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Abstract

Augmented reality (AR) can potentially change the driver’s user experience in
significant ways. In contrast of the AR applications on smart phones or tablets,
the Head-Up-Displays (HUD) technology based on a part or all wind-shield project
information directly into the field of vision, so the driver does not have to look
down at the instrument which maybe cause to the time-critical event misses. Until
now, the HUD designers try to show not only basic information such as speed and
navigation commands but also the aids and the annotations that help the driver
to see potential dangers. However, what should be displayed and when it has to be

displayed are still always the questions in critical driving context.

In another context, the pedestrian safety becomes a serious society problem
when half of traffic accidents around the word are among pedestrians and cyclists.
Several advanced Pedestrian Collision Warning Systems (PCWS) have been pro-
posed to detect pedestrians using the on-board sensors and to inform the driver of
their presences. However, most of these systems do not adapt to the driver’s state

and can become extremely distracting and annoying when they detect pedestrian.

For those reasons, this thesis focuses on proposing a new concept for the PCWS
using AR (so called the AR-PCW system). Firstly, for the « When» question, the
display decision has to take into account the driver’s states and the critical situ-
ations. Therefore, we investigate the modelisation of the driver’s awareness of a
pedestrian (DAP) and the driver’s unawareness of a pedestrian (DUP). In order
to do that, an experimental approach is proposed to observe and to collect the dri-
ving data that present the DAP and the DUP. Then, the feature-based algorithms,
the data-driven models based on the discriminative models (e.g. Support Vector

Machine) or the generative models (e.g. Hidden Markov Model) are proposed to
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Abstract

recognize the DAP and the DUP. Secondly, for the « What» question, our propo-
sition is inspired by the state-of-the-art on the AR in the driving context. The
dynamic bounding-box surrounding the pedestrian and the static danger panel are
used as the visual aids.

Finally, in this thesis, we study experimentally the benefits and the costs of the
proposed AR-PCW system and the effects of the aids on the driver. A fixed-based
driving simulator is used. A limited display zone on screen is proposed to simulate
the HUD. Twenty five healthy middle-aged licensed drivers in ambiguous driving
scenarios are explored. Indeed, the heading-car following is used as the main
driving task whereas twenty three pedestrians appear in the circuit at different
moment and with different behaviors. The car-follow task performance and the
awareness of pedestrian are then accessed through the driver actions. The objective
results as well as the subjective results show that the visual aids can enhance the
driver’s awareness of a pedestrian which is defined with three levels: perception,
vigilance and anticipation.

This work has been funded by a Ministry scholarship and was carried out in
the framework of the FUI18 SERA project, and the Labex MS2T which is funded
by the French Government, through the program "Investments for the future”
managed by the National Agency for Research (Reference ANR-11-IDEX-0004-
02).

Key words: Pedestrian Collision Warning System, Situation Awareness, Driver

Behavior Modeling, Machine Learning, Augmented Reality, Driving Simulator.
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Résumé

La réalité augmentée (Augmented Reality ou AR) peut potentiellement changer
significativement ’expérience utilisateur. Au contraire les applications sur Smart-
phone ou tablette, les technologies d’affichage téte haute (Head Up Display ou
HUD) aujourd’hui sont capables de projeter localement sur une zone du pare-brise
ou globalement sur tout le pare-brise. Le conducteur peut alors percevoir I'infor-
mation directement dans son champ de vision. Ce ne sont pas que les informations
basiques comme vitesse ou navigation, le systéme peut aussi afficher des aides,
des indicateurs qui guident 'attention du conducteur vers les dangers possibles.
Il existe alors un chalenge scientifique qui est de concevoir des visualisations d’in-
teractions qui s’adaptent en fonction de I'observation de la scéene mais aussi en

fonction de 'observation du conducteur.

Dans le contexte des systemes d’alerte de collision avec les piétons (Pedestrian
Collision Warning System ou PCWS), I'efficacité de la détection du piéton a atteint
un niveau élevé grace a la technologie de vision. Pourtant, les systémes d’alerte ne
s’adaptent pas au conducteur et a la situation, ils deviennent alors une source de

distraction et sont souvent négligés par le conducteur.

Pour ces raisons, ce travail de these consiste a proposer un nouveau concept
de PCWS avec 'AR (nommé the AR-PCW system). Premierement, nous nous
concentrons sur I’étude de la conscience de la situation (Situation Awareness ou
SA) du conducteur lorsqu’il y a un piéton présent devant le véhicule. Nous pro-
posons une approche expérimentale pour collecter les données qui représentent
lattention du conducteur vis-a-vis du piéton (Driver Awareness of Pedestrian ou
DAP) et l'inattention du conducteur vis-a-vis de celui-ci (Driver Unawareness of

Pedestrian ou DUP). Ensuite, les algorithmes basées sur les charactéristiques, les



Résumé

modeles d’apprentissage basés sur les modeles discriminants (ex, Support Vector
Machine ou SVM) ou génératifs (Hidden Markov Model ou HMM) sont proposés
pour estimer le DUP et le DAP. La décision de notre AR-PCW system est effec-
tivement basée sur ce modele. Deuxiemement, nous proposons les aides ARs pour
améliorer le DAP apres une étude de 1’état de I'art sur les ARs dans le contexte
de la conduite automobile. La boite englobante autour du piéton et le panneau
d’alerte de danger sont utilisés.

Finalement, nous étudions expérimentalement notre systéeme AR-PCW en ana-
lysant les effets des aides AR sur le conducteur. Un simulateur de conduite est
utilisé et la simulation d'une zone HUD dans la scene virtuelle sont proposés.
Vingt-cinq conducteurs de 2 ans de permis de conduite ont participé a l'expéri-
mentation. Les situations ambigiies sont créées dans le scénario de conduite afin de
analyser le DAP. Le conducteur doit suivre un véhicule et les piétons apparaissent
a différents moments. L’effet des aides AR sur le conducteur est analysé a travers
ses performances a réaliser la tache de poursuite et ses réactions qui engendrent le
DAP. Les résultats objectifs et subjectifs montrent que les aides AR sont capables
d’améliorer le DAP défini en trois niveaux : perception, vigilance et anticipation.

Ce travail de these a été financé sur une bourse ministere et a été réalisé dans
le cadre des projets FUI18 SERA et Labex MS2T qui sont financé par le Gouver-
nement Francais, a travers le programme « Investissement pour ’avenir » géré par

le ANR (Référence ANR-11-IDEX-0004-02).

Mots clés : Systeme d’Alerte d’Anticollision avec Piétons, Conscience de la
Situation, Modélisation des Comportements du Conducteur, Apprentissage Auto-

matique, Réalité Augmentée, Simulateur de Conduite.
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Chapter 1

Introduction

1.1 Thesis Context

1.1.1 Advanced Driver Assistance Systems

Every year, automobile manufacturers spend millions of dollars in funding deve-
lopment of cutting edge technologies to keep drivers safe and accident free while
operating their vehicles. These technologies are known in the industry as the Ad-
vanced Driver Assistance Systems (ADAS). The objective of ADAS is to support
drivers by either providing warning to reduce risk exposure, or automating some
of the control tasks to relieve a driver from manual control of a vehicle.

Some of these technologies have been around for a long time, and they have
already proven to result in an improved driving and better overall road safety. For
example, the introduction of additional dynamic driving control, such as Anti-lock
Braking System (ABS) or the Electronic Stability Program (ESP) have marked
the milestones in ADAS development. Studies have shown that these systems are
the second most efficient safety system for passengers, outmatched only by the
seat-belt [Aga 03, Sferco 01]. Starting in November 2014, the ESP is even be a
legal requirement in each new car in the European Union [Figaro 14]. A little
further, the Speed Limiter or the Cruise Control are well known today and are
widely implemented as additional options in new cars. They offers several benefits

to drivers. They liberate some driver’s workload in controlling the speed or in
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reducing the driver fatigue by allowing him to rest their feet while long drives.

The second generation of driver assistance functions based on exteroceptive sen-
sors focus on providing information and warnings to the driver. Exteroceptive sen-
sors acquire information from outside the vehicle, including ultrasonic, radar, lidar
or video sensors and to some extent Global Navigation Satellite System (GNSS)!
receivers. These GNSS sensors provide information about the road ahead and the
vehicle’s position in the world. The others sensors aim to provide the presences
as well as the driving status of other traffic participants. If the use of GNSS has
become prevalent in present-day vehicles, the other sensors and theirs applications
for ADAS are still under development and research. Parking assistance systems
entered the market in the mid-1990s, e.g. [Yasui 02, Wada 03]. In these systems,
ultrasonic sensors are used to detect obstacles in the surrounding environment.
The electronic steering control is capable of entirely relieving the driver of vehicle
control during the parking maneuver. Another popular ADAS is the Adaptive
Cruise Control [Jurgen 06, Bengler 14] which sets another milestone in ADAS his-
tory. Through the implementation of electronic brake, drive control, and the very
expensive radar technology, the current systems have the ability to work at full
speed range and within traffic jam [Nix 09].

Forward Collision Avoidance Systems (FCAS) included the Pedestrian Colli-
sion Warning Systems (PCWS) or Lane Keeping Assistance Systems marked the
third milestones in ADAS. They used inexpensive sensors such as low-range lidars,
cameras or radars, and have been marketed under the names «City Safety» [Dist-
ner 09], «City Stop» [Focus 15] or «Mobileye» [Dagan 04]. By means of escalating
warning levels, the driver is made aware of an impending collision. If there is no
reaction from the driver, the vehicle actively brakes to mitigate accident severity
once a collision is no longer avoidable [Maurer 12]. Technically, in order to have a
high certainty decision, these systems are equipped an interconnected sensors with
complex data fusion strategies [Stiller 11]. Today, radar and camera technologies

currently dominate the ADAS sector for their complementary capacities.

The picture of ADAS evolution from a technology point of view can be seen

in Fig. 1.1.1. The latest class of ADAS selects and controls trajectories beyond

LGNSS summarizes GPS, Galileo, and GLONASS for satellite-based localization.
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the current request of the driver. The ultimate ADAS of the future should be
capable of automated driving in all conceivable situations at a safety level signifi-
cantly superior to that of a human driver. However, it must be acknowledged that
automated driving in all conceivable traffic situations requires considerably more
cognitive capabilities than available at the current state-of-the-art [Bengler 14].
Furthermore, clear definitions for liability, licensing, and registration of automa-
ted cars are yet to be devised. Therefore, as an interim stage, it remains a lot
of research projects focus on so-called «semi-automation» or «driving delegationy.
These works focus on the cooperation between users and vehicle with objectives
to enhance the comfort and the safety for driver.

In the area of ADAS, there are two conception approaches. There are appro-
aches favoring the vehicle takes control whenever the driver is unable to, and
automatically stops the vehicle or pilots it to a safe position [Ardelt 10]. In ot-
her approaches, the system alerts or guides the driver in a dangerous situation.
The human-machine cooperation are mainly underlined in these second approa-
ches [Flemisch 08, Biester 05, Doerzaph 10] and human factors play an important
role in such systems that share tasks and responsibility between the human driver
and the semi-automated vehicle. Therefore, the Driver Monitoring becomes the
purposes in ADAS researches (see Fig. 1.1.1). The driver monitoring consists
of observing the driver all along his driving and provide the indications about
his states or his behaviors. The researchers are investigating the driver drowsi-
ness detection, the driver inattention, distraction estimation, or other abnormal
states of the driver that lead to an impaired driving. Some of them are already

commercialized [Yeo 01].

1.1.2 Augmented Reality Driving

In Advanced Driver Assistance Systems (ADAS), a close coupling between machine
and driver can be achieved with active interfaces. The driver can be informed
by ADAS of critical situations via several different modalities. Haptic interfaces
include any sort of interfaces that will use force feedback or touch sensitivity.
For example, Lane Keeping Assistance Systems (LKA) can include resistance or

shaking of the steering wheel or resistance in the brake and accelerator pedals
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[Katzourakis 11]. These have the advantage of being intuitive, quickly in informing
the driver even if he is distracted. However, it supposes that the driver is usually
in contact with the interface [Doshi 09b]. Audio interfaces are widely used in
automobiles. Voiced commands are often given by navigation systems. Beeps and
sounds are used to indicate the driver is not wearing seat belt or to help the driver
in parking manoeuvres. However, the beeps and sound are only helpful if drivers
know what sound means or if the sound occurs in conjunction with a visual cue
[Doshi 09b]. Visual interfaces abound in the vehicular environment. Examples
include the dashboard of the vehicle, showing the speedometer, tachometer, and
side-screen monitors for navigation systems. Visual cues have the advantage of

being able to quickly convey a wealth of information to the driver.

