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FINITE ELEMNT METHODS FOR THE PHASE
CHANGE PROBLEM IN COMPOSITE MEDIA

Abstract
In this thesis we aim to develop a numerical tool that allow to solve the unsteady heat
conduction problem in a composite media with a graphite foam matrix infiltrated with
a phase change material such as salt, in the framework of latent heat thermal energy
storage.
In chapter 1, we start by explaining the model that we are studying which is separated
in three sub-parts : a heat conduction problem in the foam, a phase change problem in
the pores of the foam which are filled with salt and a contact resistance condition at the
interface between both materials which results in a jump in the temperature field.
In chapter 2, we study the steady heat conduction problem in a composite media with
contact resistance. This allow to focus on the main difficulty here which is the treatment
of the thermal contact resistance at the interface between the carbon foam and the salt.
Two Finite element methods are proposed in order to solve this problem : a finite ele-
ment method based on Lagrange P1 and a hybrid dual finite element method using the
lowest order Raviart-Thomas elements for the heat flux and P0 for the temperature. The
numerical analysis of both methods is conducted and numerical examples are given to
assert the analytic results. The work presented in this chapter has been published in the
Journal of Scientific Computing [10].
The phase change materials that we study here are mainly pure materials and as a con-
sequence the change in phase occurs at a single point, the melting temperature. This
introduces a jump in the liquid fraction and consequently in the enthalpy. This dis-
continuity represents an additional numerical difficulty that we propose to overcome by
introducing a smoothing interval around the melting temperature. This is explained in
chapter 3 where an analytical and numerical study shows that the error on the temper-
ature behaves like ε outside of the mushy zone, where ε is the width of the smoothing
interval. However, inside the error behaves like

√
ε and we prove that this estimation is

optimal due to the energy trapped in the mushy zone. This chapter has been published
in Communications in Mathematical Sciences [58].
The next step is to determine a suitable time discretization scheme that allow to han-
dle the non-linearity introduced by the phase change. For this purpose we present in
chapter 4 four of the most used numerical schemes to solve the non-linear phase change



problem : the update source method, the enthalpy linearization method, the apparent
heat capacity method and the Chernoff method. Various numerical tests are conducted in
order to test and compare these methods for various types of problems. Results show that
the enthalpy linearization is the most accurate at each time step while the apparent heat
capacity gives better results after a given time. This indicates that if we are interested
in the transitory states the first scheme is the best choice. However, if we are interested
in the asymptotic thermal behavior of the material the second scheme is better. Results
also show that the Chernoff scheme is the fastest in term of calculation time and gives
comparable results to the one given by the first two methods.
Finally, in chapter 5 we use the Chernoff method combined with the hybrid-dual finite
element method with P0 and the lowest order Raviart-Thomas elements to solve the
non-linear heat conduction problem in a realistic composite media with a phase change
material. Numerical simulations are realised using 2D-cuts of X-ray images of two real
graphite matrix foams infiltrated with a salt. The aim of these simulations is to determine
if the studied composite materials could be assimilated to an equivalent homogeneous
phase change material with equivalent thermo-physical properties. For all simulations
conducted in this work we used the free finite element software FreeFem++ [41].

Key words : Finite element method, Mixed variational formulation, Hybrid-dual fi-
nite element method, numerical schemes for treatment of non-linearities, phase change
materials, composite media, thermal contact resistance, homogenisation, FreeFem++.



MÉTHODES D’ÉLÉMENTS FINIS POUR LE PROBLÈME DE
CHANGEMENT DE PHASE EN MILIEUX COMPOSITES

Résumé
Dans ces travaux de thèse on s’intéresse au développement d’un outil numérique pour
résoudre le problème de conduction instationnaire avec changement de phase dans un
milieu composite constitué d’une mousse de graphite infiltrée par un matériau à change-
ment de phase tel que le sel, dans le contexte du stockage de l’énergie thermique solaire.
Au chapitre 1, on commence par présenter le modèle sur lequel on va travailler. Il est
séparé en trois sous-parties : un problème de conduction de chaleur dans la mousse, un
problème de changement de phase dans les pores remplis de sel et une condition de résis-
tance thermique de contact entre les deux matériaux qui est traduite par une discontinuité
du champ de température.
Au chapitre 2, on étudie le problème stationnaire de conduction thermique dans un milieu
composite avec résistance de contact. Ceci permet de se focaliser sur la plus grande diffi-
culté présente dans le problème qui est le traitement de la condition de saut à l’interface.
Deux méthodes d’éléments finis sont proposées pour résoudre ce problème : une méth-
ode basée sur les éléments finis Lagrange P1 et une méthode hybride-duale utilisant les
éléments finis Raviart-Thomas d’ordre 0 et P0. L’analyse numérique des deux méthodes
est effectuée et les résultats de tests numériques attestent des efficacités des deux méth-
odes [10].
Les matériaux à changement de phase qu’on étudie dans le cadre de cette thèse sont
des matériaux pures, par conséquent le changement de phase s’effectue en une valeur de
température fixe qui est la température de fusion. Ceci est modélisé par un saut dans la
fonction fraction liquide et par conséquent dans la fonction enthalpie du matériau. Cette
discontinuité représente une difficulté numérique supplémentaire qu’on propose de sur-
monter en introduisant un intervalle de régularisation autour de la température de fusion.
Cette procédure est présentée dans le chapitre 3 où une étude analytique et numérique
montre que l’erreur sur la température se comporte comme ε en dehors de la zone de
mélange, où ε est la largeur de l’intervalle de régularisation. Cependant, à l’intérieur
l’erreur se comporte comme

√
ε et on montre que cette estimation est optimale. Cette

diminution de vitesse de convergence est due à l’énergie qui reste bloquée dans la zone
de mélange [58].
Dans le chapitre 4 on présente quatre des schémas les plus utilisés pour le traitement de



la non-linearité due au changement de phase: mise à jour du terme source, linéarisation
de l’enthalpie, la capacité thermique apparente et le schéma de Chernoff. Différents tests
numériques sont réalisés afin de tester et comparer ces quatre méthodes pour différents
types de problèmes. Les résultats montrent que le schéma de linéarisation de l’enthalpie
est le plus précis à chaque pas de temps tans dis que le schéma de la capacité thermique
apparente donne de meilleurs résultats au bout d’un certain temps de calcul. Cela in-
dique que si l’on s’intéresse aux états transitoires du matériaux le premier schéma est le
meilleur choix. Cependant, si l’on s’intéresse au comportement thermique asymptotique
du matériau le second schéma est plus adapté. Les résultats montrent également que le
schéma de Chernoff est le plus rapide parmi les quatre schémas en terme de temps de
calcul et donne des résultats comparables à ceux des deux plus précis.
Enfin, dans le chapitre 5 on utilise le schéma de Chernoff avec la méthode d’éléments fi-
nis hybride-duale Raviart-Thomas d’ordre 0 et P0 pour résoudre le problème non-linéaire
de conduction thermique dans un milieu composite réel avec matériau à changement de
phase. Le but étant de déterminer si un matériau composite avec une distribution uni-
forme de pores est assimilable à un matériau à changement de phase homogènes avec
des propriétés thermo-physiques équivalentes. Pour toutes les expériences numériques
exposées dans ce manuscrit on a utilisé le logiciel libre d’éléments finis FreeFem++ [41].

Mots clés : Méthode d’éléments finis, Formulation variationnelle mixte, Méthode d’éléments
finis hybride-duale, schémas numériques pour le traitement de non-linéarités, matériaux à
changement de phase, domaines composites, résistance thermique de contact, homogénéi-
sation, FreeFem++.



MÉTHODES D’ÉLÉMENTS FINIS POUR LE PROBLÈME DE
CHANGEMENT DE PHASE EN MILIEUX COMPOSITES

Résumé détaillé
On s’intéresse au problème de conduction thermique, à l’échelle macroscopique, dans un
milieu composite constitué d’une matrice en mousse de graphite remplie d’un matériau
à changement de phase (MCP) pour les applications de stockage d’énergie solaire par
chaleur latente. Dans certaines de ces applications, un fluide de transfert de chaleur est
utilisé pour conduire celle-ci à partir du champ solaire dans le réservoir contenant le sup-
port composite. La température élevée du fluide de transfert conduit à un changement de
phase dans le MCP, tandis que la matrice poreuse est utilisée en raison de sa conductivité
thermique élevée afin d’accélérer le processus de changement de phase et par conséquent
de réduire le temps de charge/décharge. Ainsi, afin de comprendre le transfert de chaleur
dans ces milieux composites on doit étudier deux sous-problèmes différents: un problème
de conduction thermique dans la matrice et un problème de conduction thermique avec
changement de phase dans le MCP. De plus, une condition de résistance de contact à
l’interface entre les deux matériaux est à prendre en compte. Cette résistance thermique
à l’interface résulte du contact imparfait entre les deux matériaux.
Dans cette thèse, on s’intéresse à des matériaux purs où la chaleur latente est supposée
être constante et les effets de surrefroidissement et de nucléations ne sont pas présents.
Nous faisons également l’hypothèse que le transfert thermique est réalisé uniquement par
conduction afin d’éviter des déplacements dans la partie liquide, les changements de den-
sité sont supposés négligeables. La chaleur spécifique et la conductivité thermique sont
supposées constantes par phase. Avec ces hypothèses, les équations qui modélisent le
problème sont les suivantes


∂tH(T )−div(κ∇T ) = g in ΩS ∪ΩG,

[κ∂nT ] = 0 on γ,

R(κ∂n(T |ΩS )) = [T ] on γ,

T = TD on ΓD.

κ∂nT = 0 on ΓN .

ω1

ω2

ω3

Ω

ΩS = ∪iωi, ΩG = Ω\ΩS , γ = ∂ΩS = ∪i∂ωi.



ΩS représente les capsules de MCP, ΩG la matrice et γ l’interface qui sépare les deux
matériaux. L’enthalpie du matériau est notée H, T est la température, κ la conductivité
thermique et R est la résistance thermique à l’interface γ.
Au chapitre 2, on étudie le problème stationnaire de conduction thermique dans un milieu
composite avec résistance de contact. Ceci permet de se focaliser sur la plus grande diffi-
culté présente dans le problème qui est le traitement de la condition de saut à l’interface γ.
Deux méthodes d’éléments finis sont proposées pour résoudre ce problème : une première
méthode de subdivision de domaines développée par Faten Jelassi et al. [48] utilisant
les éléments finis Lagrange P1 et une méthode hybride-duale utilisant les éléments finis
Raviart-Thomas d’ordre 0 pour approcher le flux thermique et les éléments finis P0 pour
le champ de température. La deuxième méthode admet un avantage certain par rapport
à la première puisque ça mise en œuvre ne dépend pas de la complexité de l’interface γ
tandis que la première méthode est particulièrement difficile à mettre en place lorsque
cette interface devient compliquée, ce qui est souvent le cas dans les applications qui nous
intéressent. L’analyse numérique des deux méthodes pour différents types de géométries
montrent leurs efficacités, en particulier une étude sur l’effet d’une singularité géométrique
qui est due au chois du domaine ΩS montre que la prise en compte de la résistance ther-
mique de contact permet de découpler les effets de singularité dans les deux domaines ΩS

et ΩG. Les résultats des différents tests numériques ont permis de corroborer les résultats
analytiques. Le travail présenté dans ce chapitre a fait l’objet d’une publication dans
Journal of Scientific Computing [10].

Figure 1: La conductivité thermique (à gauche), le champs de température pour R =
0K/W (centre) et R= 0.5K/W (à droite).



A titre d’exemple on donne les résultats d’un test numérique qui permet de mettre en
évidence l’effet de la résistance thermique de contact sur la diffusion de la température
au sein d’un matériau composite. La méthode hybride duale est utilisée pour résoudre le
problème de conduction stationnaire avec un matériau composite constitué d’une mousse
de carbone infiltrée par un sel et où l’échantillon est soumis à un gradient de température
du haut vers le bas tandis que les parois latérales sont libres. Dans Figure 1, on représente
à gauche la conductivité thermique du matériau, au centre le champ de température avec
R= 0K/W et à droite avec R= 0.5K/W . On constate que la diffusion de la température
est freinée par la discontinuité à l’interface due à la résistance thermique. Cet exemple
atteste également de l’efficacité de la méthode hybride duale dans le cas de géométries
avec interface complexe.
Les matériaux à changement de phase qu’on étudie dans le cadre de cette thèse sont
des matériaux pures, par conséquent le changement de phase s’effectue en une valeur de
température fixe qui est la température de fusion. Ceci est modélisé par un saut dans la
fonction fraction liquide et par conséquent dans la fonction enthalpie du matériau. Cette
discontinuité représente une difficulté numérique supplémentaire qu’on propose de sur-
monter en introduisant un intervalle de régularisation autour de la température de fusion.
Cette procédure est présentée dans le chapitre 3 où une étude analytique et numérique
montre que l’erreur sur la température se comporte comme ε en dehors de la zone de
mélange, où ε est la largeur de l’intervalle de régularisation. Cependant, à l’intérieur
l’erreur se comporte comme

√
ε et on montre que cette estimation est optimale. Cette

diminution de vitesse de convergence est due à l’énergie qui reste bloquée dans la zone
de mélange [58].

Dans le chapitre 4 on présente quatre des schémas les plus utilisés pour le traitement de
la non-linéarité due au changement de phase: le schéma de mise à jour du terme source,
le schéma de linéarisation de l’enthalpie, le schéma de la capacité thermique apparente et
le schéma de Chernoff. Les résultats de convergence obtenus dans le chapitre précédent
ont permis de tester et valider la mise en œuvre des différents schémas. Dans Figure 2
montrent les courbes de convergence, en fonction de ε, pour les fronts numériques de
solidification (XS) et de fusion (XL) pour les schémas de linéarisation de l’enthalpie et
de la capacité thermique apparente où on a une convergence d’ordre 1 dans les deux cas.
Ces résultats ainsi que ceux de différents tests numériques présentés dans ce chapitre ont
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Figure 2: Courbes de convergence pour les fronts numériques pour le schéma de la
capacité thermique apparente et le schéma de linéarisation de l’enthalpie.

permis de tester et comparer ces quatre méthodes pour différents types de problèmes.
Les résultats montrent que le schéma de linéarisation de l’enthalpie est le plus précis à
chaque pas de temps tans dis que le schéma de la capacité thermique apparente donne
de meilleurs résultats au bout d’un certain temps de calcul. Cela indique que si l’on
s’intéresse aux états transitoires du matériaux le premier schéma est le meilleur choix.
Cependant, si l’on s’intéresse au comportement thermique asymptotique du matériau le
second schéma est plus adapté. Les résultats montrent également que le schéma de Cher-
noff est le plus rapide parmi les quatre schémas en terme de temps de calcul et donne des
résultats comparables à ceux des deux plus précis.

Figure 3: Images des échantillons des matériaux composites étudiés : KL1_250 (à
gauche) et KD1 (à droite).



Enfin, dans le chapitre 5 on utilise le schéma de Chernoff avec la méthode d’éléments fi-
nis hybride-duale Raviart-Thomas d’ordre 0 et P0 pour résoudre le problème non-linéaire
de conduction thermique dans un milieu composite réel avec matériau à changement de
phase. La Figure 3 montre les deux matériaux composites étudiés, dans les deux cas on
considère un matériau composite constitué d’une matrice de carbone (noir) infiltrée par
un sel (rouge). On peut voir que le premier matériau présente des pores de même tailles et
uniformément distribué tant dis que dans le deuxième matériau on peut voir en moyenne
deux tailles de pores différentes. Les simulations réalisées dans ce chapitre ont permis
de montrer qu’un matériau composite avec une distribution uniforme de pores (exemple:
KL1_250) est assimilable à un matériau à changement de phase homogènes avec des pro-
priétés thermo-physiques équivalentes. Pour toutes les expériences numériques exposées
dans ce manuscrit on a utilisé le logiciel libre d’éléments finis FreeFem++ [41].

Mots clés : Méthode d’éléments finis, Formulation variationnelle mixte, Méthode d’éléments
finis hybride-duale, schémas numériques pour le traitement de non-linéarités, matériaux à
changement de phase, domaines composites, résistance thermique de contact, homogénéi-
sation, FreeFem++.
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Chapter 1

Context and problem formulation

Phase change materials (PCM)s are used in various industrial applications for storing
energy due to their high thermal capacity. However, these materials usually have very
low thermal conductivity. Several techniques involving mixing the PCM with other highly
conductive materials allow to overcome this drawback. The resulting composite mate-
rial have both high thermal conductivity and high thermal capacity. Depending on the
technique, the shape of the interface between the different components of the composite
material is more or less complex.
An important step to optimize the capacity of these thermal energy storage systems is to
develop numerical tools that allow to accurately simulate the evolution of the thermal flow
in the composite materials with PCM used in these systems. In order to accomplish this,
great attention must be given to how handling the boundary conditions at the interface
between the components of the composite material.
This chapter presents a general introduction to phase change materials and their use in
latent heat thermal energy storage systems, the mathematical problem modeling the heat
conduction with phase change in composite media used in these systems. In the last sec-
tion we present the objectives of this thesis.

1
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1.1 Context

The world’s energy demand is expected to grow by 37% by 2040 according to the Interna-
tional Energy Agency (IEA)’s recently released world energy outlook 2014 [87]. Most of
this growth is expected to come from emerging economies of China, India and the Middle
east where demand is driven by a strong economical growth.
In spite of renewable energy being one of the fastest-growing energy sources increasing
by 2.5% per year, fossil fuels continue to supply nearly 80% of world energy use through
2040.
The industrial sector continues to account for the largest share of delivered energy con-
sumption and is projected to consume more than half of global delivered energy in 2040.
Based on current policies and regulations governing fossil fuel use, global energy-related
carbon dioxide emissions are projected to rise to 45 billion metric tons in 2040, a 46%
increase since 2010. Economic growth in developing nations, fueled by continuously rely-
ing on fossil fuels, accounts for most of the emissions increase [87].
An abundant renewable energy source is essential for reducing dependency on the fossil
fuels and contributing to a cleaner environment. Solar energy is an essentially inex-
haustible source potentially capable of meeting a significant portion of the world’s future
energy needs with a minimum of adverse environmental consequences [36].
For solar energy to become an important energy source, efficient, economical and reliable,
solar thermal energy storage devices and methods have to be developed. The storage of
energy is a present day challenge to the technologists. Energy storage not only reduces
the mismatch between supply and demand but plays an important role in conserving the
energy. It leads to saving of premium fuels which are limited and also contributes to a
greener environment [76].

1.1.1 Thermal energy storage

Thermal energy storage (TES) technologies allow to store energy captured from the sun in
order to release it at a later time for heating or cooling purposes or for power generation.
For example in solar thermal power plants where most of the energy is produced during
the day, the excess energy could be stored using a storage device, such as molten salt,
to be released at night to generate steam and drive a turbine to produce electricity. On
the other hand, a facility can use ’off-peak’ electricity rates which are lower at night
to produce ice, which could be incorporated into a building’s cooling system to lower
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demand for energy during the day.
TES can be achieved, depending on the storage mechanism, by three techniques: sensible
heat storage, latent heat storage, and thermo-chemical heat storage [86]. In sensible heat
storage, the amount of heat stored depends on the mass of the media (m), its specific
heat (Cap) and the temperature variation (Tf −Ti):

Q=
∫ Tf

Ti
mCpdT = mCap(Tf −Ti)

As a result, sensible heat storage allow to store only relatively small quantities of thermal
energy with larger volume materials and large temperature variation. In contrast to
sensible heat storage, latent heat storage and thermo-chemical heat storage can store
larger quantities of thermal energy with smaller temperature variation.
Thermo-chemical heat storage systems are based on the energy absorbed and released in
breaking and reforming molecular bonds in a completely reversible chemical reaction [86].
An example of this is what happens when a solid material is heated and separated into
two elements : a solid element and a gaseous element for heating purposes. Energy is
released when the inverse reaction occurs i.e when the solid and gaseous elements are
steered back together to react back to one solid element. The storage capacity of these
systems depends on the amount of storage material, the endothermic heat of reaction
(∆hr) and the reaction fraction of the material (ar):

Q= arm∆hr.

In these systems, condensers are used to reduce the volume of the materials used in the
reaction which makes these systems more complex. Even though these systems allow for
the storage of high quantities of thermal energy, there are still a lot of unresolved issues
at the laboratory level and their development is still at an early stage.
Latent heat storage systems are based on the energy released or absorbed when a material
changes phase from solid to liquid or liquid to gas or vice versa [86]. The storage capacity
of a latent heat system with a PCM depends on the mass of the material, its melting
temperature (Tm), the specific heat in both phases (Csp and Clp), its liquid fraction (am)
and its heat of fusion (∆hm). For a PCM with an isothermal phase transition (ex: single
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chemical components, eutectic alloys ...), the latent heat storage capacity is

Q=
∫ Tf

Ti
m(1−am)Cps+mam∆hm+mamCpldT

=
∫ Tm

Ti
mCpsdT +m∆hm+

∫ Tf

Tm
mCpldT

=m[Cps(Tm−Ti) + ∆hm+Cpl(Tf −Tm)].

Compared to the sensible and thermo-chemical storage systems, latent heat storage sys-
tems have higher storage density. Thus, these systems allow to minimize the volume of
the storage materials and allow to reduce the size of the storage system. In addition, the
thermal efficiency of these systems can be greatly increased since the temperature change
of materials used can be smaller for the same energy requirement [96].

1.1.2 Phase change materials

In latent heat storage systems, PCMs are used as a storage device to solve the mismatch
between energy demand and supply. They allow to store energy during the day and release
it during the night. The latent heat is stored or released when the PCM changes phase
from solid to liquid or liquid to solid. Unlike conventional (sensible) storage materials,
PCM absorbs and release heat at a nearly constant temperature. They store 5–14 times
more heat per unit volume than sensible storage materials such as water, masonry, or
rock. However, these materials often have a very low thermal conductivity (∼ 1W/mK)
that leads to low heat transfer and problem of oxidation on exposure to heat transport
medium (air or heat transfer fluids like oils). To overcome this inconveniences several
techniques have been developed [69].
A common technique suggests the use of foams with high thermal conductivity and high-
porosity such as graphite foams. Infiltrating the foams with a PCM to provide TES in the
form of latent heat has shown to be an efficient way to enhance the thermal conductivity
of the storage material. Infiltrating the foam with PCM compensates for the relatively
low conductivity of the PCM and allows for quick, even distribution of thermal energy
into the PCM which leads to reduction in charging and discharging times when evaluated
against other PCM storage options. The potential high storage density of this system will
also allow for the possibility of a smaller TES system volume, thereby lowering the capital
costs [57]. Figure 1.1 shows an example of graphite foam used in TES applications.
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Figure 1.1: Microstructure of a highly thermal conductive carbon foam.

A crucial step into successful use of PCMs in latent heat storage systems, where the
storage material’s thermal conductivity is enhanced using an infiltration technique as the
one described above, is to understand how the storage material behaves when it is subject
to a thermal gradient. In what follows we explain the problem used to model the thermal
behavior of the PCM, in the surrounding material and the exchanges at the interface
separating both materials.

1.2 Problem formulation

We consider the problem of heat transfer, at the macroscopic scale, in a porous media
consisting of a graphite foam matrix filled with a phase change material for latent heat
storage applications. In these applications, a heat transfer fluid is used to conduct the heat
from the solar field to the tank containing the composite media. The high temperature
of the heat transfer fluid leads to a change in state of the PCM whilst a graphite foam
matrix is used, as explained above, due to its high thermal conductivity to accelerate
the phase change process and as a consequence reduce the charging/discharging times.
Thus in order to understand the heat transfer in the composite media one needs to address
two different sub-problems: a heat conduction problem in the graphite foam matrix and a
heat conduction problem with phase change in the PCM. In addition, a contact resistance
condition at the interface between the two components of the composite media, resulting
from a difference in physical properties as well as the heat flow from one material to
another, is to be taken into account.
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In this section, we start by presenting the mathematical model for the heat conduction
problem with phase change for a homogeneous PCM. Later we present the model for the
heat conduction problem in the graphite foam matrix as well as the contact resistance
condition at the interface between the graphite foam matrix and the PCM.

1.2.1 The phase change problem

There are several mechanisms at work when a solid melts or a liquid solidifies. Such
a change of phase involves heat (and often also mass) transfer, possible supercooling,
absorption or release of latent heat, changes in thermophysical properties, surface effects,
etc [3]. In this section we give an overview of these phenomena and we give the formulation
of the problem as well as the assumptions leading to this formulation.

1.2.1.1 An overview of the phenomena involved in a phase change process

Both solid and liquid phases are characterized by the presence of cohesive forces that
keep atoms in close proximity. In a solid the molecules vibrate around fixed equilibrium
positions, while in a liquid they are free to move between these positions. The macroscopic
manifestation of this vibrational energy is what we call heat or thermal energy. Clearly
atoms in the liquid phase are more energetic than those in the solid phase, all other
quantities being equal. Thus before a solid can melt it must acquire a certain amount
of energy to overcome the binding forces that maintain its solid structure. This energy
is referred to as the latent heat of fusion of the material and represents the difference in
enthalpy levels between liquid and solid states, all other things being equal. Of course,
solidification of liquid requires the removal of this latent heat and the structuring of atoms
into more stable lattice positions [3].

There are three possible modes of heat transfer in a material: conduction, convection and
radiation. Conduction is the transfer of kinetic energy between atoms by any of a number
of ways, including collision of neighboring atoms and the movement of electrons; there
is no flow or mass transfer of the material. This is how heat is transferred in an opaque
solid. In a liquid heat can also be transferred by a flow of particles, i.e. by convection.
Radiation is the only mode of energy transfer that can occur in a vacuum (it requires no
participating medium) [3].
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The phase-transition region where solid and liquid coexist is called the interface. Its
thickness may vary from a few Angstroms to a few centimeters, and its microstructure
may be very complex, depending on several factors (the material itself, the rate of cooling,
the temperature gradient in the liquid, the surface tension, etc.). In some cases, typically
resulting from supercooling, or presence of multiple components (e.g. in binary alloys), the
phase transition region may have apparent thickness and is referred to as a "mushy zone";
its microstructure may now appear to be dendritic or columnar. For other cases such as
pure materials solidifying under ordinary freezing conditions at a fixed temperature, the
interface appears (locally) planar and of negligible thickness. Thus, it may be thought of
as a sharp front, a surface separating solid from liquid at the freezing temperature [3].

During the phase change, most thermophysical properties of a material (usually vary-
ing smoothly with temperature) undergo more or less sudden changes at the melting
temperature. For example the heat capacity of aluminum changes by 11% at its melt
temperature (of 659◦C), but that of silicon changes by only 0.3% (at 1083◦C). Such
discontinuities in thermophysical properties complicate mathematical problems because
they induce discontinuities in the coefficients of differential equations [3].

It is also possible to observe a variation in the density during the phase change. Typical
density changes upon freezing or melting are in the range of 5% to 10% but can be as
high as 30%. For most materials the solid is denser than the liquid, resulting in possible
formation of voids in freezing or breaking of the container in melting. On the other hand
water expands on freezing, resulting in broken pipes on cold days and ice floating instead
of filling the bottom of the oceans. The density variation with temperature induces flow
by natural convection in the presence of gravity, rapidly equalizing the temperature in
the liquid and greatly affecting heat transfer [3].

1.2.1.2 Assumptions

In this thesis we are focusing on pure materials where the latent heat L is assumed to
be constant and the effects of supercooling and nucleation difficulties are not present.
We assume the change in phase to occur at a constant temperature Tm which is a very
reasonable assumption for pure materials. We assume the heat transfer to be only made
by conduction and in order to avoid the movement of the liquid part, the density changes
during the phase change are ignored. We also assume the specific heat and the thermal
conductivities to be phase-wise constant. With these assumptions the problem is called
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the Stefan problem in reference to the work of Jozef Stefan in the 1890’s on solid-liquid
phase change.

1.2.1.3 Classical Formulation

The two-phase Stefan problem can be modeled using a heat conduction equation in each
phase in addition to a jump condition at the interface called the Stefan condition. This
condition is derived from the global energy balance in both phases [3]. Consider, for
example, a semi-infinite slab 0≤ x<∞, initially solid at a uniform temperatureT0 ≤Tm

where Tm is the melting temperature of the material. At x = 0 the temperature is
increased to a value greater than the melting temperature T1 >Tm . We assume that no
internal heating sources are present in the material. An illustration is given in figure1.2.
The mathematical formulation can be written as
in the liquid region:

∂TL
∂t

= αL
∂2TL
∂x2 , 0< x <X(t), t > 0 (1.1)

in the solid region:
∂TS
∂t

= αS
∂2TS
∂x2 , X(t)< x, t > 0 (1.2)

interface temperature:
T (X(t), t) = Tm, t > 0 (1.3)

Stefan condition:

ρL
dX(t)
dt

=−κL
∂T

∂x
(X(t), t) +κS

∂T

∂x
(X(t), t), t > 0 (1.4)

initial conditions:
T (x,0) = T0 < Tm, x > 0,X(0) = 0 (1.5)

boundary conditions:

T (0, t) = T1 > Tm, limx→∞T (x,t) = T0, t > 0 (1.6)

where T denotes the temperature, t is time, x is the spatial coordinate, and L , ρ , X, κ,
and α are latent heat of fusion, density, interface location, conductivity, and diffusivity,
respectively. Subscripts, L and S, refer to the liquid and the solid, respectively.
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x= 0

liquid

x=X(t)

T = Tm

solid

x→∞

Figure 1.2: Domain with phases

This problem is referred to as the two-phase Stefan problem because both phases are
active since the solid temperature is taken smaller then the melting temperature. For
TS = Tm only the liquid phase is active and the problem is referred to as the one-phase
Stefan problem.

The Stefan-type problems are moving boundary problems since the position of the in-
terface separating the solid-region and the liquid-region is an unknown and is part of
the solution to be found. This geometric non-linearity is the source of mathematical
difficulties that moving boundary problems present [3].

In 1947, Rubinstein proved the local solvability, meaning there exists a time up to which
a unique classical solution exists, of general 1-dimensional Stefan problems (see [81] for a
historical survey of the mathematical development up to the mid 1960’s). However, the
well-posedness, meaning there exists a unique classical solution depending continuously
on the data, without undue restrictions on the data was established only during the mid
1970’s [17][3].

Classically formulated 1-dimensional Stefan problems may admit, under some restrictive
conditions, exact solutions all of which are of similarity type. This is only the case if
the following conditions are met : semi-infinite domain, constant phase-wise constant
thermo-physical properties [3]. These exact solutions are often used to validate numerical
methods as will be the case in the third chapter of this thesis.

