
HAL Id: tel-01508513
https://theses.hal.science/tel-01508513

Submitted on 14 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal control of deterministic and stochastic neuron
models, in finite and infinite dimension. Application to

the control of neuronal dynamics via Optogenetics
Vincent Renault

To cite this version:
Vincent Renault. Optimal control of deterministic and stochastic neuron models, in finite and infinite
dimension. Application to the control of neuronal dynamics via Optogenetics. Optimization and
Control [math.OC]. Université Pierre et Marie Curie - Paris VI, 2016. English. �NNT : 2016PA066471�.
�tel-01508513�

https://theses.hal.science/tel-01508513
https://hal.archives-ouvertes.fr


École doctorale de sciences mathématiques de Paris centre

Thèse de doctorat de
l’université pierre et marie curie

Discipline : Mathématiques Appliquées

présentée par

Vincent RENAULT

pour obtenir le grade de :

docteur de l’université pierre et marie curie

Contrôle optimal de modèles de neurones
déterministes et stochastiques, en dimension finie et
infinie. Application au contrôle de la dynamique

neuronale par l’Optogénétique.

dirigée par Michèle THIEULLEN et Emmanuel TRÉLAT



Laboratoire de Probabilités et Modèles
Aléatoires. UMR 7599.
Université Pierre et Marie Curie.
Boîte courrier 188
4 place Jussieu
75 252 Paris Cedex 05

École doctorale de sciences
mathématiques de Paris centre.
Université Pierre et Marie Curie.
Boîte courrier 290
4 place Jussieu
75 252 Paris Cedex 05



Résumé

Let but de cette thèse est de proposer différents modèles mathématiques de neurones
pour l’Optogénétique et d’étudier leur contrôle optimal. L’Optogénétique permet de mo-
difier génétiquement des neurones choisis pour leur conférer une sensibilité à la lumière.
L’exposition à une longueur d’onde spécifique permet alors de produire des potentiels d’ac-
tion, sans stimulation électrique extérieure. Il existe de nombreuses façons de modéliser la
dynamique du potentiel de membrane d’un neurone. Les premiers modèles déterministes
ont rapidement cohabité avec des modèles stochastiques, justifiés par la nature profondé-
ment stochastique des mécanismes d’ouverture et de fermeture des canaux ioniques. Suivant
la prise en compte ou non de la propagation du potentiel d’action le long de l’axone, les
modèles résultants sont de dimension infinie ou finie. Nous souhaitons prendre en compte
ces différentes facettes de la modélisation de l’activité neuronale pour proposer des versions
contrôlées de différents modèles et étudier leur contrôle optimal.

Dans une première partie, nous définissons une version contrôlée des modèles déter-
ministes de dimension finie, dits à conductances, dont font partie les modèles d’Hodgkin-
Huxley et de Morris-Lecar. Cette version contrôlée se présente sous deux déclinaisons
suivant le modèle de Channelrhodopsin-2 (ChR2, le canal ionique sensible à la lumière,
implanté génétiquement dans les neurones). Pour ces modèles à conductances, nous étu-
dions un problème de temps minimal pour obtenir un potentiel d’action en partant d’un
état d’équilibre du système. Le problème de contrôle optimal résultant est un problème
de temps minimal pour un système affine mono-entrée dont nous étudions les singulières.
Nous appliquons une méthode numérique directe pour observer les trajectoires et contrôles
optimaux. Cela nous permet de comparer les deux modèles de ChR2 envisagés, ainsi que
les modèles à conductances entre eux, à travers leur comportement face au contrôle opto-
génétique. Le contrôle optogénétique apparaît alors comme une nouvelle façon de juger de
la capacité des modèles à conductances de reproduire les caractéristiques de la dynamique
du potentiel de membrane, observées expérimentalement.

Dans une deuxième partie, nous définissons un modèle stochastique en dimension in-
finie pour prendre en compte le caractère aléatoire des mécanismes des canaux ioniques
et la propagation des potentiels d’action le long de l’axone. Le modèle prend la forme
d’un processus de Markov déterministe par morceaux (PDMP) contrôlé, à valeurs dans
un espace de Hilbert. Nous établissons un cadre théorique pour définir une large classe de
PDMPs contrôlés en dimension infinie, dans laquelle le contrôle intervient dans les trois
caractéristiques locales du PDMP, et dont fait partie le modèle d’Optogénétique. Nous
prouvons le caractère fortement Markovien des processus ainsi définis et donnons leur gé-
nérateur infinitésimal. Nous traitons un problème de contrôle optimal à horizon de temps
fini. Nous introduisons des contrôles relâchés, étudions le processus de décision Markovien
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(MDP) inclus dans le PDMP et montrons l’équivalence des deux problèmes. L’application
du principe de programmation dynamique sur le MDP permet de donner des conditions
suffisantes pour que le MDP soit contractant, assurant ainsi l’existence de contrôles opti-
maux relâchés pour le MDP, et donc aussi pour le PDMP initial. Nous donnons ensuite
des hypothèses de convexités suffisantes à l’existence de contrôles optimaux ordinaires. Le
cadre assez large du modèle théorique nous permet de discuter de nombreuses variantes
pour le modèle d’Optogénétique stochastique en dimension infinie. Enfin, nous étudions
l’extension du modèle à un espace de Banach réflexif, puis, dans un cas particulier, à un
espace de Banach non réflexif.

Mots-clés

Processus de Markov déterministes par morceaux, contrôle optimal, équations aux dérivées
partielles, contrôles relâchés, processus de Markov décisionnels, programmation dynamique,
systèmes de contrôles déterministes affines, problème de temps minimal, méthodes directes,
modèles de neurones, Optogénétique.
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Optimal control of deterministic and stochastic
neuron models, in finite and infinite dimension.

Application to the control of neuronal dynamics via
Optogenetics.

Abstract

The aim of this thesis is to propose different mathematical neuron models that take into
account Optogenetics, and study their optimal control. Optogenetics allows to genetically
modify targeted neurons to give them light sensitivity. Exposure to a specific wavelength
then triggers action potentials, without any external electrical stimulation. There are se-
veral ways to model the dynamics of a neuron membrane potential. The first deterministic
models soon coexisted with stochastic models, introduced to reflect the stochastic nature of
the opening and closing mechanisms of ion channels. When the action potential propagation
along the axon is considered, the finite-dimensional models become infinite-dimensional.
We want to take into account those different aspects of the modeling of neuronal activity
to propose controlled versions of several models and to study their optimal control.

In a first part, we define a controlled version of finite-dimensional, deterministic, conduc-
tance based neuron models, among which are the Hodgkin-Huxley model and the Morris-
Lecar model. This controlled version comprises in fact two models, depending on two
Channelrhodopsin-2 models (ChR2, the light-sensitive ion channel, genetically implan-
ted in neurons). For these controlled conductance-based models, we study the optimal
control problem that consists in steering the system from equilibrium to an action po-
tential, in minimal time. The control system is a single-input affine system and we study
its singular extremals. We implement a direct method to observe the optimal trajecto-
ries and controls. It allows us to compare the two ChR2 models considered, and also the
conductance-based models. The optogenetic control appears as a new way to assess the
capability of conductance-based models to reproduce the characteristics of the membrane
potential dynamics experimentally observed.

In a second part, we define an infinite-dimensional stochastic model to take into account
the stochastic nature of the ion channel mechanisms and the action potential propagation
along the axon. The model is a controlled piecewise deterministic Markov process (PDMP),
taking values in an Hilbert space. We design a theoretical framework to define a large class
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of infinite-dimensional controlled PDMPs, in which the control acts on the three local
characteristics of the PDMP, and in which belongs the optogenetic model. We prove that
the resulting process is strongly Markovian and we give its infinitesimal generator. We
address a finite time optimal control problem. We define relaxed controls for this class of
processes and we study the Markov decision process (MDP) embedded in the PDMP. We
show the equivalence of the two control problems. We apply dynamic programming on the
MDP and give sufficient conditions under which it is contracting. Those conditions ensure
the existence of a relaxed optimal control for the MDP, and thus, for the initial PDMP
as well. We also give sufficient convexity assumptions to obtain ordinary optimal controls.
The theoretical framework is large enough to consider several modifications of the infinite-
dimensional stochastic optogenetic model. Finally, we study the extension of the model to
a reflexive Banach space, and then, on a particular case, to a nonreflexive Banach space.

Keywords

Piecewise deterministic Markov processes, optimal control, partial differential equations,
relaxed controls, Markov decision processes, dynamic programming, deterministic affine
control systems, minimal time problems, direct methods, neuron models, Optogenetics.



Contents

Introduction 9
0.1. Neuron models and Optogenetics . . . . . . . . . . . . . . . . . . . . . . . . 9

0.1.1. Neuronal dynamics and conductance-based models . . . . . . . . . . 9
0.1.2. Light-gated ion channels and Optogenetics mathematical modeling . 13

0.2. Mathematical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
0.2.1. Finite-dimensional deterministic optimal control . . . . . . . . . . . 19
0.2.2. A class of infinite-dimensional Piecewise Deterministic Markov Pro-

cesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
0.2.3. Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . 33

0.3. Results of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
0.3.1. Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
0.3.2. Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
0.3.3. Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
0.3.4. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1. Minimal time spiking in various ChR2-controlled neuron models 51
1.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.1.1. Conductance based models . . . . . . . . . . . . . . . . . . . . . . . 53
1.1.2. The Pontryagin Maximum Principle for minimal time single-input

affine problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.2. Control of conductance-based models via Optogenetics . . . . . . . . . . . . 59

1.2.1. The minimal time spiking problem . . . . . . . . . . . . . . . . . . . 62
1.2.2. The Goh transformation for the ChR2 3-states model . . . . . . . . 64
1.2.3. Lie bracket configurations for the ChR2 4-states model . . . . . . . . 66

1.3. Application to some neuron models with numerical results . . . . . . . . . . 68
1.3.1. The FitzHugh-Nagumo model . . . . . . . . . . . . . . . . . . . . . . 68
1.3.2. The Morris-Lecar model . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.3.3. The reduced Hodgkin-Huxley model . . . . . . . . . . . . . . . . . . 82
1.3.4. The complete Hodgkin-Huxley model . . . . . . . . . . . . . . . . . . 86
1.3.5. Conclusions on the numerical results . . . . . . . . . . . . . . . . . . 88

5



6 CONTENTS

Appendices 89
Appendix 1.A. Numerical constants for the Morris-Lecar model . . . . . . . . . . 89
Appendix 1.B. Numerical constants for the Hodgkin-Huxley model . . . . . . . . 90
Appendix 1.C. Numerical constants for the ChR2 models . . . . . . . . . . . . . 91

1.C.1. The 3-states model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
1.C.2. The 4-states model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2. Optimal control of infinite-dimensional piecewise deterministic Markov
processes and application to the control of neuronal dynamics via Opto-
genetics 93
2.1. Theoretical framework for the control of infinite-dimensional PDMPs . . . 98

2.1.1. The enlarged process and assumptions . . . . . . . . . . . . . . . . . 98
2.1.2. A probability space common to all strategies . . . . . . . . . . . . . 104
2.1.3. A Markov Decision Process (MDP) . . . . . . . . . . . . . . . . . . . 105

2.2. Relaxed controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.2.1. Relaxed controls for a PDE . . . . . . . . . . . . . . . . . . . . . . . 106
2.2.2. Relaxed controls for infinite-dimensional PDMPs . . . . . . . . . . . 107
2.2.3. Relaxed associated MDP . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.3. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.3.1. The optimal control problem . . . . . . . . . . . . . . . . . . . . . . 109
2.3.2. Optimal control of the MDP . . . . . . . . . . . . . . . . . . . . . . 110
2.3.3. Existence of an optimal ordinary strategy . . . . . . . . . . . . . . . 121
2.3.4. An elementary example . . . . . . . . . . . . . . . . . . . . . . . . . 122

2.4. Application to the model in Optogenetics . . . . . . . . . . . . . . . . . . . 123
2.4.1. Proof Theorem 2.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.4.2. Variants of the model . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendices 133
Appendix 2.A. Construction of Xα by iteration . . . . . . . . . . . . . . . . . . . 133
Appendix 2.B. Proof of Theorem 2.1.2 . . . . . . . . . . . . . . . . . . . . . . . . 134
Appendix 2.C. Proof of Lemma 2.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . 139

3. Additional results 143
3.1. Tightness of a sequence of infinite-dimensional controlled PDMPs . . . . . . 144
3.2. A new framework for the definition of infinite-dimensional PDMPs . . . . . 149

Bibliography 169



CONTENTS 7



8 CONTENTS



Introduction

The aim of this thesis is to introduce, study and control some deterministic and stochas-
tic mathematical models that take into account the effect of Optogenetics on the dynamics
of the membrane potential of excitable cells, and especially neurons. Said very roughly,
Optogenetics allows to control excitable cells via light stimulation. Via the optimal control
of the mathematical models we introduce, we address the two main following questions.

Starting from equilibrium, how fast can we make a neuron spike by light stimulation ?

Are we capable to design a light stimulation input to obtain any given membrane
potential output ?

We have worked in two directions. On the one hand, we studied the time optimal
control of finite-dimensional deterministic models of neurons with genetically modified
channels. In this part we investigated existence of singular controls, both theoretically and
numerically. On the other hand, we considered infinite-dimensional controlled piecewise
deterministic Markov processes models of neurons with a finite number of channels, some
of them genetically modified. In this theoretical study, we proved existence of optimal
controls for a finite time optimal control problem.

In this introduction, we recall the basic functioning of excitable cells and how they are
usually mathematically modeled. We then present the field of Optogenetics and we stress
out the main characteristics that need to be considered when modeling its effect on the
membrane potential. This allows us to include an Optogenetics part to neuron models. In
the second part of the Introduction, we present the mathematical tools used in our study
and the main results of this Thesis.

0.1 Neuron models and Optogenetics

0.1.1 Neuronal dynamics and conductance-based models

Excitable cells, such as neurons, cardiac cells or muscle fibers, are capable of receiving
and transmitting information via small electrical currents. This information is encoded in
the difference of potential across the membrane of the cell, a lipid bilayer crossed by proteins
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10 INTRODUCTION

called ion channels. This lipid bilayer serves as an insulator between the intracellular
and the extracellular media and the membrane potential is due to the difference in the
concentration of ions inside and outside the cell. The ion channels allow specific ions to
float through the membrane and constitute thereby gates across the membrane. On the
one hand, the opening of ion channels leads to a change in the concentration of ions inside
and outside the cell and thus to a change of the membrane potential. On the other hand,
the mechanisms governing the opening and the closing of the ion channels depend on the
membrane potential around the channel and we call the ion channels voltage-gated for that
reason. Selective channels are called by the name of the ions they let enter in the cell. We
represent, on Figure 1 below, two types of selective voltage-gated ion channels.

inside

outside

Figure 1 – Two types of selective ion channels across the lipid bilayer membrane of an
excitable cell

Excitable cells have the particularity to possess a membrane potential threshold beyond
which a fast and important increase of the membrane potential can take place, called an
action potential, or a spike. Action potentials are generated by input signals in the soma
and then propagate along the axon to trigger output signals at the synapses that become
inputs for the connected neurons. On Figure 2 below is represented the basic morphology
of a neuron.

axon

ion channels

synapse

synapses

soma

dendrite

Figure 2 – Basic morphology of a neuron

Excitable cells can be stimulated by the application of an external electrical current,
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opening the way to the control of neural dynamics. This control plays a crucial part in
understanding the role of a specific type of excitable cells inside a large population of
different other types of cells, and thus also in fixing pathological behaviors. We can for
instance mention pacemakers or brain electrical stimulation as methods based on electrical
stimulation to cure pathological behaviors of the heart or the brain.

Because the understanding and control of neural dynamics is such a powerful tool
in the investigation of the role of excitable cells, the modeling of those dynamics has
received an increasing attention. Based on experimental data from the frog nerve electrical
stimulation, Lapicque first introduced a simple electrical circuit representing the evolution
of the membrane potential during stimulation [Lap07]. This principle of an equivalent
electrical circuit has then been used by the Nobel prize recipients Hodgkin and Huxley to
describe mathematically the dynamics of the membrane potential of the giant squid axon
[HH52]. Many other models then followed to form the class of conductance-based models.
Nevertheless, these first deterministic models fail to explain a fundamental experimental
observation. When submitted to a repeated given input, the response of a single neuron
is never exactly the same. This observation suggests that there exists a deep stochastic
component in the biological mechanisms that generate and propagate action potentials.
The widely adopted explanation for that randomness is the fact that the opening and
closing of ion channels are subject to thermal noise, and are thus stochastic mechanisms
([CW96], [WKAK98]). The role of noise in neural dynamics has been deeply investigated
in [Wai10]. We will recall later how the deterministic models can be viewed as limits of
the stochastic models. The principle of the equivalent electrical circuit is the cornerstone
to all the models, both deterministic and stochastic, finite and infinite-dimensional, that
are studied hereafter. For this reason, let us now describe it in some detail in the case
of the Hodgkin-Huxley model so that the incorporation of light-gated channels will be
easily understood later. We will then be able to qualitatively and briefly describe what
we consider to be the four main ways to model neural dynamics, that is deterministic
and stochastic models, either finite-dimensional or infinite-dimensional, and the relations
between them.

The lipid membrane of the giant squid axon is described by a capacitance C > 0. The
voltage-gated ion channels in the Hodgkin-Huxley model can be of potassium (K+) type
or sodium (Na+) type. They are represented by conductances gK > 0 and gNa > 0. The
ion flows are driven by electrochemical gradients represented by batteries whose voltages
Ex ∈ R equal the membrane potential corresponding to the absence of ion flow of type x.
They are called equilibrium potentials in the sense that they correspond to the membrane
potential for which the distribution of ions is uniform inside and outside the cell. The sign
of the difference between the membrane potential and Ex gives the direction of the driving
force.

The ion flow across the membrane generates the electrical current in the circuit, the
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possible movements of ions inside the cell being neglected. To each type x of ion channel
is associated a macroscopic ion current Ix. The total membrane current is the sum of the
capacitive current and all the ion currents considered. They include a leakage current that
accounts for the passive flow of some other ions across the membrane. This current is
associated to a fixed conductance gL and will always be noted IL. The macroscopic ion
current IK (resp. INa) is the result of the ion flow through all the ion channels of type K+

(resp. Na+). From these considerations, we can represent the equivalent electrical circuit
on Figure 3 below.

EK

C

I

gK(V )

IK

gNa(V )

INa

ENa

gL

IL

EL

Itot

extracellular medium

intracellular medium

V

Figure 3 – Equivalent circuit for the Hodgkin-Huxley model

The total current Itot is given by

Itot = I + IK + INa + IL,

with I = C dV
dt .

Now, from this equivalent electrical circuit, the deterministic and stochastic models
we are interested in essentially diverge in the way the conductances are modeled. To get
a brief understanding of the situation, in stochastic models, the number of ion channels
in the neuron is considered small enough for the thermal noise to have an impact on the
evolution of the membrane potential. Ion channels are thus represented by finite-state pure
jump processes with transitions depending on the membrane potential. Between jumps
of these processes, the membrane potential follows the same deterministic dynamics as in
deterministic models. For this reason, Piecewise Deterministic Markov Processes ([Dav84],
[Dav93], [Jac06]), abbreviated PDMPs, appear to be the right class of stochastic processes
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to adopt. They are presented in detail in the mathematical part of this Introduction. In the
case of deterministic models, the number of ion channels is considered large enough so that
the opening probability of certain type of channel, rather than the opening probability of a
single channel, becomes the relevant variable to account and the evolution of this opening
probability is deterministic. In the case of the infinite-dimensional Hodgkin-Huxley model,
it has been proved in [Aus08] that the deterministic model can be obtained by taking
the limit of a stochastic model when the number of ion channels goes to infinity. Finite-
dimensional models are obtained when the neuron is viewed as an isopotential compartment
and the propagation along the axon is not considered. Infinite-dimensional models are
derived from finite-dimensional ones by adding a diffusive term to the equation of evolution
of the membrane potential, and ion channels are scattered along the axon.

0.1.2 Light-gated ion channels and Optogenetics mathematical modeling

We now present the field of Optogenetics, focusing on how light stimulation can be
mathematically incorporated as a control in the models of excitable cells. Optogenetics is
a recent but already thriving technique that allows to provoke or prevent electrical shocks
in living tissues, by means of a suitable light stimulation ([Dei11],[Boy15],[Dei15]). A
reliable control in a living tissue was successfully obtained for the first time in [BZB+05].
Since then, the number of publications on the subject, in the field of Biology, has literally
blown up. Optogenetics has for principle the genetic modification of excitable cells for
them to express various rhodopsins. Rhodopsins constitute a class of ion channels whose
opening and closing are triggered by light stimulation. Optogenetics does not only come
down to the mere photoexcitation or photoinhibition of targeted cells, it has to provide
a gain or a loss of function for precise events. Hence, a millisecond-timescale temporal
precision is required since it is the natural timescale of events such as action potentials or
synaptic currents. Invasive electrical stimulation and the monitoring of induced activity
in neurons was possible in intact brain tissues before Optogenetics. Nevertheless, some
specific neurons are often buried deep into the tissue, making it almost impossible to
assign a precise role to each class of neurons. That is what Optogenetics promises, as a
non-invasive technique with high temporal resolution.

Being at the border of several disciplines, Optogenetics requires

— control tools (rhodopsins) that can be administrated to specific cells,

— technologies to route the light (lasers, optic fibers),

— methods to follow the evolution of the implanted tools (fluorescent indicators, record-
ings of electrical activity).

We now enter in more detail into the biological description of the first point, the
behavior of rhodopsins, so that the mathematical models adopted hereafter appear natural
to the reader. Furthermore, we want to emphasize the main characteristics of this tools
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that are subject to changes in the future in order to provide robust models with respect
to these characteristics.

A rhodopsin is the association of an opsin, a light-sensitive protein, and retinal, one of
the three forms of vitamine A. It is the main brick of the mechanisms of vision. Some few
words can be written here to apprehend the role of retinal in the opening mechanism of
rhodopsins. Upon absorption of a photon, the all-trans retinal undergoes a conformational
change to 13-cis retinal that modifies its spatial occupation. This modification, called
isomerization and represented on Figure 0.1.2 below almost directly leads to the opening
of the ion channel or ion pump.

light

dark
all-trans retinal 13-cis retinal

H

O

H O

Opsins are found throughout the whole living world and are involved in most photosen-
sitive processes. Microbial opsins are different from their mammalian counterparts mainly
because they constitute a single-component system, photosensitivity and ionic conductiv-
ity mechanisms are carried out by the same protein. The first microbial opsin identified,
and the most studied one, is the proton pump called Bacteriorhodopsin (BR) [OS71],
found in some single-celled mircroorgarnisms called Archaea. BR pumps protons from
the cytoplasm to the extracellular medium and is thought to play various roles in cellular
physiology. Halorhodopsin (HR) is a Chloride pump activated by yellow light stimulation,
found in an archaebacteria [MYM77]. It distinguishes itself from BR by pumping Chloride
ions from the extracellular medium into the cell. Finally, Channelrhodopsin (ChR1 and
ChR2) is a third class of microbial opsins, identified in the green algae Chlamydomonas
reinhardtii. If its structure is very close to the one of BR, its conductive activity is entirely
decoupled from its photocycle. Each rhodopsin is sensitive to a specific wavelength and the
exposition to a different wavelength produces no effect at all. This very important feature
of light stimulation, compared to electrical stimulation, gives it an additional degree of
freedom that can be exploited to carry out several stimulations at the same time, with
different results.

If Optogenetics dates back to 1971, scientists did not believe in the use of microbial
opsins for more than three decades, considering that these foreign proteins would be toxic
for cells, that the photocurrents generated would be too weak and too slow to be useful and
that the need to bind with retinal for the photon absorption would be a huge handicap.
Since [BZB+05], it has been proved that BR, HR and ChR2 could all three trigger or in-
hibit relevant photocurrents in response to different light wavelengths. Besides, vertebrate
tissues naturally contain retinal so that the optogenetic control is possible even in intact
mammalian brains and in moving animals. Finally, viruses can be designed to administer
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the opsin to a specific population of neurons, leaving the others unmodified. This gives an
extra advantage to Optogenetics over electrical stimulation in the investigation of neural
functions since it can probe the role of a specific population of neurons whereas electrical
stimulation has an effect on a whole tissue volume, regardless of the types of neurons it
comprises.

Let us now add some words on the two specific rhodopsins that are the chloride pump
NpHR and the cation channel ChR2, that respectively provide inhibition and excitation
of excitable cells (see Figure 4).

inside

outside
ChR2

(470nm)

K+

Na+, Ca2+ Cl−

NpHR
(589nm)

Figure 4 – Two types of selective ion channels across the lipid bilayer membrane of an
excitable cell

ChR2 was independently identified by three research groups in 2002-2003 ([N+02]-
[N+03], [SJS02], [S+03]). When the all-trans retinal absorbs a photon, its isomerization
induces the opening of the channel of at least 6 Å. In a few milliseconds, the retinal retakes
its all-trans conformation and the channel closes. ChR2 is a non-selective cation channel
that is permeable to Na+, H+, Ca2+, and K+ ions. Once this cation channel opens with
the retinal isomerization, the ion flow becomes independent of this isomerization and rather
depends on the closing kinetics of the channel. This will be a very important property for
the mathematical modeling of a control. In this thesis, we will focus on the mathematical
modeling of ChR2 which is nowadays the most used and studied photosensitive ion channel.

NpHR is an opsin from Natronomonas pharaonis, analogous to HR, that triggers hy-
perpolarizing currents with a pic of absorption at 590nm (yellow light). Since ChR2 has a
pic of absorption at 470nm (blue light), the two complementary tools NpHR and ChR2 are
entirely independent in neurons that would express both of them. An important difference
between them is that, being a pump, NpHR requires a constant exposition to light to go
through its photocycle, whereas Chr2 does not.

Scientists work on developing mutants of natural rhodopsins to improve five main
characteristics:
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1. The channel/pump conductance to get larger photocurrents. For example, the wild-
type ChR2 conductance is estimated to be of 1pS, a value lower than the average
conductance of usual ion channels.

2. The opening and closing kinetics of the channel/pump, in competition with the
photosensitivity.

3. The photosensitivity of the channel/pump, in competition with kinetics.

4. The spectral response of the channel/pump, that is, the possibility to speed up
the recovery from the desensitized phase by a second stimulation with a different
wavelength.

5. The membrane expression of the channel/pump with a goal of a uniform distribution
with adequate expression.

The stochastic models of Section 2 will be completely robust with regards to this char-
acteristics in the sense that the mathematical results will not change upon a modification
of the model to incorporate a change of any one of this characteristics.

Study of the photocycles to design a mathematical model

Because Optogenetics is a young science, there is almost no mathematical study up to
now. We can nevertheless mention [WAK12] where a deterministic mathematical model of
ChR2 is used in a dynamical model of cardiac cell for simulation purposes (finite elements
method). We are deeply convinced that the mathematical modeling of Optogenetics, with
optimal control goals, would be a great help for neuroscientists to go further in the under-
standing and thus the exploiting of Optogenetics tools. Furthermore, and it is probably
one of the most important arguments in favor of a mathematical modeling, since electrical
recordings are not altered by light stimulation, contrarily to what happens with electrical
stimulation, inverse engineering of the photocurrent produced by Optogenetics could lead
to closed-loop feedback controls opening great perspective in medecine. Psychiatrics de-
seases could for instance benefit a lot of a switch from invasive electrical stimulation to
light stimulation, see for instance [AZA+07] for narcolepsy or [LNC12] for depression.

The first step towards a mathematical modeling of Optogenetics is the design of a model
for the mechanisms of the individual rhodopsins since they constitute an elementary brick
in conductance-based models. This modeling has been quickly addressed by neuroscientists
([HSG05], [BPGH10]). It is based on the study of the rhodopsin photocycles, the different
steps of the reaction induced by the absorption of a photon. In few words, voltage-clamp
experiments, in which the membrane potential of the studied cell is held constant, allow to
record the evolution of the rhodopsin conductance while exposed to light. This recording
is based on the acceptance of Ohm’s law (for the rhodopsin) so that the recording of
the photocurrents produced gives a direct access to the conductance of the rhodopsin.
Upon these quantitative experimental observations can be proposed reaction schemes that
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describe the photocurrent kinetics. As a classical ion channel, during a photocycle, the
rhodopsin goes through several states that can be either open or close. Any model that
can account for the experimental observations can then be used to propose a mathematical
model. In the case of the ChR2, the onset of light is quickly followed by a peak conductance
and then a smaller steady-state conductance. Upon a second stimulation, the peak is
smaller. In [NGG+09] were introduced two models for ChR2, represented on Figures 5
and 6.

Kd

Kr

light

O

D

C

Figure 5 – Reaction scheme for a three-state model of Channelrhodopsin-2 with an open
state O and two closed states D and C.
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e12

Kr

e21
Kd2Kd1

light light

O1 O2

C1 C2

Figure 6 – Reaction scheme for a four-state model of Channelrhodopsin-2 with two open
states O1 and O2, and two closed states C1 and C2.

We want to end our introduction on Optogenetics by expressing some concerns and
thoughts. There is no doubt that Optogenetics is already a great tool to go deeper in the
understanding of a number of poorly understood and treated diseases, from Alzheimer’s
disease to Parkinson’s disease and epilepsy, among many others. If the medical perspectives
are vast, the economical ones are of course even vaster. For these reasons, scientists are
literally jumping on applications of Optogenetics. Nevertheless, we regret a bit that it
might be at the expense of a deeper understanding of the tool itself. Many mutants are
created but hardly studied and the modeling of the associated photocurrents forsaken.
The mathematical study of neuron dynamical models has been an undeniable help in the
understanding of neural dynamics and we are deeply convinced that the mathematical
optimal control study of optogenetic models could be of much help as well and this study
needs a preliminary fine modeling of photocurrents. Finally, since Optogenetics opens
the way to the control of the brain, ethical preoccupations should always be of great
concern when considering applications of Optogenetics. For instance, back to the example
of narcolepsy and depression mentioned above, if Optogenetics could eventually cure these
problems, how far fetched would it be to imagine optogenetic tools that would make an
entire group of people sleep, or angry instead of not depressed ? If this type of question
may seem a bit extravagant now, we think that it should be addressed by people dealing
with Optogenetics.
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0.2 Mathematical tools

In this section, we present some results in various fields of mathematics that we need
in our thesis. We begin with a brief but important presentation of optimal control theory.
Namely, we introduce results in the case of deterministic finite-dimensional optimal control
that will be used in Section 1. Then, we present the framework of infinite-dimensional
PDMPs. Since the optimal control problem that we will formulate on a class of infinite-
dimensional PDMPs in Chapter 2 will involve dynamic programming on a discrete-time
Markov Decision Process (MDP), we also write a few results on that subject here.

0.2.1 Finite-dimensional deterministic optimal control

Here we define the optimal control problem on a deterministic finite-dimensional system
and introduce all notations and vocabulary used latter in the Thesis. We give some general
first-order necessary conditions in the form of the Pontryagin Maximum Principle and
some sufficient convexity conditions to obtain existence of optimal controls. When these
convexity conditions are not fulfilled, it may happen that an optimal control does not exist.
To tackle this problem, we then introduce the class of relaxed controls on an elementary
example. This class will be needed in Chapter 2. We also discuss the case of affine control
systems, which will be the framework of Chapter 1 and we introduce the role of singular
trajectories. Finally, we present the Goh transformation that will also be used in Chapter 1.

The optimal control problem and the Pontryagin maximum principle

Let T ∈ R∗+, x0 ∈ Rn, and a metric space U be given. We consider the control system
in Rn {

ẋ(t) = b(t, x(t), u(t)), a.e. t ∈ [0, T ],

x(0) = x0,
(1)

where b : [0, T ] × Rn × U → Rn is a given map. A measurable map u(·) : [0, T ] → U is
called a control, x0 is called the initial state, and x(·), a solution of (1), is called a state
trajectory corresponding to u(·). In all applications, to any x0 ∈ Rn and any control u(·)
will correspond a unique solution x(·) to (1). We hence refer to (1) as a input-output
relation with input u(·) and output x(·) ≡ x(·;u(·)). Let M be a subset of Rn that will
represent the target set of the state trajectory. Constraints on the state variable and the
control could be added but we will not consider this case since it will not appear in the
following applications. We introduce the space of feasible controls

U([0, T ]) := L∞(0, T ;U) = {u : [0, T ]→ U | u(·) is bounded}.

Furthermore, we are given a cost functional that measures the performance of a control
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J(t, u) =

∫ t

0
f(s, x(s), u(s))ds+ h(x(t)) (2)

where f : [0, T ]×Rn×U → Rn and h : Rn → R are given maps, the first and second terms
on the right-hand side of (2) being called, respectively, the running cost and the terminal
cost. The cost functional is well defined on the space of feasible controls.

Definition 0.2.1. A control u(·) is called an admissible control, and (x(·), u(·)) an admis-
sible pair, if

(i) u(·) ∈ U([0, T ]);

(ii) x(·) is the unique solution of (1) under u(·) and x(T ) ∈M ;

The set of all admissible controls is denoted by Uad([0, T ]). We now state the optimal
control problem for this finite-dimensional deterministic control system.

Problem (D). Minimize J(T, u) over Uad([0, T ]).

Problem (D) is said to be finite if (2) has a finite lower bound, and is said to be (uniquely)
solvable if there is a (unique) ū(·) ∈ Uad([0, T ]) such that

J(T, ū) = inf
u(·)∈Uad([0,T ])

J(T, u). (3)

Any ū(·) ∈ Uad([0, T ]) satisfying (3) is called an optimal control and the corresponding
state trajectory x̄(·) ≡ x(·; ū(·)) and (x̄(·), ū(·)) are respectively called an optimal state
trajectory and an optimal pair.

To state the Pontryagin maximum principle, we will assume the following

(D1) (U, d) is a separable metric space.

(D2) The maps b : [0, T ] × Rn × U → Rn, f : [0, T ] × Rn × U → R and h : Rn → R
are measurable, and there exist a constant l > 0 and a modulus of continuity ω̄ :

[0,∞)→ [0,∞) such that for ϕ(t, x, u) = b(t, x, u), f(t, x, u), h(x), we have
|ϕ(t, x, u)− ϕ(t, x̂, û)| ≤ l|x− x̂|+ ω̄(d(u, û)),

∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U,

|ϕ(t, 0, u)| ≤ l, ∀(t, u) ∈ [0, T ]× U.

(4)

(D3) The maps b, f and h are C1 in x, and there exists a modulus of continuity ω̄ :

[0,∞)→ [0,∞) such that for ϕ(t, x, u) = b(t, x, u), f(t, x, u), h(x), we have

|ϕx(t, x, u)− ϕx(t, x̂, û)| ≤ ω̄(|x− x̂|+ d(u, û)),

∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U,
(5)
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with ϕx the partial derivative of x with respect to the state variable.

Under (D1)-(D2), (1) admits a unique solution and Uad([0, T ]) = U([0, T ]).

Theorem 0.2.1. (see [PBGM74], [Tré08, Theorem 7.2.1]) Let (D1)-(D3) hold. Let (x̄(·), ū(·))
be an optimal pair of Problem (D). Then there exist an absolutely continuous map p(·) :

[0, T ] → Rn, called adjoint vector, and a real number p0 ≤ 0, such that the pair (p(·), p0)

is nontrivial, and such that, for almost all t ∈ [0, T ],

˙̄x(t) =
∂H

∂p
(t, x̄(t), p(t), p0, u(t)),

ṗ(t) = −∂H
∂x

(t, x̄(t), p(t), p0, u(t)),

(6)

where
H(t, x, p, p0, u) = 〈p, b(t, x, u)〉+ p0f(t, x, u)

is the system’s Hamiltonian and we have the maximum condition almost everywhere in
[0, T ]

H(t, x̄(t), p(t), p0, ū(t)) = max
v∈U

H(t, x̄(t), p(t), p0, v). (7)

If moreover, the final time to reach the target set M is not fixed, we have the condition,
called tranversality condition on the Hamiltonian, at the final time T

max
v∈U

H(T, x̄(T ), p(T ), p0, v) = 0. (8)

If moreover, the control system is autonomous, i.e. if b and f does not depend on t,
then H do not depend on t, and we have

∀t ∈ [0, T ], max
v∈U

H(x̄(t), p(t), p0, v) = Cst,

so that if the final time is not fixed, (8) becomes

∀t ∈ [0, T ], max
v∈U

H(x̄(t), p(t), p0, v) = 0.

If moreover, M is a manifold of Rn with tangent space Tx̄(T )M at x̄(T ) ∈M , then the
adjoint vector can be constructed so as to satisfy the tranversality condition

p(T ) ⊥ Tx̄(T )M, (9)

called transversality condition on the adjoint vector.

Remark 0.2.1. If the manifold takes the form

M = {x ∈ Rn | F1(x) = · · · = Fk(x) = 0},
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where the functions Fi are of class C1 on Rn, then condition (9) takes the form

∃κ1, . . . , κk ∈ R, p(T ) =
k∑
i=1

κi∇Fi(x̄(T )).

An infinite-dimensional version of Theorem 0.2.1 can be found in [LY95] for Partial
Differential Equations (PDEs), a stochastic version in [YZ99] for Stochastic Differential
Equations (SDEs) and an infinite-dimensional stochastic version in [LZ14] for Stochastic
Partial Differential Equations (SPDEs).

Definition 0.2.2. An extremal of the optimal control problem is the quadruple
(x(·), p(·), p0, u(·)) solution to equations (6) and (7). If p0 = 0, the extremal is called
abnormal, and if p0 6= 0 the extremal is called normal.

Remark 0.2.2. If M = Rn, i.e. there is no target set, an extremal of the optimal control
problem is necessarily normal, because of the transversality condition (9) and the nontriv-
iality of (p(·, p0)), and we can set p0 = −1. When the target set does not cover the whole
state space, abnormal optimal extremal may exist, for instance if there is only one state
trajectory joining the initial state and the target set, see also [LS12, Section 2.6.4] for the
study of the harmonic oscillator which present strictly abnormal extremals.

Convexity assumptions and existence of optimal controls

We now give some convexity conditions that ensure existence of optimal controls. When
these conditions are not fulfilled, optimal controls may not exist and we present an elemen-
tary example of such a situation. The solution to overcome that problem is then presented
in the form of relaxed controls.

(DE1) U is a compact subset of Rk, k ∈ N∗, and M = Rn (i.e. there is no target set).

(DE2) For every (t, x) ∈ [0, T ]× Rn, the epigraph of extended velocities

(b, f)(t, x, U) := {(bi(t, x, u), f(t, x, u) + γ) | u ∈ U, i = 1, 2, . . . , n, γ ≥ 0}

is a convex set of Rn+1.

Theorem 0.2.2. (see [Tré08, Theorem 6.2.1], [YZ99, Theorem 5.1 p66]) Under (DE1),
(D2) and (DE2), if Problem (D) is finite, then it admits an optimal control.

Non-convex problems and relaxed controls.

We now give an example where assumption (DE2) is not fulfilled and there is no optimal
control. Consider the control system on R defined by

y′(t) = u(t), y(0) = 0, (10)
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with control space U := {−1} ∪ {1}, time horizon T := 1, and cost function

y0(t, u) =

∫ t

0
y(s)2ds. (11)

For this control system, there exist minimizing sequences, for instance

un(t) :=

{
1 t ∈ [2k/n, (2k + 1)/n),

− 1 t ∈ [(2k + 1)/n, (2k + 2)/n),

in the sense that

un ∈ U([0, T ]) ∀n ∈ N∗, and lim
n→∞

y0(1, un) = 0.

Nevertheless, assumption (DE2) is not fulfilled and it is easy to see that there does
not exist an optimal control for this problem since the minimizing control u ≡ 0 does not
belong to U([0, T ]). To solve this problem, instead of looking at controls as functions taking
values in the control set U , we consider controls µ whose values are probability measures
in U . This process consists indeed in convexifying the control set U so that convexity
assumptions are fulfilled with this new control set. Since U = {−1} ∪ {1}, these measures
are µ(t) = a(t)δ1 + (1− a(t))δ−1, 0 ≤ a(t) ≤ 1. With the new control space, the dynamics
becomes

y′(t) =

∫
U
uµ(t,du), y(0) = 0. (12)

The cost function does not change since it does not depend directly on the control. The
enlarged control space contains the original one and an original control u(·) ∈ Uad([0, T ])

can be obtained from a relaxed one by setting a(t) = 1 when u(t) = 1 and a(t) = 0 when
u(t) = 0. In the enlarged control space, an optimal control exists and takes the form

µ(t) =
1

2
δ1 +

1

2
δ−1.

When enlarging a control space, special care has to be taken so that every relaxed
control can be approached by original ones. To do so, a topology has to be put on the
relaxed control space. In finite dimension, the right topology to consider is called the
Young topology and we recall now its construction. Relaxed controls have been introduced
by Warga ([War62b], [War62a]) and Gamkrelidze ([Gam87]) as an extension to control
problems of Young measures ([You69]) from the calculus of variations.

Let X = L1([0, T ];C(U))) be the set of functions f(t, u), measurable in t, continuous in u,
such that

||f ||X :=

∫ T

0
sup
u∈U
|f(t, u)|dt <∞.
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(X, || · ||X) is a Banach space. Its dual space is X∗ = L∞([0, T ], C∗(U)) with norm

||v||∗ = ess sup
t∈[0,T ]

||vt||C∗ <∞.

The topology to consider on X∗ is the weak* topology under which a sequence (vn) of
elements of X∗ converges to v ∈ X∗ if and only if (vn, f) → (v, f) for all f ∈ X, with
duality pairing defined by

(v, f) =

∫ T

0

∫
U
f(t, u)vt(du)dt.

For the weak* topology the unit ball B1 = {v ∈ X∗ : ||v||∗ ≤ 1} is compact by Alaoglu’s
Theorem.

