’un élément

de plaque carré de côté a:

QR −QL +QT −QB = −mω2WI

QL = −MI −ML

a/2

QR = −MR −MI

a/2

QB = −MI −MB

a/2

QT = −MT −MI

a/2

et

MI = D (θR − θL + θT − θB)

θL =
WI −WL

a/2

θR =
WR −WI

a/2

θB =
WI −WB

a/2

θT =
WT −WI

a/2

, (13)

où ’I’ correspond au centre de l’élément de plaque et ’L’, ’R’, ’B’ et ’T’ représentent

respectivement ses côtés gauche, droit, bas et haut.

V.2 Analogue électrique bidimensionnel

À partir du modèle différences finies d’un élément de plaque représenté par l’Eq. (13),

l’analogie électromécanique directe mène à la cellule élémentaire électrique présentée sur

la Figure 17. Cette portion de réseau est finalement une extension bidimensionnelle de

l’analogue électrique de la Figure 13(b). En effet, m = ρha2 représente la masse de la

portion de plaque et D est sa raideur en flexion. Quatre transformateurs de rapport a/2

assurent l’analogie avec le bras de levier de longueur a/2 et un cinquième transformateur

de rapport 1 est ajouté pour assurer l’unicité du déplacement au centre de la cellule.

Le choix de conditions aux limites électriques analogues aux conditions aux limites

mécaniques devient malheureusement plus difficile à traiter dans un cas bidimensionnel.

Bien que les conditions cinématiques de type déplacement nul ou rotation nulle imposent

de laisser simplement ouvertes les lignes électriques correspondante, des conditions de

type bord libre ne sont pas directement associées à des tensions nulles en bord de la cellule

électrique de la Figure 17. Malgré tout, les plaques encastrées ou simplement appuyées

n’offrant pas de bord libre, leur analogue électrique peut être directement mis en œuvre

avec le réseau passif proposé.
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Figure 17: Analogue électrique d’un élément de plaque carré discrétisé.

V.3 Conditions de couplage modal

Le réseau dédié aux plaques est une extension de celui obtenu pour le contrôle d’une

poutre. Ainsi, on retrouve la même condition traduisant l’égalisation des relations de

dispersion dans les milieux électriques et mécaniques:

1

â2
1

LC
=

1

a2
D

m
. (14)

Associée à des conditions aux limites électriques analogues à celles de la plaque considérée

et en utilisant un nombre suffisant de cellules élémentaires, l’Eq. (14) permet de générer

des modes électriques qui ont les mêmes fréquences propres et les mêmes formes modales

que les modes de plaque.

Pour la modélisation du réseau, connaissant les équations électriques caractérisant la

cellule élémentaire de la Figure 17, il devient possible de définir l’équivalent d’une matrice

de raideur élémentaire Ke et d’une matrice de masse élémentaire M e. Ces matrices

proviennent de la relation entre le vecteur F e contenant les tensions sur les bords de la

cellule et le vecteur qe associé aux déplacements de charges électriques:

F e =
(

Ke − ω2M e
)

qe. (15)
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L’analogue électrique d’une plaque est construit par assemblage d’un nombre suffisant

d’éléments bidimensionnels discrets de façon à approximer la continuité du milieu. De

la même façon, le réseau est modélisé par un assemblage de matrices élémentaires. Une

analyse modale peut ensuite être appliquée aux matrices globales afin de vérifier la validité

de la topologie du réseau et les conditions de couplage modal. L’exemple considéré est

l’analogue électrique d’une plaque d’aluminium de 1.9 mm d’épaisseur, 400 mm de longueur

et 320 mm de côté en conditions simplement appuyées. Lorsque l’Eq. (14) est respectée,

on observe sur la Figure 18(a) que l’augmentation du nombre de cellules élémentaires de

l’analogue électrique fait tendre les fréquences propres du réseau discret vers celles de

la plaque continue, représentées par des lignes horizontales. De plus, les distributions

spatiales du courant électrique représentées sur la Figure 18(b) montrent l’équivalent de

déformées modales d’une plaque simplement appuyée. Les simulations numériques valident

donc bien l’analogue électrique proposé.
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Figure 18: Analyse modale d’un réseau électrique analogue: (a) Convergence vers les
fréquences propres théoriques. (b) Distributions de courant pour un réseau constitué de
25×20 cellules élémentaires.
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Figure 20: Distributions spatiales du courant et fonctions de réponse en fréquence pour
la tension aux bornes d’une inductance avec L = 0.9 H et C = 470 nF - (—) réponse
expérimentale, (−−) réponse simulée.

V.5 Réduction vibratoire d’une plaque encastrée

Dans un objectif d’amortissement vibratoire large bande, vingt patchs piézoélectriques

carrés recouvrent une plaque d’aluminium encastrée sur les quatre côtés, comme présenté

sur les Figures 21(a) et 21(b). La plaque fait 400 mm de long, 320 mm de hauteur et

1.9 mm d’épaisseur. Les patchs, d’épaisseur 0.27 mm, sont connectés au réseau électrique

analogue, lui-même constitué de 20 cellules élémentaires. Des transformateurs électriques

de rapport â = 4 sont utilisés, ce qui conduit à une valeur d’inductance L = 0.9 H. Comme

pour les analyses unidimensionnelles, un pot vibrant applique un effort en un point de la

plaque et un vibromètre laser mesure la vitesse de déplacement transversal. Le couplage

du réseau analogue à la plaque encastrée modifie fortement sa réponse fréquentielle. Le

(a) (b)

Figure 21: Dispositif expérimental pour l’amortissement multimodal d’une structure bidi-
mensionnelle: (a) Plaque d’aluminium recouverte de vingt patchs carrés. (b) Encastrement
sur les bords et couplage au réseau électrique analogue.
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Figure 22: Effet du couplage au réseau analogue sur la réponse vibratoire de la plaque
- (· · · ) réponse expérimentale en court-circuit, (—) réponse expérimentale pour L=0.9 H
et R+

s =0 Ω, (−−) réponse simulée pour L=0.9 H et R+
s =0 Ω.
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Figure 23: Influence de la valeur des inductances sur l’amortissement vibratoire -
(· · · ) réponse expérimentale en court-circuit, (—) réponse expérimentale avec le réseau
analogue pour L = 0.7 H et R+

s = 180 Ω, ( a ) simulation d’une variation de ±30% sur L.

réseau multi-résonant crée l’équivalent d’un amortisseur à masse accordée multimodal

comme l’indiquent, sur la Figure 22, les antirésonances bien visibles au niveau des premier

et second modes de plaque.

Un modèle numérique a également été développé à partir d’un assemblage d’éléments

de plaque couplés au réseau analogue. Ce modèle est validé par les résultats expérimentaux

et il offre donc des perspectives intéressantes pour l’optimisation d’un réseau discret couplé

à une structure continue. En effet, le réseau analogue est constitué d’un nombre limité de

cellules élémentaires ce qui l’éloigne du modèle continu. Dans le cas présent, l’inductance L

doit être ajustée à une valeur de 0.7 H afin de mieux positionner les résonances électriques

sur la plage de fréquences considérée allant de 50 à 500 Hz. Des résistances R+
s = 180 Ω

sont ensuite ajoutées dans le réseau pour optimiser la réduction vibratoire. Considérant

ce réglage du réseau électrique, la Figure 23 montre des réductions de plus de 20 dB sur

l’ensemble des modes de plaque considérés, ce qui valide la stratégie d’amortissement par

couplage analogue dans un cas bidimensionnel. Enfin, la Figure 23 montre l’effet d’une

variation d’inductance sur la dynamique du système couplé. Même avec une variation de

l’ordre de ±30% on observe toujours un net amortissement vibratoire ce qui met en avant

la robustesse du système de contrôle.
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VI Conclusion

Ce résumé étendu offre une description de la stratégie d’amortissement vibratoire

de structures mécaniques par couplage piézoélectrique à un réseau électrique analogue.

Pour des structures de type barres, poutres ou plaques, une discrétisation du milieu

mécanique suivie d’une analogie électromécanique directe a permis de proposer des ana-

logues électriques passifs. Des conditions de réglage des réseaux électriques sont également

présentées de façon à assurer une interaction entre les modes électriques et les modes

mécaniques sur une large bande de fréquences. Même si la quantité de matériau piézo-

électrique ajoutée reste relativement limitée, les validations expérimentales montrent une

nette réduction de l’amplitude vibratoire des structures considérées. De nature intrin-

sèquement passive, cette stratégie d’amortissement vibratoire multimodal semble donc

prometteuse, en particulier pour des applications de contrôle embarqué.
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Chapter 1

Introduction

1.1 Motivations

The mass of any vehicle or embedded system is a key factor that strongly influences

the global costs in terms of energy consumption. However, reducing the mass of a system

is often related to the use of thinner structural elements. Those might generate undesired

vibrations when subjected to dynamic loading. Structural vibrations then results in a

degradation of the user’s convenience through noise or oscillations and more dramatically

it can lead to a ruin of the system. In order to reduce vibration, classical solutions

are based on local control devices placed between the considered structural element and

a reference point. One can mention passive or magnetorheological dampers, as well as

cylinder actuators requiring active control strategies. When no fixed point is available,

we may consider dynamic vibration absorbers that are placed directly on the structure

to control. For instance, the tuned mass dampers [1] can reduce the vibration amplitude

around its natural frequency, without any mechanical connection to a reference point.

Yet, those local solutions only allow controlling the displacement of a single point of

the structure. This is certainly sufficient for rigid bodies but when considering flexible

structures, fixing a single point might simply modify the boundary conditions, which

would not lead to a global vibration reduction. Distributed solutions are thus considered

to generate a vibration control over broader spatial and frequency domains. A strategy

consists in distributing highly dissipative material all over the structure. For instance,

cyclic deformation of viscoelastic layers generates a dissipation of the mechanical energy

into heat. Unfortunately, the damping properties of classical viscoelastic materials decrease

significantly at low frequencies and high temperatures.

Piezoelectric materials are capable of converting mechanical energy over wider ranges

of frequency and temperature. They also offer a high power density, which explains why

they have been used in various industrial applications. Piezoelectric sensors are based on
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the direct piezoelectric effect that generates an electric field when the material is subjected

to a mechanical strain. Conversely, a strain is observed when applying an electric field

across the piezoelectric material. This shows that a distributed control strategy can be

implemented by combining arrays of piezoelectric sensors and actuators. The control yet

becomes active, which usually requires external instrumentation and power supply. Still,

it has been shown that a single piezoelectric patch behaves simultaneously as sensor and

actuator when it is connected to an electrical shunt [2, 3]. The piezoelectric element acts

as an electromechanical transducer able to convert the mechanical energy into electrical

energy, which is then dissipated into a resistor. This solution allows the synthesis of

a so-called ”smart material” with substantial damping properties. Considering passive

electrical shunts, the control does not require any power supply, it is thus completely

autonomous and inherently stable.

Hagood and von Flotow [2] have shown that the resonant piezoelectric shunt made

of an inductor and a resistor is equivalent to a tuned mass damper. Compared to the

purely resistive shunt which is equivalent to a single damper, the resonant shunt offers

a significant vibration reduction when the electrical resonance is tuned to a natural fre-

quency of the considered structure. Then, the solution can be distributed all over the

structure through an array of piezoelectric patches [4–6]. One of the main limits is that

the required inductance values are usually very large [7]. It is still possible to generate

synthetic inductors with operational amplifiers [8] but the system then requires a power

supply. Another drawback of the resonant shunt strategy is certainly its robustness as a

small variation of the inductance can lead to a significant decrease of the damping perfor-

mance [9]. In the low frequency range, the narrow bandwidth of classical resonant shunt

also means that two modes cannot be controlled simultaneously. Multi-resonant shunts

have been proposed for this purpose [8, 10, 11] but the number of electrical components

makes the practical implementation difficult when considering a large array of piezoelec-

tric patches. Nevertheless, a solution has been given by dell’Isola and his coworkers, who

worked actively on interconnected arrays of piezoelectric patches between 1997 and 2005

[12–14]. Interconnecting successive patches creates a multi-resonant network but it also

increases the robustness of the control [15, 16] and reduces the inductance requirements

[17, 18]. It has been noticed that an optimal eletromechanical coupling can be achieved

by implementing an electrical network which is the analogue of the structure to control

[19, 20]. From this conclusion, research has been conducted on multimodal damping of

beams [21, 22] or plates [23, 24] with passive analogous networks.

Although very promising, damping solutions based on analogous piezoelectric networks

have not been implemented into any real application. This is most likely due to the

fact that no experimental setup has been developed to validate the theoretical concepts.
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A line of inductors has been coupled to an array of piezoelectric patches on a beam

[25, 26] but it cannot generate a real multimodal coupling. To this end, an adequate

electrical network would be the analogue of a beam [16, 21]. Paschero at al. decided to

synthetize this electrical network with operational amplifiers [27, 28]. Electrical circuits

solving stability issues were proposed [29] but it seems that they have not been integrated

into a complete piezoelectric array. The use of synthetic components had been decided

because the passive transformers involved in the beam electrical analogue are difficult to

manufacture for broadband and low frequency applications [18]. It was yet proven in the

40’s that such analogous electrical network can be implemented with passive components.

At that time, no powerful digital computers were available and the analogous electrical

networks were used to simulate various mechanical problems [30]. Electrical analogues

were first proposed for truss bridges [31] or assembly of beam structures [32, 33]. Then,

Kron extended the analysis to numerous differential equations as the compressible fluid

flow equations, the electromagnetic field equations of Maxwell or the wave equations of

Schrödinger [34, 35]. Concerning the theory of elasticity, 3D models were introduced

[35, 36] but real implementations of analogous networks were usually restrained to simpler

cases involving one- or two-dimensional structural members. Simulations involving ”analog

computers” were performed for beams [30, 37], plates [30, 38], stiffened shells [39] and even

a whole airplane [40]. We note that this branch of the scientific literature has not been

fully exploited since the advent of the modern digital computers in the 60’s. Even if it

was not the original purpose of the authors, the previous references finally represent an

important resource when considering the implementation of multimodal damping with a

passive piezoelectric network.

1.2 Objectives

The main objective of this thesis is to develop a passive control of structural vibrations

based on piezoelectric coupling to an analogous network. In this work, passive means

that no power supply or synthetic electrical components are required. The structures

under consideration are rods, beams or plates that are covered with a periodic array

of piezoelectric patches. The array is distributed all over the structures, therefore no

optimization of the patch positioning is considered. The coupling to an electrical analogue

means that the resulting control is based on multi-resonant networks, which necessarily

involves inductors. Furthermore, as the electrical analogues are obtained from classical

mechanical models that have a limited range of validity, we restrain the analysis to linear

vibrations in the low-frequency range. When considering the existing literature focusing

on interconnected array of piezoelectric patches, it has not been found any experimental

validation of a multimodal damping with an analogous electrical network. This might
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be explained by the fact that the practical implementation of a proper electrical network

requires further analysis. Moreover, it has been remarked that most of the proposed models

focuses on an electrical continuum, which does not offer an adequate comparison with a

real system involving a finite number of piezoelectric patches. Considering the previous

comments, the objectives of the thesis are detailed as follows:

• Propose adequate topologies and practical designs for electrical analogous networks

made of passive electrical components;

• Develop electromechanical models for periodic structures involving a finite number

of interconnected piezoelectric patches;

• Build experimental setups to prove the practical feasibility of a multimodal damping

through a piezoelectric analogous network for the control of rods, beams and plates.

1.3 Outline

The present thesis is organized into four main chapters that can be read one by one.

Yet, for a better understanding and as some references to previous chapters appears from

time to time, it is advised to follow the conventional order of the manuscript. This offers

a gradual increase in the complexity of the models and related concepts. Indeed, Chap. 2

starts with classical resonant shunts for the control of a single mode. The passive piezo-

electric control is then applied to multimodal structures through multi-resonant networks.

One-dimensional structures such as rods and beams are treated in Chaps. 3 and 4 respec-

tively. At last, Chap. 5 extends the control strategy to the damping of a plate with a

two-dimensional analogous electrical network.

• Chapter 2 gives an introduction to piezoelectric transducers. The 3D linear piezo-

electricity theory is reduced to the case of a one-dimensional transducer. It is

observed that electrical shunts modify the equivalent stiffness of the piezoelectric

element. Then, focusing on resonant piezoelectric control, the electromechanical

analogy shows that the resonant shunt is equivalent to a tuned mass damper. Its

natural frequency and damping coefficient have to be optimized to reduce the vibra-

tion amplitude. However, it is noticed that the optimal inductance and resistance

values can usually not be satisfied with standard electrical components. This is the

reason why we propose a design of suitable inductors with closed magnetic cores

made of high permeability materials.

• Chapter 3 deals with the damping of a rod through a periodic array of piezoelec-

tric patches. A solution involving identical resonant shunts is compared to the use
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of a multi-resonant network approximating the modal properties of the rod. This

last control solution is equivalent to a multimodal tuned mass damper whose purely

mechanical model is also given to illustrate the electromechanical analogy. Actually,

there is a coupling of two periodic waveguides, which can be analyzed with a transfer

matrix method. A unit cell involving both mechanical and electrical contributions

is first defined through a fully discrete model. The model is then improved by en-

suring the continuity of the mechanical part of the unit cell but maintaining the

discrete nature of the electrical network. Discrete and semi-continuous models are

then compared to determine their respective ranges of validity. In the end, an exper-

imental setup allows the validation of the numerical model but, above all, it proves

the feasibility of the multimodal damping of a rod with an analogous piezoelectric

network.

• Chapter 4 is rather similar to Chap. 3 in terms of global layout because the same

methods are applied to the case of a beam. The main difference is that independent

resonant shunts are no more considered as we only focus on multimodal control

with an analogous electrical network whose advantages have been illustrated for

a rod. Here, the analogous network is obtained from a finite difference method

applied to the Euler-Bernoulli equation of motion. The periodic electromechanical

structure made of an interconnected array of piezoelectric patches on a beam is

still modeled with a transfer matrix method. As in Chap. 3, discrete and semi-

continuous models are compared in order to determine the most appropriate over

the considered frequency range. The models are also used to design an experimental

setup involving the electrical analogue of a beam. The electrical network requires

transformers whose practical design is detailed. Once the network is coupled to the

beam, we get a significant multimodal damping, which validates the strategy for the

control of bending waves.

• Chapter 5 extends the use of an analogous electrical network to the control of a plate.

Here, a finite difference model obtained from the Kirchhoff-Love plate theory is used

to define an analogous electrical unit cell. The complete electrical network is then

modeled by following an assembly process similar to what is classically performed

through finite element methods. The plate electrical analogue is implemented exper-

imentally and electrical plate-like mode shapes are observed. Over a second phase,

an electromechanical model is proposed for a piezoelectric laminate connected to an

electrical network. This model is validated through experiments when the analo-

gous electrical network is coupled to a piezoelectric plate. A broadband vibration

reduction is obtained from a suitable tuning of the electrical network. Moreover, the

robustness of the control strategy is evaluated.
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Chapter 2

Passive vibration damping with

resonant piezoelectric shunts

Abstract: Considering piezoelectric damping, a resonant shunt can lead to a

significant vibration reduction when tuned to the mechanical mode to control.

This requires specific inductance and resistance whose values are defined from

the optimization of a theoretical transfer function. However, limits appear

when looking at practical applications in a low frequency range: the required

inductance is often too high to be satisfied with standard passive components.

Suitable inductors can yet be designed for applications requiring high inductance

and low resistance values. Indeed, the permeance of a magnetic circuit can be

significantly increased with closed cores made of high permeability materials.

Three designs are described and compared: an inductor from standard series

and two handmade inductors involving a ferrite core and a nanocrystalline

toroid. The components are successively integrated into a piezoelectric shunt

dedicated to the vibration control of a cantilever beam. It is shown that custom

designs can definitely extend the application of passive resonant shunt strategies

to lower frequency.
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2.1 Introduction

Structural damping occurs when shunting piezoelectric material with passive electrical

circuits as the resistive and resonant shunts that were described by Hagood and von

Flotow [2]. The mechanical energy of a vibrating structure is converted by a piezoelectric

patch into electrical energy, which is then dissipated into a resistor. The resonant shunt

requires an inductor that is combined to the piezoelectric capacitance in order to generate

an electrical resonance. Similarly to what is observed with a tuned mass damper [1,

41], the electrical resonance enhances the energy transfer when tuned to the mechanical

mode to control. Consequently, a passive and potentially lightweight solution can provide

significant vibration reduction without strong modification of the mechanical structure.

This control strategy was first applied through single-mode shunts [2, 42–45] and then

extended to multi-mode shunts [8, 10, 11, 46].

A drawback of the resonant shunt technique is that practical applications generally

require large inductance values. The notion of ”large inductance” is not clearly defined

in the shunt damping literature because, depending on the authors, it can be in a range

of 0.1 H, 10 H or even 1000 H [7, 43, 46]. In any case, the standard inductor series are

usually limited to 0.5 H, which cannot satisfy most of the resonant shunt applications.

Fleming et al. [7] proposed to use additional capacitance across the electrodes of the

piezoelectric patches in order to decrease the required inductance. However, they also

show that this solution induces a reduction of the damping performance. Another solution

was proposed by Mokrani et al. [47], who focused on an array of patches for the control

of a rotationally periodic structure. The piezoelectric capacitance of the shunt is actually

increased by suitable parallel connections. The main limit is that the whole piezoelectric

network is designed for the control of a single pair of modes. Even if the inductance

requirement can eventually be reduced, standard inductors present another limit that is

rarely highlighted. Indeed, they offer an internal resistance which is usually too large for

resonant shunt applications [48]. The challenging inductance and resistance requirements

explain why most of the experimental validations involving resonant shunts are performed

with synthetic inductors [8, 28, 43, 46, 48–51]. The use of those active circuits pushes back

the limits of physical inductors but it questions the implementation of a purely passive

resonant shunt damping.

A passive inductor is commonly made of a coil of conductive wire wound around a

magnetic circuit. Contrary to what has been sometimes stated [7, 47], passive inductors

above 1 H are easily feasible with closed magnetic cores [52, 53]. Moreover, the direct

equivalence between large inductance and large weight or volume [48, 50, 51] is unfunded

because the selection of a magnetic core depends on the energy stored in the component.
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Ferrite cores are easily available and give access to large inductance values [53, 54]. Fur-

thermore, numerous magnetic materials with larger permeabilities are also available. For

example, nanocrystalline alloys exhibit permeabilities up to ten times the highest ferrite

permeabilities. The required inductance can then be obtained with a fewer number of

turns, which reduces the internal resistance of the component. The use of closed magnetic

circuits with high permeability materials thus enables the design of inductors with large

inductance values and high quality factors [54]. This allows the application of piezoelectric

damping strategies with purely passive components.

The first objective of this chapter is to introduce the theoretical concepts related the

analysis of piezoelectric shunts. From the 3D linear theory of piezoelectricity, one defines

a one-dimensional model for a piezoelectric transducer connected to an electrical circuit.

It is then focused on the case of a resonant shunt made of an inductor and a resistor. An

optimal tuning of the electrical component is defined by minimizing the displacement of

the structure to control. Yet, we note that practical applications can lead to very high

inductance values that cannot be satisfied with standard inductors. A last section thus

shows that closed core inductors can be of great interest for resonant piezoelectric damping.

The main characteristics of passive inductors are described and it is explained how to select

a suitable magnetic core from resonant shunt specifications. Suitable electrical models are

also given in order to better understand the frequency dependence that is observed with

passive components. The end of the chapter is then devoted to the design of inductors for

the control of a cantilever beam with a pair of piezoelectric patches. A ferrite core and a

nanocrystalline toroid are selected and the resulting components are compared to standard

inductors. The limits of the three designs are observed by considering their ability to damp

the first three bending modes of the example cantilever beam.

2.2 Piezoelectric transducers

Several applications based on piezoelectric systems are illustrated through a brief his-

tory of piezoelectricity. Afterward, the 3D linear theory is reduced to the case of a one-

dimensional piezoelectric transducer that is modeled by an electrical circuit or a discrete

mechanical structure. The influence of an electrical shunt connected to the piezoelectric

transducer is presented through the definition of an equivalent Young’s modulus, which

depends on the considered electrical impedance.

2.2.1 A brief history of piezoelectric materials and applications

In 1880, Pierre and Jacques Curie measured electric charges on surface of crystals

stressed by a mechanical load. This was the first experimental demonstration of the
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direct piezoelectric effect, which means the generation of electricity resulting from pressure.

Actually, they found that crystals, such as tourmaline, quartz, topaz, Rochelle salt or even

cane sugar, are able to generate an electric charge displacement when their asymmetric

crystallographic structures are subjected to deformation. The converse piezoelectric effect

was then predicted through the thermodynamical theory proposed by Gabriel Lippmann

in 1881. This converse effect was validated by the Curie brothers, who were able to

observe a mechanical stress when applying an electric field on piezoelectric crystals. This

experiment proved the reversibility of piezoelectric materials that can act as transducers

between mechanical and electrical domains. About 30 years later, in 1910, Woldemar

Voigt published his ”Lehrbuch der Kristallphysik” [55], which became a reference work

defining the tensor analysis of piezoelectric crystals.

Several applications quickly appeared but they were first dedicated to laboratory in-

strumentation. One can mention the microbalance, based on the direct piezoelectric effect,

and high voltage generators benefiting from the converse effect. The first industrial appli-

cations came with World War I when the ultrasonic submarine detector was introduced

by Paul Langevin as a precursor of the modern sonar. Then, Walter Cady built the first

quartz crystal oscillator in 1921, which had a great impact on the development of the

quartz clock. Other consumer applications grew with the improvement of piezoelectric

materials: new type of phonograph, acoustic transducers, accelerometers, microphones,

pressure sensors...

The growth of piezoelectric applications speeded up after World War II with the discov-

ery of synthetic ceramic materials, as barium titanate and lead zirconate titanate (PZT),

offering piezoelectric constants considerably higher than natural crystals. Furthermore,

the fact that those new materials can be manufactured allows choosing their properties

for specific applications. A strong development of piezoelectric systems was observed in

Japan, where the piezoelectric industry was less subjected to patents or classified applica-

tions compared to the US market. Initiated by Issac Koga, the Japanese research led to

a large amount of modern consumer systems such as filters for radio and television, piezo

igniters or remote control systems.

Nowadays, the research on piezoelectricity is even more active with the improvement of

the industrial process, which offers an easier access to high quality piezoelectric materials.

Several research applications consider the use of polymers, as the polyvinylidene fluorides

(PVDF), whose piezoelectric properties were discovered by Kawai in 1969 [56]. Its flex-

ibility and low density makes it a serious candidate for robotics and biomedical systems

[57, 58]. Recently, energy harvesting has also become a very active research area. The idea

is to benefit from the direct piezoelectric effect in order to generate electrical power from

ambient vibrations [59–63]. This solution allows using embedded electronics without any
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need of external power supply or heavy energy storage system. Finally, one actual interest

in piezoelectricity still concerns vibration damping. Based on the converse piezoelectric

effect, active solutions give a way to control a structure from a suitable voltage applied to

piezoelectric elements [64–67]. Another strategy benefiting simultaneously from both di-

rect and converse piezoelectric effects relies on electrical shunts connected to piezoelectric

patches. A strong coupling between the mechanical and the electrical domains can offer

significant damping performances with purely passive circuits. The piezoelectric shunt

solution was first considered by Forward [42] in 1979 and then formalized by Hagood and

von Flotow [2] in 1991. This last paper has certainly been the starting point of numerous

studies and it is still a reference work in the today’s active area of piezoelectric shunt

damping.

2.2.2 3D linear piezoelectricity

According to the IEEE Standards on piezoelectricity [68], the constitutive equations

for 3D linear piezoelectricity can be written as

εij = sEijklσkl + dkijEk

Di = diklσkl + ǫσikEk
, (2.1)

where εij , σij , Di and Ek represent respectively the strain, stress, electric displacement and

electric field components. The constants sEijkl refer to the elastic compliance at constant

electric field, dkij represents the piezoelectric constants and ǫσik is the permittivity at

constant stress. One then focuses on the case of a transverse isotropic PZT, meaning that

the ceramic is isotropic in the plane perpendicular to the direction of polarization [69].

Using the Voigt notation defined in Tab. 2.1, Eq. (2.1) is written under a matrix form,

which simplifies as
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(2.2)

when the PZT ceramic is polarized along the direction ’3’.

Considering that the only non-zero electric field component is along ’3’ and that the

PZT is free along ’2’ and ’3’, i.e. σ2 = σ3 = 0, then

ε1 = sE11σ1 + d31E3

D3 = d31σ1 + ǫσ33E3
, (2.3)
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Table 2.1: Tensor notation and Voigt notation.

Stress Strain

Tensor σ11 σ22 σ33 σ23 σ13 σ12 ε11 ε22 ε33 2ε23 2ε13 2ε12

Voigt σ1 σ2 σ3 σ4 σ5 σ6 ε1 ε2 ε3 ε4 ε5 ε6

which is equivalent to

σ1 =
1

sE11
ε1 −

d31

sE11
E3,

D3 =
d31

sE11
ε1 +

(

ǫσ33 −
d231
sE11

)

E3

. (2.4)

The material constants sE11, d31 and ǫσ33 are here highlighted because they are commonly

given by the piezoelectric material manufacturers.

2.2.3 One-dimensional model for a thin piezoelectric patch

A thin piezoelectric patch under plane stress assumption and longitudinal excitation

satisfies the one-dimensional stress-charge form in Eq. (2.4) when ’1’ refers to the longitu-

dinal direction and ’3’ to the direction of polarization [70]. So,

σ1 = c̄E11ε1 − ē31E3

D3 = ē31ε1 + ǭε33E3
, (2.5)

where c̄E11 = 1/sE11, ē31 = d31/s
E
11 and ǭε33 = ǫσ33 − d231/s

E
11. σ1 and ε1 represent the

longitudinal stress and strain, D3 is the transverse electric displacement and E3 is the

transverse electric field. The longitudinal stress is considered uniform along the cross-

section and it is thus given by σ1 = Np/Sp, where Np is the normal force applied to

the patch and Sp is its cross-sectional area. The considered piezoelectric patch has a

length lp, a width bp and a thickness hp, which gives Sp = bphp. Still assuming a thin

patch, the electric field E3 is also considered constant along the thickness [70]. So, E3 =

−Vp/hp, where Vp is the voltage between the two electrodes of the piezoelectric patch.

At last, the electric charge qp on an electrode of surface area Ap = bplp is related to

the electric displacement through qp = −
∫

D3dAp. Consequently, the local piezoelectric

formulation (2.5) can be recast into the global system

Np = Y E
p Spε1 − epVp

qp = ep∆Up + Cε
pVp

, (2.6)

where ∆Up = UpR −UpL is the difference between the longitudinal displacements at both

right and left ends of the piezoelectric patch. Furthermore, Y E
p = c̄E11 is the short-circuited

Young’s modulus, ep = −bpē31 is the longitudinal coupling coefficient and Cε
p = ǭε33Ap/hp

is the blocked capacitance, which is obtained when ∆Up = 0.
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Note that the global constants appearing in Eq. (2.6) are valid only if the considered

piezoelectric patch is free along the direction ’2’, i.e. σ2 = 0. This is not true if the patch is

glued onto a substrate because it would be constrained along both principal directions. For

instance, a very stiff substrate would induce ε1 = ε2 = 0, and the direct measurement of

the piezoelectric capacitance would not give Cε
p but a significantly lower value [17, 71], later

defined in Chap.5. In any case, the general form used to described the 1D piezoelectric

coupling in Eq. (2.6) is still valid and the global constants can eventually be updated

depending on the considered case of application.

2.2.4 Equivalent circuit model of a piezoelectric transducer

Regarding a thin piezoelectric patch stressed along its longitudinal direction, if its

length lp is sufficiently small compared to the considered wavelength, the strain ε1 can

be seen as uniform over lp. Consequently, ε1 can be defined as the engineering strain,

from a difference between the positions at the left and right ends of the element: ε1 =

(UpR − UpL)/lp. Equation (2.6) thus gives

Np = KE
p (UpR − UpL)− epVp

qp = ep(UpR − UpL) + Cε
pVp

, (2.7)

where KE
p = c̄E11Sp/lp is the stiffness of the patch at constant electric field, i.e. when the

patch is short-circuited (Vp = 0). In order to show the analogy with a problem involving

electrical components under harmonic excitation, the global formulation in Eq. (2.7) is

written as

−Np =
KE

p

jω (U̇pL − U̇pR) + epVp

Vp =
1

jωCε
p

(

q̇p + ep(U̇pL − U̇pR)
) , (2.8)

where j is the imaginary unit. Equation (2.8) is then illustrated by the electric circuit in

Fig. 2.1(a) representing a piezoelectric transducer, i.e. a device based on electrostatic cou-

pling capable of converting mechanical energy into electrical energy and reciprocally. The

transformer representing the coupling is between the left and right branches, which refers

respectively to the mechanical and electrical domains [72, 73]. The whole electromechan-

ical system can thus be represented by an electrical circuit involving passive components.

This is made possible by the use of the direct electromechanical analogy which establishes

an equivalence between a velocity and a current as well as between a force and a voltage

[74], as it is observed in the left branch of Fig. 2.1(a). An alternative might have been to

consider velocity-voltage and force-current equivalences through the so-called indirect or

inverse analogy [75]. However, Bloch showed that only the direct analogy allows represent-

ing an electrostatic coupling with a transformer [74]. So, it is chosen to consider the direct
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Figure 2.1: Discrete model for a piezoelectric transducer: (a) Equivalent electrical circuit.
(b) Mechanical model.

analogy in all the following developments focusing on the representation of piezoelectric

coupling with passive electrical circuits.

The piezoelectric transducer has been illustrated by an electrical circuit in Fig. 2.1(a)

but a purely mechanical representation is also possible. Indeed, Eq. (2.7) can be written

Np = KE
p (UpR − UpL)− epVp

−Vp =
1

Cε
p

(

−qp + ep(UpR − UpL)
) , (2.9)

which shows that the total force Np applied between both ends of the transducer is the sum

of a purely elastic contribution involving a stiffness KE
p and an additional force −epVp,

which depends on qp. This can be represented by the mechanical model in Fig. 2.1(b),

where −Vp represents the force applied by the spring of stiffness 1/Cε
p to the lever. Its

elongation is equal to −qp + ep(UpR − UpL), which is the result of the lever placed at 45

degrees from both vertical and horizontal axis. This lever of ratio ep is finally the exact

analogue of the ep:1 transformer represented in Fig. 2.1(a).

2.2.5 Electrical shunt on a piezoelectric transducer

Connecting an electrical shunt of impedance Z(ω) on a piezoelectric transducer leads to

the electrical circuit in Fig. 2.2. The piezoelectric voltage Vp and the charge displacement

qp are no more independent because

Vp = −Z(ω)q̇p. (2.10)

By substituting Eq. (2.10) into Eq. (2.7), one obtains

Np =









KE
p +

e2p

Cε
p +

1

jωZ(ω)









∆Up, (2.11)
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−Np U̇p
L
− U̇p
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Cǫ
p

ep
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q̇p
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Figure 2.2: Electrical shunt of impedance Z(ω) on a piezoelectric transducer.

which defines an equivalent stiffness depending on the impedance of the electrical shunt. If

we rather focus on an equivalent Young’s modulus Yp(ω) satisfying Np = Yp(ω)Sp∆Up/lp,

Eq. (2.11) gives

Yp(ω) = c̄E11









1 +
k231

1 +
1

jωCε
pZ(ω)









, where k31 =

√

ē231
c̄E11ǭ

ε
33

. (2.12)

From this equivalent Young’s modulus of the shunted piezoelectric material, one can define

an equivalent Young’s modulus in open-circuit obtained when Z(ω) goes to infinity:

Y D
p = c̄E11 +

ē231
ǭε33

=
1

sE11 −
d231
ǫσ33

. (2.13)

Note that the equivalent Young’s modulus has a physical meaning only when consid-

ering large wavelength compared to the length of the piezoelectric element, that is ε1 can

be approximated by (UpR − UpL)/lp. If this is not true, Eq. (2.11) is not valid and the

actual normal force is found from Eqs. (2.6) and (2.10):

Np = Y E
p Spε1 +

e2p

Cε
p +

1

jωZ(ω)

∆Up. (2.14)

Considering a case where a piezoelectric patch is subjected to a strain whose typical wave-

length is equal to the length of the patch, we have UpL = UpR therefore ∆Up = 0, which

means that the normal force Np does not depend on the impedance Z(ω) anymore. The

equivalent Young’s modulus is then equal to Y E
p whatever the electrical shunt, even with

an open-circuited patch. This illustrates the charge cancellation phenomenon that ruins

the piezoelectric effect for short wavelength compared to the length of the piezoelectric

element.
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Under large wavelength condition, we remark from Eq. (2.12) that the equivalent

Young’s modulus of a shunted piezoelectric transducer tends to infinity when

Z(ω) = − 1

jωCε
p

. (2.15)

Two simple electrical shunts can satisfy Eq. (2.15). The first solution is

Z(ω) =
1

jωC
where C = −Cε

p, (2.16)

which corresponds to a negative capacitance whose value counterbalances the piezoelectric

capacitance. A limit of this solution is that it is subjected to stability issues [76]. Fur-

thermore, a negative capacitance cannot be implemented passively and thus requires an

external power source. Yet, an ”infinite” Young’s modulus Yp can also be obtained with

Z(ω) = jωL where L =
1

ω2
eC

ε
p

, (2.17)

which corresponds to a shunt involving an inductor. Here, the condition in Eq. (2.15) is

only satisfied at one specific angular frequency ω = ωe. On the other hand, the shunt can

be implemented with a purely passive component, which induces inherent stability and

self-sufficiency of the control system. A piezoelectric shunt involving an inductor is usually

called a resonant shunt because of the electrical resonance generated at ωe = 1/
√

LCε
p.

The eventual addition of a resistor does not enable reaching an equivalent infinite stiffness

of the transducer because Eq. (2.15) cannot be satisfied anymore. However, a suitable

choice of the resistance offers a significant broadband damping as will be seen in the next

section.

2.3 Resonant shunt damping

The resonant piezoelectric control is modeled by purely mechanical systems and their

analogous electrical circuits. Optimal inductance and resistance values are found from a

minimization of the displacement to control. The maximum current flowing through the

shunt is also quantified for later design of the electrical components. However, an example

experimental setup shows that the required inductance values cannot be satisfied with

standard passive components.

2.3.1 Coupled model involving a single mechanical degree of freedom

The effect of a resonant piezoelectric shunt is first illustrated through the control of a

unimodal structure represented by a spring mass system. As shown in Fig. 2.3, a shunted
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Figure 2.3: Spring-mass model illustrating control with shunted piezoelectric ceramics.