Stefan-type problems can also be formulated classically in two or three dimensions but
such formulations may admit no (classical) solution. Even one-dimensional problems
with either internal sources or a variable fusion temperature may develop mushy regions
rendering the above sharp-front classical formulation inappropriate [3]. Fortunately weak
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or generalized (enthalpy) formulations, which are well-posed (and computable), came to
the rescue in the early 1960’s.

1.2.1.4 Enthalpy formulation

The enthalpy formulation is based on the concept of weak solutions. It was in the 1800’s
that David Hilbert introduced the idea of generalized solutions to PDE’s, in the con-
text of the classical Dirichlet problem for the Laplace equation, to weaken the continuity
conditions for the solutions of PDE’s and their derivatives up to the order of the PDE.
These ideas where later developed in the 1930’s an 1940’s leading to the concepts of
weak derivatives ans weak solutions within the frame work of Sobolev spaces. However,
the development of a mathematical theory for Stefan problems started only fifty years
after the original work of C. Neumann and Stefan due to there highly non-linear nature.
The weak reformulation of the Stefan problem was first introduced in 1958 by S. Kamin
and Oleinik [68] while enthalpy-based methods were already used in heat transfer and
computing literature in the 1960’s. The well-posedness of the weak solution of multidi-
mensional Stefan problems was established in 1968 by Friedman [33](for more details on
the historical background of this method see [3]).

The idea of the enthalpy approach is based on the fact that the energy conservation
law, expressed in terms of enthalpy and temperature, together with the equation of state
contain all the physical information needed to determine the evolution of the phases [3].
To explain how the method works we consider a time invariant unite volume V , ∂V its
boundary and −~q.~n is the heat flux into the volume V across its boundary ∂V and where
~n is the outgoing unit normal to ∂V . With the assumptions listed in section 1.2.1.2
in mind, we write the energy conservation over the volume V and over a random time
interval [t, t+ ∆t]

∫ t+∆t

t

∂

∂t
(
∫
V
H dV )dt=

∫ t+∆t

t

∫
∂V
−~q.~n dS dt (1.7)

where H is the energy(enthalpy) density per unite volume. We know that the heat flux
is a vector pointing in the direction of heat flow and given by Fourier’s law :

~q =−κ~∇T (1.8)
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where κ is the conductivity of the material, that we assume to be constant, and T the
temperature. Using this definition of the flux equation (1.7) becomes

∫ t+∆t

t

∂

∂t
(
∫
V
H dV )dt=

∫ t+∆t

t

∫
∂V
κ~∇T.~n dS dt (1.9)

Using the Divergence Theorem we obtain the general heat conduction equation

∂tH−div(κ∇T ) = 0 (1.10)

The enthalpy H may be defined as the sum of sensible and latent heat

H(T ) =
∫ T

0
ρCdT +ρf(T )L (1.11)

where L is the latent heat of fusion and f is the liquid fraction and C is the specific heat.
In the case of pure materials where the phase change occurs at a constant temperature
Tm the liquid fraction is given by

f(T ) =


0, T (x,t)< Tm

1, T (x,t)≥ Tm
(1.12)

Since we assume C to be phase-wise constant and ρ to be constant and not effected by the
phase change, the enthalpy of the liquid and solid, for a pure material can be calculated
from (1.11) as

H(T ) =


ρ
∫ T
T0CSdT, T (x,t)< Tm

ρ(
∫ Tm
T0 CSdT +

∫ T
TmCLdT +L), T (x,t)≥ Tm

(1.13)

=


ρCS(T −T0), T (x,t)< Tm

ρ(CS(Tm−T0) +CL(T −Tm) +L), T (x,t)≥ Tm
(1.14)

where T0 is the temperature of the material at the initial state.
Note that the main advantage of this formulation of the problem over the classical one is
the fact that the position of the interface separating the liquid phase and the solid phase
is not brought out explicitly as an unknown of the problem and is determined a-posteriori
using the values of the temperature. This makes the enthalpy formulation more general
than the classical formulation since the hypothesis of the phase change occurring at a
constant temperature is no longer taken in consideration which allows for mushy regions.
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As one can see in equation (1.13)-(4.11) the enthalpy exhibits a jump at the points where
T (x,t) = Tm which rises the questions of the meaning of the derivative ∂tH and in some
cases this jump may also provoke some numerical instabilities. In order to overcome this
difficulties we use a linearized expression of the enthalpy using a linearized expression for
the liquid fraction.

Linearized enthalpy

Several expressions have been used in literature in order to approach the expression of the
enthalpy given by equation (1.13) with a jump at the melting point Tm by an equivalent
and smoothed one all of which are based on a linearized liquid fraction.
In [94] the liquid fraction defined by (1.12) is replaced by a smoothed function defined by

f(T ) =


0 T < Tm− ε
T−Tm+ε

2ε Tm− ε≤ T ≤ Tm+ ε

1 T > Tm+ ε

(1.15)

where ε is half the size of the regularization interval.
In [48] the following expression is used

f(T ) = 1
2 + 1

2tanh(T −Tm+ ε

2ε ) (1.16)

In [62] the liquid fraction is smoothed using an expression based on the normal distribu-
tion:

f(T ) = exp(−(T −Tm)2

2ε2 ) (1.17)

Each of this expressions has its utility. In some of the numerical schemes that we use to
solve the enthalpy problem, one needs to use the expression of the inverse of the enthalpy
function. Using the first expression used in [94] will allow to determine the analytical
expression of the inverse of the enthalpy. For this expression of the liquid fraction the
linearized enthalpy is given by

H(T ) =


ρCST T < Tm− ε

ρCS(Tm− ε) +ρ(Cε+ L
2ε)(T −Tm+ ε) Tm− ε≤ T ≤ Tm+ ε

ρCLT +ρ(CS−CL)Tm+ρL T > Tm+ ε

(1.18)
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where
Cε = CS +CL

2

TTm

2ε

f(T )

TTm

2ε
H(T )

Figure 1.3: The liquid fraction for pure materials in black and linearized liquid fraction in
red(left). The enthalpy for pure materials in black and linearized enthalpy in red(right).

1.2.1.5 Overview of numerical methods for the phase change problems

In early years, analytical methods were the only means available to provide a mathe-
matical understanding of physical processes involving the moving boundary [45]. Un-
fortunately, analytical solutions of the Stefan problem exist only for very special cases
which are mainly one-dimensional with infinite or semi-infinite region and simple initial
and boundary conditions and constant thermal properties [20]. However, this is rarely
the case for solidification and melting problems arising from practical applications. For
example, in latent heat thermal energy storage the problem is rarely one dimensional and
sometimes one has to deal with multiple fronts and extended mushy regions. Luckily,
with the rise of high-speed digital computers, several numerical methods were developed
in order to provide a broad understanding of the practical processes involving Stefan
type problems [45]. All these methods can be classified into two main groups, the front
tracking methods and the fixed grid methods [46].

The front tracking methods
The classically formulated Stefan problem is a numerically challenging problem due to
its underlying geometrical nonlinearity : the regions in which the two heat conduction
equations are valid change in time, and we have to compute the location of the interface
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concurrently. The numerical methods used to solve the problem with the classical for-
mulation are referred to as the front tracking methods since they aim to explicitly track
the interface using the Stefan condition [3]. There are several approaches to accurately
determine the location of the interface at each time step.
In [28] Douglas and Gallie presented a technique based on the idea of using a uniform
spatial grid but a non-uniform time step such that the moving boundary coincides with
a grid line in space at every time step. This techniques are referred to as the interface
fitting methods or variable time step methods.
Another group of front tracking methods are deforming (dynamic) grid methods which
are based on the idea of continuously deforming the space grid to always ensure that a
line of specified node points lies on the phase change front. In this way, the Stefan heat
balance condition, Eq. (1.4), can be easily satisfied and the movement of the front readily
tracked [94].
For more details on these techniques the reader is referred to [3], [62], [45], [94], [27].
The major drawback of the front tracking techniques is in the way the front position is
determined. In fact all the front tracking methods based on the classical formulation of
the Stefan problem are based on the hypothesis that the phase change occurs at a single
point which make these methods unsuitable to solve problems where the phase change
occurs over an interval. Also, for these methods to provide good results one need to adapt
the mesh around the interface location to insure that at all times there are grid points
on the interface. This becomes very complex and time consuming when the problem is
not one-dimensional and where there is a mushy region.

The fixed grid methods
The above mentioned drawbacks of front tracking methods can be overcome with the
numerical methods based on the enthalpy formulation given by equation(1.10). In fact,
in this formulation the Stefan condition at the interface is incorporated implicitly in the
equations thus avoiding the difficulty of tracking the position of the interface over time.
Following this, the position of the front is determined a posteriori using the temperature.
In the following we will give an overview of the most significant among these methods.

The Apparent heat capacity
For this class of methods the main unknown is the temperature and the main idea is to
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modify Equation 1.10 in order to have a heat transfer equation in the following form :

ρCapp
∂T

∂t
−∇.(κ∇T ) = 0

Where Capp is an equivalent heat capacity that is used to account for the latent heat
effect. Comini and al. [25] determined Capp as the average local temperature gradient
which in three dimensions is given by the following equation

Capp = 1
3(∂H/∂T

∂x
+ ∂H/∂T

∂y
+ ∂H/∂T

∂z
)

This expression has later been modified by Morgan and al. [59] and Lemon [55] to im-
prove the convergence of the method. Another method that calculates Capp as the exact
derivative of the enthalpy with respect to the temperature was proposed by Cleland and
al. [24]. For cases where the change in phase occurs at constant temperature, these meth-
ods require a very small time step in order to ensure that every node undergoes the phase
change. However this is no longer an issue for cases where the phase change occurs over an
interval of time or in cases where a smoothing interval is introduced as in Equation 1.15.
These methods are called space averaging [70] since they give an approximation of the
apparent heat capacity with means of space derivatives of the temperature and/or the
enthalpy. On the other hand, time averaging methods calculate the apparent heat ca-
pacity using the values of the enthalpy and the temperature at previous times steps. An
example of such approximation is given by Morgan and al. [59].

The enthalpy linearization
Here the enthalpy is the main unknown, at each time step Equation 1.10 is solved and the
temperature is calculated using the inverse of the enthalpy. This method was suggested
by Atthey [9] and later Voller [94] gave an iterative version of this method where at each
time step an iterative process is used to update the enthalpy using the corresponding
value of the temperature solution to Equation 1.10. After this step the temperature is
updated using the new value of the enthalpy. This loop is set to stop when the difference
between two values of the enthalpy at two consecutive iterations becomes very small.
This process insures that the enthalpy and temperature calculated verify the enthalpy
equation at a each time step. Voller shows in [94] that the non-iterative enthalpy scheme
performs exactly as an apparent heat capacity scheme. However, this method is well
adapted to solve problems where the phase change occurs over an interval and where a
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mushy zone appears between the two phases.

The source update method
The main idea of this method is to use the expression of the enthalpy and to pass the
non-linear part as a source term in Equation 1.10. The main unknown becomes the tem-
perature and the liquid fraction at the previous time step is used to solve the equation.
An iterative procedure is used to update the liquid fraction using the temperature at
each time step. This is explained in details in chapter 4. This method was first proposed
by Voller [94]. A similar method was proposed by Rolph and Bathe [79] and Roose and
Storrer [80] where a fictitious heat source is used to account for the latent heat effect.

1.2.2 Heat conduction in the Graphite foam matrix

In the Graphite foam matrix we have a pure conduction problem without phase change
that is modeled by the following equation [20]

ρc
∂T

∂t
= div(κ∇T ) (1.19)

where T is the temperature, ρ is the density, c the specific heat capacity and κ the thermal
conductivity of the matrix.

1.2.3 Thermal boundary resistance

A temperature drop occurs when heat flows through an interface between two components
of a composite media. This discontinuity in the temperature field is described using the
thermal resistance which is known as interfacial thermal resistance and is the result of
two phenomena. The first is the thermal resistance observed when two components are in
contact as a result of poor mechanical and chemical bounds between the components. The
second is when there is a discontiuity in the thermal property of the components of the
material such as the thermal conductivity. The interfacial thermal resistance is defined as
the ratio of temperature discontinuity [T ] at the interface to the heat rate flowing across
the interface between two phases in contact, according to the equation [74]:

R = [T ]/Q (1.20)
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using the definition of the thermal heat flux per unit area A given by :

Q/A= κ∂n(T ) (1.21)

where κ is the thermal conductivity, at the interface between the materials of the com-
posite domain, hence we have

R = [T ]/(κ∂n(T )) (1.22)

In addition to the thermal boundary resistance condition on the interface we have the
continuity of the heat flux at all times given by the following equation:

[κ∂nT ] = 0 (1.23)

1.2.4 The heat conduction problem with phase change in a com-
posite media

Now we have all the elements to write the model for the heat conduction problem in
a composite media with a graphite matrix foam infiltrated by a PCM such as salt for
example. To be more specific consider a sample of this composite material filling a
connected bounded domain Ω in Rd , d = 2 or 3 with a Lipschitz-continuous boundary
∂Ω and we set:

ΩG = Ω\ΩS , γ = ∂ΩS . (1.24)

The indices S and G call to mind salt and graphite. We consider also that the boundary
∂Ω is the disjoint union of two parts, ΓD and ΓN . In this geometry, the differential system
we intend to deal with is the unsteady heat conduction problem with phase change. The
unknown is the temperature T of the medium that satisfies therefore



∂tH(T )−div(κ∇T ) = g in ΩS ∪ΩG,

[κ∂nT ] = 0 on γ,

R(κ∂n(T )|ΩS ) = [T ] on γ,

T = TD on ΓD.

κ∂nT = 0 on ΓN .

(1.25)

Where n is the unit normal vector to ∂Ω exterior to Ω and also to γ exterior to ΩS , [·] is the
jump through γ, equal to the value on ΩG minus the value on ΩS . The temperature T , the
conductivity κ, the density ρ and the specific heat capacity c are discontinuous through
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γ. The parameter R represents the thermal resistance at the interface γ introduced in
section 1.2.3. The heating data are the source g and the external temperature TD.
H(T ) is the enthalpy function in the composite and is defined by

H(T ) =


ρScSTS +ρSLf(T ) in ΩS

ρGcGTG in ΩG.

Note that only one equation is needed to model the conduction problem for both materials,
this is made possible thanks to the enthalpy method presented in section 1.2.1.4 which
allow for the phase change problem to be modeled by one equation for both phases and
where the nonlinearity is taken into account in the expression of the enthalpy function.
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1.3 Objective and outline of the thesis

The goal of this thesis is to develop a numerical tool that allow to solve the unsteady heat
conduction problem in a composite media with a graphite foam matrix infiltrated with a
phase change material such as salt, described by the system (1.25), in the framework of
the latent heat thermal energy storage.
We started by studying the steady heat conduction problem in the composite media. Two
Finite element methods are proposed in the first chapter in order to solve this problem:
a Lagrange finite element method and the hybrid dual Raviart-Thomas finite element
method. The reason behind choosing to focus on the simpler model of the steady heat
conduction is because this allow to focus on the main theoretical and numerical difficul-
ties, such as the well-posedness of the problem and also the a-priori error estimate of
the methods, that we might encounter when we consider the whole unsteady conduction
problem with phase change described by the system (1.25). The work presented in this
chapter has been published in the Journal of Scientific Computing [10].
The phase change materials that we study here are manly pure materials and as conse-
quence change phase at a single point the melting temperature. This introduces a jump
in the liquid fraction and consequently in the enthalpy. This discontinuity represents an
additional numerical difficulty that we propose to overcome by introducing a smoothing
interval around the melting temperature. This is explained in chapter 3 where an ana-
lytical and numerical study gives how the errors on the moving boundary’s position and
on the temperature behave with respect to the width of the smoothing interval. This
chapter has been published in Communications in Mathematical Sciences [58].
The next step is to determine a suitable time discretization scheme that allow to handle
the non-linearity present in the model as consequence of the change in phase of the salt.
For this purpose we present in the third chapter four of the most used numerical schemes
to solve the non-linear phase change problem : the update source method, the enthalpy
linearization method, the apparent heat capacity and the Chernoff method. In this chap-
ter various numerical tests are conducted in order to test and compare these methods for
various type of problems. The results show that the Chernoff scheme is faster and gives
comparable results to the ones given by the enthalpy linearization and the apparent heat
capacity.
Finally we use the Chernoff method combined with the Raviart-Thomas finite element
method to solve the non-linear heat conduction problem in a composite media with a
phase change material. The simulations are realised using 2D-cuts of X-ray images of
two real graphite matrix foams infiltrated with a salt. The aim of these simulations is to



Objective and outline of the thesis 20

determine if the studied composite materials could be assimilated to an equivalent to a
homogeneous phase change material.





Chapter 2

Finite element methods for the
steady state heat conduction
problem in composite media with
contact resistance

In this chapter we consider the steady state heat conduction problem inside a composite
medium. As explained in the previous chapter, the temperature field is discontinuous at
the interface between the constitutive materials as a consequence of a contact resistance
condition. These transmission conditions need to be handled carefully and efficiently. Our
main concerns are accuracy and feasibility. Hybrid dual formulations are recommended
here as the most popular mixed finite elements well adapted to account for the disconti-
nuity of the temperature field. We therefore write the discretization of the steady state
heat conduction problem by mixed finite elements and perform its numerical analysis. Of
course, applying Lagrangian finite elements is possible in simple composite media but it
turns out to be problematic for complex geometries. Nevertheless, we study the conver-
gence of this finite element method to highlight some particularities related to the model
under consideration and point out the effect of the contact resistance on the accuracy.
Illustrative numerical experiments are finally provided to assess the theoretical findings.

21
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2.1 Introduction

We study the thermal behavior of a composite media subject to a temperature gradient
in the framework of latent heat thermal energy storage. The composite media consists in
a graphite foam matrix with high thermal conductivity infiltrated with a phase change
material such as salt. The unsteady heat conduction problem in the composite, presented
in chapter 1, is described by the system of equations (1.25). After the time discretization
scheme is applied to this system, one is left with a quasi-stationary problem that is
modeled by a similar system of equations as (1.25) and where the first equation is replaced
by

λH(T )−div(κ∇T ) = g.

where λ is a parameter that depends on the time discretization scheme. For the backward
Euler method, for example, λ is equal to the inverse of the time step. Since our aim in
this chapter is to describe two finite element methods to solve this type of problems and
the error analysis for these methods, we restrict our study to the steady state problem,
where H(T ) = 0 in the above equation, which already contains all the specific difficulties
one may encounter either in the theoretical or in the numerical grounds. To present the
steady state problem we recall the notations used in Chapter 1. We consider a connected
bounded domain Ω in Rd, d = 2 or 3, with a Lipschitz-continuous boundary ∂Ω, ωi a
finite number of connected sub-domains, called "pores", such that each ωi is contained in
Ω, and the intersection of ωi and ωj for i 6= j is empty. We set:

ΩS = ∪iωi, ΩG = Ω\ΩS , γ = ∂ΩS = ∪i∂ωi. (2.1)

The indices S and G stand for salt and graphite. The boundary ∂Ω is the disjoint union of
two parts, ΓD and ΓN , ΓD and ΓN are union of a finite number of connected components
and ΓD has a positive (d− 1)-measure. In this geometry, the differential system we
intend to deal with is the steady heat transfer boundary value problem. The unknown,
the temperature T of the medium, satisfies therefore



−div(κ∇T ) = g in ΩS ΩG,

[κ∂nT ] = 0 on γ,

R(κ∂n(T )|ΩS ) = [T ] on γ,

T = TD on ΓD.

κ∂nT = 0 on ΓN .

(2.2)
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Where n is the unit normal vector to ∂Ω exterior to Ω and also to γ exterior to ΩS .
The symbol [·] is the jump through γ, equal to the value on ΩG minus the value on ΩS .
Indeed, the temperature is likely discontinuous through γ. The parameter R represents
the thermal resistance at the interface γ and κ is the thermal conductivity. The heating
data are the source g and the external temperature TD.
We consider here the finite element discretization of problem (2.2). The choice of the
method to use is tightly dependent on the geometry of the composite medium. In sim-
ple configurations like the one depicted in Figure 2.1(left part), users may apply the
Lagrangian finite element method after introducing substantial modifications. The conti-
nuity is actually prescribed in each component ΩS and ΩG while jumps are allowed across
the interfaces. The construction of the finite element space is therefore expected to ac-
count for this fact : local continuity/global discontinuity. The implementation should be
made so to manage these two levels and may be troublesome. The difficulties can possibly
be controlled by some domain decomposition procedures. Nonetheless, it turns out to be
a pain in the neck in complicated geometry as is the case for densely composite media.
We provide an illustration in the right part of Figure 1. Programming such a method
and finding suitable solvers become tedious.
An attractive alternative is offered by hybrid dual formulations as they bring about

Figure 2.1: Two examples of composite media.
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substantial advantages (see [77], [15]). The most important is that the construction
of discrete spaces based on the mixed finite elements is natural and follows exactly the
standard hybrid dual problem where the temperature field is continuous, i.e. R= 0. Con-
ditions of contact resistance at the interfaces are naturally accounted for in the mixed
variational formulation. Hybrid Dual Finite Element Software can easily be enriched to
handle the problem we deal with here. The foundations of the finite elements library are
not affected. Discontinuous Galerkin finite elements enjoy the similar properties as hybrid
dual finite elements (see [7]). They can be used as well to solve problem (2.2). The cost
is reduced to some suitable modifications to introduce on the variational problem. The
structure of the finite elements should not be changed in softwares dedicated to elliptic
problems.

The primary objective of this chapter is the description of both finite element methods
and to conduct a numerical analysis for each of them. The outline of this chapter is as
follows.
• In Section 2.2, we write the variational formulation of the problem and prove its well-
posedness. The functional space fitting the problem is the broken Sobolev space. We
consider also the hybrid dual variational model. The functional spaces currently used in
the hybrid dual context allows jumps on the temperature field. They are not changed.
We show how to take into account the interface conditions in the variational form. Before
closing we conduct a brief discussion about the regularity of the solution and especially
on the effect of the transmission conditions on the singularities born at the interfaces.

• Two finite element discretizations are proposed and analyzed for both variational prob-
lems in Sections 2.3 and 2.4, respectively. Using Aubin-Nitsche method together with a
bootstrapping argument enables us to prove a local super-convergence result in the most
interesting configurations.

• In Section 2.5, we present a few numerical experiments to assess the theoretical findings.

2.2 Variational formulations and well-posedness

The finite element method is not based on the strong form given by (2.2), but rather a
minimization statement or, more generally, a weak formulation which allow to naturally
account for the boundary conditions and allow for a more natural way to construct the
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function spaces. This approach also give solid mathematical foundation and make the
error analysis more systematic. We must thus develop and understand these formulations
before proceeding with the finite element method. In order to write the weak formulation
we need to give the functional framework in which we will work.

2.2.1 The Functional Framework

In this section we introduce the notation and review some useful results (without proofs)
concerning the Sobolev spaces and the theory of distributions. For a more detailed intro-
duction on to Sobolev spaces and the theory of distributions, we refer to [7, Chapter 3][56,
Chapter 1].
We first denote by L2(Ω) the space of real valued measurable functions which are square
integrable on Ω with respect to the Lebesgue measure :

L2(Ω) = {u : Ω 7→ R,
∫

Ω
|u|2 <∞}.

It is a Hilbert space with the scalar product defined by

(u,v)L2(Ω) =
∫

Ω
u(x)v(x) dx.

The associated norm is given by ‖u‖0,Ω = (u,u)1/2
L2(Ω).

Given a multi-index for the derivative order α = (α1, ...,αn) ∈ Nn, we set :

Dαv = ∂|α|v
∂x

α1
1 ...∂xαnn

, with |α|= α1 + ...+αn.

We introduce D(Ω) = C∞0 (Ω) as the space of infinitely differentiable functions with com-
pact support. A distribution on Ω is a linear form m defined on D(Ω), which is "contin-
uous" in the following sense: for all sequence (ϕn)n∈N converging to ϕ ∈D(Ω), we have :
m(ϕn) 7→m(ϕ), when n 7→+∞.
We recall that the convergence in D(Ω) is defined in the following way : ϕn 7→ ϕ in D(Ω)
if there exists a compact set K,K ⊂ Ω, containing the support of ϕ and all the supports
of the function ϕn, and if , for any α ∈ Nn, Dαϕn converges uniformly on K to Dαϕ.
We denote by D ′(Ω) the set of distributions on Ω and by < ., . > the duality bracket
between the spaces D ′(Ω) and D(Ω). If m ∈ D ′(Ω), we can define its derivative of any
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order α ∈ Nn; it is the distribution, denoted by Dαm, defined by :

∀ϕ ∈D(Ω), < Dαm,ϕ >= (−1)|α| <m,Dαϕ > .

For any s≥ 0 we define the Sobolev space Hs(Ω) as follow

Hs(Ω) = {v ∈ L2(Ω)/ ∂α(Ω) ∈ L2(Ω) ∀α = (α1, ...,αn) ∈ Nn, |α|= α1 + ...+αn ≤ s}

The partial derivative here are defined in the sense of distributions.
By extension, we can see that H0(Ω) = L2(Ω).
For s= 1, H1(Ω) is a Hilbert space with the scalar product defined by

(u,v)1 =
∫

Ω
u v+

n∑
i=1

∫
Ω
∂xi ∂xiv = (u,v)0 +

n∑
i=1

(∂xiu,∂xiv)

The associated norm is given by ‖u‖1,Ω = (u,u)1/2
1 . We define a scalar product for Hs(Ω)

(u,v)s =
∑
|α|≤m

(∂αu,∂αv)0

and the associated norm
‖u‖s = (u,u)1/2

s

It is known that Hs(Ω) with the scalar product (., .)s is a Hilbert space. We denote by
Hs

0(Ω) the closure of D(Ω) in Hs(Ω)
We need to define the trace on ∂Ω for functions belonging to Sobolev spaces. We introduce
the space D(Ω̄) of restrictions in Ω of functions belonging to D(Rn). Since we suppose
Ω to be bounded with a Lipschitz-continuous boundary[37] we have that D(Ω̄) is dense
in H1(Ω), which allows us to define, by density arguments, a trace operator.

Theorem 2.1. There exists a continuous linear mapping γ0 : H1(Ω) 7→ L2(∂Ω), such
that for all v ∈D(Ω̄), γ0(v) = v|∂Ω. The kernel of this mapping is the space H1

0 (Ω) and its
image, denoted by H1/2(∂Ω), is dense in L2(∂Ω). Conversely, any function g ∈H1/2(∂Ω)
can be extended to a function v ∈ H1(Ω), but this extension is not unique (if v is an
extension, the other ones are of the form v+w, where w is an arbitrary function in
H1

0 (Ω)). The space H1/2(∂Ω) is a Hilbert space with the norm defined by :

‖g‖H1/2(∂Ω) = inf
v∈H1(Ω),γ0(v)=g

‖v‖H1(Ω).
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Now let us introduce the variational space

V =
{
v ∈ L2(Ω); vG = v|ΩG ∈H

1(ΩG) and vS = v|ΩS ∈H
1(ΩS)

}
, (2.3)

It is naturally endowed with the broken norm

‖v‖V = (‖v‖2H1(ΩG) +‖v‖2H1(ΩS))
1/2.

This norm determines a Hilbertian structure on V. We will need the subspace

V0 =
{
v ∈ V; v = 0 on ΓD

}
. (2.4)

It is easily seen that V0 is closed in V and since every closed subspace in a Hilbert space
is a Hilbert space we have that V0 is a Hilbert space.
In the subsequent, the restrictions of any function v in V to ΩG and ΩS are denoted by
vG and vS , respectively.

We assume that the conductivity κ and the resistivity R belong to L∞(Ω) and L∞(γ)
respectively and are bounded away from zero,

inf
x∈Ω

κ(x)> 0, inf
τ∈γ

R(τ)> 0.

We use sometimes the notation κS and κG for the restriction functions of κ to ΩS and
ΩG, respectively. We also introduce the conductance α =R−1.
Now we have all the tools we need to write the variational formulation of the problem
(2.2).

2.2.2 Variational formulation

Multiplying the first equation in (2.2) by a smooth function v on ΩS , and after integrating
by parts, we obtain that

∫
ΩS
κ(∇T )(x) · (∇v)(x)dx−

∫
γ
(κ∂nT )(τ)v(τ)dτ =

∫
ΩS
g(x)v(x)dx,

The normal n is exterior to ΩS and τ denotes the tangential variable on γ. Similarly,
multiplying the same equation by a smooth function v vanishing on ΓD and integrate on
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ΩG results in
∫

ΩG
κ(∇T )(x) · (∇v)(x)dx+

∫
γ
(κ∂nT )(τ)v(τ)dτ =

∫
ΩG
g(x)v(x)dx.

For any smooth function v in V0, we need to transform the integral term at the interface
γ as follows

∫
γ

(
−κS(∂nTS)(τ)vS(τ) +κG(∂nTG)(τ)vG(τ)

)
dτ

=
∫
γ
[κ∂nT ](τ)vG(τ)dτ +

∫
γ
κS(∂nTS)(τ)[v](τ)dτ.

Combining all this with the interface conditions (second and third equation in (2.2)), we
derive that, for all function v in V0∫

ΩS∪ΩG
κ(∇T )(x) · (∇v)(x)dx+

∫
γ
R−1[T ](τ)[v](τ)dτ =

∫
ΩS∪ΩG

g(x)v(x)dx.

As a consequence, we are led to consider the variational problem:

Find T in V such that
T = TD on ΓD, (2.5)

and

∀v ∈ V0,
∫

ΩS∪ΩG
κ(∇T )(x) · (∇v)(x)dx+

∫
γ
α[T ](τ)[v](τ)dτ =

∫
ΩS∪ΩG

g(x)v(x)dx.

(2.6)

The proof of the next proposition easily follows from the previous lines and from the
density of D(ΩS)×D(ΩG) into V, however it requires a further assumption which is not
restrictive (sufficient conditions for it are given in [11]).

Proposition 2.2. Assume that the partition of ∂Ω into ΓD and ΓN is sufficiently smooth
for D(ΩG \ΓD) to be dense in the space

{
v ∈H1(ΩG); v = 0 on ΓD

}
.

Problems (2.2) and (2.5)–(2.6) are equivalent, in the sense that any function in V is a
solution of (2.2) in the distribution sense if and only if it is a solution of (2.5)–(2.6).
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Proof. Let T be a solution of problem (2.5)–(2.6). By taking v successively in D(ΩG), in
D(ΩS), in D(Ω) and finally in D(ΩG∪ΩS) and using the same equations as previously,
we derive that it is solution of (2.2) in the distribution sense. The converse property
follows by the same arguments and by noting that the space

{
v ∈ L2(Ω); vG ∈D(ΩG \ΓD) and vS ∈D(ΩS)

}
, (2.7)

is dense in V0. �

In 1902, J. Hadamard formulated the concept of the well-posedness of problems for differ-
ential equations. A problem is called well-posed in the sense of Hadamard if there exists
a unique solution to this problem that continuously depends on its data.
With this definition in mind, to establish the well-posedness of problem (2.5)–(2.6) we
will need the following fundamental result[35].