We denote by R([0, T ]) the set of relaxed controls defined by:

R([0, T ]) := {µ : [0, T ]→ P(U) measurable},

where P(U) is the set of all probabilities on U . It can be shown that R([0, T ]) is a closed
subset of B1 and thus is compact. Actually we even have ||v||∗ = 1 for all v ∈ R([0, T ]).
The Young topology Y is then defined as the relative weak* topology ofR([0, T ]) considered
as a subset of B1. Thus (R([0, T ]),Y) is a compact space. It can be shown that the set
U([0, T ]) of ordinary controls is dense in R([0, T ]) with respect to this topology ([Gam87,
Theorem 3.2]). Moreover, the solution of the relaxed control system

ẋ(t) =

∫
U
b(t, x(t), u)µ(t,du), a.e. t ∈ [0, T ],

x(0) = x0,

(13)

is continuous in the control as stated by the following Theorem.

Theorem 0.2.3. (see Warga [War72]) Assume that b is bounded and Lipschitz continuous
on Rn, uniformly in [0, T ]×U . Take µ ∈ R([0, T ]), and let φ be the unique solution of the
relaxed control system

φ′(t) =

∫
U
b(t, φ(t), u)µ(t,du), φ(0) = x ∈ Rn.

Then the map (x, µ) → φ is continuous from Rn × R([0, T ]) → C([0, T ];Rn) for any
T ∈ R+, with C([0, T ];Rn) the space of continuous function on [0, T ], with values in Rn,
endowed with the uniform norm.

The infinite-dimensional analogue of Theorem 0.2.3 will be a key result in Chapter 2.
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Affine control systems, singular extremals and the Goh transformation

Affine control systems are special cases where the function b : [0, T ] × Rn × U → Rn

takes the form

b(t, x, u) = b0(t, x) + ub1(t, x), (t, x, u) ∈ [0, T ]× Rn × U, (14)

with b0, b1 : [0, T ]×Rn → Rn. Let us consider the optimal control problem with free time
horizon tf of the affine control system defined by (1) and (14) and the cost functional
J(t, u) = t defined by (2) with f ≡ 1 and h ≡ 0. Suppose furthermore that the control
space U is a segment of R for this particular example, U = [umin, umax] with umin < umax.
For this problem, the Hamiltonian of the system writes

H(t, x, p, p0, u) = 〈p, b0(t, x)〉+ u〈p, b1(t, x)〉+ p0,

so that the maximum condition (7) leads to the optimal control

ū(t) = umin1ϕ(t)<0 + umax1ϕ(t)≥0 (15)

whenever the function ϕ(t) := 〈p(t), b1(t, x̄(t))〉, called switching function, does not vanish
on any subinterval of [0, tf ], 1B being the indicator function of a subset B of R+. Such
a control is called bang-bang, it alternates between minimum and maximum values of U ,
with switching times given by the sign changes of the switching function ϕ. An extremal of
the system such that the switching function vanishes on a subinterval I of [0, tf ] is called
singular. If the associated control is optimal, it is called a singular optimal control. Singular
optimal controls exist and their investigation is of critical importance when dealing with
time optimal affine control problems. The term singular can be understood if we replace
the case of affine control system in the general theory of optimal control. Indeed, the
switching function ϕ can be expressed as the first order derivative of the Hamiltonian with
respect to the control variable

ϕ(t) =
∂H

∂u
(t, x̄(t), p(t), p0, ū(t))

and the condition ϕ(t) = 0 corresponds to the first-order necessary condition for the
Hamiltonian to have a maximum in the interior of the control set U . Now, for a general
optimal control problem, an extremal is called singular over an open interval I if the
first-order necessary condition

∂H

∂u
(t, x̄(t), p(t), p0, ū(t)) = 0

is satisfied for t ∈ I, and if the matrix of the second-order partial derivatives,
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∂2H

∂u2
(t, x̄(t), p(t), p0, ū(t))

is singular. This matrix is a real number for single-input control system and a real
matrix for multi-input control systems, that is when the control set U is a subset of Rk

with k ≥ 2. In the case of minimal time single-input control problems, the second-order
partial derivative is always 0 so that any optimal control that takes values in the interior
of the control set is singular. Finally, singular controls are also, and equivalently defined
via the end-point mapping ET defined on U([0, T ]) by

ET (u) := x(T ),

with x(·) the solution of (1) with u ∈ U([0, T ]). A control u ∈ U([0, T ]) is said to be
singular if u is a critical point of the end-point mapping ET , i.e. its differential at u,
DET (u), is not surjective.

We now develop an elementary example of a singular optimal control and then introduce
the Goh transformation as a tool to simplify the investigation of the existence of singular
extremals. Consider the control system{

ẋ1(t) = 1− x2
2(t)

ẋ2(t) = u(t),

with the control u(·) taking values in [−1, 1] and consider the minimal time control problem
that consists in steering the system from the origin to (1, 0) in minimal time. It is easy
to see that the optimal control is here constant and equals 0 with a minimal time of 1.
Indeed, if the control is not 0 then x2

2 becomes strictly positive, which slows down x1. This
optimal control is singular and corresponds to the vanishing of the switching function as
we see now. The Hamiltonian of the system writes

H(x, p, p0, u) = p1(1− x2
2) + p2u+ p0,

and the adjoint system is {
ṗ1(t) = 0

ṗ2(t) = 2p1(t)x2(t),

The switching function is ϕ(t) = p2(t). The optimal trajectory corresponds to x2 ≡ 0

so that ṗ2 ≡ 0. Since the target set is reduced to a single point, tranversality conditions on
the adjoint variable at the final time are void and we can take p2(1) = 0 and p1(1) 6= 0 to
respect the Pontryagin maximum principle, so that ϕ vanishes along the optimal trajectory.

The Goh transformation allows to reduce the dimension of the control system to simplify
the study of singular extremals as we explain now.
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Assume that there is no constraint whatsoever on the control space U and that the
control u(·) can be taken as regular as needed. Then, every control system in Rn can be
viewed as an affine control system in Rn+1 with respect to a new control v if we set u̇ = v.
If the original control system is defined by (1), then the associated affine control system is

{
ẏ(t) = b̃0(t, y(t)) + v(t)b̃1(t, x), a.e. t ∈ [0, T ],

y(0) = y0 ∈ Rn,
(16)

with y(·) = (x(·), u(·)), b̃0(·) = (b(·), 0) and b̃1(·) ≡ (0, . . . , 0, 1) ∈ Rn+1. The converse
transformation is called the Goh transformation and will play a crucial role in the investi-
gation of singular trajectories in Chapter 1. The next definition formalizes this transfor-
mation.

Definition 0.2.3. Consider the autonomous affine single-input control system of Rn, ẋ =

b0(x) + ub1(x), and assume that n ≥ 2. Let x0 ∈ Rn such that b1(x0) 6= 0. There exists an
open set E containing x0 such that b1|E = (0, . . . , 0, 1), (x1, . . . , xn) are coordinates of Rn,
and the restriction of the control system to E can be written as

ẋ′ = b′(x′, xn), ẋn = bn(x) + u,

where x′ = (x1, . . . , xn−1), and b′ : Rn → Rn−1, bn : Rn → R are such that b0 = (b′, bn).
The system ẋ′ = b′(x′, xn), where xn is the control variable and which is defined on an open
set E′ of Rn−1, is called the reduced control system associated with the original one. If H =

〈p, b0(x)+ub1(x)〉 is the Hamiltonian of the original control system, we set H ′(x′, p′, xn) =

〈p′, b′(x′, xn), where p′ = (p1, . . . , pn−1) is the adjoint vector of x′.

The singular extremals of the control system and the reduced control system are linked
by the following Lemma (see [BdM98]).

Lemma 0.2.1. The pair (x, p) is the projection of a solution (x, p, u) of

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, 〈p, b1(x)〉 = 0,

if and only if (x′, p′, xn) is a solution of

ẋ′ =
∂H ′

∂p′
, ṗ′ = −∂H

′

∂x′
,

∂H ′

∂xn
= 0.

Moreover the following relations are satisfied

(i) (
d

dt
〈p(t), b1(x(t))〉

)
|(x,p,u)

= 〈p(t), [b0, b1](x(t))〉 = −∂H
′

∂xn |(x′,p′,xn)
.



28 INTRODUCTION

(ii) (
∂

∂u

d2

dt2
〈p(t), b1(x(t))〉

)
|(x,p,u)

= −〈p(t), ad2
b1b0(x(t))〉 = −∂

2H ′

∂xn2
|(x′,p′,xn)

,

where [b0, b1] = adb0b1 is the Lie bracket of the vector fields b0 and b1, so that ad2
b1b0 =

[b1, [b1, b0]].

Lie brackets will be properly defined in Chapter 1.

0.2.2 A class of infinite-dimensional Piecewise Deterministic Markov
Processes

PDMPs where introduced by Davis [Dav84] in the finite-dimensional case and then
extended to infinite dimension in [BR11a]. This class of processes is well suited to describe
any stochastic nondiffusive phenomenon and we will give a general bibliography on the
subject in the introduction of Chapter 2. Here, we present a special class of Hilbert valued
PDMPs that falls into the framework built in [BR11a]. In particular, we give conditions
that lead to existence and uniqueness of the solutions of the PDEs considered. It is not
the most general class that can be defined following the finite-dimensional work of Davis.
In particular, boundary conditions will not be needed in our models so that deterministic
forced jumps will not be considered. Furthermore, the space of continuous component of
the process will not depend on the jumping component. These extensions could be quite
straightforwardly conducted if they appeared relevant for some models in the future. In
Chapter 2, we will incorporate a control to this class and extend Theorem 0.2.4 below.

We consider a Gelfand triple (V ⊂ H ⊂ V ∗) such that H is a separable Hilbert space
and V a separable, reflexive Banach space continuously and densely embedded in H. The
pivot space H is identified with its dual H∗, V ∗ is the topological dual of V . H is then
continuously and densely embedded in V ∗. We will denote by || · ||V , || · ||H , and || · ||V ∗
the norms on V , H, and V ∗, by (·, ·) the inner product in H and by 〈·, ·〉 the duality
pairing of (V, V ∗). Note that for v ∈ V and h ∈ H, 〈h, v〉 = (h, v). Let D be a finite
set, the state space of the discrete variable and let T > 0 be the finite time horizon. The
process we are going to define has two components that take values in H×D. The Hilbert
valued component is continuous and the discrete one has jumps that make it càdlàg (right
continuous with left limits). The dynamics of these two components are entirely coupled
and we proceed now to their descriptions.

For every d ∈ D, we consider the autonomous PDE{
v̇(t) = −Lv(t) + fd(v(t)),

v(0) = v0, v0 ∈ V,
(17)

with −L : V → V ∗ such that
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1. −L is linear, monotone;

2. ||Lx||V ∗ ≤ c+ c1||x||V with c > 0 and c1 ≥ 0;

3. 〈Lx, x〉 ≥ c2||x||2V , c2 > 0;

4. −L generates a strongly continuous semigroup (S(t))t≥0 on H such that S(t) : H →
H is compact for every t > 0 (immediately compact),

and fd : H → H a Lipschitz continuous function. For (d, v0) ∈ D ×H, we will denote by
φd· (v0) : R+ → H the flow of PDE (17). Under these assumptions, (17) is well-posed, it
admits a unique solution in C([0, T ];H) whose expression is given by the mild formulation

φdt (v0) = S(t)v0 +

∫ t

0
S(t− s)fd(φds(v0))ds. (18)

We will make an extensive use of this formulation in Chapter 2. The necessity of an
autonomous equation is justified by the flow property it implies, which will provide the
resulting process with the strong Markov property. For (d, v0) ∈ D×H, the flow property
reads

φdt+s(v0) = φdt (φ
d
s(v0)), (t, s) ∈ R2

+. (19)

PDE (17) describes the dynamics of the continuous component of the piecewise deter-
ministic process between two consecutive jumps of the discrete variable.

The jump mechanisms are described by a jump rate function λ : H × D → R+ and
a transition measure Q : H × D → P(D), where P(D) denotes the set of probability
measures on D and we make the following assumptions

1. For every d ∈ D, λ(d, ·) : H → R+ is locally Lipschitz continuous, that is, for every
compact set K ⊂ H, there exists lλ(K) > 0, independent of d since D is finite, such
that

|λ(d, x)− λ(d, y)| ≤ lλ(K)||x− y||H ∀(x, y) ∈ K2.

Furthermore, there exist Mλ, δ > 0 such that

δ ≤ λ(d, x) ≤Mλ, ∀x ∈ H.

2. The function Q : H ×D × B(D) → [0, 1] is a transition probability such that x →
Q({p}|x, d) is continuous for all (d, p) ∈ D2 (weak continuity) and Q({d}|v, d) = 0

for all v ∈ H.

The assumptions on λ ensure in particular that the resulting process does not blow up.
The principles of the construction of the PDMP (v(t), d(t))t≥0 are the following.

- Starting from the initial deterministic condition (v(0), d(0)) = (v0, d0) ∈ H ×D, the
PDMP is given on [0, T1) by
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v(t) = φd0
t (v0), d(t) = d0 ∀t ∈ [0, T1),

where T1 denotes the time of the first jump of the discrete component.

- The distribution of T1 is defined by the jump rate function λ through the survival
function

χt(d0, v0) = P(T1 > t | v(0) = v0, d(0) = d0)

= exp

(
−
∫ t

0
λ(d0, φ

d0
s (v0))ds

)
.

The probability P will be defined below.

- When a jump occurs at time T1, the conditional distribution of the target state d1

is given by the transition measure Q

P(d(T1) = d1 | T1) = Q({d1} | φd0
T1

(v0), d0),

and the continuous component does not jump.

- This procedure is then repeated with the new starting point (v(T1), d(T1)) = (φdT1
(v0), d1).

We now recall the mathematical construction of the process, following [Dav93] for the
finite-dimensional case. This construction will be used in Chapter 2 where we extend it to
infinite-dimensional controlled PDMPs.

Let (Ω,F ,P) be the probability space of sequences of independent uniformly distributed
random variables on [0,1]. The process (Xt = (vt, dt))t≥0 taking values in H ×D is then
constructed as follows. Let (v0, d0) ∈ H ×D and ω = (ωn, n ≥ 1) ∈ Ω.

1. The initial condition is deterministic and is given by

(v0(ω), d0(ω)) = (v0, d0).

2. The continuous component v(ω) is given by (18) with d = d0 as long as the discrete
component d(ω) remains equal to d0. The first jump time of d(ω) is defined by

T1(ω) = inf{t ≥ 0 | χt(d0, v0) ≤ ω1}.

3. At time T1(ω), v does not jump and the discrete component is updated according to
Q(· | φd0

T1
(v0), d0). There exists a measurable function f1 : [0, 1]→ D such that

dT1(ω)(ω) = f1(ω1)
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4. The algorithm is then repeated and for n ∈ N∗

Tn+1(ω) = Tn(ω) + inf{t ≥ 0 | χt(vTn(ω)(ω), dTn(ω)(ω)) ≤ ωn},

and there exists a measurable function fn : [0, 1]→ D such that

dTn(ω)(ω) = fn(ωn),

so that for t ∈ [Tn(ω), Tn+1(ω)) vt(ω) = φ
dTn(ω)

t−Tn(ω)(vTn(ω)(ω)),

dt(ω) = dTn(ω)(ω).

Theorem 0.2.4. (see [BR11a, Theorem 4]) The stochastic process (Xt = (vt, dt))t≥0 is a
homogeneous strong Markov càdlàg piecewise deterministic process. The domain D(G) of
its extended generator G is the set of bounded measurable functions f : H ×D → R such
that the map t → f(φdt (v), d) is absolutely continuous for almost every t ∈ R+ for any
(v, d) ∈ H ×D. Furthermore, for f ∈ D(G), the extended generator is given by

Gf(v(t), d(t)) =
df

dt
(v(t), d(t))

+ λ(v(t), d(t))
∑
d̃∈D

(f(v(t), d̃)− f(v(t), d(t)))Q({d̃} | v(t), d(t)).

PMDPs for the modeling of membrane potential dynamics

Here we illustrate, on the Morris-Lecar model [LM81], how PMDPs are well suited to
take into account the stochastic mechanisms of the opening and closing of ion channels.
The infinite-dimensional deterministic Morris-Lecar model is a system of two coupled par-
tial differential equations describing the evolution of the membrane potential at a given
point of the axon and the proportion of open channels. The axon is modeled by a one-
dimensional cable represented by the segment I. The equations for the infinite-dimensional
deterministic Morris-Lecar model are

∂tν =
1

C
∂xxν +

1

C

(
gKω(VK − ν) + gCam∞(ν)(VCa − ν)

+ gL(VL − ν)
)
,

∂tω = α(ν)(1− ω)− β(ν)ω,

(20)

with νt(x) the membrane potential at position x ∈ I on the axon at time t ∈ I and
ωt(x) the proportion of open sodium channels. The opening and closing mechanisms of
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the sodium channels can be interpreted with Figure 7.

C O

α(ν)

β(ν)

Figure 7 – Representation of the opening and closing of sodium channels.

At a given point along the axon, when the membrane potential equals ν, the sodium chan-
nels open at rate α(ν) and close at rate β(ν). We can take into account the stochasticity of
these mechanisms by affecting a probability to the opening and the closing. From what is
done in [Aus08] for the Hodgkin-Huxley model, we can assimilate the axon to the segment
I = [0, 1]. For a given scale N ∈ N∗, the axon is populated with N −1 channels at position
zi = i

N for i ∈ {1, . . . , N−1}. For the Morris-Lecar model, each sodium channel at position
zi can be either open or closed. The configuration of all the sodium channels at time t is
thus represented by a vector dt with values in the finite set D := {o, c}N and we write dt(i)
the sate of the sodium channel at time t and at position zi, for i ∈ {1, . . . , N − 1}. Now,
if the membrane potential at position zi was held fixed, the process (dt(i), t ≥ 0) would be
a continuous time Markov chain. However, since the membrane potential evolves through
time and the jump rates of opening and closing are voltage-dependent, the evolution of
dt(i) is given by {

P(dt+h(i) = o | dt(i) = c) = α(νt(zi))h+ o(h),

P(dt+h(i) = c | dt(i) = o) = β(νt(zi))h+ o(h).
(21)

Between jumps of the discrete component dt, the evolution of the membrane potential is
given by the following partial differential equation

C∂tνt = ∂xxνt +
1

N

N−1∑
i=1

gdt(i)(VK − νt(zi))δzi

+ gCam∞(νt)(VCa − νt) + gL(VL − ν), ν0 = v ∈ H1
0 (I),

(22)

with gdt(i) the conductance of the sodium channel when in state dt(i) (go = gK and gc = 0)
and νt ∈ H1

0 (I). The process (νt, dt)t≥0 is a PDMP with values in H1
0 (I)×D.

For the generalized Hodgkin-Huxley model, where the ion channels can be in more that
two states, it was proved in [Aus08] that the PDMP defined by (21) and (22) converges
in probability, in an appropriate space, towards the deterministic version given by (20).
Generalization of this convergence result was obtained in [RTW12] where a law of large
numbers in proved for a general class of models, called compartmental models, which
links the stochastic and deterministic systems. A martingale central limit theorem is also
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proved, it connects the stochastic fluctuations around the deterministic limiting process to
diffusion processes.

This type of infinite-dimensional PDMPs conductance-based models of neurons were
extensively studied in [Gen13] where, among other results, averaging theorems are derived
for processes displaying several time scales.

0.2.3 Markov Decision Processes

Inside every PDMP defined above is embedded a discrete-time Markov chain with values
in [0, T ] × H × D constituted of the jump times and the jump locations of the process.
Moreover, there exists a one-to-one correspondence between the PDMP and a pure jump
process that we describe now. Consider the PDMP (Xt = (vt, dt))t≥0 of Theorem 0.2.4.
The jump times Tk of X can be retrieved by the formula

{Tk, k = 1, . . . , n} = {s ∈ (0, T ]|ds 6= ds−},

all jumps being detected since the discrete component has to change when a jump occurs
(Q({d}|v, d) = 0 for all v ∈ H). We can associate to X a pure jump process (Zt)t≥0 taking
values in [0, T ]×H ×D in a one-to-one correspondence as follows,

Zt := (Tk, vTk , dTk), Tk ≤ t < Tk+1.

Conversely, given the sample path of Z on [0, T ] starting from Z0 = (TZ0 , v
Z
0 , d

Z
0 ), we can

recover the path of X on [0, T ]. Denote Zt as (TZt , v
Z
t , d

Z
t ) and define T0 := TZ0 and

Tk := inf{t > Tk−1|TZt 6= TZt−}. ThenXt = (φ
dZ0
t (vZ0 ), dZ0 ), t < T1,

Xt = (φ
dZTk
t−Tk(vZTk), dZTk), Tk ≤ t < Tk+1.

The embedded discrete-time Markov chain (Z ′n)n≥0 is defined from (Zt, t ≥ 0) by adding
a cemetery state ∆∞ to [0, T ]×H ×D. Then, (Z ′n)n≥0 is defined by the stochastic kernel
Q′ given, for Borel sets B ⊂ [0, T ], E ⊂ H, C ⊂ D sets, and (t, v, d) ∈ [0, T ]×H ×D, by

Q′(B × C | t, v, d) =

∫ T−t

0
λ(d, φds(v))χs(d, v)1B(t)1E(φdt (v))Q(C | φdt (v), d),

and Q′({∆∞} | t, v, d) = χdT−t(v), and Q′({∆∞} | ∆∞) = 1. Note that Z ′n = Zn as long
as Tn ≤ T .

For the controlled PDMPs defined in Chapter 2, the local characteristics (φ, λ,Q)
depend on the control variable. Thus, the kernelQ′ of the embedded Markov chain depends
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also on the control and it is called a Markov decision process. We define here a special
class of infinite-horizon discrete-time MDPs and we present dynamic programming on these
processes. We only briefly sketch the issues that arise and the mathematical objects we
are interested in. In particular, we do not discuss here the finiteness of the integrals we
manipulate. All the material needed for this introduction and Chapter 2 can be found in
[BS78].

Let E be a Borel space and U a Borel set of a Polish space. To define a controlled
discrete-time Markov chain, we first need to define the controls, called decision rules. A
policy is a sequence (un, n ∈ N) of controls with values in U that tells the observer the
action to take at any stage n. A policy is said to be Markovian if it only depends on the
current state of the chain. Otherwise, it is said to be history-dependent, in which case
it may depend on the entire history of states and controls. We will recall in Chapter 2
that for our problem, history-dependent policies will not be better than Markovian ones
and we thus focus on Markovian policies now. Policies can be randomized if necessary, as
discrete counterparts of the relaxed controls defined above. A randomized decision rule is
a probability measure γ on U . We denote by U := P(U) the set of all randomized decision
rules on U (i.e. the set of all probability measures on U). A randomized policy is thus a
sequence (γn, n ∈ N) ∈ UN of probability measures on U . We use the notations µ : E → U
for Markovian randomized decision rule, and π̃ = (µn, n ∈ N) for Markovian randomized
policies. Randomized policies, or relaxed policies, will be of great use in Chapter 2. Let
π = (un, n ∈ N) be an ordinary Markovian policy, that is, a sequence of measurable maps,
un : E → U , n ∈ N. Let (Zπn , n ≥ 0) be the associated controlled discrete-time Markov
chain defined by a stationary transition kernel Q′ : E × U → P(E) such that for all borel
subset B of E and n ∈ N

Pπ(Zπn+1 ∈ B|Zπn ) = Q′(B|Zπn , un(Zπn )).

We consider a cost function g : E × U → R+ and an expected cost functional at horizon
N ∈ N∗ defined by

JNπ(Z0) := Eπ
[
N−1∑
k=0

g(Zπk , uk(Z
π
k ))

]
, (23)

for a Markov chain starting at Z0 ∈ E. The finite-horizon problem consists in finding a
finite Markovian policy π∗ = (u0, · · · , uN−1) that minimizes the cost (23) over N stages,
that is

J∗N (Z0) := inf
π
JNπ(Z0) = JNπ∗(Z0)

The infinite-horizon problem consists in finding a Markovian policy π = (un, n ∈ N) that
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minimizes

Jπ(Z0) := Eπ
[ ∞∑
k=0

g(Zπk , uk(Z
π
k ))

]
= lim

N→∞
JNπ(Z0), (24)

and we write J∗(Z0) := infπ Jπ(Z0). More precisely, we are interested in finding optimal
stationary policies, i.e. policies π = (u, u, · · · ) constituted of a unique decision rule u :

E → U infinitely repeated. When there are no convexity assumptions on the stochastic
kernel Q′ and the cost function g, we work with relaxed policies. For γ ∈ U and z ∈ E, we
thus extend the definitions of Q′ and g to U by

Q′(· | z, γ) :=

∫
U
Q′(· | z, u)γ(du),

g(z, γ) :=

∫
U
g(z, u)γ(du).

The finite-horizon problem, respectively infinite-horizon problem, is then to find a finite
relaxed Markovian policy π̄∗ = (µ0, . . . , µN ), respectively a relaxed Markovian policy
π̄∗ = (µn, n ∈ N), that minimizes JNπ̄(Z0), respectively Jπ̄(Z0), over all the finite relaxed
Markovian policies, respectively relaxed Markovian policies. As for the nonrelaxed case,
the final goal is to find an optimal stationary relaxed Markovian policy π̄∗ = (µ, µ, . . . ).

We can now describe the Dynamic Programming algorithm for this problem, starting
with the finite-horizon problem. Consider the mapping R, defined for any real-valued
function f on E by

Rf(z, γ) = g(z, γ) + (Q′f)(z, γ), (z, γ) ∈ E × U ,

with (Q′f)(z, γ) :=
∫
E f(x)Q′(dx|z, γ) =

∫
E

∫
U f(x)Q′(dx|z, u)γ(du). Consider also for

any relaxed decision rule µ : E → U , the operator Tµ defined by

Tµf(z) = Rf(z, µ(z))

=

∫
U
g(z, u)µ(du|z) +

∫
E

∫
U
f(x)Q′(dx|z, u)µ(du|z).

This operator generates a time-shift of one stage on the problem and we can briefly show,
by induction, that for Z0 ∈ E and a relaxed policy π = (µn, n ∈ N), we have

JNπ̄(Z0) = (Tµ0 · · ·TµN−1)(J0)(Z0),

where J0 is the zero function (i.e. J0(z) = 0, ∀z ∈ E). Indeed, for Z0 ∈ E and a relaxed
policy π̄ = (µn, n ∈ N),
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J1π̄(Z0) =

∫
U
g(Z0, u)µ0(du|Z0) = Tµ0(J0)(z),

with the notation µ0(·|Z0) := µ0(Z0) ∈ U , and for k ∈ N,

E[g(Zk+1, µk+1(Zk+1))|Zk] = E[

∫
U
g(Zk+1, uk+1)µk+1(duk+1|Zk+1)|Zk]

=

∫
U

∫
E

∫
U
g(x, uk+1)µk+1(duk+1|x)Q′(dx|Zk, uk)µk(duk|Zk).

It follows that

E[g(Zk+1, µk+1(Zk+1))] =

∫
U

(∫
E

∫
U
· · ·
∫
E

∫
U
g(xk+1, uk+1)

× µk+1(duk+1|xk+1)Q′(dxk+1|xk, uk) · · ·

× µ1(du1|x1)Q′(dx1|Z0, u0)
)
µ0(du0|Z0),

Now let π̄s = (µn+1, n ∈ N) the shifted policy obtained from π̄. From the previous equality
we get

J(N+1)π̄(Z0) =

∫
U
g(Z0, u)µ0(du|Z0) +

∫
U

∫
E
JN,π̄s(x1)Q′(dx1|Z0, u0)µ0(du0|Z0)

= Tµ0JNπ̄s(Z0),

and by the induction hypothesis we obtain

J(N+1)π(Z0) = Tµ0(Tµ1 · · ·TµN (J0))(Z0) = (Tµ0Tµ1 · · ·TµN )(J0)(Z0).

Now, going back to the infinite-horizon problem, the goal is to show that a stationary
optimal policy can be found and to compare J∗ and J∗∞ := limN→∞ J

∗
N . To do so, consider

the operator T defined for f : E → R by

Tf(z) = inf
u∈U

{
g(z, u) +Q′f(z, u)

}
. (25)

In Chapter 2, the assumptions on the local characteristics (φ, λ,Q) and the cost function
g we will allow us to show that J∗N = TN . Moreover, we will prove that J∗ is the unique
fixed point of the operator T , in a space of continuous functions. The equation TJ∗ = J∗

is the Bellman equation of dynamic programming.
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0.3 Results of the Thesis

We give here a brief review of the main results of the Thesis, chapter by chapter.
Since each chapter has its own introduction, we want this review to be a guide for the
reading for the thesis and we do not present in much detail the mathematical object that
we use. In particular, the extended bibliography is not given here, it can be found in the
corresponding chapter. Chapter 1 and 2 constitute each one a preprint of an article soon
to be submitted.

0.3.1 Chapter 1

In this chapter, we define and study, in terms of optimal control, finite-dimensional,
deterministic neuron models controlled by Optogenetic. To the best of our knowledge,
the optimal control of Optogenetic models has never been addressed before and we build
a general mathematical framework to incorporate an Optogenetic effect in conductance-
based neuron models. This allows us to study the optimal control of various widely studied
models such as the Hodgkin-Huxley model or the Morris-Lecar model. For this presentation
to be more explicit, we will present the results on the Morris-Lecar model throughout this
section. The corresponding results for the FitzHugh-Nagumo model, the reduced Hodgkin-
Huxley model and the complete Hodgkin-Huxley model can be found in Chapter 1. The
dynamical system for the Morris-Lecar model is

(ML)


ν̇(t) =

1

C

(
gKω(t)(VK − ν(t)) + gCam∞(ν(t))(VCa − ν(t))

+ gL(VL − ν(t))
)
,

ω̇(t) = α(ν(t))(1− ω(t))− β(ν(t))ω(t),

with ν(·) the membrane potential and ω(·) the gating variable for the sodium channels.
We use the two models of ChR2 presented in Section 0.1.2 (Figures 5 and 6). The dynamical
systems associated to this models are, respectively

(ChR2− 3States)

{
ȯ(t) = u(t)(1− o(t)− d(t))−Kdo(t),

ḋ(t) = Kdo(t)−Krd(t),

and

(ChR2−4States)


ȯ1(t) = ε1u(t)(1− o1(t)− o2(t)− c2(t))− (Kd1 + e12)o1(t) + e21o2(t),

ȯ2(t) = ε2u(t)c2(t) + e12o1(t)− (Kd2 + e21)o2(t),

ċ2(t) = Kd2o2(t)− (ε2u(t) +Kr)c2(t),

with u(·) the control. The control system is obtained by combining the conductance-based
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model and either one or the other ChR2 models. For the ChR2-3-states model we get

(ML− ChR2− 3States)



ν̇(t) =
1

C

(
gKω(t)(VK − ν(t)) + gCam∞(ν(t))(VCa − ν(t))

+ gChR2o(t)(VChR2 − ν(t))) + gL(VL − ν(t))
)
,

ω̇(t) = α(ν(t))(1− ω(t))− β(ν(t))ω(t),

ȯ(t) = u(t)(1− o(t)− d(t))−Kdo(t),

ḋ(t) = Kdo(t)−Krd(t).

The optimal control problem we address is the spiking of a single neuron, starting from
its resting state, in minimal time. Mathematically, it consists in steering the (ML-ChR2-
3States) system, from an equilibrium to a membrane potential threshold corresponding to
an action potential. The main objectives are to investigate this problem theoretically and
numerically to probe the relevance of the different neuron models through their behavior
with regard to Optogenetic. Indeed, the introduction of a perturbation in the system,
in form of a control, gives a new way to test the models as good representation of the
dynamical evolution of a neuron membrane potential.

Regarding the theoretical part of the study, the problem appears as a single-input affine
system and we investigate the existence of singular extremals.

The ChR2-3-states model

We are able to drastically simplify the investigation of singular extremals by a Goh-
type transformation. The following theorem is written for the Morris-Lecar model and it
is valid for any conductance-based model.

Theorem 0.3.1. The existence of optimal singular extremals in the minimal time spiking
problem for the control system (ML-ChR2-3States) is equivalent to the existence of optimal
singular extremals in the same problem but for the reduced system on R2

(ML)


ν̇(t) =

1

C

(
gKω(t)(VK − ν(t)) + gCam∞(ν(t))(VCa − ν(t))

+ gChR2o(t)(VChR2 − ν(t))) + gL(VL − ν(t))
)
,

ω̇(t) = α(ν(t))(1− ω(t))− β(ν(t))ω(t),

where o is the new control variable.

Theorem 0.3.1 thus allows to reduce the dimension of the control system to the di-
mension of the original uncontrolled conductance-based model. For 2-dimensional neuron
models such the FitzHugh-Nagumo model, the Morris-Lecar model or the reduced Hodgkin-
Huxley model, we are able to prove the absence of optimal singular extremals. The optimal
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controls are thus bang-bang and we prove that they necessarily begin with a maximal arc.
For the complete Hogdkin-Huxley model, the resulting 4-dimensional system is too compli-
cated to theoretically certify the absence of optimal singular extremals. Banb-bang optimal
controls are observed numerically.

The ChR2-4-states model

We cannot perform the same reduction for the ChR2-4-states model. We give the
structure of the Lie brackets and the expression of a possible singular control, if it exists.
Numerically, we never observe singular controls.

Numerical results

Physiologically, we already mentioned in section 0.1.2 that the ChR2 has a depolarizing
effect on the neuron membrane. We thus expect physiologically to observe a spike when
the control is maximal, and the more light we put into the system, the faster the spike.
This is the base for the discussion and the interpretation of the numerical results.

We implement a direct method with the ampl language and using the ipopt nonlinear
solver. For each conductance-based neuron model, we compare the performances of the
ChR2-3-states and the ChR2-4-states models. We repeat the procedure for several values
of the maximal control. Indeed, since we did not exclude theoretically optimal singular
controls for the ChR2-4-states, they can appear above some threshold of the control and
thus we scan a reasonable range of values for the maximal control. The first value corre-
spond to a physiological value computed from data found in the literature. From this set of
experiment, we can distinguish two main classes of neurons that we call the physiological
and nonphysiological classes.

The physiological class. The first class comprises the Fitzhugh-Nagumo model, the
reduced Hodgkin-Huxley model and the complete Hodgkin-Huxley. These three models
behave as physiologically expected. The optimal control has at most one switching time
from a maximal control to a minimal control and the more light (i.e. the higher the maximal
value of the control) we put in the system, the faster the spike. For the Fitzhugh-Nagumo
model, the ChR2-4-states version sensibly outperforms the ChR2-3-states model. Indeed,
it spikes faster and require less light (Figure 8).

The Hodgkin-Huxley models are very interesting for several reasons. Taken separately,
both models give the same qualitative and quantitative results for the two versions of
ChR2. Indeed, except for low values of the maximal control for which the ChR2-4-state
version slightly outperforms the ChR2-3-states, the optimal trajectory of the membrane
potential and the optimal control strikingly coincide. Besides, the response of the system
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Figure 8 – Optimal trajectory and bang-bang optimal control for the FHN-ChR2-3-states
and FHN-ChR2-4-states models with umax = 0.5.

does not qualitatively change when we change the numerical values for the ChR2 model.
We thus qualify these models as robust with respect to the ChR2 modeling. Furthermore,
if the relevance of the reduced Hodgkin-Huxley model has not a satisfying mathematical
foundation (see Section 1.3.3), optogenetic control provides a new argument in favor of
this reduction to be a good approximation of the complete model. Indeed, the reduced
Hodgkin-Huxley model and the complete model behave exactly the same with respect to
the control (Figure 9).

a)

b)

Figure 9 – Optimal trajectory and bang-bang optimal control for a) the reduced and b)
the complete Hodgkin-Huxley models with umax = 0.028.
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The nonphysiological class. The second class comprises the Morris-Lecar model alone.
This model provides a nonintuitive response to optogenetic stimulation. For the first set of
numerical values that we use, we observed an optimal control with three switching times,
for both the ChR2-3-states and ChR2-4-states versions. For this set of numerical values,
the performances of the ChR2-3-states and ChR2-4-states versions are also nonintuitive
since we can note the existence of a threshold for the maximal value of the control below
which the ChR2-3-states version outperforms the ChR2-4-states (Figure 10).

Figure 10 – Optimal trajectory and bang-bang optimal control for the ML-ChR2-3-states
and ML-ChR2-4-states models with umax = 0.028.

This means that the neuron spikes faster if the light is switched on and off several times
instead of being kept on. For this particular set of numerical values, the gain with respect
to constant stimulation is very small. Nevertheless, with another set of numerical values,
still taken from the literature, the constant stimulation fails to trigger a spike while the
optimal control obtained succeeds. To decide whether the number of switching times is
an intrinsic characteristic of the model, we change the numerical value of the equilibrium
potential of ChR2 (VChR2) and we observe an optimal control with only two switching
times. The Morris-Lecar model is thus not robust with respect to the ChR2 modeling,
contrarily to the Hodgkin-Huxley models. Its number of switching times depends on the
numerical values chosen for the ChR2 model and the optimal control is not intuitive. The
results for the Morris-Lecar model also emphasize the benefits of the optimal control study
since it provides a control that triggers a spike in a system that would otherwise not spike
under constant stimulation.

0.3.2 Chapter 2

In this chapter we first define an infinite-dimensional controlled PDMP, where the
control acts on the three local characteristics (φ, λ,Q) of the process. If the study of
infinite-dimensional PDMPs and the optimal control of finite-dimensional PDMPs have
been separately considered, the optimal control of infinite-dimensional PDMPs is a fairly
untreated subject. The difficulty in defining controlled PDMPs arises from the fact that
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the state space has to be enlarged in order to obtain strongly Markovian processes. Fur-
thermore, since we work with Markovian processes, we want to obtain Markovian optimal
controls in the optimal control problems we address. This is another reason why the state
space has to be again enlarged. Before enlargement, the infinite-dimensional controlled
PDMP can be defined similarly to the uncontrolled PDMP of Section 0.2.2. Consider the
same state space H × D, a closed subset U of a compact polish space Z as the control
space, and for d ∈ D the controlled PDE{

v̇t = −Lvt + fd(vt, a(t)),

v0 = v, v ∈ V.
(26)

with a ∈ A := {a : (0, T ) → U measurable}. We write φa· (v, d) the flow of (26) and
give assumptions under which (26) admits a unique solution. The jump rate function
λ : H × D × U → R+ and the transition measure Q : H × D × U → P(D) depend now
both on the control variable. It is immediate to note that, defined as it is, the flow of (26)
does not enjoy the flow property, that reads here φat+s(v, d) = φat (φ

a
s(v, d), d).

The enlarged process is defined on the space Ξ := H×D× [0, T ]× [0, T ]×H by adding
to the original components (vt, dt)t≥0, the time elapsed since the last jump, denoted τt,
the time of the last jump denoted ht and the location of the continuous component v at
the time of the last jump, denoted νt. Components τt and νt make the resulting process
strongly Markovian. The time of the last jump makes Markovian the optimal control
obtained later. Define also the space Υ := H × D × [0, T ] in which the embedded MDP
will take values. The space of admissible control strategies A for the enlarged PDMP is
then defined by

A := {α : Υ→ Uad([0, T ];U) measurable},

with Uad((0, T ), U) := {a ∈ L1((0, T ), Z)|a(t) ∈ U a.e.}.

We prove in Theorem 2.1.2 that there exists a filtered probability space satisfying the
usual conditions such that to each admissible control strategy α ∈ A is uniquely associated
a strongly Markovian infinite-dimensional PDMP (Xα

t )t≥0 with values in Ξ. Moreover, the
continuous component of this PDMP is locally bounded (in H), uniformly in t ∈ [0, T ].
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The embedded MDP is then defined by its stochastic kernelQ′ : Υ∪{∆∞}×Uad((0, T ), U)→
Υ ∪ {∆∞} given by

Q′(Σ|z, a) =

∫ T−h

0
ρtdt,

for any z := (v, d, h) ∈ Υ, Borel set Σ := B ×C ×E ∈ B(Υ) and a ∈ Uad([0, T ], U), where

ρt := λd(φ
a
t (z), a(t))χat (z)1E(h+ t)1B(φat (z))Q(C|φat (z), d, a(t)),

with φat (z) the flow of the PDE for the enlarged process, and Q′({∆∞}|z, a) = χaT−h(z),
and Q′({∆∞}|∆∞, a) = 1.

We then define the space relaxed control strategies AR by

AR := {µ : Υ→ R([0, T ];U) measurable},

with R([0, T ], U) := {µ ∈ R([0, T ], Z)|µ(t)(U) = 1 a.e. in [0, T ]} and R([0, T ], Z) the
set of all transition probability measures from ([0, T ],B([0, T ]), Leb) into (Z,B(Z)). We
extend the definition of the local characteristics of the PDMP and the stochastic kernel of
the embedded MDP to the space of relaxed controls. For (v, d) ∈ H ×D and γ ∈M1

+(Z),

fd(v, γ) :=

∫
Z
fd(v, u)γ(du),

λd(v, γ) :=

∫
Z
λd(v, u)γ(du),

Q(C|v, d, γ) := (λd(v, γ))−1
∫
Z
λd(v, u)Q(C|v, d, u)γ(du),

and for z := (v, d, h) ∈ Υ and γ ∈ R([0, T ], U),

Q′(B × C × E|z, γ) :=

∫ T−h

0
ρ̃tdt, (27)

for Borel sets B ⊂ H, C ⊂ D, E ⊂ [0, T ], where

ρ̃t := χγt (z)1E(h+ t)1B(φγt (z))

∫
Z
λd

(
φµt (z), u

)
Q
(
C|φµt (z), d, u

)
γ(t)(du),

= χγt (z)1E(h+ t)1B(φγt (z))λd

(
φγt (z), γ(t)

)
Q
(
C|φγt (z), d, γ(t)

)
and Q′({∆∞}|z, γ) = χγT−h(z), and Q′({∆∞}|∆∞, γ) = 1.

Once the PDMP and the associated MDP have been properly defined for relaxed control
strategies, we consider an optimal control problem with finite time horizon and quadratic
cost for the PDMP. The resulting optimal control for the MDP is an infinite-horizon
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problem as defined in Section 0.2.3. We show that the two problems are equivalent and that
the operator T defined by (25) is contracting from a space of continuous function into itself.
Thus it admits a unique fixed point and we show that this fixed point is the value function
of the optimal control problem. More precisely, we state and show an existence theorem
for a general contracting MDP (Theorem 2.3.3) and then we show that the assumptions
made on the PDMP that the conditions for Theorem 2.3.3 to be valid are satisfied. The
main difficulty of this part is to design a framework in which the complicated cost function
and stochastic kernel associated to relaxed controls are continuous. One crucial point is
the continuity of the mapping

φ : (z, γ) ∈ Υ×R([0, T ], U)→ φγ· (z) = S(0)v +

∫ ·
0

∫
Z
S(· − s)fd(φγs (z), u)γ(s)(du)ds,

from Υ×R in C([0, T ];H), where (S(t)t≥0) is the strongly continuous semigroup generated
by L.

