
HAL Id: tel-01508503
https://theses.hal.science/tel-01508503v1

Submitted on 14 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discovering and exploiting analogical proportions in a
relational database context

William Correa Beltran

To cite this version:
William Correa Beltran. Discovering and exploiting analogical proportions in a relational database
context. Databases [cs.DB]. Université de Rennes, 2016. English. �NNT : 2016REN1S110�. �tel-
01508503�

https://theses.hal.science/tel-01508503v1
https://hal.archives-ouvertes.fr

No d’ordre : 00000 ANNÉE 2016

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

William C ORREA BELTRAN

préparée à l’unité de recherche IRISA – UMR6074
Institut de Recherche en Informatique et Système Aléatoires

Université de Rennes 1

Découverte et
exploitation de
proportions
analogiques
dans les bases
de données
relationnelles

Thèse soutenue à Lannion
le 18/07/2016

devant le jury composé de :

Anne L AURENT
Professeur des Universités, LIRMM / Rapporteuse
Christophe M ARSALA
Professeur des Universités, LIP6 / Rapporteur
Peggy C ELLIER
Maître de Conférences, IRISA / Examinatrice
Henri P RADE
Directeur de recherche CNRS, IRIT / Examinateur
Olivier P IVERT
Professeur des Universités, IRISA / Directeur de thèse
Hélène J AUDOIN
Maître de Conférences, IRISA / Co-directrice de thèse

When the seagulls follow the trawler, is because
they think sardines will be thrown into the sea

Eric Cantona

Contents

Table of contents 1

Introduction 3

1 Philosophical Roots of analogical Proportions 7
1.1 Analogy in Classical Antiquity . 8

1.1.1 Euclid: Ratio and Proportion . 8
1.1.2 Aristotle: Similarity of Relations 8

1.2 Medieval Theories of Analogy: Explain the World 10
1.2.1 Equivocal Terms . 10
1.2.2 Theology: Justify God . 11

1.3 Modern Ages: Origins of Analogical Reasoning 11
1.4 Contemporary Philosophy: Analogical Argumentation 12
1.5 Structuralist Models of Analogy: Cognitive Science 13
1.6 Analogical Proportions in Artificial Intelligence 15

1.6.1 Logical View of Analogical Proportions 17
1.6.2 Extensions of analogical proportions to fuzzy logic 19

1.7 About Analogy, Analogical Proportion, and Metaphor 21

2 Analogical Prediction of Null Values 27
2.1 Introduction . 27
2.2 Relational Model . 28
2.3 Litterature about Missing Values . 29

2.3.1 Types of Missing Values . 29
2.3.2 Handling of Missing Values: A brief Overview 30

2.3.2.1 Basic Methods . 30
2.3.2.2 Tree-based Methods . 32
2.3.2.3 Statistical Methods . 36
2.3.2.4 Association Rules . 39

2.4 Analogical Proportions: The Basic Notions 42
2.4.1 First definitions of analogical proportions on numerical data . . . 42
2.4.2 Gradual view of analogical proportions 42

2.4.2.1 Graduality in the case of Boolean Values 43
2.4.2.2 Graduality in the case of numerical values 43

1

2 Contents

2.4.3 Desirable properties of analogical proportions 45
2.4.4 Formulas meeting our requirements 47
2.4.5 Summary of this section . 49

2.5 Estimating Missing Values Using Analogical proportions 51
2.5.1 Principles of Analogical Classification 51

2.5.1.1 Solving an analogical equation in the Boolean case . . . 52
2.5.1.2 Solving an analogical equation in the numerical case . . 53

2.5.2 Fadana . 54
2.5.2.1 Experimentations . 57

2.6 Others Classification Approaches Based on Analogical Proportions . . . 62
2.7 Discussion about Analogical Classification 64

2.7.1 When Some Quadruples are Better than Others 64
2.7.2 What Makes Analogy Work ? . 68
2.7.3 Summary of this Section . 78

2.8 Summary and Conclusion . 78

3 Mining and Querying Analogical Proportions 81
3.1 Introduction . 81

3.1.1 Definitions of Analogical proportions in an n-dimensional space . 82
3.2 Mining Analogical Proportions and Ratios 86

3.2.1 Connected Analogical proportions in Terms of a Graph 88
3.2.2 Computing Analogical Proportions 90

3.2.2.1 Computing exact analogical proportions 90
3.2.2.2 Computing approximate analogical proportions 91

3.2.3 Experimentation . 100
3.3 Analogical Queries . 108

3.3.1 Query Processing . 109
3.3.1.1 Naive Strategies . 109
3.3.1.2 Classical-Index-Based Strategy 112
3.3.1.3 Cluster-Based Strategy 115

3.3.2 Experimentation . 122
3.3.2.1 Real-World Dataset . 122

3.4 Summary . 125

Bibliographie 140

Table des figures 141

Introduction

An analogical proportion is a statement of the form “A is to B as C is to D” (which
will be denoted in the following by A : B :: C : D) expressing that the relation between
A and B is the same as the relation between C and D. For instance, one may say that
“Paris is to France as Rome is to Italy”. Here, the relation between Paris (resp. Rome)
and France (resp. Italy), may be “is capital of”. In a numerical context, an analogical
proportion allows for checking whether two pairs of values (a, b) and (c, d) establish the
same ratio, for instance (b − a = d − c) or (b/a = d/c). This property makes them
successive members of a same arithmetic or geometric serie.

The concept of analogical proportion was born in the context of the classical Greek
philosophy. Its interest is that it allows to establish parallels between two pairs of ob-
jects or situations. One of the precursors of analogical proportions is Aristotle, who
considered it as a way of explaining facts. In fact, it has been used by a great bunch of
philosophers in order to explain or justify their theories.

In the last century, it attracted the attention of cognitive scientists, who recognized
it as a keystone of human reasoning. Indeed, the human ability to “see a particular
object or situation in one context as being the same as another object or situation in
another context” is the main process at work when making analogy, and this ability is
one of the main features of human intelligence [CPR12].

In the context of Artificial Intelligence, it has been proposed as a tool for solving
mathematical problems [Pol45], or as a theorem solver [Kli71]. It has also been used
in the Natural Language Processing domain, as an approach to the pronunciation of
written words [FPY95], or to perform automatic translation [LYZ09].

In the last years, a logical view of analogical proportions has been proposed. In
this case, items are described as vectors of Boolean values. An analogical proportion
between four Boolean vectors holds if it holds componentwise [MP09a]. This approach
has allowed to develop analogical classification methods. This logical view of analogical
proportions has also made it possible to solve IQ tests, more precisely the Raven tests
[CPR12]. The results obtained by the analogical approach can be considered as good
as those obtained by human beings.

3

4 Introduction

The objective of this thesis is to use the notion of analogical proportions in the
context of relational databases, whose active domains are numerical. The issue we
tackle is to impute missing values in a database by means of analogical proportions.
The second objective is to provide a means to mine the analogical proportions existing
in a database. In the case of a relation including numerical values, they will highlight
pairs of tuples that differ in the same way (for instance, similar sales trends between two
regions observed at distinct times). Indeed, analogical proportions naturally capture the
notion of parallels between four entities. These parallels are of a major importance as
they model reproducible transformations from one entity to another. We explored the
best ways to represent the analogical proportions existing in a dataset, and the best
way to extract them, by adopting a query language point of view. To our knowledge,
this is the first thesis that deals with analogical proportions in the database domain.

Objectives and Contributions

The topics dealt with in this thesis are the following.

Imputing missing values using analogical proportions A method based on ana-
logical proportions for imputing missing values has been defined and its accuracy an-
alyzed and compared. We studied the case of Boolean [CJP14b] and numerical values
[CJP14c]. Some formulas allow to determine if an analogical proportion between four
numerical values hold (crisp view). Some others allow to know the degree to which four
numerical values validate an analogical proportion (gradual view). We studied these for-
mulas, introduced some desirable properties an analogical proportion should validate,
and proposed new formulas that meet our goals. A classification algorithm based on
analogical proportions [BMD07a] has been modified in order to impute missing values,
and some experiments have been carried out in order to assess its effectiveness.

Study of the behavior of analogical classification We studied how analogical
classifiers work in order to see if their processing may be simplified. We showed how
some type of analogical proportions are more accurate than the others when performing
classification. We then proposed an algorithm using this information, which allowed
us to considerably reduce the size of the training set used by an analogical classifica-
tion algorithm [CBW14]. We also show in which cases some analogical classification
algorithms perform a processing similar to that of the k-nn method.

Mining analogical proportions We exploited the notion of analogical proportion
in the setting of relational databases for mining combinations of four tuples bound
by an analogical relationship. We focused on the problem of discovering parallels and
analogical proportions between pairs of tuples occurring in a relation [BJP15b]. For
doing so, we studied approximate solutions relying on several clustering algorithms,
and we propose some modifications to them, in order to make each obtained cluster

Introduction 5

represent a set of analogical proportions. Using the results of the clustering algorithms,
we studied how to efficiently query the analogical proportions in a database.

Querying analogical proportions We proposed to extend the SQL query language
in order to extract from a database the quadruples of tuples satisfying an analogical
proportion. We proposed different types of analogical queries, depending of the number
of variables given as input. We then tackled the processing of each type of analogical
query using three strategies: i) a naive one, using nested loops; ii) a strategy exploiting
classical indexes on some attributes involved in the analogical proportion targeted; iii)
a strategy exploiting clusters of analogical proportions between pairs of tuples from the
database. We proposed some algorithms for each of these strategies, and compared
their results [BJP15a].

Organisation of this thesis

This thesis is divided in three chapters.

The first chapter presents the philosophical roots of analogical proportions, from
the classical Greek philosophy, to the contemporary ages. It introduces the concepts
that led to the first definitions of analogical proportions, and then it exposes several
definitions given to analogical proportions through the ages, as well as their application
for explaining some facts or theories. The end of the first chapter contains an overview
of the first applications of analogical proportions in the context of Artifical Intelligence,
plus its first definitions from a logical point of view.

The second chapter deals with the issue of imputing missing values in a database
using analogical proportions. The beginning of this chapter exposes a state of the art
of some of the most known methods dealing with missing values in a dataset. Then, we
extend the logical definitions of analogical proportions introduced in the first chapter
to the numerical case. We also provide an overview of some formulas that allow to
know the degree to which four values are in analogical proportion. Then, we explain
how to modify an analogical classification algorithm in order to impute missing values.
For doing so, we use the introduced formulas that allow to determine the degree of
analogical proportion of four values. We also provide an overview of the formulas aimed
to solve an analogical equation. We then compare the results of the proposed method
with some of the methods from the state-of-the-art about missing values imputation.
Finally, we provide a brief state-of-the art of analogy-based classification methods, and
analyze the behavior of some of them. We show how the processing of some of these
algorithms may be highly similar to that of the k-nearest neighbor method, at least in
some situations.

The third chapter focuses on the problem of querying analogical proportions from
a database. First, we introduce a new interpretation of gradual analogical proportions.

6 Introduction

Then, we propose the use of some clustering methods in order to find the most repre-
sentative analogical proportions from a dataset. Finally, we evaluate how to query the
analogical proportions existing in a databse, by means of several strategies.

The conclusion recalls the main contributions of this thesis and outlines perspectives
for future research.

Chapter 1

Philosophical Roots of analogical

Proportions

Introduction

The concept of analogical proportion was introduced by Aristotle, and used and rede-
fined by others philosophers and intellectuals through the medieval and modern ages,
until our times. It has been used as a tool of argumentation or explanation, and even as
a way of referring to divine names, both in the medieval and modern ages. In our days,
it is used in diverse domains such as legal reasoning or ethnography. In the last decades,
it is mostly the cognitive scientists who have been interested in the concept of analogy,
arguing that it represents an essential mechanism of human reasoning. The Artificial
Intelligence community has also paid a particular attention to analogical proportions,
using it for supervised learning or natural language processing purposes.

In this thesis, we are interested in the use of Analogical Proportions in a database
context, which to the best of our knowledge, has never been considered before. We
thus need a good understanding of this concept and of its modelling. In this chapter
we provide a brief history of the concept of Analogy and Analogical proportion. In
Section 1.1, we provide the first definitions of analogy, given by Euclid and Aristotle.
In Section 1.2, we introduce its definitions in the medieval ages, and how it was used to
justify ideas, especially in the field of theology. In Section 1.3, we comment how Kant
provided the first thoughts about analogical reasoning. We show in Section 1.4 the
thoughts of the contemporaneous philosophers about analogy, more precisely analogical
arguments. In Section 1.5, we expose how the cognitive scientists have made efforts
to model analogical proportions. In Section 1.6, we briefly present the works which
have applied analogical proportions in the context of Artificial Intelligence, which we
complement with the logical modelling of analogical proportions in Subsection 1.6.1,
the latter being the basis of our work presented in the subsequent chapters. Finally, in
Section 1.7 we discuss the confusion that often exists between the concepts of analogy,
analogical proportion, and metaphor.

7

8 chapter 1

1.1 Analogy in Classical Antiquity

1.1.1 Euclid: Ratio and Proportion

The concepts of ratio and proportion were introduced by Euclid (III a.v. J.-C) [Lep98].
These two concepts constitute the basis of the next definitions of analogy.

Euclid defined ratio as “a sort of relation in respect of size between two magnitudes
of the same kind”. He explicitly claimed that a ratio must be based on quantities (e.g.,
the notion of time or a weight), and that the two quantities to be compared must be
of the same kind, i.e., one cannot compare the length of a line to the area of a square,
since they belong to different kinds. He introduced as well the notion of antecedent and
consequent of a ratio: when one mentions the ratio of A to B, A is its antecedent and
B its consequent [Lep98].

Proportion is defined as a ‘similarity of ratios’, i.e., when the ratio of A to B is
similar to the ratio of C to D. Still according to Euclid, a proportion can be continuous
or discrete: It is continuous when the consequent of the first ratio is the antecedent of
the second, as when one says “the ratio of A to B is similar to the ratio of B to C”;
and it is discrete in the converse case, when none of the quantities are at the same time
an antecedent and a consequent, as when one says “the ratio of A to B is similar to
the ratio of C to D”. According to Euclid, even if the two quantities to be compared
in the context of a ratio must be of the same kind, in order to form a proportion the
two ratios to be compared are not required to compare objects of the same kind. For
example, one could say that the size of line A is to the size of line B as the area of cube
C is to the area of cube D.

1.1.2 Aristotle: Similarity of Relations

The contribution of Aristotle concerning analogy resides in some definitions, its place in
the context of metaphors (a discussion of the similarities and differences between anal-
ogy and metaphor is provided later in this chapter), and its use as a tool of reasoning
and proving. See [Lep98] for more information on the latter case.

Apparently, Aristotle gave several definitions of analogy, among them two high-
lighted by [Lep98], in which we can already notice a little difference with respect to
Euclid; For the former, the analogy is not a similarity but an equality of ratios:

• I understand by “ratio of analogy” every case where the second term is to the first
as the fourth is to the third term.

• [...] the proportion is an equality of ratios and involves at least four terms [...]

Analogy in Classical Antiquity 9

Let us notice that this last definition does not exclude the continuous analogy, in-
troduced by Euclid. As claimed by Aristotle:

“[...] that discrete proportion involves four terms is plain, but so does continuous
proportion, for it uses one term as two and mentions it twice; e.g., as the line A is to
the line B, so is the line B to the line C; the line B, then, has been mentioned twice,
so that if the line B is assumed twice, the proportional terms will be four [...]”

We will escape momentarily our chronological order in order to introduce the work
of Mary Hesse, a philosopher of science. She is mostly known for her book Models and
Analogies in Science where, in a set of five essays, she raised fundamental questions
about the importance of analogies in scientific thought [Bar10].

In [Hes59], M. Hesse claims that Aristotle conceived another definition of analogy,
even though he never explicitly formulated it. It is the case when not only the ratio
between A and B is the same as the one between C and D, but when A and C have
some properties in common.

The argumentation of M. Hesse starts by using a comment by Aristotle in Historia
Animalium:

« There it is said that animals whose parts are identical in form belong to the
same species; those whose parts are identical except for excess or defect of accidents
(as colour, shape, hardness, number of feathers, etc.) are of the same genus; and others
are the same only in the way of analogy, as for instance, bone is analogous to fish-bone,
nail to hoof, hand to claw, and scale to feather; for what the feather is in a bird, the
scale is in a fish’ »

M. Hesse remarks that when one says “the fish’s spine is to the fish as the animal’s
bone is to the animal”, there exists a similarity between the relations between the two
pairs of objects, but also one needs the “fish’s spine” to have some properties in common
with the “animal’s bone”, being both of an osseous nature. M. Hesse gave other exam-
ples supporting her idea: in another definition of analogy, Aristotle uses as an example
“as is a calm in the sea, so is windlessness in the air”. This analogy depends, M. Hesse
says, (i) on the similarities of the relations existing between calm and sea, and between
windlessness and air, and (ii) in the similarity between calm and windlessness, which
are forms of rest.

Finally, although M. Hesse still mentions some examples of analogy based solely on
the similarity of relations, there are not examples based only on the similar properties
between A and C. Anyway, it seems that in most of the examples of analogy given by
Aristotle both senses of analogy exist.

These examples could lead to another definition of analogy: “A is to B as C is to D,

10 chapter 1

and A shares some properties with C”.

1.2 Medieval Theories of Analogy: Explain the World

In [Ash11], Ashworth states that the ideas about analogy in medieval ages were focused
along three different axes: (i) the doctrine of equivocal terms; (ii) twelfth-century the-
ology, where the divine language was explored in depth; and (iii) metaphysics. We will
only refer to cases (i) and (ii).

1.2.1 Equivocal Terms

The ideas about analogy in medieval ages owe much to the contribution of Anicius
Manlius Severino Boethius. He was one of the most important intermediaries between
ancient philosophy and the Latin Middle ages [Mar13]. He was indeed the key figure
for the reception of Aristotle in the Latin world [Fal13].

As we already saw, for Aristotle the analogy was a matter of proportionality, and it
is this vision the one to be recognized as the Greek notion of analogy. In the medieval
ages, the notion of analogy was initially related to the ‘equivocal’ terms, which were the
dual of ‘univocal’ terms, both introduced by the same Aristotle in The Categories and
made available in part by the monographs and commentaries of Boethius. Equivocal
terms include homonyms and polysemous words [Ash11]. They refer to things or entities
that although named in the same way, correspond to different definitions or contexts.
For example, the head of a man and the head of a document can be considered as
equivocal terms. We can say then that the head of a document is analogical to the head
of a man. On the other hand, two things are considered univocal if they both have the
same name and correspond to the same meaning or context. For example, a horse and
an ox are both univocally named animals.

In the thirteenth century, analogy was separated from its Greek meaning, and was
identified to deliberate equivocals, being exactly recognized as one term which is said
of two things in a prior and a posterior sense [Fla11]. The classical example was the
word healthy: food is healthy as a cause of a healthy animal (while the dog has health
in the primary sense, its food is healthy only secondarily as contributing to or causing
the health of the dog). The health of an animal was thus considered to be analogous to
healthy food.

In [Hoc10], Joshua Hochschild, a professor of philosophy, exposed a threefold classifica-
tion of analogy provided by Cajetan in De Nominum Analogie, which we expose below:

• Analogy of inequality: occurs when things are called by a common name and
concept, but the concept is shared or participated in unequally. This analogy

Modern Ages: Origins of Analogical Reasoning 11

of inequality is in fact the same analogy related to equivocal terms, introduced
above.

• Analogy of attribution: occurs when the common name is used with different
relations to some one term. The example used in this case is the word ‘healthy’,
which, depending on whether it is used for an animal, urine or medicine, can
signify subject of, sign of, or cause of health, respectively. According to [Ash11],
it is the one to be identified with the prior and posterior senses seen above.

• Analogy in its Greek sense (see above).

1.2.2 Theology: Justify God

In theology, we highlight the work of Thomas Aquinas whom, contrary to his prede-
cessors in the medieval ages, considered analogical terms to be different from equivocal
terms. He considered the analogical terms as the only option we have to be able to
state facts about God, which cannot be done through the univocal and equivocal terms:
He argued that statements cannot be purely equivocal, for we could not then make
intelligible claims about God. Nor can they be purely univocal, for God’s manner of
existence and his relationship to his properties are sufficiently different from ours that
the words must be used in somewhat different senses. Hence, the words we use about
God must be analogical, used in different, but related senses [Ash11]. When one uses
the word wisdom to refer to a creature, it means profound knowledge, while when said
about God, it means something identical to his goodness, existence etc. God is wisdom
and the origin of all wisdom [Hof16].

In [Lan22], Landry provides us with one example of how Aquinas used the analogy
to talk about the existence of God: each phenomenon has a cause, which can at its
time be considered as another phenomenon with its respective cause, which leads us
recursively to the first cause, which is God. Aquinas defines the relation between a
cause and an effect as an analogy, so it is by analogy that we can see through the
existents the existence of God.

1.3 Modern Ages: Origins of Analogical Reasoning

In the modern ages, we can feature the work of Immanuel Kant, who provided some
definitions of analogy, criticized it, and used it to talk about theology, among other
things. Most of the references we use about Kant are extracted from [Cal08].

Kant provided a definition of analogy in the Prolegomena: “This type of cognition
is cognition according to analogy, which surely does not signify, as the word is usually
taken, an imperfect similarity between two things, but rather a perfect similarity be-
tween two relations in wholly dissimilar things”. In [Cal08], Callanan points out that
in other definitions, Kant explicitely stated that the only requirement for analogy was

12 chapter 1

the similarity of relations.

Kant also provided a definition of inference by analogy, comparing it to the inference
through induction. The inference by analogy is made from many determinations and
properties, in which things of one kind agree, to the remaining ones, insofar as they
belong to the same principle, while the inference through induction infers from many to
all things of a kind. The definition of analogy seems more related to finding the missing
properties of an object, rather than to finding complete new objects. In [Cal08], John
Callanan provides us with the same idea but expressed in different words: “Induction
extends the empirically given from the particular to the universal in regard to many
objects, while analogy extends the given properties of one thing to several [other prop-
erties] of the same very thing”. For instance, an inductive judgment may be “From
the judgments that the swans so far perceived have been white, one may conclude by
induction that all swans are white”; while an analogical judgment may be “From the
judgment that the properties of the moon so far perceived are the same as properties
of the earth, one may conclude by analogy that all the properties of the moon are the
same as those of the earth”.

Furthermore, Kant decreed that there were two types of analogy: a mathematical
and a philosophical analogy. The mathematical analogy asserts the identity of two re-
lations of magnitude, while the philosophical one concerns qualitative relations.

The mathematical analogy was said to be constitutive, i.e., that one could construct
a missing object from two known objects. Kant asserted as well that a mathematical
analogy is an expression of type a : b :: b : x, where a and b are given and x is the
missing item that can be constructed a priori. Differently, the philosophical analogy
involves three known elements and an unknown one, being of type a : b :: c : x.

1.4 Contemporary Philosophy: Analogical Argumentation

In [Bar13], Paul Bartha provides a complete overview of the contemporary thoughts
about analogy. It seems that these thoughts focus mostly on the plausibility of ana-
logical arguments, i.e., when is it that an argument inspired from an analogy can be
considered valid, or with enough grounds to be taken seriously.

For Bartha, in order to be able to express an analogical argument, one needs to
establish an analogical relation between two domains. In order to explain his ideas, let
us assume that a domain is seen as a set of objects described by attributes, and that
these objects are linked by relations. For instance, if we want to represent the solar
system as a domain, we would say that it contains a set of objects, e.g., the planets and
the sun. Each of these objects can be described by attributes such as round, massive,
or hot. The relations linking these objects may be of the type the earth is attracted by
the sun.

Structuralist Models of Analogy: Cognitive Science 13

In [Bar13], Bartha provides us with some guidelines for evaluating analogical argu-
ments. In general, when comparing two domains, the more similar objects they have in
common, the stronger the analogy. Anyway, a similarity of relations is more important
than one based on similarity of objects. Among the similarities of relations, those in-
volving causality are considered to be more important.

For instance, let us say that if one compares two domains, e.g., the solar system
and an atom, there would not be similarities between the objects of each domain (a
planet is not similar to the nucleus or an electron of an atom). However, there may be
a similarity between the relations existing in each domain: the earth is attracted by the
sun, and an electron is attracted by the nucleus of an atom. This similarity of these
relations would already give a certain plausibility to an argument comparing the solar
system and an atom. If one could also count on similar relations involving a causality,
such as ‘the sun being more massive than the earth CAUSES the earth to be attracted
by the sun’, and ‘the nucleus being more massive than an electron CAUSES the electron
to be attracted by the nucleus’, the analogical argument would have more plausibility
than one just based on relations not involving a causality.

Bartha gives us a place to continue with what he calls the cognitive computational
models of analogy. Bartha defines them as structuralist, because they propose formal
criteria for evaluating analogies, based on overall structure or syntactical similarity.
Formally, an analogy between two domains S and T is a one-to-one mapping between
objects, properties, and relations in S and those in T . These models are presented
hereafter.

1.5 Structuralist Models of Analogy: Cognitive Science

According to Gentner et al. [GS12], analogical reasoning, i.e., the ability to perceive
and use relational similarity between two situations of events, is a fundamental aspect
of human cognition. The cognitive models of analogy we present hereafter aim to model
and simulate this mental process.

The most known cognitive models of analogy are the Structure Mapping Theory
(SMT) [Gen83] proposed by Gentner et al.; the ARCS (analog retrieval by constraint
satisfaction) [THNG90] and ACME (Analogical Constraint Mapping Engine) [HT] mod-
els, proposed by Holyoak et al.; and the Copycat model, introduced by Douglas Hof-
stadter [HM+94]. The first two, similarly to the ideas of Bartha seen above, aim to
establish whether two domains are analogous. The Copycat model is focused on simu-
lating the jumping from one concept to another, recognized by the authors as the ‘key’
of an analogical processing.

Let us start by explaining the structure mapping theory. Its definition of domain is

14 chapter 1

similar to the one seen above. The only concept we introduce in order to explain this
theory is the order of a relation. Using again the example of the solar system, a first
order relation is one which compares sets of objects. For instance, the relation “more
massive than” is a first-order relation because it compares two objects, e.g., “The sun
is more massive than the earth”. A second-order relation is a relation which compares
a set of objects and at least a first-order relation. For instance, if “is attracted by”
and “is more massive than’ are two first order relations, a relation linking them would
be a second order relation, as when one says ‘the nucleus being more massive than an
electron CAUSES the electron to be attracted by the nucleus”. In general the order of
a relation is equal to the maximal order of the relations it compares plus one.

Usually, when comparing two domains, the structure mapping theory imposes two
constraints in order to consider them analogous. First, the system of relations between
objects of both domains have to be isomorphic; second, they must present a similarity
between high-order relations. See [FFG89] for more details and a computational imple-
mentation of this theory.

Let us now shift to the ARCS and ACME models. These models need to place the
domains they treat in a semantic context. That is the reason why the authors perform
their comparisons over domains defined in WordNet, where a concept is represented by
a set of synonyms, and synonyms sets are organized by means of kind, part-whole, and
antonymy relations.

ARCS and ACME use three parallel constraints, namely Semantic Similarity, Iso-
morphism, and Pragmatic centrality, which are not treated as absolute requirements,
but rather as pressures that operate to some degree. They thus propose that retrieval
and mapping of sitations or domains invovled in analogical mapping are determined
by simultaneous satisfaction of these constraints. We provide their definitions of these
three constraints:

Semantic Similarity: Two analogs are semantically similar to the extent that the
predicates used in the representations of the two analogs are semantically similar. Two
predicates are semantically similar if they are identical or if they participate in lexical
relations such as synonymy, hyponymy, and meronymy.

Isomorphism: Two structures are isomorphic if there is a one-to-one correspon-
dence between them that preserves structural consistency, where structural consistency
requires that if two propositions are mapped, then their constituent predicates and ar-
guments should also map.

Pragmatic Centrality: implies that mapping should give preference to elements
that are especially important to goal attainment, and should try to maintain correspon-
dences that can be presumed on the basis of prior knowledge.

Analogical Proportions in Artificial Intelligence 15

Informally, the ARCS algorithm works as follows. Using the predicates of a probe
structure, it looks for those stored structures containing predicates that are in some
degree semantically similar to them. Then, it looks among the selected structures those
satisfying to some degree the constraints of isomorphism and pragmatic centrality.

Let us now move to the third cognitive model of analogy we introduced above, the
Copycat model. Unlike SMT and ARCS, the Copycat model does not aim to establish
the plausibility of an analogical mapping, but to simulate the (mental) process when
one goes from one concept to another analogous to it. For Hofstadter, when we think
all we do is to move fluidly from concept to concept, and these jumpings are what
he calls analogical connections. He gives some examples of this phenomenae, such as
the moment when we observe a picture and some concepts, such as ‘duck’, ‘Victorian
House’, or ‘President Eisenhower’, come to our mind. Another example is when “we
are in the middle of a conversation, and some proverb, such as when the cat’s away, the
mice will play pops out from our unconscious, and if we are talking to someone, we will
quote that proverb, and our listener will in all likelihood understand how the proverb
fits the situation”.

Copycat [HM+94] focuses on how we can move from one concept to another ‘neigh-
boring concept’. The domain in which Copycat works is that of strings. Here is a typical
problem Copycat aims to solve:

Suppose the letter-string abc were changed to abd; how would you change the letter
string yk in the same way?

What Copycat aims to do is to perform the change that made abc convert into
abd, to yk. Copycat may be able to change yk into yl (replace the rightmost letter by
its alphabetic successor), to yd (replace the rightmost letter by d), or by abd (replace
the whole structure blindly as abd). Copycat can perform this using concepts like suc-
cessor, same, leftmost, rightmost, alphabetic first (which applies only to a), and about
sixty more in total [Bar10]. According to Hofstadter, by doing so, Copycat simulates
the fluidity of concepts humans can perform. See [GF11] for a summary and a brief
description of computational [cognitive] models of analogy.

We have finished with our overview of analogy in the context of philosophy and
cognitive science. Let us now move to the development of analogical proportions in the
Artificial Intelligence domain. We will start with a brief history, and move afterwards
to its logical modelling.

1.6 Analogical Proportions in Artificial Intelligence

George Polya is recognized as the pioneer of the application of analogical proportions
in Artificial Intelligence. In his book [Pol45], Polya provides a kind of manual on how

16 chapter 1

to solve problems, from the mathematical to the real world domain. The prevailing
methodology proposed when solving a new problem, is to look for previously solved
problems, and profit from the method or experience one has acquired solving them.
The search for a previously solved problem can be performed via generalization, spe-
cialization, or analogy. When one has chosen a previously solved problem to solve a
new one, one aims to map some characteristics of the old problem into the unknown
parts of the new unsolved problem. It is this kind of methodology in which a heuristic
to solve a problem must be based on. This work can be seen as the inspiration of the
ulterior, more applied approaches on AI based on analogy.

When talking about concrete implementations of analogy, one has to mention the
work of Thomas G. Evans. In [Eva64], Evans proposed an approach aimed to solve
“geometric-analogy” problems as those encountered in intelligence tests. In this kind of
problems, the user is given three figures A, B, and C, and has to choose a fourth one D
among a given set of answer figures such that “figure A is to figure B as figure C is to
figure D”. His system is capable of recognizing line-drawings, decomposing a figure into
sub-figures, or calculating a relation between figures, among others. These capacities
allow to generate some representations for each figure. Using these representations, the
system constructs more “abstract” descriptions of each figure. Then the relation be-
tween a pair of figures, say A and B, is represented as a set of transformation rules, i.e.,
the transformations needed to transform figure A into figure B. Finally, given a figure
C, the program looks for the figure D such that the previously found transformation
rules are valid between C and D.

We finish our overview of the precursors of computational implementations of anal-
ogy with the works of Robert E. Kling and Patrick Winston. The work of Kling con-
sisted of an approach aimed to prove first-order resolution logic theorem provers, based
on analogical previously solved theorems [Kli71]. Winston presented a theory of anal-
ogy accompanied by its implementation [Win80]. His system represents situations (like
the water pressure across the length of a pipe) in terms of relations between pairs of
parts (taking part in each situation). The similarity between two situations is measured
in terms of the best possible match according to what is important in the situations
(the important parts of a situation, as well as the relation between pairs of parts of a
situation can be manually introduced). The tasks to be performed can be divided into
analogical learning, and analogical reasoning. Analogical learning refers to mapping the
parts of a situation in a well-understood domain into the parts of another situation in an
ill-understood domain. Analogical reasoning is about defining the relations that should
hold in an ill-known situation in order to consider it similar to a well-known situation.

Let us now revise the work of more contemporaneous researchers. In recent times,
there has been a good amount of analogical approaches in the Natural Language Pro-
cessing (NLP) domain, from which we feature the works of François Yvon and Yves
Lepage. There have been other works aimed at proposing logical formalizations of ana-
logical proportions, and performing classification. We highlight in this area the work of

Analogical Proportions in Artificial Intelligence 17

Henri Prade, Gilles Richard, and Laurent Miclet.

In the context of NLP, we begin by mentioning the approaches to pronunciation of
written words (grapheme-to-phoneme conversion) [FPY95, Yvo99, Yvo97]. The objec-
tive of these contributions is to pronounce an unknown word on the basis of its analogy
to known words whose spelling and pronunciation are already known. We can cite also
an approach aimed to translate medical terms based on analogy [LYZ08]. Other works
looked for analogies between strings of letters, [DM04], or symbols [Lep00]. The lat-
ter approach looks for true analogies between chunks in the Japanese language, where
true analogies between symbols are true only if there is analogy in the form and in the
meaning context. For instance (I walked : to walk :: I laughed : to laugh) is a true
analogy, while (I walk : I walked :: I go : I goed) is not. In [SY05] it is proposed
a general definition of formal analogical proportions for algebraic structures commonly
used in NLP: attribute-value vectors, words on finite alphabets and labeled trees. There
is another approach investigating the analogy between concepts using the Kolgomorov
Information Theory [PR09b]. The Kolmogorov complexity of a string x is a numerical
measure of the descriptive complexity contained in x. This measure is assessed using
the Google search engine. Finally, the analogical proportions in the context of lattices
and formal concept analysis have been investigated as well [MPG11, BMP13].

Let us also mention the works aimed at performing a classification task via analog-
ical proportions [LYZ09, PRY10a, MMPR13, BPR14a, MBD08a], that we will deeply
analyze in the next chapter.

Some works proposed a logical formalization of analogical proportions in a Boolean
[PR10a], and multiple-valued setting [MP09a, PR10b]. Finally, let us mention an ap-
proach aimed at solving Raven’s IQ tests using analogical proportions [CPR12].

In the following, we will delve into the logical formalizations of analogical propor-
tions, which we can consider as the basis of our work to be presented in the next
chapters. We will consider both the encoding of analogical proportions in classical logic
and fuzzy logic settings.