Theorem 2.3. (Lax-Milgram Lemma) We assume that a is a continuous and elliptic
bilinear form on V, i.e. there exist two constants M and α > 0 such that

|a(u,v)| ≤M‖u‖V‖v‖V ∀u,v ∈ V

and
a(u,v)≥ α‖v‖2V ∀v ∈ V.

then, for l ∈ V′, there exists a unique u ∈ V such that

a(u,v) =< l,v > ∀v ∈ V.

Moreover, the mapping l 7→ u is an isomorphism from V′ onto V.

Thus establishing the well-posedness of problem (2.5)–(2.6) requires to study the V–
ellipticity (or coerciveness) of the bilinear form

a(T,v) =
∫

ΩS∪ΩG
κ(∇T )(x) · (∇v)(x)dx+

∫
γ
α[T ](τ)[v](τ)dτ. (2.8)

Indeed, we have the following lemma.

Lemma 2.4. The mapping: v 7→ a(v,v)1/2 is a norm on V0 equivalent to the norm ‖v‖V.
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Proof. We first check out that v 7→ a(v,v)1/2 is a norm. Let then v be a function in V0

such that a(v,v) = 0. Thus, ∇v is zero on ΩG and on ΩS so that v is equal to a constant
vG on ΩG, to a constant vS on ΩS . It follows from the boundary condition on ΓD that
vG is zero. Moreover, since the jump [v] vanishes on γ then vS is equal to vG, hence to
zero. All this yields that v is zero.
Now, to show the equivalence with the norm ‖ · ‖V, observe that the continuity of the
trace from H1(ΩG) and H1(ΩS) into L2(γ) yields that the norm ‖ · ‖V is equivalent to
the norm defined by

v 7→ a(v,v)1/2 + (‖v‖2L2(ΩG) +‖v‖2L2(ΩS))
1/2.

The kernel of the first term is reduced to zero and, due to the compact embeddings of
H1(ΩG) into L2(ΩG) and of H1(ΩS) into L2(ΩS), the second term is compact. We can
see that the desired equivalence property is a direct consequence of the second property of
the following Peeter–Tartar lemma 2.5 (see [35] for more details) with A : v 7→Av= a(v,v)
and L : v 7→ Lv = (v,v)2

V �

Lemma 2.5. (Peeter–Tartar) Let E1, E2 and E3 be three Banach spaces, A an operator
in L (E1,E2) and B a compact operator in L (E1,E3) such that

‖u‖E1
∼= ‖Au‖E2 +‖Bu‖E3 , ∀u ∈ E1

Then the following properties hold :

1. The dimension of KerA = {v ∈X;Av = 0} is finite; the mapping A is an isomor-
phism from E1/KerA 7→ R(A)(: the range space of A); R(A) is a closed subspace
of E2.

2. There exists a constant C0 such that, if F is a Banach space and L ∈ L (E1;F )
vanishes on Ker(A), then

‖Lu‖F ≤ C0‖L‖L (E1;F )‖Au‖E2 ∀u ∈ E1.

3. If G is a Banach space and M ∈L (E1,G) satisfies

Mu 6= 0, ∀u ∈KerA\{0},

then,
‖u‖E1

∼= ‖Au‖E2 +‖Mu‖G ∀u ∈ E1.
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Corollary 2.6. For any data g in L2(Ω) and TD in H1/2(ΓD), problem (2.5)–(2.6) has
a unique solution T in V. Moreover this solution satisfies

‖T‖V ≤ c
(
‖g‖L2(Ω) +‖TD‖H1/2(ΓD)

)
. (2.9)

Proof. There exists a lifting TD in H1(ΩG) of any extension of TD in H1/2(∂Ω) which
vanishes on γ and such that

‖TD‖H1(ΩG) ≤ c‖TD‖H1/2(ΓD).

Thus, writing the problem satisfied by T0 = T −TD and noting that it belongs to V0, we
deduce by combining the Lax–Milgram lemma 2.3 with the ellipticity property proved in
Lemma 2.4 that the problem has a unique solution. Moreover, the function T = T0 +TD

satisfies (2.9). �

In spite of the discontinuity of the temperature solution T , the maximum principle holds
true.

Proposition 2.7. When g is equal to zero, for any data TD in H1/2(ΓD)∩L∞(ΓD), the
solution T of problem (2.5)–(2.6) satisfies for a.e. x in Ω

min
{

0, inf
τ∈ΓD

TD(τ)
}
≤ T (x)≤max

{
0, sup
τ∈ΓD

TD(τ)
}
. (2.10)

Proof. Since the proofs of the two inequalities are fully identical, we only check out the
second one. Set M = max

{
0,supτ∈ΓD TD(τ)

}
. Then, we observe that the function T −M

satisfies

∀v ∈ V0,
∫

ΩS∪ΩG
κ(∇(T −M))(x) · (∇v)(x)dx+

∫
γ
α[T −M ](τ)[v](τ)dτ = 0.

We choose v equal to (T −M)+ = max{T −M,0}. Given that T −M belongs to V, then
(T −M)+ lies also in V. Moreover, based on the definition of M this function belongs to
V0. We have that

∫
ΩS∪ΩG

κ(∇(T −M)+)2 dx+
∫
γ
α[T −M ](τ)[(T −M)+](τ)dτ = 0. (2.11)

Using the fact that (r− s)(r+− s+)≥ 0 for all real numbers r,s, we derive that
∫
γ
α[(T −M)](τ)[(T −M)+](τ)dτ ≥ 0. (2.12)
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As a result, both terms in the previous equation are zero. Thus, owing to Lemma 2.4,
the function (T −M)+ vanishes identically, hence the desired result. �

2.2.3 Hybrid dual formulation

In the previous section we have presented a classical way to formulate problem (2.2)
in a weak form [15]. Another less conventional way to write this problem is using a
hybrid dual formulation where in addition to the temperature field as the unknown of
the problem, the gradient of the temperature is introduced as a second unknown. The
finite element methods based on this approach are known as the Mixed and hybrid finite
element methods. These method allow to compute the temperature and the gradient
temperature with equal accuracy which earned them an amount of popularity during the
last few years[31].
To write the hybrid dual formulation for problem (2.2) we start by introducing the hybrid
dual functional framework adapted to this problem. The flux conservation across the
interface prompts us to consider the space

H(div;Ω) =
{
q ∈ L2(Ω)d; divq ∈ L2(Ω)

}
.

We recall from [35] the flowing theorem(Chap. I, Thm 2.5) :

Theorem 2.8. The mapping : v 7→ v.n|∂Ω defined on D(Ω̄)d can be extended by conti-
nuity to a linear and continuous mapping, from H(div;Ω) into H−1/2(∂Ω).

Thus we have that the trace operator: q 7→ q ·n is continuous from H(div;Ω) onto the
space H−1/2(∂Ω).
From now on, we denote by 〈·, ·〉∂Ω the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω),
and by 〈·, ·〉ΓD the duality pairing between the space H1/2(ΓD) and its dual space.
To step further and to fully take into account the interface conditions we need to work
in the space

X =
{
q ∈H(div;Ω); q ·n = 0 on ΓN and (q ·n)|γ ∈ L2(γ)

}
. (2.13)

It is a Hilbert space when equipped with the norm

‖q‖X =
(
‖q‖2L2(Ω)d +‖divq‖2L2(Ω) +‖q ·n‖2L2(γ)

)1/2
. (2.14)



Finite element methods for the steady state problem 33

To write the mixed formulation we introduce a second unknown(see [77], [15, Chap. I,
§3 and §4]).

p = κ∇T (2.15)

An alternative to the variational problem (2.5)–(2.6) consists in considering the following
hybrid dual problem:
Find (T,p) in L2(Ω)×X such that

∀q ∈ X,
∫

Ω
κ−1p(x) ·q(x)dx+

∫
γ
R(p ·n)(τ)(q ·n)(τ)dτ

+
∫

Ω
(divq)(x)T (x)dx = 〈TD,q ·n〉ΓD , (2.16)

∀v ∈ L2(Ω),
∫

Ω
(divp)(x)v(x)dx =−

∫
Ω
g(x)v(x)dx. (2.17)

The first equation is obtained when multiplying (2.15) by a test function q ∈ X and
integrating over Ω and by using a Green formula. The second equation is obtained by
replacing κ∇T by p in the first equation of (2.2) and by multiplying the resulting equation
with a test function v ∈ L2(Ω) and integrating over Ω.
This problem is of standard saddle point type, and it can be noted that no jump appears in
its formulation. In order to establish its well-posedness we will use the following theorem
see [35, Chap. I, Thm 4.1] or [15, Chap. II, Thm 1.1 ] for instance.

Theorem 2.9. Let X and M be two Hilbert spaces, a(.,.) a continuous bilinear form on
X×X and b(.,.) a continuous bilinear form on X×M . Let us suppose that a is elliptic
on Kerb and b is such that

∃ β > 0, sup
‖p‖X=1

b(p,v)≥ β‖v‖M ∀v ∈M

then there exist a solution (u,p) to
Find (p,u) ∈X×M such that


a(p,q) + b(q,u) = L(q), ∀q ∈X,

b(p,v) = m(v), ∀v ∈M.

for all (L,m) ∈X ′×M ′.
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Thus the to prove the well-posedness of problem (2.17) we need to prove the continuity
and ellipticity of the bilinear form defined by:

(p,q) 7→
∫

Ω
κ−1p(x) ·q(x)dx+

∫
γ
R(p ·n)(τ)(q ·n)(τ)dτ +

∫
Ω

(divq)(x)T (x)dx

The kernel K defined by

K =
{
q ∈ X; ∀v ∈ L2(Ω),

∫
Ω

(divq)(x)v(x)dx = 0
}

(2.18)

is obviously characterized by

K =
{
q ∈ X; divq = 0 in Ω

}
. (2.19)

Thanks to the definition (2.14) of the norm ‖ · ‖X, this yields the following result.

Lemma 2.10. The bilinear form:

m : (p,q) 7→
∫

Ω
κ−1p(x) ·q(x)dx+

∫
γ
R(p ·n)(τ)(q ·n)(τ)dτ,

is elliptic on K, with ellipticity constant equal to min{‖κ−1‖L∞(Ω), infτ∈γR(τ)}.

The proof of this lemma is straightforward.

Proof.

|m(q,q)|= |
∫

Ω
κ−1q(x) ·q(x)dx+

∫
γ
R(q ·n)(τ)(q ·n)(τ)dτ |

≥ |
∫

Ω
κ−1q(x) ·q(x)dx|+ |

∫
γ
R(q ·n)(τ)(q ·n)(τ)dτ |

≥ ‖κ−1‖L∞(Ω)‖q‖2L2(Ω)d + inf
τ∈γ

(R(τ))‖q ·n‖2L2(γ)

≥min(‖κ−1‖L∞(Ω) + inf
τ∈γ

(R(τ)))‖q‖2X .

�

The next step is to investigate the properties of the following mixed bilinear form:

(q,v) 7→
∫

Ω
(divq)(x)v(x)dx.



Finite element methods for the steady state problem 35

Lemma 2.11. The following inf-sup condition holds for a positive constant β only de-
pending on Ω

∀v ∈ L2(Ω), sup
q∈X

∫
Ω(divq)(x)v(x)dx

‖q‖X
≥ β ‖v‖L2(Ω). (2.20)

Proof. It is processed as in [78] after adding some modifications. For any v in L2(Ω), we
consider the solution w of the Laplace equation


−∆w =−v in Ω,

w = 0 on ΓD,

∂nw = 0 on ΓN .

(2.21)

Obviously, this solution belongs to H1(Ω). Then the function q =∇w satisfies divq = v

and (
‖q‖2L2(Ω)d +‖divq‖2L2(Ω)

)1/2
≤ c‖v‖L2(Ω).

Moreover, q ·n = ∂nw vanishes on ΓN . Owing to the elliptic regularity (see [38, Section
2.2.2]), w belongs to H2(O) for any smooth domain O such that O⊂Ω. Since γ is strictly
contained in Ω, there exists a neighborhood O of γ in Ω such that

‖q ·n‖L2(γ) = ‖∂nw‖L2(γ) ≤ ‖w‖H2(O) ≤ c‖v‖L2(Ω).

Thus we have that
‖q‖X ≤ c‖v‖L2(Ω). (2.22)

we know that ∫
Ω

(divq)(x)v(x) dx =
∫

Ω
v(x)2dx = ‖v‖2L2(Ω)

thus
∫
Ω(divq)(x)v(x) dx

‖q‖X
=
‖v‖2L2(Ω)
‖q‖X

≥ β
‖v‖2L2(Ω)
‖v‖L2(Ω)

using (2.22)

= β‖v‖L2(Ω)

This concludes the proof. �
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The well-posedness of problem (2.17) is now a consequence of Lemmas (2.10) and (2.11)
and Theorem 2.9.

Theorem 2.12. For any data g in L2(Ω) and TD in H1/2(ΓD), problem (2.17) has a
unique solution (T,p) in L2(Ω)×X. Moreover this solution satisfies

‖T‖L2(Ω) +‖p‖X ≤ c
(
‖g‖L2(Ω) +‖TD‖H1/2(ΓD)

)
. (2.23)

We conclude by comparing problem (2.17) with problem (2.2) (or equivalently with prob-
lem (2.5)–(2.6) thanks to Proposition (2.2)).

Proposition 2.13. Assume that the partition of ∂Ω into ΓD and ΓN is sufficiently smooth
for D(Ω∪ΓD) to be dense in the space X. Problems (2.2) and (2.17) are equivalent, in
the sense that any function T in V is a solution of (2.2) in the distribution sense if and
only if the pair (T,p = κ∇T ) is the solution of problem (2.17).

Proof. If (T,p) stands for a solution of problem (2.17), we consider this problem with q
in D(ΩG)d∪D(ΩS)d and v in D(Ω). This yields

κ−1p =∇T in ΩG∪ΩS and divp =−g in Ω,

whence the equality p = κ∇T and also the first equation in (2.2). Since p belongs to
H(div;Ω), this also implies the second equation in (2.2). Taking q in D(Ω) and integrating
by parts in (2.17) leads to the third equation in (2.2). The fourth equation is obtained
by taking q in D(ΩG ∪ΓD)d and the fifth one follows from the fact that p belongs to
X. Thus, T belongs to V and is a solution of (2.2). The converse property follows from
the same arguments, together with the density assumption and the density of D(Ω) into
L2(Ω). �

2.2.4 Regularity and singularities

The investigation of the accuracy of any finite element method applied to problem (2.2)
requires to know the regularity of the solution T . It is admitted that the regularity of the
solution is tightly connected to the smoothness of the data and of the geometry. Let us
have a first look at the case where the geometry is smooth. To avoid the well known effect
of mixed boundary conditions, we suppose that the Neumann portion is empty, that is
ΓN = ∅. We focus on the case where the resistivity R is constant and the conductivity κ
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is piecewise constant and takes two constant values κG and κS in ΩG and ΩS respectively.
Similar results are valid for regular space varying κ and R.

Proposition 2.14. Assume that the boundaries ∂Ω and γ are of class C 1,1. Then TS

belongs to H2(ΩS). If in addition, the boundary datum TD belongs to H3/2(∂Ω), then TG
also belongs to H2(ΩG).

Before proceeding with the proof we give first the following theorem [38, Thm 2.2.2.5]

Theorem 2.15. For every f ∈ L2(Ω) there exists a unique u ∈H2(Ω) such that

Au+λu= f, in Ω

with the boundary condition γ∂u/∂νA = 0, provided λ > 0. Where A is a second-order
strongly elliptic real operator in Ω.

Now back to the proof of proposition 2.14.

Proof. Restricted to ΩS , the temperature T is the solution of the Laplace equation with
Neumann boundary condition


−κS ∆TS = g in ΩS

κS∂nTS = ϕ on γ,

where the function ϕ= α[T ] belongs to H1/2(γ). The desired result follows from theorem
2.15 where in our case A is the Laplace operator. �

Let us turn to the regularity on ΩG. The temperature T is the solution of

−κG∆TG = g in ΩG,

κG∂nTG = ψ on γ,

TG = TD on ΓD.

(2.24)

The function ψ = κS ∂nTS is in H1/2(γ). Consequently, the solution TG belongs to
H2(ΩG).

Remark 2.16. If the data and the geometry are highly smooth, a bootstrapping argument
enables us to check that the local temperature fields TG and TS are also highly regular
notwithstanding the discontinuity of the global temperature T .
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In the practice the geometry may not be so idealistic. We consider then more realistic
cases where the geometry may have singular points or lines. Before giving the next result
we need the following theorem (see [38, Thm 3.2.1.3]).

Theorem 2.17. Let Ω be a convex, bounded and open subset of Rd. Then for each
f ∈ L2(Ω) and for each λ > 0 there exists a unique u ∈H2(Ω) which is the solution of

−
∫

Ω
∇u∇v dx+λ

∫
Ω
uv dx =

∫
Ω
fv dx v ∈H1(Ω).

Proposition 2.18. Assume that any connected component ωi of ΩS is convex. Then
the temperature TS belongs to H2(ΩS). Moreover, if the boundary datum TD belongs to
H3/2(∂Ω), then the solution TG belongs to H1+r(ΩG), for some r with 1/2≤ r < 1. The
following stability holds

‖TS‖H2(ΩS) +‖TG‖H1+r(ΩG) ≤ c(‖g‖L2(Ω) +‖TD‖H3/2(∂Ω)). (2.25)

Proof. The proof is conducted exactly as for the previous proposition. The conclusion can
be achieved following Theorem 2.17. We refer to [49] for the case of a general Lipschitz
boundary. �

Remark 2.19. To have a deeper insight on this issue, let us have a close glance on the two-
dimensional problem. We pay a particular attention to the case where the sub-domain
ΩS is polygonal. The limitation on the regularity of TG is caused by the angular vertices
of γ which create re-entrant corners for the domain ΩG. Now, consider the corner m of
a sector V included in ΩG, with an aperture of the angle η in ]π,2π[: The temperature
field TG, solution of sub-problem (2.24) is expected to contain a singularity of type

SG(%,θ) = %
π
η cos(π

η
θ)ϕ(%).

The polar coordinates (%,θ) are used with origin m and ϕ is a cut-off function around m.
Now, assume that V does not contain any other vertex. Then the singular function SG
belongs to any Sobolev space Hs(V) provided that s < 1 + π

η and can not be in H2(V).
The questions now are : is such a singularity compatible with the interfaces conditions?
Why SG does not affect TS through the flux conservation [κ∂nT ] = 0? The answer is yes:
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SG is compatible with conditions along γ. The flux κ∂nTG = 0 along both edges of the
sector V. The temperature TS sees the singularity SG through the condition

κS ∂nTS = α[T ], on γ.

This does not prevent κ∂nTS from belonging to H1/2(γ). Things happen as if the conse-
quence of releasing the strong continuity on the temperature T , by the introduction of a
resistivity of contact, is the cancellation of any effect of the singularity SG on TS . This
will be addressed later on in the numerical section and a comparison will be conducted
with the case of continuous temperature field for which the resistivity is zero, i.e. R= 0.

2.3 A Lagrange finite element discretization

Finite elements methods were proposed in a seminal work of Richard Courant[26], in
1943; unfortunately, the relevance of this article was not recognized at the time and
the idea was forgotten. In the early 1950’s the method was rediscovered by engineers,
but the mathematical analysis of finite element approximations began much later, in the
1960’s, the first important results being due to Milos Zlamal[97] in 1968. Since then finite
element methods have been developed into one of the most general and powerful class of
techniques for the numerical solution of partial differential equations and are widely used
in engineering design and analysis[89].
In this section we describe the Lagrange finite elements method, for the approximation
of the variational equation (2.6). This method is based on the Lagrange element, or
nodal element, which was first defined with use of Lagrange interpolation polynomials in
Courant’s introduction of the finite element method[26]. We note however that we will
only use this method in the case where the shape of the pores of the matrix, infiltrated with
the phase change material, have a regular shape an example of this is presented in Figure
2.1(left). The sub-domain ΩS is therefore the disjoint union of few connected components
ωi with reasonable boundaries. Handling local continuous/global discontinuous finite
elements is therefore possible. At least, it can be managed without particular troubles in
the numerical implementation grounds.
Experienced numerical practitioners may even build local meshes in ΩS and ΩG that do
not match at the interface and use mortaring devices to glue corresponding finite element
discretizations (see [12]). In spite of the high interest of such a mortar issue, we do not
consider it here for conciseness.
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Assume hence that Ω is a polygon (d = 2) or a polyhedron (d = 3). We also suppose
that ΩS is a union of polygons or polyhedra, so that the boundary γ is a polygonal
curve or surface. The basic concept of the finite element method is the subdivision
of the computational domain into a number of small, non-overlapping subdomains, the
finite elements, over which functions are approximated by local functions, or in our case
polynomials. Hence we start by defining a regular family of triangulations of Ω by triangles
or tetrahedra (Th)h such that for each h:
• The boundary γ is the union of edges (d= 2) or faces (d= 3) of elements of Th.
• The union of all elements of Th is equal to Ω.
• Each part ΓD or ΓN of the boundary ∂Ω is the union of edges (d= 2) or faces (d= 3)
of elements of Th.
• The intersection of any two different elements of Th, if not empty, is a vertex or a whole
edge or a whole face of both triangles or tetrahedra.
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed
circle or sphere is smaller than a constant independent of h.
As usual, h stands for the maximum of the diameters hK , K ∈ Th. In all that follows, c,
c′, . . . are generic constants that can vary from line to line but are always independent of
the parameter h.

Before defining the discrete space, let us introduce the local triangulations, for each mesh-
size h,

TSh =
{
K ∈ Th; K ⊂ ΩS

}
, TGh =

{
K ∈ Th; K ⊂ ΩG

}
.

The discrete spaces are then constructed as follows

Vh =
{
vh ∈ V; ∀K ∈ TSh ,vh|K ∈ P1(K) and ∀K ∈ TGh ,vh|K ∈ P1(K)

}
,

V0h = Vh∩V0

where P1(K) stands for the space of affine functions on K. Extension to high-order dis-
cretizations is obvious.
The discrete problem is obtained from problem (2.5)–(2.6) by the Galerkin method. De-
noting by iDh the Lagrange interpolation operator on ΓD with values in the space of traces
of elements in Vh and assuming the continuity of TD, it reads
Find Th in Vh such that

Th = iDh TD on ΓD, (2.26)
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and

∀vh ∈ V0h,
∫

ΩS∪ΩG
κ(∇Th)(x) · (∇vh)(x)dx+

∫
γ
α[Th](τ)[vh](τ)dτ

=
∫

ΩS∪ΩG
g(x)vh(x)dx. (2.27)

We can see that V0h is imbedded in V0. Thus, this problem is well-posed thanks to the
ellipticity property established in lemma 2.4 and the Lax–Milgram lemma 2.3 and we
have the following result.

Proposition 2.20. For any data g in L2(Ω) and TD continuous on ΓD, problem (2.26)–
(2.27) has a unique solution Th in Vh. Moreover this solution satisfies

‖Th‖V ≤ c
(
‖g‖L2(Ω) +‖iDh TD‖H 1

2 (ΓD)

)
. (2.28)

2.3.1 Error analysis

First we can see that using the ellipticity property established in lemma 2.4, we derive
straightforwardly the following version of Céa’s lemma (see [23, Thm 2.4.1])

‖T −Th‖V ≤ c inf
Sh∈VDh

‖T −Sh‖V, (2.29)

where VDh stand for the affine space of functions in Vh equal to iDh TD on ΓD. As a
consequence, choosing Sh equal to the interpolate of T and using the following proposition
(see [13, Chap. IX, Prop. 1.4]) yields the desired error estimate.

Theorem 2.21. Assume that the solution T of problem (2.5)–(2.6) is such that

TS ∈Hs+1(ΩS); TG ∈Hr+1(ΩG), (2.30)

for real numbers s,r with 0 ≤ s,r ≤ 1. Then, the following a priori error estimate holds
between this solution and the solution Th of problem (2.26)–(2.27)

‖T −Th‖V ≤ c(hs ‖TS‖Hs+1(ΩS) +hr ‖TG‖Hr+1(ΩG)). (2.31)
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Remark 2.22. Theorem 2.21 is worth some comments. Estimate 2.31 sounds artificial as
it is. The effective form of the accuracy should be

‖T −Th‖V ≤ chmin{s,r}(‖TS‖Hs+1(ΩS) +‖TG‖Hr+1(ΩG)).

Céa’s lemma, at the basis of that error estimate, fails to uncouple what happens in ΩS

and in ΩG. In most of the real-life geometries the pores ωi are convex. According to
Proposition 2.18, the temperature field T enjoys more regularity within ΩS than in ΩG.
Indeed, we have s= 1 and r ∈]1

2 ,1[; thus TS belongs to H2(ΩS) but TG does not belong to
H2(ΩG). Numericists and users may wonder whether a better accuracy within ΩS may
be derived.

2.3.2 Super-convergence for realistic geometries

We pursue an improved accuracy in the internal sub-domain ΩS , when the components
ωi are convex. This is most often the case in the practice. The energy norm of the error
decays actually like h rather than hr with r < 1, as predicted in Theorem 2.21.
We choose once again to develop the basic ideas in a simple context to avoid secondary
technicalities that can be coped with following the specialized literature. We assume
then that the conductivity is piecewise constant and takes the two constant values κS
in ΩS and κG in ΩG. We consider also that ΓN = ∅ for simplicity. The methodology
we develop consists in using the combination of the duality argument and the regularity
result, known as Aubin-Nitsche duality argument, then we call for a Gagliardo-Nirenberg
inequality to obtain enhanced convergence rate at the interfaces and finally extend the
result to ΩS by a bootstrapping argument.

Proposition 2.23. Assume g in L2(Ω) and TD in H3/2(∂Ω). Let all the connected
components ωi of ΩS be convex. Then, the following a priori error estimate holds between
the solution T of problem (2.5)–(2.6) and the solution Th of problem (2.26)–(2.27)

‖T −Th‖L2(Ω) ≤ ch2r (‖g‖L2(Ω) +‖TD‖H3/2(∂Ω)). (2.32)

The real number r lies in [1/2,1[ and is defined in Proposition 2.18.

Proof. Observe first that by Theorem 2.21 we have

‖T −Th‖V ≤ chr(‖TS‖H2(ΩS) +‖TG‖Hr+1(ΩG))
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and owing to the stability (2.25) we have

‖T −Th‖V ≤ chr(‖g‖L2(Ω) +‖TD‖H3/2(Ω)) (2.33)

Next, to proceed with Aubin-Nitsche duality we start from the formula

‖T −Th‖L2(Ω) = sup
f∈L2(Ω)

∫
ΩS∪ΩG f(x)(T −Th)(x)dx

‖f‖L2(Ω)
, (2.34)

and, for each f in L2(Ω), we solve the problem (we use here the notation 2.8 for brevity):
Find w in V0 such that

∀v ∈ V0, a(v,w) =
∫

ΩS∪ΩG
f(x)v(x)dx.

Thus, we have obviously
∫

ΩS∪ΩG
f(x)(T −Th)(x)dx = a(T −Th,w),

hence for any wh in V0h we have
∫

ΩS∪ΩG
f(x)(T −Th)(x)dx = a(T −Th,w−wh) +a(T,wh)−a(Th,wh)

so that, by using problems (2.5)–(2.6) and (2.26)–(2.27) and the ellipticity property es-
tablished in lemma 2.4, we have for any wh in V0h,∫

ΩS∪ΩG
f(x)(T −Th)(x)dx = a(T −Th,w−wh)≤ c‖T −Th‖V‖w−wh‖V. (2.35)

Calling for Proposition 2.18 yields that wS and wG belong to H2(ΩS) and H1+r(ΩG),
and satisfy

‖wS‖H2(ΩS) +‖wG‖H1+r(ΩG) ≤ c‖f‖L2(Ω).

Choosing wh equal to the Lagrange interpolate of w yields

‖w−wh‖V ≤ chr ‖f‖L2(Ω). (2.36)

Now we have all the elements to finish the proof.

‖T −Th‖L2(Ω) ≤ c sup
f∈L2(Ω)

‖T −Th‖V‖w−wh‖V
‖f‖L2(Ω)

using (2.34) and (2.35)

≤ c h2r(‖g‖L2(Ω) +‖TD‖H3/2(Ω)) using (2.36) and (2.33)



Finite element methods for the steady state problem 44

�

Now, the second step consists in deriving an error estimate on the L2-norm of the jump
of [T −Th] along the interface γ.

Lemma 2.24. If assumptions of Proposition 2.23 are valid then the following estimate
holds

‖[T −Th]‖L2(γ) ≤ ch
3
2r (‖g‖L2(Ω) +‖TD‖H3/2(∂Ω)). (2.37)

The proof uses the following trace theorem (see [14, Thm 1.6.6] for instance)

Theorem 2.25. Suppose that Ω has a Lipschitz boundary, and that p is a real number
in the range 1≤ p≤∞. Then there is a constant, C, such that

‖v‖Lp(∂Ω) ≤ C‖v‖
1− 1

p

Lp(Ω)‖v‖
1
p

W 1
p (Ω) ∀v ∈W 1

p (Ω).

Where W 1
p is the Sobolev space defined by

W 1
p = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀ |α| ≤ 1}.

Now we proceed with the proof of lemma 2.24

Proof. It follows from the Theorem 2.25 that, for all v in V,

‖v‖L2(γ) ≤ c‖v‖
1
2
L2(ΩS) ‖v‖

1
2
H1(ΩS). (2.38)

Of course, the same inequality holds with ΩS replaced by ΩG. Applying this inequality
to T −Th yields

‖[T −Th]‖L2(γ) ≤ c‖T −Th‖
1
2
L2(Ω)‖T −Th‖

1
2
V.

Using estimates (2.32) and (2.33) yields that

‖[T −Th]‖L2(γ) ≤ ch
3
2r(‖g‖L2(Ω) +‖TD‖H3/2(∂Ω)),

which is the desired result. �
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Remark 2.26. The same arguments as in the previous proof, see (2.38), also yield

‖TS−Th|ΩS‖L2(γ) ≤ ch
3
2r (‖g‖L2(Ω) +‖TD‖H3/2(∂Ω)). (2.39)

Finally, we are in position to improve the error estimate in the sub-domain ΩS .