The motivation for this work is again Optogenetics and we want to take into account the
randomness of ion channels and the propagation of action potentials along the axon. The
general framework described above allows us to define an infinite-dimensional controlled
Hodgkin-Huxley model and to state an existence theorem of optimal ordinary control
strategies. The neuron axon is represented by the segment I := [0, 1]. For a scale N ∈ N∗

we define IN := Z ∩NI̊. We consider the Gelfand triple (V,H, V ∗) with V := H1
0 (I) and

H := L2(I) and a finite set D representing all the possible ion channel states.

Definition 0.3.1. Stochastic controlled infinite-dimensional Hodgkin-Huxley-ChR2
model. Let N ∈ N∗. We call N th stochastic controlled infinite-dimensional Hodgkin-
Huxley-ChR2 model the controlled PDMP (v(t), d(t)) ∈ V × DN defined by the following
characteristics:

— A state space V ×DN with DN = DIN .

— A control space U = [0, umax], umax > 0.

— A set of uncontrolled PDEs: For every d ∈ DN ,
v′(t) =

1

Cm
∆v(t) + fd(v(t)),

v(0) = v0 ∈ V, v0(x) ∈ [V−, V+] ∀x ∈ I,

v(t, 0) = v(t, 1) = 0, ∀t > 0,

(28)

with
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D(∆) = V,

fd(v) :=
1

N

∑
i∈IN

(
gK1{di=n4}(VK − v(

i

N
)) + gNa1{di=m3h1}(VNa − v(

i

N
)) (29)

+ gChR2(1{di=O1} + ρ1{di=O2})(VChR2 − v(
i

N
)) + gL(VL − v(

i

N
))
)
δ i
N
,

with δz ∈ V ∗ the Dirac mass at z ∈ I.

— A jump rate function λ : V ×DN × U → R+ defined for all (v, d, u) ∈ H ×DN × U
by

λd(v, u) =
∑
i∈IN

∑
x∈D

∑
y∈D,
y 6=x

σx,y(v(
i

N
), u)1{di=x}, (30)

with σx,y : R× U → R∗+ smooth functions for all (x, y) ∈ D2.

— A discrete transition measure Q : V ×DN × U → P(DN ) defined for all (v, d, u) ∈
E ×DN × U and y ∈ D by

Q({di:y}|v, d) =
σdi,y(v( i

N ), u)1{di 6=y}

λd(v, u)
, (31)

where di:y is obtained from d by putting its ith component equal to y.

The optimal control problem we address is defined as follows. Suppose we are given a
reference signal Vref ∈ V . The control problem is then to find α ∈ A that minimizes the
following expected cost

Jz(α) = Eαz
[∫ T

0

(
κ||Xα

t (φ)− Vref ||2V + α(Xα
t )
)

dt

]
, z ∈ Υ, (32)

where A is the space of control strategies, Υ is defined as before, Xα
· is the controlled

PDMP and Xα
· (φ) its continuous component (the membrane potential).

Theorem 0.3.2. Under a set of assumptions on the local characteristics of the PDMP
(L, fd, λ,Q) that can be found in Section 2.1.1, there exists an optimal control strategy
α∗ ∈ A such that for all z ∈ Υ,

Jz(α
∗) = inf

α∈A
Eαz
[∫ T

0

(
κ||Xα

t (φ)− Vref ||2V + α(Xα
t )
)

dt

]
,

and the value function z → infα∈A Jz(α) is continuous on Υ.

Finally, the large possibilities that cover our theoretical framework allow us to discuss
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several modifications of the model, such as the places where the control appears, the models
of ChR2 that can be considered, or the control space that can be taken infinite-dimensional.

0.3.3 Chapter 3

This chapter gathers additional results on the infinite-dimensional controlled PDMP
defined in Chapter 2. First, we prove that, provided a supplementary assumption on the
semigroup that drives the deterministic motion, the continuous component of a sequence of
relaxed trajectories of the PDMP (the membrane potential in our applications), associated
to a sequence of relaxed control strategies, is tight in C([0, T ], H). This constitute a
first step towards a relaxation result for the relaxed infinite-dimensional controlled PDMP.
Relaxation theorems ensure that relaxed control systems can be approximately replicated
by ordinary ones so that relaxed control systems stay closely related to the original ones. To
prove such results, one way is to show that the ordinary control space is densely embedded
in the relaxed one and then, show that if a sequence of relaxed controls converges, then
the associated sequence of relaxed processes converges to the process associated with the
limiting relaxed control. For the infinite-dimensional controlled PDMP, the next step would
be to prove the tightness of the entire process and then to identify a unique limit, for
instance by studying the sequence of generators, that uniquely characterize the processes.
We report the discussion on why the tightness of the continuous component of the PDMP
is easy and why the tightness of the whole process and the identification of a limiting
process are much harder because we need too much mathematical material with respect
to the goal of this section.

The second part of the chapter has for main objective to extend the definition of infinite
dimensional controlled PDMPs to Banach spaces, possibly nonreflexive. We first define the
process for a separable and reflexive Banach space and we prove that the part of Chapter
2 that changes can be adapted for the main results to remain valid. Namely, we prove that
the theorem of existence of optimal controls is still true in this new framework. We then
treat the case when the Banach space is not reflexive. In this case, the dual semigroup is
not necessarily strongly continuous, a crucial point in the proof of the previous results. We
illustrate this problem on an elementary example. The solution is to consider the Phillips
dual, also called sometimes sun dual, that consists in the part of the dual space in which
the dual semigroup is strongly continuous. Let E be Banach space and (A,D(A)) the
infinitesimal generator of a strongly continuous semigroup (S(t))t≥0 in E.

Definition 0.3.2. The Phillips dual E� of E with respect to (A,D(A)) is defined by

E� := {y∗ ∈ E∗| lim
t↓0
||S∗(t)y∗ − y∗||E∗ = 0}

and we call the semigroup given by the restricted operators
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S(t)� := S(t)∗|E� , (t ≥ 0),

the Phillips semigroup. We will denote by A� its infinitesimal generator

We then show that E� corresponds to the closure of the domain of the dual infinitesimal
generator A∗ in E∗, E� = D(A∗) and that the Phillips dual semigroup (S�(t))t≥0 is
strongly continuous in E�. We then consider the Phillips dual E�� of E� with respect
to (A�, D(A�)) and prove that E is linearly and continuously embedded in E��. All
the previous results are know, but since the use of nonreflexive Banach spaces is not that
recurrent, we rewrite the proofs in the most elementary way. The case we are interested
in is when E and E��, the Banach space E being then called �-reflexive. Then, we
advantageously replace the space E∗ by E� and the dual semigroup (S(t)∗)t≥0 by the
Phillips dual semigroup (S�(t))t≥0 in the proof for the reflexive case and obtain the same
results.

In our applications, we may want to consider C([0, 1]) instead of L2(0, 1) for the mem-
brane potential if we argue that it should be continuous along the axon. We thus develop
the case of the Laplacian, denoted by ∆c, in C([0, 1]) and we prove the following theorem.

Theorem 0.3.3. The operator (∆c, D(∆c)) with domain defined by

D(∆c) :=
{
y ∈ C2([0, 1]) | y′(0) = y′(1) = 0

}
,

generates an immediately compact analytic semigroup of contractions (S(t))t≥0 in C([0, 1]),
defined for y ∈ C([0, 1])

(S(t)y)(s) =

∫ 1

0
kt(s, r)y(r)dr, (t > 0, s ∈ [0, 1])

with

kt(s, r) := 1 + 2

∞∑
n=1

e−π
2n2t cos(nπs) cos(nπr).

The kernel kt(·, ·) is continuous and positive on [0, 1]2.

The space C([0, 1]) is �-reflexive with respect to (∆c, D(∆c)) and we have

C([0, 1])� = L1(0, 1),

and

∆�c = ∆1, S�(t) = S1(t) (t ≥ 0),
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with ∆1 the infinitesimal generator of an immediately compact analytic semigroup (S1(t))t≥0

defined on the domain D(∆1) consisting of elements y ∈ L1([0, 1]) such that there exists
z(= ∆1y) in L1([0, 1]) with ∫ 1

0
y(x)v′′(x)dx =

∫ 1

0
z(x)v(x)dx (33)

for every v ∈ C2([0, 1]) with v′(0) = v′(1) = 0.
Finally, for y ∈ L1(0, 1),

S(t)�y(s) =

∫ 1

0
kt(s, r)y(r)dr, (t ≥ 0).

0.3.4 Perspectives

Since the study of mathematical optogenetic models is at its beginnings, the perspec-
tives in this area and the possible directions to go towards are tremendously vast. We
present here some directions linked to our work.

On deterministic conductance-based models

It would be interesting to continue the numerical study of the controlled Morris-Lecar
model and try to identify bifurcation points for the number of switching times.

Other types of optimal control problems would also be very interesting. For instance,
we know that more than the shape of the spikes, the time elapsed between consecutive
spikes conveys a lot of information. We could propose a close problem to the one we study
as follows. Consider a controlled conductance-based and the optimal control problem that
consists in steering the system from a point corresponding to a state right after a spike,
to the next spike in minimal time. The formulation of this control problem is the exact
same one as the problem we study and for two-dimensional neuron models with the ChR2-
3-states model, we know that the optimal control is bang-bang. The difficulty would lie
in the determination of the right value for the starting point. If we want this problem
to accurately correspond to the minimization of the inter-spike arrival time, we need to
determine the values of the control system that correspond to a time right after a spike.
This is quite easy for the variables of the conductance-based model but much more delicate
for the variables of the ChR2 model. Indeed, they are many controls that lead to the firing
of the neuron and the choice is crucial. Since the relevant goal of this problem is to
minimize the time between several consecutive spikes (and not just between two spikes),
that is the minimization of the inter-spike arrival of a spike train, we must chose a point of
the ChR2 model that also minimizes the time between the two previous spikes. One way
to chose a relevant starting point could be to use the previous problem to initialize this
one.
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Finally, another interesting problem could be the tracking of a reference signal, as in
Chapter 2, while minimizing the intensity of the light used (i.e. the control). Again, this
problem is closely linked to the one we studied in terms singular extremals. Furthermore,
the numerical methods we used could be as well implemented.

Numerical methods for the infinite-dimensional controlled PDMP

In chapter 2 we prove the existence of optimal controls for a wide class of infinite-
dimensional PDMPs. It would be nice, for theses processes, to implement numerical meth-
ods in order to compute the optimal controls, or at least approximations of these optimal
controls. One efficient way to address numerical optimal control problems for PDMPs is to
use quantization methods that consist in replacing the state and control spaces by discrete
spaces and work with approximations of the processes on these discrete spaces ([GN98],
[PPP04], [dSDZ15]).

Population of neurons

Our study is entirely based on single neuron models. The next reasonable step would
be to consider networks of neurons. Optimal control of populations of neurons have been
addressed outside the optogenetic framework ([LDR13], [TTS+15]). Optogenetics would
probably provide new insights on optimal control of populations of neurons since this tech-
nique is able to target specific neuron types. It would then be very interesting to consider
populations of neurons of several types, some types expressing ChR2, and thus responsive
to light stimulation, and some types insensitive to light stimulation. It would allow to try
and investigate the role of a specific type of neurons on the rest of the population.

A link between the stochastic and the deterministic models

The uncontrolled version of the infinite-dimensional stochastic Hodgkin-Huxley model
of Definition 0.3.1 converges to the infinite-dimensional deterministic Hodgkin-Huxley
model when the scale N goes to infinity ([Aus08], [RTW12]). It would be great to study
the link between the controlled models. For example, does the optimal control that pro-
vides Theorem 0.3.2 converge to an optimal control of the limiting deterministic model ?
This is a fair question, nevertheless, they are many questions hidden inside it. First, be-
fore considering optimal control problems, is the deterministic controlled Hodgkin-Huxley
model a limit for the stochastic version when the scale N goes to infinity ? This question
is in fact linked to the relaxation question addressed in Chapter 3 and thus not trivial.
Moreover, the appropriate notion of convergence to study sequences of optimal control
problems is Γ-convergence ([BM82], [Mas93]). If we write (Xα,N

t )t≥0 the N th stochastic
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controlled infinite-dimensional Hodgkin-Huxley-ChR2 process of Definition 0.3.1 to empha-
size the dependence on the scale N , then the study of Γ-convergence for the sequence of
control problems associated with the sequence of processes ((Xα,N

t )t≥0)N∈N∗ and the cost
defined by (32) would imply to show that for a converging sequence (αN )N≥∞ of control
strategies, possibly relaxed, the sequence of processes (((XαN ,N

t )t≥0)N∈N∗) converges to the
solution of the deterministic controlled Hodgkin-Huxley system associated to the limiting
control. Besides, this limiting control would have to be properly defined since controls for
the deterministic model and the stochastic model are not the same mathematical objects.



Chapter 1

Minimal time spiking in various
ChR2-controlled neuron models

Introduction

In this chapter we investigate, theoretically and numerically, the minimal time con-
trol, via Optogenetics, of some widely used finite-dimensional deterministic neuron models
such as the Hodgkin-Huxley model ([HH52]), the Morris-Lecar model ([LM81]) and the
FitzHugh-Nagumo model ([Fit61]). Control of neuron models has been addressed in the
literature in different ways. One popular way to investigate this problem is to look at phase
reductions of non-linear evolution systems, consisting in reducing the system of equations
to a single first-order differential equation, with for essential goal numerical computations
of the dynamic programming formulation of the problem ([BMH04], [NM11]). Integrate-
and-fire models, which are also a simplification of nonlinear sytems to single first-order
linear differential equations, receiving stochastic inputs, have been studied in [FT03] in
order to minimize the variance of the membrane potential, arguably linked to the variance
of the final time, while reaching a given membrane potential threshold in fixed time. The-
ses simplifications allow the authors to obtain a nice analytic expression for the optimal
control. A stochastic integrate-and-fire model has also been used in [LDL14] to find an
optimal electrical stimulation to spike in a desired time, a problem close to ours, with
numerical computation purposes.

All these studies were exclusively based on control via electrical stimulation. Opto-
genetics allows a control of excitable cells of a different nature. This recent and thriving
technique is based on light stimulation ([Dei11],[Boy15],[Dei15]). It has for cornerstone
the genetical modification of excitable cells for them to express new ion channels whose
opening and closing are triggered by the absorption of photons. In particular, it is able to
target specific populations of neurons. Indeed, by designing viruses that will aim at these
populations only, the light stimulation will have no effect on the other populations that do
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not express the new ion channels. This makes Optogenetics a noninvasive technique, in
contrast to electrical stimulation that reaches a whole volume of tissue, regardless of the
types of neurons that populate this volume. Furthermore, optical devices such as optic
fibers and lasers allow to reach deeply embedded populations of neurons. It then provides
Optogenetics with a tremendous advantage over electrical stimulation in the exploration of
neural tissues and neural functions. The risk of tissue damage is also decreased with this
technique. The perspectives of applications in medicine are thus colossal with, among oth-
ers, the promise to help understand and treat Alzheimer’s disease ([RRP+15]), Parkinson’s
disease ([CXZ15]), epilepsy ([PH15]), vision loss ([GMBH+15]), narcolepsy ([AZA+07]) and
even depression ([LNC12]).

Our work is based on one of these light-gated ion channels called Channelrhodopsin
(ChR2). It is a depolarizing non-selective cation channel that opens upon a stimulation
with blue light. One of the neural events that contains a lot of information is the latency
time between two consecutive action potentials or spikes (a large depolarization of the
membrane potential when it goes beyond some threshold). Here we want to specifically
address the time optimal control of the first spike in various neuron models, for two dif-
ferent mathematical models of ChR2 introduced in [NGG+09]. Indeed, the mathematical
formulation of this problem is really close to the one of the optimal control of the latency
time between two spikes. In particular, the investigation of singular trajectories is the
same. To the best of our knowledge, this optimal control problem has never been studied
before, neither in terms of electrical stimulation, nor in terms of light stimulation.

In Section 1.1 we set the mathematical framework of conductance-based neuron models
and we recall some results of minimal time control problems for affine control systems, and
the role of singular controls. We then present in Section 1.2 the mathematical model of
ChR2 and how the resulting models can be incorportated in conductance-based models. We
apply our results to various neuron models in Section 1.3. For the ChR2-3-state model, we
prove that there are no singular optimal controls for two-dimensional models (FitzHugh-
Nagumo, Morris-Lecar, reduced Hodgkin-Huxley models) and we give the expression of
the bang-bang optimal control. We illustrate these results with numerical computations
of the optimal controls by means of a direct method. For the ChR2- 4-states model,
we numerically observe optimal bang-bang controls. Along the review of the different
models, we insist on how optimal control appears as a great tool to discuss and compare
neuron models. In particular, it emphasizes a peculiar behavior of the Morris-Lecar model,
compared to the other ones, and gives a new argument in favor of the reduced Hodgkin-
Huxley model.

Although we focus in this paper on neuron models, our treatment of conductance-based
model can be applied to any excitable cells such as cardiac cells for example (see [WAK12]
for a work on application of Optogenetics in cardiac cells for simulation purposes).
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1.1 Preliminaries

1.1.1 Conductance based models

Conductance based models form a popular class of simple biophysical models used to
represent the activity of an excitable cell, such as a neuron or a cardiac cell. The principle is
to give an equivalent circuit representation of the cell by assigning an electrical component
to each meaningful biological component of the cell. Finite-dimensional conductance-based
models represent the cell as a single isopotential electrical compartment. The lipid bilayer
membrane of the cell is represented by a capacitance C > 0. Across the membrane are
disposed voltage-gated ion channels, represented by conductances gx > 0 whose values
depend on the type x of the channel. An ion channel is a protein that constitutes a gate
across the membrane. It has the ability to let ions flow across the membrane or to prevent
them from doing so. Ion channels are said selective in the sense that they act as a filter of
certain types of ions. The main types of ion channels are potassium (K+) channels, sodium
(Na+) channels and calcium (Ca2+) channels. The ion flows are driven by electrochemical
gradients represented by batteries whose voltages Ex ∈ R equal the membrane potential
corresponding to the absence of ion flow of type x. For that matter, they are called
equilibrium potentials. The sign of the difference between the membrane potential and Ex
gives the direction of the driving force. The channels are all called voltage-gated because
their opening and closing depend on the potential difference across the membrane. This
means that the conductances gx are variable conductances, depending on the membrane
potential.

The ion flow across the membrane generates an electrical current in the circuit, the
possible movements of ions inside the cell being neglected. To each type x of ion channels
is associated a macroscopic ion current Ix. The total membrane current is the sum of the
capacitive current and all of ionic currents considered. In all models we consider in this
paper, the ionic currents include a leakage current that accounts for the passive flow of
some other ions across the membrane. This current is associated to a fixed conductance
gL and is always denoted by IL.

Every macroscopic ion current Ix is the result of the ion flow through all the ion channels
of type x. Since the number of ion channels in an excitable cell is very large, the macroscopic
conductance gx is a function of the probability nx ∈ [0, 1] that a channel of type x opens.
In fact, the channels of type x are constituted by several subpopulations of gates that
have different dynamics. For that matter, let kx ∈ N∗ be the number of subpopulations
of the channels of type x and write (nx1 , . . . , nxkx ) ∈ [0, 1]kx the probabilities that each
gate of the subpopulation opens, that is, nxi represents the probability that a gate of type
xi opens. The time evolution of these probabilities in each subpopulation depends on the
membrane potential and is of first order. For i ∈ {1, . . . , kx}, it is represented on Figure
1.1 and the dynamical system governing nxi is the following
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ṅxi(t) = αxi(V )(1− nxi)− βxi(V )nxi , (1.1)

where αxi and βxi are smooth functions of the membrane potential V .

C O

αxi
(V )

βxi
(V )

Figure 1.1 – Ion channel of type xi

This dynamics can be easily interpreted as follows : when the potential across the
membrane is equal to V , ion channels in the subpopulation of type xi open at rate αxi(V )

and close at rate βxi(V ).
The macroscopic conductance gx is then given by

gx(nx) = ḡxfx(nx1 , . . . , nxkx ),

where ḡx is the maximum conductance of the channel (i.e., the conductance when all
the channels of type x are open) and fx is a smooth function depending on the type of the
channel.

The macroscopic current Ix of type x is given by Ohm’s law. Taking into account the
equilibrium potential Ex, we get

Ix = gx(V − Ex)

= ḡxfx(nx1 , . . . , nxkx )(V − Ex).

In Figure 1.2 below we give the example of a conductance-based model with two types
of channels with conductances g1 and g2.

The total current Itot is given by

Itot = I + I1 + I2 + IL,

where I = C dV
dt , I1,2 = g1,2(V )(V − E1,2) and IL = gL(V − EL).

The first conductance-based model dates back to the seminal work of Hogkin and
Huxley ([HH52]) on the squid giant axon. In voltage-clamp experiments (i.e., experiments
in which the membrane potential was held fixed), they showed how the ionic currents could
be interpreted in terms of changes in Na+ and K+ conductances. From the experimental
data, they inferred the dependencies, on the membrane potential and the time, of these
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E1

C

I

g1(V )

I1

g2(V )

I2

E2

gL

IL

EL

Itot

extracellular medium

intracellular medium

V

Figure 1.2 – Equivalent circuit for a conductance-based model with two types of channels

conductances. The resulting mathematical model became very popular because it was able
to reproduce all key biophysical properties of an action potential. The K+ channels are
composed of a single population. Let us denote by n the probability that a channel of type
K+ opens. The K+ conductance is given by

gK = ḡKn
4.

The population of Na+ is composed of two subpopulations and we write m and h the
corresponding probabilities that a certain type of gate opens. The Na+ conductance is
given by

gNa = ḡNam
3h.

The total membrane current Itot is then given by

Itot = C
dV

dt
+ ḡKn

4(V − EK) + ḡNam
3h(V − ENa) + gL(V − EL),

with V the membrane potential. If an external current Iext is applied to the cell, we can
write the dynamic system (HH) for the evolution of the membrane potential

(HH)



CV̇ (t) = ḡKn
4(t)(EK − V (t)) + ḡNam

3(t)h(t)(ENa − V (t))

+ gL(EL − V (t)) + Iext(t),

ṅ(t) = αn(V (t))(1− n(t))− βn(V (t))n(t),

ṁ(t) = αm(V (t))(1−m(t))− βm(V (t))m(t),

ḣ(t) = αh(V (t))(1− h(t))− βh(V (t))h(t).
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The expression of the functions αx and βx and the numerical values of the constants can
be found in Appendix 1.B.

To end this section, we give a formal mathematical definition of what we will refer to
as a conductance-based model in the sequel.

Definition 1.1.1. Conductance based model.
Let n ∈ N∗. Let also k ∈ N∗ and for all i ∈ {1, . . . , k}, let ji ∈ N∗ such that

∑k
i=1 ji = n−1.

We call n-dimensional conductance-based model the following dynamical system in Rn

ẋ1(t) =
1

C

( k∑
i=1

ḡifi(xj1+···+ji−1+1(t), . . . , xj1+···+ji−1+ji(t))
(
Ei − x1(t)

))
,

with the convention that j1 + · · ·+ ji−1 + 1 = 2 and j1 + · · ·+ ji−1 + ji = j1 for i = 1, and
for i ∈ {2, . . . , n},

ẋi(t) = αi(x1(t))(1− xi(t))− βi(x1(t))xi(t),

where C > 0 and for all i ∈ {1, . . . , k} and l ∈ {2, . . . , n}

— ḡi > 0, fi : Rji → R+ is a smooth function,

— αl, βl : R→ R are smooth functions such that for all v ∈ R, αl(v) + βl(v) 6= 0.

We finally require that the previous dynamical system exhibits an equilibrium point
x∞ ∈ Rn, that we call resting state, defined by the following equations

x∞i =
αi(x

∞
1 )

αi(x∞1 ) + βi(x∞1 )
, ∀i ∈ {2, . . . , n},

and

0 =
k∑
i=1

ḡifi(x
∞
j1+···+ji−1+1, . . . , x

∞
j1+···+ji−1+ji)

(
Ei − x∞1

)
Conductance based models are uniquely defined on R+. The initial conditions y ∈

Rn that we consider are physiological conditions with y1 in a physiological range for the
membrane potential of the cell considered, basically y1 ∈ [Vmin, Vmax] with −∞ < Vmin <

Vmax < +∞, and yi ∈ [0, 1] for all i ∈ {2, . . . , n}.

1.1.2 The Pontryagin Maximum Principle for minimal time single-input
affine problems

In this section we recall the necessary optimality conditions of the Pontryagin Maximum
Principle applied to the specific affine problem that we investigate in the sequel.
Consider the minimum time problem for a smooth single-input affine system:
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ẋ(t) = F0(x(t)) + u(t)F1(x(t)), x(0) = xeq ∈ Rn, (1.2)

where x(t) ∈ Rn and xeq solution of F0(x) = 0 (i.e., an equilibrium point for the uncon-
trolled system). The control domain U := [0, umax] is a segment of R+, with umax > 0.
The state variable must satisfy the final condition x(tf ) ∈Mf where

Mf := {x ∈ Rn|x1 = Vf},

with Vf > 0 a given constant that will later correspond to the potential of a spike. The
set of admissible controls, denoted Uad, is the subset of the measurable applications from
R+ to U , denoted by L(R+, U), such that (1.2) has a unique solution on R+.

We introduce the Hamiltonian H : Rn × Rn × R− × U → R defined for (x, p, p0, u) ∈
Rn × Rn × R− × U by

H(x, p, p0, u) := 〈p, F0(x)〉+ u〈p, F1(x)〉+ p0, (1.3)

where 〈·, ·〉 is the scalar product on Rn, p ∈ Rn is the adjoint vector and p0 ≤ 0 a non-
positive number. The Pontryagin Maximum Principle (see [PBGM74], [Tré08, Theorem
7.2.1]) states that if the trajectory t → xu(t), t ∈ [0, tf ] associated with the admissible
control u ∈ Uad is optimal on [0, tf ], then there exists p : [0, tf ]→ Rn absolutely continuous
and p0 ∈ R− such that (p, p0) is non zero and such that p satisfy the following equations,
almost everywhere in [0, tf ]:

ẋu(t) =
∂H
∂p

(xu(t), p(t), p0, u(t)),

ṗ(t) = −∂H
∂x

(xu(t), p(t), p0, u(t)).

Moreover, the following maximum condition must be satisfied on [0, tf ]:

H(xu(t), p(t), p0, u(t)) = max
v∈U
H(xu(t), p(t), p0, v). (1.4)

In view of the initial and final conditions on the state variable, the transversality condition
on p(0) is empty and the one on p(tf ) gives

p1(tf ) = λ1 ∈ R,

pi(tf ) = 0, ∀i ∈ {2, . . . , n}.

In our particular setting, the augmented system does not depend on the time variable.
This implies that the right hand side of (1.4) is constant on [0, tf ]. Now since there is no
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final cost and because the final time is not fixed, we also have

max
v∈U
H(xu(tf ), p(tf ), p0, v) = 0.

The two latter remarks imply that for all t ∈ [0, tf ]

H(xu(t), p(t), p0, u(t)) = 0 = max
v∈U
H(xu(t), p(t), p0, v), (1.5)

which can be written, in view of (1.3):

〈p(t), F0(xu(t))〉+ u(t)〈p(t), F1(xu(t))〉+ p0 = 0 (1.6)

= 〈p(t), F0(xu(t))〉+ max
v∈U

v〈p(t), F1(xu(t))〉+ p0. (1.7)

In the case of single-input affine systems, the maximum condition (1.7) gives the ex-
pression of the optimal control:

u(t) :=


umax, if 〈p(t), F1(xu(t))〉 > 0,

0, if 〈p(t), F1(xu(t))〉 < 0,

undetermined, if 〈p(t), F1(xu(t))〉 = 0.

The function ϕ(t) := 〈p(t), F1(xu(t))〉, whose sign gives the expression of the optimal
control is called the switching function. If it does not vanish on any subinterval I of [0, tf ],
the optimal control is a succession of constant controls called bang-bang control. The
switching times between the two constant modes are given by the change of sign of the
switching function ϕ. This conclusion fails if there exists a subinterval I of [0, tf ] along
which the switching function vanishes. The control on I is then called singular and this
situation has to be further investigated.

Finally, the non-triviality of (p, p0) reduces in fact to the one of p because if p(t) = 0

for a given t ∈ [0, tf ] then p0 = 0 because of (1.6).

The investigation of the existence of singular trajectories will be done later for our
different models but for now let us state that if there exists a subinterval I on which the
switching function vanishes, with u the corresponding control, then from the Pontryagin
Maximum Principle, (xu, p, u) is the solution, on I, of the following equations:

ẋu(t) =
∂H
∂p

(xu(t), p(t), p0, u(t)), ṗ(t) = −∂H
∂x

(xu(t), p(t), p0, u(t)), 〈p(t), F1(xu(t))〉 = 0.

(1.8)
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1.2 Control of conductance-based models via Optogenetics

In this section we consider a general conductance-based model in Rn, with n ∈ N∗, of
the form

ẋ(t) = f0(x(t)), t ∈ R+, x(0) = x0 ∈ D ⊂ Rn, (1.9)

with f0 a smooth vector field in Rn and D physiological domain.

Optogenetics is a recent and innovative technique which allows to induce or prevent
electric shocks in living tissue, by means of light stimulation. Succesfully demonstrated in
mammalian neurons in 2005 ([BZB+05]), the technique relies on the genetic modification of
cells in order for them to express particular ionic channels, called rhodopsins, whose opening
and closing are directly triggered by light stimulation. One of these rhodopsins comes
from an unicellular flagellate algae, Chlamydomonas reinhardtii, and has been baptized
Channelrhodopsin-2 (ChR2). It is a cation channel that opens when illuminated with blue
light.

Since the field is very young, the mathematical modeling of the phenomenon is quite
scarce. Some models have been proposed, based on the study of the photocycles that the
channel go through when it absorbs a photon (see [NGG+09] for a 3-states model and
[HEG05] for a 4-states model). In [NGG+09], the authors study two models for the ChR2
that are able to reproduce the photocurrents generated by the light stimulation of the
channel. Those models are constituted by several states that can be either conductive (the
channel is open) or non-conductive (the channel is closed). Transitions between those states
are spontaneous, depend on the membrane potential or are triggered by the absorption of
a photon. This kind of models has already been used to simulate photocurrents in cardiac
cells. In [WAK12], the authors include ChR2 photocurrents into an infinite dimensional
model and use finite differences and elements to simulate the system. The optimal control
of such a system is not investigated in this paper. Here we are interested in both 3-states
and 4-states models of Nikolic and al. [NGG+09]. The 3-states model has one open state
o and two closed states c and d while the 4-states model has two open states o1 and o2,
and two closed states c1 and c2. Their transitions are represented on Figures 1.3 and 1.4.

c d

o

u(t)

Kr

Kd

Figure 1.3 – ChR2 three states model
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o1 o2

c2c1

Kd1

e12

e21

Kd2 ε2u(t)

Kr

ε1u(t)

Figure 1.4 – ChR2 four states model.

In the 3-states model, the transition from the dark adapted close state c and the open
state o is controlled by a function u(t), proportional to the intensity of the light applied to
the neuron. In our model, the intensity is then the control variable. The transition from
the open state to the light adapted close state d is spontaneous and has a time constant
very small in front of the one of the transition from d to c (i.e. 1/Kd << 1/Kr). This last
transition represents the fact that the protein has to regenerate before being able to go
through a new cycle. The 4-states model can be similarly interpreted. The transitions from
closed states to open states are triggered by light stimulation and all the other transitions
are independent of the intensity of the light applied to the neuron. Hence, ε1, ε2, e12, e21,
Kd1, Kd2 and Kr are all positive constants. This constitutes our general assumption on
the models we study. Indeed, we assume that the transitions from closed states to open
states depend linearly on the light and that all the others are independent of the light.
This assumption is not too heavy since it leads to models that still reproduces the shape of
the photocurrents produced by the channel, and experimentally measured. Furthermore,
it makes our control system affine. The dynamical system based on Figures 1.3 and 1.4 is
given by {

ȯ(t) = u(t)(1− o(t)− d(t))−Kdo(t)

ḋ(t) = Kdo(t)−Krd(t),
(1.10)

and


ȯ1(t) = ε1u(t)(1− o1(t)− o2(t)− c2(t))− (Kd1 + e12)o1(t) + e21o2(t),

ȯ2(t) = ε2u(t)c2(t) + e12o1(t)− (Kd2 + e21)o2(t),

ċ2(t) = Kd2o2(t)− (ε2u(t) +Kr)c2(t).

(1.11)

In the 3-states model, the conductance of the ChR2 channel is assumed to be propor-
tional to the probability o(t) that the channel opens, so that the ion current associated to
ChR2 channels is given by
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IChR2(t) = gChR2o(t)(VChR2 − v(t)),

with v the membrane potential of the channel, gChR2 the maximal conductance of the
channel and VChR2 the equilibrium potential of the channel. See Appendix 1.C for the
numerical computation of these constants. In the 4-states model, the open states are
assumed to be of different conductivity so that

IChR2(t) = gChR2(o1(t) + ρo2(t))(VChR2 − v(t)),

with ρ ∈ (0, 1). We can now include these two models of ChR2 in a conductance-based
model defined in the previous section.

Definition 1.2.1. i) We call ChR2-3-states controlled conductance-based model, the
system given by


ẋ(t) = f0(x(t)) +

1

C
gChR2o(t)(VChR2 − x1(t))e1

ȯ(t) = u(t)(1− o(t)− d(t))−Kdo(t)

ḋ(t) = Kdo(t)−Krd(t),

(1.12)

with e1 = (1, 0, . . . , 0) ∈ Rn. We rewrite this system in Rn+2 in the affine form

ẏ(t) = f̃0(y(t)) + u(t)f1(y(t)), t ∈ R+, (1.13)

with y(·) = (x(·), o(·), d(·)), f̃0(y) = (f0(x)+ 1
C gChR2o(t)(VChR2−x1(t))e1,−Kdo,Kdo−

Krd) and f1(y) = (1−o−d)∂o, where ∂o is the derivative with respect to the variable
o.

ii) We call ChR2-4-states controlled conductance-based model, the system given by



ẋ(t) = f0(x(t)) +
1

C
gChR2(o1(t) + ρo2(t))(VChR2 − x1(t))e1

ȯ1(t) = ε1u(t)(1− o1(t)− o2(t)− c2(t))− (Kd1 + e12)o1(t) + e21o2(t),

ȯ2(t) = ε2u(t)c2(t) + e12o1(t)− (Kd2 + e21)o2(t),

ċ2(t) = Kd2o2(t)− (ε2u(t) +Kr)c2(t).

(1.14)

We also rewrite the system in Rn+3,

ż(t) = f̂0(z(t)) + u(t)f2(z(t)), t ∈ R+, (1.15)

with z(·) = (x(·), o1(·), o2(·), c2(·)),
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f̂0(z) = (f0(x) +
1

C
gChR2(o1(t) + ρo2(t))(VChR2 − x1(t))e1,

− (Kd1 + e12)o1 + e21o2, e12o1 − (Kd2 + e21)o2,Kd2o2 −Krc2),

and
f2(z) = ε1(1− o1 − o2 − c2)∂o1 + ε2c2∂o2 − ε2c2∂c2 .

Notation. Let k ∈ N∗. We use two ways to write a vector field F : Rk → Rk. For x ∈ Rk,
we write either

— F (x) = (F1(x), . . . , Fk(x)), or

— F (x) = F1(x)∂1 + · · ·+ Fk(x)∂k,

where Fi : Rk → R is the ith coordinate of F and ∂i is the partial derivative along the ith

direction, for i ∈ {1, . . . , k}.

We already used this mixed notation in Definition 1.2.1 above. The second notation
will be useful for the computation of Lie brackets later in this paper.

Note that for a bounded measurable function u : R+ → R and a starting point
((o0, d0), (o1, o2, c2)) ∈ R2 × R3, the systems (1.10) and (1.11) admit a unique solution,
absolutely continuous on R+. Thus, for all bounded measurable function u : R+ → R
and all initial conditions y0 ∈ D × R2 and z0 ∈ D × R3, the systems (1.12) and (1.14)
have a unique solution, defined on R+ and such that x(·) is of class C1 and (o(·), d(·)) and
(o1(·), o2(·), c2(·)) are absolutely continuous on R+.

1.2.1 The minimal time spiking problem

The control problem we are interested in here can be formulated for both ChR2 models.
Consider a conductance-based neuron model in its resting state. If no light is applied to the
neuron (i.e. u ≡ 0) then the system stays in this resting state. We want to find the optimal
control that triggers a spike in minimum time when starting from the resting state. To do
so, let Vs > 0 be the membrane potential that we decide to be corresponding to a spike.
Since the control is proportional to the intensity of the light applied to the neuron, the
control space U will be a segment [0, umax], with umax > 0. Let xeq ∈ Rn a resting state
of the conductance-based model. In the next two sections, we formulate the mathematical
problem for both ChR2 models.

The ChR2 3-states model

Let y0 = (xeq, 0, 0) ∈ Rn+2 be our starting point. The state (0, 0) for the system (1.10)
corresponds to a neuron being in the dark for quite a long period of time (i.e. all the ChR2
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channels are in the dark adapted close state c). From y0, we then want to reach in minimal
time (denoted tf ) the manifold

Ms := {y ∈ Rn+2|y1 = Vs}.

As in Section 1.1.2 we define H : Rn+2 × Rn+2 × R− × U → R the Hamiltonian of the
system for (y, p, p0, u) ∈ Rn+2 × Rn+2 × R− × U by

H(y, p, p0, u) := 〈p, f̃0(y)〉+ u〈p, f1(y)〉+ p0. (1.16)

This control problem falls into the framework of Section 1.1.2. If there is no singular
extremal, the optimal control is bang-bang and is given by the sign of the switching func-
tion. Let p = (px, po, pd) : R+ → Rn+2 be the adjoint vector of the Pontryagin Maximum
Principle. The switching function reads, for t ∈ [0, tf ],

ϕ(t) := (1− o(t)− d(t))po(t) or also (1− yn+1(t)− yn+2(t))pn+1(t).

In the absence of singular extremals, if we write u∗ : [0, tf ] → U the optimal control,
then

u∗(t) = umax1ϕ(t)>0, ∀t ∈ [0, tf ].

The ChR2 4-states model

We define here the same quantities for the 4-states model. Let z0 = (xeq, 0, 0, 0) ∈ Rn+3

be our starting point. From z0, we then want to reach in minimal time (denoted tf ) the
manifold

Ms := {z ∈ Rn+3|y1 = Vs}.

The Hamiltonian H : Rn+3 × Rn+3 × R− × U → R is defined for (z, q, q0, u) ∈ Rn+3 ×
Rn+3 × R− × U by

H(y, q, q0, u) := 〈q, f̂0(z)〉+ u〈q, f2(z)〉+ q0. (1.17)

Let q : R+ → Rn+2 be the adjoint vector of the Pontryagin Maximum Principle. The
switching function writes, for t ∈ [0, tf ],

ψ(t) := ε1(1− o1(t)− o2(t)− c2(t))qo1(t) + ε2c2(t)qo2(t)− ε2c2(t)qc2(t).

Singular extremals correspond to vanishing switching functions. We will treat the two
ChR2 models in a different way. Indeed, the 3-states model is theoretically tractable and
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is the object of the following section. The 4-states will be investigated numerically.

1.2.2 The Goh transformation for the ChR2 3-states model

We state and prove here our main reduction result regarding the existence of optimal
singular controls for the ChR2-3-states control problem.

Theorem 1.2.1. The existence of optimal singular extremals in the spiking problem in
minimal time for the control system (1.12) is equivalent to the existence of optimal singular
extremals in the same problem but for the reduced system on Rn

ẋ = f0(x) + of̃1(x), (1.18)

where o is the control variable and f̃1(x) = 1
C gChR2(VChR2 − x1)e1.

This notion of equivalence is to be understood in the sense of the necessary conditions
(1.8) of the Pontryagin maximum principle, for the existence of singular extremals. It
means that the necessary conditions (1.8) for the original control system (1.12) are satis-
fied if and only if the necessary conditions for the reduced control system (1.18) are also
satisfied. The proof of Theorem 1.2.1 is based on Lemma 1.2.1 below and is given further
in this section.

Every nonlinear control system of the form ẋ = f(x, u) can be interpreted as an affine
one by making the transformation u̇ = v and considering the variable v as the new control
and the variable (x, u) as the new state variable. The inverse transformation, called the
Goh transformation, is a great tool for the investigation of singular extremals and will
reveal itself fundamental here to show the absence of optimal singular trajectories in the
models we will consider later.

Notations. To every couple of points y := (x, o, d) ∈ Rn+2 and p := (px, po, pd) ∈ Rn+2 we
associate a couple of points of Rn+1 defined by ỹ := (x, d) and p̃ := (px, pd). Moreover, we
write the corresponding reduced Hamiltonian H̃ defined for (ỹ, p̃, p0) ∈ Rn+1 × Rn+1 × R−
and o ∈ R by H̃(ỹ, p̃, p0, o) := 〈p̃, f̄0(ỹ)〉 + o〈p̃, f̃1(ỹ)〉 + p0, where the vector fields f̄0

and f̃1 are defined, for all ỹ = (x, d) ∈ Rn+1, by f̄0(ỹ) = (f0(x),−Krd) and f̃1(ỹ) :=

gChR2(VChR2 − ỹ1)∂1 +Kd∂n+1 .

The following lemma is the first step to reduce the dimension of the system that has
to be considered to investigate the existence of singular extremals.

Lemma 1.2.1. (y, p) is the projection, on the space of continuous functions from R+ to
Rn+2 × Rn+2, of a solution (y, p, u) of

ẏ(t) =
∂H
∂p

(y(t), p(t), p0, u(t)), ṗ(t) = −∂H
∂y

(y(t), p(t), p0, u(t)), 〈p(t), f1(y(t))〉 = 0.