For the ADAS with high risk level like Forward Collision Avoidance Systems
(FCA) or Pedestrian Collision Warning Systems (PCWS), the varying systems of-
fer differing feedback to the drivers when crashes are imminent. A review of the
systems can be found in [Shaout 11]. For example, Audi’s Pre-Sense Plus System
has four phases of operation: 1) provide visual and audible warnings and roll win-
dows up, 2) apply light braking to gain driver attention, 3) apply high degree of
automatic braking, 4) decelerates vehicle and applies full braking power. Ford’s
Collision Warning with Brake Support queues visual and audible alarms as well as
recharges the brakes to increase the driver’s braking performance. Honda’s Colli-
sion Braking Mitigation System has three phases: 1) audible and visual warnings,
2) pretension the seat belt for the driver, 3) increased seat belt tensioning and au-
tomatic braking. Mercedes offers their Pre-Safe system which applies 40% partial
braking and also alerts the driver of the incident. Toyota’s Pre-Collision System
offers similar features with seat belt pretensioning and partial brake application.
Volkswagen’s Front Assist also offers automatic braking as well as seat belt pre-

tensioning. An appropriate interface with a suitable feedback is another challenge
for the actual ADAS.

Recently, several car manufacturers have a lot of development and commercia-
lization plans about Head-Up Display (HUD). This technology creates a new way
for interactions between the driver and the vehicle. The HUDs can offer drivers

various information related to safety and convenience such as velocity, driving di-
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rection, warning messages, etc. [Charissis 10, Park 12, Doshi 09a]. Until now, the
HUD systems mounted in a modern vehicle does not overlap information but dis-
plays a simple graphical information between the real world and a virtual driving
information, which makes them significantly helpful. The HUD reduces the num-
ber and duration of the driver’s sight deviations from the road, by projecting the
required information directly into the driver’s line of vision. This allows drivers to
receive information without lowering their gaze, thus avoiding attention gaps that
result from them taking their eyes off the road to look down at the information
on a Head Down Display [Dingus 89, Green 99]. In this way, the driver can easily
keep his driving under control [Kiefer 91, Kaptein 94], and can quickly respond to
information relating to the road environment from the in-vehicle communication
system [Lino 88, Okabayashi 89].

The Augmented Reality (AR) provides an attractive approach to augment the
street scenery with conformal navigational aids [Narzt 04]. By highlighting impor-
tant objects or regions using visual aids, AR starts a new approach for ADAS that
we call AR-ADAS. Indeed, instead of alerting or warning the driver, the AR-ADAS
provide the visual aids that are seen as part of the real scene. It helps enhancing
the visibility of some important elements in the road scene such as obstacles or pe-
destrian, etc. It also helps the driver to do the right actions to avoid the potential

dangers by giving the visual aids.

1.1.3 Pedestrian Collision Warning Systems

The Pedestrian Collision Warning Systems (PCWS) are particular types of ADAS
that we want to study first and to combine with the Augmented Reality. The
aim of PCWS is to detect the presence of both stationary and moving people in a
specific area of interest around the moving host vehicle in order to warn the driver,
perform braking actions or even warn pedestrians.

Indeed, pedestrians are the most vulnerable road users, whilst also being the
most difficult to observe both in day and in night conditions. A World Heath
Organization report [WHO 13] describes that half of world’s road traffic death
occur among pedestrians, cyclists, motorcyclists (see Fig. 1.1.2). In high-income

countries, pedestrian fatalities are relatively lower but still represent large socie-
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tal and economic costs to the nations. In developing countries such as India or
China, the problem is much worse. There are a large number of two wheelers,
three wheelers, bicyclists, and pedestrians sharing the same road space with cars,
buses, and trucks [Mohan 02, Mock 04]. Therefore, the pedestrian safety is one of
the major motivator of both the scientific community and the automobile industry.
In USA, the Pedestrian and Bicycle Safety Research Program [FHA 15] aims at
enhancing the safety and mobility of pedestrian and bicyclists. The PATH project
[PathProject 15] conducts research on pedestrian protection, driver behavior mo-
deling and intersection collision prevention. Project PreVENT [PREVENT 15] of
the European Union deals with the development of safety technologies which helps
drivers prevent or mitigate the effects of an accident using sensor-based analysis
of surrounding as well as the state of the driver. In particular, the sub-project
COMPOSE focuses on detection of pedestrians, cyclists using data fusion from
sensors and protection using autonomous or semi-autonomous braking. In the
ADAS industry, Mobileye [Fleet 14] is a well know system for its Forward Colli-
sion Avoidance Systems. It also helps to detect pedestrians with a mono-camera
and alert the driver in case of possible accidents across the small interface posed
on the dashboard (see Fig. 1.1.3).

One can notice that pedestrian safety can be improved at several stages, as
shown in Fig. 1.1.4. Long-term measures include design enhancements in infra-
structure as well as vehicles to reduce the fatalities. These enhancements can
be complemented by systems that detect the pedestrians and prevent accidents
by warning the driver or triggering autonomous braking. In the cases where an
accident cannot be prevented, collision mitigation devices that are incorporated
into vehicle design enhancement can be deployed to reduce the impact of the col-
lision on the pedestrian. In this work, we are interested in the PCWS involving

pedestrian detection and driver warning system.

In [Gandhi 07], the authors explain a general PCWS with different levels from
its raw signal data acquisition to actions that the PCWS feedback to drivers (see
Fig. 1.1.5). The higher level in the pyramid uses the output information from the
lower level combining with the models from the left side (indicated by rectangles).

As one climbs up the pyramid, the useful information is distilled in successive
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Figure 1.1.3: Mobileye and its interface that warns the driver in case of pre-crash
[Mobileye 15].

Infrastructure Situational
improvements,  awareness
vehicle design (Throughout Cautionary Emergency  Auto. Deploy collision
(Long term) driving) signals alarm braking mitigation
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Collision
a’:
tn
N

Figure 1.1.4: Time line of pedestrian protection measures and the reaction time for
a given distance decreases with vehicle speed [Gandhi 07].
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stages, until finally, one takes action based on a yes/no decision.

However, the line between these stages is often blurred. In Fig. 1.1.5, the
levels 1,2,3,4 consist of the detection, tracking of pedestrian. Some approaches
can combine detection and recognition, classification into one. The main issue of
these stages is the high detection rate at the allowing false alarms. The fifth and
sixth higher levels aims to give the decisions. We can imagine that system can give
the probability of collision between the vehicle and pedestrians. The challenge of
this stage is to take into account the pedestrian’s behaviors, the driver’s behaviors
but also the interaction between these two. For example, a driver who is not
in sleepiness state, but underestimates that the pedestrian crosses, the collision
can happen because of driver’s errors. Therefore, it is important to consider the
driver, the pedestrian and the vehicle at a same stage before giving the collision
probabilities (see Fig. 1.1.5, blue dotted rectangle).

For the highest level, the action is given in the function of the decision probabi-
lity. In the case of high probability of collision, the driver is given an appropriate
warning that enables corrective action. If the collision is imminent, the automatic
safety systems could also be triggered to decelerate the vehicle in order to reduce
the impact of the collision. Our work concerns mostly this stage. The visual aids
are displayed to highlight the presence of the pedestrian and to warn the driver
about the possible collision. Indeed, the reliability of these visual aids and its

effects on the driver are these main challenges of this stage.

1.2 Thesis Presentation

1.2.1 Objectives and Contributions

This thesis is part of the research program running at Heudiasyc Laboratory on
the Intelligent Vehicles. The program conducts a multidisciplinary research that
includes perception systems, driver monitoring or advanced human machine inte-
raction such as using augmented reality, etc. One of the projects is named FUI18
SERA (Sécurité et Réalité Augmentée) in which we develop an intelligent vehicle
prototype. The vehicle is equipped a perception system with cameras, a driver

monitoring system using stereo-vision and a combiner head up display plugged on
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the windshield. This system is able to extract the relevant information of situati-
ons and is expected to display the visual assistance to help the driver in ambiguous
situations. This project aims to merge the augmented reality technologies with the

ADAS area and towards an augmented reality driving conception in future.

As justified before, the Pedestrian Collision Warning System (PCWS) is a spe-
cific ADAS that we want to address first. Moreover, in order to reducing the
distraction, the system is required to be capable to adapt the driver’s behaviors.
Therefore, there are two main objectives in this study: The first objective is to
model the driver’s awareness of a pedestrian whereas the second one is to design a
augmented reality metaphor for enhancing the driver’s awareness in order to avoid
the potential collisions. We call this system as the Augmented Reality Pedestrian
Collision Warning (AR-PCW) system.

For the first objective, the thesis is expected to provide a general framework
for analyzing the driver’s behaviors in situations with pedestrians. Therefore, it
can be divided into some sub-objectives: first of all, there is the requirement of an
experimental protocol that allows us to observe, to collect and to label the sur-
rogate measures in situation with pedestrians. In this protocol, the scenarios are
supposed to be able to provoke the driver to be Aware of Pedestrian (DAP) or to
be Unaware of Pedestrian (DUP). Then, based on these annotated driving data,
another sub-objective is to propose a mathematical model that can estimate whe-
never the driver is aware or unaware of the pedestrian. At this stage, an analysis
on the classification performance of the models with the constructed database is

also required.

For the second objective, the thesis is expected to propose a visual assistance
system that can enhance the driver’s awareness. This assistance is expected to
adapt to the driver’s behaviors by taking into account the model of DAP/DUP
achieved for the first objective. Moreover, the study has to demonstrate that the
proposed visual assistance system is suitable for an implementation with augmen-
ted reality technologies on cars. Another sub-objective in consequence is to carry
out an experiment in order to analyze the effects of the visual metaphors on the
driver and to validate the proposed AR-PCW system.

By achieving all these objectives, this thesis will provide a complete framework to

12
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study a new concept of a driver-adaptive augmented reality driving assistance. The
research conducted during this thesis is highly multidisciplinary and contributes
to the knowledge in different fields.

On the field of cognitive psychology, the study highlights the importance to
consider the driver’s cognitive states and behaviors in the specific situations. This
study shows the differences in the driver’s behaviors whenever he is aware or una-
ware of a hazard on road ( such as a pedestrian in this case). In road safety field,
this work emphasizes the importance of a new design of a Pedestrian Collision
Warning System which reduces the distraction by taking into account the driver’s
behaviors and which allows to drive in keeping eye on road with the augmen-
ted reality cues. In the driver modeling field, we identify the surrogate measures
of driving behaviors that represent the driver’s awareness of a pedestrian and de-
monstrate the ability of different mathematical models to estimate these behaviors.
These models can be generalized and applied to others ADAS research problems.
In Human-Machine-Interaction field, this study contributes a framework to experi-
ment and validate an ADAS interface by assessing the driver’s situation awareness
on road while using the interface. It proposes the reasonable protocols for ob-
serving the driving behaviors in scenarios with pedestrians and for analyzing the
impacts of the visual aids on the driver. At this early stage, this work is designed
and implemented for a driving simulator experiment, however, it shows promising

results to extend the research on a real car platform.