PZT is connected in parallel with a spring of stiffness KE , representing the stiffness of

the whole structure when the piezoelectric transducer is short-circuited. The piezoelectric

coupling is defined from an extension of Eq. (2.7) to the present case as

N = KEU − eV
q = eU + CεV

. (2.18)

The subscript ’p’ is not used because we focus on the global constants for the whole

structure, eventually controlled by several piezoelectric elements. If the total moving mass

is equal to m, it is found from Fig. 2.3 that mÜ = F −N and Eq. (2.18) gives

mÜ = F −KEU + eV
q = eU + CεV

. (2.19)

One can then define a natural frequency in short circuit: ωS =
√

KE/m. This refers to

the resonance of the mechanical structure when the piezoelectric element is short-circuited

(V = 0). If the shunt is made of an inductor L in series with a resistor R, the impedance

Z(ω) = R+ jωL leads to

V = −Rq̇ − Lq̈. (2.20)

Substituting Eq. (2.20) into Eq. (2.19) gives

mÜ = F −KEU +
e

Cε
(q − eU)

−Lq̈ = Rq̇ +
1

Cε
(q − eU)

, (2.21)

which can be illustrated by the mechanical model in Fig. 2.4(a). The shunted PZT in

Fig. 2.3 is thus represented by a mechanical system similar to the one in Fig. 2.1(b) with

addition of a mass L and a damper R representing the inductance and the resistance of the

shunt. Note the mass-inductor, damper-resistor and spring-capacitor equivalences, which

refer to the direct electromechanical analogy [74]. Alternatively, Eq. (2.21) can be written

mÜ = F −KEU − e2

Cε
(U − q

e
)

e2L
q̈

e
= −e2R

q̇

e
+

e2

Cε
(U − q

e
)

, (2.22)
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Figure 2.4: Mechanical analogues of a resonant piezoelectric shunt: (a) Complete model.
(b) Simplified model.
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Figure 2.5: Electrical circuits as analogues of the mechanical models: (a) Complete model.
(b) Simplified model.

whose mechanical model is shown in Fig. 2.4(b). It is found a simplified model that directly

shows the analogy of the resonant shunt with a tuned mass damper [1, 41]. Remark that

the damper is not between the two moving mass but between the added mass and the

ground, so that an infinite damping is equivalent to an open-circuit case.

Both mechanical models in Figs. 2.4(a) and 2.4(b) can be converted into their elec-

trical analogues by employing the direct electromechanical analogy. Equation (2.21) is

reformulated as

−F = −jωmU̇ − KE

jω
U̇ +

e

jωCε
(q̇ − eU̇)

−jωLq̇ −Rq̇ =
1

jωCε
(q̇ − eU̇)

, (2.23)

in order to highlight the correlation with the electrical circuit in Figs. 2.5(a). The RL
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shunt is directly represented in the electrical branch, meaning that this model is finally

similar to Fig. 2.2 after addition of an inductor m representing the mass of the mechanical

structure. Furthermore, Eq. (2.22) leads to

−F = −jωmU̇ − KE

jω
U̇ +

e2

jωCε
(
q̇

e
− U̇)

−jωe2L
q̇

e
− e2R

q̇

e
=

e2

jωCε
(
q̇

e
− U̇)

, (2.24)

which is represented by the simplified model in Figs. 2.5(b) where no transformer appears

anymore. In the end, it has been shown that the considered coupled system can be drawn

through equivalent mechanical or electrical representations. Still, we remark that the

simplification of Fig. 2.4(a) into Fig. 2.4(b) is less obvious than that going from Fig. 2.5(a)

to Fig. 2.5(b) through the transformer relation. Actually, the electrical representation is

often preferred because it may offer an easier analysis for getting the constitutive equations

and for simplifying the resulting system.

2.3.2 Optimization of the resonant shunt

When coupling a resonant piezoelectric shunt to a mechanical structure, the damp-

ing performance can be optimized by choosing suitable resistance and inductance values.

Several methods were proposed to define the optimal values for L and R [2, 43, 77]. It is

remarked that they all give relatively close results when dealing with moderate values of

the coupling factor kc =
√

e2/(KECε) [43, 77, 78]. Here, the method proposed by Thomas

et al. [43, 79] is considered. It is focused on a min-max optimization on the displacement

U of the mass m. Considering that the input excitation is a force F , we want to minimize

the maximum of the displacement transfer function U/F . To this end, Eq. (2.21) is first

written as

mÜ +KDU = F +
e

Cε
q

Lq̈ +Rq̇ +
1

Cε
q =

e

Cε
U

where KD = KE +
e2

Cε
. (2.25)

KD is the stiffness of the structure in Fig. 2.3 when the piezoelectric element is open-

circuited, i.e. q = 0. Then, Eq. (2.25) is equivalent to

1

ω2
O

Ü + U =
F

KD
+

e

KDCε
q

1

ω2
e

q̈ +
2ξe
ωe

q̇ + q = eU
, (2.26)

where ωe =
1√
LCε

is the resonant shunt frequency, ξe =
R

2

√

Cε

L
is the damping factor

and ωO =
√

KD/m is natural frequency in open-circuit. Recall that ωS =
√

KE/m and
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the coupling factor is thus defined from the open- and short-circuit natural frequencies as

kc =

√

e2

KECε
=

√

KD −KE

KE
=

√

ω2
O − ω2

S

ω2
S

. (2.27)

Under harmonic excitation, one obtains from Eq. (2.26) that

(

1− ω2

ω2
O

)

U − e

KDCε
q =

F

KD
and q =

e

1− ω2

ω2
e

+ 2jξe
ω

ωe

U
. (2.28)

By remarking from Eq. (2.27) that e2/(KDCε) = (ω2
O − ω2

S)/ω
2
O, the dimensionless dis-

placement transfer function is expressed as

H(ω) =
U

F/KD
=

1− ω2

ω2
e

+ 2jξe
ω

ωe

ω2
S

ω2
O

−
(

1

ω2
O

+
1

ω2
e

)

ω2 +
ω4

ω2
Oω

2
e

+ 2jξe
ω

ωe

(

1− ω2

ω2
O

) , (2.29)

which gives

|H(ω)|2 =

[

1− ω2

ω2
e

]2

+ 4
ω2

ω2
e

ξ2e

[

ω2
S

ω2
O

−
(

1

ω2
O

+
1

ω2
e

)

ω2 +
ω4

ω2
Oω

2
e

]2

+ 4
ω2

ω2
e

[

1− ω2

ω2
O

]2

ξ2e

. (2.30)

The tuning of the resonant shunt consists in determining values for ωe and ξe that minimize

the maximum of |H(ω)|. The analytic calculations detailed in Appendix A give

ωe = ωO and ξe =

√

3

8
kc, (2.31)

and those optimal values generate a maximum modulus of the transfer function

|H(ω)|max ≈
√
2

kc
. (2.32)

In the end, Eq. (2.31) gives the optimal inductance and resistance:

L =
1

Cεω2
O

and R =

√

3

2

kc
CεωO

, (2.33)

where kc is the coupling factor that has been defined in Eq. (2.27) and Cε is the blocked

capacitance, that is the capacitance measured when preventing displacement of the me-

chanical system (U = 0).

The interest of the resonant piezoelectric control is illustrated by observing the modu-

lus of the transfer function H(ω) around ωO, the natural frequency in open circuit. First,
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Figure 2.6: Modulus of the transfer functionH(ω) - (· · · ) with an open circuit, (- -) with the
optimal inductance and no resistance, (—) with the optimal inductance and the optimal
resistance.
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Figure 2.7: Modulus of the transfer functionH(ω): (a)Tuning of the resistance - (—)with
the optimal resistance, (· · · ) with twice the optimal resistance, (- -) with half of the optimal
resistance. (b) Tuning of the inductance - (—) with the optimal inductance, (· · · ) with
105% of the optimal inductance, (- -) with 95% of the optimal inductance.

Fig. 2.6 shows that the use of a resonant shunt without any resistance creates an antireso-

nance at ωe, which is equal to ωO when the inductance is tuned to its optimal value. This

antiresonance is the result of an equivalent stiffness that tends to infinity when Eq. (2.17)

is satisfied. Yet, the resonant shunt adds a new degree of freedom, as seen in the equivalent

mechanical models in Figs. 2.4(a) and 2.4(b). This explains why two resonances appear

on both sides of the antiresonance. The displacement is thus reduced around ωO but it

is significantly increased around the new resonances. Resistance is added into the shunt

to get a vibration reduction over a broader frequency range. The optimal resistance in

Eq. (2.33) finally leads to a significant vibration reduction when compared to the cases

involving an open-circuited PZT or a purely inductive shunt. Then, the optimal tuning

of the resonant shunt can be validated. The influence of the resistance R is illustrated in

Fig. 2.7(a) when the inductance L is tuned to its optimal value. It is noticed that twice

the optimal resistance gives a single maximum, whose value increases with an increase of

the resistance. On the contrary, half of the optimal resistance leads to a local minimum

surrounded by two local maxima that offer about the same value. The optimal tuning

69



2.3. RESONANT SHUNT DAMPING

then corresponds to a case where two maxima appear but their amplitude is minimized.

In the following, this optimal damping corresponds to a limit between the so-called under-

and overdamped cases. The tuning of the inductance is shown in Fig. 2.7(b), where the

resistance is set to its optimal value. We remark that the use of an inductance value that

differs from the one given in Eq. (2.33) increases the amplitude of one of the two maxima.

Actually, a variation of the inductance moves the electrical resonance away from ωO, which

breaks the approximate symmetry of the transfer function.

2.3.3 Current flowing through the inductor

Once the optimal values of the electrical components are known, it is important to

quantify the current flowing through the resonant shunt. Indeed, this allows designing

suitable inductors that are not over- or undersized for the considered application. Equa-

tion (2.28) shows that the electric charge displacement q is related to the mechanical

displacement U through the dimensionless transfer function

G(ω) =
q/e

U
=

1

1− ω2

ω2
e

+ 2jξe
ω

ωe

, (2.34)

whose square of the modulus is

|G(ω)|2 = 1
[

1− ω2

ω2
e

]2

+ 4
ω2

ω2
e

ξ2e

. (2.35)

The maximum of |G(ω)| is reached when ω = ωe. Consequently, ξe =

√

3

8
kc gives

|G(ω)|max ≈
√

2

3

1

kc
. (2.36)

In the end, with imax = |i(ωO)| = ωO|q(ωO)|, the maximum current flowing through the

shunt is obtained from Eq. (2.36) and the definition of G(ω) as

imax ≈
√

2

3

ωO

kc
|e|Umax. (2.37)

The mechanical displacement U has been chosen as a reference to illustrate typical appli-

cations where the displacement has to be maintained below a maximum value Umax. This

value is known because it is defined by the designer of the system. Furthermore, Eq. (2.19)

shows that the global coupling coefficient is e = −CεV/U in open circuit. If e has not

been calculated from the characteristics of the considered system, it can still be obtained

experimentally from the ratio between the voltage and the displacement in open circuit.
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Figure 2.9: Displacement frequency response functions of the beam and corresponding
operating deflection shapes obtained experimentally - (—) with short-circuited patches,
(· · · ) with open-circuited patches.

Table 2.2: Natural frequencies, piezoelectric coupling factors and optimal shunt specifi-
cations for the first three bending modes.

fS (Hz) fO (Hz) kc L (H) R (Ω)

Mode 1 47.07 47.46 0.129 330 15 000

Mode 2 333.6 336.1 0.123 6.5 2 100

Mode 3 925.8 930.5 0.101 0.85 610

and series resistance R. We remark that the required inductance exceeds easily 0.5 H and

even reaches 330 H for the first bending mode. The inductance for the third mode can be

eventually satisfied with the series combination of two standard inductors. However, the

control of the first two modes would require numerous components, which would largely

exceed the optimal resistance. This highlights a practical limit of the resonant shunt

damping strategy when considering low frequency applications. Yet, it is shown in the

following section that suitable inductors of reasonable size can still be designed to satisfy

the resonant shunt requirements.

2.4 Design of passive inductors

The basics of inductor design are presented by considering the classical equations gov-

erning magnetic circuits. The inductance is defined from the properties of the magnetic

core, which is selected in order to satisfy the electrical specifications of the resonant shunt.

An electrical model of the component is then presented with both series and parallel re-

sistance. Magnetic components are selected in order to damp vibration of the considered

cantilever beam with a piezoelectric resonant shunt. Suitable inductors involving two
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different types of closed cores are designed and compared with standard inductors.

2.4.1 Basics of electromagnetism

When considering a closed core made of a linear and homogeneous magnetic material

of permeability µ, the equations related to the magnetic flux density B, the magnetic field

strength H and the magnetic flux ϕ can be written as follows:

B = µH, ϕ = BAe and Hle = Ni. (2.38)

The constant Ae defines the effective cross-sectional area of the magnetic core and le is

the effective magnetic path length. The magnetic flux ϕ is caused by the current i flowing

into a conductor, which is wound around the core with N turns. This is represented in

Fig. 2.10(a) in a case involving a toroidal core. With other core geometries, the flux may

be split in two magnetic paths, as shown in Fig. 2.10(b) where an EE type core [52, 53]

is considered. Note that the present examples do not consider eventual air gaps, which

could have been defined from energy considerations. In any case, a changing magnetic

flux is generated by a voltage V , which is equal to the time derivative of the total flux

going through the N turns of the coil: V = N
dϕ

dt
. Moreover, the inductance L of an

electrical circuit is defined as the ratio of the voltage to the time derivative of the current,

i.e. V = L
di

dt
. As a consequence, the inductance can be expressed from Eq. (2.38) by

L = ALN
2 where AL = µeµ0

Ae

le
. (2.39)

The permeability µ is here defined as the product of the vacuum permeability µ0 times the

relative effective permeability µe, which is given by the core manufacturers together with

the constants Ae and le. The permeance, or inductance for one turn, AL, is thus easily

calculated and can even be directly found in most of the core specification documents.
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Figure 2.10: Two inductor designs: (a) Toroidal core. (b) EE core.
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2.4.2 Magnetic core selection

In piezoelectric damping applications involving resonant shunts, an optimal inductance

L and an optimal equivalent series resistance R are generally specified [2, 8, 43, 47, 77, 79,

80]. Equation (2.39) gives the number of turns that is required to satisfy the inductance L

with a specific magnetic core. Naturally, the number of turns is restricted by the available

room around the coil. This is observed in Fig. 2.10(b), where a 12th turn could not be

added because of the fixed window area AN . This limit is quantified by the filling factor

ku =
NSw

AN
, (2.40)

where Sw is the cross-sectional area of the conductor. The factor ku does not usually

exceed 0.5 for a full winding area. This is because a wire with circular cross-section

cannot entirely fill the available winding area. Another reason is the presence of insulation

layers that limit the proportion of conductor in the total wire cross-section [52, 53]. The

manufacturing process is also crucial because it determines the winding arrangements. For

instance, a handmade coil with disorganized layers leads to a significant reduction of ku.

Once the number of turns is defined from Eq. (2.39), the upper limit ku = 0.5 leads

to a maximum cross-sectional area of the conductor. The geometry of the core gives the

average length per turn lN . The resistance of a wire of resistivity ρ is then obtained from

Rs = ρ
NlN
Sw

. (2.41)

Note that an inadequate selection of the magnetic core can lead to a case where Rs exceeds

the optimal resistance R. In practical applications involving closed magnetic cores, we

actually need to ensure Rs ≪ R because the copper loss only represents a portion of the

total loss in the component [52–54, 81]. The introduction of a criterion for the choice of a

core that is able to satisfy both specifications on L and R is thus crucial. Equations (2.39),

(2.40) and (2.41) are considered and the condition on the resistance

Rs ≪ R gives cQ =

(

kuALAN

ρlN

)

R

L
≫ 1. (2.42)

The criterion cQ is thus calculated from the core specifications and the electrical properties

of the optimal shunt defined in Eq. (2.33). The factor ku can be set to 0.5 and ρ to 1.7×10−8

Ω·m, which is the resistivity of copper [52]. If cQ is below or close to 1, the considered

core cannot satisfy both L and R requirements. Then, another core with a larger ratio

ALAN/lN would have to be found.

Two practical limits appear when considering the use of passive inductors. First, the

magnetic flux density has to remain below the saturation flux density BM in order to avoid

a strong reduction of the inductance value. The second limit concerns the root mean square
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current density imax/(
√
2Sw), which cannot exceed Jmax, the maximum current density

that would damage the component. From Eqs. (2.38), (2.39) and (2.40), we get two

restrictions on the amplitude of the sinusoidal current flowing through the conductor:

imax < IBmax =

(

BmaxAe√
AL

)

1√
L

and imax < IJmax =
(√

2kuJmaxAN

√

AL

) 1√
L
, (2.43)

Consequently, the currents IBmax and IJmax inducing respectively the maximum flux and

current densities need to be considered as upper limits when introducing the chosen in-

ductor into a specific electrical circuit. A limit on the square of the maximum current can

then be written i2max < IBmaxI
J
max and combining Eqs. (2.33), (2.37) and (2.43) gives

AeAN >

√
2

3kuJmaxBmax

e2U2
max

k2cC
ε
. (2.44)

So, a suitable magnetic core can be chosen from a condition on the product of the core

cross-sectional area Ae by the window area AN . This extends the classical method of the

area product [52, 53] to the design of inductors for piezoelectric applications. The condition

is here defined from Umax, the maximum displacement of the mechanical structure once the

resonant shunt is tuned to its optimal impedance. A core is first selected by considering

the minimum area product satisfying Eq. (2.44). Then, the conditions in Eqs. (2.43)

and (2.42) are verified and one iterates with lager magnetic cores until the three conditions

are satisfied independently.

2.4.3 Equivalent circuit models including resistors

A suitable model for the passive inductors is obtained by considering a perfect in-

ductance L0 combined to a resistance Rs in series and a resistance Rp in parallel. This

electrical model is represented in Fig. 2.11(a). Rs is approximated by the resistance in

Eq. (2.41) that corresponds to the copper loss, that is the Joule heating in the wire. The

parallel resistance Rp represents the proximity effect [52] and the loss in the magnetic

material, which has two main components: the hysteretic loss and the eddy current loss

L0 Rs

Rp

(a)

L(ω) R(ω)

(b)

Figure 2.11: Electrical circuit models of an inductor: (a) Model with a series resistance
and a parallel resistance. (b) Model involving an equivalent series inductance and an
equivalent series resistance.
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[52, 53]. Rp is more difficult to evaluate because it depends on the core material, on the

frequency and on the flux density. For piezoelectric applications involving high permeabil-

ity cores of standard size, it has been observed that the energy dissipation induced by Rp

is usually larger than the copper loss due to Rs. Nevertheless, in the following experiments

the resulting equivalent series resistance is still lower than the optimal shunt resistance.

The equivalent series resistance R(ω) is represented in Fig. 2.11(b) together with L(ω),

which is the equivalent series inductance. Both values come from the impedance of the

electrical model in Fig. 2.11(a), which is recast in Z(ω) = R(ω) + jωL(ω) where

R(ω) = Rs +
Rp

1 +

(

Rp

L0ω

)2 and L(ω) =
L0

1 +

(

L0ω

Rp

)2 . (2.45)

From this formulation, it is remarked that the equivalent series inductance and resistance

necessarily depend on frequency. This effect is due to the presence of the parallel resistance

Rp. If Rp is constant, R(ω) is increased and L(ω) is decreased when ω increases, which

explains the non-negligible frequency dependence that is observed when measuring the

inductance and resistance of closed core inductors.

2.4.4 Choice of magnetic components for the experimental setup

The inductance requirement for piezoelectric shunt applications is generally too high to

be satisfied with standard inductors. This is illustrated by the inductance values appearing

in Table 2.2, which all exceed the typical upper limit offered by most of the inductor

suppliers, that is 0.5 H. Actually, standard inductors are generally made of copper wire

wound around a ferrite cylinder. About half of the magnetic circuit is thus air where the

magnetic field has to spread from one end of the cylinder to the other end. The benefit

is that air offers a relatively constant permeability, which limits the nonlinearities of the

inductor. But the main drawback is the poor permeability of the air that induces low

quality factors (Q = ωOL/R) and limited inductance for standard size components. Other

inductor designs that could satisfy the shunt specifications are then required.

Closed magnetic cores can offer significant permeance AL because the magnetic field

does not have to loop through the air. This means that for a specific inductance re-

quirement, the number of turns is considerably reduced when compared to classical ferrite

cylinder designs. Then, the total resistance of the wire decreases because of the shorter

length of wire and because of the eventual increase of its diameter. As a consequence,

closed magnetic cores enable the design of inductors with both low series resistance and

high inductance. Two closed cores of similar mass m⋆ but different shapes and materials

are selected. The first core is a type RM10 ferrite made of T38 material. The core is
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Table 2.3: Characteristics of the two magnetic cores with different ferromagnetic materials.

m⋆ µe Ae le AL Bmax AN lN
(g) (-) (mm2) (mm) (µH) (T) (mm2) (mm)

Ferrite core 22 5720 98 44 16 0.43 41 52

Nanocrystalline toroid 23 87500 40 79 56 1.20 236 50

(a) (b)

Figure 2.12: Magnetic cores selected for the design of the inductors: (a) RM ferrite
core (TDK). (b) Nanocrystalline toroid (VAC).

described in Table 2.3 and represented in Fig. 2.12(a). It comes with a coil former and

clamps in order to facilitate the winding and the assembly of the magnetic component. In

terms of geometry, the RM core is rather similar to the classical EE core represented in

Fig. 2.10(b). As various shapes and materials are available for this range of components,

the ferrite core providing the larger AL value was selected. Nevertheless, the equivalent

permeability of the chosen ferrite material is considerably lower than the permeability

of some nanocrystalline materials [52, 53]. The second core that is considered is thus a

nanocrystalline toroid of 30 mm outside diameter represented in Fig. 2.12(b). This core

made of Vitroperm 500F material offers a larger permeance AL when compared to the

ferrite core, as shown in Table 2.3.

For the considered laboratory experiments, we do not have any specification on the

maximum displacement Umax, which means that the core dimensions have not been chosen

from Eq. (2.44) but from practical reasons related to availability of the components and

winding issues. Nevertheless, the selection of the two magnetic cores is validated by the

calculation of the criterion cQ for the three considered bending modes, from Eq. (2.42)

and Tables 2.2 and 2.3. ku is initially set to 0.5 in order to consider a full winding

area. The results are presented in Table 2.4 for the ferrite core and in Table 2.5 for the

nanocrystalline toroid. Note that cQ ≫ 1, which means that both cores can satisfy the L
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Table 2.4: Inductor design characteristics with the ferrite core.

cQ N Φw (mm) ku IBmax (mA) IJmax (mA)

Mode 1 17 4520 5/100 0.22 0.58 8.3

Mode 2 118 638 2/10 0.49 4.1 130

Mode 3 268 231 3/10 0.40 11 300

Table 2.5: Inductor design characteristics with the nanocrystalline toroid.

cQ N Φw (mm) ku IBmax (mA) IJmax (mA)

Mode 1 1 366 2416 2/10 0.32 0.35 130

Mode 2 2466 341 5/10 0.28 2.5 830

Mode 3 5616 123 8/10 0.26 7.0 2100

and R specifications if the contribution of the parallel resistance presented in Eq. (2.45)

is not too large. The number of turns is then computed from Eq. (2.39) and a standard

wire diameter Φw = 2
√

Sw/π is chosen by updating ku and ensuring its value remains

below 0.5. In the end, the maximum currents related to both conditions on the saturation

flux density and on the maximum current density are obtained from Eq. (2.43), where

Jmax is set to 3 A/mm2 [53]. For the six inductor designs, the maximum current IBmax

is clearly lower than IJmax. In other words, an increase of the current would detune the

resonant shunt before overheating the coil. This may be another advantage of the closed

core inductors that would ensure the integrity of the electrical components.

The ferrite core reaches its limits when focusing on the first mode of the beam. Table 2.4

gives a solution with 4520 turns of 5/100 copper wire but its practical implementation is

tough. Indeed, such a number of turns with a thin and thus delicate wire would require

dedicated tools that were not available for the present application. This example shows

that ferrite cores are sometimes not enough when considering low frequency applications

involving resonant shunts. Cores with larger cQ ratio are then necessary. Finally, the

Figure 2.13: Three different inductor designs: (a) Standard inductor involving a ferrite
cylinder. (b) Handmade inductor involving a RM ferrite core. (c) Handmade inductor
involving a nanocrystalline toroid.
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control of the first mode can only be satisfied with the nanocrystalline toroid. This core is

wound by hand according to Table 2.5 for the first mode but also for the 2nd and 3rd modes.

Ferrite cores are also wound for the 2nd and 3rd modes but not for the first mode because

of the aforementioned practical limit. Considering standard inductors, two of them are

selected, 0.5 H and 0.32 H, in order to reach 0.82 H by series combination and then satisfy

the inductance requirement for the control of the third mode. The three inductor designs

are presented in Fig. (2.13), which shows that they all offer similar dimensions.

2.4.5 Damping of vibration with passive inductors

The inductors are successively connected to the pair of piezoelectric patches in order

to reduce the vibration amplitude of the beam in Fig. 2.8(b). First, the damping of the

third bending mode is targeted. The numbers of turns of the two handmade inductors

are adjusted in order to get resonant shunts that are correctly tuned. The ferrite core

is wound with 222 turns and the nanocrystalline toroid is wound with 101 turns. The

slight difference with the theoretical values presented in Tables 2.4 and 2.5 is explained

by the fact that the AL values appearing in Tables 2.3 are specified at 10 kHz. Yet, the

permeance varies nonlinearly with respect to the frequency, as it has been observed for the

inductance L(ω) in Eq. (2.45). Over a frequency range below 10 kHz, the AL values given

by the core manufacturer are thus lower estimates that could be adjusted by measurement

at the frequency of interest.

Figure 2.14(a) shows the effect of the shunt made of two standard inductors in series.

Only one local maximum is observed, which means that the electrical resistance is above its

optimal value. This can be easily verified by measuring the direct current resistance of the

inductor which is 1050 Ω, while the optimal resistance presented in Table 2.2 is R = 610 Ω.

Consequently, even if standard inductors can satisfy the inductance requirement for the

damping of the third bending mode, they offer too much resistance to allow an optimal

tuning of the resonant shunt. On the contrary, the closed core inductors offer an equivalent

series resistance below the optimal shunt resistance. This is presented in Figs. 2.14(b) and

2.14(c), where it is seen that an external series resistance R+
s needs to be introduced

in order to reach the optimal damping configuration. For the present experiments, it is

noticed that R+
s is clearly below the optimal resistance R = 610 Ω. The series resistance

of the wire is yet negligible, as indicated by the large values of the cQ criterion for the

chosen cores. This means that the magnetic loss modeled by the parallel resistance Rp

cannot be neglected. Fortunately, its influence still yields an equivalent series resistance

that is lower than the optimal resistance.

The same conclusions can be drawn when focusing on the damping of the second mode.

Here, the ferrite core is wound with 613 turns and the nanocrystalline toroid is wound with
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Figure 2.14: Damping of the third bending mode: (a)With standard inductors - (· · · ) open
circuit, (—) shunted on inductor without additional resistor. (b) With the ferrite core
(N = 222) - (· · · ) open circuit, (- -) shunted on inductor without additional resistor,
(—) shunted on inductor with additional series resistor R+

s = 390 Ω. (c) With the
nanocrystalline toroid (N = 101) - (· · · ) open circuit, (- -) shunted on inductor without
additional resistor, (—) shunted on inductor with additional series resistor R+

s = 260 Ω.
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Figure 2.15: Damping of the second bending mode: (a)With the ferrite core (N = 613)
- (· · · ) open circuit, (- -) shunted on inductor without additional resistor, (—) shunted on
inductor with additional series resistor R+

s = 1.8 kΩ. (b)With the nanocrystalline toroid
(N = 296) - (· · · ) open circuit, (- -) shunted on inductor without additional resistor,
(—) shunted on inductor with additional series resistor R+

s = 1.4 kΩ.

296 turns. Those number of turns are still lower than the ones in Tables 2.4 and 2.5 because

of the underestimated AL values. Figure 2.15 shows that the initially underdamped shunts

can be optimized by adding series resistors R+
s . As previously, R+

s is below the optimal

series resistance R = 2.1 kΩ because of the effect of the parallel resistance Rp.

The nanocrytalline toroid is the only core that can satisfy the 330 H requirement for

the first mode of the beam. The toroid needs 1800 turns to reach this optimal inductance,

which differs from the calculated value equal to 2416 turns. Again, the main reason is

that the equivalent permeance significantly increases when going to low frequency. Fig-
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Figure 2.16: Damping of the first bending mode: (a) With the nanocrystalline toroid
(N = 1800) - (· · · ) open circuit, (- -) shunted on inductor without additional resistor,
(—) shunted on inductor with additional series resistor R+

s = 6.7 kΩ. (b) With the
nanocrystalline toroid (N = 1800) - (· · · ) open circuit, (- -) shunted on inductor without
additional resistor at Ve = 1.2 V, (- · -) shunted on inductor without additional resistor at
Ve = 1.8 V, (—) shunted on inductor without additional resistor at Ve = 2.4 V.

ure 2.16(a) shows that the handmade inductor is able to provide a significant vibration

reduction. The magnetic flux density does not reach the saturation limit because the

root mean square current produced by the piezoelectric patches is only about 10 µA. This

current is measured in the resonant shunt when the excitation amplitude causes an open-

circuit displacement equal to 30 µm at the end of the beam and an open-circuit voltage

about 1 V. Under this nominal excitation, the external resistance R+
s that yields an opti-

mal tuning of the shunt is around 6.7 kΩ. Yet, the resistance of the wire is only 40 Ω and

the optimal series resistance has been evaluated to 15 kΩ in Table 2.2. As a consequence,

more than half of the energy loss occurs in the magnetic core even after the addition of the

external series resistance R+
s . The energy loss in the magnetic core is modeled by the par-

allel resistance Rp that appears in Fig. 2.11(a) and Eq. (2.45). The dependence of Rp and

L on the amplitude of the excitation is observed experimentally. Indeed, Figure 2.16(b)

represents the displacement FRF around the first bending mode for different excitation

amplitudes. The root mean square voltage across the inductor is equal to Ve = 1.2 V at

nominal excitation. This voltage is then set to Ve = 1.8 V and to Ve = 2.4 V. The mod-

ification of the tuning is significant as it is remarked that the equivalent shunt resistance

is increased and the electrical resonance moves to lower frequency. Those two effects are

due to the nonlinearities of the magnetic material with respect to the excitation amplitude

[52–54], which induces an increase of both the equivalent permeability and the energy loss.

Those nonlinearities were also observed with the closed core inductors dedicated to the

control of the 2nd and 3rd modes but the effect was less obvious. In any case, this example

shows a limit of the closed magnetic cores, which are more subjected to nonlinear effects.
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2.4.6 Comparison of inductor designs

The previous inductors clearly shows that the closed magnetic cores can lead to in-

ductance values that significantly exceed the values proposed in standard series. Ferrite

cores offer decent permeabilities but some applications require nanocrystalline materials

for even larger inductance. Both solutions reduce the number of turns in the coil, which

means that the copper loss can be significantly decreased. Consequently, when the loss

in the magnetic core is limited, closed core inductors present considerably larger quality

factors than standard inductors.

When considering the implementation of resonant shunts in industrial products, price

or manufacturing process can become important issues. The standard inductors used

in the present application cost around $2 per component. The closed core designs are

more expensive because a ferrite core inductor is around $5 and the nanocrystalline toroid

costs $15. Those prices obviously depend on the number of components that is ordered

but they still offer a comparison between the three designs. The standard inductors are

usually cheap and offer a wide range of ready-to-use components. On the other hand,

closed core inductors need to be specifically designed and manufactured for the considered

application because suitable wound cores are not easily available. As seen in Fig. 2.12(a),

the ferrite core design offers a cylindrical coil former that can be wound by hand or with

a mandrel before its introduction between the two half magnetic circuits. The geometry

of the toroid makes winding harder and the automation of the process requires a specific

toroidal core winding machine.

Finally, it has been shown that the equivalent series inductance and resistance of the

closed core inductors depend on frequency and on current amplitude. Those nonlinearities

are insignificant with standard inductors where the magnetic field has to spread through

the air, which offers a relatively constant permeability and low magnetic losses. This

last limit of the closed core inductors also appears in Table 2.6, which summarizes the

comparison between the three inductor designs.

Table 2.6: Comparison of the three inductor designs.

Ferrite cylinder Ferrite core Nanocrystalline toroid

High inductance - + ++

Quality factor - ++ ++

Price ++ + -

Manufacturing ++ + -

Nonlinearities ++ - -
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2.5 Conclusions

The fundamental equations describing a system subjected to a piezoelectric coupling

has been deduced from the 3D linear theory of piezoelectricity. This theory is simplified to

the case of a one-dimensional transducer, which can be represented by equivalent electrical

or mechanical models. The direct electromechanical analogy is highlighted because it

is the one that allows a complete modeling of the piezoelectric actuators with passive

components. Then, the coupling is represented by a transformer in the electrical domain

and a lever in the mechanical domain. Connecting an inductor and a resistor in parallel

with a piezoelectric capacitance creates a resonant shunt that is equivalent to a tuned mass

damper. Complete and simplified mechanical models as well as their electrical analogues

are given for a better understanding of the equivalence between both of them. From

a minimization of the transfer function of the displacement to control, we get optimal

inductance and resistance values for the resonant shunt. Those values allow quantifying

the electrical current flowing through the inductor, which is required for an adequate

design of the magnetic component.

The last section of this chapter focuses on the design of passive inductors for piezo-

electric shunt applications. From the basic equations describing a magnetic component, a

criterion based on inductance and resistance specifications is proposed in order to choose a

suitable magnetic core. Furthermore, a condition on the area product of the core is given

to provide guidance in the selection of the component. The electrical model of an inductor

with series and parallel resistances is then introduced and related to the classical model

involving the equivalent series inductance and series resistance that appear in the resonant

shunt. The experimental setup based on a cantilever beam covered by a pair of piezoelec-

tric patches requires inductance up to 330 H for a control based on a passive resonant

shunt. It is shown that such a high inductance value is not impractical for piezoelectric

applications because of the low amplitude of the current generated by the patches.

Specific designs involving closed magnetic cores are required in order to reach large

inductance values with low series resistance. Two magnetic cores are proposed: a RM

ferrite and a nanocrystalline toroid. Both solutions can easily provide inductance above

0.5 H, which is considered as the upper limit of standard inductor series. The inductor

designs are successively validated by observing significant vibration reduction for the first

three bending modes of the cantilever beam. Some limits are still remarked as the nonlin-

earities induced by the high permeability materials. Nevertheless, closed magnetic cores

clearly extend the resonant shunt strategy to lower frequencies that were not reachable

with standard inductors. This solution counters the use of synthetic inductors with strictly

passive components, which could be of great interest for embedded systems.
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Chapter 3

Damping of a rod through a

periodic array of piezoelectric

patches

Abstract: Elastic lattice of point masses can be a suitable representation of a

continuous rod for the study of longitudinal wave propagation. One can then

analyze the effect of a periodic distribution of identical tuned mass dampers

or analogous resonant piezoelectric shunts. By extending the classical tuned

mass damping strategy, a multimodal tuned mass damper is introduced from

the coupling of two lattices offering similar modal properties. The aim of the

chapter is to model and implement this multimodal control on a rod coupled to

an electrical network. The electromechanical analogy applied to a mechanical

lattice gives the required electrical network and the energy conversion is per-

formed through a periodic array of piezoelectric patches. The coupled problem

is treated with a transfer matrix formulation, which is based on different models

depending on the frequency range of interest. An experimental setup validates

the models as wells as the broadband efficiency of the multimodal control.
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3.1 Introduction

Wave propagation in one-dimensional periodic structures can be analyzed with the

transfer matrix formulation. As described by Mead [82], this approach is based on the

definition of a unit cell, which periodically repeats with identical mechanical properties.

The relation between the mechanical states at both ends of the unit cell is represented by

a transfer matrix. This relation is then propagated in order to obtain the global behavior

of a finite periodic structure. The transfer matrix method can be applied to the discrete

model of a rod, which is represented by a lattice of point masses. Periodic lattices were

presented by Brillouin [83], who gave fundamental results related to wave propagation in

mechanical and electrical periodic structures. An electromechanical analogy between lat-

tices of different nature was thus already introduced. This analogy was formalized by Bloch

[74] and Beranek [84] for more general structures. Those references give useful elements

to find the analogues of coupled problems involving electrical components connected to

piezoelectric patches [2]. First, a resonant shunt can be compared to a tuned mass damper

[1, 41]. By tuning the electrical components, vibration reduction of the main structure

is expected [43–45, 79, 80]. This concept was applied by Thorp et al. to the damping of

longitudinal waves in a rod periodically covered with piezoelectric patches [4]. The use of

the transfer matrix formulation allows studying the propagation constants as well as the

global behavior of the coupled structure. It was then extended to the study of transverse

waves by taking into account the influence of various linear shunts either passive as the

resonant ones [5, 45, 46, 48, 49, 85, 86], hybrid active-passive [87–89] or active as the shunts

involving negative capacitance [76, 90, 91]. A limited number of papers considers intercon-

nections of successive piezoelectric patches. A precursory work was presented by Valis et

al. [25] on the coupling of an electrical transmission line to a beam. One can then mention

the papers of Yu et al. [92] and Li et al. [93], who analyzed the influence of an electrical

network on vibration delocalization in a periodic blade assembly. Regarding damping of

vibration, dell’Isola et al. introduced several results on the influence of distributed piezo-

electric networks on transverse wave propagation [12, 13, 15, 17, 19, 26, 94, 95]. From a

continuous formulation, the electric analogue of a beam appears as an optimal network

topology [16, 21, 22, 96]. In the end, excepted from dell’Isola et al., only a few more

research groups conducted analyzes on wave control through an interconnected array of

piezoelectric patches [97–100]. None of the aforementioned studies on electrical networks

benefits from the transfer matrix method. Yet, Lu and Tang [101] have shown that this

method also applies on piezoelectric networks by adding electrical variables to the me-

chanical state vectors.