1.6.1 Logical View of Analogical Proportions

The first researcher who came up with a logical definition of analogical proportions is
Sheldon Klein, according to Prade et al. in [PR11]. In [Kle82], Klein introduced a
mathematical operator called ATO (Appositional Transformation Operator), which is
the same as the equivalence operator of mathematical logic

a ≡ b =

{

1 if a = b

0 otherwise

18 chapter 1

The repeated use of this operator enables to compute analogical proportions. An ana-
logical proportion in terms of this operator can be expressed as follows:

(a : b :: c : d) = (a ≡ b) ≡ (c ≡ d) (1.1)

Miclet et al. [MP09a] have shown that this expression can also be written as
(a∆b) ≡ (c∆d) where ∆ denotes XOR(a, b) = (a ∧ ¬b) ∨ (¬a ∧ b). The cases where
Expression 1.1 is true are shown in Table 1.1.

Table 1.1: Positive cases of (a ≡ b) ≡ (c ≡ d)
a b c d

1 1 1 1 1
2 1 1 0 0
3 1 0 1 0
4 1 0 0 1
5 0 1 1 0
6 0 1 0 1
7 0 0 1 1
8 0 0 0 0

However, as Miclet et al. notice in [MP09a], the cases 4 and 5 of the table have
some undesirable properties. Indeed, they are equivalent to say:

(a ≡ b) ≡ (c ≡ d) = (b ≡ a) ≡ (c ≡ d)

which would amount to saying that ‘A is to B as C is to D’ is equivalent to ‘B is to A
as C is to D’. This is due to the fact that the ≡ operator is symmetrical (the relation
‘is to’ is not). For instance, the relation between a planet and the sun is not the same
as the relation between the sun and a planet.

One thus needs another expression to express an analogical proportion. Prade et
al. propose a definition inspired from [Lep03]: Let A, B, C and D be subsets of some
universal set P . A denotes the complementary set of A in P and A−B = A∩B. A : B
stands for the set operation that transforms A into B by deleting the elements of A−B
and adding the elements of B −A. The analogical proportion states the identity of the
operations that transform A into B and C into D. In other words, A differs from B as
C differs from D. This leads to the following definition.

Definition 1. Let A, B, C, D be subsets of a referential P
(A : B :: C : D)⇔ (A−B = C −D)⇔ (B −A = D − C)

Prade et al. claim that this definition fits well the semantics of the is to relation. In
fact, it states that the changes from a to b go in the same direction as those from c to
d. This definition is equivalent to each of the following logical expressions [MP09a]:

Analogical Proportions in Artificial Intelligence 19

(a : b :: c : d) = ((a ≡ b) ≡ (c ≡ d)) ∧ ((a∆b)→ (a ≡ c)) (1.2)

where ∆ denotes the XOR relation, and → is the usual logical implication.

(a : b :: c : d) = ((a ≡ b) ∧ (c ≡ d)) ∨ ((a ≡ c) ∧ (b ≡ d)) (1.3)

(a : b :: c : d) = ((a→ b) ≡ (c→ d)) ∧ ((b→ a) ∧ (d→ c)) (1.4)

(a : b :: c : d) = ((a ∧ d) ≡ (b ∧ c)) ∧ ((a ∨ d) ≡ (b ∨ c)) (1.5)

These expressions appropriately reflect the equality of relations with respect to a change
or a non-change, and in the former case, the direction of this change. For instance, if
we decompose Equation 1.2, its left part ((a ≡ b) ≡ (c ≡ d)) verifies that the dif-
ference between a and b is the same as the one between c and d, and its right part
((a∆b) → (a ≡ c)) verifies that both changes go in the same direction. More precisely,
it verifies that if a is different from b, then a must be equal to c.

The cases where they lead to the value true are exposed in Table 1.2.

Table 1.2: Positive cases
a b c d

1 1 1 1 1
2 1 1 0 0
3 1 0 1 0
4 0 1 0 1
5 0 0 1 1
6 0 0 0 0

1.6.2 Extensions of analogical proportions to fuzzy logic

In [MP09b], Miclet and Prade were interested in representing the cases where A, B, C
and D may be represented by fuzzy values in the unit interval [0, 1]. In other words,
they switch from Boolean logic to fuzzy logic. These values may represent the degree
to which a property is true for the attribute of a given tuple.

The authors proposed an extension of the logical formula introduced in Equation
1.4 (page 19):

(a : b :: c : d) = ((a→ b) ≡ (c→ d)) ∧ ((b→ a) ≡ (d→ c))

First, they choose the fuzzy operators shown below for representing the conjunction
(a, b), the implication (a→ b), and the equivalence (a ≡ b) connectives.

20 chapter 1

• a ∧ b = min(a, b)

• a→ b = min(1, 1 − a+ b) (Łukasiewicz implication)

• a ≡ b = 1− |a− b| (min conjunction and Łukasiewicz implication)1

With the choices above, Equation 1.4 becomes:

min

{

1− |min(1, 1− a+ b)−min(1, 1− c+ d)|

1− |min(1, 1 + a− b)−min(1, 1 + c− d)|
(1.6)

This formula yields 1 iff a − b = c − d. The authors proposed a second formula using
the following choices:

• a ∧ b = a · b

• a→ b = max(1, b/a)

• a ≡ b = min(b/a, a/b) (min or product conjunction and Goguen implication)2

Indeed, these choices lead to the following formula

min

(

max(1, b
a)

max(1, dc)
,
max(1, dc)

max(1, b
a)

)

·min

(

max(1, ab)

max(1, c
d)

,
max(1, c

d)

max(1, ab)

)

(1.7)

This formula yields 1 iff a/b = c/d.

Postulates related to Analogical Proportions

Now that we have seen the logical modelling of analogical proportions, we can examine
their properties. According to Lepage, an analogical proportion must satisfy the follow-
ing properties [Lep03]:

• Reflexivity. (A : B :: A : B)

• Symmetry. (A : B :: C : D)⇔ (C : D :: A : B)
This property comes from the fact that the relation :: is symmetric.

1((a ≡ b) = min(min(1, 1− a+ b),min(1, 1− b+ a)) = 1− |a− b|)
2Where the Goguen implication is a → b = min(1, b/a) if a > 0, and a → b = 1 if a = 0

About Analogy, Analogical Proportion, and Metaphor 21

• Central Permutation. (A : B :: C : D)⇔ (A : C :: B : D)
Lepage recalls that this property was already pointed out by Euclid, who also
stated that the four objects must be of the same type, and then Aristotle. Let us
recall their definitions:

According to Euclid, “Alternate ratio means taking the antecedent in relation to
the antecedent and the consequent in relation to the consequent3 [...] But the
four magnitudes have to be of the same kind”.

According to Aristotle, “proportion is an equality of ratios, and involves at least
four terms [...] As the term A, then, is to B, so will C be to D, and therefore,
alternando, as A is to C, B will be to D”

Lepage also shows how, when one has an expression (A : B :: C : D), one can obtain
other equivalent five combinations of A, B, C, and D, using the properties we just listed
:

B : A :: D : C

D : B :: C : A

D : C :: B : A

B : D :: A : C

C : A :: D : B

1.7 About Analogy, Analogical Proportion, and Metaphor

We end this chapter with a little discussion about the confusion existing between anal-
ogy, analogical proportions, and metaphors. Let us start with the case of analogy and
analogical proportions.

The type of analogy that the cognitive systems we have seen above deal with, e.g.,
“the solar system is like a hydrogen atom”, may seem different from the analogical pro-
portions we have been talking about in the beginning of this chapter. The former is
essentialy a binary relation (A is like B), while the latter is a quaternary relation (A is
to B as C is to D).

Initially, we considered that there was a difference between what Gentner calls an
analogy and what we call an analogical proportion, and we went looking for some def-
initions or examples about this dichotomy. However, what we found is that for the

3Remember that according to Euclid, in a relation ‘A is to B’, A is called the antecedent, and B
the consequent.

22 chapter 1

scholars we have been studying, there is no such difference. There does not exist a
binary version of analogy contradictory to its Greek definition. They seem to be the
same, but expressed differently. For instance, in [Gen83], when giving an example of
analogy, Gentner used its Greek version: “As another example of the selectiveness of
analogical mapping, consider the simple arithmetic analogy 3 : 6 :: 2 : 4”.

Furthermore, in [Ste94], Eric Steinhart equates these two kinds of expressions: “Ana-
logical Reasoning is based on comparisons, in particular statements such as : A is like
B, A is analogous to B, or A is to B as C is to D”.

What we understand is that when one uses an expression of the type A is like B,
one is implicitely referring to an analogical proportion in its Greek version. Using the
notion of Gentner concerning a similarity of relations, when one says a hydrogen atom
is like the solar system, one is also saying:

electron : nucleus :: planet : sun

Stating that there is an equality of the relations between the two couples of objects.
The relation may be A is attracted by B.

The confusion between analogy and metaphor is similar to the one just seen above.
For some people they are the same thing, for others analogy is a kind or metaphor, and
for others metaphor is a kind of analogy.

Among those who consider analogy as a kind of metaphor, we can mention Aristotle
[Lep98] and Gentner [GJ93]. We will only provide the definition by Aristotle.

“ [...] Metaphor consists in giving the thing a name that belongs to something else;
the transference being either from genus to species, or from species to genus, or from
species to species, on the grounds of analogy [...] ”

On the other hand, the Larousse dictionnary defines metaphor as a kind of analogy:
“Figure de style qui consiste, par analogie, à donner à un mot un sens qu’on attribute
généralement à un autre”. Cajetan [Ash11] and David Hills [Hil12] also defined metaphor
as a kind of analogy.

Hofstadter summarizes well this confusion. He categorized the metaphor-analogy
relation as a difficult chicken-egg problem. In [Hof01], he even defined them as the
same thing: “And yet it has been often said that all communication, all language, is
metaphorical. Since I believe that metaphor and analogy are the same phenomenon, it
would follow that I believe that all communication is via analogy.”

In general, we can say that the concept of analogical proportion has maintained
through the ages its Greek notion. It is true even in the medieval ages, when some

About Analogy, Analogical Proportion, and Metaphor 23

definitions, such as equivocal terms, were provided in order to use the analogical pro-
portions as a means of explaining or justifying. Its binary version we have seen in the
case of contemporary philosophy and cognitive sciences, seem also to implicitely involve
analogical proportions, as suggested above.

Summary and conclusion

In this chapter, we went through an overview of the principal philosophical thoughts
about analogy through history. Moreover, we provided a summary of its definitions
(and use) in the domain of Artificial Intelligence.

In the classical antiquity, Euclid defined proportion as a similarity of ratios. Aris-
totle was more exigent than Euclid, and demanded not a similitude, but an equality of
ratios in order to form an analogical ratio. Aristotle, contrary to Euclid, used already
the word analogy.

In the medieval ages, analogical terms were compared to the univocal and equivocal
terms, and were considered by Thomas Aquinas as the only option one has to be able
to state facts about God. In the modern ages, Kant provided a definition of inference
by analogy, and introduced the terms of mathematical and philosophical analogy.

In contemporaneous times, the community of cognitive science, in particular Gen-
tner and Holyoak, considered several definitions of analogy between domains, where a
domain is composed of a set of objects and the relations linking these objects.

In the context of Artificial Intelligence, Polya dealt with the issue of solving new
problems by means of analogy-related already solved problems. The work of Evans,
was more specialized than that of Polya; he used analogy to solve geometric problems.
Lately, the notion of analogical proportion between strings of letters, strings of words,
and concepts have been defined as well. Prade et al. provided a logical formalization of
analogical proportions, while Lepage studied their properties.

Finally, a discussion about the differences between analogy, analogical proportion,
and metaphor has been provided.

A summary of the definitions and uses of analogy commented through this chapter
is provided in Table 2.5. Each row of this table specifies the principal names of philoso-
phers and scientists who dealt with the concept or use of analogy, a few words about
their contribution, the historical time when their work took place, and its reference in
the chapter.

In the next chapter, we will extend the scope of analogical proportions to the case of

24 chapter 1

numerical values. Additionally, we will provide an overview of the approaches aimed
to perform classification using analogical proportions. Then, we will see how one can
perform the task of imputing missing values in a database using analogical proportions.
A state of the art about the imputation of missing values is provided as well.

About Analogy, Analogical Proportion, and Metaphor 25

Table 1.3: Summary table
Name Contribution Time Reference

Euclid Ratio/proportion Classical section 1.1.1, page 8

Aristotle Ratio of Analogy Classical section 1.1.2, page 8

Boethius
Univocal and equivo-
cal terms

Medieval section 1.2.1, page 10

Cajetan
Analogy of inequal-
ity, Analogy of attri-
bution

Medieval section 1.2.1, page 10

Aquinas Analogy in Theology Medieval section 1.2.2, page 11

Kant

Inference by anal-
ogy, mathematical
and philosophical
analogy

Modern section 1.3, page 11

Bartha Analogical argument Contemporaneous section 1.4, page 12

Gentner
Analogy between do-
mains

Contemporaneous section 1.5, page 13

Holyoak
Analogy between do-
mains

Contemporaneous section 1.5, page 14

Hoffstadter
Analogical jumping
between concepts

Contemporaneous section 1.5, page 15

Miclet and
Prade

Logical proportions Contemporaneous section 1.6.1, page 17

Lepage
Properties of analog-
ical proportions

Contemporaneous section 1.6.2, page 20

26 chapter 1

Chapter 2

Analogical Prediction of Null

Values

2.1 Introduction

In this chapter, we are interested in the problem of missing values in databases. Missing
values represent a major problem since most of the data mining and machine learning
algorithms are not designed to treat them. Additionaly, databases with missing values
may cause problems at the moment of query evaluation, or when computing some aggre-
gates on the data. Missing values also make it difficult to enforce integrity constraints.

The objectives of this chapter are twofold: first, to evaluate the accuracy of meth-
ods based on analogical proportions when imputing missing values, compared to other
well-known methods. Second, to analyze the behavior of the analogical approach and
to inquiry if its complexity may be reduced.

In Section 2.2, we recall the main concepts of the relational database model, and
we explain what is to have a relational database with missing values. In Section 2.3,
we provide a state of the art about the handling of missing values. We first expose the
recognized types of missing values, and then a summary of the most known methods
aimed at imputing missing values. Since our objective is to evaluate the imputation of
missing values by means of analogical proportions, we study in Section 2.4 the modelling
and equation solving of analogical proportions in the numerical case. This information
will allow us to present in Section 2.5 how to impute missing values using analogical
proportions. We expose how to modify an analogical classification method to impute
missing values. We provide a comparison of the accuracy of this method with some of
the methods presented in Section 2.3. Finally, in Section 2.7, we provide a discussion
about the processing of data an analogical-proportion-based method performs, when
compared to the k-nearest neighbor method, and present some cases in which it may
be simplified.

27

28 chapter 2

2.2 Relational Model

In this section, we provide some definitions related to relational databases, and give
a special attention to the case where it contains some missing values. The relational
model was introduced by E. Codd in 1970. The information about this model is ex-
tracted from [Jef89].

In the relational model, data are represented as a set of relations. For explaining
what a relation is, let us introduce the notions of domain and attribute. Formally, a do-
main is simply a set of values, for instance the natural numbers. Let U be a countable set
of attribute or attributes names. Let A be an attribute such that A ∈ U . The domain
of A in terms of a domain D is the subset of values of D that A can have. A relation
can be seen as a subset of the cartesian product of a list of attributes. The cartesian
product of attributes A1, A2, ..., Ak , written A1 × A2 × ... × Ak, is the set of all tuples
〈v1, v2, ..., vk〉 such that v1 is in A1, v2 is in A2, and so on. For example, if we have k = 2,
A1 = {0, 1}, and A2 = {a, b, c}, then A1 ×A2 is {〈0, a〉, 〈0, b〉, 〈0, c〉, 〈1, a〉, 〈1, b〉, 〈1, c〉}.

A relation may be seen as a table, where each row is a tuple and each column cor-
responds to one attribute. A tuple 〈v1, v2, ...vk〉 has k attributes, where vi is the i-th
attribute. The set of attribute names for a relation is called the relation schema.

Example 1.
Table 2.1 shows a relation whose attributes are no., city, country, and pop. (1, Paris,
France, 2244) is a tuple belonging to this relation. The relation schema for this relation
is {no., city, country, pop}.

Table 2.1: A relation
no. city country pop

1 Paris France 2244
2 Madrid Spain 6543
3 Rome Italy 2627

�

In the following, we will denote by t.A the value of the attribute A for the tuple
t. For instance, if we refer to Figure 2.1, let us say that t is the tuple No. 2, then
t.country = Spain.

Databases with Missing Values

Some tuples taking part in a relation may have missing values, as is the case of the
relation shown in Figure 2.2. If we denote by t the first tuple (1, NULL, France, 2244),
t.city is missing. In the next section, we will see how one can handle the missing values
in a database.

Litterature about Missing Values 29

Table 2.2: A relation with Missing Values
no. city country pop

1 NULL France 2244
2 Madrid Spain NULL
3 Rome Italy 2627

2.3 Litterature about Missing Values

In this section, we provide an overview of works dealing with the problem of estimating
missing values in a database. In Section 2.3.1, we expose the different types of missing
values. In Section 2.3.2, we provide the most known methods for handling missing
values. Initially, in Section 2.3.2.1 we present some basic methods, such as the Listwise
deletion method. In Section 2.3.2.2 we present some approaches based on classification
trees. Then, in Section 2.3.2.3, we present some methods based on a statistical modelling
of data. Finally, in Section 2.3.2.4, we present some approaches based on association
rules.

2.3.1 Types of Missing Values

The litterature recognizes different situations of missing values. The first distinction
to be made is between unknown but applicable and inapplicable missing values. An
information can be missing because its present value is unkown to the users, but that
value is applicable and can be entered whenever it happens to be forthcoming; or it is
missing because it represents a property that is inapplicable to the particular object
represented by the tuple involved [Cod86]. An inapplicable missing value may refer for
instance to the ’maiden name’ of a man. In this thesis, we only consider the case of
applicable missing values.

Among the applicable missing values, the most common reasons are: Missing Com-
pletely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random
(MNAR) [Aco05, DvdHSM06].

MCAR Using the terminology for databases introduced in Section 2.2, if we consider
our data as a table, then the missing values in the MCAR case are randomly distributed
throughout the table; the reason for missingness is completely random, i.e., the prob-
ability that a tuple contains a missing value is not related to the existing values for
another attribute of the same tuple or to any attribute of another tuple.

MAR The missing value for an attribute t.Ai of a tuple t is considered to be of type
MAR when the probability that t.Ai is missing commonly depends on information for
the same tuple t that is present, i.e., the reason for missingness of t.Ai is based on

30 chapter 2

another attribute t.Aj . For instance, in a family study, a celebrity would not give in-
formation about his/her personal life, such as the school where the children study. In
this case, the missing value of the school for a person’s children depends on the status
of this person.

MNAR The case MNAR is given when the probability that the value of an attribute
t.Ai is missing depends on information that is not observed, like the value of t.Ai itself.
For instance, a person may not will to give information about his/her sexual preferences.

The distinction between MCAR and MAR is confusing since the term MAR is
somewhat in contradiction with its definition. Although the term MAR suggests a
random missing data mechanism, it is not random in the sense that the occurrence of
missing data may depend on observed values [Bra99].

2.3.2 Handling of Missing Values: A brief Overview

The first two presented methods, i.e., Listwise Deletion and Pairwise Deletion, do not
aim at filling the missing values. They simply consist in ignoring the existing missing
values in a dataset. The former ignores all the records containing missing values, while
the latter ignores only the missing values.

On the other hand, the other methods presented in the following subsections do
estimate the missing values. For a more complete overview, see [LR14], [Aco05] and
[SG02].

2.3.2.1 Basic Methods

Listwise Deletion It is the most common solution to missing values. Only complete
tuples are retained. A big drawback of this method is that if it is applied in real
situations, a great deal of data may be lost. For example, if we have a table with
40 attributes and a missing probability of 0.05% on each attribute of each tuple, the
probability that a tuple contains no missing values is 0.13% [Mag04].

Example 2.
Consider Table 2.3, shown below.
If one aims to use this table for any purpose, the Listwise Deletion Technique would
ignore the tuples 2, 3, 5, 8, and 10.

�

Pairwise Deletion This technique is a variant of listwise deletion. It keeps incom-
plete records, but when evaluating an attribute, only records containing a non-missing
value for that attribute are taken into account [Mag04].

Litterature about Missing Values 31

Table 2.3: Data Example
No. Age Height Annual Income Sex

1 26 170 cms 22000 M
2 ∅ 183 cms 34000 M
3 23 ∅ 20000 ∅

4 54 175 cms 45000 M
5 ∅ 165 cms 35000 F
6 28 189 cms 23000 M
7 40 178 cms 48000 M
8 35 173 cms ∅ F
9 30 169 cms 35000 F
10 52 175 cms 44000 ∅

While this technique is quite simple and less data is lost in comparison with the
listwise deletion method, the principal drawbacks of pairwise deletion include variation
in the number of cases available for different analyses, and reduction in precision of
estimates, such as a regression coefficient or the correlation between two variables, that
may differ based on the different variables being compared [HN07].

Example 3.
Considering Table 2.3, if we want to obtain the maximal height of all the stored persons,
we would just ignore the null value of the tuple No.3.

�

See [Bro94],[GHM96], and [Wot00] for some implementations of PairWise deletion.

Mean/Mode substitution In this case, each missing value t.Ai is replaced by the
mean value of the attribute Ai, if it is numerical, or its mode (i.e., the most frequent
category), if it is categorical [Aco05].

Example 4.
Consider Table 2.3. Using the Mean/Mode Substitution, the resulting table would let
us to Table 2.4 below, where the underlined values are obtained by computing the mean
(resp. mode) value of each numerical (resp. categorical) attribute.

�

Although this approach allows for the inclusion of all observations, it can lead to biased
parameter estimates because missing values are replaced with values of the center of the
distribution for that particular variable [HN07]. In other words, this method reduces
the variance of the variables. Moreover, the method also distorts covariances and inter-
correlations between variables [SG02].

32 chapter 2

Table 2.4: Data Example

No. Age Height Annual Income Sex

1 26 170 cms 22000 M
2 36 183 cms 34000 M
3 23 175.2 20000 M
4 54 175 cms 45000 M
5 36 165 cms 35000 F
6 28 189 cms 23000 M
7 40 178 cms 48000 M
8 35 173 cms 34000 F
9 30 169 cms 35000 F
10 52 175 cms 44000 M

There can be variants of the mean/mode substitution method, such as the one pre-
sented in [FH02], which proposes to perform a clustering algorithm over all the tuples
in a dataset, and then compute the mean/mode value of a missing attribute t.Ai, de-
pending of the cluster that t has been assigned to. The authors propose three variants
of their method: The first assumes that each tuple of the considered dataset belongs
to a class. It then creates a cluster for each class. Each attribute t.Ai with a missing
value is replaced by the average of the known Ai values belonging to the same cluster
as t. The second variant chooses the closest attribute Aj to a missing attribute Ai,
according to their correlation. It then creates clusters based on the values of Aj us-
ing the k-means algorithm, and gives to Ai the average/mode of Ai for the cluster it
belongs to. The third variant clusterizes the tuples using the k-means algorithm and
assigns to a missing attribute t.Ai the mean/mode value of Ai for the cluster t belongs to.

2.3.2.2 Tree-based Methods

In this section, we provide an overview of the use of decision trees for handling missing
data. Initially, we explain what a decision tree is, and what its purpose is. Then, we
provide an overview of two decision trees methods, the CART and random forest meth-
ods, and explain how they can be used to impute missing values.

A decision tree is a flowchart-like structure, where each internal node, i.e., nonleaf
node, denotes a test on an attribute, each branch represents an outcome of the test,
and each leaf node holds a class label. An example of a decision tree is shown in Figure
2.1. In this Figure, the internal nodes are represented by rectangles, the leaf nodes by
circles, and the branches by lines connecting to nodes, or connecting a node and a leaf
node. The root is marked by a red color [HKP11a].

Litterature about Missing Values 33

Decision trees are used for classification or prediction tasks. Given a tuple t con-
taining an unknown attribute (this attribute may be its class), the known values of t
are tested against the decision tree. A path is traced from the root to a leaf node, which
holds the value to be assigned to the treated attribute of t [HKP11a].

Age?

Unenmployed

young

Salary?

small house
low

big house
high

adult?

Figure 2.1: Example of a decision Tree

The CART (Classification And Regression Trees methods) decision tree algorithm is
a binary recursive partitioning procedure capable of processing continuous and nominal
attributes [WKQ+08]. We explain first the basic algorithm of CART, and then how can
it be applied to handle missing values.

CART builds a decision tree by recursively partitioning the data using a splitting
rule to identify the split to perform at each node. Initially, CART assigns the entire
tuples to a root node. From this root node, the data are split into two children, and each
of the children is in turn split into grandchildren according to the best selected splitter
for each node. This process is performed until splitting is impossible due to lack of
data. CART uses only binary splitting [WKQ+08]. The CART method is summarized
in Algorithm 1, page 34.

At the line 4 of Algorithm 1, it is decided if a node n is to be divided or to be
considered as a leaf node. If the number of tuples assigned to n is smaller than size,
or if the value returned by the function separable is smaller than threshold, it will be
considered as a leaf node. The function separable returns the maximum value of the
splitting criterion, explained below, of all the attributes over n.

Let us explain the splitting-criterion CART uses. The splitting criterion tells us
which attribute to test at node n by determining the ‘best’ way to partition the tuples
assigned to n. More specifically, the splitting criterion allows to find the splitting
attribute and may also indicate a split point or a splitting subset. The splitting-criterion

34 chapter 2

Algorithm 1 CART algorithm
Require: Table D, int size, float threshold
1: Assign all data from D to the root node n
2: terminal-nodes ← n
3: for every node n ∈ terminal-nodes do
4: if |n| < size or separable(n)≤ threshold then
5: terminal-nodes ← terminal-nodes - n;
6: else
7: Find the attribute a that best separates n into two child nodes
8: according to a splitting-criterion;
9: Using attribute a, split n into two child nodes nleft and nright;

10: terminal-nodes ← terminal-nodes - n;
11: terminal-nodes ← terminal-nodes + nleft;
12: terminal-nodes ← terminal-nodes + nright;
13: end if
14: if terminal-nodes is empty then
15: return;
16: end if
17: end for

CART uses is based on the Gini measure of impurity, which is considered to be similar
to the entropy (information theory) gain criterion. The Gini measure is computed in
terms of a partition of a set of data d corresponding to a node n into a left and a right
part, shown in Equation 2.1:

Gini(n) = 1− rright(t)
2 − (1− rright(t))

2 (2.1)

where rright is the relative frequency of tuples assigned to the right subnode of n.

Let us now explain how the partitions of nodes are performed. The splitting rules of
CART are of the form «An instance goes left if condition and goes right otherwise». In
the case of continuous attributes, condition is expressed as ‘value of attribute Ai ≤ c’.
In the case of categorical attributes, condition is expressed as a membership in a list of
values. For example, a split on a variable such as city might be expressed as «A tuple
goes left if city is in {Chicago, Detroit, Nashville} and goes right otherwise [HKP11a].

Consequently, for each attribute Ai, the Gini measure is evaluated on each possible
partition of Ai. In the case Ai is a discrete-valued attribute having n distinct values
{a1, a2, ..., an}, each of its 2v subsets is evaluated. For example, if Ai has three values
{low, medium, high}, some of the possible subsets of Ai may be {low}, {low, medium},
or {medium, high}. The set containing all the values of Ai, i.e., {low, medium, high}
and the empty set are ignored. In the case Ai is a continuous value, the usual practice
is to evaluate each midpoint between two adjacent values of Ai as a splitting point. For
example, if Ai has three values, for instance {0.4, 0.8, 1}, a splitting point to evaluate

Litterature about Missing Values 35

may be 0.6 (midpoint between 0.4 and 0.8), i.e. the Gini measure would be computed
in terms of the tuples for which the value of attribute Ai ≤ 0.6 and the tuples for which
the value of attribute Ai ≥ 0.6. The splitting point with the lowest Gini measure value
will be selected as the splitting criterion of the node over which it has been evaluated.

Example 5.
Suppose that 10 tuples have been assigned to a node n, and that one wants to evaluate
the Gini measure of an attribute Ai with two distinct values {low, high}, related to
these 10 tuples in n. Suppose also that seven of the ten evaluated tuples have the value
low for the attribute Ai, and the other three have value high.

The Gini measure of the attribute Ai would be

Gini(n) = (1− (
7

10
)2)− (1−

7

10
)2

�

Since its first version, CART included a mechanism for handling missing values at
three levels: (a) during splitter evaluation, (b) when moving the data through a node,
and (c) when imputing a missing value [WKQ+08].

In the case of (a), the splitting potential of each attribute is based only on the subset
of data for which this attribute is not missing. Later versions of CART gave a penalty
to the splitting potential of each attribute based on its percentage of missing values.

In the case of (b) and (c), CART use what they call a surrogate attribute: Knowing
that at each node n an attribute Ai is chosen to split n, a surrogate attribute Aj of
Ai may be the one who splits n in the most similar way as Ai. In other words, the
attribute Aj with the closest Gini value to the Gini value of Ai when both of them are
evaluated over n, is chosen as the surrogate attribute of Ai.

Let us explain how the cases (b) and (c) are solved by using the notion of surrogate
attribute. Let us say that we have a tuple t with a missing value for the attribute Aj,
i.e., t.Aj = NULL. When imputing t.Aj , CART goes through the created tree until it
arrives at a node ni that was split using the attribute Aj . Then, from the children of ni,
one value of Aj is randomly selected and assigned to t.Aj . If none of the nodes was split
using Aj , then CART select sthe value of Aj from the leaf node it finishes with when
using the values of t for moving through the tree. If t has more than one attribute with
a missing value, e.g., t.Aj = NULL and t.Ak = NULL, when going through the tree
in order to impute t.Aj , if CART finds a node which used Ak as a splitter, it will look
for a surrogate attribute Az of Ak, and use Az insted of Ak to decide if it should go left
or right at that point of the tree, with the condition that t.Az is known. If t also has a
missing value for t.Az, CART will look for the next surrogate attribute of Ak, and so on.

36 chapter 2

Random Forest The Random Forest method was proposed by Breiman et al. in
[Bre01]. Similarly to CART, it is based on trees. Unlike CART, it creates numerous
trees instead of only one. Random Forest uses all the created trees when performing
a classification or prediction task. In order to create its trees, Random Forest uses k
different bootstrap samples from the data. Let us first explain what bootstrap is.

The bootstrap method consists in sampling a given dataset k times with replace-
ment. That is, a tuple can be chosen for more than one sample. A basic bootstrap
method works as follows: Suppose we are given a dataset of n tuples. The dataset is
sampled k times, with replacement, resulting in a bootstrap sample or training set of k
samples. Each sample has a size m < n. It is very likely that some of the original data
tuples will occur in more than one sample [HKP11a].

Once the k bootstrap samples from the data have been chosen, a tree is grown from
each of these k samples. Unlike CART, where each node is split using the best split
among all attributes, the Random Forest method splits each node using the best at-
tribute Ai (in terms of its splitting criterion, for instance) among a subset of attributes
randomly chosen for that node.

When imputing missing values, Random Forest performs a procedure similar to the
one of CART for each of the k created trees. Then, each missing value is assigned the
average (or mode if categorical) of the obtained values from the k trees. A detailed
algorithm is provided in [DVBD14].

2.3.2.3 Statistical Methods

In this section we want to give a brief overview of some statistical approaches aimed to
the imputation of missing values. Statistical approaches aim to conserve characteristics
of data such as means, variances, correlations between attributes, and distributions. We
will mostly discuss the notion of linear regression, and how one can use it to impute
missing values. We will provide some extensions of linear regression as well. Then, we
provide a brief overview of other statistical approaches, such as the EM algorithm.

Imputing using Regression Regression is the most widely used approach for nu-
meric prediction (prediction of continuous or ordered values). The most basic case of
regression is linear regression. This is the method we explain in the following. The
information we provide about regression is extracted from [Ebe07] and [LW02].

When performing linear regression, one assumes a linear relation between two vari-
ables y (usually denoted response variable) and x (usually denoted single predictor
variable). The objective is to find the missing values of some tuples with respect to
y by taking advantage of the relation of y with x. The relation between y and x is

Litterature about Missing Values 37

formalized as follows

y = β0 + β1x (2.2)

where β0 represents the intercept (the value of y when x = 0), and β1 represents the
slope (the magnitude of change in y when x is larger by one unit). The values of β0
and β1 are chosen to minimize the sum of squared vertical distances

n
∑

i=1

(yi − (β0 + β1xi))
2 (2.3)

Thus, β0 and β1 are chosen to be

β1 =

n
∑

i=1
(xi − x)(yi − y)

n
∑

i=1
(xi − x)2

(2.4)

β0 = y − β1x (2.5)

where x is the mean value of the attribute x, y the mean value of the attribute y, and
n the number of tuples in the dataset. Only those tuples for which yi and xi are both
known are taken into account to compute β0 and β1.

In the case of multiple linear regression, the regression model of y is computed in
terms of a set of complete attributes X = (x1, x2, ..., xp). In this case, the value of each
yi to be predicted is computed as follows:

yi = β0 + β1xi,1 + ...+ βpxi,p (2.6)

where yi represents the value of the attribute y for the tuple i, and xi,r represents the
value of the attribute r for the tuple i.

The computation of each βi is computed by extension of the case of β1 seen above
(Equation 2.4). β0 i as follows:

β0 =
n
∑

i=1

y − βix

n
(2.7)

The use of linear regression to impute missing values is straightforward. The regres-
sion coefficients are only fit for those tuples for which y and the rest of attributes xi
are known. Then, when imputing a missing value yi, one just has to apply Equation
2.6. Although this method may generate reasonable approximations for missing values,
the approach underestimates the variance of the predicted values because no additional
variance is included with the imputation [HN07].

38 chapter 2

Let us now introduce some extensions of linear regression:

Bayesian Linear Regression In this case, the prior distribution of each attribute
xi, such as its mean and variance, if it follows a normal distribution, is taken in account
in order to compute the values of β0 and β1. See [WA10] for more details.

Linear Regression Using Bootstrapping This method extracts r bootstrap sam-
ples from the dataset (as seen in Section 2.3.2.2, in the case of Random Forest) and
generates a regression model for each of these samples. When imputing a missing value
yi, its imputed value is computed as the mean of the obtained values by solving each of
the r′s linear regression equations generated. See [F+81] for more details.