1.2.2 Thesis Outline
Chapter 2: Driver Awareness of Pedestrian Modeling

This chapter covers the background of the first objective. In the first section, the
road accident origins and the pedestrian pre-crash scenarios are presented. Then,
some important notions and definitions such as driver’s behavior, driver’s atten-
tion, distraction and driver’s situation awareness from literature are provided in
order to understand the differnt cognitive states of the driver in situation with
pedestrians. Based on this understanding, two definitions of the Driver Awareness
of Pedestrian (DAP) are then proposed. In the second section, we represent our

conceptual model for estimating whenever the driver is aware or unaware of a pe-

13
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destrian. We explain why we choose the driving measures such as acceleration,
braking or the time-to-collision for our models. In the third section, three approa-
ches with two mathematical models for each approach are proposed to classify the
DUP and the DAP. The first approach is to use the threshold-based algorithms
such as the Time-To-Collision-based algorithm. The second approach is to use the
discriminant models such as the Support Vector Machine (SVM) and the third
one is to use the generative models such as the Hidden Markov Model (HMM).
We also discuss on their advantages and disadvantages for our conceptual system.
Thus, the criteria for choosing the most suitable approach for our problem are also

mentioned in this chapter.

Chapter 3: Settings and Benchmark for Driver Awareness and Unawareness
Classification

This chapter details how we choose the best values for the parameters of the clas-
sifiers in the proposed approaches. We present in this chapter how we design the
experiments to observe the driver’s behaviors in situations with pedestrians. This
experiments protocol allows us to manipulate the driver to be aware or unaware
of a pedestrian and to collect the driving data in this time period.

We also present the dedicated techniques for the algorithm parametrization.
This includes the Grid-Search technique and the Receiver Operation Characte-
ristic curves. Then, two evaluation techniques, the p% generalization test and
the k — fold cross-validation are proposed to compare the performance between
the classifiers. Finally, we justify our choice of the Mutivariates Gaussian Hidden
Markov Models (MGHMM) for the implementation as the classifier or a further
estimator of our driver’s awareness of a pedestrian (DAP) model. From now, we
have a statistical mathematical model that can classify whenever the driver is
aware or unaware of the pedestrian. The output of this classification will be taken

into account in our proposition of a Pedestrian Collision Warning System.

Chapter 4: Augmented Reality for Pedestrian Collision Warning Systems

The chapter 4 begins by providing a state-of-the-art augmented reality technology

in the driving context. This review shows the interests and the needs to provide a

14



1.2 Thesis Presentation

novel vizualization for driving safety. In the design of an augmented reality pede-
strian collision warning system, we highlight the necessity of taking into account
the driver’s awareness of the pedestrian. Then, a visual metaphor is proposed for
enhancing the driver awareness whenever he is unaware of that pedestiran and a
potential collision can happen. The proposed system is so called AR-PCW system
(Augmented Reality Pedestrian Collision Warning System). This chapter presents
also the implementation of this system on the driving simulator. Two configurati-
ons of the AR-PCW system are proposed: one consists of displaying the visual aids
permanently during the situation with pedestrians (so-called AR) and the other
is based on the driver’s awareness of a pedestrian that we called iAR (intelligent

Augmented Reality).

Chapter 5: Enhancing Driver’'s Awareness of Pedestrian using Augmented

Reality Cues

In this chapter, we focus on the experiment to analyze the costs and the benefits
of the proposed AR-PCW system. In order to do that, our goal is to assess the
driver’s awareness of a pedestrian (DAP) during his drivings using the AR-PCW
system. In the first section, we present the general method and the experiment
protocol that allow to assess explicitly the DAP. Then, we highlight the outcome
variables that are associated to three levels of the DAP (perception, vigilance and
anticipation levels). In the second section, we present the experiment procedure
using a simulator platform. The DAP are compared between the drivings with
the AR, iAR configurations and the ones without assistance (called noAR). The

experimental results are then exposed using the analysis of variance.

Finally, this chapter provides a global discussion on every aspects of this expe-
riment. We talk about the advantages and the disadvantages of using a simulator.
We discuss on the insufficiency of our DAP model. We discuss also on the pro-
tocol to assess the DAP. Finally, we highlight the important requirements in the

developement of an augmented reality application.
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Chapter 1 Introduction

Chapter 6: Conclusions and Perspectives

Chapter 6 concludes the thesis with a summary of the work presented in previous
chapters. We continue to discuss on the issues and the insights that have been
identified in the course of this work along with paths for future research.

Parts of the work presented in this thesis have been published in the following
international conferences articles:

Phan, M. T., Frémont, V., Thouvenin, 1., Sallak, M., & Cherfaoui, V. (2015,
June). Estimation of driver awareness of pedestrian based on Hidden Markov
Model. In Intelligent Vehicles Symposium (IV), 2015 IEEE (pp. 970-975). IEEE.

Phan, M. T., Frémont, V., Thouvenin, I., Sallak, M., & Cherfaoui, V. (2014, Oc-
tober). Recognizing driver awareness of pedestrian. In Intelligent Transportation
Systems (ITSC), 2014 IEEE 17th International Conference on (pp. 1027-1032).
IEEE.

Phan, M. T., Thouvenin, 1., Frémont, V., & Cherfaoui, V. (2014, January).
Estimating driver unawareness of pedestrian based on visual behaviors and driving

behaviors. In International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP).
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Chapter 2

Driver Awareness of Pedestrian

Modeling

This chapter presents one of the main contributions of this thesis, the modeling of
the Driver Awareness of Pedestrian (DAP). First of all, we provide in Section 2.1,
an understanding of accident origins in the situation with pedestrian, the human
factors in road crashes and towards the definitions of the DAP.

Section 2.2 consists of the observation and the measurement of the Driver Awa-
reness of Pedestrian. Based on a survey on the related works, the surrogate me-
asures that can interpret the Driver Awareness of Pedestrian are proposed. The
conceptual model for estimating the DAP and the DUP is also presented in this

section.

Section 2.3 highlights the previous mathematical algorithms that are employed
to estimate, detect or predict the driver’s impaired behaviors. At this stage, we
consider the classification problem instead of the estimation problem. Indeed,
we propose six models for classifying whenever the driver is aware or unaware
of a pedestrian. They are divided into three approaches: The threshold-based
algorithms, the discriminative models such as the Support Vector Machine or
Relevance Vector Machine, and the generative approaches with the Hidden Markov
Models

This chapter is completed by a conclusion (Section 2.4) in which we justify our

prior choice of the Gaussian Mixture Hidden Markov Models for classifying the
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Chapter 2 Driver Awareness of Pedestrian Modeling

DUP and the DAP.

2.1 Driver Awareness of Pedestrian Definitions

2.1.1 Pedestrian Accident Origins

Traffic scenarios leading to an accident are often very complex and are a com-
bination of several factors. From a system-ergonomic point of view, an accident
(top-event) can arise if a traffic conflict and an inappropriate treatment of the
conflict occur ([Richard 06] see Fig. 2.1.1). The traffic-conflict can be defined as a
traffic situation in which traffic participants challenge a risk of causing a collision
if they do not change their direction or speed. Thus, only an unresolved conflict
leads to an accident. Therefore, an analysis of near accidents is as relevant to
understanding causes of accidents as accident analysis itself. By analyzing human
behavior, we can observe errors which can lead to accidents if other factors would

have been present.

Top-Event
(Accident)
TAND |
| AND | |
Inappropriate
Traffic conflict ln‘:almcpl
of conflict
el
3 L Unsuccessful
Human Conflict | [Situation (curve, Unsuccessful CetentivE
error object intersection) coping P sction

Figure 2.1.1: Accident Tree, adopted from [Richard 06]. Human error is necessary
but not a sufficient condition for accident occurrence .

In an accident, the cause factors can be classified by into two classes depending

on the situation where the information is objectively missing or not objectively

missing [Plavsi¢ 10].
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2.1 Driver Awareness of Pedestrian Definitions

o Information «objectively missing»

— view occlusion (other vehicles, vegetation, infrastructure, curve...)

— visibility conditions (darkness, rain, snow, fog, lights from other vehi-

cles...)

— others (missing traffic sign...)

o Information «not objectively missing»

— deficient usage of information: -

* information overlooked (inside, outside distraction, look-but-not-

see, wrong focus, overload...)

« information forgotten (processing deficits (742 chunks), low con-

centration...)

% conscious violation (exceeding speed, not keeping distance, not re-

specting traffic signs, right of way...)
— wrong usage of information:

* wrong evaluation (of distance, speed, intention of other traffic par-

ticipants...)
% wrong action or goal(giving gas instead of braking...)
% wrong action (too strong steering...)

% operation mistake (confusing gas and brake pedal...).

In the scenario where there is a pedestrian appearing in front of the car, the
accident can happen for different critical reasons. The driver does not notice the
pedestrian because of view occlusion, pedestrian visibility, missing of traffic sign.
These causes can be avoided by enhancing the infrastructures. On the other hand,
when the information about the pedestrian is not objectively missing, the wrong
evaluation, or underestimate that the pedestrian can cross the road are the main
causes for a collision. Under the concept of risk, Fuller et al. defined that as

a subjective risk when the driver’s own estimate of the probability of collision
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Chapter 2 Driver Awareness of Pedestrian Modeling

[Fuller 05]. In this thesis, we are interested in particularly this subjective risk and
have the objective to detect this potential danger based on the driver’s behaviors.

On the study of the pre-crash scenarios from USA-National Highway Traffic
Safety Administration [DaSilva 03b], there are ten major scenarios that happened
accident to the pedestrian (Tab. 2.1). This statistical study shows that, the
majority of all pedestrian crashes happened away from junction, a junction being
the area formed by the connection of two roadways. The study also showed that,
in about 76% of pedestrian crash, the vehicle was going straight with the speed
between 40km/h and 60km/h. The data analysis indicated that 25% of fatalities
occurred in pre-crash scenarios where the pedestrian is walking along, playing, or
working on the roadway. Moreover, the analysis of crash contributing factors in
those ten specific scenarios revealed that a very high percentage of accidents were
involved by alcohol and by drivers inattention. An example of pre-crash scenario
is, a pedestrian is waiting on the road side-walk and has intention to cross the road
when a car is coming. Then, he estimates the distance and the arrival time of the
car and crosses the road. Whereas, the car driver is doing a second task (telephone,
talking, etc) or thinking on another things or even he has seen the pedestrian but
underestimate the possibility that the pedestrian can cross the road. Then, the

accident happens (see Fig. 2.1.2).

’ Vehicle is \ Pedestrian is \ at Roadway \ Percentage ‘
going straight crossing non-junction 25.9%
going straight crossing intersection 18.5%
going straight | darling on to non-junction 16%

turning left crossing intersection 8.6%
turning right crossing intersection 6.2%
going straight | walking along non-junction 3.7%
going straight darling on to intersection 2.5%

backing up N/A N/A 2.5%
going straight on sidewalk non-junction 1.2%
going straight | playing/working | non-junction 1.2

Table 2.1: Statistic of pedestrian pre-crash scenarios. The results were obtained after
four years (1994-1998) of analysis of pedestrian crashes in United States.
The percentages refer to the frequency of each scenario relative to the size
of all pedestrian crashes [DaSilva 03b].
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He will

stop

-
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TTC=4s -

Collision

time

Figure 2.1.2: Pre-crash scenarios

2.1.2 Human Factors in Road Crashes

Human error is the main factor lead to accidents. The USA National Motor Vehi-
cle Crash Causation Survey [Singh 15] found in the study in 2015 that human
errors accounting for over 94 of accident. The 6% others are about vehicles, en-
vironment or others critical reasons. According to this survey, the driver-related
critical reasons are broadly classified into recognition errors, decision errors, perfor-
mance errors, and non-performance errors. The statistics in Table 2.2 show that
the recognition error, which included driver’s inattention, internal and external
distractions, and inadequate surveillance, was the most (41%) frequently assigned
critical reason. Decision error such as driving too fast for conditions, too fast for
the curve, false assumption of others actions, illegal maneuver and misjudgment
of gap or others speed accounted for about 33 percent (+£3.7%) of the crashes. In
about 11 percent (+2.7%) of the crashes, the critical reason was performance error

such as overcompensation, poor directional control, etc. Sleep was the most com-
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Chapter 2 Driver Awareness of Pedestrian Modeling

mon critical reason among non-performance errors that accounted for 7 percent
(£1.0%) of the crashes. Other driver errors were recorded as critical reasons for
about 8 percent (£1.9%) of the drivers.