(1.19)
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if and only if po ≡ 0, ȯ = (1− o− d)u−Kdo and (ỹ, p̃) is a solution of

˙̃y(t) =
∂H̃
∂p̃

(ỹ(t), p̃(t), p0, o(t)), ˙̃p(t) = −∂H̃
∂ỹ

(ỹ(t), p̃(t), p0, o(t)), 〈p̃(t), f̃1(ỹ(t))〉 = 0.

(1.20)

This lemma shows that singular extremals of (1.12) are directly related to singular
extremals of the following, and still affine control system:{

ẋ(t) = f0(x(t)) + gChR2o(t)(VChR2 − x1(t))e1,

ḋ(t) = Kdo(t)−Krd(t),
(1.21)

where the control is now the variable o.
In the models that we are going to study in the sequel, we will see that this transfor-

mation allows to conclude to the absence of optimal singular extremals.

Proof. of Lemma 1.2.1. The proof comes from the general result of Section 1.9.4 of [BK93]
and the shape of our particular model. If we keep on writing y = (x, o, d), system (1.19)
gives on an interval I of [0, tf ]:

ẋ = f0(x) + gChR2o(VChR2 − x1)e1,

ḋ = Kdo−Krd,

ȯ = (1− o− d)u−Kdo,

ṗx = −J tf0
px + gChR2opx1e1,

ṗd = upo +Krpd,

ṗo = −gChR2(VChR2 − x1)px1 −Kdpd + (u+Kd)po,

0 = (1− o− d)po,

(1.22)

where J tf0
is the transpose of the Jacobian matrix of f̃0. For continuity reasons, we get

that either po ≡ 0 or (1−o−d) ≡ 0 on I. If (1−o−d) ≡ 0 then −Krd = ȯ+ ḋ ≡ 0 so that
d ≡ 0 and o ≡ 1. But d ≡ 0⇒ ḋ ≡ 0 so that ȯ ≡ 0 which is incompatible with o ≡ 1, since
ȯ = −Kdo. We conclude that, necessarily, po ≡ 0 on I. This equality implies that ṗo ≡ 0

and from the penultimate equation of (1.22) we get −gChR2(VChR2 − x1)px1 −Kdpd ≡ 0

which also writes 〈p̃, f̃1(ỹ)〉 ≡ 0. Now the first two equations of (1.22) correspond to

˙̃y(t) =
∂H̃
∂p̃

(ỹ(t), p̃(t), p0, o(t)),

and the 4th and 5th equations correspond to

˙̃p(t) = −∂H̃
∂ỹ

(ỹ(t), p̃(t), p0, o(t)).
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We just showed that (1.19) ⇒ (po ≡ 0 and (1.20)).

Suppose now that po ≡ 0 on I and that (1.20) is satisfied and let us show that (1.19) is
satisfied. The first two equations of (1.20) give the 1st, 2nd, 4th and 5th equations of (1.19).
Moreover, po ≡ 0 implies that the last equation of (1.19) is satisfied and that ṗo ≡ 0.
Taking into account that 0 ≡ 〈p̃, f̃1(ỹ)〉 = −gChR2(VChR2 − x1)px1 −Kdpd, we obtain the
6th equation of (1.19). Finally, the 3rd equation of (1.19) is satisfied as a hypothesis, which
ends the proof.

Proof of Theorem 1.2.1. The result of Lemma 1.2.1 is the first step of the proof. To finish
up with it, consider the spiking problem in minimum time for the reduced system (1.21) :{

ẋ(t) = f0(x(t)) + gChR2o(t)(VChR2 − x1(t))e1,

ḋ(t) = Kdo(t)−Krd(t),

Remark that the dynamics of the variables x and d are completely decoupled. Fur-
thermore, the targeted manifold is only defined by the location of variable x1. These two
remarks imply that an optimal control for system (1.21) has to be optimal for the even
more reduced control system :

ẋ(t) = f0(x(t)) + gChR2o(t)(VChR2 − x1(t))e1.

1.2.3 Lie bracket configurations for the ChR2 4-states model

In the case of the ChR2 4-states model, we will observe numerically that the optimal
control is bang-bang for various values of the maximum intensity umax. Here we give the
expression of the first Lie brackets, that we first define. Lie brackets are the appropriate
tool to investigate singular extremals. We give two equivalent definitions, depending on
the notation used for the vector fields.

Let k ∈ N∗ and g, h : Rk → Rk two vector fields of class C1. Let (g1, . . . , gk) and
(h1, . . . , hk) their coordinate mappings. The Lie bracket [g, h] : Rk → Rk of g and h is the
vector field defined for x ∈ Rk by

[g, h](x) = Jh(x)g(x)− Jg(x)h(x),

or equivalently by

[g, h](x) =

k∑
i=1

k∑
j=1

(
gj(x)∂jhi(x)− hj(x)∂jgi(x)

)
∂i,
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where Jh and Jg are the Jacobian matrices of h and g. The expression Jh(x)g(x) has to
be understood as the product of the k × k-matrix by the k-vector. Further in this paper
we will use the convenient notation

adhg := [h, g]

that allows to reduce expressions of multiple Lie brackets. Finally, one important relation
for the computation of singular controls is the following. Let (xu, p) be an extremal pair of
the Pontryagin maximum principle associated to a control u. Then for any smooth vector
field h : Rk → Rk and all t ∈ [0, tf ],

d

dt
〈p(t), h(xu(t))〉 = 〈p(t), [F0, h](xu(t))〉+ u(t)〈p(t), [F1, h](xu(t))〉. (1.23)

In most cases, a singular optimal control ū would have the expression

ū(t) =
〈q(t), ad2

f̂0
f2(z(t))〉

〈q(t), ad2
f2
f̂0(z(t))〉

.

Indeed, if I is an interval of [0, tf ] on with the switching function ψ vanishes, then for
t ∈ I,

ψ(t) = 0,

ψ̇(t) = 〈q(t), [f̂0, f2](z(t))〉 = 0,

ψ̈(t) = 〈q(t), ad2
f̂0
f2(z(t))〉 − ū(t)〈q(t), ad2

f2
f̂0(z(t))〉 = 0,

The expressions of [f̂0, f2] and ad2
f2
f̂0 are not too much complicated since theses brack-

ets have non zero components only on the directions z1, zn+1, zn+2 and zn+3 (independently
of n ∈ N∗), which we also write v, o1, o2 and c2. We will not give the expression of ad2

f̂0
f2

because it is too long and of small interest since we will treat the problem numerically. Let
us just mention that it has non zero components on all the directions of the state space
Rn+3.

[f̂0, f2](z) = −
(
ε1(1− o1 − o2 − c2) + ε2ρc2

) 1

C
gChR2(VChR2 − v)∂v

+
(
ε1(1− o1 − o2 − c2)(e12 +Kd1) + ε1Kd1o1 + (ε1Kr − ε2e21)c2

)
∂o1

+
(
− ε1(1− o1 − o2 − c2)e12 + ε2Kd2o2 + ε2(e21 +Kd2 −Kr)c2

)
∂o2

− ε2Kd2(o2 + c2)∂c2 ,
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and

ad2
f2
f̂0(z) = −

(
(ε1)2(1− o1 − o2 − c2) + (ε2)2ρc2

) 1

C
gChR2(VChR2 − v)∂v

− ε1

(
ε1(1− o1 − o2 − c2)(e12 +Kd1) + ε1Kd1o1 − (ε1Kr − ε2e21)c2

)
∂o1

−
(

(ε1)2(1− o1 − o2 − c2)e12 + (ε2)2Kd2o2 + (ε2)2(−e21 +Kd2 −Kr)c2

)
∂o2

+ (ε2)2Kd2(o2 + c2)∂c2 .

1.3 Application to some neuron models with numerical re-
sults

In this section, we apply the reduction results of Section 1.2.2 to some widely used
models and support our theoretical results with numerical results. These theoretical results
regard the ChR2-3-states model and we also investigate numerically the associated ChR2-
4-states models. The numerical results are obtained by direct methods based on the ipopt
routine [WB06] to solve nonlinear optimization problems, and implemented with the ampl
language [FGK02]. For a survey on numerical methods in optimal control, see [Tré12]. The
numerical values used for the ChR2-3-states and 4-states models are those of Appendices
1.C.1 and 1.C.2. For each neuron model that we study, namely the FitzHugh-Nagumo
model, the Morris-Lecar model and the reduced and complete Hodgkin-Huxley models,
we implement the direct method for the ChR2-3-states and 4-states models and compare
them. We repeat the computation for several values of the the maximum control value in
order to try and detect possible singular optimal controls. Indeed, it would be possible
that a singular optimal control only appears above some threshold of the maximal control
value. Nevertheless, no model numerically displays such controls. We then compare the
neuron models between them in terms of their behavior with respect to optogenetic control.
Physiologically, Channelrhdopsin has a depolarizing effect on a neuron membrane so that
it is physiologically intuitive to expect that we need to switch on the light to obtain a
spike, and the more light we put in the system, the faster the spike will occur. We propose
to distinguish between two classes of models. The first class comprises neuron models that
display the intuitive physiological response to optogenetic stimulation and the second class
comprises neuron models that display an unexpected response.

1.3.1 The FitzHugh-Nagumo model

The FitzHugh-Nagumo model is not exactly a conductance-based model but a two-
dimensional simplification of the Hodgkin-Huxley model. This model takes his name from
the initial work of FitzHugh [Fit61] who suggested the system and Nagumo [NAY62] who
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gave the equivalent circuit. The idea was to find a simpler model that still featured the
mathematical properties of excitation and propagation.

The ChR2-3-states model

The ChR2-3-states controlled FitzHugh-Nagumo model is

(FHN)



v̇(t) = v(t)− 1

3
v3(t)− w(t) +

1

C
gChR2o(t)(VChR2 − v(t)),

ẇ(t) = c(v(t) + a− bw(t)),

ȯ(t) = u(t)(1− o(t)− d(t))−Kdo(t),

ḋ(t) = Kdo(t)−Krd(t),

where v is the membrane potential and w a conductance-like variable that provides a
negative feedback, and a, b and c are constants. In the original model, the numerical
values of these constants were a = 0.7, b = 0.8 and c = 0.08. The adjoint equations write

(FHNadj)



ṗv(t) = −pv(t)(1− v2(t)− 1

C
gChR2o(t))− cpw(t),

ṗw(t) = pv(t) + bcpw(t),

ṗo(t) = − 1

C
gChR2(VChR2 − v(t))pv(t) + (u(t) +Kd)po(t)−Kdpd(t),

ṗd(t) = u(t)po(t) +Krpd(t),

and the switching function is ϕ(t) = (1− o(t)− d(t))po(t). The following lemma gives the
optimal control for the minimal time control of the ChR2-controlled FitzHugh-Nagumo
model.

Proposition 1.3.1. The optimal control u∗ : R+ → U for the minimal time control of the
FitzHugh-Nagumo model is bang-bang and given by

u∗(t) = umax1po(t)>0, ∀t ∈ [0, tf ].

Furthermore, the optimal control begins with a bang arc of maximal value, i.e.

∃t1 ∈ [0, tf ], u∗(t) = umax,∀t ∈ [0, t1].

Proof. Let us show that there is no optimal singular extremals. The results for conductance-
based models given in section 1.2.2 are straightforwardly applicable to the FitzHugh-
Nagumo model and the reduced control system is the following
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(FHN ′)

 v̇(t) = v(t)− 1

3
v3(t)− w(t) +

1

C
gChR2u(t)(VChR2 − v(t))

ẇ(t) = c(v(t) + a− bw(t))

The adjoint equations for this system are

(FHN ′adj)

 ṗv(t) = −pv(t)(1− v2(t)− 1

C
gChR2u(t))− cpw(t)

ṗw(t) = pv(t) + bcpw(t)

The vector fields defining the affine system (FHN ′) are

f0(v, w) = (v − 1

3
v3 − w)∂v + c(v + a− bw)∂w

f1(v, w) =
1

C
gChR2(VChR2 − v)∂v

For the reduced system, the switching function is given by

φ(t) = 〈p(t), f1(v(t), w(t))〉 =
1

C
gChR2(VChR2 − v(t))pv(t).

Investigation of singular trajectories

Assume that there exists an open interval I along which the switching function vanishes.
Then for all t ∈ I,

〈p(t), f1(v(t), w(t))〉 = 0.

By continuity, this means that either v is constant and equals VChR2 on I or pv vanishes
on I. The constant case is not possible since it implies from the dynamical system (FHN)
that w would also be constant on I, but (VChR2, w) is not an equilibrium point of the
uncontrolled system, for any w ∈ R. Then, necessarily, pv vanishes on I. This implies
that ṗv also vanishes and from (FHNadj), pw vanishes on I. This is incompatible from the
Pontryagin maximum principle.

We showed that the reduced system does not present any singular extremals and from
Theorem 1.2.1, the original system (FHN) neither. The optimal control is then bang-
bang and is given by the sign of the switching function of the original system. Taking into
account that for all t ∈ [0, tf ], 1− o(t)− d(t) > 0 we get

u∗(t) = umax1po(t)>0, ∀t ∈ [0, tf ].

Finally, to show that the first arc correspond to a maximal control, suppose that u∗(0) =

0. Then system (FHN) stays in its resting state, contradicting time optimality.
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We implement the direct method for this problem with a targeted action potential
Vs := 1.5mV and a control evolving in [0, 0.1]. The numerical values of the constants
(a, b, c) are set to the usual values (0.7, 0.8, 0.08). Since this model is not physiological,
we chose the values for the constants C, gChR2, VChR2 and umax quite arbitrarily, with
the constraint that the behavior of the control system should not stray away from the
uncontrolled system. When the control is off, the system stays at rest, as seen on Figure
1.5.

Figure 1.5 – In the absence of stimulation, the neuron stays in its resting state.

We represent on Figure 1.6 the evolution of the optimal trajectory of the membrane
potential and the optimal control. As predicted, the optimal control is bang-bang and
starts with a maximal arc. It has a unique switching time which means that there is no
need to keep the light on all the way to the spike, an interesting fact for the controller.
This optimal control can be qualified as physiological, the light must stay on until a point
where the system is "launched" toward the spike and no further illumination is required.

Figure 1.6 – Optimal trajectory and control for the FHN-ChR2-3-states model with umax =
0.5.
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The ChR2-4-states model

The ChR2-4-states model gives the same shape of optimal trajectory and control. We
can compare the two ChR2 models and observe the results for different values of umax on
Figure 1.7. The ChR2-4-states model outperforms the ChR2-3-states on two scales. It
leads to a faster spike while requiring less time in the light to fire. This phenomenon seems
to be independent of the maximal value of the control. The gain is of around 6% in the
four cases.
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a)

b)

c)

d)

Figure 1.7 – Optimal trajectory and bang-bang optimal control for the FHN-ChR2-3-states
and FHN-ChR2-4-states models with umax = a) 0.5, b) 1, c) 10, d ) 100.
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1.3.2 The Morris-Lecar model

The Morris-Lecar model is a reduced conductance-based model taking into account a
Ca2+ current for excitation and a K+ current for recovery ([LM81]). It comes from the
experimental study of the oscillatory behavior of the membrane potential in the barnacle
muscle. The original model is of dimension 3, but it is conveniently and commonly reduced
to a two-dimensional model by invoking the fast dynamics of the Ca2+ conductance in front
of the other variables. This conductance is then replaced by its steady-state.

The ChR2-3-states model

The ChR2-3-states controlled Morris-Lecar model is given by

(ML)



ν̇(t) =
1

C

(
gKω(t)(VK − ν(t)) + gCam∞(ν(t))(VCa − ν(t))

+ gChR2o(t)(VChR2 − ν(t)) + gL(VL − ν(t))
)
,

ω̇(t) = α(ν(t))(1− ω(t))− β(ν(t))ω(t),

ȯ(t) = u(t)(1− o(t)− d(t))−Kdo(t),

ḋ(t) = Kdo(t)−Krd(t),

with

m∞(ν) =
1

2

(
1 + tanh

(
ν − V1

V2

))
,

α(ν) =
1

2
φ cosh

(
ν − V3

2V4

)(
1 + tanh

(
ν − V3

V4

))
,

β(ν) =
1

2
φ cosh

(
ν − V3

2V4

)(
1− tanh

(
ν − V3

V4

))
,

where ν is the membrane potential, ω is the probability of opening of a K+ channel and
m∞(ν) represent the steady state of the probability of opening of a Ca2+ channel. The
numerical constants of the model are given in Appendix 1.A. The adjoint equations read

(MLadj)



ṗν(t) =
1

C
pν(t)

(
gKω(t) + gCam∞(ν(t)) + gChR2o(t) + gL − gCam′∞(ν(t))(VCa − ν(t))

)
− pω(t)

(
α′(ν(t))(1− ω(t))− β′(ν(t))ω(t)

)
,

ṗω(t) = − 1

C
gK(VK − ν(t))pν(t) +

(
α(ν(t)) + β(ν(t))

)
pω(t),

ṗo(t) = − 1

C
gChR2(VChR2 − ν(t))pν(t) + (u(t) +Kd)po(t)−Kdpd(t),

ṗd(t) = u(t)po(t) +Krpd(t),
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and the switching function is again ϕ(t) = (1 − o(t) − d(t))po(t). Proposition 1.3.2 gives
the same conclusion as Proposition 1.3.1 for the ChR2-controlled Morris-Lecar model.

Proposition 1.3.2. The optimal control u∗ : R+ → U for the minimal time control of the
Morris-Lecar model is bang-bang and given by

u∗(t) = umax1po(t)>0, ∀t ∈ [0, tf ].

Furthermore, the optimal control begins with a bang arc of maximal value

∃t1 ∈ [0, tf ], u∗(t) = umax,∀t ∈ [0, t1].

Proof. We apply the result of Theorem 1.2.1 and study the existence of singular extremals
for the following reduced system

(ML′)


ν̇(t) =

1

C

(
gKω(t)(VK − ν(t)) + gCam∞(ν(t))(VCa − ν(t))

+ gChR2u(t)(VChR2 − ν(t)) + gL(VL − ν(t))
)
,

ω̇(t) = α(ν(t))(1− ω(t))− β(ν(t))ω(t),

The adjoint equations for this system are

(ML′adj)


ṗν(t) =

1

C
pν(t)

(
gKω(t) + gCam∞(ν(t)) + gChR2u(t) + gL − gCam′∞(ν(t))(VCa − ν(t))

)
− pω(t)

(
α′(ν(t))(1− ω(t))− β′(ν(t))ω(t)

)
,

ṗω(t) = − 1

C
gK(VK − ν(t))pν(t) + (α(ν(t)) + β(ν(t)))pω(t),

The vector fields defining the affine system (ML′) are

f0(ν, ω) =
1

C

(
gKω(VK − ν) + gCam∞(ν)(VCa − ν) + gL(VL − ν)

)
∂ν

+
(
α(ν)(1− ω)− β(ν)ω

)
∂ω

f1(ν, ω) =
1

C
gChR2(VChR2 − v)∂ν

For the reduced system, the switching function is given by

φ(t) = 〈p(t), f1(ν(t), ω(t))〉 =
1

C
gChR2(VChR2 − ν(t))pν(t).
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Investigation of singular trajectories

Assume that there exists an open interval I along which the switching function vanishes.
Then for all t ∈ I,

〈p(t), f1(v(t), w(t))〉 = 0.

As for the FitzHugh-Nagumo model, there is no ω ∈ [0, 1] such that (VChR2, ω) is an
equilibrium point of the uncontrolled Morris-Lecar model, so that necessarily pω vanishes
on I. From (ML′) we deduce that for all t ∈ I,

pω(t)
(
α′(ν(t))(1− ω(t))− β′(ν(t))ω(t)

)
= 0,

and since p cannot vanish on I then

α′(ν(t))(1− ω(t))− β′(ν(t))ω(t) = 0.

This means that the singular extremal is localized in the domain A of R2 given by

A := {(ν, ω) ∈ R2|α′(ν)(1− ω)− β′(ν)ω = 0}.

We can rewrite it in a more convenient way

A =

{
(ν, ω) ∈ R2|ω =

α′(ν)

α′(ν) + β′(ν)
and ν 6= V3

}
,

where V3 is the numerical constant appearing in the definition of the functions α and β.
Domain A is represented on Figure 1.8 below and it is easy to see that any trajectory of
the dynamical system (ML′) has an empty intersection with A because for all (ν, ω) ∈ A,
ω ∈] − ∞, 0[∪]1,+∞[, whereas the second component of the trajectory always stays in
[0, 1].

The end of the proof is similar to the proof of Proposition 1.3.1.

Remark 1.3.1. Let us briefly show how the investigation of singular trajectories for the
complete system before reduction is much more difficult. To do so, consider the controlled
Morris-Lecar model (ML) with its system of adjoint equations (MLadj) and the vector
fields defined for x = (ν, ω, o, d) ∈ R4 by

F0(x) :=
1

C

(
gKω(VK − ν) + gCam∞(ν)(VCa − ν) + ogChR2(VChR2 − ν) + gL(VL − ν)

)
∂ν(

α(ν)(1− ω)− β(ν)ω
)
∂ω −Kdo∂o + (Kdo−Krd)∂d,

and
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Figure 1.8 – Representation of the manifold in which a singular trajectory must evolve.

F1(x) = (1− o− d)∂o.

Proposition 1.3.3. Let (x, p, u) be a singular extremal of (ML) − (MLadj) on an open
interval I of [0, tf ]. Then, without any further assumption,

〈p(t), adkF0
F1(x(t))〉 ≡ 0, 〈p(t), adkF1

F0(x(t))〉 ≡ 0, 〈p(t), [F1, ad2
F0
F1](x(t))〉 ≡ 0,

on I for all k ∈ {1, 2, 3}.

Keeping in mind that we already proved that there is no optimal singular control, if we
consider the system before reduction, Proposition 1.3.3 means that we need to consider the
following system of equations to rule out optimal singular extremals

〈p, [F0, ad3
F1
F0]〉+ u〈p, ad4

F1
F0〉 ≡ 0,

〈p, [F0, [F1, ad2
F0
F1]]〉+ u〈p, ad2

F1
(ad2

F0
F1)〉 ≡ 0,

〈p, ad4
F0
F1〉+ u〈p, [F1, ad3

F0
F1]〉 ≡ 0,

on I.

Proof of Proposition 1.3.3. Let t ∈ I. From the equalities 〈p(t), F1(x(t))〉 = 0 and
〈p(t), [F0, F1](x(t))〉 = 0 we infer that po(t) = 0,

1

C
gChR2(VChR2 − ν(t))pv(t) +Kdpd(t) = 0.

(1.24)

It can also be proved that ad3
F1
F0 = −[F0, F1]. The rest of the equalities are all given

by (1.24).
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For this model, we implemented the direct method with the numerical values of Appen-
dices 1.A and 1.C.1. The targeted action potential has been fixed to 30mV. Direct methods
consist in transforming the control problem into a nonlinear optimization problem of the
form

minF (z)

under the algebraic constraints

G(z) = 0,

H(z) = 0,

where F is the cost functional of the control problem (here the final time), the equality
constraints come from the discretization of the dynamical system, the inequality constraints
are used to specify the domain of the variables, and z is the vector of the discretized
variables.

The optimal control for the ChR2-3-states model is bang-bang and begins with a maxi-
mal arc. For the numerical values of Appendices 1.A and 1.C.1, it displays three switching
times. We represent on Figure 1.9 the optimal trajectory of the membrane potential and
the optimal control, for the physiological value of the maximal value control, computed
in Appendix 1.C.1, and also the trajectory obtained under constant maximal stimulation,
just to observe that the optimal control obtained is indeed better than the constant max-
imal stimulation. The difference is very small, of the order of a millisecond, nevertheless,
the counter-intuitive stimulation still outperforms the constant maximal stimulation. In
order to show that the difference between the counter-intuitive optimal stimulation and
the constant maximal stimulation can be huge, we implement the direct method on a
system with different numerical values for the constants of the Morris-Lecar model (the
Type I neuron of [SHL04, Table 1], see Table 1.A.2, in Appendix 1.C.1 ), and values for
the ChR2-3-states model remaining unchanged, except for VChR2 = 0.1mV. The result is
striking, the constant stimulation even fails to trigger a spike while the stimulation with
three switching times makes the neuron fire (see Figure 1.10). It is important to note that
the presence of three switching times is not an intrinsic characteristic of the Morris-Lecar
model itself. Indeed, we can find optimal controls with only two switches if we change
the value for the equilibrium potential of the ChR2, keeping all the other constants of the
model unchanged (Figure 1.11).
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Figure 1.9 – Optimal trajectory and bang-bang optimal control for the ML-ChR2-3-states
model.
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Figure 1.10 – Optimal trajectory and bang-bang optimal control for the ML-ChR2-3-states
model with numerical values of [SHL04, Table 1]. The constant stimulation fails to trigger
a spike.

Figure 1.11 – Optimal trajectory and bang-bang optimal control for the ML-ChR2-3-states
model with numerical values of Appendix 1.A and V ChR2 = 20mV. The optimal control
has only two switches.

The ChR2-4-states model

The shape of the optimal trajectory and control of the ChR2-4-states model correspond
to the one of the ChR2-3-states model. Nevertheless, for small values of umax, including
the physiological value computed in Appendix 1.C.1, the ChR2-3-states model outperforms
the ChR2-4-states model whereas for larger values of umax, the opposite happens (Figure
1.12). The threshold where this phenomenon happens is around the value umax = 0.1.
Furthermore, the difference grows larger when umax increases. This is an unusual behavior
that suggests that the Morris-Lecar is less robust than the FitzHugh-Nagumo model, or
the Hodgkin-Huxely models, as we are going to see.
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a)

b)

c)

d)

Figure 1.12 – Optimal trajectory and bang-bang optimal control for the ML-ChR2-3-states
and ML-ChR2-4-states models with umax = a) 0.028, b) 0.1, c) 1, d) 10.
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1.3.3 The reduced Hodgkin-Huxley model

Similarly to the reduction of the initial Morris-Lecar model, there exists a popular
reduction of the Hodgkin-Huxley model to a 2-dimensional conductance-based model. This
reduction is based on the observation that, on the one hand, the variable m is much faster
than the other two gating variables n and h, and on the other hand, the variable h is
almost a linear function of the variable n (h ' a+ bn). These observations lead to a new
system of equations derived from (HH) by setting the variable m in its stationary state
m(t) = m∞(t) and taking the variable h as above.

(HH2D)


C

dV

dt
= gKn

4(t)(VK − V (t)) + gNam
3
∞(V )(a+ bn(t))(VNa − V (t))

+ gL(VL − V (t)),

dn

dt
= αn(V (t))(1− n(t))− βn(V (t))n(t),

with m∞(v) = αm(v)
αm(v)+βm(v) . It is important to note that, although the time constants

of the ion channels have been mathematically investigated (see for example [RW08]), the
approximation of the variable h is purely based on observation, and not on a rigorous
mathematical reduction. Nevertheless, if the linear approximation seems questionable
when the membrane potential is held fixed (Figure 1.13), it becomes quite remarkable
when the whole system (HH) is considered as in Figure 1.14 for a periodic behavior and
Figure 1.15 for a transitory behavior, with different initial membrane potentials V0. The
different behaviors are obtained by tuning the external current Iext that is applied.
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Figure 1.13 – Linear approximation of the variable h when the membrane potential is held
fixed at −30, 0, 30 and 60mV.
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Figure 1.14 – Linear approximation of the variable h for a periodic behavior of system
(HH) and initial membrane potential of −30, 0, 30 and 60mV.
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Figure 1.15 – Linear approximation of the variable h for a transitory behavior of system
(HH) and initial membrane potential of −30, 0, 30 and 60mV.
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The ChR2-3-states model

In terms of singular controls, this model behaves similarly to the Morris-Lecar model.
There is no singular extremal for the same reasons, and the optimal control is bang-bang
with the same expression (the proof is exactly the same). The direct method is implemented
with the numerical values of Appendices 1.B and 1.C.1, the targeted action potential has
been fixed to 90mV. The optimal control is physiological here and has in fact no switching
time, the light has to be on all the way to the spike (see Figure 1.16).

Figure 1.16 – Optimal trajectory and bang-bang optimal control for the HH2D-ChR2-3-
states model.

The ChR2-4-states model

The ChR2-4-states model is interesting because it shows that the Hodgkin-Huxley be-
haves in the opposite way of the Morris-Lecar model. Indeed, the ChR2-4-states model
slightly outperforms the ChR2-3-states model, and requires less light, for small values
of umax, including the physiological value of umax = 0.028. Furthermore, when umax in-
creases, the 3-states and 4-states models exactly match, both in terms of optimal trajectory
and optimal control (Figure 1.17). This means that the ChR2-3-states model is a good
approximation of the ChR2-4-states model, in terms of optimal control, for the reduced
Hodgkin-Huxley. This is a nice property since the ChR2-3-states is theoretically tractable
in terms of singular controls.



85

a)

b)

c)

d)

Figure 1.17 – Optimal trajectory and bang-bang optimal control for the HH2D-ChR2-3-
states and HH2D-ChR2-4-states models with umax = a) 0.028, b) 0.1, c) 1, d) 10.
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1.3.4 The complete Hodgkin-Huxley model

The ChR2-3-states model

The complete Hodgkin-Huxley model is more difficult to analyze mathematically, and
optimal singular controls cannot be excluded a priori as for the previous models. Never-
theless, singular controls do not appear in our numerical simulations. Figure 1.18 shows
the optimal trajectory and control for numerical values taken in Appendices 1.B and 1.C.1.

Figure 1.18 – Optimal trajectory and bang-bang optimal control for the HH-ChR2-3-states
model.

The ChR2-4-states model

We observe the same phenomenon than for the reduced Hodgkin-Huxley model, that is,
for small values of umax, the ChR2-4-states model slightly outperforms the ChR2-3-states
model and when umax increases, both models match (Figure 1.19). This constitutes a
new argument in favor of the reduced Hodgkin-Huxley model since it captures the features
of the complete model in terms of optimal control. Finally, the fact that both Hodgkin-
Huxley models have almost the same behavior for the two ChR2 models means that they
can be qualified as robust with regards to the mathematical modeling of ChR2.
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a)

b)

c)

d)

Figure 1.19 – Optimal trajectory and bang-bang optimal control for the HH-ChR2-3-states
and HH-ChR2-4-states models with umax = a) 0.028, b) 0.1, c) 1, d) 10.
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1.3.5 Conclusions on the numerical results

We begin with comments on the two versions of the ChR2 models for each neuron model.
For every neuron model that we numerically treat, the ChR2-3-states and the ChR2-4-
states versions behave qualitatively the same. We observe no optimal singular controls
and the shapes of optimal controls and optimal trajectories are similar. Nevertheless,
we can note some distinctions between the neuron models. For the FitzHugh-Nagumo
model, the ChR2-4-states version always outperforms the ChR2-3-states version. This
is also the case for the two Hodgkin-Huxley models with the important difference that,
when the control maximal value increases, the optimal trajectory and optimal control
quantitatively match. The Hodgkin-Huxley models are thus very robust with respect
to the ChR2 modeling. The Morris-Lecar model displays an unusual behavior when we
compare the ChR2-3-states and the ChR2-4-states versions. Indeed, for low values of the
control maximal value, including the physiological value computed in Appendix 1.C.1, the
ChR2-3-states version outperforms the ChR2-4-states version and the opposite happens
when the control maximal value increases.

As announced at the beginning of Section 1.3, the numerical results invite to distinguish
between two main behavior of neuron models with respect to optogenetic control. Most
of the models, that is all the models except the Morris-Lecar, behave as physiologically
expected. The optimal control is bang-bang, begins with a maximal arc, and has at most
one switch. The Morris-Lecar model has more than one switch. This means that it is more
efficient to switch on and off the light several times than just keep the light on almost all the
way up to the spike. That is why we qualify this model as nonphysiological. Moreover, by
only changing the value of the ChR2 equilibrium potential (VChR2) we can observe a change
of the number of switches. Finally, the behavior of the Morris-Lecar model emphasizes the
critical importance of optimal control since it allows to find a control that triggers a spike
when the expected physiological stimulation (with at most one switch) fails to trigger a
spike.
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Appendix 1.A Numerical constants for the Morris-Lecar model

The numerical values of the several constants and their physiological meaning are taken
from [DG13] and gathered in Table 1.A.1.

Table 1.A.1 – Meaning and numerical values of the constants appearing in the Morris-Lecar
model

V1 = −1.2 mV Fitting parameter
V2 = 18 mV Fitting parameter
V3 = 2 mV Fitting parameter
V4 = 30 mV Fitting parameter
gCa = 4.4 µS/cm2 Maximal conductance of Ca2+ channels
gK = 8 µS/cm2 Maximal conductance of K+ channels
gL = 2 µS/cm2 Conductance associated with the leakage current
VCa = 120 mV Equilibrium potential of Ca2+ ions
VK = −84 mV Equilibrium potential of K+ ions
VL = −60 mV Equilibrium potential for the leak current
C = 20 µF/cm2 Membrane capacitance
φ = 0.04 ms−1 Fitting parameter
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Table 1.A.2 gathers the numerical values for Figure 1.10.

Table 1.A.2 – Meaning and numerical values of the constants, taking from [SHL04], ap-
pearing in the Morris-Lecar model

V1 = −0.01 mV Fitting parameter
V2 = 0.15 mV Fitting parameter
V3 = 0.1 mV Fitting parameter
V4 = 0.145 mV Fitting parameter
gCa = 1.0 µS/cm2 Maximal conductance of Ca2+ channels
gK = 2.0 µS/cm2 Maximal conductance of K+ channels
gL = 0.5 µS/cm2 Conductance associated with the leakage current
VCa = 1.0 mV Equilibrium potential of Ca2+ ions
VK = −0.7 mV Equilibrium potential of K+ ions
VL = −0.5 mV Equilibrium potential for the leak current
C = 1.0 µF/cm2 Membrane capacitance
φ = 0.333 ms−1 Fitting parameter

Appendix 1.B Numerical constants for the Hodgkin-Huxley
model

αn(V ) =
0.1− 0.01V

e1−0.1V − 1
, βn(V ) = 0.125e−

V
80 ,

αm(V ) =
2.5− 0.1V

e2.5−0.1V − 1
, βm(V ) = 4e−

V
18 ,

αh(V ) = 0.07e−
V
20 , βh(V ) =

1

e3−0.1V + 1
.

The following table gathers the numerical values of the Hodgkin-Huxley model, as given
in the original paper [HH52].

Table 1.B.1 – Meaning and numerical values of the constants appearing in the Hodgkin-
Huxley model

ḡK = 36 µS/cm2 Maximal conductance of K+ channels
ḡNa = 120 µS/cm2 Maximal conductance of Na2+ channels
gL = 0.3 µS/cm2 Conductance associated with the leakage current
ENa = 115 mV Equilibrium potential of Na2+ ions
EK = −12 mV Equilibrium potential of K+ ions
EL = −10.6 mV Equilibrium potential for the leak current
C = 0.9 µF/cm2 Membrane capacitance

The equilibrium potential EL of the leakage current is usually set so that the equilibrium
value of the (HH) system is such that V = 0.
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Appendix 1.C Numerical constants for the ChR2 models

1.C.1 The 3-states model

The constants of the model are the rates Kd and Kr of the transitions between the open
state and the light adapted closed state and between the two closed states, the maximal
conductance gChR2 and the equilibrium potential VChR2. As specified in Section 1.2, we
assume that these rates are constants during the evolution in order to obtain an affine
control system. For the numerical computations, we took the values given in Table 1 of
[NGG+09]:

Kd = 0.2 ms−1, Kr = 0.021 ms−1.

The maximal conductance is given by the formula gChR2 = ρChR2g
∗
ChR2, with ρChR2

the density of channels and g∗ChR2 the conductance of a single channel. These values are
taken from [FAM12] to obtain

gChR2 = 0.65 mS · cm−2.

As mentioned right after in Appendix 1.B, the physiological equilibrium membrane
potential is mathematically shifted to equal 0. The equilibrium potential of the ChR2 that
is usually measured around 0 ([FAM12]) and very often taken as 0 ([FAM12],[NGG+09]).
The exact value 0 would raise a mathematical problem because since we shifted the value
of EL so that V = 0 corresponds to the equilibrium point of the uncontrolled system we
start from. Indeed, V = 0 would also correspond to an equilibrium point of the controlled
system, regardless of the value of the control. For this reason, we shifted the value of VChR2

and took it equal to 60mV. This value corresponds to the shift of the membrane resting
potential for the Morris-Lecar and Hodgkin-Huxley models.

Finally we can give an estimation of the physiological maximal value umax of the control.
Indeed, upon illumination, the transition rate between the dark adapted closed state and
the open state in [NGG+09] is εF where ε = 0.5 is the quantum efficiency and F is given
by the formula

F =
σretφ

wloss
,

where σret ' 10−8µm2 is the retinal cross section (cross section of the photon receptor
on the ChR2), φ = 6.2× 109 ph ·µm−2 · s−1 is the original flux of photons and wloss = 1.1

is a loss factor. As for the numerical value of Kd and Kr we took the one of Table 1 in
[NGG+09] for the value of φ. With these values we get

umax = 0.028 ms−1.
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1.C.2 The 4-states model

The numerical values for the ChR2-4-states model are taken from [FAM12] and gathered
in Table 1.C.1 below

Table 1.C.1 – Numerical values of the constants appearing in the ChR2-4-States model

Kd1 = 0.13 ms−1 Decay rate
Kd2 = 0.025 ms−1 Decay rate
e12 = 0.053 ms−1 Transition rate
e21 = 0.023 ms−1 Transition rate
Kr = 0.004 ms−1 Recovery rate
ε1 = 0.5 Quantum efficency for o1

ε2 = 0.1 Quantum efficency for o2

g1 = 50 fS o1 state conductance
ρ = 0.05 Relative conductance of the open states
ρ∗ChR2 = 130 µm−2 ChR2 density
gChR2 = 0.65 mS · cm−2 ChR2 maximal conductance



Chapter 2

Optimal control of
infinite-dimensional piecewise
deterministic Markov processes and
application to the control of neuronal
dynamics via Optogenetics

Introduction

Optogenetics is a recent and innovative technique which allows to induce or prevent
electric shocks in living tissues, by means of light stimulation. Successfully demonstrated
in mammalian neurons in 2005 ([BZB+05]), the technique relies on the genetic modification
of cells to make them express particular ionic channels, called rhodopsins, whose opening
and closing are directly triggered by light stimulation. One of these rhodopsins comes
from an unicellular flagellate algae, Chlamydomonas reinhardtii, and has been baptized
Channelrodhopsins-2 (ChR2). It is a cation channel that opens when illuminated with
blue light.

Since the field of Optogenetics is young, the mathematical modeling of the phenomenon
is quite scarce. Some models have been proposed, based on the study of the photocycles
initiated by the absorption of a photon. In 2009, Nikolic and al. [NGG+09] proposed two
models for the ChR2 that are able to reproduce the photocurrents generated by the light
stimulation of the channel. Those models are constituted of several states that can be either
conductive (the channel is open) or non-conductive (the channel is closed). Transitions
between those states are spontaneous, depend on the membrane potential or are triggered
by the absorption of a photon. For example, the four-states model of Nikolic and al.
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[NGG+09] has two open states (o1 and o2) and two closed states (c1 and c2). Its transitions
are represented on Figure 2.1

o1 o2

c2c1

Kd1

e12

e21

Kd2 ε2u(t)

Kr

ε1u(t)

light light

Figure 2.1 – Simplified four states ChR2 channel : ε1, ε2, e12, e21, Kd1, Kd2 and Kr are
positive constants.

The purpose of this chapter is to extend to infinite dimension the optimal control of
Piecewise Deterministic Markov Processes (PDMPs) and to define an infinite-dimensional
controlled Hodgkin-Huxley model, containing ChR2 channels, as an infinite-dimensional
controlled PDMP and prove existence of optimal ordinary controls. We now give the
definition of the model.

We consider an axon, described as a 1-dimensional cable and we set I = [0, 1] (the more
physical case I = [−l, l] with 2l > 0 the length of the axon is included here by a scaling
argument). Let DChR2 := {o1, o2, c1, c2}. Individually, a ChR2 features a stochastic evolu-
tion which can be properly described by a Markov Chain on the finite space constituted of
the different states that the ChR2 can occupy. In the four-states model above, two of the
transitions are triggered by light stimulation, in the form of a parameter u that can evolve
in time. Here u(t) is physically proportional to the intensity of the light with which the
protein is illuminated. For now, we will consider that when the control is on (i.e., when
the light is on), the entire axon is uniformly illuminated. Hence for all t ≥ 0, u(t) features
no spatial dependency.

The deterministic Hodgkin-Huxley model was introduced in [HH52]. A stochastic
infinite-dimensional model was studied in [Aus08], [BR11a], [GT12] and [RTW12]. The
Sodium (Na+) channels and Potassium (K+) channels are described by two pure jump
processes with state spaces D1 := {n0, n1, n2, n3, n4} and
D2 := {m0h1,m1h1,m2h1,m3h1,m0h0,m1h0,m2h0,m3h0}.

For a given scale N ∈ N∗, we consider that the axon is populated by Nhh = N − 1

channels of type Na+, K+ or ChR2, at positions 1
N (Z∩NI̊). In the sequel we will use the

notation IN := Z ∩ NI̊. We consider the Gelfand triple (V,H, V ∗) with V := H1
0 (I) and

H := L2(I). The process we study is defined as a controlled infinite-dimensional Piecewise
Deterministic Markov Process (PDMP). All constants and auxiliary functions in the next
definition will be defined further in the paper.



95

Definition 2.0.1. Stochastic controlled infinite-dimensional Hodgkin-Huxley-ChR2
model. Let N ∈ N∗. We call N th stochastic controlled infinite-dimensional Hodgkin-
Huxley-ChR2 model the controlled PDMP (v(t), d(t)) ∈ V × DN defined by the following
characteristics:

— A state space V ×DN with DN = DIN and D = D1 ∪D2 ∪DChR2.

— A control space U = [0, umax], umax > 0.