Predictive mean matching In this case, the value of a missing attribute t.Ai is
assigned a value already existing for the attribute Ai. Let us denote by compAy the
tuples containing no missing values for the attribute Ai. When imputing a missing
value t.Ai, one does the following:

1. Fit a regression model of Ay over the other attributes X = {x1,, xn} (As seen
in the case of Multiple linear regression), in order to get the coefficients β0, ..., βn;

2. Set t.Ai,imp = β0 +β1x1+ ...+βnxn (xi represents the value of the attribute i for
the tuple t)

3. Look for the closest value y_neighbor of t.Ai,imp among the known values of Ai

(compAy), and set t.Ay=y_neighbor.

Other approaches We finish this section by mentioning some other works aimed at
estimating missing values with the aid of statistics, such as the one named Imputing
Unconditional Means, and the Expectation-Maximiation (EM) algorithm.

The Imputing Unconditional Means method is similar to the mean/mode substitu-
tion: it uses the mean of an attribute a in order to impute a missing value ta, but it
slightly modifies this value in order to keep the variance of a and the same covariance
between a and every other attribute b taking part in the schema of the relation being
treated [Lit92]. The distortion of each imputed value is randomly computed, so the
imputed values would not be exactly repeated if the imputation process were repeated
[Wid06].

The EM method, proposed by Dempster in [DLR77], is a maximum likelihood ap-
proach that can be used to create a new data set in which all missing values are imputed
with maximum likelihood. This approach is based on the observed relationships among

Litterature about Missing Values 39

all the variables and injects a degree of random error to reflect uncertainty of imputa-
tion [Aco05]. For instance, it adds some variance to the obtained values, as done by the
Imputing Unconditional means method.

See [SG02, Lit92] for a general overview of methods aimed to impute missing values
by means of a statistical approach.

2.3.2.4 Association Rules

In this section, we study the use of association rules for the task of imputing missing
values. The information aboute association rules is extracted from [HKP11a]. Asso-
ciation rules aim to find correlations or associations in the data. For instance, in the
famous market example, they allow for pointing out the items that are usually bought
together, such as diapers and beers. Suppose that we have a set named breakfast with
domain {bread, coffee, cereal, cheese, jam}, then each of these values can be considered
as an item. If we consider that each tuple of a given table can contain one or more of
these items, then an association rule linking some of these items may be expressed in
the following form:

coffee => bread [support=2%, confidence=60%]

where coffee is its antecedent and bread its consequent; the => symbol means co-
occurrence, not causality. A support of 2% indicates that 2% of the tuples have both
coffee and bread; and a confidence of 60% indicates that 60% of the tuples containing
coffee, also contain bread. The set {coffee, bread} can be considered as an itemset,
which is just a collection of one or more items. Let us denote a table by B, a tuple
belonging to B by t, and by |B| the number of tuples in B. We can now recall the
formalization of support of an itemset, and support and confidence of an association
rule.

Support. The support of an itemset X in a database B is:

Support(X) =
|{t ∈ B|X ⊆ t}|

|B|
(2.8)

The support of a rule X=>Y in a database B is:

Support(X => Y) = Support(XY)

Confidence. The confidence of a rule X=>Y in a database is:

40 chapter 2

Confidence(X => Y) =
Support(XY)

Support(X)

We are able now to present a list of works using these concepts in the context of
missing data imputation.

In [R+98], Ragel et al. propose to extract association rules only from the tuples
containing no missing values. In [Rag98], Ragel proposes a method which uses the as-
sociation rules found by [R+98] in order to fill the missing values. The rules matching
a data and having as consequent an attribute which is missing are used to estimate its
value. The authors simply propose two options:

1. All the matching rules indicate the same consequent, then it is used.

2. The matching rules lead to different consequents. In this case, they leave to the
user the choice of using the values of the matching rule(s) with the highest confidence,
or to select the value given by the highest number of matching rules.

In [Kai12], Kaiser et al. proposed another algorithm to impute missing values using
association rules. What they propose, once one has obtained all the association rules
existing in a training set, is to (i) remove those with support lower than required; (ii)
remove those whose consequent has more than one item, or whose consequent contains
the value ‘MISSING’. For each ‘MISSING’ value t.A of a given tuple t, a rule can be
used if its consequent contains a value for the attribute A, and if the attributes taking
part in its antecedent are not missing for t. If there is at least one suitable rule, the
one with the highest confidence is used to impute the ‘MISSING’ value. Otherwise, the
most common value for the attribute with the ‘MISSING’ value is used. They propose
another variant of their algorithm, where only the rules with a confidence value higher
than the frequency of the most common attribute value are kept.

In [BRM+09], Bashir et al. combines association rules with the k-nearest-neighbor
approach. In general, when there is no rule that make it possible to estimate the miss-
ing value of an observation, the missing value is imputed using the k-nearest neighbor
approach, i.e., the k closest tuples T to a tuple t with missing values are chosen, and
each missing value of t is estimated as the mean of its attribute for T , if it is numerical,
or as its mode, if it is categorical.

In [APPT89], Arrazola et al. proposed a fuzzy method aimed to impute missing
values. Let us introduce the notion of membership function of a value to a fuzzy subset:
Let µA be the membership function of a fuzzy subset A, then µA(s) will represent the
degree of possibility that the value of the corresponding attribute is s. An attribute
may then be expressed in terms of a fuzzy set. They use what is called fuzzy if-then

Litterature about Missing Values 41

rules of the type “the more x is in A, the more possible y is in B”. These rules can be
read as “the more the value x is possible in the fuzzy subset A, the more the value y is
possible in the fuzzy subset B”. These rules are provided by experts. One may assume
that in terms of these kind of rules, y is the value to be found. When processing a tuple
t with missing values, their approach chooses the rules such that their known part is the
more similar to the known values of t, and use them to determine the missing values of
t. The imputed values are fuzzy as well, so they contain a degree of uncertainty.

Summary

Table 2.5 exposes the principal methods aimed to impute missing values that we men-
tioned in this section.

Table 2.5: Summary of studied methods in section 2.3.2
Name Type of Approach Reference

Listwise deletion × Section 2.3.2.1, page 30

Pairwise deletion × Section 2.3.2.1, page 30

Mean/mode substitution × Section 2.3.2.1, page 31

CART Tree Based Section 2.3.2.2, page 33

Random Forest Tree Based Section 2.3.2.2, page 36

Linear Regression Statistical Section 2.3.2.3, page 36

Bayesian linear Regression Statistical Section 2.3.2.3, page 38

Linear Regression with Bootstrapping Statistical Section 2.3.2.3, page 38

Predictive Mean Matching Statistical Section 2.3.2.3, page 38

[R+98] and [Rag98] Association Rules Section 2.3.2.4, page 40

[Kai12] Association Rules Section 2.3.2.4, page 40

[BRM+09] Association Rules Section 2.3.2.4, page 40

[APPT89] Association Rules Section 2.3.2.4, page 40

In the next sections, we would like to present our approach, which is based on ana-
logical proportions. As we are dealing with real-world datasets, we need first to explain
how analogical proportions have been extended from the Boolean to the numerical case.
Then, we will discuss the different methods based on analogical proportions for classi-
fication purposes. As our problem is the imputation of missing values, we will explain
how to adapt one of these methods to this problem.

42 chapter 2

2.4 Analogical Proportions: The Basic Notions

We recall that one of the objectives of this chapter is to show how to impute missing
values using analogical proportions. For doing so, we need first to study the numerical
case of analogical proportions, which is the subject of this section. Remember that the
last chapter was devoted to the logical view of analogical proportions. Our approach
was the subject of four publications: ([BJP14], [CJP14b], [CJP14a] and [CBW14])

In Section 2.4.1, we introduce the first definitions of analogical proportion on nu-
merical data, which allow to determine whether an analogical proportion betwee four
numerical values holds or not. Then, in Section 2.4.2, beginning by the Boolean case, we
introduce other formulas that estimate the degree to which four values are in analogical
proportion. In Section 2.4.3, we introduce what we think should be the requirements
an analogical proportion validates in a numerical case. We evaluate then the formulas
introduced in Section 2.4.2 in terms of our goals, and we propose some modification of
them to make them validate our desirable properties.

2.4.1 First definitions of analogical proportions on numerical data

The two best known numerical versions of analogical proportions are the arithmetic pro-
portion (a : b :: c : d) ⇔ (a − b = c− d) and the geometric proportion (a : b :: c : d) ⇔
(a/b = c/d). According to Lepage in [Lep03], these notions of analogical proportions
were introduced by Denis Henrion, a French mathematician born at the end of the 16th
century, who translated Euclid’s Element from Latin into French. According to Lepage,
Henrion understood that the ideas of Euclis included these kinds of proportions, even
though they were not explicitely introduced.

The arithmetic proportion and geometric proportion make it possible to check
whether an analogical proportion holds between numerical values. However, due to
the common imprecisions in real-world data, it appears interesting to relax these for-
mulas in order to check whether an analogical proportion ‘almost holds’. For instance,
one may consider that (0.39 : 0.6 :: 0.6 : 0.8) almost satisfies an arithmetic proportion.
This is what is considered in the following.

2.4.2 Gradual view of analogical proportions

In this subsection, we present some formulas that allow to get a degree of analogical
proportion between four values. Our focus in this section is the case of numerical val-
ues. However, before evaluating the gradual formulas of analogical proportion treating
numerical data, we shall return in Section 2.4.2.1 to the Boolean case, and present an
approach aimed to get a degree ∈ [0, 1] of analogical proportion between four Boolean
values. In Section 2.4.2.2, we shall se the gradual case of numerical values.

Analogical Proportions: The Basic Notions 43

2.4.2.1 Graduality in the case of Boolean Values

In [BMD07b], Bayoudh et al. introduced the notion of analogical dissimilarity (AD),
which estimates how far four objects are from being in analogical proportion. In the
case of Boolean values, the analogical dissimilarity is the minimum number of bits that
have to be switched to get a proper analogy, as shown in Table 2.2. The AD between
four Boolean values has three possible values: 0, 1, and 2. When AD(a, b, c, d) = 0,
a, b, c, and d are completely in analogical proportion. Table 2.2 shows all the possible
combinations of four Boolean values, and their respective AD values. For instance,
AD(1, 0, 1, 1) = 1 means that we have to change one value to validate an analogical
proportion. We can for example turn the last number of the quadruple (1, 0, 1, 1) into
0 and obtain then the quadruplet (1, 0, 1, 0) for which the AD would be equal to 0.

Figure 2.2: Data Example

a 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
b 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
c 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
d 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

AD(a, b, c, d) 0 1 1 0 1 0 2 1 1 2 0 1 0 1 1 0

2.4.2.2 Graduality in the case of numerical values

In the following, we focus on the arithmetic analogical proportion. Our aim is to deter-
mine the degree to which four numerical values are in analogical proportion according
to this notion. In this section we present some of the formulas, inspired from the arith-
metic proportion, that make it possible to deal with real data.

In order to make the dimensions commesurable when attributes are defined on dif-
ferent domains, we assume that the coordinates of the vectors are normalized and they
belong to the interval [0, 1]. To this aim, each value v of the active domain of an
attribute is replaced by:

v −minatt

maxatt −minatt
(2.9)

where minatt and maxatt denote respectively the minimal value and the maximal value
of the attribute domain.

Arithmetic Proportion In [PR10c], Prade and Richard proposed a formula for val-
idating an analogical proportion between real numbers, which yields a degree in [0, 1].
Check [PR10c] for more details about the fuzzy operators used to get this formula. In
the following, we denote A(a : b :: c : d) the extent to which four values a, b, c, and d

44 chapter 2

validate an arithmetic analogical proportion [PR10c]. The proposed formula is shown
below:

A(a : b :: c : d) =

1− |(a− b)− (c− d)| if a ≥ b and c ≥ d,

or a ≤ b and c ≤ d.

1−max(|a− b|, |c− d|) if a ≤ b and c ≥ d

or a ≥ b and c ≤ d

(2.10)

Example 6.
A(0.2 : 0.5 :: 0.3 : 0.8) = 1− |(0.2 − 0.5) − (0.3− 0.8)| = 0.8;
A(0.2 : 0.5 :: 0.8 : 0.3) = 1−max(|0.2 − 0.5|, |0.8 − 0.3|) = 0.5
�

A∗: A formula introduced by Prade and Richard Let us see another formula,
introduced by Prade and Richard in [PR13], which they claim to be smoother than
A(a, b, c, d), “in the sense that more patterns have intermediary truth values with A∗

than with A”.

Their formula is denoted by A∗(a, b, c, d):

A∗(a : b :: c : d) = min(1− |max(a, d)−max(b, c)|, 1− |min(a, d)−min(b, c)|) (2.11)

A remarkable feature of A∗, is that when a−b = c−d, A∗(a : b :: c : d) is not always
equal to 1. In fact, as stated by Prade et al. in [PR13], A∗(a : b :: c : d) ≥ 1/2 when
a− b = c− d. More precisely, A∗(a : b :: c : d) is equal to 1 only when a− b = c− d and
a = c.

Example 7.

A∗(0.8 : 0.6 :: 0.8 : 0.6) =
min(1− |max(0.8, 0.6) −max(0.6, 0.8)|, 1 − |min(0.8, 0.6) −min(0.6, 0.8)|) =
min(1− |0.8− 0.8|, 1 − |0.6− 0.6|) = 1

A∗(0.8 : 0.6 :: 0.7 : 0.5) =
min(1− |max(0.8, 0.5) −max(0.6, 0.7)|, 1 − |min(0.8, 0.5) −min(0.6, 0.7)|) =
min(1− |0.8− 0.7|, 1 − |0.5− 0.6|) = 0.9

A∗(0.8 : 0.6 :: 0.6 : 0.4) =
min(1− |max(0.8, 0.4) −max(0.6, 0.6)|, 1 − |min(0.8, 0.4) −min(0.6, 0.6)|) =

Analogical Proportions: The Basic Notions 45

min(1− |0.8 − 0.6|, 1 − |0.8− 0.6|) = 0.8

�

The condition that A∗(a : b :: c : d) = 1 only when a − b = c − d and a = c may
remind us of the comments by M. Hesse about Aristotle in the first chapter, where an
analogy is true if “A is to B as C is to D, and A shares some properties with C”. A∗

gives a relative character to both differences; For example, it is not the same to lose
10 kilos when your actual weight is 120 as when your weight is 50 kilos. The first case
could be a sign of healthy behavior, while the latter a sign of disease.

The formulas for arithmetic proportions seen in this subsection may allow us to
get an idea of how can one determine a degree of analogical proportion between four
numbers. In the next subsection, we would like to introduce some desirables properties
an analogical proportion, in our opinion, should validate. Then, we will check if the
formulas seen in this subsection meet our goals. We also propose some new formulas in
this context.

2.4.3 Desirable properties of analogical proportions

Same direction of change First, if a− b and c− d have different signs, AP (a : b ::
c : d) should be equal to zero. We conceive however one exception to this idea: if (a−b)
and (c − d) are both close to zero, we may then consider that AP (a : b :: c : d) = 1 ,
since the relation between a and b can be considered as the same between c and d. It
is the relation ≃, named approximate equality. More precisely, if (a ≥ b) (resp. a ≤ b)
and c ≤ d (resp. c ≥ d), then AP (a : b :: c : d) ≥ 0 if and only if |a − b| ≤ α and
|c− d| ≤ α, where α is a small enough number.

Monotonicity Second, we require a monotonicity property for AP (a : b :: c : d),
i.e., that if |(a1 − b1) − (c1 − d1)| ≤ |(a1 − b1) − (c2 − d2)|, then it should always be
the case that AP (a1 : b1 :: c1 : d1) ≥ AP (a1 : b1 :: c2 : d2). More generally, if
|(a − b)− (c − d)| ≤ |(a′ − b′) − (c′ − d′)|, then AP (a : b :: c : d) ≥ AP (a′ : b′ :: c′ : d′).
We would like to point out that we only require the monotonicity property when a− b
and c − d have the same sign. When a − b and c − d do not have the same sign, the
same direction of change property considers AP (a : b :: c : d) ≥ 0 only in the case where
|a− b| ≤ α and |c− d| ≤ α, in which case we do not consider it necessary to satisfy the
monotonicity property.

These are the requirements we believe an analogical proportion should satisfy. In
the following, we will evaluate if the existing formulas for analogical proportions meet
our goals.

The case of the arithmetic proportion We are referring here to Equation 2.10.
Let us start by the same direction of change property. Let us denote by d1 the difference

46 chapter 2

between a and b (i.e. d1 = a − b), and by d2 the difference between c and d. When
d1 and d2 have different signs, A(a : b :: c : d) differs from our intuition: The magni-
tude of d1 and d2 can be high without making A(a : b :: c : d) be equal to zero. We
recall that when this is the case, A(a : b :: c : d) = 1−max(|a−b|, |c−d|). See Example 6.

Concerning the monotonicity property, when d1 and d2 have the same sign, Equation
2.10 meets our requirements. Its first part, i.e., A(a : b :: c : d) = 1− |(a− b)− (c− d)|,
is equal to 1 when a − b = c − d, and is monotonic with respect to the magnitudes of
d1 and d2.

Example 8.
A(1 : 0.5 :: 0.8 : 0.3) = 1− |(1 − 0.5)− (0.8 − 0.3)| = 1

but

(1 : 0.5 :: 0.8 : 0.2) = 1− |(1 − 0.5) − (0.8 − 0.2)| = 0.9
�

The case of A∗. A∗ does not comply with our monotonicity nor Same directions of
change properties. Let us start with the monotonicity property: Let us start with the
case of the monotonicity propery:

when a > b > c > d and a− b = c− d, A∗(a : b :: c : d) = 1− (a− b).

Proof.
A∗(a, b, c, d) =
min(1− |max(a, d)−max(b, c)|, 1 − |min(a, d)−min(b, c)|)
=min(1− |a− b|, 1 − |d− c|)
=min(1− (a− b), 1 − (c− d))
=1− (a− b) (because a− b = c− d) �

Example 9.

A∗(0.8 : 0.6 :: 0.7 : 0.7) =
min(1− |max(0.8, 0.7) −max(0.6, 0.7)|, 1 − |min(0.8, 0.7) −min(0.6, 0.7)|) =
min(1− |0.8− 0.7|, 1 − |0.6− 0.7|) = 0.9

A∗(0.8 : 0.6 :: 0.6 : 0.4) =
min(1− |max(0.8, 0.4) −max(0.6, 0.6)|, 1 − |min(0.8, 0.4) −min(0.6, 0.6)|) =
min(1− |0.8− 0.6|, 1 − |0.4− 0.6|) = 0.8

but (|0.8 − 0.6| − |0.7 − 0.7|) ≥ (|0.8 − 0.6| − |0.6 − 0.4|)

�

Analogical Proportions: The Basic Notions 47

Concerning the same direction of change property, A∗ does not meet our goals ei-
ther. It does not penalize the fact that the difference of the couples (a, b) and (c, d)
have different signs. If that is the case, A∗(a : b :: c : d) can be larger than 0 even
if d1 or d2 have a high magnitude. Furthermore, there can exist the case where
A∗(a : b :: c : d) = A∗(a1 : b1 :: c1 : d1) even if the sign of a − b is the same as
the sign of c − d, but the sign of a1 − b1 is different from the sign of c1 − d1. Let us
formalize this fact below, followed by an example

When a > b > d > c and a− b = d− c, A∗(a : b :: c : d) = 1− (a− b)

Proof.
A∗(a, b, c, d) =
min(1− |max(a, d) −max(b, c)|, 1 − |min(a, d) −min(b, c)|)
=min(1− |a− b|, 1− |d− c|)
=min(1− (a− b), 1− (d− c))
=1− (a− b) (because a− b = d− c) �

Example 10.

• A∗(0.8 : 0.6 :: 0.5 : 0.3) =
min(1− |max(0.8, 0.3),max(0.6, 0.5)|, 1 − |min(0.8, 0.3),min(0.6, 0.5)|
=min(1− |0.8− 0.6|, 1 − |0.3 − 0.5|) = 0.8

• A∗(0.8 : 0.6 :: 0.3 : 0.5) =
min(1− |max(0.8, 0.5),max(0.6, 0.3)|, 1 − |min(0.8, 0.5),min(0.3, 0.6)|
=min(1− |0.8− 0.6|, 1 − |0.5 − 0.3|) = 0.8

�

2.4.4 Formulas meeting our requirements

In this section, we provide a modification of the arithmetic proportion, i.e., A, in order
to make it meet our goals in terms of the introduced desirables properties.

Amod: A formula inspired from A The modification of A we propose, that we
denote by Amod, is defined as follows:

Amod(a : b :: c : d) =

1− |(a− b)− (c− d)| if a ≥ b and c ≥ d

or a ≤ b and c ≤ d

1−max(|a− b|, |c − d|) if a ≃ b and c ≃ d

0 otherwise

(2.12)

48 chapter 2

where x ≃ y iff |x− y| ≤ α, and α is assumed to be a small value, e.g. 0.1.

Similarly to A, Amod(a : b :: c : d) is monotonic when the sign of a − b is the same
as the sign of c − d. The difference between A and Amod resides in the case when the
sign of a− b is not the same as the sign of c− d. In the case of Amod, if |a− b| ≃ 0 and
|c− d| ≃ 0, it can still be equal to 1.

Ac: A formula looking for some relativity We may use another formula that, as
in the case of A∗, is completely true only when a− b = c−d and a = c, and that inflicts
a penalty in the case where (a− b) and (c− d) have different signs. One may then use
a distance such as the one used by Lesot et al. in [Ld12]: a∆b = a − b/max(a, b). In
this case, an analogical proportion may be defined as shown below:

Ac(a, b, c, d) = 1− |
a− b

max(a, b)
−

c− d

max(c, d)
|/2 (2.13)

As the domain of | a−b
max(a,b)−

c−d
max(c,d) | is [0, 2], we divide it by two to keep Ac(a, b, c, d)

in [0, 1]. There are two things to take into account: First, one has to care about the
division by zero in this formula; this will be the case when a = b = 0 or c = d = 0.
Additionally, we can set, as in the case of Amod, the condition that Ac(a : b :: c : d) ≥ 0
if |a− b| ≃ 0 and |c− d| ≃ 0. Ac is then redefined as follows:

Ac(a : b :: c : d) =

1− |a− b| if c = d = 0

1− |c− d| if a = b = 0

1− | a−b
max(a,b) −

c−d
max(c,d) | if a ≥ b and c ≥ d, or a ≤ b and c ≤ d,

1−max(|a− b|, |c− d|) if a ≃ b and c ≃ d

0 otherwise

(2.14)
Ac is equal to 1 when a − b = c − d, or when a ≃ b and c ≃ d. In this case, the

division by 2 of | a−b
max(a,b) −

c−d
max(c,d) | is not necessary since this expression will be taken

into account only when a− b and c− d have the same sign.

Example 11.

• Ac(0.8, 0.6, 0.5, 0.3) =
Ac(a, b, c, d) = 1− | 0.8−0.6

max(0.8,0.6) −
0.5−0.3

max(0.5,0.3) |

=1− |0.25 − 0.4| = 0.85

• With α = 0.1, Ac(0.8, 0.6, 0.3, 0.5) = 0

• Ac(0.8, 0.6, 0.7, 0.5) =
Ac(a, b, c, d) = 1− | 0.8−0.6

max(0.8,0.6) −
0.7−0.5

max(0.7,0.5) |

=1− |0.25 − 0.28| = 0.97

Analogical Proportions: The Basic Notions 49

�

We are aware of the fact that Ac does not meet our monotonicity requirement. We
propose it as a modification of A∗, but we do not take it in account for the future
experiments.

In the first chapter, we recalled the properties an analogical proportion should vali-
date: Reflexivity, Symmetry, and Central Permutation. A, A∗, Amod, and Ac all validate
the Reflexivity and Symmetry properties, but among them, only A∗ satisfy the central
permutation property. In some cases, this property may lead to validate an analogical
proportion where the direction of changes of its two couples are not the same. This is
the case when a > c > d > b or when a < c < d < b. For instance, if this property is
validated, (0.8 : 0.5 :: 0.7 : 0.6) would be equal to (0.8 : 0.7 :: 0.5 : 0.6), which is not
something we desire.

2.4.5 Summary of this section

We are now able to know if four Boolean or Numerical values are in analogical propor-
tion, and the degree to which they do. In this section, we introduced our view about the
properties an analogical proportion should satisfy. Then, we introduced some existing
formulas, and analyzed them from our point of view. A summary of these formulas is
provided in table 2.6.

In the next section, we will study the methods that perform a classification task
using analogical proportions. Then, we will overview the intuition over which they
are based. We will also introduce analogical equations and how to solve them. This
information will allow us to study how can one adapt an analogical classifier to impute
missing values.

50 chapter 2

Table 2.6: Summary of the fuzzy formulas for analogical proportions in the numerical
case. For each formula, it is indicated its notation, its formalization and its reference
Notation Formula Reference

A

{

1− |(a− b)− (c− d)| if a ≥ b and c ≥ d, or a ≤ b and c ≤ d.

1−max(|a− b|, |c− d|) if a ≤ b and c ≥ d or a ≥ b and c ≤ d
Equation 2.10, page 44

Amod

1− |(a− b)− (c− d)| if a ≥ b and c ≥ d

or a ≤ b and c ≤ d

1−max(|a− b|, |c − d|) if a ≃ b and c ≃ d

0 otherwise

Equation 2.12, page 47

A∗ min(1− |max(a, d) −max(b, c)|, 1 − |min(a, d) −min(b, c)|) Equation 2.11, page 44

Ac

1− |a− b| if c = d = 0

1− |c− d| if a = b = 0

1− | a−b
max(a,b) −

c−d
max(c,d) | if a ≥ b and c ≥ d, or a ≤ b and c ≤ d

1−max(|a− b|, |c − d|) if a ≃ b and c ≃ d

0 otherwise

Equation 2.14, page 48

Estimating Missing Values Using Analogical proportions 51

2.5 Estimating Missing Values Using Analogical propor-

tions

In the last section, we provided an overview of formulas modeling analogical propor-
tions in the numerical case. With this information, we are now able to study how one
can impute missing values using analogical proportions. The idea we advocate in the
following is to adapt an analogical classification algorithm. In Section 2.5.1, we provide
a general view about performing classification using analogical proportions (inspired
from [PRY10b]), and we comment the philosophy about imputing missing values with
analogical proportions as well. We also overview how to solve analogical equations in
the Boolean case (Subsection 2.5.1.1), and in the numerical case (Subsection 2.5.1.2).
In Section 2.5.2, we introduce Fadana, a classification algorithm based on analogical
proportions, and we explain how can one modify it to impute missing values. In Section
2.5.2.1, we evaluate the accuracy of the modified version of Fadana for the imputation
of missing values, and compare it with other well-known methods.

2.5.1 Principles of Analogical Classification

Let us consider a, b, c, and d as tuples having n attribute values, i.e., a = 〈a1, ..., an〉, ...,
d = 〈d1,, dn〉. One can say that (a : b :: c : d) holds if and only if for each component
i, (ai : bi :: ci : di) holds.

Example 12.
Let us consider the arithmetic proportion A: the four tuples of Table 2.7 validate

A, since they are in analogical proportion componentwise. The first column indicates
their number or id, and the columns A1, A2, A3 and A4 show their attribute values.

Table 2.7: Example of four tuples in analogical proportion
id A1 A2 A3 A4

a 0.6 1 0.2 0
b 0.4 0 0.3 0
c 0.8 1 0.7 0
d 0.6 0 0.8 0

�

Let us denote by cl(d) the class of the object d. Let us say that d is an object to
be classified, i.e., that the class of d, cl(d), is unknown. To classify d using analogical
proportions is to assume that if (a : b :: c : d) holds, then (cl(a) : cl(b) :: cl(c) : cl(d))
holds as well. cl(a), cl(b), and cl(c) are assumed to be known.

Now, if what one wants to find is not the class of d, but the value of some of its
attributes, the procedure is similar: If (ai : bi :: ci : di) holds for the first i attributes of

52 chapter 2

these tuples, then (aj : bj :: cj : dj) should hold for the last remaining j components as
well. This is formalized by Prade et al. in [PRY10b] as follows:

∀i ∈ [1, p], (ai, bi, ci, di)

∀j ∈ [p+ 1, n], (aj , bj , cj , dj)
(2.15)

The j attributes of d can be considered as missing values and then as the values to
be imputed. The problem now is how to find the class of an object d, or the value of
some of its attributes, by means of an analogical proportion with three other objects a,
b and c. Consider the two tables below:

Table 2.8: Example of missing value
id A1 A2 A3 cl

a 0.6 1 0.2 red
b 0.4 0 0.3 green
c 0.8 1 0.7 red
d 0.6 0 0.8 ?

id A1 A2 A3

a 0.6 1 0.5
b 0.4 0 0.7
c 0.8 1 0.2
d 0.6 0 ?

In the case of the left table, we aim to find the class of d, i.e., cl(d). In the case of
the right table, we want to find d.A3. In general, the class cl of an object is a categorical
value. An attribute of an object d may be of Boolean or numerical type (as in the case
of d.A3). Let us say that the value we aim to find is x, and we want to find it by means
of an analogical equation and other three known values a, b and c. The value of x will
be thus the one such that (a : b :: c : x) holds. We will first explain how to solve this
kind of equation in a Boolean context, and then how to solve it for each of the formulas
introduced in Section 2.4.4.

2.5.1.1 Solving an analogical equation in the Boolean case

In [MP09b], Miclet and Prade specified the case when an analogical proportion is solv-
able in a Boolean context, and how to solve it:

1. A triple (a, b, c) can be completed by d in such a way that (a : b :: c : d) = 1 if
and only if ((a ≡ b) ∨ (a ≡ c)) = 1;

2. When it exists, the unique solution of the equation (a : b :: c : d) = 1 is logically
expressed by x = (a ≡ (b ≡ c))

The first item claims that a has to be equal to b or equal to c in order to be able to
solve (a : b :: c : x). For instance, (1 : 0 :: 0 : x) and (0 : 1 :: 1 : x) have no solution. The
second item states that if b 6= c and b 6= a, then x = b. Otherwise, x = c. For example,
the solution of the equation (1 : 0 : 1 : x) is x = 0.

Estimating Missing Values Using Analogical proportions 53

2.5.1.2 Solving an analogical equation in the numerical case

We explain now how to find a missing value x in the case of the formulas A, A∗, Amod

and Ac introduced in Sections 2.4.2.2 and 2.4.4. As our will is to have the same direction
of change for each of the two couples involved in an analogical proportion, we will only
look for an answer that satisfies this condition.

Let us begin with the arithmetic proportion, A(a : b :: c : d), and the one inspired
from it, Amod(a : b :: c : d). A(a : b :: c : d) and Amod(a : b :: c : d) can be equal to 1
when their first condition is satisfied (a ≥ b and c ≥ d, or a ≤ b and c ≤ d), so we look
for a value that satisfies this condition, if it exists. If it does not exist, we provide no
answer.

A(a : b :: c : x) =>

{

x = b+ c− a if b+ c− a ∈ [0, 1]

no answer otherwise
(2.16)

Amod(a : b :: c : x) =>

{

x = b+ c− a if b+ c− a ∈ [0, 1]

no answer otherwise
(2.17)

Example 13.
A(0.8 : 0.6 :: 0.4 : x) leads to x = 0.2, while (0.4 : 0.2 :: 0.1 : x) has no answer for x.
�

We now evaluate Ac (Equation 2.14, page 48). As Ac involves a max operator, we
have to consider two cases: When a < b, and when a > b. When a > b, we will look for
a value x < c, and when a < b we will look for a value x > c. The possible values for x
are provided below

Ac(a : b :: c : x) =>

{

x = c
1+(a−b)/b if a > b

x = bc
a otherwise

(2.18)

Example 14.
Ac(0.8 : 0.6 :: 0.4 : x) leads to x = 0.4

1+(0.8−0.6)/0.6 = 0.3
�

In the case of A∗ (Equation 2.11), we have to consider several options: When a > b >
c, A∗ is reduced to min(1−|a−b|, 1−|d−c|). If a < c < b, A∗ = min(1−|d−b|, 1−|a−c|),
and if a < b < c, Ac = min(1 − |d − c|, 1 − |a − b|). In all of the cases, the answer for
A∗ is the same as for A. Then,

A∗(a : b :: c : x) =>

{

x = b+ c− a if b+ c− a ∈ [0, 1]

noanswer otherwise
(2.19)

54 chapter 2

2.5.2 Fadana

In [CJP14a, CJP14b], we proposed an approach inspired by a method of “classification
by analogy” introduced in [BMD07a] where the authors describe an algorithm named
Fadana.

In order to choose the 3-tuples (a, b, c) (whose classes are known), that will be used
to classify an object d (whose class is unkown), Fadana uses a measure named ana-
logical dissimilarity, already introduced in 2.4.2.1 in the case of Boolean values. The
analogical dissimilarity AD between four Boolean values is the minimum number of bits
that have to be switched to get a proper analogy. In the numerical case, if we denote
by (a : b :: c : d) the degree to which four numbers are in analogical proportion, the
analogical dissimilarity, denoted by AD(a : b :: c : d) is equal to 1 − AP (a : b :: c : d),
where AP denotes the function that measures the extent to which (a : b :: c : d) is a
valid analogical proportion.

When dealing with four tuples of size n, the AD evaluations are added componentwise.

Example 15.

Based on the analogical dissimilarity introduced in the case of Boolean values (Sec-
tion 2.4.2.1, page 43), Table 2.9 show the analogical dissimilarity of four tuples a, b, c,
and d. The first column indicates their number or id, and the columns A1, A2, A3 and
A4 show their attribute values.

Table 2.9: Example of the analogical dissimilarity of four tuples
id A1 A2 A3 A4

a 1 1 0 0
b 0 1 0 1
c 0 1 0 0
d 1 0 0 0

AD 2 1 0 1 =4

�

The principle of Fadana is exposed in Algorithm 2. It takes as input a training set
S of classified items, a new item d to be classified, i.e., whose class is unknown, and an
integer k. Fadana is originally conceived to treat Boolean or nominal data. There is
another work proposed by Prade et al. [PRY12a], which employs the same principle as
Fadana, but applied to numerical values.

The Fadana algorithm begins by computing the analogical dissimilarity between
each triple (a, b, c) belonging to the training set and d (Lines 1, 2, and 3 of Algorithm
2). Then, it sorts these triples according to their analogical dissimilarity with d (line 4
of the algorithm). Let us denote by ADk the analogical dissimilarity of the k-th triple
with respect to d (line 5 of the algorithm), then it chooses all the triples such that their

Estimating Missing Values Using Analogical proportions 55

analogical dissimilarity with respect to d is equal or smaller than ADk (line 6 of the
algorithm). Then, for each of the chosen triples, it solves the analogical equation related
to their classes, i.e., (cl(a) : cl(b) :: cl(c) : x), and assigns to cl(d) the most voted value
x.