Theorem 2.27. If assumptions of Proposition 2.23 are valid then, the following a priori
error estimate holds between the solution T of problem (2.5)–(2.6) and the solution Th of
problem (2.26)–(2.27)

‖T −Th‖H1(ΩS) ≤ chmin{1, 32r} (‖g‖L2(Ω) +‖TD‖H3/2(∂Ω)), (2.40)

for the parameter r defined in Proposition 2.18.

Proof. Introduce first the notation Vh,S = Vh|ΩS . Since T is the solution of problem
(2.5)–(2.6) and Th the solution of problem (2.26)–(2.27) we have

∀vh ∈ Vh, a(T −Th,vh) = a(T,vh)−a(Th,vh) = 0.

Choosing vh such that vh|ΩG = 0 and setting wh = vh|ΩS ∈ Vh,S we obtain

∀wh ∈ Vh,S ,
∫

ΩS
κ(∇(T −Th))(x) · (∇wh)(x)dx+

∫
γ
α[T −Th](τ)wh(τ)dτ = 0. (2.41)

Applying this equation with wh = Sh−Th , where Sh is in Vh,S , yields∫
ΩS
κ(∇(T −Th))2(x)dx =

∫
ΩS
κ(∇(T −Th))(x) · (∇(T −Sh))(x)dx

−
∫
γ
α[T −Th](τ)(Sh−Th)(τ)dτ, ∀Sh ∈ V

whence, by using triangle inequalities and the trace theorem in the last term,

‖T −Th‖2H1(ΩS) ≤ c‖T −Sh‖
2
H1(ΩS) + c′ ‖[T −Th]‖L2(γ)

(
‖T −Th‖L2(γ) +‖T −Sh‖L2(γ)

)
.

Observing that TS belongs to H2(ΩS), see Proposition 2.18, applying Lemma 2.24 and
Remark 2.26 and using the error estimate of the general theory of finite elements, we
derive for appropriate constants c and c′ depending on the data

‖T −Th‖2H1(ΩS) ≤ c h
2(‖g‖L2(Ω) +‖TD‖H3/2(∂Ω))

2 + c′ h3r(‖g‖L2(Ω) +‖TD‖H3/2(∂Ω))
2
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hence
‖T −Th‖H1(ΩS) ≤ C hmin(1, 32r)(‖g‖L2(Ω) +‖TD‖H3/2(∂Ω))

�

Remark 2.28. According to estimate (2.40) the optimal accuracy in the sub-domain ΩS

is guaranteed when r > 2
3 . The convergence speed is then of order O(h). The previous

argument can be iterated to improve the result. Unfortunately, this bootstrap technique
does not lead to the full optimal estimate for r close to 1/2. So far the optimality is
missing when the pores ωi have acute angles (≤ π/3). Notice that the convergence rate of
the error with respect to the energy norm in ΩS is anyway better than O(h5/6). However,
our feeling is that the optimality would be valid for any r > 1/2. The numerical discussion
realized later on confirms this claim.

Remark 2.29. Although, we expose the procedure for enhancing the convergence rate in a
particular geometry. It can be extended to a larger class of configurations provided that
the convergence rate the global error with respect to the L2-norm is higher than the rate
with respect to the H1-norm. Furthermore, the arguments exposed here may be applied
locally as well. One may focus on a particular convex component ωi instead of the whole
ΩS .

2.4 Hybrid dual Raviart–Thomas finite elements

For many interesting dense hybrid media as the one depicted in Figure 2.1, using Lagrange
finite elements for the discretization of problem (2.2) compels practitioners to transform
the finite elements Libraries which are the very foundation of most of existing Finite
Element Computing Softwares. Users are reluctant to dive so deep in the programing
layers (of the softwares). They prefer to work at the layers perceived as external layers.
It is most often the level of the variational formulation writing. This is when the hybrid
dual finite element method come to use, since in this method the jump in the temperature
is accounted for in a natural way thanks to the element-wise continuous approximation
functions used in this method.
Let us now introduce the finite element framework needed for the hybrid dual formulation.
We recall by (Th)h the family of triangulations introduced in Section 2.3 and we denote
by Eh the set of all edges (d = 2) or faces (d = 3) of elements of Th. Given an element
K ∈ (Th)h we denote by P0(K) the space of constant functions on K. The discrete space
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for the temperature is defined by

Mh =
{
vh ∈ L2(Ω); ∀K ∈ Th, vh|K ∈ P0(K)

}
, (2.42)

For the space aimed to approximate p, we have decided to use the lowest order Raviart–
Thomas element, introduced in [77], it is defined by

RT0(K) = a+xb, a ∈ Rd, b ∈ R

The use of these elements to approximateH(div;Ω) is justified by the following proposition[15].

Proposition 2.30. For any d-simplicial element K we have for q ∈RT0(K)


div(q) ∈ P0(K),

q ·n|∂K ∈R0(∂K).

Moreover, the divergence operator is surjective from RT0(K) onto P0(K).

where R0(∂K) is the space of functions which are polynomials of degree 0 on each side
or face of K. This also show the well-known H(div;Ω)-conformity of this element.
Now we give the space used to approximate H(div;Ω) :

Xh =
{
qh ∈H(div;Ω); ∀K ∈ Th, qh|K ∈RT0(K)

}
, X0

h = Xh∩X, (2.43)

With each e in εh, we associate the vector valued Raviart-Thomas basis function defined
on each K that contains e by

ϕe(x) = x−a
dmeas(K) , (2.44)

where a is the vertex of K opposite to e, and equal to zero elsewhere. The degrees of
freedom are the fluxes of vector filed ϕe for all the edges of the mesh[77] :

∫
b
ϕe ·nedγ = δe,f , ∀e,f ∈ εh

A vector valued function q ∈ X is a linear combination of the basis function ϕe :

q =
∑
e∈εh

qeϕe.

Remark 2.31. It is of course possible to use higher order elements. We work with the
low cost finite element spaces defined above only for simplicity. It is also possible to use
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Figure 2.2: 2D RT 0 basis function

the so-called BDM1 space (due to Brezzi, Douglas and Marini) instead of RT0. Many
extensions are possible and our feeling is that they do not arise any specific difficulty.

The discrete problem is now constructed from problem (2.17) by the Galerkin method,
it reads
Find (Th,ph) in Mh×X0

h such that

∀qh ∈ X0
h,

∫
Ω
κ−1ph(x) ·qh(x)dx+

∫
γ
R(ph ·n)(τ)(qh ·n)(τ)dτ

+
∫

Ω
(divqh)(x)Th(x)dx = 〈TD,qh ·n〉ΓD ,

∀vh ∈Mh,
∫

Ω
(divph)(x)vh(x)dx =−

∫
Ω
g(x)vh(x)dx. (2.45)

Note that, due to the choice of Mh and X0
h, the discretization is fully conforming.

Proving the well-posedness of problem (2.17) relies on very similar arguments as for the
continuous case and is based on Theorem 2.9. Let us introduce the kernel

Kh =
{
qh ∈ X0

h; ∀vh ∈Mh,
∫

Ω
(divqh)(x)vh(x)dx = 0

}
. (2.46)

Since, for each qh in X0
h, the function divqh is constant on each element K of Th thus

divqh ∈Mh, hence taking vh equal to divqh we can see that Kh is characterized by

Kh =
{
qh ∈ X0

h, divqh(x) = 0
}
.

and since X0
h ⊂ Xh we have the following result.

Lemma 2.32. The kernel Kh is imbedded in the kernel K.

Thus, the ellipticity property stated in Lemma 2.10 is still valid on Kh. To proceed
further, we introduce the so called Raviart–Thomas operator: for any q in H(div,Ω),
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Πhq belongs to Xh and satisfies

∀e ∈ εh,
∫
e
(Πhq ·n)(τ)dτ =

∫
e
(q ·n)(τ)dτ. (2.47)

It follows from the properties of the Raviart–Thomas element that the equations in (2.47)
defines Πh in a unique way, since on each edge e ∈ εh, q ·n is unique, see [13, Chap. VII,
Lemma 3.19] for instance. We now state some properties of this operator.

Lemma 2.33. The operator Πh is continuous from X into X0
h. Moreover it satisfies

∀q ∈ X, ‖Πhq‖X ≤ c‖q‖X. (2.48)

Proof. It follows from the definition (2.47) of the operator Πh that it preserves the nullity
of the normal component on ΓN , hence maps X into X0

h. On the other hand, with each
e in εh, we associate the bases functions of Xh ϕe defined on each K by equation (2.44).
It is readily checked that

Πhq =
∑
e∈εh

(
∫
e
(q ·n)(τ)dτ)ϕe,

We now proceed in three steps.
1) It follow from the previous formula and the continuity of the trace operator :H(div;Ω) → H−1/2(∂Ω)
that

‖Πhq‖L2(Ω) ≤ C(‖q‖L2(Ω) +‖divq‖L2(Ω)). (2.49)

2) Since the divergence of each ϕe on any K that contains e is equal to 1
meas(K) , we have

∫
K

(divΠhq)(x)dx =
∫
∂K

(q ·n)(τ)dτ =
∫
K

(divq)(x)dx. (2.50)

This leads to
‖divΠhq‖L2(Ω) ≤ ‖divq‖L2(Ω). (2.51)

3) On the other hand, it is readily checked that, for each e contained in γ, there holds
∫
e
(Πhq ·n)(τ)dτ =

∫
e
(q ·n)(τ)dτ.

Hence, we obtain
‖Πhq ·n‖L2(γ) ≤ ‖q ·n‖L2(γ). (2.52)
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The desired result follows from (2.49), (2.50),(2.52) and the definition of the norm on X
given by (2.14). �

Fortunately, this technical proof leads to the inf-sup condition on the second form in
problem (2.45).

Lemma 2.34. The following inf-sup condition holds for a positive constant β∗ indepen-
dent of h

∀vh ∈Mh, sup
qh∈X0

h

∫
Ω(divqh)(x)vh(x)dx

‖qh‖X
≥ β∗ ‖vh‖L2(Ω). (2.53)

Proof. Let vh be any function in Mh. In the proof of Lemma (2.11), we have exhibited a
function q in X such that divq = vh and

‖q‖X ≤ c‖vh‖L2(Ω).

We have ∫
Ω

(divΠhq)(x)vh(x)dx =
∑
K∈Th

vh|K
∫
K

(divΠhq)(x)dx,

whence from (2.50)
∫

Ω
(divΠhq)(x)vh(x)dx =

∑
K∈Th

vh|K
∫
K

(divq)(x)dx = ‖vh‖2L2(Ω).

hence ∫
Ω(divΠhq)(x)vh(x)dx

‖q‖X
=
‖vh‖2L2(Ω)
‖q‖X

On the other hand, it follows from Lemma 2.33 that

‖Πhq‖X ≤ c‖q‖X ≤ c′ ‖vh‖L2(Ω).

hence we have
∫
Ω(divΠhq)(x)vh(x)dx

‖q‖X
≥
‖vh‖2L2(Ω)
c′‖vh‖L2(Ω)

= 1
c′
‖vh‖L2(Ω)

Which yields the desired condition. �
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The well-posedness of the discrete problem (2.45) is now a direct consequence of Lemmas
2.10 (combined with Lemma 2.32) and 2.34 and Theorem 2.9.

Theorem 2.35. For any data g in L2(Ω) and TD in H
1
2 (ΓD), problem (2.45) has a

unique solution (Th,ph) in Mh×X0
h. Moreover this solution satisfies

‖Th‖L2(Ω) +‖ph‖X ≤ c
(
‖g‖L2(Ω) +‖TD‖

H
1
2 (ΓD)

)
. (2.54)

We are also in a position to derive an a priori error estimate between the continuous and
discrete solutions. We begin with the following version of the Strang’s lemma.

Lemma 2.36. The following bound holds between the solution (T,p) of problem (2.17)
and the solution (Th,ph) of problem (2.45)

‖p−ph‖X ≤ c‖p−Πhp‖X,

‖T −Th‖L2(Ω) ≤ c
(
‖p−Πhp‖X + inf

Sh∈Mh

‖T −Sh‖L2(Ω)
)
. (2.55)

Proof. We prove successively the two estimates.
1) We first observe from (2.50) that Πhp−ph belongs to the kernel Kh. Then, we derive
from Lemmas 2.10 and 2.32 that

‖Πhp−ph‖2X ≤ c
(∫

Ω
κ−1 (Πhp−ph)2(x)dx+

∫
γ
R
(
(Πhp−ph) ·n

)2
(τ)dτ

)
.

By using first problem (2.45) and second problem (2.17), this yields

‖Πhp−ph‖2X ≤ c
(∫

Ω
κ−1 Πhp(x) · (Πhp−ph)(x)dx

+
∫
γ
R(Πhp ·n)(τ)

(
(Πhp−ph) ·n

)
(τ)dτ −TD,Πhp−ph〉ΓD

)
≤ c

(∫
Ω
κ−1 (Πhp−p)(x) · (Πhp−ph)(x)dx

+
∫
γ
R
(
(Πhp−p) ·n

)
(τ)
(
(Πhp−ph) ·n

)
(τ)dτ

)
≤ c

(
‖Πhp−p‖2L2(Ω)2 +‖Πhp−p‖2L2(γ)

)
≤ c‖Πhp−p‖X. (2.56)
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and we conclude the bound for ‖p−ph‖X thanks to a triangle inequality.

‖p−ph‖X = ‖p−Πhp+ Πhp−ph‖X
≤ ‖p−Πhp‖X +‖Πhp−ph‖X
≤ c‖p−Πhp‖X using (2.56).

2) To prove the second estimate, we apply the inf-sup condition (2.53): For any Sh in
Mh,

‖Th−Sh‖L2(Ω) ≤ β−1
∗ sup

qh∈X0
h

∫
Ω(divqh)(x)(Th−Sh)(x)(x)dx

‖qh‖X
.

By using problems (2.45) and (2.17), we obtain
∫

Ω
(divqh)(x)(Th−Sh)(x)(x)dx

= 〈TD,qh ·n〉ΓD −
∫

Ω
κ−1ph(x) ·qh(x)dx

−
∫
γ
R(ph ·n)(τ)(qh ·n)(τ)dτ −

∫
Ω

(divqh)(x)Sh(x)(x)dx

=
∫

Ω
κ−1 (p−ph)(x) ·qh(x)dx

+
∫
γ
R
(
(p−ph) ·n

)
(τ)(qh ·n)(τ)dτ +

∫
Ω

(divqh)(x)(T −Sh)(x)(x)dx.

All this gives
‖Th−Sh‖L2(Ω) ≤ c

(
‖p−ph‖X +‖T −Sh‖L2(Ω)

)
,

and we conclude by using a triangle inequality.

‖T −Th‖L2(Ω) = ‖T −Sh+Sh−Th‖L2(Ω)

≤ ‖T −Sh‖L2(Ω) +‖Sh−Th‖L2(Ω)

≤ ‖T −Sh‖L2(Ω) + c
(
‖p−ph‖X +‖T −Sh‖L2(Ω)

)
≤ c

(
‖p−Πhp‖X + inf

Sh∈Mh

‖T −Sh‖L2(Ω)
)
. using first estimate in (2.55)

�

Evaluating the distance of T to Mh relies on fully standard arguments, see [13, Chap.
IX, Th. 2.1] for instance. On the other hand, we deduce from Lemma 2.33 that, for all
qh in X0

h,
‖p−Πhp‖X ≤ ‖p−qh‖X +‖Πh(p−qh)‖X ≤ c‖p−qh‖X,
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and we take qh equal to the interpolate of p by piecewise affine functions, see [13, Chap.
IX, Prop. 1.4].

We are in position to provide the error estimate. We need first to complete the notation.
We define the space

Xs,r =
{
q ∈ X; (q,divq)|ΩS ∈H

s(ΩS)d+1;

(q,divq)|ΩG ∈H
r(ΩG)d+1; (q ·n)|γ ∈Hmin{s,r}(γ)

}
.

The following result is a direct consequence of Lemma 2.36.

Theorem 2.37. Assume that the solution (T,p) of problem (2.17) is such that

p ∈ Xs,r, T ∈Hs(ΩS)×Hr(ΩG),

for real numbers s,r such that 0 ≤ s,r ≤ 1. Then, the following a priori error estimate
holds between this solution and the solution (Th,ph) of problem (2.45)

‖p−ph‖X +‖T −Th‖L2(Ω) ≤ chmin{s,r} (‖p‖Xs,r +‖TS‖Hs(ΩS) +‖TG‖Hr(ΩG)). (2.57)

Remark 2.38. Estimate (2.57) is fully optimal and proves the convergence of the dis-
cretization. Likely, super-convergence results as in Theorem 2.27 could be obtained on
the field p. Unfortunately we did not succeed in doing so. Nevertheless the numerical
experiments we run show that this super-convergence takes place.

2.5 Numerical experiments

In this section we present two numerical tests for solving problem (2.2) that were con-
ducted in order to evaluate the ability of the Lagrange finite elements to produce accurate
results for some simple geometries and compare this to the results obtained using the Hy-
brid Dual Finite Element method using Raviart-Thomas lowest order elements presented
in the previous section. These numerical tests aim also to asses the a-priori error estimates
results demonstrated in Section 2.3 and in particular the super-convergence provided in
Theorem 2.27. In all examples, we underline the pertinence of the convergence rate
proved here. A third numerical test is made using an 2D-cut from an X-ray image of a
real graphite foam matrix infiltrated with a salt using the Raviart-Thomas finite element
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Figure 2.3: Temperature field T . Heat vector field p.

method. We note that the Lagrange finite element method is implemented using a do-
main decomposition method given in [48] which prevent from having to change the data
structure of the finite element. The computational study is conducted by means of the
code FreeFem++ developed by F. Hecht and his team (see [41], [43], [42]).

2.5.1 An explicit solution

In this first example we have chosen the domain as well as the boundary conditions in
a way that allow to explicitly determine the exact solution of problem (2.2). Thus Ω is
taken to be the disc centered at the origin with radius 1.5. The sub-domain ΩS coincides
with the unit circle and the sub-domain ΩG is then the annulus with double radius (1,1.5).
The exact solution T is given by

TS(x1,x2) = a(x2
1−x2

2),

TG(x1,x2) = (x2
1−x2

2)
(
b+ c

(x2
1 +x2

2)2

)
.

(2.58)

The conductivities are chosen so that (κS ,κG) = (1,100) and the contact resistivity is
fixed to R= 0.5. The coefficients a,b,c are computed owing to the interface conditions so
as the Dirichlet datum enforced on the whole boundary ∂Ω which is provided by

TD(x1,x2) = 4
9(x2

1−x2
2).
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The temperature T and the heat vector field p = κ∇T are represented in Figure 2.
Next, we compute the discrete solutions Th by Lagrangian finite element method and
(Th,ph) by hybrid dual finite element method, for various meshes. The gap with the
exact (T,p) is evaluated in the L2-norm. In the Lagrange computations, the vector field
ph is not an independent unknown. It is indeed derived by computing the gradient of Th
and is then piecewise constant. Figure 3 provides the errors for both methods in loga-
rithmic scales. To check out the convergence rates for each method we need the slopes of
the linear regressions of the error curves. In the Lagrange method, we found the slopes
(1.92,0.99) for the temperature T and the heat vector field p. Those in the dual hybrid
method are given by (1.19,1.04). Given that the effective smoothness of the exact tem-
perature is higher than H2(ΩS)×H2(ΩG), the convergence speed is hence limited only
by the degree of the finite elements we use. This is in agreement with the theoretical
predictions in Theorem 3.2, Proposition 3.4 and Theorem 4.7.
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Figure 2.4: Convergence curves. Lagrange FEM (left) and hybrid dual FEM (right)

2.5.2 A singular solution

In the second experiment we pursue an approximation of a singular solution. The domain
Ω is a disc centered at the origin with radius 0.5. The internal sub-domain ΩS is a triangle.
The geometry can be seen in Figure 4. The circular boundary ∂Ω is subjected to the
following Dirichlet condition (here also ΓN = ∅)

TD(x1,x2) = 2e2(x1−x2) cos(π2 (x1 +x2)).

The thermal parameters are unchanged compared with the first test, that is κG = 100,κS =
1 and R = 0.5. The isolines of the solution are represented in Figure 4.
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Following the theoretical discussion in Section 3.2, only ΩG is expected to suffer from the
singularities born at the vicinity of the vertices of ΩS . The convergence rate (in ΩG) is
lower than one for the heat vector field p. It is expected to be equal to 4/7 or may be to
2/3 if the singularity created by the right angle is more intensive than the two others. A
careful examination of the heat vector field plot provided in Figure 4 seems to corroborate
this fact. The stress intensity factor at the right angle is substantially higher than for the
two acute angles.
The accuracy in the convex set ΩS should not slow down and the decreasing rate is ex-
cepted to be linear here again.

Figure 2.5: Singular temperature T . Singular heat vector field p = κ∇T .

Now, to check out these claims, we compute a reference finite element solution (Th,ph)
using a high resolution mesh and assimilate it to the exact (T,p). Then, we run numerical
simulations using meshes with moderate sizes. The slopes of linear regressions of the con-
vergence curves are (1.93,0.97) for (T,p) in the internal sub-domain ΩS and (1.52,0.70)
in the sub-domain ΩG. The convergence in ΩS seems to be of order one for p and of a
second order for T . The lower order convergence observed in ΩG is an illustration of the
effectiveness of the angular singularity which is responsible of the slowing down of the
convergence speed. These trends are almost in perfect agreement with the theoretical
findings concerning the convergence for p. Concerning the special behavior of the error
on T in the hybrid method, we fall short in the proof of the observed convergence rate.
This is still an open question.
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Figure 2.6: Accuracy curves for the Lagrange FEM in ΩS (left) and in ΩG (right).

Switching to the hybrid dual solutions, the convergence rates are all expected to be linear
except for the heat field p in the external sub-domain ΩG. The slope for the linear re-
gression of the accuracy curve for p|ΩG is close to 0.64. The convergence rates evaluated
in ΩS give (0.96,1.01) for (T,p).
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Figure 2.7: Accuracy curves for the hybrid dual FEM in ΩS (left) and in ΩG (right).

Finally, the curve for the L2-error on T in ΩG seems a little bit strange. The apparent
slope of the linear regression (dashed line) is 1.41 and it does not seem pertinent. However
a closer look to that curve shows that it has separate components, the slope of each
is not far form one as we have 0.90 a for the first component and 0.91 for the last
one. We unfortunately have no explanation of this break off in the convergence curve.
None of the observations made here on the super-convergence in the sub-domain ΩS , is
mathematically proved. Nevertheless, they are in a perfect accordance with the common
feeling.
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2.5.3 A realistic geometry

We conclude with an example of a realistic geometry depicted in Figure 2.1, right part.
As indicated earlier running computations can be reasonably achieved for the hybrid dual
method. The composite medium we consider is a small sample with a rectangular shape.
The width is equal to 0.003222 while the length is 0.005382. Almost a fraction four fifths
of the media is made of salt which corresponds to the yellow part of the domain in Figure
1. The remaining one fifth fraction is composed of graphite and is colored in red. The
sample is differentially heated along horizontal walls. The temperature is then fixed to
TD = 587 along the upper wall. It is given by TD = 577 along the lower wall. Both
vertical walls are adiabatic. The conductivities are chosen to be κS = 1 and κG = 500.
They are close to the real conductivities of the graphite and to the sodium chloride. We
realized two simulations. In one the resistance is given by R = 5×10−4 and in the other
it is equals R = 5× 10−2. The temperature fields are depicted in Figure 7. For larger
resistance the diffusion process of the heat from the upper wall towards the lower wall is
somehow slowed down, especially in the right side of the sample. Indeed, the heat has to
flow across more interfaces there than in the left side of the sample. These computations
bring to light the efficiency of the discretization that we propose.

2.6 Conclusion

Hybrid dual finite elements and alike methods sound well fit for the numerical simulation
of the heat diffusion in composite media with contact resistance. The reason why we
undertook this work is the feasibility and implementation facility. Using hybrid dual finite
elements enables users to build their simulations on existing data structures in softwares.
The intervention of programmers is limited to the definition of the variational problem to
solve. Things are obviously different for Lagrangian finite elements especially for complex
geometry such as the one considered in the third example in numerical section. Indeed, the
finite element structure in scientific computing codes has to be revisited and drastically
modified to account for the local continuity/global discontinuity. The numerical analysis
conducted here shows the reliability of the mixed Raviart-Thomas/piecewise constant
finite elements RT0/P0 to provide accurate discrete solutions to problem (2.2).
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Figure 2.8: Two simulations for a realistic domain.





Chapter 3

Two Phases Stefan Problem with
Smoothed Enthalpy

Abstract

The enthalpy regularization is a preliminary step in many numerical methods for the
simulation of phase change problems. It consists in smoothing the discontinuity (of the
enthalpy) caused by the latent heat of fusion and yields a thickening of the free boundary.
The phase change occurs in a curved strip, i.e. the mushy zone, where solid and liquid
phases are present simultaneously. The width ε of this (mushy) region is most often
considered as the parameter to control the regularization effect. The purpose we have in
mind is a rigorous study of the effect of the process of enthalpy smoothing. The melting
Stefan problem we consider is set in a semi-infinite slab, heated at the extreme-point.
After proving the existence of an auto-similar temperature, solution of the regularized
problem, we focus on the convergence issue as ε→ 0. Estimates found in the literature
predict an accuracy like

√
ε. We show that the thermal energy trapped in the mushy zone

decays exactly like
√
ε, which indicates that the global convergence rate of

√
ε cannot be

improved. However, outside the mushy region, we derive a bound for the gap between
the smoothed and exact temperature fields that decreases like ε. We also present some
numerical computations to validate our results.

60
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3.1 Introduction

Two-phase Stefan problem is a basic model for melting (or solidification) of phase change
materials. The unknowns are the temperature field and the location of the melting
front delimiting the liquid and solid phases. The front, also called interphase or the free
boundary, is dynamic and the moving velocity is given by the Stefan conditions which
express the energy conservation and involve the latent heat of fusion absorbed during the
melting process. Mathematically, the resulting problem is non-linear, with an enthalpy
jump along the liquid-solid interface. In spite of these complications, Stefan problem
is widely used because of the availability of an analytical form of the exact solution in
some standard geometries (see [4, 91]). It is also a benchmark for testing and assessing
mathematical and numerical methods developed for phase transition problems (cf. [4, 40]
and references therein).

The discontinuity of enthalpy is a source of difficulty for computation. Many numerical
methods, especially those based on the enthalpy derivatives such as implicit time schemes
with Newton type algorithms, start by embedding the original problem into a collection
of regularized problems (see [4, 29, 39, 54]). The enthalpy function becomes continuous
and (piecewise) differentiable. As a result, the sharp front disappears and we have instead
a mushy zone where solid and liquid phases are present simultaneously. We are interested
in, first, the analysis of the smoothed version of Stefan problem, then we deal with the
convergence of the regularized solution with respect to the width ε of the mushy zone.
We recall that this question has been addressed in the specialized literature where conver-
gence results are established [66, 50]. They predict that the gap between the smoothed
and the exact solutions decays like

√
ε, in the energy norm. We aim at investigating the

distribution of the error to have a better insight of the accuracy inherent to the regular-
izing process. In particular, we zoom in the mushy zone to show that it is responsible of
‘slowing down’ of the convergence to

√
ε. Outside the mushy zone, we derive an order ε

convergence rate. This sharp analysis is conducted for phase change problem in a semi-
infinite slab. The substantial advantages of such a choice is the availability of analytical
form of the (exact and smoothed) temperature fields, owing to Neumann similarity.

The outline of the paper is as follows. In Section 3.2, we set up the two phase Stefan
problem modeling a melting process in a semi-infinite slab. We describe how the en-
thalpy is smoothed to become a single valued function. In Section 3.3, we prove the
existence of a Neumann auto-similar solution to the heat equation when arbitrary reg-
ularization is applied. Mathematical tools used here come from the theory of ordinary
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differential equation, easier than variational methods especially in unbounded domains.
Using the Cauchy-Lipschitz theorem, we are able to derive useful qualitative features of
the smoothed temperature and enthalpy fields. These properties are helpful in the con-
vergence analysis conducted in Section 3.4 for piecewise linear enthalpy smoothing. We
begin by showing that the mushy zone, of width ε, comes close to the free boundary with
an accuracy of ε. Then, we prove that the thermal energy trapped in that mushy zone
behaves exactly like c

√
ε. This is an indication why the global convergence rate given

in [50] can not be improved. We also provide a bound of order ε on the gap between
regularized and exact temperature field outside the mushy region. We emphasize that
the key of the study is the availability of analytical solutions to the regularized problems
we deal with. Numerical experiments using scilab are presented at the end to validate
the theoretical predictions.

Notations — Let I ⊂R be an open interval. We denote by L2(I) the space of measurable
and square integrable functions on X. The space C (I) contains the continuous functions
on I and C 1(I) is for these space of functions that are continuously differentiable. To
alleviate the presentation we use the symbols ϕ and ψ (= 1−ϕ) for the error and com-
plementary error functions which were usually denoted by the symbols (erf) and (erfc) in
the literature (see [1]).

3.2 Enthalpy smoothing

The two phase Stefan problem can be expressed as a heat conduction problem in a semi-
infinite slab geometrically represented by I = (0,∞). We set Q = I×]0,∞[. The generic
point in I is denoted by x and the generic time is t. The slab is initially solid at the
temperature T (·,0) = 0. It is then gradually melted by imposing the temperature T (0, ·)
to a fixed value T1, larger than the melting temperature Tm. We have T1 > Tm > 0. We
therefore introduce the enthalpy function,

E(θ) = λθ+Lf(θ),

where f(θ) is the fraction of liquid phase at the temperature θ. There is a range of the
possible values of f at the fusion temperature Tm. Hence, f is multi-valued and is defined
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by

f(θ) =


0 θ < Tm

[0,1] θ = Tm

1 θ > Tm

.

We have set
λ= (ρC)κ−1, L= (ρLa)κ−1,

where La is the latent heat of fusion, the density ρ, the specific heat capacity C and the
conductivity κ are supposed to have the same values in the solid and liquid phases. This
choice is made only by the desire to simplify the presentation. The overall results we
develop here extend as well to account for different options, at the cost of more technical
calculations.

The temperature distribution is a solution of the following enthalpy problem: find (T,H)
with H ∈ E(T ) and

∂tH−∂xxT = 0 in Q,

T (0, ·) = T1, T (∞, ·) = 0 on (0,∞),

T (·,0) = 0 on I.

(3.1)

The notation T (∞, ·) should be taken in the sense of the limit x→∞. This is the two
phase Stefan problem that can be formulated as a free boundary problem. Considering
X(t) as the melted depth of the solid phase which is a function of time; the Stefan problem
consists of finding (T,X) such that

λ∂tT −∂xxT = 0 in (0,X(t))× (0,∞),

λ∂tT −∂xxT = 0 in (X(t),∞)× (0,∞),

X(0) = 0, T (X(t), t) = Tm, L(∂tX)(t) = [∂xT ](X(t), t), in (0,∞),

T (0, ·) = T1, T (∞, ·) = 0 on (0,∞),

T (·,0) = 0 on I.

