
HAL Id: tel-01508640
https://theses.hal.science/tel-01508640

Submitted on 14 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing multiscale hybrid platform for testing and
evaluationg IoT systems

Osama Abu Oun

To cite this version:
Osama Abu Oun. Designing multiscale hybrid platform for testing and evaluationg IoT systems.
Other [cs.OH]. Université de Franche-Comté, 2015. English. �NNT : 2015BESA2015�. �tel-01508640�

https://theses.hal.science/tel-01508640
https://hal.archives-ouvertes.fr

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E F R A N C H E - C O M T É

n

Conception D’une Plate-Forme
Multi-Échelle Hybride pour Évaluer
Les Performances de Systèmes
Orientés Internet des Objets

OSAMA ABU OUN

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E F R A N C H E - C O M T É

THÈSE présentée par

OSAMA ABU OUN
pour obtenir le

Grade de Docteur de
l’Université de Franche-Comté

Spécialité : Informatique

Conception D’une Plate-Forme Multi-Échelle
Hybride pour Évaluer Les Performances de

Systèmes Orientés Internet des Objets

Soutenue publiquement le 09 Octobre 2015 devant le Jury composé de :

JULIEN BOURGEOIS Président Professeur à l’Université de Franche-
Comté

THIERRY DIVOUX Rapporteur Professeur à l’Université de Lorraine
FRÉDÉRIC WEIS Rapporteur Maître de Conférences HDR à

l’Université de Rennes
BENOÎT HILT Examinateur Maître de Conférences à l’Université de

Haute-Alsace
FRANÇOIS SPIES Directeur de thèse Professeur à l’Université de Franche-

Comté
CHRISTELLE BLOCH Co-Directeur de thèse Maître de conférences à l’Université de

Franche-Comté

N◦ 2 0 1 5 0 5 9

REMERCIEMENTS

Le bon déroulement et la rédaction de cette thèse n’aurait pu avoir lieu sans le soutien
de l’ensemble de l’équipe du département DISC au Laboratoire Femto-ST à Montbéliard,
je tiens à les en remercier.

Je remercie particulièrement:

• Monsieur François SPIES, Professeur des Universités, Université de Franche-
Comté

• Madame Christelle BLOCH, Maître de conférences à l’Université de Franche-
Comté

qui m’ont accueilli au sein de l’équipe de recherche de Montbéliard et suivi tout au
long de ma thèse.

Je tiens à remercier:

• Monsieur Thierry DIVOUX, Professeur des Universités, Université de Lorraine.

• Monsieur Frédéric WEIS, Maître de Conférences à l’Université de Rennes.

pour l’intérêt qu’ils on manifesté pour mon travail et pour avoir accepté d’être les
rapporteurs.

• Monsieur Benoît HILT, Maître de Conférences à l’Université de Haute-Alsace.

• Monsieur Julien BOURGEOIS, Professeur à l’Université de Franche-Comté.

pour avoir accepté d’être membres de mon jury.

Enfin, je remercie ma famille et mes amis pour leurs encouragements et leur confiance.

v

vi

vii

À ma mère, Rihab, qu’elle repose en paix

CONTENTS

I Principles and Fundamentals 5

1 Introduction 7

1.1 Objectives of the thesis . 8

1.1.1 Internet of Things As A Service (IoTaaS) 8

1.1.2 Connectionless Data Exchanges (COLDE) 9

1.2 Plan of the thesis . 9

2 State of the Art 11

2.1 Testing Internet of Things . 13

2.1.1 Test Automation . 14

2.1.2 Wireless Sensor Network (WSN) . 15

2.1.3 Smart Cities . 15

2.2 Wi-Fi-Based Communication Methods . 17

2.2.1 Multiple-Connections Wi-Fi . 17

2.2.2 Connectionless Wi-Fi . 18

2.3 Broadcasting Solutions . 19

2.3.1 Blind Flooding Method . 19

2.3.2 Probability-Based Methods . 20

2.3.3 Area-Based Methods . 20

2.3.4 Neighbor Knowledge Methods . 21

2.4 Wi-Fi-Based Indoor Positioning and Localization 21

2.4.1 Proximity Detection . 21

2.4.2 Fingerprinting . 22

2.4.3 Trilateration and Triangulation . 22

2.5 Wi-Fi-Based Emergency Evacuation . 23

2.6 Conclusion . 24

3 Fundamentals of Application Testing and Evaluation 25

3.1 General Categorization . 26

3.2 Test-Case-Based Categorization . 27

ix

x CONTENTS

3.2.1 Random Testing . 27

3.2.2 Scenario-Based Testing (Structure) 28

3.3 Application-Based Categorization . 28

3.3.1 Web Application Testing . 28

3.3.2 Mobile Application Testing . 29

II Contribution - IoTaaS 35

4 Internet of Things Testing As A Service (IoTaaS) 37

4.1 Introduction . 37

4.2 IoTaaS Concept . 37

4.3 IoTaaS Architecture . 38

4.4 Things . 40

4.4.1 Entities . 40

4.4.2 Emulators . 40

4.5 Gateways . 41

4.6 Network Emulation Protocol (NEP) . 41

4.6.1 NEP Server . 42

4.6.2 NEP Emulator . 43

4.6.2.1 NEP Controller . 43

4.6.2.2 NEP Updater . 44

4.6.3 NEP Client . 44

4.6.4 NEP Scenario . 44

4.7 Scenarios . 45

4.7.1 Scenario Files . 46

4.7.2 Scenario Manager . 48

4.7.3 Scenario Launcher . 49

4.8 Cloud . 51

4.9 Servers . 52

4.10 User . 53

4.11 Conclusion . 53

5 IoTaaS Pilot Implementation 55

5.1 Introduction . 55

5.2 Mobile Operating System . 55

CONTENTS xi

5.3 Server Architecture . 57

5.3.1 Daemon . 58

5.3.2 Things Manager . 59

5.3.2.1 Devices . 61

5.3.2.2 Emulators . 61

5.3.3 Graphical User Interface (GUI) . 63

5.3.4 Cloud Manager . 66

5.3.4.1 Controller . 67

5.3.4.2 Parent-Communicator . 69

5.3.4.3 Child-servers Manager . 70

5.3.5 Scenarios . 70

5.3.6 Traffic Shaper . 72

5.3.7 Logging . 73

5.4 Experiments and Results . 74

5.4.1 Environment Design . 74

5.4.2 Environment Installation . 75

5.4.3 Scenario and Results . 76

5.5 Conclusion . 76

III Contribution - COLDE 77

6 Connectionless Data Exchange (COLDE) 79

6.1 Introduction . 79

6.2 IEEE 802.11 (Wi-Fi) . 80

6.2.1 Network Architecture Models . 80

6.2.2 IEEE 802.11 Key Concepts . 80

6.2.2.1 IEEE 802.11 Architecture Model 80

6.2.2.2 IEEE 802.11 MAC Frames 83

6.2.2.3 IEEE 802.11 MAC Management Frames 84

6.2.3 IEEE 802.11 Station Access Phases 85

6.3 COLDE Protocol Stack . 86

6.4 COLDE Design and Structure . 87

6.4.1 COLDE - Working Method . 88

6.4.2 COLDE Frames . 89

6.4.3 COLDE Hierarchy . 91

xii CONTENTS

6.4.3.1 Node Types . 92

6.4.3.2 Main-Nodes selection criteria 94

6.4.4 MULTI-TIER BROADCAST . 94

6.5 Lightweight Services Exchange System . 96

6.5.1 System Entities . 96

6.5.2 System Design . 96

6.5.3 Service Mechanism . 97

6.6 COLDE Security . 98

6.7 Conclusion . 101

7 COLDE Implementation 103

7.1 Introduction . 103

7.2 Broadcasting Information In Variably Dense Environment 103

7.2.1 Introduction . 103

7.2.2 Simulation . 104

7.2.3 Experiments and Results . 105

7.2.4 Conclusion . 105

7.3 Integration in Embedded System . 105

7.3.1 Integration Into the Wi-Fi Client Devices 106

7.3.2 Integration Into the Wi-Fi Access Points 108

7.3.3 Proxy Server (COLDE-Proxy) . 108

7.4 Indoor Positioning Using COLDE . 109

7.4.1 Introduction . 109

7.4.2 Integrating COLDE in Indoor Positioning Systems 110

7.4.3 Related Positioning Methods And Applications 112

7.4.4 Experiments And Results . 114

7.4.5 Conclusion . 118

7.5 Emergency Evacuation . 118

7.5.1 Introduction . 118

7.5.1.1 Using Wi-Fi to Broadcast Evacuation Directions 119

7.5.2 Simulation Experiments and Evaluation 119

7.5.2.1 Experiment Design . 119

7.5.2.2 Experiment Policies . 120

7.5.2.3 Experiment Scenarios . 120

7.5.2.4 Experiment Results . 121

CONTENTS xiii

7.5.3 Real-World Experiments . 121

7.5.3.1 Evacuation System Design 121

7.5.3.2 System Implementation . 123

7.5.3.3 Experiment Scenario and Results 125

7.5.4 Conclusion . 126

IV Conclusions and Perspectives 127

8 IoTaaS 129

8.1 Conclusion . 129

8.2 Perspectives . 130

9 COLDE 131

9.1 Conclusion . 131

9.2 Perspectives . 132

V Annexes 153

A Network-Based Applications Techniques and Evaluation 155

A.1 Introduction . 155

A.2 World Wide Web (Web) . 156

A.2.1 HyperText Markup Language (HTML) 156

A.2.2 Uniform Resource Identifier (URI) 157

A.2.3 Hypertext Transfer Protocol (HTTP) 157

A.2.4 Web Stages . 158

A.2.5 Web Services . 159

A.3 Peer-to-Peer Applications . 160

A.4 Mobile Applications . 161

A.5 Cloud-Based Applications . 163

B Internet of Things (IoT) 167

B.1 Communication Technologies . 167

B.1.1 Radio Frequency Identification(RFID) 167

B.1.2 IEEE 802.15.4 . 168

B.1.3 Near Field communication (NFC) . 169

B.2 IETF - Constrained Networks . 170

xiv CONTENTS

B.2.1 Classes of Constrained Devices . 171

B.2.2 IPv6 over Low Power WPAN (6LoWPAN) 172

B.2.3 IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) . . 173

B.2.4 Constrained Restful Environments (CORE) 173

B.2.4.1 Representational State Transfer (REST) 173

B.2.4.2 Constrained Application Protocol (CoAP) 175

B.3 IoT-A (Internet-of-Things Architecture) . 176

B.3.1 Domain Model . 178

B.3.2 Information Model . 181

B.3.3 Functional Model . 182

B.3.4 Communication Model . 183

LIST OF ABBREVIATIONS

6LoWPAN IPv6 over Low Power WPAN

A-MSDU Aggregate MAC Service Data Unit

AP Access Point

ARM Architecture Reference Model

BLE Bluetooth Low Energy

BSS Basic Service Set

BSSID Basic Service Set Identifier

CEMAT Cloud Environment for Mobile Application Testing

CLI Command User Interface

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CoAP Constrained Application Protocol

CORBA Common Object Request Broker Architecture

CoRE Constrained RESTful Environments

DAD Duplicate Address Detection

DCE Distributed Computing Environment

DCF Distributed Coordination Function

DCOM Distributed Component Object Model

DoD U.S. Department of Defense

DSA Digital Signature Algorithm

DSSS Direct sequence spread spectrum

ESS Extended Service Set

ESSID Extended Service Set Identifier

FG Functionality Group

FHSS Frequency hopping spread spectrum

FOSS Free and Open Source Software

JRE Java Runtime Environment

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

HART Highway Addressable Remote Transducer

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

1

2 CONTENTS

HOTP Hmac-based One-Time Password algorithm

IBSS independent Basic Service Set

IC Integrated circuit

IE Information Element

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IoT Internet of Things

IoT-A Internet of Things - Architecture

IPS Indoor Positioning Systems

ISM Industrial, Scientific, and Medical

ISO International Organization for Standardization

ITU International Telecommunication Union

ITS Intelligent Transportation Systems

FFD Full-Function Device

GO Group Owner

LAN Local Area Network

LLN Low Power and Lossy Networks

LR-WPAN Low-Rate Wireless Personal Area Network

LW-Service LightWeight Service

LWS LightWeight Server

LWSB LightWeight Service Beneficiary

LWSH LightWeight Services Helper

MAC Medium Access Control

MANET Mobile ad hoc network

MBT Model-Based Testing

MMPDU MAC Management Protocol Data Unit

MSDU MAC Service Data Unit

NFC Near Field communication

NTP Network Time Protocol

OMG Object Management Group

ONC Open Network Connectivity

OS Operating System

OSF Open Software Foundation

OSI Open Systems Interconnection

OTP One-Time Password

P2P Peer-to-Peer

PC Personal Computer

CONTENTS 3

PCF Point Coordination Function

PDA Personal Digital Assistants

PDU Packet Data Unit

PHY Physical Layer

QoS Quality of Service

REST Representational State Transfer

RF Radio Frequency

RFD Reduced-Function Device

RFID Radio Frequency Identification

ROLL Routing Over Low Power and Lossy Networks

RPC Remote Procedure Call

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks

RTLS Real-Time Locating Systems

SDK Software Development Kit

SGML Standard Generalized Markup Language

SMS Short Message Service

SOAP Simple Object Access Protocol

SOTA State Of The Art

SSID Server Set Identifier

SUT System Under Test

SVG Scalable Vector Graphics

TC Traffic Control

TCP Transmission Control Protocol

Telnet Telecommunications Network

TOTP Time-based One-Time Password algorithm

UDP User Datagram Protocol

UI User Interface

UID User Identifier

URI Uniform Resource Identifier

URL Uniform Resource Locator

USDL Unified Service Description Language

WAP Wireless Application Protocol

Wi-Fi Wireless Fidelity

WLAN Wireless LAN

WM Wireless Medium

WoT Web of Things

WPAN Wireless Personal Area Network

4 CONTENTS

WSDL Web Service Definition Language

WWW World Wide Web

XML Extensible Markup Language

I
PRINCIPLES AND FUNDAMENTALS

5

1
INTRODUCTION

Internet is the physical layer or network made up of switches, routers, and other equip-
ment. Since the first design during the ARPANET era, it does the same thing that it was
designed to. It transports information from one point to another quickly, reliably, and se-
curely. The technologies used to achieve this goal have been evolved, but the concept
has been on a steady path of development and improvement. On the other hand, the
range of applications that use Internet as an infrastructure, varies from the inter-linked
hypertext documents and the World Wide Web (or Web), email and peer-to-peer net-
works, [2,3,N]-Tiers applications to file sharing and telephony. The technologies used in
the Internet have been evolved to connect different type of devices and terminals, such
as mobile phones and Tablets. However, all these devices are part of the virtual world of
Internet where the main components are the computers. Since its existence, there were
two separated worlds, the virtual world represented by the Internet and the real world
represented by humans.
The Internet of Things (IoT) represents a vision in which the Internet extends into the
real world embracing everyday objects (Figure 1.1). Physical items are no longer dis-
connected from the virtual world, but can be controlled remotely and can act as physical
access points to Internet services [Mattern et al., 2010]. Within the IoT literally anything
can be connected to a computer network, via an IP address like the one in your computer,
and allowed to transfer data without the need for human-to-human or human-to-computer
interaction. A "Thing" could be a car, an animal with a bio-chip transponder, a fitness
band on your wrist, a refrigerator, the jet engine of an airplane, or your cat’s collar. These
objects, in addition to billions of others, could become connected to the Internet with the
help of sensors and actuators [Morien, 2015]. The Internet of Things represents the first
real change in the concept of the Internet.
According to Cisco Internet Business Solutions Group (IBSG), IoT is simply the point in

Figure 1.1: Internet of Things [Kirk, 2015]

7

8 CHAPTER 1. INTRODUCTION

time when more "things or objects" were connected to the Internet than people. According
to the statistics, the world already has arrived to this point between 2008 and 2009. Cisco
projects that by 2020 there will be nearly 50 billion devices on the IoT [Evans, 2011].
IoT presents a grand scale of opportunities, at same time it presents challenges and dif-
ferent types of threats than those experienced on nowadays Internet. The challenges
vary from software design, application testing, data storage, privacy and security, com-
munication technologies to whole dimension of the IOT architecture.
One of the main points to be considered here that It isn’t about new technologies being
developed; it’s about existing things and objects being integrated, being configured, and
co-existing. In "Things", connectivity isn’t built into them by design, but it should be added
after the fact.
Note: In this thesis, our study focus on Internet and IoT, many of the technologies and
the applications mentioned here can be used in Intranet, Extranet or and other types of
networks. But in this document we will not refer to the differences between the different
types of networks.

1.1/ OBJECTIVES OF THE THESIS

In the scope of this work, we address two sub-domains of the domain of IoT. Firstly,
we provide a standard for a testbed for testing IoT systems, protocols and applications
in a cloud. Secondly, we present our extension to the protocol IEEE 802.11 that
enables exchanging data without connection. The second contribution is an example
of the protocols and the systems that might be tested and evaluated using the testbed
described in the first contribution. In the following, we introduce briefly the objectives of
these two researches.

1.1.1/ INTERNET OF THINGS AS A SERVICE (IOTAAS)

In IoT, every object (thing) is going to be connected with several other objects. These ob-
jects could be computers, mobile devices, servers, sensors, actuators, cars, etc. Testing
and evaluating applications and systems of these objects will interfere with developers’
tasks. Different objects would have different systems. Even for objects which are of dif-
ferent types, but which perform similar tasks and use the same protocol, they would have
different implementations. If one of these implementations behave differently in certain
situation/case, applications might not work properly. Developers and testers should be
able to test their applications in an appropriate environment equipped with the main types
of objects which could communicate with their applications.
A similar problem was raised in the field of mobile applications. Developers and testers
have to test their applications on several mobile devices. Since there are thousands of
mobile devices in the market, even for the big enterprises, preparing a laboratory with all
these mobile devices is a waste of money, time and resources. That led to the appearance
of enterprises to provide Testing-As-A-Service (TaaS) and Mobile-Testing-As-A-Service
(mTaaS) clouds where developers and users can choose between several models such
as: pay-per-use, pay-as-you-go, etc. Mobile devices represent only one type of objects
that could be connected to IoT, the field of mobile applications is a very small example. It
is important to notice here that even for enterprises which offer mobile applications test-

1.2. PLAN OF THE THESIS 9

ing, there is no standard architecture to build the testing cloud. Each enterprise uses its
own architecture which means that a developer can’t use resources from several enter-
prises at the same time to test certain scenario.
In IoT, There are many sub-domains such as: smart home, smart city, smart campus, etc.
Each sub-domain is adopting its own methods to build the infrastructure and to test the
applications. It is expected to have overlaps between these sub-domains.
The objectives of this research is to provide a standard architecture to test and evaluate
IoT applications. Internet of Things-As-A-Service (IoTaaS) is an abstract of a component-
based solution. IoTaaS is generic so it could be adopted by most of IoT sub-domains.
A generic standard is a must because there are many unknowns in IoT. Flexibility has
been taken into consideration so components could be added to add more functionalities
without affecting the older ones. IoTaaS is scalable, which means that it fits a small envi-
ronment and a large distributed one. Several IoTaaS environments can form one IoTaaS
so the user can use resources from all of them at the same time.

1.1.2/ CONNECTIONLESS DATA EXCHANGES (COLDE)

Data is the main interest and the main target of Internet and IoT. The data exchanged on
the Internet nowadays could be categorized into: public data and private data. This data
is exchanged as services. Data is exchanged using networks and there are two main cat-
egories of networks, wired networks and wireless networks. Networks can’t distinguish
public data from private data. Wireless network is one of the most important enablers
for IoT, that motivated researchers to present new ideas and to design new protocols for
wireless networks. In IoT, several sub-domains are built mainly on the idea of public data,
such as: Intelligent Transportation System (ITS), commercial advertising, emergency ser-
vices, etc. Unfortunately, all proposed protocols don’t provide a method to enable users
and things to exchange public data differently from private data.
The objective of this research is to answer two questions. The first question is: how can
we exchange public data without being associated to any Wi-Fi network ?. The second
question is: what is the data that will be exchanged ? To answer the first question, we
present Connectionless Data Exchange (COLDE) which is our IEEE 802.11 extension
which enables users and things to exchange public data without being associated to any
Wi-Fi network. The extension is compliant with IEEE 802.11 protocol and all its extension.
The extension enables users to exchange public data with several Wi-Fi network at the
same time. LightWeight Services is our design to answer the second question.

1.2/ PLAN OF THE THESIS

The rest of this thesis is organized as follows. In chapter 2, we describe the current state
of the art in IoT testing architectures and in connectionless methods. This chapter also
gives a brief survey of the communication methods mainly used in three Wi-Fi-based
applications: broadcasting, indoor positioning and emergency evacuation. Indeed, we
chose these three categories of applications to better validate and illustrate our contribu-
tions within experimental test campaigns. This choice was motivated by the fact that such
types of mobile applications are among the most known and the most used services, ei-
ther for their own interest or as sub-components of more complete innovative services.
In chapter 3, we present the methods and techniques which are used for evaluation and

10 CHAPTER 1. INTRODUCTION

testing applications.
Part II explains our first contribution in details. Chapter 4 presents the design of our sys-
tem for Internet of Things As-A-Service (IoTaaS). Chapter 5 describes Cloud Environment
for Mobile Application Testing (CEMAT) which is our pilot implementation of IoTaaS.
Part III presents out second contribution. Chapters 6 and 7 introduce our extension for
Connectionless Data Exchange and its implementation in the embedded systems, in ad-
dition to the applications which were tested using the extension.
Part IV concludes our researches. Chapter 8 presents the conclusion of IoTaaS contri-
bution and the future work. In chapter 9, we discuss the results of COLDE and future
prospects.
The annexes describe the fundamentals of the traditional Internet and the principles of
the IoT. Annex A presents the evolution of network-based application and the methods
used for data exchange. Annex B introduces a study about the IoT applications, the pro-
tocols that have been developed by IETF to address the different issues in IoT, in addition
to IoT-A (Internet-of-Things Architecture) that was designed by the European Lighthouse
Integrated Project.

2
STATE OF THE ART

The concept of the IoT was referred to by Mark Weiser in his 1991 paper, "The Computer
for the 21st Century". Mark Weiser often referred to as the father of ubiquitous comput-
ing, in which he coined the term in 1988. Kevin Ashton first coined the term Internet of
Things in 1999. International Telecommunication Union (ITU) has adopted the following
working definition of the Internet of Things (As of June 2012): A global infrastructure for
the information society, enabling advanced services by interconnecting (physical and vir-
tual) things based on existing and evolving inter-operable information and communication
technologies [ITU, 2012]. At the end of the 80s and beginning of the 90s, two concepts
have started their evolution. Both of them were trying to bridge the gap between the vir-
tual and the physical worlds, but at same time they are roughly on two opposite sides.
The first concept was Ubiquitous Computing, in which computing is made to appear ev-
erywhere and anywhere and technology recedes into the background of our lives, it is
also known as "calm computing" and "calm technology" (two terms were ²coined in 1995
by PARC Researchers Mark Weiser and John Seely Brown). The technology required
for ubiquitous computing comes in three parts: cheap, low-power computers that include
equally convenient displays, a network that ties them all together, and software systems
implementing ubiquitous applications [Weiser, 1991].
The second concept was Virtual Reality, it is the use of computer technology to create
the effect of an interactive three-dimensional world in which the objects have a sense of
spatial presence [Bryson, 2013].
The difference between the two concepts is that virtual reality puts people inside a
computer-generated world, ubiquitous computing forces the computer to live out here
in the world with people [Weiser, 2015].
The field of IoT covers wide range of domains, such as embedded systems, ubiquitous
computing, augmented reality, communication technologies, semantic interoperability, op-
erating platforms and security, identification techniques, software engineering, etc. A
roadmap of key developments in IoT research in the context of pervasive applications
is shown in (Figure 2.1), which includes the technology drivers and key application out-
comes expected in the next decade [Gubbi et al., 2013] [Sundmaeker et al., 2010].
The state of the art discusses two domains. First domain covers the researches which
have been conducted for testing applications. The second domain presents the re-
searches about exchanging data without establishing a connection between a Wi-Fi client
and an access point. The following Wi-Fi-based applications are discussed in detail:
Broadcasting, Indoor positioning and localization, and Emergency evacuation. Broad-
casting and indoor positioning are essential techniques for providing most of the public
services. Emergency evacuation is an example of applications that should be provided as

11

12 CHAPTER 2. STATE OF THE ART

A
pp

lic
at

io
n

D
om

ai
ns

2010 2015 2020 2025 and beyond

Home and Personal

Enterprise

Utility

Transport

Plug n' Play Smart Objects

● Global addressing
schemes such as
IPv6

● Standardization for
Interoperability

● Low power and thin
batteries.

● Cloud Storage
● Security in RFID
and Cloud

● Smart sensors in
health-care

● Data centers
● WSN test beds

● Smart Antennas
● Networked sensors
● Enhanced RFID
Security and privacy

● Miniaturized readers
● Interoperability
between RFID and
WSNs

● Cloud computation
as a service

● Energy harvesting
● Intelligent analytics
● Wireless power

● RFID in retail
● Industrial
ecosystems

● Low cost SCADA
systems

●Energy Harvesting
and recycling

●Large scale wireless
sensor networks

●Highly enhanced
security

●Deploy and forget
networks

●Self adaptive system
of systems

●Cloud storage,
computation and
online analytics

●Biodegradable
materials and nano
power units

● Critical Infrastructure
Monitoring

● Smart grid and
household metering

● Smart tags for
logistics and
vehicle
management

● Vehicle to
Infrastructure

● System level
analytics

● Autonomous
vehicles using
IoT services

● Heterogeneous
systems with
interaction
between other
sub-networks

● Smart Traffic
● Automatically
driven vehicles

● Intelligent
transportation
and logistics

Figure 2.1: Roadmap of key technological developments in the context of IoT application
domains envisioned

a public service, and it benefits from broadcasting and localization services. The state of
the art reviews the techniques used in these applications and the ability to provide them
to clients as public services without establishing a connection.

This chapter is organized as follows. Section 2.1 presents the related works about testing
applications in Internet and IoT environments. Section 2.2 discusses the researches that
have been conducted to enable using multiple Wi-Fi networks simultaneously. Section
2.3 reviews the main methods and techniques used for broadcasting messages in Wi-Fi
networks. Section 2.4 presents the main methods used for locating Wi-Fi devices in an

2.1. TESTING INTERNET OF THINGS 13

Permanent/
Portable

Heterogeneous3-tierMulti-domain

Indoor/
Outdoor

Homogeneous2-tierSingle-domain

Deployment
Environment

CompositionStructure

Domain
Specific

Generic

Technology
Domain

Application
Domain

ArchitectureScope

IoT
Testbeds

Figure 2.2: IoT Testbeds [Gluhak et al., 2011]

indoor environment. Section 2.5 discusses the Wi-Fi-based methods used in emergency
evacuation.

2.1/ TESTING INTERNET OF THINGS

IoT is a recent field of research. Researches are conducted on sub-domains of IoT or
on a subset of its functions. Testing IoT is considered to be one of the main challenges
in this domain. Testing IoT has been added as one of the researches of many IoT work
groups, such as: Industry Work Groups which is launched at May 28 2015 by the IoT
Lab at the University of Wisconsin-Madison [Wisc, 2015]. The work group is backed by
several large companies and organizations like At&T, Microsoft, IBM, Internet2, etc.
To the best of our knowledge, researches for providing a generic infrastructure, which
could be used to build testbed for several IoT sub-domains at the same time and enables
the resulted testbeds of exchanging services, have yet to conclude.
In [Gluhak et al., 2011], the authors categorized IoT Testbeds according to one of the
following concept (Figure 2.2):

• Testbed Scope: It fixes domain which represents the target of the testbed. There
are two types of scopes, technology-based and application-based scopes. Both
scopes categorize IoT testbeds depending if they address a single domain or mul-
tiple domains.

• Testbed Architecture: This concept could be categorized into three subcate-
gories. Firstly, structure-based which categorizes testbeds according to the exis-
tence of an IoT Gateway to rely between objects and servers (3-tier structure). Sec-

14 CHAPTER 2. STATE OF THE ART

ondly, testbeds could be categorized depending their composition. Heterogeneous
testbeds consist of several types of objects, while homogeneous testbeds consist of
the same type of objects. Thirdly, environment-based concept categorizes testbeds
depending on two factors: indoor/outdoor which specifies whether the objects are
installed indoor or outdoor and permanent/portable which distinguishes between
testbeds with permanent objects from testbeds with portable ones.

In the following, we list some of the main researches which have been conducted on
testing sub-domains of IoT or on techniques and methods used in testing.
In [Younan et al., 2015], the authors propose a testbed environment for the Web of
Things (WoT) which focuses on application layer. The proposed testbed allows building
a testing environment for WoT. It provides description for components to give search
engine spiders the ability to crawl them in addition to the ability given to users to perform
live monitoring of their environment.

Since that IoT is the domain which connects all other domains, new techniques and meth-
ods for testing applications and systems should be designed by researchers and enter-
prises. But it is also expected that techniques and methods currently used in each domain
would be evolved to meet the new requirements of the IoT. This suggestion is supported
by the projects which were launched by the leader enterprises to evolve their operating
systems and their frameworks to be able to deal with IoT challenges.
One of the most important techniques which has been the target of many researches
is Test Automation. We believe that test automation techniques and methods which
have been developed for mobile applications would be the base stone in developing test
automation for most of IoT objects and systems. Researches on Test automation are
discussed in subsection 2.1.1. Wireless Sensor Network (WSN) is one of the earliest
application and systems to be categorized as a sub-domain of IoT. We cover the most
important testbeds for WSN in subsection 2.1.2 There are several sub-domains such as:
Smart Home, Smart Campus, Smart City, etc. We present Smart city as a representa-
tive of all other IoT smart sub-domains. A number of projects on smart cities have been
launched since the appearance of the IoT. Open Ubiquitous Oulu and SmartSantander
are among the most important projects in this domain. Subsection 2.1.3 discusses these
projects in details.

2.1.1/ TEST AUTOMATION

In [Amalfitano et al., 2011], the authors propose a GUI-crawler-based technique for au-
tomatic white-box testing of Android mobile applications. The GUI crawler is used to
obtain the test cases of an application. Depending on these cases, event sequences can
be fired on the application GUI. This technique could be use to find runtime crashes or
user-visible faults.

In [Aho et al., 2013], the authors utilize Model-based testing (MBT) in a platform-
independent industrial approach and Murphy tool set for automatically extracting finite
state machine (FSM) based models for testing GUI applications. MBT is a technique
of generating test cases from behavioral models of the system under test (SUT). Mon-
keyrunner is a tool for writing test scenarios using Python for Android OS. The test sce-
nario should be executed from outside of Android code. UiAutomation is a class for
interacting with the device’s UI by injecting user actions and introspection of the screen

2.1. TESTING INTERNET OF THINGS 15

content. In [Starov et al., 2013], the authors present Cloud Testing of Mobile Systems
(CTOMS) which is a cloud to run tests using Android Monkeyrunner. It supports auto-
mate functional testing of Android applications and detection of defects in user interfaces.
CTOMS consists of three subcomponents: a master application which should be de-
ployed at Google App Engine cloud, a slave to be installed on a server at the client’s site
and the mobile devices that should be connected to the server. Appium [Appium, 2015]
is an open-source tool for automating native, mobile web, and hybrid applications on iOS
and Android platforms. It depends on writing test scenarios using one of programming
languages, such as: Java, Ruby, etc. The server processes the source code in order
to generate the UI commands of the test scenario. The server sends the resulting com-
mands to the client in order to be executed. The client can send results using HTTP
connection. Mobile Testing Framework (MFT) [MFT, 2015] is an alpha-state open source
project to automate GUI/System tests for iPhone/iPad applications. MTF is based on the
automation tool Sikuli which allows to interact with the User interface with python scripts
and screenshots. Calabash [Calaba, 2015] is an automated testing technology for An-
droid and iOS native and hybrid applications. Test scenarios should be written using
Ruby API. The server generates a new instrument for each scenario and for each mobile
application. CATJS [CATJS, 2015] is an automation framework for web and mobile-web
applications testing which supports iOS, Android and any HTML5 Browser. Robotium
[Robotium, 2015] is an open source Android test automation framework. Test scenarios
should be written in Java and it generates an Android instrument for each scenario and
for each application (the instrument should have the same signature of the android app).
Robotium Recorder is a tool capable of registering user actions. The tool can automati-
cally generate the Android instrument signed with the same signature of the android apk.
It is available as a plugin for Android Studio and Eclipse.

2.1.2/ WIRELESS SENSOR NETWORK (WSN)

MoteLab [Werner-Allen et al., 2005] is one of the most important WSN testbeds.It is a
Web-based testbed which consists of a set of deployed sensor network nodes connected
to a central server which gives the ability to: handling reprogramming and data, creating
and scheduling jobs on the testbed and automating data logging.
Kansei [Ertin et al., 2006] supports complex experimentation by integrating dedicated
node resources for local computation in a heterogeneous hardware infrastructure. It
provides methods for sensor data generation and real-time data and event injection. It
supports utilizing real hardware resources and data generation and simulation engines.
IoT-LAB Testbed [IoT-LAB, 2015] provides over 2700 wireless sensor nodes (fixed/mobile)
spread across six different sites in France. IoT-LAB offers web-based reservation and
tooling for applications development, along with direct command-line access to the plat-
form.

2.1.3/ SMART CITIES

Open Ubiquitous Oulu [panOULU, 2015] is a smart-city environment located in Oulu, Fin-
land. The UrBan Interactions (UBI) research program has created a middleware layer on
top of the Public Access Network OULU (panOULU) wireless network and opened it up
to ubiquitous-computing researches [Gil-Castineira et al., 2011]. SmartSantander project

16 CHAPTER 2. STATE OF THE ART

aims at the creation of an experimental test facility for the research and experimenta-
tion of architectures, key enabling technologies, services and applications for the Internet
of Things in the context of a city [SmartSantander, 2015] [Silva et al., 2014]. SmartSan-
tander’s architecture consists of 3 tiers:

• IoT nodes: The project aimed at installing 20,000 sensors in Belgrade, Guildford,
Lübeck and Santander. Sensors are responsible for sensing the corresponding
parameter (temperature, CO, noise, light, car presence,etc.). There are two types
of sensors. First, sensors can communicate directly with gateways without passing
by an external repeater. Second, sensors send their data to gateways through
repeaters.

• Repeaters: They are forwarding points which can forward data received from sen-
sors to gateways.

• Gateways: Nodes and repeaters use protocol 802.15.4 to send data to gate-
ways. Gateways can store data locally or they can send them to servers. Gate-
ways allow virtualization of IoT devices. This enables the instantiation of emu-
lated sensors or actuators that behave in all respects similar to the actual devices
[Gutiérrez et al., 2013].