Algorithm 2 FADANA algorithm
Require: training set S,k, d /∈ S
1: for every triple (a, b, c) of S3 do
2: Compute ad(a : b :: c : d)
3: end for
4: Sort by increasing order the list AD of values AD(a : b :: c : d)
5: p← ADk

6: Build up the set NNk(d) = {ad ∈ AD s.t. rank ad ≤ p}
7: for each ad ∈ NNk(d) do
8: candidate(d)= (ad.cl(a) : ad.cl(b) :: ad.cl(c) : x)
9: end for

10: cl(d)← most-voted(candidate(d))
11: return cl(d)

Example 16.
Let S be a training set composed of four labelled objects. The set of objects in S are
shown in Table 2.10 (left), where the first column indicates their number or id, the
columns A1, A2, and A3 their attribute values, and the column cl gives the class they
belong to.

Table 2.10: Training set (left). Computation of AD (right)
id A1 A2 A3 cl

1 0 0 0 0
2 0 1 0 1
3 0 1 1 1
4 1 1 1 1

id A1 A2 A3

1 0 0 0
2 0 1 0
3 0 1 1
x 1 0 0
AD 1 2 1 = 4

Now, let x /∈ S be an object to be classified, defined as A1 = 1, A2 = 0, A3 = 0.

One first has to compute the AD value between x and every possible triple of objects
from S. Table 2.10 (right) shows the AD value obtained with the triple (1, 2, 3). Table
2.11 shows the list of the first seven triples (ranked according to AD), built from tuples
1, 2, 3, and 4.

Let k = 3; all the triples such that their associated AD value equals at most that of
the 3th tuple (here, 1), are chosen. The triples 1 to 4 are then used to find the class

56 chapter 2

Table 2.11: Triples ranked according to AD
Combination a b c d AD

1) 3 1 4 x 0
2) 2 3 4 x 1
3) 3 4 2 x 1
4) 2 4 1 x 1
5) 3 1 2 x 2
6) 2 1 3 x 2
7) 4 1 3 x 2

of x. The four corresponding analogical equations are then solved. Since in this case
we are dealing with Boolean values, we use the principle described in Subsection 2.5.1.1
for solving the analogical equations. For instance, combination 2) yields the equation
1 : 1 :: 1 : cl, leading to cl = 1. Finally, the class that gets the most votes is retained
for d.

�

Application to the Prediction of Missing Values Let us now explain how to
modify Fadana in order to impute missing values. In general, we need to perform two
modifications: (i) When computing the analogical dissimilarity between four tuples, we
ignore the attributes for which at least one of the four tuples has a missing value; and
(ii) we consider that each missing value is a class to be estimated (line 8 of Algorithm
2). Additionally, one has to be able to estimate missing values when they are numerical.
We explain these facts in the following.

Let us start with the computation of the analogical dissimilarity. Let r be a training
set of tuples with schema (A1, ..., Am), and t a tuple /∈ r involving a missing value for
the attribute Ai: t[Ai] = null. Notice that t can have more than one missing value.
The analogical dissimilarity between a 3-tuple ∈ r3 and t is computed as usual, but this
time the attributes for which t has a missing value are ignored. All of the 3-tuples ∈ r3

are considered to contain no missing values.

Example 17. Consider Table 2.12 below, which contains four tuples. The first
column indicates their number or id, and the columns A1, A2, A3 and A4 show their
attribute values. The tuple t has a missing value for the attribtue A3. The attribute
A3 is then ignored for computing ad(a : b :: c : t).

�

When handling numerical values, the analogical dissimilarity AD of four values can
be estimated using any of the formulas introduced in Section 2.4.2.2. The prediction of
a missing value of t may be obtained using any of the formulas introduced in Section

Estimating Missing Values Using Analogical proportions 57

Table 2.12: Example of the analogical dissimilarity of four tuples, where one has a
missing value

id A1 A2 A3 A4

a 1 1 0 0
b 0 1 1 0
c 0 1 1 0
t 0 0 null 0
ad 1 1 0 0 =2

2.5.1.1 in the Boolean case, or in Section 2.5.1.2 in the numerical case (line 8 of Algo-
rithm 2). Notice that the same formula used for estimating AD(a : b :: c : d) must be
used to find the missing values of d. For instance, if one uses Amod (Equation 2.12, page
47) for estimating AD(a : b :: c : d), one has to use Equation 2.17 (page 53) in order to
find the missing values of d.

Once all the candidate values for a missing value t.Ai (i.e., the value of t for the
attribute Ai is missing) of t are computed , one assigns to t.Ai the most voted value, if
the attribute Ai is categorical (as done in Algorithm 2), or the average of the obtained
values for t.Ai, if Ai is numerical.

In the next subsection we compare the accuracy of Fadana when imputing missing
values, compared to other well-known methods.

2.5.2.1 Experimentations

The main objective of our experimentations is to compare the accuracy of the imputa-
tion of missing values performed by Fadana with the accuracy of some of the methods
mentioned in Section 2.3.2.

We executed our Fadana-based algorithm using two different formulas in order to
compute the analogical dissimilarity between four values. The first uses the arithmetic
proportion, introduced in Section 2.4.2.2, that we remind below:

A(a : b :: c : d) =

1− |(a− b)− (c− d)| if a ≥ b and c ≥ d,

or a ≤ b and c ≤ d.

1−max(|a− b|, |c− d|) if a ≤ b and c ≥ d

or a ≥ b and c ≤ d

The second formula used is Amod, introduced in Section 2.12, that we remind below:

58 chapter 2

Amod(a : b :: c : d) =

1− |(a− b)− (c− d)| if a ≥ b and c ≥ d

or a ≤ b and c ≤ d

1−min(|a− b|, |c − d|) if a ≃ b and c ≃ d

0 otherwise

where x ≃ y iff |x− y| ≤ α.

When estimating a missing value, we use for both cases the following formula:

{

x = b+ c− a if b+ c− a ∈ [0, 1]

no answer otherwise

In the following, we denote by FB the modification of Fadana using the first for-
mula, and by FB-Drastic the modification of Fadana using the second formula (Amod).
In the case of FB-Drastic, we used two values for α: 0.05 and 0.1. Fadana gets as input
two values: a value k and the number of elements from the training set to be used to
form the triples. We used 10 for the former, and 30 for the latter (the experimenta-
tions performed in [CJP14a] showed that these were the parameter values with which
Fadana obtained the best results). The methods we compared FB and FB-Drastic with
have been introduced in Section 2.3.2: Mean/mode Substitution, Linear Regression,
Bayesian Linear Regression, Linear Regression Using Bootstrapping, and Predictive
Mean Matching. We experimented with the k-nearest-neighbors method as well.

Five datasets from the UCI machine learning repository, namely Breast Tissue,
Breast cancer, spectf Heart, wine, and energy were used.

For each dataset, we used a 10 cross-validation technique. It means that each method
is tested 10 times against each dataset: Each time, a 10% of the tuples take part in the
test set, while the other 90% can take part in the training set (We select 30 tuples from
this 90% of the dataset in order to form the training set). Then, the next time, another
10% of the tuples is used as the test set, and so on, until all the tuples have once (and
only once) taken part in the test set.

This procedure was performed three times for each dataset and each method. The
first time we replaced by NULL 20% of the values of each tuple belonging to the test
set. The second time we replaced 40% of their values, and 60% the third time. For
instance, in the latter case, if one has a tuple with ten attributes, six of its values may

0http://archive.ics.uci.edu/ml/datasets.html

Estimating Missing Values Using Analogical proportions 59

be set as missing in the last case.

So as to evaluate the precision of each of the prediction methods for a dataset D,
one may use the measure:

prec(m, D) =

∑

null values x in D
1− |xactual − xpredicted|

|null values in D|
(2.20)

where xpredicted is the estimated value for x using the method m.

The results for the Breast-tissue dataset are shown in Table 2.13. The results for
the cancer dataset are shown in Table 2.14. The results for the spectf-heart dataset are
shown in Table 2.15. The results for the wine dataset are shown in Table 2.16. Finally,
the results for the energy dataset are shown in Table 2.17.

For each of these datasets we show the precision and the ranking obtained by each
method with 20%, 40% and 60% of missing values respectively. The results for each
method are in the format a/b, where a represents its precision, and b its rank.

Table 2.13: Breast-tissue
Method 20 % 40 % 60%
FB 92/5 91/5 89.8/6
FB-Drastic α = 0.05 91.5/6 92.75/1 90.86/3
FB-Drastic α = 0.1 91.34/7 91.89/3 91.5/1
k-nn 90.9/9 92.2/2 91.3/2
CART 91/8 91/5 90/4
Mean Substitution 85/11 85.78/9 85/10
Bayesian Linear Regression 92.3/3 89.76/7 85.61/8
Linear Regression(with Bootstrap) 92.36/2 85.76/10 78/11
Linear Regression 92.29/4 89/8 85.37/9
Predictive Mean Matching 93.7/1 91.3/4 90/4
Random Forest 90/10 90.8/6 89.4/7

60 chapter 2

Table 2.14: cancer
Method 20 % 40 % 60%
FB 84/7 84.4/6 84/5
FB-Drastic α = 0.05 84.62/5 84/7 83.75/7
FB-Drastic α = 0.1 84.45/6 84.6/5 83.77/6
k-nn 87/1 87.1/1 86.2/1
CART 86/4 86/3 85/3
Mean Substitution 76.8/10 77/11 77/10
Bayesian Linear Regression 82/8 81.7/8 77/10
Linear Regression(with Bootstrap) 81.57/9 81.1/10 80.2/8
Linear Regression 82/8 81.7/8 79.9/9
Predictive Mean Matching 86.5/2 87/2 85.6/2
Random Forest 86.1/3 86/3 84.8/4

Table 2.15: spectf-heart
Method 20 % 40 % 60%
FB 88.6/11 87.65/11 86.7/11
FB-Drastic α = 0.05 90.6/10 90.15/10 89.6/10
FB-Drastic α = 0.1 90.7/9 90.43/9 89.725/9
k-nn 91.2/7 91/8 90/8
CART 92.35/5 91.8/4 91.1/3
Mean Substitution 90.97/8 91.24/7 91.13/2
Bayesian Linear Regression 92.65/4 91.76/5 90.84/7
Linear Regression(with Bootstrap) 92.8/3 92.31/2 91.07/5
Linear Regression 92.82/2 92.22/3 91.08/4
Predictive Mean Matching 93.32/1 92.7/1 92.09/1
Random Forest 91.76/6 91.5/6 90.99/6

Estimating Missing Values Using Analogical proportions 61

Table 2.16: wine
Method 20 % 40 % 60%
FB 84.7/11 82.3/11 83.74/11
FB-Drastic α = 0.05 86.07/10 83.55/10 83.99/10
FB-Drastic α = 0.1 87/9 85.1/9 84.33/9
k-nn 90.6/1 90.2/1 90/1
CART 89/2 88.57/2 89.07/2
Mean Substitution 87.89/8 87.1/8 87.2/8
Bayesian Linear Regression 87.9/7 87.14/7 87.62/6
Linear Regression(with Bootstrap) 88.27/5 87.56/6 87.56/7
Linear Regression 88.26/6 87.6/5 88.26/5
Predictive Mean Matching 88.77/4 88.57/2 88.45/4
Random Forest 88.88/3 88.37/4 88.52/3

Table 2.17: energy
Method 20 % 40 % 60%
FB 87.39/4 84.8/6 85.27/4
FB-Drastic α = 0.05 85.89/5 86.1/4 85.36/3
FB-Drastic α = 0.1 85.33/6 83.52/9 84.69/5
k-nn 85/8 85.2/5 84.2/6
CART 90/1 89.6/1 88.89/1
Mean Substitution 79.42/11 79.78/11 79.35/10
Bayesian Linear Regression 84.97/9 83.48/10 80.55/9
Linear Regression(with Bootstrap) 84.85/10 83.78/8 80.55/9
Linear Regression 85.01/7 84.08/7 80.76/8
Predictive Mean Matching 87.69/3 86.89/3 84.08/7
Random Forest 89.23/2 87.99/2 87.29/2

In summary, we can perceive a slight superiority of FB-Drastic over FB. The results
of FB-Drastic and k-nn are not so far from those obtained from the classical missing
imputation methods. FB and FB-Drastic were the methods with the lowest accuracy for
the specf-heart and wine datasets, while in the case of the breast-tissue they obtained
the best results; and in the case of the energy dataset, they were in the first half of the
ranking, especially when 60% of the attributes have missing values. Notice that none
of the evaluated methods obtained better results than the others for all the datasets.
In general, the FB-Drastic method using an α value of 0.05 is better than that using
an α value of 0.1. See Table 2.18 for the average ranking of the FB and FB-Drastic
methods. We would like to remind that FB (resp. FB-Drastic) does not perform any
statistical analysis of the treated data, aimed for instance at finding the correlations
or dependences between attributes. In fact, our principal objective was not to beat
the other evaluated methods, but to study the potential interest of applying analogical
proportions to the problem of missing values in databases.

62 chapter 2

Table 2.18: Average ranking of the FB and FB-Drastic methods related to the dif-
ferent percentages of missing values

Method 20 % 40 % 60%
FB 7.6 7.8 7.4
FB-Drastic α = 0.05 7.2 6.4 6.6
FB-Drastic α = 0.1 7.4 7 6

In conclusion, we can consider that the analogy-based classification method obtained
results that are comparable with the results of those methods performing statistical anal-
ysis of data. In average, it was ranked in the middle of the list concerning the results
over the tested datasets. Simultaneously to this thesis, the team of Henri Prade and
Gilles Richard has proposed several works related to analogical classification. These
works have inspired us several ideas about analogical classification, that we comment
in the following two sections. It would be interesting to evaluate these methods in the
context of the missing value imputation problem in order to check if one of them may be
the most effective for dealing with this problem. An evaluation about the cases where
an analogy-based classification method performs well or not, where these cases may be
related to data distribution, could also allow us to improve their results.

Even though the proposed approach, and most of the well-known methods, have a
good accuracy related to the imputation of missing values, the imputed values still have
to be considered as uncertain values. Therefore, one has to be careful when performing
a query over a dataset with imputed values. One may use then an approach as that
proposed by Pivert et al. in [PP16], where a database model dealing with uncertain
values is proposed. Their approach models the uncertain data using a possibility theory
framework. The corresponding algebraic operators (selection, projection, join, intersec-
tion, union, difference) are provided as well.

In the following two sections, we present some others methods aimed to perform a
classification task using analogical proportions, and we analyze the behavior of some of
them. The facts presented in these sections may lead to an improvement of the algo-
rithms of analogical classifiers.

2.6 Others Classification Approaches Based on Analogical

Proportions

In this section, we present an overview of other approaches using analogical proportions
in a classification context.

Others Classification Approaches Based on Analogical Proportions 63

In [BPR14b], Prade et al. proposed an analogical classifier in the context of Boolean
values, but this time it is inspired from the k-nearest-neighbor method. They do the fol-
lowing: For each item d to be classified, they look for its closest element c. This element
c is chosen according to its Hamming Distance to d, which is equivalent to the number of
features where c and d differ. For example, if c = (1, 0, 1, 1, 1) and d = (1, 1, 1, 0, 1), the
Hamming distance between c and d, i.e., H(c, d) is 2. Once an element c is chosen, they
compute what they call a disagreement pattern between c and d. This disagreement
pattern is a list of the attributes where c and d differ, indicating also the value of c for
each attribute where c and d differ. For instance, the disagreement pattern DisP (c, d)
between c and d is (02, 14), indicating that c and d differ for the attributes 2 and 4, and
that the values of c for those attributes are respectively 0 and 1. DisP (d, c) would be
(12, 04). Thus, once DisP (c, d) is computed, they look for all the couples of elements
a and b such that DisP (a, b) = DisP (c, d). If we denote by cl(x) the class of x, they
solve all the equations cl(a) : cl(b) :: cl(c) : x for each selected couple (a, b), and assign
to cl(d) the class with the highest number of votes.

In [BPR14d], Prade et al. extend this idea to the numerical case. The idea is the
following: Using the 1-norm distance, they look for the k-nearest neighbors ci of d.
Once the k-nearest neighbors of d are chosen, they propose two options:

1. For each element ci considered as one of the k-nearest neighbors of d, they look
for the pairs of elements (a, b) such that cl(a) : cl(b) :: cl(ci) : x has a solution. Among
the formed quadruples, the authors choose the quadruple (a, b, ci, d) with the highest
degree of analogical proportion, i.e., (a : b :: ci : d), and assign to x the solution of
cl(a) : cl(b) :: cl(ci) : x.

2. For each element ci considered as one of the k-nearest neighbors of d, they look
for the pairs of elements (a, b) such that cl(a) : cl(b) :: cl(ci) : x has a solution. They
give to cl(d) the value x with the highest number of votes.

In [BPR14c], Bounhas et al. proposed yet another method aiming to classify ob-
jects represented by Boolean values. This approach classifies elements based on some
rules extracted from the training set. The authors proposed two kinds of rules, the
change and no change rules. Suppose that we have two elements x = (1, 0, 0, 1, 1) and
y = (1, 1, 0, 0, 1) belonging to the training set. Then, as in [BPR14b], we can create
a disagreement pattern disP (x, y) = (02, 14). If x and y belong to the same class,
disP (x, y) will be called a no change pattern; if they do not belong to the same class, it
will be called a change pattern. The method involves the following preliminary steps:

1. Construct from all the pairs of tuples from the training set the sets of change
and no change patterns

2. Discard the change (resp. no change) patterns such that there exists a no change
(resp. change) pattern with the same disagreement pattern.

64 chapter 2

The authors constructed two classifiers, one based on the change patterns, and an-
other on the no change patterns. The algorithms for both cases are similar: Assume
that one wants to classify an object x. Then, for all the elements x′ belonging to the
training set, the disagreement pattern disP (x, x′) is computed. Then, all the change
(resp. no change) patterns disP (y, y′) such that y, y′ and x′ belong to at most two
different classes and disP (x, x′)=disP (y, y′) or disp(x′, x) = disP (y′, y) are used to
solve the equation (cl(x) : cl(x′) :: cl(y) :?), if it is solvable. Finally, the class with the
highest number of votes is assigned to x.

The brief overview of analogical classification provided in this section allows us to
observe that the creation of triples of objects from a training set is not the only way to
classify another object by means of analogical proportions: The work by Bounhas et al.
in [BPR14c] creates a model in terms of change rules from the training set, so that one
has only to look for an object c (and use it in combination with the created rules) from
the training set when classifying another object d. The approach by Prade et al. in
[BPR14d] accelerates the creation of triples by applying a k-nn procedure for choosing
the first object of each triple. In the following section, we will analyze the procedure of
analogical classification. The approach presented in [BPR14d], commented above, will
be one of the studied methods.

2.7 Discussion about Analogical Classification

In this section, we provide a study of the behavior of analogical classification: We try
to understand how analogical classifiers work, by analyzing the patterns of analogical
proportion that are commonly used to classify an object. In Section 2.7.1, we study the
behavior of the Fadana algorithm, computing the accuracy of each of the patterns it
uses. Then, using this information, we provide an algorithm that gives priority to the
most accurate patterns of Fadana, and we show comparative results. In Section 2.7.2,
we show how one of the algorithms mentionned in Section 2.6 performs a processing
similar to the k-nn method when treating data with well-separated classes. We point out
then the cases where the results obtained by analogical classification might be obtained
in a simpler way. Finally, we provide some comments about how Fadana may generate
a considerable number of unnecessary triples to perform classification.

2.7.1 When Some Quadruples are Better than Others

In [CBW14], we studied how to improve the modified version of Fadana, i.e., FB (resp.
FB-Drastic), explained in Section 2.5. We showed that a modification of the algorithm
aimed to favor a certain situation of analogical proportion makes it possible to consid-
erably reduce the size of the training set used by this algorithm while preserving (and
sometimes slightly improving) its accuracy.

Discussion about Analogical Classification 65

Let us point out that the computation of the analogical dissimilarity AD for each
triple ∈ S3 completed by a given di (the element to classify or the element with miss-
ing values) is the most expensive part of the algorithm — it takes around 80% of the
overall processing time over the studied datasets. As shown in [CJP14b], a training
set comprising 40 items is in general sufficient to reach quasi optimal precision. Taking
into account the symmetry and central permutation properties, the number of triples
formed is c ∗ (c− 1) ∗ (c− 2)/2 where c is the cardinality of the training set. If c = 40,
29640 triples are generated.

Let us use the notation introduced by Prade et al. in [PRY12b] concerning the
different types of analogical proportions. In a Boolean context, there are three types of
analogical proportions:

• Similarity: (a : a :: a : a)

• Pairwise identity: (a : a :: b : b)

• Identity of change: (a : b :: a : b)

In order to compute the accuracy of each of these patterns of analogical proportion,
we executed FB over four datasets from the UCI machine learning repository, namely
the Adult, Blood, Cancer, and Energy datasets.

Analyzing the triples used in each step of FB, we noticed two facts:

1. The number of chosen triples (steps 2 and 3) containing attributes whose AD value
— when compared to d — is 1, is minimal (We recall that 1 is the maximum value
for analogical dissimilarity AD a quadruple can get);

2. The accuracy of similarity proportions (a : a :: a : a) is considerably higher than
that of the pairwise identity (a : a :: b : b) and identity of change (a : b :: a : b).
Indeed, the average accuracy rates for the similarity, pairwise identity and identity
of change proportions over the four tested datasets are 88.3 ±2.21 , 77 ±7.74, and
77.8 ±7.34, respectively.

Our objective in [CBW14] was then to take profit of this information and conceive
an algorithm that gives priority to the similarity proportions. For doing so, we studied
the behavior of FB when using a formula we named Approximate Equality Relation
(Ae):

Ae(a : b : c : d)⇔ (((a ≈ b) ∧ (c ≈ d)) ∨ ((a ≈ c) ∧ (b ≈ d))) (2.21)

where x ≈ y is interpreted as |x− y| ≤ λ ∈ [0, 1].

66 chapter 2

Example 18.
With λ = 0.1,
Ae(0.8 : 0.4 :: 0.7 : 0.4) holds ((a ≈ c)∧ (b ≈ d)), while Ae(0.8 : 0.4 :: 0.6 : 0.4) does not.

�

The use of Ae allows us to identify if a quadruple validates the similarity, pairwise
identity, or identity of change patterns. If one aims to use Ae by means of the FB
algorithm, one has to define how to determine the analogical dissimilarity AD of four
tuples, and how to solve an equation by means of Ae.

The AD of four values a, b, c and d is just 1−Ae(a : b :: c : d). The equation solving
using Ae is shown below:

Ae(a : b :: c : x) =>

{

c if |a− b| ≤ λ

b if |a− c| ≤ λ
(2.22)

Example 19.

Suppose we one to solve (0.8 : 0.6 :: 0.4 : x) using the Approximate Equality relation.
If we take a λ value of 0.1, there is no answer for the equation. In order to have a solution
for this equation, we may need a λ value of at least 0.2. However, in a scale of [0, 1],
0.2 is a high number to set as a threshold.

�

The objectives of the algorithm proposed in [CBW14] are then i) to reduce the size of
the training set, ii) to give priority to the similarity type of analogical proportions when
classifying a new item. The corresponding algorithm is described hereafter.

This algorithm takes as input a training set S, a set D of items to be completed as
they contain null attribute values (this corresponds to a generalization of the classifica-
tion problem, as explained in Section 2.5), and two integers k and r. The λ value used,
for Equation 2.22, is 0.5. The steps are:

1. discard from S3 all the triples (a, b, c) such that (ai 6= bi ∧ bi = ci) is true for at
least one feature;

2. let s(t) be the number of features on which t = (a, b, c) agrees, i.e, (ai = bi = ci);
discard from S3 all the triples t such that s(t) 6 r;

3. for every object d involving at least one missing attribute value, do:

(a) for every triple (a, b, c) of S3, compute AD(a, b, c, d);

(b) sort these n triples by increasing value of their AD;

Discussion about Analogical Classification 67

(c) if the k-th triple has the integer value p for AD, let E be the set of triples
(a, b, c) such that AD(a, b, c, d) ≤ p

(d) for each attribute Aj such that dj = null, do:

i. let Es
j ⊆ E be the set of triples for which a similarity proportion holds for

dj, and En
j ⊆ E the set of triples for which one of the other two types

of proportion holds; if |Es
j | > 0, then use Es

j to solve the analogical
equations for dj; use En

j otherwise.

ii. if Ai is a numerical attribute, compute v as the average of the |Es
j | (resp.

|En
j) votes; if Ai is Boolean, compute v as the winner of the |Es

j | (resp.
|En

j |) votes.

iii. choose v as the value of dj .

�

Step 1 means that we eliminate all the triples containing attribute values for which
no analogical answer exists: the patterns (0, 1, 1, x) and (1, 0, 0, x) have no analog-
ical solution no matter what the value of x is. Step 2 discards the triples where the
proportion of attributes validating an equality relation is too low (less than r). Step
3.d.i means that for each missing attribute of each incomplete object, only the triples
satisfying a similarity type of proportion are used in the case where there exists at least
one such triple. The other triples are used otherwise.

The main objective of our experimentation was to assess the extent to which a lazy
analogical classification method can be optimized by giving priority to the similarity
type of analogical proportion. We thus compared our results with those obtained using
FB implementation (Section 2.5.2.1). The comparison is both in terms of precision
and processing time, the latter being strongly related to the size of the training set.
We compared the results of this approach for the same datasets (namely Adult, Blood,
Cancer, and Energy) we had tested before.

For each dataset E, a sample M of 50 tuples has been modified (40% of the attribute
values of its tuples have been replaced by null). Then, Fadana, kNN, and our algorithm
(named oF for “optimized Fadana” hereafter) have been run so as to predict the missing
values: for each tuple d involving at least one missing value, a random sample D of
E −M (thus made of complete tuples) has been chosen. This sample D (training set)
was used for running the three algorithms. The size of the training set has been set to
40, and the value of k to 10. The numbers in the table are average values (10 runs have
been performed on each dataset). For each method, the first line gives the precision
(percentage of correct predictions) and the second line indicates the number of triples
generated by the algorithm for each value to predict.

As Fadana does not preprocess the training set, its size remains constant. A re-
markable result is that, even though oF generates much less triples than Fadana, its

68 chapter 2

Table 2.19: Results obtained
Adult Blood Cancer Energy

Fadana
precision 72.17 88.21 85.09 89.12
nbtriples 29640 29640 29640 29640

oF (r=0)
precision 75 88 87 87.7
nbtriples 4432 11136 10578 4387

oF (r=1)
precision 74.18 88 86 86.2
nbtriples 4138 5923 7059 1963

oF (r=2)
precision 74.18 87.68 85.94 82.69
nbtriples 4093 3464 3177 901

kNN precision 72.5 87.8 86.9 84.9

precision is quite similar. The best performances were obtained by oF (75%), Fadana
(88.21%), oF (87%) and Fadana (89.12%) for the datasets Adult, Blood, Cancer, and
Energy respectively. Notice that the best results obtained by oF are those when its r
parameter is equal to 0, i.e., that it is not necessary to discard the triples (a, b, c) from
the training set not validating (ai = bi = ci) at least once.

2.7.2 What Makes Analogy Work ?

The experimental results described above seem to indicate that the strength of the ana-
logical approach resides mainly in the similarity case.

Suppose we want to classify an object d. In order to use the ‘similarity’ case, one
needs three objects a, b, and c such that c ≃ d, a ≃ b, and a ≃ d. If these 3 objects
are found, we will assign to the class of d the value of the class of c. However, is it
necessary to look for triples of objects in order to classify another? We believe that the
analogical classifiers perform an unnecessary treatment of data. This is what we try to
expose in the following.

We will now discuss one of the works proposed by Prade et al. [BPR14d], already
introduced in Section 2.6. Hereafter is the corresponding algorithm:

When classifying an object d, Algorithm 3 first looks for the k closest objects of d
belonging to the training set. Let NNk be the set of closest objects to d, and c another
object ∈ NNk. The distance dist between c and d is computed and then one looks in
the training set for all the couples of objects a and b such that cl(a) : cl(b) :: cl(c) : cl(d)
holds. Finally, the algorithm assigns to cl(d) the most voted class.

In the following, we analyze this algorithm. For the sake of simplicity, we test the
case where k = 1.

A concern about this algorithm is that when the objects belonging to one class are

Discussion about Analogical Classification 69

Algorithm 3 Algorithm by Prade et al.

Require: training set TS, k, d /∈ TS
1: for each c ∈ TS do
2: Compute ‖c− d‖
3: Sort by increasing order the list L of values ‖c− d‖
4: Build up the set NNk(d) = {c ∈ TS s.t. rank‖c− d‖ ∈ L ≤ k}
5: end for
6: for each c ∈ NNk(d) do
7: build E = (a, b) s.t. cl(a) : cl(b) :: cl(c) : x has solution
8: candidate(d)= vote(E, c, d).candidate(d)
9: end for

10: cl(d) = argmax1{nbocc(l) ∈ candidate(d)}
11: return cl(d)

well separated from those belonging to another class, it seems to perform an unneces-
sary processing of data.

If the objects of one class are well separated from those from another class, i.e.,
the distances between objects of the same class are almost always smaller than the dis-
tances between objects belonging to different classes, one may assume that the nearest
neighbors c of d belong to the same class as d (we have not forgotten that the class of
d is the value we are looking for, but here we are just observing how this classifier works).

Figure 2.3 shows a plot of the Cancer dataset (from the UCI repository) in two
dimensions. To do so, the dimensions of this dataset have been reduced using the PCA
(Principal Component Analysis) algorithm. The Cancer dataset is one of the datasets
tested in [BPR14d]. Prade et al. obtained for this dataset a classification accuracy of
97.1. Each class of this dataset is represented by a different color. Figure 2.4 shows
a histogram of the distances between each pair of objects in the Cancer dataset. The
blue color corresponds to the points belonging to the same class, while the green color
is associated with objects belonging to different classes. The minimal distance between
objects belonging to different classes in this dataset is equal to 0.5.

Thus, since c is the closest object to d, the distance between them, dist(c, d), is
considered to be among the ones close to 0. Consequently, the pairs of objects a and b
chosen to form the quadruple (cl(a) : cl(b) :: cl(c) : cl(d)) in order to classify d would
have a small distance as well. As shown in Figure 2.4, the objects a and b likely belong
to the same class.

As this classifier assigns the classes based on analogical proportions, it means that
the classes of a, b, and c would form the following patterns:

70 chapter 2

Figure 2.3: Cancer dataset in two dimensions

cl(a) : cl(a) :: cl(a) : cl(a)

cl(a) : cl(a) :: cl(b) : cl(b)

However, in order to form one of the patterns above, it does not seem necessary to
compare the distance between c and d to all the distances between each pair a and b
belonging to the training set. In order to prove our point, we performed an experiment
with the Cancer dataset, where we count for each object d to be classified : (i) the
number of times c and d belong to the same class; (ii) In the case c and d belong to the
same class, the number of times the selected a and b belong both to the same class, i.e.,
cl(a) = cl(b); (iii) In the case c and d belong to the same class, the number of times a
and b belong to different classes; (iv) the number of times c and d belong to different
classes; (v) when c and d belong to different classes, the number of times a and b belong
to the same class; and (vi), when c and d belong to different classes, the number of
times a and b belong to different classes.

Using around 66% of the objects of this dataset to create the training set (this
dataset has 681 complete objects), we obtained the results exposed in Table 2.5, over
10 runs:

Discussion about Analogical Classification 71

Figure 2.4: Histogram of the Distances between pairs of objects of the Cancer dataset.
The horizontal axis indicates the distance between each pair of objects, and the vertical
axis indicates the numbers of couples in each range of distance.

Figure 2.5: Results of an Analogical Classifier over the Cancer dataset

(i) 214 238 225 223 217 234 236 226 219 211
(ii) 214 212 225 223 189 234 236 226 219 211
(iii) 0 26 0 0 28 0 0 0 0 0
(iv) 10 9 10 11 7 10 7 9 6 7
(v) 10 8 10 11 7 10 7 9 6 7
(vi) 0 1 0 0 0 0 0 0 0 0

An image of the classification of each point belonging to the test set is shown in
Figure 2.6. The color of each point represents the class to which it originally belongs.
The points d with the form of a circle are those classified using three objects belonging
to the same class of d, i.e, with the proportion (cl(d) : cl(d) :: cl(d) : cl(d)). In this
case, d is correctly classified. The points with the form of a star were classified with the
pattern (cl(a) : cl(a) :: cl(c) : cl(d)), i.e., that the first couple of objects belong to the
same class, but the third object, i.e., c, belongs to a different class of that of d. In this
case, d is incorrectly classified

72 chapter 2

Figure 2.6: Classification of the Cancer dataset

What we can deduce from Table 2.5 is that the selected c is in the same class as d 95.8%
of the times, and when this is the case, the objects a and b belong to the same class and
then d is correctly classified 97.6% of the times. These results are quite close to those
reported by Prade et al. concerning this dataset: 96.0± 1.6.

Similar results were obtained for the Wine dataset. This dataset has 177 complete
objects, divided in three different classes. We performed the same tests as in the case
of the Cancer dataset (66% of objects in the training set, the rest in the test set). Table
2.7 exposes the results in the same format as that of Table 2.5. Figure 2.8 shows a
histogram of the distances between each pair of objects in the Wine dataset. The blue
color corresponds to the points belonging to the same class, while the green color is
associated with objects belonging to different classes. Figure 2.9 shows the classification
of each object of the Wine dataset. The color of each point represents the class to which
it originally belongs. The points d with the form of a circle are those classified using
a proportion (cl(d) : cl(d) :: cl(d) : cl(d)), while the points with the form of a star are
those classified with the pattern (cl(a) : cl(a) :: cl(c) : cl(d).

Discussion about Analogical Classification 73

Figure 2.7: Results of an Analogical Classifier over the wine dataset

(i) 62 51 74 54 63 57 59 47 47 64
(ii) 62 51 74 54 63 57 59 47 47 64
(iii) 0 0 0 0 0 0 0 0 0 0
(iv) 2 1 1 3 1 1 2 3 3 6
(v) 2 1 1 3 1 1 2 3 3 6
(vi) 0 0 0 0 0 0 0 0 0 0

Figure 2.8: Histogram of the Distances between pairs of objects of the wine dataset. The
horizontal axis indicates the distance between each couple of objects, and the vertical
axis indicates the numbers of couples in each range of distance.

Our conclusion is that we can obtain the same results as this classifier just by assign-
ing to d the class of its closest element c. We would like to point out that our concerns
are limited to datasets for which the classes are well separated. We recall that when we
talk about well separated classes, we mean that the distance between objects belonging
to the same class are always (or usually) smaller than the distances between objects
belonging to different classes. The behavior of analogical classification when the classes
of a considered dataset are not well separated is a subject of future study.

