C. Alan, J. Agrawal, D. Gehrke, P. Gunopulos, and . Raghavan, Working with missing values Automatic subspace clustering of high dimensional data for data mining applications, Journal of Marriage and Family, vol.67, issue.27, pp.1012-1028, 1998.

[. Agrawal, J. Ernst-gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, US Patent, vol.6, p.3029, 1999.

A. Akkoyunlu, The Enumeration of Maximal Cliques of Large Graphs, SIAM Journal on Computing, vol.2, issue.1, pp.1-6, 1973.
DOI : 10.1137/0202001

I. Arrazola, A. Plainfossé, H. Prade, and C. Testemale, Extrapolation of fuzzy values from incomplete data bases, Information Systems, vol.14, issue.6, pp.487-492, 1989.
DOI : 10.1016/0306-4379(89)90016-1

C. Charu, . Aggarwal, K. Chandan, and . Reddy, Data clustering: algorithms and applications, 2013.

[. Ashworth, Medieval theories of analogy. Stanford Encyclopedia of Philosophy, 2011.

P. Bartha, By Parallel Reasoning: The construction and Evaluation of Analogical Arguments, 2010.
DOI : 10.1093/acprof:oso/9780195325539.001.0001

P. Bartha, Analogy and analogical reasoning The Stanford Encyclopedia of Philosophy, 2013.

W. Correa-beltran, H. Jaudoin, and O. Pivert, Prédiction de valeurs manquantes dans les bases de données-une première approche fondée sur la notion de proportion analogique, 14e Conférence Internationale Francophone sur l'Extraction et la Gestion des Connaissances (EGC'14), pp.485-490, 2014.

W. Correa-beltran, H. Jaudoin, and O. Pivert, Analogical database queries, Flexible Query Answering Systems 2015 -Proceedings of the 11th International Conference FQAS 2015, pp.201-213, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01264833

W. Correa-beltran, H. Jaudoin, and O. Pivert, A clusteringbased approach to the mining of analogical proportions, 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015, pp.125-131, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01264817

[. Bron and J. Kerbosch, Algorithm 457: finding all cliques of an undirected graph, Communications of the ACM, vol.16, issue.9, pp.575-577, 1973.
DOI : 10.1145/362342.362367

S. Bayoudh, L. Miclet, and A. Delhay, Learning by analogy: A classification rule for binary and nominal data, IJCAI, pp.678-683, 2007.

S. Bayoudh, L. Miclet, and A. Delhay, Learning by analogy: A classification rule for binary and nominal data, IJCAI, pp.678-683, 2007.

S. Bayoudh, L. Miclet, and A. Delhay, Learning by analogy: A classification rule for binary and nominal data, IJCAI, pp.678-683, 2007.

[. Barbot, L. Miclet, and H. Prade, Analogical proportions and the factorization of information in distributive lattices, 10th International Conference on Concept Lattices and Their Applications (CLA), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00908005

[. Bounhas, H. Prade, and G. Richard, Analogical classification: A new way to deal with examples, ECAI 2014: 21st European Conference on Artificial Intelligence, p.135, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01399864

[. Bounhas, H. Prade, and G. Richard, Analogical classification: A new way to deal with examples, ECAI, pp.135-140, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01399864

[. Bounhas, H. Prade, G. Richard, and G. Richard, Analogical classification: A rule-based view. In Information Processing and Management of Uncertainty in Knowledge-Based Systems Analogical classification: handling numerical data, Scalable Uncertainty Management, pp.485-495, 2014.
DOI : 10.1007/978-3-319-08855-6_49

URL : https://hal.archives-ouvertes.fr/hal-01394666

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

S. Bashir, U. Razzaq, S. Maqbool, A. R. Tahir, and . Baig, Using association rules for better treatment of missing values. arXiv preprint, 2009.

L. Roger and . Brown, Efficacy of the indirect approach for estimating structural equation models with missing data: A comparison of five methods, Structural Equation Modeling: A Multidisciplinary Journal, vol.1, issue.4, pp.287-316, 1994.

[. William and J. Hélène, Lazy analogical classification: Optimization and precision issues, Scalable Uncertainty Management, 2014.

L. Stephen and . Chiu, Fuzzy model identification based on cluster estimation, Journal of Intelligent & Fuzzy Systems, vol.2, issue.3, pp.267-278, 1994.

[. Correa, H. Jaudoin, and O. Pivert, Analogical prediction of null values: The numerical attribute case, Advances in Databases and Information Systems, pp.323-336, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063455

[. Correa, H. Jaudoin, and O. Pivert, Estimating null values in relational databases using analogical proportions, Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp.110-119, 2014.

W. Fernando-correa, H. Jaudoin, and O. Pivert, Analogical prediction of null values: The numerical attribute case, Advances in Databases and Information Systems, pp.323-336, 2014.