— A set of uncontrolled PDEs: For every d ∈ DN ,
v′(t) =

1

Cm
∆v(t) + fd(v(t)),

v(0) = v0 ∈ V, v0(x) ∈ [V−, V+] ∀x ∈ I,

v(t, 0) = v(t, 1) = 0, ∀t > 0,

(2.1)

with

D(∆) = V,

fd(v) :=
1

N

∑
i∈IN

(
gK1{di=n4}(VK − v(

i

N
)) + gNa1{di=m3h1}(VNa − v(

i

N
)) (2.2)

+ gChR2(1{di=o1} + ρ1{di=o2})(VChR2 − v(
i

N
)) + gL(VL − v(

i

N
))
)
δ i
N
,

with δz ∈ V ∗ the Dirac mass at z ∈ I.

— A controlled jump rate function λ : V × DN × U → R+ defined for all (v, d, u) ∈
H ×DN × U by

λd(v, u) =
∑
i∈IN

∑
x∈D

∑
y∈D,
y 6=x

σx,y(v(
i

N
), u)1{di=x}, (2.3)

with σx,y : R×U → R∗+ smooth functions for all (x, y) ∈ D2. See Table 2.1 in Section
2.4.1 for the expression of those functions.

— A controlled discrete transition measure Q : V ×DN × U → P(DN ) defined for all
(v, d, u) ∈ E ×DN × U and y ∈ D by

Q({di:y}|v, d) =
σdi,y(v( i

N ), u)1{di 6=y}

λd(v, u)
, (2.4)

where di:y is obtained from d by putting its ith component equal to y.

From a biological point of view, the optimal control problem consists in mimicking an
output signal that encodes a given biological behavior, while minimizing the intensity of
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the light applied to the neuron. For example, it can be a time-constant signal and in this
case, we want to change the resting potential of the neuron to study its role on its general
behavior. We can also think of pathological behaviors that would be fixed in this way.
The minimization of light intensity is crucial because the range of intensity experimentally
reachable is quite small and is always a matter of preoccupation for experimenters. These
considerations lead us to formulate the following mathematical optimal control problem.

Suppose we are given a reference signal Vref ∈ V . The control problem is then to find
α ∈ A that minimizes the following expected cost

Jz(α) = Eαz
[∫ T

0

(
κ||Xα

t (φ)− Vref ||2V + α(Xα
t )
)

dt

]
, z ∈ Υ, (2.5)

where A is the space of control strategies, Υ an auxiliary state space that comprises
V ×DN , Xα

· is the controlled PDMP and Xα
· (φ) its continuous component.

We will prove the following result.

Theorem 2.0.1. Under the assumptions of Section 2.1.1, there exists an optimal control
strategy α∗ ∈ A such that for all z ∈ Υ,

Jz(α
∗) = inf

α∈A
Eαz
[∫ T

0

(
κ||Xα

t (φ)− Vref ||2V + α(Xα
t )
)

dt

]
,

and the value function z → infα∈A Jz(α) is continuous on Υ.

Piecewise Deterministic Markov Processes constitute a large class of Markov processes
suited to describe a tremendous variety of phenomena such as the behavior of excitable
cells ([Aus08],[BR11a],[PTW12]), the evolution of stocks in financial markets ([BR09]) or
the congestion of communication networks ([DGR02]), among many others. PDMPs can
basically describe any non diffusive Markovian system. The general theory of PDMPs,
and the tools to study them, were introduced by Davis ([Dav84]) in 1984, at a time when
the theory of diffusion was already amply developed. Since then, they have been widely
investigated in terms of asymptotic behavior, control, limit theorems and CLT, numerical
methods, among others (see for instance [BdSD12], [CD08], [CD11], [CDMR12] and refer-
ences therein). PDMPs are jump processes coupled with a deterministic evolution between
the jumps. They are fully described by three local characteristics: the deterministic flow
φ, the jump rate λ, and the transition measure Q. In [Dav84], the temporal evolution of a
PDMP between jumps (i.e. the flow φ) is governed by an Ordinary Differential Equation
(ODE). For that matter, this kind of PDMPs will be referred to as finite-dimensional in
the sequel.

Optimal control of such processes have been introduced by Vermes ([Ver85]) in finite
dimension. In [Ver85], the class of piecewise open-loop controls is introduced as the proper
class to consider to obtain strongly Markovian processes. A Hamilton-Jabobi-Bellman
equation is formulated and necessary and sufficient conditions are given for the existence
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of optimal controls. The standard broader class of so-called relaxed controls is considered
and it plays a crucial role in getting the existence of optimal controls when no convexity as-
sumption is imposed. This class of controls has been studied, in the finite-dimensional case,
by Gamkrelidze ([Gam87]), Warga ([War62b] and [War62a]) and Young ([You69]). Relaxed
controls provide a compact class that is adequate for studying optimization problems. Still
in finite dimension, many control problems have been formulated and studied such as opti-
mal control ([FSS04]), optimal stopping ([cRDG00]) or controllability ([GM15]). In infinite
dimension, relaxed controls were introduced by Ahmed ([Ahm83], [AT78], [AX93]). They
were also studied by Papageorgiou in [Pap89] where the author shows the strong continuity
of relaxed trajectories with respect to the relaxed control. This continuity result will be of
great interest in this paper.

A formal infinite-dimensional PDMP was defined in [BR11a] for the first time, the
set of ODEs being replaced by a special set of Partial Differential Equations (PDE). The
extended generator and its domain are provided and the model is used to define a stochastic
spatial Hodgkin-Huxley model of neuron dynamics. The optimal control problem we have
in mind here regards those Hodgkin-Huxley type models. Seminal work on an uncontrolled
infinite-dimensional Hodgkin-Huxley model was conducted in [Aus08] where the trajectory
of the infinite-dimensional stochastic system is shown to converge to the deterministic one,
in probability. This type of model has then been studied in [RTW12] in terms of limit
theorems and in [GT12] in terms of averaging. The extension to infinite dimension heavily
relies on the fact that semilinear parabolic equations can be interpreted as ODEs in Hilbert
spaces.

To give a sense to Definition 2.0.1 and to Theorem 2.0.1, we will define a controlled
infinite-dimensional PDMP for which the control acts on the three local characteristics.
We consider controlled semilinear parabolic PDEs, jump rates λ and transition measures
Q depending on the control. This kind of PDE takes the form

ẋ(t) = Lx(t) + f(x(t), u(t)),

where L is the infinitesimal generator of a strongly continuous semigroup and f is some
function (possibly nonlinear). The optimal control problem we address is the finite-time
minimization of an unbounded expected cost functional along the trajectory of the form

min
u

E
∫ T

0
c(x(t), u(t))dt,

where x(·) is the continuous component of the PDMP, u(·) the control and T > 0 the finite
time horizon, the cost function c(·, ·) being potentially unbounded.

To address this optimal control problem, we use the fairly widespread approach that
consists in studying the imbedded discrete-time Markov chain composed of the times and
the locations of the jumps. Since the evolution between jumps is deterministic, there exists
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a one-to-one correspondence between the PDMP and a pure jump process that enable to
define the imbedded Markov chain. The discrete-time Markov chain belongs to the class
of Markov Decision Processes (MDPs). This kind of approach has been used in [FSS04]
and [BR10] (see also the book [HY08] for a self-contained presentation of MDPs). In these
articles, the authors apply dynamic programming to the MDP derived from a PDMP, to
prove the existence of optimal relaxed strategies. Some sufficient conditions are also given
to get non-relaxed, also called ordinary, optimal strategies. However, in both articles, the
PDMP is finite dimensional. To the best of our knowledge, the optimal control of infinite-
dimensional PDMPs has not yet been treated and this is one of our main objectives here,
along with its motivation, derived from the Optogenetics, to formulate and study infinite-
dimensional controlled neuron models.

The paper is structured as follows. In Section 2.1 we adapt the definition of a standard
infinite-dimensional PDMP given in [BR11a] in order to address control problems of such
processes. To obtain a strongly Markovian process, we enlarge the state space and we prove
an extension to controlled PDMPs of [BR11a, Theorem 4]. We also define in this section
the MDP associated to our controlled PDMP and that we study later on. In Section 2.2
we use the results of [Pap89] to define relaxed controlled PDMPs and relaxed MDPs in
infinite dimension. Section 2.3 gathers the main results of the paper. We show that the
optimal control problems of PDMPs and of MDPs are equivalent. We build up a general
framework in which the MDP is contracting. The value function is then shown to be
continuous and existence of optimal relaxed control strategies is proved. We finally give in
this section, some convexity assumptions under which an ordinary optimal control strategy
can be retrieved.

The final Section 2.4 is devoted to showing that the previous theoretical results apply
to the model of Optogenetics previously introduced. Several variants of the model are
discussed, the scope of the theoretical results being much larger than the model of Definition
2.0.1.

2.1 Theoretical framework for the control of infinite-dimensional
PDMPs

2.1.1 The enlarged process and assumptions

In the present section we define the infinite-dimensional controlled PDMPs that we
consider in this paper in a way that enables us to formulate control problems in which
the three characteristics of the PDMP depend on an additional variable that we call the
control parameter. In particular we introduce the enlarged process which enable us to
address optimization problems in the subsequent sections.

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual conditions.
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We consider a Gelfand triple (V ⊂ H ⊂ V ∗) such that H is a separable Hilbert space
and V a separable, reflexive Banach space continuously and densely embedded in H. The
pivot space H is identified with its dual H∗, V ∗ is the topological dual of V . H is then
continuously and densely embedded in V ∗. We will denote by || · ||V , || · ||H , and || · ||V ∗ the
norms on V , H, and V ∗, by (·, ·) the inner product in H and by 〈·, ·〉 the duality pairing
of (V, V ∗). Note that for v ∈ V and h ∈ H, 〈h, v〉 = (h, v).

Let D be a finite set, the state space of the discrete variable and Z a compact Polish
space, the control space. Let T > 0 be the finite time horizon. Intuitively a controlled
PDMP (vt, dt)t∈[0,T ] should be constructed on H × D from the space of ordinary control
rules defined as

A := {a : (0, T )→ U measurable},

where U , the action space, is a closed subset of Z. Elements of A are defined up to a set
in [0, T ] of Lebesgue measure 0. The control rules introduced above are called ordinary in
contrast with the relaxed ones that we will introduce and use in order to prove existence
of optimal strategies. When endowed with the coarsest σ-algebra such that

a→
∫ T

0
e−tw(t, a(t))dt

is measurable for all bounded and measurable functions w : R+ × U → R, the set of
control rules A becomes a Borel space (see [Yus80, Lemma 1]). This will be crucial for
the discrete-time control problem that we consider later. Conditionally to the continuous
component vt and the control a(t), the discrete component dt is a continuous-time Markov
chain given by a jump rate function λ : H × D × U → R+ and a transition measure
Q : H ×D × U → P(D).

Between two consecutive jumps of the discrete component, the continuous component
vt solves a controlled semilinear parabolic PDE{

v̇t = −Lvt + fd(vt, a(t)),

v0 = v, v ∈ V.
(2.6)

For (v, d, a) ∈ H × D × A we will denote by φa(v, d) the flow of (2.6). Let Tn, n ∈ N be
the jump times of the PDMP. Their distribution is then given by

P[Tn+1 − Tn|Tn, vTn , dTn ] = exp

(
−
∫ ∆t

0
λ
(
φat+s−Tn(vTn , dTn), dt, a(t+ s− Tn)

)
ds

)
,

(2.7)
for t ∈ [Tn;Tn+1). When a jump occurs, the distribution of the post jump state is given
by
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P[dt = d|dt− 6= dt] = Q({d}|dt, vt, a(t)). (2.8)

The triple (λ,Q, φ) fully describes the process and is referred to as the local character-
istics of the PDMP.

We will make the following assumptions on the local characteristics of the PDMP.

(H(λ)) For every d ∈ D, λd : H × Z → R+ is a function such that:

1. There exists Mλ, δ > 0 such that:

δ ≤ λd(x, z) ≤Mλ, ∀(x, z) ∈ H × Z.

2. z → λd(x, z) is continuous on Z, for all x ∈ H.

3. x → λd(x, z) is locally Lipschitz continuous, uniformly in Z, that is, for every
compact set K ⊂ H, there exists lλ(K) > 0 such that

|λd(x, z)− λd(y, z)| ≤ lλ(K)||x− y||H ∀(x, y, z) ∈ K2 × Z.

(H(Q)) The function Q : H × D × Z × B(D) → [0, 1] is a transition probability such
that: (x, z) → Q({p}|x, d, z) is continuous for all (d, p) ∈ D2 (weak continuity) and
Q({d}|x, d, z) = 0 for all (x, z) ∈ H × Z.

(H(L)) L : V → V ∗ is such that:

1. L is linear, monotone;

2. ||Lx||V ∗ ≤ c+ c1||x||V with c > 0 and c1 ≥ 0;

3. 〈Lx, x〉 ≥ c2||x||2V , c2 > 0;

4. −L generates a strongly continuous semigroup (S(t))t≥0 on H such that S(t) :

H → H is compact for every t > 0. We will denote by MS a bound, for the
operator norm, of the semigroup on [0, T ].

(H(f)) For every d ∈ D, fd : H × Z → H is a function such that:

1. x→ fd(x, z) is Lipschitz continuous, uniformly in Z, that is,

||fd(x, z)− fd(y, z)||H ≤ lf ||x− y||H ∀(x, z) ∈ H × Z, lf > 0.

2. (x, z)→ fd(x, z) is continuous from H ×Z to Hw, where Hw denotes the space
H endowed with the topology of weak convergence.

Let us make some comments on the assumptions above. Assumption (H(λ))1. will
ensure that the process is regular, i.e. the number of jumps of dt is almost surely finite
in every finite time interval. Assumption (H(λ))2. will enable us to construct relaxed
trajectories. Assumptions (H(λ))3. and (H(Q)) will be necessary to obtain the existence
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of optimal relaxed controls for the associated MDP. Assumptions (H(L))1.2.3. (H(f)) will
ensure the existence and uniqueness of the solution of (2.6). Note that all the results of
this paper are unchanged if assumption (H(f))1 is replaced by

(H(f))’ For every d ∈ D, fd : H × Z → H is a function such that:

1. x→ −fd(x, z) is continuous monotone, for all z ∈ Z.

2. ||fd(x, z)||H ≤ b1 + b2||x||H , b1 ≥ 0, b2 > 0, for all z ∈ Z.

In particular, assumption (H(f)) implies (H(f))’2. and we will use the constants b1 and
b2 further in this paper. Note that they can be chosen uniformly in D since it is a finite
set. To see this, note that z → fd(0, z) is a weakly continuous on the compact space Z and
thus weakly bounded. It is then strongly bounded by the Uniform Boundedness Principle.

Finally, assumptions (H(f))3. and (H(L))4. will respectively ensure the existence of
solutions for the relaxed counterpart of (2.6) and the strong continuity of theses solutions
with regards to the relaxed control. For that last matter, the compactness of Z is also
required. The following theorem is a reminder that the assumption on the semigroup does
not make the problem trivial since it implies that L is unbounded when H is infinite-
dimensional.

Theorem 2.1.1. (see [EN00, Theorem 4.29])

1. For a strongly continuous semigroup (T (t))t≥0 the following properties are equivalent

(a) (T (t))t≥0 is immediately compact.

(b) (T (t))t≥0 is immediately norm continuous, and its generator has compact resol-
vent.

2. Let X be a Banach space. A bounded operator A ∈ L(X) has compact resolvent if
and only if X is finite-dimensional.

We define Uad((0, T ), U) := {a ∈ L1((0, T ), Z)|a(t) ∈ U a.e.} ⊂ A the space of admis-
sible rules. Because of (H(L)) and (H(f)), for all a ∈ Uad((0, T ), U), (2.6) has a unique
solution belonging to L2((0, T ), V ) ∩ H1((0, T ), V ∗) and moreover, the solution belongs
to C([0, T ], H) (see [Pap89] for the construction of such a solution). We will make an
extensive use of the mild formulation of the solution of (2.6), given by

φat (v, d) = S(t)v +

∫ t

0
S(t− s)fd(φas(v, d), a(s))ds, (2.9)

with φa0(v, d) = v. One of the keys in the construction of a controlled PDMP in finite or
infinite dimension is to ensure that φa enjoys the flow property φat+s(v, d) = φas(φ

a
t (v, d), d)

for all (v, d, a) ∈ H × D × Uad((0, T ), U) and (t, s) ∈ R+. It is the flow property that
guarantees the Markov property for the process. Under the formulation (2.9), it is easy
to see that the solution φa cannot feature the flow property for any reasonable set of
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admissible rules. In particular, the jump process (dt, t ≥ 0) given by (2.7) and (2.8) is not
Markovian. Moreover in control problems, and especially in Markovian control problems,
we are generally looking for feedback controls which depend only on the current state
variable so that at any time, the controller needs only to observe the current state to be
able to take an action. Feedback controls would ensure the flow property. However they
impose a huge restriction on the class of admissible controls. Indeed, feedback controls
would be functions u : H×D → U and for the solution of (2.6) to be uniquely determined,
the function x → fd(x, u(x, d)) needs to be Lipschitz continuous. It would automatically
exclude discontinuous controls and therefore would not be adapted to control problems.
To avoid this issue, Vermes introduced piecewise open-loop controls (see [Ver85]): after
a jump of the discrete component, the controller observes the location of the jump, say
(v, d) ∈ H ×D and chooses a control rule a ∈ Uad((0, T ), U) to be applied until the next
jump. The time elapsed since the last jump must then be added to the state variable in
order to see a control rule as a feedback control. While Vermes [Ver85] and Davis [Dav93]
only add the last post jump location we also want to keep track of the time of the last jump
in order to define proper controls for the Markov Decision Processes that we introduce in
the next section, and to eventually obtain optimal feedback policies. According to these
remarks, we now enlarge the state space and define control strategies for the enlarged
process. We introduce first several sets that will be useful later on.

Definition 2.1.1. Let us define the following sets Θ(T, 2) := {(t, s) ∈ [0, T ]2 | t+ s ≤ T},
Ξ := H ×D ×Θ(T, 2)×H and Υ := H ×D × [0, T ].

Definition 2.1.2. Control strategies. Enlarged controlled PDMP. Survival function.

a) The set A of admissible control strategies is defined by

A := {α : Υ→ Uad([0, T ];U) measurable}.

b) On Ξ we define the enlarged controlled PDMP (Xα
t )t≥0 = (vt, dt, τt, ht, νt)t≥0 with strat-

egy α ∈ A as follows:

— (vt, dt)t≥0 is the original PDMP,

— τt is the time elapsed since the last jump at time t,

— ht is the time of the last jump before time t,

— νt is the post jump location right after the jump at time ht.

c) Let z := (v, d, h) ∈ Υ. For a ∈ Uad([0, T ];U) we will denote by χa. (z) the solution of

d

dt
χat (z) = −χat (z)λd(φat (z), a(t)), χa0(z) = 1,

and its immediate extension χα. (z) to A such that the process (Xα
t )t≥0 starting at
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(v, d, 0, h, v) ∈ Ξ, admits χα. as survival function:

P[T1 > t] = χαt (z).

The notation φat (z) means here

φat (z) := S(t)v +

∫ t

0
S(t− s)fd(φas(z), a(s))ds.

and φαt (z) means

φαt (z) := S(t)v +

∫ t

0
S(t− s)fd(φαs (z), α(z)(s))ds.

Remark 2.1.1. i)Thanks to [Yus80, Lemma 3], the set of admissible control strategies can
be seen as a set of measurable feedback controls acting on Ξ and with values in U . The
formulation of Definition 2.1.2 is adequate to address the associated discrete-time control
problem in Section 2.1.3.
ii) In view of Definition 2.1.2, given α ∈ A, the deterministic dynamics of the process
(Xα

t )t≥0 = (vt, dt, τt, , ht, νt)t≥0 between two consecutive jumps obeys the initial value prob-
lem 

v̇t = −Lvt + fd(vt, α(v, d, s)(τt)), vs = v ∈ E,

ḋt = 0, ds = d ∈ D,

τ̇t = 1, τs = 0,

ḣt = 0, hs = s ∈ [0, T ],

ν̇t = 0, νs = vs = v,

(2.10)

with s the last time of jump. The jump rate function and transition measure of the enlarged
PDMP are straightforwardly given by the ones of the original process and will be denoted
the same (see Appendix 2.A for their expression).
iii) If the relation t = ht + τt indicates that the variable ht might be redundant, recall that
we keep track of it on purpose. Indeed, the optimal control will appear as a function of the
jump times so that keeping them as a variable will make the control feedback.
iv) Because of the special definition of the enlarged process, for every control strategy in A,
the initial point of the process (Xα

t )t≥0 cannot be any point of the enlarged state space Ξ.
More precisely we introduce in Definition 2.1.3 below the space of coherent initial points.

Definition 2.1.3. Space of coherent initial points.
Take α ∈ A and x := (v0, d0, 0, h0, v0) ∈ Ξ and extend the notation φαt (x) of Definition
2.1.2 to Ξ by

φαt (x) := S(t)v0 +

∫ t

0
S(t− s)fd0(φαs (x), α(v0, d0, h0)(s))ds
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The set Ξα ⊂ Ξ of coherent initial points is defined as follows

Ξα := {(v, d, τ, h, ν) ∈ Ξ | v = φατ (ν, d, 0, h, ν)}. (2.11)

Then we have again, for all x := (v0, d0, τ0, h0, ν0) ∈ Ξα,

φαt (x) := S(t)v0 +

∫ t

0
S(t− s)fd0(φαs (x), α(ν0, d0, h0)(s))ds

Note that (Xα
t ) can be constructed like any PDMP by a classical iteration that we recall

in Appendix 2.A for the sake of completeness.

Proposition 2.1.1. The flow property.
Take α ∈ A and x := (v0, d0, τ0, h0, ν0) ∈ Ξα. Then φαt+s(x) = φαt (φαs (x), ds, τs+h0 , hs, νs)

for all (t, s) ∈ R2
+ with s ≥ τ0.

Notation. Let α ∈ A. For z ∈ Υ, we will use the notation αs(z) := α(z)(s). Furthermore,
we will sometimes denote by Qα(·|v, d) instead of Q(·|v, d, ατ (ν, d, h)) for all (v, d, τ, h, ν) ∈
A× Ξα.

2.1.2 A probability space common to all strategies

Up to now thanks to Definition 2.1.2 we can formally associate the PDMP (Xα
t )t∈R+

to a given strategy α ∈ A. However, we need to show that there exists a filtered probabily
space satisfying the usual conditions under which, for every control strategy α ∈ A, the
controlled PDMP (Xα

t )t≥0 is a homogeneous strong Markov process. This is what we do in
the next theorem which provides an extension of [BR11a, Theorem 4] to controlled infinite-
dimensional PDMPs and some estimates on the continuous component of the PDMP.

Theorem 2.1.2. Suppose that assumptions (H(λ)), (H(Q)), (H(L)) and (H(f)) (or (H(f))’)
are satisfied.
a) There exists a filtered probability space satisfying the usual conditions such that for every
control strategy α ∈ A the process (Xα

t )t≥0 introduced in Definition 2.1.2 is a homogeneous
strong Markov process on Ξ with extended generator Gα given in Appendix 2.B.
b) For every compact set K ⊂ H, there exists a deterministic constant cK > 0 such that
for all control strategy α ∈ A and initial point x := (v, d, τ, h, ν) ∈ Ξα, with v ∈ K, the
first component vαt of the control PDMP (Xα

t )t≥0 starting at x is such that

sup
t∈[0,T ]

||vαt ||H ≤ cK .

The proof of Theorem 2.1.2 is given in Appendix 2.B. In the next section, we introduce
the MDP that will allow us to prove the existence of optimal strategies.
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2.1.3 A Markov Decision Process (MDP)

Because of the particular definition of the state space Ξ, the state of the PDMP just
after a jump is in fact fully determined by a point in Υ. In Appendix 2.B we recall the
one-to-one correspondence between the PDMP on Ξ and the included pure jump process
(Zn)n∈N with values in Υ. This pure jump process allows to define a Markov Decision
Process (Z ′n)n∈N with values in Υ ∪ {∆∞}, where ∆∞ is a cemetery state added to Υ

to define a proper MDP. In order to lighten the notations, the dependence on a control
strategy α ∈ A of both jump processes is implicit. The stochastic kernel Q′ of the MDP
satisfies

Q′(B × C × E|z, a) =

∫ T−h

0
ρtdt, (2.12)

for any z := (v, d, h) ∈ Υ, Borel sets B ⊂ H, C ⊂ D, E ⊂ [0, T ], and a ∈ Uad([0, T ], U),
where

ρt := λd(φ
a
t (z), a(t))χat (z)1E(h+ t)1B(φat (z))Q(C|φat (z), d, a(t)),

with φat (z) given by (2.9) and Q′({∆∞}|z, a) = χaT−h(z), and Q′({∆∞}|∆∞, a) = 1. The
conditional jumps of the MDP (Z ′n)n∈N are then given by the kernelQ′(·|z, α(z)) for (z, α) ∈
Υ×A. Note that Z ′n = Zn as long as Tn ≤ T , where Tn is the last component of Zn. Since
we work with Borel state and control spaces, we will be able to apply techniques of [BS78]
for discrete-time stochastic control problems, without being concerned by measurability
matters. See [BS78, Section 1.2] for an illuminating discussion on these measurability
questions.

2.2 Relaxed controls

Relaxed controls are constructed by enlarging the set of ordinary ones, in order to
convexify the original system, and in such a way that it is possible to approximate re-
laxed strategies by ordinary ones. The difficulty in doing so is twofold. First, the set of
relaxed trajectories should not be much larger than the original one. Second, the topology
considered on the set of relaxed controls should make it a compact set and, at the same
time, make the flow of the associated PDE continuous. Compactness and continuity are
two notions in conflict so being able to achieve such a construction is crucial. Intuitively
a relaxed control strategy on the action space U corresponds to randomizing the control
action: at time t, instead of taking a predetermined action, the controller will take an
action with some probability, making the control a transition probability. This has to be
formalized mathematically.

Notation and reminder. Z is a compact Polish space, C(Z) denotes the set of all
real-valued continuous, necessarily bounded, functions on Z, endowed with the supremum
norm. Because Z is compact, by the Riesz Representation Theorem, the dual space [C(Z)]∗
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of C(Z) is identified with the space M(Z) of Radon measures on B(Z), the Borel σ-field
of Z. We will denote by M1

+(Z) the space of probability measures on Z. The action space
U is a closed subset of Z. We will use the notations L1(C(Z)) := L1((0, T ), C(Z)) and
L∞(M(Z)) := L∞((0, T ),M(Z)).

2.2.1 Relaxed controls for a PDE

Let B([0, T ]) denote the Borel σ-field of [0, T ] and Leb the Lebesgue measure. A
transition probability from ([0, T ],B([0, T ]), Leb) into (Z,B(Z)) is a function γ : [0, T ] ×
B(Z)→ [0, 1] such that{

t→ γ(t, C) is measurable for all C ∈ B(Z),

γ(t, ·) ∈M1
+(Z) for all t ∈ [0, T ].

We will denote by R([0, T ], Z) the set of all transition probability measures from
([0, T ],B([0, T ]), Leb) into (Z,B(Z)).
Recall that we consider the PDE (2.6):

v̇t = Lvt + fd(vt, a(t)), v0 = v, v ∈ V, a ∈ Uad([0, T ], U). (2.13)

The relaxed PDE is then of the form

v̇t = Lvt +

∫
Z
fd(vt, u)γ(t)(du), v0 = v, v ∈ V, γ ∈ R([0, T ], U), (2.14)

where R([0, T ], U) := {γ ∈ R([0, T ], Z)|γ(t)(U) = 1 a.e. in [0, T ]} is the set of transition
probabilities from ([0, T ],B([0, T ]), Leb) into (Z,B(Z)) with support in U . The integral
part of (2.14) is to be understood in the sense of Bochner-Lebesgue as we show now. The
topology we consider on R([0, T ], U) follows from [Bal84] and because Z is a compact
metric space, it coincides with the usual topology of relaxed control theory of [War72]. It
is the coarsest topology that makes continuous all mappings

γ →
∫ T

0

∫
Z
f(t, z)γ(t)(dz)dt ∈ R,

for every Carathéodory integrand f : [0, T ]×Z → R, a Carathéodory integrand being such
that 

t→ f(t, z) is measurable for all z ∈ Z,

z → f(t, z) is continuous a.e.,

|f(t, z)| ≤ b(t) a.e., with b ∈ L1((0, T ),R).

This topology is called the weak topology on R([0, T ], Z) but we show now that it
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is in fact metrizable. Indeed, Carathéodory integrands f on [0, T ] × Z can be identified
with the Lebesgue-Bochner space L1(C(Z)) via the application t → f(t, ·) ∈ L1(C(Z)).
Now, since M(Z) is a separable (Z is compact), dual space (dual of C(Z)), it enjoys the
Radon-Nikodym property. Using [DU77, Theorem 1 p. 98], it follows that [L1(C(Z))]∗ =

L∞(M(Z)). Hence, the weak topology on R([0, T ], Z) can be identified with the w∗-
topology in (L∞(M(Z)), L1(C(Z))), the latter being metrizable since L1(C(Z)) is a sep-
arable space (see [DS88, Theorem 1 p. 426]). This crucial property allows to work with
sequences when dealing with continuity matters with regards to relaxed controls.

Finally, by Alaoglu’s Theorem, R([0, T ], U) is w∗-compact in L∞(M(Z)), and the set
of original admissible controls Uad([0, T ], U) is dense in R([0, T ], U) (see [Bal84, Corollary
3 p. 469]).

For the same reasons why (2.13) admits a unique solution, by setting f̄d(v, γ) :=∫
Z fd(v, u)γ(du), it is straightforward to see that (2.14) admits a unique solution. The
following theorem gathers the results of [Pap89, Theorems 3.2 and 4.1] and will be of
paramount importance in the sequel.

Theorem 2.2.1. If assumptions (H(L)) and (H(f)) (or (H(f))’) hold, then
a) the space of relaxed trajectories (i.e. solutions of 2.14) is a convex, compact set of
C([0, T ], H). It is the closure in C([0, T ], H) of the space of original trajectories (i.e.
solutions of 2.13).
b) The mapping that maps a relaxed control to the solution of (2.14) is continuous from
R([0, T ], U) into C([0, T ], H).

2.2.2 Relaxed controls for infinite-dimensional PDMPs

First of all, note that since the control acts on all three characteristics of the PDMP,
convexity assumptions on the fields fd(v, U) would not necessarily ensure existence of
optimal controls as it does for partial differential equations. Such assumptions should also
be imposed on the rate function and the transition measure of the PDMP. For this reason,
relaxed controls are even more important to prove existence of optimal controls for PDMP.
For what has been done for PDE above, we are now able to define relaxed PDMPs. The
next definition is the relaxed analogue of Definition 2.1.2.

Definition 2.2.1. Relaxed control strategies, relaxed local characteristics.
a) The set AR of relaxed admissible control strategies for the PDMP is defined by

AR := {µ : Υ→ R([0, T ];U) measurable}.

Given a relaxed control strategy µ ∈ AR and z ∈ Υ, we will denote by µz := µ(z) ∈
R([0, T ];U) and µzt := µz(t, ·) the corresponding probability measure on (Z,B(Z)).
b) For γ ∈ M1

+(Z), (v, d) ∈ H ×D and C ∈ B(D), we extend the jump rate function and
transition measure as follows
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λd(v, γ) :=

∫
Z
λd(v, u)γ(du),

Q(C|v, d, γ) := (λd(v, γ))−1
∫
Z
λd(v, u)Q(C|v, d, u)γ(du),

(2.15)

the expression for the enlarged process being straightforward. This allows us to give the
relaxed survival function of the PDMP and the relaxed mild formulation of the solution of
(2.14) 

d

dt
χµt (z) = −χµt (z)λd(φ

µ
t (z), µzt ), χµ0 (z) = 1,

φµt (z) = S(t)v +

∫ t

0

∫
Z
S(t− s)fd(φµs (z), u)µzs(du)ds,

(2.16)

for µ ∈ AR and z := (v, d, h) ∈ Υ. For γ ∈ R([0, T ], U), we will also use the following
notation 

χγt (z) = exp

(
−
∫ t

0
λd(φ

γ
s (z), γ(s))ds

)
,

φγt (z) = S(t)v +

∫ t

0

∫
Z
S(t− s)fd(φγs (z), u)γ(s)(du)ds,

The following proposition is a direct consequence of Theorem 2.1.2b).

Proposition 2.2.1. For every compact set K ⊂ H, there exists a deterministic constant
cK > 0 such that for all control strategy µ ∈ AR and initial point x := (v, d, τ, h, ν) ∈ Ξα,
with v ∈ K, the first component vµt of the control PDMP (Xµ

t )t≥0 starting at x is such that

sup
t∈[0,T ]

||vµt ||H ≤ cK .

The relaxed transition measure is given in the next section through the relaxed stochastic
kernel of the MDP associated to our relaxed PDMP.

2.2.3 Relaxed associated MDP

Let z := (v, d, h) ∈ Υ and γ ∈ R([0, T ], U). The relaxed stochastic kernel of the relaxed
MDP satisfies

Q′(B × C × E|z, γ) =

∫ T−h

0
ρ̃tdt, (2.17)

for Borel sets B ⊂ H, C ⊂ D, E ⊂ [0, T ], where

ρ̃t := χγt (z)1E(h+ t)1B(φγt (z))

∫
Z
λd

(
φγt (z), u

)
Q
(
C|φγt (z), d, u

)
γ(t)(du),

= χγt (z)1E(h+ t)1B(φγt (z))λd

(
φγt (z), γ(t)

)
Q
(
C|φγt (z), d, γ(t)

)
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and Q′({∆∞}|z, γ) = χγT−h(z), and Q′({∆∞}|∆∞, γ) = 1, with, as before, the conditional
jumps of the MDP (Z ′n)n∈N given by the kernel Q′(·|z, µ(z)) for (z, µ) ∈ Υ×AR.

2.3 Main results

Here, we are interested in finding optimal controls for optimization problems involving
infinite-dimensional PDMPs. For instance, we may want to track a targeted "signal" (as
a solution of a given PDE, see Section 2.4). To do so, we are going to study the optimal
control problem of the imbedded MDP defined in Section 2.1.3. This strategy has been for
example used in [BR10] in the particular setting of a decoupled finite-dimensional PDMP,
the rate function being constant.

2.3.1 The optimal control problem

Thanks to the preceding sections we can consider ordinary or relaxed costs for the
PDMP Xα or the MDP and their corresponding value functions. For z := (v, d, h) ∈ Υ

and α ∈ A we denote by Eαz the conditional expectation given that Xα
h = (v, d, 0, h, v) and

by Xα
s (φ) the first component of Xα

s . Furthermore, we denote by Xα
s := (vs, ds, τs, hs, νs),

then the shortened notation α(Xα
s ) will refer to ατs(νs, ds, hs). Theses notations are

straightforwardly extended to AR. We introduce a running cost c : H × Z → R+ and
a terminal cost g : H → R+ satisfying

(H(c)) (v, z) → c(v, z) and v → g(v) are nonnegative quadratic functions, that is there
exists (a, b, c, d, e, f, g, h, i, j) ∈ R9 such that for v, z ∈ H × Z,

c(v, u) = a||v||2H + bd̄(0, u)2 + c||v||H d̄(0, u) + d||v||H + ed̄(0, u) + f,

g(v) = h||v||2H + i||v||H + j,

with d̄(·, ·) the distance on Z.

Remark 2.3.1. This assumption might seem a bit restrictive, but it falls within the frame-
work of all the applications we have in mind. More importantly, it can be widely loosened
if we slightly change the assumptions of Theorem 2.3.1. In particular, all the following
results, up to Lemma 2.3.7, are true and proved for continuous functions c : H × Z → R+

and g : H → R+. See Remark 2.3.4 below.

Definition 2.3.1. Ordinary value function for the PDMP Xα.
For α ∈ A , we define the ordinary expected total cost function Vα : Υ → R and the
corresponding value function V as follows:

Vα(z) := Eαz
[∫ T

h
c(Xα

s (φ), α(Xα
s ))ds+ g(Xα

T (φ))

]
, z := (v, d, h) ∈ Υ, (2.18)



110 Theoretical framework

V (z) = inf
α∈A

Vα(z), z ∈ Υ. (2.19)

Assumption (H(c)) ensures that Vα and V are properly defined.

Definition 2.3.2. Relaxed value function for the PDMP Xµ.
For µ ∈ AR we define the relaxed expected cost function Vµ : Υ→ R and the corresponding
relaxed value function Ṽ as follows:

Vµ(z) := Eµz
[∫ T

h

∫
Z
c(Xµ

s (φ), u)µ(Xµ
s )(du)ds+ g(Xµ

T (φ))

]
, z := (v, d, h) ∈ Υ, (2.20)

Ṽ (z) = inf
µ∈AR

Vµ(z), z ∈ Υ. (2.21)

We can now state the main result of this section.

Theorem 2.3.1. Under assumptions (H(λ)), (H(Q)), (H(L)), (H(f)) and (H(c)), the
value function Ṽ of the relaxed optimal control problem on the PDMP is continuous on Υ

and there exists an optimal relaxed control strategy µ∗ ∈ AR such that

Ṽ (z) = Vµ∗(z), ∀z ∈ Υ.

Remark 2.3.2. All the subsequent results that lead to Theorem 2.3.1 would be easily trans-
posable to the case of a lower semicontinuous cost function. We would then obtain a lower
semicontinuous value function.

The next section is dedicated to proving Theorem 2.3.1 via the optimal control of the
MDP introduced before. Let us briefly sum up what we are going to do. We first show that
the optimal control problem of the PDMP is equivalent to the optimal control problem
of the MDP and that an optimal control for the latter gives an optimal control strategy
for the original PDMP. We will then build up a framework, based on so called bounding
functions (see [BR10]), in which the value function of the MDP is the fixed point of a
contracting operator. Finally, we show that under the assumptions of Theorem 2.3.1, the
relaxed PDMP Xµ belongs to this framework.

2.3.2 Optimal control of the MDP

Let us define the ordinary cost c′ on Υ ∪ {∆∞} × Uad([0, T ];U) for the MDP defined
in Section 2.1.3. For z := (v, d, h) ∈ Υ and a ∈ Uad([0, T ];U),

c′(z, a) :=

∫ T−h

0
χas(z) c(φ

a
s(z), a(s))ds+ χaT−h(z)g(φaT−h(z)), (2.22)
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and c′(∆∞, a) := 0.

Assumption (H(c)) allows c′ to be properly extended to R([0, T ], U) by the formula

c′(z, γ) =

∫ T−h

0
χγs (z)

∫
Z
c(φγs (z), u)γ(s)(du)ds+ χγT−h(z)g(φγT−h(z)), (2.23)

and c′(∆∞, γ) = 0 for (z, γ) ∈ Υ×R([0, T ], U). Remark that the function c′ is nonnegative
(because c and g are nonnegative). We can now define the expected cost function and value
function for the MDP.

Definition 2.3.3. Cost and value functions for the MDP (Z ′n).

For α ∈ A (resp. µ ∈ AR), we define the total expected cost Jα (resp. Jµ) and the value
function J (resp. J ′)

Jα(z) = Eαz

[ ∞∑
n=0

c′(Z ′n, α(Z ′n))

]
, Jµ(z) = Eµz

[ ∞∑
n=0

c′(Z ′n, µ(Z ′n))

]
,

J(z) = inf
α∈A

Jα(z), J ′(z) = inf
µ∈AR

Jµ(z),

for z ∈ Υ and with α(Z ′n) (resp. µ(Z ′n)) being elements of Uad([0, T ], U) (resp. R([0, T ], U)).

The finiteness of theses sums will by justified later by Lemma 2.3.2.

The equivalence Theorem

In the following theorem we prove that the relaxed expected cost function of the PDMP
equals the one of the associated MDP. Thus, the value functions also coincide. For the
finite-dimensional case we refer the reader to [Dav93] or [BR10] where the discrete com-
ponent of the PDMP is a Poisson process and therefore the PDMP is entirely decoupled.
The PDMPs that we consider are fully coupled.

Theorem 2.3.2. The relaxed expected costs for the PDMP and the MDP coincide: Vµ(z) =

Jµ(z) for all z ∈ Υ and relaxed control µ ∈ AR. Thus, the value functions Ṽ and J ′ coincide
on Υ.

Remark 2.3.3. Since we have A ⊂ AR, the value functions Vα(z) and Jα(z) also coincide
for all z ∈ Υ and ordinary control strategy α ∈ A

Proof. Let µ ∈ AR and z = (v, d, h) ∈ Υ and consider the PDMP Xµ starting at
(v, d, 0, h, v) ∈ Ξµ. We drop the dependence in the control in the notation and denote
by (Tn)n∈N the jump times, and Zn := (vTn , dTn , Tn) ∈ Υ the point in Υ corresponding
to Xµ

Tn
. Let Hn = (Z0, . . . , Zn), Tn ≤ T . For a purpose of concision we will rewrite



112 Theoretical framework

µn := µ(Zn) ∈ R([0, T ], U) for all n ∈ N.

Vµ(z) = Eµz

[ ∞∑
n=0

∫ T∧Tn+1

T∧Tn

∫
Z
c(Xµ

s (φ), u)µns−Tn(du)ds+ 1{Tn≤T<Tn+1}g(Xµ
T (φ))

]

=

∞∑
n=0

Eµz
[
Eµz
[∫ T∧Tn+1

T∧Tn

∫
Z
c(Xµ

s (φ), u)µns−Tn(du)ds+ 1{Tn≤T<Tn+1}g(Xµ
T (φ))|Hn

]]
,

all quantities being non-negative. We want now to examine the two terms that we call I1

and I2 separately. For n ∈ N, we start with

I1 := Eµz
[∫ T∧Tn+1

T∧Tn

∫
Z
c(Xµ

s (φ), u)µns−Tn(du)ds|Hn

]
that we split according to Tn ≤ T < Tn + 1 or Tn+1 ≤ T (if T ≤ Tn, the corresponding
term vanishes). Then

I1 = 1{Tn≤T}E
µ
z

[∫ T

Tn

∫
Z
c(Xµ

s (φ), u)µns−Tn(du)1{Tn+1>T}ds|Hn

]
+ Eµz

[
1{Tn+1≤T}

∫ Tn+1

Tn

∫
Z
c(Xµ

s (φ), u)µns−Tn(du)ds|Hn

]
.