The SmartSantander consists of four subsystems:

• Authentication, Authorization and Accounting (AAA) subsystem: It manages
access to the testing environments.

• Testbed Management Support Subsystem (MSS): It manages adding/removing
and configuring the resources in SmartSantander.

• Experimental Support Subsystem (ESS): It is responsible of reserving nodes,
configuring and deploying experiments, running experiments, collecting and ana-
lyzing the produced results.

• Application Support Subsystem (ASS): It is responsible of facilitating the devel-
opment of services and providing the possibility for lookup for specific resource.

SmartSantander project provides several services, such as [Krčo et al., 2012]:

• Outdoor parking management: Ferromagnetic wireless sensors were buried in
parking places around the city. These sensors detect when a car is parked and
transmit this information to the closest repeater.

• Environment monitoring: Measurement stations at fixed locations were installed.
Environmental monitoring devices have been installed on lamp post, buses and
police cars.

• Participatory sensing: Habitants of the city can interact with the system by sub-
mitting values from their own sensors using mobile phones or by receiving alerts
about events in the city.

SmartSantander is an experimental facility for deploying, and assessing new services and
applications. Internet researchers can validate their cutting-edge technologies (protocols,

2.2. WI-FI-BASED COMMUNICATION METHODS 17

algorithms, radio interfaces, etc.) in the domain of smart cities. SmartSantander depends
on real-world sensors. The announced architecture doesn’t include functions to simulate
certain environment scenarios and It doesn’t provide an interface to connect with other
IoT testing cities.

2.2/ WI-FI-BASED COMMUNICATION METHODS

In wired-based networks, clients can’t exchange data with other devices of a given net-
work unless a wire is connecting the client’s Network Interface Card (NIC) to the network.
At the same time, the NIC can never be connected to more than one network. In Wi-Fi-
based communication, each Wireless Network Interface Card (WNIC) could be connected
to one Access Point (AP), knowing that there is no physical obstacle like the one in wired-
based network (e.g. cable). A client could be located in the coverage area of several
APs at the same time, but the protocol IEEE 802.11 doesn’t provide a method to use ser-
vices from several APs concurrently. Many researches have been conducted to design
solutions which enable clients to exchange data with several APs concurrently, and to
enable clients to exchange data without being connected to the network. In the following,
we discuss the most important works among these researches. These works could be
categorized into two categories: Multiple-Connections Wi-Fi and Connectionless Wi-Fi.
In the following, we discuss these two categories.

2.2.1/ MULTIPLE-CONNECTIONS WI-FI

Several researchers have studied the possibility of maintaining several connections
between a Wi-Fi client and several APs at the same time. The Multi-Radio Unification
Protocol (MUP) [Adya et al., 2004b] was one of the earliest research in this domain which
proposed a design on the data link layer to build scalable multi-hop wireless network
with existing IEEE 802.11 hardware. The research proposed using at least two Wireless
Network Interface Card (WNIC) on each node in order to build a mesh-based community
network for a neighborhood. The design depends on two main factors: static APs and
unlimited power for the routers. In addition to the financial cost of using multiple WNICs,
all mobile objects can’t meet the main factors of this design because they aren’t static
and they are battery-based objects (limited power).
MultiNet [Chandra et al., 2004] was the first research to propose using one WLAN to
connect to multiple network at the same time. MultiNet design consists of multiple
virtual adapters for each underlying wireless network card. MultiNet is a software-based
approach which introduces an intermediate layer below Network Layer which should
be integrated on the Wi-Fi client-side only. MultiNet switches between APs without
disconnecting by sending a fake Power Saving Mode (PSM) request to all APs except
the one which it needs to keep connected to. When a client-A sends a PSM to an AP,
the AP will consider Client-A as asleep and it start buffering all the frames directed to
client-A in order to be sent later.
Flex-Wi-Fi [Parata et al., 2007] proposes a design which mixes the two main modes in
IEEE 802.11, infra mode and ad hoc mode. Flex-Wi-Fi allows two users be associated
to an AP and at the same time to establish a direct ad hoc connection at the same time.
This design doesn’t work with multiple APs but it provides a solution which depends on
using different channel than the AP’s one, subsequently that would increase the network

18 CHAPTER 2. STATE OF THE ART

performance since it multiplies the system bandwidth and frees the channel. The main
disadvantage of this design that the clients can’t use services provided by other APs.
FatVAP [Kandula et al., 2008] and WiSwitcher [Giustiniano et al., 2009] present two
designs which assume that a client has access to several APs at the same time. But
since that not all APs are equal, FaTVAP and WiSwitcher aggregate the bandwidth
available at APs and balance load across them. In these designs, switching between APs
is transparent to the application, so they don’t discuss the possibility of adding another
layer at the application level so the applications can choose certain AP for using certain
service (in case that not all APs provide the same services).
Juggler [Nicholson et al., 2010] depends also on the virtual adapters. One of the
most important problems in using multiple APs which is addresses by Juggler is
Switching Time. Juggler could enhance Switching Time between two APs/endpoints to
3 ms if they were on different channels and to 400 µs when they are on the same channel.

2.2.2/ CONNECTIONLESS WI-FI

Management frames are non-encrypted frames which are used for managing com-
munications between APs and stations (Scanning, (re)association, dissociation,
(de)authentication).
There are many types of management frames, one of these types is called Beacon
frames. Beacon frames could be sent periodically by an AP in order to announce its
presence to clients in its coverage area. All clients with WNIC in the coverage area
of a given AP would be able to receive the beacons sent by this AP. By listening to
received beacons, the clients can recognize nearby APs without sending any request.
Clients don’t have to confirm or acknowledge receiving these beacons. This method
is called Passive Scanning and that because clients don’t send any type of frames to
scan the coverage area. Beacon-Stuffing [Chandra et al., 2007] is one of the earliest
attempts to broadcast data using beacons frames. It is a low bandwidth communication
method which depends on adding small amount of data into beacon and specifically
in Information Element (IE) fields. The AP broadcasts the beacon, so all clients in
the coverage area of this AP can receive this data even if they aren’t associated with
the AP, or even if they are associated with other APs different from the sender one.
Beacon-stuffing provides a way to broadcast data only from an AP to a client.
BOWL [Muralidharan et al., 2008] proves the possibility of using several beacons to
transmit large files between two Wi-Fi clients directly without being associated to each
other or to any other AP. The transmitter operates in ad hoc mode so it can broadcast
beacons while the other client operates in client mode so it listens to beacons. The client
extracts file’s portions from the received beacons and assemble them.
Information Embedding [Gupta et al., 2012b] and Bit-Stuffing [Gupta et al., 2013] extend
Beacons-Stuffing by using other fields other than IE fields. They proved the possibility of
adding extra information into Service Set Identifier (SSID) and Length fields.
All these researches depend on beacons which are sent only by an AP which means that
Wi-Fi clients can’t send any data to APs (one-way communication).

Beacon are sent only by an AP which means that Wi-Fi clients can’t send any data to
APs (one-way communication).

2.3. BROADCASTING SOLUTIONS 19

Silent broadcast [Yun et al., 2012] proved the possibility of exchanging data between two
Wi-Fi clients using the vendor specific field of Wi-Fi P2P frame which could be sent by
Wi-Fi clients.
In [Schauer et al., 2013], the authors utilize the NULL and the ACK frames in indoor
positioning. NULL frames represent a special type of IEEE 802.11 data frames, because
they merely carry a power management bit while the data field is being left empty. NULL
frames have to be acknowledged by the AP. A station sending a NULL frame to an
access point does not have to be associated with the latter. NULL frames are unicast
frames, so a null frame can be sent to an AP. That means a station should perform active
or passive scanning in order to have a list of the APs.

2.3/ BROADCASTING SOLUTIONS

Multi-tier Broadcasting using tree structure established in a network is a well-known
and widely used technique in Mobile ad hoc Network (MANET) as the TreeCast
[Juttner et al., 2005] method, which is based on a fully distributed, decentralized and
resource-efficient algorithm that maintains a spanning tree. A MANET is an autonomous
collection of mobile users that communicate over relatively bandwidth constrained wire-
less links. Since the nodes are mobile, the network topology may change rapidly and
unpredictably over time. The network is decentralized, where all network activity includ-
ing discovering the topology and delivering messages must be executed by the nodes
themselves, i.e., routing functionality will be incorporated into mobile nodes [NIST, 2015].
VANET is the technology of building a robust ad hoc network which comprises vehicle-
to-vehicle and vehicle-to-infrastructure communications based on wireless local area net-
work technologies. [Hartenstein et al., 2008]. MANET and VANET are self forming net-
work, which can function without the need of any centralized control. Each node in the
network acts as both a data terminal and a router.
Broadcasting is defined to be an one-to-all communication, which means that all mes-
sages sent from a mobile node should be received by all other nodes in the same network.
MANET depends mainly on broadcasting mechanism for announcements and routing
protocol such as Dynamic Source Routing (DSR), Ad Hoc On Demand Distance Vector
(AODV), Location Aided Routing (LAR) and Zone Routing Protocol (ZRP) depending on
broadcasting mechanism.
Many studies have been conducted on broadcast methods in MANET/VANET. Many
methods have been proposed and tested. These methods can be categorized in many
ways, in this study we are going to use the following categorization [Williams et al., 2002]:
Blind Flooding Methods, Probability-Based Methods, Area-Based Methods and Neighbor
Knowledge Methods. In the following, we present the most important algorithms in each
category.

2.3.1/ BLIND FLOODING METHOD

This is the simplest broadcasting method, in which each node rebroadcasts the packet
whenever it receives it for the first time [Obraczka et al., 2001]. Each node might re-
ceive same packet from several nodes which causes bandwidth congestion and de-
grades nodes performances. Broadcast Storm problem is one of the consequences of

20 CHAPTER 2. STATE OF THE ART

using blind flooding which is caused by the high number of redundant broadcast packets
[Williams et al., 2002].

2.3.2/ PROBABILITY-BASED METHODS

In [Tseng et al., 2002], the authors present 5 schemes which differ in how a mobile host
estimates redundancy and how it accumulates knowledge to assist its decision. These
schemes were designed to reduce redundancy, contention, and collision. In the following,
we present a brief of these schemes:

• Probabilistic Scheme: The scheme depends on probabilistic rebroadcasting
which defines probability P. A node rebroadcasts a packet received (for the first
time) with certain probability. When P = 1, this scheme behaves exactly as in blind
flooding.

• Counter-Based Scheme: In this scheme, each node defines two variables, c which
presents the number of times the broadcast is received and C which presents
a counter threshold. A node can’t rebroadcast a packet (message) which has a
counter c > C. Whenever a node receives a message for the first time, it initializes
the counter c, it will rebroadcasts the message if it wasn’t heard after waiting for
random number of sluts. With every new redundant message received, the node in-
creases the counter c. The procedure will exit either by rebroadcasting the message
or by hitting the threshold.

• Distance-Based Scheme: Each node maintains a database of distances to the
other nodes. The node rebroadcasts a message only if the distance d between the
sender and the receiver is larger than a distance threshold D.

• Location-Based Scheme: The node rebroadcasts a message only if the additional
coverage due to the new emission is larger than A (0 < A < 0.61).

• Cluster-Based Scheme: In this scheme, the network is divided into clusters. Each
cluster has a head and members. The head is responsible of rebroadcasting the
messages to the members in its cluster, in addition to communicate with heads of
other clusters [WANG et al., 2010].

The first four schemes operate in a fully distributed manner, while the fifth operates on
some local connectivity information.

2.3.3/ AREA-BASED METHODS

These methods consider the coverage area of a transmission instead of considering
whether the nodes exist within that area. There are two subtypes of these methods:

• Distance-Based Scheme: Each node depends on the distance between itself and
each neighbor node that has previously rebroadcast a given packet.

• Location-Based Scheme: Nodes depend on Global Navigation Satellite System
(GNSS) coordinates.

2.4. WI-FI-BASED INDOOR POSITIONING AND LOCALIZATION 21

The concept of these methods is that when a node A rebroadcasts a message, it would
cover a small additional area if the message was received from a node B which is located
near node A. It is the opposite when node A and node B are far away from each other.

2.3.4/ NEIGHBOR KNOWLEDGE METHODS

In these methods, nodes should have knowledge of the area. In the following, we discuss
two subtypes of these methods.

• Flooding with Self Pruning: Every node broadcasts a list containing its neigh-
bors to all other nodes. A node would rebroadcast a message only if it has more
neighbors than the sender node [Lim et al., 2000].

• Scalable Broadcast Algorithm (SBA): In this method, all nodes should have a
list of their neighbors within a two hop radius. The list could be built using Hello
packets, which each one should contain the neighbors of the sender. As a result,
each node considers itself the center and it has a list neighbors and their neighbors.
A node A would rebroadcast a message received from node B only if it has more
neighbors than node B. Node A would repeat the same procedure for redundant
messages from another neighbor.

2.4/ WI-FI-BASED INDOOR POSITIONING AND LOCALIZATION

Indoor positioning using the IEEE 802.11 protocol has undergone considerable progress
in the past decade. Indoor positioning became one of the essential technologies for many
applications, such as disaster rescue, indoor navigation and advertising. Several Indoor
Positioning Systems (IPS) have been presented and implemented. In general, indoor
positioning needs a number of calculations which differs according to the methods used.
There are two ways to perform these calculations. One way is to perform them on a
mobile device, while the other way is to perform them on a server. Performing the cal-
culations on a mobile device consumes the device’s battery, and since mobile devices
are normally battery-driven, energy efficiency is a very important consideration in Wi-Fi
localization systems [Niu et al., 2013]. Some methods such as Wi-Fi fingerprint-based
localization solve part of this problem by sending the needed parameters to a server in
order to perform the calculations.
These systems can be categorized into three groups according to their methods
[Zahid Farid, 2013]: Proximity Detection, Fingerprinting (Scene Analysis), Trilateration
and Triangulation. In the following, we present the main methods and algorithms in each
group.

2.4.1/ PROXIMITY DETECTION

It is one of the simplest method to implement. The position (or location) of a wireless
device is the same position as those of the AP from which it receives the strongest signal.
This method is implemented in several system such as: Infrared Radiation (IR), Bluetooth,
Radio Frequency Identification (RFID), GSM systems, etc.

22 CHAPTER 2. STATE OF THE ART

2.4.2/ FINGERPRINTING

Fingerprinting (Scene Analysis) depends on fingerprints. A fingerprint means a signa-
ture of environment features consistently and strongly depending on the physical location
[Deak et al., 2012]. These features could be any parameters in the environment such:
Received Signal Strength Indicator (RSSI), GSM Signals, Bluetooth signals, etc. Finger-
printing consists of two phases [Szabolcs Karsai, 2014]:

• Off-line Phase: In this phase, a database of fingerprints will be built by collecting
environment features of the site. This phase should be repeated every time the
environment features are changed.

• On-line Phase: The system matches the fingerprints collected by the clients to the
database in order to calculate their locations or positions.

It is virtually impossible to use this method without a significant error, because it doesn’t
take into consideration the interference or the obstacles in the area, such as walls,
furniture, and even other people in the building.

2.4.3/ TRILATERATION AND TRIANGULATION

Trilateration depends on geometric properties of triangle which are the distances between
transmitters and receivers. This method starts by building a map of the distribution of APs
in a building. The location or the position of the wireless device is determined depending
on the lengths between each detected AP and the wireless device. This method re-
quires at least three location-known APs to be detected by the wireless device but more
APs could give more accurate location or position [Muthukrishnan et al., 2005]. In the
following, we review the most important techniques used to measure lengths between
transmitters and receivers:

• Time-Based Methods:

– Time of Arrival (ToA)/Time of Flight (ToF): It depends on the accurate syn-
chronization of the arrival time of a time-stamped signal transmitted from wire-
less device to several APs. The distance is calculated using the speed of signal
and the transmission time delay. This method requires APs and wireless de-
vices to be time synchronized.

– Time Difference of Arrival (TDoA): TDoA requires the APs to be time syn-
chronized but not the wireless devices. It depends on multiple pairs of APs
with known locations and use relative time measurements at each AP in place
of absolute time measurements.

– Round Trip Time (RTT)/Round-Trip Time of Flight (RToF): In this method,
one node can record the transmitting and arrival time. The advantage of this
method over ToA methods is the needless of time synchronization.

• Single-Property-Based Method: This method depends on measuring the at-
tenuation of received signal strength. Received Signal Strength Indicator (RSSI)
depends on the environmental interference [Bahl et al., 2000] [Tian et al., 2013].

2.5. WI-FI-BASED EMERGENCY EVACUATION 23

Triangulation depends on geometric properties of triangle, same as Trilateration. The dif-
ference is that Trilateration depends on distances between transmitters and receivers
and Triangulation depends on measuring angles of arrival of the signals. Measure-
ments are done using Angle of Arrival (AoA) which requires additional antennas capa-
ble of measuring the angle of arrival of a wireless signal received from a known location
[Zhang Da, 2010].

2.5/ WI-FI-BASED EMERGENCY EVACUATION

In case of a catastrophic disaster, emergency evacuation is very critical to many lives.
Communication networks for emergency warning systems could be categorized into four
groups labeled as Wi-Fi, P2P, Cellular Network, and Satellite [Li, 2011].
Many researches have been conducted to design systems for broadcasting alerts and
helping evacuation teams by providing information about people in the stricken areas.
In [Fujiwara et al., 2004], the authors propose a schema of a multi-hopping hybrid wire-
less network. It aims at maintaining the connection between a cellular base station (BS)
and nodes. In case of losing the direct link between BS and a node, the node tries to
access BS indirectly (via another node) by switching modes to ad hoc. The authors pro-
pose a routing protocol and a MAC protocol. The routing protocol is capable of building
a route using unicast-based route discovery process without route request flooding. The
MAC protocol maintains accessibility and a short delay in emergency circumstances.
In [Fantacci et al., 2010], the authors presented Integrated System for Emergency
(In.Sy.Eme.) which integrates the mobile grid paradigm in the infrastructure. They sug-
gest Wireless Sensor Network (WSN) and MANET for monitoring and WiMAX with suit-
able Quality of Service (QoS).
In [Bai et al., 2010], the authors provide a design which depends on MANET and WSN
for monitoring and a satellite link for communicating with other sites.
In [Simmel, 2012], the authors used Beacon-Stuffing in evacuation system. The smart
device of the person who requests help broadcasts emergency message which consists
of the identifier of the person’s device and GPS coordinates (if exists). The emergency
messages could be detected by drones (e.g., quadcopters) which relay these requests to
the authorities. If an emergency message contains no GPS coordinates, the drone would
add its current GPS coordinates instead. We should notice here that the device which is
broadcasting the emergency messages should be in AP mode in order to be able to do
so.
Except for the last research, we can notice that most of the researches in this domain
concentrate on building MANETs or WSNs.
For our best knowledge, there is no extension for the protocol IEEE 802.11 to deal with
emergency situations. The protocol isn’t designed to give exceptions in time of catas-
trophic disasters. For example, there is the number 112 in the mobile communications
which allows a callet to contact emergency services even if the mobile has no subscriber
identification module (SIM) card. This is an exception which has been integrated in mo-
bile networks in many countries. Wi-Fi networks have not integrated such an exception
to deal with emergency situations.

24 CHAPTER 2. STATE OF THE ART

2.6/ CONCLUSION

The current state of the art in IoT testing has been discussed in this chapter. IoT is in-
tegrating all other domains. In the domain of testing, it is expected that all techniques
and methods of testing would be customized and integrated in order to provide a testing
environment for IoT. We presented the most important methods for Test Automation. In
each IoT sub-domain, several studies have been conducted so as to develop a testbed
for that sub-domain precisely. We have reviewed some examples on testbeds for Wire-
less Sensor Network (WSN) and smart cities. There are many other testbeds for smart
homes, smart campus, smart grid, etc. Since that all these testbeds have been developed
separately, it is unlikely that they would be able to be integrated easily in one testbed. A
generic architecture for testing IoT has yet to be described in literature. This testbed
might help the enterprises and the developers in testing their IoT systems, IoT protocols
and IoT applications. The second contribution in our thesis is an example of the protocols
that might be tested and evaluated using this testbed.
Several protocols and standards have been provided in order to enable IoT. We presented
the state of the art of techniques and methods which have permitted to use multiple Wi-Fi
connections concurrently. Researchers have developed solutions depending on one of
the following techniques: using multiple WNICs, virtualizing WNICs, mixing infra mode
and ad hoc mode and finally switching between multiple APs. Other researchers have
developed techniques in order to piggyback beacon frames so as to send data to clients
even if they aren’t associated with any AP.
We discussed the state of the art of three Wi-Fi-based applications: Broadcasting, Indoor
positioning and Emergency Evacuations. These applications depend on infra mode or ad
hoc mode in which clients should be associated to an AP. We showed that connectionless
methods haven’t been adopted by these applications (and many other). These applica-
tions provide public and non-confidential data (most of the time). In IoT, public data would
represent a considerable amount of exchanged data (transport, emergency, positioning
and localization, etc). Providing these public services to all clients in a given area, even if
they are not connected to same network or not connected to any network at all, would be
the easiest and the most secure method.
In this thesis, we present a testbed for testing IoT systems and protocols, in addition to an
extension to the protocol Wi-Fi (Connectionless Data Exchange) to be tested using the
testbed. Since that there are a lot of applications which might be developed using this ex-
tension, we present a study for three applications: Broadcasting, Indoor positioning and
Emergency Evacuations. The two first applications (Broadcasting and Indoor positioning)
are important enablers to the development of the third one (Emergency Evacuation).

3
FUNDAMENTALS OF APPLICATION

TESTING AND EVALUATION

Software testing and software evaluation are the processes of verifying and validating that
a software application or program meets the business and technical requirements that
guided its design and development and works as expected. They also identify important
errors or faults categorized per the severity level in the application that must be fixed
[John E. Bentley, 2005]. It would not be right to say that testing is done only to find faults.
Faults will be found by everybody using the software. Testing is a quality control measure
used to verify that a product works as desired [Quadri et al., 2010].

There are several application development methodologies in use today. Mainly there are
two kinds of methodologies: heavyweight and lightweight. Heavyweight methodologies,
also considered as the traditional way to develop software, claim their support to
comprehensive planning, detailed documentation, and expansive design. The lightweight
methodologies, also known as agile modeling, in which it employs short iterative cycles,
and rely on tacit knowledge within a team as opposed to documentation [Awad, 2005].
All these methodologies acknowledge that testing and evaluation form an important
phase for assessing the quality of an application.

Two common types of testing are black-box and white-box testing. The basic difference
between the two classes is clarified by the definitions below [IEEE, 1990]:

• Black-Box Testing (Functional Testing) Testing that ignores the internal mech-
anism of a system or component and focuses solely on the outputs generated in
response to selected inputs and execution conditions. It should be the focus for
testers.

• White-Box Testing (Structural Testing) Testing that takes into account the internal
mechanism of a system or component. Types include branch testing, path testing,
statement testing. It should be the focus for developers.

In the following, we summarize evaluation and testing methods and techniques which
could be categorized according to three aspects: General Categorization which is cov-
ered in section 3.1, Test-Case-Based Categorization is reviewed in section 3.2 and
Application-Based Categorization which presents in section 3.3 the differences between
the traditional applications, web applications and mobile applications from evaluation and
testing point of view.

25

26 CHAPTER 3. FUNDAMENTALS OF APPLICATION TESTING AND EVALUATION

3.1/ GENERAL CATEGORIZATION

There are several types of testing that should be done on a large software system. Each
type of test has a "specification" that defines the correct/incorrect behaviors. Each type
has four attributes [Williams, 2004] [IEEE, 1990]:

• Opacity: The tester’s view of the code (is it white or black box testing).

• Scale: Whether the tester is examining a small bit of code or the whole system and
its environment.

• Specification: What we look at to develop the tests.

• Tester: The programmer who wrote the code, independent tester or a customer.

We present the main types of testing in the following list:

• Unit Testing: Unit testing is the testing of individual hardware or software units or
groups of related units. Testers verify that the code does what it is intended to do at
a very low structural level.

• Integration Testing: Integration test is testing in which software components, hard-
ware components, or both are combined and tested to evaluate the interaction be-
tween them. The tester verifies that units work together when they are integrated
into a larger code base.

• Functional and System Testing: Functional testing involves ensuring that the
functionality specified in the requirement specification works. System testing in-
volves putting the new program in many different environments to ensure the pro-
gram works in typical customer environments with various versions and types of
operating systems and/or applications. Several classes of testing can be done that
can examine non-functional properties of the system:

– Stress Testing: Testing conducted to evaluate a system or component at or
beyond the limits of its specification or requirement.

– Performance Testing: Testing conducted to evaluate the compliance of a
system or component with specified performance requirements.

– Usability Testing: Testing conducted to evaluate the extent to which a user
can learn to operate, prepare inputs for, and interpret outputs of a system or
component.

• Acceptance Testing: Acceptance testing is formal testing conducted to determine
whether or not a system satisfies its acceptance criteria (the criteria the system
must satisfy to be accepted by a customer) and to enable the customer to determine
whether or not to accept the system.

• Regression Testing: Regression testing is selective retesting of a system or com-
ponent to verify that modifications have not caused unintended effects and that the
system or component still complies with its specified requirements.

3.2. TEST-CASE-BASED CATEGORIZATION 27

• Beta Testing: The development organization can offer it free to one or more po-
tential users. These users use it with the understanding that they will report any
errors revealed during usage. These users are usually chosen because they are
experienced users of prior versions or competitive products.

Table 3.1 presents the differences between these types.

Testing Type Opacity Specification Scope Tester
Unit Testing White box Low-level

design and/or
code structure

Low-Level
Design, Actual

Code
Structure

The
programmer

who wrote the
code

Integration
Testing

Black- and
white-box

Low- and
high-level

design

Low-Level
Design,

High-Level
Design

Independent
tester

Functional
and System

Testing

Black-box high-level
design,

requirements
specification

High-Level
Design

Customer

Acceptance
Testing

Black-box Requirements
specification

Requirements
Analysis

Customer

Regression
Testing

Black- and
white-box

high-level
design

Low-Level
Design, Actual

Code
Structure

Customer

Beta Testing Black-box None Changed Doc-
umentation,
High-Level

Design

Programmer(s)
or independent

testers

Table 3.1: Types of testing

3.2/ TEST-CASE-BASED CATEGORIZATION

Testing process consists of series of actions and events, in which testers would use them
as an input. There are two models to generate these series, Scenario-Based methods
(also known as structure-based methods) and random methods. In the following subsec-
tions, we discuss each of them briefly.

3.2.1/ RANDOM TESTING

Random testing means that test inputs are randomly selected from the input space.
The main idea of random testing is that randomness is not influenced by the tester
[Dadeau et al., 2008]. Although random testing is able to discover some errors quite
quickly, it often needs to be complemented with other techniques to increase test cov-
erage. The effectiveness of such more systematic testing methods is usually evaluated

28 CHAPTER 3. FUNDAMENTALS OF APPLICATION TESTING AND EVALUATION

by comparison to random testing [Delgrande et al., 2011].

3.2.2/ SCENARIO-BASED TESTING (STRUCTURE)

A scenario is a description of an imaginable or actual action and event sequence. Sce-
narios facilitate reflections about (potential) occurrences and the related opportunities
or risks. Furthermore, they help to find solutions or reactions to cope with the cor-
responding situations [Strembeck et al., 2004]. Scenarios (Use cases) are used to de-
scribe the functionality and behavior of a (software) system in a user-centered perspec-
tive [Ryser et al., 1999]. In other words it concentrates on what the user does, not what
the product does.
Scenarios can be designed by utilizing one of the following methods:

• Behavior Prediction: The testers imagine series of actions and events that could
be applied by a user. In small and mid-size software system, this method would be
feasible, especially if the user-input is limited.

• Capturing Events: In the large software systems, there are thousands of possible
scenarios, especially in the softwares that analyze huge volume of user input. The
testers capture series of user actions and analyze them in order to regenerate them
either by changing some input or by testing them on different platforms.

3.3/ APPLICATION-BASED CATEGORIZATION

Testing can be categorized depending on the targeted application. The traditional ap-
plications use the methods mentioned in (Subsection 3.1). In this subsection, we are
presenting the particularity of testing the other types of applications (Web applications
and mobile applications).

3.3.1/ WEB APPLICATION TESTING

Due to the particularities of web applications, testing them may be even more difficult than
testing traditional ones. Web applications have strict requirements of reliability, usability,
interoperability and security. Due to the exponential growth of web-based applications
and the vast number of users, testing is often neglected by developers. The following
list summarizes the characteristics of web applications that make them different from
traditional applications, from the point of view of testing [Di Lucca et al., 2006]:

• Users: Wide number of users distributed all over the world and accessing it con-
currently.

• Hardware: Heterogeneous execution environments composed of different hard-
ware (Servers, Routers, Firewalls), network connections, etc.

• Software - Server Side : Different server operating systems, web servers,
database management systems, different versions of systems and models.

3.3. APPLICATION-BASED CATEGORIZATION 29

Figure 3.1: The meta-model of a Web Application [Di Lucca et al., 2004]

• Software - Client Side : Different users operating systems, web browsers, different
localization settings, different languages and models.

• Contents (Pages) : Static contents, dynamic contents (per user, per network, per
country, per language, etc).

Figure 3.1 presents the possible items that can be identified in a web application. These
elements can be Web pages, or scripting modules, forms, applets, servlets, or other Web
objects. Web pages can be static or dynamic. While the content of a static Web page is
fixed, the content of a dynamic page is computed at run time by the server. There are two
types of testing techniques [Ricca et al., 2001]:

1. Static verification: analyzers scan the HTML pages in a Web site and detect
possible faults and anomalies.

2. Dynamic validation: It depends on White-box testing, it aims at exercising the
system by supplying a vector of input data (test case) and comparing the expected
outputs with the actual ones after execution.

3.3.2/ MOBILE APPLICATION TESTING

As mobile applications become more and more complex and ubiquitous, testing mobile
applications becomes a non-trivial process that takes more of time, effort and other re-
sources. Developers want to support as many devices as possible. Testers need to have
different types of mobile devices in order to test and validate mobile application.

30 CHAPTER 3. FUNDAMENTALS OF APPLICATION TESTING AND EVALUATION

There are many challenges in mobile application testing due to the nature of these appli-
cations [ARZENŠEK et al.,]:

1. Mobile Connectivity: Mobile applications connect to mobile networks, which can
vary in speed, security and reliability.

2. Resource constraints: Mobile applications use the resources of mobile devices,
which are very limited. The excessive use of resources can reduce the performance
of mobile devices and can cause malfunctions in the mobile application. During the
testing process the consumption of resources must be constantly monitored.

3. Autonomy: Different activities have a different impact on autonomy and during
the testing process all have to be monitored. All the device’s resources and activ-
ities use energy but not equally. GPS sensors, data transfer and video editing are
activities that use more energy than others.

4. Diversity of user interfaces: Mobile operating systems have different user inter-
faces, which are defined by rules and guidelines. Different mobile devices can react
differently to the same application code, which must be tested with Graphical User
Interface (GUI) testing.

5. Context awareness: Context aware mobile applications adapt and evolve based
on the data obtained from the environment. To insure the correctness of applications
operation, context-specific test selection techniques and coverage criteria have to
be produced.

6. Diversity of mobile devices: There are many different mobile devices, made
by different vendors, which have different hardware and software settings. The
diversity of mobile devices can also increase the costs and duration of the testing
process.

7. User experience: The adequacy of the user experience cannot be directly tested
because of the subjective nature of the entire process.

8. Touch screens: Touch screens enable the display and input of data as individual
values or as a group of data. Touch screen is also dependent on the mobile device’s
resources, in which it varies from device to another and from a user to another.

9. New programming languages and mobile operating systems: Programming
languages for mobile applications have been designed to support mobility, resource
management and new graphical user interfaces. Mobile operating systems are new
and still only partially reliable. To analyze the code it is necessary to be aware of
the specifics of the programming languages and how they operate, in addition to
the mobile operating system and its updates.

There are four approaches for testing mobile applications [Shaw, 2014] [Gao et al., 2014]:

1. Emulation-based testing
Emulation is to emulate (imitate) the behavior of a hardware device in software or
with a different hardware, or to emulate the behavior of a piece of software either
with another hardware or software. The emulator is the hardware of the software
that does the emulation [Del Barrio et al., 1998].

3.3. APPLICATION-BASED CATEGORIZATION 31

The emulation-based testing approach involves using a mobile device emulator
(also known as a device simulator), which creates a virtual machine version of a
mobile device for study on a personal computer. It is often included with a mobile
platform’s software development kit (such as Android SDK). It is relatively inexpen-
sive because no testing laboratory is needed and no physical devices have to be
purchased or rented. Often functionality is limited on these devices. For example,
testing gesture recognition is difficult or impossible on emulators. Another limitation
is its limited scale for evaluating QOS.

2. Device-based testing
The device-based testing approach requires setting up a testing laboratory and pur-
chasing real mobile devices. The number of different models of mobile devices on
the market today is already large and growing fast. Building a testing laboratory
using actual mobile devices equipped with different operating systems isn’t feasible
solution even for some large enterprises. These experimental laboratories typically
occupy a large amount of lab space, cost a lot of money to construct, update, and re-
quire considerable human expertise to operate. In addition, given their experimental
nature, there is little or no opportunity to recapture the costs through the applica-
tions. But on the other hand, it overcomes the limitation of testing gesture-based
application in Emulation-based testing. But it doesn’t solve the problems related
to system QoS because large-scale tests require many mobile devices, which is
usually impossible for enterprises.

3. Cloud-based testing
The basic idea is to build a mobile device cloud that can support testing services on
a large scale.
A research from Fujitsu [Fujitsu, 2010] suggests that testing and application devel-
opment rank second (57%) as the most likely workload to be put into the cloud after
Websites (61%). There are several factors that account for the migration of testing
in the cloud [Priyanka et al., 2012]:

• Testing is a periodic activity and requires new environments to be set up for
each project.

• Moving testing to the cloud is seen as a safe bet because it doesn’t include sen-
sitive corporate data and has minimal impact on the organization’s business-
as-usual activities.

• Applications are increasingly becoming dynamic, complex, distributed and
component-based, creating a multiplicity of new challenges for testing teams.

Cloud-based testing addresses the significant increase in demand for mobile testing
services by using a pay-as-you-go business model.

4. Crowd-based testing
The crowd-based testing approach involves using freelance or contracted testing
engineers or a community of end users. Crowd-based testing requires:

• Testing infrastructure.
• Service management server to support diverse users

This approach offers the benefits of in-the-wild testing without the need to invest in
a lab or purchase or rent devices, but at the risk of low testing quality and an uncer-
tain validation schedule for the other types of testing, depending on the geographic

32 CHAPTER 3. FUNDAMENTALS OF APPLICATION TESTING AND EVALUATION

distribution of the testers. This method could give more accurate results in testing
LBS (Location-Based Services) applications [Gao et al., 2014].

Having some criteria for selecting mobile application testing tools based on identified
challenges and issues is crucial condition for testers. (Table 3.2) [ARZENŠEK et al.,]
proposes a list of criteria that are defined based on the challenges.