F. Edgar and . Codd, Missing information (applicable and inapplicable) in relational databases, ACM Sigmod Record, vol.15, issue.4, pp.53-53, 1986.

[. Correa, H. Prade, and G. Richard, When intelligence is just a matter of copying, ECAI, pp.276-281, 2012.

P. Arthur, . Dempster, M. Nan, . Laird, B. Donald et al., Maximum likelihood from incomplete data via the em algorithm, Journal of the royal statistical society. Series B (methodological), pp.1-38, 1977.

A. Delhay and L. Miclet, Analogical Equations in Sequences: Definition and Resolution, Grammatical Inference: Algorithms and Applications, pp.127-138, 2004.
DOI : 10.1007/978-3-540-30195-0_12

[. Doove, S. Van-buuren, and E. Dusseldorp, Recursive partitioning for missing data imputation in the presence of interaction effects, Computational Statistics & Data Analysis, vol.72, pp.92-104, 2014.
DOI : 10.1016/j.csda.2013.10.025

]. Dvdhsm06, T. Rogier, . Donders, J. Geert, T. Van-der-heijden et al., Review: a gentle introduction to imputation of missing values, Journal of clinical epidemiology, issue.10, pp.591087-1091, 2006.

E. Lynn and . Eberly, Multiple linear regression, Topics in Biostatistics, pp.165-187, 2007.

G. Thomas and . Evans, A heuristic program to solve geometric-analogy problems, Proceedings of the, pp.327-338, 1964.

A. David and . Freedman, Bootstrapping regression models, The Annals of Statistics, vol.9, issue.6, pp.1218-1228, 1981.

A. Falcon, Commentators on Aristotle The Stanford Encyclopedia of Philosophy, 2013.

[. Falkenhainer, D. Kenneth, D. Forbus, and . Gentner, The structure-mapping engine: Algorithm and examples, Artificial Intelligence, vol.41, issue.1, pp.1-63, 1989.
DOI : 10.1016/0004-3702(89)90077-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6432

[. Fujikawa and T. Ho, Cluster-Based Algorithms for Dealing with Missing Values, Advances in Knowledge Discovery and Data Mining, pp.549-554, 2002.
DOI : 10.1007/3-540-47887-6_54

L. Kevin and . Flannery, The semantics of analogy, The Review of Metaphysics, vol.64, issue.4, pp.865-866, 2011.

[. Federici, V. Pirrelli, and F. Yvon, A dynamic approach to paradigm-driven analogy, Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing, pp.385-398, 1995.
DOI : 10.1007/3-540-60925-3_61

D. Gentner, Structure-Mapping: A Theoretical Framework for Analogy*, Proceedings of Cognitive Science, pp.155-170, 1983.
DOI : 10.1207/s15516709cog0702_3

D. Gentner, D. Kenneth, and . Forbus, Computational models of analogy, Wiley Interdisciplinary Reviews: Cognitive Science, vol.115, issue.3, pp.266-276, 2011.
DOI : 10.1002/wcs.105

W. John, . Graham, M. Scott, . Hofer, P. David et al., Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures, Multivariate Behavioral Research, vol.31, issue.2, pp.197-218, 1996.

D. Gentner and M. Jeziorski, The shift from metaphor to analogy in Western science, 1993.
DOI : 10.1017/CBO9781139173865.022

D. Gentner and L. Smith, Analogical reasoning. Encyclopedia of human behavior, pp.130-136, 2012.

B. Mary and . Hesse, On defining analogy, Proceedings of the Aristotelian Society, pp.79-100, 1959.

J. Han, M. Kamber, and J. Pei, Data Mining, 2011.
DOI : 10.1007/978-1-4899-7993-3_104-2

J. Han, M. Kamber, and J. Pei, Data Mining, 2011.
DOI : 10.1007/978-1-4899-7993-3_104-2

R. Douglas, M. Hofstadter, and . Mitchell, The copycat project: A model of mental fluidity and analogy-making Advances in connectionist and neural computation theory, pp.31-11229, 1994.

S. Jason, . Haukoos, D. Craig, and . Newgard, Advanced statistics: missing data in clinical research-part 1: an introduction and conceptual framework, Academic Emergency Medicine, vol.14, issue.7, pp.662-668, 2007.

P. Joshua and . Hochschild, The semantics of analogy: Rereading Cajetan's de nominum analogia, 2010.

R. Douglas and . Hofstadter, Analogy as the core of cognition. The analogical mind: Perspectives from cognitive science, pp.499-538, 2001.

[. Hoffman, Aquinas on analogy, 2016.

J. Keith, P. Holyoak, and . Thagard, Analogical mapping by constraint satisfaction, Cognitive science, vol.13, issue.3

[. Jeffrey, Principles of database and knowledge-base systems, 1989.