By the strong Markov property and the flow property, the first term on the RHS is equal
to

1{Tn≤T}E
µ
z

[∫ T−Tn

0

∫
Z
c(Xµ

Tn+s(φ), u)µns (du)1{Tn+1−Tn>T−Tn}ds|Hn

]

= 1{Tn≤T}χ
µ
T−Tn(Zn)

∫ T−Tn

0

∫
Z
c(φµs (Zn), u)µns (du)ds.

Using the same arguments, the second term on the RHS of I1 can be written as

1{Tn≤T}

∫ T−Tn

0

∫
Z
λdn(φµt (Zn), u)µnt (du)χµt (Zn)

∫ t

0

∫
Z
c(φµs (Zn), u)µnt (du)dsdt,

An integration by parts yields

I1 = 1{Tn≤T}

∫ T−Tn

0
χµt (Zn)

∫
Z
c(φαt (Zn), u)µnt (du)dt.

Moreover

I2 := Eµz
[
1{Tn≤T<Tn+1}g(Xµ

T )|Hn

]
= 1{Tn≤T}χ

µ
T−Tn(Zn)g(φµT−Tn(Zn))

By definition of the Markov chain (Z ′n)n∈N and the function c′, we then obtain for the total
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expected cost of the PDMP,

Vµ(z) =

∞∑
n=0

Eµz

[
1{Tn≤T}

∫ T−Tn

0
χµt (Zn)

∫
Z
c(φαt (Zn), u)µnt (du)dt

+ 1{Tn≤T} χ
µ
T−Tn(Zn)g(φµT−Tn(Zn))

]

= Eµz

[ ∞∑
n=0

c′(Z ′n, µ(Z ′n))

]
= Jµ(z).

Existence of optimal controls for the MDP

We now show existence of optimal relaxed controls under a contraction assumption.
We use the notation R := R([0, T ];U) in the sequel. Let us also recall some notations
regarding the different control sets we consider.

— u is an element of the control set U .

— a : [0, T ]→ U is an element of the space of admissible control rules Uad([0, T ], U)

— α : Υ → Uad([0, T ], U) is an element of the space of admissible strategies for the
original PDMP.

— γ : [0, T ]→M1
+(Z) is an element of the space of relaxed admissible control rules R.

— µ : Υ→ R is an element of the space of relaxed admissible strategies for the relaxed
PDMP.

The classical way to address the discrete-time stochastic control problem that we in-
troduced in Definition 2.3.3 is to consider an additional control space that we will call the
space of Markovian policies and denote by Π. Formally Π :=

(
AR
)N and a Markovian

control policy for the MDP is a sequence of relaxed admissible strategies to be applied at
each stage. The optimal control problem is to find π := (µn)n∈N ∈ Π that minimizes

Jπ(z) := Eπz

[ ∞∑
n=0

c′(Z ′n, µn(Z ′n))

]
.

Now denote by J∗(z) this infimum. We will in fact prove the existence of a stationary
optimal control policy that will validate the equality

J∗(z) = J ′(z).

Let us now define some operators that will be useful for our study and state the first
theorem of this section. Let w : Υ→ R a continuous function, (z, γ, µ) ∈ Υ×R×AR and
define
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Rw(z, γ) := c′(z, γ) + (Q′w)(z, γ),

Tµw(z) := c′(z, µ(z)) + (Q′w)(z, µ(z)) = Rw(z, µ(z)),

(T w)(z) := inf
γ∈R

{
c′(z, γ) + (Q′w)(z, γ)

}
= inf

γ∈R
Rw(z, γ),

where (Q′w)(z, γ) :=
∫

Υw(x)Q′(dx|z, γ) which admits also the expression

∫ T−h

0
χγt (z)

∫
Z
λd

(
φγt (z), u

)∫
D
w
(
φγt (z), r, h+ t

)
Q
(

dr|φγt (z), d, u
)
γ(t)(du)dt.

Theorem 2.3.3. Assume that there exists a subspace C of the space of continuous bounded
functions from Υ to R such that the operator T : C→ C is contracting and the zero function
belongs to C. Assume furthermore that C is a Banach space. Then J ′ is the unique fixed
point of T and there exists an optimal control µ∗ ∈ AR such that

J ′(z) = Jµ∗(z), ∀z ∈ Υ.

All the results needed to prove this Theorem can be found in [BS78]. We break down
the proof into the two following elementary propositions, suited to our specific problem.
Before that, recall that from [BS78, Proposition 9.1 p.216], Π is the adequate control space
to consider since history-dependent policies do not improve the value function.

Let us now consider the n-stages expected cost function and value function defined by

Jnπ(z) := Eπz

[
n−1∑
i=0

c′
(
Z ′i, µi(Z

′
i)
)]

Jn(z) := inf
π∈Π

Eπz

[
n−1∑
i=0

c′
(
Z ′i, µi(Z

′
i)
)]

for n ∈ N and π := (µn)n∈N ∈ Π. We also set J∞ := limn→∞ Jn.

Proposition 2.3.1. Let assumptions of Theorem 2.3.1 hold. Let v, w : Υ → R such that
v ≤ w on Υ, and let µ ∈ AR. Then Tµv ≤ Tµw. Moreover

Jn(z) = inf
π∈Π

(Tµ0Tµ1 . . . Tµn−10)(z) = (T n0)(z),

with π := (µn)n∈N and J∞ is the unique fixed point of T in C.

Proof. The first relation is straightforward since all quantities defining Q′ are nonnegative.
The equality Jn = infπ∈Π Tµ0Tµ1 . . . Tµn−10 is also immediate since Tµ just shifts the process
of one stage (see also [BS78, Lemma 8.1, p194]).

Let I ∈ C, ε > 0 and n ∈ N. For every k ∈ {1..n − 1}, T kI ∈ C and so there exist
µ0, µ1, . . . , µn−1 ∈

(
AR
)n such that
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Tµn−1I ≤ T I + ε, Tµn−2T I ≤ T T I + ε, . . . , Tµ0T n−1I ≤ T T n−1I + ε.

We then get

T nI ≥ Tµ0T n−1I − ε ≥ Tµ0Tµ1T n−2I − 2ε ≥ · · · ≥ Tµ0Tµ1 . . . Tµn−1I − nε

≥ inf
π∈Π
Tµ0Tµ1 . . . Tµn−1I − nε.

Since this last inequality is true for any ε > 0 we get

T nI ≥ inf
π∈Π
Tµ0Tµ1 . . . Tµn−1I,

and by definition of T , T I ≤ Tµn−1I. Using the first relation of the proposition we get

T nI ≤ Tµ0Tµ1 . . . Tµn−1I.

Finally, T nI = infπ∈Π Tµ0Tµ1 . . . Tµn−1I for all I ∈ C and n ∈ N. We deduce from the
Banach fixed point theorem that J∞ = limn→∞ T n0 belongs to C and is the only fixed
point of T .

Proposition 2.3.2. There exists µ∗ ∈ AR such that J∞ = Jµ∗ = J ′.

Proof. By definition, for every π ∈ Π, Jn ≤ Jnπ, so that J∞ ≤ J∗. Now from the previous
proposition, J∞ = infγ∈RRJ∞(·, γ), R is a compact space and RJ∞ is a continuous
function. We can thus find a measurable mapping µ∗ : Υ → R such that J∞ = Tµ∗J∞.
J∞ ≥ 0 so from the first relation of the previous proposition, for all n ∈ N, J∞ = T nµ∗J∞ ≥
T nµ∗0 and by taking the limit J∞ ≥ Jµ∗ . Since Jµ∗ ≥ J∗ we get J∞ = Jµ∗ = J∗. We
conclude the proof by remarking that J∗ ≤ J ′ ≤ Jµ∗ .

The next section is devoted to proving that the assumptions of Theorem 2.3.3 are
satisfied for the MDP.

Bounding functions and contracting MDP

The concept of bounding function that we define below will ensure that the operator
T is a contraction. The existence of the space C of Theorem 2.3.3 will mostly result from
Theorem 2.2.1 and again from the concept of bounding function.

Definition 2.3.4. Bounding functions for a PDMP.
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Let c (resp. g) be a running (resp. terminal) cost as in Section 2.3.1. A measurable
function b : H → R∗+ is called a bounding function for the PDMP if there exist constants
cc, cg, cφ ∈ R+ such that
(i) c(v, u) ≤ ccb(v) for all (v, u) ∈ H × Z,
(ii) g(v) ≤ cgb(v) for all v ∈ H,
(iii) b(φγt (z)) ≤ cφb(v) for all (t, z, γ) ∈ [0, T ]×Υ×R, z = (v, d, h).

Given a bounding function for the PDMP we can construct one for the MDP with or
without relaxed controls, as shown in the next lemma (cf. [BR11b, Definition 7.1.2 p.195]).

Lemma 2.3.1. Let b is a bounding function for the PDMP. We keep the notations of
Definition 2.3.4. Let ζ > 0. The function Bζ : Υ 7−→ R∗+ defined by Bζ(z) := b(v)eζ(T−h)

for z = (v, d, h) is an upper bounding function for the MDP. The two inequalities below
are satisfied for all (z, γ) ∈ Υ×R,

c′(z, γ) ≤ Bζ(z)cφ
(cc
δ

+ cg

)
, (2.24)

∫
Υ
Bζ(y)Q′(dy|z, γ) ≤ Bζ(z) cφ

Mλ

(ζ + δ)
. (2.25)

Proof. Take (z, γ) ∈ Υ × R , z = (v, d, h). On the one hand from (2.23) and Definition
2.3.4 we obtain

c′(z, γ) ≤
∫ T−h

0
e−δscccφb(v)ds+ e−δ(T−h)cgcφb(v)

≤ Bζ(z)e
−ζ(T−h)cφ

(
cc

1− e−δ(T−h)

δ
+ e−δ(T−h)cg

)
,

which immediately implies (2.24). On the other hand∫
Υ
Bζ(y)Q′(dy|z, γ) =

∫ T−h

0
χγs (z)b(φγs (z))eζ(T−h−s)

∫
Z
λd(φ

γ
s (z), u)Q(D|φγs (z), u)γs(du)ds

≤ eζ(T−h)b(v)cφMλ

∫ T−h

0
e−δse−ζsds

= Bζ(z)cφ
Mλ

ζ + δ

(
1− e−(ζ+δ)(T−h)

)
which implies (2.25).

Let b be a bounding function for the PDMP. Consider ζ∗ such that C := cφ
Mλ
ζ∗+δ < 1.

Denote by B∗ the associated bounding function for the MDP. We introduce the Banach
space
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L∗ := {v : Υ→ R continuous ; ||v||∗ := sup
z∈Υ

|v(z)|
|B∗(z)|

<∞} . (2.26)

The following two lemmas give an estimate on the expected cost of the MDP that
justifies manipulations of infinite sums.

Lemma 2.3.2. The inequality Eγz [B∗(Z ′k)] ≤ CkB∗(z) holds for any (z, γ, k) ∈ Υ×R×N.

Proof. We proceed by induction on k. Let z ∈ Υ. The desired inequality holds for k = 0

since Eγz [B∗(Z ′0)] = B∗(z). Suppose now that it holds for k ∈ N. Then

Eγz
[
B∗(Z ′k+1)

]
= Eγz

[
Eγz
[
B∗(Z ′k+1)|Z ′k

]]
= Eγz

[∫
Υ
B∗(y)Q′(dy|Z ′k, γ)

]
= Eγz

[
B∗(Z ′k)

∫
ΥB

∗(y)Q′(dy|Z ′k, γ)

B∗(Z ′k)

]
.

Using (2.25) and the definition of C, we conclude that Eγz
[
B∗(Z ′k+1)

]
≤ CEγz [B∗(Z ′k)] and

by the assumption on k Eγz
[
B∗(Z ′k+1)

]
≤ Ck+1B∗(z).

Lemma 2.3.3. There exists κ > 0 such that for any (z, µ) ∈ Υ×AR,

Eµz

[ ∞∑
k=n

c′(Z ′k, µ(Z ′k))

]
≤ κ Cn

1− C
B∗(z).

Proof. The results follows from Lemma 2.3.2 and from the fact that

c′(Z ′k, µ(Z ′k)) ≤ B∗(Zk)cφ
(cc
δ

+ cg

)
for any k ∈ N.

We now state the result on the operator T .

Lemma 2.3.4. T is a contraction on L∗: for any (v, w) ∈ L∗ × L∗,

||T v − T w||B∗ ≤ C ||v − w||B∗ ,

where C = cφ
Mλ
ζ∗+δ .

Proof. We prove here the contraction property. The fact T : L∗ → L∗ is less straightfor-
ward and is addressed in the next section. Let z := (v, d, h) ∈ Υ. Let us recall that for
functions f, g : R → R

sup
γ∈R

f(γ)− sup
γ∈R

g(γ) ≤ sup
γ∈R

(f(γ)− g(γ)) .
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Moreover since infγ∈R f(γ)− infγ∈R g(γ) = supγ∈R(−g(γ))− supγ∈R(−f(γ)), we have

T v (z)− T w (z) ≤ sup
γ∈R

∫ T−h

0
χγs (z)

∫
Z
λd(φ

γ
s (z), u)I(u, s) γ(s)(du)ds,

where

I(u, s) :=

∫
D

(
v(φγs (z), r, h+ s)− w(φγs (z), r, h+ s)

)
Q(dr|φγs (z), d, u),

so that

||T v − T w||B∗ ≤ sup
(z,γ)∈Υ×R

∫ T−h

0
χγs (z)

∫
Z
λd(φ

γ
s (z), u)J (s, u)γ(s)(du)ds

where
J (s, u) :=

∫
D

B∗(φγs (z), r, h+ s)

B∗(z)
||v − w||B∗Q(dr|φγs (z), d, u)

We then conclude that

||T v − T w||B∗ ≤ sup
(z,γ)∈Υ×R

∫ T−h

0
e−δsMλcφe

−ζ∗sds ||v − w||B∗

≤Mλcφ ||v − w||B∗
∫ T−h

0
e−(δ+ζ∗)sds

≤ C||v − w||B∗ .

Continuity properties

Here we prove that the trajectories of the relaxed PDMP are continuous w.r.t. the
control and that the operator R transforms continuous functions in continuous functions.

Lemma 2.3.5. Assume that (H(L)) and (H(f)) are satisfied. Then the mapping

φ : (z, γ) ∈ Υ×R → φγ· (z) = S(0)v +

∫ ·
0

∫
Z
S(· − s)fd(φγs (z), u)γ(s)(du)ds

is continuous from Υ×R in C([0, T ];H).

Proof. This proof is based on the result of Theorem 2.2.1. Here we add the joint continuity
on Υ×R whereas the continuity is just onR in [Pap89]. Let t ∈ [0, T ] and let (z, γ) ∈ Υ×R.
Assume that (zn, γn)→ (z, γ). Since D is a finite set, we take the discrete topology on it
and if we denote by zn = (vn, dn, hn) and z = (v, d, h), we have the equality dn = d for n
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large enough. So for n large enough we have

φγnt (zn)− φγt (z) = S(t)vn − S(t)v +

∫ t

0

∫
Z
S(t− s)fd(φγnt (zn), u)γn(s)(du)ds

−
∫ t

0

∫
Z
S(t− s)fd(φγt (z), u)γ(s)(du)ds

= S(t)vn − S(t)v

+

∫ t

0

∫
Z
S(t− s)[fd(φγnt (zn), u)γn(s)(du)− fd(φγt (z), u)γn(s)(du)]ds

+

∫ t

0

∫
Z
S(t− s)[fd(φγt (z), u)γn(s)(du)− fd(φγt (z), u)γ(s)(du)]ds.

From(H(f))1. we get

||φγnt (zn)− φγt (z)||H ≤MS ||vn − v||H +MSlf

∫ t

0
||φγns (zn)− φγs (z)||Hds+ ||`n(t)||H

where `n(t) :=
∫ t

0

∫
Z S(t−s)[fd(φγt (z), u)γn(s)(du)−fd(φγt (z), u)γ(s)(du)]ds. By the Gron-

wall lemma we obtain a constant C > 0 such that

||φγnt (zn)− φγt (z)||H ≤ C(||vn − v||H + sup
s∈[0,T ]

||`n(s)||H).

Since limn→+∞ ||vn − v||H = 0, the proof is complete if we show that the sequence of
functions (||`n||H) uniformly converges to 0 on [0, T ].

Let us denote xn(t) :=
∫ t

0

∫
Z S(t−s)fd(φγt (z), u))γn(s)(du)ds. Using the same argument

as the proof of [Pap89, Theorem 3.1], there is no difficulty in proving that (xn)n∈N is
compact in C([0, T ], H) so that, passing to a subsequence if necessary, we may assume
that xn → x in C([0, T ], H). Now let h ∈ H.

(h, `n(t))H =

∫ t

0

∫
Z

(h, S(t− s)fd(φγt (z), u)))Hγn(s)(du)ds

−
∫ t

0

∫
Z

(h, S(t− s)fd(φγt (z), u)))Hγ(s)(du)ds −−−→
n→∞

0,

since (t, u)→ (h, S(t−s)fd(φγt (z), u)))H ∈ L1(C(Z)) and γn → γ weakly* in L∞(M(Z)) =

[L1(C(Z))]∗. Thus, x(t) =
∫ t

0

∫
Z S(t−s)fd(φγt (z), u)γ(s)(du)ds Leb-a.s. and by continuity,

the equality is valid everywhere so that `n(t) = xn(t) − x(t) for all t ∈ [0, T ], proving the
uniform convergence of ||`n||H on [0, T ].

The next lemma establishes the continuity property of the operator R.
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Lemma 2.3.6. Suppose that assumptions (H(L)), (H(f)), (H(λ)), (H(Q)), (H(c)) are
satisfied. Let b be a continuous bounding function for the PDMP. Let w : Υ × U → R be
continuous with |w(z, u)| ≤ cwB∗(z) for some cw ≥ 0. Then

(z, γ)→
∫ T−h

0
χγs (z)

(∫
Z
w(φγs (z), d, h+ s, u)γ(s)(du)

)
ds

is continuous on Υ×R, with z := (v, d, h). Quite straightforwardly,

(z, γ)→ Rw(z, γ) = c′(z, γ) +Q′w (z, γ)

is continuous on Υ×R.

Proof. See Appendix 2.C.

It now remains to show that there exists a bounding function for the PDMP. This is
the result of the next lemma.

Lemma 2.3.7. Suppose assumptions (H(L)), (H(f)) and (H(c)) are satisfied. Now define
c̃ and g̃ from c and g by taking the absolute value of the coefficients of these quadratic
functions. Let M2 > 0. Define M3 := (M2 + b1T )MSe

MSb2T and b : H → R+ by

b(v) :=


bM3 := max

||x||H≤M3

max
u∈U

c̃(x, u) + max
||x||H≤M3

g̃(x), if ||v||H ≤M3,

max
u∈U

c̃(v, u) + g̃(v), if ||v||H > M3,
(2.27)

is a continuous bounding function for the PDMP.

Proof. For all (v, u) ∈ H × U , c(v, u) ≤ b(v) and g(v) ≤ b(v). Now let (t, z, γ) ∈ [0, T ] ×
Υ×R, z = (v, d, h).

— If ||φγt (z)||H ≤ M3, b(φ
γ
t (z)) = bM3 . If ||v||H ≤ M3 then b(v) = bM3 = b(φγt (z)).

Otherwise, ||v||H > M3 and b(v) > bM3 = b(φγt (z)).

— If ||φγt (z)||H > M3 then ||v||H > M2 and ||φγt (z)||H ≤ ||v||HM3/M2 (See 2.40 in
Appendix 2.B). So,

b(φγt (z))) = max
u∈U

c̃(φγt (z), u) + g̃(φγt (z)) ≤ b
(
M3

M2
v

)
≤ M2

3

M2
2

b(v),

since M3/M2 > 1.

Remark 2.3.4. Lemma 2.3.7 ensures the existence of a bounding function for the PDMP.
To broaden the class of cost functions considered, we could just assume the existence of a
bounding for the PDMP in Theorem 2.3.1 and then, the assumption on c and g should just
be the continuity.
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2.3.3 Existence of an optimal ordinary strategy

Ordinary strategies are of crucial importance because they are the ones that the con-
troller can implement in practice. Here we give convexity assumptions that ensure the
existence of an ordinary optimal control strategy for the PDMP.

(A) (a) For all d ∈ D, the function fd : (y, u) ∈ H × U → E is linear in the control
variable u.

(b) For all d ∈ D, the functions λd : (y, u) ∈ H × U → R+ and λdQ : (y, u) ∈
H×U → λd(y, u)Q(·|y, d, u) are respectively concave and convexe in the control
variable u.

(c) The cost function c : (y, u) ∈ E × U → R+ is convex in the control variable u.

Theorem 2.3.4. Suppose that assumptions (H(L)), (H(f)), (H(λ)), (H(Q)), (H(c)) and
(A) are satisfied. If we consider µ∗ ∈ AR an optimal relaxed strategy for the PDMP, then
the ordinary strategy µ̄t :=

∫
Z uµ

∗
t (du) ∈ A is optimal, i.e. Vµ̄(z) = Ṽµ∗(z) = V (z), ∀z ∈

Υ.

Proof. This result is based on the fact that for all (z, γ) ∈ Υ×R, (Lw)(z, γ) ≥ (Lw)(z, γ̄),
with γ̄ =

∫
Z uγ(du). Indeed, the fact that the function fd is linear in the control variable

implies that for all (t, z, γ) ∈ [0, T ] × Υ × R, φγt (z) = φγ̄t (z). The convexity assumptions
(A) give the following inequalities∫

Z
λd(φ

γ
s (z), u)γ(s)(du) ≤ λd(φγ̄s (z), γ̄(s)),∫

Z
λd(φ

γ
s (z), u)Q(E|φγs (z), d, u)γ(s)(du) ≥ λd(φγ̄s (z), γ̄(s))Q(E|φγ̄s (z), d, γ̄(s)),∫

Z
c(φγs (z), u)γs(du) ≥ c(φγ̄s (z), γ̄s),

for all (s, z, γ, E) ∈ [0, T ] × Υ × R × B(D), so that in particular χγt (z) ≥ χγ̄t (z). We
can now denote for all (z, γ) ∈ Υ×R and w : Υ→ R+,

(Lw)(z, γ) =

∫ T−h

0
χγs (z)

∫
Z
c(φγs (z), u)γ(s)(du)ds+ χγT−h(z)g(φγT−h(z))

+

∫ T−h

0
χγs (z)

∫
Z
λd(φ

γ
s (z), u)

∫
D
w(φγs (z), r, h+ s)Q(dr|φγs (z), d, u)γ(s)(du)ds

≥
∫ T−h

0
χγ̄s (z)c(φγ̄s (z), γ̄(s))ds+ χγ̄T−h(z)g(φγ̄T−h(z))

+

∫ T−h

0
χγ̄s (z)

∫
Z
λd(φ

γ̄
s (z), u)

∫
D
w(φγ̄s (z), r, h+ s)Q(dr|φγ̄s (z), d, u)γ(s)(du)ds.
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Furthermore,

∫
Z
λd(φ

γ̄
s (z), u)

∫
D
w(φγ̄s (z), r, h+ s)Q(dr|φγ̄s (z), d, u)γ(s)(du) ≥

λd(φ
γ̄
s (z), γ̄(s))

∫
D
w(φγ̄s (z), r, h+ s)Q(dr|φγ̄s (z), d, γ̄(s)),

so that

(Lw)(z, γ) ≥
∫ T−h

0
χγ̄s (z)c(φγ̄s (z), γ̄(s))ds+ χγ̄T−h(z)g(φγ̄T−h(z))

+

∫ T−h

0
χγ̄s (z)λd(φ

γ̄
s (z), γ̄(s))

∫
D
w(φγ̄s (z), r, h+ s)Q(dr|φγ̄s (z), d, γ̄(s))

= (Lw)(z, γ̄).

2.3.4 An elementary example

Here we treat an elementary example that satisfies the assumptions made in the pre-
vious two sections.

Let V = H1
0 ([0, 1]),H = L2([0, 1]), D = {−1, 1}, U = [−1, 1]. V is a Hilbert space with

inner product

(v, w)V :=

∫ 1

0
v(x)w(x) + v′(x)w′(x)dx.

We consider the following PDE for the deterministic evolution between jumps

∂

∂t
v(t, x) = ∆v(t, x) + (d+ u)v(t, x),

with Dirichlet boundary conditions. We define the jump rate function for (v, u) ∈ H × U
by

λ1(v, u) =
1

e−||v||2 + 1
+ u2, λ−1(v, u) = e

− 1
||v||2+1 + u2,

and the transition measure by Q({−1}|v, 1, u) = 1, and Q({1}|v,−1, u) = 1.

Finally, we consider a quadratic cost function c(v, u) = K||Vref − v||2 + u2, where
Vref ∈ D(∆) is a reference signal that we want to approach.

Lemma 2.3.8. The PDMP defined above admits the continuous bounding function

b(v) := ||Vref ||2H + ||v||2H + 1. (2.28)
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Furthermore, the value function of the optimal control problem is continuous and there
exists an optimal ordinary control strategy.

Proof. The proof consists in verifying that all assumptions of Theorem 2.3.4 are satis-
fied. Assumptions (H(Q)), (H(c)) and (A) are straightforward. For (v, u) ∈ H × U ,
1/2 ≤ λ1(v, u) ≤ 2 and e−1 ≤ λ−1(v, u) ≤ 2. The continuity in the variable u is
straightforward and the locally Lipschitz continuity comes from the fact that the functions
v → 1/(e−||v||

2
+ 1), and v → e−β(v), with β(v) := 1/(||v||2 + 1), are Fréchet differentiable

with derivatives v → 2(v, ·)H/(e−||v||
2

+ 1)2, and v → 2(v, ·)Hβ2(v)e−β(v).

−∆v : w ∈ V →
∫ 1

0 v
′(x)w′(x)dx so that −∆ : V → V ∗ is linear. Let (v, w) ∈ V 2.

〈−∆(v − w), v − w〉 =

∫ 1

0
((v − w)′(x))2dx ≥ 0.

|〈−∆v, w〉|2 = |
∫ 1

0
v′(x)w′(x)dx|2 ≤

∫ 1

0
(v′(x))2dx

∫ 1

0
(w′(x))2dx ≤ ||v||2V ||w||2V ,

and so ||−∆v||V ∗ ≤ ||v||V . 〈−∆v, v〉 =
∫ 1

0 (v′(x))2dx ≥ C ′||v||2V , for some constant C ′ > 0,
by the Poincaré inequality.

Now, define for k ∈ N∗, fk(·) :=
√

2 sin(kπ·), a Hilbert base of H. On H, S(t) is the
diagonal operator

S(t)v =
∑
k≥1

e−(kπ)2t(v, fk)Hfk.

For t > 0, S(t) is a contracting Hilbert-Schmidt operator.
For (v, w, u) ∈ H2 × U , fd(v, u) = (d+ u)v and

||fd(v, u)− fd(w, u)||H ≤ 2||v − w||H , ||fd(v, u)||H ≤ 2||v||H .

This means that for every z = (v, d, h) ∈ Υ, γ ∈ R([0, T ], U) and t ∈ [0, T ], ||φγt (z)||H ≤
e2T ||v||H .

2.4 Application to the model in Optogenetics

2.4.1 Proof Theorem 2.0.1

We begin this section by making some comments on Definition 2.0.1. In (2.1), Cm > 0 is
the membrane capacitance and V− and V+ are constants defined by V− := min{VNa, VK , VL,
VChR2} and V+ := max{VNa, VK , VL, VChR2}. They represent the physiological domain of
our process. In (2.2), the constants gx > 0 are the normalized conductances of the channels
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of type x and Vx ∈ R are the driving potentials of the channels. The constant ρ > 0 is
the relative conductance between the open states of the ChR2. For a matter of coherence
with the theoretical framework presented in the paper, we will prove Theorem 2.0.1 for
the mollification of the model that we define now. This model is very close to the one of
Definition 2.0.1. It is obtained by replacing the Dirac masses δz by their mollifications ξNz
that are defined as follows. Let ϕ be the function defined on R by

ϕ(x) :=

Ce
1

x2−1 , if |x| < 1,

0, if |x| ≥ 1,
(2.29)

with C :=
(∫ 1
−1 exp

(
1

x2−1

)
dx
)−1

such that
∫
R ϕ(x)dx = 1.

Now, let UN :=
(

1
2N , 1−

1
2N

)
and ϕN (x) := 2Nϕ(2Nx) for x ∈ R. For z ∈ IN , the

N th mollified Dirac mass ξNz at z is defined for x ∈ [0, 1] by

ξNz (x) :=

{
ϕN (x− z), if x ∈ UN
0, if x ∈ [0, 1] \ UN .

(2.30)

For all z ∈ IN , ξNz ∈ C∞([0, 1]) and ξNz → δz almost everywhere in [0, 1] as N → +∞,
so that (ξNz , φ)H → φ(z), as N → ∞ for every φ ∈ C(I,R). The expressions v(i/N) in
Definition 2.0.1 are also replaced by (ξNi/N , v)H . The decision to use the mollified Dirac mass
over the Dirac mass can be motivated by two main reasons. First of all, as mentioned in
[BR11a], the concentration of ions is homogeneous in a spatially extended domain around
an open channel so the current is modeled as being present not only at the point of a
channel, but in a neighborhood of it. Second, the smooth mollified Dirac mass leads to
smooth solutions of the PDE and we need at least continuity of the flow. Nevertheless,
the results of Theorem 2.0.1 remain valid with the Dirac masses and we refer the reader
to Section 2.4.2.

The following lemma is a direct consequence of [BR11a, Proposition 7] and will be very
important for the model to fall within the theoretical framework of the previous sections.

Lemma 2.4.1. For every y0 ∈ V with y0(x) ∈ [V−, V+] for all x ∈ I, the solution y of
(2.1) is such that for t ∈ [0, T ],

V− ≤ y(t, x) ≤ V+, ∀x ∈ I.

Physiologically speaking, we are only interested in the domain [V−, V+]. Since Lemma
2.4.1 shows that this domain is invariant for the controlled PDMP, we can modify the
characteristics of the PDMP outside the domain [V−, V+] without changing its dynamics.
We will do so for the rate functions σx,y of Table 2.1. From now on, consider a compact
set K containing the closed ball of H, centered in zero and with radius max(V−, V+). We
will rewrite σx,y the quantities modified outside K such that they all become bounded
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functions. This modification will enable assumption (H(λ))1. to be verified.
The next lemma shows that the stochastic controlled infinite-dimensional Hodgkin-

Huxley-ChR2 model defines a controlled infinite-dimensional PDMP as defined in Defini-
tion 2.1.2 and that Theorem 2.1.2 applies.

Lemma 2.4.2. For N ∈ N∗, the N th stochastic controlled infinite-dimensional Hodgkin-
Huxley-ChR2 model satisfies assumptions (H(λ)), (H(Q)), (H(L)) and (H(f)). Moreover,
for any control strategy α ∈ A, the membrane potential vα satisfies

V− ≤ vαt (x) ≤ V+, ∀(t, x) ∈ [0, T ]× I.

Proof. The local Lipschitz continuity of λd fromH×Z in R+ comes from the local Lipschitz
continuity of all the functions σx,y of Table 2.1.2 and the inequality |(ξNz , v)H−(ξNz , w)H | ≤
2N ||v − w||H . By Lemma 2.4.1, the modified jump rates are bounded. Since they are
positive, they are bounded away from zero, and then, Assumption (H(λ)) is satisfied.
Assumption (H(Q)) is also easily satisfied. We showed in Section 2.3.4 that (H(L)) is
satisfied. As for fd, the function does not depend on the control variable and is continuous
from H to H. For d ∈ D and (y1, y2) ∈ H2,

fd(y1)− fd(y2) =
1

N

∑
i∈IN

(
gK1{di=n4} + gNa1{di=m3h1}

+ gChR2(1{di=O1} + ρ1{di=O2}) + gL

)
(ξNi

N

, y2 − y1)Hξ
N
i
N

.

We then get

||fd(y1)− fd(y2)||H ≤ 4N2(gK + gNa + gChR2(1 + ρ) + gL)||(y2 − y1)||H .

Finally, since the continuous component vαt of the PDMP does not jump, the bounds
are a direct consequence of Lemma 2.4.1.

Proof of Theorem 2.0.1. In Lemma 2.4.2 we already showed that assumptions (H(λ)),
(H(Q)), (H(L)) and (H(f)) are satisfied. The cost function c is convex in the control
variable and norm quadratic on H×Z. The flow does not depend on the control. The rate
function λ is linear in the control. the function λQ is also linear in the control. We con-
clude that all the assumptions of Theorem 2.3.1 are satisfied and that an optimal ordinary
strategy can be retrieved.

We end this section with an important remark that significantly extends the scope
of this example. Up to now, we only considered stationary reference signals but nonau-
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tonomous ones can be studied as well, as long as they feature some properties. Indeed, it
is only a matter of incorporating the signal reference Vref ∈ C([0, T ], H) in the process by
adding a variable to the PDMP. Instead of considering H as the initial state space for the
continuous component, we consider H̃ := H ×H.

This way, the part on the control problem is not impacted at all and we consider the
continuous cost function c̃ defined for (v, v̄, u) ∈ H̃ × U by

c̃(v, v̄, u) = κ||v − v̄||2H + u+ cmin, (2.31)

the result and proof of lemma 2.0.1 remaining unchanged with the continuous bounding
function defined for v ∈ H by

b(v) :=


κM2

3 + κ sup
t∈[0,T ]

||Vref (t)||2H + umax, if ||v||H ≤M3,

κ||v||2H + κ sup
t∈[0,T ]

||Vref (t)||2H + umax, if ||v||H > M3.

In the next section, we present some variants of the model and the corresponding results
in terms of optimal control.

Table 2.1 – Expression of the individual jump rate functions.

In D1 = {n0, n1, n2, n3, n4} :
σn0,n1(v, u) = 4αn(v), σn1,n2(v, u) = 3αn(v), σn2,n3(v, u) = 2αn(v), σn3,n4(v, u) = αn(v)
σn4,n3(v, u) = 4βn(v), σn3,n2(v, u) = 3βn(v), σn2,n1(v, u) = 2βn(v), σn1,n0(v, u) = βn(v).

In D2 = {m0h1,m1h1,m2h1,m3h1,m0h0,m1h0,m2h0,m3h0} :
σm0h1,m1h1(v, u) = σm0h0,m1h0(v, u) = 3αm(v), σm1h1,m2h1(v, u) = σm1h0,m2h0(v, u) = 2αm(v),
σm2h1,m3h1(v, u) = σm2h0,m3h0(v, u) = αm(v), σm3h1,m2h1(v, u) = σm3h0,m2h0(v, u) = 3βm(v),
σm2h1,m1h1(v, u) = σm2h0,m1h0(v, u) = 2βm(v), σm1h1,m0h1(v, u) = σm1h0,m0h0(v, u) = βm(v).

In DChR2 = {o1, o2, c1, c2} :
σc1,o1(v, u) = ε1u, σo1,c1(v, u) = Kd1, σo1,o2(v, u) = e12, σo2,o1(v, u) = e21

σo2,c2(v, u) = Kd2, σc2,o2(v, u) = ε2u, σc2,c1(v, u) = Kr.

αn(v) = 0.1−0.01v
e1−0.1v−1

, βn(v) = 0.125e−
v
80 ,

αm(v) = 2.5−0.1v
e2.5−0.1v−1

, βm(v) = 4e−
v
18 ,

αh(v) = 0.07e−
v
20 , βh(v) = 1

e3−0.1v+1
.
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2.4.2 Variants of the model

We begin this section by giving arguments showing that the results of Theorem 2.3.1
remain valid for the model of Definition 2.0.1, which does not exactly fits into our theoret-
ical framework. Then, the variations we present concern the model of ChR2, the addition
of other light-sensitive ionic channels, the way the control acts on the three local charac-
teristics and the control space. The optimal control problem itself will remain unchanged.
First of all, let us mention that since the model of Definition 2.0.1 satisfies the convexity
conditions (A), the theoretical part on relaxed controls is not necessary for this model.
Nevertheless, the model of ChR2 presented on Figure 2.1 is only one among several others,
some of which do not enjoy a linear, or even concave, rate function λ. For those models,
that we present next, assumption (A) fails and the relaxed controls are essential.

We will not present them here, but the previous results for the Hodgkin-Huxley model
remain straightforwardly unchanged for other neuron models such as the FitzHugh-Nagumo
model or the Morris-Lecar model.

Optimal control for the original model

In the original model, the function fd is defined from V to V ∗. Nevertheless, the
semigroup of the Laplacian regularizes Dirac masses (see [Aus08, Lemma 3.1]) and the
uniform bound in Theorem 2.1.2 is in fact valid in V , the solution belonging to C([0, T ], V ).
This is all we need since the control does not act on the PDE. This is why the domain of
our process is V × DN and not just H × DN , and all computations of the proofs of the
previous sections can be done in the Hilbert space V . From this consideration, and using
the continuous embedding of H1

0 (I) in C0(I) we can justify the local Lipschitz continuity of
λd from V ×Z in R+. Indeed, it comes from the local Lipschitz continuity of all functions
σx,y of Table 2.1 and from the inequality

|v(
i

N
)− w(

i

N
)| ≤ sup

x∈I
|v(x)− w(x)| ≤ C||v − w||V .

Finally, [BR11a, Proposition 5] states that the bounds of Lemma 2.4.2 remain valid
with Dirac masses.

Modifications of the ChR2 model

We already mentioned the paper of Nikolic and al. [NGG+09] in which a three states
model is presented. It is a somehow simpler model than the four states model of Figure
2.1 but it gives good qualitative results on the photocurrents produced by the ChR2. In
first approximation the model can be considered to depend linearly in the control as seen
on Figure 2.1.
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c d

o

u(t)

Kr

Kd

Figure 2.1 – Simplified ChR2 three states model

This model features one open state o and two closed states, one light-adapted d and
one dark-adapted c. This model would lead to the same type of model as in the previous
Section. In fact, the time constants 1/Kd and 1/Kr are also light dependent with a
dependence in log(u). The corresponding model is represented on Figure 2.2 below

c d

o

c1u(t)

Kr + c2 log(u)

1
τd−log(u)

Figure 2.2 – ChR2 three states model

Some mathematical comments are needed here. On Figure 2.2, the control u represents
the light intensity and c1, c2, Kr and τd are positive constants. This model of ChR2 is
experimentally accurate for intensities between 108 and 1010 µm2 · s−1 approximately. We
would then consider U := [0, umax] with umax ' 1010 µm2 · s−1. Furthermore,

lim
u→0

Kr + c2 log(u) = −∞, lim
u→0

1

τd − log(u)
= 0.

The first limit is not physical since rate jumps between states are positive numbers.
The second limit is not physical either because it would mean that, in the dark, the proteins
are trapped in the open state o, which is not the case. In the dark, when u = 0, the jump
rates corresponding to the transition o → d and d → c are positive constants. For this
reason, the functions σo,d and σd,c should be smooth functions such that they are equal to
the rates of Figure 2.2 for large intensities, but still with τd − log(u) > 0, and converge to
Kdark
d > 0 and Kdark

r > 0 respectively, when u goes to 0. The resulting rate function λ is
not concave and thus does not satisfy assumption (A) anymore. We can only affirm the
existence of optimal relaxed strategies.

The four states model of Figure 2.1 is also an approximation of a more accurate model
that we represent on Figure 2.3 below. The transition rates can depend on either the
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o1 o2

c2c1

Kd1(v)

e12(u)

e21(u)

Kd2 Ka2u

Kr(v)

Ka1u

Figure 2.3 – ChR2 channel : Ka1, Ka2, and Kd2 are positive constants.

membrane potential v or the irradiance u, which is the control variable. The details of the
model and the numerical constants can be found in [WXK+13]. Note that the model of
Figure 2.3 is already an approximation of the model in [WXK+13] because the full model
in [WXK+13] would not lead to a Markovian behavior for the ChR2 (the transition rates
would depend on the time elapsed since the light was switched on).

Kd1(v) = K
(1)
d1 −K

(2)
d1 tanh((v + 20)/20),

e12(u) = e12d + c1 ln(1 + u/c),

e21(u) = e21d + c2 ln(1 + u/c),

Kr(v) = K(1)
r exp(−K(2)

r v),

with K(1)
d1 , K(2)

d1 , e12d, e21d, c, c1 and c2 positive constants. As for the model of Figure
2.2, the mathematical definition of the function σo1,c1 should be such that it is a positive
smooth function and equals Kd1(v) in some subset of the physiological domain [V−, V+].
The resulting rate function λ will be concave but the function λQ will not be convex (it
will be concave as well). Hence, Assumption (A) is not satisfied.

Addition of other light-sensitive ion channels

Channelrhodopsin-2 has a promoting role in eliciting action potentials. There also exists
a chlorine pump, called Halorhodopsin (NpHR), that has an inhibitory action. NpHR can
be used along with ChR2 to obtain a control in both directions. Its modelisation as a
multistate model was considered in [NJGS13]. The transition rates between the different
states have the same shape that the ones of the ChR2 and the same simplifications are
possible. This new light-sensitive channel can be easily incorporated in our stochastic
model and we can state existence of optimal relaxed and/or ordinary control strategies
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depending on the level of complexity of the NpHR model we consider. It is here important
to remark that since the two ionic channels do not react to the same wavelength of the
light, the resulting control variable would be two-dimensional with values in [0, umax]2.
This would not change the qualitative results of the previous sections.