The present chapter deals with the above mentioned concepts in order to present a

passive and multimodal control strategy that is implemented for vibration damping of a
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3.2. LONGITUDINAL WAVE PROPAGATION IN A DISCRETIZED ROD

rod. First of all, the transfer matrix formulation is presented and applied to a continuous

rod which is then discretized into a lattice of point masses. The differences between the

continuous model and the lattice model are clarified. Afterwards, two control strategies

based on modal coupling are presented for the purpose of converting the vibration energy

of a main structure into a distributed damping device. The first resonance-based solution

involves a periodic distribution of tuned mass dampers. This mechanical example can

be transposed to a piezoelectric application by considering an array of resonant shunts

on a rod [4, 102]. An electromechanical unit cell is thus defined as a rod segment ruled

by a global piezoelectric coupling. We address the tuning of the electrical components

but some limitations arise when considering the practical implementation of the resonant

shunt control. The second control strategy considers the coupling of a main structure to

a damping lattice having similar modal properties. This leads to an original multimodal

tuned mass damper, which is first presented under its mechanical form. The next step is

to implement the proposed control by connecting the rod to an electrical network having

similar modal properties. The analogous electrical network is obtained from the direct

electromechanical analogy [74, 84] and we get a line of inductors with connection to the

ground through capacitors. With this discrete network, the transfer matrix formulation

simplifies the analysis compared to former analytic formulations where the electrical net-

work has been seen as a continuum [12, 13, 17, 21, 22, 94, 96]. Here, various models are

proposed, depending on the required accuracy and the frequency range of interest. The

electrical network is always seen as a discrete medium but the mechanical segments are

either discrete, homogenized or defined from a finite element model. The models are com-

pared by considering large or short wavelength conditions. Then, experimental validations

focus on the effect of the two control strategies on electrical and mechanical frequency

response functions around the first four modes of a rod. One of the main result concerns

the experimental validation of the multimodal damping strategy. When applying a simple

modal coupling condition obtained from the discrete model, the efficiency of the method is

proved with significant vibration reduction over a broad frequency range. Another interest

of this control strategy is the reduction of the required inductance. This offers a chance

to implement a completely passive control, as shown in the proposed experimental setup.

3.2 Longitudinal wave propagation in a discretized rod

The transfer matrix formulation is introduced in order to analyze vibrations of one-

dimensional structures. The classical rod model is first considered before looking at its

lattice equivalent, which is obtained from a finite difference method applied to the contin-

uous wave equation. The differences between the two models are then clarified in terms

of propagation constants and frequency response functions.
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3.2. LONGITUDINAL WAVE PROPAGATION IN A DISCRETIZED ROD

3.2.1 Transfer matrix formulation

A one-dimensional periodic structure is a series of identical unit cells [82]. For each unit

cell, the relation between the mechanical states at its right and left ends can be described

by a transfer matrix T as
[

qR
FR

]

= T

[

qL
FL

]

, (3.1)

where qL and qR are the displacements of the left and right ends of the unit cell. FR is

the force applied on the considered cell by its right neighbor and FL is the force applied

by the considered unit cell on its left neighbor. FL is thus defined as the opposite of

the external force acting on the left end. This sign convention leads to the continuity of

the state vector. The Floquet-Bloch theory induces that, for a wave propagating in the

one-dimensional medium, the motion on the right of a unit cell is equal to e±µ times the

motion on the left [82], the sign depending on the direction of the wave. Here, µ is the

propagation constant, which is usually defined as µ = δ + jθ, where δ is the attenuation

constant, j is the imaginary unit and θ is the phase constant [46]. Alternatively, the

propagation constant can be written µ = αa + jka, where α is the attenuation rate, k is

the wavenumber and a is the length of the unit cell. From Eq. (3.1), if [ qL FL ]T is an

eigenvector of the transfer matrix T ,
[

qR
FR

]

= e±µ

[

qL
FL

]

. (3.2)

Consequently, µ = ln(λ), where λ represents an eigenvalue of the transfer matrix T . The

number of propagation constants µ is thus equal to the dimension of T . Yet, as two set of

opposite constants are necessarily obtained, only the positive ones are represented in the

following applications.

According to the definition of a periodic structure, each unit cell is described by an

identical transfer matrix T . Consequently, the mechanical state on the right of the nth

unit cell is obtained by raising the corresponding transfer matrix to the power of n,
[

qn
Fn

]

= Tn

[

q0
F0

]

=

[

T
qq
n T

qF
n

T
Fq
n T FF

n

]

[

q0
F0

]

, (3.3)

where the subscript 0 refers to the left end of the first unit cell. Then, when considering a

finite number of n unit cells, the boundary conditions need to be introduced. For example,

with a prescribed force F0 applied on the left end of a free-free periodic structure, as

Fn = 0, the displacement qn at the right end is defined from Eq. (3.3) as

qn = (T qF
n − T qq

n T Fq
n

−1
T FF
n )F0. (3.4)

Eqs. (3.3) and (3.4) represent one of the most classical solution to obtain the relation

between the states at both ends of a periodic structure. However, as described by Stephen
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[103], such a two-point boundary value problem is ill-conditioned, which can lead to nu-

merical instabilities. The deficiency of Eq. (3.4) has been confirmed when computing some

of the frequency response functions (FRFs) illustrating the present manuscript. Indeed,

an increase of the upper frequency limits or an increase of the number of unit cells would

induce numerical issues. Alternatively, Stephen [103] proposes a numerically reliable for-

mulation based on a ”Riccati transfer matrix method”. This method is presented below

for a case where external forces only apply at one of the two ends of the periodic structure.

First, the transfer matrix is partitioned as

[

qi+1

Fi+1

]

=

[

T qq T qF

T Fq T FF

] [

qi
Fi

]

, (3.5)

where the subscript i goes from 0 to n− 1 when the periodic structure is made of n unit

cells. The procedure proposed by Stephen [103] relies on the Riccati transform, which

postulates that the forces and the displacements at both ends of a unit cell are given by

Fi+1 = Ri+1qi+1 + gi+1

Fi = Riqi + gi
, (3.6)

where the Riccati matrix R and the column vector of force components g are to be

determined. To this end, a recursive scheme is implemented. From Eqs. (3.5) and (3.6),

it is found that
qi+1 = T qqqi + T qF [Riqi + gi]
Ri+1qi+1 + gi+1 = T Fqqi + T FF [Riqi + gi]

, (3.7)

which leads to

(

Ri+1

[

T qq + T qFRi

]

−
[

T Fq + T FFRi

])

qi +
(

gi+1 +
[

Ri+1T
qF − T FF

]

gi
)

= 0.

(3.8)

In order to have Eq. (3.8) true for any arbitrary qi, it is required that

gi+1 +
[

Ri+1T
qF − T FF

]

gi = 0
Ri+1

[

T qq + T qFRi

]

−
[

T Fq + T FFRi

]

= 0
, (3.9)

which can be reformulated as

gi =
[

T FF −Ri+1T
qF
]−1

gi+1

Ri =
[

T FF −Ri+1T
qF
]−1 [

Ri+1T
qq − T Fq

] . (3.10)

Eq. (3.10) represents the ”backward in space” recursive process, which compute all gi and

Ri from the knowledge of their values at the right end of the structure, i.e. gn and Rn.

Then, the displacement and force vectors can be computed all along the structure with

the ”forward in space” process deduced from Eqs. (3.6) and (3.7) as

qi+1 =
[

T qq + T qFRi

]

qi + T qF gi
Fi+1 = Ri+1qi+1 + gi+1

. (3.11)
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For example, as Fn = 0 at the non-excited end of a free-free periodic structure and

Fn = Rnqn + gn, one can set Rn = 0 and gn = 0. Furthermore, with a prescribed force

F0 applied to the left end, q0 = R0
−1 [F0 − g0] and the displacement qn at the right end

is then computed from Eqs. (3.10) and (3.11). Note that the use of the Riccati transfer

matrix method is not required for problems involving a few state variables along about

ten unit cells but it becomes essential when considering more complex cases.

3.2.2 Mechanical analysis of a rod

For a one-dimensional homogeneous medium of Young’s modulus Y and density ρ, the

longitudinal wave equation can be expressed as

ρ
∂2u(x, t)

∂t2
= Y

∂2u(x, t)

∂x2
, (3.12)

where u(x, t) refers to the longitudinal displacement. A space-time separation u(x, t) =

U(x)g(t) decouples the space and time contributions and gives the dispersion relation:

U ′′(x) + k2U(x) = 0
g′′(t) + ω2g(t) = 0

with ω2 =
Y

ρ
k2, (3.13)

where [·]′′ represents the second derivative, ω is the angular frequency and k is the

wavenumber. Consequently, the longitudinal displacement amplitude of the rod segment

presented in Fig. 3.1 is given by

U(x) = UL cos(kx) +
UR − UL cos(ka)

sin(ka)
sin(kx), (3.14)

where a is the length of the rod segment and the subscripts L and R refer respectively to

the positions at x = 0 and x = a.

The normal force into the rod, N(x), is related to the displacement in Eq. (3.14)

through

N(x) = Y SU ′(x)
−ρSω2U(x) = N ′(x)

, (3.15)

Figure 3.1: Considered rod segment.
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where S is the cross-sectional area. Consequently, from the first equation in (3.15), the

forces at both ends are obtained from the end displacements of the rod segment as

NL = Y Sk
UR − UL cos(ka)

sin(ka)

NR = −Y SkUL sin(ka) + Y Sk
UR − UL cos(ka)

sin(ka)
cos(ka)

. (3.16)

The two equations can be rearranged into the matrix form

[

UR

NR

]

=

[

cos(ka) 1
Y Sk sin(ka)

−Y Sk sin(ka) cos(ka)

] [

UL

NL

]

. (3.17)

Alternatively, a transfer matrix involving dimensionless state variables can be written as

[

U⋆
R

NR⋆

]

=

[

cos(ka) 1
ka sin(ka)

−ka sin(ka) cos(ka)

] [

U⋆
L

N⋆
L

]

, (3.18)

where U⋆ = U/a and N⋆ = N/(Y S). This refers to a transfer matrix formulation as in

Eq. (3.1), with state vectors involving the dimensionless longitudinal displacements U⋆

and the normal forces N⋆.

3.2.3 Lattice model

The purpose of the transfer matrix formulation is not obvious for a homogeneous rod

as the global solution can be obtained directly from the analysis of a single unit cell of

length l (with n = 1). Nevertheless, the transfer matrix formulation becomes useful when

looking at periodic models where the global layout is not identical to the local one. For

the propagation of longitudinal waves, Brillouin analyzed the periodic lattice model as a

discrete representation of a continuous medium [83]. A discrete rod model can be obtained

by applying a finite difference method to the continuous equations in Eq. (3.15). When

considering the forward, central and backward differences

[·]′L = [·]I−[·]L
a/2 , [·]′I =

[·]R−[·]L
a , and [·]′R = [·]R−[·]I

a/2 , (3.19)

the following set of discrete equations is obtained:

−m
2 ω

2UL = NI −NL

−m
2 ω

2UR = NR −NI

NI = K(UR − UL)
. (3.20)

The mass m and the longitudinal stiffness K come directly from the local properties of

the rod segment of length a, as

m = ρSa and K =
Y S

a
. (3.21)
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Figure 3.2: Lattice of point masses and corresponding unit cell.

Note that the set of equations (3.20) defines a unit cell made of two half masses m/2

at each ends of a spring K as shown in Fig. 3.2. A rod can thus be approximated by a

periodic array of lumped masses connected in series by springs of identical stiffness.

As Eq. (3.20) involves the longitudinal displacement and the normal force at both ends

of the unit cell, it can be reorganized into the transfer matrix formulation

[

UR

NR

]

=

[

1− f 1
K

−2Kf
(

1− f
2

)

1− f

]

[

UL

NL

]

, (3.22)

where f = ω2m/(2K), which is equivalent to

[

U⋆
R

N⋆
R

]

=

[

1− f 1

−2f
(

1− f
2

)

1− f

]

[

U⋆
L

N⋆
L

]

, (3.23)

where U⋆ = U/a and N⋆ = N/(Ka). The two eigenvalues of this transfer matrix are

λ+ = 1− f +
√

f(f − 2) and λ− = 1− f −
√

f(f − 2). Since the eigenvalues are related

to the equivalent wavenumber k̄ of the discrete problem by λ± = exp(±jk̄a), one gets

f = 1 − cos(k̄a), when k̄a ≤ π, i.e. f ≤ 2. From the definition of f , this leads to the

following non-linear dispersion relation

ω2 =
Y

ρ

(

k̄ sinc

(

k̄a

2

))2

for k̄a < π, (3.24)

where sinc(x) = sin(x)/x. Already introduced by Brillouin [83], this equation is here

obtained from the transfer matrix and it can be compared to the rod dispersion relation

presented in Eq. (3.13). Both relations are equivalent when k̄a goes to zero, i.e. when

the unit cell is sufficiently small compared to the considered wavelength. As a reference,

it can be seen from Eq. (3.24) that with 10 unit cells per wavelength (k̄a = 2π/10), the

frequency obtained with the discrete model differs by less than 2% from the one got with

the rod dispersion relation. In any case, by comparing Eqs. (3.17) and (3.22), it is seen

that we can convert the lattice into its initial continuous model by applying the following

transformations before nondimensionalization:

f → 1− cos(ka) and K → Y S

a

ka

sin(ka)
. (3.25)
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Regarding a free-free rod of length l = na excited at one end, we get the frequency

response of the displacement at the other end from the transfer matrix method described

in Eq. (3.4). The rod under consideration has a length equal to l = 1 m, a cross-sectional

area S = 4 cm2 and it is made of aluminum alloy 2017. Its Young’s modulus is thus about

Y = 73.9 GPa and its density is ρ = 2780 kg/m3. The continuous model in Eq. (3.18) is

compared to the lattice model in Eq. (3.23), when the rod is discretized in n = 20 unit

cells. The two phase constants θ = ka and θ̄ = k̄a in Fig. 3.4 represent the expected linear

dispersion relation (3.13) for the continuous rod and the non-linear dispersion relation

(3.24) for the lattice, when k̄a < π. As soon as k̄a = π, Fig. 3.3 shows that the attenuation

constant of the lattice model increases, which creates a so-called ”stop band” [104] above

ω = 2
√

K/m, i.e. a frequency around 32.8 kHz. On the other hand, the attenuation

constant of the continuous rod is equal to zero all along the frequency band because no

damping is introduced in the model. The effect of the stop band on the velocity FRF of

the lattice is observed in Fig. 3.5, where no modes occur above 32.8 kHz. We note a clear

difference between the two models above the fourth mode, which corresponds to a number

of unit cells per wavelength close to 10. In the end, all the previous elements give a way to

study the mechanical behavior of a rod as well as its discrete equivalent. The differences

between those two models have been evaluated and the conversion from one to the other

is clarified in both ways.
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Figure 3.3: Attenuation constants - (—) for the continuous rod, (· · · ) for the lattice model.
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Figure 3.4: Phase constants - (—) for the continuous rod, (· · · ) for the lattice model.
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Figure 3.5: Velocity FRFs - (—) for the continuous rod, (· · · ) for the lattice model.

3.3 Array of resonant shunts

A passive damping solution is presented by considering the example of a periodic

distribution of tuned mass dampers. The analysis is then extended to the case of a rod

covered with an array of piezoelectric resonant shunts. An electromechanical unit cell

is defined as a homogeneous medium subjected to a global piezoelectric coupling. From

the value of the piezoelectric capacitance, the tuning of the inductors is defined and the

practical limits of the control strategy are highlighted.

3.3.1 Distributed tuned mass dampers

A solution to limit vibration of a structure is to add multiple control devices locally.

Passive control strategies have the benefit of being self-sufficient and unconditionally sta-

ble. When looking at such passive solutions, the tuned mass damping systems are able to

convert vibration energy from a main structure to the added masses [1]. As introduced in

Chap. 2, this energy transfer applies around a specific frequency, which is chosen by tuning

the resonance of the added systems. The strategy can be implemented in a periodic lattice

by distributing identical tuned mass systems as proposed in the Vincent’s model [83]. An

alternative is presented in Fig. 3.6, where a strain in the main structure is converted into

a displacement of the added system thanks to a massless lever of e ratio. This stresses the

spring of stiffness K̃ which put the tuned mass m̃ into motion.

As with the previous unit cell, the mechanical analysis of this new sub-structure is

performed for the purpose of getting the transfer matrix formulation of the problem. For

small displacements, we note from Fig. 3.6 that

−m
2 ω

2UL = NI −NL

−m
2 ω

2UR = NR −NI

NI = K(UR − UL) + FI

and

−m̃ω2Ũ = −K̃(Ũ − X̃I)

FI = eK̃(Ũ − X̃I)

X̃I = −e(UR − UL)

, (3.26)

where FI is the force generated by the lever system, Ũ is the displacement of the mass m̃

and X̃I is the displacement of the base of the spring K̃. Then, the internal variables NI,
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Figure 3.6: A tuned mass damper connected to each unit cell.

FI, Ũ and UI are removed from the system of equations (3.26) and we get the formulation

[

U⋆
R

N⋆
R

]

=

[

1− ff̃ f̃

−2f
(

1− ff̃
2

)

1− ff̃

]

[

U⋆
L

N⋆
L

]

, where f̃ =
1− ω2 m̃

K̃

1− ω2 m̃
K̃

(

1 + e2 K̃K

) . (3.27)

When e = 0, it can be seen that f̃ = 1 and the transfer matrix becomes equal to the one

presented in Eq. (3.23). Without coupling, the added system has no effect and the structure

behaves as a simple lattice. Then, for e 6= 0 and ω =
√

K̃/m̃, which correspond to the

natural frequency of the added spring-mass systems, f̃ becomes equal to zero. Therefore,

UR = UL for every unit cells. The displacement is the same in the entire primary lattice

and no strain is observable whatever the boundary conditions.

The independent tuned mass damping strategy can be applied to the one meter free-

free rod considered in Sec. 3.2. This finite structure is still discretized into a lattice of

n = 20 unit cells and each one is fitted with an identical tuned mass damper, as presented

in Fig. 3.6. The added mass m̃ is then set to one tenth of the mass m and K̃ is tuned

so that the natural frequency of the spring-mass systems corresponds to the first natural

frequency of the main structure.

The right end velocity is computed from Eqs. (3.4) and (3.27) by applying a harmonic

unit force to the left end of the lattice. The results are shown in Fig. 3.7, where three

cases are presented. The first one corresponds to a situation with a lever ratio e equal to 0.

The lattice is vibrating without any effect of the added system and the first four natural

frequencies are displayed. As no damping is added in the model, the velocity goes naturally

to infinity at those particular frequencies. The second case is computed with e = 1 and

again without damping. Around the first natural frequency the initial resonance is no more

observable as the energy is transferred to the added masses. Yet, new resonances appear

on both sides of the previous one, as it is classically observed when using undamped tuned

mass systems [1]. The amplitude of those new resonances can be reduced by introducing

damping. The solution provided in most of the tuned mass strategies consists in adding

a damper in parallel to the springs of stiffness K̃. However, it is also possible to consider
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Figure 3.7: Velocity FRFs with independent tuned masses - (· · · ) with e = 0, (- · -) with
e = 1 and c̃ = 0, (—) with e = 1 and c̃ = 5.

a damper linking directly the tuned masses to the ground [41], as presented in Chap. 2.

This last solution is implemented by replacing the tuned masses m̃ by m̃−jc̃/ω, where c̃ is

the viscous coefficient of the added dampers. With c̃ = 5 N/(m/s), the velocity amplitude

around the first resonance is significantly reduced. This illustrates the efficiency of the

independent tuned mass dampers for a control focusing on one particular resonance.

3.3.2 Shunted piezoelectric unit cell

The previous distributed control can be implemented on a rod with an array of resonant

shunts. Indeed, it has been shown in Chap. 2 that an inductor shunted on a piezoelectric

patch represents the analogue of a tuned mass system. So, a homogeneous rod is covered

with a periodic distribution of shunted piezoelectric patches, as seen in Fig. 3.8. An

electromechanical periodic structure is obtained and the unit cell that repeats along the

main direction is isolated. The rod segment has a length a, a width b and a thickness hs.

It is symmetrically covered with a pair of piezoelectric patches of length lp, width b and

thickness hp, which are connected in parallel and polarized in opposite directions for the

control of longitudinal vibrations [4, 102]. VI is the voltage on the external electrodes and

qI is the current flowing to the pair of piezoelectric patches. No resistor is represented in

the piezoelectric shunt because electrical damping can be introduced through equivalent

b LLLLL

hs

hp

lp

a

UL UR

Lq̇I

VI

Figure 3.8: Array of shunted piezoelectric patches and corresponding electromechanical
unit cell.
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Rod (Aluminum 2017) Patches (PIC 151)

Length (mm) 20× a = 20× 50 lp = 30
Width (mm) b = 20 b = 20

Thickness (mm) hs = 20 hp = 0.5
Density (kg/m3) ρs = 2780 ρp = 7800

Young’s modulus (GPa) Ys = 73.9 1/sE11 = 66.7
Charge constant (pC/N) - d31 = −210
Permittivity (nF/m) - ǫσ33 = 21.2

Table 3.1: Dimensions and material properties for the rod and for the piezoelectric patches.

−NI VIU̇L − U̇R

1

KE

: 1

Cǫ

q̇I

e

Figure 3.9: Global model of the piezoelectric unit cell.

complex values of the electrical components. The geometric and material properties in

Table 3.1 are taken into account in the following numerical applications.

The unit cell in Fig. 3.8 is a composite laminate made of an elastic rod segment and two

piezoelectric patches. Yet, this unit cell can be firstly seen as an homogenized medium

governed by a global piezoelectric coupling similar to the discrete model described in

Chap. 2 for a single piezoelectric patch. If KE is the longitudinal stiffness of the unit cell

when the patches are short-circuited and Cε is the total piezoelectric capacitance when

the unit cell is fixed, then the coupling can be approximated by

NI = KE∆U − eVI

qI = e∆U + CεVI
, (3.28)

where NI represents the normal force and ∆U = UR−UL is the difference between the right

and left displacements. This discrete model can also be represented by the electrical circuit

in Fig. 3.9 where the global coupling coefficient e appears in the transformer ratio [72].

Note that this model is valid only if the considered wavelength is large compared to the

length a of the unit cell. From this large wavelength condition, the rod segment can be

approximated by its lattice model described in Eq. (3.20), which gives

−m
2 ω

2UL = NI −NL

−m
2 ω

2UR = NR −NI
, where m = ρshsba+ 2ρphpblp. (3.29)

Regarding the electrical circuit, we get VI = −jωLq̇I when the shunt is made of a single
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inductor L. Combining Eqs. (3.28) and (3.29) then leads to the transfer matrix formulation

[

U⋆
R

N⋆
R

]

=

[

1− ff̃ f̃

−2f
(

1− ff̃
2

)

1− ff̃

]

[

U⋆
L

N⋆
L

]

, where f̃ =
1− ω2LCε

1− ω2LCε
(

1 + e2

KECε

) (3.30)

and f = ω2m/(2KE). Finally, Eq. (3.30) is equivalent to the purely mechanical problem

in Eq. (3.27) after updating the global constants to suit with the present electromechanical

case. Those global constants still need to be defined in order to allow the calculation of

the transfer matrix.

3.3.3 Determination of the global constants

The stiffness KE corresponds to the longitudinal stiffness of the short-circuited unit

cell. In this situation, the equivalent Young’s modulus of the piezoelectric material is

Y E
p = 1/sE11, which is given in Table 3.1. If the Young’s modulus of the rod is Ys, the

stiffness KE is then obtained from the geometry of the unit cell. When considering that

the cross-sections remain undeformed,

1

KE
=

lp
YsSs + 2Y E

p Sp
+

a− lp
YsSs

, (3.31)

where Ss = bhs and Sp = bhp are the rod and patch cross-sectional areas. In order to

complete the model, the capacitance Cε and the global coupling coefficient e still need to

be defined. Cε is the capacitance of the pair of patches when ∆U is equal to zero. It

is not simply equal to two times Cε
p, the blocked capacitance of a single isolated patch

at constant stain, for two reasons. First, even with UL = UR = 0, the patches are not

completely blocked along the direction ’1’ when a 6= lp. Second, the definition of Cε
p in

Chap. 2 is only valid if the considered piezoelectric patch is free in its transverse directions.

Here, the two patches cannot freely extend in the direction ’2’ because they are glued onto

the rod. Even if no external force is applied, a patch is always constrained by the elastic

material on which it is glued. Consequently, its capacitance is significantly lower than

the capacitance of a free single patch. The analytic calculation of Cε is not trivial and

requires to take into account 3D effects. The same problem appears when focusing on

the global coupling coefficient e, which cannot be obtained directly from a simple one

dimensional model. This was analyzed by Maurini et al. [18, 71], who presented corrected

1D coefficients obtained from a 3D formulation. For instance, when considering thin

piezoelectric patches compared to the main elastic structure, i.e. hp/hs ≪ 1, it has been

shown that, in the longitudinal case, the blocked capacitance can be approximated by

Cε = 2ǫε
⋆

33

blp
hp

(

1 + 2k231
1 + νEp

1− νEp − 2k231

Y E
p

Ys

hp
hs

)

where ǫε
⋆

33 = ǫσ33

(

1− 2k231
1− νEp

)

, (3.32)
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k231 = d231/(s
E
11ǫ

σ
33), and νEp is the Poisson’s ratio of the patches at constant electric field.

However, the proposed analytic calculations do not take into account the effect of the

bounding layer between the patches and the main structure [18]. This non-perfect bond-

ing might influence the results when the thickness of the bonding layer is not negligible

compared the thickness of the patches. It then becomes important to be able to determine

the global constants from direct measurements on the considered piezoelectric structure.

A method for getting global constants is found from the discrete model in Eq. (3.28).

If Cσ is the global capacitance obtained when NI = 0, we get ∆U = eVI/K
E and thus

Cσ = Cε+e2/KE . Furthermore, when qI = 0, then VI = −e∆U/Cε, so that the equivalent

stiffness in open circuit is KD = KE + e2/Cε. Alternatively, Cσ and KD can be obtained

directly from Fig. 3.9, which refers to the same model. Consequently, Eq. (3.33) gives the

expressions for the remaining global constants:

Cε = CσK
E

KD

e =

√

CσKE

(

1− KE

KD

) . (3.33)

KD is calculated in the same way as KE by replacing Y E
p by Y D

p in Eq. (3.31). The

equivalent Young’s modulus in open-circuit has been defined in Chap. 2 as Y D
p = 1/(sE11−

d231/ǫ
σ
33). Recall that this expression is valid only if the considered wavelength is large

compared to the length of the unit cell. Moreover, it requires a stress equal to zero along

both transverse directions, which actually happens if the patch and the main structure

have close Poisson’s ratios. The measurement of Cε is difficult in practice because it would

require to block the ends of a unit cell. Yet, the capacitance in free conditions Cσ is more

easily reachable because it can be obtained by direct measurement in free conditions.

3.3.4 Practical limits

The target angular frequency ωO of a resonant shunt control is defined by the tuning

of the inductance through

ωO =
1√
LCε

. (3.34)

Actually, this condition simplify the transfer matrix in Eq. (3.30) into a rigid body motion

case because f̃ is then equal to zero. For the case presented in Fig. 3.8, as Cε is evaluated to

35.3 nF, the inductance L has to be around 110 mH for the control of the first longitudinal

mode. This value is achievable with passive inductors but we note that lower frequency

applications could be more critical. For example, with the same piezoelectric patches,

a control at 25 Hz would require inductors above 1000 H. This questions the practical

feasibility of the damping system, especially if the shunt has to be reproduced over a

99



3.4. COUPLING OF A ROD TO ITS ELECTRICAL ANALOGUE

large number of n unit cells. Increasing the number of piezoelectric patches does not solve

the problem because the piezoelectric capacitance Cε is approximately proportional to

the surface area of the patches. So, for a constant thickness and volume of piezoelectric

material, Cε is proportional to 1/n and, from Eq. (3.34), L is proportional to n/ω2
O. As a

consequence, the strategy involving a succession of resonant shunts have significant limits

on its frequency range of interest when considering a large number of small-size unit cells,

as might appear through meta-material applications.

A second limitation concerns the lack of multimodal control with classical resonant

shunts involving a single inductor. A variation of the n inductance values could be intro-

duced in order to generate a broader control [105]. Here, we could consider four sets of

n/4 inductors tuned to the first four modes of the rod. The problem is that each shunt

brings damping on a single frequency band. Then, an increase of the number of modes to

control decreases the number of shunts dedicated to each mode, which limits the damping

efficiency. A solution to benefit from each piezoelectric patch on several frequency bands

is to implement multi-resonant shunts. Various electrical topologies can be found in the

literature as the ”current blocking” [10] or ”current flowing” [8, 11] branches. Yet, a si-

multaneous control of p mechanical modes would require at least p inductors and (p− 1)

capacitors per shunts, which means n × p inductors and n × (p − 1) capacitors for the

whole periodic structure involving n unit cells. A large number of unit cells would thus

lead to an impractical number of electrical components. As a consequence, the passive

implementation of such a control system is once again compromised.

3.4 Coupling of a rod to its electrical analogue

A multimodal extension of the classical tuned mass damping strategy is proposed by

coupling a lattice of point masses to its modal equivalent. The passive control is then

represented in the electrical domain and the electrical analogue of a rod is defined. This

analogous electrical network interconnects the array of piezoelectric patches in order to

implement the multimodal damping of a rod. We present a simple tuning condition based

on the global properties of a single unit cell.

3.4.1 Multimodal tuned mass damper

The previous control strategy consists in connecting identical unimodal devices to a

multimodal structure. By extension, it is possible to consider a coupling between two

multimodal structures. This concept can be illustrated by analyzing two lattices involving

the same number of unit cells. The main lattice is the structure that needs to be controlled

and the other one is considered as a multimodal control device. If all the natural frequencies
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Figure 3.10: Unit cell for the coupling of two lattices.

of the control device are simultaneously tuned to those of the main structure, this added

system should behave as a multimodal tuned mass damper.

The first step is to find a way to mechanically connect the two lattices in order to allow

energy transfers between facing pairs of unit cells. A solution is presented in Fig. 3.10 as

a generalization of the tuned mass damper architecture in Fig. 3.6. The fundamental

difference is that the added masses are no more free but are inherent components of the

secondary lattice. When the lever ratio e is equal to 0, the two lattices of n unit cells are

completely independent. On the contrary, if e is different from zero, they interact through

the n lever mobilities. The study of the global problem requires to focus on the unit cell

presented in Fig. 3.10. For small displacements of the massless lever, we get

−m
2 ω

2UL = NI −NL

−m
2 ω

2UR = NR −NI

NI = K(UR − UL) + FI

FI = eN̂I

and

− m̂
2 ω

2ÛL = N̂I − N̂L

− m̂
2 ω

2ÛR = N̂R − N̂I

N̂I = K̂(ÛR − ÛL − X̂I)

X̂I = −e(UR − UL)

, (3.35)

where FI is the force generated by the lever system, N̂I is the normal force in the springs

2K̂ and X̂I is the displacement difference between the two points connecting the springs

2K̂ to the lever. This system of equations is equivalent to









UR

ÛR

NR

N̂R









=















1− f e K̂K f̂ 1
K − e

K

ef 1− (1 + Λ)f̂ − e
K

1+Λ
K̂

−2Kf
(

1− f
2

)

−eK̂f f̂ 1− f ef

−eK̂f f̂ −2K̂f̂
(

1− 1+Λ
2 f̂

)

e K̂K f̂ 1− (1 + Λ)f̂























UL

ÛL

NL

N̂L









, (3.36)
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where f = ω2m/(2K), f̂ = ω2m̂/(2K̂) and Λ = e2K̂/K. This transfer matrix formula-

tion can then be written with dimensionless state variables U⋆ = U/a, N⋆ = N/(Ka),

Û⋆ = Û/(ea) and N̂⋆ = N̂/(eK̂a) as









U⋆
R

Û⋆
R

N⋆
R

N̂⋆
R









=













1− f Λf̂ 1 −Λ

f 1− (1 + Λ)f̂ −1 1 + Λ

−2f
(

1− f
2

)

−Λff̂ 1− f Λf

−ff̂ −2f̂
(

1− 1+Λ
2 f̂

)

f̂ 1− (1 + Λ)f̂





















U⋆
L

Û⋆
L

N⋆
L

N̂⋆
L









, (3.37)

By forcing N̂⋆
L and N̂⋆

R to zero, it is seen that the unit cell in Fig. 3.6 is a special case

of the one illustrated in Fig. 3.10. Indeed, the 4×4 transfer matrix in Eq. (3.37) can be

condensed into a 2×2 matrix which is equal to the matrix in Eq. (3.27), with

m̃ =
m̂

4
, K̃ = K̂ and thus f̃ =

1− f̂

2

1− (1 + Λ)
f̂

2

. (3.38)

After having connected the two lattices, a second step consists in tuning the added

lattice to suit the modal properties of the main lattice. It can be seen from Eq. (3.23) that

two lattice having a same f value, i.e. a same mass-stiffness ratio, would have identical

dimensionless transfer matrices. Then, identical boundary conditions lead to a similar

eigenmode problems for both lattices. In this situation, all the natural frequencies and

mode shapes are identical in both structures. In order to show the effect of the modal

coupling, the example free-free lattice with n = 20 unit cells is still considered. The mass

m̂ is arbitrarily set to m/100 and the modal coupling condition on the mass-stiffness ratio

gives:

K̂ = m̂
K

m
. (3.39)

Considering the boundary conditions, the end forces of the secondary lattice, N̂0 and N̂n,

are set to zero in order to satisfy the equivalence with the main free-free structure.

The 4×4 transfer matrix in Eq. (3.37) is used to compute the frequency response

function of the right end velocity in the main lattice. The results of the multimodal

coupling are shown in Fig. 3.11. When e is equal to zero, the frequency response function

is the same as the one obtained without control. Indeed, no energy is transferred to the

added masses which have thus no effect on the main lattice. However, the shape of the

response is clearly different when e differs from 0. A tuned mass effect is then observable

around all the initial natural frequencies. As mentioned previously, the amplitudes can

be reduced by adding damping in the control system. Again, replacing m̂ by m̂− jĉ/ω is

equivalent to the addition of dampers between the ground and the masses of the secondary
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Figure 3.11: Velocity FRFs with a multimodal coupling - (· · · ) with e = 0, (- · -) with
e = 1 and ĉ = 0, (—) with e = 1 and ĉ = 1.

lattice. With ĉ = 1 N/(m/s), it is seen that the velocity is strongly reduced whatever the

considered frequency. This highlights the interest of the multimodal tuned mass damping

strategy compared to a unimodal control. It is still remarked that the modal coupling

condition presented in Eq. (3.39) does not take into account the influence of the damping

parameter. Even if damping slightly shifts the resonances of the secondary lattice, we

remark in the following practical applications that this shift is insignificant compared to

the error induced by the discrete approximation of a continuous structure.

3.4.2 Electrical analogue of a rod

The previous lattice models can be transposed in the electrical domain by applying the

direct electromechanical analogy [74, 84]. This analogy assumes the equivalence between

force and voltage and between velocity and current. Consequently, a mass is equivalent

to an inductance and stiffness is equivalent to the inverse of a capacitance. Thereby, a

lattice of point masses corresponds to an electrical network made of a line of inductors

with connections to the ground through capacitors [83]. This is illustrated in Fig. 3.12

together with the corresponding electrical unit cell. The equations governing the electrical

unit cell,

−NL +NI = jωm
2 U̇L

−NI +NR = jωm
2 U̇R

−NI =
K
jω (U̇L − U̇I)

, (3.40)

−NL −NR

U̇L U̇R

1

K

m

2

m

2

Figure 3.12: Electrical analogue of a lattice of point masses and corresponding unit cell.
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Figure 3.13: Unit cell for the coupling of two electrical networks.

are the same as in Eq. (3.20) for the mechanical lattice unit cell, which validates the

analogous network. The analogues of the left and right currents are the derivatives of the

left and right displacements. Yet, the two voltages are equivalent to the opposite of the

normal forces in order to respect their definition that ensures an extension of the unit cell

for a positive normal force.

As for the mechanical lattices, it is possible to consider the coupling of two electrical

networks. The system of equation Eq. (3.35) is thus reformulated into

−NL +NI = jωm
2 U̇L

−NI +NR = jωm
2 U̇R

−NI =
K
jω (U̇L − U̇R)− eN̂I

and

−N̂L + N̂I = jω m̂
2

˙̂
UL

−N̂I + N̂R = jω m̂
2

˙̂
UR

−N̂I =
K̂
jω

(

˙̂
UL − ˙̂

UR + e(U̇L − U̇R)
)

. (3.41)

In this way, the analogue of the coupled mechanical unit cell in Fig. 3.10 is presented in

Fig. 3.13. The electrical equations are exactly the same as when coupling two mechanical

lattices. A transformer of e ratio transfers the energy from a network to the other. This

is the analogue of the lever represented in the mechanical model. The electric transfer

matrix corresponding to the coupling of two networks can thus be directly obtained from

Eq. (3.37). By setting N̂L = N̂R = 0 in the electrical circuit in Fig. 3.13, it appears the

electrical analogue of a tuned mass system, as presented in Fig. 3.6 with a tuned mass

m̃ = m̂/4. Finally, all the presented discrete mechanical models can thus be transposed

into their electrical analogues. The corresponding transfer matrices are the same and can

be used to study wave propagation in an electrical network.

3.4.3 Interconnected array of piezoelectric patches

The multimodal damping strategy illustrated in Fig. 3.11 for a purely mechanical case

can be extended to an electromechanical problem involving a rod coupled to its analogous

electrical network. Indeed, by comparing the coupled unit cell in Fig. 3.13 to the model
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Figure 3.14: Interconnected array of piezoelectric patches and corresponding electrome-
chanical unit cell.

related to the piezoelectric coupling in Fig. 3.9, we conceive that a multimodal control

can be achieved by interconnecting successive piezoelectric patches with suitable induc-

tors. The periodic electrical network interconnecting the array of patches is represented

in Fig. 3.14 together with the corresponding electromechanical unit cell. The analogue of

a discretized rod is thus implemented as in Fig. 3.12 because each piezoelectric patch acts

as a capacitor.

A multimodal control is ensured by applying the modal coupling condition (3.39)

adapted to the electromechanical problem:

1

LCε
=

KE

m
. (3.42)

So, the tuning of the network does not depend directly on a target frequency but it depends

on the local properties of the structure to control. By taking into account the numerical

values in Table 3.1, the inductance L is around 3 mH. This value is significantly lower

than the 110 mH inductance required for the control of the first longitudinal mode with

distributed resonant shunts. Furthermore, the modal coupling condition and the definition

of the global constants show that the required inductance decreases with an increase of

the number of unit cells. Indeed, for a piezoelectric material covering the whole length

of the rod but divided into n electrodes, the individual capacitance Cε and the mass

of a rod segment are proportional to 1/n, while the stiffness KE is proportional to n.