However, our concerns are not limited to analogical classifiers based on an approach
such as that by Prade et al. The processing of Fadana (concerning the generation of
triples) raises some questions too: (i) how many of the triples generated by this algo-

74 chapter 2

Figure 2.9: Classification of the wine dataset

rithm are unnecessary, and (ii) can the answer provided by a triple be obtained by a
more simple procedure?

Let us see if one can reduce the number of triples generated by Fadana. Let us first
study the processing performed by Fadana in order to eliminate the redundant triples.
Generally, when one is performing a classification process, one aims to find the class
of every unlabeled object d. In the context of the Cancer dataset, these classes are of
the type has cancer or has not cancer and so are treated as Boolean data. If we have
selected a triple of objects (a, b, c) in order to find the class of an object d, the equation
(cl(a) : cl(b) :: cl(c) : cl(d)) (where cl(i) represents the class of i) has to be solvable. As
each class represents a category, to find the class of an object by means of an analogical
proportion is equivalent to solving a Boolean analogical proportion equation. Thus, the
following patterns are those that can provide an answer (remember from Section 2.5.1.1
that a Boolean analogical equation (cl(a) : cl(b) :: cl(c)) : cl(x)) has a solution if and
only if cl(a) ≡ cl(b) ∨ cl(a) ≡ cl(c)):

• cl(a) : cl(a) :: cl(a) : cl(x)

• cl(a) : cl(a) :: cl(b) : cl(x)

• cl(a) : cl(b) :: cl(a) : cl(x)

Discussion about Analogical Classification 75

But thanks to the central permutation property, (cl(a) : cl(b) :: cl(a) : cl(b)) ≡
(cl(a) : cl(a) :: cl(b) : cl(b)). As these two patterns are equivalent and provide the same
answer, we can drop one of them. Thus, when generating the triples aiming to classify
an object, we already know that there is one type of them that can be avoided. In order
to see how many of these unnecessary triples can be generated with Fadana, we created
a synthetic dataset containing 300 points. These points belong to two different classes.
A plot of this dataset is shown in Figure 2.10.

Figure 2.10: Syntethic dataset with two separated classes

We used 22 randomly chosen elements to form our training set. We then obtained
7000 different triples. The distribution of these triples among the different classes is the
following:

(cl(a), cl(a), cl(a)) = 2520

(cl(a), cl(a), cl(b)) = 2240

(cl(a), cl(b), cl(a)) = 2240

where each of the triples following the pattern aba can be obtained by applying the cen-
tral permutation property to one of the triples from aab. It means that (2240/7000)*100

76 chapter 2

= 32% of these triples are unnecesary and thus can be dropped, as indicated in [BMD07a].

This is what happens when we are dealing with datasets with only two classes.
When one is handling a dataset with more than two classes, there are other kinds of
triples that are unnecessarily generated, and are not eliminated by Fadana. When
we say that a triple is unnecessarily generated, we mean it cannot provide any an-
swer for the class of an element to be classified. These are the triples of the type
(cl(a), cl(b), cl(c)), where cl(a), cl(b), and cl(c) represent three different classes. The
triples of the type (cl(a), cl(b), cl(c)) do not make it possible to determine a value cl(x)
such that (cl(a) : cl(b) :: cl(c) : cl(x)) holds. For instance, if we are dealing with data
about people belonging to three different classes, young , adult, and old, there is no
solution for the equation (young : adult :: old : x). Remember that categorical values
are treated as Boolean values, and then the equation (a : b :: c : x) has no solution
from a Boolean point of view. We would need some external information, such as the
distance between labels, in order to solve this kind of equation.

We have to consider also the triples of the type (cl(a), cl(b), cl(b)). Let us point out
that these triples do not have a solution from an analogical point of view (in fact, they
correspond to what Prade et al. define as paralogy [PR09a]). In a Boolean context,
a triple (cl(a), cl(b), cl(b)) would be represented as (0, 1, 1). If we aim to find a fourth
Boolean value cl(x) such that (0 : 1 :: 1 : cl(x)) holds, we know that there is no possible
answer. More precisely (1 : 0 :: 0 : 1) = 0.

Let us see how many unnecessary triples are generated with a synthetic dataset.
In this case, we generated a dataset with 300 bi-dimensional points, separated in three
classes. A plot of this dataset is shown in Figure 2.11.

With a training set of 25 points (10 points belonging to the class in red, 5 to the
class in blue, and 10 to the class in green), 10700 triples are generated, after discarding
the redundant ones. These triples are distributed according to the following patterns:

• (cl(a), cl(a), cl(a)): 1500

• (cl(a), cl(a), cl(b)): 3100

• (cl(a), cl(b), cl(c)): 3000

• (cl(a), cl(b), cl(b)): 3100

From the generated triples, those following the patterns (cl(a), cl(b), cl(c)) and
(cl(a), cl(b), cl(b)) are not useful. These triples correspond to 57 % of the total. None
of these triples will be used to compute the class of an unlabeled element x, but Fadana
does not avoid the computation of the Analogical Dissimilarity between each of these
triples and x.

Discussion about Analogical Classification 77

Figure 2.11: Synthetic dataset with three separated classes

Obviously, the higher the number of classes, the higher the percentage of triples of
the type (cl(a), cl(b), cl(c)) and (cl(a), cl(b), cl(b)) are generated. Let us see the case of
a dataset containing 5 classes. With a training set of 25 points (2 from the first class, 8
from the second, 4 from the third, 7 from the fourth and 4 from the fifth), the following
distribution of triples is generated:

• (cl(a), cl(a), cl(a)): 594

• (cl(a), cl(a), cl(b)): 2258

• (cl(a), cl(b), cl(c)): 6442

• (cl(a), cl(b), cl(b)): 2258

This time the unnecessary triples correspond to 75% of the total.

Now that we have eliminated the unnecessary triples, we have left two types of them,
the ones with the pattern (cl(a), cl(a), cl(a)) and those with the pattern (cl(a), cl(a), cl(b)).
However, if we want to find the class of an object x, i.e., cl(x), we can use the pattern
(cl(a), cl(a), cl(a)) if and only if cl(x) = a (the pattern (1 : 1 :: 1 : 0) does not hold),

78 chapter 2

and the pattern (cl(a), cl(a), cl(b)) iff cl(x) = b (the pattern (1 : 1 :: 0 : 1) does not hold).

In order to use a triple (cl(a), cl(a), cl(a)) to classify x, we just need to find the three
objects the closest to x. In the case of the synthetic datasets used, as the points of the
classes are well separated, the 3 closest points to any object x will belong to the same
class as x, and then (cl(a) : cl(a) :: cl(a) : cl(x)) is solvable.

In order to use the triple (cl(a), cl(a), cl(b)) to classify x, we need an object in the
same class as x (the object with class cl(b) in the triple), and two other objects belonging
to a class cl(a) different from cl(b).

2.7.3 Summary of this Section

In this section we showed how the methods aimed to perform analogical classification
may perform an unncessary treatment of data. When processing datasets with sepa-
rated classes, the result of some methods may be similar to that of a k-nn method.
This fact seems revealing, knowing the complexity of a method performing analogical
classification is usually O(n3), while that of k-nn is O(n2), where n is the number of
objects to classify. The aim of the information provided in this section is not to claim
that analogical classification is uninteresting, but to show that the complexity of its
processing might be reduced in some cases. The study of the procesing of analogical
classification when treating data with scrambled classes is something that has yet to be
studied.

2.8 Summary and Conclusion

The objective of this chapter was to study the imputation of missing values in a database
using analogical proportions. We provided a state of the art about the most known
methods dealing with this kind of problem. Then, we presented an approach based on
analogical proportions, and we compared the accuracy of our approach with some of
the methods from the literature. At the end of this chapter, we analyzed the behavior
of some analogical classification methods.

In Section 2.3, we provided a litterature about missing values. We mentioned the
most recognized types of missing values, and then we provided an ovierview of methods
handling this kind of situation. Some of them are based on classification trees, others
on association rules, and others on a statistical analysis of the data.

In Section 2.4, we provided the basic notions of analogical proportions in the nu-
merical case. First, we gave the formulas that correspond to a crisp view of analogical
proportions. Then, we gave some other formulas which allow to know the degree to
which four numerical values validate an analogical proportion. Then, we provided some
desirables properties an analogical proportion should validate, and we analyzed the pre-
vious formulas in terms of our goals. Finally, we proposed a modification of some of

Summary and Conclusion 79

those formulas in order to satisfy the desired properties we introduced.

In Section 2.5, we studied how to impute missing values using analogical propor-
tions. Our proposal is to modify an classification algorithm, Fadana in this case. For
doing so, we provided the formulas allowing to solve an analogical equation. Finally, we
provided the results obtained and compared them to some of the methods introduced in
the litterature about missing values. Even though our approach does not perform a sta-
tistical analysis of data, such as distribution of data or correlation between attributes,
the results obtained using analogical proportions may be considered to be similar to
some of the well-known methods from the literature.

In Section 2.7, we provided an analysis of the processing of methods aimed at perform
analogical classification. First, we showed how some kinds of analogical proportion
perform better than the others, and we discussed an algorithm we proposed which
takes profit of this situation with the aim of reducing the size of the training set. Then,
we showed that in some cases, analogical classification methods perform a processing of
data similar to that of k-nn.

80 chapter 2

Chapter 3

Mining and Querying Analogical

Proportions

3.1 Introduction

In this chapter, we are interested in exploiting the notion of analogical proportion in
the setting of relational databases for mining combinations of four tuples bound by an
analogical relationship. Analogical proportions naturally capture the notion of paral-
lels between four entities. These parallels are of a major importance as they model
reproducible transformations from one entity to another. In the particular case where
temporal dimension comes into play, they make it possible to model for instance societal
changes or parallels between trajectories of moving objects. In this chapter, we focus
on the problem of discovering parallels (here sometimes called differentiation vectors or
ratios) that correspond to analogical proportions between pairs of tuples occurring in a
relation. We focus on the case of relations including numerical values.

In Section 3.1, we introduce the modelling of analogical proportions. In Section 3.2,
we introduce the problem of mining exact and approximate analogical proportions from
a database. We propose the use of some clustering methods in order to extract the most
representative approximate analogical proportions, then we evaluate these methods. In
Section 3.3, we introduce the notion of analogical database queries, and we propose
some strategies for processing each type of them. We finish the latter section with an
evaluation of the proposed strategies .

Modelling of Analogical Proportions in a Database Context In this Section,
we introduce the concept of analogical proportions in a database, in the Boolean and nu-
merical case. We introduce the notion of exact analogical proportions, which is extended
to the notion of approximate analogical proportions. The reason why we introduce a
new interpretation of analogical proportion (in comparison to the formulas introduced
in Chapter 2), is that they satisfy properties such as identity of indiscernibles, symme-
try, and triangle inequality, which allow us to consider them as metrics, and then to

81

82 chapter 3

define clusters based on analogical proportions

3.1.1 Definitions of Analogical proportions in an n-dimensional space

Let us first give a definition of analogical proportion based on a geometric point of view,
already considered by several authors, see, e.g., [MBD08b, Lep14].

Definition 2. Analogical proportion: A Geometric definition
Let D = {D1, . . . , Dn} be a set of n dimensions and A, B, C and D be four points in
D1 × . . . × Dn. The analogical proportion A : B :: C : D is valid if and only if

−−→
AB =

−−→
CD

or equivalently,
||
−−→
AB −

−−→
CD|| = 0.

�

The analogical relationship binding A, B, C, and D can be represented by the vector
−−→
AB (or equivalently

−−→
CD). Even though this definition allows to state that if

−−→
AB =

−−→
CD

then
−→
AC =

−−→
BD, one has to be careful when representing this relation. (A : B :: C : D)

should be represented by
−−→
AB (resp.

−−→
CD).

−→
AC (resp.

−−→
BD) may be used to represent

(A : C :: B : D), expressed in that order.

Example 20.
Let us say that the objects A, B, C, and D represent points in an n-dimensional

space. If these points validate an analogical proportion, i.e., (A : B :: C : D), then they
form a parallelogram. For example, Figure 3.1 shows the existing analogical proportion
between the points A = (1, 2), B = (4, 4), C = (3, 1), and D = (6, 3),

One has
−−→
AB =

−−→
CD = (3, 2), as well as

−→
AC =

−−→
BD = (2,−1).

�

The modelling of analogical proportions in the setting of relational databases must
comply with the properties of the relational model. Each tuple of a relation is an ele-
ment of the Cartesian product of the active domains of a set of attributes {A1, . . . , Am}.
One assumes here that the active domains are subsets of R. Each tuple t may be rep-
resented as an n-dimensional point, denoted by (t1, . . . , tn).

Example 21. Let us consider the relation represented in Table 3.1 describing the
properties of different animals. This table represents points in an n-dimensional space,
where the domain of each dimension is Boolean, containing the values 1 and 0, that
may represent the values True or False.

Introduction 83

Figure 3.1: Four points validating an analogical proportion in a bi-dimensional space

x

y

A

B

C

D

2

1

4

4

1

3

3

6

Table 3.1: The Animals relation

Points Entity Mammal Equidae Bovine Mother Child
A calf 1 0 1 0 1

B cow 1 0 1 1 0

C foal 1 1 0 0 1

D mare 1 1 0 1 0

One has
−−→
AB =

−−→
CD = (0, 0, 0, 1, −1) as well as

−→
AC =

−−→
BD = (0, 1, −1, 0, 0). Then

the analogical proportion calf : cow :: foal : mare holds, as well as calf : foal :: cow : mare.

The analogical relationship binding A, B, C, and D can be represented by the vector
(0, 0, 0, 1, −1). The analogical relationship binding A, C, B, and D can be represented
by the vector (0, 1, −1, 0, 0). Such a modelling allows for discovering common transfers
of properties between two pairs of entities.

�

Definition 2 straightforwardly satisfies the basic properties of analogical proportions
and the transitivity property. Indeed, when conformity is the equality relationship, the
properties of symmetry, reflexivity and transitivity trivially hold. Moreover, if we as-
sume that A = 〈a1, . . . , an〉, B = 〈b1, . . . , bn〉, C = 〈c1, . . . , cn〉 and D = 〈d1, . . . , dn〉,
one has (bi − ai = di − ci) ≡ (ci − ai = di − bi) and the exchange of the means also
holds.

The transitivity property allows us to define the notion of equivalence class for
analogical proportions. Such an equivalence class groups together pairs of points repre-
senting the same vector, i.e., ratios of the same value.

Definition 3. Analogical equivalence class

84 chapter 3

Let D = {D1, . . . , Dn} be a set of n dimensions and P = {(x, y) | x, y ∈ D1×. . .×Dn}.
One denotes by [x, y], the analogical equivalence class of (x, y), i.e., the subset of

elements (x′, y′) of P such that −→xy =
−−→
x′y′.

Equivalence classes provide a more compact view of the analogical proportions that
exist in an n-dimensional space by highlighting only the corresponding ratios.

Example 22.
Let A, B, C, D, E, F , G, H and I be points defined in an n-dimensional space.
Assume that

−−→
AB =

−−→
CD, and that

−−→
GH =

−−→
FD =

−→
EI.

One has two analogical equivalence classes [A, B] = {(A, B), (C, D)} and
[G, H] = {(G, H), (F, D), (E, I)} that represent the following analogical proportions:

• in [A, B], A : B :: C : D and then A : C :: B : D

• in [G, H], G : H :: F : D and then G : F :: H : D,

• in [G, H], G : H :: E : I and then G : E :: H : I,

• in [G, H], F : D :: E : I and then F : E :: D : I.

Here,
−−→
AB and

−−→
GH may represent possible ratios or differentiation vectors occurring

in data.
�

Definition 2 is well suited to the setting of relational databases: four tuples tA, tB,
tC , tD, of a relation are bound by an analogical relationship if and only if

−−→
tAtB =

−−→
tCtD.

However, strict equality of vectors may be difficult to obtain when dealing with real-
world datasets.

As done in Chapter 2, in order to make the dimensions commensurable when at-
tributes are defined on different domains, we assume that the coordinates of the vectors
are normalized and they belong to the interval [0, 1]. To this aim, each value v of the
active domain of an attribute is replaced by:

v − minatt

maxatt − minatt
(3.1)

where minatt and maxatt denote respectively the minimal value and the maximal value
of the attribute domain.

Example 23.
Let us consider the following relation showing an excerpt of the French Presidential

Introduction 85

Table 3.2: French Presidential election results in 2007 and 2012 (excerpt)
Regions 2007 2012

11 Île-de-France
53 Bretagne

left center right
0.3673 0.2001 0.4327
0.3934 0.2255 0.3811

left center right
0.475 0.0946 0.4303
0.4769 0.1162 0.407

election results in 2007 and 2012, grouped by region, and by political orientation.

In this case, tA and tB (resp. tC and tD) represent the same entity, but observed
at different times: tA (resp. tC) represents region 11 (resp. 53) in 2007 while tB (resp.
tD) represents region 11 (resp. 53) in 2012. As

−−→
tAtB =

−−→
tCtD. One could say that tA is

to tB as tC is to tD as the two regions 11 and 53 have undergone the same trends in
voting. Indeed, one can observe an absolute increase of about ten percent for left-wing
votes, a decrease of about ten percent for center votes for the two regions and an almost
stagnation for right-wing vote. However, Definition 2 is too rigid to capture such a
situation.

�

It is then necessary to make Definition 2 more flexible by relaxing the equality rela-
tionship between the two vectors involved in an analogical relationship. One needs to
assess the “distortion” between two vectors, i.e., the extent to which ||

−−→
tAtB −

−−→
tCtD|| is

close to 0.

Several strategies may be used to assess the extent to which ||
−−→
tAtB −

−−→
tCtD|| is close

to 0. Different norms may be used, such as the Minkowsky norm (p-norm) that gives
the length of the “correction vector” that allows to switch from

−−→
tAtB to

−−→
tCtD, or, the

infinity norm that gives the maximal coordinate value of this correction vector.

Definition 4. Analogical distorsion based on the infinity norm Let tA, tB, tC ,
and tD four n-uples and −→u =

−−→
tAtB, −→v =

−−→
tCtD. The analogical distorsion of −→u and −→v

based on the infinity norm is defined as :

ad∞(
−−→
tAtB ,

−−→
tCtD) = ad∞(−→u , −→v) = maxi∈{1,...,n}|ui − vi|

Definition 5. Analogical distorsion based on the p-norm Let tA, tB , tC , and tD
four n-uples, −→u =

−−→
tAtB , −→v =

−−→
tCtD, and p a norm. The analogical distorsion of −→u and

−→v based on the p-norm is defined as :

adp(
−−→
tAtB ,

−−→
tCtD) = adp(

−→u , −→v) = (
∑

i∈{1,...,n}

|ui − vi|
p)1/p

86 chapter 3

In all cases, the closer the distorsion is to 0, the closer the two vectors are and the
more the analogical proportion is valid.

Such definitions of analogy satisfy the basic properties of analogical proportions.
Identity and symmetry trivially hold. Exchange of the means also holds as the state-
ment ad(

−−→
AB,

−−→
CD) = ad(

−→
AC,
−−→
BD) is true for all norm. Indeed, one has for all i,

((bi − ai) − (di − ci)) = ((ci − ai) − (di − bi)). As the definition of ad(−→u ,−→v) relies
on a norm, the definition of distortion also satisfies the non-negativity, identity of in-
discernible and triangular inequality properties.

With such a gradual view of analogical proportion, it is not possible to get a proper
definition of equivalence classes due to the lack of a transitivity property. However, as
mentionned in the introduction of this section, the previous properties makes it possible
to define clusters based on analogical proportions, since ad is a metric.

3.2 Mining Analogical Proportions and Ratios

In this section, we study how to mine the analogical proportions present in a database,
in the context of Definitions 2, 3, 4, and 5, introduced in the last section. In Section
3.2.1, We show how this problem is similar to the problem of extracting all the maximal
cliques from a graph, making it an NP-hard problem. In Section 3.2.2 we introduce
anoother approach, that aims to mine the analogical proportions existing in a database
by means of a clustering method. We first explain how one can get all the exact ana-
logical proportions from a database. We then propose the use of a clustering method
to extract the approximate analogical proportions. We first evaluate the advantages
and disadvantages of the k-means method concerning our problem. We then propose
a modification of this method in order to apply it to our problem. We also propose
the use of a grid-based clustering method in order to extract the analogical proportions
from a database. Finally, we compare the proposed approaches.

Given a relation schema S = (A1, . . . , Am) and a relation r defined on S, the
discovery of analogical proportions may take different forms (according to the number
of variables and constants in the analogical pattern considered). In the following, we
focus on the problem of mining analogical combinations of four tuples over S, formally
defined as follows (Section 3.1.1 and Section 3.1.1):

Problem 1. Mining exact analogical proportions
Let us denote by r a relation of schema S = (A1, . . . , Am). Mining exact analogical

proportions amounts to finding:

S1(r) = {
−→u ,−→v | −→u ,−→v ∈ S2 ∧ ad(−→u ,−→v) = 0}

Mining Analogical Proportions and Ratios 87

Example 24.
Using the relation represented in Table 3.1 (page 83), one gets:

S1(animals) = {〈calf, cow, foal, mare〉, 〈calf, foal, cow, mare〉,

〈foal, mare, calf, cow〉, 〈foal, calf, mare, cow〉}

The four discovered proportions are equivalent as they can be deduced from the first
one by using the exchange of the means and symmetry properties. ⋄

Problem 2. Mining approximate analogical proportions
Let us denote by r a relation of schema S = (A1, . . . , Am). Mining approximate
analogical proportions amounts to finding:
Sǫ
1(r) = {(

−→u ,−→v) | −→u ,−→v ∈ S2 ∧ ad(−→u ,−→v) ≤ ǫ}

Example 25. Consider Table 3.3 below, and suppose that we aim to find the approx-
imate analogical proportions Sǫ

1, where ǫ = 0.1, and the distorsion between two vectors
is based on the infinity norm (Definition 4, page 85).

Table 3.3: Four bi-dimensional tuples
a b

t1 0.8 0.6
t2 0.5 0.7
t3 0.4 0.9
t4 0.6 0.6

Then, the couple of vectors (
−−→
t1t2,

−−→
t3t4) — where

−−→
t1t2 = 〈−0.3, 0.1〉 and

−−→
t1t4 = 〈−0.2, 0.0〉

— is in analogical proportion.
�

Another problem of interest consists in discovering all the parallels emerging from
a dataset. It requires to know the set of vectors that are linked by the same analogical
relationship pairwise. Each vector of such a set can be considered a representative ratio
of the whole set. Retrieving such sets makes it possible to give a more compact view of
the parallels by enumerating only the underlying ratios. This problem is more formally
defined as follows:

Problem 3. Mining almost equivalent analogical proportions Let us denote by
r a relation of schema S = (A1, . . . , Am). Let S0 = {

−→
titj |ti, tj ∈ r2}. Mining ratios in

r amounts to finding:

Sǫ2(r) = {si ⊆ S0 | ∀
−→u and −→v ∈ si, ad(

−→u ,−→v) ≤ ǫ }

In the particular case where ǫ is set to 0, Sǫ2 is equivalent to the set of analogical

equivalence classes having at least two elements. In other words to mine Sǫ2 when ǫ is

88 chapter 3

set to 0, is equivalent to mine all the exact analogical proportions.

Example 26.
Using the relation represented in Table 3.3 (page 87), that we call tuples, one gets the
following vectors:
−−→
t1t2 = 〈−0.3, 0.1〉,

−−→
t1t2 = 〈−0.4, 0.3〉,

−−→
t1t4 = 〈−0.2, 0.0〉,

−−→
t2t3 = 〈−0.1, 0.2〉,−−→

t2t4 = 〈0.1,−0.1〉, and
−−→
t3t4 = 〈0.2,−0.3〉.

From these vectors, one can get:

S0.22 (tuples) = {
−−→
t1t2,

−−→
t2t3, and

−−→
t1t4}

�

When mining approximate analogical proportions, it is not possible to partition the
set of pairs of tuples representing the same vector as the transitivity property is no
longer true. However, it is possible to group together pairs of tuples that almost vali-
date an analogical proportion, that we call hereafter connected analogical proportions.

Definition 6. Connected analogical proportions Let D = {D1, ...,Dn} be an
n-dimensional set and P = {(x, y) | x, y ∈ D1 × ... ×Dn, x 6= y}. One denotes by Cǫ,
the subset of P such that for each pair of couples (x, y) and (x′, y′) ∈ Cǫ, (x, y) 6= (x′, y′)

and ad(−→xy,
−−→
x′y′) ≤ ǫ.

This definition, which is equivalent to Problem 3, can be directly placed in the domain
of graph theory. Let us first introduce the notion of a graph, and then see how can one
represent a set of analogical proportions by means of a graph.

3.2.1 Connected Analogical proportions in Terms of a Graph

A graph is a collection of points and lines connecting some (possibly empty) subset of
them. The points of a graph are most commonly known as graph vertices, but may also
be called nodes or simply points. Similarly, the lines connecting the vertices of a graph
are most commonly known as graph edges, but may also be called arcs or lines [Wei16].

Formally, an undirected graph G is a pair (V,E) where V is a set of vertices and E
a set of edges. An edge {u, v} is in E if and only if {u, v} ⊆ V and vertex u is adjacent
to vertex v [Pro12].

Analogical Proportions represented by a graph Let us denote by r a relation of
schema S = (A1, . . . , Am). Let −→u and −→v be vectors ∈ S2, and let us say that (−→u ,−→v)
validates an analogical proportion if ad(−→u ,−→v) ≤ ǫ. If we aim to represent this relation
by means of a graph, then −→u and −→v would each be represented by a vertex, and there
would be an edge linking −→u and −→v if and only if ad(−→u ,−→v) ≤ ǫ.

Mining Analogical Proportions and Ratios 89

Example 27.

Let
−→
A = 〈0.2, 0.6〉,

−→
B = 〈0.2, 0.55〉,

−→
C = 〈0.1, 0.4〉,

−→
D = 〈0.3, 0.4〉 and

−→
E =

〈0.2, 0.15〉 be vectors in a n-dimensional space. The distances between them, using a
1-norm, are shown in Table 3.4.

Table 3.4: A relation
A B C D

A ×
B 0.05 ×
C 0.3 0.25 ×
D 0.3 0.25 0.2 ×
E 0.45 0.4 0.35 0.35

If our aim was to represent the connected analogical proportions of this set (Defini-
tion 6) by means of a graph, then, with ǫ = 0.35, the graph representing the connected
vectors would be the one shown in Figure 3.2.

Figure 3.2: Example of analogical proportions represented by means of a graph

A

B

C D

E

Only those pairs of vectors (vertices) with a distance smaller than ǫ are linked by
an edge. For instance, as the distance between the vectors

−→
B and

−→
E is bigger than

ǫ = 0.35, these two vectors are not linked by an edge in the graph representation.
�

Let us recall the notions of clique and maximal clique [Akk73]: Let G be an undi-
rected graph represented by (V,E), where V is a set of vertices and E a set of edges. A
clique is a set of vertices C ⊆ V such that every pair of vertices in C is adjacent in G.

90 chapter 3

A maximal clique is defined as a clique that cannot be contained in other cliques [MS11].

Example 28.
Consider the graph shown in Figure 3.2. The vertex sets (A,B), (A,B,C), (B,C,D),
(A,B,D), (A,B,C,D) and (C,D,E) may represent some of the cliques of this graph:
every pair of vertices taking part in these cliques are adjacent (connected by an edge).
From these sets, only (A,B,C,D) and (C,D,E) are maximal cliques, since they are not
subsets of another clique. For instance, the clique (A,B,C) is contained in (A,B,C,D).

�

Clique as a class of analogical proportions Let Cǫ be a set of connected analog-
ical proportions (Definition 6). Let G be an undirected graph represented by (V,E),
where V is a set of vertices and E a set of edges. Each vector −→v from Cǫ is represented
by a vertex in G, and each pair of vectors −→u and −→v from Cǫ is linked by an edge if and
only if ad(−→u ,−→v) ≤ ǫ (Definition 3.2.1). Then, every Cǫ is a clique of G.

In these terms, the problem of mining all the connected analogical proportions is
equivalent to the problem of finding all the maximal cliques in a graph. Several ap-
proaches exist to perform such a task, such as [MS11] and [BK73]. However, according
to [MS11], any n-vertex graph can have at most 3n/3 maximal cliques, and enumerating
all maximal cliques in an graph is a NP-hard problem. Thus, the computational cost is
exponential with respect to the number of vertices of the graph.

Let us now see how to mine each of the items presented in this section.

3.2.2 Computing Analogical Proportions

Let us now see how to compute the analogical proportions existing in a database. In
Section 3.2.2.1, we will see how to compute exact analogical proportions; and in Section
3.2.2.2, we present our approach to compute approximate analogical proportions.

3.2.2.1 Computing exact analogical proportions

A naive approach for computing Sǫ1(r) consists in i) enumerating all the pairs of tuples,
ii) computing the distortion between each pair of pairs, and iii) keeping the quadruples
whose distortion value is less than a given threshold ǫ. Its time complexity is θ(n4)
in terms of vector comparisons, where n denotes the number of tuples in the relation
considered.

When conformity is equality, i.e., when ǫ = 0, Lepage has shown that one can obtain
S01 (r) (Problem 1, page 86) by computing S02 (r) (Problem 3, page 87) directly [Lep14].
He proposes an algorithm in θ(n2) for computing S02 (r) in this latter case. His approach
is placed on the context of Sino-Japanese characters. Each character is represented by

Mining Analogical Proportions and Ratios 91

a figure of 18 × 18 pixels. Lepage represented each character by the number of black
pixels in each line and each column. Using 18 lines and 18 columns, each character is
represented by 36 features. He treated 14,655 characters. Lepage realized that there
are not two characters represented by the same feature vector. These representations
are then given as input to its clustering processing.

The principle of the algorithm is the following. It computes the n(n+ 1)/2 vectors
between pairs of tuples and gathers them into a cluster when they lead to the same
differentiation vector. It is then easy to generate all the analogical proportions, i.e.
S1(r), from the clusters, by using properties of analogical proportions. Indeed, the
properties of symmetry and central permutation imply that if (A : B :: C : D) is vali-
dated, then the following analogical proportions are validated as well: (A : C :: B : D),
(B : A :: D : C), (B : D :: A : C), (C : A :: D : B), (C : D :: A : B), (D : B :: C : A)
and (D : C :: B : A). This approach straightforwardly applies to the computation of
S01 (r) and S02 (r) from tuples of a relation.

3.2.2.2 Computing approximate analogical proportions

The idea we advocate is to use a clustering method to tackle Problem 3 (page 87), then
to use its results to approximate Sǫ2(r), as it groups together elements that are close to
each other.

We first recall the definition of a clustering process. Then, we introduce the k-
means method and we analyze how can it be useful for our purpose. We then propose a
modification of this method, and its combination with another method which helps de-
termining the initial cluster centers of a dataset. We also introduce a grid-based method.

Clustering is the process of grouping the data into classes or clusters, so that ob-
jects within a cluster have high similarity in comparison to one another but are very
dissimilar to objects in other clusters. There are different types of clustering methods:
partitioning methods, hierarchical methods, density-based methods, grid-based methods
or model-based methods [HKP11b]. Formally, the clustering structure of a partitioning
method is represented as a set of subsets C = C1, ..., Ck of S, such that S =

⋃k
i=1Ci

and Ci ∩Cj = ∅ for i 6= j [MR05]. We would like to point out that the latter definition
corresponds to a crisp partition of the data, where an object can belong to only one
cluster. There exist methods that create a fuzzy partition of the data, where an object
can belong to more than one cluster, and its degree of membership to each cluster is
provided [MIH08].

Let us explain what we require from a clustering algorithm. We recall that our aim
is to mine all the connected analogical proportions existing in a dataset (Definition 6,
page 88), or at least a large number among them. As seen in Section 3.2.1, each clique
corresponds to a connected set of vectors. Now we aim to represent this connected set of

92 chapter 3

vectors in a clustering context. For doing so, we need to introduce the concept of intra-
cluster distance: it is the distance between two objects belonging to the same cluster.
The maximum intra-cluster distance is then the maximal distance existing between all
the pairs of objects belonging to the same cluster.

Cluster based representation of analogical proportions Let us denote by r a
relation of schema S = (A1, . . . , Am).. Let −→u and −→v be vectors ∈ S2, and let us say
that (−→u ,−→v) may represent an analogical proportion if ad(−→u ,−→v) ≤ ǫ. Let us suppose
that a clustering algorithm has been executed over S2. Let us denote by intra the max-
imal intra-cluster distance of a cluster c. If intra ≤ ǫ, then all the pairs of vectors −→u
and −→v belonging to c are in analogical proportion.

In this experimentation, we tested the k-means algorithm, since it creates a crisp par-
tition of the data, and its objective is to minimize the intra-cluster distances of its
clusters, as explained in the following.

K-means algorithm The k-means algorithm is one of the most known clustering
partitioning methods: given D, a data set of n objects, and k, the number of clusters to
form, a partitioning algorithm organizes the objects into k groups (k ≤ n), where each
group represents a cluster [HKP11b]. The criterion k-means aims to minimize, named
square-error criterion, is the following:

E =

k
∑

i=1

∑

p∈Ci

|p −mi|
2

where p is the point in space representing a given object; and mi is the mean of the
cluster Ci. The mean of a cluster Ci is the mean of the objects p ∈ Ci componentwise.
In other words, what k-means aims to do, is to create clusters with the minimal possible
sum of intra-cluster distances. The k-means method is described in Algorithm 4 [M+67]:

Let us explain Algorithm 4. The k-means algorithm gets as input a dataset D and
an integer k. In line 2 of the algorithm, the function selectRandomSeeds selects k objects
from D randomly. In Lines 2 to 4, the centroid of each cluster is created from each of
the k selected points in the last step. From lines 6 to 12, each object xi is assigned
to the cluster cj with the centroid mi that is the closest to xi. From lines 13 to 15,
the centroid of each cluster cj is (re)-calculated as the mean of the objects belonging
to cj componentwise. Finally, the set of clusters is returned when the centroids are not
modified at the (re)-calculation steps.

The k-means algorithm has three big drawbacks, with respect to our purpose: (i) it
requires the choice of the number of clusters, i.e., k, (ii) its initial k medoids, i.e., the

Mining Analogical Proportions and Ratios 93

Algorithm 4 k-means algorithm
Require: k: the number of clusters; D: a data set containing n objects
1: {c1, c2, ..., ck} ← selectRandomSeeds({c1 , ..., cn}, k)
2: for k ∈ {1, .., k} do
3: mk ← ck
4: end for
5: repeat
6: for k ∈ {1, ..., k} do
7: wk ← {}
8: end for
9: for n ∈ {1, ..., N} do

10: j ← argminj |mk − xn|
11: wj ← wj ∪ xn
12: end for
13: for k ∈ {1, .., k} do

14: mk ←
1

|wk|

∑

x∈wk

x

15: end for
16: until wi remains unchanged

return w1, ..., wk

cluster centers, are randomly generated (or via a heuristic1); and (iii) it is sensitive to
outliers and it tends to create sparse clusters: every object will be assigned to its closest
cluster independently from how far they are from each other.