’ Critical Reason \ Number of Crashes \ Percentage ‘
Recognition Error 845,000 41% +2.2%
Decision Error 684,000 33% £3.7%
Performance Error 210,000 11% £2.7%
Non-Performance Error (sleep, etc.) 145,000 7% +£1.0%
Other 162,000 8% £1.9%
Total 2,046,000 100%

Table 2.2: Driver-Related Critical Reasons [Singh 15].

The difference between driver’s performance and driver’s behaviors is central for
understanding the driver’s errors in a critical situation that lead to crashes. Since
normal driving is a self-paced task, the driver performance is related to what the
driver can do while the driver behavior is what a driver does do [Evans 04]. The
critical reasons which are mentioned above signify what the driver has already done
and means the driver’s behaviors. On the other hand, the driver’s performance
depends on the driver’s knowledge, skills, perceptual and cognitive abilities which
are related to the driver concept of the situation awareness while driver behavior
is what the driver chooses to do with these attributes.

The driver’s awareness of pedestrians can be related to both driver’s performance
and driver’s behaviors. Therefore, in order to understand the driver’s awareness
of pedestrians, we need to clarify the factors in the driver’s behaviors and the
driver’s performance that could lead to an error or a potential accident: Situation

Awareness, Attention, Distraction and Vigilance.

Situation Awareness

Situation Awareness (SA) is a term derived originally from the aviation field and
it aims to describe and integrate all different cognitive aspects necessary for the
correct performance of some task [Plavsi¢ 10]). Ensleys [Endsley 95a] defined the

situation awareness as «the perception of the elements in the environment within a
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2.1 Driver Awareness of Pedestrian Definitions

volume of time and space, the comprehension of their meaning and the projection

of their status in the near future» (see Fig. 2.1.3).

System capability, interface design, stress &
workload, complexity, automation

Task/System T N\
/ Feedback \
/

Situation Awareness

L J

o Performance
Decision =i of Actions

—’
// A /
2 -
\ /

Individual | :Goals & Objectives | Information Processing Mechanisms |
Factors *Preconceptions

: Long Term +Abilities
Expectat 9 "
{Frprctnsing Memory Stores Automaticity

sExperience

State of Level | Level | Level

the Environment]

t *Training

Figure 2.1.3: Model of SA in Dynamic Making Process [Endsley 95a].

Ma and Kaber [Ma 05] summarized underlying factors in driver SA, including
navigation knowledge, environment and interaction knowledge, spatial orientation
knowledge and vehicle status knowledge. They suggested an integration of these
forms of knowledge in a model of driver information processing to achieve accurate
SA. However, there have been few empirical studies of how drivers may form these
types of knowledge for SA and what task, environment or system features, such
as in-vehicle automation, play a role.

In [Ward 00, Matthews 01], the authors related levels of Situation Awareness
defined by Endsley, including perception (Level 1 of SA), comprehension (Level 2 of
SA) and projection (Level 3 of SA) (see Fig. 2.1.3) to specific driving tasks. They
defined the situation awareness in three levels, operational, tactical and strategic
levels. For example, in operational driving tasks, drivers are engaged in actions
upon vehicle actuators in order to maintain stable control. They said operational

driving tasks, including steering and braking responses, primarily require Level 1
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of SA. In [Matthews 01], the authors said: ‘Level 2 SA may (also) be involved, if
driving processes generate error messages. For example, a driver may understand
the rate of vehicle deceleration to be insufficient (Level 2 SA) for a particular
perceived stopping distance (Level 1 SA). In tactical driving tasks, Matthews et
al. observed that there is a high requirement for Levels 1 and 2 SA to, for example,
facilitate safe manoeuvrings of a vehicle in traffic by judging and comparing lane
positions. Level 3 SA is also relevant to such interactive driving situations where
there is a high requirement for near-term projection of changes in the driving
course and traffic patterns. In strategic driving tasks, when navigation plans are
being formulated, there is also a high requirement for Level 3 SA.

In [Smith 95], the authors use a more operational definition of situation aware-
ness that can be directly seen in the operator’s behavior: they define it as «adap-
tive, externally directed consciousnessy». Certain factors or dimensions in environ-
ment restrict a operator’s behavioral opportunities. An operator who correctly
interprets these factors is able to behave correctly in a certain environment and
can therefore be defined as situationally aware. This definition seems very suita-
ble to directly measure a driver’s awareness of a pedestrian by observing his/her
behavior in the reaction in the situation with a pedestrian.

On these point of view, a pedestrian appears in front of the car is considered
as a particular situation in road. The driver’s driving formation, experience or
routine can be seen in his driver situation awareness. The driver’s perception level
(level 1 of SA) is presented by the moment the driver perceives the pedestrian, the
comprehension (level 2 of SA) can be measured on his estimation of the possibility
the pedestrian can cross the road, and the projection (level 3 of SA) consists of
the good decision (slow down, accelerate, stop, etc) that the driver has chosen

regarding to pedestrian within the actual driving task.

Inattention or Distraction

The second notion we want to consider is Attention. Attention has been defined
as the “concentration of the mind upon an object; maximal integration of the
higher mental processes” [Engstrom 13]. In the scientific literature, Attention

as defined in [Matlin 02], “is a concentration of mental activity” and is divided
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into two interrelated categories: 1) Divided Attention, which involves attending
to simultaneous tasks or basically paying equal attention to several tasks. As
mentioned in [Matlin 02], the human perceptual system can only handle some
divided tasks or simultaneous tasks which require equal attention, but incidentally
fails when the tasks become highly demanding. 2) Selective Attention, this type
of attention involves situations where people are confronted with two or more
simultaneous tasks and they have to attend to one of the tasks while ignoring the
other. Asin[Matlin 02], “selective attention studies often shows that, people notice
little about irrelevant tasks”.

In other hand, the inattention is defined as the “failure to pay attention or
take notice” [Brown 02]. In [Victor 08], the author defined driver inattention
as “improper selection of information, either a lack of selection or the selection
of irrelevant information”. For [Treat 80], driver inattention occurs “whenever a
driver is delayed in the recognition of information needed to safely accomplish the
driving task, because of having chosen to direct his attention elsewhere for some
non-compelling reason” . Senders defines driver ‘inattention’ as “an ex post factor
identification of something that was not being looked at and was immediately
followed by a reportable accident that might have been avoided if the ‘something’
had been looked at” [Hancock 09]. As one can see, these meanings are diverse.

In a recent crash study, driver inattention was defined as occurring “when the
driver’s mind has wandered from the driving task for some non-compelling reason”
such as when the driver is “focusing on internal thoughts (i.e., daydreaming, pro-
blem solving, worrying about family problems, etc.) and not focusing attention on
the driving task” [Craft 09]. Talbot and Fagerlind [Talbot 13], in a pan-European
study of 1005 crashes, defined driver inattention as “low vigilance due to loss of

focus”

Vigilance

The vigilance is therefore defined, in particular, as the ability to sustain atten-
tion to a task for a period of time [Davies 82] [Parasuraman 98]. The research
on vigilance is often specifically related to a vigilance decrement, the decline in

attention-requiring performance over an extended period of time [Mackworth 64].
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Animal behavior scientists and psychiatric clinicians use the term vigilance simi-
larly but more specifically referring to attention to potential threats or dangers,
with hypo-vigilance being one of the symptoms of post-traumatic stress disorder
[Association 94]. This usage of vigilance is probably closest to the common lay
usage and to the English dictionary primary definitions of vigilance, e.g. ‘state of

being alertly watchful, especially to avoid danger’ [Webster 05].

In another definition, vigilance describes “a state of readiness to detect and re-
spond to certain specified small changes occurring at random time intervals in the
environment” [Mackworth 64]. The requirements of the driving task performed
on long distance drives very much resembles this definition, because the ability to
detect small changes in the environment is a crucial factor in safe driving. Accor-
dingly, states of reduced vigilance, e.g., due to long and monotonous drives, are
a main cause of traffic accidents [Thiffault 03]. The development of driving assis-
tance systems and active safety systems targeting low-vigilance conditions requires
a comprehensive understanding and characterization of this cognitive state. For
future applications, a reliable, real time estimation of vigilance state and, more

specifically, of the driver’s reactivity, is desirable.

2.1.3 Definitions of Driver Awareness of Pedestrian

In this study, we analyze the scenario which creates the most crash to pedestrians.
We observe the driver’s reactions in this scenarios and detect the driver impaired
behavior. We define this as the Driver Unawareness of Pedestrian. This
includes the fact that the pedestrian is not perceived or perceived too late to react.
But most of time, it describes the fact that the driver underestimates the risk of
the situation. The Driver Awareness of Pedestrian is in contrast, consists of
the driver who has a high level of situation awareness, is attention and vigilance
vis-a-vis the pedestrian in front of the vehicle. Regarding two concepts : driver
behavior and driver performance [Fuller 05], we give two definitions of the Driver

Awareness of Pedestrian.
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Definition 1 (based on Driver Behavior Concept): Awareness of Pedestrian and

Unawareness of Pedestrian are the driver’s behaviors in situations with a pedestrian
being in front of the vehicle. The Driver Unawareness of Pedestrian includes the
fact that the pedestrian is not perceived or is perceived too late to react or the
fact that the driver underestimates the risk of the situation. On the other hand,
the Driver Awareness of Pedestrian includes the fact that the driver perceives the
pedestrian and be able to react to the situation whenever the pedestrian cross
suddenly the road.

Definition 2 (based on Driver Performance Concept): Driver Awareness of Pe-

destrian and Driver Unawareness of Pedestrian are the performance of the driver
in situation with a pedestrian being in front of the vehicle. This performance is
defined with three levels. The Perception level, the Vigilance level and the An-
ticipation level. The Perception level consists of the moment the driver figures
out there is a pedestrian on road. The Vigilance level is the ability of the driver
to sustain attention to the pedestrian and his estimations of the possibility that
pedestrian can cross the road. And the Anticipation level consists of right actions
that driver chooses to do in that situation such as stopping, passing by, slowing

down or speeding up, etc. (see Fig 2.1.4).

Perception Level Vigilance Level |Anticipation Level

Figure 2.1.4: Three levels of driver subjective risk estimation in a specific situation .

In the point of view of what happen in a scenario and neglecting the chance
factor, if a driver who notices the pedestrian, then, carefully analyzes the situation,
chooses to stop or pass by the pedestrian safely, he is considered to be aware of
that pedestrian (Case 1 and 2 in Fig 2.1.5). If not, he is considered as be unaware
of that pedestrian (Case 3 in Fig. 2.1.5).
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Figure 2.1.5: Case 1 and 2, the driver is supposed to be aware of pedestrian. If the
driver is unaware of pedestrian (case 3), a warning is activated. .

2.2 Surrogate Measures and Conceptual Model

In this section, we are interested in the observations and the surrogates measures
of our models. First of all, we review some potential observations in the driver’s
behaviors study literature, then, we present our choice of surrogate measures that

will be used as input of the model.

2.2.1 Potential Measures
Physiological Signal Observation

The physiological signals such as heart rate, respiration or Electroencephalography
(EEG) are considered to be the most reliable signals to analyze the driver’s be-
haviors and to detect inattentiveness. Heart rate is easily determined through
Electrocardiogram (ECG) signal. The mental stress while driving for example,
increases blood pressure, heart rate and activate the sympathetic nervous system.
There are significance impacts in the heart rate when a driver is in a state of cog-
nitive inattention (thinking while driving for example) [Akin 08]. Moreover, the

EEG signal has various frequency bands which can signify different states of the
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driver. For example, there is evidence that the increase of the alpha band (8-13Hz)
corresponds to relaxation. Increase of the delta band (0.5 — 4Hz) and the theta
band (4 —8H z) correspond to sleep activity and drowsiness which signify a poten-
tial failure of attention and behaviors [Ostlund 04, Santana Diaz 02]. In another
experiment, twelve types of energy parameters computed from three bands alpha,
beta, and delta were chosen as the evaluation index of driver fatigue [Li 12].

The skin temperature was measured while performing arithmetic tasks while
driving [Itoh 09]. Another work also found that there was a raise in the skin
temperature of the participants while they were distracted [Wesley 10]

However, these techniques are obtrusive, since it is necessary to attach some
electrodes on the drivers, causing annoyance to them. Consequently, it is difficult

to be implemented in the real-life applications.