From Eq. (3.42), this means that L is proportional to 1/n. This conclusion was already

highlighted by Maurini et al. [15, 17, 18] from the analysis of an electrical continuum.

The relation is here illustrated from the discrete formulation and it still means that an

increase of the number of unit cells leads to lower values of the n individual inductors. As

a consequence, it becomes possible to look at lower frequency applications without being

limited by the inductance values proposed in standard series of passive inductors. This

strongly increases the potential of the multimodal damping strategy, which was already

attractive for its broadband capabilities.
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3.5 Transfer matrix models for longitudinal propagation

For the study of a one-dimensional electromechanical structure, a periodic layout en-

ables the use of a transfer matrix method that applies on state vectors including both

mechanical and electrical variables. Even if the electrical medium is discrete, the mechan-

ical structure can be approximated either by its discrete equivalent, by its homogenized

forms or by its finite element model. Offering an increasing complexity, those formulations

are compared in order to define their respective limits. Depending on the frequency range

of interest and the required accuracy, it is then possible to choose a suitable model for the

analysis of damping systems involving a piezoelectric network.

3.5.1 Discrete model based on global properties

In order to study a finite structure consisting of n unit cells as the one presented in

Fig. 3.14, a first step is to define its electromechanical transfer matrix. Contrary to pre-

vious studies on distributions of piezoelectric patches which focus on an homogenization

of the electrical network [12, 13, 17, 21, 22, 22, 94, 96], it is here chosen to discretize

the mechanical medium. This simplifies the problem and offers equivalence to the dis-

crete electrical network. From a mechanical point of view, the discrete model can be

illustrated by Fig. 3.15, where the total mass of the unit cell is discretized in two half

masses m/2 = (ρsSsa + 2ρpSplp)/2, where ρs and ρp are respectively the rod and patch

densities. Even if the mechanical representation could be appropriate, it is chosen to focus

on the electrical representation, which offers an easier analysis. By taking into account

the global piezoelectric coupling in Fig. 3.9 and the electrical network that is connected to

the patches in Fig. 3.14, the discrete electromechanical unit cell can be represented by the

electric scheme in Fig. 3.16, where appear the global constants obtained in Sec. 3.3. The

same electrical architecture as in Fig 3.13 is obtained, which means that our discretized

electromechanical unit cell is equivalent to the purely mechanical system in Fig. 3.10. So,

from the equivalent transfer matrix in Eq. (3.37), the coupled system is modeled by the

KEm
2

m
2

−NR−NL

eVIeVI

Figure 3.15: Discrete model for the rod segment.
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Figure 3.16: Discrete model of the electromechanical unit cell.
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, (3.43)

where f = ω2m/(2KE), f̂ = ω2LCε/2 and Λ = e2/(KECε), which corresponds to the

square of a coupling factor similar to the one presented in Chap. 2. According to Eq. (3.37)

and the direct electromechanical analogy, the dimensionless variables are U⋆ = U/a, N⋆ =

N/(KEa), q⋆ = q/(ea) and V ⋆ = CεV/(ea). Note the sign modification of some terms

of the matrix due to the fact that a voltage in the electrical domain is analogous to the

opposite of the normal force in the mechanical domain. Furthermore, the present 4×4

matrix, as well as the following transfer matrices, can be condensed into a 2×2 matrix in

order to consider an independent resonant shunt rather than the connection to a network.

This requires to set V ⋆
L and V ⋆

R to zero. With the discrete model, the 2×2 matrix form

in Eq. (3.30) is recovered with an electrical resonance at 2/
√
LCε because the equivalent

resonant shunt inductance is here equal to L/4.

3.5.2 Fully homogenized model for the rod segment

The transformation of the unit cell presented in Fig. 3.14 into its discrete model in

Fig. 3.16 requires to approximate the continuous rod by a discrete lattice. As mentioned in

Sec. 3.2, this is valid only when the considered wavelength is large compared to the length

of the unit cells. For shorter wavelength, the continuity of the mechanical medium can be

ensured with the homogenized rod model presented in Fig. 3.17. The Young’s modulus

Y E , the density ρ and the cross-sectional area S come from a homogenization along the

whole unit cell. A homogenized model is thus obtained, where the definition of e and Cε
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Figure 3.17: Fully homogenized model for the rod segment.

remains the same as in the discrete model:

NI = Y ESε− eVI

qI = e∆U + CεVI
, where Y E =

KEa

S
and S = Ss + 2Sp

lp
a
. (3.44)

It is seen from Fig. 3.17 that a force NR+eVI is applied to the right of the rod segment

and a force −(NL + eVI) is applied to its left. Consequently, the classical rod transfer

matrix in Eq. (3.18) can be used to described the relation between those two forces and

the corresponding end displacements, as

[

U⋆
R

N⋆
R + ΛV ⋆

I

]

= Tm

[

U⋆
L

N⋆
L + ΛV ⋆

I

]

, where Tm =

[

cos(ka) 1
ka sin(ka)

−ka sin(ka) cos(ka)

]

. (3.45)

The wavenumber k is obtained from the rod dispersion relation k = ω
√

ρ/Y E , where

ρ = m/(Sa) is the homogenized density of the unit cell. The dimensionless voltage variable

V ⋆
I appears in Eq. (3.45) but as the electrical network is still discrete, it is determined

from Fig. 3.16 that

V ⋆
I =

[

f̂ 1
]

[

q⋆L
V ⋆
L

]

, where f̂ = ω2LC
ε

2
(3.46)

Furthermore, the relation between the electrical state vectors is also obtained from Fig. 3.16.

A contribution due to the electromechanical coupling is added to a purely electrical con-

tribution:

[

q⋆R
V ⋆
R

]

= Te

[

q⋆L
V ⋆
L

]

+ (U⋆
L − U⋆

R)

[

1

f̂

]

where Te =





1− f̂ −1

2f̂(1− f̂

2
) 1− f̂



 (3.47)

Note that the electrical transfer matrix Te is similar to the lattice transfer matrix in

Eq. (3.23) because the considered electrical network is the analogue of a lattice of point

masses. Combining Eqs. (3.45), (3.46) and (3.47) leads to the matrix system





I2 0
[

1 0

f̂ 0

]

I2













U⋆
R

N⋆
R

q⋆R
V ⋆
R









=









Tm Λ(Tm − I2)

[

0 0

f̂ 1

]

[

1 0

f̂ 0

]

Te

















U⋆
L

N⋆
L

q⋆L
V ⋆
L









, (3.48)
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so the transfer matrix for the homogenized model is formulated as









U⋆
R

N⋆
R

q⋆R
V ⋆
R









=









Tm Λ(Tm − I2)

[

0 0

f̂ 1

]

−
[

1 0

f̂ 0

]

(Tm − I2) Te − Λ

[

1 0

f̂ 0

]

(Tm − I2)

[

0 0

f̂ 1

]

















U⋆
L

N⋆
L

q⋆L
V ⋆
L









. (3.49)

The unit cell is here described by a semi-continuous transfer matrix that respects both the

continuity of the mechanical structure and the discrete nature of the electrical network.

By replacing Tm and Te by their respective matrices and by permuting the state vectors

to get back to a formulation equivalent to Eq. (3.43), one finds









U⋆
R

q⋆R
N⋆

R

V ⋆
R









=











c Λsincf̂ sinc Λsinc

1− c 1− (1 + Λsinc)f̂ −sinc −(1 + Λsinc)

−1+c2

sinc −Λ(1− c)f̂ c −Λ(1− c)

(1− c)f̂ 2f̂
(

1− 1+Λsinc
2 f̂

)

−sincf̂ 1− (1 + Λsinc)f̂



















U⋆
L

q⋆L
N⋆

L

V ⋆
L









, (3.50)

where c = cos(
√

m/KEω) and sinc = sin(
√

m/KEω)/(
√

m/KEω). Actually, we would

find the exact same discrete transfer matrix as in Eq. (3.43) if Tm was replaced by its

discrete lattice approximation in Eq. (3.23). On the other hand, we remark that the

continuity of the mechanical medium can be recovered from a discrete approximation by

applying the transformation in Eq. (3.25) after redimensioning the matrix in Eq. (3.43).

The transfer matrix in Eq. (3.50) can also be condensed in a 2×2 transfer matrix when

considering the special case of an independent resonant shunt as presented in Fig. 3.8.

Indeed, with an inductance L connected to the pair of piezoelectric patches, V ⋆
L = V ⋆

R = 0

leads to

[

U⋆
R

N⋆
R

]

=

[

1− (1− c)f̃ sincf̃

−2 (1−c)
sinc

(

1− 1−c
2 f̃
)

1− (1− c)f̃

]

[

U⋆
L

N⋆
L

]

, (3.51)

where f̃ =
1− ω2LCε

1− ω2LCε (1 + Λsinc)
, which can be compared to its discrete approximation in

Eq. (3.30). Here, the proposed transfer matrix formulations ensure the mechanical continu-

ity but note that, because of the homogenization of the unit cell, the spatial discontinuity

induced by the thickness of the piezoelectric patches is not considered.

3.5.3 Piecewise homogenized model for the rod segment

A piecewise homogenized one-dimensional model of the unit cell allows taking into

account the mechanical discontinuity created by the addition of patches on the main

structure. This can be illustrated by the model presented in Fig. 3.18, where three different

rod segments are connected together. The central portion ’sp’ represents the part of the
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Figure 3.18: Piecewise homogenized model for the rod segment.

structure which is covered by the patches. By considering a normal force Nsp in this rod

segment, the problem can be expressed under the same form as in Eq. (3.44) through

Nsp = Y E
spSspεsp − espVI

qI = esp∆Usp + Cε
spVI

, where Y E
sp =

YsSs + 2Y E
p Sp

Ssp
(3.52)

and Ssp = Ss + 2Sp. The constants referring to the ’sp’ portion differ from the global

constants obtained for the discrete model as the two patches do not cover the whole unit

cell (a 6= lp). Nevertheless, esp and Cε
sp are determined with the same method as in

Eq. (3.33). The system of equations (3.52) can be transformed into a transfer matrix

formulation Tsp similar to Eq. (3.49) by remarking that the problem focusing on the ’sp’

rod segment is equivalent to the one presented for the fully homogenized model. Here, ρ

is simply replaced by ρsp = (ρsSs + 2ρpSp)/Ssp, which is the homogenized density of the

’sp’ rod segment. As the two ’s’ rod segments are purely elastic, their mechanical transfer

matrices Ts can be determined in the same way as Tm in Eq. (3.45), but with the use of

the constants Ys, ρs and Ss. Finally, if the 4×4 matrix Tsp corresponds to the ’sp’ rod

segment, the problem can be expressed as









U⋆
R

N⋆
R

Q⋆
R

V ⋆
R









=

[

Ts 0
0 I2

]

Tsp

[

Ts 0
0 I2

]









U⋆
L

N⋆
L

Q⋆
L

V ⋆
L









, where I2 =

[

1 0
0 1

]

. (3.53)

In this transfer matrix formulation, the order of the variables in the state vectors differs

from Eqs. (3.43) and (3.50) and has to be modified for any numerical comparison.

3.5.4 Finite element model

The three previous models are based on analytic formulations but the electromechan-

ical transfer matrix can also be obtained from a finite element analysis. The considered

numerical model is the one presented by Thomas et al. [70, 79] for the analysis of shunted

piezoelectric patches. In the present case involving two patches connected in parallel and

thus only one piezoelectric degree of freedom per unit cell, the finite element formulation
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can be simplified into

[

Mm 0
0 0

] [

q̈m

V̈I

]

+

[

Km Kc

−Kc
T Cε

sp

] [

qm
VI

]

=

[

Fm

qI

]

, (3.54)

where Mm, Km and Kc are respectively the mass, stiffness and coupling matrices that are

defined in Appendix B. As the patches are not shunted by an impedance but connected

to a network, the electrical variables cannot be condensed in the mechanical problem,

which requires a novel formulation. Actually, it is possible to define the electric charge qI

relatively to a charge vector qe =
[

qL qR
]T

and it is found from Fig. 3.16 that

qI = Sqqe where Sq =
[

1 −1
]

. (3.55)

Furthermore, by analogy with the force vector Fm and the displacement vector qm, we

define a voltage vector Fe =
[

VL −VR

]T
as the dual of the charge vector qe. The signs

are chosen according to the analogy with external forces applied to the unit cell. The

voltage vector is the result of two contributions: Fe = F e
e + Fm

e . The first contribution,

F e
e is purely electrical and corresponds to the voltage vector when qm = 0, i.e. when no

mechanical displacement is allowed. From the electrical network in Fig. 3.16,

F e
e =

[

Ke − ω2Me

]

qe, (3.56)

where Ke =









1

Cε
sp

− 1

Cε
sp

− 1

Cε
sp

1

Cε
sp









and Me =







L

2
0

0
L

2






are the electrical analogues of

stiffness and mass matrices. Note the use of the piezoelectric capacitance Cε
sp, which

account for the fact that we do not consider any global homogenization of the unit cell.

Then, the second contribution to the voltage vector is obtained when qe = 0. This

condition induces that qI = 0 and VI = VL = VR. Also, Eq. (3.54) gives VI = Kc
T qm/Cε

sp

when qI = 0. Consequently,

Fm
e =

1

Cε
sp

SV Kc
T qm where SV =

[

1 −1
]T

= Sq
T . (3.57)

In the end, Eqs. (3.54),(3.55), (3.56) and (3.57) give a dynamic stiffness matrix combining

mechanical and electrical degrees of freedom:

















Km +
1

Cε
sp

KcKc
T 1

Cε
sp

KcSq

1

Cε
sp

(KcSq)
T Ke









− ω2

[

Mm 0
0 Me

]









[

qm
qe

]

=

[

Fm

Fe

]

. (3.58)

With a restriction to the longitudinal case, qm = [UL qI UR] and Fm = [−NL 0 NR],

where qI is the mechanical displacement vector of the internal nodes of the unit cell. The

111



3.5. TRANSFER MATRIX MODELS FOR LONGITUDINAL PROPAGATION

dynamic stiffness matrix presented in Eq. (3.58) is then rearranged to bring together the

mechanical and electrical left and right components, as





D̃LL D̃LI D̃LR

D̃IL D̃II D̃IR

D̃RL D̃RI D̃RR









qL
qI
qR



 =





FL

0
FR



 where FL =

[

−NL

VL

]

, FR =

[

NR

−VR

]

, (3.59)

qL =
[

UL qL
]T

and qR =
[

UR qR
]T

. With this partitioning, the procedures of the

Wave Finite Element Method [106–108] can be implemented. It starts with an elimination

of the internal degrees of freedoms

[

DLL DLR

DRL DRR

] [

qL
qR

]

=

[

FL

FR

]

, where

DLL = D̃LL − D̃LID̃
−1

II D̃IL

DLR = D̃LR − D̃LID̃
−1

II D̃IR

DRL = D̃RL − D̃RID̃
−1

II D̃IL

DRR = D̃RR − D̃RID̃
−1

II D̃IR

, (3.60)

followed by a transformation of the condensed dynamic stiffness matrix into a transfer

matrix:








UR

qR
NR

−VR









=

[

−D
−1

LRDLL D
−1

LR

−DRL +DRRD
−1

LRDLL −DRRD
−1

LR

]









UL

qL
NL

−VL









. (3.61)

Here, the use of dimensionless state variables is not explicit because the transfer matrix

is built from classical mass, stiffness and coupling matrices. Yet, a nondimensionalization

can be easily introduced afterwards, when implementing the numerical computing.

3.5.5 Model comparison for large wavelength

The previous models are compared by considering the example of a free-free rod covered

with n = 20 pairs of piezoelectric patches. Table 3.1 gives the geometry and the material

properties of the unit cell. The twenty successive unit cells are electrically connected with

a line of inductors having identical values L = m/(KECε) = 3 mH in order to satisfy

the modal coupling condition (3.42). When short-circuiting both ends of the network,

this modal coupling condition tunes the electrical modes to the ones of the analogous

mechanical lattice. A tuned mass effect can thus be obtained on several modes together

and the vibration amplitudes are reduced by introducing damping in the network. In the

present example, a resistance RL
s = 3 Ω is added in series with the inductors by replacing

L by L− jRL
s /ω.

First, we consider a frequency range spanning from 1 Hz to 20 kHz, which covers the

first seven modes of the uncontrolled rod. In the following figures, the results referring to

the homogenized and the finite element model are not represented because their difference
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Figure 3.19: Attenuation constants - (· · · ) for the discrete model, (—) for the piecewise
homogenized model.
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Figure 3.20: Phase constants - (· · · ) for the discrete model, (—) for the piecewise homog-
enized model.
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Figure 3.21: Velocity FRFs - (· · · ) for the discrete model, (—) for the piecewise homoge-
nized model.

with the piecewise homogenized model is not noticeable over the considered frequency

range. The attenuation and phase constants obtained with the discrete and the piecewise

homogenized model are represented in Figs. 3.19 and 3.20. Each model offers two positive

propagation constants because they are built with 4×4 transfer matrices. Note that the

coupling of a rod to an analogous dissipative network modifies the wave propagation

because it creates a frequency band where none of the two attenuation constants is close

to zero, which induces damping of a wave propagating in the electromechanical waveguide.

This is confirmed by the velocity FRFs in Fig. 3.21 showing damping through a multimodal

tuned mass effect, similar to the results in Sec. 3.4 for a purely mechanical coupling. It is
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remarked that the discrete model is no more reliable above 10 kHz, which corresponds to

about 10 unit cells per wavelength. As predicted in Fig. 3.5, the position of the mechanical

resonances are shifted to lower frequencies because the mechanical medium is modeled

by a lattice. Then, when the network is tuned to reproduce the modal properties of the

lattice, the discrete model does not take into account the increasing mistuning between the

continuous and the discrete structures. This modeling approximation is clearly noticed

in Figs. 3.19 and 3.21, which confirm that, even if the discrete model is useful for the

understanding of the multimodal coupling, it is restricted to large wavelength compared

to the length of the unit cell.

3.5.6 Model comparison for short wavelength

The transfer matrix models are then compared at higher frequencies, from 40 kHz to

60 kHz, when the wavelength is close to the length of the unit cells. The finite element

model still tends to the piecewise homogenized model but the homogenized model presents

a different response. Note that no propagation occurs in the electrical network at such high

frequencies. In accordance with the results in Fig 3.3 for the mechanical lattice, one can

define ω = 2/
√
LCε as the lower bound for the stop band of the discrete electrical network,

which gives a frequency around 32 kHz. As a consequence, the electrical network has

almost no influence on mechanical wave propagation above 32 kHz and this is the reason

why we only compute, in Figs. 3.22 and 3.23, the propagation constants corresponding to

the mechanical part of the problem.

The piecewise homogenized model offers a stop band phenomenon around 50 kHz due to

the mechanical discontinuity induced by the addition of patches on the unit cell. This effect

clearly appears in Figs. 3.22 and 3.23 and it is confirmed by the velocity FRF in Fig. 3.24,

where no modes occur around 50 kHz. On the contrary, such a stop band phenomenon

does not appear with the homogenized model as the mechanical discontinuity induced by

the patches is not taken into account. The homogenized model is thus inappropriate in
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Figure 3.22: Attenuation constants - (−−) for the homogenized model, (—) for the piece-
wise homogenized model.
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Figure 3.23: Phase constants - (−−) for the homogenized model, (—) for the piecewise
homogenized model.
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Figure 3.24: Velocity FRFs - (−−) for the homogenized model, (—) for the piecewise
homogenized model.

the present case. Yet, since the control strategy involving the electrical network has here

no effect, the interest of an analysis at such high frequencies is not obvious.

3.6 Experiments on rod damping

The two control strategies based on independent resonant shunts and on a multi-

resonant network are applied to the damping of a rod covered with a periodic array of

piezoelectric patches. In both cases, the use of standard electrical components leads to

purely passive solutions. The experimental results are compared to the numerical results

obtained with the transfer matrix model involving a homogenized mechanical medium.

3.6.1 Experimental setup

The main structure is a one meter rod in aluminum alloy 2017, which is periodically

covered with n = 20 pairs of piezoelectric patches. Referring to Fig. 3.8, the geometry

of the setup is given in Table 3.1. Concerning the piezoelectric material, we select the

PIC 151 ceramic whose properties are also described in Table 3.1. The resulting structure

is suspended by elastic straps in order to tend to a free-free configuration. As presented
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that is equal to 4 grams. Consequently,

Nmes

N0
= 1 + ω2madd

U0

N0
. (3.62)

This force ratio is used to correct the frequency response function obtained from Eq. (3.4).

Secondly, it is observed that the stiffness added by the patches is slightly lower than the

theoretical value obtained with the longitudinal model. This is most likely due to 3D effects

and to the unconsidered glue layer that bond the patches to the rod. The stiffness loss

is corrected in the model by adding a coefficient γ that modify the value of the Young’s

modulus in short and open circuit (γY E
p and γY D

p ). The coefficient γ is fixed to 0.86

to fit with the experimental results. At last, the third addition in the model concerns

the mechanical damping. It is observed experimentally that the maximum velocity at

resonance decreases with an increase of the mode number. This can be modeled by an

equivalent complex Young’s modulus as Y (1 + jη(ω)), where η(ω) = αω. The coefficient

α is evaluated to 3 × 10−8 s in order to get close to the first four maxima of the velocity

with open-circuited piezoelectric patches.

Concerning the electrical components, as it was chosen to focus on a completely passive

control solution, they are selected in standard series with a 10% tolerance. As mentioned

in Chap. 2, the internal resistance of the standard inductors is not negligible and often too

high for the piezoelectric damping applications. Consequently, we had to select an inductor

series offering low resistance components. At the same time, no specific resistors need to

be added, which simplifies the network. The suppliers of standard electrical components

proposing a set of discrete values, it is not always possible to find inductors that suits with

the inductance L that is required for a modal coupling. However, it is possible to adjust

the tuning by adding capacitors in parallel to the piezoelectric patches. This increases

the capacitance Cε and gives a new degree of freedom in the choice of L. Nanofarad or

tenth of nanofarad are available in standard series of metallized polyester film capacitors.

This suits with the value of Cε which was evaluated to 35.3 nF for a pair of piezoelectric

patches.

3.6.2 Damping with independent resonant shunts

The implementation of the first control strategy involves independent resonant systems.

The periodicity of the structure is maintained by distributing identical resonant shunts all

along the rod. The first resonance of the free-free rod is chosen as the target of the control

strategy (2500 Hz). Consequently, the electrical resonance needs to be tuned to this specific

frequency. Direct measurements on a set of 20 inductors selected in a 100 mH series give an

inductance L = 96 mH and a series resistance RL
s = 80 Ω. For this inductance, a tuning

at 2500 Hz requires to increase Cε by 6.2 nF. This is performed by placing individual
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Figure 3.27: Velocity FRFs with distributed shunts - (· · · ) for the experiment with open-
circuited patches, (—) for the experiment with resonant shunts, (−−) for the transfer
matrix model with resonant shunts.

capacitors in parallel to the pairs of piezoelectric patches. The FRF corresponding to

the end velocity obtained with an existing unit force is presented in Fig. 3.27. The four

first modes of the free-free rod are observed over the 11.5 kHz frequency range. The

passive damping system gives a reduction of about 25 dB on the velocity amplitude of

the 1st resonance. However, the other resonances only present a limited attenuation. This

agrees with the frequency response obtained in Fig. 3.7 for a similar strategy with a purely

mechanical lattice model.

Regarding the correlation between the electromechanical model and the actual setup,

the theoretical response involving the 2×2 matrix in Eq. (3.51) is compared to the exper-

imental results. As conducted in Sec. 3.5, the damping is taken into account by replacing

the tuned inductance by L − jRL
s /ω. This corresponds to the inductance model that is

obtained when adding a resistor RL
s in series with an inductor. The expectations con-

cerning the velocity reduction on the first mode are satisfied as there is a difference of

less than 1 dB between the two maxima. Nevertheless, the theoretical curve presents a

local minimum, which is a characteristic of a slightly underdamped tuned mass system

[1, 2, 43, 79]. This double peak shape does not clearly appear in the present experiment.

It is observed higher damping compared to the prediction of the model. Actually, the 10%

tolerance of the standard passive components creates small tuning differences all along the

twenty shunts. As introduced in [4], the electrical resonances are distributed around an

average frequency value, which flattens the experimental FRF. In any case, a significant

vibration reduction is obtained on one particular mode with a completely passive system.

Yet, it remains the question of the frequency range of interest. For a constant capacitance,

the resonance frequency of the shunt is proportional to 1/
√
L. Consequently, if the target

frequency is divided by two, the inductance needs to be four times larger. This becomes

a real problem when looking at low frequencies, as it would requires large inductance

components that are not in the scope of standard passive series.
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3.6.3 Multi-resonant network

The next experiment is related to the validation of the multimodal damping strategy.

For the geometry and material properties described in Table 3.1, the application of the

modal coupling condition in Eq. (3.42) gives an inductance L equal to 2.8 mH. As it was

possible to find a set of components presenting this average inductance, no capacitors need

to be added. All the capacitance is supported by the pairs of piezoelectric patches. So,

the electrical network was realized by connecting successive unit cells with the selected

inductors. Both ends of the line are then closed with a L/2 inductance. This allows

respecting the unit cell architecture and the zero voltage boundary conditions which are

the equivalent of the free-free mechanical boundary conditions for the rod.

It is possible to verify the tuning of the electrical network before looking at its effect

on vibration reduction. A white noise voltage is applied at one end of the network and a

voltage is measured in the middle of the network. This gives the electrical FRF presented

in Fig. 3.28. The mechanical analogue of this experiment would be to measure the force

in the middle of the rod when applying a force at one end. As a free-free configuration

is analyzed, the middle of the rod is a node for the even force modes. The same remark

applies to the voltage as the electrical network was designed to tend to the analogue of the

free-free rod. This is confirmed by the electrical frequency response function where only

the odd resonances appear. A second remark concerns the ”sharp” antiresonances that

are observed on the electrical response. They correspond to an energy transfer from the

network to the rod around the mechanical resonances. Consequently, the tuning of the

network is electrically validated by controlling that the antiresonances are centered on the

electrical resonances.

The experimental voltage FRF is then compared to the result obtained with the pro-

posed transfer matrix model through the computing of the 4×4 matrix in Eq. (3.50). As

suggested for inductors in Chap. 2, it is found that an accurate result is obtained when
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Figure 3.28: Voltage FRFs with the multimodal damping - (—) for the experiment with
a tuned network, (−−) for the transfer matrix model with a tuned network, (- · -) for the
transfer matrix model with a detuned network.
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Z0(ω)

RZ
p

RZ
s

Figure 3.29: Model for the electrical components.

using both series and parallel resistance, RZ
s and RZ

p , when modeling the electrical com-

ponents. This model, presented in Fig. 3.29, applies on inductors with Z0(ω) = jωL0 and

on capacitors with Z0(ω) = 1/(jωCε
0). Here, L0 and Cε

0 refer to the perfect inductance

and capacitance, which were simply denoted L and Cε in the previous sections when no

internal damping was considered. From the proposed damping model, the total impedance

is then defined by Z(ω) = jωL(ω) or Z(ω) = 1/(jωCε(ω)). Consequently, the equivalent

electrical elements to introduce in the transfer matrices are

L(ω) =
RL

pL0

RL
p + jωL0

+
RL

s

jω

Cε(ω) =
1 + jωRC

p C
ε
0

jω(RC
s +RC

p )−RC
s R

C
p C

ε
0ω

2

. (3.63)

The following average values were measured directly on the electrical components over the

considered frequency range: RL
s = 1.3 Ω, RL

p = 12 kΩ, RC
s = 2.8 Ω and RC

p = 180 kΩ.

Those values are then used to compute the electrical FRF. It can be remarked in Fig. 3.28

that the theoretical antiresonances are deeper than the experimental ones. In fact, for

practical reasons, the rod was placed on a foam carpet during electrical measurements,

which adds mechanical damping and reduces the depth of the antiresonances. Apart from

antiresonances, the numerical and experimental curves are sufficiently close to validate the

transfer matrix model that can then be used for a network evaluation purpose. Indeed, it

is also represented in Fig. 3.28 a numerical FRF for a network that does not ensure the

coupling condition in Eq. (3.42) because only half of the required inductance is introduced.

In this last case, it is clear that the electrical resonances are not centered on the mechanical

ones.

3.6.4 Multimodal damping by analogous coupling

Once the electrical network is correctly tuned, the effect of the multimodal coupling

on the mechanical vibrations is observed. Figure 3.30 represents the experimental fre-

quency response functions with a tuned network and with open-circuited patches. The

performances are significant because the reduction is close to 25 dB for the first three

resonances. This clearly highlights the efficiency of a multimodal damping involving an
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Figure 3.30: Velocity FRFs for the multimodal damping strategy - (· · · ) for the experiment
with open-circuited patches, (—) for the experiment with an analogous network, (−−) for
the transfer matrix model with an analogous network.

analogous electrical network. It can still be remarked that a slight increase of the damping

would flattens the response and add a vibration reduction of a few decibels. The 2.8 mH

inductors selected in a standard series thus offers a series resistance which could be larger

for the present application. In any case, the experimental results are compared to the

matrix computation in Eq. (3.50) that can take into account the sub-optimal resistance.

Both responses are very similar, which gives a strong support to the semi-continuous trans-

fer matrix formulation for vibration control analysis. Note that the only adjusted model

parameters are γ and α, i.e. the stiffness loss and the viscous damping coefficients, which

are determined from the purely mechanical responses. All the other constants come from

direct electrical measurements or from material specifications. In the end, the vibration

reduction is so large that the addition of γ and α in the model does not induce noticeable

differences when the multimodal coupling operates.

Concerning the tuning of the electrical network, it can be seen from Fig. 3.30 that

the induced antiresonances are placed at lower frequencies than the initial mechanical

resonances. This effect is not pronounced for the first modes but is more observable for

higher modes, which present an antisymmetry of their local maxima. This increasing

mistuning is due to the fact that the electrical network is the analogue of the discrete

structure. As seen in Sec. 3.2, for a wavelength equal to 10 unit cells, there is a frequency

difference close to 2% between the continuous rod and its discrete analogue. With 20 cells

on a free-free structure, this frequency difference is obtained around the fourth modes.

Here, the mistuning remains limited but it becomes non-negligible for higher modes. If a

larger number of modes needs to be controlled, it is still possible to increase the number of

unit cells. This simply enhances the frequency range over which the discretized behavior

remains close the continuous one.
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3.7 Conclusions

In this chapter, it is observed that a continuous rod can be seen as a periodic structure

and analyzed through a transfer matrix formulation. This formulation is relevant when

modeling a rod with a lattice of point masses that are connected with springs. The

differences between the continuous and the discrete models are presented. The lattice

is compared to the considered wavelength as the unit cells need to be sufficiently small

to approximate a continuous structure. Secondly, solutions leading to the conversion

of vibration energy from a main lattice to a control system are investigated. A first

strategy consists in using independent tuned mass dampers that are distributed all along

the structure. A constant tuning gives the possibility to target one specific frequency,

which corresponds to the resonance of the added systems. In a context of rod vibration

control with piezoelectric patches, the electromechanical analogy implies that the tuned

mass damping strategy is analogous to the use of distributed resonant shunts. After

defining the unit cell of the electromechanical problem, its global properties are obtained

from a discrete model of the piezoelectric coupling. The tuning of the inductors is then

defined according to the target control frequency. However, a large number of piezoelectric

unit cells or low frequency multimodal applications lead to practical limitations because

of the required inductance and the number of electrical components.

An alternate control strategy is then proposed. It is based on the coupling of a main

structure to its modal equivalent. The unit cell that couples two mechanical lattices is

presented and we propose a simple modal coupling condition. With similar dispersion re-

lations and boundary conditions, it is possible to reach a multimodal tuned mass damping

that applies to all the natural frequencies of the main structure. This solution is trans-

posed to the electrical domain by using a direct electromechanical analogy. The electrical

analogue of a mechanical lattice points out the fact that a multimodal damping can be

achieved by connecting an electrical network to a continuous rod. This leads to the defi-

nition of a 4×4 transfer matrix that allows propagation in both mechanical and electrical

waveguides.

Four electromechanical models are presented and compared. While the electrical

medium is discrete, the mechanical structure can be approximated either by its discrete

equivalent, by a piecewise or full homogenized model, or by a finite element model. The

main advantage of the discrete model is its simplicity. This model is useful to understand

the multimodal coupling, but it is limited to a maximal frequency related to a minimum of

10 unit cells per wavelength. The full homogenized model allows taking into account the

mechanical continuity and is sufficiently accurate over the frequency range where the mul-

timodal control is effective. The piecewise homogenized model is required to analyze the
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stop-band induced by the mechanical discontinuities. However, this phenomenon, which

occurs for wavelength close to the length of the unit cell, is outside the scope of the mul-

timodal control since the electrical resonances are placed at lower frequencies. Finally,

the finite element model tends to the piecewise homogenized model when increasing the

number of elements.

Experiments on a rod equipped with 20 pairs of piezoelectric patches validate the

simulations for both mechanical and electrical responses. Furthermore, the two control

strategies are implemented with standard passive components. The multimodal damping

strategy is clearly validated as the vibration reduction is significant on all the observed

modes. Another strong interest of this strategy is that the inductance can be reduced by

increasing the number of unit cells. This differs from the more classical independent shunts

strategy that becomes impractical when looking at low frequencies. Finally, it is seen that

the use of a network linking successive piezoelectric elements can offer substantial benefits,

for both control performances and practical implementation.
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Chapter 4

Multimodal damping of a beam

coupled to its electrical analogue

Abstract: A multimodal damping strategy is implemented by coupling a beam

to its analogous electrical network. This network comes from the direct elec-

tromechanical analogy applied to a transverse lattice of point masses that rep-

resents the discrete model of a beam. The mechanical and electrical structures

are connected together through an array of piezoelectric patches. Four models

are proposed to describe wave propagation in the electromechanical medium.

The models are based on the transfer matrix formulation and consider a finite

number of patches. It is shown that a simple coupling condition gives a network

that approximates the modal properties of the beam. A multimodal tuned mass

effect is then obtained and a broadband damping is introduced by choosing a

suitable positioning for resistors in the network. The strategy and the mod-

els are experimentally validated by coupling a free-free beam to a completely

passive network made of inductors and transformers. A multimodal vibration

reduction is observed, which proves the efficiency of the control solution and

its potential in terms of practical implementation.
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4.1. INTRODUCTION

4.1 Introduction

Piezoelectric shunts can offer significant vibration reductions when an electrical res-

onance is tuned to the mechanical natural frequency to control [2, 43]. The concept of

resonant shunt was extended to the synthesis of metamaterials when came the idea of

distributing an array of piezoelectric patches all over a mechanical structure. Considering

one-dimensional media, longitudinal wave propagation was first considered [4, 102] and

the strategy was then applied to bending waves control [45, 46, 48, 49, 85, 86, 105]. The

classical passive resonant shunts can also be replaced by more broadband but not passive

solutions as amplified resonant shunts [88, 89], switch techniques [109–112] and negative

capacitance shunts [76, 90, 91, 113]. A periodicity of the one-dimensional structures en-

ables the use of the transfer matrix formulation [46, 82]. Structural discontinuities induces

band gaps [114–116] that can potentially be combined to the ones introduced by the piezo-

electric shunts [4, 46, 48, 88, 89, 91, 102]. Yet, as presented in the previous references and

in Chap. 3, the strategy benefiting from the mechanical band gaps introduced by the ad-

dition of piezoelectric patches is limited to wavelength sufficiently small compared to the

length of the patches. Consequently, it does not apply to the control of the first modes of

the considered periodic structures.

Furthermore, we have seen that an identical tuning of resonant shunts leads to a control

only around a single frequency and, still, high values of inductance are often required, which

forces the use of non-passive synthetic inductors [46, 48, 49]. It is yet possible to reduce

the required inductance by implementing an electrical network interconnecting successive

piezoelectric patches. This strategy was firstly described by Valis et al. [25] who analyzed

the coupling between traveling waves in an electrical transmission line and bending waves

in a beam. The network consists of a line of inductors connected to the ground through

the piezoelectric capacitance, as was also considered by dell’Isola and Vidoli [12, 94, 117]

and by Bergamini et al. [100] later on. With this simple network, a modal damping can

be achieved by introducing resistors and by tuning an electrical resonance to a target

frequency [26]. However, even if a line of inductors can generate a broadband damping for

a rod, it cannot reproduce the modal properties of a beam [13, 19].

Multimodal damping of a beam requires the implementation of higher-order networks

[13, 17, 97–99, 117]. A limit is that the proposed networks needs active control or includes

negative capacitors or negative inductors, which cannot be passive electrical components

[27–29]. A solution for a passive multimodal control is to find a network that matches a

specified number of modes to control from a numerical optimization constrained by the use

of only inductors and capacitors [95]. Yet, when considering a large number of mechanical

modes, this solution leads to a network with an impractical number of electrical compo-
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nents. A suitable passive electrical architecture involving transformers and inductors was

proposed by Porfiri et al. [16, 19, 21, 22, 96]. As it was shown that a multimodal control

can be achieved with a network approximating the beam modal properties, the electrical

topology is obtained from an electromechanical analogy [30, 37, 74]. This analogy, used

by Brillouin [83] on longitudinal periodic lattices, was considered in Chap. 3 to implement

the broadband control of longitudinal wave. When the damping strategy is extended to

the control of bending waves, the periodic layout of the resulting electromechanical struc-

ture still allows using the transfer matrix method [82, 106]. This method has often been

implemented in problems involving independent piezoelectric shunts [46, 48, 49] but rarely

with an interconnection of successive patches [101]. This last case requires the definition

of state vectors that combine both mechanical and electrical degrees of freedom, because

a real electromechanical waveguide is taken into account. The electrical part is then de-

scribed with the discrete equations governing the lumped electrical components but the

continuous mechanical medium can be approximated by various models.