Modification of the way the control acts on the local characteristics

Up to now, the control acts only on the rate function, and also on the measure transition
via its special definition from the rate function. Nevertheless, we can present here a
modification of the model where the control acts linearly on the PDE. This modification
amounts to considering that the control variable is directly the gating variable of the
ChR2. Indeed, we showed in Section 1.2.2 that the optimal control of the deterministic
counterpart of the stochastic Hodgkin-Huxley-ChR2 model, in finite dimension and with
the three states ChR2 model of Figure 2.1, is closely linked to the optimal control of

dV

dt
= gKn

4(t)(VK − V (t)) + gNam
3(t)h(t)(VNa − V (t))

+ gChR2u(t)(VChR2 − V (t)) + gL(VL − V (t)),

dn

dt
= αn(V (t))(1− n(t))− βn(V (t))n(t),

dm

dt
= αm(V (t))(1−m(t))− βm(V (t))m(t),

dh

dt
= αh(V (t))(1− h(t))− βh(V (t))h(t),

where the control variable is the former gating variable o. Now the stochastic coun-
terpart of the last model is such that the function fd is now linear in the control and the
rate function λ and the transition measure function Q do not depend on the control any
more. Finally, by adding NpHR channels to this model, we would obtain a fully controlled
infinite-dimensional PDMP in the sense that the control would then act on the three local
characteristics of the PDMP. Depending on the model of NpHR chosen, we would obtain
relaxed or ordinary optimal control strategy.

Modification of the control space

In all models discussed previously, the control has no spatial dependence. Any light-
stimulation device, such as a laser, has a spatial resolution and it is possible that we do
not want or cannot stimulate the entire axon. For this reason, spatial dependence of the
control should be considered. Now, as long as the control space remains a compact Polish
space, spatial dependence of the control could be considered. We propose here a control
space defined as a subspace of the Skorohod space D, constituted of the càdlàg functions
from [0, 1] to R. This control space represents the aggregation of multiple laser beams that
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can be switch on and off. Suppose that each of theses beams produce on the axon a disc of
light of diameter r > 0 that we call spatial resolution of the light. For an axon represented
by the segment [0, 1], r is exactly the spatial domain illuminated. We consider now two
possibilities for the control space. Suppose first that the spatial resolution is fixed and
define p := b1

r c and

U := {u : [0, 1]→ [0, umax] | u is constant on [i/p, (i+1)/p), i = 0, .., p−1, u(1) = u((p−1)/p)}.

Lemma 2.4.3. U is a compact subset of D.

Proof. We tackle this proof by remarking that U is in bijection with the finite dimensional
compact space [0, umax]p.

In this case, the introduction of the space D was quite artificial since the control space
remains finite-dimensional. Nevertheless, the Skorohod space will be very useful for the
other control space. Suppose now that the spatial resolution of the laser can evolve in
[rmin, rmax] with rmin, rmax > 0. Let p ∈ N∗ the number of lasers used and define

Ũ := {u : [0, 1]→ [0, umax] | ∃{xi}0≤i≤p subdivision of [0, 1],

u is constant on [xi, xi + 1), i = 0, .., p− 1,

u(1) = u(xp−1)}.

Now Ũ is infinite-dimensional and the Skorohod space allows us to use the characteri-
zation of compact subsets of D.

Lemma 2.4.4. Ũ is a compact subset of D.

Proof. For this proof, we need to introduce some notation and a critera of compactness in
D. A complete treatment of the space D can be found in [Bil68].

Let u ∈ D and {xi}0≤i≤n a subdivision of [0, 1], n ∈ N∗. We define, for i ∈ {0, .., n−1},

wu([xi, xi+1)) := sup
x,y∈[xi,xi+1)

|u(x)− u(y)|,

and for δ > 0,

w′u(δ) := inf
{xi}

max
0≤i<n

wu([xi, xi+1)),

the infimum being taken on all the subdivisions {xi}0≤i≤n of [0, 1] such that xi+1− xi > δ

for all i ∈ {0, .., n − 1}. Now since Ũ is obviously bounded in D, from [Bil68, Theorem
14.3], we need to show that



132 Theoretical framework

lim
δ→0

sup
u∈Ũ

w′u(δ) = 0.

Let δ > 0 with δ < rmin and u ∈ Ũ . There exists as subdivision {xi}0≤i≤p of [0, 1]

such that for every i ∈ {0, .., p − 1}, u is constant on [xi, xi+1) and xi+1 − xi > δ. Thus
w′u(δ) = 0 which ends the proof.

With either U or Ũ as the control space, the stochastic controlled infinite-dimensional
Hodgkin-Huxley-ChR2 model admits an optimal ordinary control strategy.
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Appendix 2.A Construction of Xα by iteration

Let α ∈ A and let x := (v, d, τ, h, ν) ∈ Ξα with z := (ν, d, h) ∈ Υ. The existence of the
probability Pαx below is the object of the next section where Theorem 2.1.2 is proved.

— Let T1 be the time of the first jump of (Xα
t ). With the notations of Proposition 2.1.1,

the law of T1 is defined by its survival function given for all t > 0 by

Pαx(T1 > t) = exp

(
−
∫ t

0
λd

(
φαs (x), α(νs, ds, hs)(τs)

)
ds

)
.

— For t < T1, Xα
t solves (2.10) starting from x namely (vt, dt, τt, ht, νt) = (φαt (x), d, τ +

t, h, ν).

— When a jump occurs at time T1, conditionally to T1, Xα
T1

is a random variable
distributed according to a measure Q̂ on (Ξ,B(Ξ)), itself defined by a measure Q
on (D,B(D)). The target state d1 of the discrete variable is a random variable
distributed according to the measure Q(·|φαT1

(x), dT−1
, α(νT−1

, dT−1
, hT−1

)(τT−1
)) such

that for all B ∈ B(D),

Q̂
(
{φαT1

(x)} ×B × {0} × {h+ τT−1
} × {φαT1

(x)}|φαT1
(x), dT−1

, τT−1
, hT−1

, νT−1
, α(T−1 )

)
= Q

(
B|φαT1

(s), d, α(ν, d, h)(τ + T1)
)
,

where we use the notation α(T−1 ) = α(dT−1
, τT−1

, hT−1
, νT−1

). This equality means that
the variables v and ν do not jump at time T1, and the variables τ and h jump in a
deterministic way to {0} and {h+ τT−1

} respectively.

— The construction iterates after time T1 with the new starting point (vT1 , dT1 , 0, h +

T1, vT1).

Formally the expressions of the jump rate and the transition measures on Ξ are

133
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λ(x, u) := λd(v, u),

Q̂
(
F ×B × E ×G× J |x, u

)
:= 1F×E×G×J(v, 0, h+ τ, ν)Q

(
B|v, d, u

)
,

with F ×B × E ×G× J ∈ B(Ξ), u ∈ U and x := (v, d, τ, h, ν) ∈ Ξ.

Appendix 2.B Proof of Theorem 2.1.2

There are two filtered spaces on which we can define the enlarged process (Xα) of
Definition 2.1.2. They are linked by the one-to-one correspondence between the PDMP
(Xα) and the included jump process (Zα) that we define now. We then introduce both
spaces since each one of them is relevant to prove useful properties.

Given the sample path (Xα
s , s ≤ T ) such that Xα

0 := (v, d, τ, h, ν) ∈ Ξα, the jump times
Tk of Xα can be retrieved by the formula

{Tk, k = 1, . . . , n} = {s ∈ (0, T ]|hs 6= hs−}.

Moreover we can associate to Xα a pure jump process (Zαt )t≥0 taking values in Υ in a
one-to-one correspondence as follows,

Zαt := (νTk , dTk , Tk), Tk ≤ t < Tk+1. (2.32)

Conversely, given the sample path of Zα on [0, T ] starting from Zα0 = (νZ0 , d
Z
0 , T

Z
0 ), we

can recover the path of Xα on [0, T ]. Denote Zαt as (νZt , d
Z
t , T

Z
t ) and define T0 := TZ0 and

Tk := inf{t > Tk−1|TZt 6= TZt−}. Then{
Xα
t = (φαt (Zα0 ), dZ0 , t, T

Z
0 , ν

Z
0 ), t < T1,

Xα
t = (φαt−Tk(ZαTk), dTk , t− Tk, T

Z
Tk
, νZTk), Tk ≤ t < Tk+1.

(2.33)

Let us note that TZTk = Tk for all k ∈ N, and that by construction of the PDMP all jumps
are detected since Pα[Tk+1 = Tk] = 0. When no confusion is possible, we write, for α ∈ A
and n ∈ N, Zn = ZαTn .

Part 1. The canonical space of jump processes with values in Υ. The following
construction is very classical, see for instance Davis [Dav93] Appendix A1. We adapt it
here to our peculiar process and to the framework of control. Remember that a jump
process is defined by a sequence of inter-arrival times and jump locations

ω = (γ0, s1, γ1, s2, γ2, . . . ), (2.34)



2.B. PROOF OF THEOREM 2.1.2 135

where γ0 ∈ Υ is the initial position, and for i ∈ N∗, si is the time elapsed between the
(i − 1)th and the ith jump while γi is the location right after the ith jump. The jump
times (ti)i∈N are deduced from the sequence (si)i∈N∗ by t0 = 0 and ti = ti−1 + si for
i ∈ N∗ and the jump process (Jt)t≥0 is given by Jt := γi for t ∈ [ti, ti+1) and Jt = ∆ for
t ≥ t∞ := limi→∞ ti, ∆ being an extra state, called cemetery.

Accordingly we introduce Y Υ := (R+ × Υ) ∪ {(R+ ∪ ∞,∆)}. Let (Y Υ
i )i∈N∗ be a

sequence of copies of the space Y Υ. We define ΩΥ := Υ× Π∞i=1Y
Υ
i the canonical space of

jump processes with values in Υ, endowed with its Borel σ-algebra FΥ and the coordinate
mappings on ΩΥ as follows

Si : ΩΥ −→R+ ∪ {∞},

ω 7−→Si(ω) = si, for i ∈ N∗,

Γi : ΩΥ −→Υ ∪ {∆},

ω 7−→Γi(ω) = γi, for i ∈ N.

(2.35)

We also introduce ωi : ΩΥ → ΩΥ
i for i ∈ N∗, defined by

ωi(ω) := (Γ0(ω), S1(ω),Γ1(ω), . . . , Si(ω),Γi(ω))

for ω ∈ ΩΥ. Now for ω ∈ ΩΥ and i ∈ N∗, let

T0(ω) := 0,

Ti(ω) :=


i∑

k=1

Sk(ω), if Sk(ω) 6=∞ and Γk(ω) 6= ∆, k = 1, . . . , i,

∞ if Sk(ω) =∞ or Γk(ω) = ∆ for some k = 1, . . . , i,

T∞(ω) := lim
i→∞

Ti(ω).

and the sample path (xt(ω))t≥0 be defined by

xt(ω) :=

{
Γi(ω) Ti(ω) ≤ t < Ti+1(ω),

∆ t ≥ T∞(ω).
(2.36)

A relevant filtration for our problem is the natural filtration of the coordinate process
(xt)t≥0 on ΩΥ

FΥ
t := σ{xs|s ≤ t},

for all t ∈ R+. For given starting point γ0 ∈ Υ and control strategy α ∈ A, a controlled
probability measure, denoted Pαγ0

, is defined on ΩΥ by the specification of a family of con-
trolled conditional distribution functions as follows: µ1 is a controlled probability measure
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on (Y Υ,B(Y Υ)) or equivalently a measurable mapping from Uad([0, T ];U) to the set of
probability measures on (Y Υ,B(Y Υ)), such that for all α ∈ A,

µ1(α(γ0); ({0} ×Υ) ∪ (R+ × {γ0})) = 0.

For i ∈ N \ {0, 1}, µi : ΩΥ
i × Uad([0, T ];U) × B(Y Υ) → [0, 1] are controlled transition

measures satisfying:

1. µi(·; Σ) is measurable for each Σ ∈ B(Y Υ),

2. µi(ωi−1(ω), α(Γi−1(ω)); ·) is a probability measure for every ω ∈ ΩΥ and α ∈ A,

3. µi(ωi−1(ω), α(Γi−1(ω)); ({0} × Υ) ∪ (R+ × {Γi−1(ω)})) = 0 for every ω ∈ ΩΥ and
α ∈ A,

4. µi(ωi−1(ω), α(Γi−1(ω)); {(∞,∆)}) = 1 if Sk(ω) = ∞ or Γk(ω) = ∆ for some k ∈
{1, . . . , i− 1}, for every α ∈ A.

We need to extend the definition of α ∈ A to the state (∞,∆) by setting α(∆) := u∆

where u∆ is itself an isolated cemetery state and α takes in fact values in Uad([0, T ];U ∪
{u∆}).

Now for a given control strategy α ∈ A, Pαγ0
is the unique probability measure on

(ΩΥ, T Υ) such that for each i ∈ N∗ and bounded function f on ΩΥ
i

∫
ΩΥ

f(ωi(ω))Pαγ0
(dω)

=

∫
Y Υ

1

. . .

∫
Y Υ
i

f(y1, . . . , yi)µi(y1, . . . , yi−1, α(yi−1); dyi)

× µi−1(y1, . . . , yi−2, α(yi−2); dyi−1) . . . µ1(α(γ0); dy1),

with α depending only on the variable in Υ when writing "α(yi−1)" , yi−1 = (si−1, γi−1).
Let’s now denote by FΥ

γ,α and (FΥ,γ,α
t )t≥0 the completed σ-fields of FΥ and (FΥ

t )t≥0 with
all the Pαγ -null sets of FΥ. We then rename the intersection of these σ-fields redefine FΥ

and (FΥ
t )t≥0 so that we have

FΥ :=
⋂

γ∈Υα∈A
FΥ
γ,α,

FΥ
t :=

⋂
γ∈Υα∈A

FΥ,γ,α
t for all t ≥ 0.

Then (ΩΥ,FΥ, (FΥ
t )t≥0) is the natural filtered space of controlled jump processes.

Part 2. The canonical space of càdlàg functions with values in Ξ. Let ΩΞ be the
set of right-continuous functions with left limits (càdlàg functions), defined on R+ with
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values in Ξ. Analogously to what we have done in Part 1, we can construct a filtered
space (ΩΞ,FΞ, (FΞ

t )t≥0) with coordinate process (xΞ
t )t≥0 and a probability Pα on (ΩΞ,FΞ)

for every control strategy α ∈ A such that the infinite-dimensional PDMP is a Pα-strong
Markov process. For (t, y) ∈ R+ × ΩΞ, x

Ξ
t (y) = y(t).

We start with the definition of FΞ,0
t := σ{xΞ

s |s ≤ t} for t ∈ R+ and FΞ,0 := ∨t≥0FΞ,0
t .

In Davis [Dav93] p 59, the construction of the PDMP is conducted on the Hilbert cube,
the space of sequences of independent and uniformly distributed random variables in [0, 1].
In the case of controlled PDMP, the survival function F (t, x) in [Dav93] is replaced by
the extension to ξα of χα defined in Definition 2.1.2 and the construction depends on the
chosen control. This extension is defined for x := (v, d, τ, h, ν) ∈ Ξα by

χαt (x) := exp

(
−
∫ t

0
λd(φ

α
s (x), ατ+s(ν, d, h))ds

)
,

such that for z := (v, d, h) ∈ Υ, χαt (z) = χαt (v, d, 0, h, v).

This procedure thus provides for each control α ∈ A and starting point x ∈ Ξα a
measurable mapping ψαx from the Hilbert cube to ΩΞ. Let Pαx := P

[
(ψαx )−1

]
denote the

image measure of the Hilbert cube probability P under ψαx . Now for x ∈ Ξα, let Fx,αt be
the completion of FΞ,0

t with all Pαx -null sets of FΞ,0, and define

FΞ
t :=

⋂
α∈A,x∈Ξα

Fx,αt . (2.37)

The right-continuity of (FΞ
t )t≥0 follows from the right-continuity of (FΥ

t )t≥0 and the
one-to-one correspondence. The right-continuity of (FΥ

t )t≥0 is a classical result on right-
constant processes. For theses reasons, we lose the superscripts Ξ and Υ consider the
natural filtration (Ft)t≥0 in the sequel.

Now that we have a filtered probability space that satisfies the usual conditions, let us
show that the simple Markov property holds for (Xα

t ). Let α ∈ A be a control strategy,
s > 0 and k ∈ N∗. By construction of the process (Xα

t )t≥0,

Pα[Tk+1 − Tk > s|FTk ] = exp

(
−
∫ s

0
λdTk (φαt (Xα

Tk
), αu(νTk , dTk , hTk))du

)
= χαs (Xα

Tk
).

Now for x ∈ Ξα, (t, s) ∈ R2
+ and k ∈ N∗,

Pαx [Tk+1 > t+ s|Ft]1{Tk≤t<Tk+1}

= Pαx [Tk+1 − Tk > t+ s− Tk|Ft]1{0≤t−Tk<Tk+1−Tk}
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= exp

(
−
∫ t+s−Tk

t−Tk
λdTk (φαu(Xα

Tk
), αu(νTk , dTk , hTk))du

)
1{0≤t−Tk<Tk+1−Tk} (∗)

= exp

(
−
∫ s

0
λdTk (φαu+t−Tk(Xα

Tk
), αu+t−Tk(νTkdTk , hTk))du

)
1{0≤t−Tk<Tk+1−Tk}.

The equality (*) is the classical formula for jump processes (see Jacod [Jac75]). On the
other hand,

χαs (Xα
t )1{Tk≤t<Tk+1} = exp

(
−
∫ s

0
λdt

(
φαu(Xα

t ), αu+τt(νt, dt, ht)
)

du

)
1{Tk≤t<Tk+1}

= exp

(
−
∫ s

0
λdTk

(
φαu(Xα

t ), αu+t−Tk(νTk , dTk , hTk)
)

du

)
1{Tk≤t<Tk+1}

= exp

(
−
∫ s

0
λdTk

(
φαu+t−Tk(Xα

Tk
), αu+t−Tk(νTkdTk , hTk)

)
du

)
1{Tk≤t<Tk+1},

because Xα
t =

(
φαt−Tk(Xα

Tk
), dTk , t− Tk, hTk , νTk

)
and by the flow property φαu(Xα

t ) =

φαu+t−Tk(Xα
Tk

) on 1{Tk≤t<Tk+1}.
Thus we showed that for all x ∈ Ξα, (t, s) ∈ R2

+ and k ∈ N∗,

Pαx [Tk+1 > t+ s|Ft]1{Tk≤t<Tk+1} = χαs (Xα
t )1{Tk≤t<Tk+1}.

Now if we write Tαt := inf{s > t : Xα
s 6= Xα

s−} the next jump time of the process after
t, we get

Pαx [Tαt > t+ s|Ft] = χαs (Xα
t ), (2.38)

which means that, conditionally to Ft, the next jump has the same distribution as the first
jump of the process started at Xα

t . Since the location of the jump only depends on the
position at the jump time, and not before, equality (2.38) is just what we need to prove
our process verifies the simple Markov property.

To extend the proof to the strong Markov property, the application of Theorem (25.5)
(Davis [Dav93]) on the characterization of jump process stopping times on Borel spaces is
straightforward.

From the results of [BR11a], there is no difficulty in finding the expression of the
extended generator Gα and its domain:

— Let α ∈ A. The domain D(Gα) of Gα is the set of all measurable f : Ξ → R such
that t 7→ f(φαt (x), d, τ + t, h, ν)

(resp. (v0, d0, τ0, h0, ν0, t, ω) 7→ f(v0, d0, τ0, h0, ν0)− f(v(t−, ω), d(t−, ω), τ(t−, ω),

h(t−, ω), ν(t−, ω))) is absolutely continuous on R+ for all x = (v, d, τ, h, ν) ∈ Ξα

(resp. a valid integrand for the associated random jump measure).
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— Let f be continuously differentiable w.r.t. v ∈ V and τ ∈ R+. Define hv as the
unique element of V ∗ such that

df

dv
[v, d, τ, h, ν](y) = 〈hv(v, d, τ, h, ν), y〉V ∗,V ∀y ∈ V,

where df
dv [v, d, τ, h, ν] denotes the Fréchet-derivative of f w.r.t v ∈ E evaluated at

(v, d, τ, h, ν). If hv(v, d, τ, h, ν) ∈ V ∗ whenever v ∈ V and is bounded in V for
bounded arguments then for almost every t ∈ [0, T ],

Gαf(v, d, τ, h, ν) =
∂

∂τ
f(v, d, τ, h, ν) + 〈hv(v, d, τ, h, ν), Lv + fd(v, ατ (ν, d, h))〉V ∗,V

(2.39)

+ λd(v, ατ (ν, d, h))

∫
D

[f(v, p, 0, h+ τ, v)− f(v, d, τ, h, ν)]Qα(dp|v, d).

The bound on the continuous component of the PDMP comes from the following esti-
mation. Let α ∈ A and x := (v, d, τ, h, ν) ∈ Ξα and denote by vα the first component of
Xα. Then for t ∈ [0, T ],

||vαt ||H ≤ ||S(t)v||H +

∫ t

0
||S(t− s)fds(vαs , ατs(νs, ds, hs))||Hds

≤MS ||v||H +

∫ t

0
MS(b1 + b2||vαs ||H)ds (2.40)

≤MS(||v||H + b1T )eMSb2T ,

by Gronwall’s inequality.

Appendix 2.C Proof of Lemma 2.3.6

Part 1. Let’s first look at the case when w is bounded by a constant w∞ and define for
(z, γ) ∈ Υ×R

W (z, γ) =

∫ T−h

0
χγs (z)

(∫
Z
w(φγs (z), d, h+ s, u)γ(s)(du)

)
ds

Now take (z, γ) ∈ Υ × R and suppose (zn, γn) → (z, γ). Let’s write z = (v, d, h) and
zn = (vn, dn, hn) for n ∈ N. For s ∈ [0, T ], let wn(s, u) := w(φγns (zn), dn, hn + s, u) and
w(s, u) := w(φγs (z), d, h+s, u). Let also an = min(T −h, T −hn) and bn = max(T −h, T −
hn).
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Then

|W (zn, γn)−W (z, µ)| ≤
∣∣∣∣∫ bn

an

χγns (zn)

∫
Z
wn(s, u)γn(s)(du)ds

∣∣∣∣
+

∫ T−h

0
χγns (zn)

∫
Z
|wn(s, u)− w(s, u)|γn(s)(du)ds

+
∣∣∣ ∫ T−h

0
χγns (zn)

∫
Z
w(s, u)γn(s)(du)ds

−
∫ T−h

0
χγs (z)

∫
Z
w(s, u)γn(s)(du)ds

∣∣∣
+
∣∣∣ ∫ T−h

0
χγs (z)

∫
Z
w(s, u)γn(s)(du)ds

−
∫ T−h

0
χγs (z)

∫
Z
w(s, u)γ(s)(du)ds

∣∣∣
The first term on the right-hand side converges to zero for n → ∞ since the integrand is
bounded.∫ T−h

0
χγns (zn)

∫
Z
|wn(s, u)− w(s, u)|γn(s)(du)ds ≤

∫ T−h

0
e−δs sup

u∈U
|wn(s, u)− w(s, u)|ds

−−−→
n→∞

0

by dominated convergence and the continuity of w and of φ proved in Lemma 2.3.5.∣∣∣∣∫ T−h

0
(χγns (zn)− χγs (z))

∫
Z
w(s, u)µns (du)ds

∣∣∣∣ ≤ w∞ ∫ T−h

0
|χγns (zn)− χγs (z)|ds

−−−→
n→∞

0

again by dominated convergence, provided that for s ∈ [0, T ], the convergence
χγns (zn) −−−→

n→∞
χγs (z) holds. For this convergence to hold it is enough that for t ∈ [0, T ],

∫ t

0

∫
Z
λdn(φγns (zn), u)γn(s)(du)ds −−−→

n→∞

∫ t

0

∫
Z
λd(φ

γ
s (z), u)γ(s)(du)ds.

It is enough to take n large enough so that dn = d and to write∫ t

0

(∫
Z
λd(φ

γn
s (zn), u)γn(s)(du)−

∫
Z
λd(φ

γ
s (z), u)γ(s)(du)

)
ds =∫ t

0

∫
Z

(λd(φ
γn
s (zn), u)− λd(φγs (z), u)) γn(s)(du)ds
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+

∫ t

0

(∫
Z
λd(φ

γ
s (z), u)γn(s)(du)−

∫
Z
λd(φ

γ
s (z), u)γ(s)(du)

)
ds

By the local Lipschitz property of λd,∣∣∣∣∫ t

0

∫
Z

(λd(φ
γn
s (zn), u)− λd(φγs (z), u)) γn(s)(du)ds

∣∣∣∣ ≤ lλ ∫ t

0
||φγns (zn)− φγs (z)||Hds

and
∫ t

0 ||φ
γn
s (zn)− φγs (z)||Eds ≤ t sups∈[0,T ] ||φ

γn
s (zn)− φγs (z)||H −−−→

n→∞
0 by Lemma 2.3.5.

The second term converges to zero by the definition of the weakly* convergence in L∞(M(Z)).

Part 2. In the general case where |w| ≤ wcB
∗, let wB(z, u) = w(z, u) − cwB∗(z) ≤ 0

for (z, u) ∈ Υ× U . wB is a continuous function and there exists a nonincreasing sequence
(wBn ) of bounded continuous functions such that wBn −−−→n→∞

wB. By the first part of the
proof we know that

Wn(z, γ) =

∫ T−h

0
χγs (z)

∫
Z
wBn (φγs (z), d, h+ s, u)µs(du)ds

is bounded, continuous, decreasing and converges to

W (z, γ)− cw
∫ T−h

0
χγs (z)b(φγs (z))eζ

∗(T−h−s)ds

which is thus upper semicontinuous. Since b is a continuous bounding function it is easy
to show that

(z, γ)→
∫ T−h

0
χγs (z)b(φγs (z))eζ

∗(T−h−s)ds

is continuous so that in fact W is upper semicontinuous. Now considering the function
wB(z, u) = −w(z, u) − cwB∗(z) ≤ 0 we easily show that W is also lower semicontinuous
so that finally W is continuous.

Now the continuity of the applications (z, γ)→ c′(z, γ) and (z, γ)→ (Q′w)(z, γ) comes
from the previous result applied to the continuous functions defined for (z, u) ∈ Υ × U
by w1(z, u) := c(v, u) and w2(z, u) := λd(v, u)

∫
D w(v, r, h)Q(dr|v, d, u) with z = (v, d, h).

Here the different assumptions of continuity (H(λ))2.3., (H(c))1. and (H(Q)) are needed.
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Chapter 3

Additional results

This chapter gathers some additional results on the infinite-dimensional controlled
PDMP defined in Chapter 2. The first section is dedicated to showing the tightness of
the continuous component of a sequence of controlled infinite-dimensional PDMP asso-
ciated to a sequence of relaxed control strategies. This constitutes a first step towards
the tightness of the whole process in order to prove convergence results called relaxation
results. Relaxation results ensure that relaxed trajectories are not far from original trajec-
tories so that the relaxed control system remains closely related to the original one. For
our control infinite-dimensional PDMP, it can be formulated as follows.

For every relaxed control strategy µ ∈ AR and every ε > 0, there exists a control
strategy α ∈ A such that

sup
t∈[0,T ]

dΞ(Xµ
t , X

α
t ) ≤ ε,

where dΞ(·, ·) is a distance on Ξ. For example, we can define this distance for x1 =

(v1, d1, τ1, h1, ν1), x2 = (v2, d2, τ2, h2, ν2) ∈ Ξ2, by

dΞ(x1, x2) = max{||v1 − v2||H , dD(d1, d2), |τ1 − τ2|, |h1 − h2|, ||ν1 − ν2||H},

where dD(·, ·) is the discrete distance on D, meaning that we must have dµt = dαt for
all t ∈ [0, T ].

The second section extends the scope of the definition of controlled infinite-dimensional
PDMPs, and the results of Chapter 2. We first show that the continuous component of the
PDMP can take values in separable, reflexive Banach spaces. We then show that the space
can also be taken nonreflexive. The difficulty to overcome is that in nonreflexive Banach
spaces, the dual of a C0 semigroup is not necessarily a C0 semigroup. This, in particular,
covers the cases of spaces of continuous functions and spaces of integrable functions. We
develop in detail the case of the Laplacian on C([0, 1]), the space of continuous functions

143
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on [0, 1].

3.1 Tightness of a sequence of infinite-dimensional controlled
PDMPs

Here we prove a tightness result provided an additional assumption on the semigroup.
Suppose that we are given a metrizable topology on AR. The next Theorem is independent
of any particular topology.

Theorem 3.1.1. Let (ek, k ≥ 1) be an orthonormal basis of H and suppose that following
assumption is satisfied:

(H(S)) There exists h ∈ L1
loc(R) such that for every t ∈ (0, T ],

∞∑
k=1

||S(t)ek||2H ≤ h(t).

Let (µn, n ∈ N) denote a sequence of relaxed control strategies that converges to a relaxed
control strategy µ ∈ AR. For n ∈ N, we denote by (Xn

t , t ≥ 0) the controlled PDMP asso-
ciated to µn and (vnt , t ≥ 0) its first component. Then (vn, n ∈ N) is tight in C([0, T ], H).

Remark 3.1.1. i) (H(S)) is satisfied for analytic semigroups. It implies in particular that
S is an Hilbert-Schmidt semigroup. Hence (H(S)) implies (H(L))4.

ii) If a semigroup (S(t))t≥0 satisfies (H(S)) then the dual semigroup (S∗(t))t≥0 also satisfies
(H(S)).

Proof. This proof is largely inspired by the proof of [GT12, Theorem 2]. We use a critera
of tightness in Hilbert spaces that we recall after this proof. We beging by showing that
(vn, n ∈ N) satisfies the Aldous condition. Recall that MS > 0 s a bound of (S(t)) on
[0, T ], i.e. supt∈[0,T ] |||S(t)||| ≤MS with ||| · ||| the operator norm on H. Recall also that for
(v, d, µ) ∈ H ×D ×M1

+(Z) we denote by f̄d(v, µ) :=
∫
Z fd(v, u)µ(du). Because of (H(f)),

||f̄d(v, µ)||H ≤ b1 + b2||v||H , b1 ≥ 0, b2 > 0.

Let (v0, d0, T0) ∈ Υ and K any compact susbset of H containing v0. For (t, n) ∈
[0, T ]×N, we denote by Xn

t =: (vnt , d
n
t , τ

n
t , T

n
t , ν

n
t ) the PDMP associated to µn and starting

at (v0, d0, 0, T0, v0). Let θ > 0 and τ be a (Ft)-stopping time such that τ ≤ T − θ.
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||vnτ+θ − vnτ ||H ≤ ||S(τ + θ)v0 − S(τ)v0||H

+

∫ τ

0
||(S(τ + θ − s)− S(τ − s))f̄dns (vns , µ

n
τns

(νns , d
n
s , T

n
s ))||Hds

+

∫ τ+θ

τ
||S(τ + θ − s)f̄dns (vns , µ

n
τns

(νns , d
n
s , T

n
s ))||Hds

≤MS ||S(θ)v0 − v0||H +

∫ τ

0
|||S(τ + θ − s)− S(τ − s)|||(b1 + b2||vns ||H)ds

+

∫ τ+θ

τ
MS(b1 + b2||vns ||H)ds.

Because of the strong continuity of (S(t)), ||S(θ)v0 − v0||H → 0 when θ → 0. Further-
more,

∫ τ+θ

τ
MS(b1 + b2||vns ||H)ds ≤ θ(b1 + b2cK)→ 0.

Since (S(t))t≥0 is immediately compact, it is uniformly continuous on every interval
[κ, T ] with κ > 0. Let κ > 0,

∫ τ−κ

0
|||S(τ + θ − s)− S(τ − s)|||(b1 + b2||vns ||H)ds ≤ CK

∫ τ−κ

0
|||S(τ + θ − s)− S(τ − s)|||ds

≤ CKT sup
t∈[κ,T ]

|||S(t+ θ)− S(t)|||

−−−→
θ→0

0,

with CK = (b1 + b2ck) and∫ τ−κ

τ
|||S(τ + θ − s)− S(τ − s)|||(b1 + b2||vns ||H)ds ≤ 2MS(b1 + b2cK)κ.

Now let δ,M > 0. We can find n0 ∈ N and η ∈ (0, T ] such that for θ ∈ (0, η)

1

M
||S(θ)v0 − v0||H ≤

δ

4
,

1

M
η(b1 + b2cK) ≤ δ

4
,

1

M
(b1 + b2cK)T sup

t∈[ 1
n0
,T ]

|||S(t+ θ)− S(t)||| ≤ δ

4
,

1

M
2MS(b1 + b2cK)

1

n0
≤ δ

4
.
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Then, applying Markov inequality, for all n ≥ n0 and θ ∈ (0, η),

Pn(||vnτ+θ − vnτ ||H ≥M) ≤ 1

M
En(||vnτ+θ − vnτ ||H) ≤ δ,

so that,

sup
n≥n0

sup
θ∈(0,ρ)

Pn(||vnτ+θ − vnτ ||H ≥M) ≤ δ.

Let us now apply Theorem 3.1.2 to show that for every t ∈ [0, T ], (vnt , n ∈ N) is tight
in H. Then, by invoking Theorem 3.1.3, (vn, n ∈ N) will be tight in D([0, T ], H) and in
C([0, T ], H) as well because vn ∈ C([0, T ], H) for every n ∈ N.

Let t ∈ [0, T ]. Because vn is bounded in C([0, T ], H), the Markov inequality gives that
for any δ > 0 there exists ρ > 0 large enough such that.

sup
n≥0

P(||vnt ||H > ρ) ≤ cK
ρ
≤ δ.

To end the proof, we need to show that for any δ, η > 0 we can find n0 ∈ N and a space
Lδ,η such that

sup
n≥n0

P( inf
v∈Lδ,η

||vnt − v||H > η) ≤ δ.

For every h ∈ H, S(t)h =
∑∞

k=1(S(t)h, ek)Hek. Let p ∈ N∗ and define for h ∈ H,

Sp(t)h :=

p∑
k=1

(S(t)h, ek)Hek,

and vnt,p := Sp(t)v0 +
∫ t

0 Sp(t− s)f̄dns (vns , µ
n
τns

(vns , d
n
s , T

n
s ))ds.
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Now,

vnt − vnt,p =
∞∑

k=p+1

(S(t)v0, ek)Hek +

∫ t

0

∞∑
k=p+1

(S(t− s)f̄dns (vns , µ
n
τns

(vns , d
n
s , T

n
s )), ek)Hekds

=
∞∑

k=p+1

(v0, S
∗(t)ek)Hek +

∫ t

0

∞∑
k=p+1

(f̄dns (vns , µ
n
τns

(vns , d
n
s , T

n
s )), S∗(t− s)ek)Hekds

with S∗(t) the adjoint operator of S(t).

||vnt − vnt,p||2H ≤
∞∑

k=p+1

|(v0, S
∗(t)ek)H |2

+

∫ t

0

∞∑
k=p+1

|(f̄dns (vns , µ
n
τns

(vns , d
n
s , T

n
s )), S∗(t− s)ek)H |2ds

≤ ||v0||2H
∞∑

k=p+1

||S∗(t)ek||2H

+

∫ t

0

∞∑
k=p+1

||f̄dns (vns , µ
n
τns

(vns , d
n
s , T

n
s ))||2H ||S∗(t− s)ek||2Hds

≤ ||v0||2H
∞∑

k=p+1

||S∗(t)ek||2H + (b1 + b2cK)2
∞∑

k=p+1

∫ t

0
||S∗(t− s)ek||2Hds.

−−−→
p→∞

0,

uniformly in n ∈ N. Now fix δ, η > 0 and let p ∈ N∗ such that ||vnt − vnt,p||H ≤ ηδ for every
n ∈ N and define Lδ,η := span{ei, 1 ≤ i ≤ p}. Since vnt,p ∈ Lδ,η, we get

E( inf
v∈Lδ,η

||vnt − v||H) ≤ E(||vnt − vnt,p||H) ≤ ηδ,

and Markov’s inequality gives

P( inf
v∈Lδ,η

||vnt − v||H > η) ≤ δ,

uniformly in n ∈ N.

Tightness in Hilbert spaces
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Let D([0, T ], H) be the space of càdlàg functions on [0, T ] with values in the separable
Hilbert space H.

Theorem 3.1.2 (respectively 3.1.3) below give a criterion of tightness in H (respectively
in D([0, T ], H)). Their proofs can be found in [Mé84].

Theorem 3.1.2. Let (ek, k ≥ 1) be a basis of H and define, for k ≥ 1,

Lk = span{ei, 1 ≤ i ≤ k}.

Then (vn, n ∈ N) is tight in H if and only if, for any δ, η > 0 there exist ρ > 0, n0 ∈ N and
Lδ,η ⊂ {Lk, k ≥ 1} such that

sup
n≥n0

P(||vn||H > ρ) ≤ δ,

sup
n≥n0

P( inf
v∈Lδ,η

||vn − v||H > η) ≤ δ.

Theorem 3.1.3. Assume that (vn, n ∈ N) ∈ D([0, T ], H)N satisfy Aldous’s condition,
namely, for any δ,M > 0, there exist ρ > 0, n0 ∈ N such that, for all stopping times τ such
that τ + ρ < T ,

sup
n≥n0

sup
θ∈(0,ρ)

P(||vnτ+θ − vnτ ||H ≥M) ≥ δ.

Assume moreover that for each t ∈ [0, T ], the sequence (vnt , n ∈ N) is tight in H. Then
(vn, n ∈ N) is tight in D([0, T ], H).

As mentioned in Section 0.3.3, Theorem 3.1.1 is a first step towards a relaxation result
for relaxed infinite-dimensional controlled PDMPs. It is striking to note that this theorem
is independent of the topology considered on the space of relaxed control strategies. In
fact, it is almost a deterministic result since it relies only on the assumptions made on
the PDEs that drive the deterministic motion between jumps of the discrete component.
Now, because of the strong coupling between the continuous and the discrete components,
and because we had to add many variables to the process to define a coherent theoretical
Markovian framework, the whole process (Xn

t = (vnt , d
n
t , τ

n
t , T

n
t , ν

n
t ), t ∈ [0, T ])n∈N is much

more complicated and we did not manage to prove a tightness result yet.
Even if we suppose the tightness of the whole process, in order to prove a relaxation

theorem, we still need to identify a unique limiting process. To do so, we need to con-
sider a topology on AR. One topology that we could consider is the topology of uniform
convergence from Υ in R([0, T ], U), i.e. we will say that µn → µ in AR if

sup
z∈Υ

∣∣∣∣∫ T

0

∫
Z
f(t, u)µnt (z)(du)dt−

∫ T

0

∫
Z
f(t, u)µt(z)(du)dt

∣∣∣∣→ 0.
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for every Carathéodory integrand f : [0, T ]×H → R, when n→∞. As in [CDMR12], we
could try to study the sequence of infinitesimal generators

Gµnf(v, d, τ, h, ν) =
∂

∂τ
f(v, d, τ, h, ν) + 〈hv(v, d, τ, h, ν), Lv + fd(v, ατ (ν, d, h))〉V ∗,V

+

∫
U
λd(v, u)

∫
D

[f(v, p, 0, h+ τ, v)

− f(v, d, τ, h, ν)]Q(dp|v, d, u)µnτ (ν, d, h)(du).

We can note that to prove a convergence result for Gµn we would probably have to
assume a pointwise convergence of µn in the variable τ (there is no integral on τ in the
expression of the generator) and this is excluded in our framework. Pointwise convergence
of relaxed controls is not a satisfactory topology to consider relaxed controlled PDEs.

3.2 A new framework for the definition of infinite-dimensional
PDMPs

In this section we present an alternative framework, based on the work of Fattorini
for PDEs ([Fat94a], [Fat94b], [Fat99]), for the definition of infinite-dimensional controlled
PDMPs for which the continuous component takes values in a Banach space, possibly
nonreflexive. This framework includes the case where the continuous component of the
PDMP takes values in a space of continuous functions. If not otherwise specified, the
notations will be those of Chapter 2. In our applications, we may want to consider the
space C0([0, 1]) for the membrane potential if we argue that the membrane potential should
be a continuous spatial function along the axon. We will in particular show that the results
of Chapter 2 are valid in this framework.

This framework has the additional feature that it allows to consider noncompact control
spaces. For clarity purposes we will still consider the control space Z to be a compact Polish
space and focus on the difficulty that constitutes nonreflexive Banach spaces. Furthermore,
since in our applications the control is a physical quantity, it is bound to take values in a
compact space. We refer the reader to [Fat99, Section 12.5] for a discussion on the different
control spaces that can be considered.

We begin with the case of a separable reflexive Banach space. It is important to
note that we only need to properly define relaxed trajectories of the PDMP and prove an
analogue of Lemma 2.3.5 in order to extend the results of Chapter 2. Indeed, the rest
of the results can be directly rewriten for a Banach space. We then present the case of
nonreflexive spaces and we develop in detail the case of the Laplacian in C0([0, 1]).

Let E be a separable reflexive Banach space with 〈·, ·〉(E∗,E) its duality pairing. The
infinite-dimensional controlled PDMP is constructed on E × D in the same way as in
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Chapter 2 except for the Assumptions (H(L)) and (H(f)) that become

(H(L)b) L is the infinitesimal generator of a strongly continuous semigroup (S(t))t∈R+

in E, immediately compact, that is, compact for every t > 0. We denote by MS a
bound of the semigroup on [0, T ] for the operator norm.

(H(f)b) For every d ∈ D, fd : E × Z → E is a function such that:

1. For every y ∈ E, the function z → fd(y, z) is continuous, hence bounded, in Z.

2. There exists lf > 0 such that

||fd(y, z)− fd(y′, z)||E ≤ lf ||y − y′||E (y, y′ ∈ E, z ∈ Z).

We still assume (H(λ)) and (H(Q)) where the space H is replaced by E. Assumption
(H(f)b) allows to give a sense to the relaxed PDE on E

ẏ(s) = Ly(s) +

∫
U
fd(y(s), u)γ(s)(du), y(0) = y0 ∈ E, (3.1)

with γ(·) ∈ R([0, T ], U). Indeed, this assumption implies that for d ∈ D, y∗ ∈ E∗, and
(y(·), γ(·)) ∈ C([0, T ], E)×R([0, T ], U),

||〈y∗, fd(y(t), ·)〉(E∗,E)||C(Z) ≤ ||y∗||E∗(l max
t∈[0,T ]

||y(t)||E + max
u∈U
||fd(0, u)||E),

and thus
t→

∫
U
〈y∗, fd(y(t), u)〉(E∗,E)γ(t)(du)

belongs to L1([0, T ]). Since E is reflexive, we can define the function fd : E×M1
+(Z)→ E

such that fd(y)γ is the unique element of E satisfying

〈y∗, fd(y)γ〉(E∗,E) =

∫
U
〈y∗, fd(y, u)〉(E∗,E)γ(du)

for all y∗ ∈ E∗. The function t → fd(y(t))γ(t) is thus E∗ − weakly measurable for all
(y(·), γ(·)) ∈ C([0, T ], E)×R([0, T ], U) and since E is separable, it is strongly measurable.
We can now rewrite (3.1) in the integral form that we use in the sequel

y(t) = S(t)y0 +

∫ t

0
S(t− s)fd(y(s))γ(s)ds, t ∈ [0, T ], y0 ∈ E, (3.2)

the integral being understood as the Lebesgue-Bochner integral. We now prove the ana-
logue of Lemma 2.3.5 in the case of a Banach space.