Let us now see how can we tackle these problems.

Handling of the initial centroids In order to tackle the problem of the initializa-
tion of the k centroids performed by k-means, we may use the approach proposed by
Chiu in [Chi94]. The objective of this method is to propose the initial cluster centers of
a numerical dataset. The idea behind this approach is that objects with many neigh-
boring objects can be considered as cluster centers. We provide the explanation of this
algorithm in the following.

Consider a dataset D containing n objects {x1, x2, ..., xn}. Each of these objects is
considered as a potential cluster center. The potential of each object xi to be considered
as a cluster center is defined as

Pi =
n
∑

j=1

e−α‖xi−xj‖
2

(3.2)

1Some approaches choose randomly the first cluster center, then they choose the second cluster
center as the farthest object from the first cluster center, then the third cluster center is chosen as the
farthest object from the two first clusters, and so on.

94 chapter 3

where α = 4/a2, and a is a positive constant corresponding to the radius defining a
neighborhood: data objects outside this radius have little influence on the potential.
The a value representing the neighborhood may correspond to our ǫ value in Definition
6. The object with the highest potential is selected as the first cluster center. The aim
of this formula is that an object with many neighboring data points has a high potential
value.

When an object has been chosen as the first cluster center, the potential of all the
other objects is modified. The idea is that the objects near the first cluster center will
have a greatly reduced potential, and therefore are unlikely to be selected as the next
cluster center. The potential (to be a cluster center) Pi of the object xi is updated
according to the following equation

Pi = Pi − P ∗
1 e

−β‖xi−x∗

1|
2

(3.3)

where x∗1 is the location of the first cluster center, P ∗
1 its potential value, and β = 4/b2,

where b is a constant defined as the neighborhood that will have measurable reductions
in potential. The authors propose to use a value for b equal to 1.5∗a (from Equation 3.2).

The object with the highest potential after the updating operation is selected as
the next cluster center. Then, the potential of each point is updated according to its
distance to the second cluster center. In general, the potential of each point is reduced
according to the last cluster center obtained: when the k-th cluster center has been ob-
tained, one may replace P ∗

1 by P ∗
k in Equation 3.3 in order to obtain Pi. This operation

is repeated until no more cluster centers can be found. The decision of whether a point
can be considered a cluster center or not, is performed by Algorithm 5.

Let us explain Algorithm 5: an object xk can be considered as a cluster center if
its potential Pk is bigger than ǫP1 (line 1 of the Algorithm), where P1 is the potential
of the first selected cluster center, and ǫ is a constant value. The authors recommend
to set ǫ = 0.5. If the last condition is not met, and Pk is smaller than ǫP1 (the
authors recommend ǫ = 0.15), xk will be rejected as a cluster center (lines 3 and 4 of
the Algorithm). Otherwise, if xk is far enough from all cluster centers (line 7 of the
Algorithm), it can be selected as a cluster center.

Application of Chiu’s method to our problem The method proposed by Chiu
may help us determine the initial clusters centers, and also define how many clusters
we may need. If we want to adapt it to the cluster based representation of analogical
proportions (page 92), we may set the a value of Equation 3.2 as ǫ, and then the b value
of Equation 3.3 as 1.5ǫ.

One may wonder, however, if Equations 3.2 and 3.3, and Algorithm 5 really com-
ply to our cluster based representation of analogical proportions, introduced in Section
3.2.2.2 (page 92). If we want to obtain clusters allowing us to find a set of connected

Mining Analogical Proportions and Ratios 95

Algorithm 5 Stop condition of the Algorithm by Chiu
1: if Pk > ǫP1 then
2: Accept xk as a cluster center.
3: else if Pk < ǫP1 then
4: Reject xk as a cluster center and end the clustering process
5: else
6: Let dmin be the shortest distance between xk and

all previously found cluster centers

7: if
dmin

a
+

Pk

P1
≥ 1 then

8: Accept xk as a cluster center
9: else

10: Reject xk as a cluster center
11: Pk ← 0
12: Select the object with the next highest potential

as the new xk and re-test
13: end if
14: end if

analogical proportions Cǫ, setting a and b in terms of ǫ may help us get close to this
aim. Let us recall that Equation 3.2 (page 93) computes the potential of xi to be a
cluster center in terms of its neighboring objects. The closer a point xj is to xi, the
more xj makes Pi increase. However, as we want clusters with a maximum intra-cluster
distance not bigger than ǫ, if the distance between xi and xj is bigger than ǫ, then we
do not want xj to contribute at all to the potential Pi of xi. Thus, Equation 3.2 may
be redefined as follows:

Pi =

n
∑

j=1
|xi−x∗

1‖≤2ǫ

e−α‖xi−xj‖2 (3.4)

Similarly, we may modify Equation 3.3 to meet our goals: let xj be an object already
defined as a cluster center, and let us denote its cluster as cj . Then, we would like all
the objects xk such that dist(xj , xk) ≤ ǫ to belong to cluster cj . Let xi be another
point whose potential has to be computed. In order to be sure that none of the points
belonging to cj will be close to xi with a distance equal or smaller than ǫ, the distance
between xi and xj has to be bigger or equal to 2ǫ. If this is the case, the point xj should
not have any impact over xi. We redefine Equation 3.3 in consequence:

Pi =

{

Pi − P ∗
1 e

−β‖xi−x∗

1|
2

if |xi − x∗1‖ ≤ 2ǫ

Pi otherwise
(3.5)

Finally, we also modify Algorithm 5. The modified version is shown in Algorithm
6. The essential difference between this algorithm and the original, is that this time,

96 chapter 3

for an object xi to be considered as a cluster center, its minimal distance to any of the
cluster centers has to be bigger than a factor θǫ. We propose to use small values for θ,
such as 2, 1, or 0.5.

Algorithm 6 Stop condition of the Algorithm by Chiu (Modified)
1: if Pk < ǫP1 then
2: Reject xk as a cluster center and end the clustering process
3: return False
4: else
5: Let dmin be the shortest distance between xk and

all previously found cluster centers
6: if dmin ≤ θǫ then
7: reject xk as a cluster center
8: Pk ← 0
9: else

10: if Pk > ǫP1 then
11: Accept xk as a cluster center
12: else

13: if
dmin

a
+

Pk

P1
≥ 1 then

14: Accept xk as a cluster center
15: else
16: Reject xk as a cluster center
17: Pk ← 0
18: Select the object with the next highest potential

as the new xk and re-test
19: end if
20: end if
21: end if
22: end if

Handling the intra-cluster distance in a k-means processing The third draw-
back we mentionned about k-means, i.e., the fact that it is sensitive to outliers and it
tends to create sparse clusters, is problematic for our purposes since the cluster based
representation of analogical proportions (introduced in page 92) requires a maximal dis-
tortion ǫ between pairs of vectors to consider that they validate an analogical proportion.
The k-means algorithm does not control the intra-cluster distances of its created clusters.

In order to guarantee that the maximum intra-cluster distance of each cluster is
smaller than ǫ, we can modify Algorithm 4 and add the condition that a point xi can be
added to a cluster with centroid ctj, only if the distance between xi and ctj is smaller
than ǫ

2 . This approach is detailed in Algorithm 7.

Mining Analogical Proportions and Ratios 97

Algorithm 7 Clustering Algorithm keeping intra-cluster distance smaller than ǫ

Require: Dataset D: x1, ..., xn,
Cluster centers Pi, ..., Pk (Output of the Chiu Algorithm)

1: for xi ∈ D do
2: Let Pj be the closest centroid to xi
3: if ‖xi − Pj‖ ≤ ǫ/2 then
4: Let cj be the cluster with centroid Pj

5: cj ← cj ∪ xi
6: else
7: xi is considered as an outlier
8: end if
9: end for

10: return c1, ..., ck

In summary, we have two versions of the k-means Algorithm: (i) the original (Al-
gorithm 4), and (ii) its variant controlling the intra-cluster distance (Algorithm 7). We
also have two versions of the method by Chiu: (i) the original method, i.e., the one that
uses Equations 3.2 and 3.4, plus Algorithm 5; and (ii) its modified version, i.e., the one
using Equations 3.4 and 3.5, plus Algorithm 6. Let us denote by k-means the version
(i) of the k-means method; by k-means-mod the version (ii) of the k-means methods;
by Chiu the version (i) of the method by Chiu; and finally, by Chiu-mod the version
(ii) of the method by Chiu. We have then four possible combinations of these methods,
shown below:

• Chiu with k-means

• Chiu-mod with k-means

• Chiu with k-means-mod

• Chiu-mod with k-means-mod

As we have already seen, the first two of these combinations do not control the in-
tra-cluster distances of the created clusters. This problem is handled by the last two of
these combinations, but they may consider some points (those whose minimal distance
to every cluster centers is bigger than a value ǫ) as outliers. We recall that the objective
of this section is to obtain all the connected analogical proportions in a dataset, or at
least a big number among them. In order to simultaneously control the intra-cluster
distances of the created clusters, and to not discard any object belonging to a dataset,
i.e., to consider it as an outlier, we have considered the use of a grid-based clustering
algorithm, explained hereafter.

98 chapter 3

A grid-based clustering In order to tackle the problems raised by the partition clus-
tering algorithms, we propose to cluster our objects using a grid-clustering algorithm.
Grid-based methods partition the data space into a finite number of cells to form a grid
structure and then form clusters from the cells in the grid structure [AR13].

Let us explain how our approach works. Given a value ǫ which can be considered a
cell size, every object may be assigned to its corresponding cell according to ǫ. The cell
to which each object is assigned is determined in the following way: Let us denote by
lv = [min,max] the ǫ-range of a certain value v. The range lv of a value v, according
to a cell size ǫ is determined as follows:

lv =

{

[int((v/ǫ) ∗ ǫ), int((v/ǫ) ∗ ǫ) + ǫ] if v ≥ 0

[int((v/ǫ) ∗ ǫ)− ǫ, int((v/ǫ) ∗ ǫ)] if v < 0
(3.6)

For instance, the ǫ-range of 0.45 with ǫ = 0.1, is [0.4, 0.5]. Each n-dimensional object
x = {x1, ..., xn}, will be assigned to the cell with ǫ-ranges {l1, ..., ln}, where li is the
ǫ-range of the value xi

The steps of the processing are shown in Algorithm 8. It receives an initial cell size
ǫ. For each point xi of the dataset, its ǫ-ranges are computed (line 2), and if a cell
with these ǫ-ranges already exists, xi is assigned to it (lines 3 to 5). Otherwise, the cell
is created and xi is assigned to it (lines 6 to 11 of the Algorithm). Usually, the grid-
based methods use a multiresolution grid data structure [HKP11a]. Those grids with
a high density are partitioned, as is the case of the CLIQUE method [AGGR99]. The
method we propose can be considered as a simpler version of a grid-based clustering,
as it uses just one resolution for creating the grids. In fact, it may be considered as a
multi-dimensional index.

Algorithm 8 Grid-based algorithm
Require: Density den, ǫ
1: for each point xi do
2: l← ǫ-ranges(xi)
3: if cell c with range l and precision ǫ exists then
4: c← c ∪ xi
5: else
6: create c
7: c← xi
8: c.range = l
9: end if

10: end for
11: return Set of clusters ci

We are now able to propose an approach that allows to extract analogical propor-

Mining Analogical Proportions and Ratios 99

tions by means of this type of clustering. The following approaches are not so different
the cluster based representation of analogical proportions (page 92). In this case, we
just have to replace the notion of intra-cluster distance by the notion of cell size. Since
this kind of clustering creates m-dimensional cubes, where m is the number of dimen-
sions of each object from the dataset, the definition of analogical proportion depends
on the used norm. In page 99, we define analogical proportions in terms of the infinity
norm, and analogical proportions in terms of the p-norm. The difference resides in the
fact that when using an infinity norm, the maximal distance between two objects inside
a cell is just the cell size, while when using a p-norm, their maximal distance is the
length of the diagonal connecting one extreme of the grid with the other.

Analogical Proportion in terms of a grid-clustering based on the infinity
norm Let S be a set of tuples. Let −→u and −→v be vectors ∈ S2, and let us say that
(−→u ,−→v) represents an analogical proportion if ad∞(−→u ,−→v) ≤ ǫ. Let us suppose that a
grid-clustering algorithm has been executed over S. Let us denote by size the size of a
cell c. If size ≤ ǫ, then all the pairs of vectors −→u and −→v belonging to c are in analogical
proportion.

Analogical Proportion in terms of a grid-clustering based on the p-norm
Let S be a set of tuples. Let −→u and −→v be vectors ∈ S2, and let us say that (−→u ,−→v)
may represent an analogical proportion if adp(

−→u ,−→v) ≤ ǫ. Let us suppose that a grid-
clustering algorithm has been executed over S. Let us denote by size the size of a cell
c, and m its number of dimensions. Then, all the pairs of vectors −→u and −→v belonging
to c are in analogical proportion if

(
∑

i∈{i,...,m}

sizep)1/p ≤ ǫ

We shall now move to the experimentation aimed to compare the different ap-
proaches introduced in this section.

100 chapter 3

3.2.3 Experimentation

The experimentation described hereafter mainly aims to illustrate the proportion of
valid analogical proportions we can obtain from different datasets. What we want is
to represent analogical proportions by means of clusters. We thus want all the pairs of
vectors belonging to the same cluster to be in analogical proportion according to some
degree ǫ that we give as input to the evaluated methods. Additionally, we want these
clusters to contain the maximum possible number of analogical proportions, according
to the valid ones that exist in the dataset. The objective of our experiments is thus to
count the number of analogical proportions we can obtain by each evaluated method,
and the number of obtained false positives, i.e., pairs of vectors belonging to the same
cluster, but not validating an analogical proportion according to some value ǫ.

The approaches we compare are those introduced in the last section, shown below:

• Chiu with k-means

• Chiu-mod with k-means

• Chiu with k-means-mod

• Chiu-mod with k-means-mod

• grid-based method

In the case of the Chiu-mod method, we tested different values of θ. Recall from
Algorithm 6 (page 96), that this θ value is used for determining whether a cluster center
is accepted or rejected.

We used three different datasets. The first of them corresponds to a bi-dimensional
synthetic dataset of randomly generated values. The second corresponds to death causes
in Europe, such as cancer or AIDS, aggregated by country2. The third corresponds to
the first round of the French presidential elections in the years 2007 and 20123. Let us
first explain what kind of analogical proportion we are looking for in each case.

In the case of the first dataset, we consider that each tuple already represents a vec-
tor, and then we want to obtain the pairs of vectors such that their distance is smaller
than a given ǫ value. Our aim in this case is to evaluate how our approach performs
when dealing with random generated data.

For the French Presidential election, we used the percentage of votes for 5 polit-
ical parties (Les verts, National Front, UMP, Lutte ouvrière, and Socialist Party) in
the first round of 2007 and 2012. Each vector will thus represent the evolution of a

2http://www.ecosante.fr
3http://www.data.gouv.fr/fr/datasets

Mining Analogical Proportions and Ratios 101

French department, from 2007 to 2012, in terms of votes for each of these parties. For
example, if the votes of the department of Paris for 2007 and 2012 are respectively
〈2.56, 0.17, 31.75, 4.58, 35.07〉 and 〈4.18, 0.27, 34.83, 6.2, 32.19〉, the vector representing
this region will be 〈1.62, 0.1, 3.08, 1.62,−2.88〉. Analogical proportions will be repre-
sented in this case by the pairs of department expressing the same voting evolution
from 2007 to 2012.

The third dataset contains statistics about the number of deaths (for 100,000 in-
habitants) for each cause retained, but this time aggregated by European country. In
this case, we want to obtain the quadruples of countries (a, b, c, d) such that a is to b as
c is to d regarding the number of deaths due to homicides for males and females. For
instance, if the numbers of deaths for homicide in Greece and Italy were respectively
〈2.63, 0.52〉 and 〈0.98, 0.35〉, the vector representing the difference between these two
countries would be 〈−1.65,−0.17〉.

The size of the dataset with random data is 200. The size of the dataset related
to the French presidential elections is 122 (number of départements in France). The
third dataset corresponds to 33 European countries, but as we are comparing pairs of
countries, the size of the dataset used in the experiments is (33 ∗ 32) = 1056.

For each dataset, we tested different values of ǫ: 0.1, 0.2, and 0.3. For each method,
we count the number of analogical proportions and false positives obtained from all the
clusters. We use in each case the same notation x/y, where x represents the number of
analogical proportions, and y the number of false positives.

The results related to the deaths dataset are shown in Table 3.5. The total numbers
of valid analogical proportions are 76766, 110838, and 130427, for ǫ values of 0.1, 0.2,
and 0.3 respectively.

Table 3.5: Results for the deaths dataset
0.1 0.2 0.3

Chiu+k-means 36476/22808 42279/10195 50180/2104
Chiu-mod+k-means, θ = 0.5 36018/17919 110838/46242 99460/96
Chiu-mod+k-means, θ = 1 49573/10973 110838/46242 116257/12095
Chiu-mod+k-means, θ = 2 76766/80314 110838/46242 130427/26653

Chiu+k-means-mod 19694/0 36606/0 37063/0
Chiu-mod+k-means-mod, θ = 0.5 24281/0 80601/0 97447/0
Chiu-mod+k-means-mod, θ = 1 33011/0 80601/0 104965/0
Chiu-mod+k-means-mod, θ = 2 29191/0 80601/0 103740/0

grid-based method 33161/0 74381/0 102041/0

Let us analyze the case when ǫ = 0.1. Let us first analyze the results obtained by
the method combining Chiu-mod and k-means, with a value of 1 for θ. It obtained

102 chapter 3

a 64% of the total of analogical proportions ((49573/76766)*100). In this case, three
clusters were obtained. In Table 3.6 the centroid of each cluster is exposed.

Table 3.6: Structure used by the cluster-based method
cluster homicides-h homicides-f

0 0.478 0.47
1 0.4 0.367
2 0.58 0.55

Cluster 0 has 219 elements, cluster 1 has 150 elements, and cluster 2 has 120 elements.
The centroid of cluster 0 represents the vector between the pair of countries (Czech
Republic, Italy); the centroid of cluster 1 represents the vector between the pair of
countries (Spain, Finland); and that of cluster 2 represents the vector between the pair
of countries (Hungary, Portugal). A plot of this clustering is shown in Figure 3.3, where
the black color corresponds to cluster 0, the blue color to cluster 1, and the grey color
to cluster 2.

Figure 3.3: Image of the clustering combining k-means with Chiu-mod over the death
dataset with ǫ = 0.1

Let us also analyze the results of the grid-based clustering, which among the meth-
ods that did not obtain any false positive, was the one with the highest number of
valid analogical proportions. It obtained a 43% of the total of analogical proportions
((33161/76766)*100). In this case, twenty-nine clusters were obtained. In Table 3.7 the
centroid of the five clusters with more elements is exposed.

Cluster 0 has 233 elements, cluster 1 has 150 elements, cluster 3 has 45 elements,

Mining Analogical Proportions and Ratios 103

Table 3.7: centroid of some clusters obtained by the grid-based method over the death
dataset

cluster homicides-h homicides-f

0 0.45 0.45
1 0.55 0.55
3 0.55 0.45
2 0.35 0.35
3 0.15 0.25

cluster 2 has 30 elements, and cluster 5 has 17 elements. Let us mention examples of
pairs of countries found in each of these cluster. We can find the pair (Belgium, Austria)
in cluster 0, the pair (Italy,Portugal) in cluster 1, the pair (Hungary,Sweeden) in cluster
3, the pair (Spain, Lithuania) in cluster 2, and the pair (Ireland, Norway) in cluster 4.
A plot of this clustering is shown in Figure 3.4. Figure 3.5 shows a zoom of the image
of the same clustering.

Figure 3.4: Image of the grid-based clustering over the death dataset with ǫ = 0.1

Let us move now to the case where ǫ = 0.2. Let us analyze the method combining
Chiu-mod and k-means-mod. It obtained the same results for the values for θ of 0.5,
1, and 2. It obtained a 72% of the total of analogical proportions (80601), and 0 false
positives. In this case, just one cluster was obtained. The centroid of this cluster is
represented by the vector 〈−0.02,−0.01〉, which represents the vector between the pair
of countries (Italy, Liechtenstein). A plot of this clustering is shown in Figure 3.6, where
the circles corresponds to the elements that were clusterized, and the × symbol to the
elements considered as outliers.

104 chapter 3

Figure 3.5: Zoom of the image of the grid-based clustering over the death dataset with
ǫ = 0.1

Figure 3.6: Image of the clustering combining k-means-mod with Chiu-mod over the
death dataset with ǫ = 0.2

The fact that this method implements the modified version of the algorithm by
Chiu in order to find the cluster centers (Algorithm 6, page 96), the distribution of this
dataset, and the high value for ǫ (0.2), cause this approach to obtain only one cluster.

Mining Analogical Proportions and Ratios 105

As shown in Figure 3.6, the created cluster is placed in the center of the dataset, where
one can find a high proportion of points. Away from the center of this dataset, there
are few points, and so the probability of one of those points to obtain a potential value
highly enough to be considered as a cluster center (in the terms of Chiu), is low.

The results related to the French Presidential elections are shown in Table 3.8. The
total number of analogical proportions are 1080, 3184, and 4135, for ǫ values of 0.1, 0.2,
and 0.3 respectively.

Table 3.8: Presidential Elections
0.1 0.2 0.3

Chiu+k-means 236/253 1262/314 2081/393
Chiu-mod+k-means, θ = 0.5 399/382 1547/589 2551/529
Chiu-mod+k-means, θ = 1 572/516 2453/979 3271/385
Chiu-mod+k-means, θ = 2 1080/4485 3184/2381 4135/1430

Chiu+k-means-mod 87/0 733/0 1491/0
Chiu-mod+k-means-mod, θ = 0.5 148/0 975/0 1987/0
Chiu-mod+k-means-mod, θ = 1 126/0 1045/0 2551/0
Chiu-mod+k-means-mod, θ = 2 78/0 990/0 2485/0

grid-based method 89/0 255/0 2073/0

Let us analyze the results obtained by the method combining Chiu-mod and k-means
with a θ value of 1 when ǫ = 0.1. In this case, a 53% of the analogical proportions were
obtained ((572/516)*100). Six clusters were obtained. In Table 3.9 the centroid of each
cluster is exposed.

Table 3.9: Centroids of the clustering performed by the combinations of Chiu-mod and
k-means over the presidential dataset. The column cluster makes reference to the id. of
each cluster. The columns LV, NF, UMP, LO, and SP show the values of each centroid
for the parties named Les Verts, National Front, Lutte Ouvrière, and Socialist Party,
respectively.

cluster LV NF UMP LO SP
0 0.75 0.645 0.43 0.8 0.4
1 0.76 0.63 0.44 0.9 0.38
2 0.8 0.67 0.44 0.64 0.47
3 0.68 0.67 0.37 0.68 0.43
4 0.61 0.65 0.36 0.96 0.37
5 0.72 0.63 0.33 0.827 0.39

The cluster 0 has 30 elements; the cluster 1, 11; the cluster 2, 28; the cluster 3, 16;
the cluster 4, 11; and the cluster 5, 10. The centroid of the clusters 0, 1, 2, 3, 4, and 5
represent respectively the french departments Savoie, Aube, Nievre, Loire, Vienne, and

106 chapter 3

Hautes Alpes. The plot of the clustering is shown in Figure 3.7.

Figure 3.7: clustering of the presidential elections dataset when combining the Chiu-
mod method (with θ = 0.5) and the k-means-mod method. The elements belonging to
clusters 0, 1, 2, 3, 4, and 5 are represented by the colors black, blue, grey, green, purple,
and yellow, respectively.

The results related to the synthetic dataset are shown in Table 3.10. The total num-
ber of analogical proportions are 695, 2569, and 5130, for ǫ values of 0.1, 0.2, and 0.3
respectively. We can observe that for the three values of ǫ, the best results are obtained
by the method combining Chiu-mod and the k-means method. In Figure 3.8, we can
observe the clustering performed by the grid-based method over the synthetic dataset
with ǫ = 0.2. Each cluster is represented by a color.

Table 3.10: Results for the synthetic dataset
0.1 0.2 0.3

Chiu+k-means 519/1232 1187/350 2205/219
Chiu-mod+k-means, θ = 0.5 519/1232 1178/306 2029/96
Chiu-mod+k-means, θ = 1 538/1247 1521/414 2767/697
Chiu-mod+k-means, θ = 2 597/1232 1837/1656 5130/14571

Chiu+k-means-mod 65/0 398/0 1023/0
Chiu-mod+k-means-mod, θ = 0.5 65/0 433/0 1062/0
Chiu-mod+k-means-mod, θ = 1 65/0 386/0 1045/0
Chiu-mod+k-means-mod, θ = 2 53/0 238/0 325/0

grid-based method 193/0 782/0 1515/0

In summary, the methods that provide the largest number of analogical proportions are
those combining the modification of the method by Chiu, and the modification of the
k-means methods. With a crisp clustering method such as k-means, it is not plausible

Mining Analogical Proportions and Ratios 107

Figure 3.8: Image of the grid-based clustering over the synthetic dataset with ǫ = 0.2

to obtain all the analogical proportions existing in a dataset. There can always be
pairs of vectors belonging to different clusters, but validating an analogical proportion.
However, The use of the method by Chiu allowed us to detect the most representative
vectors. The representation of each obtained cluster by means of its medoid allows us
to show the tendencies of the dataset.

From the introduced clustering methods in this section, the only one that does not
generate any outliers is the grid-based method. Even though this method does not allow
us to detect the most representative elements (or vectors) of a dataset, the fact that
it does not generate any outliers will be essential for the works presented in the next
section, where we will perform analogical queries. The aim of the analogical queries
is to obtain all elements from a dataset validating an analogical proportion. This is
the reason why we need a clustering algorithm that assigns each element to at least
a cluster. We will provide the different types of analogical queries, and the strategies
proposed to answer each type of query.

108 chapter 3

3.3 Analogical Queries

The general idea underlying what we call “analogical queries” is to retrieve from a rela-
tion those tuples that are involved in an analogical proportion. Five kinds of analogical
queries may be thought of:

1. find the tuples in analogical proportion on a given set Aσ of attributes, i.e., find
the quadruples (ta, tb, tc, td) such that ta.Aσ : tb.Aσ :: tc.Aσ : td.Aσ holds with a
validity degree at least equal to a specified threshold λ;

2. find the tuples that are in analogical proportion with a given tuple ta on a given
set Aσ of attributes, i.e., find the triples (tb, tc, td) such that ta.Aσ : tb.Aσ ::
tc.Aσ : td.Aσ holds with a validity degree at least equal to a specified threshold λ;

3. find the pairs of tuples that are in analogical proportion with two given tuples ta
and tb on a given set Aσ of attributes: in other words, find the pairs (tc, td) such
that ta.Aσ : tb.Aσ :: tc.Aσ : td.Aσ holds with a validity degree at least equal to a
specified threshold λ;

4. find the tuples that form an analogical proportion with three given tuples ta, tb,
and tc on a given set Aσ of attributes: in other words, find the td’s such that
ta.Aσ : tb.Aσ :: tc.Aσ : td.Aσ holds with a validity degree at least equal to a
specified threshold λ;

5. find the extent to which an analogical proportion between four given tuples
(ta, tb, tc, td) on a given set Aσ of attributes is true, i.e., compute 1−ad(

−−→
tatb,

−→
tctd)

4.

From a syntactic point of view, an analogical query must specify i) the relation con-
cerned and the attributes to be returned; ii) the attributes on which the analogical
proportion must hold; ii) the threshold considered. Hereafter, we use a syntax à la SQL
for expressing the five types of queries listed above.

Type 1: find x, y, z, t projected on Aπ

from r
where (x is to y) as (z is to t) according to Aσ

with threshold λ

where the set of attributes Aπ is assumed to include a key of r (in order to identify the
objects that are involved in the analogical proportion) and Aα is the set of attributes
on which the analogical proportion must hold.

Type 2: find x, y, z projected on Aπ

from r
where (x is to y) as (z is to K = k1) according to Aσ

with threshold λ

4This is only valid for the infinity norm. For the p norm, one has to use 1− ad(
−−→
tatb,

−−→
tctd)

2∗n1/p

Analogical Queries 109

where K is assumed to be the key of relation r.

Type 3: find x, y projected on Aπ

from r
where (x is to y) as (K = k1 is to K = k2) according to Aσ

with threshold λ.

Type 4: find x projected on Aπ

from r
where (x is to K = k1) as (K = k2 is to K = k3)
according to Aσ

with threshold λ.

Type 5: find validity in r
of (K = k1 is to K = k2) as (K = k3 is to K = k4)
according to Aα.

In the following subsection, we describe three evaluation strategies suited to analogical
queries. We do not analyze the Type 5 queries since for solving them we just have to
select four tuples ta, tb, tc, and td, and compute 1− ad(

−−→
tatb,

−−→
tc, td).

3.3.1 Query Processing

Three strategies are presented hereafter: i) a “naive” one based on nested loops (Sec-
tion 3.3.1.1); ii) a method exploiting classical indexes on some attributes involved in
the analogical proportion targeted (Section 3.3.1.2); iii) a strategy exploiting an index
structure referencing clusters of tuples in analogical proportion (Section 3.3.1.3). In the
following, it is assumed that the attribute values are normalized (cf. Equation 3.1, page
84) and the definition of analogical dissimilarity ad is based on the infinity norm (cf.
Equation 4, page 84). Then, the validity of the analogical proportion (x : y :: z : t) is
defined as 1− ad(−→xy,

−→
zt) and it belongs to the interval [0, 1]. The more 1− ad(−→xy,

−→
zt)

is close to 1, the more the analogical proportion is satisfied. In consequence, our aim is
to obtain all the quadruples of objects such (x, y, z, t) such that 1− ad(−→xy,

−→
zt) ≥ α.

3.3.1.1 Naive Strategies

The naive evaluation strategy relies on sequential scans of the relation, using nested
loops. This kind of queries perform a number of nested loops equal to the number of
variables. The type 1 query, for instance, involves four variables, and then has four
nested loops leading to a complexity in θ(n4) where n is the cardinality of the relation
concerned. The algorithms for queries of type 1, 2, 3, and 4 are shown in Algorithm 9,
10, 11, and 12, respectively.

110 chapter 3

Algorithm 9 Naive algorithm for type 1 queries
Require: λ
1: for each tuple ta of r do
2: for each tuple tb of r do
3: for each tuple tc of r do
4: for each tuple td of r do
5: if 1− ad(

−−→
tatb,

−→
tctd) ≥ λ then

6: S := S ∪ {(ta, tb, tc, td)}
7: end if
8: end for
9: end for

10: end for
11: end for
12: return S

Algorithm 10 Naive algorithm for type 2 queries
Require: ta, λ
1: for each tuple tb of r do
2: for each tuple tc of r do
3: for each tuple td of r do
4: if 1− ad(

−−→
tatb,

−→
tctd) ≥ λ then

5: S := S ∪ {(tb, tc, td)}
6: end if
7: end for
8: end for
9: end for

10: return S

Algorithm 11 Naive algorithm for type 3 queries
Require: ta, tb, λ S ← ∅;
1:

2: for each tuple tc of r do
3: for each tuple td of r do
4: if 1− ad(

−−→
tatb,

−→
tctd) ≥ λ then

5: S := S ∪ {(tc, td)}
6: end if
7: end for
8: end for
9: return S

Analogical Queries 111

Algorithm 12 Naive algorithm for type 4 queries
Require: ta, tb, tc, λ S ← ∅;
1:

2: for each tuple td of r do
3: if 1− ad(

−−→
tatb,

−→
tctd) ≥ λ then

4: S := S ∪ {(td)}
5: end if
6: end for
7: return S

112 chapter 3

3.3.1.2 Classical-Index-Based Strategy

The idea, here, is to exploit a property of the infinite norm in order to limit the number
of disk accesses. Suppose we have already found a vector

−−→
ta, tb, formed from the objects

ta and tb, and we aim to find another vector −→xy such that:

ad∞(−→xy,
−−→
tatb) ≤ 1− λ (3.7)

where ta (resp. tb) is the tuple whose key is equal to k1 (resp. k2). Let us denote:
−−→
tatb = 〈u1, u2, . . . , up〉. Tuple x (resp. y) is represented by 〈x1, x2, . . . , xp〉 (resp.
〈y1, y2, . . . , yp〉). Thus, −→xy = 〈y1 − x1, y2− x2, . . . , yp− xp〉. According to Equation 4
(page 85), we have:

(3.7)⇔ maxi∈{1,...,p}|u
∗
i − (y∗i − x∗i)| ≤ 1− λ

⇔ ∀i ∈ {1, . . . , p}, |u∗i − (y∗i − x∗i)| ≤ 1− λ.
(3.8)

where x∗i (resp. u∗i) represents the normalized value of attribute Ai in the tuple x (resp.
u), cf. Formula 3.1. Now, let us consider an attribute Ak of domain [mink, maxk]. We
have:

(3.7)⇒
|uk − (yk − xk)|

maxk −mink
≤ 1− λ⇒ |uk − (yk − xk)| ≤ 1− λ′ (3.9)

where λ′ = λ ∗ (maxk −mink). Then:

(3.7)⇒ uk − 1 + λ′ + xk ≤ yk ≤ uk + 1− λ′ + xk. (3.10)

Now, if one is to look for a pair of objects, and one has available an index Ik on at-
tribute Ak, one may improve the processing speed of a query. The idea is to first filter
(using the index) the pairs of tuples so as to retain those which satisfy the analogical
proportion on attribute Ak, then to scan these pairs and check the analogical proportion
on the other attributes from Aα. The steps of this processing are shown in Algorithm 13.

If several attributes are indexed, the potential gain is even more important. Let us
denote by Ind the set of attributes for which an index is available. One builds H3i for
all i such that Ai ∈ Ind . Then, one computes the intersection of these sets, one accesses
the corresponding pairs of tuples and one checks whether the condition corresponding
to Equation 3.10 holds for the remaining attributes. If so, the pair of tuples is added
to the result.

This algorithm can be directly applied to the naive strategies introduced in Section
3.3.1.1. In the case of the queries of type 1, 2, one just has to get the first two tuples ta
and tb, and then apply Algorithm 13 to get tc and td. For instance, the type 1 strategy
using indexes may be as shown in Algorithm 14. In the case of the type 3 queries,
Algorithm 13 may be directly applied since the tuples ta and tb are given as input.