In this chapter, the Euler Bernoulli beam model is presented, as well as its equivalent

transverse lattice obtained from a finite difference method. The direct electromechanical

analogy is applied to this lattice in order to find the analogous electrical network of a

beam. Both mechanical and electrical structures are then coupled through an array of

piezoelectric patches. The analysis of the coupling is given by a linear model focusing on

the global properties of a single unit cell subjected to bending motion. For the tuning

of the network, a multimodal coupling condition is deduced from the global constants

defining the electromechanical unit cell. Novel transfer matrix models are then proposed

in order to consider the coupling of a continuous beam to its discrete analogue. Those

models can be applied to real cases where the number of patches is not unlimited. We

first describe the electromechanical transfer matrices for a discrete or a fully homogenized

beam. Two other models are also presented: a piecewise homogenized model and a finite

element model, which both take into account the mechanical discontinuity induced by the

addition of piezoelectric patches. The models are then compared in order to define their

respective limits and to select the most appropriate depending on the frequency range of

interest. The next section details the practical implementation of the analogous electrical

network. Recommendations are given regarding the number of piezoelectric patches, the

positioning of damping elements and the design of the transformers. Finally, the models

and the damping strategy are experimentally validated with a passive analogous network

consisting of inductors and transformers. A method is also proposed to verify the tuning

of the network from purely electrical measurements. All of this shows the potential of the

strategy for multimodal vibration reduction and proves its practical feasibility.
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4.2 Bending wave propagation in a discretized beam

The transfer matrix formulation is able to model wave propagation in a one-dimensional

periodic structure. This applies to beams through a transfer matrix obtained from the

Euler-Bernoulli theory. It is then remarked that a beam can be discretized into a periodic

lattice that approximates the continuous beam dispersion relation. The corresponding

mechanical unit cell is presented together with its electrical analogue.

4.2.1 Mechanical analysis of a beam

Wave propagation in a beam can be described by the Euler-Bernoulli theory, which

considers small deflections, no shear strain and no rotational inertia. With no distributed

load, if Y is the Young’s modulus of the beam, ρ its density, S its cross-sectional area and

I its second moment of area, the bending wave differential equation is written as

ρS
∂2w(x, t)

∂t2
= −Y I

∂4w(x, t)

∂x4
, (4.1)

where w(x, t) represents the transverse displacement at longitudinal location x and time t.

A space-time separation w(x, t) = W (x)g(t) applied to the wave equation (4.1) gives two

uncoupled differential equations and the corresponding dispersion relation:

W (4)(x)− k4W (x) = 0
g′′(t) + ω2g(t) = 0

with ω2 =
Y I

ρS
k4, (4.2)

where [·](4) represents the fourth order derivative, [·]′′ is the second order derivative, ω is

the angular frequency and k is the wavenumber. Under harmonic excitation, the solution

of the differential equation related to the displacement is written as

W (x) = A cos(kx) +B sin(kx) + C cosh(kx) +D sinh(kx). (4.3)

The constants A, B, C and D depend on the boundary conditions, which are represented

in Fig. 4.1 for a beam segment of length a. Note that the angle θL shows a negative

value because it is represented in a clockwise direction. According to the Euler-Bernoulli

Figure 4.1: Considered beam segment.
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beam theory, the transverse displacement W (x), the rotation of the cross-section θ(x), the

bending moment M(x) and the shear force Q(x) are governed by

θ(x) = W ′(x)
M(x) = Y Iθ′(x)
Q(x) = −M ′(x)
−ρSω2W (x) = Q′(x)

, (4.4)

If the subscript L refers to the position x = 0, Eqs. (4.3) and (4.4) gives

WL = A+ C
θL = k(B +D)
ML = Y Ik2(−A+ C)
QL = Y Ik3(B −D)

, so

A = 1
2(WL − 1

Y Ik2
ML)

B = 1
2(

1
kθL + 1

Y Ik3
QL)

C = 1
2(WL + 1

Y Ik2
ML)

D = 1
2(

1
kθL − 1

Y Ik3
QL)

. (4.5)

Furthermore, for x = a, we define the state variables on the right of the unit cell as

WR = Ac +Bs + Cch +Dsh
θR = k (−As +Bc + Csh +Dch)
MR = Y Ik2 (−Ac−Bs + Cch +Dsh)
QR = −Y Ik3 (As−Bc + Csh +Dch)

, (4.6)

where c = cos(ka), ch = cosh(ka), s = sin(ka) and sh = sinh(ka). Eqs. (4.5) and (4.6) can

then be rearranged into the matrix form









W ⋆
R

θ⋆R
M⋆

R

Q⋆
R









=











c+ch
2

1
ka

s+sh
2 − 1

(ka)2
c−ch
2

1
(ka)3

s−sh
2

−ka s−sh
2

c+ch
2

1
ka

s+sh
2

1
(ka)2

c−ch
2

−(ka)2 c−ch
2 −ka s−sh

2
c+ch
2 − 1

ka
s+sh
2

−(ka)3 s+sh
2 (ka)2 c−ch

2 ka s−sh
2

c+ch
2



















W ⋆
L

θ⋆L
M⋆

L

Q⋆
L









, (4.7)

where W ⋆ = W/a, θ⋆ = θ, M⋆ = aM/(Y I) and Q⋆ = a2Q/(Y I). The system of equa-

tions (4.7) is related to the transfer matrix formulation introduced in Chap. 3. In the

present chapter, the displacement state vector is q = [W ⋆ θ⋆]T and the force state vector

is F = [M⋆ Q⋆]T . Dimensionless state variables are still employed in order to simplify the

matrix expression and to improve its conditioning.

4.2.2 Lattice model

The analysis of a homogeneous beam does not require to split the structure into several

unit cells as the analytic formulation can be directly obtained with a beam segment equal

to the whole beam length. However, when considering a non-homogeneous medium as

a discrete model, the local layout of the unit cells differs from the one of the complete

structure. The transfer matrix formulation becomes then helpful as it allows computing

the global mechanical behavior from the definition of a single unit cell.

129



4.2. BENDING WAVE PROPAGATION IN A DISCRETIZED BEAM

Figure 4.2: Discrete model of a beam segment.

The discrete model of a beam can be obtained through a finite difference procedure

combining forward, central and backward differences:

[·]′L = [·]I−[·]L
a/2 , [·]′I =

[·]R−[·]L
a , and [·]′R = [·]R−[·]I

a/2 . (4.8)

where the subscript I defines the center of the considered unit cell. By applying those

finite differences to the system of equations (4.4), one gets discrete relations between the

left, center and right state variables of a discretized beam unit cell as

a
2θL = WI −WL
a
2θR = WR −WI

MI = Kθ(θR − θL)
a
2QL = ML −MI
a
2QR = MI −MR

−mω2WI = QR −QL

, (4.9)

where the massm and the bending stiffnessKθ are defined from the material and geometric

properties of the beam segment:

m = ρSa and Kθ =
Y I

a
. (4.10)

It can be remarked that Eq. (4.9) defines a mechanical structure consisting of two massless

rigid bars of length a/2 linked together by a pivot joint. A lumped mass m and a torsion

springKθ are placed at the pivot location, as represented in Fig. 4.2 which satisfies Eq. (4.9)

for small displacements. WI corresponds to the displacement of the mass m and MI is the

torque applied to the torsion spring Kθ. As a consequence, a beam can be approximated

by a succession of identical unit cells referring to Fig. 4.2. This gives a lattice describing

transverse wave propagation, which can be seen as an extension of the previous spring-mass

lattice approximating wave propagation in a rod [83].

Equations (4.9) is reorganized into the transfer matrix formulation









W ⋆
R

θ⋆R
M⋆

R

Q⋆
R









=









1 1 1
2 −1

4
0 1 1 −1

2
f
2

f
4 1 −1

−f −f
2 0 1

















W ⋆
L

θ⋆L
M⋆

L

Q⋆
L









, (4.11)
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where f = ω2ma2/Kθ. As seen in Chap. 3, the eigenvalues of a transfer matrix are related

to the propagation constants of the corresponding one-dimensional problem [46, 82]. For

the 4×4 matrix in Eq. (4.11), we get the four eigenvalues

λ±

1 = 1−
√
f

2

(

1±
√

1− 4√
f

)

λ±

2 = 1 +

√
f

2

(

1±
√

1 +
4√
f

) . (4.12)

Both eigenvalues λ+
2 and λ−

2 are real numbers, which means that they refer to evanescent

waves for any positive value of f [82]. On the other hand, λ+
1 and λ−

1 are complex numbers

when f < 16. Those eigenvalues thus correspond to propagating waves and they are related

to the wavenumber of the discrete problem k̄ through λ±

1 = exp(±jk̄a). Consequently, it

is found that f = (2 sin(k̄a/2))4 when k̄a < π, i.e. f < 16. This gives the lattice dispersion

relation

ω2 =
Y I

ρS

(

k̄ sinc

(

k̄a

2

))4

. (4.13)

By comparing this equation to the beam dispersion relation in Eq. (4.2), it is seen that

they are equivalent when k̄a goes to zero. This condition occurs when the length of the

unit cell is sufficiently small compared to the considered wavelength. As a reference, it is

seen from Eq. (4.13) that 10 unit cells per wavelength (k̄a = 2π/10) gives a frequency for

the discrete model which is 3.2% lower than the frequency obtained with the continuous

beam dispersion relation. As a conclusion, it is shown that a beam can be approximated

by the lattice of point masses introduced in Fig. 4.2 as long as the number of unit cells

per wavelength is sufficiently large to satisfy the desired frequency accuracy.

The transverse lattice is compared to the continuous model by considering a l = 1 m

beam of Young’s modulus Y = 73.9 GPa, density ρ = 2780 kg/m3 and square cross-

sectional area S = 4 cm2. For any eigenvalue λ of the transfer matrices in Eqs. (4.7)

and (4.11), we compute the real and imaginary parts of ln(λ), which gives the attenuation

and phase constants [46, 82]. As they appear in pairs of opposite values, only the positive

constants are represented in Figs. 4.3 and 4.4. Two positive propagation constants are

found for each model because they refer to 4×4 transfer matrices. For the lattice model, we

remark a stop band above ω = 4/a
√

Kθ/m (i.e. f = 16), which corresponds to a frequency

equal to 7.58 kHz. Around this frequency and above it, the validity of the Euler-Bernoulli

beam is questionable but this classical continuous model is still adequate for a comparison

with a discrete model. Above 7.58 kHz, none of the attenuation constants is equal to zero

and, at the same time, the phase constants are equal to 0 or π. This indicates that no

wave can propagate in the discrete medium at such high frequencies. For ω < 4/a
√

Kθ/m,

which is equivalent to k̄a < π, the results related to the phase constants in Fig. 4.4 are

consistent with the continuous and lattice dispersion relations in Eqs. (4.2) and (4.13).
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Regarding a finite structure of n = 20 unit cells of length a = 50 mm, the frequency

response functions (FRFs) can be computed from the Ricatti transfer matrix method

presented in Chap. 3. A free-free beam and its equivalent lattice model are excited at

one end with a transverse unit force and the velocity at the other end is represented

in Fig. 4.5. The stop band phenomenon is obvious since no resonance appears above

7.58 kHz. Furthermore, we note that the approximation of the continuous beam by a

lattice model starts showing its limits above the fourth resonance (around 1 kHz) as

the differences in terms of natural frequencies becomes non-negligible. This confirms the

previous recommendation based on a minimum of 10 unit cells per wavelength in order to

get a suitable representation of a continuous medium with a discrete model.
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Figure 4.3: Attenuation constants - (—) for the continuous rod, (· · · ) for the lattice model.
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Figure 4.4: Phase constants - (—) for the continuous rod, (· · · ) for the lattice model.
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Figure 4.5: Velocity FRFs - (—) for the continuous rod, (· · · ) for the lattice model.
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4.2.3 Electrical analogue of a beam

The system of equations (4.9) was first represented through the mechanical unit cell in

Fig. 4.2 but it is also possible to define an analogous electrical representation. Using the

direct electromechanical analogy [74, 84], a voltage is analogous to a force or a moment

and a current is analogous to a linear velocity or an angular velocity. As a consequence,

a mass is represented by an inductance and a stiffness by the inverse of a capacitance.

When focusing on the unit cell presented in Fig. 4.2, it is also required to find the electrical

analogues for the two levers of length a/2. We note from Eq. (4.9) that the length a/2

corresponds to the proportionality constant between the transverse velocity differences

and the angular velocities of the two rigid bars. Moreover, a/2 is also the proportionality

constant between the bending moment differences and the shear forces in the same bars.

This is finally modeled by an electrical transformer, where the ratio a/2 of the voltages on

both windings is the inverse of the respective ratio of the currents. All of this is illustrated

in Fig. 4.6 where conventional electrical notations are replaced by their analogues that

refer to the mechanical unit cell in Fig. 4.2. Note that the electrical unit cell strictly

satisfies Eq. (4.9), which can be reformulated as

a
2 θ̇L = ẆI − ẆL
a
2
˙θR = ẆR − ẆI

−MI =
Kθ

jω (θ̇L − θ̇R)

−ML +MI = −a
2QL

−MI +MR = −a
2QR

−QL +QR = jωmẆI

, (4.14)

where ẆI = jωWI represents the current flowing through the inductor m and MI is the

voltage across the capacitance 1/Kθ. Actually, the electrical network could have been

directly obtained from Eq. (4.9) without first appeal to the electromechanical analogy.

Yet, applying the electromechanical analogy to the mechanical unit cell in Fig. 4.2 makes

easier the determination and the understanding of the network topology.

Figure 4.6: Electrical analogue of the discrete beam segment.
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A periodic electrical network is formed by connecting identical electrical unit cells in

series. It is remarked that two transformers in series can be replaced by a single one with a

doubled transformation ratio a. This is the equivalent of a rigid connection of two levers of

length a/2, which gives a single lever of length a. Consequently, we get a network topology

similar to the one already introduced by MacNeal in 1949 [30, 37]. Porfiri et al. also got

the same topology from a finite difference method on the Timoshenko equations followed

by simplifications through Euler-Bernoulli assumptions [16, 22], which leads to a passive

network that necessarily involves electrical transformers [21]. Finally, it becomes possible

to implement an electrical network that approximates the modal behavior of a beam. The

electrical connections at both ends of the network depend on the analogous mechanical

boundary conditions. For example, when referring to the direct electromechanical analogy,

the analogue of a clamped beam would require open electrical connections. Indeed, a zero-

current is analogous to a zero-velocity. On the other hand, a free-free beam requires

grounded electrical connections at both ends, as a zero-voltage is analogous to a zero-force

or a zero-moment. Then, as the network is made of discrete electrical components, its

model refers to the transfer matrix in Eq. (4.11) and the lattice dispersion relation (4.13).

Electrical frequency response functions can thus be computed with the same transfer

matrix method as the one implemented for the beam and for its lattice model.

4.3 Coupling of a beam to its electrical analogue

As shown in Chap. 3, wave propagation in a mechanical structure can be controlled

by a coupling to an electrical network exhibiting a similar dispersion relation. So, a beam

is coupled to its analogous electrical network through a periodic array of piezoelectric

patches. A unit cell is defined by considering both mechanical and electrical propagation

media. Afterwards, the linear piezoelectricity theory gives a global piezoelectric model,

which brings an electrical tuning condition depending on the properties of a single unit cell.

4.3.1 Electromechanical unit cell

A periodic array of piezoelectric patches is distributed on a homogeneous beam. An

electrical network interconnects the patches, which creates an electrical waveguide. As

presented by Vidoli and dell’Isola [94] and Maurini et al. [17, 18], a wide-band energy

exchange is achieved by connecting a mechanical structure to its electrical analogue. So,

the chosen network is the periodic electrical analogue of a beam in order to implement a

broadband control of bending modes [19, 21, 22]. As seen in Fig. 4.7, an electromechanical

periodic structure is obtained and a unit cell of length a can be defined. The thickness

of the main structure is hs and its width is b. The piezoelectric patches have a thickness
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Figure 4.7: Beam coupled to its analogous electrical network through a periodic array of
piezoelectric patches and corresponding electromechanical unit cell.

Beam (Aluminum 2017) Patches (PIC 151)

Length (mm) 20× a = 20× 50 lp = 30
Width (mm) b = 20 b = 20

Thickness (mm) hs = 20 hp = 0.5
Density (kg/m3) ρs = 2780 ρp = 7800

Young’s modulus (GPa) Ys = 73.9 1/sE11 = 66.7
Charge constant (pC/N) - d31 = −210
Permittivity (nF/m) - ǫσ33 = 21.2

Table 4.1: Dimensions and material properties for the beam and for the piezoelectric
patches.

hp, a width b and a length lp, with lp ≤ a. Listed in Table 4.1, the same numerical values

as in Chap. 3 are employed in the following sections. In terms of electrical variables, q̇I is

the current flowing from the network to the pair of patches and VI is the voltage on the

electrodes connected to the network. As the two piezoelectric patches are connected in

parallel, they need to be transversely polarized in identical directions in order to generate a

non-zero voltage when bending excitation occurs [2, 17, 22, 71]. Because the piezoelectric

patches are equivalent to capacitors in the electrical domain, no external capacitors are

required to implement the analogous network and the electrical part of the unit cell only

consists of two transformers of ratio â/2 and one inductor L.

The mechanical part of the unit cell in Fig. 4.7 is made of an elastic beam segment

symmetrically covered with two piezoelectric patches. This structure can be seen as a

homogenized medium governed by a global piezoelectric coupling, similar to the homoge-

nized model in Chap. 3 but reformulated for bending motion. We first consider a simplified

case where the patches cover the whole beam segment (a = lp). We also make use of the

fact that, for large wavelength compared to the unit cell, a longitudinal strain ε1 in a

piezoelectric patch can be approximated by ∆Up/lp, where ∆Up is the difference of the

displacements at both ends of the patch. So, ∆Up is approximated by −(hs + hp)∆θ/2,
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Figure 4.8: Model of the piezoelectric coupling for a unit cell subjected to bending.

when ∆θ = θR − θL represents the difference of the rotations at both ends of the unit cell.

From the definition of the blocked capacitance Cε
p of a single piezoelectric patch and its

coupling coefficient ep introduced in Chap. 2, we get the bending model

MI = KE
θ ∆θ − eθVI

qI = eθ∆θ + CεVI
, (4.15)

where Cε = 2Cε
p and eθ = −(hs + hp)ep. Here, MI is the bending moment and KE

θ is the

bending stiffness when the pair of patches is short-circuited. When a = lp, K
E
θ is equal to

(YsIs + 2Y E
p Ip)/a, where Is = bh3s/12, Ip = b((hs + 2hp)

3 − h3s )/24 and Y E
p = 1/sE11.

The global formulation (4.15) can be illustrated through the electric circuit in Fig. 4.8.

This model is still based on the direct electromechanical analogy, as it is the only analogy

that allows the passive electrical representation of an energy conversion system based

on the action of electrostatic forces [74]. The transformer represents the piezoelectric

coupling, which connects the mechanical branch, on the left of the circuit, to the electrical

branch on the right [72, 73]. This model comes directly from the one-dimensional linear

piezoelectricity theory and is usually employed to describe a single piezoelectric patch

[84]. It is here extended to the bending of the whole unit cell by focusing on its global

properties.

4.3.2 Determination of the global constants

Two limits appear in the previous formulation. First of all, it seems important to

keep the possibility to consider a unit cell where the patches do not cover the entire beam

segment (a 6= lp), which occurs in most practical configurations. Secondly, the definition

of the blocked capacitance Cε
p and piezoelectric coupling ep in Chap. 2 assumes a free

stress state along the direction ’2’ of the patches. This does not represent any classical

implementation because, when the patches are glued on a structure, it obviously acts along

both directions ’1’ and ’2’. This clearly affects the equivalent permittivity which has been

used to calculate Cε
p. So, the analytic calculation of the blocked capacitance is not trivial

and it requires to perform a three-dimensional analysis. This was presented by Maurini
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et al. [18, 71], who proposed a correction of the equivalent material properties. In order

to get the global properties defined in the global bending model (4.15), we focus on a

more practical solution that follows the same method as was described in Chap. 3 for the

longitudinal unit cell.

For a general case considering a 6= lp, the global bending stiffness is obtained from the

geometry and the material properties of the unit cell in Fig. 4.7 by

1

KE
θ

=
lp

YsIs + 2Y E
p Ip

+
a− lp
YsIs

. (4.16)

Then, if KD
θ refers to the bending stiffness in open circuit (q̇I = 0), it can be seen

from Fig. 4.8 that KD
θ = KE

θ + e2θ/C
ε. In a similar manner, the free capacitance Cσ

is obtained when no bending moment is applied to the unit cell (MI = 0), which gives

Cσ = Cε + e2θ/K
E
θ . The global coupling coefficient eθ and the blocked capacitance Cε are

thus expressed from

Cε = Cσ KE

θ

KD

θ

eθ =

√

CσKE
θ

(

1− KE

θ

KD

θ

) . (4.17)

The short-circuit bending stiffness KE
θ is already known but it still remains to define the

open-circuit bending stiffness KD
θ and the free capacitance Cσ. KD

θ is obtained directly

from Eq. (4.16) by replacing the piezoelectric Young’s modulus in short-circuit Y E
p by

Y D
p = 1/(sE11 − d231/ǫ

σ
33), that represents the equivalent Young’s modulus in open-circuit.

Concerning the capacitance Cσ, it would still require a 3D calculation but it can also be

directly measured on the patches. This electrical measurement is actually not an easy

task with Cε as it would be required to prevent rotations at both ends of the unit cell.

That is the reason why we focus on Cσ, which offers an easier measurement based on free

mechanical boundary conditions.

4.3.3 Modal coupling condition

Regarding the analogous electrical network that interconnects successive piezoelectric

unit cells, its main interest is that it can approximate the modal behavior of the whole

mechanical structure. A modal coupling optimizing the energy transfer between the two

media is obtained when they have a same dispersion relation and analogous boundary

conditions [17]. The considered network being discrete, its electrical components are tuned

to equal the dispersion relation related to the lattice model of the beam. When looking at

Eq. (4.11), we note that two discrete unit cell having an identical f value, i.e. a same ratio

Kθ/(a
2m), would present identical dimensionless transfer matrices. Consequently, with

analogous boundary conditions, a transverse lattice and its analogous electrical network
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exhibit the same natural frequencies and the same mode shapes if

1

â2
1

LCε
=

1

a2
KE

θ

m
. (4.18)

For the unit cell described in Table 4.1, the blocked capacitance Cε is evaluated to 35.3 nF

and we thus get an inductance L around 200 mH. With an analogous network satisfying

this coupling condition, the resonances do not only match along the frequency domain

but also on the spatial domain thanks to similar mode shapes. Here is thus added an

electrical space dimension, which does not appear with an array of independent resonant

shunts [4, 46, 48, 102].

The global capacitance of a unit cell Cε is approximately proportional to Ap, the surface

area of a piezoelectric patch. For a fixed thickness of the patches and a fixed length and

width of the beam, Ap is then proportional to 1/n, where n is the number of unit cells.

So, the modal coupling condition (4.18) shows that a prescribed amount of piezoelectric

material leads to L ∝ 1/n3. This was also noticed by Maurini et al. [17, 18] from the

analysis of fourth-order homogenized networks. An increase in the number of unit cells

gives lower values of the required inductance. It then becomes possible to consider lower

frequency applications without being limited by restrictions on the available inductance

values.

4.4 Transfer matrix models for bending wave propagation

Four transfer matrix models are proposed for the electromechanical unit cell. All of

them take into account a discrete electrical network but they differ in the definition of the

mechanical medium. The first model considers a discretized beam, whereas the second

is fully homogenized. Then, the discontinuity induced by the piezoelectric patches is

introduced in a piecewise homogenized model. This third transfer matrix formulation is

consistent with the last model, which is based on a finite element method. Offering an

increasing complexity, those four models are compared in order to define their respective

limits.

4.4.1 Discrete model based on global properties

Our goal is to model a beam that is coupled to a network of electrical components

through a periodic array of piezoelectric patches. So, we deal with two waveguides of

different natures: the beam is continuous and the electrical network is discrete. In or-

der to simplify the analysis, it is convenient to set up an analytic model combining two

structures of identical nature. This is the reason why most of the papers focusing on the
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Figure 4.9: Discrete model for the beam segment.

piezoelectric coupling of a beam to an electrical network perform a homogenization of the

electrical medium [17, 21, 22, 25, 94–96, 99]. This homogenization is justified for a large

number of piezoelectric elements. Nevertheless, when considering practical implementa-

tions, the number of components is not unlimited and the network needs to be modeled

as a discrete structure. Consequently, another solution bringing together two structures

of similar nature is to discretize the mechanical medium. The beam is thus approximated

by its lattice model presented Fig. 4.2. When considering the effect of the piezoelectric

coupling in Eq. (4.15), the discrete model of the unit cell is illustrated in Fig. 4.9. The

torsional spring refers to the bending stiffness KE
θ and the lumped mass is the total mass

of the continuous unit cell m = ρsSsa+2ρpSplp, where ρs and ρp are respectively the den-

sity of the main structure and the density of the piezoelectric patches, while Ss = bhs and

Sp = bhp are the beam and patch cross-sectional areas. The shear force is not represented

in Fig. 4.9 because it does not depend directly on the piezoelectric coupling, contrary to

the total bending moment, which is increased by eθVI according to Eq. (4.15).

When the discrete mechanical unit cell is coupled to its analogous electrical network,

the resulting discrete electromechanical unit cell results from a combination of the electrical

representations in Figs. 4.6, 4.7 and 4.8. Therefore, the electromechanical problem can

be seen as the coupling of two electrical networks having the same topology, which is

represented in Fig. 4.10. The currents q̇w and q̇θ are the analogues of the velocities Ẇ

−QL

m

−QR

−ML −MR

ẆL ẆR

θ̇L θ̇R

1

Kθ

1

a/2

1

a/2
....

VwL

L

VwR

VθL VθR

q̇wL

Cε

1

â/2

1

â/2
....

q̇wR

q̇θL q̇θR

eθ : 1

−M I VI

Figure 4.10: Discrete model for the electromechanical unit cell.
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and θ̇ and the voltages Vθ and Vw are the analogues of the bending moments −M and the

shear forces −Q. The network capacitance is equal to the blocked capacitance of the pair

of patches Cε if no additional capacitors are introduced in the network. The equations

governing the electrical circuit in Fig. 4.10 are

a
2 θ̇L = ẆI − ẆL
a
2
˙θR = ẆR − ẆI

−MI =
Kθ

jω
(θ̇L − θ̇R) + eθVI

−ML +MI = −a
2QL

−MI +MR = −a
2QR

−QL +QR = jωmẆI

and

a
2 q̇θL = q̇wI

− q̇wL
a
2 q̇θR = q̇wR

− q̇wI

VI =
1

jωCε

(

q̇θL − q̇θR + eθ(θ̇L − θ̇R)
)

VθL − VI =
â
2VwL

VI − VθR = â
2VwR

VwL − VwR = jωLq̇wI

, (4.19)

where ẆI and ˙qwI are the currents flowing through the inductors m and L. From this

system of equations, the relation between the electromechanical state vectors at the right

and left ends of the unit cell is given by the transfer matrix formulation
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, (4.20)

where f = ω2ma2/KE
θ , f̂ = ω2LCεâ2 and Λ = e2θ/(K

E
θ Cε), which corresponds to the

square of a global coupling factor similar to what has been introduced for the longitudinal

case in Chap. 3. As in Eq. (4.7), the symbol ’⋆’ denotes dimensionless state variables,

which are highlighted for the sake of conciseness of the transfer matrix and to improve

its conditioning: W ⋆ = W/a, θ⋆ = θ, M⋆ = M/KE
θ , Q⋆ = aQ/KE

θ , q⋆w = qw/(eθâ),

q⋆θ = qθ/eθ, V
⋆
θ = CεVθ/eθ and V ⋆

w = âCεVw/eθ. It then becomes possible to compute the

behavior of a succession of several electromechanical unit cells from the Ricatti transfer

matrix method presented in Chap. 3, with q = [W ⋆ θ⋆ q⋆w q⋆θ ]
T and F = [M⋆ Q⋆ V ⋆

θ V ⋆
w ]

T

defining the ”displacement” and ”force” vectors.

4.4.2 Fully homogenized model for the beam segment

The discrete model has been obtained by approximating a continuous beam segment

with a lattice model. As mentioned in Sec. 4.2, this approximation is valid only when the

considered wavelength is large compared to the length of the unit cells. A minimum of 10

unit cells per wavelength allows a frequency error of less than 4% as given by Eq. (4.13).
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Figure 4.11: Fully homogenized model for the beam segment.

Yet, when the number of piezoelectric patches is limited, the discrete model becomes too

inaccurate to describe the behavior of the continuous mechanical structure. As highlighted

by Bisegna et al. [99], it is thus essential to develop a semi-continuous model that maintains

the continuity of the beam together with a discrete electrical network.

In order to keep the model as simple as possible, it is here chosen to consider a homo-

geneous beam segment, as the one presented in Fig. 4.11, where the discontinuity induced

by the thickness of the patches is not taken into account. So, we can keep using the global

constants appearing in Eq. (4.15) for the discrete model, but the continuity of the me-

chanical medium is recovered by replacing ∆θ by aθ′(x) in the bending moment equation.

The piezoelectric coupling on the continuous beam segment is then

M(x) = Y EIθ′(x)− eθVI

qI = eθ∆θ + CεVI
, (4.21)

where Y EI = KE
θ a. Figure 4.11 shows that a bending moment MR + eθVI is applied on

the right side of the beam segment and a bending moment −(ML + eθVI) is applied on its

left side. We can thus consider a modified bending variable M(x) + eθVI which is equal

to Y EIθ′(x), so it does not depend on the electrical state anymore. A purely mechanical

transfer matrix Tm is then used to described the relation between the dimensionless forces

and displacements at both ends as








W ⋆
R
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Q⋆
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







, where V ⋆
I =

Cε

eθ
VI. (4.22)

As we focus on a homogeneous Euler-Bernouilli beam segment, Tm is the transfer matrix

in Eq. (4.7) with k = 4
√

ρSω2/Y EI and ρS = m/a.

Concerning the electrical medium which is unchanged, note from Fig. 4.10 that

V ⋆
I =

[

0 0 1 − 1

2

]


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



qw
⋆
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qθ
⋆
L

Vθ
⋆
L

Vw
⋆
L









. (4.23)

Furthermore, Fig. 4.10 shows that the electrical propagation results from the superposition

of a purely electrical contribution, involving an electrical transfer matrix Te, and a second
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contribution due to the coupling eθ:
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. (4.24)

We remark that Te is similar to the transfer matrix of the lattice model in Eq. (4.11)

because the considered electrical network is the analogue of a discretized beam. Combining

Eqs. (4.22), (4.23) and (4.24) leads to the matrix form
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, (4.25)

which can be reorganized into
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, (4.26)

where I4 is a 4×4 identity matrix, 04 is a 4×4 zero matrix, 02 is a 2×2 zero matrix and

T ′

e = Te − Λ





[

0 1
2

0 1

]

02

02 02



 (Tm − I4)





02 02

02

[

1 −1
2

0 0

]



 . (4.27)

In the end, Eq. (4.26) is the transfer matrix formulation giving the relation between the dis-

placements, electric charges, forces and voltages at both ends of a unit cell involving a ho-

mogenized mechanical medium. Note that permutations are required to get the same form

as in Eqs. (4.20), involving ”displacement” and ”force” state vectors q = [W ⋆ θ⋆ q⋆w q⋆θ ]
T

and F = [M⋆ Q⋆ V ⋆
θ V ⋆

w ]
T .

4.4.3 Piecewise homogenized model for the beam segment

The previous homogenized model does not take into account the mechanical discontinu-

ity induced by the addition of piezoelectric patches on the beam. This can be corrected by
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Figure 4.12: Piecewise homogenized model for the beam segment.

discriminating the purely elastic segments ’s’ from the segments ’sp’ involving a piezoelec-

tric contribution. The piecewise homogenized model is thus made of three beam segments,

as presented in Fig. 4.12. In the ’sp’ segment covered by the pair of piezoelectric patches,

the problem can be expressed under a homogenized form similar to Eq. (4.21):

Msp(x) = Y E
sp Ispθ

′
p(x)− espVI

qI = esp∆θp + Cε
spVI

, where Y E
sp Isp = YsIs + 2Y E

p Ip. (4.28)

The ’sp’ constants appearing in the previous system of equations are not equal to the ones

in Eq. (4.21) because they refer to the central segment of the unit cell, without considering

the purely elastic segments. Nevertheless, esp and Cε
sp can be calculated with the same

method as in Eq. (4.17) by considering a global stiffness that refers to the sole ’sp’ segment.

As the one-dimensional problem focusing on the ’sp’ beam segment is equivalent to

the previous homogenized model, a 8×8 transfer matrix Tsp is built on the same form as

Eq. (4.26) but with homogenized constants referring to the ’sp’ segment. The two ’s’ beam

segments are purely elastic, so their 4×4 mechanical transfer matrices Ts are similar to Tm

but with the use of the constants Ys, ρs, Ss and Is. As a result, the piecewise homogenized

model of the electromechanical unit cell is given by
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



. (4.29)

As for the homogenized model, the present formulation is based on a distinction between

groups of mechanical and electrical variables, which defines the arrangement of the state

vectors. Again, simple permutations allow presenting the problem under a form highlight-

ing ”force” and ”displacement” vectors, as proposed in Eq. (4.20).
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4.4.4 Finite element model

A convenient finite element model was proposed by Thomas et al. [70, 79], who focused

on thin piezoelectric patches shunted with independent electrical circuits. The model

is based on a condensation of the electrical degrees of freedom in order to recast the

system into a standard elastic vibration problem. However, as mentioned in Chap. 3,

this method is not applicable when considering connections of different patches with an

electrical network. There are electrical nodes that interconnect successive unit cells, which

means that the corresponding electrical degrees of freedom cannot be condensed. Before

condensation, the finite element formulation is expressed as follows
[

Mm 0
0 0

] [

q̈m

V̈I

]

+

[

Km Kc

−Kc
T Cε

sp

] [

qm
VI

]

=

[

Fm

qI

]

, (4.30)

where Mm, Km and Kc are respectively the mass, stiffness and coupling matrices defined

in Appendix B. The capacitance Cε
sp is used in the one dimensional model because it has

to represent the piezoelectric capacitance when no bending motion is allowed. The electric

charge qI flowing toward the pair of piezoelectric patches is obtained from the topology of

the analogous network in Fig. 4.10 as

qI = Sqqe where Sq =
[

0 1 0 −1
]

and qe =
[

qwL qθL qwR qθR
]T

. (4.31)

By analogy with the force vector Fm and the displacement vector qm, the voltage

vector Fe =
[

VwL VθL −VwR −VθR

]T
is defined as the dual of the electric charge

vector qe. The principle of superposition allows considering that the voltage vector Fe

is a sum of two contributions. The first contribution is obtained when no mechanical

displacement is allowed (qm = 0) and the second contribution excludes external charge

displacements (qe = 0), then Fe = F e
e + Fm

e . The purely electrical contribution F e
e

only depends on the choice of the electrical network. Similarly to established practices

in mechanical problems, we define the electrical matrices Ke and Me as equivalents of

stiffness and mass matrices:

F e
e =

[

Ke − ω2Me

]

qe. (4.32)

When considering the electrical analogue of a beam, Me can be found from the network in

Fig. 4.10 with eθ = 0 and no ”electrical stiffness”, which means a piezoelectric capacitance

that goes to infinity, so that VI = 0. We thus get

Me =
L

2









1 â/2 0 0
â/2 â2/4 0 0
0 0 1 −â/2
0 0 −â/2 â2/4









. (4.33)

Yet, the matrix Ke cannot be obtained directly from Fig. 4.10 with eθ = 0 and no ”electri-

cal mass”, i.e. L = 0. Actually, Ke is not defined, unless we introduce additional degrees
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Figure 4.13: Additional compliance to allow the definition of a stiffness matrix: (a) Mod-
ified unit cell in the mechanical domain. (b) Modified unit cell in the electrical domain.

of freedom. This can be understood by looking at the lattice model in Fig. 4.2, where the

displacements and angles at both ends of the unit cell cannot be chosen independently

because the kinematics enforces WR − WL = a
2 (θL + θR). This constraint is relaxed by

adding compliance through springs 2/C0, as seen in Fig. 4.13(a). Then, if the additional

springs 2/C0 are close to the ends of the unit cell, the electrical analogue is represented

in Fig. 4.13(b) with capacitors C0/2 at both ends of the ’θ’ electrical line, which adds two

electrical degrees of freedom. The ”stiffness” matrix Ke of this modified electrical unit

cell is thus obtained by setting L = 0 in Fig. 4.13(b) or by considering the static stiffness

matrix of the mechanical unit cell in Fig. 4.13(a). In any case, one finds that

Ke =
4

â2C0


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
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









. (4.34)

Note that the capacitance C0 is a numerical parameter that has to be small compared

to Cε
sp. A good practice is to set C0 between Cε

sp × 10−3 and Cε
sp × 10−9 to conceal its

influence on electrical propagation and to avoid numerical issues.

The contribution Fm
e is equal to Fe when qe = 0. Fig. 4.10 shows that qe = 0 induces

that qI = 0. Then, qI = 0 means that VwL = VwR = 0 and VθL = VθR = VI. Furthermore,

Eq. (4.30) gives VI = Kc
T qm/Cε

sp when qI = 0. As a consequence,

Fm
e =

1

Cε
sp

SV Kc
T qm where SV =

[

0 1 0 −1
]T

= Sq
T . (4.35)

Finally, Eqs. (4.30), (4.31), (4.32) and (4.35) lead to the following dynamic stiffness matrix

involving a combination of mechanical and electrical degrees of freedom similar to what
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has been found in Chap. 3 with a simpler electrical network:













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Km +
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sp

KcKc
T 1
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− ω2
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Mm 0
0 Me

]









[

qm
qe

]

=

[

Fm

Fe

]

. (4.36)

With a restriction to the transverse case, qm =
[

WL θL qI WR θR
]T

and Fm =
[

−QL −ML 0 QR MR

]T
, where qI is the mechanical displacement vector of the in-

ternal nodes of the unit cell. The dynamic stiffness matrix in Eq. (4.36) can be reorganized

in order to distinguish the left, right and internal degrees of freedom as


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−VwR

−VθR
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





, (4.37)

qL =
[

WL θL qwL qθL
]T

and qR =
[

WR θR qwR qθR
]T

. With this partitioning,

the Wave Finite Element Method [106–108] can be applied. First, the internal degrees of

freedoms are condensed through

[

DLL DLR

DRL DRR

] [

qL
qR

]

=

[

FL

FR

]

, where

DLL = D̃LL − D̃LID̃
−1

II D̃IL

DLR = D̃LR − D̃LID̃
−1

II D̃IR

DRL = D̃RL − D̃RID̃
−1

II D̃IL

DRR = D̃RR − D̃RID̃
−1

II D̃IR

. (4.38)

Then, the resulting condensed dynamic stiffness matrix is transformed into a transfer

matrix [46, 106]:
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. (4.39)

The signs and the positions of the variables in the state vectors are the result of the analogy

between the mechanical and electrical part of the coupled problem. The state vectors are

easily reorganized through permutations, which have been combined with the computing

of a dimensionless transfer matrix.