Challenge /
Testing
strategy

Properties Values, range Supported feature

Mobile
Connectivity -

Connectivity
testing

Data transfer
speed

Range of
speeds (2G,
3G and 4G)

Supports changing or limiting
the data transfer speed

Mobile
Connectivity -

Functional
testing

Mobile network Constant,
partial, none

Supports changing the
consistency of the mobile

network

Bluetooth Enabled, not
enabled

Supports Bluetooth
connectivity

NFC Enabled, not
enabled

Supports NFC connectivity

Wi-Fi Enabled, not
enabled

Supports Wi-Fi connectivity

Wi-Fi Direct Enabled, not
enabled

Supports Wi-Fi Direct
connectivity

Resource
constraints -
Performance

testing

CPU 1 core, 2 core,
4 cores

Supports changing or limiting
the operation of CPU cores

CPU Speed (1Mhz to
2500Mhz)

Supports changing or limiting
the operation of CPU speed

cores
RAM (16Mb to 4Gb) Supports changing or limiting

amount of RAM
Memory (16Mb to

128Gb)
Supports changing or limiting

the amount of memory
Autonomy -
Load testing

Consumption Percentage of
the total battery

capacity

Supports monitoring the
battery consumption

Duration Time of the
total battery

capacity

Supports changing or limiting
the operation of CPU speed

cores
Diversity of

user interface
- Usability

testing

Guideline
checker

Mobile platform
specific Rules
and guidelines

GUI guideline checker

Context
awareness -
Functional

testing

GPS Simulated, real
data, not
enabled

Simulate data from the GPS

Continued on next page

3.3. APPLICATION-BASED CATEGORIZATION 33

Continued from previous page
Challenge /

Testing
strategy

Properties Values, range Supported feature

Neighbor
devices

Simulated, real
data, not
enabled

Simulate data from the
neighbor device

Altitude Simulated, real
data, not
enabled

Simulate data from the
barometer

Brightness Simulated, real
data, not
enabled

Simulate data from the light
sensor

Temperature Simulated, real
data, not
enabled

Simulate data from the
temperature sensor

Context Simulated, real
data, not
enabled

Simulate data from the
environment and the user

Context
adaption

Enabled, not
enabled

Simulate data from the context
in real time

Diversity of
mobile

devices -
Functional

testing

Vendor and
model

Enabled, not
enabled

Simulation of a specific mobile
device

Operating
system

Android, iOS,
BlackBerry,
Windows

Phone 7 and 8

Supports changing mobile
device platform

Operating
system
versions

Enabled, not
enabled

Supports changing mobile
device platform to different

versions
Diversity of

user interface
- Usability

testing

Screen
dimensions

Small (at least
426dp x

320dp), normal
(at least 470dp
x 320dp), large
screen (at least

640dp x
480dp), extra
large screen

(at least 960dp
x 720dp)

Supports changing screen size

User
experience -

Usability
testing

Layout checker Enabled, not
enabled

Simulate data from the GPS

Text visibility Supported, not
supported

Supports internationalization

Continued on next page

34 CHAPTER 3. FUNDAMENTALS OF APPLICATION TESTING AND EVALUATION

Continued from previous page
Challenge /

Testing
strategy

Properties Values, range Supported feature

Text grammar Simulated, real
data, not
enabled

Simulate data from the
barometer

Notifications Enabled, not
enabled

Supports notification
management

Interruptions Enabled, not
enabled

Supports interruptions
management

Touch
screens -
Usability
testing

Responsiveness Enabled to
measure, not

enabled to
measure

Supports measuring the
responsiveness of the screen

Gestured Enabled, not
enabled

Supports gesture recognition

Multi touch Enabled, not
enabled

Supports multi touch
recognition

Table 3.2: Criteria defined based on challenges

II
CONTRIBUTION - IOTAAS

35

4
INTERNET OF THINGS TESTING AS A

SERVICE (IOTAAS)

4.1/ INTRODUCTION

As mentioned in subsection A.5, there are five acknowledged types of cloud services of-
ferings: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), Infrastructure-as-
a-Service (IaaS), Testing as a Service (TaaS) and Mobile Testing as a Service (mTaaS).
Actually researchers and enterprises have defined many other types of services such
as: Storage-as-a-service, Database-as-a-service, Information-as-a-service, Process-as-
a-service, Integration-as-a-service, Security-as-a-service and Management/governance-
as-a-service [Linthicum, 2009]. Designing an architecture for testing and evaluating IoT
systems requires more than providing a server and several servers. It requires the abil-
ity to build all the details of the real environment where the system will be deployed/run.
Such environment could be built using a mix of the following items: real things (devices),
simulators and emulators. In this chapter, we will present our architecture for building a
cloud environment for offering IoT testing as a service. Section 4.2 discusses the main
concept and the targets of building an IoTaaS. Section 4.3 presents the main architecture
used to build an IoTaaS. Sections 4.4 to 4.9 describe the different components of the
proposed architecture.

4.2/ IOTAAS CONCEPT

Having one environment for testing all IoT systems would be an impossible target to re-
alize. Any IoTaaS architecture (Figure 4.1) should give the possibility to have several
separated and distributed IoTaaS clouds. Each cloud should be manageable separately
from the other IoTaaS, and it should consist of all the components needed for testing
certain IoT system(s). An IoTaaS could communicate with another IoTaaS(s) in order to
demand a service or the usage of a certain resource. Each IoTaaS should be able to
permit/deny access to its services and resources depending on a security model (Au-
thentication, Authorization, Encryption). The inter-IoTaaS services could be paid ones.
An IoTaaS might be formed of two or more IoTaaSs.
IoTaaS design aims at providing the researchers and the enterprises with a standard
to build their own clouds for testing IoT systems. At the same time, they can cooper-
ate among them by using some services or resources from certain IoTaaS which might

37

38 CHAPTER 4. INTERNET OF THINGS TESTING AS A SERVICE (IOTAAS)

IoTaaS
IoTaaS

IoTaaS

IoTaaS

IoTaaSIoTaaS IoTaaS

IoTaaS

IoTaaS

IoTaaS

IoTaaS

Figure 4.1: IoTaaS Concept

not be available in other IoTaaSs. IoTaaSs could utilize services from present-day cloud
computing providers, such as Amazon, Google, etc. It is important to mention here that
IoTaaS is an abstract design dedicated for testing IoT, this design could be customized
and integrated in any other cloud computing frameworks.

4.3/ IOTAAS ARCHITECTURE

An IoT environment would consist of any device might be able to exchange data di-
rectly/indirectly with Internet/Intranet. In general, a simple IoT environment is formed
of:

• Sensor: It is a device which can detect a physical state and convert it into data
(readable by computer).

• Actuator: It is a device which can change a physical state.

4.3. IOTAAS ARCHITECTURE 39

Users

Server

Gateways

Cloud
Clients

Inter-
IoTaaSs

Parent Peers

Childservers

NEP

Server Emulator

Client Scenario

Things

Emulators

Entities

Scenarios

Scenario Manager

Scenario Launcher

Figure 4.2: IoTaaS Architecture

• Gateway: It is a dedicated device or an application to read data from sensors, send
data to actuators.

• Network: Many types of networks would exist in an IoT environment. Some net-
works would be traditional ones, such as Wi-Fi, while others would use technologies
which have been developed for IoT.

• Application: It is the software which processes data. It could be hosted on any
type of devices, such as: server, personal computer (PC), mobile, tablet, etc.

The existence of these components could be realized by providing the devices (ex. sen-
sors), or by using emulators. An IoTaaS might be used to test and evaluate any compo-
nent of an IoT. For example, new sensors should be tested with certain IoT frameworks or
with certain gateways, an updated IoT frameworks should be tested in order to test their
compatibility with the old actuators, etc. The proposed IoTaaS architecture consists of 7
modules (components) (Figure 4.2). These components are the following: Things, Gate-
ways, Emulators, Network Emulation Protocol (NEP), Scenarios, Cloud and the Server.
All the IoTaaS components are described in details in the following sections.

40 CHAPTER 4. INTERNET OF THINGS TESTING AS A SERVICE (IOTAAS)

4.4/ THINGS

Things are literally all objects in our physical and virtual worlds. In this section we divided
these objects to two types, Entities and Emulators. In the following we discuss each one
of these types.

4.4.1/ ENTITIES

These are the main components in any IoT architecture. Internet-of-Things-Architecture
(IoT-A) B.3 differentiates between two main types of entities, Physical Entity and Virtual
Entity. A Virtual Entity is the representation of a Physical Entity in the digital world. An
Augmented Entity is the composition of one Virtual Entity and the Physical Entity it is
associated to. The IoT can communicate with physical entities and with Augmented Entity
through their virtual entities. So entities here mean Virtual Entities. For example, in a
mobile device, the part, that IoT architecture is interested in, is the operating system
that can control the device itself, or any application can perform certain function on the
device. An entity could be any object which is communicable directly by the IoT’s system.
Computers and mobile devices are the classical examples of entities. In the last years,
hundred of objects and devices have been evolved to be connectable entities, such as
watches, home appliances, cars, medical instruments, industrial machines, etc.
We should mention here that entities include only the objects and the devices that are
communicable directly using their own virtual entities. For other devices which aren’t
capable to do so, IoT defined the concept of Gateways which is covered in section 4.5.
The operating systems used in entities would be any traditional system, such as Linux,
Unix, Windows, IOS, OSX, Android, etc. The system could be an IoT OS such as Contiki,
Tiny OS, RIOT, etc. Applications of entities would be developed using any programming
language.

4.4.2/ EMULATORS

An emulator is hardware or software that enables one computer system (called the host)
to behave like another computer system (called the guest). An emulator typically enables
the host system to run software or use peripheral devices designed for the guest system.
Researchers and developers agree that IoT will have many operating systems, many
devices architectures, many programming languages. One IoT rarely will consist of one
type of objects, or of similar objects (functionally) having the same operating systems for
example. The variety is one of the main points to be considered in IoT architectures.
Building an environment for testing IoT applications would require mimicking thousands of
objects using emulators. Emulators are an important part in any environment for testing
applications, because it wouldn’t be possible for one framework to include all types of
objects for many reasons, such as:

• The cost.

• Installation and operational efforts.

• Special environmental conditions could be needed.

4.5. GATEWAYS 41

• The complexity of testing some application in the real environment while covering
all situations, such as medical applications.

One of the main points to be considered in any IoT architecture is the Heterogeneity

4.5/ GATEWAYS

An IoT Gateway is a joint point that help to connect an object or a set of objects with the
IoT infrastructure. A gateway can be a hardware or a software, and it should be able to
translate the data from/to the objects which are connected to. Gateways can be used to
do many functions, such as:

• Reading data from sensors and send it to a server or to other objects.

• Relaying orders from a server or other objects to actuators.

• Processing data from a set of objects and sending the result to the concerned entity.

• Providing a level of security by encrypting data or by controlling access to the ob-
jects.

• Storing data in case of losing connection with the IoT infrastructure.

• Taking local decision in case of emergency or the need to take an instant decision.

Gateways enable the connectivity of legacy devices by providing the needed interface.
They enable the next generation intelligent infrastructure to be as simple as possible
by providing important functions which could add many level of complexity in case of
integrating them into the objects directly.

4.6/ NETWORK EMULATION PROTOCOL (NEP)

Network in IoT infrastructure can be of any type. Classical technologies in nowadays
Internet and technologies designed specifically for connecting IoT objects coexist in the
same infrastructure. Traditional Internet consists of billions of devices (computers, mobile
devices, printers, cameras, etc.) connected using different types of technologies, such
as: Ethernet, FastEthernet, GigaEthernet, IEEE 802.11, xDSL,2G,3G,4G, etc. Some
protocols and technologies have been designed for IoT, such as: IEEE 802.15.5, NFC,
Bluetooth Low Energy (BLE),etc. Each one of these technologies has different character-
istics (Bandwidth, throughput, latency, jitter, error rate, power consumption, etc.). These
technologies are mainly used as follows:

• Server to Infrastructure: Testing environments are usually equipped with high
speed networks in order to give the best performance for exchanging data between
the servers and the infrastructure. Classical technologies are usually used.

• Object to Infrastructure: The technology used differs according to the object. All
traditional and IoT technologies are used.

42 CHAPTER 4. INTERNET OF THINGS TESTING AS A SERVICE (IOTAAS)

• Object to Object: Technologies based on Ad hoc and mesh are mostly used to
exchange data between objects directly.

In the real environments, network are subject to performance problems such as: ran-
dom delays, transmission errors, packet loss, uncontrolled congestion, etc. In testing
environments, generally network don’t have such problems. Testing applications in such
environments provide misleading results.
In simulators, simplified mathematical models of data sources, channels and protocols
are applied to change the characteristics of a network in order to degrade its perfor-
mance. In network emulation, one simulates the properties of an existing or planned
network using emulation of specific network equipment.
IoT applications are meant to be connected permanently. Objects are connected us-
ing different technologies, and the generated data goes through different segments of
network. Testing environments should have a distributed system for network emulation
integrated in testing servers. This system should be capable to perform the following
tasks:

• Controlling traffic in different segment of networks.

• Classifying traffic into multiple flow according to OSI Layers 2→7.

• Emulating specific network access (Zigbee, IEEE 802.11, 2G, 3G, etc).

• Analyzing response time and packet loss between network devices.

Our proposal for this system consists of four main components (Figure 4.3): NEP Server,
NEP Emulator, NEP Client and NEP Scenario. In the following subsection, we are de-
scribing the functions of these components. It is important here to mention that these
components could be distributed over different networks (PAN,LAN,WAN,etc). Network
segment could consist of many physical segments.

4.6.1/ NEP SERVER

It is the coordinator that controls all other components. NEP Server can run any operating
system on a dedicated machine, or along with a NEP Emulator. It can be located in any
network segment as long as it is accessible by all NEP Emulators. NEP Server hosts the
emulation database which contains the following data:

• NEP Emulators data, such as: network address, network connection, network char-
acteristics, GNSS coordinates, etc.

• Network segment statistics.

• Scenarios: Time-based, segment-based and application-based scenarios.

NEP Server sends scenarios to NEP Emulators through their NEP Updater subcompo-
nent. Each testing environment needs at least one NEP Server.

4.6. NETWORK EMULATION PROTOCOL (NEP) 43

Server 2

NEP Server

Network

NEP Controller
NEP

Updater

Server 1

NEP Controller
NEP

Updater

DB

Object2
NEP Client

Object1
NEP Client

DB
Data Flow

Network Link

DB

Thing Emulators

NEP Emulator

Thing Emulators

NEP Emulator

Figure 4.3: IoTaaS NEP Architecture

4.6.2/ NEP EMULATOR

In distributed testing environments, there are servers to communicate with emulators and
devices. Each testing server should have a NEP Emulator module installed on it. NEP
Emulator consists of two main subcomponents: NEP Controller and NEP Updater. In the
following, we are presenting these two subcomponents.

4.6.2.1/ NEP CONTROLLER

NEP Controller is responsible of the following tasks:

• Building and updating local database of network statistics.

• Conducting periodic tests to collect network statistics between the server and each
NEP Controllers and NEP Clients individually.

• Checking the local database to retrieve the network scenarios which should be ap-
plied.

• Applying network scenarios on the application traffic exchanged with other devices.

NEP Controller can use static scenarios, or it can control the traffic depending on a pre-
defined propagation model. For performance reasons, NEP Controller should be written

44 CHAPTER 4. INTERNET OF THINGS TESTING AS A SERVICE (IOTAAS)

using a programming language capable of accessing the network drivers directly without
a mediator system.

4.6.2.2/ NEP UPDATER

NEP Updater maintains the connection with the NEP Server. The data exchanged be-
tween the two components consists of:

• To NEP Server: The network statistics which are collected by NEP Controller.

• From NEP Server: The network scenarios which should be added to the local
database in the NEP Emulator.

NEP Updater doesn’t need to direct access to the network, so it could be developed using
any suitable programming language.

4.6.3/ NEP CLIENT

The NEP Emulator is responsible for many tasks and it needs direct access to the net-
work. These tasks could increase device power consumption, use more memory and
keep the CPU busy. Therefore it would overload the small devices (things). NEP Client
can be used in these devices. It doesn’t initiate any test or communication with other NEP
entities. NEP Client’s function is to reply to the requests from the NEP controller. This
request/response exchange is used to calculate the network performance between the
device and the NEP Emulator.

4.6.4/ NEP SCENARIO

It defines the network characteristics which should be applied by NEP Controller. Each
scenario should specify the time period of execution, in addition to designate the traffic
which would be manipulated depending on network address, application port, application
signature, transport protocol, etc. The scenario can be one of many forms, such as:

• Static Form: In this form, the scenario would define the general characteristics for
the network, such as: bandwidth, error rate,etc. The NEP Controller will apply these
characteristics statistically on the designated traffic, during the specific time period,
regardless of the network statistics in the local database.

• Dynamic Form: The scenario defines the performance needed for the designated
traffic. The NEP Controllers use the network statistics to delay certain packets or to
give them a priority to achieve the performance defined in the scenario. Propagation
models could be used here in order to simulate certain network behaviors.

In static forms, the scenario could be applied on outgoing/incoming packets. It isn’t the
case for the dynamic forms, where delaying packets should be applied on incoming pack-
ets, while raising the packet priority could be applied on outgoing/incoming packets. De-
velopers and testers can define new forms or subcategories for these forms.

4.7. SCENARIOS 45

Scenario
Manager

Server - 01

Scenario
Launcher

Thing01 – OS X1

Scenario
Launcher

Thing02 – OS X2

Scenario
Launcher

Thing03 – OS X2

Scenario
Launcher

Thing04 – OS X3

Network

Figure 4.4: IoTaaS - Scenario’s General Architecture

4.7/ SCENARIOS

A scenario is an outline or model of an expected or supposed sequence of events. For
any application, there is a certain number of sequences of actions and events. This num-
ber varies depending on the application itself. For some applications, it could be infinite
number of scenarios.
For standalone applications, it is possible to prepare a testing scenario in order to test
some (or all) sequences of events. The same application could have different versions
for same operating systems, or different versions for different operating systems. In this
case, each version should have its own scenario.
It is getting much more complicated when talking about testing network-based applica-
tions, where events depend on results or actions from other applications on the same
device or on a different device. In nowadays applications, most of testing scenarios de-
pend on user input. In IoT applications, the majority of events and actions take place
between devices and applications directly (user input isn’t needed). A standalone-based
testing wouldn’t be sufficient to cover all possible scenarios for a system, nor for an appli-
cation.
The proposed solution is client-server-based scenario module (Figure 4.4). The mod-
ule consists of three main components: Scenario Files, Scenario Manager (Server) and

46 CHAPTER 4. INTERNET OF THINGS TESTING AS A SERVICE (IOTAAS)

Scenario Launcher (Client). The main idea of this module is to separate the actions on
a given framework from the sequence of events (scenario) for an application. In other
words, the same scenario file (XML file in this design) could be sent to different systems
in order to run the same sequence of events. In the following subsections, we discuss in
details these three components.

4.7.1/ SCENARIO FILES

Scenarios should be written and described using a cross-platform machine-readable lan-
guage, such as XML. The following attributes define a general Trigger used in this file
(repeatedly):

• Type: In general, there are 5 different actions which could be used as a trigger:

1. counter: a counter is set to 0. The countdown will be initialized starting from
the integer value in the Value attribute.

2. time: reaching the time specified in the Value attribute. Time format is YYYY-
MM-DDThh:mm:ss.sTZD (ISO 8601).

3. action: an action is triggered. The Value attribute should contain this action
name or ID.

4. delay: a countdown timer has reached zero. The Value would have this time
in the format PnYnMnDTnHnMnS (ISO 8601).

5. never: infinity.

• Value: This attribute could have different type of values depending on Type’s at-
tribute.

In the following, we list the main tags and attributes in this file (Code 4.7.1):

• Scenario: It consists of the attributes which define the scenario in general. This is
a mandatory tag. It has 5 main attributes:

– ID: It is the scenario identifier. Each scenario should have a unique identifier.
This identifier is used to collect the results and to prepare the statistics.

– Name: It is human-readable name, it could be used to distinguish different
scenarios.

– Type: In case of having different categories of scenarios, this attribute could
be used to indicate the type.

• Start: This is an optional tag. By default, the scenario will be executed directly
unless of using this tag in order to fix a condition. It has a trigger StartTrigger
(Type/Value) which is used to define when the scenario should be started.

• Loop: A scenario could be executed more than once. This is an optional tag (in
case of its absence, scenario will be executed only once). The following attributes
define loop settings:

– Enabled: This is a boolean attribute determining whether the scenario will be
applied once (=0), or it would be repeated (=1).

4.7. SCENARIOS 47

– StopLoopTrigger (Type/Value): It is a trigger used to define when the sce-
nario should be stopped.

• End: This is an optional tag. By default, the scenario will be stopped directly
after the last action is applied (loop isn’t defined). It has a trigger StopTrigger
(Type/Value) which is used to define when the scenario should be stopped. In case
of using this tag, the scenario will be stopped as soon as the trigger is hit, even in
the middle of execution of the scenario. This tag should have a priority over all other
events.

• action: Each scenario consists of a sequence of actions. Each action has 4 main
attributes

– ID: A unique identifier for each action is required. This ID is usually given by
the framework.

– Name: It could be the same as the ID. It could be a human-readable name.

– Command: In case that the action isn’t predefined, a command could be pro-
vided in order to be executed.

An action could have parameter(s). Each parameter has the following attributes:

– ID: This is a local identifier. Each parameter of the same action should have
its own ID.

– Name: It is a human-readable name. It can have the same value as ID.

– Type: It defines the type of the parameter. The type could be any simple type,
such as: integer,short, float, string, etc. The complex types could be: file or
server, which means that it should read the parameter from a file, or it should
contact an external server.

– Value: In case of simple types, this attribute contains the value of this param-
eter. Otherwise, this attribute will have file path or server URL. This attribute
could be omitted in case of having an array of values.

A parameter could have an array of values. Each value is defined as follows:

– ID: A unique identifier for each value is required.

– Name: It is a human-readable name. It can have the same value as ID.

– Value: In case of simple types, this attribute contains the value of this param-
eter. Otherwise, this attribute will have file path or server URL.

Other tags and attributes could be defined. It is important to mention that the same file
should be used for all platforms.

48 CHAPTER 4. INTERNET OF THINGS TESTING AS A SERVICE (IOTAAS)

Code 4.7.1 - Scenario File Architecture (XML)

<?xml version="1.0" encoding="UTF-8"?>
<scenario id="" name="" type="">
<start startTriggerType="" startTriggerType=""/>
<loop enabled="0/1" stopLoopTriggerType="" stopLoopTriggerValue=""/>
<end type="" value=""/>
<actions>
<action id="" name="" command="">

<parameters>
<parameter id="" name="" type="" value=""/>
<parameter id="" name="" type="" >
<values>

<value id="" name="" value=""/>
<value id="" name="" value=""/>

</values>
</parameter>

</parameters>
</action>

</actions>
</scenario>

4.7.2/ SCENARIO MANAGER

This component performs all functions on server’s side. Scenario Manager could be
written in any programing language and it can run on any operating system. There are
four main subcomponents which are responsible of performing server’s functions (Figure
4.5):

• Dispatcher: The principal function of this subcomponent is to maintain connections
with scenario launchers (clients) in order to exchange data. The data exchanged is
divided into four types:

– Scenario Files: Dispatcher sends to launcher a scenario file (if exists). Sce-
nario files could be stored directly on the server, separated database or on
external storage server. Each scenario file should be categorized according
to: the application, the scenario and the client.

– Parameters: Scenario Launchers would need certain parameters from the
scenario manager. Scenario Launchers send a request, the dispatcher sends
back the requested parameter.

– Dynamic Actions: Dispatcher can send certain actions to certain clients.
These actions would be obtained from the application analyzer.

– Results: A Scenario Launcher sends the results of executing certain sce-
nario (or certain dynamic actions) as soon as it has a connection with its own
scenario manager. The results should be categorized according to: the appli-
cation, the scenario and the client.

Dispatcher and Scenario Launchers can communicate using a cross-platform dis-
tributed application protocol, such as: Web Services.

4.7. SCENARIOS 49

App1-R1 App1-R2

App2-R1

Results

Dispatcher

Results

Scenarios

Scenario Manager

C1

Scenarios - XML

C2

S1
App2

C1

C2

S2
App1

C1

C4

S1
C1

C3

S2

S Scenario

App Application

C Client

R Result

Dynamic
actions

Analyzers

App1 Analyzer

App2 Analyzer

Figure 4.5: IoTaaS - Scenario Manager

• Results: Results are all data received from Scenario Launchers as a result of exe-
cuting a scenario or a dynamic action. Dispatcher receives these results and store
them directly on the server, dedicated database or on an external server.

• Analyzers: Scenario Manager could have analyzers for certain application. An an-
alyzer would analyze the results received from the Scenario Launchers. Depending
on this analyze, it could send direct actions to certain clients through the Dispatcher.
Analyzers can be a good tool in order to give dynamicity to a testing scenario. Ana-
lyzer output could be added as results.

Several Scenario Managers could be used in a given environment. Scenario Launch-
ers could be configured to have a backup Scenario Manager. Other solutions could be
provided using load-balancers techniques.

4.7.3/ SCENARIO LAUNCHER

Scenario Launcher is the component on the client device that perform testing and evaluat-
ing functions. This component varies depending on the device’s framework. Each frame-
work (or each version of framework) should have its own version of Scenario Launcher, it
should be developed using a programing language supported by the framework, such as
Java for Android and Objective C for OSX and iOS, etc.
There are four main subcomponents in any Scenario Launcher. In the following, we
present these subcomponents (Figure 4.6):

• Connector: This subcomponent is responsible of maintaining the connection with
a Scenario Manager. This connection is used in order to exchange following types
of data:

– Scenario Files: Scenario Launcher receives the scenario file(s) from a Sce-
nario Dispatcher. It stores Scenario File(s) locally. Each scenario file should

50 CHAPTER 4. INTERNET OF THINGS TESTING AS A SERVICE (IOTAAS)

App1 App2

App3

S1

App1-R1 App1-R2App2-R1

Results

XML Apps

Connector

Results

EventsScenarios

Scenario Launcher

S2

App1
S1

S2

App2

Tester

Scenarios

Dynamic events
External Parameters

 Results

Figure 4.6: IoTaaS - Scenario Launcher

be categorized according to: the application and the scenario.

– Parameters: When Scenario Launcher needs certain parameters from the
scenario manager. Scenario Launcher sends a request, the dispatcher sends
back the requested parameter.

– Dynamic Actions: When the Scenario Launcher receives a dynamic action
from the Scenario Manager, this action will have a priority over all other actions.

– Results: The results of scenario executed (or dynamic actions), they will be
sent directly or from the local storage.

Connector could be considered as the bridge that connects between the Scenario
Manager and the other subcomponents in the Scenario Launcher.

• Tester: It is responsible of executing the scenarios which have been received from
the Scenario Manager. The tester should have the permissions to:

– inject events into other applications on the same device.

– listen to events dispatched by other applications or by the operating system
itself.

– read/write files from/to the local storage.

– set/get operating system parameters.

Tester should be multi-threaded application in order to execute multiple scenarios
at the same time.

• Results: In case of having a connection with the Scenario Manager, the Scenario
Launcher sends the results of executing certain scenario (or certain dynamic ac-
tions) directly, otherwise the results would be stored locally awaiting for a connec-
tion with a Scenario Manager. The results should be categorized according to the
application and the scenario.

4.8. CLOUD 51

• Applications (Apps): On the same device, one application at least should be the
target of testing and evaluating. The same application would have different versions
depending on the device’s framework. The testing application(s) should permit other
applications to inject events.

For security reasons, and since the Scenario Launcher would have access to all the
functions on the device, Scenario Launcher applications should run only in special mode
(ex. debugging mode). This mode should be turned on/off manually by the user or the
tester. This could protect normal devices from being hacked by using these privileges an
permissions.

4.8/ CLOUD

An IoTaaS could consists of several servers. These servers could be organized in a tree-
based structure, ad hoc structure or mesh structure. The structure is logical and it has
no effect on how the servers are physically connected to the network(s). In case of an
IoTaaS with only one server, this component would not exist. The Cloud manager might
consists of 5 subcomponents. The first two subcomponents are Parent and Childservers
subcomponents which exist only in a tree-based structure. Peers subcomponent exists
in case of ad hoc or mesh structure. Clients subcomponent exists in case of commercial-
izing the IoTaaS services. The Inter-IoTaaSs Communication maintains the connection
with the other IoTaaSs. In the following, we are going to discuss each one of these sub-
components and their functionality.

• Parent: In a tree-based structure, every server (except for the root) would have
a Parent server. In this case, the server is called a "Childserver". The Parent
subcomponent is responsible of:

– Maintaining the connection with the parent.
– Transferring the requests originated from the server itself and received from

the childservers to the parent.
– Transferring the responses received from the parent to the server which has

initiated the request.
– Sending cloud updates to its childservers.

• Childservers: In a tree-based structure, a server could have childservers, and in
this case it is called a Parent server. This subcomponent manages the childservers
which are connected to this server. The childserver is responsible of:

– Maintaining connections with the childservers.
– Transferring requests originated from the server itself and received from the

childservers to the parent.
– Transferring responses received from the parent to the server which has initi-

ated the request.
– Sending cloud updates to its childservers.

• Peers: In ad hoc and mesh structures, all servers would be peers. That means
there is no parent and childservers. Each peer could be connected to several other
peers. In this case, the peer is responsible of:

52 CHAPTER 4. INTERNET OF THINGS TESTING AS A SERVICE (IOTAAS)

– Maintaining connections with other peers.
– Running a routing protocol, such as Optimized Link State Routing Protocol

(OLSR), Ad hoc On-demand Distance Vector(AODV), etc.
– Maintaining the servers’ topology.
– Forwarding requests and responses to their respective destinations.

• Clients: Any IoTaaS should provide an interface for the users so they can test and
evaluate their systems. An Authentication, authorization, and accounting (AAA)
system should be provided in order to give the clients the needed access only to
the reserved components and things. The system should be able to serve several
clients at the same time without affecting each other. The client interface could be
provided using a desktop application or web application.

• Inter-IoTaaSs Communication: It is expected to have specialized IoTaaS architec-
tures. For example, an IoTaaS for medical applications, another one for transporta-
tion, etc. The IoTaaS should be able to cooperate with other IoTaaSs in order to
provide the clients with one environment in order to test and evaluate their systems.
Each IoTaaS should implement a unified interface to communicate with the other
IoTaaSs.

4.9/ SERVERS

The term Server refers to the system (software) that runs on the server, and not to the
hardware, nor to the operating system. The operating system could be any that is capable
of running network-based applications. The IoTaaS server is the central component of the
IoTaaS architecture, it is the system which manages all other components of an IoTaaS
architecture. The server could be developed using any programming language which
supports multithreading and distributed techniques. Any server implementation should
have three main components:

• Daemon: It is the subcomponent which manages the server, provides the interfaces
which should be implemented by the other subcomponents and bridges all the other
subcomponents.

• User Interface (UI): The user interface should simplify managing the subcompo-
nents. The UI could be a Graphical User Interface (GUI) or a Command Line In-
terface (CLI). The interface which is mentioned here isn’t the same as clients’ one.
This interface should be accessed only by the IoTaaS managers.

• Reporter: This subcomponent manages the log generated by other subcompo-
nents. Reporter should be able to analyze the logging data and give the results.
This subcomponent should work depending on dynamic rules in order to be cus-
tomized according to the given environment and the testing scenarios. The data
should be organized in exportable form in order to give the possibility to analyze it
using external tools.

For the other components, each IoTaaS implementation can decide which of these man-
agers would be integrated in the server. For example, whether the NEP would be neces-
sary in this environment or not, whether the gateways would be integrated in the same
server or they will be managed by another service, etc.

4.10. USER 53

4.10/ USER

The end user is the ultimate judge of any technology. Any testing and evaluation archi-
tecture which would ignore this fact would fail shortly. Unfortunately, measuring users’
satisfaction can be difficult but it isn’t impossible. An IoTaaS should provide the interfaces
to measure the users’ satisfaction by allowing human testers to give their opinion after
interacting with the IoT system and devices. Users’ satisfaction could be predicted but it
might not be fully automated.

4.11/ CONCLUSION

IoTaaS which is an architecture for testing IoT has been provided. It describes the main
components which could be existed in any IoT testing environment. The architecture
could be used in smart grid, smart city, WSN. The main idea of this architecture is to
enable communication and service exchange between testing environments of different
IoT sub-domains which lead to the possibility to have one distributed environment for test-
ing several IoT applications. The architecture consists of seven components which cover
managing physical/virtual things and objects, communicating with entities directly and in-
directly, emulating certain types of networks, generating and managing testing scenarios,
integrating human experiences and managing connections with other IoTaaS-based test-
ing environment.
In chapter 5, we present Cloud Environment for Mobile Application Testing (CEMAT)
which is our pilot IoTaaS-based project to test mobile application.

5
IOTAAS PILOT IMPLEMENTATION

5.1/ INTRODUCTION

IoTaaS main architecture enables developer and tester to deal with all types of things
(devices). IoTaaS is an abstract architecture which could be implemented for different en-
vironments. In this chapter, we are presenting the pilot implementation of IoTaaS under
the code name CEMAT (Cloud Environment for Mobile Application Testing) which fo-
cuses on mobile devices and their connected objects. The goal of this implementation is
to prove the possibility of realizing IoTaaS architecture. CEMAT provides a distributed en-
vironment for testing and evaluating mobile applications. It organizes the servers in a tree
structure. Each server might have several mobile phones and several emulators. CEMAT
enables developers and testers to test and evaluate different scenarios of their applica-
tions on many mobile devices and emulators at the same time. The rest of this chapter
is organized as follows: Section 5.2 discusses the selection criteria of a mobile operating
system to be the first to be supported in CEMAT. Section 5.3 describes the structure of
CEMAT server. Section 5.4 presents the experiments which have been carried out to test
CEMAT functions.