(3.2)

The unknowns are the temperature field T and the moving interface position X(·). This
problem has been solved analytically (cf., for instance, [95, 82, 40]). The auto-similar
Neumann solution is given by

T (x,t) = u( x√
t
), X(t) = α

√
t.
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Plugging these expression into problem (3.2), we come up with some differential equations.
Solving them provides the solution

u(ζ) = Aφ(ωζ) +T1, ∀ζ ∈ [0,α[,

u(ζ) =Dψ(ωζ), ∀ζ ∈]α,∞[,
(3.3)

where the symbols ω,A,D are

ω =
√
λ

2 , A=−T1−Tm
φ(ωα) , D = Tm

ψ(ωα) .

The coefficient α > 0, determining the melting front, is the unique positive solution of
the following transcendental equation

T1−Tm
φ(ωα) −

Tm
ψ(ωα) −

(√
πL

4ω

)
αe(ωα)2

= 0. (3.4)

The multi-valued enthalpy function is usually smoothed for numerical and computational
feasibility. The regularized value problem can be handled by means of standard functional
tools for non linear partial differential equations, and its numerical approximation is easier
than for differential inclusions (see [8]). Indeed, regularization is highly recommended
when an implicit time scheme and a Newton method is used for the enthalpy.

Smoothing the enthalpy consists in replacing f by a single-valued smoothed function fε.
We are therefore in the case of non-isothermal phase change (see, eg [44]). The function
fε we select here is piecewise linear, as commonly used in the literature:

fε(θ) =


0 θ < (Tm)−
1
2ε(θ− (Tm)−) θ ∈ [(Tm)−,(Tm)+]

1 θ > (Tm)+

, (3.5)

where we have set (Tm)± = Tm±ε. When close to zero, the parameter ε > 0 controls the
approximation of f by fε. The resulting enthalpy function is therefore

Eε(θ) = λθ+Lfε(θ) =


λθ θ < (Tm)−

λεθ+Lε θ ∈ [(Tm)−,(Tm)+]
λθ+L θ > (Tm)+

,

where we have set
λε = (λ+ L

2ε), Lε =− L2ε(Tm)−.
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The mushy zone is then defined by the range (Tm)− ≤ θ ≤ (Tm)+.

Remark 3.1. Many examples of smoothing enthalpy functions fε may be found in the
literature and may be classified into two categories according to whether they agree with
f away from Tm. In our case, we have that fε = f in R\](Tm)−,(Tm)+[. Here we provide
some examples that do not coincide with f (away from Tm),

fε(θ) = 1
2

1 + θ−Tm√
(θ−Tm)2 + ε2

 , fε(θ) = 1
2

(
1 + tanh θ−Tm

ε

)
. (3.6)

Below, we plot, in the left panel, the exact fraction function f (dashed line) with Tm = 0
and the piecewise linear smoothed function fε (solid line). In the right panel, both
examples in (3.6) are represented, the first with a dashed line and the second with a solid
line.
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Figure 3.1: Examples of the liquid fraction functions f and fε.

The regularized boundary value problem is hence transformed into the following non-
linear heat equation consisting in: finding (Tε,Hε) such that Hε = Eε(Tε) and solution

∂tHε−T ′′ε = 0 in Q,

Tε(0, ·) = T1, Tε(∞, ·) = 0 on (0,∞),

Tε(·,0) = 0 on I.

(3.7)

According to the auto-similarity of the solution for the melting Stefan problem given
previously, one may ask whether the smoothed enthalpy problem has also an auto-similar
solution. Basically, we aim to bring a positive answer to this question by establishing the
existence of an auto-similar temperature field solution of this smoothed enthalpy problem.
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Although we are specifically interested on the piecewise linear smoothing of the enthalpy
function, we address the issue of existence in the general frame of regularizing functions.

We need some additional assumptions. Suppose that Eε is continuous and piecewise
continuously differentiable. The function E′ε has a finite number of jumps and T1 is not
among the discontinuity points of it. Moreover, we assume that

λ≤ E′ε(·)≤ µε = µ

ε
, a.e. in R. (3.8)

This means in particular that the liquid fraction function fε is non-decreasing and has a
bounded derivative.

3.3 Auto-similarity

For the sake of simplicity, we shall omit the index ε from the notations in this section.
We denote Jξ = [0, ξ[. To look for an auto-similar solution for the smoothed enthalpy
equation, we write T and H (i.e., Tε and Hε) under the following form,

T (x,t) = u( x√
t
), H(x,t) = e( x√

t
) = E(u)( x√

t
).

Notice that E is actually Eε which is a continuous single-valued function. Moreover,
we wrote u instead of uε. Substituting in (3.7), making necessary calculations and after
introducing the new variable ξ (for x√

t
) we arrive at the following reduced boundary value

problem
−1

2ξe
′(ξ)−u′′(ξ) = 0 ∀ξ ∈ J∞,

u(0) = T1, u(∞) = 0.
(3.9)

for all γ ∈R, we define (uγ , eγ), with eγ =E(uγ), as the solution of the ordinary differential
equation

−1
2ξe
′
γ(ξ)−u′′γ(ξ) = 0 ∀ξ ∈ J∞,

uγ(0) = T1, u′γ(0) = γ.
(3.10)

Then, we consider the algebraic problem : find γ such that

uγ(∞) = 0. (3.11)



Two Phases Stefan Problem with Smoothed Enthalpy 67

If this equation is solved for some γ∗, then uγ∗ is solution of (3.9).

The main task of this section is to prove that this problem has only one solution.

3.3.1 The differential equation

We focus here on the problem (3.10). We start by rewriting the differential equation in
the principal unknown uγ ,

−1
2ξE

′(uγ)u′γ−u′′γ = 0 in J∞,

uγ(0) = T1, u′γ(0) = γ.
(3.12)

Various obstacles have to be surmounted for a satisfactory existence and uniqueness
result. The first one is the discontinuity of E′. We have thus to cope with the question of
determining accurately E′(uγ). The other is that, even if E′ is continuous, and hence the
function E′(uγ) makes sense, one may possibly use the Cauchy-Peano existence theorem
(see [64]), but the uniqueness is not ensured and this may be troublesome. To bypass
these complications, we integrate this equation to obtain that

−1
2ξE(uγ) + 1

2

∫ ξ

0
E(uγ)(ζ) dζ−u′γ = 0 in J∞,

uγ(0) = T1, u′γ(0) = γ.

Checking the equivalence between this differential equation and the equation (3.12) is
straightforward. If now we introduce the new unknown wγ for the integral term, then we
get the following differential system

u′γ =−1
2ξE(uγ) +wγ , in J∞,

w′γ = 1
2E(uγ), in J∞,

uγ(0) = T1, wγ(0) = γ.

(3.13)

That (ξ,u) 7→ ξE(u) is Lipschitz continuous on any bounded interval Jξ∗ allows us to
apply the Cauchy-Lipschitz theorem. As a result we have a unique maximum solution
which is global.

Lemma 3.2. The differential system (3.13) has a unique solution (uγ ,wγ)∈C 1(J∞,R2).
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The well-known Gronwall lemma results in the continuous dependence of the solution
upon the initial conditions. The proof of the following can be found in [64].

Corollary 3.3. Forall ξ∗> 0, there exists a constant C =C(ξ∗)> 0 such that the following
bound holds

‖uγ−uγ∗‖C (Jξ∗ ,R) +‖wγ−wγ∗‖C (Jξ∗ ,R) ≤ C|γ−γ∗|.

3.3.2 Shooting problem

The objective here is to use the shooting method to solve (3.11). Denoting dγ = u′γ , we
can rewrite equation (3.11) in an equivalent form

∫ ∞
0

dγ(ζ) dζ =−T1. (3.14)

We shall first show that the integral term depends continuously upon γ, and then use the
classical intermediate value theorem.

Proposition 3.4. The following function is continuous on R,

S : γ 7→
∫ ∞

0
dγ(ζ) dζ. (3.15)

The proof of this proposition requires an intermediary result on the behavior of dγ at the
vicinity of +∞.

Lemma 3.5. There holds that

|dγ(ξ)| ≤ |γ|e−
λ
4 ξ

2
, ∀ξ ∈ J∞.

Moreover, if γ > 0 then dγ < 0.

Proof. Let us first assume that the function E′(uγ) is defined almost everywhere. This
means that

Ξ =
{
ξ ∈ J∞; E′ is discontinuous at uγ(ξ)

}
(3.16)

is a negligible set. Considering the first equation in (3.13), it is easily seen that

d′γ =−1
2ξE

′(uγ)dγ = ϕ′(ξ)dγ , in J∞,
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with ϕ′ =−1
2ξE

′(uγ). Integrating this equation yields that

dγ(ξ) = γeϕ(ξ), ∀ξ ∈ J∞. (3.17)

Now, using the assumption (3.8) on E′ yields the desired result.

It remains to show that the (Lebesgue-) measure of the set Ξ defined in (3.16) cannot be
positive. In fact, it is a discrete set and all its points are isolated. We shall prove this
statement by contradiction.
Ξ is obviously a closed set and let Ξ′(⊂ Ξ) denote the set of its limit points. If the
statement is false, then Ξ has at least one limit point and the set Ξ′ is not empty.
According to [83, Chapter 2, Exercice 6], Ξ′ ⊂ J∞ is a closed set and has therefore a
minimum value we denote by ξ[. We set T[ = uγ(ξ[) ; it is a jumping point for the function
E′. Then, there exists a sequence (ξn)n≥0 converging towards ξ[ and uγ(ξn) = T[. This
yields in particular that dγ(0) = u′γ(ξ[) = 0. Next, as E′(uγ) is defined a.e in Jξ[ , we
deduce that the expression (3.17) is valid for dγ at least in Jξ[ . Passing to the limit of dγ
at ξ[ shows that it is positive and cannot be zero, unless we have that limξ→ξ[ ϕ(ξ) = +∞
which cannot be true. Hence, Ξ is negligible. The proof is complete. �

Proof. Proposition 3.4 Using Corollary 3.3 and referring once again to the first equation
in (3.13), the map γ 7→ dγ is a continuous (and even Lipschitz-continuous) mapping from
R into C (Jξ∗ ,R), forall ξ∗ > 0. As a result,

lim
γ→γ∗

∫ ξ∗

0
|dγ−dγ∗|(ζ) dζ = 0.

To obtain the desired result, we use the bound of Lemma 3.5. Indeed, we have that
∫ ∞
ξ∗
|dγ−dγ∗|(ζ) dζ ≤ 1

ω
ψ (ωξ∗)(|γ|+ |γ∗|),

where ω = 1
2
√
λ. Finally, the triangular inequality gives that

|S(γ)−S(γ∗)|=
∣∣∣∣∫ ∞0 (dγ−dγ∗)(ζ) dζ

∣∣∣∣≤ ∫ ξ∗

0
|dγ−dγ∗|(ζ) dζ+ 1

ω
ψ (ωξ∗)(|γ|+ |γ∗|).

The term in ψ can be made arbitrary small, provided that ξ∗ is chosen large enough.
Moreover, the integral term tends towards zero as γ→ γ∗, which implies that the function
S is continuous. The proof is complete. �
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Remark 3.6. According to (3.17), forall γ < 0 we have dγ < 0. As a result the solution uγ
is decreasing, and we have

T1 + γ

ω
ψ (ωξ)≤ uγ(ξ)≤ T1, ∀ξ ∈ J∞.

The function uγ has therefore a limit when ξ→+∞. Notice that, if γ > 0, then dγ ≥ 0,
uγ is increasing and (3.14) cannot be satisfied.

Proposition 3.7. Problem (3.14) has at least one solution γ which is negative. The
corresponding function uγ is then decreasing.

Proof. Following Remark 3.6, any solution γ is necessarily negative. We look for a solution
γ in ]−∞,0]. Proceeding like in the proof of Lemma 3.5, we can derive

γ

√
π

λ
≤
∫ ∞

0
dγ(ξ) dξ ≤ γ

√
π

µ
≤ 0

As a result, the ‘shooting’ function S is continuous from ]−∞,0] into ]−∞,0]. By the
intermediate values theorem, it takes at least once the negative value (−T1). The fact
that uγ is decreasing is ensued from the negativity of dγ = u′γ according to (3.17). The
proof is complete. �

3.3.3 Uniqueness

The uniqueness may be reached by establishing the monotonicity of the function (3.15).
To this end, consider γ and γ∗ be two real-numbers with γ < γ∗ ≤ 0. We intend to show
that uγ(∞)> uγ∗(∞). To proceed, we denote

g = uγ−uγ∗
γ−γ∗

, k = wγ−wγ∗
γ−γ∗

, F = E(uγ)−E(uγ∗)
uγ−uγ∗

.

Both functions g and k are continuously-differentiable on J∞ while F is measurable with

0< λ≤ F (ξ)≤ µ, ∀ξ ∈ J∞.
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It is easily checked that (g,k) is the unique solution of the linear system

g′ =−1
2ξFg+k, in J∞,

k′ = 1
2Fg, in J∞,

g(0) = 0, k(0) = 1.

(3.18)

Notice that according to Remark 3.6, the limit of uγ (and of uγ∗) at infinity exists and is
finite. As a result, the limit g(∞) exists and is finite.

The next lemma, which indicates that g(∞)> 0, yields the desired result.

Lemma 3.8. We have that

g(ξ)> 0, k(ξ)> 1, ∀ξ ∈ J∞.

Moreover, the following holds
lim

ξ→+∞
g(ξ)> 0

and the function (3.15) is increasing.

Proof. We start by noticing that g′(0) = 1. Hence, g is increasing at the vicinity of ξ = 0,
and g(ξ) > 0 in some interval ]0, ξ0[, with ξ0 > 0. Next, we prove by contradiction that
ξ0 = +∞.

Assume that ξ0 < +∞ and g(ξ0) = 0. This yields g′(ξ0) ≤ 0. from the first equation of
(3.18), we obtain that k(ξ0) ≤ 0. This cannot be true since we derive from the second
equation of (3.18) that k′(ξ)> 0 in ]0, ξ0[. Hence k(ξ0)> k(0) = 1. By contradiction, we
have g > 0 in ]0,+∞[. Thus k′ > 0 and k is increasing, which shows that k > 1 in ]0,+∞[.
The proof is complete.

�

Combining the above results, we have proved the main result of this section showing
existence and uniqueness together with the ‘uniform’ stability of the solution.

Theorem 3.9. Problem (3.9) has an unique solution (eε,uε). The temperature field T is
decreasing, and there holds that

‖eε‖L2(J∞) +‖u′ε‖L2(J∞) ≤ C|T1|,
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where the constant C does not depend on ε. Moreover, the solution uε is decreasing in
J∞, from T1 towards 0.

3.4 Convergence

In this section, we carry out the convergence analysis for the piecewise linear smoothing
enthalpy problem. The issue has been tackled in [50] (see also [66]), where variational
techniques are used in bounded domains. The smoothed temperature Tε is proved to
approximate the exact T , solution to the Stefan problem. The convergence rates with
respect to L2-norm and H1-norm are of order

√
ε. Our purpose is to find out what

exactly happen locally in the slab. Is the accuracy of
√
ε uniformly distributed (in the

slab) or is it only concentrated in the mushy zone? How does the temperature field Tε
(or equivalently of uε) behave in the solid and liquid regions? To answer these questions,
we zoom in the mushy zone and undertake a detailed analysis based on the analytic form
of the solution to the smoothed enthalpy problem.

According to Theorem 3.9, the auto-similar temperature uε decreases in the slab from
T1 towards zero. This suggests that the enthalpy form changes twice. Different ions are
related to the events: uε≥ (Tm)+, (Tm)−≤ uε≤ (Tm)+ and uε≤ (Tm)−. Then, there exist
two real-numbers 0<aε<bε such that uε(aε) = (Tm)+ and uε(bε) = (Tm)−. The interfaces
Xε(t) = aε

√
t and Yε(t) = bε

√
t enclose the mushy zone that separates the solid and liquid

phases. They are expected to come close to each other and to eventually coincide with
the sharp interface X(t) = α

√
t, at the limit ε→ 0. This will be the central point of the

analysis. Splitting the whole interval into three subintervals Jf = (0,aε), Jε = (aε, bε)
and Js = (bε,+∞), and solving the smoothed problem in the three subintervals gives the
following solution uε,

uε(ζ) =


Aεφ(ωζ) +T1, ∀ζ ∈ Jf ,

Bεφ(ωεζ) +Cε ∀ζ ∈ Jε,

Dεψ(ωζ) ∀ζ ∈ Js,

where ωε =
√
λε
2 . Recall that Jf and Js are the liquid and solid zones respectively while

Jε is the mushy zone.

All the constants are dependent upon ε. For simplicity we choose henceforth to drop off
the index ε in some places and put it back only when necessary.
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Using the fact that uε(aε) = (Tm)+ and uε(bε) = (Tm)−, we derive

A=−T1− (Tm)+

φ(ωaε)
, D = (Tm)−

ψ(ωbε)
. (3.19)

The continuity of uε at both points aε and bε results in

B = 2ε
φ(ωεaε)−φ(ωεbε)

, C = (Tm)+−Bφ(ωεaε). (3.20)

To fully solve the problem, we need to enforce the flux conservation at points aε and bε
which leads to

Aωe−(ωaε)2
=Bωε e

−(ωεaε)2
,

−Dωe−(ωbε)2
=Bωε e

−(ωεbε)2
.

(3.21)

Plugging in (3.21), the coefficients A,D as given in (3.19) and B as in (3.20), results in
a non-linear algebraic system of two equations for two unknowns aε and bε. A direct
consequence of the foregoing analysis is that this system has a unique solution (aε, bε)
with bε > aε > 0.

Next we would like to show that the sequences (aε)ε>0 and (bε)ε>0 converge and share the
same limit α, the solution of the transcendental equation (3.4). We aim also to exhibit
an accurate convergence rate.

Lemma 3.10. The sequences (aε)ε>0 and (bε)ε>0 are uniformly bounded away from zero,
i.e., there exist two constants αL and αR with 0< αL < αR <∞ such that

αL ≤ aε < bε ≤ αR, ∀ε <min(Tm,T1−Tm).

Proof. These results are consequences of the uniform bound on ‖u′ε‖L2(J∞) of Theo-
rem 3.9. Indeed, if for instance aε goes to zero, it can be checked that ‖u′ε‖L2(Jf ) will
blow up for small ε. �

Lemma 3.11. There holds that

(bε−aε)≤Kε,

for some positive constant K.

Proof. We derive from (3.21) that

e−ω
2
ε(b2

ε−a2
ε) =−D

A
e−ω

2(b2
ε−a2

ε).
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Using the expressions of A and D as in (3.19), we obtain

e
L
8

(b2ε−a
2
ε)

ε = T1− (Tm)+

(Tm)−
ψ(ωbε)
φ(ωaε)

. (3.22)

Now, Lemma 3.10 implies that the term on the righthand side is uniformly bounded in
ε. As a result, we have that

(b2ε−a2
ε)≤Kε,

for some constant K > 0. The lemma is then a consequence of the boundedness of aε and
bε. �

The next step is to show that (aε)ε>0 and (bε)ε>0 are convergent. We prove that each
of them has α as the only accumulative point. By Bolzano-Weierstrass theorem, the
boundedness of (aε)ε>0 and (bε)ε>0 yields that each sequence has at least an accumulative
point. There exist then two convergent subsequences we still call (aε)ε>0 and (bε)ε>0, with
a slight abuse of notation. According to Lemma 3.11, both sequences share the same limit
which we denote by a. The last step is to prove that the only possible value for a is α,
the solution of (3.4).

Lemma 3.12. The (whole) sequences (aε)ε>0 and (bε)ε>0 converge toward α, the solution
of the transcendent equation (3.4).

Proof. Let (aε)ε>0 and (bε)ε>0 be convergent subsequences with the limit a > 0. Using
equalities (3.19) results in

−Aωe−(ωaε)2
−Dωe−(ωbε)2

=−Bωε(e−(ωεaε)2
− e−(ωεbε)2

).

Replacing B as in (3.20) leads to

−Aωe−(ωaε)2
−Dωe−(ωbε)2

= 2εωε
e−(ωεaε)2− e−(ωεbε)2

φ(ωεbε)−φ(ωεaε)
. (3.23)

The term on the righthand side can be bounded above and below as (1)

2εωε(
√
πωεaε)≤ 2εωε

e−(ωεaε)2− e−(ωεbε)2

φ(ωεbε)−φ(ωεaε)
≤ 2εωε(

√
πωεbε). (3.25)

1 We use the double inequality
√
πx(φ(y)−φ(x))≤ e−x

2
−e−y

2
≤
√
πy(φ(y)−φ(x)), 0≤ x≤ y. (3.24)
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Passing to the limit (ε→ 0) shows that the three sequences have the common limit
1
4
√
πLa.

Resuming equation (3.23) and after going to the limit we get that a is solution of the
same equation (3.4) as α, which implies a= α. The proof is complete. �

Next, we establish the convergence rate of (aε)ε>0 and of (bε)ε>0 towards α.

Proposition 3.13. There exists a constant K such that

|aε−α|+ |bε−α| ≤Kε.

Proof. Let us introduce the function

G(%) = T1−Tm
φ(ω%) −

Tm
ψ(ω%) −

(√
πL

4ω

)
%e(ω%)2

It is smooth and decreasing in ]0,∞[. Moreover, α is the unique root of G in ]0,∞[, that
is

G(α) = 0. (3.26)

On the other hand, let us consider the following perturbed function

Gε(%) = T1− (Tm)+

φ(ω%) − (Tm)−
ψ(ω%) −

(√
πL

4ω

)
%e(ω%)2

.

According to (3.23), the point aε may be seen as solution of

Gε(aε) = rε, (3.27)

where

rε =
2εωε

ω

e−(ωεaε)2− e−(ωεbε)2

φ(ωεbε)−φ(ωεaε)
−
(√

πL

4ω

)
aε

e(ωaε)2

+
e−(ωbε)2

ψ(ωbε)
− e
−(ωaε)2

ψ(ωaε)

(Tm)−e(ωaε)2
. (3.28)

Let [αL,αR] be contained in ]0,∞[, we can derive immediately from

Gε(%)−G(%) = ε

(
− 1
φ(ω%) + 1

ψ(ω%)

)
.
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that
sup

%∈[αL,αR]
|Gε(%)−G(%)| ≤Kε.

We can show (cf. Appendix) that
|rε| ≤Kε. (3.29)

Now, we derive from (3.27) and (3.26) that

G(α)−G(aε) = (Gε(aε)−G(aε))− rε.

This implies that

|G(α)−G(aε)| ≤ |Gε(aε)−G(aε)|+ |rε| ≤Kε.

Calling for the mean value theorem we derive that |α−aε| ≤Kε. Of course, the constant
K depends on min%∈[αL,αR] |G′(%)|> 0. The proof is complete. �

The first and major consequence of this result is the optimal convergence of uε towards u
outside the mushy region. To state the accuracy result, let us set (aε)− = min(a,aε) and
(bε)+ = max(α,bε).

Corollary 3.14. The following estimate holds

‖u−uε‖L∞(0,(aε)−) +‖u−uε‖L∞((bε)+,∞) ≤Kε.

Proof. Since

‖u−uε‖L∞(0,(aε)−) ≤ |Aε−A|=
∣∣∣∣∣T1− (Tm)+

φ(ωaε)
− T1−Tm

φ(ωα)

∣∣∣∣∣ ,
‖u−uε‖L∞((bε)+,∞) ≤ |Dε−D|=

∣∣∣∣∣ (Tm)−
ψ(ωbε)

− Tm
ψ(ωα)

∣∣∣∣∣ .
The desired results then follow from Proposition 3.13. The proof is complete. �

Corollary 3.14 provides the convergence rate of uε towards u, away from the mushy
portion of the slab. Next, to assess the behavior of uε within the mushy zone we need to
sharpen the estimate of Lemma 3.10.

Lemma 3.15. We have that
lim
ε→0

bε−aε
ε

= ρ > 0.
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Proof. We prove first that C = infε>0
bε−aε
ε > 0. We proceed by contradiction. Assume

that C = 0. Then, bε−aεε converges towards zero (modulo a subsequence). Passing to the
limit in (3.22), we derive that

T1−Tm
Tm

ψ(ωα)
φ(ωα) = 1.

This yields that
φ(ωα) = T1−Tm

T1
, ψ(ωα) = Tm

T1
.

Replacing in (3.4) gives that α= 0. This cannot occur since Tm <T1. Now, we claim that
bε−aε
ε has only one accumulation point. This is because, if we take (3.22) to the limit, we

have
lim
ε→0

bε−aε
ε

= 4
Lα

ln
[
( T1
Tm
−1)( 1

φ(ωα) −1)
]
> 0.

The proof is complete. �

Proposition 3.16. There exists a constant such that

‖uε‖L2(aε,bε) = O(
√
ε), ‖u′ε‖L2(aε,bε) = O(

√
ε).

Proof. We start from the double bound

(Tm)− ≤ uε(ζ)≤ (Tm)+, ∀ζ ∈ (aε, bε).

After integration we obtain

(Tm)−
√
bε−aε ≤ ‖uε‖L2(aε,bε) ≤ (Tm)+

√
bε−aε.

Invoking Lemma 3.15 gives the first estimate.

Next, we integrate
u′ε(ζ) =Bεωεe

−(ωεζ)2

to get

‖u′ε‖2L2(aε,bε) = (2
√

2ωεε2) φ(
√

2ωεbε)−φ(
√

2ωεaε)
(φ(ωεbε)−φ(ωεaε))2 .

Applying twice the double inequality (3.24) and carrying out some calculations will lead
to

‖u′ε‖L2(aε,bε) = O(ε
√
ωε) = O(

√
ε).

The proof is complete. �
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Remark 3.17. One can get more information about the solution uε within the mushy
zone. In fact, one can check readily that

lim
ε→0

‖uε‖L2(aε,bε)√
ε

= Tmρ, lim
ε→0

‖u′ε‖L2(aε,bε)√
πε

= Lα

4 cotanh (Lα8 ρ).

Here, ρ is the limit provided in Lemma 3.15.

3.5 Numerical results

To compute α, one has to solve numerically the transcendental equation (3.23), and to
obtain (aε, bε), one has to solve the algebraic system (3.22) and (3.23). Equation (3.23)
may be rewritten in such a form that ωα depends only on two dimensionless numbers:
Stefan numbers StF and StS . They are provided as the ratio of the sensible and the
latent heats in the liquid and in the solid phases,

StL = λ

L
(T1−Tm) = C

La
(T1−Tm), StS = λ

L
Tm = C

La
Tm.

Numerical examples are performed using SCILAB to assess the theoretical findings in the
previous sections about the gaps (aε−α) and (bε−α). Nonlinear equations are solved by
Newton’s algorithm.

Example one — In the first test, we fix the parameters with λ = 10 and L = 250 with
T0 = −2, T1 = 10 and Tm = 0. Stefan numbers are therefore given by StL = 0.4 and
StS = 0.08. Initially the slab is frozen at the temperature T0 = −2. A melting process
starts at the origin x = 0, because the temperature at that point is brought to T1 = 10,
above the melting level T0 = 0. The auto-similar solutions u and uε are represented in
Figure 3.2, with ε = 0.5 and ε = 0.1. Recall that T(ε)(x,t) = u(ε)( x√

t
). The vertical lines

indicate the location of α (solid line) and the positions of aε and bε (dashed lines). The
regularized solution is close to the exact one, and becomes closer for smaller ε. Moreover,
results recorded in Table 3.1 illustrate the order one decaying of the error, with respect
ε. Observe also that the exact α lays within the mushy zone, and for smaller ε the mushy
zone shrinks around the melting front.
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Figure 3.2: Auto-similar functions u and uε with ε = 0.5 (left) and ε = 0.1 (right).
T(ε)(x,t) = u(ε)( x√

t
).

ε= 1 0.1 0.01
(aε−α) −1.21×10−1 −1.26×10−2 −1.27×10−3

(bε−α) 4.10×10−1 3.74×10−2 3.72×10−3

Table 3.1: Errors on the position of the melting front coefficient α.

Example two — We keep all the parameters unchanged except setting now λ = 250.
This means that the specific heat capacity C of the slab is higher, and the ratio of
sensible/latent heat is increased. Stefan numbers are given by StF = 10 and StS = 2.
The exact and regularized auto-similar representations of the temperature, u and uε, are
depicted in Figure 3.3, for ε = 0.5 and ε = 0.1. Gaps between them are small, especially
for ε = 0.1. In, Figure 3.4, the convergence history is plotted, confirming the order one
convergence rate of the melting font location with respect to ε.
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Figure 3.3: Functions u and uε with ε= 0.5 (left) and ε= 0.1 (right).
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Figure 3.4: Convergence curves of the melting front coefficient α.
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3.6 Conclusion

We considered the melting free-boundary Stefan problem set in a semi-infinite slab. The
effects of the smoothing procedure applied to the enthalpy equation, in phase transition
models, are investigated semi-analytically. We obtained detailed estimates of order

√
ε (ε

being the width of the mushy zone) within the mushy zone and of order ε outside of the
mushy zone.

A direct consequence is that the (global) estimate obtained in [50] is optimal and cannot
be improved. The limitation is due to the energy trapped within that mushy region. A
careful investigation outside this zone shows that the regularized enthalpy and temper-
ature converge towards their exact counterparts like ε. We emphasize that the analysis
developed here may be conducted as well for many other non-linear models where a closed
form for the solution is available (see [91, 92]).

3.7 Appendix

We sketch below the proof of (3.29) which is necessary for the proof of Proposition 3.13.

The residual rε is composed of two contributions (rε)1 and (rε)2 in (3.28). Using the
double inequality (3.25), we find

2
√
π

ω
ε(ωε)2−

(√
πL

4ω

)aεe(ωaε)2
≤ (rε)1 ≤

2
√
π

ω
ε(ωε)2bε−

(√
πL

4ω

)
aε

e(ωaε)2
.

Recalling that
(ωε)2 = λε

4 = λ

4 + L

8ε = ω2 + L

8ε,

from which we derive

[2
√
πωε]aεe(ωaε)2

≤ (rε)1 ≤

2
√
πωεaε+

(√
πL

4ω

)
(bε−aε)

e(ωaε)2
.

The boundedness of the sequence (aε)ε together with the bound obtained in Lemma 3.11
yields the desired estimate on (rε)1.
Bound for (rε)2 can be obtained by applying the mean value theorem to the inverse of
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the scaled complementary error function

ρ 7→ e−ρ
2

ψ(ρ) ,

and another use of Lemma 3.11.