4.4.5 Model comparison for large wavelength

The models are first compared over a frequency range where the wavelength is at least

four times longer than the length of a unit cell. Frequency response functions are computed
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Figure 4.14: Velocity FRFs - (· · · ) for the discrete model, (—) for the piecewise homoge-
nized model.

for a one meter free-free beam, which is periodically covered with 20 pairs of piezoelectric

patches. The finite electromechanical structure thus consists of n = 20 identical unit cells

as defined in Table 4.1. Regarding the electrical network, the transformer ratio â is set

arbitrarily to 1 and the inductance value is tuned to L = a2m/(â2KE
θ Cε) = 200 mH in

order to satisfy the multimodal coupling condition defined in Eq. (4.18). This condition

induces that the electrical network approximates the dispersion relation of the beam, which

is required to implement the analogous coupling. Then, a resistance RL
s = 20 Ω is added

in series with the inductors by replacing L by L− jRL
s /ω. The only external excitation is

a transverse force at one end of the beam. All the other forces, moments and voltages at

the ends of the structure are equal to zero. Indeed, the two electrical lines of the network

are short-circuited at both ends in order to satisfy analogous boundary conditions. Once

the mechanical and electrical characteristics are defined, the four transfer matrix models

in Eqs.(4.20), (4.26), (4.29) and (4.39) are compared. The Ricatti transfer matrix method

presented in Chap. 3 is applied in order to compute the FRFs representing the ratio of

the velocity at one end over the excitation force at the other end.

The finite element model tends to the piecewise homogenized model when increasing

the number of elements. Furthermore, the results obtained with the fully homogenized

model are very close to those of the piecewise homogenized model over the frequency

range of interest. This is the reason why only the FRFs obtained with the discrete and

the piecewise homogenized model are represented in Fig. 4.14, from 1 Hz to 3.2 kHz. This

frequency range covers the first seven bending modes of the beam when no coupling occurs.

The resistance RL
s = 20 Ω has been chosen to minimize the maximum velocity around the

first bending mode. As obtained with a rod in Chap. 3, an antiresonance surrounded by

two new resonances appears around the initial natural frequencies. The equivalent of a

tuned mass damping is thus implemented on several modes together, which validates the

modal coupling condition (4.18).

Note that the discrete model is no more reliable when the frequency is increased,
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Figure 4.15: Attenuation constants - (· · · ) for the discrete model, (—) for the piecewise
homogenized model.

i.e. when the wavelength is shortened. For the present example, a limit of validity can

be set to 1 kHz, which corresponds to about 10 unit cells per wavelength. With the dis-

crete model, the positions of the mechanical resonances are shifted because the mechanical

medium is modeled by a lattice. Thus, it does not take into account the increasing mis-

tuning between the continuous and the discrete media. Depending on the application, the

discrete model can still be sufficient as long as the number of unit cells per wavelength is

high enough. For example, the error observed around the fourth mode would have been

insignificant for a structure made of n = 40 unit cells. The difference between the discrete

model and the piecewise homogenized model is even more evident when looking at their

two lowest attenuation constants shown in Fig. 4.15. With the discrete model, none of the

attenuation constants tends to zero, which means that no wave can freely propagate. On

the contrary, one of the attenuation constants of the piecewise homogenized model tends

to zero and this is the result of the detuning between the discrete electrical network and

the continuous beam. This inherent detuning between two structures of different natures

brings that the efficiency of the control strategy is reduced when going to high frequencies,

which is in agreement with the results in Fig 4.14.

4.4.6 Model comparison for short wavelength

When looking at wavelength approaching the length of the unit cell, the finite element

model still tends to the piecewise homogenized model, but the fully homogenized model

exhibits a different response. Indeed, the effect of the mechanical discontinuity induced

by the addition of piezoelectric patches creates a stop band for bending propagation in

the beam [4, 46, 48, 88, 102]. This occurs when the wavelength becomes smaller than two

times the length of a unit cell (ka = π), which here occurs between 18 and 19 kHz. The

computation of the lowest propagation constants in Figs. 4.16 and 4.17 highlights the stop

band and the difference between the piecewise and fully homogenized models. Surprisingly,

we also note a stop band with the fully homogenized model. This is explained by the
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Figure 4.16: Attenuation constants - (−−) for the fully homogenized model, (—) for the
piecewise homogenized model.
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Figure 4.17: Phase constants - (−−) for the fully homogenized model, (—) for the piecewise
homogenized model.
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Figure 4.18: Velocity FRFs - (−−) for the homogenized model, (—) for the piecewise
homogenized model.

fact that, even without considering structural discontinuity, the patches induce additional

moments on both sides of the unit cell, as represented in Fig. 4.11. This generates a

periodic discontinuity that leads to a moderate stop band effect. This stop band is not

negligible compared to the one obtained with the piecewise homogenized model because

the effect of the mechanical discontinuity is actually quite small in the present example.

In the previous chapter, the stop band for longitudinal waves was significant with the

same geometry, but a similar effect for bending wave would require a considerably thicker

discontinuity. In conclusion, strong structural modifications would be needed in order to

benefit from such stop bands for bending wave attenuation.
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The frequency response functions in Fig. 4.18 confirm the effect of the stop band.

There is already a slight difference in the positioning of the resonances below 18 kHz,

but it is even more pronounced after the stop band, which is larger with the piecewise

homogenized model. Nevertheless, the effect is quite negligible, especially when considering

that the validity of the Euler-Bernoulli model is questionable at such high frequencies. It

is also remarked that the considered frequency range is clearly beyond the last electrical

resonance. No electrical propagation occurs above 7.5 kHz, similarly to what has been

observed through the analysis of the lattice model in Fig. 4.5. So, the discrete electrical

network does not influence the results above 7.5 kHz and the FRFs are essentially due to

propagation in the mechanical waveguide.

4.5 Design of the analogous electrical network

The implementation of a multimodal damping through an analogous electrical network

requires the choice of the number of elements involved in the array of piezoelectric patches.

Moreover, we have to define suitable inclusions of resistors in the electrical network, so that

it generates an actual broadband damping. From those results, magnetic transformers are

designed according to their equivalent circuit model adapted to the present application.

4.5.1 Array of piezoelectric patches

When considering a distributed piezoelectric control, a first step is to determine the

number of patches that will cover the mechanical structure to control. It has been shown

in Sec. 4.2 that a suitable approximation of a continuous beam by a lattice model re-

quires a minimum number of unit cells per wavelength. As a discrete electrical analogue

reproduces the modes of the lattice model, it cannot perfectly match the modes of the

continuous beam but it can provide a suitable approximation if the number of unit cells

is high enough. With an insufficient number of patches, the electrical resonances would

not match the corresponding mechanical modes and the multimodal control performances

could be considerably reduced. This is observed in Fig. 4.19, where the influence of the

number of unit cells is highlighted. The velocity FRFs are computed with the model based

on a fully homogenized beam segment, as defined in Sec. 4.4. The accuracy of this model

has been proven for sufficiently large wavelength compared to the unit cell and that is why

it is used in the following calculations. The antiresonances are related to the resonances

of the electrical network and they validate the efficiency of the multimodal coupling. Yet,

we clearly note from the case involving 20 unit cells that the antiresonances are shifted

to lower frequencies for the highest modes. This shows the limits of the discrete electri-

cal network, which offers a suitable approximation of the beam modal properties for a
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Figure 4.19: Velocity FRFs computed with a fully homogenized beam segment - (−−) with
20 unit cells, (—) with 40 unit cells.

limited number of modes only. With 40 unit cells, the discrete electrical network is still

appropriate over the considered frequency range because the antiresonances stay approx-

imately centered relatively to the resonances, even around 2.5 kHz. So, it is essential to

determine the highest mode to control before defining the number of unit cells, i.e. the

number of piezoelectric patches. For example, if we focus on the first four modes of the

free-free beam (up to 1 kHz), 20 pairs of patches are enough. This corresponds to about

10 unit cells per wavelength for the fourth bending mode. This classical limit related to

the discrete approximation can thus be used to define the minimum number of patches for

an appropriate multimodal control.

Once the number of patches is chosen, the definition of their dimensions is related to

the dimensions of the host structure. Actually, the capacitance of a piezoelectric patch Cε

is roughly proportional to its surface area Ap and inversely proportional to its thickness

hp. So, a recommendation to reduce the inductance requirements is to spread the piezo-

electric material on the maximum surface area. The length a and the width b of the unit

cell represents the maximum dimensions for the sides of the patches. Note that a mini-

mum gap of a few millimeters between two patches is usually required in order to avoid

practical issues related to the gluing process. Another solution that would facilitate the

implementation of an array involving a high number of elements might be to create a set

of transducers from a single piezoelectric patch by cutting the electrode layer periodically.

The piezoelectric thickness hp can be determined from an eventual limitation on the mass

added to the main structure. The choice of the piezoelectric patches also depends on the

dimensions offered by the manufacturers. Piezoelectric plates of sides up to 70 mm are

usually available and can be cut into smaller pieces. The thickness selection is constrained

by the standard dimensions offered by the manufacturers and 0.1 mm can be seen as a

lower limit due to availability and difficult handling (risk of breakage). Regarding the

choice of the material, the coupling factor k31 has to be maximized to improve damping

performances. It is also recommended to choose a high permittivity material in order to

increase the piezoelectric capacitance and then decrease the inductance requirements.
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4.5.2 Optimal resistor positioning for a broadband damping

A reduction of vibration over a broad frequency range requires the tuning of the in-

ductors but also the introduction of suitable damping components. A classical solution

presented in most papers focusing on piezoelectric shunts is to add resistors in series with

the inductors [2, 4, 43, 48, 49, 101, 102]. Another less common solution consist in connect-

ing resistors in parallel with the inductors [15, 17, 26, 95, 99]. It then becomes possible to

tune the resistors in order to reach a vibration reduction optimum, which is here defined

as a minimum amplitude on the velocity FRF. However, even if for both damping strate-

gies an optimum can be reached at one particular frequency, there is no reason to expect

an optimal damping over a broad frequency range. A damping model was proposed by

Porfiri et al. [21] to get a multimodal damping with the analogous network of a beam.

The solution is to add resistors RT
s in series with the windings of the transformers. This

is presented on the network segment in Fig. 4.20, which also shows RL
s and RL

p , the series

and parallel resistors on the inductors.

In Fig. 4.21, the three damping solutions are compared by computing the transfer

matrix of the fully homogenized model in Eq. (4.26) with the effect of resistors added in

Eqs. (4.23) and (4.24). The free-free coupled beam previously described in Table 4.1 is

still the relevant case. The damping is considered optimal around one mode when the

corresponding highest local maximum of the velocity FRF is reduced to its minimum

value. We define as underdamped a mode where it can be seen a local minimum and

overdamped thus corresponds to a case where there is no local minimum. Independently

of the chosen damping model, the resistors are tuned to reach an optimum around the

first initial mode of the beam. When the only damping contribution is in series with

the inductors (RT
s = 0 Ω and RL

p → +∞), RL
s = 20 Ω leads to the maximal vibration

reduction around the first mode but it also gives a clear underdamped behavior for higher

L

Cε

RT
s

2
RT

s

2

RL
s

RL
p

â/2
··1

â/2
··1

Figure 4.20: Electrical network segment including resistors.
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Figure 4.21: Velocity FRFs with an electrical network satisfying the modal coupling
condition - (−−) with a series resistance RL

s = 20 Ω on the inductors, (· · · ) with a parallel
resistance RL

p = 1000 Ω on the inductors, (—) with a series resistance RT
s = 150 Ω on the

transformers.

modes. On the other hand, with RL
p = 1000 Ω, RL

s = 0 and RT
s = 0, the first mode is still

optimized but the other ones are overdamped. At last, when RT
s = 150 Ω, RL

s = 0 and

RL
p → +∞, it appears a slightly underdamped behavior around the first four modes. It is

thus observed that the damping involving resistors in the transformer windings leads to

highest vibration reduction around each mode.

Nevertheless, the damping is optimal only for the first mode, while it could be expected

from [21] an optimal damping for all the modes together. The first reason is that this

last reference focuses on an electrical continuum. The present work considers a discrete

network, which cannot match exactly the modes of the continuous mechanical structure.

This effect can be observed through the positions of the local maxima for which the

asymmetry increases with the frequency. The second reason explaining why the present

damping with RT
s is not optimal is related to the boundary conditions. It was mentioned in

[21] that the proposed optimal damping is only valid with boundary conditions ensuring

global solutions represented by trigonometric eigenfunctions. This is true for a simply

supported beam but not for the considered case of a free-free beam. Finally, although

not optimal in a general case involving a finite number of patches and no trigonometric

boundary conditions, the damping involving the resistance RT
s remains a satisfactory sub-

optimal solution compared to the other damping models. Depending on the choice of

the electrical components, several equivalent resistors can be combined together but a

recommendation would be to keep RT
s as the main dissipative element.

4.5.3 Equivalent circuit model of a transformer

The passive electrical analogue of a beam involves ideal transformers. Yet, real mag-

netic transformers are usually far from ideal because of the parasitic effects related to

their practical design. The equivalent circuit of a non-ideal transformer is represented in
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Figure 4.22: Equivalent circuit of a non-ideal transformer.
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â : 1

CT
w

RT
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m

Figure 4.23: Simplified equivalent circuit of a non-ideal transformer.

Fig. 4.22 for a general case with no restrictions on the frequency range of interest [52, 53].

R1 and R2 are the direct-current resistance of the primary and secondary windings, while

L1 and L2 corresponds to their leakage inductance. Furthermore, C1 and C2 are the

primary and secondary winding capacitance. At last, CT
w is the winding-to-winding ca-

pacitance, LT
m is the magnetizing inductance and RT

m is the core-loss resistance [52].

Considering real applications involving the electrical analogue of a beam, it has been

remarked that, compared to the inductance L introduced in the network, the leakage in-

ductance elements L1 and L2 are generally negligible and do not need to be modeled. Also,

modeling the winding capacitance C1 or C2 is not required because the transformers have

to be operated far below their self-resonance frequency [52]. A last simplification of the

equivalent circuit concerns the damping elements. We have seen in the previous subsec-

tion that damping should be introduced through resistors in series with the transformers

windings. Actually, no external resistors are required if the transformers are designed

in order to offer a suitable direct-current resistance through R1 and R2. Then, for the

present applications, it has been observed that the damping generated by the winding re-

sistance (i.e. copper losses) significantly exceeds the damping in the magnetic core (i.e. iron

losses). This means that RT
m does not need to be modeled in the equivalent circuit of a

transformer when dealing with the proposed examples on multimodal damping with an

analogous electrical network. In the end, the equivalent circuit in Fig. 4.22 can be simpli-

fied into the circuit in Fig. 4.23. The resistance RT
s takes into account the copper losses in
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both windings because we note that RT
s = R1+ â2R2 when the current flowing through the

magnetizing inductance LT
m is negligible compared to the current in the ideal transformer.

4.5.4 Design of transformers for the analogous network

The design of transformers requires to pay a close attention to the parasitic element

RT
s , C

T
w and LT

m, which might ruin the analogous damping strategy if they are not chosen

correctly. The segment of the analogous electrical network in Fig. 4.20 is updated by

considering a non-ideal transformer and this leads to the circuit in Fig. 4.24. No damping

element is represented around the inductor and we take advantage of the fact that, when

connecting successive electrical unit cells, two transformers of ratio â/2 can be replaced

by a single transformer of ratio â. Here, we thus focus on a non-symmetrical unit cell

which is more representative of the practical implementation of the electrical network.

In principle, the winding resistance RT
s does not need to be minimized because it can

be part of the damping optimization as shown previously when considering the resistor

positioning for broadband damping. So, an optimal value for RT
s can be defined from

numerical optimizations, which means that external resistors are not required.

Regarding the winding-to-winding capacitance CT
w , we note in Fig. 4.24 that it has

one end connected to the ground and the other end connected to the piezoelectric capaci-

tance Cε. This is equivalent to two capacitors in parallel, which gives a total capacitance

equal to Cε + CT
w . As a consequence, the addition of a winding-to-winding capacitance

in the transformers is equivalent to an increase of the piezoelectric capacitance. It has

been shown that an increase of the capacitance decreases the piezoelectric coupling and

thereby decreases the damping performance [7, 43, 79]. So, CT
w has to be minimized by

ensuring a sufficient electrical isolation between the primary and secondary windings when

manufacturing the transformers.

The last parasitic element is the magnetizing inductance LT
m that needs to be maxi-

mized in order to force the current to flow through the ideal transformer. The magnetizing

L

CεRT
s

LT
m

â
··1 CT

w

Figure 4.24: Non-ideal transformer in the analogous electrical network.
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inductance LT
m is in the ’θ’ electrical line but it could also be represented on the other side

of the transformer with a value LT
m/â

2. Then, this inductance has to be considerably larger

than L, so that it does not influence the electrical propagation. It has been remarked that

setting LT
m/â

2 ≥ 50L is generally enough for multimodal damping applications. From the

modal coupling condition L = a2m/(â2KE
θ Cε), we get

LT
m ≥ 50

a2m

KE
θ Cε

. (4.40)

Actually, the piezoelectric capacitance Cε has to be replaced by Cε+CT
w if the winding-to-

winding capacitance is not negligible. This additional capacitance is usually determined

from direct measurements after manufacturing [52], so it is not taken into account in the

initial steps of the transformer design. Anyway, it would only decrease the minimum

requirement on the magnetizing inductance. Note from Eq. (4.40) that the choice of

the magnetizing inductance does not depend on the transformer ratio â. This shows that,

even if the required inductance L can be reduced with an increase of the transformer ratio,

the transformers still have to satisfy a fixed requirement on the magnetizing inductance.

Fig. 4.23 shows that LT
m is the inductance of the primary when the secondary is open-

circuited. As seen in Chap. 2, this inductance is calculated from the permeance AT
L of

the selected magnetic core through LT
m = AT

LN1
2, where N1 is the number of turns of the

primary winding.

In conclusion, the design of the transformers starts with the calculation of the minimum

magnetizing inductance LT
m, which comes from the properties of the mechanical structure

to control and the piezoelectric capacitance, as shown in Eq. (4.40). Then, the number of

turns of the primary N1 and the number of turns of the secondary N2 = N1/â are obtained

from

N1 =

√

LT
m

AT
L

. (4.41)

In the end, RT
s = R1 + â2R2, leads to

RT
s = ρN1

(

lN1

Sw1

+ â
lN2

Sw2

)

, (4.42)

where lN1
and lN2

are the average length per turn on the primary and secondary wind-

ings, Sw1
and Sw2

are the cross-sectional area of the respective wires and ρ is the wire’s

resistivity. The cross-sectional areas Sw1
and Sw2

are thus selected in order to satisfy

the RT
s optimum determined from numerical simulations. Here, we do not present any

considerations related to the selection of the magnetic core. Yet, as detailed in Chap. 2,

the magnetic core has obviously to offer an adequate window utilization factor and no

magnetic saturation. This last condition leads to a limitation on the voltage applied to
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the transformer, hence a limitation on the maximum mechanical excitation. For an in-

dustrial application, the problem would be considered differently: knowing the excitation,

the dimensions of the magnetic components are minimized to set the saturation limit just

above the actual conditions.

4.6 Experiments on beam damping

The multimodal damping strategy based on analogous coupling is validated with a

setup involving a one meter free-free beam. Piezoelectric patches are periodically dis-

tributed and connected to the analogous network of passive components. The properties

of the electrical network are verified by measuring voltage frequency response functions.

Once the network is tuned, a mechanical analysis shows the efficiency of the strategy for

bending vibration reduction.

4.6.1 Experimental setup

The structure described in Table 4.1 constitutes the setup used to validate the multi-

modal damping strategy. The same 20 pairs of piezoelectric patches as in Chap. 3 cover

the one meter bar made of aluminum alloy 2017. The resulting structure is suspended by

elastic straps in order to approximate free-free boundary conditions. Then, as presented in

Figs. 4.25, 4.26(a) and 4.26(b), a suspended shaker is connected transversely to one end of

the beam through an impedance head that measures the acceleration and the transmitted

force. A white noise excitation is generated from the shaker and the transverse velocity

of the beam is measured with a scanning laser vibrometer. To compute the velocity FRF,

the force measured by the impedance head and the velocity at the free end of the beam

are taken into account. The FRF is then obtained with a fast Fourier transform over a

1.2 kHz frequency range with a 0.2 Hz resolution.

The analysis is firstly performed without adding any electrical components on the

piezoelectric patches. We focus on the first four modes that can be extracted thanks to

a spatial scanning procedure that gives the results presented in Fig. 4.27. Afterward, the

experimental FRF in open circuit is compared to the results obtained with the purely

Figure 4.25: Experimental setup for the analysis of bending waves.
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by multiplying the density by a coefficient evaluated to α = 1 − 27j/ω in order to fit the

first four experimental maxima.

4.6.2 Coupling to a non-analogous network

When considering damping of transverse waves, it is clear that an electrical network

involving a simple line of inductors is not optimal. Indeed, this network has been defined

in Chap. 3 from a discretization of a structure satisfying a dispersion relation referring to

longitudinal wave propagation. Nevertheless, the non-analogous network can be used for

the damping of one specific mode [15, 17, 26]. This requires to adjust the positions of the

nth mechanical mode to be controlled, on the positions of the nth electrical mode of the

network. Compared to the distributed shunts strategy, the advantage is that the value of

the inductance can be reduced by increasing the number of unit cells.

With 100 mH individual inductors and 4.7 nF additional capacitors on a single line of

piezoelectric patches, the 9th natural frequency of the network is close to the 9th natural

frequency for bending motion. As expected, the experimental results presented in Fig. 4.28

show a strong reduction of the amplitude of the 9th mode. It is also interesting to notice

that the non-optimal network has a non-negligible effect on modes for which it was not

tuned. For example, the 3rd electrical mode is very close to the 5th mechanical mode and

it induces a significant reduction. Likewise, the 10th mechanical mode is just between two

electrical modes, which create a large damping. So, this experiment shows that, even if

it is not optimal on a broad frequency range, a simple non-analogous network can induce

multimodal effects when looking at vibration reduction.
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Figure 4.28: Velocity FRFs with the non-analogous network - (· · · ) with short-circuited
patches, (—) with the non-analogous network and (—) for the positions of the electrical
modes.
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4.6.3 Passive analogous network

After preliminary experiments with a non-analogous network, the analogue of a beam

is implemented in order to validate the analogous control strategy. It is chosen to create a

completely passive solution without any synthetic components. No capacitors are required

because the capacitance Cε involved in Fig. 4.10 is offered by the piezoelectric patches.

Concerning the magnetic components, i.e. the inductors and the transformers, they are

specifically designed for the present application in order to satisfy the electrical require-

ments presented in Sec. 4.5. Note that we have decided to use the same bar as the one used

for the longitudinal experiment presented in Chap. 3. However, the patches are polarized

in opposite directions, which means that bending motion does not generate any charge

displacement if to opposite patches are connected in parallel. Thus, a double winding was

required on the primary of the transformers to inverse one of the voltage signs. It was

then chosen to design transformers with a ratio â = 1 and a resistance RT
s around 150 Ω

in order to approach the optimal damping determined in Sec. 4.5 without adding exter-

nal resistors. The inductance L satisfying the modal coupling condition (4.18) is equal to

200 mH, so the required magnetizing inductance LT
m is 10 H. Regarding the magnetic core,

we select the same type RM10 ferrite as the one used in Chap. 2. Equation (4.41) thus

gives N1 = 791 turn for the primary of the transformer. To make easier the winding pro-

cess, it was decided to wind simultaneously the two primary and the secondary with three

identical wires. Consequently, the average lengths per turn are equal, lN1
= lN2

= lN ,

and the total cross-sectional area of the primary is equal to two times the cross-sectional

area of the secondary: Sw1
= 2Sw2

. One gets from Eq. (4.42) that RT
s = 3ρN1lN/(2Sw2

),

where Sw2
is the cross-sectional area of the wire. The length lN is equal to 52 mm with

the selected magnetic core, which gives a theoretical wire diameter equal to 9.4× 10−5 m

with ρ = 1.7 × 10−8 Ωm and RT
s = 150 Ω. Copper wire with a 0.1 mm diameter was

available and this slight increase in the diameter compared to the theoretical value allows

for an increase of the number of turns up to N1 = 900 to reach the resistance RT
s = 150 Ω.

After winding withN1 = 900, direct measurements on the transformers at 1 kHz gives a

resistance RT
s = 153 Ω, a magnetizing inductance LT = 12.1 H and a capacitance between

windings CT
w = 25.2 nF. Such a high winding-to-winding capacitance was not expected

but could have been avoided by winding the primary and the secondary separately. As

CT
w is not negligible compared to Cε, the modal coupling condition (4.18) needs to be

computed with a global capacitance Cε+CT
w . A theoretical inductance value L = 118 mH

is obtained with Cε equal to 35.3 nF. A RM8 ferrite made of N30 material and offering a

permeance AL
L = 5700 nH for one turn is selected and wound with 140 turns of 0.3 mm

diameter copper wire. The manufactured inductors are finally around L = 121 mH and

offer a negligible equivalent series resistance. On the other hand, the loss in the magnetic
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Figure 4.29: Electrical network involving inductors and transformers.

core, or iron loss, can be represented by a parallel resistance, which is evaluated to 72 kΩ.

The same type of parallel damping is also introduced into the piezoelectric capacitance,

where the equivalent parallel resistance is evaluated to 332 kΩ at 1 kHz. Those additional

damping elements are considered for refining the models but we note that the inductors

and the piezoelectric capacitance generates a negligible damping compared to what occurs

in the transformers. All the components are put together according to Fig. 4.7, which

gives the network presented in Fig. 4.29, where the line of components on the bottom of

the picture represents the inductors. Just above are the transformers, which are connected

to the piezoelectric array through standard terminal blocks.

4.6.4 Electrical frequency response functions

The tuning of the electrical network can be verified before observing its effect on me-

chanical vibration reduction. A white noise voltage Vw is applied at one end of the ’w’

line and the voltage is measured in the middle, between the 10th and the 11th inductors.

The experimental electrical FRF in Fig. 4.30 is shown together with the numerical com-

putation based on the semi-continuous transfer matrix model in Eq. (4.26). An analogous

experiment in the mechanical domain would be to measure the shear force in the middle of

the beam when applying a transverse force excitation at one end. With free-free boundary

conditions, the middle of the beam is a node for the odd shear force modes. The same

remark applies to the voltage in the inductor line as the electrical network was designed to

tend to the analogue of the free-free beam. As a consequence, the measured voltage only

tracks the even modes. The lowest resonance, around 290 Hz, is thus the second electrical

resonance of the network and the one around 920 Hz is the fourth electrical resonance of

the network. We also remark ”sharp” antiresonances that are the result of the mechanical

resonances. Actually, part of the energy injected in the network flows to the coupled beam

around the mechanical resonances, which creates cuts in the frequency spectrum. So, the
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Figure 4.30: Voltage FRFs for a measure between the 10th and the 11th inductors - (—) for
the experiment with a tuned network, (−−) for the transfer matrix model with a tuned
network, (· · · ) for the transfer matrix model with a detuned network.
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Figure 4.31: Voltage FRFs for a measure on the 10th pair of patches - (—) for the ex-
periment with a tuned network, (−−) for the transfer matrix model with a tuned net-
work, (· · · ) for the transfer matrix model with a detuned network.

tuning of the network is validated by verifying that the ”sharp” antiresonances are cen-

tered on the ”smooth” resonances. This is the case with the tuned electrical values but

not for a detuned network with half of the required inductance, as it is also observed in

Fig. 4.30.

With measurement of the voltage Vθ in the middle of the network, it is possible to

extract the odd modes. This is explained by the fact that the middle of a free-free beam

is a node for the even modes related to the bending moment, which is the analogue of

Vθ. But the problem is that we do not have access to the measurement of the voltage

Vθ in the middle of the network. This is because the two successive â/2 transformers are

replaced by a single â transformers to reduce the number of components. Nevertheless, it

is still possible to observe the odd modes by measuring the voltage on one of the closest

node, the 10th pair of piezoelectric patches. The results are represented in Fig. 4.31 that

also shows the case of a detuned network with half of the required inductance. As the

measurement is not performed in the exact middle of the network, the even modes also

appear. It is still possible to verify that the odd electrical resonances match the mechanical

ones. As a consequence, the previous electrical FRFs allow being sure that the network is

correctly tuned, even before doing any mechanical testing. The electrical FRFs also enable
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validating the presented transfer matrix formulation that takes into account the modeling

of the electrical components. It is observed in Figs. 4.30 and 4.31 that the numerical and

experimental responses are sufficiently close to validate the transfer matrix model. This

model can thus be used for the optimization of the electrical network, before its actual

implementation.

4.6.5 Multimodal damping by analogous coupling

Once the electrical network is correctly tuned, it becomes possible to observe the

effect of the multimodal coupling on the mechanical vibrations. In Fig. 4.32, the velocity

FRF with a tuned network is compared to the velocity FRF with open-circuited patches.

Reductions around 7 dB are observed for the first mode, 10 dB for the second and third

modes and 16 dB for the fourth mode, which shows the efficiency of the damping strategy

involving an analogous electrical network. However, we do not get a velocity FRF similar

to what has been presented in Fig. 4.21. The system seems to be overdamped as no

local minimum appears, even with the prescribed resistance RT
s . This is due to the fact

that the added winding-to-winding capacitance CT
w was clearly non-negligible compared

to the piezoelectric capacitance Cε, which was not expected before manufacturing the

transformers. The final global capacitance of the unit cell was almost doubled and this

led to a decrease of the required inductance L. As the transformer resistance has been

defined without considering any capacitance addition, it is finally too high for the present

inductance. It is noticed that the capacitance CT
w could have been considerably reduced by

separating the winding of the transformers and using an internal insulation layer. If this

choice had been considered for the manufacturing of the transformers, the results would

have been definitely closer to the FRF represented in Fig. 4.21.

In the end, the comparison between the experiments and the transfer matrix model

in Eq. (4.26) also validates the theoretical formulation when looking at the mechanical

100 200 300 400 500 600 700 800 900 1000 1100 1200

−60

−40

−20

Frequency (Hz)

V
el

oc
ity

 F
R

F
 (

dB
)

100 200 300 400 500 600 700 800 900 1000 1100 1200

−60

−40

−20

Frequency (Hz)

V
el

oc
ity

 F
R

F
 (

dB
)

Figure 4.32: Velocity FRFs - (· · · ) for the experiment with open-circuited patches, (—) for
the experiment with a tuned network, (−−) for the fully homogenized beam model with
a tuned network.
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FRF. It can still be remarked that there are slight differences concerning the maximal

amplitudes, especially for the first mode that is 3 dB below its theoretical value. This

means that an unconsidered damping was added when performing the experiments with

the full network. In fact, the mechanical damping coefficient α was determined with open-

circuited patches, when all the electrical connectors presented in Fig. 4.29 were not yet

mounted. The electrical network itself thus increases the purely mechanical damping. This

is a point that could be improved in future experiments in order to better characterize the

vibration reduction which is only induced by the electromechanical coupling.

4.7 Conclusions

A multimodal damping strategy has been developed in this chapter by coupling a

beam to its analogous electrical network through an array of piezoelectric patches. A

lattice model approximating the mechanical properties of the beam is obtained by apply-

ing a finite difference method to the Euler-Bernoulli equations. The dispersion relation,

the propagation constants and the frequency response functions of the lattice model are

compared to the results obtained with a continuous beam. The analogous electrical net-

work is found by applying the direct electromechanical analogy on the discrete model of

a beam. Then, a description of the piezoelectric coupling is presented through a linear

model including the global properties of the unit cells. The method to determine the global

piezoelectric coupling coefficient and the blocked capacitance is given accordingly. This

leads to the definition of a modal coupling condition that tunes the modes of the electrical

network to the ones of the mechanical structure to control.

For modeling of wave propagation, contrary to previous studies that focus on a ho-

mogenized electrical medium, the network is kept discrete to get closer to real applications

involving a finite number of piezoelectric patches. Four novel transfer matrix models are

proposed and compared. They differ in the definition of the mechanical medium which

can be discrete, fully homogenized, piecewise homogenized or based on a finite element

model. The finite element model tends to the piecewise homogenized model which is the

most accurate because it takes into account the mechanical discontinuity induced by the

piezoelectric patches. Yet, for problems involving analogous control with a discrete electri-

cal network, the fully homogenized model is generally sufficient because the eventual stop

band effect occurs at frequencies where the proposed control is no more efficient. Also, the

discrete model is convenient because of its easy implementation but it should be limited

to wavelength above ten times the length of the unit cell.

The design of the analogous electrical network is described through recommendations

related to the transformers and the piezoelectric array. Similarly to what we got for
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the validity of the discrete model, about ten piezoelectric patches per wavelength are

required to ensure a sufficient approximation of a continuous beam with a discrete electrical

network and thus generate a suitable multimodal coupling. Then, it is shown that series

resistance in the transformer windings offers damping over a broader frequency range

than single series or parallel resistance on the inductors. This is fortunate because the

design of transformers with a sufficient magnetizing inductance leads to a non-negligible

winding resistance. The transformers can thus be designed by taking into account an

optimal damping condition based on numerical simulations, so that no external resistors

are required.

To the best of our knowledge, we implemented the first experimental validation of a

multimodal damping strategy involving a beam coupled to its discrete electrical analogue.

Without any external power, the control offers a significant vibration reduction over a

broad frequency range. We also show that it is possible to verify the tuning of the network

from electrical measurements. Whether it is electrical or mechanical frequency response

functions, they can be computed with the proposed transfer matrix models, which show

a good correlation with the experimental results. Those transfer matrix models thus

represent an appropriate tool for the design of piezoelectric damping systems involving a

one-dimensional analogous network.
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Chapter 5

Analogous piezoelectric control

applied to the damping of a plate

Abstract: Multimodal damping of a plate can be achieved by a coupling to an

electrical network exhibiting similar modal properties. A suitable topology for

such a network is obtained by a finite difference formulation of the mechanical

equations, followed by a direct electromechanical analogy. This procedure is ap-

plied to the Kirchhoff-Love theory in order to find the electrical analogue of a

clamped plate. The resulting passive electrical network is implemented with in-

ductors, transformers and the inherent capacitance of the piezoelectric patches.

The electrical modes are tuned to approach several mechanical modes simul-

taneously. This yields a broadband reduction of the plate vibrations through

an array of interconnected piezoelectric patches. The robustness of the control

strategy is evaluated by introducing perturbations in the mechanical or electrical

designs. In the end, the use of an analogous electrical network appears as an

efficient and robust solution for the multimodal control of a plate.
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5.1. INTRODUCTION

5.1 Introduction

Control solutions involving an array of piezoelectric resonant shunts have been pro-

posed in order to damp vibrations of plates [6, 50, 51, 118–121]. The use of several

piezoelectric patches of reduced dimensions limits the problem of charge cancellation and

can eventually introduce an additional stop band effect over the considered frequency

range. However, this strategy does not apply in the low frequency range, where the si-

multaneous control of several plate modes requires the synthesis of multi-resonant shunts.

Such shunts with multiple inductors were proposed by Wu [10] and then implemented on

a one-dimensional piezoelectric array [46]. The multimodal approach of Wu and other

similar concepts require n inductors per patch to affect n modes, which may lead to a

system with an impractically large number of components. A broadband control can still

be implemented with negative capacitance, which simplifies the electrical layout and offers

good performances [122–127]. The main drawback is that a negative capacitance needs to

be synthesized with an active circuit and the control can thus suffer from stability issues.

A solution for the multimodal control of a plate with a passive electrical network was pre-

sented by Vidoli and dell’Isola [128]. The network consists of distributed inductors that

interconnect the piezoelectric patches in order to generate 2D electrical modes that match

the mechanical modes, both in the spatial and frequency domains. This idea was then

extended by Giorgio et al. [129, 130] to systems involving only a few piezoelectric patches.

The main limit remains the practical implementation of a suitable passive network. As we

need to reproduce the modal properties of mechanical structures with an electrical system,

suitable topologies can be found by applying an electromechanical analogy [20, 74, 131].

Around 1950’s, MacNeal et al. already proposed and validated electrical analogues for

numerous mechanical structures as rods, beams [30, 37], plates [30, 38] and shells [39].

Those passive networks finally reappeared for the analogous control of one-dimensional

structures [19, 21]. With this approach, the number of components per piezoelectric patch

is independent of the number of modes that are targeted. For the control of thin plates,

Alessandroni et al. [23, 24] proposed an analogous network ensuring a broadband piezo-

electric damping. Unfortunately, the large number of electrical components makes difficult

its practical implementation. A simpler electrical network can be obtained by reconsider-

ing the Kirchhoff-Love theory. The new topology is presented in the present chapter and

applied to the damping of a clamped plate.

With a real experimental setup, it becomes possible to evaluate the robustness of the

control strategy. The effect of parameter variations needs to be investigated because it

has been shown that solutions involving resonant shunts can be very sensitive to electrical

mistunings [2, 9]. In practical applications, even if the robustness can be slightly im-

proved with an overestimated damping [132], it seems difficult to maintain a fine tuning of
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a single resonant shunt without autonomous adaptation of the electrical parameters [133].

Nevertheless, in the case of a distributed solution involving an array of resonant shunts,

uncertainties between components does not lead to a significant degradation of the per-

formance [4]. This is also true with electrical analogous networks as observed in Chap. 3

where experiments involving inductors with a ±10% tolerance were in good agreement

with deterministic simulations. Then, the question related to the effect of an uniform de-

tuning of the electrical parameters still arises, because it could seriously affect the damping

performances [134, 135]. Another issue concerns the influence of defects appearing locally

or along the boundary of the mechanical or the electrical domains.

In this chapter, we focus on a new analogous network that reproduces the behavior of

a plate. The proposed electrical network is obtained by extending the procedure applied

to rods and beams in the previous chapters. It consists of a finite difference formulation of

the equations describing the mechanical medium, followed by a direct electromechanical

analogy. A 2D electrical network involving capacitors, inductors and transformers is thus

defined. It is modeled numerically by assembling element matrices into a global system

representing the analogue of a dynamic stiffness matrix. The passive electrical network is

then implemented in a case focusing on the analogue of a clamped plate. Electrical modes

are observed experimentally, which validates the analogous electrical topology. Afterward,

we consider the damping of a clamped plate coupled to the electrical network through

an array of piezoelectric patches. By extension of the one-dimensional bending model

developed in Chap. 4, a discrete electromechanical unit cell is built for describing the 2D

piezoelectric coupling to a multiport network. The models are validated through exper-

iments that also show the efficiency of the proposed control strategy. Depending on the

application, the electrical network is then tuned by adding resistors or by modifying the

values of the inductors. An optimal tuning gives a reference for evaluating the robustness

of the control with respect to parameter variations. The performance loss induced by an

uniform variation of the network inductance is quantified. Local or boundary modifica-

tions are also introduced experimentally. In any case, significant vibration reduction is

maintained, which validates the interest of the damping strategy.