J. Kaiser, Algorithm for missing values imputation in categorical data with use of association rules. arXiv preprint, 2012.

G. Klyne and J. J. Carroll, Resource description framework (rdf): Concepts and abstract syntax, 2006.

S. Klein, Culture, mysticism & social structure and the calculation of behavior, ECAI, pp.141-146, 1982.

E. Robert and . Kling, A paradigm for reasoning by analogy, Artificial Intelligence, vol.2, issue.2, pp.147-178, 1971.

[. Landry, L'analogie de proportion chez Saint Thomas d'Aquin. Revue néo-scolastique de philosophie, pp.257-280, 1922.
DOI : 10.3406/phlou.1922.2313

M. Lesot and A. Revault-d-'allonnes, Credit-Card Fraud Profiling Using a Hybrid Incremental Clustering Methodology, Scalable Uncertainty Management, pp.325-336, 2012.
DOI : 10.1007/978-3-642-33362-0_25

Y. Lepage, Solving analogies on words: an algorithm, Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, pp.728-734, 1998.
DOI : 10.3115/980451.980967

Y. Lepage, Languages of analogical strings, Proceedings of the 18th conference on Computational linguistics -, pp.488-494, 2000.
DOI : 10.3115/990820.990891

URL : http://acl.ldc.upenn.edu/C/C00/C00-1071.pdf

Y. Lepage, De l'analogie rendant compte de la commutation en linguistique, 2003.
URL : https://hal.archives-ouvertes.fr/tel-00004372

Y. Lepage, Analogies Between Binary Images: Application to Chinese Characters, Computational Approaches to Analogical Reasoning: Current Trends, pp.25-57, 2014.
DOI : 10.1007/978-3-642-54516-0_2

J. Roderick and . Little, Regression with missing x's: a review, Journal of the American Statistical Association, vol.87, issue.420, pp.1227-1237, 1992.

J. Roderick, . Little, B. Donald, and . Rubin, Statistical analysis with missing data, 2014.

A. Liaw and M. Wiener, Classification and regression by randomforest, pp.18-22, 2002.

P. Langlais, F. Yvon, and P. Zweigenbaum, Analogical Translation of Medical Words in Different Languages, Advances in Natural Language Processing, pp.284-295, 2008.
DOI : 10.1007/11527770_34

P. Langlais, F. Yvon, and P. Zweigenbaum, Improvements in analogical learning, Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics on, EACL '09, pp.487-495, 2009.
DOI : 10.3115/1609067.1609121

M. Magnani, Techniques for dealing with missing data in knowledge discovery tasks, pp.1-10, 2004.

J. Marenbon, Anicius Manlius Severinus Boethius The Stanford Encyclopedia of Philosophy, 2013.

[. Miclet, S. Bayoudh, and A. Delhay, Analogical dissimilarity: definition, algorithms and two experiments in machine learning, Journal of Artificial Intelligence Research, pp.793-824, 2008.

[. Miclet, S. Bayoudh, and A. Delhay, Analogical dissimilarity: Definition, algorithms and two experiments in machine learning, J. Artif. Intell. Res. (JAIR), vol.32, pp.793-824, 2008.

[. Miyamoto, H. Ichihashi, and K. Honda, Algorithms for fuzzy clustering. Methods in c-Means Clustering with Applications, 2008.

M. Ronei, . Moraes, S. Liliane, H. Machado, G. Prade et al., Classification based on homogeneous logical proportions Handling analogical proportions in classical logic and fuzzy logics settings, Research and Development in Intelligent Systems XXX Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU' 09), pp.53-60, 2009.

L. Miclet and H. Prade, Handling analogical proportions in classical logic and fuzzy logics settings Looking for analogical proportions in a formal concept analysis setting, Symbolic and Quantitative Approaches to Reasoning with Uncertainty CLA, pp.638-650, 2009.

[. Maimon and L. Rokach, Data mining and knowledge discovery handbook, 2005.

M. Marino and A. Stawinoga, Statistical methods for social networks: a focus on parallel computing, MetodoloSki zvezki, p.57, 2011.

G. Polya, How to solve it: A new aspect of mathematical model, 1945.

O. Pivert and H. Prade, A Certainty-Based Approach to the Cautious Handling of Suspect Values, Flexible Query Answering Systems 2015, pp.73-85, 2016.
DOI : 10.1007/978-3-319-26154-6_6

URL : https://hal.archives-ouvertes.fr/hal-01264836

H. Prade and G. Richard, Analogy, Paralogy and Reverse Analogy: Postulates and Inferences, KI 2009: Advances in Artificial Intelligence, pp.306-314, 2009.
DOI : 10.1007/978-3-540-45091-7_2

URL : https://opus.lib.uts.edu.au/bitstream/10453/32831/1/2013007811OK.pdf

H. Prade and G. Richard, Testing analogical proportions with google using kolmogorov information theory, Proceedings of the 22nd International Florida Artificial Intelligence Research Society Conference, p.22, 2009.