Visual Behaviors Observation

The driver’s behaviors could be somehow observed from the changes in their fa-
cial features like eyes, head and face. This measurements have the advantage of
being unobtrusive, since they could be collected with remote eye-head trackers.
Moreover, they are quite reliable. In this context, several measurements have been
proposed. Measurements related to head movement such as nodding frequency and
those related to the eye region such as eyelid distance changes, eye close duration,
blinking frequency, and the recently developed parameter PERCLOS (percentage
of time in a minute that the eye is 80% closed) were widely used in research
[Lin 12]. After extracting these features, Bergasa and Mohamad-Hoseyn Sigari
[Bergasa 08, Sigari 13] built a fuzzy model or finite state machine to estimate the
inattentive, distracted or fatigue state of driver. Another cue is the size of the pu-
pils. The pupil is the part of the iris that allows light to enter the retina. Besides
light, the pupil dilates when mental or cognitive effort is given. It was observed
that the pupil was dilated and the diameter of average pupil size increased by 15
when the driver was cognitively distracted [Akin 08, Benedetto 11a]. Gaze beha-
viors are another cues that can be used as a metric to find if the concentration
of the driver was on driving or not. It was noticed that, when the driver was

cognitively distracted, glancing at instruments and mirrors decreased significantly
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[Harbluk 02]. A simple method to detect the driver’s attention was proposed by
Fletcher and Zelinsky [Fletcher 09]. They used driver’s gaze vector and road scene
event correlation to estimate if the driver has seen the event or not. Due to the
“looking but not seeing” problem, this work was not able to reliably determine if a
certain road event (pedestrian for example) is perceived by the driver. However it
could identify if the driver has not perceived a road event. Deeper in this context,
Doshi and Trivedi [Doshi 12] provided a result on the observation of the dynamic
of overt visual attentions shifts. They found that there are various interactions
between head and eye movements that are useful in detecting the driver distracti-
ons, as well as the driver intent. Indeed, their results validated the differences
existing between goal-oriented and stimulus-oriented gaze shift. Moreover, this
feature could be observed in dynamics of eye and head movements. They also in-
vestigated the problem of detecting the intent of the driver in changing lane which
was considered to be a goal-oriented attention shift. This result showed that the
driver attentiveness or awareness of something should be observed through the

dynamic of many parameters.

Driving Behaviors Observation

Another method on the driver’s inattention research is to detect it indirectly
through driving actions such as vehicle speed, steering wheel movement, late-
ral position, and break or acceleration pedal states [Imamura 08, Ueno 94]. The
projects conducted by HASTE (Human Machine and the Safety of Traffic in Eu-
rope ) demonstrated that the steering measures were significantly affected by the
visual task, when a subject had to perform the visual task, the steering effort was
higher than in the baseline condition [Ostlund 04]. The IVDRs (In-vehicle Data
Recorder) offer valuable information on a driver’s behavior through the analysis of
automobile-operating information. Jensen and Wagner [Jensen 11] also proposed a
combination of three analysis methods to evaluate the driver’s performance: data
threshold violations, phase plane analysis with limits and a recurrence plot with
outlier limits

These methods were based on the measurements of vehicle speed, engine speed,

vehicle latitude and longitude coordinates, and lateral accelerations. Although
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these techniques are not obtrusive, they are subject to several limitations such
as vehicle type, driver experience, geometric characteristics, state of road, etc.
[Bergasa 08].

The measurements in the study of the Drivers Awareness of pedestrian

To the best of our knowledge, there are no studies that are directly related to the
estimation of the driver unawareness of pedestrian or other traffic events. The
most closely related works are those of Fukagawa and Yamada [Fukagawa 13] who
proposed a hypothesis that is likely linked to our work.

Their study was based on the driver’s operational data such as pressure on
the accelerator pedal, pressure on the brake pedal (called acceleration reaction),
steering angle and vehicle behavior data such as vehicle speed to estimate the
driver’s awareness of pedestrian. Their hypothesis was that whenever a pedestrian
appears on the road, if the driver noticed it, he had to do the acceleration reaction
somehow. They used the driving action data collected by Research Institute of
Human Engineering for Quality of Life [Akamatsu 03]. From that, they proposed to
calculate the probability of acceleration reaction being observed at a distance given
that response to driver’s aware of the pedestrian. This probability was assumed
to be a log-normal distribution. They also proposed to calculate the probability
of acceleration reaction being observed at a distance given that not in response
to driver’s aware of the pedestrian and this probability was considered to be a
uniform distribution. Hence, using Bayes theorem, they calculated the probability
that one acceleration reaction was caused in response to driver’s awareness of
pedestrian. However, there is a couple of weaknesses in this study. Firstly, in the
data collected in real and actual road condition, it was supposed that whenever a
pedestrian appeared on road, the driver had to notice them, this is hard to verify.
Secondly, the driver could totally accelerate if he had been aware of the pedestrians
and identify that they were not in danger. On the other hand, this probability
model is not reliable because of the use of a specific distribution law. Finally, this
study can not determine if the driver has not noticed the pedestrian or has been

unaware of them.

Based on the different measurements presented above, the researcher can pro-
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posed the mathematical models in order to estimate, predict the impaired driving
and the driver abnormal states. In the next part, we will present our conceptual
model that aims to estimate whenever the driver is aware of unaware of a pede-
strian. In this conception, the model will take the driving signal measurements as
its inputs and uses the mathematical models to compute the probability that the

driver is aware of pedestrian.

2.2.2 Conceptual Model

For the measurement, we chose to use four driving signals: The vehicle speed de-
noted v in km/h; The acceleration pedal position denoted a which were normalized
and takes value in [0;1]. This value is equal to 0 means that the driver releases
completely the accelerator pedal and on the contrary, when the drive pressed com-
pletely the accelerator pedal, this value is equal to 1; The braking force, denoted
b which takes value in [0;400](Newton Unit - N) and the steering wheel angle,
denoted s which takes value in [—7, 7] radian rad. There was also one derivative
signal which was the Time-to-Collision (T'7'C') in second s, The TT'C presented the
relationship between the distance to the pedestrian and the speed of the vehicle.

Finally, at each instant ¢, the observed data is:

O(t) = [a(t), b(t), s(t),v(t), TTC(t)]" (2.2.1)

For simplifying the writing of the formulation, we write O at instant j as follows:

O] = [aj7bj78j7UjJTTCj]T (222)

Than, let consider a temporal data sequence of O(t) as an input of the model,

we have the input of the models is:

V:=[0,0;:1,.... O iperu)” (2.2.3)

where T'w is the sequence size in term of time and h * T'w is the sequence size in
term of data point in which A is sensors frequency calculated in (1/H z)
The Figure.2.2.1 shows the structure of the model of estimation of the driver’s

awareness of pedestrian. In the next section, we will explore the mathematical
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algorithms that can be used for estimation.
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Figure 2.2.1: The Conceptual Model for estimating the Driver Awareness of Pede-
strian.

2.3 Mathematical Models for Awareness and

Unawareness Classification

As presented in the above conceptual model, our objective is to estimate the pro-
bability that the driver is aware of the pedestrian at every instant when the pede-
strian appears in front of the car. In the first stage, in order to better analyse the
performance of the algorithms, the problem of estimation of the driver’s awareness
of a pedestrian (DAP) and estimation of the driver’s unawareness of a pedestrian
(DUP) are formulated as a standard classification problem [Aoude 12]:

Given a training data set {(Vy,y)|i = 1,2,..m}, where V; € R? is the d-
dimensional features of driving data and is associated with a target
y; € {DAP, DUP}. Without loss of generality, we can replace the set { DAP, DU P}
by {0,1} or {—1,1}. The goal is to fit a decision function g(V) that approximates
the relation inherited between the data set points and it can be used later on to

infer the output y, for a new input data V,.
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2.3.1 Classifier Requirements

Before choosing and implementing the classifiers, some a prior criteria are defined

for the algorithms. They have to:

o allow an implementation in real-time: In term of complexity, the model has

to allow the development of a real-time device implemented in the car.

e be adaptable to detecting in real-time what means that the DAP or the DUP

has to be detected at each instant of time.

e have been successfully applied, even in different domains other than road

safety research to insure the reliability of the model.

e be able to cope with inter-individual differences. Because the driver’s perfor-
mance and behaviors are somehow dependent on the driver’s driving style,

we would like to have a model that no need to be trained for each driver.

e have the feasibility of the model in term of time: it requires a reasonable

time to be implemented (regarding to the thesis deadline).

e be data quantity independent. Indeed, as the driver’s behaviors in the critical
situation are difficult to be observed and measured. A model which is not

much dependent to data quantity is expected.

We proposed to study six different classifiers which can be divided into three
propositions: the threshold-based algorithms, the discriminative models and the
generative models. A detailed discussion about theirs characteristics as well as the

training step are given in the next parts.

2.3.2 First Proposition: Feature-based Algorithms
The Time-To-Collision

One of the most intuitive approaches to detect the driver unawareness is to use
the time-to-collision (T7°C'). This type of temporal property is usually used for
road traffic safety analysis [Kiefer 05]. Indeed, the TT'C' is defined as: «The time
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required for two vehicles to collide if they continue at their present speed and on
the same path» [Hayward 72]. It is simply calculated as:
T7C = —— (2.3.1)
[V — Uped]

Where v and v,.q are respectively the vehicle speed and the pedestrian speed,
r is the distance between the vehicle and the pedestrian. For this classification
algorithm, the TT'C' value is computed when the vehicle’s deceleration crosses a
predefined threshold d;;, that indicates a reaction of the driver when he is aware
of the pedestrian. Then the driver is classified as DUP if TTC < TTC};, where
TTCYy, is the predefined threshold. The TT'Cy, is chosen as the time given for
the driver to stop safely in front of the pedestrian. This static parameter can be
adjusted to change how conservative the algorithm is in its classifications.

We adapt this idea and create a TT'C-based classification based on the training
data. With each sequence in the training data set {(V;,v;),7 = 1,2,..m}, the
decision value is calculated for each input sequence V;(2.1). If there is an instant
j when the vehicle’s deceleration crosses dy,, the decision function g(V;) takes
the TT'C; value at this moment. In the event that the vehicle never crosses this
threshold, ¢g(V;) takes the smallest value of the TT'C' in this sequence. The Algo.
2.1 shows how to calculate the decision function g('V)from a sequence observation
V.

Algorithm 2.1 T'T'C-based algorithm

o Input: Training data set {(V;,v;),7 =1,2,..m}.
e Output: The detection threshold TTCy,

1. For i:=1 To m
e With ecach V, do :

a) Calculating the deceleration of the vehicle at each instant j:

dj = WU (1 /6?) s the time step size, h = s

b) If 3j that d; < dy, then ¢(V;) = TTC;, Else ¢g(V;) takes the
smallest value of TT'C' in the sequence V;
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In the classification step, with a new V, sequence, we calculate g(V,). If g(V.,)
is greater than the T'T'CY, threshold that was chosen in ROC curves test, the driver
behavior is classified into the DAP class, otherwise, it is classified into the DUP

class if not.

The Required Deceleration Parameter

The second simple technique is to use the Required Deceleration Parameter (RDP).
In [Neale 06][Aoude 12], the RDP has been used to classify the driver as compliant
or violant when he enters into a road intersection. The idea is to provide the de-
celeration needed for the vehicle to stop safely knowing its distance to an obstacle

and its current speed. It is defined as:

’U2

RDP = — 2.3.2
2rg ( )

where ¢ is the gravitational acceleration constant.

For a given RD P,;, threshold, the driver is classified as DAP whenever the RD P
is greater than RD Py,.

Since the pedestrian speed is neglected in the formula of the TTC (Eq. 2.3.1),
the RDP represents the acceleration reaction of the driver at the specific critical

time. The Eq. 2.3.2 can be rewritten as follows:

U2 v

RDP = — =
2rg  2TTCyqg

(2.3.3)

Given a training data set {(V;,v;),7 =1,2,..m} , the RDP; value is calculated
at every instant j in the sequence V; . Then, the decision function g(V;) takes
the greatest value of those RPD; values. Indeed, the greatest value of RDP; will
be the most significant to compare between a DUP sequence and a DAP sequence.
The RD P,,threshold is then specified in evaluation step using the ROC curve.