5.2/ MOBILE OPERATING SYSTEM

The predecessors of today’s smartphones are yesterday’s personal digital assistants
(PDA) and mobile phones. Mobile phones gave consumers the convenience of having a
phone wherever they went, while PDA’s gave consumers the ability to easily carry around
all of their personal information (address book, calendar, note pad, etc.) and have ac-
cess to their email or other data. The smartphone began as a combination of these two
devices, giving consumers the convenience of one device that performed both functions
[Cromar, 2010]. In 1992, IBM started developing the first smartphone known as "Simon".
Then in 1996, Nokia came out with the Nokia 9000 which included all the functionality
of a PDA and a phone. The first iPhone was released on June 29, 2007 with Apple’s
iOS mobile operating system. On November 5, 2007, the Open Handset Alliance, a con-
sortium of technology companies including Google, device manufacturers such as HTC,
Sony and Samsung, wireless carriers such as Sprint Nextel and T-Mobile, and chipset
makers such as Qualcomm and Texas Instruments, unveiled itself, with a goal to develop
open standards for mobile devices. Android was unveiled as its first product, a mobile de-
vice platform built on the Linux kernel version 2.6.25 [Alliance, 2015b]. Windows Phone

55

56 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

Figure 5.1: Top 5 Mobile & Tablet Operating Systems

operating system has been developed by Microsoft for smartphones as the replacement
successor to Windows Mobile. BlackBerry OS is a mobile operating system developed
by BlackBerry Ltd for its BlackBerry smartphones. Symbian is an open-source platform
developed by Symbian Foundation in 2009. Symbian was used by many major mobile
phone brands, mainly by Nokia. The last major update for Symbian was in October 2012
by Nokia. Many other mobile operating systems have been developed such as: Bada,
Fire OS by Amazon, MIUI by Xiaomi Tech, Flyme OS is develop by Meizu, Firefox OS
is from Mozilla, Sailfish OS is from Jolla, Tizen which is hosted by the Linux Foundation
and guided by a Technical Steering Group composed of Intel and Samsung and Ubuntu
Touch OS is from Canonical Ltd.
Figure 5.1 shows market statistics for the top 5 mobile & tablet operating systems used
in world. It compares mobile market statistics for the last three years (2012-2015) with
statistics for the last year (2014-2015) [StatCounter, 2015]. Statistics show that Android
dominates the market since 2012. During the last year, Android kept gaining more market
share and it acquired about 53% of the market mobile operating systems. iOS acquired
about 31% of the market which means that Android and iOS control about 84% of the
market. In the following, we provide a brief list of the advantages of Android Android OS
compared to iOS:

• Android’s source code is released under open source licenses.

• It has specialized user interfaces for televisions (Android TV), cars (Android Auto),
and wrist watches (Android Wear).

• It is supported by a wide range of mobile device manufacturers.

5.3. SERVER ARCHITECTURE 57

In addition to that, a specialized version of Android for IoT applications is under develop-
ment. For all these reasons, Android was the best choice for CEMAT.
The Android platform has been deployed across a wide range of devices, such as mobile
phones, tablets, watches, televisions and cars. Nowadays, there are hundreds of devices
with Android operating system. Not all of these devices run the official versions which are
developed and released by Google.
Emulator is one of the most important tools for testing and evaluation mobile applications.
The emulator is a virtual mobile device that runs on a computer. The emulator enables
developers to develop and test Android applications without using a physical device. An-
droid provides an emulator as part of its Software Development Kit (SDK). Android emu-
lators are customizable tools, developers can change the parameters in order to simulate
certain device (e.g. screen sizes and resolutions, underlying hardware configurations, SD
card size, RAM size etc.). Developers can simulate calling and SMS messaging between
two emulator instances, in addition of running location based services (using "dummy"
GPS coordinates). There are many limitations in android emulators, such as: the limited
performance comparing to read devices, the inability to determine device state and net-
work state, the lack of Wi-Fi and bluetooth support.
Many independent projects are working to develop emulation environment for android op-
erating system. The most important projects are Genymotion, Andy, BlueStacks, ARC
Welder, ARChon Custom Runtime and AMI DuOS. These tools can be categorized into
two main categories. The first category contains the tools that run as applications on a
desktop operating system (such as : Windows, Mac and linux), such as Genymotion and
Andy. The tools in the second category run as a plug-in extension in an Internet browser,
such as ARC Welder. Other projects are working to port android versions as complete
operating system in order to be installed on real computers, such as: Android-x86 and
Android-IA.
Android-x86 is an open source project licensed under Apache Public License 2.0 to
port Android open source project to x86 platform [android x86, 2015]. Different an-
droid versions have been ported to several x86-based computers, such as: ASUS Eee
PCs/Laptops, Viewsonic Viewpad 10, Dell Inspiron Mini Duo, Samsung Q1U, Viliv S5,
Lenovo ThinkPad x61 Tablet. Android-x86 provides a complete, compilable and workable
source tree which simplifies modifying and recompiling Android system files.

5.3/ SERVER ARCHITECTURE

CEMAT server is the main component of the cloud which refers to the application which
will handle CEMAT functions. Each CEMAT environment should have at least one server.
There is no special requirements for server’s hardware. For the server’s operating sys-
tem, the three main choices of operating system (Microsoft, Linux and Mac) could be
used. In our implementation, we used Linux Ubuntu Server 14.04.2 LTS - 64 bits. The
programming language used is Java, which means that the same application could be
deployed on the other operating systems (Windows, Mac). In order to eliminate the need
to recompile the application with each change, all the parameters (paths, variables and
commands) that could/should be changed according to the system or the environment
have been stored in XML files. Figure 5.2 shows the architecture that has been used in
the implementation. The components of the architecture will be described in the following
subsections.

58 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

Cloud

Things

Devices

Emulators

Scenarios

LoggingGUI

Traffic Shaper

 Parent
 Communicator

Child-Servers
Manager

Controller

USB

Network Virtual

Daemon

Paths Manager

Inter-Components
 CommunicationsContainers

XML-GUIs

Live Log

XML Log

Batch-Based

XML-Based

Figure 5.2: CEMAT Server Architecture

5.3.1/ DAEMON

CEMAT Daemon is the central component in CEMAT server architecture which has many
responsibilities. Daemon is responsible of maintaining the link between the parameters
which are used in the application and the ones in the XML files. For this reason, Daemon
distinguish four main types of parameters (Figure 5.3):

• Paths Parameters: All paths used in CEMAT could be modified directly in a XML
file. Paths could be Other XML file paths, Android SDK tools path or any other paths
related to operating system. Paths.xml should be placed in the same directory with
CEMAT jar file.

• Main Parameters: This file contains all default values that could be used by CEMAT.
for example, TCP ports range, default values for integer and string parameters,etc.

• Cloud Parameters: They are formed out of three separated XML files. First file
contains all parameters related to cloud connections, such as connection timeout,
retrying delay, etc. The second file contains local host information, such as: IP

5.3. SERVER ARCHITECTURE 59

Figure 5.3: CEMAT Daemon - Parameter Types

address, name, etc. The third XML file has the same structure as the second file
except that it contains the information related to the parent (Upper CEMAT server).

• Droid Parameters: Android depends on a changeable set of variables and com-
mands. These parameters could be changed from a version to another. All these
parameters are stored in many XML files in order to keep CEMAT flexible and easily
extensible.

CEMAT Daemon provides inter-components communication. In other words, it is the
bridge between all other components which provides different functions so one compo-
nent could request a service from another component.

5.3.2/ THINGS MANAGER

This component has two main subcomponents, devices subcomponent which manages
all real/virtual devices and emulators subcomponent which manages the Official Android
SDK Emulators. One can communicate (from a computer) with Android Devices and
Android Emulators using Android Debug Bridge (ADB) which is part of the official Android
SDK. ADB is a client-server tool which consists of three applications (Figure 5.4):

• ADB Server: It is a background service which resides on the computer where
Android SDK is running. It is the bridge between ADB daemons and ADB clients.
It searches for android emulator and android devices by scanning odd-numbered

60 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

ADB
Daemon

Emulator 2

127.0.0.1:5561

ADB Server

 IP1@:5037

ADB Client 1

ADB Client 2
Monitoring

Computer 1

Computer 2

ADB
Daemon

Device Y

 IPY@:5555

Console

127.0.0.1:5560

ADB
Daemon

Emulator 1

127.0.0.1:5555

Console

127.0.0.1:5554

ADB
Daemon

Device Z

 IPZ@:5555

 Connecting

 Listening

ADB
Daemon

Device X

 @:5555

USB

ADB
Daemon

Emulator W

 @IPW:5555

Figure 5.4: Android Debug Bridge (ADB)

ports in the range 5555 to 5585. ADB Server listens to port TCP 5037, ADB Clients
can connect to it by connecting to this port.

• ADB Client: It is an application which runs on a computer (could be different than
the one used for ADB Server) and it is responsible of sending the commands to the
ADB server. These commands could be originated from a user or from another tool.
The ADB client tries to find a server on its local machine by scanning the port TCP

5.3. SERVER ARCHITECTURE 61

5037. If no server is listening on this port, the client will launch the service of the
ADB Server. The client could be configured to connect to an ADB Server running
on another computer by using its IP address.

• ADB Daemon: It is a background service running on each android emulator or
device. On an emulator, the ADB daemon listens on localhost (127.0.0.1) to odd-
numbered ports in the range 5555 to 5585, and it is accessible only from the local-
host. On a device, the ADB Daemon listens on the port 5555 and it is accessible
from the network outside the device.

In the following, we discuss Android Devices and Android Emulators.

5.3.2.1/ DEVICES

In general, there are three types of entities which are considered as devices (Android’s
point of view):

• USB-based Devices: This category includes all devices which are connected di-
rectly using USB, Emulator X in Figure 5.4. These devices might be connected to a
network (For example: Wi-Fi, 3/4G), but this network won’t be used for ADB.

• Network-based Devices: The ADB connection in this case is established using
an IP address, Device Y, Device Z Figure 5.4. The device could be on the same
local network as the server or on any other WAN network, the only condition is to
be accessible from the server. This type of devices simplifies testing and evaluating
network-based and GNSS-based applications in a real environment outside testing
laboratory. This category also includes devices which run Android-x86, Android-IA
or any other architecture.

• Virtual Devices: Usually, 3rd party emulators are built on virtual machines, such
as Oracle VM VirtualBox, Emulator W in Figure 5.4. These emulators are treated
as network-based devices, not as emulators, even if they were running on the same
server.

5.3.2.2/ EMULATORS

The Android emulator is an application that mimics most of the hardware and the software
functions. It is based on QEMU which is a generic and open source machine emulator
and virtualizer. Each emulator listens on a pair of sequential ports (on localhost). The
ports range between 5554 and 5585 which means that maximum 16 emulators can run
on the same computer. The number of emulators which can run on the same computer
is also related to: the hardware capabilities of the same computer and the Android OS
versions used. The emulators are assigned these ports as follows:

• Emulator-1: 5554,5555.

• Emulator-2: 5556,5557.

• ...

62 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

ADB
Daemon

Emulator 2

 127.0.0.1:5561

ADB Server

IP1@:55561

Computer 1

Console

127.0.0.1:5560

ADB
Daemon

Emulator 1

 127.0.0.1:5555

Console

 127.0.0.1:5554

IP1@:55555

 127.0.0.1:80

 IP1@:8080

127.0.0.1:80

IP1@:8080

O
S

 F
o

rw
ar

d

O
S

 F
o

rw
ar

d

A
D

B
 F

o
rw

ar
d

A
D

B
 F

o
rw

ar
d

IP1@:55554

O
S

 F
o

rw
ar

d

IP1@:55560
O

S
 F

o
rw

ar
d

Figure 5.5: Android Emulators - Ports Forwarding

• Emulator-16: 5584,5585.

The two ports are described as follows:

• Even-numbered port: This port is used as a console. One can telnet the emulator
using this port in order to send commands, such as: setting up redirection, send-
ing a voice call or SMS to another emulator instance, changing the current GEO
coordinates, etc.

• Odd-numbered port: This port is used by ADB Daemon. The ADB server scans
the odd-numbered ports in order to build the list of emulators on the same computer.

The emulators are accessible only from the computer itself. This would cause a problem
for many functions. The following list describes the most important affected functions and
how the associated problems were solved in CEMAT (Figure 5.5):

• Management: The emulators could not be managed by any ADB Server but the
one on the same computer. They couldn’t be accessed using the console port from
the outside. In order to eliminate this limitation, CEMAT bind the pair of ports of
each emulator with another pair of ports. The second pair of ports listens on all
IP addresses of the computer which means that they will be accessible from the
outside. The ports forwarding has been applied on the OS level. For example, port
5555 will be bound with port 55555, port 5556 with port 55556, etc.

5.3. SERVER ARCHITECTURE 63

• Network-based Applications: The testing would be affected in two cases: if the
mobile application is acting as a server or if it is a part of peer-to-peer applications.
Fortunately, ADB provided a solution to redirect a given port to another operating
system port using the command line. In CEMAT, this solution is applied automati-
cally whenever an emulator is added to the cloud.

As we mentioned earlier, emulators can mimic most of the hardware and the software
functions but not all of them. In the following, we list some of the most important functions
which could not be applied using Android emulators:

• Wi-Fi: Emulators can’t get direct access to Wi-Fi cards on the hosting computer.
So they can’t be used to test and evaluate applications which need to deal directly
with Wi-Fi frames.

• Voice Call: It is a simulated call which doesn’t include real data exchange.

• USB and Bluetooth are not supported.

• Determining battery state, network state isn’t supported.

5.3.3/ GRAPHICAL USER INTERFACE (GUI)

There are two types of user interfaces, Graphical User Interface (GUI) and Command
Line Interface (CLI). CEMAT has been designed to support both of them. As a pilot imple-
mentation, an easy and simplified GUI has been designed in order to facilitate managing
the CLOUD. Any Java program can be classified as an Application or an Applet. In the
following, we will discuss the differences between Java Applications and Java Applets:

• Independency: Java Application is an independent program which runs directly on
the Java Runtime Environment (JRE)-enabled operating system. Java Applet is a
small application can’t run independently, but it requires a Java-enabled browser
(such as: Chrome, Firefox, etc) in order to be executed in it.

• Access Restrictions: Java Applications have no restrictions to access any data or
files available on the system. Applets are treated as untrusted softwares and the
only resources they can access are the ones provided by the browser itself.

• Native Methods: Java Applications can use native methods (methods created in
another programming language). Applets aren’t allowed to use such methods.

• Network Programming: Applications can get direct access to the network using
operating systems libraries, so they can create sockets, analyze packets, etc. Ap-
plets are isolated in the browsers and can’t use socket-based applications.

• Bytecode: Applications need to be installed and configured prior to their usage.
They should be upgraded or re-installed with every new version. Applets are loaded
directly from the server, which means they don’t need to be pre-installed. whenever
a new version of the applet is released, it is sufficient to load it on the server in order
to be sent to the clients when they request it.

64 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

Services
Service-01

Service-02

Service-03

Name _________
Time _________
Action _________

Submit

Static GUI Service-03

CEMAT Server-02 – Version-01

Services
Service-01

Service-02

Service-03

Name _________
Time _________
Action _________

Submit

Static GUI Service-03

CEMAT Server-01 – Version-01

Services
Service-01

Service-02

Service-03

Name _________
Time _________
Action1 ________
Action2 ________

Submit

Static GUI Service-03

CEMAT Server-03 – Version-02

Service 03- Parameters

S
er

vi
ce

 0
3

-
P

ar
am

et
er

s

Figure 5.6: Java Application - Distributed Services Scenario

• GUI: It is easier to create dynamic and interactive programs using applets. Ap-
plications mostly have static GUIs in which all elements would be fixed during the
development phase.

Building CEMAT as a web application would simplify exchanging services between CE-
MAT servers, but at the same time it would add many limitations for using native methods
and creating sockets which are required in order to realize other components.

5.3. SERVER ARCHITECTURE 65

Services List Request

Services List Response

CEMAT Server-X CEMAT Server-Y

Service-Z GUI Resuest

Service-Z GUI XML

XML to GUI

Show GUI

Fill Parameters

Submit

Send Parameters

Send Results

Processing

Generate
Service XML

Figure 5.7: CEMAT - XML GUI

On the other hand, Building CEMAT as an application would complicate using some
server services by another server which doesn’t have the right GUI, either because it
doesn’t have the service or it has another version of the service.
Figure 5.6 presents an example for this case. The scenario suggests a cloud with three
CEMAT servers built as Java applications with local static GUIs. Server-01 and Server-02
have software version-1, Server-03 has been upgraded to version-02. Software version-
03 provides the same services except for service-03, for which the fields of the GUI have
been modified. In such scenario, the server that requests the service sends the param-
eters to the server that provides the service. In our case, Server-01 will be able to use
service-03 from Server-02 because they have the same version, but it can’t use service-
03 from Server-03 before getting the right upgrade.
Our solution for this problem is shown in Figure 5.7. The solution depends on having two

different GUIs:

66 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

• Containers: It is the main GUI that will host service GUIs. This container is
static and it contains only the general information about services. User entry fields
shouldn’t be added in this container.

• XML-GUIs (Services): Each service should have its own GUI described in an XML
format. The XML will be processed using SwiXML library which is a generating
engine can parse a XML file and render it into Swing (an API for providing a GUI in
Java). The XML file which contains a description is written in a (human/machine)-
readable format. SwiXML has a detailed format capable of describing any types of
GUIs.

Using XML-based GUI enables Java applications to be similar to applets by loading GUIs
from a remote server in real time. Using XML-GUIs simplifies designing and modifying
GUIs in applications and applets. In the following, we describes the method used so that
Server-X can request Service-Z from Server-Y:

1. Server-X sends a request to Server-Y to get its list of services.

2. Server-Y sends back to Server-X a XML file contains its list of the services.

3. Server-X selects the service which best matches the needs (Service-Z) and sends
to Server-Y asking for its GUI.

4. Server-Y generates Service-Z’s XML-GUI and sends it back to Server-X.

5. Server-X renders the XML file using SwiXML library and shows the GUI to the user.
The user fills the GUI with the needed data and submits the service.

6. Server-X sends the parameters with the GUI to Server-Y.

7. Server-Y processes the parameters received from Server-X and sends the results
back to Server-X.

By using the concept of XML-GUI, services can be developed independently, developers
can provide the GUIs of their services as part of the code. For any modification, the
service would be changed on the server directly. One of XML-GUI advantages is that we
separate the real GUI description from the platform, which means that same GUI could
be rendered differently on different platforms in order to match the context (screen size,
fonts, etc).

5.3.4/ CLOUD MANAGER

Cloud Manager component maintains connections with other servers in the cloud. In
a given CEMAT environment, CEMAT Servers are organized in a tree-based architec-
ture, which could be formed of subtrees. Each CEMAT subtree has same attributes of
a normal CEMAT tree. Cloud Manager has three subcomponents: Controller, Parent-
Communicator and Child-servers Manager. CEMAT doesn’t has a subcomponent for
Inter-CEMAT Communications, the reason is that a CEMAT Server communicates with
all other servers as roots for independent subtrees. A CEMAT Server can use all Things
(Device and Emulators) in its tree (direct child-servers and their subtrees). A CEMAT
Server can’t communicate with its siblings (Other servers which shares the same parent-
server). In the following subsections, we describe these subcomponents.

5.3. SERVER ARCHITECTURE 67

CEMAT
Server-1

CEMAT
Server-11 CEMAT

Server-12

CEMAT
Server-111

CEMAT
Server-112

CEMAT
Server-121

CEMAT
Server-122

CEMAT
Server-1111

CEMAT
Server-113

Root Parent-server

Child-server

RMI

Parent-Server

Child-Server

RMI

Tree-II

Tree-I

Tree-III

Figure 5.8: CEMAT - Servers’ Tree

5.3.4.1/ CONTROLLER

Figure 5.8 shows an example of CEMAT environment composed of tree Tree-I, the root
Server-1 has two child-servers Server-11 and Server-12. Both of servers are roots of
subtrees Tree-II and Tree-III respectively. In order to exchange services and data between
servers, they should use distributed system techniques. Since that CEMAT Server has
been developed in Java, which means all servers are in Java, the best choice is Java
Remote Method Invocation (RMI) system.
The Java RMI system allows an object running in one Java virtual machine to invoke
methods on an object running in another Java virtual machine [Oracle, 2015]. Using RMI
in a tree-based architecture means that each pair (parent-server, child-server) will have
a separated RMI connection. The number of RMI connections in a tree is equal to the
number of (parent-child) relations in that tree.
A Java RMI application consists of 5 elements:

• Interface: It contains an abstract definition of the methods provided by the server.
The interface should exist on both client and the server.

• Remote Object: It is an implementation of the methods which are described in the
interface. The remote object exists only on the server.

• Server Stub: An object resides on the client and represents the remote object, it
communicates with the Server Skeleton.

• Server Skeleton: An object on the server. It bridges between the Server stub on
the client and the Remote Object on the server.

68 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

RMI Registry

Local
DowntoUp
Interface *sc

Local
DowntoUp
Object *s

Implements

Local UptoDown
Interface *sc

 Local UptoDown
Object *s

Implements

Local
DowntoUp
Skeleton *s

UptoDown
Skeleton *s

Controller

Remote
DowntoUp

Stub *sc

Remote UptoDown
Stub *sc

Exchange UptoDown
Request/Request
From a Candidate

Parent-Server

Data Exchange
with Child-server
(Remote Stub)

Data Exchange
with Parent-server
(Remote Skeleton)

Remote
Registries

Exchange UptoDown
Request/Response

With Candidate
Child-Server

*s Component in RMI Server

*c Component in RMI Client's

*sc Component in Server & Client

Figure 5.9: CEMAT Server - Controller Architecture

• Registry: It provides naming service for locating remote objects. It could be on the
server itself or on an independent server.

CEMAT can build its tree using one or both of the following methods (Figure 5.9):

• Down-to-Up: In this method, the tree would be built starting from the child-servers
(leafs). In other words, the child-servers connect to a parent-server. The parent-
server could be the root or it could also be a child-server.

• Up-to-Down: A CEMAT Server could propose adoption to another CEMAT server
using UptoDown RMI. In this case, building the tree could be started from the root
by adopting child-servers and their subtrees (if exist).

The controller is responsible of the following tasks:

• Detecting and preventing loops (by using servers’ names).

• Preparing tree updates in order to be sent to child-servers. Tree updates consist of
all changes which took place between the server itself and the root.

• Forwarding service requests/responses from Daemon to Parent Communicator and
Child-servers Manager, and vice versa.

• Forwarding service requests/responses received from other servers to Parent Com-
municator and Child-servers Manager, and vice versa.

Each CEMAT Server should have a local name which should be unique from siblings,
ancestors and descendants. CEMAT Server utilizes the same methods as those used

5.3. SERVER ARCHITECTURE 69

Cloud

 Parent
 Communicator

Child-servers
Manager

Controller

Cloud

 Parent
 Communicator

Child-servers
Manager

Controller

Daemon Daemon

Still-Alive
Request/Ack

Service
Request/Response

Tree Updates

From/To
Child-Servers F

rom
/To

Lo
ca

l S
erve

r

From/To
Child-servers F

rom
/To

Loca
l S

e
rve

r

From/To
Parent

Child-Server Parent-Server

Figure 5.10: CEMAT Server - Services Exchange

by Domain Name System (DNS) servers to create URLs. Each CEMAT Server could
be identified using its URL (path from the server to the root) which starts with the local
server’s name and ends with the root’s name separated by "::". For example, in (Figure
5.8) the servers would have the following URLs: Server-112::Server-11::Server-1, Server-
122::Server-12::Server-1.

5.3.4.2/ PARENT-COMMUNICATOR

This subcomponent maintains the connection with the parent (if exists). Parent-
Communicator is responsible of the following tasks:

• Sending still-alive requests periodically and waiting for responses from the parent.
If no acknowledgement is received, the request will be resent. This procedure will
be repeated for a number of times (default value is 10 times) before considering the
Parent-server is dead.

• In case of losing the connection with the Parent-server, a message will be sent to the
Controller in order to send the updates to the child-servers and to start reconnection
procedure.

• Forwarding service requests which are received from the Controller to the Parent-
server.

• Forwarding service responses which are received from the Parent-server to the
Controller.

Parent-Communicator doesn’t interfere in connecting/reconnecting procedure. All its
tasks are performed while the connection with the parent-server is active.

70 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

5.3.4.3/ CHILD-SERVERS MANAGER

It manages the child-servers which are connected to this parent-server. As soon as a
child-server is connected, it will be added to child-servers list. The Child-server manager
is responsible of the following tasks:

• Processing still-alive requests which are received from the child-servers and send
back the responses.

• Checking its list periodically to find out dead child-servers (child-servers which
stopped sending still-alive requests). The child-server is considered as dead server
after a predefined time (default value is 60 seconds). The dead child-servers will be
removed from the list.

• Forwarding service requests which are received from the Controller to the corre-
sponding Child-server.

• Forwarding service responses received from the Child-server to the Controller.

• Multicasting tree updates which are received from the Controller to all its child-
servers.

Child-servers Manager doesn’t interfere in connecting/reconnecting procedure. All its
tasks are performed with child-servers which are already connected to the parent-server.

5.3.5/ SCENARIOS

CEMAT defines two types of scenarios, Batch-based scenarios and XML-based scenar-
ios. In the following we describe both of these scenarios and the differences between
them.
In Batch-based scenario, command are sent directly without using an agent on the emu-
lators and the devices. Figure 5.11 presents an example of this type of scenarios:

• A CEMAT Server Server1 prepares a list of all emulators and devices
(things) which will be part of the testing session. The list contains the
emulators and devices of its descendants. The list contains: emula-
tor11::server1, emulator111::server11::server1, device113::server11::server1 and
emulator121::server12::server1.

• Server1 prepares a list of commands (scenario) which should be applied on these
things. The list consists of 4 commands: command01, command02, command03
and command04.

• Server1 sends to each child-server the scenario and a list of its devices and emu-
lators which should apply this scenario. Sending is performed using Threads which
means that Server1 will create a thread for each child-server. Therefore, all child-
servers would receive the testing parameters at the same time.

• Server11 receives a list which consists of emulator111 and device113.

• Server12 receives emulator121, in addition to the scenario which is a list of com-
mands.

5.3. SERVER ARCHITECTURE 71

emulator11::server1
emulator111::server11::server1
device113::server11::server1
emulator121::server12::server1

Things List

CEMAT Server1

Scenario1.command01
Scenario1.command02
Scenario1.command03
Scenario1.command04

Commands
List

Emulator11

Emulator12

Device13

Command 1,2,...

emulator111
device113Things List

Server11

Scenario1.command01
Scenario1.command02
Scenario1.command03
Scenario1.command04

Commands
List

Emulator111 Emulator112 Device113

Command 1,2,… Command 1,2,...

emulator121Things List

Server12

Scenario1.command01
Scenario1.command02
Scenario1.command03
Scenario1.command04

Commands
List

Emulator121 Emulator122 Device123

Command 1,2,…

Scenario1
Server11 Things List

Scenario1
Server12 Things List

Figure 5.11: CEMAT - Batch-based Scenario

• As soon as Server11 and Server12 receive the data, they create a thread for each
emulator or device and start sending commands one by one using ADB commands.

This type of scenarios is convenient when testing same scenario on all emulators and
devices. In case of having different scenario for each emulator or device, XML-based
scenarios should be used.
XML-based scenario is a pilot implementation of Scenarios component that has been
described in subsection 4.7. XML-based Scenarios have the following advantages over
Batch-based Scenarios:

• The ability to send different scenarios for different emulators and devices.

• Scenarios are sent using Constrained Application Protocol (CoAP) which a special-
ized web transfer protocol for use with constrained nodes. This is a light protocol for
exchange data.

• Emulators and Devices receive the whole scenario. They don’t have to be con-
nected to a CEMAT server during the execution (offline mode).

Figure 5.12 presents the main architecture for XML-based Scenarios which consists of
two subcomponent:

• Scenario Manager: It resides on one (or on many) CEMAT Server(s). Scenario
Manager uses a local database to map scenarios which are stored on local/remote

72 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

Dispatcher

Scenarios

Scenario Manager

C1

Scenarios - XML

C2

S1
App2

C1

C2

S2
App1

C1

C4

S1
C1

C3

S2

S Scenario

App Application

C Client

App1 App2

App3

AppsEvents
UiAutomation

Scenario Launcher

Tester
(Service)

CoAP Protocol
Scenarios

DB

Figure 5.12: CEMAT - XML-based Scenario

file system, with the devices and the emulators which are connected to CEMAT
server or to its descendants. The dispatcher sends to each emulator/device the
corresponding scenario.

• Scenario Launcher: It resides on all emulators and devices. It is an android service
which runs in the background. It maintains a connection with its CEMAT Server in
order to exchange scenarios as soon as they are available on the server. The
launcher uses UiAutomation which is a class for interacting with the device’s UI by
simulation user actions and introspection of the screen content [Android, 2015].

Batch-based and XML-based scenarios (as a pilot implementation) provide testers and
developers with a method to execute certain scenarios. Collecting results depend on log
and results files which should be provided by the applications (under test) themselves.

5.3.6/ TRAFFIC SHAPER

CEMAT Servers could be connected to the same network (for example, same LAN), they
could be connected using the Internet. Network performance is different from a case or
another, and it is different for the same case but in different times. Traffic shaper is a pilot
implementation for NEP concept which is described in subsection 4.6.
Traffic shaper needs two types of method in order to perform its function:

• Measurement Method: It is a method to calculate packet delay, packet loss and
other network performance attributes between every two CEMAT servers. That

5.3. SERVER ARCHITECTURE 73

means each CEMAT server should calculate these attributes between its own ma-
chine and its parent (if exists), and between its machine and each child-server.
Instead of developing methods dedicated for performing these calculations, CEMAT
utilizes the data which is provided by the Still-Alive request/ack messages which are
used by Cloud component in order to maintain the connections with the connected
servers. CEMAT utilizes the timestamps in Still-Alive messages in order to calculate
the time needed to transmit a message from one server to another. It is important
to mention that all CEMAT servers should be synchronized using a Network Time
Protocol (NTP) Server.

• Shaping Method: Linux offers a set of tools for managing and manipulating network
activities. Traffic Control (TC) is one of these tools which is a command line used
to do the following tasks: deciding which packets to accept, rate of input, rate of
output, packet loss, latency, etc.

These two methods are used by the Traffic shaper in order to control data exchange
between CEMAT servers. In the following list, we describe the steps used by the Traffic
shaper to manage the traffic on a CEMAT server:

• Each CEMAT server has default values for network performance attributes.

• A CEMAT server could maintain a local database which contains customized values
for other servers in CEMAT tree.

• The Traffic Shaper should check periodically Cloud component in order to get the
new measurement values for the connected server.

• Based on the received data and given network performance attributes, the traffic
shaper could issue the needed parameters for the tc command.

• This procedure is repeated periodically based on a predefined time interval.

Instead of having a static database, it is possible to use a propagation model in order to
simulate certain network scenarios.

5.3.7/ LOGGING

Logging is the act of recoding events, actions and messages so they can be used later
to diagnose problems. CEMAT is a cloud environment which means that log data is
distributed. Each CEMAT Server has its own log data. CEMAT uses java.util.logging
package which is part of official Java packages and it contains the classes and interfaces
needed for logging in Java. Other CEMAT components use logging package in order to
send their logs. Log data is shown using two methods: Live log and XML log. Live log
is a graphical interface in CEMAT which organizes log data according to its importance.
A CEMAT Server could send a request to one of its descendants asking it to send its log
data instantly. In other words, a CEMAT Server could use live log in order to monitor its
own server and to monitor any of its descendant servers.
XML log is an XML file that contains all log data in form of records. Each record represents
a detailed entry that contains all data about the log event. Code 5.3.1 shows an example
of the record’s structure. XML files could be processed using a log analyzer in order to

74 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

generate statistics and to compare files from different servers in order to have a full idea
about the session or the system in general.

Code 5.3.1 - XML Log

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
<record>
<date></date>
<millis></millis>
<sequence></sequence>
<logger></logger>
<level></level>
<class></class>
<method></method>
<thread></thread>
<message></message>

</record>
</log>

5.4/ EXPERIMENTS AND RESULTS

5.4.1/ ENVIRONMENT DESIGN

Our experiments were done by preparing a real testing environment. The environment
consists of (Figure 5.13 shows the logical structure):

• Servers: Three servers were used in the environment as follows:

– Server-01: It is the root of CEMAT tree. It has the IP address 192.168.1.99/24.

– Server-02: A child-server of the parent Server-01 which has the IP address
192.168.1.97/24.

– Server-03: A child-server of the parent Server-01 which has the IP address
192.168.1.98/24.

The servers run under Linux Ubuntu Server 14.04.2 LTS - 64 bits. They are con-
nected to a Wi-Fi network.

• Emulators: The environment has 6 emulators (2 emulators on each server). The
emulators used are Genymotion emulators which run as a virtual machine on the
server (Oracle VM Virtualbox). Genymotion gives IP addresses 192.168.56.101,
192.168.56.102 to emulator-01, emulator-02 respectively. The emulators run on
Android 5.0 (Lollipop) operating system.

• Mobile Phone: The mobile phone runs on Android 4.2.1 (Jelly bean) operating
system and it is connected to a USB port of Server-01.

• Applications for Testing: The testing covers many android applications as follows:

5.4. EXPERIMENTS AND RESULTS 75

Mobile
Phone

CEMAT Server-01
192.168.1.99/24

Genymotion Emulator-02
192.168.56.102:5555

Genymotion Emulator-01
192.168.56.101:5555

CEMAT Server-02
192.168.1.97/24

Genymotion Emulator-02
192.168.56.102:5555

Genymotion Emulator-01
192.168.56.101:5555

CEMAT Server-03
192.168.1.98/24

Genymotion Emulator-02
192.168.56.102:5555

Genymotion Emulator-01
192.168.56.101:5555

Figure 5.13: CEMAT Experiment Design

– Settings: It is an Android system application which allows users to modify
device parameters, app features and behaviors. It has been tested in order to
assure that CEMAT is able to send events to systems applications.

– Google Chrome - Internet Explorer: It is a pre-installed application. The test
focuses on sending different browsing commands.

– F-Droid: It is an installable catalog of FOSS (Free and Open Source Soft-
ware) applications for the Android platform. The test focuses on controlling the
application by sending user events.

– NotePad: It is an open source application which isn’t part of the official oper-
ating system. The test was registered using Robotium Recorder.

– TestApp: It is a testing application which was developed in order to test differ-
ent GUI events. The test was performed using CEMAT Scenarios.

The main idea of testing different applications is to cover many categories, such as:
system applications, closed applications, open source applications and in-house
applications.

5.4.2/ ENVIRONMENT INSTALLATION

In the following, we present the steps which were applied in order to prepare the environ-
ment to test and evaluate the applications.

• Configuring IP addresses for CEMAT servers and connecting them to the Wi-Fi
network.

76 CHAPTER 5. IOTAAS PILOT IMPLEMENTATION

• Deploying CEMAT framework as a Jar file and launch the application on the servers.

• Configuring CEMAT servers with their own parameters (name, paths, ADB, etc).

• activating DowntoUp RMI on Server-01 and starts listening to accept connections
from Child-servers.

• Launching the emulators on Server-01 and connecting the mobile phone to USB
port of Server-01.

• Launching the emulators on Server-02 and Server-03.

• connecting Server-02 to Server-01 as a Child-server.

• Activating Server-03 UptoDown RMI so Server-01 can send a request to Server-03
to become a Child-server (adoption).

• On Server-01: Adding all the emulators and the mobile phone to one list.

• Sending the Scenario Launcher to all testing entities.