Analogical Queries 113

Algorithm 13 Index-based algorithm for queries of type 1, 2, and 3
Require: ta, tb, λ
1: S ← ∅;
2: for each entry v of Ik do
3: H1k := set of tuple addresses associated with v;
4: for each entry v′ of Ik s.t. uk − 1 + λ′ + v ≤ v′ ≤ uk + 1− λ′ + v do
5: H2k := set of tuple addresses associated with v′;
6: H3k := H3k ∪ (H1k ×H2k);
7: end for
8: end for
9: Aβ ← Aα −Ak;

10: S ← {(tc, td) ∈ H3k | ad(
−−−−−−−→
ta.Aβ tb.Aβ ,

−−−−−−−→
tc.Aβ td.Aβ) ≤ 1− λ};

11: return S

Algorithm 14 Algorithm for type 1 queries using indexes
Require: λ
1: for each tuple ta of r do
2: for each tuple tb of r do
3: Execute Algorithm 13 giving as input ta, tb, and λ
4: end for
5: end for
6: return S

In the case of the type 4 queries, since one only has to find the last tuple of a pro-
portion, i.e., td, the steps of the processing may be simpler than in the previous cases.
In this case, once one has chosen three tuples ta, tb, and tc, and wants to find the last
one td such that these tuples are in analogical proportion, then one may use Algorithm
15 in order to make use of indexes.

Algorithm 15 takes as input the tuples ta, tb, and tc, plus a λ value. Let us say we
are treating the attribute Aβ. Since we know

−−−−−−−→
ta.Aβtb.Aβ and tc.Aβ , we can estimate

the range of a value td.Aβ such that 1− ad(
−−−−−−−→
ta.Aβtb.Aβ ,

−−−−−−−→
tc.Aβtd.Aβ) ≤ λ. This range is

−−−−−−−→
ta.Aβtb.Aβ − 1 + λ+ tc.Aβ ≤ v′ ≤

−−−−−−−→
ta.Aβtb.Aβ + 1− λ+ tc.Aβ

114 chapter 3

Algorithm 15 Index-based algorithm for type 4 queries
Require: ta, tb, tc, λ
1: S ← ∅;
2: H3k ← ∅;
3: for each entry v′ of Ik s.t. uk − 1 + λ′ + tc.k ≤ v′ ≤ uk + 1− λ′ + tc.k do
4: H2k ← set of tuple addresses associated with v′;
5: H3k ← H3k ∪H2k;
6: end for
7: Aβ ← Aα −Ak;

8: S ← {td ∈ H3k | ad(
−−−−−−−→
ta.Aβ tb.Aβ ,

−−−−−−−→
tc.Aβ td.Aβ) ≤ 1− λ};

9: return S

Analogical Queries 115

3.3.1.3 Cluster-Based Strategy

In this section, we explain how to exploit the results obtained in Section 3.2.2.2. The
idea is to cluster all the vectors existing in a dataset, and then use the created clusters
to solve the analogical queries.

In order to comply with the requirements introduced in Section 3.3, we have to
assume that it is not plausible that all the pair of vectors −→u and −→v , such that 1 −
ad(−→u ,−→v) ≥ λ belong to the same cluster. We must face the case where −→u and −→v
belong to two different clusters.

Therefore, all the strategies presented in the following obey almost the same prin-
ciple: look for the pairs of vectors belonging to the same cluster and satisfying an
analogical proportion, and then look for the pairs of vectors belonging to different clus-
ters and satisfying an analogical proportion.

Let us explain how we organize the data in order to take profit of the created clus-
ters. We propose to have an access to the clusters through a relation ClusterTable (see
Table 3.11) whose key is denoted by cid. Each tuple of this relation represents an ele-
ment in the cluster identified by cid.

Table 3.11: Table ClusterTable
cid x y

1 rowid1 rowid2
1 rowid5 rowid6
1 rowid4 rowid9
2 rowid1 rowid3
2 rowid7 rowid10
3 rowid6 rowid7

We also assume thepresence of two other tables. The first one, named Max_ad_Table,
gives the maximum intra-cluster distance inside a cluster, plus its centroid (Shown in
Table 3.12 of schema (cid, intra, a1..., an), where n is the number of dimensions). The
second gives the minimal inter-cluster distance between the elements of every pair of
clusters (Table Min_ad_Table of schema (cid1, cid2, min_ad)).

Table 3.12: Table Max_ad_Table
cid intra a1 a2
0 0.2 0.5 0.1
1 0.2 0.3 0.3
3 0.2 0.3 0.5

116 chapter 3

Type 1 Queries Let us consider the query, “find the quadruples of tuples (ta, tb, tc, td)
that are in analogical proportion with a validity degree at least equal to λ”. The differ-
ent steps of the processing are exposed in Algorithm 16 (page 116). We first look inside
each cluster. Let c be the first cluster to be checked (line 1 of the algorithm). Then, if
(1−λ) — which corresponds to the maximal dissimilarity value accepted by the user—
is greater than the maximal dissimilarity value associated with the cluster, every pair
of couples of tuples present in the cluster belongs to the answer (lines 3 and 4 of the
algorithm). In the opposite case, the pairs of tuples in the cluster must be filtered so as
to retain only the satisfactory ones (line 7 of the algorithm). Once we have obtained all
the analogical proportions inside each cluster, we look for the pairs of clusters c1 and c2
such that their minimal inter-cluster distance is equal or smaller than (1 − λ), and we
look for the pairs of couples of objects, one belonging to c1 and the other to c2, with a
distortion smaller than 1− λ (lines 13 to 18 of the Algorithm).

Algorithm 16 Cluster-based algorithm for type 1 queries
Require: λ
1: S ← {};
2: C ← select cid from ClusterTable;
3: for each c in C do
4: max← = select maxdist from Max_ad_Table where cid = c;
5: if max ≤ 1− λ then
6: select x, y from ClusterTable where cid = c ;
7: select c, d from ClusterTable where cid = c and (x, y) 6= (c, d)
8: S ← S ∪ (x, y, c, d);
9: else

10: select x, y from ClusterTable where cid = c ;
11: select c, d from ClusterTable where cid = c and

(x, y) 6= (c, d) and ad(x, y, c, d) ≤ 1− λ;
12: S ← S ∪ (x, y, c, d);
13: end if
14: end for
15: C ′ ← (select cid1, cid2 from Min_ad_Table where min_ad ≤ 1− λ);
16: for each c′ in C ′ do
17: select x, y from ClusterTable where cid = c′.cid1
18: select c, d from ClusterTable where cid = c′.cid2

and ad(x, y, c, d) ≤ 1− λ;
19: S ← S ∪ (x, y, c, d);
20: end for
21: return S;

Type 2 Queries The different steps of the processing in this case are shown in Algo-
rithm 17. The steps of the processing of the type 2 queries are highly similar to the type

Analogical Queries 117

1 queries. The only difference is that in each step, we check if each of the quadruples
added as an answer contains the tuple ta (which is given as input) at least once.

Algorithm 17 Cluster-based algorithm for type 2 queries
Require: ta, λ
1: S ← {};
2: C ← select cid from ClusterTable;
3: for each c in C do
4: max← = select maxdist from Max_ad_Table where cid = c;
5: if max ≤ 1− λ then
6: select x, y from ClusterTable where cid = c and x = rowid(ta) ;
7: select c, d from ClusterTable where cid = c and (x, y) 6= (c, d)
8: S ← S ∪ (x, y, c, d);
9: else

10: select x, y from ClusterTable where cid = c and x = rowid(ta) ;
11: select c, d from ClusterTable where cid = c and

(x, y) 6= (c, d) and ad(x, y, c, d) ≤ 1− λ;
12: S ← S ∪ (x, y, c, d);
13: end if
14: end for
15: C ′ ← (select cid1, cid2 from Min_ad_Table where min_ad ≤ 1− λ);
16: for each c′ in C ′ do
17: select x, y from ClusterTable where cid = c′.cid1 and x = rowid(ta)
18: select c, d from ClusterTable where cid = c′.cid2

and ad(x, y, c, d) ≤ 1− λ;
19: S ← S ∪ (x, y, c, d);
20: select x, y from ClusterTable where cid = c′.cid2 and x = rowid(ta)
21: select c, d from ClusterTable where cid = c′.cid1

and ad(x, y, c, d) ≤ 1− λ;
22: S ← S ∪ (x, y, c, d);
23: end for
24: return S;

Type 3 queries We recall that the type 3 queries are of the type “find the pairs of
tuples that are in analogical proportion with (ta, tb), with a validity degree at least equal
to λ = 0.3”. In this case, we consider two types of strategies for answering such queries:
the first uses the table containing the minimal inter-cluster distance between each pair
of clusters, and the second uses the table containing the maximal intra-cluster distance
inside each cluster plus its centroid.

The first strategy is exposed in Algorithm 18 (page 119). It looks for the cluster
c containing the vector formed from the pair of tuples ta and tb, and looks inside this

118 chapter 3

cluster for the pairs of tuples x and y such that the quadruple (ta, tb, x, y) is in ana-
logical proportion (lines 1 to 8 of the Algorithm). Then, it looks for the clusters ci
such that their minimal inter-cluster distance with respect to the first cluster, i.e., c is
equal or smaller than 1−λ. It then looks inside each cluster ci for the pairs of tuples x
and y validating an analogical proportion with ta and tb (lines 9 to 12 of the Algorithm).

The steps of the processing for the algorithm using the centroids (and the intra-
cluster distance) of each cluster is exposed in Algorithm 19. The search for the ana-
logical proportions inside the cluster c where ta and tb are placed is the same as in the
latter method. The search for the clusters ci considered neighbors of c is based in the
following assumptions:

Some clustering methods allow us also to know the centroid (cluster center) of a given
cluster. Given a cluster cj , knowing its center and its maximal intra-cluster distance
may allow us to know the minimal distance between an object xi /∈ cj and every other
object xj ∈ cj . In general, let us say that we consider an object xi /∈ cj and we want to
know if the distorsion between xi and any object xj belonging to cj can be smaller than
1−λ, i.e., ad(xi, xj) ≤ 1− λ. Let us denote by centerj the center of the cluster cj , and
by intra its maximal intra-cluster distance. The maximal distance between centerj and
any object belonging to cj is then intra

2 . Let ad(xi, centerj) be the distance between xi
and centerj . The minimal distance possible between xi and any object belonging to cj
is then ad(xi, centerj) − intra/2. Then, if ad(xi, centerj) − intra/2 ≥ 1 − λ, there is
no object belonging to cj that can be in analogical proportion with xi to a degree ≥ λ.
See lines 10 to 13 of Algorithm 19 for the implementation of this idea. After verifying
that the pairs of objects belonging to a cluster c validate the analogical proportion con-
straint, the algorithm looks for the clusters such that their centroid ct and intra-cluster
distance intra validate the following inequality:

ad(ct,
−−→
tatb)−

intra

2
≤ 1− λ (3.11)

Type 4 queries The type 4 queries aim to answer queries of the type “given the
tuples ta, tb, and tc, find the tuples td such that the quadruple (ta, tb, tc, td) corresponds
to an analogical proportion with a validity degree at least equal to λ”. In this case,
similarly to the type 3 queries, we look for the cluster containing the pair (ta, tb), but
this time, we only complete the first pair with pairs containing the tuple tc. Algorithms
20 and 21 show the steps of the processing performed in this case. The first uses the
Min_ad_Table table, while the latter corresponds to the case when one knows the
cluster center of each cluster, additionally to its maximal intra-cluster distance.

Analogical Queries 119

Algorithm 18 Cluster-based algorithm for type 3 queries
Require: ta, tb, λ
1: c := select cid from ClusterTable

where (x = rowid(ta) and y = rowid(tb))
or (x = rowid(tb) and y = rowid(ta));

2: max := select maxdist from Max_ad_Table where cid = c;
3:

4: if max ≤ 1− λ then
5: S := select x, y from ClusterTable where cid = c;
6: else
7: S := select x, y from ClusterTable

where cid = c and ad(x, y, rowid(ta), rowid(tb)) ≤ 1− λ;
8: end if
9: C := (select cid2 from Min_ad_Table where cid1 = c and min_ad ≤ 1 − λ) ∪

(select cid1 from Min_ad_Table where cid2 = c and min_ad ≤ 1− λ);
10: for each cluster c′ in C do
11: S := S ∪ (select x, y from ClusterTable

where cid = c′ and ad(x, y, rowid(ta), rowid(tb)) ≤ 1− λ);
12: end for
13: return S

Algorithm 19 Cluster-based algorithm for type 3 queries using centroids
Require: ta, tb, λ
1: c← select cid from ClusterTable where (x = rowid(ta) and y = rowid(tb));
2: max← select maxdist from Max_ad_Table where cid = c;
3:

4: if max ≤ 1− λ then
5: S ← select x, y from ClusterTable where cid = c;
6: else
7: S ← select x, y from ClusterTable

where cid = c and ad(x, y, rowid(ta), rowid(tb)) ≤ 1− λ;
8: end if
9:

10: C ← (select cid, maxdist from Max_ad_Table where ad(centroid,
−−→
tatb)−

intra

2
≤

1− λ)
11: for each cluster c′ in C do
12: S ← S ∪ (select x, y from ClusterTable

where cid = c′ and ad(x, y, rowid(ta), rowid(tb)) ≤ 1− λ);
13: end for
14: return S

120 chapter 3

Algorithm 20 Cluster-based algorithm for type 4 queries
Require: ta, tb, tc, λ
1: c := select cid from ClusterTable

where (x = rowid(ta) and y = rowid(tb))

2: max := select maxdist from Max_ad_Table where cid = c
3: if max ≤ 1− λ then
4: S := select x, y from ClusterTable where cid = c and (x = tc);
5: else
6: S := select x, y from ClusterTable where cid = c

and (x = tc) and ad(x, y, rowid(ta), rowid(tb)) ≤ 1− λ;
7: end if
8: C := (select cid2 from Min_ad_Table where cid1 = c

and min_ad ≤ 1− λ) ∪
(select cid1 from Min_ad_Table where cid2 = c
and min_ad ≤ 1− λ);

9: for each cluster c′ in C do
10: S := S ∪ (select x, y from ClusterTable

where cid = c′ and (x = tc)
and ad(x, y, rowid(ta), rowid(tb)) ≤ 1− λ);

11: end for
12: return S

Algorithm 21 Cluster-based algorithm for type 4 queries using centroids
Require: ta, tb, tc, λ
1: c := select cid from ClusterTable where (x = rowid(ta) and y = rowid(tb)));
2: max := select maxdist from Max_ad_Table
3: where cid = c and (x = tc or y = tc);
4:

5: if max ≤ 1− λ then
6: S := select x, y from ClusterTable where cid = c and (x = tc or y = tc);
7: else
8: S := select x, y from ClusterTable where cid = c

x = tc and ad(x, y, rowid(ta), rowid(tb)) ≤ 1− λ;
9: end if

10: C ← (select cid, maxdist from Max_ad_Table where ad(centroid,
−−→
tatb)−

intra

2
≤

1− λ)
11: for each cluster c′ in C do
12: S := S ∪ (select x, y from ClusterTable

where cid = c′ and x = tc
and ad(x, y, rowid(ta), rowid(tb)) ≤ 1− λ);

13: end for
14: return S

Analogical Queries 121

In the next section, we shall evaluate and compared the naive, cluster-based and
index-based approaches introduced in this section. The evaluation will be performed
over a set of queries of type 1, 2, 3, and 4.

122 chapter 3

3.3.2 Experimentation

The main objective of the experimentation described hereafter is to assess the respec-
tive performances of the evaluation methods described in the previous section. The
experimentation was carried out using a laptop with an Intel Core i5-2520M CPU @
2.50 GHz, and 4 Gb of RAM. The tests were performed over a PostgreSQL database.
We would like to point out that these experimentations are quite preliminary. They
must be extended to datasets with different data distributions. Additionally, one has
to evaluate the performance of the cluster-based strategies related to the output of dif-
ferent clustering methods.

Concerning the cluster-based method, the data are organized as shown in Table 3.13,
where vector corresponds to the vector id, cluster indicates the cluster that contains the
vector considered, ta and tb are the extremities of the vector, and x1, . . . , xn represent
its dimensions (Table 3.13 corresponds to a 2-dimensional case). For instance, the third
line of Table 3.13 expresses that vector 2143, formed from the elements 24 and 67,
belongs to cluster 1 and its value for the x1 and x2 dimensions are −4.2 and −10.69
respectively. We used this layout concerning the clustering of data in order to allow the
used indexes to access the minimal possible number of tables. The Min_ad_Table and
Max_ad_Table Tables, introduced in Section 3.3.1.3, are used as well.

Table 3.13: Structure used by the cluster-based method
vector cluster ta tb x1 x2
105 0 1 201 −2.55 −0.65
4702 0 64 86 −4.26 −0.88
2143 1 24 67 −4.2 −10.69
883 1 9 74 0.23 −15.34
2736 2 31 100 12.54 −25.89
5452 2 87 100 13.67 −28.9

In order to optimize query processing, we also defined: i) two hash indexes on at-
tributes ta and tb respectively; ii) a hash index on attribute vector; iii) a b-tree index
on the attributes cluster, x1, and x2. iv) a b-tree index on the attributes (cid1, cid2,
mindist) of the Table Min_ad_Table v) a b-tree index on the attributes (intra, a1, ..., an)
of the Max_ad_Table Table.

3.3.2.1 Real-World Dataset

The dataset used contains the votes of the first round of the French Presidentials elec-
tions in 20125, aggregated by département. In the experiments described hereafter, we
look for the quadruples of départments satisfying an analogical proportion.

5https://www.data.gouv.fr/fr/datasets/

Analogical Queries 123

We only kept the 6 most voted political parties. An extract of this dataset is shown
in Table 3.14, where vote 1 refers to Les Verts; vote 2 to UMP; vote 3 to the Front de
Gauche; vote 4 to Union pour la Démocratie Française; vote 5 to Debout la République;
and vote 6 to the Parti Socialiste.

Table 3.14: Votes for some departments
Id name vote 1 vote 2 vote 3 vote 4 vote 5 vote 6

8 Ardennes 24.5 24.43 9.28 7.52 1.81 28.93
22 Côtes D’Armor 13.58 23.86 12.2 10.6 1.71 33.02
32 Gers 15.9 24.14 12.06 9.95 1.82 31.86
42 Loire 21.55 25.07 11.18 9.75 2.11 26.46
73 Savoie 18.92 28.61 11.47 9.89 2.11 23.64

For each type of query, we compared our different approaches: the naive strat-
egy (Section 3.3.1.1), that we call hereafter naive; the approach using indexes (Section
3.3.1.2), denoted by CIB; the cluster-based approach using the Min_ad_Table table,
denoted by cluster (Section 3.3.1.3); and the cluster-based approach using the indexes
mentioned above, denoted by cluster-I. In the case of the queries of type 3 and 4, the
results corresponding to the cluster-based approach making use of the intra-cluster table
are exposed as well. The latter approach is denoted by centroid, when no index is used,
and centroid-I, when it makes use of indexes.

Concerning the cluster-based method, the chosen clustering approach is the grid-
based method (Algorithm 8, page 98). We used for this algorithm an ǫ value (which
corresponds to the size of the cells) of 0.2. In the case of the queries of type 3 and
4, we used the complete presidential dataset, and thus we obtained 5671 vectors. Our
method obtained 919 clusters from it. Since the complexity of the queries of type 1 and
2 are θ(n4) and θ(n3) respectively, we used just 30 tuples from the presidential dataset,
obtaining 378 vectors which were separated in 135 clusters by the clustering method.

The results obtained for queries of Type 1, 2, 3, and 4 are shown in Tables 3.15,
3.16, 3.17, and 3.18 respectively. The results correspond to the time (in milliseconds)
taken by each approach to process the corresponding query. The attribute answers
corresponds to the number of answers obtained in each case.

In the case of type 1 queries, the highest efficiency is always obtained by the cluster-
based approach. In some cases these results are obtained when making use of indexes.
In this type of query, the number of tuples the cluster-based approach has to evaluate,
when compared with the naive and CIB methods, is low. Suppose that we are dealing
with a dataset with 100 tuples. In order to solve a type 1 query over this dataset, the
naive query would perform 1004 = 100000000 evaluations. Suppose that a cluster-based
method was performed over this dataset and that its tuples were divided into 10 clus-
ters. Then the number of evaluations made inside each cluster would be 102 = 100.

124 chapter 3

Table 3.15: Results obtained for Type 1 queries

λ answers naive CIB cluster cluster-I

0.9 1583 184 182 55 49
0.8 12606 269 288 154 157
0.7 30997 475 443 350 376
0.5 61414 946 903 630 623
0.2 71092 1136 1075 665 674

Table 3.16: Results obtained for Type 2 queries

λ answers naive CIB cluster cluster-I

0.9 53 26 24 37 36
0.8 196 30 26 51 48
0.7 1193 56 54 76 86
0.5 7389 96 109 94 127
0.2 9835 107 131 131 136

Table 3.17: Results obtained for Type 3 queries

λ answers naive CIB cluster cluster-I centroid centroid-I

0.9 196 17 14 77 86 13 16
0.8 1232 26 17 90 85 27 24
0.7 2463 28 24 104 257 39 40
0.5 4174 43 33 579 132 57 62
0.2 5395 47 47 150 156 69 78

Table 3.18: Results obtained for Type 4 queries

λ answers naive CIB cluster cluster-I centroid centroid-I

0.9 5 12 13 86 87 15 16
0.8 38 13 12 86 84 23 12
0.7 61 11 12 81 81 19 21
0.5 94 13 12 108 98 29 22
0.2 86 12 12 141 109 45 33

As we have 10 clusters, it would mean 1000 evaluations. The number of evaluations
between elements belonging to different cluster would be (102 ∗ (10 ∗ 9/2)) = 45000.

Summary 125

Then, the total number of evaluations performed by a cluster-based method would be
46000. However, the efficiency of the cluster-based method is not so far from that of
the naive and CIB methods. We remind that we are using a PostgreSQL database, and
that it is possibly optimized to perform queries such as the naive one. A perspective
would be to compare the different types of strategies without using a DBMS.

Concerning the type 2 queries, the best results are generally obtained by the CIB
approach, altough the cluster-based approach is the best when λ = 0.5. In the case of
queries of type 3 and 4, the cluster-based approach making use of the Min_ad_Table
table is clearly outperformed by the other approaches. In these cases, the naive and
CIB approaches generally obtain the best results, although their results are not so far
from the cluster-based approach making use of the intra-cluster distance of clusters.

There are two facts that make the cluster-based approach making use of the intra-
cluster distance of clusters be more efficient that the cluster-based approach making
use of the Min_ad_Table. First, the Max_ad_Table table has n rows, where n is the
number of clusters, while the table Min_ad_Table has n2/2 rows. Second, the cluster-
based approach making use of the intra-cluster distance of clusters has to perform less
evaluations than the strategy using the table Min_ad_Table, since the former considers
less unnecessary clusters that the latter.

3.4 Summary

In this chapter, we studied the representation and mining of analogical proportions in
a database.

In Section 3.1, we introduced a new interpretation of exact and approximate ana-
logical proportions. We then introduced the problem to be solved, i.e., mining all the
exact and approximate analogical proportions from a database.

In Section 3.2 we provided several solutions to the problem of mining approximate
analogical proportions in a database by means of clustering-based methods. Then, we
overviewed the k-means method and we evaluated how can it be useful for our purpose.
We proposed a modification of the k-means method in order to control its intra-cluster
distances, as well as a combination with the method by Chiu in order to determine the
initial cluster centers. We also proposed a modification of the latter approach in order
to control the distance between the chosen cluster centers. We also introduced the use
of a grid-based clustering approach to find the approximate analogical proportions in a
database.

The use of the method by Chiu has been useful to determine the most representa-
tive vectors of a dataset. A modification of this method allowed us to obtain disjoint
clusters which in turn allowed us to get a higher number of analogical proportions. The

126 chapter 3

modification we proposed to the k-means method, which controls the maximal intra-
cluster distance of each cluster, allowed us to obtain clusters without any false positives.
However, the latter approach considers some objects as outliers. In order to be able to
cluster all the objects, control the intra-cluster distance of each cluster, and not gener-
ate any outliers, we proposed a grid-based method.

In Section 3.3, we introduced the notion of analogical database queries, and we pro-
posed several strategies in order to compute the answers of 4 types of queries: (i) a naive
strategy based on nested loops, (ii) a method using classical indexes, and (iii) a strategy
based on clusters of vectors. We have to point out that these results are preliminaries.
We still have to evaluate if there are clustering algorithms that are more appropriate to
our problem. Also, it is clear that for certain types of queries (in particular Type 1), the
evaluation strategy does not scale well, which means that some optimisation techniques
have to be devised.

In order to be able to return all the quadruples validating an analogical proportion,
we used a grid-based cluster method since it does not generate any outliers. In terms of
perspectives, one may evaluate if one could optimize the query answering process using
an adaptive clustering method (when a cluster is considered to have a high number of
elements, it is partitioned into several sub-clusters).

Conclusion

In this thesis, we were interested in the concept of analogical proportions, from its birth
to its application in a database context which, to the best of our knowledge, has never
been done before. In the first chapter of this thesis, we provided an overview of the
philosophical roots of analogical proportions, from Euclid to our ages. We considered
several of the definitions of analogical proportions philosophers provided through the
ages, and how they were used to explain or justify certain facts, or even as a way of
referring to God, as in the case of the medieval ages. We also studied the use of analogy
in the cognitive science domain, as well as its first applications in the context of artificial
intelligence. We finished the first chapter by recalling the first introduced logical views
of analogical proportions.

In the second chapter, we explored the state of the art of methods aimed to impute
missing values in a dataset. We also evaluated the modification of an analogical clas-
sification method to this aim. In order to do so, we studied the formulas that assess
the extent to which four values validate an analogical proportion. We introduced some
desirables properties an analogical proportion should satisfy, and modified some of the
existing formulas in order to meet our goals. Then, we modified an analogy-based clas-
sification method in order to be able to impute missing values. Finally, we compared
the results of our method with some of the approaches mentioned in the state of the art
about missing value imputation. The obtained results show that the performances of
our approach is similar to those of the state-of-the-art methods related to missing values.
These results show that an analogy-based classification method can be useful for the
task of missing values imputation. However, it is necessary to develop an analogy-based
method more sophisticated, for instance taking into account the distribution of data.
We also provided a brief state of the art about analogy-based classification methods,
and we studied the behavior of one of them, showing how its results are, in some cases,
similar to those of the k-nearest neighbor method.

In the third chapter, we were interested in mining the analogical proportions ex-
isting in a database. We showed how this problem is equivalent to that of finding all
the maximal cliques in a graph, which is an NP-hard problem. Then, we proposed the
use of clustering methods in order to overcome this difficulty. First, we considered the
use of the k-means method. We realized that it has two big drawbacks with respect
to our goals: i) its initial cluster centers are randomly generated; and ii) it does not

127

128 Conclusion

control the intra-cluster distance of the clusters it creates. We proposed the use of a
method by Chiu [Chi94] in order to determine the initial cluster centers of a dataset.
This method allowed us to find the most representative objects existing in a dataset,
in terms of the density of their neighborhood. We also proposed a modification of the
k-means method in order to control the intra-cluster distance of its clusters. This last
modification considers some elements as outliers if they are not close enough to any of
the cluster centers. Since one of the objectives of this chapter was to represent the max-
imum possible number of valid analogical proportions existing in a dataset by means
of clusters, we adapted the method by Chiu in order to create disjoint clusters. Two
disjoint clusters may allow to cover more elements of a dataset than two intersecting
clusters. Two clusters may be considered as intersecting clusters if at least one element
of a dataset is sufficiently close to the cluster centers of both of them. We also proposed
the use of a grid-based structure that allowed us to control the intra-cluster distances
of its clusters, and that does not generate any outliers. Not generating any outliers is
important for the next task dealt with in this chapter, which is about analogical queries.

The aim of analogical queries is to extract all the quadruples of tuples validating
an analogical proportions to a given degree. Different types of analogical queries were
introduced, depending on the number of variables given as input. For instance in the
case of type 3 queries, one gives as input two tuples a and b plus a threshold λ, and want
to find all the couples c and d such that the quadruple (a, b, c, d) validates an analogical
proportion with at least a degree λ. Several strategies were proposed for solving each
type of queries, making use of nested loops, classical database indexes, or the output of
a clustering algorithm. Experimental results comparing the efficiency of these strategies
over each type of query were provided.

Perspectives

To the best of our knowledge, this is the first thesis dealing with analogical proportions
in a database context. The results presented in this document can then be considered
as preliminary, and thus have a big potential for improvement. We organize the per-
spectives related to our work along three axis. The first one is about the evaluation
of state-of-the-art analogy-based classification methods in the context of missing values
imputation. The second concerns optimizations of the approach presented in this thesis
related to the mining of analogical proportion by means of a clustering method. The
third one is related to the mining of analogical proportions by making use of a seman-
tically richer database model.

Analogical Prediction of Null Values

A first perspective concerns a more thorough evaluation of the methods introduced in
the state-of-the-art of analogy-based classification methods, relatively to the task of
missing values imputation. Let us recall that most of these methods were proposed

Conclusion 129

simultaneously to this thesis, which explain why we could not take them as a basis
to our missing value imputation approach. One could then determine in which cases
their results can be similar or not. This evaluation would be useful to evaluate the
results of analogy-based classification methods with respect to different distributions of
data. The results may lead to a better understanding of how these methods work, and
then to develop a more sophisticated analogy-based method for imputing missing values.

Mining Analogical Proportions by means of a clustering method

In the context of the mining of analogical proportions from a dataset, we remind that
we proposed to make use of clustering algorithms in order to extract the most represen-
tative analogical proportions from a database, and also to extract the largest possible
proportion from them. We evaluated the use of the k-means method, and of a simple
grid-based clustering method. It would be interesting to consider more sophisticated
grid-based clustering methods such as CLIQUE [AGGR98], which produces a multi-
resolution grid data structure. When a cluster is considered to have a high density, it is
partitioned into several sub-clusters. In the context of analogical queries, the clusters
created by a method such as CLIQUE, when answering a query, may allow us to evalu-
ate less unnecessary tuples from a dataset (since the created clusters would be relatively
small) in comparison with the simpler grid-based clustering method used in this thesis.
This could enable a faster processing of each query. However, there would be a price to
pay: the query evaluation algorithms would then be more complex.

In the context of the analogical queries, a major challenge is to be able to deal with
massive data. In that case, one would have to devise methods for making these queries
scalable, specially in the case of type 1 queries, which have a complexity O(n4), where
n is the number of tuples. An idea would be to investigate the possibility for parallel
processing. Let us for instance consider the case of the cluster-based strategy: these
queries first look for the analogical proportions existing inside each cluster, and then
for the analogical proportions existing between each pair of clusters. Let us assume
that the data were partitioned in c clusters, and that we have available p different pro-
cessors for solving the query. Then, when looking for the analogical proportions inside
each cluster, one could assign to each processor the task of looking for analogical pro-
portions for a number of c/p clusters. The philosophy is similar when looking for the
analogical proportions existing between each pair of clusters. In this case, the number
of pairs of clusters to be analyzed is (c ∗ c − 1)/2. One processor may be assigned in
this case the task of looking for analogical proportions for (c∗c−1)/2∗p pairs of clusters.

Another perspective is to evaluate if we can extract the analogical proportions exi-
sisting in a database by means of a clustering algorithm, but performing the clustering
process over the tuples and not over the vectors formed from each pair of tuples. In
that case, we may have to evaluate which are the properties (e.g., intra-cluster or inter-
cluster distances) of the created clusters that would allow us to determine whether a

130 Conclusion

quadruple of tuples belonging to the same cluster or not may satisfy an analogical pro-
portion. Such an approach may allow us to improve the efficiency of analogical queries.

Mining Analogical Proportions in the Context of Semantic Data

A more ambitious perspective consists in considering a database model that is seman-
tically richer than the relational one. In particular, it would be interesting to study the
retrieval of analogical proportions in the context of the RDF model [KC06]. If we know
the relation between each pair of concepts, we may be able to extract representative
analogical proportions from a dataset. In that case, one would have two consider in
which cases four concepts may be considered to be in analogical proportion from a se-
mantic point of view, and when an analogical proportion can be considered meaningful
or not. For instance, if one gives as input the name of a pair of persons, e.g., (Bill
de Blasio, Michael Bloomberg) — the actual and the previous mayors of New York—
, and one wants to find the pairs of persons (c, d) such that one can say that ‘Bill de
Blasio is to Michael Bloomberg as c is to d‘”, a valid result may be (Anne Hidalgo,
Bertrand Delanoe) — the actual and the previous mayors of Paris. These four persons
would be linked by an analogical proportion as the relation between each pair of per-
sons is the same: actual and previous mayor of the same city. Notice that these four
persons may be also linked by the analogical proportion “the age of a is to the age of
b as the age of c is to the age of d”, which could be a valid analogical proportion but
would not be as discriminant as the one recognizing these two persons as the actual
and previous mayors of the same city. Furthermore, these four persons may be linked
by a completely trivial analogical proportion such as “human is to human as human is
to human”, which would represent a rather uninteresting information. One has thus to
find a way to discover valid analogical proportions that are also sufficiently discriminant.

This list is of course far from exhaustive. As we already mentioned, this thesis is,
to the best of our knowledge, the first research work that aimed to apply analogical
proportions in a database context. We could only lay the first stones, but there are
obviously many exciting topics that remain to be investigated in this area.

Bibliography

[Aco05] Alan C Acock. Working with missing values. Journal of Marriage and
Family, 67(4):1012–1028, 2005.

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. Automatic subspace clustering of high dimensional data for
data mining applications, volume 27. ACM, 1998.

[AGGR99] Rakesh Agrawal, Johannes Ernst Gehrke, Dimitrios Gunopulos, and
Prabhakar Raghavan. Automatic subspace clustering of high dimen-
sional data for data mining applications, December 14 1999. US Patent
6,003,029.

[Akk73] EA Akkoyunlu. The enumeration of maximal cliques of large graphs.
SIAM Journal on Computing, 2(1):1–6, 1973.

[APPT89] Inaki Arrazola, Agnès Plainfossé, Henri Prade, and Claudette Testemale.
Extrapolation of fuzzy values from incomplete data bases. Information
Systems, 14(6):487–492, 1989.

[AR13] Charu C Aggarwal and Chandan K Reddy. Data clustering: algorithms
and applications. CRC Press, 2013.

[Ash11] E Jennifer Ashworth. Medieval theories of analogy. Stanford Encyclopedia
of Philosophy, 2011.

[Bar10] Paul Bartha. By Parallel Reasoning: The construction and Evaluation of
Analogical Arguments. Oxfor University Press, 2010.