The algorithm for calculating the decision function g in the RDP method is
presented in Algo. 2.2.
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Algorithm 2.2 RDP-based algorithm

o Input: Training data set {(V;,v:),7=1,2,..m}.
e Output: The detection threshold RD Py,

1. For i:=1To m
o With each V; do:
a) Calculating the RDP at each instant j:
RDP; = QT;’(é")j*g
b) g(Vi) = mazjep iengtn(v,)) (RPD;)

2.3.3 Second Proposition: Discriminative Models
The Support Vector Machine

In the discriminative approaches, the Support Vector Machine (SVM) is a well
known statistical learning theory which was developed by Cortes and Vapnik [Cor-
tes 95]. It is typically applied to many areas such as such as pattern recognition,
regression, equalization, classification and is adopted in applications such as remote
sensing [Mountrakis 11], text classification [Tong 02], face detection [Osuna 97|,
image classification [Chapelle 99], human dynamic gait recognition [Begg 05], and
SO on.

Concerning the adaptation to recognize the driver behaviors, the SVM is also
widely used in different variants. In [Aoude 12], the SVM was used and followed
by a Bayesian filter to determine the probability that the driver is compliant or
violant before entering an intersection. The performance raised to 84% of true
detection validated on the realistic driving data. In [Qian 10], the authors used
sequentially two SVMs to identify the driver based on their driving actions. In
[Kim 07, Chang 11], the driver lane-change intention was estimated using SVM. In
[Liang 07], the driver cognitive distraction was detected using the SVM, the input
data was the eye movement data and driving measures.

We applied straightforwardly the C-SVM version of SVM [Chang 11] to classify

whether the driver is aware or unaware of pedestrian. The input data is the feature
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V of driving actions as described in Eq. 2.2.3.

The basic idea of the SVM is to map the observed data V (Eq. 2.2.3) which
is a feature of R? low-dimenion , into a high-dimensional feature space F via a
nonlinear mapping ¢, and to do linear classification in this space. The decision

function is written as follow:

g V)=w- (V) +b (2.3.4)
with ¢ : R — F,w € F, and b is a bias threshold,

Then the output class is given by evaluating the sign of the decision function:

y = Sgn(g(V)) = Sgn(we(V) +b) (2.3.5)

Given a training data set {(V;,y;),i = 1,2,..m} , with y; € {—1;1}. Training

the C-SVM consists of solving the following primal optimization problem:

1 m
mlz;?i'wT'w +CY ¢ (2.3.6)

i=1
subject to y;(wlp(V;) +b) > 1-&,
51' > O,Z = 1,2...,77’1,

Where C' > 0 is the regularization parameter. Moreover, due to the possible
high dimensionality of the vector variable w, Eq. 2.3.6 is usually solved by the

following dual problem:

L7 T
— — 2.3.7
ming o Qa—e « ( )
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subject to y'a = 0,
0<a;<Cii=1,..m

where e = [1,..,1]7 is the vector of all ones, Q is an m by m positive prede-
fine matrix, Q;; = yiy; K(V;, V;), and K(V,,V;) = ¢(Vi)T¢(V;) is the kernel
function.

The algorithm is used to solved this dual problem is presented in Appendix.
A.1.1. Once the dual problem (Eq. 2.3.7) is solved, using the primal-dual relati-

onship, the optimal w satisfies:

w=3"yoid(V) (2.3.8)

and the decision function for new data input V, is:

i=1

Then the output class y, is:

Y. = Sgn(g(V.)) = Sgn(w’ ¢(V.) +b) = Sgn(3_ yia; K(Vi, V.) +b)  (2.3.10)
i=1
We store y;, a;, Vi, label names, support vectors and other information such as
kernel parameters in the model for the DAP/DUP classification.
In this thesis, we firstly used the Radial Basis Function (RBF) for all discrimi-
native model. The RBF kernel is efficient in complex non-separable classification

problems due to its ability for nonlinear input mapping.
K(Vi,V;) = exp(—y [V — V,||%) (2.3.11)
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Therefore, in order to get a good classifier, it is important to run the SVM
classifier on the training data set with different values of the regularization C' (in
Eq. 2.3.6) and the v parameter in the kernel (Eq. 2.3.11).

The Relevance Vector Machine

The SVM model has also some limitations. It outputs a hard decision rather
than the posterior probabilities. Ideally, we would like to estimate the conditional
distribution P(t|x) in order to capture the uncertainty in our decision model.
Moreover, this class membership is necessary to adapt to varying class priors and
asymmetric misclassification costs.

SVMs make unnecessarily liberal use of basis functions since the number of
support vectors required typically grows linearly with the size of the training set.
Some form of post-processing is often required to reduce computational complexity.
Moreover, it is necessary to estimate the error/margin trade-off parameter C' (in
Eq. 2.3.6). This generally entails a cross-validation procedure, which is wasteful
both of data and computation [Tipping 01].

Therefore, another method that follows the same functional form with the SVM,
namely the Relevance Vector Machine can be used to avoid this limitation based on
Bayesian techniques[Tipping 01]. The RVM classifier outputs a class membership
likelihood that represents the probability that the test data is belong to a given
class.

The RVM has been applied in [Doshi 12] to detect the lane changes intention
of the driver based on the eye/head movement. In [Yogameena 10], the authors
used the multi-RVM in a one-vs-all scheme to classify different classes of human
behaviors such as run, jump, walk,etc. They have been also compared to the SVM
and have showed a better performance.

The RVM is firstly considered for the regression problem. Given the same input-
target data set {V;,t;},7 = 1,2,...m but now ¢;takes the scalar value instead of
being {0, 1}.

Now, we adopt the function notation g(V) of the SVM (Eq. 2.3.4) as follow:
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Where € is additive noise. This noise is assumed to be mean-zero Gaussian with
variance o2.

Let us consider the conditional distribution P(¢;|V) . Thus, we can write
P(t;|Vi) = N(t:]g(V;),0?) where the notation specifies a Gaussian distribution
over t; with the mean ¢(V;) and the variance is o. As in SVM, we consider the
same kernel function K(V;, V;) = o(V)To(V;) = exp(—v ||[V: — V;|° . Due to
the assumption of independence of the ¢;, the likelihood P(t|V) of the complete

data set can be written as:

P(tjw,o%) = (2r0%) "™ 2exp {—v ||t — dw]} (2.3.13)

where t = [t1,ta,....tm|T,w = [wy,wo, ..., w,]T, and ® is the m x m design

matrix

¢ =[K(V,)),K(Vsy),..,K(V,,)]" (2.3.14)

where K(V;) = [1,K(V;, V1), ..., K(V;, V,,)].

We would expect maximum-likelihood estimation of w and o? of Eq. 2.3.13.
This procedure requires certain step of imposing additional constraints on the
parameters and approximation over w . The detail of the approximation and
estimation the w and o2 from the labeled data set can be found in the work of
Tipping [Tipping 01]

In the inference step, having defined the prior, Bayesian inference proceeds by

computing, from Bayes’ rule, the posterior over all unknowns given the data:

P(tlw, o?)P(w, 0?)
Pt)

With a new data V,, predictions are made for the corresponding target tx,in

P(w,c|t) = (2.3.15)

term of the predictive distribution:
P(t.|t) = [ P(t.|w, ) P(w, o?|t)dwdo?

To those familiar, or even not-so-familiar, with Bayesian methods, it may come

as no surprise to learn that we cannot perform these computations in full analyti-
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cally, and must seek an effective approximation A.1.2. Further detail of the RVM
can be found in [Tipping 01].

Back to our problem with is a two-class classification between the DAP and the
DUP, it is desired to predict the posterior probability of membership of one of the
classes given the input V;. The formulation of the classification follow statistical
convention and generalize the linear model by applying the logistic sigmoid link
function o{g(V;)} = 1/(1 + e 9V9)) and adopting the Bernoulli distribution for
P(y;|V;), we write the likelihood as:

P(ylw) = Ha{g DL = o{g(Vo) (2.3.16)

where, following the probabilistic specification, the target y; € {0, 1}.

A approximation procedure, which is based on Laplace’s method is then propo-
sed to map the classification problem to a regression one. And it follows the same
technique to estimate the w (See Appendix A.1.2).

In practical, the kernel K is the only parameter needed to be chosen in the RVM
model. So, we employ once again the Radial Basis Function (RbF) as the kernel

function. Therefore the only parameter needs to be set up for the model, is the

2.3.4 Third Proposition: Hidden Markov Models

A Hidden Markov Model (HMM) can be considered as a dynamic Bayesian Net-
work with two concurrent stochastic processes, a Markov process and a general
stochastic process [Rabiner 89]. That is, in a HMM, the states in the Markov
process are not directly measurable, but the output, dependent on the states, are
observable. While second process is “what we can see of the world” (ex via the
sensors), the first one can be considered as “why the world is like that” ( the driver
wants to slow down, to turn etc). For example, in the field of voice recognition the
invisible process are phonemes, and the visible process is the vocal signal [Rabi-
ner 89]. Two of these hypotheses are: There is an invisible process which evolves
state by state; and the study of the visible signal could provide information on

this process. Their first presentation in 1989 by Rabiner [Rabiner 89] brought the
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development of effective algorithms both for the inference and for the learning.
Their uses in various studies shows that HMMs are well adapted to the problems

with multidimensional nature where the time aspect is fundamental.

Speech recognition is the main domain that have successfully used the HMMs
[Juang 91], followed by the technique for signature recognition [Yang 95|, and

gesture recognition [Starner 95].

In the driving context, the HMMs have been used with different schemes. In
[Liu 97], in order to predict the driver intentions (right turn, left turn and stop),
a series of HMMs have been used to model each type of intention. The observable
outputs are the driving actions on the 2 seconds right before the intention is taken.
The results of the intention recognitions in a simulator experiment showed up to

87% of accuracy.

Pentland and Liu modeled more diversified situations (stop at the next inter-
section, turn left at the next intersection, turn right at the next intersection, change
lane, over-take car, go straight) in a simulator [Pentland 99]. They assumed that
the human driving strategy on the vehicle is different according to the states of
the driving activity. For example, they divided the lane change into six successive
stages: (1) center the car on the initial lane, (2) look if the opposite lane is free, (3)
initiate the change of direction, (4) change of lane, (5) end of the change, and (6)
center the car in the new lane. With each stage, a Kalman Filter is associated, and
each sequence is modeled by a HMM whose input parameters are the adequacy

output from each filter.

In [Liu 97], a single HMM has been used to identify the vehicles in conflict with
other vehicles in a limited intersection road with appropriate measurements of the
ego-vehicle and surrounding vehicle dynamics. In [Aoude 12], the Gaussian Hidden
Markov Model is used to classify the driver as violator or compliant at intersection
from the driving signals collected in naturalistic driving. In this framework, the
observation are the continuous signals and the emission distribution is modeled
by a Gaussian distribution. In results, the HMM could reach up to 80% of good

recognition between driver compliant or violator.

Therefore, in a prior choice, we consider that the Hidden Markov Models as

the most suitable approach to model the driver’s awareness of pedestrian. The
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cognitive states of the driver in his vigilance process, his inattentive states or his
situation awareness levels are unobservable. The Driver Awareness of a Pedestrian
is also a cognitive process which could be considered as a sequential states which
is time related. However, the states are not be able to measure directly. At each
instant, this process is situated at a different state. Although these states are
impossible to observe directly, we can observe and measure their consequences at
each instant of time which are the actions on steering wheel or pedals. Moreover,
the formalism of the HMMs is suitable for taking into account the transitions
between phases and for its structural possibility to model temporal dilatation

In order to explore different characteristics of the HMMSs, we have implemented
two versions, the discrete hidden Markov model (DHMM) and the Multi-Variate
Gaussian Hidden Markov Models (MGHMM) which is a continuous version of
HMM. The two version of HMMs is expected to covers all the flexibility of the
HMMs.

The Discrete Hidden Markov Model

Different probability parameters give the relation among the states, and between
the states and the visible output. A HMM can be characterized by:

o A set of N distinct states S = {5, 52, ..., Sy} of system.