Chapter 4

Numerical schemes for the unsteady
heat transfer problem with nonlinear
phase change in a composite media

In this chapter we study the unsteady heat conduction problem with phase change in
a composite media consisting of a graphite matrix foam infiltrated by a phase change
material in latent heat thermal energy storage context. This problem is modelled by the
energy balance equation in both domains in which a nonlinear part, in the PCM domain,
describes the phase change phenomena for a homogeneous material. From a numerical
point of view, the main difficulty is in the treatment of this non-linear part of the equation.
In this chapter we will be focusing on the phase change problem in the PCM domain,
at first, to compare four different numerical schemes since these schemes are specially
designed to simulate the solution of these type of problems. The PCMs considered in
this chapter are such that the phase change occurs at a one melting point : the melting
temperature. This is described by a jump in the liquid fraction and consequently in the
enthalpy as a function of the temperature. In order to overcome this difficulty we introduce
a smoothed expression of the liquid fraction function.
We present some of the most commonly used numerical schemes to solve the phase change
problem. An exact solution is given for the special case of melting a 1D rod of a solid
PCM to compare the different numerical approaches.

83
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4.1 Introduction

In latent heat thermal energy storage systems, phase change materials are very com-
monly used thanks to their high capacity to store or release energy during a phase change
process, from liquid to solid or from solid to liquid. However, these materials usually
have very low thermal conductivity (∼ 1W/m), one technique that allow to overcome
this inconvenience is to use these PCMs embedded in highly conductive structure such
as a graphite foam matrix [69]. The resulting composite material have both high thermal
capacity and high thermal conductivity. This mix however present some flaws that are
described by a jump in the temperature field across the interface between both materials
[90].

4.2 Problem formulation

We recall the heat conduction problem in a composite media with a graphite matrix foam
infiltrated by a PCM such as salt for example described by the following set of equations
(see chapter 1) 

∂tH(T )−div(κ∇T ) = 0 in ΩS ∪ΩG,

[κ∂nT ] = 0 on γ,

R(κ∂n(T |ΩS )) = [T ] on γ,

T = TD on ΓD.

κ∂nT = 0 on ΓN .

(4.1)

where the subscripts S and G designate salt and graphite. We have

ΩG = Ω\ΩS , γ = ∂ΩS . (4.2)

We consider also that
∂Ω = ΓD ∪ΓN

The unknown is the temperature T of the medium, n is the unit normal vector to ∂Ω
exterior to Ω and also to γ exterior to ΩS , [·] is the jump through γ, equal to the value
on ΩG minus the value on ΩS . The temperature T , the conductivity κ, the density ρ and
the specific heat capacity c are discontinuous through γ. The parameter R represents
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the thermal resistance at the interface γ introduced in section 1.2.3. TD is the external
temperature. The enthalpy H in Ω is defined by :

H(T ) =

 (ρc)ST +ρLaf(T ) in ΩS

(ρc)GT in ΩG

(4.3)

Looking at this equation we notice that the main difficulty for solving problem (4.1) comes
from the nonlinear part in ΩS modeling the phase change which results in the enthalpy H
being a non-linear function of the temperature T . Hence, the key to finding an accurate
solution to this problem depends strongly on finding the best numerical scheme to solve
this nonlinearity.
There are two classes of numerical methods present in literature specially designed to
solve this problem : the front tracking methods([28],[62],[27],[3],[45] and [94]) and the
fixed grid methods ([25],[59],[55],[24],[70],[9],[80] and [94]). The front tracking methods
are mainly used to solve the Stephan problem with the classical formulation where the
unknowns of the problem are both the temperature and the position of the interface be-
tween the two phases and the fixed grid methods are used when we consider solving the
Stephan problem with the enthalpy formulation where the unknowns are the enthalpy and
the temperature in each phase and the position of the interface is calculated a posteriori
as a function of the temperature.
The problem that we study here is based on the enthalpy formulation of the Stephan
problem, therefore only the numerical schemes that are used in case of a fixed grid ap-
proximation are considered here.
In what follows we will be focusing on the problem in domain ΩS and we will present
four of the most used numerical schemes in literature to solve the Stefan problem with
the enthalpy formulation.

For all schemes we use the first order Euler backward method for time discretization by
choosing a time step ∆t and at step n of the time loop. We introduce Hn and Tn an
approximation of the temperature T (tn) and the enthalpy H(tn) at time tn = n∆t and
we fix T 0 = T0.
The principle of the following time schemes is to approach the solution of the global
nonlinear problem by solving a set of linear problems which are solved using the lowest
order Raviart-Thomas finite element method presented in the previous chapter.

The source update method
First presented in [94] the main idea of the source update method is to reformulate the
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following equation
∂tH(T )−div(κ∇T ) = 0 in ΩS (4.4)

in order to pass the nonlinear part as a source term by making it dependent on the value
of the temperature at the previous time step. To explain how this is done we consider
this equation which could be rewritten using (4.3)

ρC
∂T

∂t
−div(κ∇T ) =−ρLa

∂f(T )
∂t

(4.5)

with the first order Euler backward method for time discretization we obtain :

ρC
Tn+1

∆t −div(κ∇Tn+1) = ρC
Tn

∆t −ρLa
fn+1−fn

∆t (4.6)

where fn+1 is the liquid fraction at time step tn+1 = (n+ 1)∆t. We can see that the
nonlinear part is secluded into a source term.
The iterative linearization loop(k) within a time step is as follows : first all fields are
initialized to their values at the previous time step, second we solve the equation

ρC
Tk

n+1

∆t −div(κ∇Tkn+1) = ρC
Tn

∆t −ρLa
fn+1
k−1 −fn

∆t (4.7)

using the known values at the previous time step : Tn and fn and the known value of
the liquid fraction at the previous iteration of the linearization loop at the current time
step : fn+1

k−1 . The third step of the scheme consists on correcting the value of the liquid
fraction fn+1

k−1 using the value of the temperature field Tk
n+1 calculated in the previous

step of the linearization loop and the value of the liquid fraction fn+1
k−1 at the previous

iteration of the linearization loop. The correction formula is established as follows :
at melting temperature (Tn+1 = Tm) we have :

ρC
Tm
∆t −div(κ∇Tkn+1) = ρC

Tn

∆t −ρLa
fk
n+1−fn

∆t (4.8)

by subtracting equation (4.8) to equation (4.7) we obtain :

ρC
Tk

n+1−Tm
∆t = ρLa

fk
n+1−fn+1

k−1
∆t (4.9)

which gives the expression used to correct the liquid fraction at each iteration of the
linearization process.

fk
n+1 = fn+1

k−1 +λ
Tk

n+1−Tm
ρLa

(4.10)



Problem formulation 87

where λ is a relaxation factor. The second and third step of the linearization loop are
curried until the difference between the values of the liquid fraction at two successive
iterations of the linearization loop falls under a fixed small value.

The enthalpy linearization
The enthalpy linearization scheme was proposed by R. Voller in [94]. We consider Equa-
tion 4.4 using the first order Euler backward method for the time discretization we obtain:

Hn+1−Hn

∆t −div(κ∇Tn+1) = 0 (4.11)

with a Taylor development series of the enthalpy as a function of the temperature we
obtain

Hk
n+1 =Hn+1

k−1 + dH

dT
|Hn+1

k−1
[Tkn+1−Tn+1

k−1 ] (4.12)

We define the apparent heat capacity CA given by the equation :

CA = dH

dT
(4.13)

for a smoothed liquid fraction given by

f(T ) =


0 T < Tm− ε
T−Tm+ε

2ε Tm− ε≤ T ≤ Tm+ ε

1 T > Tm+ ε

(4.14)

The enthalpy function is defined by Equation 1.18 in chapter 1. For simplicity, we consider
here the case CL = CS

H(T ) =


(ρC)T +ρLa for T > Tm+ ε

(ρC)T +ρLa(T −Tm+ ε)/2ε for Tm− ε≤ T ≤ Tm+ ε

(ρC)T for T < Tm− ε
(4.15)

we have

CA(T ) =


(ρC) for T > Tm+ ε

(ρC) +ρLa/2ε for Tm− ε≤ T ≤ Tm+ ε

(ρC) for T < Tm− ε
(4.16)
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and we give the temperature as the inverse of the enthalpy function

T =


H−ρLa

(ρC) for T > Tm+ ε

H−ρLa ε−Tm2ε
(ρC)+ρLa

2ε
for Tm− ε≤ T ≤ Tm+ ε

H
(ρC) for H < (ρC)(Tm− ε)

(4.17)

Combining equations (4.11), (4.12) and (4.13) we obtain :

CA(Hn+1
k−1 )

∆t (Tn+1
k −Tn+1

k−1 )−div(κ∇Tn+1
k ) =

Hn−Hn+1
k−1

∆t (4.18)

The enthalpy linearization scheme works as follows : first all the fields are set to their
values at the previous time step, second a prediction is made for the value CA with equa-
tion (4.13) using the known temperature and enthalpy fields at the previous iteration of
the linearization loop, third we solve equation (4.18), forth the enthalpy field is corrected
using equation (4.12) and using the temperature field obtained at the previous step of
the linearization process and the temperature field is updated using the inverse function
of the enthalpy given by (4.17) to ensure the compatibility between the two fields. The
previous steps are carried out to convergence which is obtained when the norm of the
difference between the enthalpy field at the current iteration and the enthalpy field at the
previous iteration falls under a fixed small value.
The linearization loop in this scheme ensures that at each time iteration the temperature
and enthalpy fields are the solution of equation (4.18) which is very important when one
is interested in the transitory state to determine the exact real time it took the material
to change from one state to another. But when one is only interested in calculating the
temperature field of the steady state at the convergence of the time loop the linearization
process could slow down the convergence process. The following numerical scheme uses
the same logic that the enthalpy linearization scheme without a linearization loop which
leads to a very fast convergence to the solution of the steady state equation.

The Chernoff scheme
We consider Equation 4.4 and using the first order Euler backward method for the time
discretization we obtain :

Hn+1−Hn

∆t −div(κ∇Tn+1) = 0 (4.19)
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We rewrite the enthalpy using a new function β as follows

H = β−1(T ) (4.20)

β is defined as T = β(H) [84] using this definition we can express the derivative of the
enthalpy with respect to time as a function of the temperature and β

∂H

∂t
= 1
β′(T )

∂T

∂t
(4.21)

And we define :
Hn+1 =Hn+γ(Tn+1−β(Hn)) (4.22)

where γ is a factor corresponding to 1
β′(T ) , with equations (4.19) and (4.22) we obtain :

γ

∆t(T
n+1−β(Hn))−div(κ∇Tn+1) = 0 (4.23)

The Chernoff numerical scheme for solving equation (4.4) is as follows : first we choose
an initial guess for the enthalpy H0 = H0 at time step t = 0 and a value for the factor
γ which is chosen as γ ≤ 1

maxβ(T ) to ensure the stability of the scheme (see [5] for more
details), the second step consists on solving equation (4.23) and the third step consists on
updating the enthalpy using equation (4.22) and for consistency the temperature field is
corrected using the update enthalpy field and using the definition of the function β that
is defined as the inverse of the enthalpy function. As an example for an enthalpy defined
by equation (4.15) β is defined by equation (4.17). The two last steps are executed only
once in a time iteration. With only solving the linear problem once this method is faster
than the previous two methods : the source update method and the enthalpy linearization
method.
Like the Chernoff scheme the next numerical scheme does not uses a linearization process
in a time step but is more efficient because it uses the exact derivative of the function
H with respect to the temperature at each time whereas the Chernoff scheme uses an
approximated value : the factor λ.

The apparent heat capacity
The apparent heat capacity scheme proposed by R. Voller [94] is one of the most widely
used enthalpy schemes. We consider Equation 4.4 and we start by differentiating the
enthalpy with respect to the temperature as follows :

∂H

∂t
= dH

dT

∂T

∂t
= CA

∂T

∂t
(4.24)
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We can see that the nonlinearity is now taken in consideration in the expression of CA

which is the apparent heat capacity.
Using equation (4.24) Equation 4.4 becomes :

CA
∂T

∂t
−div(κ∇T ) = 0 (4.25)

With the first order Euler backward method for the time discretization we obtain :

CA

∆t T
n+1−div(κ∇Tn+1) = CA

∆t T
n (4.26)

The apparent heat capacity scheme is as follows : first step consist on initializing all fields
to their values at the previous time step, second step consist in calculating an approxi-
mation of the value of CA, third we solve equation (4.26) using an approximation for CA,
fourth step consist on correcting the enthalpy at the current iteration using a formula
similar to the one used with the enthalpy linearization scheme, the formula is obtained
with a Taylor development series of the enthalpy as a function of the temperature:

Hn+1 =Hn+CA[Tn+1−Tn] (4.27)

the temperature field is corrected using the update enthalpy value at the current time it-
eration and using the function inverse of the enthalpy to ensure the compatibility between
the temperature field and the enthalpy field. This process is performed only once in each
time step which means that the temperature and enthalpy fields at each iteration do not
necessary verify Equation 4.4 before convergence of the time loop but at the convergence
of time loop the fields calculated are the solution of the steady state equation.
The expression of the derivative of the enthalpy with respect to temperature called the
apparent heat capacity and given by equation (4.24) could lead to some numerical prob-
lems such as the appearance of plates in the phase front position, although this could be
avoided if an appropriate time step is chosen depending on the length of the smoothing
gap. An other option is to use the following expression first proposed by Morgan and al.
in [60] :

(CA)n = (Hn−Hn−1)/(Tn−Tn−1) (4.28)

All this previous expressions used for calculating the apparent heat capacity present a
discontinuity since CA is defined as the derivative of the enthalpy H(T ) with respect
to the temperature. This could provoke some numerical instabilities in the linearization
interval of size 2ε. A remedial is given in [63] where the apparent heat capacity is defined
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as the derivative of a normal distribution of parameter 2ε

(CA)n = exp[−2ε2(Tn−Tm)2] (4.29)

by using this expression for the apparent heat capacity we have no longer problems as
consequence of the discontinuity. The following graph shows a plot of the apparent heat
capacity as a function of the temperature using the expression given by (4.28) in the left
side and the plot when using the expression given by (4.29) in the right side.

TTm− ε Tm+ ε

CA(T )

TTm− ε Tm+ ε

CA(T )

Figure 4.1: The apparent heat capacity for pure materials (left) and the smoothed
apparent heat capacity(right) as functions of the temperature.

In the following section we conduct numerical experiments in order to test and compare
the accuracy of the above presented numerical schemes.

4.3 Numerical Tests

In this section, we present the results of three numerical experiments. The first test is
the melting of a material in a semi-infinite domain. In this case we are dealing with the
classical Stefan problem where an analytical solution has been established by Carslaw and
Jaeger in [21, p. 124]. The aim of this first test is to validate the implementation of the
different numerical schemes by comparing the numerical solutions with the analytical one.
After comparing their accuracy we have chosen the best three numerical schemes to use
in the following tests. For the second test case we address the 2D-problem of the inward-
freezing of a pipe presented in [94] and where a radial analytic solution is given. The aim
of the second test is to demonstrate the accuracy of the selected numerical schemes for
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a 2D-problem. At last we present a numerical test where we consider solving the phase
change problem in a composite media described by equation (4.1) where the domain
and thermo-physical properties of the components of the composite are taken from real
experiments[16]. In this case we don’t have an analytic solution thus we compare the
temperature fields given by each numerical scheme with the temperature field obtained
with a Newton method. The fastest between the most accurate schemes will be later
used for applications with real geometries where the shape of the composite media is very
complex and therefore a large number of degrees of freedom is needed to have a good
numerical representation of the material hence the need for very fast numerical schemes.

4.3.1 Melting of a semi-infinite slab

In literature, there are very few cases where an analytical solution of the classical Stefan
problem has been established. The test that we describe here, is very often used in
publications to validate numerical methods used for solving Stefan type problems.
We consider the problem of melting a pure material in a semi-infinite media. The material
is initially at a solid state at temperature T0 = −2◦C bellow the melting temperature
Tm = 0◦C. We impose Neumann boundary conditions on both upper and lower walls
and a liquid temperature T1 = 10◦C at the right wall where x = 0 in such away that
the melting process will began from the left side to the right side of the domain. In
order to avoid having any error resulting from approximating the solution in the case of
a semi-infinite domain on a finite domain we introduce the following Dirichlet boundary
condition at the right end of the wall

T (x= l, t) = Tanalytic(x= l, t)

where Tanalytic is the analytic solution in the case of a semi-infinite domain. The thermo-
physical properties are taken as follows : C = 10 J/kg/K, L = 250 J/kg, ρ = 1 kg/m3

and κ= 1 W/mK.
This Stefan problem has been presented in Chapter 3 where an analytic solution of
similarity type is determined as follows

TL(x,t) = T1 + (Tm−T1)
erf(ω x√

t
)

erf(ωξ) (4.30)

TS(x,t) = T0 + (Tm−T0)
erfc(ω x√

xt
)

erfc(ωξ) (4.31)
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where ξ is solution of the following transcendantal equation

StL

erf(ωξ)eω2ξ2 −
StS

erfc(ωξ)eω2ξ2 =
√
πωξ (4.32)

where ω = 1
2

√
ρC
κ and

StL = (T1−Tm)
ρC
κ

La
(4.33)

is the Stefan number in the liquid phase and

StS = (Tm−T0)
ρC
κ

La

the Stefan number in the solid phase. The analytic front position is

X(t) = ξ
√
t (4.34)

As explained in Chapter 1 the PCM considered here is supposed to have a change of
phase at a constant temperature, the melting temperature Tm where in this case the
liquid fraction function is given by

f(T ) =


0, T (x,t)< Tm

1, T (x,t)≥ Tm
(4.35)

As one can see this function is discontinuous and might introduce additional difficulty to
the numerical resolution. Thus we chose to use the following regularized form

f(T ) =


0 T < Tm− ε
T−Tm+ε

2ε Tm− ε≤ T ≤ Tm+ ε

1 T > Tm+ ε

(4.36)

where a smoothing interval of length 2ε is introduced around the melting temperature.
It has been proven in Chapter 3 that for ε very small the regularized solution converges
to the exact one. More precisely if we denote the position of the liquid front XL and the
position of the solid front XS we can define

ErrorXL = |XL−Xanalytic|
Xanalytic

(4.37)



Numerical Tests 94

and
ErrorXS = |XS−Xanalytic|

Xanalytic
(4.38)

as the errors between the positions of the numerical fronts obtained when solving the
problem with the smoothed liquid fraction and the analytic front position given by (4.34).
Than it has been proven that both errors decrease as ε. The main goal of the first set
of simulations is to try to reproduce these analytic results using the numerical schemes
introduced in section 4.2. This is also a great way to compare the accuracy of these
schemes since only the best ones will be able to reproduce the analytic results.

For space discretization we use the hybrid-dual finite element method presented in chapter
2, where Lagrange P0 finite elements are used to approach the temperature field and the
lowest order Raviart-Thomas finite elements are used to approach the thermal heat flux.
The problem was solved using all four numerical schemes with several values of ε, these
values are chosen greater than 0.01. This choice is motivated by results of simulations
conducted using smaller values for ε (< 0.01). They showed that for ε smaller than
0.01 the errors on the numerical fronts start to increase as a consequence of the error
introduced by the hybrid-dual finite element method.
The time step dt = 10−4 and the mesh size h = 2× 10−5 are chosen small enough to
ensure that every node of the mesh undergoes the phase change. For every value of ε
the simulation is set to stop after 150 time iterations or if the problem has reached the
steady state which is determined when the variations in the temperature field from one
time step to the next falls under a given tolerance fixed at 10−8.
Table 4.3 shows the values of both ErrorL and ErrorS between the numerical front
position and the analytic front position defined by (4.37) and (4.38) for every time scheme
and for several values of ε.

Figure 4.2 shows these errors as functions of ε for the Chenroff scheme and the update
source method. We can see that for the first method the errors stagnate from ε≤ 0.1, this
is due to the fact that this scheme does not rely on the exact expressions of the derivative
of the enthalpy with respect to the temperature defined by Equation 4.21 and rather uses
the coefficient γ introduced in the previous section to approximate its values. As for the
update source scheme the errors stagnate around ε= 0.5 which shows that this scheme is
much less accurate than the Chernoff scheme. As for the apparent heat capacity and the
enthalpy linearization we were able to find some very accurate results shown in Figure 4.3.
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AHC EntL Chernoff USM

ε Err XS Err XL Err XS Err XL Err XS Err XL Err XS Err XL

1 0.495 0.12 0.413 0.123 0.425 0.125 0.234 0.294
0.8 0.393 0.09 0.321 0.100 0.343 0.106 0.234 0.294
0.6 0.249 0.077 0.235 0.076 0.27 0.08 0.058 0.118
0.4 0.159 0.053 0.154 0.052 0.203 0.073 0.058 0.118
0.2 0.088 0.027 0.076 0.027 0.146 0.061 0.058 0.118
0.1 0.048 0.014 0.038 0.015 0.116 0.057 0.058 0.118
0.08 0.049 0.011 0.031 0.012 0.114 0.057 0.058 0.118
0.06 0.033 0.008 0.023 0.009 0.108 0.056 0.058 0.118
0.04 0.026 0.006 0.016 0.007 0.106 0.056 0.058 0.118
0.02 0.011 0.004 0.008 0.004 0.101 0.056 0.058 0.118
0.01 0.004 0.002 0.004 0.003 0.101 0.056 0.058 0.118

Table 4.1: Relative errors on the melting front position for several values of ε.

0,01 0,1 1
ε

0,001

0,01

0,1

1

Error X
S

Error X
L

Chernoff

0,01 0,1 1
ε

0,01

0,1

1

Error X
S

Error X
L

Source Update

Figure 4.2: The errors on the fronts positions as functions of ε for Chernoff and source
update method.

Indeed for the first scheme we found that ErrorL and ErrorS are close to order one of
decay (0.91 and 0.88 respectively) and for the second scheme we have (0.98 and 0.81).
This shows that these two schemes are the best when it comes to solving this type of
problems with a smoothed liquid fraction of the type (4.14). We can also see that the
apparent heat capacity is slightly more accurate than the enthalpy scheme especially for
locating the solid front. This is a direct result of the choice for the maximum number of
iteration for the time loop which was chosen large enough in order to have a comparable
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behaviour as stated in [94]. In fact the apparent heat capacity scheme is expected to give
comparable results to the ones given by the enthalpy linearization scheme after a few
time steps.
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S
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L
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Apparent heat capacity
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0.01

0.1

1

Error X
S
(0.98)

Error X
L
(0.81)

Enthalpy linearization

Figure 4.3: The errors on the fronts positions as functions of ε for the apparent heat
capacity and the enthalpy linearization.

As an example we plot in Figure 4.4 the solid front position (in blue) and the liquid
front position (in red) both as functions of time obtained by solving the problem using
the enthalpy linearization scheme and for different values of ε. In each case we plot in
black the analytic front position calculated using Equation 4.34 where ξ is determined
by solving Equation 4.32 using the fsolve function in Scilab[85] which finds the zero of a
system of nonlinear functions using a modification of the Powell hybrid method. With
the thermo-physical values given above we have ξ = 0.248.
We observe that the liquid front is closer to the analytic front compared to the solid one.
This is due to the values of the Stefan numbers, indeed with the thermo-physical values
chosen for this test we have the following value for the Stefan numbers StefanS = 0.08
and StefanL = 0.4. The liquid Stefan number is much greater than the solid one which
leads to the liquid phase moving faster than the solid phase.
We can see as well that for every value of ε the analytic front is located between the solid
front and the liquid front. We observe also that the gap between the solid and liquid
fronts and the analytic front vanishes as ε decreases which is the expected behaviour.
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Figure 4.4: The liquid front in blue, the solid front in red and the analytical front
position in black for Stefan = 0.4.

The previous results showed that the source update method is the least accurate method
therefore in the remaining of this chapter we will be focusing on the other three schemes:
Chernoff, the apparent heat capacity and the enthalpy linearization.
The Stefan number is of great importance in thermal energy storage applications since it
gives the ratio of specific to latent heat storage [88]. Hence the importance of developing
numerical schemes that allow to have very precise results for all values of the Stefan num-
ber. With this goal in mind we aimed to compare the accuracy of the numerical schemes
by running tests for various values of the liquid Stefan number given by Equation 4.33
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which from now on will be referred to as the Stefan number. The choice of investigating
the effect of changing the liquid Stefan number as oppose to the solid one is due to the
nature of the considered problem. Indeed in this section we are tackling the problem of
melting a phase change material and in this case it is more interesting to look at what
happens when changing the liquid Stefan number.
For this purpose we solved the previously described melting problem with the same initial
and boundary conditions. For convenience reasons we set C = 1 and all the other thermo-
physical values are kept unchanged. However since we want to test the performance of
the numerical schemes for different values of the Stefan number we have taken several
values for the latent heat of fusion given in Table 4.2 with the corresponding values for
the Stefan number and the auto-similarity variable ξ solution of the transcendantal Equa-
tion 4.32.

L (J/kg) 1000 100 10 1
Stefan 0.01 0.1 1 10
ξ 0.139 0.426 1.099 1.757

Table 4.2: Values of the Latent heat of fusion taken for this test and the corresponding
values for the Stefan number and ξ..

The regularization parameter ε = 10−4 is taken small enough such that XL = XS . The
time step is dt = 10−4 and all simulations are set to stop after 1000 time iterations. In
Figure 4.5 we plot the evolution over time of the analytic front position and the numerical
ones calculated with Chernoff, the apparent heat capacity and the enthalpy linearization
schemes. The temperature fields as functions of space and at time= 0.1 s are presented
in Figure 4.6. These graphs show that the Chernoff scheme slightly over estimates the
analytic position of the melting front for Stefan= 0.01 and gives very good results for
larger Stefan number. A similar observation is made for the temperature fields where a
small gap between the numerical and the analytic value is visible for Stefan= 0.01 and
vanishes as the Stefan number increases. We make similar observations for the front
positions and the temperature fields obtained with the apparent heat capacity and the
enthalpy linearization schemes where small gaps are observed between the analytic and
numerical values for Stefan = 0.01. Moreover we can see that for the last two numerical
schemes the errors made on the estimation of the front position and the temperature
field seems to be close to the error made with the Chernoff schemes while being slightly
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smaller.

To look at this last observation more in depth we give in Table 4.3 the analytic front
position at different times and for several values of the Stefan number. First we notice
that almost always the apparent heat capacity and the enthalpy linearization schemes give
the same results. It is obvious that in fact for all three numerical schemes the error made
on the position of the liquid front decreases as the Stefan number increases. It is also
clear that the error made with the apparent heat capacity and the enthalpy linearization
is always smaller while being very close to the error made with the Chernoff scheme.

time(s) Xanalytic ErrEntL ErrAHC ErrChernoff

0.01 0.0139977 0.0474612 0.0474612 0.682487
0.025 0.0221323 0.0360985 0.0360985 0.397562
0.05 0.0312998 0.0344265 0.0344265 0.26162 Stefan=0.01
0.075 0.0383342 0.0261096 0.0261096 0.211613
0.1 0.0442646 0.0160172 0.0160172 0.176667
0.01 0.0426558 0.0205841 0.0205841 0.187293
0.025 0.0674448 0.0115367 0.0115367 0.116973
0.05 0.0953813 0.0121519 0.0121519 0.0867065 Stefan=0.1
0.075 0.116818 0.0108048 0.0108048 0.0640691
0.1 0.13489 0.00494696 0.00494696 0.057665
0.01 0.109945 0.00556167 0.0379011 0.0702406
0.025 0.173838 0.00290313 0.00221018 0.0438097
0.05 0.245844 0.00207748 0.00207748 0.0310028 Stefan=1
0.075 0.301096 0.00216482 0.00216482 0.0257822
0.1 0.347676 0.00290313 0.00290313 0.0207997
0.01 0.175766 0.00372727 0.0087845 0.0290134
0.025 0.277911 0.00207798 0.00207798 0.0212688
0.05 0.393025 0.00260864 0.00260864 0.0139169 Stefan=10
0.075 0.481356 0.00281636 0.000969727 0.0120495
0.1 0.555822 0.000478748 0.000478748 0.00847492

Table 4.3: Relative errors on the melting front position for several Stefan numbers.

A similar observation is made for the temperature field. In Table 4.4 we give the values
of the analytic temperature for different values of the space variable x and the rela-
tive errors made with all three numerical schemes and time = 0.1 s. It is obvious that
in this case as well the error on the temperature decreases as the Stefan number increases.

In conclusion we have shown that Chernoff, apparent heat capacity and enthalpy lineariza-
tion all give very accurate estimations for the temperature field and the front position and
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Figure 4.5: Numerical and analytical front position for different Stefan numbers.
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Figure 4.6: Numerical and analytical temperature fields for different Stefan numbers
at time= 0.1 s.
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for all values of the Stefan number. These tests also show that the enthalpy linearization
scheme is always more accurate then the other two schemes while giving very close results
to the other two. This is due to the fact that in the enthalpy scheme an iteration loop is
made within every time step which insures the accuracy of the approximated temperature
field contrary to the other two schemes where this step is realized only once within a time
step.

x(m) Tanalytic ErrEntL ErrAHC ErrChernoff

0.0 10 0.0067073 0.00670613 0.052913
0.1 -0.215548 0.00858772 0.0118513 0.455857
0.2 -0.57919 0.00292618 0.0049285 0.158094
0.3 -0.911256 0.00179826 0.0034904 0.0889761 Stefan=0.01
0.4 -1.19469 0.00155095 0.00300234 0.0575808
0.5 -1.42899 0.00185119 0.00307765 0.0394154
0.0 10 0.00223074 0.00223166 0.0411233
0.1 2.50433 0.00970846 0.0109924 0.0864192
0.2 -0.284548 0.0050985 0.00644933 0.257046
0.3 -0.685477 0.00221486 0.00381217 0.0947196 Stefan=0.1
0.4 -1.02769 0.00186411 0.00339834 0.0538163
0.5 -1.31057 0.00228494 0.00366858 0.0349053
0.0 10 0.000939109 0.000938639 0.0081286
0.1 6.84435 0.0015315 0.0013071 0.00112533
0.2 3.86878 0.00280175 0.00209965 0.00945772
0.3 1.15159 0.00890794 0.00600252 0.0432803 Stefan=1
0.4 -0.302119 0.002131 0.00549338 0.137269
0.5 -0.796097 0.00399093 0.00411625 0.0451251
0.0 10 0.000672708 0.000672543 0.0396607
0.1 7.73951 0.00096517 0.000895403 0.0013454
0.2 5.60801 0.00134746 0.00117978 0.00295057
0.3 3.6616 0.00182748 0.00153182 0.00591753 Stefan=10
0.4 2.00024 0.00224507 0.00181242 0.00903803
0.5 0.626918 0.000182191 0.000596814 0.0186937

Table 4.4: Relative errors on the temperature for several Stefan numbers.