5.4.3/ SCENARIO AND RESULTS

The testing scenario started with launching and manipulating Settings application by
sending multiple events which they were sent using ADB commands. The mobile phone
and the emulators received the events and apply them. Then, Google Chrome was
launched using ADB and a request was sent to launch different web sites. F-Droid was
sent to the mobile phone and the emulators and then it was installed, launched and up-
graded on all of them. For testing NotePad, we used Robotium Recorder to generate
NotePadTest (Unit Test) which contains the scenario for testing NotePad. NotePad and
NotePadTest were sent, installed on all testing entities. Then, NotePadTest was launched
and it applied the scenario on NotePad application. TestApp was sent and installed on
the testing entities. Scenario Launcher on every testing entity launched its own scenario
from the XML file and applied the events.
The test showed that using customized XML-based test is more accurate than sending
same events to all testing entities. For example, after sending the events in the first
scenario (Settings application), the mobile phone performed same touch events differ-
ently because it hadn’t same screen dimensions. This problem could be solved using
Robotium and XML-based testing because they can recognize the graphical components
regardless of their positions on the screen.

5.5/ CONCLUSION

We presented the first IoTaaS-based pilot project CEMAT. CEMAT is an implementation
to test Android applications. CEMAT integrates mobile devices, Android emulators and
emulators developed by a 3-rd party. CEMAT is developed in Java in which there are two
types of application: desktop application and Applet. In CEMAT, we used XML-based
GUIs which mix the advantages of using desktop applications with the dynamic GUIs of
applets. Two types of scenario have been developed: batch-based scenarios and XML-
based scenarios. Experiments in a real environment have been described along with their
results.

III
CONTRIBUTION - COLDE

77

6
CONNECTIONLESS DATA EXCHANGE

(COLDE)

6.1/ INTRODUCTION

This is a suggestion to extend the IEEE 802.11 protocol by adding the functionality
that allows exchanging data between two Wi-Fi entities without the need to have an
alliance or establish a connection between them. The entities could be normal access
points (infrastructure mode), ad hoc devices, Wi-Fi Direct or even normal Wi-Fi clients
[Abu Oun et al., 2015]. The proposed extension is designed to simplify exchanging public
and non-confidential data in IoT.

This extension allows broadcasting information to all Wi-Fi devices in certain areas, even
if they are connected to different networks, or even if they are not connected to any
network. COLDE allows the Wi-Fi devices (i.e, mobile phones and laptops) to benefit
from the new services with the help of the other devices that include these services. For
example, some mobile phones do not include certain localization systems, so they can
get the current position from the other devices (which include that localization system),
if these devices exist in the same geographical area and most specifically in the Wi-Fi
coverage area of the first device.
Examples and situations vary with localization functions, emergency evacuation, integra-
tion between Wi-Fi devices and VANET, exchanging data with access points in the same
area without the need to be connected to them, or to use a service from another device.
Nowadays, the majority of Wi-Fi networks are private networks. Such networks exist in
large enterprises, small companies, shops, houses and even mobile Wi-Fi as in the case
of a mobile phone running in an ad hoc mode or in a Wi-Fi direct mode. These Wi-Fi
networks are mostly connected to the Internet using broadband connection. Private
Wi-Fi owners do not open it to the public to avoid many threats. These threats could be
classified into three main points:

• Local network security: to protect the internal network.

• Public network security: to prevent others from using the network in illegal actions
like hacking other networks, sending spam,... or any other action which could be
considered a cyber crime.

79

80 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

• Service level: to assure that nobody will use their Wi-Fi in a way that could degrade
the whole performance of the network.

In order to realize this solution we need two components. The first one is an extension
of the IEEE 802.11 in order to allow exchanging data without connection. We propose
COLDE (Connectionless Data Exchange) which extends the IEEE 802.11 to exchange
non-confidential and small amounts of data between Wi-Fi devices without a connection
between them and without requesting them to disconnect from their original networks.
Exchanged data could be a broadcast message from the server or one of the clients or it
could be a service request from one of the clients. COLDE also organizes the hierarchy (if
it exists) and the roles of entities, and defines the rules to send, receive and (re)broadcast
the data. The second component is Lightweight Services, this component defines and the
data that could be transferred using COLDE extension between the entities.

6.2/ IEEE 802.11 (WI-FI)

6.2.1/ NETWORK ARCHITECTURE MODELS

There are two main network architecture models. The first model is Open Systems Inter-
connection (OSI), which was presented by International Organization for Standardization
(ISO) and which has seven layers. The second is DoD (U.S. Department of Defense)
mode (also known as TCP/IP model or simply the Internet model). This model is widely
used on the Internet, it organizes networks into four layers. (Figure 6.1) clarifies the rela-
tions between the two models. There is no perfect matching between the OSI Model and
the DoD model because of the variance between them.

6.2.2/ IEEE 802.11 KEY CONCEPTS

A wireless Local Area Network (WLAN) is a data transmission system designed to provide
location-independent network access between devices by replacing cable infrastructure
by radio waves. The IEEE presented the original 802.11 specification in 1997 as the
standard for wireless LANs. IEEE 802.11 standards focus on the bottom two levels of
the ISO model (Figure 6.1), the physical layer and data link layer. In literature, Wireless
Fidelity (Wi-Fi) and IEEE 802.11 are used interchangeably.

6.2.2.1/ IEEE 802.11 ARCHITECTURE MODEL

Basically, there are two types of devices in WLAN networks [IEEE, 2012]:

• Station (STA): A logical entity that is a singly addressable instance of a medium
access control (MAC) and physical layer (PHY) interface to the wireless medium
(WM).

• Access Point (AP): An entity that contains one STA and provides access to the
distribution services, via the WM for associated STAs.

6.2. IEEE 802.11 (WI-FI) 81

Network
Path Determination and
IP (Logical Addressing)

Packets

Transport
End-to-End Connection and

Realibity
Segment

Session
Interhost CommunicationData

Presentation
Data Representation and

Encryption
Data

Data

Data Link
MAC and LLC

(Physical addressing)
Frames

Physical
Media, Signal and

Binary Transmission
Bits

Data OSI Model
M

e
di

a
La

ye
rs

H
o

st
 L

a
ye

rs

Network
Path Determination and
IP (Logical Addressing)

Transport
End-to-End Connection and

Realibity

Session
Interhost Communication

Presentation
Data Representation and

Encryption

Application
Network Process to

Application

Data Link
MAC and LLC

(Physical addressing)
Physical

Media, Signal and
Binary Transmission

Internet
IP, ICMP, ARP

Host to Host
TCP, UDP

Application
HTTP, SNMP, FTP,

SMTP, CoAP,….

Network
Access

Internet Model

Figure 6.1: Network Models

Mainly, there are two modes in which communication can take place, in addition to a third
mode has been developed recently:

1. Infrastructure Mode: Through an AP, a set of STAs are able to communicate with
each other or with any other networks (Wired/Wireless) accessible by the AP.

2. Ad hoc Mode: A group of STAs need no AP in order to communicate with each
other, they can communicate directly on a peer-to-peer basis.

3. Wi-Fi Direct Mode (Soft-AP Mode): It’s a more feature-rich, secure, and smarter
version of existing Wi-Fi ad-hoc networking. Wi-Fi Direct aims at enabling Device-
to-Device communications between STAs (referred to as peers or nodes). Wi-Fi
direct defines the term Group, in which it consists of two STAs or more. The
group works as an infrastructure Wi-Fi on a single channel. One peer in the group
acts as Group Owner (GO) and the other devices, called clients , associate to the
GO. GO role is not predefined, but it is negotiated upon group creation/recreation
[Casetti et al., 2014].

82 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

80
2.

1

802.2 (logical link control layer)

802.11 MAC
Ethernet

802.3
MAC

802.3
PHY

Token Ring
802.5
MAC

802.5
PHY

802.11
FHSS/
DSSS

802.11ac
OFDM/

MU-MIMO

802.11n
OFDM/
MIMO

802.11g
DSSS/
OFDM

802.11a

OFDM

802.11b

DSSS P
h

ys
ic

a
l

L
a

ye
r

D
at

a
lin

k
La

ye
r

Figure 6.2: 802.11 standards in the IEEE 802 standard Suit

In infrastructure mode, a single AP together with all associated STAs is called a Basic
Service Set (BSS). The informal (human) name of the BSS is called Server Set Identifier
(SSID). The Basic Service Set Identifier (BSSID) is the formal name of the BSS and is
always associated with only one BSS and it is the MAC address of the AP. Two or more
interconnected wireless BSSs that share the same SSID, security credentials are called
Extended Service Set (ESS) and in this case the SSID is called Extended Service Set
Identifier (ESSID).
In ad hoc mode, client devices in ad hoc network without an AP form an IBSS (indepen-
dent BSS).

The IEEE 802.11 protocol covers the MAC and Physical Layers of the OSI model (Figure
6.2):

• Physical Layer (PHY): It includes a specification of the transmission medium and
the topology. In addition that it includes functions as: Encoding/decoding of signals,
Preamble generation/removal (for synchronization), Bit transmission/reception.
There are 5 standards available: IEEE 802.11 (a,b,g,n and ac), Table 6.1 provides
a brief comparison between these standards [Khanduri et al., 2013].

• Medium Access Control Layer (MAC): The MAC Layer defines two different ac-
cess methods. The Basic Access Method is the Distributed Coordination Function
(DCF), which is a Carrier Sense Multiple Access with Collision Avoidance mech-
anism (usually known as CSMA/CA). Another optional protocol that is part of the
IEEE 802.11 standard is the Point Coordination Function (PCF). The main func-
tions of MAC layer are the following [Stallings, 2002]:

– On transmission, assemble data into a frame with address and error detection
fields.

– On reception, disassemble frame, and perform address recognition and error
detection.

– Govern access to the transmission medium.

6.2. IEEE 802.11 (WI-FI) 83

Standard Maximum
physical rate

Tx Spectrum Compatible
with 802.11

802.11 2.4 GHz 2 Mbps DSSS/ FHSS None
802.11a 5.0 GHz 54 Mbps OFDM None
802.11b 2.4 GHz 11 Mbps DSSS 802.11
802.11g 2.4 GHz 54 Mbps OFDM/ DSSS b
802.11n 5 or 2.4 GHz 600 Mbps OFDM / MIMO a/b/g
802.11ac 5.0 GHz 6.93 Gbps OFDM /

MU-MIMO
a/n

Table 6.1: IEEE 802.11 Standards

6.2.2.2/ IEEE 802.11 MAC FRAMES

The MAC frame format comprises a set of fields that occur in a fixed order in all frames.
Figure 6.3 depicts the general MAC frame format. The first three fields (Frame Control,
Duration/ID, and Address 1) and the last field (FCS) constitute the minimal frame format
and are present in all frames, including reserved types and subtypes. The fields Address
2, Address 3, Sequence Control, Address 4, QoS Control, HT Control, and Frame Body
are present only in certain frame types and subtypes.
The Frame Body field is of variable size. The maximum frame body size is determined
by the maximum MAC Service Data Unit (MSDU) size (2304 octets), plus the length of
the Mesh Control field (6, 12, or 18 octets) if present, the maximum unencrypted MAC
Management Protocol Data Unit (MMPDU) size excluding the MAC header and FCS
(2304 octets) or the maximum Aggregate-MSDU (A-MSDU) size (3839 or 7935 octets,
depending upon the STA’s capability), plus any overhead from security encapsulation
[IEEE, 2012].

Octets:
2

2 6 6 6 2 6 2 4 0-
7951

4

Frame
Control

Duration
/ID

Address
1

Address
2

Address
3

Sequen-
ce

Control

Address
4

QoS
Control

HT
Control

Frame
Body

FCS

MAC Header

B0 B1 B2 B3 B4 B7 B8 B9 B10 B11 B12 B13 B14 B15

Protocol
Version

Type Subtype To
DS

Fro
m

DS

More
Fragme

nts

Retry Power
Manag
ement

More
Data

Protected
Frame

Order

Bits : 2 2 4 1 1 1 1 1 1 1 1

Figure 6.3: MAC frame format

There are three main types of frames (one can differ between them based on Type field
value B2-B3 (Figure 6.3)) [IEEE, 2012] [Westcott et al., 2011]:

• Management frames (Type = 00): They are used by STAs to join and leave the

84 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

BSS. Because of their importance in our research, they are described in detail in
subsection 6.2.2.3

• Control frames (Type = 01): Control frames have only header information. They
assist with the delivery of the data frames, clear the channel, acquire the channel
and provide the unicast frame acknowledgements. They are transmitted at one of
the basic rates (mandatory), so they would be heard by all the stations. There are
9 subtypes control frames: Control Wrapper, Block Ack Request (BlockAckReq),
Block Ack (BlockAck), PS-Poll, RTS, CTS, ACK, CF-End and CF-End + CF-Ack.

• Data frames (Type = 10): Data frames that carry MSDU data that is passed down
from the higher-layer protocols are normally normally encrypted. The data frames
that carry no MSDU payload are not encrypted. There are 15 data frame subtypes
grouped as following: Data + [, CF-Ack, CF-Poll, CF-Ack + CF-Poll], no-data [Null,
CF-Ack, CF-Poll, CF-Ack + CF-Poll], QoS Data + [,CF-Ack, CF-Poll, CF-Ack +
CF-Poll] and QoS [Null, CF-Poll, CF-Ack + CF-Poll].

6.2.2.3/ IEEE 802.11 MAC MANAGEMENT FRAMES

Management frames are also known as MAC Management Protocol Data Unit (MM-
PDU). They are used by STAs to join and leave the BSS. The following is a list of 14
subtypes management frames as defined by the 802.11-2012 Standard: Association
(request/response), reassociation (request/response), Probe (request/response), Timing
Advertisement, Beacon, Announcement Traffic Indication Message (ATIM), Disassocia-
tion, Authentication, Deauthentication, Action and Action No Ack. Management frames
are the only ones that are sent/received all the time, regardless of STA’s status, whether
it was already associated to an AP or still searching for one. Figure 6.4 presents the
management frame format. Frame Body field consists of two different set of fields:

• Information Elements (IE) Fields: These fields are used to send additional in-
formation. These fields have numerous potential application areas which require
embedding additional information in the management frames. The general format
of IE fields has three fields:

– Element ID: It is a field of one byte with an unsigned integer, in case of using
"Independent RIE", it has a value between 32-255. In case of using "Vendor-
specific Information Element", this fields is set to 221.

– Length: It is a field of one byte with an unsigned integer. The Length field
specifies the total number of octets of the next field.

– Variable: It is a variable-length element-specific Information field.

• Non-IE Fields: In the 802.11-2012 standard, there are 42 non-IE fields, such as
Beacon Interval field, Capability Information field, etc.

We are going to focus on only three subtypes management frames (based on subtype
value b7 b6 b5 b4 (Figure 6.3)). These three frames play an essential role in scanning
phase :

• Beacon Frame (subtype = 1000): It is used by the APs (and the STA’s in an IBSS)
to communicate throughout the serviced area the characteristics of the connection

6.2. IEEE 802.11 (WI-FI) 85

Octets: 1 1 Variable

Element
ID

Length Information

MAC Header

 Fields that are not Information
Elements

Fields that are Information
Elements

Information
Element 1

Information
Element 2

…….…. Information
Element N

Octets: 2 2 6 6 6 2 4 0-2320 4

Frame
Control

Duration Address 1 Address 2 Address 3 Sequence
Control

HT
Control

Frame
Body

FCS

Figure 6.4: MAC Management frame format

offered to the cell members. This information is received by potential clients (in
passive mode) and by clients that are already associated to a BSS. They are sent
periodically at a rate predefined.

• Probe Request Frame (subtype = 0100): It is used by a STA to obtain information
from another STA or AP. This frame is used by a STA to locate any, or a particular
IEEE 802.11 BSS.

• Probe Response Frame (subtype = 0101): It is used to reply to a probe request.

6.2.3/ IEEE 802.11 STATION ACCESS PHASES

A Wi-Fi client access process involves three phases (Figure 6.5):

• Scanning (or Discovery): The IEEE 802.11 standard defines both types of scan-
ning techniques [Gupta et al., 2007].

– Passive scanning mode, the WNIC (Wireless Network Interface Card) listens
on one channel at a time for Beacon Frames from APs. It records the corre-
sponding signal strength and other relevant information about the AP. Using
this information, the WNIC then chooses which AP to associate with.

– Active scanning, Probe request frames are transmitted on all the channels.
The responses received from APs in the form of Probe Response Frames
are then subsequently processed by the WNIC. Active scanning is the de-
fault scanning technique for a WNIC, which enables it to implore an immediate
response from an AP, without waiting for the beacon frames to be sent by it

• Authentication: The IEEE 802.11 authentication is the first step in network attach-
ment. IEEE 802.11 authentication requires a Wi-Fi client to establish its identity with
an AP. There is no data encryption or security at this stage.

86 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

Wi-Fi Client Available APs

Scanning

Authentication

Association

Selected AP

Probe request (broadcast)

Probe request (broadcast)

Probe responses

Probe responses

Authentication request

Authentication response

Association request

Association response

Data Exchange Data Frames

Figure 6.5: Wi-Fi STA Access Phases

• Association: Once authentication is complete, Wi-Fi clients can associate (reg-
ister) with an AP to gain full access to the network. Association allows the AP
to record each Wi-Fi client so that frames may be properly delivered. Association
only occurs on wireless infrastructure networks, not in ad hoc (peer-peer) mode. A
station can only associate with one AP at a time[Intel, 2014].

It is important to mention here that a client keeps scanning for Wi-Fi network (Ac-
tive/Passive Scan), even after being associated with a network. In other words, scanning
happens as long as the Wireless NIC is enabled.

6.3/ COLDE PROTOCOL STACK

COLDE concept depends on simplifying non-confidential-data exchange. COLDE defines
two components:

• Component I (COLDE Extension) : An extension of the IEEE 802.11 protocol

6.4. COLDE DESIGN AND STRUCTURE 87

LW-Services CoAP

UDP

IEEE 802.11 MAC + COLDE

IEEE 802.11 PHY

Application

Transport

Network

Data Link

Physical

Figure 6.6: COLDE Protocol Stack

(Data-Link layer), we refer to it here as COLDE or COLDE Extension.

• Component II (LightWeight Services): An application architecture that will run on
the application layer. It helps to organize the data that will be sent using COLDE
extension.

This stack has been designed to offer smaller packet overhead, thus resulting in a faster
data exchange. The layers that have been excluded are:

• Network Layer: COLDE piggybacks the management frames of the IEEE 802.11.
These frames are independent from the upper layers. Network layer addressing and
routing are not needed. The MAC layer frames depend only on MAC addresses.
Excluding network layer allows data exchange with other networks (in case that the
Wi-Fi client is connected to a network). At the same time, the Wi-Fi client that isn’t
connected to any network has no IP address. So in both cases, the network layer
can be excluded.

• Transport Layer: COLDE doesn’t rely on session. The concept of COLDE is that
there is an application trying either to get/broadcast information, it will prepare the
service PDU and send it. The PDU will not be fragmented. No session will be held
on the level of the operating system. No special packets of frames will be sent.
The application is responsible of sending another request in case of not receiving a
response.

On the other hand, COLDE can play an important role as the first protocol to enable
connectionless IoT. COLDE can be used to offer communication Data Link layer for CoAP
(discussed in section B.2.4.2). CoAP depends on UDP as a transport protocol. In this
scenario, the service PDU in COLDE frame will be the UDP datagram. Access points can
play the role of relay agents or CoAP-proxies.

6.4/ COLDE DESIGN AND STRUCTURE

Creating a connection or an alliance is an essential phase for data exchange between a
Wi-Fi access point and a Wi-Fi client, or between clients themselves on the Wi-Fi network.

88 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

Having a connection between the access point and the Wi-Fi client means that the client
is a part of the network and can have access to the rest of the network. In public Wi-Fi
networks that should not be a problem, usually there is no sensitive or confidential data
in it, it just offers connection to the public Internet and it is available to anybody. But it
is not the same situation for the private Wi-Fi, only authorized persons with the required
credentials can connect to that Wi-Fi and use its services. In case two clients need to
exchange some data, they should be connected either using an AP or one of them is in
ad hoc mode or a Wi-Fi direct mode, which leads to the same problem between a Wi-Fi
client and a Wi-Fi access point.
Actually, the proposed extension is only software and needs no special hardware. Any
Wi-Fi device, whatever its role in the network, can be provided with an extension, which
means it can be provided by any access point, mobile in an ad hoc mode, mobile in a
direct Wi-Fi mode or even a normal mobile running in a pure client mode.
COLDE allows distinguishing devices based on their MAC addresses regardless of the
network that relayed its request.

6.4.1/ COLDE - WORKING METHOD

In the normal mode, one can’t exchange data before going through the three phases
and being part of the network. In COLDE we exchange the data during the first phase
(Scanning). The data will be carried into beacon frames for broadcasting the information,
and into probe Request/Response Management Frames (Figure 6.4) to request a ser-
vice. This approach more specifically uses the Request Information Element (RIE) part
of the management frame (in case of the probe Request/Response frames), which is a
variable length part, which the client usually uses it to ask the access point for some extra
information like the SSID, the supported rate, etc.
The frame exchange comprises the following steps (Client side):

1. When an application needs certain data, it prepares the Packet Data Unit (PDU) of
the corresponding Service.

2. The application sends the PDU to the Operating System (OS)’s library that manages
the Wi-Fi NIC (WNIC).

3. The OS’s library adds the PDU as an IE.

4. The OS’s library sends the IE with the next Probe Request (Active scanning).

5. When the OS’s library receives the Probe Responses, it sends the received IEs to
the application.

6. The application searches the IEs for the demanded service. If the response isn’t
received, the application will try to send another PDU after certain timeout.

The frame exchange comprises the following steps (AP side):

1. An AP receives the Probe Request and extracts the IEs.

2. If the AP has COLDE extension, it can understand the service request, otherwise it
will treat the probe request as any other requests.

6.4. COLDE DESIGN AND STRUCTURE 89

Wi-Fi Client Available APs

Scanning

Probe request (broadcast)
+COLDE Extension

Probe request (broadcast)
+COLDE Extension

Probe responses

Probe responses
+COLDE Extension

Figure 6.7: COLDE Extenstion - Working Method

3. If the AP can reply to COLDE request, it adds the response as an IE. The IE will be
sent in the next probe response.

6.4.2/ COLDE FRAMES

COLDE frame can be added as an IEEE 802.11 Information Element in two different
forms:

• Independent RIE: Each request information element has a unique ID, the ID num-
bers between 32-255 have been reserved for future use. One of these IDs could
be used to define a new information element to send a special request from a Wi-Fi
entity to another Wi-Fi entity (broadcast if the SSID is unknown, directed if the SSID
is already known).

• Vendor-specific Information Element: Because of the extensive importance and
to allow some flexibility to the vendors, the IEEE 802.11 standard itself has a pro-
vision to carry non-standard, vendor-specific information in the "Vendor Specific
Information Element" (IE) field of management frame (Figure 6.8). This IE (with
ELEMENT ID 221) is provisioned to be always present as a last IE in the frame
body of beacon. Using it, up to 251 bytes of information can be embedded in each
management frame[Gupta et al., 2012a].

COLDE extension is defined to have a common general format consisting of (Figure 6.9):

• Options - B0 (SOS): This bit is used to indicate the urgency of the request. COLDE
will give this request the priority over the rest of the requests. At the client, COLDE
will not wait for the periodic scanning and it will request an immediate network scan-
ning in order to broadcast the request directly. At the AP, the AP will give this request
the priority over the other requests from all clients.

90 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

Octets: 1 1 3 1 X

Element ID Length OUI Sub-OUI Data

221 L=3+1+X (X<=251)

Figure 6.8: Vendor-Specific Information Element

• Options - B1 (Authenticated): This bit indicate whether this request is coming from
an authenticated client. Service Authentication is discussed in details in section 6.6
(COLDE Security).

• Options - B2 (Server): The client can manually add a server address port. The
AP has the choice of forwarding the request to the mentioned server, forwarding the
request to the default server or ignoring the request.

• Options - B3 (Reserved): This bit is reserved for future use.

• Service Category (B4 - B7): These four bits can help to categorize the services.
Based on these bits, the APs can filter the requests to allow/reject certain types of
services. The service categories can be any type of public services in which no pri-
vate or classified data is included. For example, localizations services, emergency
request, evacuation services, warnings, evacuation directions, weather forecast,etc.
In case of fixed Wi-Fi access points, there could be many data channels in which
the Wi-Fi client can check from time to time in order to get the latest updates. Table
6.2 lists the main service categories.

• Service ID: It is a one octet field with an unsigned integer. It gives the possibility to
define 256 different services for each category.

• Server’s Address: A field of 16 octets, it specifies the server’s address. It can be
an IP-v4, IP-v6 or an URL (Uniform Resource Locator). This field exists only if B2
is set to 1.

• Server’s Port: It is a field of two octets which specifies the port address of COLDE
service on the server. This field exists only if B2 is set to 1.

• Service PDU: It is variable-length field, each service can define its own data struc-
ture. The length of this field depends on the maximum allowed by Information ele-
ment in IEEE 802.11 standard.

Category Name Description
0000 (0) SOS Emergency and evacuation services
0001 (1) Essential Info Time, Weather, etc.
0010 (2) Telecommunication Services related to mobile

telecommunication (ex. LTE D2D
(Device-to-Device))

0011 (3) Localization GPS, Indoor positioning and Indoor
navigation services

Continued on next page

6.4. COLDE DESIGN AND STRUCTURE 91

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

Service ID
Server's
Address

Server's
Port

Service
PDU

Options
(4 Bits)

Category
(4 Bits)

1 Octet 16 Octets 2 Octets Variable

COLDE General Frame Format

Octets: 1 1 Variable

Element ID Length Information

Information Element Frame

Figure 6.9: COLDE General Frame Format

Continued from previous page
Category Name Description
0100 (4) Transportation Traffic information, Public transport

broadcast (Bus, metro and trains
information), flights updates (Airports),

etc.
0101 (5) Commercial Commercial offers, products information

(ex. Supermarkets, Restaurants, Hotel,
etc.)

0110 (6) Parking Parking services (Available spots, spots
location, etc.)

0111 - 1111 (7-15) Reserved For future use
Table 6.2: COLDE - Service Categories

6.4.3/ COLDE HIERARCHY

COLDE is a hybrid system in which it can operate depending on a centralized and non-
centralized hierarchy at the same time. There are two main characteristics in this design:

1. A centralized system in which there is a server control forming the broadcast tree on
the first level only, sending broadcast messages and responding to the LightWeight
Services requested by the nodes in the tree.

2. A Non-centralized system in the way that the nodes work without the need to know
the parent-node or the children-nodes, the nodes can send broadcast messages,
but the receivers can distinguish the messages according to their sources, among
which the messages from the server should be more credible than the others.

Two main components could exist in the environment (Figure 6.10):

• Server: It is the root of the broadcasting tree which maintains the connections with
the direct children-nodes; the connections between the server and its child-nodes
are established on the Internet/Intranet. The server can push notifications/requests

92 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

Figure 6.10: COLDE - Broadcasting Structure

to a specific child-node(s) directly, and they will broadcast these messages in the
sub-tree(s).

• Node: The node is any device which has a wireless card that can be used to re-
ceive/send the data from/to its environment or directly from the server. Each node
has many attributes, i.e. GPS info (position, number of satellites, number of child
nodes, battery Level, node speed, bandwidth, traffic cost, neighbors,...).

In the following, we discuss node types, their function in the hierarchy and node transfor-
mation between types.

6.4.3.1/ NODE TYPES

The nodes are categorized according to their location and their capabilities (Table 6.3):

6.4. COLDE DESIGN AND STRUCTURE 93

• Main-Node Level-I (Type-I or MNL-I)
The main node level-I is a wireless device (a mobile or an access point) the parent
of which is the root, it receives messages from the root as unicast on the IP network
(3G, Broadband). It broadcasts the received messages (notifications, requests) in
its Wi-Fi coverage. The main node level-I can send requests to the root directly as
unicast, besides periodically sending a neighborhood list to the server. The delay
between two updates can be either pre-defined by the server or even customized
by the node.

• Main-Node Level-N (Type-II or MNL-N)
The main node level-N is a wireless device (a mobile or an access point) the parent
of which is one of the main nodes (N is the depth of the node in the tree), but it
can communicate directly with the root on the IP network, it receives messages
from the parent as broadcast on the Wi-Fi. It rebroadcasts the received messages
(notifications, requests) in its Wi-Fi coverage. The main node level-N can send the
requests to the root directly as unicast, it periodically sends a neighborhood list to
the server. The delay between two updates can be either pre-defined by the server
or even customized by the node.

• Leaf-Node with Internet (Type-III or LN-WI)
The leaf-node with Internet is a wireless device (a mobile or an access point) the
parent of which is the root, it receives the messages from the parent as unicast.
It cannot rebroadcast the received messages and it cannot receive any broadcast
from any other main node. So, the leaf-node with the Internet could either be main
node level-I or main node level-N, but without the ability to receive/(re)broadcast the
messages from/in its Wi-Fi coverage. This type can work in case a mobile does not
include the protocol but it has Internet/Intranet connection with the server.

• Leaf-Node - No Internet (Type-IV or LN-NI)
The leaf-node without Internet is a mobile the parent of which is another main node
different from the root. It receives messages from the parent as broadcast on the
Wi-Fi. It can not rebroadcast the received messages. Any request should be relayed
by another main node. This type can work in case a mobile does not include the
protocol and at the same time has no Internet/Intranet connection with the server.

MNL-I MNL-N LN-WI LN-NI
Device Mobile or AP Mobile or AP Mobile or AP Mobile
Parent Root MNL-(N-1) Root MNL-N

Connection
with Parent

3G/Broadband Wi-Fi 3G/Broadband Wi-Fi

(Re)broadcast Yes Yes No No
Can

communicate
with root

Yes Yes Yes No

Receive
broadcast

Yes Yes Yes No

Demand
Service

Unicast to root Unicast to root Unicast to root Wi-Fi
Broadcast

Neighborhood
List

Yes Yes No No

Continued on next page

94 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

Continued from previous page
MNL-I MNL-N LN-WI LN-NI

Table 6.3: COLDE - Node Types

6.4.3.2/ MAIN-NODES SELECTION CRITERIA

As soon as the node (Type-I, Type-II or Type-III) connects to the root, the parent will be
the root itself, the node will be either Main-Node Level-I or Leaf-Node with the Internet
(Type-III), depending on its capability to broadcast the messages in its Wi-Fi coverage.
Periodically, the root evaluates the tree structure starting from its own child nodes, the
evaluation process depends on the following rules (Figure 6.11):

• The node stays as a 1st level main node as long as there is no other main node in
its Wi-Fi coverage area. The server can decide whether there is another node in
the area either:

– by using the geographical position of the node.

– or because the node receives no broadcast from other main nodes.

– or because it is moving with the highest speed than a pre-defined node speed.

• otherwise, the node will be moved to one of the other main nodes to be a child node
in the same area according to the following priorities:

– Age of the main node.

– Speed of the main node.

– The battery level of the main nodes.

– The greatest number of satellites in view of the main nodes.

– The lowest number of neighbors of the main nodes.

6.4.4/ MULTI-TIER BROADCAST

Broadcast is referred to when transmitting a message that will be received by every
device on the network, while multicast is the delivery of a message or information
to a group of destination computers simultaneously in a single transmission from the
source[Tanenbaum, 2002].
If one wants to broadcast a message to all the devices in selected areas, regardless
of which wireless network they are connected to, neither the multicast solution nor the
broadcast solution can achieve this goal separately, but a solution consisting of both of
them can.

We present a solution “Multi-Tier Broadcast” which depends on the multicast and the
broadcast at the same time, and on many levels. The destined message should be sent
using multicast to some devices in these areas, so they can broadcast it to the rest of the
devices. Each device receiving it will rebroadcast it again till the message expires. The
message expires either when the TTL is 0 or when its validity time runs out. If the devices

6.4. COLDE DESIGN AND STRUCTURE 95

Figure 6.11: COLDE - Main Node Selection

in these areas do not include the multicast, the first phase can be done using the unicast.
But even with a Multi-Tier solution, a lot of devices will not receive the message, these
devices are either not connected to any network or the devices receive no messages from
the source. We can solve this problem by using Multi-Tier Broadcast with COLDE.
In this mode, the server sends a message to its children nodes (Nodes Type-I (MNL-I)
and Type-II (LN-WI)), each request has a TTL, the TTL is combined with two factors:

• Number of Rebroadcasts: this defines how many times the message will be
rebroadcast, each node decreases this value by 1.

• Expiry time: this is a timestamp to define when the message will expire, this factor
has priority over the first factor.

96 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

6.5/ LIGHTWEIGHT SERVICES EXCHANGE SYSTEM

Lightweight Services (LW-Services) are the services that depend on a non-confidential
small amount of data. This data could be transferred using only one frame, so that it will
not consume the resources of the providing entity. These services could be anything, for
example asking for localization information, sending an SOS signal in emergency cases,
requesting evacuation instructions,...
Most of the traditional services could be used to compromise the network, but this is
not the case with the suggested Lightweight Services. If we go through the list of the
most dangerous threat to Wi-Fi networks (mentioned in the COLDE concept), it will be as
follows:

• Local network security: there is no need to establish a connection between the
client and the access point, so the client will never be part of the network.

• Public network security: the access point can maintain a list of secure services
and their servers, so the client will not be able to participate in any illegal action.

• Service level: this category of services consists of two packets only, the request
and the response, so the client can never abuse the service by downloading large
files, watching live broadcasts,...

The combination between the Lightweight Services and the Connectionless Data Ex-
change can provide the owners of the private Wi-Fi with a secure method to run their
access points as a Lightweight Services Provider.

6.5.1/ SYSTEM ENTITIES

There are four entities in the service model. They cover the service PDU format,
LightWeight Server, LightWeight Services Helper and the service beneficiaries.

• Lightweight Service (LW-Service) PDU is defined by each service individually.

• LightWeight Server (LWS) is the server that provides the lightweight service.

• LightWeight Services Helper (LWSH) is the entity that provides the service, or it
relays the requests to the LWS and sends back the responses.

• LightWeight Service Beneficiary (LWSB) is the entity that needs a piece of data
from the LWS but it is not able to get it directly without the help of a LWSH.

6.5.2/ SYSTEM DESIGN

The main points which have been taken into consideration in the LightWeight Services
design are the following:

• The LWSH and the LWSB should not need to establish a connection between them.

• The Wi-Fi access point can refuse requests to certain servers or for certain services.

6.5. LIGHTWEIGHT SERVICES EXCHANGE SYSTEM 97

Figure 6.12: LightWeight Service Mechanism

• The client does not have to be connected to the Wi-Fi in order to ask for this service.

• The data could be gathered locally on the LWSH or could be relayed to a LWS.

6.5.3/ SERVICE MECHANISM

The service consists of two or four phases, according to the type of service:

• LW-Req (LightWeight Service Request): the LSWB broadcasts this request and
waits for a response from a LWSH. In case it receives no response, it re-broadcasts
the request after waiting for a pre-defined delay. This delay should be pre-defined
in the protocol in order to prevent service abuse.