 The initial state distribution IT = {my, 7o, ..., 7y } where m; = P(s; = 5;), 1 <
1 < N. Where s; is the state of system at time t.

« The state transitions probability distribution A = [a;;] where a;; = P(s; =
Sjystfl = Sl)? 1< i?j? <N.

Each state can produce one of M distinct observation symbols from the code book
{C1,Cy,...,Cp}. Where C; is a predetermined symbol.
That is why we call the Discrete Hidden Markov Model (DHMM).

o The emission probability: B = [b;(m)] where bj(m) = P(o; = Opls; =
S;), 1 <m < M,1<j<N. Where v, is the discrete observation at time t.

Therefore, the DHMM can be written as follows A = {A, B, I1}.
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In order to apply the DHMM, we need firstly to determinate the observation
code book {Ci,Cy,...,Cy} from the continuous observation signal O, (see Eq
2.2.2). Then, we need to determine the best values of the parameters: N, M and
the probability matrix A, B, II.

The Multivariate Gaussian Hidden Markov Model (MGHMM)

In [Phan 14a], we have proposed to a discrete HMM to classify the DUP and the
DAP. However, the discretization of the driving signal can lead to a degradation of
its signification. Thus, we proposed to use the observation as a continuous signal
and to model the distribution of emission by a Gaussian mixture distribution.
The Gaussian distribution is the most common and easily analyzed continuous
distribution. Using the driving actions, we propose to build two Gaussian-mixture-
HMMs for two distinct behaviors: Driver Awareness of Pedestrian (DAP) and
Driver Unawareness of Pedestrian (DUP).

The MGHMM has the same components of the DHMM,except the emission

distribution is defined as follows:

o At a time t each state can produce one d-dimension vector of observation
O which is composed of the continuous driving signals. This emission pro-
bability distribution is assumed to be a mixture of multivariate Gaussian:
B ={b;(0) = L M N(O, pjm, Sjm)} where M is number of component
of mixture and each component N is a d-variate Gaussian distribution pa-

rametrized by a mean vector p;,, and a covariance matrix 3.

Therefore, the MGHMM can be also written in a more compact form as A =
{II, A,B}. The MGHMM design also consists of the determination of the best
combination of the parameters: N, M, A, IL, (4, Yjm,

Even with DHMM or MGHMM, there are three problems of interest that must
be solved for the model to be useful in real-world applications, the evaluation
problem, the decoding problem and the learning problem [Rabiner 89]:

Problem 1 (Evaluation Problem):

Given the observation sequence V.= O103...0p.1y, and a model A = {11, A, B},
how do we efficiently compute P(V|A),the probability of the observation sequence,

given the model?
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Problem 2 (Decoding Problem):

Given the observation sequence V.= O10s...Op.ry, and a model A = {II, A, B},
how do we choose a corresponding state sequence S = 5155...57 which is optimal
in some meaningful sense (i.e., best ’explain’ the observations).

Problem 3 (Learning Problem):

How do we adjust the model parameter A = {II, A, B} to maximize P(V]|\).

The DAP and the DUP classification model.

The training technique and the decision process is the same for both DHMM and
MGHMM. In fact, the DAP and DUP are modeled separately. In this study, we
are interested in the evaluation problem and the learning problem.

Let us consider two HMM models Apsp and Apyp which represent the DAP
and the DUP respectively.

Apap = {Apap,Bpap,lIpap} (2.3.17)

Apup = {Apvup, Bpup, llpup} (2.3.18)

Firstly, we apply the learning problem which allows us to optimally adapt the
model parameters to the observed training data. Suppose we have two sequences
of observations from training data: one is from the DAP (Vpap) and the other
is from the DUP (Vpyp). These sequences can be considered emissions produced
by the two HMM modeling behaviors: Apap and Apyp.

Using the expectation-maximization (EM) algorithm (see Appendix A.1.4), two
models Apap and Apyp are learned from Vp,p and Vpyp respectively. Indeed,
the EM algorithm adjusts the parameters of the given models by maximizing the
conditional probabilities of the sequences of observations.

The final models are computed by solving the following problems:

Abap = argr/\nax P(Vpap|Apap) (2.3.19)

Apup = C”‘QTCWC P(Vpup|Apur) (2.3.20)
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Secondly, given a new sequence of observations V,, the forward algorithm (See
Appendix. A.1.3) is used for Apap and Apyp to calculate the posterior proba-
bilities P(V.|Apap) and P(V.|Apyp). These probabilities presents how well the
models match the given V, (evaluation problem ). Moreover, since nothing is
known beforehand, the prior over the model is assumed to be uniform P(Apap) =
P(Apup) = 0.5.

. . . . . : P(V*y)‘DUP)
Finally, for this classifier, the likelihood ratio BV amar)

termine whether the driver is likely to be aware or unaware of pedestrian. The
threshold 7y, is selected to adjust the performance of the DAP/DUP classifica-

tion. It is usually computed by using the log-probabilities which introduces the

is calculated to de-

exponential (e) term in the formula:

P(V.,Apvp)  P(Vi|Apup)P(Apup)  P(V.|Apup) -
- — > e (2.3.21)
P(Vi,Apap)  P(ViApap)P(Apar)  P(V.|Apap)

If the likelihood ratio is greater than e™, the sequence of observations V,is
classified as DUP and as DAP if not. Again, the classification occurs on the
observations in a T'w sliding time window. The Fig. 2.3.1 summarizes this HMM-
based architecture. From here, we can see that the decision function ¢(V) is

presented by the likelihood ratio.

Using Forward Algorithm

Incoming Threshold detector

Observations V

[01,02,..04.7,,]

Apup I
HMM of DUP |P(V|ipyp) |

P(V|dpyp) S gt Behavior
P(V| ADAP) Classification

ADAP EP(VMDAP.J |
HMM of DAP |

Figure 2.3.1: HMM-based decision process Architecture.
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2.4 Conclusion

This chapter underscores the gap in the literature in term of cognitive psycho-
logy and driver’s unawareness of pedestrian detections. It provides a reasonable
definition of the driver’s awareness of pedestrian and proves the choice of measu-
rement of driving actions as an evidence. Moreover, a wide range of mathematical
models that can be applied are also represented. The choice of Hidden Markov
Model-based methods is justified in prior by its advantage of implementation,
inter-individual and reliability in road safety domain.

Due to the difficulty of creating a pedestrian scenario in real conditions, it is
necessary to use firstly in a control environment. A real road experiments is the-
refore not possible at this stage. Therefore, in chapter 3, we will present how we
use a driving simulator to manipulate the Driver Awareness of Pedestrian. Furt-
hermore, together with this chapter, the chapter 3 concerns the implementations
of the mathematical methods. We will present a framework to observe and model

the driver’s behaviors in a particular situation.
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Chapter 3

Settings and Benchmark for Driver
Awareness and Unawareness

Classification

This chapter presents the implementation and the setting of the hyper-parameters
of the classifiers presented in Chapter 2. A training dataset and specific parametri-
zation techniques are employed. Section 3.1 provides the way of creating a dataset
of the driver’s awareness or unawareness of a pedestrian (the DAP and the DUP).
Section 3.2 highlights the popular tools that are used to select the best values for
the parameters. These tools are the p% generalization test, the k — fold cross-
validation, and the grid-search technique associated to the Receiver Operation
Characteristics Curves. Then, in Section 3.3, based on some prior knowledge from
the data and the generalization test, we present the best values for the parameters
in each classfier. In Section 3.4, a performance comparison between the classifiers
through the generalization tests are highlighted and discussed. The chapter ends
with a conclusion (see Section 3.5) on the model which is chosen for a real-time

classifier implementation.
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3.1 Construction of a Driver Awareness of

Pedestrian Dataset

3.1.1 Related Work on Driver Behaviors Manipulation

In order to model the driver’s behaviors or the driver’s abnormal states, some
researchers have created the situations and the scenarios that generate those be-
haviors. The experiments can be conducted with a real car but most of them are
done on a driving simulator because it is easier to create the impaired driving
behaviors.

The driver’s drowsiness and sleepiness are the simplest phenomenons to be crea-
ted and to be observed. The participants try to sleep when the scientists measure
the surrogate data [Yu 07]. In [Akin 08], two experts with extended experience
on interpreting the drowsiness data evaluate and rate the recordings used for this
study. Each of them inspects the recordings, and then agrees on which record
sequences clearly indicate awake, drowsy or sleepy states of the subject. In [Li 08],
the participants are asked to drive on the same road with the same scenario. The
monotonous scenario makes the subject to feel drowsy easily and even to fall asleep.
In order to guarantee the monotony, the experiment is carried on an illuminated

and sound proof room for at least one hour and a half.

To manipulate the cognitive inattention, Harbluk et al. propose to perform
mental arithmetic questions like single digit addition (considered as an easy task),
double digit addition (difficult task) through a mobile phone. The participants
have to respond to the tasks through the mobile phone in hands free mode [Har-
bluk 07]. The participants are also asked to drive on a road with heavy traffic
foreight kilometers (8000 m) while the three tasks previously described, are per-
formed. The level of inattention of the participant are calculated through an eye
tracker as well as by the way in which the brakes are applied. Wesley et al. ma-
nipulate cognitive distraction by asking the driver to answer a call while driving
and he is also asked to answer two prerecorded question sets[Wesley 10]. One is a
combination of basic, logical and simple mathematics and the other set comprised

of ambiguous questions. If the driver answers wrong then the questions are asked
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again in order to keep distracting the driver

To manipulate visual distraction, the drivers are asked to visually see a touch
screen placed in front of them and they are asked to press the moving circle on
the screen. The driver’s inattention is monitored by tracking the lane changes and
the eye movements [Benedetto 11b]. In another experiment, the visual distraction
is monitored by asking the drivers to respond to a text message on their mobile
phone.

Most of the researchers have manipulated cognitive distraction and visual dis-
traction on the driver separately. To find the combined effect of both, Liang et al.
asked the participants to listen audio clips similar to those in the cognitive task
and to select the orientation in the touch screen using the interface similar to the
visual task. Blink frequency and various vehicle oriented measures like steering
error, lane position, braking impact are monitored to identify the drivers cognitive

and visual distraction states [Liang 07].

3.1.2 Manipulating the DAP and the DUP
An experiment with the driving simulator

Let consider a situation where a pedestrian appears at a certain distance in front of
the vehicle. The pedestrian can be in different states (walking, standing, running)
at different traffic positions (on lane, crossing mark, side walk). As stated above,
the pedestrian is vulnerable and he can cross the road at any moment. Then the
situation becomes dangerous for him. The aim of the experiment is to manipulate
the driver to be aware of unaware of a pedestrian and to collect the driving data
during these behaviors happen.

In order to do that, a driving simulator has been used (see Fig. 3.1.1). Ten
active drivers (7 men and 3 women) were invited to participate to the study during
ten days. They had to drive with the simulator as they do with the real car on
the routes and the scenarios that we have predefined. The driving was randomly
fulfilled in different moments of the day. The mean age of the participants was 24
years (range from 20 to 28).

In order to limit the complexity of the situations, all scenarios did not contain

other vehicle and only one pedestrian appeared in each scene. The ego-vehicle
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and road parameters such as vehicle weight, size, or others features were fixed
to simulate real-world conditions. The road track has been chosen to be a one-
lane main road passing through a village. The maximum speed of the vehicle was
limited to 27.8m/s to discourage excessive speed. Twenty pedestrians were put on
straight road and they were in different appearances and did different activities. A
pedestrian can be a man or a woman, wearing red, yellow or green clothes. They
can be in different states such as walking on the side-walk or on the lane, running
on the sidewalk, tending to cross the road at the crossing mark, or even not at a
crossing mark, etc. The scenarios are made more diversified in order to neglect
the influence of the pedestrian differences on the driver’s awareness.