[Bar13] Paul Bartha. Analogy and analogical reasoning. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Fall 2013 edition, 2013.

[BJP14] William Correa Beltran, Hélène Jaudoin, and Olivier Pivert. Prédiction
de valeurs manquantes dans les bases de données-une première approche
fondée sur la notion de proportion analogique. In 14e Conférence Inter-
nationale Francophone sur l’Extraction et la Gestion des Connaissances
(EGC’14), pages 485–490. Hermann Editions, 2014.

131

132 Bibliography

[BJP15a] William Correa Beltran, Hélène Jaudoin, and Olivier Pivert. Analogical
database queries. In Flexible Query Answering Systems 2015 - Proceed-
ings of the 11th International Conference FQAS 2015, Cracow, Poland,
October 26-28, 2015, pages 201–213, 2015.

[BJP15b] William Correa Beltran, Hélène Jaudoin, and Olivier Pivert. A clustering-
based approach to the mining of analogical proportions. In 27th IEEE In-
ternational Conference on Tools with Artificial Intelligence, ICTAI 2015,
Vietri sul Mare, Italy, November 9-11, 2015, pages 125–131, 2015.

[BK73] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. Communications of the ACM, 16(9):575–577, 1973.

[BMD07a] Sabri Bayoudh, Laurent Miclet, and Arnaud Delhay. Learning by analogy:
A classification rule for binary and nominal data. In IJCAI, pages 678–
683, 2007.

[BMD07b] Sabri Bayoudh, Laurent Miclet, and Arnaud Delhay. Learning by analogy:
A classification rule for binary and nominal data. In IJCAI, pages 678–
683, 2007.

[BMD07c] Sabri Bayoudh, Laurent Miclet, and Arnaud Delhay. Learning by analogy:
A classification rule for binary and nominal data. In IJCAI, pages 678–
683, 2007.

[BMP13] Nelly Barbot, Laurent Miclet, and Henri Prade. Analogical proportions
and the factorization of information in distributive lattices. In 10th Inter-
national Conference on Concept Lattices and Their Applications (CLA),
2013.

[BPR14a] Myriam Bounhas, Henri Prade, and Gilles Richard. Analogical classifica-
tion: A new way to deal with examples. In ECAI 2014: 21st European
Conference on Artificial Intelligence, volume 263, page 135. IOS Press,
2014.

[BPR14b] Myriam Bounhas, Henri Prade, and Gilles Richard. Analogical classi-
fication: A new way to deal with examples. In ECAI, pages 135–140,
2014.

[BPR14c] Myriam Bounhas, Henri Prade, and Gilles Richard. Analogical classifica-
tion: A rule-based view. In Information Processing and Management of
Uncertainty in Knowledge-Based Systems, pages 485–495. Springer, 2014.

[BPR14d] Myriam Bounhas, Henri Prade, and Gilles Richard. Analogical classifi-
cation: handling numerical data. In Scalable Uncertainty Management,
pages 66–79. Springer, 2014.

Bibliography 133

[Bra99] Jaap Brand. Development, implementation and evaluation of multiple
imputation strategies for the statistical analysis of incomplete data sets.
1999.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[BRM+09] Shariq Bashir, Saad Razzaq, Umer Maqbool, Sonya Tahir, and Ab-
dul Rauf Baig. Using association rules for better treatment of missing
values. arXiv preprint arXiv:0904.3320, 2009.

[Bro94] Roger L Brown. Efficacy of the indirect approach for estimating struc-
tural equation models with missing data: A comparison of five methods.
Structural Equation Modeling: A Multidisciplinary Journal, 1(4):287–
316, 1994.

[Cal08] John Callanan. Kant on analogy. British Journal for the History of
Philosophy, 2008.

[CBW14] Pivert Olivier Correa Beltran William, Jaudoin Hélène. Lazy analogical
classification: Optimization and precision issues. In Scalable Uncertainty
Management. Springer, 2014.

[Chi94] Stephen L Chiu. Fuzzy model identification based on cluster estimation.
Journal of Intelligent & Fuzzy Systems, 2(3):267–278, 1994.

[CJP14a] William Correa, Hélène Jaudoin, and Olivier Pivert. Analogical prediction
of null values: The numerical attribute case. In Advances in Databases
and Information Systems, pages 323–336. Springer, 2014.

[CJP14b] William Correa, Hélène Jaudoin, and Olivier Pivert. Estimating null
values in relational databases using analogical proportions. In Information
Processing and Management of Uncertainty in Knowledge-Based Systems,
pages 110–119. Springer, 2014.

[CJP14c] William Fernando Correa, Hélène Jaudoin, and Olivier Pivert. Analogical
prediction of null values: The numerical attribute case. In Advances in
Databases and Information Systems, pages 323–336. Springer, 2014.

[Cod86] Edgar F Codd. Missing information (applicable and inapplicable) in re-
lational databases. ACM Sigmod Record, 15(4):53–53, 1986.

[CPR12] William Fernando Correa, Henri Prade, and Gilles Richard. When intel-
ligence is just a matter of copying. In ECAI, volume 12, pages 276–281,
2012.

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the
royal statistical society. Series B (methodological), pages 1–38, 1977.

134 Bibliography

[DM04] Arnaud Delhay and Laurent Miclet. Analogical equations in sequences:
Definition and resolution. In Grammatical Inference: Algorithms and
Applications, pages 127–138. Springer, 2004.

[DVBD14] LL Doove, Stef Van Buuren, and Elise Dusseldorp. Recursive partitioning
for missing data imputation in the presence of interaction effects. Com-
putational Statistics and Data Analysis, 72:92–104, 2014.

[DvdHSM06] A Rogier T Donders, Geert JMG van der Heijden, Theo Stijnen, and
Karel GM Moons. Review: a gentle introduction to imputation of missing
values. Journal of clinical epidemiology, 59(10):1087–1091, 2006.

[Ebe07] Lynn E Eberly. Multiple linear regression. Topics in Biostatistics, pages
165–187, 2007.

[Eva64] Thomas G Evans. A heuristic program to solve geometric-analogy prob-
lems. In Proceedings of the April 21-23, 1964, spring joint computer
conference, pages 327–338. ACM, 1964.

[F+81] David A Freedman et al. Bootstrapping regression models. The Annals
of Statistics, 9(6):1218–1228, 1981.

[Fal13] Andrea Falcon. Commentators on Aristotle. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. 2013.

[FFG89] Brian Falkenhainer, Kenneth D Forbus, and Dedre Gentner. The
structure-mapping engine: Algorithm and examples. Artificial intelli-
gence, 41(1):1–63, 1989.

[FH02] Yoshikazu Fujikawa and TuBao Ho. Cluster-based algorithms for deal-
ing with missing values. In Advances in Knowledge Discovery and Data
Mining, pages 549–554. Springer, 2002.

[Fla11] Kevin L Flannery. The semantics of analogy. The Review of Metaphysics,
64(4):865–866, 2011.

[FPY95] Stefano Federici, Vito Pirrelli, and François Yvon. A dynamic approach
to paradigm-driven analogy. In Connectionist, Statistical and Symbolic
Approaches to Learning for Natural Language Processing, pages 385–398.
Springer, 1995.

[Gen83] Dedre Gentner. Structure-mapping: A theoretical framework for analogy.
In Proceedings of Cognitive Science, volume 7, pages 155–170, 1983.

[GF11] Dedre Gentner and Kenneth D Forbus. Computational models of analogy.
Wiley Interdisciplinary Reviews: Cognitive Science, 2(3):266–276, 2011.

Bibliography 135

[GHM96] John W Graham, Scott M Hofer, and David P MacKinnon. Maximizing
the usefulness of data obtained with planned missing value patterns: An
application of maximum likelihood procedures. Multivariate Behavioral
Research, 31(2):197–218, 1996.

[GJ93] Dedre Gentner and Michael Jeziorski. The shift from metaphor to analogy
in western science. 1993.

[GS12] Dedre Gentner and Linsey Smith. Analogical reasoning. Encyclopedia of
human behavior, pages 130–136, 2012.

[Hes59] Mary B Hesse. On defining analogy. In Proceedings of the Aristotelian
Society, pages 79–100. JSTOR, 1959.

[Hil12] David Hills. Metaphor. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Winter 2012 edition, 2012.

[HKP11a] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and
techniques. Elsevier, 2011.

[HKP11b] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and
techniques. Elsevier, 2011.

[HM+94] Douglas R Hofstadter, Melanie Mitchell, et al. The copycat project: A
model of mental fluidity and analogy-making. Advances in connectionist
and neural computation theory, 2(31-112):29–30, 1994.

[HN07] Jason S Haukoos and Craig D Newgard. Advanced statistics: missing data
in clinical research-part 1: an introduction and conceptual framework.
Academic Emergency Medicine, 14(7):662–668, 2007.

[Hoc10] Joshua P Hochschild. The semantics of analogy: Rereading Cajetan’s de
nominum analogia. 2010.

[Hof01] Douglas R Hofstadter. Analogy as the core of cognition. The analogical
mind: Perspectives from cognitive science, pages 499–538, 2001.

[Hof16] Tobias Hoffman. Aquinas on analogy, 2016.

[HT] Keith J Holyoak and Paul Thagard. Analogical mapping by constraint
satisfaction. Cognitive science, 13(3).

[Jef89] D UUman Jeffrey. Principles of database and knowledge-base systems,
1989.

[Kai12] Jiří Kaiser. Algorithm for missing values imputation in categorical data
with use of association rules. arXiv preprint arXiv:1211.1799, 2012.

[KC06] Graham Klyne and Jeremy J Carroll. Resource description framework
(rdf): Concepts and abstract syntax. 2006.

136 Bibliography

[Kle82] Sheldon Klein. Culture, mysticism & social structure and the calculation
of behavior. In ECAI, pages 141–146, 1982.

[Kli71] Robert E Kling. A paradigm for reasoning by analogy. Artificial Intelli-
gence, 2(2):147–178, 1971.

[Lan22] Bernard Landry. L’analogie de proportion chez Saint Thomas d’Aquin.
Revue néo-scolastique de philosophie, 24(95):257–280, 1922.

[Ld12] Marie-Jeanne Lesot and Adrien Revault d’Allonnes. Credit-card fraud
profiling using a hybrid incremental clustering methodology. In Scalable
Uncertainty Management, pages 325–336. Springer, 2012.

[Lep98] Yves Lepage. Solving analogies on words: an algorithm. In Proceedings of
the 36th Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics-Volume
1, pages 728–734. Association for Computational Linguistics, 1998.

[Lep00] Yves Lepage. Languages of analogical strings. In Proceedings of the
18th conference on Computational linguistics-Volume 1, pages 488–494.
Association for Computational Linguistics, 2000.

[Lep03] Yves Lepage. De l’analogie rendant compte de la commutation en linguis-
tique. 2003.

[Lep14] Yves Lepage. Analogies between binary images: Application to chinese
characters. In Computational Approaches to Analogical Reasoning: Cur-
rent Trends, pages 25–57. Springer, 2014.

[Lit92] Roderick JA Little. Regression with missing x’s: a review. Journal of the
American Statistical Association, 87(420):1227–1237, 1992.

[LR14] Roderick JA Little and Donald B Rubin. Statistical analysis with missing
data. John Wiley & Sons, 2014.

[LW02] Andy Liaw and Matthew Wiener. Classification and regression by ran-
domforest. R news, 2(3):18–22, 2002.

[LYZ08] Philippe Langlais, François Yvon, and Pierre Zweigenbaum. Analogical
translation of medical words in different languages. In Advances in Nat-
ural Language Processing, pages 284–295. Springer, 2008.

[LYZ09] Philippe Langlais, François Yvon, and Pierre Zweigenbaum. Improve-
ments in analogical learning: application to translating multi-terms of
the medical domain. In Proceedings of the 12th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, pages
487–495. Association for Computational Linguistics, 2009.

Bibliography 137

[M+67] James MacQueen et al. Some methods for classification and analysis
of multivariate observations. In Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA., 1967.

[Mag04] Matteo Magnani. Techniques for dealing with missing data in knowledge
discovery tasks. Department of Computer Science, University of Bologna,
Italy, pages 1–10, 2004.

[Mar13] John Marenbon. Anicius Manlius Severinus Boethius. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Summer 2013
edition, 2013.

[MBD08a] Laurent Miclet, Sabri Bayoudh, and Arnaud Delhay. Analogical dissim-
ilarity: definition, algorithms and two experiments in machine learning.
Journal of Artificial Intelligence Research, pages 793–824, 2008.

[MBD08b] Laurent Miclet, Sabri Bayoudh, and Arnaud Delhay. Analogical dissim-
ilarity: Definition, algorithms and two experiments in machine learning.
J. Artif. Intell. Res. (JAIR), 32:793–824, 2008.

[MIH08] Sadaaki Miyamoto, Hidetomo Ichihashi, and Katsuhiro Honda. Algo-
rithms for fuzzy clustering. Methods in c-Means Clustering with Appli-
cations. Kacprzyk J, editor Berlin: Springer-Verlag, 2008.

[MMPR13] Ronei M Moraes, Liliane S Machado, Henri Prade, and Gilles Richard.
Classification based on homogeneous logical proportions. In Research and
Development in Intelligent Systems XXX, pages 53–60. Springer, 2013.

[MP09a] Laurent Miclet and Henri Prade. Handling analogical proportions in clas-
sical logic and fuzzy logics settings. In Proceedings of the European
Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU’ 09), pages 638–650. Springer, 2009.

[MP09b] Laurent Miclet and Henri Prade. Handling analogical proportions in clas-
sical logic and fuzzy logics settings. In Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty, pages 638–650. Springer, 2009.

[MPG11] Laurent Miclet, Henri Prade, and David Guennec. Looking for analogical
proportions in a formal concept analysis setting. In CLA, pages 295–307.
Citeseer, 2011.

[MR05] Oded Maimon and Lior Rokach. Data mining and knowledge discovery
handbook, volume 2. Springer, 2005.

[MS11] Marina Marino and Agnieszka Stawinoga. Statistical methods for social
networks: a focus on parallel computing. MetodoloSki zvezki, 8(1):57,
2011.

138 Bibliography

[Pol45] George Polya. How to solve it: A new aspect of mathematical model,
1945.

[PP16] Olivier Pivert and Henri Prade. A certainty-based approach to the cau-
tious handling of suspect values. In Flexible Query Answering Systems
2015, pages 73–85. Springer, 2016.

[PR09a] Henri Prade and Gilles Richard. Analogy, paralogy and reverse analogy:
Postulates and inferences. In KI 2009: Advances in Artificial Intelligence,
pages 306–314. Springer, 2009.

[PR09b] Henri Prade and Gilles Richard. Testing analogical proportions with
google using kolmogorov information theory. In Proceedings of the 22nd
International Florida Artificial Intelligence Research Society Conference,
FLAIRS-22, 2009.

[PR10a] Henri Prade and Gilles Richard. Analogical proportions: another logical
view. In Research and development in intelligent systems XXVI, pages
121–134. Springer, 2010.

[PR10b] Henri Prade and Gilles Richard. Multiple-valued logic interpretations of
analogical, reverse analogical, and paralogical proportions. In Multiple-
Valued Logic (ISMVL), 2010 40th IEEE International Symposium on,
pages 258–263. IEEE, 2010.

[PR10c] Henri Prade and Gilles Richard. Multiple valued logic interpretations of
analogical, reverse analogical, and paralogical proportions. In Multiple-
Valued Logic (ISMVL), 2010 40th IEEE International Symposium on,
pages 258–263. IEEE, 2010.

[PR11] Henri Prade and Gilles Richard. Logical handling of analogical propor-
tions in commonsense and transductive reasoning. In Soft Computing and
Pattern Recognition (SoCPaR), 2011 International Conference of, pages
561–566. IEEE, 2011.

[PR13] Henri Prade and Gilles Richard. Analogical proportions and multiple-
valued logics. In Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, pages 497–509. Springer, 2013.

[Pro12] Patrick Prosser. Exact algorithms for maximum clique: A computational
study. Algorithms, 5(4):545–587, 2012.

[PRY10a] Henri Prade, Gilles Richard, and Bing Yao. Classification by means of
fuzzy analogy-related proportions :a preliminary report. In Soft Comput-
ing and Pattern Recognition (SoCPaR), 2010 International Conference
of, pages 297–302. IEEE, 2010.

Bibliography 139

[PRY10b] Henri Prade, Gilles Richard, and Bing Yao. Classification by means of
fuzzy analogy-related proportions a preliminary report. In Soft Comput-
ing and Pattern Recognition (SoCPaR), 2010 International Conference
of, pages 297–302. IEEE, 2010.

[PRY12a] Henri Prade, Gilles Richard, and Bing Yao. Enforcing regularity by means
of analogy-related proportions a new approach to classification. Interna-
tional Journal of Computer Information Systems and Industrial Manage-
ment Applications, 4:648–658, 2012.

[PRY12b] Henri Prade, Gilles Richard, and Bing Yao. Enforcing regularity by means
of analogy-related proportions-a new approach to classification. Interna-
tional Journal of Computer Information Systems and Industrial Manage-
ment Applications, 4:648–658, 2012.

[R+98] Arnaud Ragel et al. Treatment of missing values for association rules.
In Research and Development in Knowledge Discovery and Data Mining,
pages 258–270. Springer, 1998.

[Rag98] Arnaud Ragel. Preprocessing of missing values using robust association
rules. In Principles of Data Mining and Knowledge Discovery, pages 414–
422. Springer, 1998.

[SG02] Joseph L Schafer and John W Graham. Missing data: our view of the
state of the art. Psychological methods, 7(2):147, 2002.

[Ste94] Eric Steinhart. Analogical truth conditions for metaphors. Metaphor and
Symbol, 9(3):161–178, 1994.

[SY05] Nicolas Stroppa and François Yvon. Analogical learning and formal pro-
portions: Definitions and methodological issues. ENST Paris report, 2005.

[THNG90] Paul Thagard, Keith J Holyoak, Greg Nelson, and David Gochfeld. Ana-
log retrieval by constraint satisfaction. Artificial intelligence, 46(3):259–
310, 1990.

[WA10] Gero Walter and Thomas Augustin. Bayesian linear regression-different
conjugate models and their (in) sensitivity to prior-data conflict. In Sta-
tistical Modelling and Regression Structures, pages 59–78. Springer, 2010.

[Wei16] Eric W. Weisstein. "graph." from mathworld–a wolfram web resource,
2016.

[Wid06] Keith F Widaman. Iii. missing data: What to do with or without them.
Monographs of the Society for Research in Child Development, 71(3):42–
64, 2006.

[Win80] Patrick H Winston. Learning and reasoning by analogy. Communications
of the ACM, 23(12):689–703, 1980.

140 Bibliography

[WKQ+08] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip,
et al. Top 10 algorithms in data mining. Knowledge and information
systems, 14(1):1–37, 2008.

[Wot00] Werner Wothke. Longitudinal and multigroup modeling with missing
data. 2000.

[Yvo97] François Yvon. Paradigmatic cascades: a linguistically sound model of
pronunciation by analogy. In Proceedings of the 35th Annual Meeting of
the Association for Computational Linguistics and Eighth Conference of
the European Chapter of the Association for Computational Linguistics,
pages 428–435. Association for Computational Linguistics, 1997.

[Yvo99] François Yvon. Pronouncing unknown words using multi-dimensional
analogies. In EUROSPEECH, 1999.

List of Figures

2.1 Example of a decision Tree . 33
2.2 Data Example . 43
2.3 Cancer dataset in two dimensions . 70
2.4 Histogram of the Distances between pairs of objects of the Cancer dataset.

The horizontal axis indicates the distance between each pair of objects,
and the vertical axis indicates the numbers of couples in each range of
distance. 71

2.5 Results of an Analogical Classifier over the Cancer dataset 71
2.6 Classification of the Cancer dataset . 72
2.7 Results of an Analogical Classifier over the wine dataset 73
2.8 Histogram of the Distances between pairs of objects of the wine dataset.

The horizontal axis indicates the distance between each couple of objects,
and the vertical axis indicates the numbers of couples in each range of
distance. 73

2.9 Classification of the wine dataset . 74
2.10 Syntethic dataset with two separated classes 75
2.11 Synthetic dataset with three separated classes 77

3.1 Four points validating an analogical proportion in a bi-dimensional space 83
3.2 Example of analogical proportions represented by means of a graph . . . 89
3.3 Image of the clustering combining k-means with Chiu-mod over the death

dataset with ǫ = 0.1 . 102
3.4 Image of the grid-based clustering over the death dataset with ǫ = 0.1 . 103
3.5 Zoom of the image of the grid-based clustering over the death dataset

with ǫ = 0.1 . 104
3.6 Image of the clustering combining k-means-mod with Chiu-mod over the

death dataset with ǫ = 0.2 . 104
3.7 clustering of the presidential elections dataset when combining the Chiu-

mod method (with θ = 0.5) and the k-means-mod method. The elements
belonging to clusters 0, 1, 2, 3, 4, and 5 are represented by the colors
black, blue, grey, green, purple, and yellow, respectively. 106

3.8 Image of the grid-based clustering over the synthetic dataset with ǫ = 0.2 107

141

Résumé

Introduction

Une proportion analogique est une expression du type « A est à B ce que C est à D »,
que nous allons noter A : B :: C : D par la suite. Cette expression exprime que la
relation entre A et B est la même que celle existant entre C et D. Par exemple, on
peut dire que « Paris est à la France ce que Rome est à L’Italie ». Ici, la relation entre
Paris (resp. Rome) et la France (resp. L’Italie) peut être « est la capitale de ». Dans
un contexte numérique, une proportion analogique permet de vérifier si deux paires de
valeurs (a, b) et (c, d) représentent le même rapport, par exemple (b − a = d − c) ou
(b/a = d/c). Cette propriété permet d’identifier ces valeurs comme des membres suc-
cessifs d’une série arithmétique ou géométrique.

La notion de proportion analogique est née dans le contexte de la philosophie grecque
classique. Les deux concepts élémentaires sous-jacents aux proportions analogiques sont
ceux de raison et proportion, introduits par Euclide (III a.v. J.-C) [Lep03]. Euclide
définit la raison comme « une habitude de deux grandeurs de même genre, comparées
l’une à l’autre selon la quantité », et la proportion comme une « similitude de raisons ».
Aristote définit l’analogie comme une égalité de deux rapports. Aristote emploie le mot
rapport au lieu du mot raison pour définir une proportion analogique.

Aristote considérait la proportion analogique comme un outil pour expliquer des
faits. Cette notion a ensuite été assez populaire parmi les philosophes, qui l’ont util-
isée pour expliquer ou justifier leurs théories. Par exemple, au cours du Moyen Âge,
Thomas d’Aquin la considérait comme le seul moyen de pouvoir exprimer des assertions
sur Dieu. Thomas d’Aquin définit la relation entre une cause et sa conséquence comme
une analogie. Dans cette perspective, c’est grâce à l’analogie que l’on peut observer à
travers les existants l’existence de Dieu.

Au siècle dernier, la notion de proportion analogique a attiré l’attention de la com-
munauté des sciences cognitives, qui l’a reconnue comme un facteur clé du raisonnement
humain. En fait, la capacité humaine à « reconnaître qu’une situation ou un objet par-
ticulier dans un contexte est le même qu’une autre situation ou objet dans un autre
contexte » est une des caractéristiques de l’intelligence humaine [CPR12].

Dans le contexte de l’intelligence artificielle, elles ont été proposées comme un outil
permettant de résoudre des problèmes mathématiques [Pol45] ou établir des théorèmes
[Kli71]. Elles ont aussi été utilisées dans le contexte du traitement automatique des
langues, comme une approche pour la prononciation de mots écrits [FPY95], ou pour
accomplir des traductions automatiques [LYZ09].

Récemment, une vision logique des proportions analogiques a été proposée. Dans ce
cas, des objets sont représentés par des vecteurs de valeurs booléennes. Une proportion

analogique entre quatre valeurs booléennes est valide si le changement entre les objets
de la première paire (e.g. de Vrai à Faux) est le même que celui existant entre les objets
de la seconde paire. Une proportion analogique entre quatre vecteurs booléens est valide
si et seulement si elle est valide attribut par attribut [MP09a]. Cette approche a per-
mis de développer des méthodes de classification basées sur les proportions analogiques.
Cette vision logique des proportions analogiques a aussi permis de résoudre des tests de
QI, plus précisement les tests de Raven [CPR12]. Les résultats obtenus par l’approche
analogique peuvent être considérés comme aussi bons que ceux obtenus par des humains.

Le premier objectif de cette thèse est d’utiliser le concept de proportion analogique
dans le cadre de bases de données relationnelles contenant des valeurs numériques. Le
premier problème que nous abordons est celui d’estimer les valeurs manquantes dans
une base de données en utilisant des proportions analogiques. Le deuxième objectif est
de fournir un moyen de découvrir des proportions analogiques existant dans une base
de données. Dans le cadre de données numériques, ces proportions analogiques vont
permettre d’identifier des paires de tuples se différenciant de la même manière. En fait,
les proportions analogiques capturent la notion de parallèle entre quatre entités. Ces
parallèles sont intéressants car ils modèlisent des transformations entre une entité et
une autre. Dans cette thèse, nous avons exploré différentes façons de représenter les
proportions analogiques existant dans un jeu de données, et la meilleure façon de les
intérroger, en utilisant un langage de requêtes. A notre connaissance, cette thèse est la
première qui traite de proportions analogiques dans le domaine des bases de données.

Prédiction de valeurs manquantes dans les bases de données

La première section aborde le problème de la prédiction de valeurs manquantes dans
une base de données en utilisant les proportions analogiques. Nous avons étudié succes-
sivement le cas de valeurs booléennes [CJP14b] et celui de valeurs numériques [CJP14c].
Certaines formules de la littérature permettent de déterminer si quatre valeurs valident
une proportion analogique (vision en “tout ou rien”). D’autres permettent de déterminer
le degré avec lequel quatre valeurs numériques satisfont une proportion analogique (vi-
sion graduelle). Nous avons étudié ces formules, et proposé des propriétés qu’une pro-
portion analogique devrait satisfaire. Ces propriétés spécifient d’une part que plus les
différences entre deux paires d’objets sont proches, plus le degré auquel ils satisfont
une proportion analogique est élevé; et d’autre part, que sauf dans certaines conditions,
quand les différences entre deux paires d’objets ont des signes différents, le degré auquel
ils satisfont une proportion analogique doit être égal à 0.

Un algorithme de classification fondé sur les proportions analogiques [BMD07c] a
été modifié dans le but de prédire des valeurs manquantes dans une base de données.
Cet algorithme forme tous les triplets possibles à partir des éléments d’un training set.
Ensuite, il choisit les triplets avec les plus grands degrés de proportion analogique par
rapport à chaque élément incluant des valeurs manquantes. Pour chaque valeur man-
quante d’un tel élément, les triplets choisis sont utilisés pour prédire sa valeur à l’aide

d’équations analogiques. La valeur finale de chaque valeur manquante est la moyenne
des valeurs prédites, si elle est numérique, ou la valeur ayant obtenu le plus de votes, si
elle est booléenne. Des expérimentations ont été réalisées dans le but de comparer notre
approche avec d’autres méthodes bien connues de la littérature: k plus proches voisins,
CART , Mean Substitution, Linear Regression, Bayesian Linear Regression, Linear
Regression (with Bootstrap), Predictive Mean Matching, et Random Forests. Les résul-
tats obtenus montrent que les performances de la méthode fondée sur des proportions
analogiques sont similaires à celles d’autres méthodes sans nécessiter de connaissances
sur la distribution des valeurs.

En outre, nous avons évalué le fonctionnement de méthodes fondées sur les proportions
analogiques afin de vérifier si elles pouvaient être simplifiées. Nous avons montré que
certains types de proportions analogiques sont plus utiles que les autres. Nous avons
donc proposé un algorithme qui utilise cette information dans le but de réduire con-
sidérablement la taille du training set utilisé par un algorithme de classification fondé
sur les proportions analogiques [CBW14]. Nous avons aussi mis en évidence les cas où
un algorithme de classification analogique réalise un traitement similaire à celui de la
méthode des k plus proches voisins.

Extraction de proportions analogiques

Cette partie de la thèse s’intéresse au problème d’extraire et de retrouver au moyen
de requêtes des proportions analogiques dans une base de données. Nous proposons
l’utilisation de méthodes de clustering dans le but de trouver les proportions analogiques
les plus représentatives dans un jeu de données. Ensuite, nous montrons comment il est
possible d’interroger une base de données pour en extraire les proportions analogiques
existantes, en considérant plusieurs stratégies.

Extraction des proportions analogiques les plus représentatives Dans un pre-
mier temps, nous montrons comment le problème consistant à découvrir les proportions
analogiques dans une relation est équivalent à celui de trouver les cliques maximales
d’un graphe, qui est un problème de complexité NP. Puis, nous proposons l’utilisation
d’une méthode de clustering dans le but de surmonter cette difficulté. Nous avons con-
sidéré l’utilisation de la méthode de clustering appelée k-means. Nous nous sommes
rendu compte que la méthode de k-means a deux grands inconvénients relativement à
notre objectif: i) les centres des clusters initiaux sont générés aléatoirement; et ii) cette
méthode ne contrôle pas la distance intra-cluster des clusters qu’elle crée.

Afin de pallier ces difficultés, nous avons proposé l’utilisation de la méthode de Chiu
[Chi94] pour déterminer les clusters initiaux d’un jeu de données. Cette méthode nous
a permis de trouver les objets les plus représentatifs dans un jeu de données, en fonc-
tion de la densité de leur voisinage. Nous avons aussi proposé une modification de la
méthode k-means dans le but de contrôler la distance intra-cluster. Cette dernière mod-

ification considère certains éléments comme des anomalies s’ils ne sont pas suffisament
proches de l’un des centres des clusters. Puisque l’un des objectifs de ce chapitre est de
représenter le plus grand nombre possible de proportions analogiques valides existant
dans un jeu de données sous la forme de clusters, nous avons adapté la méthode de Chiu
dans le but de créer des clusters disjoints, et ainsi, de capturer davantage d’éléments.

Nous avons aussi proposé l’utilisation d’une structure de type grille qui nous a
permis de contrôler les distances intra-cluster, et qui ne considère aucun point comme
une anomalie. Ceci est crucial pour la tâche suivante traitée dans ce chapitre, qui a
trait aux requêtes analogiques.

Requêtes analogiques Nous avons proposé d’étendre le langage de requêtes SQL
pour pouvoir trouver des quadruplets d’une base de données satisfaisant une proportion
analogique.

L’objectif des requêtes analogiques est d’extraire tous les quaduplets de tuples qui
valident une proportion analogique à un certain degré. Nous avons proposé differents
types de requêtes analogiques, en fonction du nombre de variables données en entrée,
que nous recensons dans la liste suivante :

1 Trouver les quadruplets A, B, C, et D, t.q. A : B :: C : D à un degré λ

2 Étant donné un tuple X, trouver les triplets B, C, et D, t.q. X : B :: C : D à un
degré λ

3 Étant donnée une paire de tuples X et Y , trouver les paires C et D, t.q. X : Y ::
C : D à un degré λ

4 Étant donné un triplet de tuples X, Y , et Z, trouver les tuples D, t.q. X : Y ::
Z : D à un degré λ

Nous avons ensuite abordé le traitement de chaque type de requête analogique en
utilisant trois stratégies: i) une stratégie naïve, qui utilise des boucles imbriquées; ii)
une stratégie qui utilise des index classiques sur certains des attributs impliqués dans
la proportion analogique visée; iii) une stratégie qui utilise des clusters créés à partir
des vecteurs entre chaque paire de tuples du jeu de données. Nous avons effectué des
expérimentations dans le but de comparer l’efficacité de ces stratégies pour chaque type
de requête analogique. Dans le cas de la première requête, les meilleurs résultats ont
été obtenus par la méthode qui utilise des clusters. Dans le cas des requêtes de type 2
et de type 3, les meilleurs résultats ont été obtenus par la stratégie qui utilise des index
classiques. Dans le cas de requêtes de type 4, les meilleurs résultats ont éé obtenus par
la méthode qui utilise des index classiques, et par la stratégie naïve.

Conclusion et perspectives

À notre connaissance, cette thèse est la première traitant de proportions analogiques
dans un contexte de bases de données. Les résultats présentés dans ce manuscrit peu-
vent être considérés comme des résultats préliminaires. Ils ont donc un grand potentiel
d’amélioration.

Une première perspective est d’étudier des méthodes alternatives, inspirées de travaux
récents en classification, fondées sur les proportions analogiques dans le cadre de la pré-
diction de valeurs manquantes. Il s’agirait notamment d’évaluer dans quels cas ces
méthodes obtiennent de bons résultats ou pas, ce qui pourrait nous amener à en avoir
une meilleure compréhension, et ouvrirait la voie à des améliorations de ces méthodes.

Dans le contexte de l’extraction de proportions analogiques à l’aide d’une méthode
de clustering, une première piste est d’évaluer l’utilisation de méthodes qui créent des
grilles de différentes résolutions, comme CLIQUE [AGGR98]. L’utilisation d’une telle
méthode permettrait d’améliorer l’efficacité des requêtes analogiques, car elles auraient
à évaluer moins de tuples que dans le cas où l’on crée des clusters mono-résolution. Par
contre, les algorithmes d’évaluation de requête seraient alors plus complexes que ceux
utilisant des grilles d’une résolution fixée à l’avance.

Une perspective plus ambitieuse est de passer du modèle relationnel à un modèle
sémantique de bases de données. En particulier, il s’agirait d’étudier la découverte de
proportions analogiques dans le contexte du modèle RDF [KC06]. L’objectif dans ce
cas serait de mettre en évidence les cas où quatre concepts peuvent être en proportion
analogique d’un point de vue sémantique, et quand une proportion analogique peut être
considérée suffisamment pertinente. Par exemple, si l’on donne en entrée les noms d’un
couple de personnes, e.g., (Bill de Blasio, Michael Bloomberg) — le maire actuel de
New York et son prédécesseur —, et que l’on veut trouver des couples de personnes
(c, d) tels que « Bill de Blasio est à M. Bloomberg ce que c est à d », un résultat
valide pourrait être (Anne Hidalgo, Bertrand Delanoë) — le maire actuel de Paris et
son prédécesseur. Remarquons cependant que ces quatre personnes pourraient aussi
être liées par la proportion analogique « l’âge de a est à l’âge de b ce que l’âge de c
est à l’âge de d », qui est beaucoup moins discriminante que celle faisant référence à
la fonction de maire d’une grande ville. Un cas encore plus extrême correspond à la
proportion analogique triviale « humain est à humain ce que humain est à humain ».
Il conviendra donc de définir une méthode permettant de découvrir des proportions
analogiques valides qui soient aussi suffisamment discriminantes.