• LW-Process (LightWeight Service Processing): the LWSH processes the re-
quest as follows (Figure 6.12):

– Verifies that the request is allowed according to its own list.

– If the service should be provided locally, it verifies that it is allowed to send
such data.

– If the request should be relayed to a LWS, it verifies that the LWS is allowed
on its own list, and then it relays the request. The UDP is used for the commu-
nication between the LWSH and the LWS.

98 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

• LW-Ready (LightWeight Service Ready): as soon as the LWSH receives the
response (either locally or from a LWS), it prepares the response in order to send it
to the LWSB.

• LW-Res (LightWeight Service Response): the LWSH sends back the result to
the LWSB (Unicast).

6.6/ COLDE SECURITY

Despite that COLDE is designed to exchange non-confidential data, some rules should
be fixed to prevent abusing the services by users and modifying the SOS information by
an intermediate device/person. The rules should be able to:

• prove that a request (ex. SOS request) sender is who is claiming to be.

• proves to a user that the received response hasn’t been modified by any intermedi-
ate device/person (ex. Evacuation directions).

It is important here to mention that confidentiality of information isn’t required because
the exchanged data should be public, non-sensitive or personal data. For example, no
commercial transactions should be involved.
The main problems in providing a security model for such system is the limited size.
Digital signature algorithms such as RSA (Rivest Shamir Adleman), Diffie-Hellman and
Digital Signature Algorithm (DSA) need key sizes longer than most of the data that
could be exchanged using COLDE. In addition to the limited size, using digital signature
algorithms on some mobile devices could not be the best scenario because of hardware
limitation.
Our solution for a security model depends on a One-Time Password authentication
system (OTP) and hashing functions. Following, we will discuss briefly these two
techniques and the security model provided for COLDE.

A one-time password is a password that is valid for only one login session or
transaction. A secret pass-phrase is used to generate a sequence of one-time (single
use) passwords. With this system, the user’s secret pass-phrase never needs to cross
the network at any time such as during authentication or during pass-phrase changes.
Thus, it is not vulnerable to replay attacks [Haller et al., 1998]. There is two main
standard for generating One-Time Passwords: HOTP and TOTP.

• Hmac-based One-Time Password algorithm (HOTP): HOTP depends on Hashed
Message Authentication Code – HMAC. it uses cryptographic hash function SHA-1
in combination with a secret key. HOTP uses counter value which encrypts with the
HMAC [M’Raihi et al., 2005]. HOTP passwords can be valid for an unknown amount
of time.

• Time-based One-Time Password algorithm (TOTP): TOTP is the time-based
variant of this algorithm, where a value T, derived from a time reference and a time
step, replaces the counter C in the HOTP computation. TOTP passwords keep on
changing and are only valid for a short window in time [D. M’Raihi Verisign, 2011].

6.6. COLDE SECURITY 99

SOS request
received

SOS
Server

Exctract Data
Request = Data + Hash0

Generate User's TOTP
(Time-Based

One-Time-Password)

HashX=Hash(Data,TOTP)

HashX =
Hash0 ?

Prepare response's data
(Data1)

Hash1 = Hash(Data1,TOTP)

Response = Data1 + Hash1

Send response

Yes

No
Reject
request

SOS response
received

COLDE
Client

Generate User's TOTP
(Time-Based

One-Time-Password)

Prepare request's data
(Data0)

Hash0 = Hash(Data0,TOTP)

Request = Data0 + Hash0

Broadcast
request

COLDE AP / Proxy

Does
MAC
exist ?

No

Yes

Reject
request

Figure 6.13: SOS Service Security

The TOTP is considered as a more secure One-Time Password solution because of the
possibility to control the validity period.

A Hash Function is used to map a message of any length to a data of fixed size.
There are many algorithms used nowadays for applying hashing, such as message-
digest algorithm (MD5), Secure Hash Algorithm family SHA-0, SHA-1, SHA-2, etc.

The proposed security model depends on having a security mechanism for the
critical services, such as SOS and evacuation services. The mechanism consists of
two phases, Registration Phase and Verification Phase. Following, the mechanism is
discussed by an example of SOS and rescue services. In registration phase, each device
should be registered in the SOS database. The information would include the following:
Owner’s personal data, MAC address, Shared secret (Password), Time-Based One-
Time-password function, Hash function, etc. The procedure of creating the database and
collecting verifying the data is out of scope of this research. The client prepares the SOS
request as follows (Figure 6.13):

1. It prepares the SOS data (Data0).

2. It generates a Time-Based One-Time-password (TOTP).

3. Using the hash function, it generates the hash string (Hash0) for the SOS data

100 CHAPTER 6. CONNECTIONLESS DATA EXCHANGE (COLDE)

(Data0) and the TOTP from the previous step.

4. The client broadcasts the request (Data0,Hash0) and waits for the response.

5. The client keeps sending SOS messages till it gets a valid response.

When a client broadcasts a SOS using COLDE, the COLDE-AP(s) in the same area
(that received the request) forward the request to the registered SOS-Server directly, or
indirectly by sending the request to a COLDE-Proxy server. The SOS-Server processes
the request as follows:

1. It extracts the data (Data0) and the hash string (Hash0) from the request.

2. SOS-Server verifies that the MAC address is registered in its database. The request
will be rejected in case there is no corresponding record.

3. Using the MAC address, it can generate a Time-Based One-Time-password
(TOTP).

4. Using the hash function, it generates the hash string (HashX) for the original data
and the TOTP from the previous step.

5. (Hash0 , HashX) means that the request isn’t originated from the user, or there is
a time synchronization problem, SOS-Server will reject the request and finish the
procedure. Otherwise it will continue to the next step.

6. SOS-Server sends the needed information to the concerned authorities. It prepares
the response’s data (Data1).

7. It generate the hash (Hash1) for Data1 and TOTP.

8. It forms the response by adding Hash1 to Data1 and sends it back the sender.

Following, we list some points and remarks to be taken into consideration:

• COLDE-client and SOS-Server should synchronize their clocks in order to generate
the same TOTPs.

• COLDE-client can synchronize its clock using Essential Services (0001).

• The password validity time would be tuned so the client and the server can generate
the same TOTP.

• Handling the non-registered MAC addresses could be processed differently follow-
ing to the environment and the situation (ex. natural disaster).

• A black-list could be prepared for the MAC addresses that send many non-valid
requests.

The proposed mode can be customized in order to use different algorithms and rules.
This model can be used for all types of lightweight services.

6.7. CONCLUSION 101

6.7/ CONCLUSION

We presented a new extension to IEEE 802.11 which is called CoLDE. It provides a
simple and efficient method to exchange non-confidential and small amounts of data (only
one frame) between Wi-Fi clients and APs without having any association. CoLDE loads
the data in the IEEE 802.11 management frames directly which eliminates the complexity
and the overhead of the network and transport layers. In order to organize data, we
presented LightWeight services which could be transfered directly using COLDE. Another
possibility is to use CoAP which has been designed by IETF to enable IoT and it depends
on UDP. A design to prevent service abuse has been presented along with an example of
emergency service which is a public service but it needs certain level of security.
In chapter 7, we present three COLDE-based applications which have been tested either
in a real environment or in a simulation. The results of these experiments are discussed
in detail.

7
COLDE IMPLEMENTATION

7.1/ INTRODUCTION

Experimentations have been carried out to validate COLDE model. The first experiment
is a simulation to broadcast information in variable dense environment using COLDE.
The experiment has been realized using NS2. After the promising results of the simu-
lation, COLDE has been implemented in real environment and it has been tested with
indoor positioning applications. The third application is a simulation to evacuate building
in emergency situations by sending plans of evacuation by using COLDE model.

7.2/ BROADCASTING INFORMATION IN VARIABLY DENSE ENVI-
RONMENT

7.2.1/ INTRODUCTION

Broadcasting is a widely used communication mode in ad hoc networks. It allows send-
ing an information from one node to all the nodes that are within its coverage area. This
feature makes broadcasting a suitable mode for exchanging routing information in Mobile
Ad hoc Networks (MANETs), sending emergency messages in Vehicular Ad hoc Net-
works (VANETs) or sharing local measurements in Wireless Sensor Networks (WSNs).
Many studies of these networks tackled the broadcasting issues. They tried to handle
the adaptation to density, the reduction of useless redundant packets, the guarantee of
confidentiality and authenticity of broadcast data. Currently, one of the research topics is
the design of a flexible method to broadcast information in variable dense environments.
These environments consist of hundred or even thousands of clients in the same geo-
graphical area, where they can be connected to different networks. Therefore, one of the
main challenges is to find a way to send broadcast packets to all nodes, no matter the
network they are connected to, or even if they are not connected to any network. Adapting
the ad hoc broadcasting algorithms proposed in the literature to work in variable dense
environments brings out some considerations that must be taken into account, especially
the ongoing services or communications of the nodes and the wideness of the area. For
instance almost all these algorithms rely on the assumption that the nodes are connected
to one network. This implies that if a node Ni wants to send a packet to another node N j

connected to a different network, at least one of them should disconnect from its original
network. Indeed, normal Wi-Fi clients can be connected only to one network at the same

103

104 CHAPTER 7. COLDE IMPLEMENTATION

time. This disconnection can be a problem to many users because they will have to stop
using the service of their main network. In wide areas, it is usual to find users that are
geographically close, but connected to different networks. But in case of emergency for
example it will be beneficial if they cooperate and exchange/forward safety messages.
Finding a method that allows this type of communication is the main target of this work.

In this section, we present a new solution to use a multi-tier broadcast model to deliver
messages to all the devices in a selected area by using COLDE.

7.2.2/ SIMULATION

For our simulations we have used the network simulator NS2 (version 2.35). We have
implemented COLDE extension using C++ language, then we modified the management
frames (beacons, probe request/response) of the protocol IEEE 802.11.
The simulation environment had the following characteristics:

• Simulation area: a square area of dimensions X*X (different according to the dif-
ferent scenarios,).

• Number of nodes: different according to the simulation area.

• Nodes’ locations: the nodes are distributed over the selected area in which each
node is located at fixed distance from the other nodes.

• Propagation: Shadowing Model.

• Mobility: the nodes are fixed during the simulation.

We have applied the testing according to two modes:

• Directed Mode: in this mode we have the root (the broadcasting node) and the
client nodes, all the client nodes have direct connection with the root.

• COLDE mode: in this mode we have the following nodes:

– The root: This is the broadcasting node, it is located at the center of the simu-
lation area (1 root in each simulation).

– MNL-I: main nodes have direct connection with the broadcasting node (4 MNL-
I in all the simulations).

– MNL-II: main nodes have no connection with the root (number of MNL-II nodes
varies depending on the testing area).

The broadcasting node sends a direct message to the main nodes MNL-I, the MNL-I
nodes broadcast the message into their coverage areas using COLDE. The mes-
sage received by MNL-II, the MNL-II nodes decrease the TTL and rebroadcast the
message into their coverage areas.

Both modes have been repeated using different areas and different number of nodes. In
each scenario we calculated the time needed for the nodes to get the message. Table 7.1
and Figure 7.1 show the parameters of each scenario and their results.

7.3. INTEGRATION IN EMBEDDED SYSTEM 105

Figure 7.1: Simulation - Broadcast Duration Comparison

7.2.3/ EXPERIMENTS AND RESULTS

The results show that COLDE can broadcast a message to about 84 nodes in half of the
time needed by the Directed mode. In the second scenario, broadcasting the message
using COLDE took 12% of the time needed by the Directed mode to broadcast the same
message. In the third scenario, COLDE needed 4% of the time needed by the Directed
mode. In other words, the Directed mode needed about 24 times the time needed by
COLDE. Figure 6 shows the relation between the number of the nodes and the time
needed to broadcast a message using the Directed mode and the COLDE mode.

7.2.4/ CONCLUSION

Exchanging data between the devices directly, without the need to have a connection and
without being connected to the same network, provides a flexible method to broadcast
important messages to all the devices in a selected area. Using a multi-tier broadcast
model can extend the broadcast area which means that the message will reach a larger
number of devices.

7.3/ INTEGRATION IN EMBEDDED SYSTEM

COLDE proposes a general structure frame which can contain any type of data (Figure
6.9.). Implementation has been carried out as follows. Firstly, we use the vendor-specific
information element (Figure 6.8.). Because of the extensive importance and to allow

106 CHAPTER 7. COLDE IMPLEMENTATION

Scenario Directed COLDE
Area
m*m

Number
of nodes

Broadcast
time

Last
Node

Duration Last
Node

Duration

250*250 84 2.54 4.51 1.97 3.51 0.97
500*500 365 2.54 11.02 8.48 3.61 1.07

1000*1000 1525 2.54 39.03 36.49 4.01 1.47

Table 7.1: Simulation scenarios

some flexibility to the vendors, the 802.11 standard itself has a provision to carry non-
standard, vendor-specific information in the "vendor specific" Information Element (IE)
field of management frame. This IE (with ELEMENT ID 221) is provisioned to be always
present as a last IE in the frame body of beacon. Using it, up to 251 bytes of information
can be embedded in each management frame [Gupta et al., 2012a]. Utilizing the vendor
specific information simplifies the implementation, many Wi-Fi cards’ drivers identify and
send this information element to the application for it to be processed. Each vendor has its
own OUI (Organizationally Unique Identifier). OUI is a 24-bit number that uniquely iden-
tifies a vendor, manufacturer, or other organization globally or worldwide. The following
byte (OUI sub-type) is used as a vendor-specific sub-type.

The time needed for processing a request is a serious bottleneck. While the probe request
has a timeout measured by hundred of milliseconds, Request could need seconds to find
the right response (such as, calculating the client position). In normal cases, the active
scanning process takes 2 to 3 seconds [Adya et al., 2004a]. This time varies depending
on the distance from the server’s network, the link speed with this network and the server’s
capacity. In other words, when the client sends a probe request containing a request, the
timeout can be hit even before receiving the probe response. The same problem will arise
when trying to send another request.
We present our solution which utilizes two levels of caching. By using the cache, the
client will get the result of its request in the following probe response frames.
We will cover the caching levels and the procedure followed in detail.
There are three main components in our solution. The Wi-Fi client device, the Wi-Fi
access point and the COLDE Proxy Server (COLDE-Proxy).

7.3.1/ INTEGRATION INTO THE WI-FI CLIENT DEVICES

The probe request is the main item needed to integrate client’s COLDE in the Wi-Fi client’s
devices. The probe request is used to perform "Active Scanning".
In active scanning, probe request frames are transmitted on all the channels. The re-
sponses received from APs in the form of probe response frames are then subsequently
processed by the WNIC (Wireless Network Interface Card). Active scanning is the default-
scanning technique for a WNIC, which enables it to implore an immediate response from
an AP, without waiting for the beacon frames to be sent by the AP [Gupta et al., 2007].
The client prepares the COLDE-Request frame. The frame will be added as an IE to be
sent in the next probe requests (only one time). Every service can customize the COLDE-
Request to include the needed data. The COLDE-Proxy can call the functions based on
the service ID.

7.3. INTEGRATION IN EMBEDDED SYSTEM 107

Wi-Fi Client

Data needed

Prepare CoLDE-Request
frame as an IE

Probe request
received

Wi-Fi AP

Does
CoLDE-Request

Frame exist
?

Exctract CoLDE
Request data

CoLDE-Proxy

request
received

System
x=0 ?

Send req. to
all systems

Response received
from system x

service
Supported

?

Is
response

available In
the cache

?

Send req.
to system X

Prepare/Extract
the result/data

Send
probe request

Response
received

Send to all
concerned APs

Prepare CoLDE-
Response frame

as an IE

Send probe
response

 Probe response
received

Send data to
 CoLDE-Proxy

Is there a
response?

End

No

NoNo

No

No

Yes

Yes

Yes

Yes

Yes

Is
response
cached ?

Add to
cache

SOS

Localization

Telecommunication

Commercial

Transportation

Yes

No

Lightweight
Service

OUI
Sub-type

= ?

0x01

0x02

OUI
Sub-type

= ?

0x020x01

Figure 7.2: COLDE - Procedures and communications

The iw is a new nl80211 [Linux, 2015] based on Linux CLI (Command Line Interface)
configuration utility for wireless devices. It supports all new drivers that have been added
to the kernel recently. It is an open-source library. We have used iw to add the COLDE-
Request as an IE in the probe requests, and to get the IE from the probe responses.
As Wi-Fi clients, we are using an IPC (Internet Personal Computer) with Ubuntu and
Arch linux operating systems, and a low-cost,compact Raspberry Pi with Arch linux.

108 CHAPTER 7. COLDE IMPLEMENTATION

7.3.2/ INTEGRATION INTO THE WI-FI ACCESS POINTS

Access points play an important role in our solution. They have more tasks to do than
just forwarding the frames from/to clients. We used Raspberry Pi as an access point. It
has been equipped with Wi-Fi USB dongle. For the sake of testing we used three types
of Wi-Fi dongles (Atheros, Ralink and Realtek). Arch linux (customized distribution for
ARM architecture) has been used instead of Raspbian (based on Debian), the reason is
related to the ability to control the Wi-Fi dongle driver by a 3rd-party application instead
of the operating system itself.
The hostapd [Hostapd, 2015] has been selected as an access point application. Hostapd
is a user space daemon for access point and authentication servers. It implements IEEE
802.11 access point management and it supports Linux (Host AP, madwifi, mac80211-
based drivers) and FreeBSD (net80211). Hostapd is designed to be a "daemon" program
that runs in the background. It can be distributed, used and modified under the terms of
a BSD license.
The hostapd has been customized to process COLDE frame. We used the code
0x0c01de (it has not yet been assigned to any vendor) as a temporary OUI, we will refer
to this ID as COLDE-OUI. Two sub-types have been added to further indicate the cache
settings. The value 0x01 indicates that the client prefers to have instantaneous response
(not from the cache). On the other hand, the value 0x02 shows that the client accepts
cached response. Other values can be identified (254 values). These values can help
to specify other settings. Whenever the hostapd receives a probe request with a COLDE
OUI in the IE part, it extracts the COLDE-Request data. Then, it checks the OUI sub-type
to decide whether it should check the local cache or not. In case of having the value 0x02,
the AP searches the cache for any response stored for this client. If any response is found
in the cache, the AP sends it directly in a probe response, otherwise it continues the pro-
cedure as if the sub-type were 0x01. If the OUI sub-type is 0x01, the AP forwards the
data to COLDE-Proxy as a unicast. Hostapd prepares the COLDE-Response frame as
soon as it receives the response from the COLDE-Proxy. It adds the COLDE-Response
to a probe response to be sent to the client. The probe response has the same COLDE-
OUI as in the IE. Each entry in the cache has a timestamp and a timeout. The timeout
is measured in seconds and it can be customized to fit different networks and different
lightweight services. It is possible to send the timeout from the COLDE-Proxy. The AP
represents the 1st level of caching in our solution.

7.3.3/ PROXY SERVER (COLDE-PROXY)

COLDE-Proxy can be any linux or windows server, even it is possible to combine the
access point and the COLDE-Proxy in the same device. Actually COLDE-Proxy is the
interface between Wi-Fi clients and access points from one side, and the systems that
provide the lightweight services from the other side. Such architecture facilitates the
integration of COLDE in any system. COLDE-Proxy acts as a proxy for Wi-Fi clients. At
the same time, it acts as a lightweight services cache (2nd level of caching) to speed up
the process, to reduce the traffic with the system of the lightweight service (in case it is
located on a different server) and to be a temporary backup in case of losing connection
with the system. The possibility of using the caching varies depending on the system of
the lightweight service itself.
COLDE-Proxy can work with different systems at the same time. COLDE-Proxy receives

7.4. INDOOR POSITIONING USING COLDE 109

the data from the AP(s), it puts them into the appropriate format (according to the selected
lightweight service) and then it makes a call to the functions of that lightweight service. It
sends the result back to the access point(s) that sent the data. This procedure is repeated
every time a client sends a request. If the caching service is used, COLDE-Proxy checks
the cache before starting the session with the system of the lightweight service.
(Figure 7.2.) summarizes the procedures of the three components in our solution and the
communication between them.

7.4/ INDOOR POSITIONING USING COLDE

7.4.1/ INTRODUCTION

Indoor positioning using the IEEE 802.11 protocol has undergone considerable progress
in the past decade. Indoor positioning became one of the essential technologies for
many applications, such as disaster rescue, indoor navigation, and advertising. Indoor
Positioning Systems (IPS) have been presented and implemented. These systems can
be categorized into many groups according to their methods. One group is built on the
use of the fingerprinting, which means a signature of environment features consistently
and strongly depending on the physical location. This group has many categories ac-
cording to the feature used. One category is time-based methods, these methods include
Time-of-Arrival (ToA), Time Difference-of-Arrival (TDoA) and Round Trip Time (RTT). An-
other category is the angle-based method (i.e. AoA)[Zhang Da, 2010]. A third category
uses (RSS) (Received Signal Strength) [Bahl et al., 2000]. These categories are the three
most representative measurements for position estimation. Compared to ToA and AoA
measurements, the RSS can be more easily measured without any additional special
hardware devices in current open public WLAN networks [Tian et al., 2013]. The other
group uses triangulation. It is virtually impossible to use this method without a significant
error, because this method does not take into consideration the interference or the obsta-
cles in the area, such as walls, furniture, and even other people in the building.
In general, indoor positioning needs a number of calculations which differs according to
the methods used. There are two ways to perform these calculations. One way is to
perform them on a mobile device, while the other way is to perform them on a server.
Performing the calculations on a mobile device consumes the device’s battery, and since
mobile devices are normally battery-driven, energy efficiency is a very important consid-
eration in Wi-Fi localization systems [Niu et al., 2013]. Methods such as Wi-Fi fingerprint-
based localization solves part of this problem by sending the needed parameters to a
server in order to perform the calculations.
Sending the parameters to a server requires the mobile device to have an active con-
nection to this server, either by having an association with a Wi-Fi access point or using
3G/4G if the server is accessible from the Internet. Such a condition limits the usability of
the positioning and localization services to the mobile devices that are connected to the
right network where the server is accessible. On the other hand, GPS (Global Position-
ing System) is a system accessible by any person with a GPS receiver. Our goal is to
provide the needed method to make indoor positioning accessible by any mobile device
equipped with a Wi-Fi network card, without requiring it to be connected to any network,
and regardless of the localization system used. For this purpose, we present our solu-
tion to exchange positioning and localization data using the Connectionless Exchange

110 CHAPTER 7. COLDE IMPLEMENTATION

System* Time
Last

Position
Count

AP 1

….

AP N

MAC RSSI MAC RSSI

N

Octet(s) 1 11 20 1 6 1 …. 6 1

*System : it means the indoor positioning/localization system

Figure 7.3: COLDE Indoor Positioning - Request Frame

Protocol (COLDE). COLDE uses the management frames in the IEEE 802.11 protocol to
exchange small amounts of data [Abu Oun et al., 2014a].
The remainder of this section is organized as follows: Section 7.4.2 presents the state
of the art of this work and we survey related work in using connectionless protocols in
positioning and localization. The positioning by methods and applications which can ben-
efit by COLDE are discussed in 7.4.3. Section Section 7.4.4 provides the experiment
scenarios and the results.

7.4.2/ INTEGRATING COLDE IN INDOOR POSITIONING SYSTEMS

The customizable information element (COLDE-Request) (Figure 7.3.) provides the
needed data structure for the methods that use RSSI fingerprinting, collaborative lo-
calization or time based methods. By using only one probe request frame, it is possi-
ble to send the last position information, the time (Figure 7.4.), the MAC address and
the RSSI 31 of APs (the number of APs depends on the size of the last position field)
[Abu Oun et al., 2014b].
The main fields of COLDE-Request are:

• System is a field of one byte with an unsigned integer, it specifies the ID of the
positioning system that should process the followed data. System 0 means that
there is no specific system, the data will be available for all systems. Subsequently,
the user could receive no response, one response or many responses.

• Time is a field of 11 bytes (Figure 7.4.). The time is used in some positioning
systems, such as OwlPS [Cypriani et al., 2009]

• Last Position contains the last position acquired by this client. It is a 20-byte length
field. This field can be used to send the GNSS position (latitude: 8 bytes, longitude:
8 bytes and altitude: 4 bytes). Also, we can send a text or a code for relative location
using all the bytes.

• Count is a field of one byte with an unsigned integer, it specifies the count of the
data, in our case the count of APs gathered by the client, and the maximum number
of APs is only 32.

• AP MAC is a field of 6 bytes containing the MAC address of the AP.

• AP RSSI is a field of one byte containing the RSSI, it indicates the power level
being received by the AP.

7.4. INDOOR POSITIONING USING COLDE 111

Time, Length = 11 Octets

Year Month Day Hour Minutes Seconds Milli-
Seconds

Hours
±UTC

Min
±UTC

Octet(s) 3 1 1 1 1 1 2 1 1

Figure 7.4: COLDE Indoor Positioning - Time Format

System* Time Position Message Size Message

Y

Octet(s) 1 11 20 1 Y

*System : it means the indoor positioning/localization system

Figure 7.5: COLDE Indoor Positioning - Response Frame

A different structure has been built for the response (COLDE-Response) (Figure 7.5.)
The main fields of COLDE-Response are:

• System is a field of one byte with an unsigned integer, it specifies the ID of the
positioning system that should process the followed data. System 0 means that
there is no specific system, the data will be all available systems. Subsequently, the
user could receive no response, one response or many responses.

• Time is a field of 11 bytes (Figure 7.4.). It specifies the sending time of the position.

• Last Position contains the position provided by the Wi-Fi access point or by the
positioning system. It is a 20-byte length field. This field can be used to send the
GNSS position (latitude: 8 bytes, longitude: 8 bytes and altitude: 4 bytes). Also, we
can send a text or a code for relative location using all the bytes.

• Msg Size is a field of one byte, it contains the size of the Msg field.

• Msg is a variable length field (The Msg Size field specifies the size of this field). It
is a free structure field, the positioning system or the AP can send a text message
to the client.

COLDE-Proxy can work with different positioning systems at the same time (Figure 7.6.).
Depending on the field System (COLDE-Request) (Figure 7.3.), COLDE-Proxy can de-
cide the format of the data and to which system they should be forwarded to. COLDE-
Proxy receives the data from the AP(s), it puts them into the appropriate format (according
to the selected positioning system) and then it makes a call to the functions of that po-
sitioning system. It sends the result back to the access point(s) that sent the data. This
procedure is repeated every time a client sends a positioning request. If the caching
service is used, COLDE-Proxy checks the cache before starting the session with the po-
sitioning system.

112 CHAPTER 7. COLDE IMPLEMENTATION

Wi-Fi Client

Position Needed

Do I
have all

data?

Prepare CoLDE-Request
frame as an IE

Probe request
received

Wi-Fi AP

Does
CoLDE-Request

Frame exist
?

Exctract CoLDE
Request data

CoLDE-Proxy

Position request
received

System
x=0 ?

Send req. to
all systems

Response received
from system x

System
Supported

?

Is
position

available In
the cache

?

Send req.
to system X

Prepare/Extract
the result/data

Send
probe request

Response
received

Send to all
concerned APs

Prepare CoLDE-
Response frame

as an IE

Send probe
response

 Probe response
received

Send data to
 CoLDE-Proxy

Is there a
position ?

End

No

NoNo

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Check the needed data

Is client's
position

cached ?

Add to
cache

OWLPS

Google

Skyhook

Triangulation and
Trilateration

System XY

Yes

No

Indoor Positioning
Systems

OUI
Sub-type

= ?

0x01

0x02

OUI
Sub-type

= ?

0x020x01

Figure 7.6: Indoor Positioning - Procedures and communications

7.4.3/ RELATED POSITIONING METHODS AND APPLICATIONS

Below we discuss some algorithms and methods which have been developed for indoor
positioning, at the same time we will mention how they could be improved using our
solution for connectionless.

7.4. INDOOR POSITIONING USING COLDE 113

Wi-Fi Localization Using RSSI Fingerprinting
Wi-Fi Fingerprinting creates a radio map of a given area based on the RSSI data from
several access points and generates a probability distribution of RSSI values for a given
(x,y) location. Live RSSI values are then compared to the fingerprint to find the closest
match and generate a predicted (x,y) location[Eduardo Navarro, 2010]. We take two
examples of the applications that use fingerprinting methods.

Google Maps [Research, 2015] application can solve the problems of positioning navi-
gation in open areas and indoors. It provides the possibility to calculate the route inside
the building between several floors in addition to navigation [Ramani et al., 2014]. For
orientation it uses Wi-Fi and cellular networks with positioning accuracy ranges from 5 to
10 meters [Alexey Kashevnik, 2012].

Skyhook Wireless [Wireless, 2015] is one of the main companies in the domain of
localization and positioning. Skyhook is a multiple source location system that uses
Wi-Fi, GPS and cell towers which should work better in cities where Wi-Fi and cell tower
signals are highly present. Skyhook’s Core Engine is a software-only location system.
It uses a massive reference database comprised of the known locations of over 250
million Wi-Fi access points and cellular towers. Skyhook client software running on a
Wi-Fi-enabled mobile device collects raw data from each of the location sources. The
client needs to be connected on the Internet to send this data to the Location server.
It is possible to enhance these applications by using COLDE, the users will be able to
broadcast the gathered information to APs, which will forward them to the location server
of the company(s) that support(s) this area. The response will be sent to the access
point and then back to the client in a probe response.

Owl Positioning System (OwlPS)
OwlPS implements several positioning techniques and algorithms
(RADAR[Bahl et al., 2000], Interlink Networks [Networks, 2002], FBCM
[Lassabe et al., 2005] and Basic FRBHM [Lassabe et al., 2006]), allowing to com-
bine and compare them, even in a real-life experiment way [Cypriani et al., 2009]. The
configuration where infrastructure executes all the processing needs several elements:
mobile terminals equipped with Wi-Fi cards, access points or any capture device (listen-
ing for any positioning request transmitted by the mobiles), the aggregation server (which
the APs forward the received positioning requests to) and the computation server (which
computes the position of each mobile from information forwarded by the aggregation
server) [Cypriani et al., 2010].
The system works as follows: the mobile airs a positioning request and capture devices
(the infrastructure) capture it. This request consists of 10 to 20 UDP packets containing
the local time. Each AP capturing the positioning request transmits it to the aggregation
server along with additional data. The additional data consists of : the mobile MAC and
IP addresses, the AP’s MAC address, the time at which the packet was captured and the
RSSI. The aggregation server gathers the data and forwards them to the computation
server. The computation server analyzes the information received from the aggregation
server and computes the mobile position. The computed position can be sent to the
mobile by using direct connection between the computation server and the mobile.
OwlPS could use the COLDE Indoor Positioning Frame (Figure 7.3.), (Figure 7.4.) to
exchange data.
By using COLDE, any Wi-Fi device can broadcast a probe request on a channel. The

114 CHAPTER 7. COLDE IMPLEMENTATION

APs capture the probe request, each will forward it to COLDE-Proxy along with the AP
data. COLDE-Proxy will relay the data to the aggregation server. The latter will process
the data and forward it to the computation server. The computation server computes
the position and sends it back to the APs. The APs send back the position in the probe
response.
Using COLDE would affect the mechanism of the system itself by adding the possibility
to send the computed position to the mobile without having direct connection with it.
Another advantage is the amount of data processed, while OwlPS depends on capturing
and processing all frames (management and data frames), COLDE processes the
management frames only.

Collaborative Indoor Positioning
This kind of approach is the opposite of the localization methods that depend on the
infrastructure. The collaborative localization proposes a model where clients may act
as reference points in addition to their role as clients. People-Centric Navigation (PCN)
provides an indoor localization solution by using the clients themselves as reference
points. Clients with the PCN (i.e., mobile phones) continuously obtain accelerometer
and digital compass readings to estimate step counts and direction. They also estimate
a vector of each step called step vector, using the direction information and stride length.
Since the stride length varies between individuals, it is approximated from the body
height. Clients also record RSS from neighboring clients, which is collected through
the device discovery process of Bluetooth. Step vectors and RSS are transferred to a
centralized server called a PCN server via 3G or Wi-Fi. Then the PCN server estimates
relative positions among users and the results are sent back to the clients to give them
estimated positions[Yamaguchi et al., 2012].
Using COLDE, PCN method can be enhanced to enable clients to broadcast their gath-
ered data to the access point to be forwarded to the server without having any connection.

Emergency Evacuation
Emergency evacuation from buildings during catastrophic events need to be quick,
efficient and distributed. Indoor localization with COLDE can be used to optimize this
process. In some cases, people could be trapped inside the building because of some
obstacles or because of being injured or having a certain disability. Indoor localization
using COLDE can be used to have an updated database of mobile location tracking
information. Indeed, they allow to determine the current location of the people present in
a building. This permits rescue teams to find them by asking the approximate location.

7.4.4/ EXPERIMENTS AND RESULTS

Our experiments and scenarios aim at demonstrating the improvement in indoor posi-
tioning systems by utilizing COLDE. We evaluate and quantify the performance of the
protocol in a real and congested environment. In this environment, there are more than
20 APs on different frequencies, the APs handle hundred of requests, and the clients
receive hundred of broadcasting frames.
The experiments have been conducted using the following parameters:

• Indoor positioning system: we used a centralized trilateration indoor positioning
system. The system maintains a database of the APs MAC addresses and their
coordinates. It computes the client position by utilizing the APs coordinates, and

7.4. INDOOR POSITIONING USING COLDE 115

Figure 7.7: COLDE - Number of Scans

their RSSI. In our experiment, the trilateration indoor positioning system was run-
ning on the same server with COLDE-Proxy, so we eliminated the delay that could
be caused by the network. The time needed to compute the position using the tri-
lateration algorithm ranges between 5ms and 10ms. To simulate the delays in the
other indoor positioning systems, we repeated the same trilateration algorithm with
different delays. Each delay represents a different scenario, it simulates different
indoor positioning system. We tested the following scenarios (the number after "-"
is the delay in milliseconds):

– (Scenarios-Group-I): Scenario-10, Scenario-100, Scenario-1k, Scenario-2k,
Scenario-4k, Scenario-8k.

– (Scenarios-Group-II): Scenario-16k, Scenario-32k.

• COLDE-Client: it is a Java application running on Linux. It utilizes the iw library
(written in C). It uses the same architecture that we mention in Section IV. We cus-
tomized it to collect the data needed for the trilateration indoor positioning system.
A Wi-Fi client performs active scanning to collect the APs in its area and to send
the data in a positioning request. The detailed functionality is described in (Figure
7.8.).

• COLDE-Proxy and COLDE-AP: we have implemented one COLDE-Proxy server
and 3 COLDE-APs as mentioned in Section IV.

We installed the COLDE-APs in different location. We configured them with different
SSIDs and on multiple frequencies. All APs are connected to COLDE-Proxy on the same

116 CHAPTER 7. COLDE IMPLEMENTATION

LAN. COLDE-Client is installed on an IPC.