4.3.2 A two dimensional problem : freezing of a half-pipe

The implementation of the numerical schemes introduced in the previous section is in-
dependent of the dimension of the treated problem. In this section we consider the
2D-problem of the growth of a freeze-layer around a cooled half-pipe of radius r = 1m
seen in [94]. Initially the half-pipe is placed in a liquid at liquid temperature TL = 0.1◦C.
At t= 0s the temperature of the half-pipe is lowered to TS =−5◦C. The melting temper-
ature of the liquid surrounding the half-pipe is Tm = 0◦C. As in [94] all thermo-physical
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properties are set to one. At t > 0s an interface corresponding to the freezing point of
the liquid begins to move from around the half-pipe and into the other end of the liquid
where in one side of this interface the liquid has frozen and in the other side it is at a
liquid temperature T < TL. This problem is axi-symmetric and can be solved as a one
dimensional problem in cylindrical polar coordinates (r,φ,z). The analytic front position
is X(t) = r+ξ

√
t where r is the radius of the half-pipe and ξ is solution of a transcendent

equation of type (4.34). With the thermo-physical values set to one and the initial and
boundary conditions given above we have ξ = 2.05.

Figure 4.7: Transversal section of the half-pipe.

The results of the study conducted in the previous section using the 1D-problem allowed to
select three numerical schemes which gave better approximation for the analytic solution
compared to the estimation given by the fourth one. These three numerical schemes are
the Chernoff scheme, the apparent heat capacity scheme and the enthalpy linearization
scheme. The aim of this test is to determine which of these three schemes gives more
accurate results in case of a 2D-problem.
The parameter representing the width of the phase change interval was taken ε = 10−3

since the goal of the simulation is to catch the analytic position of the solidification front.
The time step dt = 10−3 was chosen small enough in order to ensure that every node of
the mesh undergoes the phase change. In order to enforce this, we have adapted the mesh
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around the moving boundary at each time step using the adaptmesh function present in
FreeFem++. This is made with respect to the variations of the Lagrange P1 interpolates
of the liquid fraction, the temperature and the gradient of the temperature. An example
of a mesh adapted around the solid-liquid interface is shown in Figure 4.8.

Figure 4.8: Example of a mesh where an adaptation is done around the position of
the moving front.

The simulations are set to stop when the number of iterations of the time loop reaches
100 iterations. In figure 4.9 we plot for each of the numerical schemes the position of
the numerical solidification front and the analytic front position both as a function of
time. We also plot the position of the numerical solidification front using the x and y

coordinates of the points located at the interface solid-liquid and we plot the analytic
value as well.

As we can see on the left set of graphs all three numerical schemes allow to catch the
interface at different times and it has been noticed that the precision of the interface
position is greatly influenced by the mesh adaptation process specially for the Chernoff
and apparent heat capacity schemes. This is less the case for the enthalpy linearization
scheme because this schemes uses a linearization loop inside the time loop which allow
to correct the approximation error that results from using an approximated value for the
enthalpy as in Equation 4.12. For the right set of graphs we plot the numerical and ana-
lytical freezing front as functions of time. Here we notice a small difference between the
analytic and the numerical freezing fronts, at the beginning of the solidification process,
but this difference vanishes with time. This is specially the case for the apparent heat
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Figure 4.9: From top to bottom : analytic and numerical front positions for the
Chernoff scheme, the apparent heat capacity and the enthalpy linearization.

capacity scheme and the enthalpy linearization scheme. This behaviour is due to the
linearization process that becomes more accurate as the time iterations increases.
In order to compare the accuracy of the schemes we calculate two errors, the relative error
between the analytic and numerical front position at the end of the simulation (Error1)
and the mean of this error over time (Error2). The first error will allow us to determine
which scheme is more accurate when the solution of the solidification problem approaches
that of the steady state model and the second error will allow to determine the accuracy
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of a scheme over the course of the simulation by accounting for the error at every time step.

Error1 = |Xnumend−Xanaend|
|Xanaend|

Error2 = 1
N

N∑
i=1

|Xnumi−Xanai|
|Xanai|

In Table 4.5 we give the values of Error1 and Error2, as we can see the errors are of the
same order for all three schemes and range from 10−3 to 10−4. Looking closer we notice
that, for Error1, the apparent heat capacity appears to be the most accurate scheme. On
the other hand, when comparing the values of Error2, the enthalpy linearization scheme
seems to be more accurate. We expected such results since for the apparent heat capacity
and the Chernoff scheme, there is not a correction loop inside the time loop hence the
reason why these schemes are expected to give an accurate solution only after several
time iterations. However, for the enthalpy linearization scheme a correction loop is used
at every time step to unsure the precise of the enthalpy and temperature approximations
which explains the accuracy of this scheme over time.

schemes AHC Chernoff EntL
Error1 2.7×10−4 5.6×10−3 5.3×10−3

Error2 7.3×10−3 8.3×10−3 5.1×10−3

Table 4.5: The relative error at the end of the simulation and the mean relative error
over the time of the simulation.

Based on these results we can choose one numerical scheme depending on the problem
that we are solving. For example if we are interested in the values of the temperature as
the solution of the model near the solution of the steady state problem we can use either
the apparent heat capacity or the Chenroff scheme. However if we are interested in the
solution in the transient state the enthalpy linearization scheme would be a better choice.

4.3.3 A composite media with contact resistance

In this section we study a 2D heat conduction problem in a composite media consisting
of a phase change material surrounded by a second material at a solid state modelled
by Equation 4.1. The domain is the unity square and the PCM is filling a small square
part that represents one quarter of the domain and the solid material is filling the rest
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of the domain (see Figure 4.10). The PCM is suppose to melt at a constant temperature
Tm = 0◦ C. At the initial state t= 0 s both materials are at a solid state at temperature
T =−10◦C, at t > 0 s the solid material is heated at T = 20◦ C on the upper and right
wall such that the melting process will begin from the sides along the solid material into
the PCM. This experiment is inspired by an article (see [16]) where a similar problem
is solved and the thermo-physical properties were taken identical to the ones given in
this reference. For the PCM ρS = 1 kg/m3, CS = 2.5106 J/kg/K, κS = 1 W/mK and
L= 2104 J/kg and for the solid material we have ρG = 1 kg/m3, CG = 106 J/kg/K and
κS = 0.5 W/mK.

Figure 4.10: Initial and boundary conditions.

For this first test we have no contact resistance between both materials which means
that the temperature is continuous between both domain which results in the normal
components of the temperature gradient to be zero on this interface.

At first the non-linear in-stationary problem is solved on a very fine mesh with the im-
plicit Euler Backward method for the time discretization and a Newton method for the
nonlinear-part and the linear problem is solved using a hybrid finite element method
presented in the chapter 2 where the temperature field is approached with Lagrange P0
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Newton AHC

EntL Chernoff

Figure 4.11: Temperature in the composite domain calculated for R = 0 at time
tend = 2.7 days.

elements and the temperature gradient is approached using Raviart-Thomas finite ele-
ments. Since there is no analytic solution to this problem, the temperature field calculated
using this method will serve as a reference in order to test the accuracy of the numerical
schemes.
In Table 4.5 we give the error in norm L2 between the temperature field calculated using
the Newton method and the temperature fields calculated using each one of the numerical
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schemes. This show that for the unsteady state heat conduction problem in a compos-
ite without thermal contact resistance, the three numerical schemes allow to solve the
problem with great precisions (∼ 10−6). We can see as well that the apparent heat ca-
pacity and the enthalpy linearization give slightly more accurate results. This confirms
the tendency shown by the tests exposed in the previous sections with a homogeneous
PCM. In fact these two schemes give exactly the same error and the same solution (see
Figure 4.11). This is the expected behaviour also mentioned in [94] and it is due to the
fact that the first scheme could be seen as the second one without the inner loop within
a time step used to correct the enthalpy and temperature predictions.

AHC EntL Chernoff
Error 6.09×10−6 6.06×10−6 6.69×10−6

Table 4.6: The relative error with no contact resistance..

Next we wanted to see if the value of the contact resistance could affect the accuracy of
the numerical schemes. In order to investigate this we solved the above presented problem
with various values for the contact resistance R. Figure 4.12 to 4.15 show the temperature
filed calculated with Chernoff, the apparent heat capacity, the enthalpy linearization and
to compare we also represent the temperature field calculated with the Newton method.
As we can see the melting front moves slower for higher R. This is resulting from en-
forcing a contact resistance which introduces a discontinuity of the temperature at the
interface separating both materials which delays the melting process in the PCM.
For every value of R we calculate the relative error in L2–norm between the temperature
fields given by Newton with the ones obtained with the other three schemes. These errors
are given in Table 4.7. At first we notice that for all three numerical schemes the error
decreases as R increases which is the expected behaviour. As we can see all three schemes
give very accurate results with errors ranging from 10−5 for small values of R to 10−6

for the higher ones. And once more we can see that, while the apparent heat capacity
and the enthalpy linearization give very close results, the latter is slightly more accurate
thanks to the correction loop as explained previously.
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R ErrorAHC ErrorEntL ErrorChernoff

103 1.77292e-06 1.77292e-06 2.00331e-06
102 3.51713e-06 3.51713e-06 3.97345e-06
10 4.17422e-06 3.9721e-06 4.18825e-06
1 1.54117e-05 1.5297e-05 1.50057e-05
0.1 2.40938e-05 2.39782e-05 2.49798e-05
0.01 2.46214e-05 2.4503e-05 2.6241e-05
0.001 2.4697e-05 2.45699e-05 2.63888e-05

Table 4.7: Relative error on the temperature field in norm L2 for different values of R.
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Newton AHC

EntL Chernoff

Figure 4.12: Temperature in the composite domain calculated for R = 100 at time
tend = 2.7 days.

4.4 Conclusions

In this chapter we have presented several numerical schemes used to solve the two phase
Stefan problem. The accuracy of these schemes has been tested using two experiments
where an analytic solution is given. Results of these two tests show that the apparent heat
capacity scheme and the enthalpy linearization scheme are both slightly more accurate
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Newton AHC

EntL Chernoff

Figure 4.13: Temperature in the composite domain calculated for R = 1 at time
tend = 2.7 days.

than the Chernoff scheme but all three still give comparable results. They also show that
after a given number of time iterations the apparent heat capacity is equivalent to the
linearization scheme as expected. The last test consisted in solving the nonlinear phase
change problem in a composite material with contact resistance. In this case there is no
analytic solution hence the temperature field obtained with the Newton method is used
as a reference solution in order to compare the numerical schemes. Different values of the
contact resistance were used to see how the error behaves with regards to this parameter.
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Newton AHC

EntL Chernoff

Figure 4.14: Temperature in the composite domain calculated for R = 0.1 at time
tend = 2.7 days.

Results show that all three schemes give very accurate and comparable results.
Based on theses three tests we conclude that the Chernoff scheme is the best choice
for solving the heat conduction problem in a composite with complex geometry. The
first reason is the proven accuracy of this scheme. In addition, this scheme could be
implemented in a way that makes it faster than the other two. This is a consequence of
replacing the derivative of the enthalpy with respect to the temperature with a coefficient
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Newton AHC

EntL Chernoff

Figure 4.15: Temperature in the composite domain calculated for R = 10−3 at time
tend = 2.7 days.

γ (see Equation 4.22) which consequently makes the matrix resulting from discretizing
the linear problem not depending on time and hence can be defined outside the time loop.





Chapter 5

Asymptotic properties of composite
materials

Understanding thermal exchanges within a composite material requires developing accu-
rate models that allow to take into account all the physical phenomena not only at the
macroscopic scale but also at the microscopic scale. As a result models that allow to
achieve this aim are often complex and very hard to solve. There are some special cases,
depending on the structure of the composite, where these models could be simplified. An
example is when the composite material has some specific properties such a uniform pore
distribution with uniform size. For this case, it could be proven that the model is sim-
plified by solving a similar problem with a homogeneous material with physical properties
equivalent to the properties of the composite material.
In this chapter we conduct some numerical simulations using two different composite ma-
terials, both used as part of a latent heat thermal energy storage system in a solar plant.
These two composite structures are different in the size and shape of the pores. The results
show that the composite material with more regular distribution of pores could be assimi-
lated to a homogeneous media with equivalent thermo-physical properties. However this is
not the case for the second composite material which has a less regular pore distribution.
Another series of numerical simulations have been carried out to study the influence of
thermal conductivity as well as the influence of the shape and size of the pores on the
thermal behavior of the composites.

115
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5.1 Introduction

In [18] several composite materials are presented. They are resulting from infiltrating
pitch-based graphitic foams (KFoamr) and coal-based graphite foams(CFoam) with a
molten PCM (a binary mixture of hydroxides). All informations that might be needed for
simulations, such as the thermal conductivity and the porosity, are given in this article.
For this work we have chosen two of the composites presented in [18], theKFoamr L1 250
and the KFoamr D1 infiltrated with a molten salt (see Figure 5.1). These two com-
posites were chosen because they have dissimilar pore distributions and the size of their
pores are very different. This will allow to highlight the impact of having a more or less
uniform pore distribution.
The thermo-physical properties of both composite materials are given in 5.1 where κ is
the thermal conductivity, ρ the density, Cp the specific heat and ∆hm is the latent heat of
fusion of the PCM. Notice that the thermal conductivities of the foams and the effective
thermal conductivities of both composite materials are not given in this table. Since we
want to be able to compare results of simulations for both composite materials we need
to have equal effective thermal conductivity values for both composites. As will be ex-
plained in section 5.2 this is possible to achieve thanks to the linear relation between the
effective thermal conductivity of the composite and the thermal conductivity in the foam.

Parameter KL1_250 KD1
porosity(%) 82 70
κPCM (W/m/K) 1 1
CpPCM (J/kg/K) 4544 4544
CpFoam (J/kg/K) 1402 1402
ρPCM (J/kg/K) 1634 1634
ρFoam (J/kg/K) 1318 1318
∆hm (KJ/kg) 480 480

Table 5.1: Physical properties of the composite materials.

As explained in [18] 3D images of the infiltrated foams were made using thousands of 2D
projections from different angles and using a projection algorithm. A binary file corre-
sponding to a 3D image of a given sample is constructed using the number of pixels and
by assigning 0 for the pixel in the foam and 1 for the pixel in the PCM. For our simu-
lations we produced 2D rectangular cuts of images of the composites using these binary
files. This is done by constructing a 2D structural mesh and defining a color function
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that corresponds to the values given by the binary file assigned to the mesh nodes.

Figure 5.1: The composite structures used, KL1_250 left and KD1 right.

Our first goal in this chapter is to determine whether one or both of theses compos-
ites could be assimilated to a homogeneous PCM. In order to investigate this we conduct
two numerical simulations which consist in solving a heat conduction problem with phase
change in a composite described by the following set of equations



∂tH(T )−div(κ∇T ) = 0 in ΩS ∪ΩG,

[κ∂nT ] = 0 on γ,

T = TD on ΓD.

κ∂nT = 0 on ΓN .

(5.1)

without contact resistance and using the above 2D-images. Results for these composites
are compared with results for a homogeneous PCM. This explained and discussed in the
following section 5.2. Next, in section 5.3 we present results of simulations where we solve
the above problem with several values of the thermal contact resistance. The goal here
is to investigate the effect of having a thermal resistance on the temperature distribution
within the composite.
Our next goal is to emphasize the effect that increasing the effective thermal conductivity
has on the other thermal properties of the composite. For this we realized simulations
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consisting in solving Equation 5.1 with five different values for the effective thermal con-
ductivity. Results are presented and discussed in section 5.4.
At last we investigate how increasing the size of the pores of the composites or modi-
fying their shapes effects their thermal behaviours. This is done by means of numerical
dilatations using the binary files. In order to increase the size of the pores we realized
two dilatations, with equal coefficients, in the x-direction and in the y-direction. As for
modifying their shapes dilatations are done one direction at the time. For every new
composite we conduct similar simulations as for the previous cases. Results are presented
and discussed in sections 5.5 and 5.6.

5.2 Study of the composites and comparison with a
homogeneous PCM

In this section we wish to compare the composites presented in 5.1 to a homogeneous
PCM and to one an other. In order to justify such comparisons two conditions must
be met. First we need to ensure that the storage capacity Q has the same value for
both composites. Consider a 2D rectangular samples of two composite materials with
dimensions l1×L1 and l2×L2 with porosities E1 and E2 and the same latent heat of
fusion ∆hm. The thermal heat capacity of storage is given by

Q1 = E1l1L1∆hm

for the first material and
Q2 = E2l2L2∆hm

for the second material. Hence to have Q1 =Q2 with l1 = l2 we need to have E1L1 = E2L2

and since EKL1_250 = 82%> EKD1 = 70% we took LKD1 > LKL1_250 (see Figure5.2).

Second, the composites must have the same effective thermal conductivity. If κG is the
thermal conductivity of the matrix and κS the thermal conductivity of the PCM, we
know that there exists a linear relation between the effective thermal conductivity of the
composite and the ratio κG

κS
(see [19]). In our case κS = 1 therefore we expect to have

a linear relation between the effective thermal conductivity and κG. In order to explicit
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Figure 5.2: The composite structures used, KL1_250 left and KD1 right.

this relation we conduct five numerical simulations for each composite, each simulation
consists in solving the following steady state heat conduction problem in the composite



div(κ∇T ) = 0 in ΩS ∪ΩG,

[κ∂nT ] = 0 on γ,

T = TD on ΓD,

κ∂nT = 0 on ΓN .

(5.2)

where T is the temperature, κ= (κG,κS) is the thermal conductivity. ΩG represents the
foam and ΩS the PCM. ΓD designates the upper and lower walls and ΓN the right and
left walls.
On the top wall we have TD = 320◦C and on the bottom wall we have TD = 310◦C. Every
simulation corresponds to a different value of κmatrix.
The effective thermal conductivity of the composite materials is calculated using the
following equation (see [51])

κeffective = L
∫
qdA

∆T
∫
dA

where q is the heat flux through the cross-section dA between the temperature difference
∆T on a distance L. Heat flow through the unit area of the surface with normal n is
linked with the temperature gradient in the n-direction by Fourier’s law as
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q =−κ∂T
∂n

Figure 5.3 shows the effective thermal conductivity as a function of κmatrix for both
composites. We can see that in order to have an effective thermal conductivity of
20W/m/K for both composites we need to set κmatrix = 958W/m/K for KL1_250 and
κmatrix = 336W/m/K for KD1.
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Figure 5.3: The effective thermal conductivity as a function of the thermal conduc-
tivity of the matrix.

5.2.1 Initial and boundary conditions

The initial and boundary conditions are chosen in order to have an evolution of the
temperature in the y-direction. The domain is initially at a temperature close to the
melting temperature of the PCM Tinitial = 311.9◦C, at t = 0s the temperature at the
bottom wall y = 0 is raised to TD = 322◦C. At all times during the simulations we have
∂nT = 0 at the left wall, the right wall and the top wall. This is illustrated in Figure 5.4.
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T0 = 311.9◦C

TD = 322◦C

Figure 5.4: Temperature conditions for all simulations.

For comparison purposes we consider a 2D-sample of a PCM of the same size as the
samples of the composites. Consider a composite material consisting of a matrix with
pores filled with a second material. The porosity of this composite material is defined by

ε= Vpores
VTotal

(5.3)

If ρG and ρS are respectively the density of the matrix and the density of the PMC then
the density of the equivalent homogeneous material is given by

ρ= ερS + (1− ε)ρG. (5.4)

The symbols CpG and CpS are respectively the specific heat capacity of the matrix and
the specific heat capacity of the PCM, the specific heat capacity of the equivalent homo-
geneous material is given by

Cp = εCpS + (1− ε)CpG. (5.5)

We designate by Las the latent heat of the PCM, so the latent heat of the equivalent
homogeneous material is calculated as follows

La = εLaS . (5.6)
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The non-linear heat conduction problem of a homogeneous phase change material fill-
ing a similar 2D-rectangular domain with similar initial and boundary conditions has an
analytic solution of similarity type. Since the domain is initially at a temperature close
to the melting temperature this problem is considered as one-phase Stefan problem since
only the liquid phase is active as oppose to the two phase Stefan problem presented in
the previous chapter where both the liquid and solid phase are actives. For this problem
the temperature as a function of time and position is given by

T (y, t) = TD + (Tm−TD)
erf( y

2
√
αt

)
erf(ξ) 0< y ≤X(t), (5.7)

where Tm is the melting temperature erf is the error function, erfc is the complementary
error function and X(t) is the position of the melting front defined by

X(t) = 2ξ
√
αt .

Here ξ is the solution of the following non-linear equation

Stefan

erf(ξ)eξ2 =
√
πξ

with
Stefan= c(TD−Tm)

La

is the Stefan number and c and La are the specific heat and the latent heat of fusion of
the material. The heat flux at the surface y = 0 is defined by

q(0, t) =− κ(Tm−TD)
erf(ξ)

√
παt

With the dimensionless variables

x∗ = x

xmax
, t∗ = αt

x2 , T
∗ = T −TD

Tm−TD
, X∗ = X

xmax
and q∗ = xmaxq

κ(Tm−TD)

we define the dimensionless temperature, front position and heat flux at y = 0 as follows

T ∗(x∗, t) =
erf( x∗

2
√
t∗

)
erf(ξ) , X∗(t) = 2ξ

√
t∗, q∗(0, t) =− 1

√
πerf(ξ)

√
t∗

A similar study as the one that we present in this section has been done in the thesis by
Vincent Morrison[61] where he compares the results of simulations with the same initial
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and boundary conditions mentioned above to the ones given by a model for a composite
domain with graphite foam and molten PCM. In this study it is shown that the thermal
state evolution is similar with respect to the similarity variable µ = y

2
√
αt
, the melting

front position is proportional to the squared root of time and the heat flux at the bound-
ary surface is proportional to the inverse of the squared root of time.
The simulations done in this chapter to test the homogenization of the composite struc-
tures are inspired by this work.

5.2.2 Results and discussions

Problem 5.1 is solved with both composites presented in chapter 2. The first order
backward Euler method is used for time discretization along with the Chernoff scheme for
the treatment of the non-linearity. The Raviart-Thomas finite element method presented
in chapter 2 is used to solve the linear problem at each time step as explained in the
previous chapter section 4.2. Simulations are stopped when all the PCM in the composite
has melted. As explained previously the boundary conditions are chosen to obtain an
evolution of the temperature in the y-direction from bottom to top. Hence in order to
compare both results from both simulations we calculate at every time step the mean
temperature for every value of y, the mean temperature in the carbon and the mean
temperature in the PCM. The difference between the mean temperature in the graphite
and the mean temperature in the PCM for each value of y and for different values of time
is presented in Figure 5.5.

We can see that for the KL1_250 structure the difference between the mean temperature
in the graphite and the mean temperature in the PCM decreases with time and with y.
This means that the temperature tends to a stable value that is the same in both the
graphite and the PCM. However this is obviously not the case for the KD1 composite as
we can see at the end of the simulation big differences are noticeable for the highest values
of y. This could be the consequence of the uneven distribution of pores with the biggest
pores at the top of the cut as seen in Figure 5.2. A similar observation could be made
when we look at Figure 5.6 where we plot the mean temperature in the graphite and the
mean temperature of the PCM both as functions of the dimensionless y and for times
ranging from t = 0.05s to t = 182s time at which all the PCM has melted. It is obvious
that in the case of the composite based on the KL1_250 structure the mean temperature
in the graphite and the mean temperature in the PCM seem to have very close values
at t = 182s. This is not the case where the composite based on the KD1 structure is
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Figure 5.5: The difference between the mean temperature in the Graphite and the
mean temperature in the Salt for KL1_250 (top) and KD1(bottom).

used. As we can see at t = 182s there are obvious significant differences between the
mean temperature in the graphite and the mean temperature in the salt specially for y
close to ymax.

Figure 5.7 shows the plot of the dimensionless mean temperature as a function of the
similarity variable for the composite structure based on the KL1_250 on the left and
on the right for KD1. As before the mean temperatures are plotted for times ranging
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Figure 5.6: Mean temperature in the Graphite in blue and the mean temperature in
the Salt in red as functions of y∗ for KL1_250 (left) and KD1(right).

from t = 0.05s to t = 182s time at which all the PCM has melted. In addition we plot
the dimensionless temperature calculated analytically in red for comparison. We can see
that, for the KL1_250, with time the mean temperatures tends to a stable value close
to the mean temperature given by the analytic solution for the homogeneous material.
This is not the case for the KD1 where the mean temperature does not seem to tend to
a stable value.
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Figure 5.7: Mean dimensionless temperature as a function of the similarity variable
for KL1_250 (left) and KD1(right).

The same observation is made when we look at Figure 5.8 where the mean dimensionless
temperature is plotted for KL1_250 (left) and KD1 (right) as a function of the error
function of the similarity variable for times that ranges from 0.05s to 182s as in the
previous cases. In red is the mean dimensionless temperature for the homogeneous case
calculated using the analytic expression (5.7).
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At t= 182s we plot the dimensionless mean temperature as a function of µ for KL1_250
and KD1 (left) and the dimensionless temperature as a function of the error function
of the similarity variable (right) Figure 5.9 . The dimensionless mean analytic temper-
ature is plotted in red. We can see that for both graphs the mean temperature for the
KL1_250 composite gives results close to the analytic results with the homogeneous ma-
terial. Whereas, in the case of the KD1, a large gap between the mean dimensionless
temperature and the analytic temperature is observed on both graphs.
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Figure 5.9: Mean dimensionless temperature at t= 182s as a function of µ(left) and
erf(µ)(right) for KL1_250 in green, KD1 in blue and a homogeneous PCM in red.

Another comparison is made in Figure 5.10 where in the left graph we plotted the heat
flux at the surface y = 0, for both KL1_250 and KD1, as a function of the inverse of the
square root of time as well as the analytic value of this flux for the homogeneous mate-
rial. We can see that the heat flux for KL1_250 is closer to the analytic one. A similar
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observation is made for the right graph where we plot the position of the melting front
for KL1_250, for KD1 and for the homogeneous case given by the analytic expression
all as functions of the square root of time. In this case also the position of the front for
KL1_250 is closer to the position of the front for the homogeneous material.
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Figure 5.10: Heat flux at y = 0 as a function of 1√
t
and the melting front position as

a function of
√
t∗ for KL1_250(red), KD1(green) and a homogeneous PCM(red).

Based on the numerical results presented in this section, we can say that from time ≥
182s the composite material based on the KL1_250 structure could be assimilated to
a homogeneous PCM with equivalent physical properties. This is not the case for the
composite material based on the KD1 structure where all results show that there is a
big gap between the temperature, the heat flux and the melting front of this material
compared to the temperature, heat flux an melting temperature of a homogeneous PCM
with equivalent physical properties. This could be explained by the fact that in the
first case where the composite is based on the KL1_250, the pores all have similar size
and shapes and have a uniform distribution. In the second case where the composite
is based on the KD1, the pores have different shapes and sizes and do not present a
uniform distribution. Hence the sample used in this simulation is not representative of
the composite where a uniform distribution of the pores is visible.

5.3 Composite with contact resistance

The previously showed results are obtained by solving the phase change model in the com-
posite material without contact resistance. However in more realistic cases the contact
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resistance between the components of the composite is not zero. As explained in chap-
ter 1 this one is due to the changes in the thermo-physical properties from one material
to another as well as a result of heat flowing across the interface separating the different
components of the composite material. In this section we consider the more complete
model of heat conduction in a composite with phase change and with contact resistance
presented in Chapter 1. The goal is mainly to see if considering a more complete model
has an impact on the thermal behaviour of the composite over time.

5.3.1 Problem and samples

We recall the problem of heat conduction in a composite media with contact resistance

ΩG = Ω\ΩS , γ = ∂ΩS . (5.8)

The indices S and G call to mind salt and graphite. We consider also that the boundary
∂Ω is the disjoint union of two parts, ΓD and ΓN . In this geometry, the differential system
we intend to deal with is the unsteady heat conduction problem with phase change. The
unknown is the temperature T of the medium that satisfies therefore



∂tH(T )−div(κ∇T ) = 0 in ΩS ∪ΩG,

[κ∂nT ] = 0 on γ,

R(κ∂n(T |ΩS )) = [T ] on γ,

T = TD on ΓD.

κ∂nT = 0 on ΓN .

(5.9)

Where n is the unit normal vector to ∂Ω exterior to Ω and also to γ exterior to ΩS , [·] is the
jump through γ, equal to the value on ΩG minus the value on ΩS . The temperature T , the
conductivity κ, the density ρ and the specific heat capacity c are discontinuous through
γ. The parameter R represents the thermal resistance at the interface γ introduced in
section 1.2.3 and TD is the external temperature.
The initial and boundary conditions are taken the same as in the previous sections.
As previously, the problem is solved using first the Euler backward method for time
discretization, a Chernoff scheme for the non-linearity in the Stefan problem for the PCM
and finally a Raviart-Thomas finite element method is used to solve the linear problem.
For the simulations presented in this section we used smaller samples than the ones used in
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the previous sections. The advantage is to reduce the simulation time. This will also allow
to see, in the case of the KL1_250, if taken a smaller sample effects the homogenization
time obtained in section 5.2. The dimensions of the new samples are given in Figure 5.11.

3.42mm

4.
5m

3.42mm

5.
58
m
m

Figure 5.11: The samples used in this section, KL1_250 left and KD1 right.

5.3.2 Results and discussions

A first consequence of introducing a contact resistance condition at the interface between
the PCM and the foam given in Equation 5.9 is to slow down the melting of the PCM since
it introduces a discontinuity of the temperature at the interface. Looking at Table 5.2
where the melting time is given for several values of R, we can see that, as expected, the
melting time increases with R. We can also see that for most values of R the time is much
shorter in the case of the second sample KD1 because of the higher volume fraction of
carbon present in this sample. This is not the case for R = 0.1 where the discontinuity
at the interface is more significant than the high conductivity nature of the foam.

R = 0 R = 10−3 R = 10−2 R = 0.1
KL1_250 222s 566s 1148s 1567s
KD1 30.7s 53.2s 207s 1650s

Table 5.2: Melting time of the PCM in seconds.

Another aspect that we wanted to investigate is how taking into account this contact
resistance will affect the temperature’s evolution in both materials and in the composite
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as a hole. In order to understand this effect we began by showing in Figure 5.12 the differ-
ence between the mean temperature in the carbon foam and the mean temperature in the
PCM for different values of the thermal contact resistance for the first sample KL1_250.
We notice that this difference increases with the values of R. This gap is the largest
for the higher values of y which corresponds to the top of the sample in Figure 5.11.
The reason is the significant alignment of pores at this location. This results is more
noticeable in the case of the second sample as can be seen in Figure 5.13. This is a con-
sequence of the non-regular pore distribution and pore sizes compared to the first sample.
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Figure 5.12: Difference between the mean temperature in the carbon foam and the
mean temperature in the PCM as a function of y∗ for KL1_250. In top left for R= 0,

top right R= 10−3, bottom left R= 10−2 and in the bottom right R= 0.1.