5.2 Electrical analogue of a square plate unit cell

A finite difference method is applied to the Kirchhoff-Love plate equation of motion in

order to get a discrete mechanical model. This model is then converted in the electrical

domain by applying a direct electromechanical analogy. Depending on the considered

plate boundary conditions, electrical ports are short- or open-circuited on the edges of the

network. The whole electrical network is then modeled by implementing an assembly of
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element matrices. This leads to a numerical validation of the proposed electrical analogue.

5.2.1 Finite difference model of a plate

According to the Kirchhoff-Love theory, the governing differential equation for a thin

plate of Young’s modulus Y , density ρ, Poisson’s ratio ν and thickness h is given by

−D

(

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)

= ρh
∂2w

∂t2
, where D =

Y h3

12(1− ν2)
. (5.1)

w = W (x, y)g(t) is the transverse displacement, x and y are the two space variables, t is

the time variable and D is the bending stiffness. Focusing on harmonic motion, g(t) is a

trigonometric function satisfying ∂2g/∂t2 = −ω2g. Consequently, the system of equations

∂Qx

∂x
+

∂Qy

∂y
= −ρhaω2W

Qx = −∂M

∂x

Qy = −∂M

∂y

and

M = aD

(

∂θx
∂x

+
∂θy
∂y

)

θx =
∂W

∂x

θy =
∂W

∂y

(5.2)

is equivalent to Eq. (5.1). The constant a corresponds to the side of a square plate unit

cell, so that Eq. (5.2) is a two-dimensional extension of the state variable system for an

Euler-Bernouilli beam, as presented in Chap. 4. The variables Qx and Qy still represent

shear forces and the angles along the principal directions, θx and θy, satisfy the Kirchhoff-

Love assumption which states that the segments normal to the undeformed midplane

remain straight after deformation. Yet, the moment variable M appearing in Eq. (5.2)

does not refer to any classical variable of the plate theory [136]. It is here introduced for

the definition of an adequate finite difference model.

The continuous plate element is discretized by applying the finite difference scheme

(

∂[·]
∂x

)

L

=
[·]I − [·]L

a/2
(

∂[·]
∂x

)

I

=
[·]R − [·]L

a
(

∂[·]
∂x

)

R

=
[·]R − [·]I

a/2

and

(

∂[·]
∂y

)

B

=
[·]I − [·]B

a/2
(

∂[·]
∂y

)

I

=
[·]T − [·]B

a
(

∂[·]
∂y

)

T

=
[·]T − [·]I

a/2

, (5.3)

where ’I’ is the position at the center of the square unit cell and ’L’, ’R’, ’B’ and ’T’

refer to the left, right, bottom and top sides, according to the grid in Fig. 5.1. This finite
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Figure 5.1: Finite difference grid for a square plate unit cell.

difference approximation is applied to Eq. (5.2), which gives

QR −QL +QT −QB = −mω2WI

QL = −MI −ML

a/2

QR = −MR −MI

a/2

QB = −MI −MB

a/2

QT = −MT −MI

a/2

and

MI = D (θR − θL + θT − θB)

θL =
WI −WL

a/2

θR =
WR −WI

a/2

θB =
WI −WB

a/2

θT =
WT −WI

a/2

(5.4)

where m = ρha2 is the mass of the square plate unit cell.

5.2.2 Analogous electrical unit cell

The finite difference model in Eq. (5.4) can be converted into its analogous network

made of discrete electrical components. Contrary to previous studies on plate electrical

analogues [24, 30], we focus on the direct electromechanical analogy, which is compatible

with the electrical representation of a piezoelectric transducer [74]. This direct analogy

is based on the velocity-current and force-voltage equivalences. So, Eq. (5.4) can be

rewritten as

−QL − (QB −QT) +QR = jωmẆI

−ML +MI = −a
2QL

−MI +MR = −a
2QR

−MB +MI = −a
2QB

−MI +MT = −a
2QT

and

−MI =
D

jω

(

θ̇L − θ̇R + θ̇B − θ̇T

)

a
2 θ̇L = ẆI − ẆL

a
2 θ̇R = ẆR − ẆI

a
2 θ̇B = ẆI − ẆB

a
2 θ̇T = ẆT − ẆI

(5.5)

which highlights the derivatives of the transverse and angular displacements that are going

to be used as electrical current variables. It then becomes possible to represent the system

of equations (5.5) with the electrical circuit given in Fig. 5.2. The electrical transform-

ers of ratio a/2 allow the implementation of the forward and backward finite differences
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Figure 5.2: Electrical unit cell as a direct analogue of the plate finite difference model.

that satisfy the definition of θ and Q as spatial derivatives of w and −M , respectively.

Furthermore, the inductance represents the mass m of the unit cell and the capacitance

is equal to the inverse of the bending stiffness D, in agreement with the direct electrome-

chanical analogy. The proposed two-dimensional unit cell in Fig. 5.2 can finally be seen as

a two-dimensional extension of the beam electrical analogue which has been presented in

Chap.4. The electrical circuit in Fig. 5.2 has to be replicated along the x and y directions

in order to create the electrical analogue of a plate.

A single electrical unit cell is implemented with one inductor, one capacitor and five

transformers. Note that the connection of adjacent unit cells reduces the number of com-

ponents. Indeed, a series of two transformers of ratio a/2 can be replaced by a single

transformer with a ratio equal to a. Then, the average number of transformers per unit

cell tends to three when increasing the number of unit cells. Actually, it has been found af-

terward that the proposed topology is a special case of the ”Dynamic analog for a constant

thickness plate” introduced by MacNeal in 1949 [30]. This analogous network has been ob-

tained from a rectangular plate element and the result is a unit cell made of one capacitor,

four inductors and two transformers. It can be shown that the case of the square unit cell

simplifies MacNeal’s electrical network into the one of the present section, which involves

fewer electrical components, i.e. one inductor, one capacitor and three transformers. We
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also obtain a simpler network when compared to the topology proposed by Alessandroni

et al. [23, 24] with one capacitor, three inductors and six transformers per unit cell. As

a consequence, the new topology simplifies the practical implementation of the analogous

network for experimental validation and application to piezoelectric damping.

5.2.3 Electrical boundary conditions

When implementing an analogous electrical network with a set of several unit cells as

the one proposed in Fig. 5.2, the electrical states on the edges of the complete network

also have to satisfy an analogy with mechanical boundary conditions. For instance, for

clamped boundary conditions along an edge at x = 0,

W (0, y) = 0 and θ(0, y) = 0. (5.6)

If this condition applies to the left of the unit cell in Fig. 5.2, we get

ẆL = 0 and θ̇L = 0, (5.7)

which means that both electrical port have to remain open-circuited. As explained below,

other boundary conditions involving simply-supported edges or free edges are less obvious

because they require application of the Kirchhoff-Love plate theory. The classical state

variable formulation of the differential equation in Eq. (5.1) can be expressed as follows:

∂Qx

∂x
+

∂Qy

∂y
= −ρhaω2W

Qx =
∂Mx

∂x
− ∂Mxy

∂y

Qy =
∂My

∂y
− ∂Mxy

∂x

and

Mx = −aD

(

∂2W

∂x2
+ ν

∂2W

∂y2

)

My = −aD

(

∂2W

∂y2
+ ν

∂2W

∂x2

)

Mxy = aD(1− ν)
∂2W

∂x∂y

. (5.8)

This corresponds to the variables used by Timoshenko [136] in which we have introduced

the length coefficient a in order to get variables Q and M homogeneous to forces and

moments. Qx and Qy are shear forces and their definition is actually the same as in

Eq. (5.2). Mx, My and Mxy are respectively the bending moments along x, the bending

moment along y and the twisting moment. Simply-supported boundary condition along

an edge at x = 0 corresponds to zero bending moment along x and zero displacement as

W (0, y) = 0 and Mx(0, y) = 0. (5.9)

So,
∂2W

∂y2

∣

∣

∣

0,y
= 0 and because Mx = −aD

(

∂2W

∂x2
+ ν

∂2W

∂y2

)

, we also get
∂2W

∂x2

∣

∣

∣

0,y
= 0.

The variable M involved in Eq. (5.2) and in Fig. 5.2 is not equal to the bending moment

Mx nor My but it is a linear combination of both of them through

M = aD

(

∂2W

∂y2
+

∂2W

∂x2

)

= − 1

1 + ν
(Mx +My) . (5.10)
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With simply-supported boundary conditions, as the second derivatives of W along both x

and y directions are equal to zero, M(0, y) = 0. Consequently, if this applies to the left of

the unit cell in Fig. 5.2,

ẆL = 0 and ML = 0, (5.11)

which corresponds to an open-circuited ’w’ electrical line and a short-circuited ’θ’ line.

Free boundary condition along the same edge at x = 0 correspond to a zero bending

moment Mx and a zero effective shear force Vx:

Mx(0, y) = 0 and Vx(0, y) = 0, (5.12)

where the effective shear force has been defined by Timoshenko [136] as

Vx = Qx −
∂Mxy

∂y
= −aD

(

∂W 3

∂x3
+ (2− ν)

∂3W

∂x∂y2

)

. (5.13)

The boundary condition Vx(0, y) = 0 thus gives

Qx(0, y) = aD(1− ν)
∂3W

∂x∂y2

∣

∣

∣

0,y
= aD(1− ν)

∂2θx
∂y2

∣

∣

∣

0,y
. (5.14)

Furthermore, the boundary condition Mx(0, y) = 0 leads to
∂2W

∂x2

∣

∣

∣

0,y
= −ν

∂2W

∂y2

∣

∣

∣

0,y
, so

M(0, y) = aD(1− ν)
∂2W

∂y2

∣

∣

∣

0,y
. (5.15)

Finally, with the discrete finite difference scheme, Eqs. (5.14) and (5.15) are equivalent to

QL =
D(1− ν)

a
(θ+L − 2θL + θ−L ) and ML =

D(1− ν)

a
(W+

L − 2WL +W−

L ), (5.16)

where the superscripts ’+’ and ’-’ refer to the neighboring unit cells along the x axis. We

note that QL, which is the analogue of a voltage in the ’w’ electrical line, is a linear com-

bination of charge displacements occurring in three distinct ’θ’ electrical lines. A similar

situation occurs with ML, voltage in the ’θ’ electrical line, which is a linear combination

of charge displacements occurring in three distinct ’w’ lines. Consequently, even if the

boundary conditions in Eq. (5.16) can be implemented with an active control system, it

seems that it cannot be achieved with simple electrical connections when considering the

circuit in Fig. 5.2. This highlights a limit of the proposed network topology, which al-

lows an easy implementation of clamped or simply-supported boundary conditions, but

no passive solution for free boundary conditions.
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5.2.4 Element ”mass” and ”stiffness” matrices

The electrical circuit in Fig. 5.2 defines a single unit cell of the proposed analogous

network, which represents the finite difference model of a square plate unit cell. In order

to model a complete electrical network or a complete plate made of several unit cell, it

is decided to focus on an assembly of element matrices, as classically performed through

finite element procedures. By considering a force and a displacement vector,

F e
m =

[

−QB −MB −QL −ML QR MR QT MT

]T

and qem =
[

WB θB WL θL WR θR WT θT

]T , (5.17)

one might want to define an element dynamic stiffness matrix De
m as

F e
m = De

mqem. (5.18)

The signs in the force vector are chosen in order to involve external forces applied to

the unit cell. As, QB, MB, QL and ML represent mechanical actions applied by the

considered unit cell to its bottom or left neighbors, their opposite values are introduced

into the force vector. The calculation of the dynamic stiffness matrix De
m relies on the

set of equations (5.2), which has to be reorganized to make appear the force components

as linear combinations of the displacements. Yet, we remark that the displacements are

not independent variables. Indeed, Eq. (5.4) shows that if all four angles have prescribed

values, the choice of a single displacement enforces the value of the other ones. This means

that the dynamic stiffness matrix cannot be defined. Additional degrees of freedom are

required to relax the kinematic constraints linking angles and displacements. To this end,

additional components are inserted in the electrical circuit representing the plate unit

cell, as was performed in Chap. 4 for one-dimensional bending. The modified circuit is

represented in Fig. 5.3, where capacitors C0/2 are added at the ends of the ’θ’ electrical

lines in order to allow the definition of the dynamic stiffness matrix De
m. Additional

inductors Lθ/2 are also introduced in the ’θ’ electrical lines. Those inductors are actually

the analogues of moments of inertia. Moreover, they can be used to model parasitic

elements in non-ideal transformers when considering the analysis of the analogous electrical

network.

Electrical variables have been used in Fig. 5.3 for showing that the analysis of an elec-

trical network can reproduce methods usually implemented for the analysis of mechanical

structures. Indeed, one can define an electrical ”dynamic stiffness matrix” De
e, which

satisfies

F e
e = De

eq
e
e, (5.19)
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Figure 5.3: Modified unit cell for calculation of the element dynamic stiffness matrix.

where

F e
e =

[

VwB VθB VwL VθL −VwR −VθR −VwT −VθT

]T

and qee =
[

qwB qθB qwL qθL qwR qθR qwT qθT

]T (5.20)

are the voltage vector and the electrical charge displacement vector, the analogues of

the force and displacement vectors, F e
m and qem. Note that the signs in F e

e are the

opposites of the signs in F e
m because the voltages are analogous to the opposite of the

force contributions, as shown in Fig. 5.2. The ”dynamic stiffness matrix” De
e is obtained

by writing down all the discrete electrical equations referring to Fig. 5.3, eliminating the

internal variables and solving for the side voltage variables. Element ”stiffness” and ”mass”

matrices are then defined through

De
e = Ke

e − ω2M e
e, (5.21)

which means that Ke
e corresponds to a ”static stiffness matrix”:

Ke
e = De

e when ω = 0. (5.22)
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So, by setting ω = 0 in the symbolic expression for De
e we get
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2
C

C+2C0
−â â2
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â â2

2
C

C+2C0
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As in Chap. 4, the capacitance C0 has only been introduced to allow the calculation of

Ke
e. It is a numerical parameter that has to be small compared to C but high enough to

avoid numerical issues. A value of C0 around C × 10−6 was found to be adequate for the

following computations. Then, it still remains to define the element ”mass matrix” M e
e.

Equation (5.21) gives

M e
e =

Ke
e −De

e

ω2
. (5.24)

Contrary to Ke
e, the matrix M e

e can be defined in the case of C0 = 0 and it is found that

M e
e = ML

e +MLθ

e , (5.25)

where

ML
e =

L
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â
2

â2
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2 1 − â
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2

− â
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â2

4

1 â
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2

− â
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and

MLθ

e =
Lθ

2a2
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The electrical ”dynamic stiffness matrix” in Eq. (5.21) is computed with the values of the

electrical parameters: L, Lθ, C and â. The exact same mass and stiffness matrices can

be used when considering a mechanical plate element referring to Eq. (5.18). This simply
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requires to replace the inductance L by the mass m of the unit cell, the capacitance C by

the inverse of the bending stiffness D and the transformer ratio â by the length a of the

unit cell.

5.2.5 Numerical validation of the finite difference model

A structure as a plate or its analogous electrical network can be modeled by replicating

the unit cell in Fig. 5.3 along the x and y directions. Following an assembly process, as

in the finite element method, a global stiffness matrix K and a global mass matrix M

are built from the element matrices in Eqs. (5.23) and (5.25). From these global matrices,

it thus becomes possible to perform a modal analysis by solving the following generalized

eigenvalue problem:
[

K − ω2M
]

q = 0. (5.28)

Here, we do not make any difference between mechanical or electrical problems because

the method applies similarly in both domains. In the following, we compute the modes of

a mechanical plate without rotational inertia (Lθ = 0) but we note that we would get the

exact same results with an electrical network satisfying

1

â2
1

LC
=

1

a2
D

m
. (5.29)

This corresponds to an extension of the modal coupling condition defined for bending in

Chap. 4 because a beam model corresponds a special case of the present 2D model.

A modal analysis is performed in order to validate the proposed finite difference model.

We consider a plate of side lx = 400 mm, width ly = 320 mm and thickness h = 1.9

mm. The Young’s modulus of the plate is Y = 69 GPa, its Poisson’s ratio is ν = 0.33

and its density is ρ = 2700 kg/m3. Simply-supported boundary conditions are taken into

account in order to study the convergence of the finite difference model. Indeed, with those

boundary conditions the natural frequencies of any modes ’m-n’ are known analytically

[136] and expressed as

fmn =
π

2

√

D

ρh

[

(

m

lx

)2

+

(

n

ly

)2
]

. (5.30)

The natural frequencies of the first five modes of the plate are represented by horizontal

continuous lines in Fig. 5.4(a). Then, the markers corresponds to the natural frequencies

computed with either 5×4, 10×8, 15×12, 20×16 or 25×20 unit cells. It is observed that

the natural frequencies of the discrete model approach those of a continuous plate when

increasing the number of elements. Furthermore, the computed mode shapes also give a

suitable approximation of the theoretical trigonometric modes, as seen in Fig. 5.4(b) with

25×20 unit cells. As could have been expected, the highest modes require a larger number
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Figure 5.4: Modal analysis with the finite difference model: (a) Convergence of the model.
(b) Mode shapes computed with 25×20 unit cells.

of unit cell for a similar precision on the eigenvalues. The same recommendation as in

Chaps. 3 and 4 can be formulated: at least 10 unit cells per wavelength are required to get

a suitable approximation of a continuous plate. This corresponds to 15×12 unit cells for

the present example focusing on the first five modes of a simply-supported plate. Actually,

Fig. 5.4(a) shows that 15×12 unit cells offer a frequency error of less than 3%.

The finite difference model also allows the computation of frequency response functions

from
[

K − ω2M
]

q = F , (5.31)

where the force vector F contains terms representing harmonic excitation of the structure.

If a transverse force Fsim is applied to the left of the unit cell (i, j), i.e. the ith unit cell

along the x axis and the jth unit cell along the y axis, then

Fsim = Q
(i−1,j)
R −Q

(i,j)
L , (5.32)

is the term that would appear in the force vector F . By analogy, the excitation of an
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Figure 5.5: Voltage excitation applied between the unit cells (i− 1, j) and (i, j).

electrical network corresponds to a voltage

Vsim = −V (i−1,j)
wR

+ V (i,j)
wL

. (5.33)

Figure 5.3 indicates that this excitation is a voltage applied between two transformers

in the ’w’ electrical line. This is represented in Fig. 5.5 without taking into account the

capacitors C0/2. For a frequency analysis of an electrical network, a scalar Vsim is thus

inserted in the vector F to simulate the voltage excitation appearing in Fig. 5.5. Frequency

response functions are not show here but, as the modal analysis, they validate the proposed

finite difference model of a plate and thereby the analogous electrical network. The next

step is then to implement the analogous network with a set of real electrical components.

5.3 Experimental validation of the plate electrical analogue

The electrical analogue of a clamped plate is assembled by using passive magnetic

components, which had to be specifically designed for the present application. By analogy

with modal vibration analysis of a mechanical structure, the network is excited with a

voltage and electrical distributions of the current are measured. The topology of the

network is validated by observing ”electrical mode shapes” that are analogous to what is

classically observed with a clamped plate.

5.3.1 Implementation of the analogous electrical network

In order to validate the electrical topology, the analogue of a clamped plate is built

by connecting together 5×4 identical unit cells. This coarse mesh was chosen for practical

reasons related to the number of electrical components. Even for the second mode, the

resulting network cannot offer a minimum of 10 unit cells per wavelength, as was suggested
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Figure 5.7: Equivalent circuits with parasitic elements: (a) Transformer of ratio â:1.
(b) Inductor connected to the 1:1 transformer.

corresponds to the electrical model proposed in Chap 4, without winding to winding capac-

itance, whose influence is negligible in the following design of magnetic components. The

same electrical model is considered for the 1:1 transformer. As represented in Fig. 5.7(b),

the corresponding magnetizing inductance and winding resistance are respectively LT ⋆

m and

RT ⋆

s . Note that the winding where we have placed the RT ⋆

s resistance is the one connected

to the inductor. Moreover, the damping in the inductor can be modeled by a series resis-

tance RL
s and a parallel resistance RL

p . Another element to consider is the resistance R+
s

that can be added in series with the inductors L for a tuning purpose. In the end, the

total series resistance in the electrical line of the inductor is equal to RL
s +RT ⋆

s +R+
s .

The inductors are made by winding copper wire around the same type RM10 fer-

rite as the ones used in Chap. 2. Because their permeance is AL = 16 µH, we need
√

L/AL = 237 turns to generate an inductance L = 0.9 H. The series resistance is

RL
s = 2.6 Ω with a copper wire diameter equal to 0.32 mm and the parallel resistance

of the inductors is then evaluated experimentally to RL
p = 200 kΩ. Concerning the design

of the transformers, following what has been proposed in Chap. 4, a sufficient magnetizing

inductance is required to approximate an ideal transformer with a magnetic component.

Still, the magnetizing inductance of the secondary winding (in the ’w’ electrical line) has

to be at least 50 times larger than the inductance L. This means that

LT
m ≥ 50â2L, (5.34)

where LT
m = AT

LN
2
1 is the magnetizing inductance of the primary winding (in the ’θ’

electrical line), AT
L is the permeance of the magnetic core and N1 is the number of turns

of the primary winding. With a transformer ratio â = 4, Eq. (5.34) gives LT
m ≥ 720 H.

This high inductance value can be satisfied with a nanocrystalline toroidal core Nanophy

30×20×10 offering a permeance AT
L around 100 µH. After winding N1 = 3000 turns for

the primary and N2 = 750 turns for the secondary, a magnetizing inductance LT
m/â

2 = 57

H is measured at 100 Hz and 1 V on the secondary winding. This means that LT
m = 912
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H, which satisfies Eq. (5.34). Wires of diameters 0.15 mm and 0.22 mm are used for the

primary and secondary windings, leading to a total winding resistance RT
s = 353 Ω. At

last, the 1:1 transformers also need to offer a magnetizing inductance LT ⋆

m above 50 times

the inductance L. This condition is satisfied with two windings of 750 turns on the same

nanocrystalline toroid as for the 4:1 transformers. A winding resistance RT ⋆

s = 21 Ω is

then obtained with a wire of 0.25 mm diameter.

5.3.2 Setup for the analysis of the electrical analogue

As the proposed electrical network represents the analogue of a clamped plate, it

was decided to validate the electrical behavior with classical instrumentation normally

dedicated to mechanical modal analysis. The setup is represented in Fig. 5.8 where a

clamped plate and its electrical analogue appear together in order to show the analogy in

terms of data acquisition. If the considered structure is the mechanical plate, we acquire

the input force and the velocity, which is scanned on several points with a vibrometer. If

the electrical network is analyzed, the signals of interest are not force and velocity but

their direct analogues: an input voltage and the current flowing through the inductors.

The direct measurement of the current would require the introduction of instruments

Figure 5.8: Experimental setup for the modal analysis of a clamped plate or for its anal-
ogous electrical network.
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Figure 5.9: Voltage excitation as the analogue of an external transverse force between the
unit cells (1,2) and (2,2): (a) Theoretical excitation between two transformers. (b) Sim-
plified electrical circuit.

in the network, but this could modify its electrical properties. A less intrusive solution

consists in measuring the voltage drop across the inductors, which is finally the analogue

of the acceleration. This differential voltage is measured by using a low noise preamplifier

offering a differential function. The resulting signal and the voltage input are sent to the

workstation, where the electrical FRF is computed. Spatial distributions of the electrical

variables can be obtained by scanning several points of the electrical network. This requires

the use of two preamplifiers and a switch, which allows changing the measurement location

without any delay. While the voltage drop is measured on one inductor, we have time to

prepare the electrical connections for the next measurement. This is crucial because the

scanning process is controlled by the vibrometer software that generates an instantaneous

switching between measurement points.

The positioning of the voltage input exciting the electrical network is not obvious when

we want to ensure an analogy with an external force that would be applied to a plate.

Actually, the solution is given in Fig. 5.5 for an excitation between the unit cells (i− 1,j)

and (i,j). For i = j = 2, electrical simplifications at the boundaries gives the electrical

circuit in Fig. 5.9(a), where appears the winding resistance RT
s that replaces the inductance

Lθ used for the model in Sec. 5.2. The problem is that in our network all the pairs of â/2:1

transformers have been replaced by â:1 transformers. It is thus not possible to directly

generate a voltage Vsim simulating a transverse force between the unit cells (1,2) and (2,2).

Yet, we remark that Fig. 5.9(a) gives

V
(1,2)
θI

− V
(2,2)
θI

=
â

2
V

(1,2)
wR

+ jωRT
s q̇

(1,2)
θR

+
â

2
V

(2,2)
wL

. (5.35)

Furthermore, there is a relation between the voltage excitation Vsim and the voltage across
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the transformers as

Vsim = V (2,2)
wL

− V (1,2)
wR

. (5.36)

Equations (5.35) and (5.36) thus lead to

V (2,2)
wL

=
1

â

(

V
(1,2)
θI

− jωRT
s q̇

(1,2)
θR

− V
(2,2)
θI

)

+
1

2
Vsim, (5.37)

which is combined with

q̇(2,2)wI
= âq̇

(1,2)
θR

(5.38)

in order to give the simplified electrical scheme in Fig. 5.9(b) where

Vexp =
1

2
Vsim. (5.39)

All of this shows that placing a voltage excitation Vexp between the ground and the sec-

ondary winding of the â:1 transformer allows generating the analogue of a force between

the (1,2) and (2,2) unit cells of the experimental network.

5.3.3 Electrical distributions and frequency response functions

The spatial distributions of the electrical current are represented in Fig. 5.10 together

with an electrical FRF representing the ratio of the voltage drop across the inductor in

the (2,2) unit cell to the excitation voltage Vexp = 2 V. It is shown in Fig. 5.10 that the

addition of resistors R+
s = 180 Ω in series with the inductors of the network gives an

electrical FRF, where the 6 electrical resonances induced by the 6 inductors are hardly

observable. On the other hand, the resonances are clearly identified when R+
s = 0 Ω. They

can still be qualified as ”smooth” when compared to the ”sharp” resonances of a lightly

damped mechanical system. The relatively low quality factor of the electrical resonances

is mainly due to the internal resistance of the transformers.

The experimental results are compared to simulations computed with the model de-

veloped in Sec. 5.2. The inductance values L and Lθ appearing in Eqs. (5.26) and (5.27)

are replaced by their complex values including damping elements. Impedance calculations

based on Figs. 5.7(a) and 5.7(b) gives the equivalent inductance values

L(ω) =
RL

pL0

RL
p + jωL0

+
RL

s +RT ⋆

s +R+
s

jω

and Lθ(ω) =
RT

s

jω

. (5.40)

As stated previously, a voltage drop is measured across the inductor of the unit cell (2,2).
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Figure 5.10: Experimental current distributions with respect to the voltage FRF with
L=0.9 H and C=470 nF - (—) experimental FRF with R+

s =0 Ω, (−−) simulated FRF
with R+

s =0 Ω, (· · · ) simulated FRF with R+
s =180 Ω.

In our model, this corresponds to a voltage

Vdrop = −ω2L(ω)q(2,2)wI
. (5.41)

where q
(2,2)
wI

is the displacement of electric charges through the considered inductor. This

charge displacement is defined as

q(2,2)wI
= q(2,2)wL

+
â

2
q
(2,2)
θL

, (5.42)

where q
(2,2)
wL

and q
(2,2)
θL

are computed from the model in Eq. (5.31). If Vdrop has been

experimentally measured with an input Vexp = 1, a similar result should be obtained from

a simulation with Vsim = 2, as indicated by Eq. (5.39). Finally, Fig. 5.10 shows that

the simulation fits with the experimental FRF. Moreover, the spatial distributions of the

currents around the resonances approximate the mode shapes of a clamped plate. This

validates the analogous network topology and confirms that the proposed finite difference

scheme is able to reproduce the dynamic behavior of a plate.

5.4 Models for piezoelectric coupling to a 2D network

The coupled behavior of a square piezoelectric plate is defined from the 3D linear

theory of piezoelectricity. A similar model is used for a square piezoelectric laminate

made of a combination of piezoelectric and purely elastic layers. From this global model it

can be drawn an electrical circuit defining the two-dimensional piezoelectric coupling. This

new building block allows coupling the finite difference model to its analogous electrical
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network. A discrete electromechanical unit cell can thus be defined and then eventually

refined under a more accurate macro unit cell.

5.4.1 Square piezoelectric plate

As presented in Chap. 2, the 3D linear piezoelectricity [68] for a transverse isotropic

PZT ceramic polarized in the direction ’3’ can be expressed as

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Regarding a thin piezoelectric plate whose thickness corresponds to the direction of polar-

ization, a classical hypothesis is to consider that the electric field is zero along the principal

directions [69], i.e. E1 = E2 = 0. The plane stress hypothesis σ3 = 0 then leads to the

reduced matrix
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Consequently, it is found that

ε1 + ε2 = (sE11 + sE12)(σ1 + σ2) + 2d31E3

D3 = d31(σ1 + σ2) + ǫσ33E3
. (5.45)

From the definition of the material constants sE11 and sE12 [68, 69], we get sE11 + sE12 =

(1 − νp)/Y
E
p , where νp is the Poisson’s ratio of the piezoelectric material and Y E

p =

1/sE11 is its Young’s modulus when the transverse electric field is equal to zero (E3 = 0).

Equation (5.45) can then be reorganized into

σ1 + σ2 =
Y E
p

1− νp
(ε1 + ε2)− d31

2Y E
p

1− νp
E3

D3 = d31
Y E
p

1− νp
(ε1 + ε2) + ǫε

⋆

33E3

, (5.46)

where

ǫε
⋆

33 = ǫσ33

(

1− 2

1− νp

d231
sE11ǫ

σ
33

)

(5.47)
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is the equivalent permittivity of a piezoelectric plate which is blocked along its principal

directions, i.e. ε1 = ε2 = 0.

For a plate subjected to bending motion, the strains ε1 and ε2 can be expressed as

ε1 = −z
∂θx
∂x

and ε2 = −z
∂θy
∂y

, (5.48)

where x and y refer to the principal directions ’1’ and ’2’, and z refers to the transverse

direction ’3’. Considering the plate theory [136] for a square unit cell of side lp, the bending

moments Mx and My that has been defined in Eq. (5.8) are related to the stresses σ1 and

σ2 through

Mx = lp
∫

z σ1zdz and My = lp
∫

z σ2zdz . (5.49)

Furthermore, the total electric charge qp and the voltage Vp between the two electrodes of

the piezoelectric element are defined as

qp = −
∫

x

∫

y D3dxdy and E3 = −Vp

hp
, (5.50)

where hp is the thickness of the piezoelectric plate. If the piezoelectric plate is at a distance

λ from the mid-surface and is sufficiently thin, i.e. λ ≫ hp so that
∫ λ+hp/2
λ−hp/2

zdz/hp ≈ λ,

Eq. (5.46) gives

Mx +My = −
Y E
p Ip

1− νp

(

∂θx
∂x

+
∂θy
∂y

)

+ λlpd31
2Y E

p

1− νp
Vp

qp = λlpd31
Y E
p

1− νp
(∆θx +∆θy) + ǫε

⋆

33

l2p
hp

Vp

, (5.51)

with ∆θx = 1
lp

∫ lp
0 ∆θx(y)dy and ∆θy = 1

lp

∫ lp
0 ∆θy(x)dx representing average differences of

the angles at opposite sides, and Ip = lp
∫ λ+hp/2
λ−hp/2

z2dz, the second moment of area. Recall

that the sum of the bending moment is related to the variable M defined in Eq. (5.2)

through

Mp = − 1

1 + ν
(Mx +My) . (5.52)

So, Eq. (5.51) is equivalent to

Mp = lpD
E
p

(

∂θx
∂x

+
∂θy
∂y

)

− 2ep
1− ν2p

Vp

qp =
ep

1− νp
(∆θx +∆θy) + Cε

pVp

, (5.53)

where DE
p =

Y E
p Ip

(1− ν2p)lp
is the short-circuited bending stiffness, Cε

p = ǫε
⋆

33

l2p
hp

is the blocked

piezoelectric capacitance and ep = λlpd31Y
E
p is the coupling coefficient. It is noticed that

Eq. (5.53) does not offer a symmetrical reciprocity [74], i.e. the global coefficients related to
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If the Poisson’s ratio of the elastic structure νs is close to the one of the piezoelectric patch,

the global bending stiffness of the laminate DE is defined from

1

DE
=

(

1− ν2s
)

lp

YsIs + Y E
p Ip

+

(

1− ν2s
)

(a− lp)

YsIs
, (5.57)

which corresponds to a series of two bending stiffness elements, one for the segment with

piezoelectric material and one for the segments without piezoelectric material. Is and

Ip are the second moments of area for the elastic and piezoelectric plates, respectively.

When considering that the Young’s moduli of both material have close values and that the

piezoelectric plate covers most of the elastic surface (lp ≈ a), the mid-surface is around

a position (hs + hp)/2 from the free surface of the piezoelectric patch, as represented in

Fig. 5.11. Consequently, the second moments of area can be approximated by

Ip = lp

∫

hs+hp

2

hs−hp

2

z2dz = lp
(hs + hp)

3 − (hs − hp)
3

24

and Is = a

∫

hs−hp

2

−
hs+hp

2

z2dz = a
(hs − hp)

3 + (hs + hp)
3

24

. (5.58)

The global coupling coefficient eθ could be eventually obtained from 3D calculations [18,

71] but it has been remarked that the bonding layer between the main structure and the

patches has generally a non-negligible influence. A more direct method to get the actual

value for eθ is to compare the short- and open-circuited responses of the whole piezoelectric

structure. A lack of precise modeling of the bonding layer leads us to use the latter

approach in the following comparisons with experimental results. The same conclusions

arise for the determination of the blocked capacitance Cε which would require a precise

3D modeling. This can be avoided by direct measurement of the piezoelectric capacitance

when preventing transverse displacement of the mechanical structure.

5.4.3 Discrete electromechanical unit cell

The square piezoelectric laminate in Fig. 5.11 defines the unit cell of a system based

on a periodic array of piezoelectric patches covering an elastic plate. When considering

large wavelength compared to the length a of a unit cell,

∂θx
∂x

≈ θR − θL
a

,
∂θy
∂y

≈ θT − θB
a

∆θx ≈ θR − θL , ∆θy ≈ θT − θB

, (5.59)

where θR, θL, θT and θB are the angles on the 4 sides of the unit cell (right, left, top and

bottom sides respectively). So, Eq. (5.56) is written as

MI = DE (θR − θL + θT − θB)− eθVθI

qθI = eθ (θR − θL + θT − θB) + CεVθI
, (5.60)
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Figure 5.12: Model of the piezoelectric coupling for a square piezoelectric laminate.

which is equivalent to

−MI =
DE

jω

(

θ̇L − θ̇R + θ̇B − θ̇T

)

+ eθVθI

VθI =
1

jωCε

[

q̇θI + eθ

(

θ̇L − θ̇R + θ̇B − θ̇T

)]

. (5.61)

Note that MI has the same form as in Eq. (5.5) when the piezoelectric coupling coefficient

eθ is equal to zero. With q̇θI = q̇θL − q̇θR + q̇θB − q̇θT , Eq. (5.61) can be represented by the

electrical circuit in Fig. 5.12. This corresponds to a 2D extension of the model used to

represent the unit cell subjected to one-dimensional bending motion in Chap. 4.

The proposed 2D model offers a way to couple a square plate unit cell to it analogous

electrical network. Indeed, the circuit in Fig. 5.12 can be inserted between the unit cell

involving mechanical variables as in Fig. 5.2 and its electrical counterpart as in Fig. 5.3. In

the end, we get a discrete electromechanical unit cell represented by an electrical circuit

involving four external ports per side, i.e. 16 ports in total. The whole set of discrete

equations defining the electromechanical unit cell is written down, the internal variables

are then eliminated and the system of equations is solved for the side force and voltage

variables as linear combinations of the displacement and electric charge variables. We

obtain a 16×16 ”dynamic stiffness matrix” of the coupled system under the form

F e
c = De

cq
e
c (5.62)

Here, the force and displacement vectors are

F e
c =

[

F e
B F e

L F e
R F e

T

]T and qec =
[

qeB qeL qeR qeT
]T (5.63)

where

F e
B =

[

−QB −MB VwB VθB

]T

F e
L =

[

−QL −ML VwL VθL

]T

FR =
[

QR MR −VwR −VθR

]T

F e
T =

[

QT MT −VwT −VθT

]T

and

qeB =
[

WB θB qwB qθB
]T

qeL =
[

WL θL qwL qθL
]T

qeR =
[

WR θR qwR qθR
]T

qeT =
[

WT θT qwT qθT
]T

.

(5.64)
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Figure 5.14: Model of the piezoelectric coupling for a macro unit cell with 4 sub-cells.

The numbering of the electrical variables refers to Fig. 5.13(a), where the side coordinates

are written explicitly. In the end, we would get a macro unit cell with a number of

mechanical variables that has been doubled. The element matrix De
c in Eq. (5.62) would

thus be a 24×24 matrix, which can be obtained with a symbolic solver.

Depending on the considered wavelength, the macro unit cell in Fig. 5.13(a) may

still require a finer mesh to generate a suitable approximation of the mechanical domain.

An improvement is to use 9 sub-cells instead of 4, which leads to the macro unit cell

represented in Fig. 5.13(b). A similar electrical circuit as in Fig. 5.14 could be drawn

with 9 transformers connected to a single capacitor. From the whole set of equations

defining the electrical unit cell and the 9 mechanical sub-cells, a 32×32 element matrix

De
c is obtained. The force vectors on the sides of the macro unit cell are thus

F e
B =

[

−QB1
−MB1

−QB2
−MB2

−QB3
−MB3

VwB VθB

]T

F e
L =

[

−QL1
−ML1

−QL4
−ML4

−QL7
−ML7

VwL VθL

]T

F e
R =

[

QR3
MR3

QR6
MR6

QR9
MR9

−VwR −VθR

]T

F e
T =

[

QT7
MT7

QT8
MT8

QT9
MT9

−VwT −VθT

]T

(5.65)
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and the displacement vectors are

qeB =
[

WB1
θB1

WB2
θB2

WB3
θB3

qwB qθB
]T

qeL =
[

WL1
θL1

WL4
θL4

WL7
θL7

qwL qθL
]T

qeR =
[

WR3
θR3

WR6
θR6

WR9
θR9

qwR qθR
]T

qeT =
[

WT7
θT7

WT8
θT8

WT9
θT9

qwT qθT
]T

, (5.66)

where the numbering refers to Fig. 5.13(b). This model based on a 32×32 element ”dy-

namic stiffness matrix” is finally the one that is implemented in the following comparisons

with experimental results.