H. Prade and G. Richard, Analogical proportions: another logical view, Research and development in intelligent systems XXVI, pp.121-134, 2010.
DOI : 10.1007/978-1-84882-983-1_9

URL : https://opus.lib.uts.edu.au/bitstream/10453/32830/1/2013007810OK.pdf

H. Prade and G. Richard, Multiple-Valued Logic Interpretations of Analogical, Reverse Analogical, and Paralogical Proportions, 2010 40th IEEE International Symposium on Multiple-Valued Logic, pp.258-263, 2010.
DOI : 10.1109/ISMVL.2010.55

H. Prade and G. Richard, Multiple-Valued Logic Interpretations of Analogical, Reverse Analogical, and Paralogical Proportions, 2010 40th IEEE International Symposium on Multiple-Valued Logic, pp.258-263, 2010.
DOI : 10.1109/ISMVL.2010.55

H. Prade and G. Richard, Logical handling of analogical proportions in commonsense and transductive reasoning, 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp.561-566, 2011.
DOI : 10.1109/SoCPaR.2011.6089157

H. Prade and G. Richard, Analogical proportions and multiplevalued logics, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp.497-509, 2013.
DOI : 10.1007/978-3-642-39091-3_42

URL : https://hal.archives-ouvertes.fr/hal-01197273

P. Prosser, Exact Algorithms for Maximum Clique: A Computational Study??, Algorithms, vol.389, issue.4, pp.545-587, 2012.
DOI : 10.1287/ijoc.10.4.438

URL : http://doi.org/10.3390/a5040545

H. Prade, G. Richard, and B. Yao, Classification by means of fuzzy analogy-related proportions — A preliminary report, 2010 International Conference of Soft Computing and Pattern Recognition, pp.297-302, 2010.
DOI : 10.1109/SOCPAR.2010.5686636

H. Prade, G. Richard, and B. Yao, Classification by means of fuzzy analogy-related proportions — A preliminary report, 2010 International Conference of Soft Computing and Pattern Recognition, pp.297-302, 2010.
DOI : 10.1109/SOCPAR.2010.5686636

H. Prade, G. Richard, and B. Yao, Enforcing regularity by means of analogy-related proportions a new approach to classification, International Journal of Computer Information Systems and Industrial Management Applications, vol.4, pp.648-658, 2012.

H. Prade, G. Richard, and B. Yao, Enforcing regularity by means of analogy-related proportions-a new approach to classification, International Journal of Computer Information Systems and Industrial Management Applications, vol.4, pp.648-658, 2012.

A. Ragel, Treatment of missing values for association rules, Research and Development in Knowledge Discovery and Data Mining, pp.258-270, 1998.
DOI : 10.1016/B978-1-55860-036-2.50048-5

A. Ragel, Preprocessing of missing values using robust association rules, Principles of Data Mining and Knowledge Discovery, pp.414-422, 1998.
DOI : 10.1007/BFb0094845

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.464.5110

L. Joseph, . Schafer, W. John, and . Graham, Missing data: our view of the state of the art, Psychological methods, vol.7, issue.2, p.147, 2002.

E. Steinhart, Analogical Truth Conditions for Metaphors, Metaphor and Symbolic Activity, vol.9, issue.3, pp.161-178, 1994.
DOI : 10.1207/s15327868ms0903_1

N. Stroppa, F. Thagard, J. Keith, G. Holyoak, D. Nelson et al., Analogical learning and formal proportions: Definitions and methodological issues Analog retrieval by constraint satisfaction, Artificial intelligence, vol.46, issue.3, pp.259-310, 1990.

G. Walter and T. Augustin, Bayesian Linear Regression ??? Different Conjugate Models and Their (In)Sensitivity to Prior-Data Conflict, Statistical Modelling and Regression Structures, pp.59-78, 2010.
DOI : 10.1007/978-3-7908-2413-1_4

E. W. Weisstein, from mathworld?a wolfram web resource, 2016.

F. Keith and . Widaman, Iii. missing data: What to do with or without them. Monographs of the Society for Research in Child Development, pp.42-64, 2006.

H. Patrick and . Winston, Learning and reasoning by analogy, Communications of the ACM, vol.23, issue.12, pp.689-703, 1980.

]. Wu, V. Kumar, R. Quinlan, J. Ghosh, Q. Yang et al., Top 10 algorithms in data mining, Knowledge and Information Systems, vol.9, issue.2, pp.1-37, 2008.
DOI : 10.1007/s10115-007-0114-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.5575

W. Wothke, Longitudinal and multigroup modeling with missing data, 2000.