In order to see more in depth the reasons for the gaps between the mean temperature in
the foam and the mean temperature in the PCM we plot the mean temperature in the
carbon foam in blue and the mean temperature in the PCM as functions of the dimen-
sionless position in Figure 5.14–Figure 5.15 for different values of R. For both samples
we observe that for R = 0 and R = 10−3 both the temperature profiles in the foam and
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Figure 5.13: Difference between the mean temperature in the carbon foam and the
mean temperature in the PCM as a function of y∗ for KD1. In top left for R= 0, top

right R= 10−3, bottom left R= 10−2 and in the bottom right R= 0.1.

in the PCM tends to have a similar value as the y increases. However for R = 10−2 and
R = 10−3 a big difference could be seen between both temperature profiles specially for
the higher values of y in the case of the second sample. These observations explain the
previous ones. Consequently we can say that based on these first results adding a thermal
contact resistance to the model introduces a discontinuity to the temperature field that
results in having large differences between the temperature profiles in the PCM and in
the foam.

Lastly we wanted to investigate the effect of adding a contact resistance on the ability
of the composite to be assimilated to a homogeneous material with equivalent thermo-
physical properties. These equivalent properties are determined using the thermo-physical
properties of the composite as explained in section 5.2.1. For the first sample we plot in
Figure 5.16, for different values of R ,the mean dimensionless temperature in the com-
posite at different times of the simulation in blue and the analytic temperature obtained
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Figure 5.14: The mean temperature in the carbon foam in blue and the mean tem-
perature in the PCM in red as functions of y∗ for KL1_250. In top left for R= 0, top

right R= 10−3, bottom left R= 10−2 and in the bottom right R= 0.1.

by solving the Stefan problem in case of a pure PCM in red. We notice that for R= 0 the
temperature profiles tend to have the same bent as time goes. This is less the case for
higher values of R since we can see that for R = 0.1 for example the mean temperature
are closer with time but tend to have very different tendency. This means that as R
increases the time from which we can compare the composite to a homogeneous PCM
increases. This also shows that this time is necessarily higher than the time after which
all the PCM in the composite has melted which is not the case for the composite with
R = 0. This observations are more obvious in the case of the second sample as can be
seen in Figure 5.16 where a similar plot shows that the gaps between the tendencies of
the mean temperature are more and more noticeable as R increases.

In conclusion these results show that increasing the value of the thermal contact resis-
tance leads to a thermal behaviour dissimilar to the expected thermal behaviour of a
homogeneous PCM.
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Figure 5.15: The mean temperature in the carbon foam in blue and the mean tem-
perature in the PCM in red as functions of y∗ for KD1. In top left for R= 0, top right

R= 10−3, bottom left R= 10−2 and in the bottom right R= 0.1.
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Figure 5.16: Mean dimensionless temperature in the composite as a function of erf(µ)
for KL1_250 in blue and for a homogeneous material in red. In top left for R= 0, top

right R= 10−3, bottom left R= 10−2 and in the bottom right R= 0.1.
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Figure 5.17: Mean dimensionless temperature in the composite as a function of erf(µ)
for KD1 in blue and for a homogeneous material in red. In top left for R= 0, top right

R= 10−3, bottom left R= 10−2 and in the bottom right R= 0.1.
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5.4 Investigating the impact of changing the thermal
conductivity on the thermal behaviours of the
composites.

In this section we aim to understand the effect of the thermal conductivity on the thermo-
physical properties such as the temperature distribution, the heat flux and the melting
front position. In order to do this we conducted several simulations with both of the
composite structures KL1_250 and KD1 with various effective thermal conductivities.
We used Figure 5.1 in order to determine the value for the thermal conductivity of the
foam corresponding to the desired value for the effective thermal conductivity as done
in the previous section. The results shown here correspond to composites with values
of the thermal conductivity presented in Table 5.3. We conducted simulations for every
composite material KL1_250 and KD1 and for different values of the effective thermal
conductivity given in Table 5.3.

κeffective (W/m/K) κFoam KL1_250 κFoamKD1
10 410 125
20 958 336
30 1510 580
40 2060 848
50 2615 1128

Table 5.3: Values of the thermal conductivity.

The initial and boundary conditions are taken the same as in section 5.2 where the do-
main is initially at the melting temperature of the PCM i.e 312◦C and at the start of
the simulation the temperature of the bottom wall is suddenly brought to 320◦C while at
the left, right and top wall we have Neumann boundary conditions on the temperature
∂nT = 0. As explained in section 5.2 the purpose of taking such boundary conditions
is first to have an evolution of the temperature only in the y-direction and the second
purpose is that with a homogeneous material filling the 2D domain and with these initial
and boundary conditions the heat conduction problem with phase change has a known
analytic solution. This will allow to compare the results with the composite materials
with the results in the case of a homogeneous material.
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5.4.1 Results and discussion

We conduct four simulations for each of the composite materials KL1_250 and KD1.
Every simulation corresponds to a value of the effective thermal conductivity. In each
case we solve the non-linear heat conduction problem with a phase change problem in the
PCM domain using the Raviart Finite element method for the linear part and a Chernoff
scheme for the non-linear part. The simulations are stopped ones the stationary state
has been reached which is supposed to happen when all PCM has melted.
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Figure 5.18: The mean dimensionless temperature as a function of the similarity
variable for different values of the effective thermal conductivity for KL1_250 (left)

and KD1(right).
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Figure 5.19: The mean dimensionless temperature as a function of erf(µ) for
KL1_250 (left) and KD1(right).

In Figure 5.18 we plot the mean dimensionless temperature T ∗ as a function of the simi-
larity variable for every value of the effective thermal conductivity given in Table 5.3 for



Asymptotic properties of composite materials 138

KL1_250 and for KD1. And in Figure 5.19 we plot T ∗ as a function of the error function
of the similarity variable for KL1_250 and for KD1. As we can see in the case of KL1_250
the temperature remains almost the same for the different values of the effective thermal
conductivity. Whereas in the case of KD1 we observe gaps between the profiles of the
temperature that increase as the effective thermal conductivity increases.
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Figure 5.20: Evolution of the melting front position as a function of
√
t∗ for different

values of the effective thermal conductivity for KL1_250 (left) and KD1(right).
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Figure 5.21: Evolution of the thermal heat flux at the surface y = 0 as a function
of 1√

t
for different values of the effective thermal conductivity for KL1_250 (left) and

KD1(right).

In Figure 5.20 we plot the evolution of the position of the melting front as a function of the
square root of the dimensionless time for every value of the effective thermal conductivity
given in Table 5.3. In the right graph is the plot for KL1_250 and in the right is the plot
for the KD1. In this case also we can see that for the results in the case of KL1_250 there
is not a big difference between melting fronts for different values of the effective thermal
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conductivity. We observe however that for the melting fronts calculated for the KD1 case
and for different values of the effective thermal conductivity gaps between the fronts are
observed and show that the front is moving faster for higher values of the effective thermal
conductivity. This is a logical behaviour since the PCM is supposed to melt faster when
the foam has higher thermal conductivity because it allows to pass the heat faster to the
PCM.
In Figure 5.21 we plot the evolution of the heat flux at the surface y = 0 as a function of
the inverse of the square root of time for every value of the effective thermal conductivity
in Table 5.3, for KL1_250 in the left graph and for KD1 in the right graph. We can
see that in the case of KL1_250 the values of the heat flux increases with the values of
the effective thermal conductivity. In the case of KD1, the same behaviour is observed
however we can see that in this case the differences in the heat flux values are more
noticeable.

5.4.2 Conclusion

Based on the results presented above, increasing the effective thermal conductivity allow
to increase the heat flux calculated at y = 0 and there for accelerates the melting process.
This is more noticeable in the case of the composite structure KL1_250 than in the case
of the composite KD1 and there are few reasons to this. First is in the way the pores are
distributed in the composites. In KL1_250 the pores are distributed in a uniform way
covering most of the sample. Where in KD1 the distribution of the pores is less regular
and there are more gaps in between pores. The second reason is the volume of the pores
in both cases, for KL1_250 the volume of the pores represents 82% of the total volume
of the sample where in KD1 their volume represents only 70% of the total volume of the
sample. This means there is more carbon foam in the KD1 sample than in the KL1_250
sample which makes it logical that changing the values of the thermal conductivity of the
carbon foam has more effect on the temperature distribution and other physical properties
in the KD1 case.
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5.5 Dilatation in both directions: study of the influ-
ence of the pores size

An interesting question that we try to answer in this section is whether changing the size
of the pores of the carbon foam without changing their shape has an effect on either of the
physical properties of the material such as the temperature distribution over time, position
of the melting front, evolution of the heat flux over time etc. One way to investigate
this numerically is to generate various composites based on the initial composite where
the pores size increases in each one. This however must be done without changing the
value of the porosity or else we are no longer working with the same composite material
and the comparison no longer make sense. This is done by performing some numerical
transformations using the color function that defines the initial composite structure shown
in Figure 5.2. This consisted in doing dilatations in both directions with equal coefficients
while keeping the same values of the porosity as the initial structure. To explain this,
suppose f(x,y) being the color function corresponding to one of the initial composite
structures KL1_250 or KD1. The new color function for the new composite structure,
corresponding to a dilatation of equal coefficient in the both directions, is defined by

fnew(x,y) = f(αx,αy)

where α is the dilatation coefficient. Different structures for different values of α are shown
in Figure 5.22–Figure 5.26, as we can see the size of the pores increases as the value of
dilatation coefficient α decreases. For each value of α, the thermal conductivity is given
a value such that the effective thermal conductivity of the new composite structure is
equal to 20 W/m/K in order to compare the new composites with one another and the
initial one. We performed numerical simulations, using the new composite structures,
with initial and boundary conditions the same as used in the previous sections in order
to have an evolution of the temperature in the y-direction and also to have an analytic
solution for the same heat conduction problem with the same boundary condition and
where the 2D domain is filled with a homogeneous PCM. As in the previous section we
used a Raviart-Thomas finite element method to solve the linear part of the model and a
Chernoff scheme to solve the non-linear part. The simulations are stopped when all the
PCM has melted and the temperature has reached a steady state.
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Figure 5.22: KL1_250 initial domain(left) and KD1 initial domain (right).

Figure 5.23: KL1_250 (left) and KD1 (right) with dilatation coefficient α= 0.9.

Figure 5.24: KL1_250 (left) and KD1 (right) with dilatation coefficient α= 0.8.

Figure 5.25: KL1_250 (left) and KD1 (right) with dilatation coefficient α= 0.7.
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Figure 5.26: KL1_250 (left) and KD1 (right) with dilatation coefficient α= 0.6.

5.5.1 Results for modified structures based on the KL1_250
composite

For every value of α we plot the mean dimensionless temperature for every value of y
as a function of the similarity variable and as the a function of the error function of
the similarity variable in Figure 5.27. We can see on both plots that as the value of α
decreases which means that the size of the pores is increasing, the mean temperature has
higher values which are closer to the value of the mean dimensionless temperature in the
case of a homogeneous PCM.
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Figure 5.27: Mean dimensionless temperature at t= tend as a function of µ (left) and
as a function of erf(µ) (right).

We also plot in Figure 5.28, for every value of α, the evolution of the heat flux q(0, t) at
the surface y = 0 as a function of the inverse of the square root of time in the left side
of the graph and the evolution of the melting front’s position as a function of the square
root of the dimensionless time in the right side. In each case we also plot the value of the
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heat flux and of the front position for the initial case were α= 1 and in the analytic case
where we have a homogeneous PCM.

0 0,2 0,4 0,6 0,8 1

1/sqrt(t)

0

100

200

300

400

500

600

700

H
ea

t 
fl

u
x
 a

t 
x
=

0

homogene

Initial
alpha=0.9

alpha=0.8

alpha=0.7

alpha=0.6

0 0,1 0,2 0,3 0,4

sqrt(t*)

0

0,001

0,002

0,003

0,004

0,005

0,006

M
el

ti
n
g
 F

ro
n
t 

P
o
si

ti
o
n
(m

)

homogene

Initial
alpha=0.9

alpha=0.8

alpha=0.7

alpha=0.6

Figure 5.28: Evolution of the thermal heat flux at the surface y = 0 for every value
of α as a function of 1√

t
(left) and the evolution of the melting front’s position for every

α as a function of
√
t∗.

These graphs show that the heat flux increases as the pores size increases and we also
notice that the melting front moves faster as the pores size increases. This means that
for composite with pores bigger than the KL1_250 pores but with the same shape and
distribution tend to allow for a faster heat conduction resulting in a PCM melting faster
and thus accelerating the charging and discharging cycles.

5.5.2 Results for modified structures based on the KD1 com-
posite

For every value of α we conduct simulations explained above with the corresponding
new composite that is based on dilatation in both directions of the KD1 sample shown
in Figure 5.1. At the end of simulations i.e. when temperature has reached a steady
state we plot, for every α, the mean dimensionless temperature for every value of y as
a function of the similarity variable and as the a function of the error function of the
similarity variable in Figure 5.29. We can see in this case as well that as the value of α
decreases, which means that the size of the pores is increasing, the mean dimensionless
temperature has higher values which are closer to the value of the mean dimensionless
temperature in the case of a homogeneous PCM. However, this is less noticeable than in
the case of KL1_250 as shown in Figure 5.27.
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We also plot in Figure 5.30, for every value of α, the evolution of the thermal heat flux
q(0, t) at the surface y = 0 as a function of the inverse of the squre root of time in the
left side of th graph and the evolution of the melting front’s position as a function of
the square root of the dimensionless time in the right side of the graph. In each case
we also plot the value of the heat flux and of the front position for the initial case were
α = 1 and also for the analytic case where we have a homogeneous PCM. These graphs
show that the heat flux increases with the size of the pores and the melting front moves
faster as the pores size increases. This is the same observation as in the composite based
on KL1_250. This shows once more that by enlarging the pores while keeping the same
shape and distribution we allow for the composite material to conduct the heat faster
and as a consequence to have faster charging and discharging cycles.
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Figure 5.29: Mean dimensionless temperature at t= tend as a function of the similarity
variable (left) and as a function of erf(µ) (right).



Asymptotic properties of composite materials 145

0 0,2 0,4 0,6 0,8 1

1/sqrt(t)

0

100

200

300

400

500

600

700

H
ea

t 
fl

u
x
 a

t 
x
=

0

homogene

Initial
alpha=0.9

alpha=0.8

alpha=0.7

alpha=0.6

0 0,1 0,2 0,3 0,4

sqrt(t*)

0

0,001

0,002

0,003

0,004

0,005

0,006

M
el

ti
n
g
 F

ro
n
t 

P
o
si

ti
o
n
(m

)

homogene

Initial
alpha=0.9

alpha=0.8

alpha=0.7

alpha=0.6

Figure 5.30: Evolution of the thermal heat flux at the surface y = 0 for every value
of α as a function of 1√

t
(left) and the evolution of the melting front’s position for every

α as a function of
√
t∗.

5.6 Dilatation in one direction: study of the influ-
ence of the pores shape

In order to optimize the micro-structure of the composite material we need to investigate
what happens when the shape of the pores is modified in a certain way. This could pro-
vide some informations on how to change the micro-structure in order to optimize one
particular parameter such as the thermal conductivity of the foam or in order to have a
more homogenisable structure i.e a structure that could be assimilated to a homogeneous
medium. In order to investigate this numerically we followed the same process as the
one described in the previous section and we constructed various composites based on
the initial composites KL1_250 and KD1 where in each one we change the pores shape
by performing numerical dilatation on the initial composite structure while keeping a
constant porosity. As previously explained we used the color function f(x,y) associ-
ated to the initial composite structures shown in Figure 5.2 and constructed new color
functions fnew(x,y) corresponding to new composite structures by performing dilatations
one-direction at a time with coefficients α in the x-direction and β in the y-direction such
that

fnew = f(αx,βy)

α and β are taken in {0.9,0.8,0.7,0.6}. Following this procedure we have generated eight
composite structures shown in Figure 5.31 to Figure 5.34.
For each new composite structure we perform simulations using the steady heat conduc-
tion model described by Equation 5.2 in order to explicitly determine the linear relation
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relying the thermal conductivity of the carbon foam to the effective thermal conductivity
of the composite as explained in section 5.2. Once this is done we determine a value for
the thermal conductivity of the carbon foam such that the effective thermal conductivity
of each of the new composite structures is equal to 20W/m/K in order to have compa-
rable composites. In Figure 5.35 we plot for KL1_250 (left) and KD1(right), the values
of the effective thermal conductivity of the carbon foam as a function of the dilatations
coefficients. For KL1_250 we can see that by stretching the composite in the y–direction
we need to keep increasing the values of the thermal conductivity of the carbon foam in
order to keep κeff = 20W/m/K. However, polling the composite in the x–direction we
need to keep decreasing its values. We can observe the opposite behaviour for the KD1
composite. This is due to the fact that in the first case the composite has more carbon
in the x–direction and by maximizing this surface we allow to minimize the value of the
effective thermal conductivity of the composite. The opposite is true for KD1 where most
of the carbon foam is in the y–direction which is why maximizing this surface allow to
minimize the value of the thermal conductivity of the foam to reach the value wished for.

β = 0.9 β = 0.8 β = 0.7 β = 0.6

Figure 5.31: Composite materials based on KL1_250 with dilatations coefficient β
in the y-direction.
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β = 0.9 β = 0.8 β = 0.7 β = 0.6

Figure 5.32: Composite materials based on KD1 with dilatations coefficient β in the
y-direction.

α = 0.9 α = 0.8 α = 0.7

α = 0.6
Figure 5.33: Composite materials based on KL1_250 with dilatations coefficient α

in the x-direction.
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α = 0.9 α = 0.8 α = 0.7

α = 0.6
Figure 5.34: Composite materials based on KD1 with dilatations coefficient α in the

x-direction.

We performed numerical simulations, using the new composite structures, with initial
and boundary conditions the same as the ones explained in section 5.2 where the domain
is initially at a temperature close to the melting temperature of the PCM i.e 311.9◦C.
All walls are adiabatic except the bottom one where a Dirichlet boundary condition
(TD = 322◦) is enforced. For all composites we used the values given in Table 5.1. The
simulations are set to stop when all PCM has melted.
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Figure 5.35: Thermal conductivity of the carbon foam for KL1_250(left) and
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5.6.1 Results for modified structures based on the KL1_250
composite

In this section, we consider the eight composite structures constructed using KL1_250 and
by performing dilations in the x-direction with the dilatation coefficient α∈{0.9,0.8,0.7,0.6}
and in the y-direction with the dilatation coefficient β ∈ {0.9,0.8,0.7,0.6}. We suppose
that at t = tend all the PCM has melted. We calculate the mean dimensionless tem-
perature for every value of y, this should give enough informations on the temperature
distribution in the composite since the initial and boundary conditions are chosen such
that the temperature’s evolution is in the y-direction. This is shown in Figure 5.36 where
in the left is the plot corresponding to the dilation in the y-direction and in the right is
the plot corresponding to the dilation in the x - direction. In both plots are shown the
results for the initial composite structure KL1_250 in black and for the homogeneous
PCM in red. We observe that the dimensionless mean temperature for the composite
structures generated by dilatations of α in the x-direction tends to be closer to the value
of the dimensionless mean temperature for the homogeneous PCM case. This is not the
case for the composite structures generated by dilatations of β in the y-direction where
the dimensionless mean temperature is increasingly distant from the mean dimensionless
temperature for the homogeneous PCM case as the value of β decreases.
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Figure 5.36: Mean dimensionless temperature at t= tend as a function of the similarity
variable for various β (left) and various α (right) for KL1_250.

In Figure 5.37 we represent the mean dimensionless temperature calculated at t= tend as
a function of the error function of the similarity variable. The curves on the left concerns
the composite structures generated by dilatation of β in the y-direction of the initial
KL1_250 composite structure. Whereas in the right side we consider the composite
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structures generated by dilatation of α in the x-direction of the same initial structure.
We can see in this case as well that the values of the mean dimensionless temperature
tend to the mean dimensionless temperature for the case of a homogeneous PCM as α
decreases. And as observed previously we see the opposite on the left graph where the
values of the dimensionless temperature tend to move off from its value in the case of a
homogeneous PCM as β decreases.
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Figure 5.37: Mean dimensionless temperature at t= tend as a function of erf(µ) for
various β (left) and various α (right) for KL1_250.

For all eight composite structures we calculate the heat flux at the surface y = 0 and the
melting front’s position over time. In Figure 5.38 we plot in the left graph the heat flux
as a function of the inverse of the square root of time for the four composite structures
corresponding to β = 0.9,0.8, 0.7 and 0.6 and in the right graph its values for the four
composite structures corresponding to α = 0.9,0.8, 0.7 and 0.6. For comparison we plot
in both graphs the heat flux for the initial composite structure KL1_250 in black and the
heat flux for the case of a homogeneous PCM. In Figure 5.39 we plot in the left graph
the melting front’s position as a function of the square root of the dimensionless time
for the composites corresponding to β = 0.9,0.8, 0.7 and 0.6 and in the right graph the
melting front’s position for the four composites corresponding to α= 0.9,0.8, 0.7 and 0.6.
We plot in both graphs the melting front’s position for the initial composite KL1_250
in black in addition to the melting front’s position in the case of a homogeneous PCM
in red. We can see that the heat flux slightly increases with α. For the position of the
melting front we can see that it moves faster for the composite based on dilatations in the
y-direction. While for composites based on dilations in the x-direction the melting fronts
remains almost unchanged. This means that by enlarging the pores in the x-direction we
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do not effect much of the characteristics of the initial composite. However when enlarging
the pores in the y-direction we see differences in the composites characteristics specially
the heat flux calculated at the surface y = 0 and the position of the melting front. This
is due to the fact that, for all the tests realized in this section, we heat the composites
by imposing a temperature gradient in the y-direction.
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Figure 5.38: Evolution of the thermal heat flux at the surface y = 0 as a function of
1√
t
for various β (left) and various α (right).
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Figure 5.39: Evolution of the melting front’s position as a function of
√
t∗ for various

β (left) and various α (right).

5.6.2 Results for modified structures based on the KD1 com-
posite

In this section simulations are carried out for KD1, as it is previously done for KL1_250
in the above paragraph. For this we consider the eight composite structures constructed
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using the initial composite and by performing dilations in the x-direction with dilata-
tion coefficient α ∈ {0.9,0.8,0.7,0.6} and in the y-direction with dilatation coefficient
β ∈ {0.9,0.8,0.7,0.6}. Figure 5.40 shows the mean dimensionless temperature for these
composites where in the left side, are the plots corresponding to dilation in the y-direction
and in the right are the plots corresponding to dilation in the x–direction. In both cases
we represent the mean dimensionless temperature for the initial composite as well as the
temperature for the homogeneous PCM. As we can see, the values of the temperature
tend to the value of the temperature of the homogeneous PCM as the pores are expanded
in the x–direction. This is not the case for the composite structures generated by di-
latations of β in the y-direction where the temperature has almost the same value for all
composites.
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Figure 5.40: Mean dimensionless temperature at t= tend as a function of the similarity
variable for KD1 for various β (left) and various α (right).

This leaning is confirmed when we represent, for the same structures, the mean dimen-
sionless temperature as a function of the error function of the similarity variable (see
Figure 5.41).
For the same composites we represent the melting front’s position (see Figure 5.43) and
the thermal heat flux (see Figure 5.42). We can see that the value of the heat flux and
the melting front position both increases as the value of β decreases i.e as the pores are
enlarged in the y–direction. As for dilatations in the x–direction, the melting front has
more or less the same value for all composites while the values of the heat flux are slightly
decreasing with α.
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Figure 5.41: Mean dimensionless temperature at t= tend as a function of erf(µ) for
KD1 for various β (left) and various α (right).
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Figure 5.42: Evolution of the thermal heat flux at the surface y = 0 as a function of
1√
t
for KD1 for various β (left) and various α (right).
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Overall the results of the study conducted in this section show that by enlarging the pores
according to the direction where the composite material is sought we obtain composites
that allow for faster conduction of heat and as a consequence shortens the melting time
of the PCM.

5.7 Conclusion

In this chapter we have studied two composite materials, KL1_250 and KD1, resulting
from infiltrating a carbon foam with a PCM. In section 5.2 we have conducted simulations
which results showed that the first composite can be assimilated to homogeneous PCM
with equivalent physical properties. This study show that this is not the case for the
second composite. The aim of this is to reduce calculation times by solving a heat
conduction model in a homogeneous domain instead of a composite domain. In section 5.3
we have studied the same composites by adding a thermal contact resistance to the
heat conduction model. This showed that the thermal behaviour of both composites is
increasingly distant from that of a homogeneous PCM. Another question that we answered
in this chapter is how increasing the thermal conductivity of the carbon foam effects the
thermal behaviour of the composites. In fact, we have shown in section 5.4 that it allowed
to increase the thermal heat flux and accelerate the melting process. In section 5.5
we have investigated the influence of changing the pores size on the composite. For
both composites we showed that enlarging the pores allowed to accelerate the melting
process. Finally, in section 5.6, we studied the influence of the pores shapes on the
thermal behaviour of the composites and have shown that by changing the pores shape in
the direction following which the material is sought we were able to optimize the thermal
conductivity of the foam and enhance the heat flux specially for KD1.





Chapter 6

Conclusions

6.1 Achievements

In this thesis we have studied the unsteady heat conduction problem in a composite media
with contact resistance. Developing a robust numerical tool to solve this problem follows
a meticulous process. At first we have focused in chapter 2 on the steady state problem
for a composite with contact resistance. In this chapter we give two weak formulations
to the problem, the classical variational formulation and the hybrid dual formulation. In
both cases the existence and uniqueness of the solution is proven. The choice of the weak
formulations results in two possible finite element methods to approach the solution. The
Lagrange P1 finite element method for variational formulation and the Raviart-Thomas
finite element method for the hybrid dual formulation. Theoretical results on the conver-
gence rate of these two methods are given followed by numerical examples that confirm
the theoretical predictions. This study showed that the Raviart-Thomas finite element
method is a very fit method to solve the steady conduction problem in addition to be-
ing very easy to implement in available scientific computing codes. However, this is
not the case for the Lagrange finite element method especially for complex geometries
where the interface between the materials in the composite is defined with level-set type
functions. Since in practice composite materials are mostly of complex structures, the
Raviart-Thomas finite element method is chosen in the remaining of the thesis.
In addition to the non-linear nature of the unsteady state problem related to the change
in phase occurring in one of the materials, another non-linearity related to the nature of
the PCMs studied here is introduced. In fact, the PCMs considered in this work are pure
materials where the change in phase is suppose to occur at a constant temperature. This

155



Conclusions 156

is described by a discontinuity in the liquid fraction function of the material which con-
sequently introduces a jump in the enthalpy at the melting temperature. In chapter 3 we
introduce a smoothing interval around the melting temperature to avoid any additional
numerical difficulties related to this discontinuity. A theoretical and numerical study is
conducted in this chapter in order to relate errors on the temperature and on the moving
front’s position to the width of the smoothing interval ε. This study showed that these
errors decay as ε outside of the phase change interval and as

√
ε inside of the interval.

After using a backward Euler method for time discretization, a second method is needed
to accurately account for the non-linearity related to the phase change. Four of the most
used methods for this purpose are exposed in chapter 4 : the update source method,
the Chernoff scheme, the apparent heat capacity method and the enthalpy linearization
scheme. A one dimensional problem of melting a PCM and where an analytical solu-
tion is given allowed to test the ability of the schemes to reproduce the results given in
chapter 3 with regards to ε. The apparent heat capacity and the enthalpy linearization
schemes were able to reproduce these results. While the Chernoff scheme did not allow
to find similar results, it still gave very good results. This was not the case for the update
source method. Other tests were conducted with a two dimensional freezing of a PCM
and finally a test case with a composite material. For this last test an analytical solution
is not available and a Newton method is used to give a reference solution. These tests
show that the apparent heat capacity, the enthalpy linearization and the Chernoff scheme
allow to solve very accurately the Stefan problem and gave in all test cases comparable
results. Our goal is to develop a method to solve the unsteady heat conduction problem
in a composite media with complex geometries and it is important to have accurate as
well as fast methods. The choice was made to use the Chernoff scheme for the remaining
of the thesis since, a side from being very accurate, this method is designed in a way that
allow to define the matrix resulting from discretizing the problem outside the time loop
and in addition using a direct solver of type LU for example enable to reduce greatly the
calculation time.
In chapter 5 we studied two composite materials using 2D images of a carbon foam in-
filtrated with salt(PCM). For both composites, we solved the heat conduction problem
using the backward Euler method for time discretization, the Chernoff method for the
non-linearity and the Raviart-Thomas finite element method for the space discretiza-
tion. At the end of the phase change process, the temperature fields and other thermal
properties of both materials are compared to the values for a homogeneous PCM with
equivalent thermo-physical properties. This allowed to prove that the composite with the
more uniform pore distribution could be assimilated to a homogeneous PCM. Other tests
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were conducted and allowed to show that modifying the micro-structure of the composite
by changing the shape or the size of the pores allowed to optimize certain properties of
the composite such as the thermal conductivity of the foam.

6.2 Future Work

The work presented here can be extended in several directions. For instance, a similar
study as the one conducted in chapter 2 can be realized for the heat conduction problem in
the composite where an error estimation on the solution of the problem in the composite
with respect to the mesh size as well as the width of the smoothing interval can be
provided. Indeed it is interesting to quantify the errors made for the approximations
of the moving boundary’s position inside the PCM or for the temperature field in the
PCM and in the composite. This could be useful for validating numerical schemes as
the ones presented in chapter 4. Since for a composite material there is not an analytic
solution available, a Newton method can be used to provide a reference solution in order
to validate the theoretical findings with numerical results.
On the other hand, a study similar to the one conducted in chapter 5 can be realized
using the heat conduction model with contact resistance. We can try to understand how
changing the size of the pores or their shapes is influencing the thermal behaviour of the
studied composite materials. At last, one can envision optimizing the performance of the
composites by changing the porosity of the composites by means of adding or removing
pores.
Finally, the problem studied in this thesis assumes the heat to be exchanged only by
conduction which could be limiting if the application require a more complete model. One
can envision completing the model by adding a Boussinesq approximation to account for
the convective motion in the liquid phase of the PCM. The finite elements methods along
with the numerical schemes presented on this work can very well be adapted to solve this
problem.
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