COLDE Probe Size Round-Trip Time

Without
Request 103 bytes

26 milliseconds
Response 125 bytes

With
Request 352 bytes

61 milliseconds
Response 168 bytes

Table 7.2: The effect of Adding COLDE into Probe Frames

In our experiment, we studied the following aspects:

• Frame size: we assessed the effect of adding COLDE data to the probe
request/response frames. COLDE adds up to 255 bytes into the probe re-
quest/response frames. (Table 7.2) summarizes our results. It shows that, the round
trip with COLDE needed about 53% more than the same trip without COLDE.

• Data Collecting - Number of Scans: number of active scans needed to collect
the data. (Figure 7.7) shows the number of scans needed for each scenario. We
noticed that in Scenarios-Group-I, a client needs to scan the network only once. For
Scenarios-Group-II, a client needs to scan the network 2 times to collect the data.

• Position-obtaining - Number of Scans: number of active scans needed to ob-
tain the position. (Figure 7.7) shows the number of scans needed for each sce-
nario. We noticed that, a client needs to scan the network only once in Scenario-10
and Scenario-100, twice in Scenario-1k, Scenario-2k, Scenario-4k and 3 times in
Scenario-8k. For Scenarios-Group-II, a client needs to scan the network about 9
times to obtain the position.

• Data Collecting Time: All infrastructure-based positioning systems require data
sourced from various functions. For the data provided by the APs, We observed the
time needed to collect this data using COLDE. This time includes: time needed to
send probe request by the client, time to process the request by the AP and time to
send the probe response to the client. In (Figure 7.9), we notice that data collecting
time is about the same for Scenarios-Group-I. For Scenarios-Group-II, We found
out that we needed double the time, because the client repeats the data collecting
process after 5 failed tries, as described in (Figure 7.8.).

• Position-obtaining time: it is the time between sending the positioning request
in a probe request, and receiving the position in a probe response. For both of
the scenarios group, the position-obtaining time is the sum of two values: the time
required to compute the position (on the server), and a value that ranges between
2000ms and 3000ms. This value represents the time needed to scan the network.

• Position from the AP cache: we observe the time when the client sends a second
probe response, because it failed to obtain the position in the first one. In (Table 7.2),
clients obtained their positions without caching in Scenario-10 and Scenario-100.
For all other scenarios, the positions have been cached in APs, the clients obtained
them in the next probe response frame.

7.4. INDOOR POSITIONING USING COLDE 117

Position Needed

Aps
 Count

≥ 3?

Prepare CoLDE-Request frame
as an IE and index++

Positioning Phase
probe requests

Is there a
position ?

End

No

No

Yes

Yes

Scanning Phase
«Probe requests»

Scanning Phase
«Probe responses»

Positioning Phase
probe responses

Index<5 ? Set index=0

Figure 7.8: COLDE-Client - Trilateration

Experimental results (Table 7.2) prove that utilizing the management frames to send the
data to the indoor positioning system does not change the protocol operation in any way.
The delay resulted from adding data into the probe request/response frames is less than
active scanning timeout. COLDE needs about 3 seconds to exchange the data between
the clients and the indoor positioning system. The AP caches are used for all indoor posi-
tioning that need more than 100ms to compute the position. Using the AP’s cache gives
an effective solution for the problems could be caused by the timeout of management
frames.

118 CHAPTER 7. COLDE IMPLEMENTATION

Figure 7.9: Scan and Positioning Duration

7.4.5/ CONCLUSION

We presented our solution to make indoor positioning functions available for public
use. We proved that it is possible to change the way the service is provided by using
CoLDE. We showed that CoLDE offers the needed mechanism for APs to be the bridge
between Wi-Fi clients in their coverage areas, and the positioning systems that could
be located on network different from the APs ones. We discussed the case where
CoLDE can even improve some algorithms by providing them with more amount in data,
where it would be impossible to have them using the traditional ways. We presented
our component CoLDE-Proxy which is the interface between infrastructure devices and
positioning systems. We showed that by using CoLDE-Proxy, clients in the same area
can use different positioning systems, even without being connected directly to any of
them. Integrating CoLDE into any positioning system does not interfere with the main
functionality of the system, and it could even be transparent for the positioning system
itself.
The experiments showed the ability to utilize CoLDE with a centralized trilateration posi-
tioning system. They proved the ability to have CoLDE working with indoor positioning
systems that need more time to compute the positions, due to two levels of caching.

7.5/ EMERGENCY EVACUATION

7.5.1/ INTRODUCTION

The mobile phone inside the building could be located in any Wi-Fi zone. Selection crite-
ria and optimization process should be applied to choose the most appropriate evacua-
tion directions according to current position of each mobile phone [Abu Oun et al., 2013].
COLDE is an essential part of this solution. In the large building especially the public

7.5. EMERGENCY EVACUATION 119

ones, most people do not connect to the Wi-Fi access points in these buildings. Either
because the access points are not public (limited to a certain group, or simply some per-
sons do not need to use the network (ex. to not drain the battery). Using the COLDE to
broadcast the alerts and evacuation messages can help in dealing with such scenarios
without the need to deploy new public Wi-Fi networks inside the buildings. In some cases,
people could be trapped inside the building because of some obstacles or because of be-
ing injured or having a certain disability. Thus, rescue teams need their exact locations
inside the building in order to evacuate them.

7.5.1.1/ USING WI-FI TO BROADCAST EVACUATION DIRECTIONS

Broadcasting the evacuation directions using the Wi-Fi network can solve major problems
which exist in the traditional ways, some of these problems are related to the people in
the building in which some people could have certain disabilities preventing them from
receiving the directions. Other problems are related to the state of building during the
evacuation. For instance, having some blocked exits or dangerous corridors because
of the fire. There are three different levels suggested for broadcasting the evacuation
directions in a building using Wi-Fi:

• All the Wi-Fi access points in the building broadcast the emergency exits accom-
panied with their exact positions to all the mobiles. In this case the evacuation
management system (if there is any) has no information about the persons who
exist in the building and their approximate locations. Thus, each mobile is going to
decide which exit is the closest according to the approximate distance between the
mobile and the exit.

• Each Wi-Fi access point broadcasts the emergency exits which are located in the
same range as the access point itself. As in the first level, there is no information
available about the mobiles and the persons in the building and the mobile will
decide which exit is the closest.

• Broadcasting customized directions to each mobile according to the position of the
mobile and the building situation. The directions should be generated by the evacu-
ation management system in the building, this solution works between three entities:
the mobile phone, the access points, and the management server. The protocol de-
pends on COLDE to exchange the data between the mobile phone and the access
points without any association between them. This gives the ability to the mobile
phone to stay connected to another network, while it is using the positioning and
evacuation services of the building internal network. The access points relay the
positions of the mobile phones to the server in order to keep updated snapshot of
the mobile phones inside the building. Thus in evacuation time, the server will send
the best evacuation plan for each mobile phone through the access point.

7.5.2/ SIMULATION EXPERIMENTS AND EVALUATION

7.5.2.1/ EXPERIMENT DESIGN

During this study, multiple scenarios have been simulated so as to measure the time
needed to evacuate a building by following the evacuation directions which have been

120 CHAPTER 7. COLDE IMPLEMENTATION

sent using the Wi-Fi broadcast after the emergency alarm is activated. The simulation
is done using NS2 equipped with the "Shadowing Patterns" model, many variables are
taken into consideration, these variables could be categorized into three main groups:

• Building structure: Building dimensions, positions of emergency exits, capacity of
emergency exits.

• Network structure: Wi-Fi access points and their positions.

• Population: Number of persons in a building, their initial positions, the initial target
coordinates and speed.

7.5.2.2/ EXPERIMENT POLICIES

Following we discuss the policies used during the simulation:

• Person movement policy: A person moves from its initial position to its target in
straight line. When it receives the evacuation broadcast along with the available
evacuation plans, it stops moving and evaluates all the plans according to the dis-
tance between its position and the emergency exit of each plan. Then it starts
moving in a straight line toward the closest exit. At the exit it joins the waiting queue
to exit the building.

• Initial person position, Initial person target: Random functions could cover the
whole area of the building or a certain side of it.

• Person speed, Evacuation speed: Random functions give different values for
each person.

• Exits positions: All the emergency exits are located in the external walls of the
buildings.

• Access points: Distributed to cover the whole area.

• Exits Capacity: Statistics consist of time of first and last persons arrived, time of
first and last persons evacuated.

• Evacuation performance: Statistics contain the summary of all the exits and the
evaluation of the evacuation process.

7.5.2.3/ EXPERIMENT SCENARIOS

Utilizing aforementioned policies, we test and analyze three different scenarios, each
scenario has been applied ten times according to the following criteria:

Scenario Area APs Exits Persons Distributions
1 20m * 20m 3 2 25 100%, 75%, 50%
2 40m * 40m 3 2 50 100%, 75%, 50%
3 60m * 60m 3 3 150 100%, 75%, 50%

Table 7.3: COLDE Evacuation - Experiment Criteria

7.5. EMERGENCY EVACUATION 121

7.5.2.4/ EXPERIMENT RESULTS

In all scenarios, when the persons have been distributed over the whole building (Distri-
bution over 100%), exits occupation was almost the same. In fact, when we monitored
the time evacuation of the last person, we got similar times. It is not the same case when
we tested the same scenarios with the same parameters with a distribution over 75% of
the building area. The result in this case have been changed completely. In the scenarios
with three exits, 50% of the persons have been evacuated using one exit and the other
two exits evacuated the rest, whereas in the two exits scenarios, 75% of the persons have
been evacuated through one exit. Therefore the total evacuation time has been increased
about 15% comparing to the same scenarios when we used the distribution 100%. The
worst evacuation time was noted when we applied the same scenarios with distributing
the persons over 50%. The total evacuation time has been increased by 150% comparing
to the first test. In the scenarios with three exits, more than 90% of the persons have been
evacuated using one exit. Considering that the reason of the evacuation is an earthquake
and we have only few minutes to evacuate the building. If we consider the time needed to
evacuate the persons from the building is equal to the evacuation time that we got using
the ideal distribution "Distribution over 100%". That means only about 33% of the persons
in the building will be able to leave it in the right time when they are distributed over 50%
of its area. We conclude that the reason is a bad load balancing because of choosing
the evacuation plan by people individually. They picked their decisions depending on the
distance between their current positions and each exit, and they ignored current situation
of the building. By analyzing these results, we found that it was possible to evacuate
about 25-30% of the persons who couldn’t leave in case they used one of the other exits,
especially for the persons who where nearly at the center of the building between all the
exits.

7.5.3/ REAL-WORLD EXPERIMENTS

This experiment depends on testing COLDE-based evacuation by using CEMAT architec-
ture. In the following, we describe this experiment in details.

7.5.3.1/ EVACUATION SYSTEM DESIGN

We designed a client-server evacuation system. The system works as follows:

• Each evacuation server should have a fingerprints database for the building which
is covered by evacuation system.

• Each COLDE-AP broadcasts continuously the map of its floor either by using
COLDE or beacon-stuffing. The maps on the APs could be loaded from the server.

• The Wi-Fi clients save the received maps so they will have them ready in case of
an emergency.

• Each Wi-Fi client scans for the Wi-Fi access points, GSM towers and GPS coordi-
nates (fingerprint), it sends the scan results to the evacuation server using COLDE.

• The evacuation server collects these results and localize the Wi-Fi clients inside the
building and sends back the to the clients the directions for the closest exit.

122 CHAPTER 7. COLDE IMPLEMENTATION

CEMAT
Server-II

Mobile-21

Emulator-22

Emulator-23

Evacuation Server

COLDE AP COLDE AP

CEMAT
Server-III

Mobile-31

Emulator-32

Emulator-33

CEMAT
Server-I

Emulator-11 Emulator-12

Figure 7.10: Real-world Experiment Architecture

• The evacuation server traces the Wi-Fi clients and keeps an updated view of the
building.

• Whenever an emergency event takes place, the evacuation server generates evac-
uation plans depending on the distribution of the persons and the current situation
of the building.

• At worst case scenario, if the whole network went down for any reason, each Wi-Fi
client would have the map of the floor in addition to the directions which lead to the
closest exit.

• Each evacuation server might have a mirroring server installed in a data center
accessible by the authorities. So in case of losing the connection with the principal
server at the building, rescue teams can access the mirroring server in order to
evaluate the situation and put plans to evacuate the persons from the building.

The proposed design provides a fully redundant evacuation system depending on
COLDE.

7.5. EMERGENCY EVACUATION 123

Figure 7.11: Evacuation Server

7.5.3.2/ SYSTEM IMPLEMENTATION

In order to implement the proposed design, we developed the following items (Figure
7.10):

• COLDE-AP: The implementation has been presented in subsection 7.3.2. COLDE-
APs will work as proxies in order to bridge between the clients and the server.

• Evacuation Server: It consists of three components which are as follows:

– Processing Component: is a Java application which is responsible of receiv-
ing and processing data, generating and sending evacuation plans.

– Manager Interface: is PHP interface which could be accessed remotely. This
interface is used to configure the building, to load fingerprints and to customize
evacuation plans (Figure 7.11).

– Data Storage Manager: is the XML-based storage which includes all data re-
ceived from the clients, the fingerprints, evacuation plans. Using XML-based
database provides a high level of portability between the systems of evacua-
tion.

The three components could run on the same server or they could be distributed
over several servers.

• Evacuation Client: It consists of the following components:

– Environment Scanner: It is responsible of collecting data from the environ-
ment, such as: scanning for Wi-Fi access points, retrieving GSM tower data,
checking GPS coordinates. The scanner organize data collected in a XML file
in order to be sent to the evacuation server.

– User Interface: It shows data alerts received from the server, maps received
from the access points and guides the client to the closest exit (Figure 7.12).

124 CHAPTER 7. COLDE IMPLEMENTATION

A

Figure 7.12: Evacuation Client

– COLDE component: It is the component which is capable of send-
ing/receiving data to/from the access points by using Wi-Fi management
frames. This component requires integrating COLDE code into the Wi-Fi driver
of the mobile phone used for testing. Here we should consider the following
facts: 1) Android Emulators don’t support Wi-Fi signals because they depend
on virtual machines, which means that it is impossible to manipulate Wi-Fi
management frames by an emulator. 2) In order to integrate COLDE code into
an Android mobile phone, the customized version of Android operating system
for this phone should be modified, then it should be recompiled and reinstalled
on the mobile phone. This procedure required access to the customized op-
erating system source code which isn’t available for all phones, in addition to
root access to the mobile phone itself which isn’t given by default.

Google Enterprise is the responsible of Android OS source code. Because of these
difficulties and since it is possible to send a change request to Google in order
to add this code in their next version, we developed the communication between
clients and the server by using UDP which could be a proof of concept for the
proposed evacuation system. The advantage of using UDP that it is possible to test
the application on emulators since it doesn’t need to manipulate Wi-Fi management
frames.

7.5. EMERGENCY EVACUATION 125

7.5.3.3/ EXPERIMENT SCENARIO AND RESULTS

The experiment uses the architecture shown in Figure 7.10. The goal of this experiment
is to test the feasibility of our system for evacuation using on several mobile phones and
emulators at the same time. The experiment has been carried out as follows:

• Preparing three CEMAT servers and connecting them in a tree architecture.

• Launching 6 GenyMotion emulators (2 emulators on each CEMAT server).

• Adding 2 mobile phones (one mobile phone to each of the servers CEMAT Server-II
and CEMAT Server-III).

• Installing CEMAT Scenario Launcher on all emulators and phones.

• Installing Evacuation Client on mobiles.

• Installing Evacuation Client - Simulation on emulators. Mobile phones can collect
the information from the environment which is not the case for the emulators. This
version depends on reading environment information from an XML file instead of
collecting it. This version has the floor maps pre-installed.

• Preparing the scenarios files for emulators and mobile phones. Scenario files for
emulators include simulated environment information which should be sent by em-
ulators.

• Tracing the clients in the building and sending the closest emergency exit for each
of them.

• Launching the experiment by triggering an emergency event and requesting an im-
mediate evacuation.

The evacuation server starts tracing the clients by using the received fingerprints. It
replies with the closest emergency exit. As soon as the emergency event is triggered,
the server generates evacuation plans for each client. For the clients which have the floor
map, they could navigate in the building depending on this map. It is important to notice
that clients should be able to get their positions from the server all the time (Figure 7.12
- left side image). In case of losing the connection with the server or not having the
floor map, the client will have an indicator to show the direction from its location to the
emergency exit. In this case, the direction will be a straight line in which the client should
find the exact route (Figure 7.12 - right side image).
This experiment proves the possibility to evacuate a building using person-based and
customized-based evacuation directions. It also proves the possibility to use CEMAT in
testing applications in heterogeneous environments by generating customized scenarios.
The performance of the proposed evacuation system would be measured as soon as we
received the Android version with COLDE extension.
It is possible to enhance this system by using auto-calibration [Spies et al., 2015]. By
using auto-calibration, the access points could intercommunicate in order to update the
fingerprints so as to reflect any change in the environment. This feature would simplify
installing the system in changeable buildings.

126 CHAPTER 7. COLDE IMPLEMENTATION

7.5.4/ CONCLUSION

These experiments proved that broadcasting the alert messages and evacuation direc-
tions inside the building, in which each person/mobile can choose the best plan according
to the distance to the exit, can be useful only in the ideal situation where the positions
of the persons cover the whole building, and there is no diversity in the density in the
building, which is not the case most of the time. In most of the cases, the person posi-
tions will be concentrated in certain places inside the building. Therefore, in case of the
evacuation, they will line up in front of the closest exit waiting for their turn to leave the
building, whilst the other exits are empty. Note that the other exits are far but the persons
would leave faster using them. In these experiment, we supposed that each mobile phone
represents just one person, in the real situations and in most of the case we will find that
one group of two or three persons or even more will use the same evacuation directions
of one mobile phone. The solution is to use COLDE to monitor the situation of the build-
ing and the persons inside it in order to generate the possible evacuation plans for each
mobile phone as soon as the evacuation process is triggered. Evacuation plans should
be generated depending on the current situation of the building and it could generate new
plans in case of any update as it was explained in the real-world experiment.

IV
CONCLUSIONS AND PERSPECTIVES

127

8
IOTAAS

8.1/ CONCLUSION

We presented IoTaaS which is an abstract architecture of a testing environment for IoT
applications and systems. IoTaaS is a distributed environment which can work in a cen-
tralized/decentralized manner. Several IoTaaSs could be integrated in one cloud in two
forms: peer-to-peer or tree-based. These IoTaaSs could be owned and managed by
different enterprises. Users can use cloud services and resources transparently. Each
manufacturer or testing provider can implement its own IoTaaS which, in a way, can fit
to the services provided. IoTaaS is component-based architecture which gives manufac-
turers and testing providers the possibility to (re)use components from other enterprises.
Communications between IoTaaSs are managed by Cloud component in each IoTaaS.
IoTaaS is a heterogeneous environment which can include real objects and things and
their emulators at the same time. Several XML-based platform-independent scenarios
have been explained in details. A design for Network Emulation Protocol (NEP) has been
proposed and described in order to emulate various types of network. Gateways compo-
nent helps to connect things and objects with testing environments. Gateways could be
also integrated in order to be tested with various types of thing. Users can be a part of
tests in order to give human feedback. Server component is the main component which
bridges and manages all other components.
As a pilot implementation, we presented Cloud Environment for Mobile Application Test-
ing (CEMAT). It is a distributed tree-based environment for testing Android applications.
CEMAT is an heterogeneous Java-based environment which includes real/virtual mobile
devices and emulators. Real mobile devices could be connected through a USB cable
(direct connection) or Wi-Fi/3G-4G (indirect). CEMAT depends on XML-based configura-
tions which means that Android commands and system paths could be changed easily in
order to move CEMAT from a machine to another. CEMAT provides two types of scenar-
ios: batch-based scenarios which depend on sending events and command using ADB
connection and XML-based scenarios which depend on a launcher service on the mobile
device in order to execute events and command. Traffic shaper is the module which con-
trols traffic performance between CEMAT entities. Logging is the module which manages
all logs generated by CEMAT entities and organizes them XML format. XML-Based GUI
is the solution between the strictness of Java applications and the limitedness of Java
Applets. It solves the problem of having different versions of the same service on CEMAT
servers. It enables CEMAT server to send its services’ GUIs to the users, so users don’t
need to install a new version every time a GUI is changed. Daemon is the core module
of CEMAT which bridges between all other modules.

129

130 CHAPTER 8. IOTAAS

8.2/ PERSPECTIVES

CEMAT functions could be extended to support iOS and Windows Phones. The steps are
as follows:

• Deploying CEMAT to work on Windows Server and Apple Mac Systems.

• Developing a Scenario Launcher for each of them.

• Integrating communication methods with testing devices for both of mobile OSs.

• Adding support for their emulators.

In the following, we list some functions which could be added-values:

• Porting traffic shaper to Android, iOS and Windows phones can help to simulate
certain wireless communication behavior on mobile devices and on emulators.

• Adding Optical character recognition (OCR) support to read printed texts in the
screenshots of the results. This can help automatizing results and performing statis-
tics automatically.

• Adding Command Line Interface (CLI), which could enable users with slow Internet
connections to login using SSH or Telnet.

• Adding peer-to-peer communication, so several users can build their own CEMAT
environments and they can collaborate to exchange services in decentralized mode.

Depending on the results of CEMAT, IoTaaS could be enhanced by adding the following
functions:

• Extending Network Emulation to cover GNSS emulation and Wi-Fi emulation on
virtual machines.

• Providing several implementations of Cloud component using different methods:
RESTful, CORBA, RMI, etc. That would unify all cloud functions and the interfaces
to exchange services between IoTaaSs.

• Studying the possibility to use services from cloud computing providers such as:
Amazon, Google, Microsoft, etc.

Studying other IoT sub-domains can help to evolve the architecture proposed. The most
interesting sub-domains could be smart cities, Intelligent Transportation System.

9
COLDE

9.1/ CONCLUSION

We presented COLDE which is software-based extension to IEEE 802.11 protocol.
COLDE benefits from the management frames to exchange small amount of public data
between clients and APs. Devices can also request some services by broadcasting
the requests in their coverage area. A COLDE-enabled Wi-Fi client can exchange data
with several COLDE-enabled APs simultaneously, even if it isn’t associated with any
of them or if it was associated with a different AP. We presented a 3-tier design which
consists of: Wi-Fi clients, Wi-Fi APs and COLDE-Proxy server. The Wi-Fi AP relays
data between the clients and server. We explained our design for LightWeight Services
and how COLDE can be used to exchange data and services in many domains. We
presented three applications for COLDE. Broadcasting information in variably dense
environment is the first application which is a simulation using NS-2. The experiment
proved that by using COLDE, we can lower the time needed to broadcast a message
in a given area to 4% of the time needed to broadcast same message without COLDE.
Using a multi-tier broadcast model can extend the broadcast area which means that
the message will reach a larger number of devices. Then, we developed COLDE-Proxy
and implemented COLDE in access points and Wi-Fi clients (Raspberry Pi and Linux),
so we could proceed with the second application which is Indoor Positioning. In this
experiment, we proved the possibility to use COLDE by clients to find out their positions
indoor without being connected to any network. Experiment showed that it is possible to
have a connectionless indoor positioning system (regardless the method used) similar to
GNSS systems which could help users to benefit from Location-Based Services (LBS)
indoor and outdoor. The third application is Emergency Evacuation which simulation
using NS-2. In this experiment, we proved that in order to rescue the largest number of
people, each building should have a COLDE-based system to monitor people position
in it, so it will be ready to generate an evacuation plan for each person according to
its current location and the possible emergency exits. Such system can help people to
evacuate the building, in addition that it can provide rescue teams with a list of persons
who are trapped in the building.

131

132 CHAPTER 9. COLDE

9.2/ PERSPECTIVES

COLDE extension could be a great help as an enabler for IoT. In order to put this extension
in use, following aspects should be covered:

• An implementation of COLDE for a mobile operating system can help to design
more applications. We believe that Android is the best choice because it has already
released a version for many objects other than mobile one, such as: watches, cars,
televisions, etc.

• Integrating COLDE functions in an AP firmware could simplify testing the perfor-
mance and collecting statistics in congested environments. There are several
choices for open source access points, such as DD-WRT, OpenWRT, FreeWRT,
etc.

• More experiments should be conducted to provide a security design for critical ser-
vices such as: emergency requests. It is important to mention that any security
design should save the simplicity of the extension.

• A deep study of the services which could be provided using COLDE can help to
organize the categories.

• Manufacturers can play a significant role by integrating COLDE in their IoT objects.

Depending on the experiments and results, a suggestion for an official request for com-
ment (RFC) could be requested in cooperation with interested enterprises.

BIBLIOGRAPHY

[6lowpan WG, 2012] 6lowpan WG (2012). Ipv6 over low power wpan (6lowpan). Tech-
nical Report, IETF. http://datatracker.ietf.org/wg/6lowpan/documents/.

[802.15.4, 2011] 802.15.4 (2011). Constrained restful environments (core). Technical
Report, IEEE. https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf.

[A. Duraisamy, 2013] A. Duraisamy, M. S. (2013). Mesh based peer to peer live video
streaming using ant algorithm. International Journal of Engineering and Advanced
Technology (IJEAT), 2(3):375–380.

[Abu Oun et al., 2013] Abu Oun, O., Abdou, W., Bloch, C., et Spies, F. (2013). Broad-
casting alert messages inside the building: Challenges & opportunities. In IPIN
2013, 4-th Int. Conf. on Indoor Positioning and Indoor Navigation, pages 292–295,
MontbÃ©liard, France.

[Abu Oun et al., 2014a] Abu Oun, O., Abdou, W., Bloch, C., et Spies, F. (2014a). Broad-
casting information in variably dense environment using connectionless data
exchange (colde). In Mellouk, A., Fowler, S., Hoceini, S., et Daachi, B., editors,
Wired/Wireless Internet Communications, volume 8458 of Lecture Notes in Computer
Science, pages 283–296. Springer International Publishing.

[Abu Oun et al., 2014b] Abu Oun, O., Bloch, C., et Spies, F. (2014b). Indoor positioning
using colde: An ieee 802.11 connectionless extension. In IPIN 2014, 5th Int. Conf.
on Indoor Positioning and Indoor Navigation, pages 1–10, Busan, Korea. IEEE.

[Abu Oun et al., 2015] Abu Oun, O., Bloch, C., et Spies, F. (2015). Connectionless wi-fi
for internet of things (iot). In CIoT 2015, Cloudification of the Internet of Things 2015,
Paris, France.

[Adachi, 2006] Adachi, S. (2006). The strategic choice between" standardization"
and" differentiation" in R&D. PhD thesis, Massachusetts Institute of Technology.

[Adya et al., 2004a] Adya, A., Bahl, P., Chandra, R., et Qiu, L. (2004a). Architecture
and techniques for diagnosing faults in ieee 802.11 infrastructure networks. In
Proceedings of the 10th Annual International Conference on Mobile Computing and
Networking, MobiCom ’04, pages 30–44, New York, NY, USA. ACM.

[Adya et al., 2004b] Adya, A., Bahl, P., Padhye, J., Wolman, A., et Zhou, L. (2004b).
A multi-radio unification protocol for ieee 802.11 wireless networks. In Broad-
band Networks, 2004. BroadNets 2004. Proceedings. First International Conference
on, pages 344–354. IEEE.

[Aho et al., 2013] Aho, P., Suarez, M., Kanstrén, T., et Memon, A. M. (2013). Industrial
adoption of automatically extracted gui models for testing. In EESSMOD@ MoD-
ELS, pages 49–54.

133

http://datatracker.ietf.org/wg/6lowpan/documents/
https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf

134 BIBLIOGRAPHY

[Alexey Kashevnik, 2012] Alexey Kashevnik, M. S. (2012). Comparative analysis of
indoor positioning systems based on communications supported by smart-
phones. Technical Report, Saint-Petersburg Institute for Informatics and Automation
of Russian Academy Science Saint-Petersburg. https://fruct.org/publications/fruct12/
files/Kas.pdf.

[Alliance, 2015a] Alliance, O. H. (Accessed 2015a). Android. Technical Report, Open
Handset Alliance. http://www.openhandsetalliance.com/android_overview.html.

[Alliance, 2015b] Alliance, O. H. (Accessed 2015b). Industry leaders announce open
platform for mobile devices. Technical Report, Open Handset Alliance. http://www.
openhandsetalliance.com/press_releases.html.

[Almeida et al., 2014] Almeida, F., Santos, J. D., et Monteiro, J. A. (2014). e-commerce
business models in the context of web3.0 paradigm. CoRR, abs/1401.6102.

[Amalfitano et al., 2011] Amalfitano, D., Fasolino, A., et Tramontana, P. (2011). A gui
crawling-based technique for android mobile application testing. In Software Test-
ing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth International
Conference on, pages 252–261.

[Android, 2015] Android (Accessed 2015). Uiautomation. Technical Report, Android.
https://developer.android.com/reference/android/app/UiAutomation.html.

[android x86, 2015] android x86 (Accessed 2015). Android-x86. Technical Report. http:
//android-x86.org.

[Appium, 2015] Appium (Accessed 2015). Introduction to appium. Technical Report,
Appium.

[Aringhieri et al., 2006] Aringhieri, R., Damiani, E., Di Vimercati, S. D. C., Paraboschi, S.,
et Samarati, P. (2006). Fuzzy techniques for trust and reputation management
in anonymous peer-to-peer systems: Special topic section on soft approaches
to information retrieval and information access on the web. J. Am. Soc. Inf. Sci.
Technol., 57(4):528–537.

[ARZENŠEK et al.,] ARZENŠEK, B., et HERIČKO, M. Criteria for selecting mobile ap-
plication testing tools. In Third Workshop on Software Quality Analysis, Monitoring,
Improvement and Applications SQAMIA 2014.

[Awad, 2005] Awad, M. (2005). A comparison between agile and traditional software
development methodologies. University of Western Australia.

[Bahl et al., 2000] Bahl, P., et Padmanabhan, V. N. (2000). RADAR: an in-building RF-
based user location and tracking system. In INFOCOM 2000. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 2, pages 775–784 vol.2. IEEE.

[Bai et al., 2010] Bai, Y., Du, W., Ma, Z., Shen, C., Zhou, Y., et Chen, B. (2010). Emer-
gency communication system by heterogeneous wireless networking. In Wire-
less Communications, Networking and Information Security (WCNIS), 2010 IEEE In-
ternational Conference on, pages 488–492.

https://fruct.org/publications/fruct12/files/Kas.pdf
https://fruct.org/publications/fruct12/files/Kas.pdf
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/press_releases.html
http://www.openhandsetalliance.com/press_releases.html
https://developer.android.com/reference/android/app/UiAutomation.html
http://android-x86.org
http://android-x86.org

BIBLIOGRAPHY 135

[Berners-Lee et al., 1995] Berners-Lee, T., et Connolly, D. (1995). RFC 1866 – Hypertext
Markup Language – 2.0. http://www.faqs.org/rfcs/rfc1630.html.

[Berners-Lee et al., 2005] Berners-Lee, T., Fielding, R., et Masinter, L. (2005). Rfc 3986,
uniform resource identifier (uri): Generic syntax.

[Berners-Lee et al., 1996] Berners-Lee, T., Fielding, R. T., et Nielsen, H. F. (1996).
RFC 1945 – Hypertext Transfer Protocol – HTTP/1.0. http://www.faqs.org/rfcs/
rfc1945.html.

[Birrell et al., 1984] Birrell, A. D., et Nelson, B. J. (1984). Implementing remote proce-
dure calls. ACM Trans. Comput. Syst., 2(1):39–59.

[Booth et al., 2004] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Fer-
ris, C., et Orchard, D. (2004). Web Services Architecture. Number 11 in W3C Work-
ing Group Note.

[Brown et al., 2006] Brown, P. F., et Hamilton, R. M. B. A. (2006). Reference model for
service oriented architecture 1.0.

[Bryson, 2013] Bryson, S. (2013). Virtual reality: A definition history - A personal
essay. CoRR, abs/1312.4322.

[Calaba, 2015] Calaba (Accessed 2015). Introduction to calaba. Technical Report, Cal-
aba.

[Casetti et al., 2014] Casetti, C., Chiasserini, C., Pelle, L. C., Valle, C. D., Duan, Y., et
Giaccone, P. (2014). Content-centric routing in wi-fi direct multi-group networks.
CoRR, abs/1412.0880.

[CATJS, 2015] CATJS (Accessed 2015). Technical Report, CATJS.

[CERN, 2015] CERN (Accessed 2015). The birth of the web. Technical Report, CERN.
http://home.web.cern.ch/topics/birth-web.

[Chandra et al., 2004] Chandra, R., Bahl, P., et Bahl, P. (2004). Multinet: Connecting to
multiple ieee 802.11 networks using a single wireless card. In IEEE Infocom. IEEE
Communications Society.

[Chandra et al., 2007] Chandra, R., Padhye, J., Ravindranath, L., et Wolman, A. (2007).
Beacon-stuffing: Wi-fi without associations. In Proceedings of the Eighth IEEE
Workshop on Mobile Computing Systems and Applications, HOTMOBILE ’07, pages
53–57, Washington, DC, USA. IEEE Computer Society.

[core WG, 2015] core WG (2015). Constrained restful environments (core). Technical
Report, IETF. http://datatracker.ietf.org/wg/core/documents/.

[Coskun et al., 2013] Coskun, V., Ozdenizci, B., et Ok, K. (2013). A survey on near field
communication (nfc) technology. Wirel. Pers. Commun., 71(3):2259–2294.

[Cromar, 2010] Cromar, S. (November 29, 2010). Smartphones in the
u.s.: Market analysis. Technical Report, Business Strategy for Lawyers.
https://www.ideals.illinois.edu/bitstream/handle/2142/18484/Cromar,%20Scott%
20-%20U.S.%20Smartphone%20Market%20Report.pdf.

http://www.faqs.org/rfcs/rfc1630.html
http://www.faqs.org/rfcs/rfc1945.html
http://www.faqs.org/rfcs/rfc1945.html
http://home.web.cern.ch/topics/birth-web
http://datatracker.ietf.org/wg/core/documents/
https://www.ideals.illinois.edu/bitstream/handle/2142/18484/Cromar,%20Scott%20-%20U.S.%20Smartphone%20Market%20Report.pdf
https://www.ideals.illinois.edu/bitstream/handle/2142/18484/Cromar,%20Scott%20-%20U.S.%20Smartphone%20Market%20Report.pdf

136 BIBLIOGRAPHY

[Cypriani et al., 2010] Cypriani, M., Canalda, P., Lassabe, F., et Spies, F. (2010). Wi-Fi-
based indoor positioning: Basic techniques, hybrid algorithms and open soft-
ware platform. In Mautz, R., Kunz, M., et Ingensand, H., editors, IPIN 2010, Int. Conf.
on Indoor Positioning and Indoor Navigation, Session WLAN RSS (Signal Strength
Based Methods), pages 116–125, Zurich, Switzerland.