5.5 Experiments on plate damping

Once the design of an analogous electrical network is validated, it can be dedicated

to the damping of a plate. The network built in Sec. 5.3 is coupled to a clamped plate

through an array of piezoelectric patches. When electrical modes match their mechanical

analogues, they strongly influence the dynamic response of the plate. The tuning of the

electrical network is then optimized by adjusting the inductance and resistance values. In

the end, a significant vibration reduction is observed over a broad frequency range.

5.5.1 Clamped plate

The mechanical structure to control is a clamped aluminum plate, whose dimensions

and material properties are listed in Table 5.1. The plate thus corresponds to a set of

5×4 identical squares of side 80 mm. The clamping frame is made of square aluminum

bars reinforced with steel angle channels, as seen in Figs. 5.15(a) and 5.15(b). Two rows

of bolts are equally tightened with a torque wrench to ensure zero deflection and zero

slope boundary conditions [137, 138]. A white noise excitation is generated from a shaker

between the square unit cells (2,1) and (2,2) and the transverse velocity field is measured

Plate (Aluminum 1050) Patches (PZT-5H)

Length (mm) lx = 400 lp = 72.4
Width (mm) ly = 320 lp = 72.4

Thickness (mm) hs = 1.9 hp = 0.27
Density (kg/m3) ρs = 2700 ρp = 7800

Young’s modulus (GPa) Ys = 69 1/sE11 = 62
Charge constant (pC/N) - d31 = −320
Permittivity (nF/m) - ǫσ33 = 33.6

Table 5.1: Dimensions and material properties for the plate and for the piezoelectric
patches.
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(a) (b)

Figure 5.15: Clamped aluminum plate: (a) Front of the plate with reflective tape for
velocity measurement with a laser vibrometer. (b) Shaker exciting the back of the plate.

with a scanning laser vibrometer. The input force, around 0.1 N, is measured with a force

sensor placed between the shaker and the plate. The force signal is then processed together

with the velocity signal to compute the velocity FRFs.

Note that the considered bolted frame offers an adequate approximation of clamped

boundary conditions up to 500 Hz. Above this frequency, the two rows of bolts still lead

to a satisfactory clamping but the frame and its connections to the table are not stiff

enough, which generates undesired low-frequency frame modes. The velocity FRFs are

thus measured from 50 Hz to 500 Hz. The measurement point for the velocity corresponds

to the center of the unit cell (2,2), as seen in Fig. 5.8. The velocity FRF in Fig. 5.16 shows

four resonances over the considered frequency range. Actually, the 4th resonance is the

result of a combination of the 4th and 5th modes that exhibit close natural frequencies.

The finite difference model in Eq. (5.31) is implemented with 15×12 unit cells in order

to ensure more than 10 unit cells per wavelength for the first five plate modes. The center

of the unit cell (5,5) in the model corresponds to the center of the square (2,2), which had

first been defined for a plate divided into 5×4 identical squares. The displacement at the

center of the unit cell (5,5) is computed from the displacement and angle on its left side as

W
(5,5)
I = W

(5,5)
L +

a

2
θ
(5,5)
L . (5.67)

We note the non-negligible effect of the mass madd = 7.6 g of the element which is added

between the force sensor and the plate for connecting one to the other. Consequently,

there is a difference between the simulated force Fsim acting on the plate and the force

Fexp measured by the force sensor. If Fexp is the force applied by the force sensor to the
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Figure 5.16: Experimental operating deflection shapes with respect to the velocity FRF
- (—) experimental FRF, (−−) simulated FRF computed with 15×12 unit cells.

mass madd and Fsim is the force applied to the plate

Fexp − Fsim = −ω2maddW
(5,5)
L . (5.68)

Consequently, if W
(5,5)
I has first been computed with Fsim = 1, it has to be divided by

1 − ω2maddW
(5,5)
L to find the actual FRF taking into account the added mass. Then,

in order to consider structural damping, we combine a viscous damping applied to the

transverse displacement and a viscous damping applied to the stiffness. This corresponds

to the use of an equivalent complex density as ρ(1 − 4.0j/ω) and an equivalent complex

Young’s modulus as Y (1 + 3.3 × 10−6jω), whose damping coefficients were determined

experimentally. This damping model with the proposed numerical values offers a good

correlation between experiments and simulations for the maxima of the velocity FRF

below 500 Hz. Indeed, it is observed in Fig. 5.16 that the numerical results are in good

agreement with the experimental ones. The main difference remains in the fact that the

4th and 5th modes can be distinguished on the simulated FRF. Yet, we note that refining

the mesh does not clearly improve the correlation because it cannot overcome the bias

introduced by the non-ideal clamped boundary conditions in the experiments.

5.5.2 Array of piezoelectric patches

The aluminum plate is covered with an array of 20 square PZT-5H patches, whose

dimensions and properties are given in Table 5.1. As done by Anton et al. [62], the patches

are glued onto the plate by using a vacuum bagging process, which allows reducing the

thickness of the bonding layer. We chose the 3M DP460 two-part epoxy adhesive for its

high shear strength and its adequate working life. The epoxy adhesive is applied on one

side of the piezoelectric patches before their positioning onto the plate. The plate is then
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(a) (b)

Figure 5.17: Vacuum bonding process: (a) Plate in the vacuum bag. (b) Plate covered
with piezoelectric patches after vacuum bonding.

placed in the vacuum bag shown in Fig. 5.17(a). After 24 hours, we obtain the functional

piezoelectric plate in Fig. 5.17(b), which can be inserted into its clamping frame. The

addition of piezoelectric patches does not strongly influence the modal distribution of the

plate because both stiffness and mass are increased. With short-circuited patches, the

natural frequency of the first mode is actually decreased by 2 % because the increase of

the mass is the more significant. Furthermore, we can evaluate the difference in terms

of natural frequencies when the patches are short- or open-circuited. As a reference, the

first mode of the plate is around 140 Hz with open-circuited patches and this frequency

is decreased by 3.5 % once the patches are short-circuited. From this result, the global

coupling coefficient defined in Eq. (5.60) has been evaluated as eθ = 1.4× 10−3 N·m/V.

With the vacuum bagging process, the bonding layer is actually so thin that we get a

direct contact between the plate and at least one corner of the piezoelectric patches, which

creates a short-circuit even with a ”nonconductive” adhesive. The plate and its clamping

frame are thus defined as the ground of the electrical circuit when considering the coupling

to an electrical network. The network made of 5×4 unit cells is coupled to the plate

through the piezoelectric capacitance Cε offered by the patches. Consequently, no external

capacitors are required. The piezoelectric capacitance is evaluated by direct measurement

on the patches at the corners of the clamped plate. There, the boundary conditions

naturally constrain the transverse displacement and it is found that the capacitance is

Cε = 340 nF. According to the discrete network topology obtained for a clamped plate,

the patches on the corners do not play any role. Only 16 of the 20 patches are thus

connected to the electrical network for the present application. The resulting coupled

system is presented in Fig. 5.18, which shows the clamped plate and its analogous electrical

network.
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Figure 5.18: Clamped aluminum plate covered with piezoelectric patches connected to the
multi-resonant network.

5.5.3 Multimodal coupling

Once the network is engaged, Fig. 5.19 shows that the coupling provides a strong

modification of the modal behavior of the plate. For those measurements, the value of the

6 inductors is still equal to 0.9 H. Actually, this value has been chosen to satisfy the modal

coupling condition
1

â2
1

LCε
=

1

a2
DE

m
, (5.69)

which is an extension of Eq. (5.29) to a case involving piezoelectric coupling. With this

modal coupling condition, the modal properties of the plate and its analogous electrical

network would be the same with an infinite number of unit cell. This is not the case for

practical applications, but still, the inductance is tuned for optimal damping around at

least the first mode of the plate. At 140 Hz and 230 Hz, we can easily observe in Fig. 5.19

local minima surrounded by two local maxima. This is a characteristic of an underdamped

tuned mass control, which is here generated by the multi-resonant, spatially-distributed

network. This confirms that the piezoelectric coupling of a 2D mechanical structure to

50 100 150 200 250 300 350 400 450 500

−60

−40

−20

Frequency (Hz)

V
el

oc
ity

 F
R

F
 (

dB
)

50 100 150 200 250 300 350 400 450 500

−60

−40

−20

Frequency (Hz)

V
el

oc
ity

 F
R

F
 (

dB
)

Figure 5.19: Effect of the coupling to the network on the velocity FRF of the plate -
(· · · ) experimental FRF with short-circuited patches, (—) experimental FRF with the
electrical network tuned to L = 0.9 H and R+

s = 0 Ω, (−−) simulated FRF with the
electrical network tuned to L=0.9 H and R+

s =0 Ω.
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Figure 5.20: Voltage frequency response function - (—) experimental FRF with the elec-
trical network tuned to L = 0.9 H and R+

s = 0 Ω, (−−) simulated FRF with the electrical
network tuned to L = 0.9 H and R+

s = 0 Ω.

its electrical analogue leads to a passive control that acts as a multimodal tuned mass

damping, similarly to what has been implemented for the control of 1D structures in

Chaps. 3 and 4.

It is remarked that the vibration reduction is also significant for the highest modes.

However, the network does not offer a tuning that is optimized for all the modes simul-

taneously. The exact analogue of a continuous structure cannot be obtained with a set

of discrete electrical components. Therefore, our discrete network only offers an approxi-

mation of the continuous plate behavior at low frequency. The lower electrical resonances

thus occur at frequencies that are close to the corresponding mechanical resonances but

for higher modes the frequency error becomes non-negligible. Nevertheless, it is possible

to more closely match the resonances of the plate with the same network topology by

increasing the number of electrical unit cells.

The comparison between the experimental results and those coming from the model

developed in Sec. 5.4 shows an adequate correlation in Fig. 5.19. Still, we note a better

correlation for the lowest frequency range, which is due to two main reasons. First, even if

the considered model involves macro unit cell giving 15×12 sub-cells for the plate, it is still

a discrete model that is close to its limits for the highest modes. Then, the approximation

of perfect clamped boundary conditions with the actual setup becomes questionable when

approaching 500 Hz. A second solution to validate the numerical model and verify the

tuning of the network is to proceed to electrical measurements. As has been performed in

Sec. 5.3, FRFs of the network can be obtained from a voltage excitation and a measurement

of the voltage drop across an inductor. The piezoelectric coupling between the network

and the plate considerably influences the electrical FRF presented in Fig. 5.20. Indeed,

when compared to Fig. 5.10, we see a completely different response even if the excitation

and measurement points are the same. Note the clear antiresonance around 140 Hz that

characterize the first mode of the plate and thus shows that the network is correctly tuned.

In the end, the simulation of the electrical FRF is very reliable, which definitely validates
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the proposed model based on two-dimensional coupling to an analogous network.

5.5.4 Tuning of the electrical network

The network can be tuned in different ways depending on the considered application.

For example, if a control is required at one specific frequency which is near a mechanical

resonance, the inductors can be adjusted in order to place the corresponding electrical

resonance at the target frequency. This generates an antiresonance, as seen in Fig. 5.19

around the first mode of the plate. Then, the internal damping in the components must

be minimized in order to increase the depth of the antiresonance.

On the other hand, a control over a broader frequency range requires the introduction

of additional damping in the network. Indeed, it is shown in Fig. 5.21 that 180 Ω resistors

in series with the 6 inductors flatten the FRF. Note that the addition of resistance does

not necessarily increase the number of components as it can be taken into account when

designing the inductors. A vibration reduction around 25 dB is obtained for the first two

modes. Yet, the comparison between Figs. 5.19 and 5.21 shows that the introduction of

resistors mainly affects the lowest modes. Again, this is due to the fact that the discrete

electrical network yields inaccurate tuning at higher frequencies.

With the discrete network, a solution for a vibration reduction over a broader frequency

range is to detune the first modes to better tune higher modes. This strategy is presented

in Fig. 5.22, where the previous case involving a network with 0.9 H inductors and 180 Ω

series resistors is compared to a second case with 0.7 H inductors and the same 180 Ω

resistors. The second inductance value was obtained from a H∞ optimization, which

minimizes the maximum of the velocity FRF over the 50 Hz to 500 Hz frequency range:

H∞ = min
L

(

max
f

[FRF(f, L)]

)

, where f ∈ [50 Hz, 500 Hz]. (5.70)
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Figure 5.21: Effect of the multimodal control on the velocity FRF of the plate - (· · · ) ex-
perimental FRF with short-circuited patches, (—) experimental FRF with the electrical
network tuned to L = 0.9 H and R+

s = 180 Ω, (−−) simulated FRF with the electrical
network tuned to L = 0.9 H and R+

s = 180 Ω.
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Figure 5.22: Broadband tuning of the network - (—) experimental FRF with the electrical
network tuned to L = 0.9 H and R+

s = 180 Ω, (−−) experimental FRF with the electrical
network tuned to L = 0.7 H and R+

s = 180 Ω.

By decreasing the inductance, the electrical resonances move to higher frequencies. In this

case, we remark that the second electrical resonance is moved from a frequency below the

second mechanical resonance to a frequency above it. Even if the modification of the tuning

is not beneficial for the first mode, the maximum of the amplitude over the frequency

range of interest is minimized. The decrease of the inductance moves the highest electrical

resonances closer to their mechanical analogues, which clearly reduces the amplitude of

the FRF around its upper frequency range. In the end, the vibration reduction is above

20 dB for the first five modes of the plate when compared to the short-circuited case. This

shows that the analogous coupling offers an efficient broadband control, even with a coarse

discretization of the electrical network.

5.6 Robustness of the control strategy

The robustness of the damping solution is evaluated by introducing a uniform varia-

tion of the electrical components. Then, local defects are added experimentally in order

to observe the effect on control performance. For the same purpose, an alteration of the

electrical or mechanical boundary conditions is finally considered. The damping perfor-

mance is decreased but the vibration reduction remains significant when compared to the

uncontrolled case.

5.6.1 Uniform detuning of the electrical network

A first observation related to the robustness of the strategy can be introduced by

considering the difference between the natural frequencies of the plate and those of the

electrical controller. Recall that the analogue network is discrete, so it cannot perfectly

match several mechanical resonances simultaneously. The natural frequencies are com-

pared in Table 5.2 when L is set to 0.7 H. It is seen that the H∞ optimization over the
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Table 5.2: Comparison of mechanical and electrical natural frequencies with L=0.7 H.

Mode 1-1 Mode 2-1 Mode 1-2 Mode 3-1 Mode 2-2

Clamped plate 138 Hz 242 Hz 315 Hz 409 Hz 411 Hz

Electrical network 163 Hz 270 Hz 309 Hz 374 Hz 424 Hz

50 100 150 200 250 300 350 400 450 500

−60

−40

−20

Frequency (Hz)

V
el

oc
ity

 F
R

F
 (

dB
)

50 100 150 200 250 300 350 400 450 500

−60

−40

−20

Frequency (Hz)

V
el

oc
ity

 F
R

F
 (

dB
)

Figure 5.23: Sensitivity of the velocity FRF with respect to an inductance variation - (· · · )
experimental FRF with short-circuited patches, (—) experimental FRF with the analogous
network tuned to L = 0.7 H and R+

s = 180 Ω, ( a ) simulated frequency response envelope
with a ±30% variation on L.

50 Hz to 500 Hz frequency range gives a positioning of the electrical natural frequencies

that differs up to 18 % from the mechanical ones. Thus, an imprecise tuning of an electrical

resonance can still lead to a 20 dB reduction of its mechanical counterpart, as observed in

Figs. 5.21 and 5.22. This can be explained by the fact that the optimal electrical network

is highly dissipative. Indeed, it has been seen in Fig. 5.10 that a resistance R+
s = 180 Ω in-

duces a relatively ”flat” electrical FRF. This makes the control more robust, as it becomes

less sensitive to electrical tuning variations.

The performance loss due to a detuning of the electrical parameters is evaluated by

introducing a variation of the inductance L around its optimal value. A variation of the

piezoelectric capacitance could also be analyzed but it would lead to similar conclusions.

Furthermore, a variation of the resistance R+
s is not considered because it is observed

that its influence is relatively low, which extends results obtained for a single resonant

shunt [2, 46]. A ±30% uniform variation of L is considered, so that the electrical unit cells

have a same inductance all over the network, but this inductance varies between 0.49 H and

0.91 H. This range is introduced in the electromechanical model that has been validated

in Figs. 5.19, 5.20 and 5.21. By extracting the highest and lowest amplitudes computed

at each frequency point, we get the simulated frequency response envelope presented in

Fig. 5.23. The optimal FRF should always stay inside the frequency response envelope
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because its inductance corresponds to the center of the range of variation. The fact that

the experimental FRF can sometimes leave the envelope in Fig. 5.23 is simply due to

slight deviations between model and experiment, according to what has been observed in

Fig. 5.21. In any case, a ±30% variation on L induces a loss of 7 dB on the H∞ criterion.

This loss of performance is non-negligible but it still maintains a vibration reduction above

85% with respect to the maximum amplitude of the uncontrolled velocity FRF.

5.6.2 Local defect in a mechanical or an electrical unit cell

Local modifications of the electromechanical system can also affect the control perfor-

mance. For example, a local damage can appear on the mechanical structure, which would

modify the mass or the stiffness of one specific unit cell. On the other hand, the degrada-

tion of an electrical component might alter the modal properties of the entire network. A

first experiment considers an addition of 50 grams through 3 lumped masses attached to

the clamped plate, as seen in Fig. 5.24(a). Those lumped masses double the mass of one of

the twenty 80×80 mm2 mechanical unit cells. This added mass moves the plate resonances

to lower frequencies (5% for the 1st resonance, 8% for the 2nd resonance), which detunes

the control system. Considering mode 1-1 and mode 2-1 in Table 5.2, the gap between the

mechanical and electrical frequencies was already significant before the addition of a local

defect. Afterward, the gap is even larger, which accounts for the 3 dB loss that appears

below 250 Hz in Fig. 5.25. On the other hand, we note that the local mass addition is

beneficial above 250 Hz because it better tunes the resonance distribution for the highest

modes.

In the electrical domain, the equivalent of a mass addition is an inductance increase

on the same unit cell. Thus, one inductance of the network is doubled to implement the

(a) (b)

Figure 5.24: Structural modifications of the clamped plate: (a) Addition of lumped
masses. (b) Loose bolts on the upper bar of the frame.
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Figure 5.25: Influence of local defects - (—) optimal FRF with L = 0.7 H and R+
s = 180 Ω,

(· · · ) with a doubled mass in one mechanical unit cell, (−−) with a doubled inductance
in one electrical unit cell.

counterpart of the previous experiment. This local defect moves the electrical resonances

to lower frequencies. Consequently, the last FRF shown in Fig. 5.25 evolves in opposition

to what has been observed after the modification of the mechanical structure: the tuning

of the electrical network is improved for the modes 1-1 and 2-1 but the performance is

decreased above 250 Hz. Actually, the performance loss is mainly due to the mode 3-1,

which exhibits a 5 dB increase of the velocity around 420 Hz.

5.6.3 Modifications of the boundary conditions

A second set of experiments focuses on modifications of the mechanical or electrical

boundary conditions. An alteration of plate boundary conditions is first considered by

removing the bolts all along the upper bar of the clamping frame, which is highlighted

in Fig. 5.24(b). The rotations and transverse displacements are no longer blocked on the

upper side of the plate. This modifies the mechanical modes, especially their distribution

over the frequency range. The stiffness reduction shifts the resonances to lower frequencies,

as with the mass addition. Consequently, it is observed in Fig. 5.26 similar results to what

has been presented Fig. 5.25 when looking at the performance loss around the first two

modes. We note a 3 dB loss compared to the optimal FRF. The analysis above 250 Hz is

less obvious because of the strong modification of the mechanical modal distribution. In

any case, we remark that a significant alteration of the mechanical boundary conditions

does not defeat the control strategy.

The electrical equivalent of the stiffness reduction along the upper boundary is approxi-

mated by short-circuiting the upper line of piezoelectric patches. Similarly to what appears

after an increase of the inductance, the electrical resonances move to lower frequencies.

This better tunes the control of the first two modes as seen in Fig. 5.26. Nevertheless, the

evolution of the FRF is limited compared to the previous case involving the inductance
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Figure 5.26: Influence of boundary conditions - (—) optimal FRF with L = 0.7 H and
R+

s = 180 Ω, (· · · ) with no bolts on the upper bar of the frame, (−−) with the upper line
of piezoelectric patches which is short-circuited.

modification. This observation is clear above 250 Hz, where the short-circuits on the up-

per line of piezoelectric patches are almost ineffective. A reason is that the clamped-plate

strain distribution induces a significant charge cancellation on those outer patches, espe-

cially when the wavelength approaches the size of the unit cell. In the end, the proposed

modification of a network boundary does not significantly alter the control performance.

5.7 Conclusions

A distributed control strategy has been implemented by means of an interconnected

array of piezoelectric patches. The interconnection is made through an electrical network

analogous to the structure of interest. For a square plate unit cell, we show that a finite

difference method applied to the Kirchhoff-Love theory gives a discrete model that can

be converted into its direct electrical analogue. The analogues of clamped or simply-

supported boundary conditions only require open- or short-circuited electrical ports on

the edges of the network. Yet, free boundary conditions are more difficult to implement

with the proposed topology. In any case, the electrical network can be modeled from

an assembly of element matrices that are built from the constitutive discrete equations

of an electrical unit cell. The analogous network is validated through a modal analysis

procedure similar to what is normally performed with a mechanical structure. Electrical

plate-like mode shapes are observed experimentally when looking at the distribution of

the electrical current and the numerical simulations of the network are in good agreement

with the experimental results.

The passive electrical network is coupled to a clamped plate and a significant modi-

fication of the mechanical response is observed. To the best of our knowledge, this work

presents the first experimental coupling of a plate to an analogous electrical network. De-

pending on the application, a suitable tuning of the electrical network can then optimize
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the vibration reduction around one specific frequency or over a broad frequency range.

When tuned to minimize the velocity amplitude over a 50 Hz to 500 Hz frequency range,

the resulting broadband vibration reduction validates the interest of the control strategy.

Coupled models based on 2D electromechanical unit cells are also validated from the ex-

periments. We note that the frequency range of interest influences the choice of a suitable

macro unit cell, which is more refined for the mechanical domain than for the electrical

domain.

Structural and electrical modifications are introduced in order to quantify the perfor-

mance loss due to inaccurate tuning of the electromechanical system. The results obtained

with the present setup give some guidelines concerning the robustness of a control solu-

tion based on analogous coupling. First, it is observed that a discrete network involving

less than 5 unit cells per wavelength can still lead to a broadband vibration reduction

above 20 dB. Second, a ±30% uniform variation of the network inductance induces a loss

of 7 dB, which maintains most of the control performance. Local defects are introduced

by doubling the mass or the inductance of one unit cell. Boundaries are also modified by

removing the bolts or short-circuiting the patches on the upper side of the plate. In any

case, the FRF rises by less than 5 dB over the considered frequency range. It is thus shown

that the proposed control involving the discrete analogue of a plate is relatively robust

when considering an alteration of the mechanical structure or a detuning of the electrical

network. This conclusion offers future prospects concerning the implementation of such

control solutions into industrial applications.
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Chapter 6

Conclusions

6.1 Summary

The material presented in this thesis was partially published in journal papers and

conference proceedings that are listed in Appendix C. The present document has been

organized into four main chapters of increasing complexity. Indeed, coupled systems in-

volving a single mechanical degree of freedom are first considered in Chap. 2, while Chaps. 3

and 4 deal with 1D structures as rods and beams. Finally, Chap. 5 extends the analysis to

2D plate structures. All of those chapters give theoretical and experimental results related

to structural vibration damping by coupling to an analogous electrical network. Here, the

results are summarized by highlighting three main lines of research that complement one

another: the design of an electrical analogue, the use of the transfer matrix method and

the damping of vibration with an interconnected array of piezoelectric patches.

6.1.1 Design of analogous electrical networks

Electrical analogues of rod, beam and plate structures have been defined from a fi-

nite difference method applied to their constitutive equations of motion. It is found a

discrete mechanical model, which is converted to the electrical domain through the direct

electromechanical analogy. Point masses are equivalent to inductors and springs gives

capacitors. When considering structures subjected to transverse motion, transformers

also appear as the analogues of mechanical levers. Homogeneous structures lead to the

definition of periodic electrical networks, which can be divided into identical unit cells.

Each unit cell is ruled by the same constitutive equations that are organized into transfer

matrices for both one-dimensional networks. For the two-dimensional network, we rather

define the equivalent of a dynamic stiffness matrix satisfying classical assembly methods.

Consequently, electrical frequency response functions are computed for any choice of the
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electrical components that can easily include parasitic effects as internal damping. To

this end, equivalent electrical models are given for passive inductors and transformers.

The practical design of both magnetic components is also described to allow the imple-

mentation of suitable electrical analogues. From those guidelines, it has been possible to

build a 2D electrical network approximating the behavior of a clamped plate. Finally,

the main original contributions related to the design of analogous electrical networks are

summarized through the following points:

• Design of passive inductors for resonant piezoelectric shunts or analogous networks;

• Design of passive transformers for the beam and plate electrical analogues;

• New 2D electrical network representing the analogue of a plate;

• Numerical model of the proposed 2D electrical network;

• Experimental implementation and validation of the plate electrical analogue.

6.1.2 Transfer matrix method applied to eletromechanical waveguides

Along Chaps. 3 and 4, a transfer matrix method has been applied to rods and beams

that are coupled to their electrical analogues through a periodic array of piezoelectric

patches. We thus deal with a real electromechanical waveguide, which requires a combina-

tion of both mechanical and electrical variables in the state vectors of the transfer matrix

formulation. In the proposed models, the electrical network is always discrete but the

mechanical part of the unit cells can be either discretized, homogenized or represented by

a finite element model. The Riccati transfer matrix method allows computing frequency

response functions of a complete electromechanical structure made of several unit cells.

Combined with an analysis of the propagation constants, it then becomes possible to com-

pare the different models. It is noticed that the fully homogenized model is usually enough

when focusing on a frequency range where the analogous control is effective. When the

wavelength approaches the length of the unit cell, the discrete network is too coarse to ap-

proximate the dispersion relation of the continuous mechanical structure. This also shows

that such a control strategy cannot be directly combined with a band gap attenuation

offered by the periodic distribution of the piezoelectric patches. Finally, one can list the

main original contributions concerning the application of the transfer matrix method to

problems involving coupled waveguides:

• 1D transfer matrix models involving piezoelectric coupling to an electrical analogue;

• Analysis of electromechanical propagation constants subjected to analogous coupling;
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• Comparison of discrete models, fully or piecewise homogenized models and finite

element models over different frequency ranges.

6.1.3 Vibration damping through interconnected piezoelectric patches

The modeling of interconnected arrays of piezoelectric patches has been simplified

by focusing on a purely electrical representation of the coupled problems. The equivalent

electrical circuit is based on the direct electromechanical analogy (or velocity-current anal-

ogy), which allows representing the piezoelectric coupling with an electrical transformer.

On both sides of this transformer, we note two similar topologies that directly validate

the analogy between the mechanical structure to control and the considered electrical net-

work. With piezoelectric transducers, the direct electromechanical analogy is the only one

that offers such a unification of both domains, which questions the choice of the indirect

analogy (or force-current analogy) in most of the previous works focusing on analogous

piezoelectric networks. In any case, the unified electrical circuit is based on discrete mod-

els for both the mechanical and electrical media. For better accuracy, the continuity of

the mechanical structure has been recovered with homogenized models or approximated

with refined meshes. Yet, the electrical network is always kept discrete in order to be com-

patible with practical applications where the number of piezoelectric patches is generally

limited. The resulting semi-continuous models then represent suitable tools for the design

of a control system involving a coupling to an analogous network. This is proved by the

proposed experimental setups focusing on rod, beam and plate structures that validate

the electromechanical models. Actually, it is even possible to observe how the piezoelec-

tric coupling influences the electrical frequency response of the networks. Experimentally,

this gives a way to verify the tuning of the electrical components. Once the considered

electrical network is correctly tuned, it is observed significant reduction of the structural

vibration amplitude over a broad frequency range. This definitely validates the interest

of piezoelectric analogous networks for multimodal vibration damping. Furthermore, it

has been shown that this strategy is relatively robust as it tolerates defects in the me-

chanical or electrical domains. To conclude about vibration damping through analogous

piezoelectric network, the main original contributions are:

• Discrete electrical circuits to model 1D or 2D electromechanical unit cells;

• Numerical models involving discrete piezoelectric networks;

• Experimental coupling of a rod, a beam and a plate to analogous electrical networks;

• Analysis of electrical frequency responses to verify the tuning of the passive networks;
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• Experimental validation of the multimodal damping induced by analogous coupling

for the control of a rod, a beam and a plate;

• Experimental evaluation of the robustness of the plate control.

6.2 Outlook

Regarding the design of analogous electrical networks, a natural perspective is the

optimization of the size of the electrical components. A method has been proposed in

Chap. 2 to design suitable passive inductors. Yet, this method focuses on single resonant

shunts, which does not apply directly to a multi-resonant network made of several inductors

and transformers. It is still possible to employ the proposed electromechanical models to

determine the current flowing through the magnetic components for a specific amplitude

and frequency range of the excitation. An optimal sizing of the electrical network would

then allow comparing the mass of the structure to control to the total mass of magnetic

material. This mass ratio most likely depends on the number of unit cells. Actually, it

has been shown that the required inductance decreases with an increase of the number of

unit cells but no direct conclusions can be drawn concerning the total mass of magnetic

material since the number of components is increased. Energy considerations may be used

to quantify the needs in terms of magnetic material when the number of unit cells tends to

infinity. This might validate the analogous control strategy within the scope of small scale

or meta-material applications, which could rely on autonomous 3D printing of miniature

electrical components.

Other prospects concern the transfer matrix models developed in Chaps. 3 and 4.

They can be used to quantify the sensibility to any variation of mechanical of electri-

cal parameters. Uncertainties could also be introduced in the electrical components to

compare the robustness of various control strategies. Furthermore, phase and attenuation

constants have been drawn for comparing the discrete and homogenized models. The ef-

fect of the analogous coupling has been illustrated but a more accurate analysis of the

propagation constants is still required. Understand how they are influenced by the tuning

of the electrical network may lead to an optimization of the energy transfer over a broader

frequency range. Then, the analysis of propagation constants could be extended to the

two-dimensional case of a square plate unit cell coupled to its analogous electrical network.

The 1D Wave Finite Element model might also be enriched to include 3D mechanical con-

tributions or a 2D electrical network. In the end, the mechanical part of the macro unit

cells proposed in Chap. 5 could be replaced by a finite element model in order to break

the restriction on the minimum wavelength.

Concerning vibration damping with analogous piezoelectric network, one of the main
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outlooks concerns the definition of an optimal resistance. It has been shown that damp-

ing occurs in the passive components through numerous parasitic contributions. All of

them can be introduced into the proposed electromechanical models and a numerical op-

timization gives a value for additional resistors. However, it might be useful to get an

approximation of the optimal resistance values and positioning prior complete modeling

of the coupled system. About the electrical boundary conditions, an adequate implemen-

tation of the analogue of free boundary conditions is still under consideration for the 2D

electrical network presented in Chap. 5. ”Dynamic” boundary conditions, i.e. neither free

nor blocked, are also considered in order to ensure better compatibility with more realistic

cases. The aim at extending the analogous piezoelectric control to real structures also leads

to reconsider the interest of the periodic layout. Actually, since we do not benefit from

any band gap phenomenon, no periodicity is required as long as the analogy between the

mechanical structure and the electrical network is maintained. A new experimental setup

involving a plate and a 2D analogous network with more unit cells compared to the setup

in Chap. 5 will allow to evaluate eventual aperiodicity as well as new electrical bound-

ary conditions. The performance of the control will then be compared to other passive

strategies involving a purely resistive network or viscoelastic materials. Finally, the use of

electrical analogues will be extended to nonlinear vibrations by designing multi-resonant

electrical networks approximating the nonlinearity of the structure to control. This must

offer a passive multimodal controller for non-linear systems.
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[78] J. Ducarne, O. Thomas, and J.-F. Deü, “Placement and dimension optimization of

shunted piezoelectric patches for vibration reduction,” Journal of Sound and Vibra-

tion, vol. 331, no. 14, pp. 3286–3303, 2012.

[79] J. Ducarne, Modeling and optimisation of non-linear vibration damping by switch

shunting of piezoelectric elements. PhD thesis, Conservatoire national des arts et

métiers - Cnam, 2009.
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Appendix A

Optimization of the resonant shunt

The objective of this appendix is to define optimum values for the resonant shunt

frequency ωe and the damping factor ξe, in order to minimize the maximum of the modulus

|H(ω)| that has been defined in Sec. 2.3. Recall that

|H(ω)|2 = A0 +A2ξ
2
e

B0 +B2ξ2e
, (A.1)

where

A0 =

[

1− ω2

ω2
e

]2

, A2 = 4
ω2

ω2
e

, B2 = 4
ω2

ω2
e

[

1− ω2
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O
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and B0 =
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ω2
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−
(
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+
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e

)
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Oω

2
e

]2 . (A.2)

Then, it is remarked that there exist two points P and Q, whose respective ordinates

|H(ω−)| and |H(ω+)| do not depend on the damping factor [2, 41, 43]. Those two fixed

points are shown in Fig A.1. They represent the approximate positioning of the two local

maxima of the function |H(ω)| after optimization of ωe and ξe. A first step thus consist

in finding the value for ωe that leads to |H(ω−)| = |H(ω+)|. The angular frequencies ω−
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Figure A.1: Modulus of the transfer function H(ω) - (· · · ) with ξe → +∞, (- -) with

ωe = 1.02× ωO and ξe = 0, (—) with ωe = 1.02× ωO and ξe =

√

3

8

kc
2
.
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and ω+ are the abscissas of the fixed point, therefore they satisfy

|H(ω±)|2ξe=0 = |H(ω±)|2ξe→+∞, which gives
A0

B0
=

A2

B2
. (A.3)

Equation (A.3) can also be written A0B2 −A2B0 = 0, so that Eq. (A.2) gives
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±/ω

2
O. Equation (A.4) is factorized into
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that is equivalent to
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The solution of this quadratic equation is

Ω =
−b±

√
∆

2a
, (A.7)

where ∆ = b2 − 4ac, a = 2ω2
O, b = −2
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which defines the square of the angular frequencies corresponding to both fixed points of

the function |H(ω)|. The amplitude at those fixed point is obtained from the open-circuit

case, which simplifies the expression in Eq. (A.1) as

|H(ω)|2ξe→+∞ =
A2

B2
=

[

1− ω2

ω2
O

]−2

(A.9)

From, Eqs. (A.8) and (A.9), note that

|H(ω+)|2ξe→+∞ = |H(ω−)|2ξe→+∞ when ωe = ωO. (A.10)

Therefore, for any ξe,

ωe = ωO gives |H(ω+)| = |H(ω−)|, (A.11)

because ω− and ω+ are the abscissas of the two fixed points that keep the same ordinates

for any damping factor. With ωe = ωO, Eqs. (A.1) and (A.8) gives

ω2
± = ω2

O

[
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2
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]
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The last approximation relies on the fact that the coupling coefficient kc is usually around

or below 0.1 for the considered applications involving thin piezoelectric patches. Then, we

want to find two specific values of the damping factor, ξ−e and ξ+e , that generate a local

minimum at ω− and ω+, respectively. Following the method proposed by Liu [41] and

according to the definition of the present parameters,

(1 + k2c )(ξ
±

e )
2 =

3µ
√
2µ

8(
√
2µ± µ)(1− µ)

where µ =
k2c

1 + k2c
. (A.13)

Equation (A.13) leads to

(ξ±e )
2 =

3

4

k2c

2(1 + k2c )±
√
2kc
√

1 + k2c
, (A.14)

which can be approximated by a single damping factor

ξ±e ≈
√

3

8
kc. (A.15)

In the end, the optimal values of parameters ωe and ξe that minimize the function |H(ω)|
are approximated by

ωe = ωO and ξe =

√

3

8
kc. (A.16)
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Appendix B

Element matrices for the 1D finite

element model

According to Thomas et al. [70], the stiffness matrix Km, the mass matrix Mm and

the coupling matrix Kc result from the assembly of the following element matrices Ke
m,

M e
m and Ke

c. For a unit cell which is symmetric with respect to its neutral axis, bending

and extensional motions are decoupled. The element stiffness matrix is then written as

Ke
m =

A

Le

















1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















+
D

L3
e

















0 0 0 0 0 0
0 12 6Le 0 −12 6Le

0 6Le 4L2
e 0 −6Le 2L2

e

0 0 0 0 0 0
0 −12 −6Le 0 12 −6Le

0 6Le 2L2
e 0 −6Le 4L2

e

















, (B.1)

where Le is the length of the element. Along the ’s’ segment A = YsSs and D = YsIs, and

along the ’sp’ segment A = YsSs + 2Y E
p Sp and D = YsIs + 2Y E

p Ip. When neglecting the

rotational inertia, the element mass matrix is

M e
m =

λLe

420

















140 0 0 70 0 0
0 156 22Le 0 54 −13Le

0 22Le 4L2
e 0 13Le −3L2

e

70 0 0 140 0 0
0 54 13Le 0 156 −22Le

0 −13Le −3L2
e 0 −22Le 4L2

e

















, (B.2)

where λ = ρsSs along the ’s’ segment and λ = ρsSs+2ρpSp along the ’sp’ segment. Finally,

for extensional motion

Ke
c = esp

[

−1 0 0 1 0 0
]

(B.3)

and for bending motion

Ke
c = esp

[

0 0 1 0 0 −1
]

. (B.4)
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• B. Lossouarn, J.-F. Deü, M. Aucejo, and K. A. Cunefare, ”Multimodal vibration

damping of a plate by piezoelectric coupling to its analogous electrical network,”

accepted for publication in Smart Materials and Structures
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• J.-F. Deü, B. Lossouarn, and M. Aucejo, ”Comparison of electromechanical trans-

fer matrix models for passive damping involving an array of shunted piezoelectric

patches,” Proceedings of the 22nd ICSV Congress on Sound and Vibration, Florence

(Italy), July 12-16, 2015.
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