Two driving conditions in which the driver is conducted to be aware or una-
ware of a pedestrian, have been proposed. We call them the DAP and the DUP
manipulations. In the DAP manipulation, before each driving, we encouraged the
driver to avoid as possible as he could, the collision with the pedestrian. A mes-
sage of TTC value and the distance to the next pedestrian were displayed in the
bottom-center of the screen through the driving time. Moreover, the driver was
asked to press on a button on the steering wheel (on right hand) to indicate he
had noticed a pedestrian. In this manipulation, if the driver did not make colli-
sion to pedestrian, he was considered to be DAP. On the other hand, in the DUP
manipulation, there is no message, no button-pressing task, and the pedestrians
are set to be invisible. The driver was asked to drive normally. If the driver makes
a collision with an invisible pedestrian, he was considered to be DUP. In order to
annotate the DAP and the DUP data, we propose two assumptions:

1. The driver is considered to be aware of the pedestrian if the driver has pres-
sed on the button to indicate his perception of the pedestrian and passes by the
pedestrian without any accident.

2. If the driver is unaware of a pedestrian, he drives and does the same maneu-

vers on the vehicle like there is no pedestrian on the road.

Data collections

Here, we aim to collect both the visual behaviors and the driving actions of the

driver. We guess that the correlation between where the driver looks and how the
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Figure 3.1.1: Driving simulator used for manipulating the driver’s awareness of a
pedestrian.

driver reacts could help to infer if the driver is aware or unaware of a pedestrian.
However, due to the fact that there is only one pedestrian in our scenario, we
suppose that, whenever a pedestrian appears in front of the car, the driver will
notice the pedestrian. Therefore, the objective is, by using the driving actions, to
classify whereas the driver is unaware or aware of that pedestrian.

Moreover, we suppose that the acceleration and the steering behaviors are the
most important actions that need to be considered. This is because they reflect
the fact that the driver is vigilant or not. On the other hand, the time-to-collision
between the vehicle and the pedestrian is also taken into account, this variable
represents the danger level of the situation. We think that the relationship between
the driver’s acceleration behavior and the situation danger level can interpret the
fact that the driver is aware of the pedestrian.

Thus, the driving actions data are automatically and synchronously logged into
a hard-disk at 20H z without any filtering or smoothing processing.Based on the
second hypothesis, we extracted the driving data that are supposed to capture the

driver’s awareness of a pedestrian. Indeed, during each driving time in the DAP
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manipulation, from the instant when the driver pressed the button to the instant
that the vehicle passes by the pedestrian or stops in front of the pedestrian, we
extracted all these driving data.

Because of the varying vehicle speed, this time period is from 3s to 6s length
(from 60 to 120 value points). The same time period is used to extract data in the
DUP manipulation. Moreover, only the driving that makes collision with invisible
pedestrian is taken into account for the DUP estimation.

In the DAP manipulation, some reactions of the driver such as decelerating then
braking in front of the pedestrian or turning the steering wheel, appear to avoid
the pedestrian and passing by him. For example, in the Fig. 3.1.2, the driver
releases accelerator pedal at 5s of TT'C' and at 2s of T'T'C, then he begins braking.
On the other hand, the DUP manipulation showed that none of these reactions

occurs in the same time periods (see Fig. 3.1.3).
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Figure 3.1.2: Awareness Data Sample.

With the second assumption, we used an overlapping-sliding-windows of size
Tw on the data to segment the data into sequences. Each sequence corresponds
to a data matrix that has Tw * 20 lines and 5 columns. This segment is used as
a feature vector to train or to detect the DAP and the DUP. The Tw parameter

has to be carefully chosen in order to capture the characteristics of the DAP or
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Figure 3.1.3: Unawareness Data Sample.

the DUP behaviors. Indeed, too long T'w may contain too much noise and can
lead to over-fitting over the models whereas too short Tw cannot capture sufficient

relevant features from the observation.

3.2 Dedicated Techniques for Setting Up the

Classifiers

Setting up the classifier consists of selecting the best values of the parameters in the
algorithm. It is also known as «Hyper-parameter optimization» problem. Since we
consider statistical models, this process has to be done for each new dataset. The
goal is to optimize the classification performance on an independent dataset. In
this preliminary optimization, the grid-search technique and the generalization test

associated with the receiver operator characteristics (ROC) curves are proposed.

3.2.1 Grid-Search Technique

The traditional way of performing hyper-parameter optimization is a gridsearch,

or a parameter sweep, which is an exhaustive search through a manually specified
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subset of the hyper-parameter space of a learning algorithm. A grid search algo-
rithm must be guided by some performance metric that can be typically measured
by the p% generalization test or the cross-validation that will be presented below.

The grid-search is straightforward and, there exist several advanced methods
that can save computational time by, for example, approximating the cross-validation
rate or performing a random search technique as in [Bergstra 12]. However, there
are two motivations why we prefer to use a simple grid-search approach. One is
that, psychologically, we may not feel safe to use methods that avoid doing an
exhaustive parameter search by approximations or heuristics. The other reason is
that the computational time required to find good parameters by grid-search is
not much more than by advanced methods since there are not a lot of parameters
need to be considered in our proposed classifiers (see Section 2.3.3). Further-
more, the grid-search can be easily executed in parallel when each parameter in
the combination is independent. Since doing a complete grid-search may still be
time-consuming, we propose to use a loose grid (large scale value) to find out the
best region.

Then, it is possible to conduct a finer grid search on that region in order to get

better results.

3.2.2 Generalization Test

As explained before, in any predictive learning task, such as classification, the
model parameters should be selected to obtain a high level of performance of
the learning machine. The grid-search helps to select the best models hyperpa-
rameter from data based on a parametric estimation. The basic fact is that an
assumption of an underlying dependency with a simple known parametric form
is an ensuing need, then limiting its applicability in practice. Recent approaches
allow a wide class of models with varying complexity. The learning task then con-
sists of selecting the model with optimal complexity and of estimating the model
parameters from the training data.

Using the data selected from the experiment described in Chapter 2, the clas-
sifiers are trained and tested on the same data set. The training and testing are

performed using two different techniques: 1) the p% basic generalization test and
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2) the k — fold cross validation [Duda 12]. Both techniques aim at evaluating the
generalization property of the tested classifiers.

The first one is a straightforward test of generalization. It consists of taking
randomly p data subset for training all parameter combinations of each classifier.
Then, we performed the parametrized classifier on the (100 — p) remaining data
subset. This technique demonstrates the generalization property of the classifiers.
This property is essential for any warning method to perform successfully when it
is deployed on driver assistance systems, particularly given the number of vehicles
encountered in everyday driving [Aoude 12].

The second technique is the standard k& — fold cross validation that is also used
for testing the generalization property of the classifiers [Aoude 12, Duda 12]. This
involves randomly dividing the data set into k disjoints and equally sized parts.
The classifiers are trained k — 1 times while leaving out, each time, a different set
for validation. The mean of the k trials gives the performance of the classifier in
term of its ability to classify any new input data. The advantage of the k — fold
cross validation is that, by cycling through £ parts, all available training data can
be used while retaining the ability to test on a disjoint set of test data.

The best parameter combination of each classifier is chosen after using the first
p% basic generalization test. Then, these classifiers with chosen parameters are
then tested using the k — fold cross validation technique in order to compare their

classification performances.

3.2.3 Receiver Operation Characteristic Curves

The Receiver Operating Characteristics (ROC) curve has been introduced by the
signal processing community in order to evaluate the capability of an human opera-
tor to distinguish informative radar signal from noise [Metz 78]. From a research
point of view, it is often used to evaluate the performances of object detectors
[Paisitkriangkrai 13].

The ROC curve is a two-dimensional measure of classification performance (see
Fig. 3.2.1). It can be understood as a plot of the probability of classifying correctly
the positive examples (or True Positive Rate or TPR) against the rate of incorrectly

classifying true negative examples (False Positive Rate or FPR). In this sense, one

o7



Chapter 3 Settings and Benchmark for Driver Awareness and Unawareness

Classification

can interpret this curve as a comparison of the classifier across the entire range of
class distributions and error costs.

Usually, a decision rule is performed by selecting a decision threshold which
separates the positive and negative classes. Thus, when dealing with minimum
error classifiers, most of the time this threshold is set in order to approximate the
Bayes error rate [Rakotomamonjy 04]. However, class distributions or errorcosts
that the optimal threshold associated to the Bayes risk varies within a large range
of values, and for each possible value of this threshold a pair of true-positive
and false positive performance rate is thus obtained. Hence, ROC curves can be
completely determined by varying this threshold value. Thus, one of the most
interesting point of ROC curve is that if error costs or class distributions are
unknown, the classifier performances can still be characterized and optimized. Fig.
3.2.1 depicts an example of the ROC curve of a given classifier. The diagonal line
corresponds to the ROC curve of a classifier that predicts the class at random.The
more the performance improves the further the curve is near to the upper left

corner of the plot.
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Figure 3.2.1: ROC curve .

To determine the classifier’s parameters and to evaluate the results of the ge-

neration tests, a ROC curve is used to display the true positive and false positive
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rates of each set of parameters. The curves were generated by varying a parameter
of interest (or set of parameters), which is referred as the 5 parameter in the Signal
Detection Theory terminology [McNicol 05]. Each point on the ROC curve then
corresponds to a different value of the § parameter (or hyperparameter). The
in each classifier is subsequently detailed in its respective section. The optimal
parameter off3 is determined by the choice of the False Positive Rate (FPR) and
the True Positive Rate (TPR). The values indicate the accuracy that is required
in each application. For example, in accordance with automotive industry, the
maximum FPR is chosen to be 5% [Aoude 12, Doerzaph 10].

3.3 Classifier Parameters Determination

As already said in Chapter 2, the problem of estimation of the driver’s awareness
of a pedestrian (DAP) is considered as a classification problem. In this section,
we apply the ROC curves and the p% generalization test to determine the optimal
values for the hyperparameter in each algorithm. This hyperparameter is consi-
dered as the g parameter in ROC curves describes above. The decision function
g(V) are then used as the score of the the ROC curves.

The training and parameters selection are performed on the data collected from
the DAP and the DUP manipulation. For the data representing the driver’s awa-
reness of a pedestrian, 2000 sequences collected from the DAP manipulation are
used. On other hand, 1000 sequences collected from DUP manipulation are used.
In the first test, we set p% to be 20% in order to have sufficient data for training.
Therefore, 400 sequences representing the DAP (DAP sequence) and 200 sequences
representing the DUP sequences (DUP sequence) are used for the training phase,
whereas the testing phase consists of 1600 DAP sequences and 800 DUP sequences.

Moreover, the choice of FPR on the ROC curve to determine the S parameters, is
based on the automotive application industry recommendations. Indeed, warning
algorithms must take into consideration driver tolerance levels, i.e., they should
try to ensure that the rate of false alarms is below a certain “annoyance” level that
is acceptable for most drivers. The maximum false positive rate should be chosen

to be under 5% [Doerzaph 07]. Therefore, the developed algorithms are designed
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and tuned under the constraint of keeping false positive rates below 5 while trying

to maximize true positive rates.

3.3.1 Feature-based Algorithms
The Time-To-Collision (77C)

The first parameter for the T'T'C-based algorithm is the deceleration reaction thres-
hold that indicates the awareness of pedestrian. This value is chosen at —0.075¢g
in this study (where g = 9.81m/s? is the gravity acceleration constant). Indeed,
the vehicle deceleration is less than —0.075¢ represents a brake activation [Doer-
zaph 07]. Thus, the signification of this algorithm is detected when the driver
brakes in the situation with a pedestrian. If the driver brakes before a critical
Time-To-Collision, he is considered as awareness of that pedestrian. The second
one is the TTCy, parameter. The third parameter is the windows time Tw. Con-
strained by development time, three values of 1s ,1,5s and 2s are tested for this
parameter. Therefore, we drew the ROC curves for three values of Tw (see Fig.
3.3.1). By selecting the FPR at 5%. We can get the best TPR and consequently
the TTC,;, associated.

Fig. 3.3.1 shows that the T'T'C-based classifier works best with a Tw of 1.5s.
The TTC,, is set at 1.6s. This means that, the driver is considered to be DAP if
he decelerates by braking before 1.6s of TT'C' and considered to be DUP if not.

Regarding the result on the Fig. 3.3.1 , we can see that the result of the
TTC—based approach is really poor. Indeed, reminding the model training step,
we've trained the TT'C' classifier with a dataset in which