Lemma 3.2.1. Assume that (H(L)b) and (H(f)b) are satisfied. Then the mapping

φ : (z, γ) ∈ Υ×R([0, T ], U)→ φγ· (z) = S(t)v +

∫ ·
0
S(· − s)fd(φγs (z))γ(s)ds,
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with z = (v, d, h), is continuous from Υ×R([0, T ], U) in C([0, T ];E).

Proof. The proof is in the same spirit that the proof of Theorem 2.3.5 and adapted to the
case of a Banach space instead of the Hilbert space H by using the arguments of the proof
of [Fat94a, Lemma 5.1] for controlled deterministic PDEs. Recall that contrarily to the
more general framework of [Fat94a], the space of relaxed controls is here metrizable and
we thus work with sequences. Let t ∈ [0, T ] and let (z, γ) ∈ Υ × R([0, T ];U). Suppose
(zn, γn) → (z, γ). Since D is a finite set, we take the discrete topology on it and if we
write zn = (vn, dn, hn) and z = (v, d, h), we have the equality dn = d for n large enough.
So for n large enough we have

φγnt (zn)− φγt (z) = S(t)vn − S(t)v +

∫ t

0
S(t− s)fd(φγns (zn))γn(s)ds

−
∫ t

0
S(t− s)fd(φγs (z))γ(s)ds

= S(t)vn − S(t)v +

∫ t

0
S(t− s)[fd(φγns (zn))γn(s)− fd(φ

γ
s (z))γn(s)]ds

+

∫ t

0
S(t− s)[fd(φγs (z))γn(s)− fd(φ

γ
s (z))γ(s)]ds.

From the Lipschitz property of the function fd we obtain

||φγnt (zn)− φγt (z)||E ≤MS ||vn − v||E + lfMS

∫ t

0
||φγns (zn)− φγs (z)||Eds+ ||`n(t)||E

where `n(t) :=
∫ t

0 S(t−s)[fd(φγs (z))γn(s)− fd(φ
γ
s (z))γ(s)]ds. By the Gronwall lemma there

exists a constant C > 0 such that

||φγnt (zn)− φγt (z)||E ≤ C(MS ||vn − v||E + sup
s∈[0,T ]

||`n(s)||E).

Since limn→+∞ ||vn − v||E = 0, the proof is complete if we show that the sequence of
functions (||`n||E)n∈N uniformly converges to 0 on [0, T ].

Let us suppose that (||`n||E)n∈N does not converge uniformly to 0 and show that this
contradicts γn → γ. According to this assumption there exists ε > 0 such that for every
n ∈ N, there exists an integer p ≥ n and tp ∈ [0, T ] satisfying ||`p(tp)||E ≥ 2ε. Since E is
reflexive, ||`p(tp)||E = ||`p(tp)||E∗∗ = supy∗∈E∗,||y∗||E∗=1 | 〈y∗, `p(tp)〉(E∗,E) | so that there
exists a sequence (y∗p) of elements of E∗ with ||y∗p||E∗ = 1 and | 〈y∗p, `p(tp)〉(E∗,E) |≥ ε which
can be rewritten as∣∣∣∣∫ T

0

∫
U
〈1s∈[0,tp]S

∗(tp − s)y∗p, fd(φγs (z), u)〉(E∗,E)(γp − γ)(s)(du)ds

∣∣∣∣ ≥ ε. (3.3)
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We will prove the existence of two subsequences, still denoted by (y∗p) and (tp), converging
respectively to y∗ ∈ E∗ and t ∈ [0, T ] and such that

〈1[0,tp](·)S∗(tp−·)y∗p, fd(φγ· (z), ·)〉(E∗,E) −−−→
p→∞

〈1[0,t](·)S∗(t−·)y∗, fd(φγ· (z), ·)〉(E∗,E) (3.4)

in L1([0, T ];C(Z)). This, together with (3.3), contradicts the convergence γn → γ in
R([0, T ], U). By the Alaoglu theorem, we can extract a subsequence, still written (y∗p), E-
weakly convergent to some y∗ ∈ E∗. Without changing notations, we assume that we have
extracted a subsequence of (tp) which convergences to some t ∈ [0, T ]. Then, using the
compactness of (S(t))t≥0 and hence the one of (S∗(t))t≥0, we obtain the strong convergence
of S∗(δ)y∗p to S∗(δ)y∗ for every δ > 0. Now for δ > 0 and r ≤ tp − δ,

S∗(tp − r)y∗p = S∗(tp − r − δ)S∗(δ)y∗p −−−→p→∞
S∗(t− r − δ)S∗(δ)y∗ = S∗(t− r)y∗

strongly in E∗. Taking δ → 0 we obtain for all r ∈ [0, t),

S∗(tp − r)y∗p −−−→p→∞
S∗(t− r)y∗. (3.5)

Now let f∗ ∈ C([0, T ];E∗). Approximating f∗ by piecewise constant functions, we deduce
that Φf∗ : s 7→ 〈f∗(s), fd(φµs (z), ·)〉(E∗,E) is a strongly measurable C(Z)-valued function.
Moreover, using Assumption (H(f)b)1.,

sup
u∈Z
|Φf∗(s, u)| ≤ βc||f∗(s)||E∗ , s ∈ [0, T ], (3.6)

with c := sup{y ∈ E | ||y||E ≤ maxs∈[0,T ] ||φ
µ
s (z)||E}. This implies that s 7→ Φf∗(s, ·) is an

element of L1([0, T ];C(Z)). We can apply this argument to the following functions

f̄∗p (s) := 1s∈[0,tp]S
∗(tp − s)y∗p,

f̄∗(s) := 1s∈[0,t]S
∗(t− s)y∗,

and obtain supt∈[0,T ],u∈Z |Φf̄∗p
(t, u)| ≤ Kβc and supt∈[0,T ],u∈Z |Φf̄∗(t, u)| ≤ Kβc, with K >

0 independent of p. From (3.5) we get that f̄∗p (s) −−−→
p→∞

f̄∗(s), for every s ∈ [0, T ]. By the

dominated convergence theorem, we deduce that

Φf̄∗p
−−−→
p→∞

Φf̄∗

in L1([0, T ];C(Z)) which is (3.4). As we already observed, this contradicts γp → γ and it
ends the proof.

The problem that pose nonreflexive Banach spaces is that if (S(t))t≥0 is a strongly con-
tinuous semigroup on E, it does not necessarily imply that the dual semigroup (S∗(t))t≥0
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is strongly continuous on the dual space E∗. In this case, the proof of Lemma 3.2.1 cannot
be conducted as before. We can see this on the elementary example of the translation semi-
group on the nonreflexive Banach space L1(R). We formalize this in the next Proposition
and recall the proof of the main properties.

Proposition 3.2.1. The translation semigroup (S(t))t≤0 defined on L1(R) by

S(t)f(s) = f(s+ t), t ≥ 0, s ∈ R f ∈ L1(R),

is a strongly continuous semigroup of contractions with infinitesimal generator

Af(x) = f ′(x)

and domain D(A) consisting of all absolutely continuous functions f ∈ L1(R) with f ′ ∈
L1(R). The adjoint semigroup (S(t)∗)t≤0 on L1(R)∗ = L∞(R) is defined by

S(t)∗f(s) = f(s− t), t ≥ 0, s ∈ R f ∈ L1(R).

It is not strongly continuous on L∞(R) and the domain of its infinitesimal generator is
not dense in L∞(R).

Proof. The semigroup proprety, the contraction property, the expression of the infinitesimal
generator and its domain are immediate. Le us show that (S(t))t≥0 is strongly continuous
and that (S(t)∗)t≤0 is not. Let f be a continuous function on R with compact support
K ⊂ [a, b] ⊂ R.

lim
t↓0
||S(t)f − f ||∞ = lim

t↓0
sup
s∈R
|f(s+ t)− f(s)| = 0,

because f is uniformly continuous on R. Now we get

||S(t)f − f ||1 =

∫
R
|S(t)f(s)− f(s)|ds ≤ (b− a+ t)||S(t)f − f ||∞,

and thus

lim
t↓0
||S(t)f − f ||1 = 0.

The strong continuity on L1(R) follows from the density of continuous functions with
compact support in L1(R).
Regarding the adjoint semigroup, it is immediate to see that

||S(t)∗1R+ − 1R+ ||L∞(R) = sup
s∈R
|1R+(s− t)− 1R+(t)| = 1,

with 1R+ ∈ L∞(R) the characteristic function of [0,∞).
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To tackle this problem, Phillips introduced the Phillips dual of a Banach space E and
the Phillips adjoint of a semigroup on E ([Phi55]). The following definition, Lemma 3.2.2
and Proposition 3.2.2 can be found in [EN00, Section 2.6 p62].

Definition 3.2.1. Let (S(t))t≥0 be a strongly continuous semigroup on E, with infinitesi-
mal generator A. We define the Phillips dual E� of E by

E� := {y∗ ∈ E∗| lim
t↓0
||S(t)∗y∗ − y∗||E∗ = 0}

and we call the semigroup given by the restricted operators

S�(t) := S(t)∗|E� , (t ≥ 0),

the Phillips semigroup. We will denote by A� its infinitesimal generator

The Phillips semigroup is strongly continuous and E� is a closed subspace of E∗. It is
important to note that the Phillips dual characterizes the couple (E,A) and note just the
Banach space E itself. That is why the Phillips dual is always referred to with respect to
A. Furthermore, if E is reflexive, the Phillips dual E� and the dual E∗ coincide for any
strongly continuous semigroup (since then the adjoint semigroup is strongly continuous in
E∗). The next lemma shows that the Phillips dual is large, in the sens that it contains the
domain of A∗, the adjoint operator of A. The proposition that follows characterizes the
relation between A� and A∗.

Lemma 3.2.2. D(A∗) ⊂ E�

Proof. Let y∗ ∈ D(A∗) and x ∈ E. Then

∣∣〈S(t)∗y∗ − y∗, x〉(E∗,E)

∣∣ =
∣∣〈y∗, S(t)x− x〉(E∗,E)

∣∣
=

∣∣∣∣〈y∗, A∫ t

0
S(s)xds〉(E∗,E)

∣∣∣∣
=

∣∣∣∣〈A∗y∗, ∫ t

0
S(s)xds〉(E∗,E)

∣∣∣∣
≤ tMS ||x||E ||A∗y∗||E∗ ,

and thus
||S(t)∗y∗ − y∗||E∗ ≤ tMS ||A∗y∗||E∗ −−→

t↓0
0,

so that y∗ ∈ E�.
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Proposition 3.2.2. The infinitesimal generator A� of the strongly continuous semigroup
(S�(t))t≥0 is the part of A∗ in E�, that is,

A�y∗ = A∗y∗ for y∗ ∈ D(A�) = {y∗ ∈ D(A∗) | A∗y∗ ∈ E�}.

Moreover, E� = D(A∗).

Proof. Since the weak∗ topology on E∗ is weaker than the norm topology, A∗ is an extension
of A�. Furthermore, if y∗ ∈ D(A∗) such that A∗y∗ ∈ E�, since A∗ is weakly∗ closed, we
obtain from [EN00, Lemma 1.3 p50] that

S�(t)y∗ − y∗ = A∗
∫ t

0
S�(s)y∗ds =

∫ t

0
S�(s)A∗y∗ds, (t > 0).

Now, from the norm continuity of s→ S�(s)A∗y∗, we obtain

||1
t
(S�(t)y∗ − y∗)−A∗y∗||E∗ ≤

1

t

∫ t

0
||S�(s)A∗y∗ −A∗y∗||E∗ds −−→

t↓0
0,

and thus y∗ ∈ D(A�). Finally, since D(A�) is dense in E� (as the infinitesimal generator
of a strongly continuous semigroup on E�), we get

E� = D(A∗).

For the translation semigroup, E� consists of all uniformly continuous functions f ∈
L∞(R) and D(A�) consists of all continuously differentiable functions f ∈ E� with
bounded uniformly continuous derivative f ′.

We can define an equivalent norm of || · ||E that involves the Phillips dual E�. For
y ∈ (E) we define

||y||0 := sup
y∗∈E�,||y∗||E∗≤1

|〈y∗, y〉|.

Then we obtain ([Fat99, Lemma 7.4.6]) ||y||E ≤ ||y||0 ≤ MS ||y||E with MS defined in
(H(L)b). Now, in the case where the semigroup (S(t)t≥0) is immediately norm continuous
(as for instance the Laplacian in C([0,1])), we can show that

S(t)∗E∗ ⊂ E� (t ≥ 0), (3.7)

S(s+ t)∗ = S�(s)S(t)∗ (s ≥ 0, t > 0). (3.8)

Indeed, in this case, the adjoint semigroup (S(t)∗t≥0) is also immediately norm contin-
uous so that for every t > 0 and y∗ ∈ E∗, s→ S(s)∗S(t)∗y∗ = S(s+ t)∗y∗ is continuous in
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[0,∞) and thus S(t)∗y∗ ∈ E�. Now for y∗ ∈ E∗, s ≥ 0 and t > 0, since S(t)∗y∗ ∈ E� and
S�(s) is the restriction of S(s)∗ to E� we get S(s+ t)∗y∗ = S(s)∗S(t)∗y∗ = S�(s)S(t)∗y∗.

Now, since (S�(t))t≥0 is a strongly continuous semigroup in E� we can apply the
Phillips adjoint theory and define the double Phillips adjoint semigroup (S��(t) = (S�)�(t))t≥0

as the restriction of the adjoint semigroup (S�(t)∗)t≥0 to the closure E�� = (E�)� of
D((A�)∗) in (E�)∗. We now recall [Fat99, Lemma 7.7.1] and its proof.

Lemma 3.2.3. a) Up to a change of equivalent norm, there exists a bicontinuous linear
imbedding from E into E��, that is

E ⊂ E��. (3.9)

b) We have

A ⊂ A��, S(t) ⊂ S��(t), (t > 0), (3.10)

in the sense that if (y1, y2) ∈ D(A)×E, then (y1, y2) ∈ D(A��)×E�� and Ay1 = A��y1

and S(t)y2 = S��y2.

Proof. The equivalence of the norms || · ||E and || · ||0 proves that E ⊂ (E�)∗. Now, for
(y, y∗) ∈ D(A)×D(A�), we have 〈A�y∗, y〉 = 〈A∗y∗, y〉 = 〈y∗, Ay〉 so that y ∈ D((A�)∗)

and (A�)∗y = Ay. This implies that D(A) ⊂ E�� and since D(A) is dense in E we obtain
(3.9). If y ∈ D(A) we have (A�)∗y = Ay ∈ E ⊂ E�� and thus (A�)∗y = A��y. Finally,
for y ∈ E, y∗ ∈ E� and t ≥ 0 we have 〈y∗, S(t)y〉 = 〈S�(t)y∗, y〉 = 〈y∗, S��(t)y〉 since
y ∈ E�� also.

The case we are interested in is when the nonreflexive space E is nevertheless�-reflexive
in the sense that (3.9) is in fact an equality E = E��. In this case, it is immediate to see
that A = A�� and S(t) = S��(t) for t > 0. In the �-reflexive case with immediately norm
continuous semigroup, noting that (S�(t))t≥0 is as well immediately norm continuous, we
can apply (3.8) and (3.7) to (S�(t))t≥0 and use the �-reflexivity to obtain

S�(t)∗(E�)∗ ⊂ E, S�(s+ t)∗ = S(s)S�(t)∗, (s ≥ 0, t > 0). (3.11)

Now let Ω be a bounded domain of class C2 in Rm, with boundary Γ. We look at
the special case of elliptic operators, that generate analytic, and thus immediately norm
continuous semigroups in the nonreflexive Banach space C(Ω), and for which C(Ω) is
�-reflexive. The next results are valid for elliptic operators defined by

Ly =
m∑
j=1

m∑
k=1

∂j(ajk(x)∂ky) +
m∑
j=1

bj(x)∂jy + c(x)y,
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with ajk and bj continuously differentiable in Ω and c continuous in Ω with either Dirich-
let boundary condition y(x) = 0 (x ∈ Γ) or variational boundary condition ∂νy(x) =

γ(x)y(x) x ∈ Γ, where ∂ν is the derivative in the direction of the conormal vector
νj(x) =

∑m
k=1 ajk(x)ηk(x) with η the outer normal vector.

As mention in the beginning of this Section, we now focus on the Laplacian in C([0, 1])

with variational boundary condition β : y′(0) = y′(1) = 0. The next Theorem is the
general result [Fat99, Theorem 7.6.3] written in our particular case.

Theorem 3.2.1. There exists an operator ∆c that can be characterized in any of the two
equivalent forms:
Strong form:

D(∆c) =

y ∈ ⋂
p≥1

W 2,p
β (0, 1) | y′′ ∈ C([0, 1])

 (3.12)

and ∆cy = y′′ with W 2,p
β (0, 1) constituted of the functions of the Sobolev space W 2,p(0, 1)

that satisfy the variational boundary condition β.
Weak form: D(∆c) consists of all elements y ∈ C([0, 1]) such that there exists z(= ∆cy)

in C([0, 1]) with ∫ 1

0
y(x)v′′(x)dx =

∫ 1

0
z(x)v(x)dx (3.13)

for every v ∈ C2([0, 1]) with v′(0) = v′(1) = 0.
The operator (∆c, D(∆c)) generates an immediately compact analytic semigroup of con-
tractions in C([0, 1]).

Proof. This particular case of [Fat99, Theorem 7.6.3] admits a nicer expression of the
domain D(∆c) and we will be able give the expression of the semigroup generated by ∆c.
Indeed, it easy to realize that

D(∆c) =
{
y ∈ C2([0, 1]) | y′(0) = y′(1) = 0

}
.

The proof of [Fat99, Theorem 7.6.3] for the Laplacian becomes an exercice that can be
found in [EN00]. Since the entire correction is not given in the book, we now proceed to
the proof.

(∆c, D(∆c)) generates a strongly continuous semigroup in C([0, 1])

The domain D(∆c) is a subalgebra of C([0, 1]) ((fg)′(x) = f ′(x)g(x) + f(x)g′(x) = 0

for x = 0, 1). D(∆c) contains constant functions and it separates the points of [0, 1] so
that by the Stone-Weierstrass theorem, D(∆c) is a dense subspace of C([0, 1]). There
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is no difficulty in showing that D(∆c) is complete for the graph norm || · ||∆c defined by
||y||∆c = ||y||∞+||y′′||∞. This means that (∆c, D(∆c)) is a closed, densely defined operator.
We can give an explicit expression of the semigroup (S(t))t≥0 on C([0, 1]), generated by
(∆c, D(∆c)). Indeed, consider for each n ∈ N

s→ en(s) :=

{
1 if n = 0,
√

2 cos(πns) if n ≥ 1.

These functions all belong to D(∆c) and satisfy

∆cen = −π2n2en.

Now let F be the linear space generated by those functions, F := vect{en, n ∈ N}. Since

enem =


em if n = 0,

en if m = 0,
√

2

2
(en+m + en−m) if n,m ≥ 1,

it is easy to see that the Stone-Weierstraas theorem applies again to F , so that it is a dense
subalgebra of C([0, 1]). Consider now, for n ∈ N, the operator

en ⊗ en : y → 〈y, en〉en :=

(∫ 1

0
y(s)en(s)ds

)
en,

which satisfies

||en ⊗ en|| ≤ 2

and

(en ⊗ en)em = δn,mem (3.14)

for all (n,m) ∈ N2, with δn,m = 0 if n 6= m and δn,n = 1. For t > 0 we assert that

S(t) =

∞∑
n=0

e−π
2n2ten ⊗ en. (3.15)

Indeed, let T (t) :=
∑∞

n=0 e
−π2n2ten ⊗ en for t > 0. Then for f ∈ C([0, 1]) and s ∈ [0, 1],

(T (t)y)(s) =

∫ 1

0
y(r)dr + 2

∞∑
n=1

e−π
2n2t cos(nπs)

∫ 1

0
y(r) cos(nπr)dr

=

∫ 1

0
kt(s, r)y(r)dr,
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by the Fubini theorem with

kt(s, r) = 1 + 2
∞∑
n=1

e−π
2n2t cos(nπs) cos(nπr)

= 1 +
∞∑
n=1

e−π
2n2t(cos(nπ(s+ r)) + cos(nπ(s− r)))

= wt(s+ r) + wt(s− r),

if we write wt(s) := 1
2 +
∑∞

n=1 e
−π2n2t cos(nπs). It is easy to prove that kt(·, ·) is continuous

on [0, 1]2. It is less obvious that this function is also positive on [0, 1]2. To prove this we
are going to show the nice formula given in [EN00] without a proof

1

2
+

∞∑
n=1

e−π
2n2t cos(nπs) =

1√
4πt

∑
n∈Z

e−
(s+2n)2

4t . (3.16)

This formula can be derived from the Poisson summation formula

∑
n∈Z

f(x+ n) =
∑
n∈Z

f̂(n)e2iπnx (3.17)

where the function f : R→ R is of class C1 and such that

f(x) = O

(
1

x2

)
(|x| → ∞), f ′(x) = O

(
1

x2

)
(|x| → ∞),

and f̂ is the Fourier transform of f , i.e. f̂(n) =
∫ +∞
−∞ f(t)e−2iπntdt. Before proving

(3.16), we briefly recall the proof of the Poisson summation formula (3.17). Define ϕ(x) :=∑+∞
n=−∞ f(x+ n). The function ϕ is a 1-periodic function and because of the assumptions

on f and f ′, it is easy to show that ϕ is of class C1 on R. The Fourier series of ϕ thus
converges normaly on R with sum ϕ

ϕ(x) =
∑
n∈Z

cn(ϕ)e2iπnx, (x ∈ R),

with

cn(ϕ) =

∫ 1

0
ϕ(t)e−2iπntdt =

∫ 1

0

+∞∑
n=−∞

f(t+ n)e−2iπntdt

=

+∞∑
n=−∞

∫ 1

0
f(t+ n)e−2iπntdt
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=
+∞∑

n=−∞

∫ n+1

n
f(t)e−2iπntdt

=

∫ +∞

−∞
f(t)e−2iπntdt

= f̂(n),

the inversion of
∑

and
∫

being justified by the Fubini theorem.

We apply this formula to the function f : x → e−αx
2 with α > 0. We need to

compute the Fourier transform of f , which constitute a classical exercise. Define I(x) :=∫ +∞
−∞ e−αt

2
e−2iπtxdt for x ∈ R, so that f̂(n) = I(n). The function under the integral is of

class C∞ and its derivative is dominated by the integrable function t → 2πte−αt
2 so that

I is of class C1 and

I ′(x) =
iπ

α

∫ +∞

−∞
−2αte−αt

2
e−2iπtxdt

=
iπ

α

(
e−αt

2
e−2iπtx

∣∣∣+∞
−∞

+ 2iπxI(x)

)
= −2π2

α
xI(x).

We thus obtain I(x) = I(0)e−
π2x2

α with I(0) =
∫ +∞
−∞ e−αt

2
dt =

√
π/α. From the Poisson

summation formula we get

∑
n∈Z

e−α(x+n)2
=

√
π

α

∑
n∈Z

e−
π2n2

α e2iπnx

=

√
π

α

(
1 +

∞∑
n=1

π2n2

α

(
e2iπnx + e−2iπnx

))

=

√
π

α

(
1 + 2

∞∑
n=1

π2n2

α
cos(2πnx)

)

=

√
4π

α
w1/α(2x).

We finally obtain (3.16) by taking α = 1/t and x = s/2. Now, the fact that, for every
t > 0, the function kt(·, ·) is positive makes the computation of the norm of the operator
T (t) very easy. Indeed, for t > 0 and y ∈ C([0, 1]),

||(T (t)y)||C([0,1]) = sup
s∈[0,1]

|
∫ 1

0
kt(s, r)y(r)dr| ≤ ||y||C([0,1]) sup

s∈[0,1]

∫ 1

0
|kt(s, r)|dr.
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But
∫ 1

0 |kt(s, r)|dr =
∫ 1

0 kt(s, r)dr for all s ∈ [0, 1] and the bound is reached for g ∈ C([0, 1])

defined for s ∈ [0, 1] by g(s) = 1. Finally, for all s ∈ [0, 1],
∫ 1

0 kt(s, r)dr = 1 and we get

|||T (t)||| = 1 (3.18)

for all t > 0. There is no difficulty in showing that for (t, s) ∈ R2
+ and n ∈ N, T (t+ s)en =

T (t)T (s)en so that by continuity of the operators and the density of F in E, the semigroup
property is valid on E. The strong continuity of the semigroup on F is easy because :

T (t)e0 = e0 for all t ≥ 0

T (t)en = e−π
2n2ten for all t ≥ 0, n ∈ N∗.

Since the semigroup is bounded, the strong continuity extends to E (see [EN00] Proposition
5.3).

Let B be the infinitesimal generator of (T (t))t≥0. We now prove that ∆c and B coincide,
thus justifying equality (3.15), and that ∆c generates a strongly continuous semigroup of
contractions. For n ∈ N, T (t)en = e−π

2n2ten so that en ∈ D(B) and

T (t)en − en
t

=
e−π

2n2t − 1

t
en −−−→

t→0+
−π2n2en, in C([0, 1]).

The dense subalgebra F is thus contained in D(B), (T (t))t≥0-invariant, and ∆c and B
coincide on F . This implies that F is a core for B (Definition 3.2.2 below) so that B = B|F

and since ∆c and B coincide on F , we get B = ∆c|F (see [EN00, Proposition 1.7 p53]). In
particular, B is a restriction of ∆c.

Definition 3.2.2. Let X be a Banach space. A subspace D of the domain D(A) of a closed
linear operator A : D(A) ⊂ X → X is called a core for A if D is dense in D(A) for the
graph norm and then A = A|D.

We now show that 1 ∈ ρ(∆c)∩ρ(B) to conclude that ∆c = B and thus the semigroups
(S(t))t≥0 and (T (t))t≥0 coincide (ρ(∆c) is the resolvent set of ∆c, i.e. the set of all λ ∈ C
such that the operator λ − ∆c : D(∆c) → C([0, 1]) is bijective). For g ∈ C([0, 1]), the
function

t→ −
∫ t

0
sh(t− s)g(s)ds+ λ ch(x),

with λ = (
∫ 1

0 ch(1− s)g(s)ds)/ sh(1) is the unique solution in D(∆c) of (1−∆c)f = g so
that 1−∆c : D(∆c)→ C([0, 1]) is bijective.

Now for s ∈ [0, 1] and y ∈ C([0, 1]),
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∫ ∞
0

e−t(T (t)y)(s)dt =

∫ ∞
0

e−s
∫ 1

0
y(r)drds

+ 2

∫ ∞
0

∞∑
n=1

e−(π2n2+1)t cos(nπs)

∫ 1

0
y(r) cos(nπr)drdt,

and there is no difficulty to show that s →
∫∞

0 e−t(T (t)y)(s)dt belongs to C([0, 1]). By
[EN00, Theorem 1.10 p55], it implies that 1 ∈ ρ(B).

We now show the immediate compacity of the semigroup, equivalently ([EN00, Theorem
4.29 p119]) the joined immediate norm continuity of the semigroup and the compacity of
the resolvent of its generator.

Let t > 0, s > 0, and y ∈ C([0, 1]),

((T (t)− T (s))y)(x) = 2

∞∑
n=1

(
e−π

2n2t − e−π2n2s
)

cos(nπx)

∫ 1

0
y(r) cos(nπr)dr,

so that

||(T (t)− T (s))y||C([0,1]) ≤ 2||y||C([0,1])

∞∑
n=1

∣∣∣e−π2n2s − e−π2n2t
∣∣∣ .

The function s→ e−π
2n2s − e−π2n2t is continuous in (0,+∞) for every n ∈ N and sups>t |

e−π
2n2s − e−π2n2t |≤ e−π2n2t so that

|||(T (t)− T (s))||| −−→
s↓t

0.

Furthermore, sups∈(t/2,t) | e−π
2n2s − e−π2n2t |≤ e−π2n2t/2 and so

|||(T (t)− T (s))||| −−→
s↑t

0

as well. We can remark here that the argument fails in the case where t = 0. Otherwise
it would mean that the semigroup is quite trivial (exponential semigroup with bounded
generator).

The semigroup (S(t))t≥0 is immediately compact

From [EN00, Proposition 4.25 p117], the compacity of the resolvent of ∆c is equivalent to
the compacity of the canonical injection i : (D(∆c), || · ||∆c) ↪→ E. To show the compacity
of the injection, let D be a bounded subset of D(∆c). There exists M > 0 such that
||y||C([0,1]) + ||y′′||C([0,1]) ≤M for all y ∈ D. Now for y ∈ D and (s, t) ∈ [0, 1]2, one has
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y′(t) =

∫ t

0
y′′(x)dx,

y(t)− y(s) =

∫ t

s
y′(x)dx,

so that {
|y′(t)| ≤M,

|y(t)− y(s)| ≤M(t− s),

the last inequality giving the equicontinuity in D. The compacity then follows from the
Arzéla-Ascoli theorem.

The semigroup (S(t))t≥0 is analytic

We finish the proof with the analyticity of (∆c, D(∆c)). We recall the proof of [EN00,
Theorem 4.5 p389] that asserts that (∆c, D(∆c)) generates an analytic semigroup of angle
π/2. We prove that (∆c, D(∆c)) is a sectorial operator of angle π/2, that is, the sector

Σπ := {λ ∈ C | |arg(λ)| < π} \ {0}

is contained in the resolvent set ρ(∆c) and for each ε (0, π/2), there exists Mε ≥ 1 such
that

|||(λ−∆c)
−1||| ≤ Mε

|λ|
for all 0 6= λ ∈ Σπ−ε. (3.19)

Let λ ∈ Σπ and define µ ∈ C such that λ = µ2 with Reµ > 0. We also write λ = |λ|eiθ.
We are going to show that λ ∈ ρ(∆c), i.e. ∀ f ∈ C([0, 1]), ∃! v ∈ D(∆c), λv − v′′ = f .
Define for f ∈ C([0, 1])

u(x) :=
1

2µ

∫ 1

0
e−µ|x−s|f(s)ds, x ∈ [0, 1]

=
1

2µ

(∫ x

0
e−µ(x−s)f(s)ds+

∫ 1

x
e−µ(s−x)f(s)ds

)
The function u is of class C∞ on [0, 1] and we have for x ∈ [0, 1]

u′(x) =
1

2

(
−
∫ x

0
e−µ(x−s)f(s)ds+

∫ 1

x
e−µ(s−x)f(s)ds

)
and

u′′(x) = −f(x) + µ2u(x).
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The function u is thus a C2-solution of the equation λu − u′′ = f and moreover, it
satisfies

||u||C([0,1]) ≤
||f ||C([0,1])

|λ| cos(θ/2)
.

The function u does not belong to D(∆c) and we now want to compute the solution v of
the same equation that belongs to D(∆c) so that v = (λ − ∆c)

−1f . Let us thus write
v(x) := c1e

µx + c2e
−µx + u(x) a general solution of the equation. For x ∈ [0, 1]

v′(x) = µ(c1e
µx − c2e

µx) +
1

2

(
−
∫ x

0
e−µ(x−s)f(s)ds+

∫ 1

x
e−µ(s−x)f(s)ds

)
,

so that

v′(0) = µ(c1 − c2) +
1

2

∫ 1

0
e−µsf(s)ds,

and

v′(1) = µ(c1e
µ − c2e

−µ)− 1

2

∫ 1

0
e−µ(1−s)f(s)ds.

This yields the system

{
c1 − c2 + γ0 = 0,

c1e
µ − c2e

−µ + γ1 = 0,

with γ0 := 1
2µ

∫ 1
0 e
−µsf(s)ds and γ0 := − 1

2µ

∫ 1
0 e
−µ(1−s)f(s)ds. We thus obtain a unique

solution c2 = γ0eµ−γ1

eµ−e−µ and c1 = c2− γ0 since it is easy to check that eµ− e−µ 6= 0. We now
prove the bound (3.19). Let ε > 0 and λ ∈ Σπ−ε. We write λ = µ2 = |λ|eiθ as before. An
easy estimation yields

|γ0|, |γ1| ≤
||f ||C([0,1])

2|µ|Re(µ)
.

Since |θ| ≤ π − ε and Re(µ) = |µ|| cos(θ/2)|, we have Re(µ) ≥ |µ| cos((π − ε)/2) and thus

|γ0|, |γ1| ≤
||f ||C([0,1])

2|λ| cos((π − ε)/2)
.

Let x ∈ [0, 1],

v(x) =
e−µγ0 − γ1

eµ − e−µ
eµx +

eµγ0 − γ1

eµ − e−µ
e−µx + u(x),

and thus
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||v|| ≤ |γ0|+ eRe(µ)|γ1|
|eµ − e−µ|

+
|γ0|+ |γ1|
|eµ − e−µ|

+
||f ||C([0,1])

|λ| cos((π − ε)/2)
.

Finally, since eRe(µ)/(|eµ − e−µ|) = 1/|1− e−2µ| −−−−→
|µ|→∞

1 and 1/(|eµ − e−µ|) −−−−→
|µ|→∞

0, we

can find a constant Mε > 0 such that

||v|| ≤
||f ||C([0,1])Mε

|λ|
,

for |λ| large enough. This ends the proof.

We now come back to the Phillips dual of C([0, 1]) with respect to ∆c. The next
proposition is a summary of [Fat99, Theorem 7.6.2, Theorem 7.6.5, Theorem 7.6.6] in the
case of ∆c.

Proposition 3.2.3. The space C([0, 1]) is �-reflexive with respect to ∆c and we have

C([0, 1])� = L1(0, 1),

and

∆�c = ∆1, S�(t) = S1(t) (t ≥ 0),

with ∆1 the infinitesimal generator of an immediately compact analytic semigroup (S1(t))t≥0

defined on the domain D(∆1) consisting of elements y ∈ L1([0, 1]) such that there exists
z(= ∆1y) in L1([0, 1]) with

∫ 1

0
y(x)v′′(x)dx =

∫ 1

0
z(x)v(x)dx (3.20)

for every v ∈ C2([0, 1]) with v′(0) = v′(1) = 0.

Proof. The part of the proof on the definition of the Laplacian in L1(0, 1) and the semigroup
it generates can be found [Fat83, Theorem 4.8.3]. Let us just mention that ∆1 is the closure
in L1(0, 1) of ∆c. The part of the proof regarding the Phillips dual can be found in [Fat83,
Theorem 4.8.17] in a more general setting and the analycity in [Fat83, Theorem 4.9.3].
Here we go through the main steps of the proof regarding the Phillips dual, in the case
of the Laplacian with Dirichlet boundary condition, which is easier than the variational
boundary condition. The proof holds for variational boundary condition by means of a
renorming of the space (see [Fat83, Theorem 4.9.3]). We thus have

D(∆c) =
{
y ∈ C2([0, 1]) | y(0) = y(1) = 0

}
.
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We are going to show that the Phillips dual of C0([0, 1]) := {y ∈ C([0, 1]) | y(0) =

y(1) = 0} with respect to ∆c is L1(0, 1). The dual of C0([0, 1]) is the space of functions of
bounded variation, that vanish at 0 and 1, that we denote by BV ([0, 1]).

Now let ν ∈ BV ([0, 1]) and define a continuous linear functional Φ in W 1,2(0, 1) by

Φ(y) =

∫ 1

0
y(x)ν(dx).

The Sobolev space W 1,2(0, 1) is continuously embedded in C([0, 1]) ([Eva98, Theorem 5
p269]) in the sense that there exists a constant C > 0 such that for every y ∈ W 1,2(0, 1)

there exists a version ỹ ∈ C([0, 1]) of y that satisfies

||ỹ||C([0,1]) ≤ C||y||W 1,2(0,1),

and thus
|||Φ|||W 1,2 ≤ C||ν||TV ,

where || · ||TV denotes the total variation of ν. Since the space W 1,2(0, 1) is linearly
and isometrically embedded in L2(0, 1)× L2(0, 1) through

W 1,2(0, 1)→ L2(0, 1)× L2(0, 1)

y 7→ (y,−y′),

we can extend Φ to L2(0, 1) × L2(0, 1) with the same norm, thanks to the Hahn-Banach
theorem. Because of the Riesz representation theorem, we can find (f1, f2) ∈ L2(0, 1) ×
L2(0, 1) such that for all (u, v) ∈ L2(0, 1)× L2(0, 1),

Φ(u, v) =

∫ 1

0
(f1(x)u(x) + f2(x)v(x)) dx.

and

|||Φ|||2L2(0,1)×L2(0,1) = ||f1||2L2 + ||f2||2L2 ≤ C2||ν||2TV .

We thus obtain, for y ∈W 1,2(0, 1)

Φ(y) =

∫ 1

0

(
f1(x)y(x)− f2(x)y′(x)

)
dx.

Now let λ > 0 and µ ∈ D(∆∗c) = D((λ−∆c)
∗) and define ν = (λ−∆c)µ ∈ BV ([0, 1]) with

for y ∈ D(∆c) ∫ 1

0
(λ−∆c)y(x)µ(dx) =

∫ 1

0
y(x)ν(dx).
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We apply the previous procedure to ν to find (f1, f2) ∈ L2(0, 1)× L2(0, 1) such that

∫ 1

0
(λ−∆c)y(x)µ(dx) =

∫ 1

0

(
f1(x)y(x)− f2(x)y′(x)

)
dx, (y ∈ D(∆c)).

From the Lax-Milgram theorem applied in the Hilbert space H1
0 (0, 1) := W 1,2

0 (0, 1), there
exists a unique solution ỹ ∈ W 1,2

0 (0, 1) of (λ −∆c)y = f1 + f ′2 (with f ′2 the derivative in
the sens of distributions). It follows from an integration by part that∫ 1

0
(λ−∆c)y(x)σ(dx), (y ∈ D(∆c)),

with σ(dx) = µ(dx)−ỹ(x)dx. Since (λ−∆c)(D(∆c)) = C0([0, 1]) (see the proof of Theorem
3.2.1), σ vanishes identically in (0, 1) and thus µ(dx) = ỹ(x)dx and D(∆∗c) ⊂ W 1,2

0 (0, 1),
with in particular D(∆∗c) ⊂ L1(0, 1). Since D(∆c) ⊂ D(∆∗c) and D(∆c) is dense in L1(0, 1)

we obtain

C0([0, 1])� = L1(0, 1).

Let us now show that the Phillips dual of L1(0, 1) with respect to ∆1 (with Dirichlet
boundary condition) is indeed C0([0, 1])�. The dual of L1(0, 1), is L∞(0, 1). Since ∆1 is
the closure of ∆c in L1(0, 1), L1(0, 1)� = D(∆∗1) = D(∆∗c). Now, since D(∆c) ⊂ D(∆∗c),
D(∆c) ⊂ L1(0, 1)�. Let y∗ ∈ D(∆∗c), considering ∆c as a operator in L1(0, 1), there exists
f ∈ L∞(0, 1) such that∫ 1

0
y∗(x)∆cy(x)dx =

∫ 1

0
f(x)y(x)dx, (y ∈ D(∆c) ⊂ L1(0, 1)).

If ∆c is thought as an operator in L2(0, 1) and if we write ∆2 the closure of ∆c in L2(0, 1),
then D(∆∗c) = D(∆∗2) so that y∗ ∈ D(∆∗2) and ∆∗cy

∗ ∈ L2(0, 1) so that f ∈ L2(0, 1). But
∆∗2 = ∆2 and D(∆2) = H2(0, 1)∩H1

0 (0, 1) so that in fact from general Sobolev inequalities
y∗ ∈ C1([0, 1]) and y∗ satisfies the Dirichlet boundary condition in the classical sense, that
is y∗ ∈ C0([0, 1]). We thus obtain D(∆∗c) ⊂ C0([0, 1]). Finally, since the L∞ and the C
norms coincide on C([0, 1]), we must also have E� ⊂ C0([0, 1]) as the closure of D(∆∗c) in
L∞([0, 1]).

Now, going back to the Laplacian in C([0, 1]) with variational boundary condition, it
is immediate to see that for y ∈ L1([0, 1])

S�(t)y(s) =

∫ 1

0
kt(s, r)y(r)dr, (t ≥ 0).

As a matter of fact, we can also give the expression of the dual semigroup (S(t)∗)t≥0

in BV ([0, 1]), taking values in L1([0, 1])
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S(t)∗µ(s) =

∫ 1

0
kt(s, r)µ(dr), (t ≥ 0), µ ∈ BV ([0, 1]).

We can now define the relaxed PDE (3.1) for C([0, 1]) by defining the function fd :

E ×M1
+(Z)→ E such that fd(y)γ is the unique element of (E�)∗ satisfying

〈y∗, fd(y)γ〉(E∗,E) =

∫
U
〈y∗, fd(y, u)〉(E∗,E)γ(du)

for all y∗ ∈ E�. The function t → fd(y(s))γ(s) is thus an E�-weakly measurable (E�)∗-
valued function. The corresponding integral equation is

y(t) = S(t)y0 +

∫ t

0
S�(t− s)∗fd(y(s))γ(s)ds, (3.21)

the integrand taking values in E because of 3.11. This integral equation is interpreted
using the following Lemma (see [Fat94a, Lemma 6.1]).

Lemma 3.2.4. a) Let g : [0, T ]→ (E�)∗, E�-weakly measurable and bounded. Then

s→ S�(t− s)∗g(s)

is strongly measurable in [0, t]. b) If, in addition, ||g||(E�)∗ ∈ L1((0, 1)), the E-valued
function

y(t) =

∫ t

0
S�(t− s)∗g(s)ds

is continuous in [0, T ].

Finally, under these considerations, the proof of Lemma 3.2.1 remains valid if we replace
S∗ by S� and E∗ by E�.
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