[Cypriani et al., 2009] Cypriani, M., Lassabe, F., Canalda, P., et Spies, F. (2009). Open
wireless positionning system: a Wi-Fi-based indoor positionning system. In
VTC-fall 2009, 70th IEEE Vehicular Technologie Conference, pages 1–5, Anchorage,
Alaska, United States. IEEE Computer Society Press.

[D. M’Raihi Verisign, 2011] D. M’Raihi Verisign, Inc., S. M. D. C. M. P. S. J. R. P. I. (2011).
TOTP: Time-Based One-Time Password Algorithm. RFC 6238 (Informational).

[Dadeau et al., 2008] Dadeau, F., Héam, P.-C., et Levrey, J. (2008). A combination of
model-based testing and random testing approaches using automata. Research
Report RR2008-10, LIFC - Laboratoire d’Informatique de l’Université de Franche-
Comté. 21 pages.

[Davis et al., 2002] Davis, D., et Parashar, M. P. (2002). Latency performance of soap
implementations. In Proceedings of the 2Nd IEEE/ACM International Symposium on
Cluster Computing and the Grid, CCGRID ’02, pages 407–, Washington, DC, USA.
IEEE Computer Society.

[Deak et al., 2012] Deak, G., Curran, K., et Condell, J. (2012). A survey of active and
passive indoor localisation systems. Computer Communications, 35(16):1939–
1954.

[Deering et al., 1998] Deering, S., et Hinden, R. (1998). RFC 2460 Internet Protocol,
Version 6 (IPv6) Specification. Internet Engineering Task Force.

[Del Barrio et al., 1998] Del Barrio, V. M., et Jiménez, A. F. (1998). Study of the tech-
niques for emulation programing.

[Delgrande et al., 2011] Delgrande, J. P., et Faber, W., editors (2011). Logic Program-
ming and Nonmonotonic Reasoning - 11th International Conference, LPNMR
2011, Vancouver, Canada, May 16-19, 2011. Proceedings, volume 6645 of Lecture
Notes in Computer Science. Springer.

[Di Lucca et al., 2006] Di Lucca, G. A., et Fasolino, A. R. (2006). Testing web-based ap-
plications: The state of the art and future trends. Inf. Softw. Technol., 48(12):1172–
1186.

[Di Lucca et al., 2004] Di Lucca, G. A., Fasolino, A. R., et Tramontana, P. (2004). Reverse
engineering web applications: The ware approach. J. Softw. Maint. Evol., 16(1-
2):71–101.

[Du et al., 2014] Du, J., Dean, D., Tan, Y., Gu, X., et Yu, T. (2014). Scalable distributed
service integrity attestation for software-as-a-service clouds. Parallel and Dis-
tributed Systems, IEEE Transactions on, 25(3):730–739.

[Dwivedi et al., 2011] Dwivedi, Y. K., Williams, M. D., Mitra, A., Niranjan, S., et Weer-
akkody, V. (2011). Understanding advances in web technologies: evolution from
web 2.0 to web 3.0. In Tuunainen, V. K., Rossi, M., et Nandhakumar, J., editors, ECIS.

BIBLIOGRAPHY 137

[Eduardo Navarro, 2010] Eduardo Navarro, Benjamin Peuker, M. Q. D. C. C. D. J. J.
(2010). Wi-fi localization using rssi fingerprinting. Technical Report, California
Polytechnic State University. http://digitalcommons.calpoly.edu/cpesp/17.

[Ergen, 2014] Ergen, S. C. (2014). Zigbee/ieee 802.15.4 summary. Technical Report.
http://www.sinemergen.com/zigbee.pdf.

[Ernst et al., 2007] Ernst, N., et Mylopoulos, J. (2007). Tracing software evolution his-
tory with design goals. In Software Evolvability, 2007 Third International IEEE Work-
shop on, pages 36–41.

[Ertin et al., 2006] Ertin, E., Arora, A., Ramnath, R., Nesterenko, M., Naik, V., Bapat, S.,
Kulathumani, V., Sridharan, M., Zhang, H., et Cao, H. (2006). Kansei: a testbed for
sensing at scale. In Information Processing in Sensor Networks, 2006. IPSN 2006.
The Fifth International Conference on, pages 399–406.

[Evans, 2011] Evans, D. (2011). How the next evolution of the internet is changing
everything. Technical Report, Cisco. https://www.cisco.com/web/about/ac79/docs/
innov/IoT_IBSG_0411FINAL.pdf.

[Fantacci et al., 2010] Fantacci, R., Marabissi, D., et Tarchi, D. (2010). A novel com-
munication infrastructure for emergency management: the in. sy. eme. vision.
Wireless Communications and Mobile Computing, 10(12):1672–1681.

[Fielding, 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis. AAI9980887.

[Fielding et al., 1999] Fielding, R. T., Gettys, J., Mogul, J. C., Frystyk, H., Masinter, L.,
Leach, P., et Berners-Lee, T. (1999). Rfc 2616: Hypertext transfer protocol –
http/1.1.

[Flora et al., 2014] Flora, H. K., Wang, X., et Chande, S. V. (2014). An investigation
into mobile application development processes: Challenges and best practices.
International Journal of Modern Education and Computer Science (IJMECS), 6(6):1–9.

[Fujitsu, 2010] Fujitsu (November 16, 2010). Confidence in cloud grows, paving way
for new levels of business efficiency. Technical Report, Fujitsu. http://www.fujitsu.
com/uk/news/pr/fs_20101116.html.

[Fujiwara et al., 2004] Fujiwara, T., Iida, N., et Watanabe, T. (2004). A hybrid wireless
network enhanced with multihopping for emergency communications. In Com-
munications, 2004 IEEE International Conference on, volume 7, pages 4177–4181.
IEEE.

[Gandon, 2015] Gandon, F. (Accessed 2015). Données liées et web sémantiquequand
le lien fait sens. Technical Report, INRIA. https://www.inria.fr/content/download/
81770/1151570/version/4/file/Gandonrii14lille.pdf.

[Gao et al., 2014] Gao, J., Bai, X., Tsai, W.-T., et Uehara, T. (2014). Mobile application
testing: A tutorial. Computer, 47(2):46–55.

[Gil-Castineira et al., 2011] Gil-Castineira, F., Costa-Montenegro, E., Gonzalez-Castano,
F., Lopez-Bravo, C., Ojala, T., et Bose, R. (2011). Experiences inside the ubiquitous
oulu smart city. Computer, 44(6):48–55.

http://digitalcommons.calpoly.edu/cpesp/17
http://www.sinemergen.com/zigbee.pdf
https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.fujitsu.com/uk/news/pr/fs_20101116.html
http://www.fujitsu.com/uk/news/pr/fs_20101116.html
https://www.inria.fr/content/download/81770/1151570/version/4/file/Gandonrii14lille.pdf
https://www.inria.fr/content/download/81770/1151570/version/4/file/Gandonrii14lille.pdf

138 BIBLIOGRAPHY

[Giustiniano et al., 2009] Giustiniano, D., Goma, E., Lopez, A., et Rodriguez, P. (2009).
Wiswitcher: an efficient client for managing multiple aps. In Proceedings of the
2nd ACM SIGCOMM workshop on Programmable routers for extensible services of
tomorrow, pages 43–48. ACM.

[Gluhak et al., 2011] Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., et Razafind-
ralambo, T. (2011). A survey on facilities for experimental internet of things re-
search. Communications Magazine, IEEE, 49(11):58–67.

[Grønli et al., 2014] Grønli, T.-M., Hansen, J., Ghinea, G., et Younas, M. (2014). Mobile
application platform heterogeneity: Android vs windows phone vs ios vs firefox
os. In Advanced Information Networking and Applications (AINA), 2014 IEEE 28th
International Conference on, pages 635–641.

[Gubbi et al., 2013] Gubbi, J., Buyya, R., Marusic, S., et Palaniswami, M. (2013). Internet
of things (iot): A vision, architectural elements, and future directions. Future
Gener. Comput. Syst., 29(7):1645–1660.

[Gupta et al., 2007] Gupta, V., Beyah, R. A., et Corbett, C. L. (2007). A characterization
of wireless NIC active scanning algorithms. In IEEE Wireless Communications and
Networking Conference, WCNC 2007, Hong Kong, China, 11-15 March, 2007, pages
2385–2390.

[Gupta et al., 2012a] Gupta, V., et Rohil, M. K. (2012a). Article: Information embed-
ding in ieee 802.11 beacon frame. IJCA Proceedings on National Conference
on Communication Technologies & its impact on Next Generation Computing 2012,
CTNGC(3):12–16. Full text available.

[Gupta et al., 2012b] Gupta, V., et Rohil, M. K. (2012b). Information embedding in ieee
802.11 beacon frame. In National Conference on Communication Technologies & its
impact on Next Generation Computing CTNGC.

[Gupta et al., 2013] Gupta, V., et Rohil, M. K. (2013). Bit-stuffing in 802. 11 beacon
frame: Embedding non-standard custom information. International Journal of
Computer Applications, 63(2):6–12.

[Gutiérrez et al., 2013] Gutiérrez, V., Galache, J., Sánchez, L., Muñoz, L., Hernández-
Muñoz, J., Fernandes, J., et Presser, M. (2013). Smartsantander: Internet of things
research and innovation through citizen participation. In Galis, A., et Gavras,
A., editors, The Future Internet, volume 7858 of Lecture Notes in Computer Science,
pages 173–186. Springer Berlin Heidelberg.

[Hall et al., 2012] Hall, W., et Tiropanis, T. (2012). Web evolution and web science.
Computer Networks, 56(18):3859–3865.

[Haller et al., 1998] Haller, N., Metz, C., Nesser, P. J., et Straw, M. (1998). A one-time
password system. Internet RFC 2289.

[HART, 2015] HART (2015). Hart overview. Technical Report, Hart Communication
Foundation. http://www.hartcomm.org/.

[Hartenstein et al., 2008] Hartenstein, H., et Laberteaux, K. P. (2008). A tutorial survey
on vehicular ad hoc networks. Communications Magazine, IEEE, 46(6):164–171.

http://www.hartcomm.org/

BIBLIOGRAPHY 139

[Hendler, 2009] Hendler, J. (2009). Web 3.0 emerging. Computer, 42(1):111–113.

[Hostapd, 2015] Hostapd (2015). Ieee 802.11 ap, ieee 802.1x/wpa/wpa2/eap/radius
authenticator. Technical Report, w1.fi. http://w1.fi/hostapd/.

[IDC, 2015] IDC (Accessed 2015). Smartphone os market share, q4 2014. Technical
Report, IDC. http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

[IEEE, 1990] IEEE (1990). Ieee standard glossary of software engineering terminol-
ogy. IEEE Std 610.12-1990, pages 1–84.

[IEEE, 2012] IEEE (2012). Ieee standard for information technology–
telecommunications and information exchange between systems local and
metropolitan area networks–specific requirements part 11: Wireless lan
medium access control (mac) and physical layer (phy) specifications. IEEE Std
802.11-2012 (Revision of IEEE Std 802.11-2007), pages 1–2793.

[Incki et al., 2012] Incki, K., Ari, I., et Sozer, H. (2012). A survey of software testing
in the cloud. In Proceedings of the 2012 IEEE Sixth International Conference on
Software Security and Reliability Companion, SERE-C ’12, pages 18–23, Washington,
DC, USA. IEEE Computer Society.

[Innocent, 2012] Innocent, A. A. T. (2012). Cloud infrastructure service management
- a review. CoRR, abs/1206.6016.

[Intel, 2014] Intel (2014). Understanding ieee 802.11 authentication and associa-
tion. Technical Report, Intel Wi-Fi. http://www.intel.com/support/wireless/wlan/sb/
CS-025325.htm.

[IoT-LAB, 2015] IoT-LAB, F. (Accessed 2015). Technical Report, Future Internet Testbed
(FIT) OneLab.

[IPSO, 2011] IPSO (2011). Rpl: The ip routing protocol designed for low power and
lossy networks. Technical Report, Internet Protocol for Smart Objects (IPSO) Al-
liance. http://www.cs.berkeley.edu/~jwhui/6lowpan/IPSO-WP-7.pdf.

[Ishaq et al., 2013] Ishaq, I., Carels, D., Teklemariam, G., Hoebeke, J., Abeele, F. V. D.,
Poorter, E. D., Moerman, I., et Demeester, P. (2013). Ietf standardization in the field
of the internet of things (iot): A survey. J. Sensor and Actuator Networks, pages
235–287.

[ISO, 2015] ISO (2015). Open systems interconnection (osi). Technical Report,
ISO. http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_ics_browse.htm?
ICS1=35&ICS2=100.

[ITU, 2012] ITU (2012). Overview of the internet of things - y.2060. Technical Report,
ITU. http://www.itu.int/rec/T-REC-Y.2060-201206-I.

[John E. Bentley, 2005] John E. Bentley, Wachovia Bank, C. N. (2005). Software testing
fundamentals—concepts, roles, and terminology. In Proceedings of SAS Confer-
ence, pages 10–13.

[Johnson, 1991] Johnson, B. C. (1991). A distributed computing environment frame-
work: An osf perspective. Technical Report DEV-DCE-TP6-1, The Open Software
Foundation.

http://w1.fi/hostapd/
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.intel.com/support/wireless/wlan/sb/CS-025325.htm
http://www.intel.com/support/wireless/wlan/sb/CS-025325.htm
http://www.cs.berkeley.edu/~jwhui/6lowpan/IPSO-WP-7.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_ics_browse.htm?ICS1=35&ICS2=100
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_ics_browse.htm?ICS1=35&ICS2=100
http://www.itu.int/rec/T-REC-Y.2060-201206-I

140 BIBLIOGRAPHY

[Juttner et al., 2005] Juttner, A., et Magi (2005). Tree based broadcast in ad hoc net-
works. Mob. Netw. Appl., 10(5):753–762.

[Kandula et al., 2008] Kandula, S., Lin, K. C.-J., Badirkhanli, T., et Katabi, D. (2008). Fat-
vap: Aggregating ap backhaul capacity to maximize throughput. In NSDI, vol-
ume 8, pages 89–104.

[Khanduri et al., 2013] Khanduri, R., et Rattan, S. S. (2013). Article: Performance com-
parison analysis between ieee 802.11a/b/g/n standards. International Journal of
Computer Applications, 78(1):13–20. Full text available.

[Kirk, 2015] Kirk, S. (2015). Internet of things – monetization opportunities for b2bs.
Technical Report, CloudExpo. http://cloudcomputing.sys-con.com/node/3268835.

[Kopecký, 2006] Kopecký, J. (2006). Wsdl rdf mapping: Developing ontologies from
standardized xml languages. In Roddick, J., Benjamins, V., Si-said Cherfi, S., Chi-
ang, R., Claramunt, C., Elmasri, R., Grandi, F., Han, H., Hepp, M., Lytras, M., Mišić,
V., Poels, G., Song, I.-Y., Trujillo, J., et Vangenot, C., editors, Advances in Conceptual
Modeling - Theory and Practice, volume 4231 of Lecture Notes in Computer Science,
pages 312–322. Springer Berlin Heidelberg.

[Krčo et al., 2012] Krčo, S., Fernandes, J., Jokić, S., Sanchez, L., Natti, M., Theodor-
idis, E., Vučković, D., Casanueva, J., Galache, J., Gutiérrez, V., et others (2012).
Smartsantander–a smart city experimental platform. (268-272).

[Lassabe et al., 2005] Lassabe, F., Baala, O., Canalda, P., Chatonnay, P., et Spies, F.
(2005). A friis-based calibrated model for WiFi terminals positioning. In Pro-
ceedings of IEEE Int. Symp. on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM 2005), pages 382–387, Taormina, Italy.

[Lassabe et al., 2006] Lassabe, F., Canalda, P., Charlet, D., Chatonnay, P., et Spies, F.
(2006). Refining WiFi indoor positionning renders pertinent deploying location-
based multimedia guide. In Procs of IEEE Int. Workshop on Pervasive Computing
and Ad Hoc Communications (PCAC06), in conjunction with the IEEE 20th Int. Conf. on
Advanced Information Networking and Applications (AINA06), volume 2, pages 126–
130, Vienna, Austria.

[Li, 2011] Li, Y. (2011). A survey on communication networks in emergency warning
systems. Technical Report WUCSE-2011-100, Washington University in St. Louis.

[Lim et al., 2000] Lim, H., et Kim, C. (2000). Multicast tree construction and flooding
in wireless ad hoc networks. In Proceedings of the 3rd ACM International Workshop
on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWIM ’00,
pages 61–68, New York, NY, USA. ACM.

[Linthicum, 2009] Linthicum, D. S. (2009). Cloud computing and SOA convergence in
your enterprise: a step-by-step guide. Pearson Education.

[Linux, 2015] Linux (2015). Linux wireless, nl80211 documentation. Technical Report,
Linux Wireless. http://wireless.kernel.org/en/developers/Documentation/nl80211.

[Lopez-De-Ipina et al., 2007] Lopez-De-Ipina, D., Vazquez, J. I., et Jamardo, I. (2007).
Touch computing: Simplifying human to environment interaction through nfc
technology”, 1as jornadas científicas sobre rfid.

http://cloudcomputing.sys-con.com/node/3268835
http://wireless.kernel.org/en/developers/Documentation/nl80211

BIBLIOGRAPHY 141

[Ludovici et al., 2010] Ludovici, A., et Calveras, A. (2010). Implementation and evalua-
tion of multi-hop routing in 6lowpan. Proceedings of the 9th Conference of Telematic
Engineering.

[Ludwig et al., 2010] Ludwig, B., et Coetzee, S. (2010). A comparison of platform as
a service (paas) clouds with a detailed reference to security and geoprocessing
services. Proceedings of the First International Workshop on Pervasive Web Mapping,
Geoprocessing and Services (WebMGS 2010), Como, Italy, August 10Á12.

[LWIG-WG, 2014] LWIG-WG (2014). Terminology for constrained node networks.
Technical Report, IETF. https://tools.ietf.org/html/draft-ietf-lwig-terminology-07.

[Mattern et al., 2010] Mattern, F., et Floerkemeier, C. (2010). From active data manage-
ment to event-based systems and more. chapter From the Internet of Computers to
the Internet of Things, pages 242–259. Springer-Verlag, Berlin, Heidelberg.

[Mauthe et al., 2003] Mauthe, A., et Hutchison, D. (2003). Peer-to-peer computing: Sys-
tems, concepts and characteristics. Praxis in der Informationsverarbeitung & Kom-
munikation (PIK), K. G. Sauer Verlag, Special Issue on Peer-to-Peer, 26(03/03).

[Merriam-Webster, 2012] Merriam-Webster (2012). Crowdsourcing - definition and
more. Technical Report, Merriam-Webster.com. http://www.merriam-webster.com/
dictionary/crowdsourcing.

[Meyer et al., 2011] Meyer, S., Sperner, K., Magerkurth, C., et Pasquier, J. (2011). To-
wards modeling real-world aware business processes. In Proceedings of the Sec-
ond International Workshop on Web of Things, WoT ’11, pages 8:1–8:6, New York, NY,
USA. ACM.

[MFT, 2015] MFT (Accessed 2015). Introduction to mobile testing framework. Techni-
cal Report, Mobile Testing Framework.

[Molnar et al., 2004] Molnar, D., et Wagner, D. (2004). Privacy and security in library
rfid: Issues, practices, and architectures. In Proceedings of the 11th ACM Con-
ference on Computer and Communications Security, CCS ’04, pages 210–219, New
York, NY, USA. ACM.

[Montenegro et al.,] Montenegro, G., Kushalnagar, N., Hui, J., et Culler, D. RFC 4944 –
Transmission of IPv6 Packets over IEEE 802.15.4 Networks. IETF RFC.

[Morien, 2015] Morien, C. (Accessed 2015). Connectivity 101: The internet of things.
Technical Report, The University of Texas at Austin. https://identity.utexas.edu/
id-perspectives/connectivity-101-the-internet-of-things.

[Mosbah et al., 2013] Mosbah, M. M., Soliman, H., et El-Nasr, M. A. (2013). Current
services in cloud computing: A survey. CoRR, abs/1311.3319.

[M’Raihi et al., 2005] M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., et Ranen, O.
(2005). HOTP: An HMAC-Based One-Time Password Algorithm. RFC 4226 (Infor-
mational).

[Muralidharan et al., 2008] Muralidharan, K., Dhanapal, K. B., et Chowdhury, A. R. (2008).
Bowl: Design and implementation of a (connectionless) broadcasting system
over wireless lan. In Proceedings of the 2008 International Symposium on a World of

https://tools.ietf.org/html/draft-ietf-lwig-terminology-07
http://www.merriam-webster.com/dictionary/crowdsourcing
http://www.merriam-webster.com/dictionary/crowdsourcing
https://identity.utexas.edu/id-perspectives/connectivity-101-the-internet-of-things
https://identity.utexas.edu/id-perspectives/connectivity-101-the-internet-of-things

142 BIBLIOGRAPHY

Wireless, Mobile and Multimedia Networks, WOWMOM ’08, pages 1–6, Washington,
DC, USA. IEEE Computer Society.

[Muthukrishnan et al., 2005] Muthukrishnan, K., Lijding, M., et Havinga, P. (2005). To-
wards smart surroundings: Enabling techniques and technologies for localiza-
tion. In Strang, T., et Linnhoff-Popien, C., editors, Location- and Context-Awareness,
volume 3479 of Lecture Notes in Computer Science, pages 350–362. Springer Berlin
Heidelberg.

[Nagesh et al., 2012] Nagesh, A., et Caicedo, C. (2012). Cross-platform mobile appli-
cation development. ITERA 2012 Conference, Indianapolis, IN.

[Networks, 2002] Networks, I. (2002). A Practical Approach to Identifying and Track-
ing Unauthorized 802.11 Cards and Access Points. Technical Report, Interlink
Networks. http://www.interlinknetworks.com/graphics/news/wireless_detection_and_-
tracking.pdf.

[NFC_Forum, 2015] NFC_Forum (Accessed 2015). What is nfc? Technical Report,
NFC_Forum. http://nfc-forum.org/what-is-nfc/.

[Nicholson et al., 2010] Nicholson, A. J., Wolchok, S., et Noble, B. D. (2010). Juggler:
Virtual networks for fun and profit. Mobile Computing, IEEE Transactions on,
9(1):31–43.

[NIST, 2011] NIST (2011). The nist definition of cloud computing. Technical Re-
port, National Institute of Standards and Technology. http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf.

[NIST, 2015] NIST (Accessed 2015). Mobile ad hoc networks (manets). Technical Re-
port, NIST. http://www.antd.nist.gov/wahn_mahn.shtml.

[Niu et al., 2013] Niu, J., Lu, B., Cheng, L., 0001, Y. G., et Shu, L. (2013). Ziloc: Energy
efficient wifi fingerprint-based localization with low-power radio. In WCNC, pages
4558–4563. IEEE.

[Obraczka et al., 2001] Obraczka, K., Viswanath, K., et Tsudik, G. (2001). Flooding for
reliable multicast in multi-hop ad hoc networks. Wireless Networks, 7(6):627–634.

[Olsson, 2014] Olsson, J. (2014). 6lowpan demystified. Technical Report, Texas Instru-
ments. http://www.ti.com/lit/wp/swry013/swry013.pdf.

[Oracle, 2015] Oracle (Accessed 2015). An overview of rmi applications. Technical
Report, Oracle Java Documentation. https://docs.oracle.com/javase/tutorial/rmi/.

[O’Reilly et al., 2009] O’Reilly, T., et Battelle, J. (2009). Web squared: Web 2.0 five years
on.

[panOULU, 2015] panOULU (Accessed 2015). Technical Report, Open Ubiquitous Oulu.

[Parata et al., 2007] Parata, C., Scarpa, V., et Convertino, G. (2007). Flex-wifi: a mixed
infrastructure and ad-hoc ieee 802.11 network for data traffic in a home environ-
ment. In World of Wireless, Mobile and Multimedia Networks, 2007. WoWMoM 2007.
IEEE International Symposium on a, pages 1–6. IEEE.

http://nfc-forum.org/what-is-nfc/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.antd.nist.gov/wahn_mahn.shtml
http://www.ti.com/lit/wp/swry013/swry013.pdf
https://docs.oracle.com/javase/tutorial/rmi/

BIBLIOGRAPHY 143

[pcmag, 2015] pcmag (2015). Definition of:application program. Technical Report, PC
Magazine. http://www.pcmag.com/encyclopedia/term/37919/application-program.

[Priyanka et al., 2012] Priyanka, Chana, I., et Rana, A. (2012). Empirical evaluation
of cloud-based testing techniques: A systematic review. SIGSOFT Softw. Eng.
Notes, 37(3):1–9.

[Qiu et al., 2004] Qiu, D., et Srikant, R. (2004). Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In Proceedings of the 2004 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’04, pages 367–378, New York, NY, USA. ACM.

[Quadri et al., 2010] Quadri, S., et Farooq, S. U. (2010). Software testing–goals, prin-
ciples, and limitations. International Journal of Computer Applications, 6(9):7–10.

[Ramani et al., 2014] Ramani, S. V., et Tank, Y. N. (2014). Indoor navigation on google
maps and indoor localization using RSS fingerprinting. CoRR, abs/1405.5669.

[Research, 2015] Research, G. (2015). Google turns on indoor mapping with google
maps 6.0 for android. Technical Report, GIGAOM Research. http://gigaom.com/2011/
11/29/google-turns-on-indoor-mapping-with-google-maps-6-0-for-android/.

[RFC6650, 2012] RFC6650 (2012). Rpl: Ipv6 routing protocol for low-power and lossy
networks. Technical Report, IETF. https://tools.ietf.org/html/rfc6550.

[RFC7252, 2014] RFC7252 (2014). The constrained application protocol (coap). Tech-
nical Report, IETF. https://tools.ietf.org/html/rfc7252.

[Ricca et al., 2001] Ricca, F., et Tonella, P. (2001). Analysis and testing of web applica-
tions. In Proceedings of the 23rd International Conference on Software Engineering,
ICSE ’01, pages 25–34, Washington, DC, USA. IEEE Computer Society.

[Robotium, 2015] Robotium (Accessed 2015). Technical Report, Robotium.

[Rodriguez, 2008] Rodriguez, A. (2008). Restful web services: The basics. Technical
Report, IBM. http://www.ibm.com/developerworks/library/ws-restful/.

[roll WG, 2015] roll WG (2015). Routing over low power and lossy networks (roll).
Technical Report, IETF. http://datatracker.ietf.org/wg/roll/documents/.

[Ryser et al., 1999] Ryser, J., et Glinz, M. (1999). A scenario-based approach to vali-
dating and testing software systems using statecharts. In Proc. 12th International
Conference on Software and Systems Engineering and their Applications.

[Schauer et al., 2013] Schauer, L., Dorfmeister, F., et Maier, M. (2013). Potentials and
limitations of wifi-positioning using time-of-flight. In Indoor Positioning and Indoor
Navigation (IPIN), 2013 International Conference on, pages 1–9.

[Shaw, 2014] Shaw, E. (2014). A survey of android app quality using third party mar-
kets.

[Silva et al., 2014] Silva, E. M., Maló, P., et others (2014). Iot testbed business model.
Advances in Internet of Things, 4(04):37.

http://www.pcmag.com/encyclopedia/term/37919/application-program
http://gigaom.com/2011/11/29/google-turns-on-indoor-mapping-with-google-maps-6-0-for-android/
http://gigaom.com/2011/11/29/google-turns-on-indoor-mapping-with-google-maps-6-0-for-android/
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc7252
http://www.ibm.com/developerworks/library/ws-restful/
http://datatracker.ietf.org/wg/roll/documents/

144 BIBLIOGRAPHY

[Simmel, 2012] Simmel, F. C. (2012). Dna-based assembly lines and nanofactories.
Current opinion in biotechnology, 23(4):516–521.

[SmartSantander, 2015] SmartSantander (Accessed 2015). Smartsantander experi-
mental test facilities. Technical Report FP7-257992, Smart Santander Consortium.

[Software, 2015] Software, S. (2015). What is mobile testing? Technical Report, Smart-
Bear Software. http://smartbear.com/all-resources/articles/what-is-mobile-testing/.

[Spies et al., 2015] Spies, F., Chatonnay, P., et Abu Oun, O. (2015). Adaptive indoor
positioning algorithm using auto-calibration. In IPIN 2015, 6-th Int. Conf. on Indoor
Positioning and Indoor Navigation, Banff, Canada.

[Stallings, 2002] Stallings, W. (2002). Ieee 802.11 wireless lan standard. Wireless Com-
munications and Networks, pages 458–477.

[Starov et al., 2013] Starov, O., Vilkomir, S., et Kharchenko, V. (2013). Cloud testing for
mobile software systems-concept and prototyping. In ICSOFT, pages 124–131.

[StatCounter, 2015] StatCounter (Accessed 2015). Top 8 mobile and tablet operating
systems from june 2014 to may 2015. Technical Report, StatCounter Global Stats.
http://gs.statcounter.com/#mobile+tablet-os-ww-monthly-201406-201505-bar.

[Steinmetz et al., 2005] Steinmetz, R., et Wehrle, K. (2005). 2. what is this about? In
Steinmetz, R., et Wehrle, K., editors, Peer-to-Peer Systems and Applications, volume
3485 of Lecture Notes in Computer Science, pages 9–16. Springer Berlin Heidelberg.

[Stoica et al., 2001] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., et Balakrishnan, H.
(2001). Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM ’01, pages 149–160, New
York, NY, USA. ACM.

[Strembeck et al., 2004] Strembeck, M., et Zdun, U. (2004). Scenario-based component
testing using embedded metadata. In SOQUA/TECOS, pages 31–45.

[Sun, 1988] Sun (1988). RPC: Remote procedure call. Proposal RFC1050, Internet
Engineering Task Force.

[Sundmaeker et al., 2010] Sundmaeker, H., Guillemin, P., Friess, P., et Woelfflé, S., editors
(2010). Vision and Challenges for Realising the Internet of Things. Publications
Office of the European Union, Luxembourg.

[Szabolcs Karsai, 2014] Szabolcs Karsai, Z. T. (2014). Comparison of wifi-based in-
door positioning techniques. In 1st International Conference and Exhibition on Fu-
ture RFID Technologies, pages 53–60. University of Applied Sciences and Bay Zoltan
Nonprofit.

[Tanenbaum, 2002] Tanenbaum, A. (2002). Computer Networks. Prentice Hall Profes-
sional Technical Reference, 4th edition.

[Tian et al., 2013] Tian, Z., Tang, X., Zhou, M., et Tan, Z. (2013). Fingerprint indoor po-
sitioning algorithm based on affinity propagation clustering. EURASIP J. Wireless
Comm. and Networking, 2013:272.

http://smartbear.com/all-resources/articles/what-is-mobile-testing/
http://gs.statcounter.com/#mobile+tablet-os-ww-monthly-201406-201505-bar

BIBLIOGRAPHY 145

[Tseng et al., 2002] Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., et Sheu, J.-P. (2002). The broad-
cast storm problem in a mobile ad hoc network. Wireless networks, 8(2-3):153–
167.

[tutorialspoint, 2015] tutorialspoint (Accessed 2015). Wap - introduction. Technical Re-
port, tutorialspoint.com. http://www.tutorialspoint.com/wap/wap_quick_guide.htm.

[Violino, 2005] Violino, B. (2005). The basics of rfid technology. Technical Report,
RFID Journal. http://www.rfidjournal.com/articles/view?1337.

[Vouk, 2008] Vouk, M. A. (2008). Cloud computing - issues, research and implemen-
tations. CIT, 16(4):235–246.

[WANG et al., 2010] WANG, Q.-w., Shi, H.-s., et Qi, Q. (2010). A dynamic probabilis-
tic broadcasting scheme based on cross-layer design for manets. International
Journal of Modern Education and Computer Science (IJMECS), 2(1):40.

[webfoundation, 2015] webfoundation (Accessed 2015). History of the web. Technical
Report, webfoundation. http://webfoundation.org/about/vision/history-of-the-web/.

[Weis, 2007] Weis, S. A. (2007). Rfid (radio frequency identification): Principles and
applications. System, 2:3Principles.

[Weiser, 1991] Weiser, M. (1991). The computer for the 21st century. Scientific ameri-
can, 265(3):94–104.

[Weiser, 2015] Weiser, M. (Accessed 2015). Ubiquitous computing. Technical Report,
ubiq.com. http://www.ubiq.com/hypertext/weiser/UbiHome.html.

[Werner-Allen et al., 2005] Werner-Allen, G., Swieskowski, P., et Welsh, M. (2005). Mote-
lab: a wireless sensor network testbed. In Information Processing in Sensor Net-
works, 2005. IPSN 2005. Fourth International Symposium on, pages 483–488.

[Westcott et al., 2011] Westcott, D. A., Coleman, D. D., Miller, B., et Mackenzie, P. (2011).
CWAP Certified Wireless Analysis Professional Official Study Guide: Exam PW0-
270. John Wiley & Sons.

[White, 1976] White, J. E. (1976). A high-level framework for network-based resource
sharing. In Proceedings of the June 7-10, 1976, National Computer Conference and
Exposition, AFIPS ’76, pages 561–570, New York, NY, USA. ACM.

[Williams et al., 2002] Williams, B., et Camp, T. (2002). Comparison of broadcasting
techniques for mobile ad hoc networks. In Proceedings of the 3rd ACM International
Symposium on Mobile Ad Hoc Networking &Amp; Computing, MobiHoc ’02, pages
194–205, New York, NY, USA. ACM.

[Williams, 2004] Williams, L. (2004). Testing overview and black-box testing tech-
niques. Alamat situs: http:// www.agile.csc.ncsu.edu/ SEMaterials/ BlackBox.pdf .

[Williamson, 2012] Williamson, L. (April 2012). A mobile application development
primer. Technical Report, IBM Corporation. http://www-304.ibm.com/industries/
publicsector/fileserve?contentid=250729.

[Wireless, 2015] Wireless, S. (2015). Skyhook location sdk. Technical Report, Skyhook
Wireless. http://www.skyhookwireless.com/.

http://www.tutorialspoint.com/wap/wap_quick_guide.htm
http://www.rfidjournal.com/articles/view?1337
http://webfoundation.org/about/vision/history-of-the-web/
http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://www.agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf
http://www-304.ibm.com/industries/publicsector/fileserve?contentid=250729
http://www-304.ibm.com/industries/publicsector/fileserve?contentid=250729
http://www.skyhookwireless.com/

146 BIBLIOGRAPHY

[Wisc, 2015] Wisc, U. o. W.-M. (Accessed 2015). Help shape the vision of the uw iot
lab. Technical Report, WISC.

[Yamaguchi et al., 2012] Yamaguchi, H., Higuchi, T., et Higashino, T. (2012). Collabora-
tive indoor positioning of mobile nodes. In Proceedings of The Sixth International
Conference on Mobile Computing and Ubiquitous Networking (ICMU 2012).

[Younan et al., 2015] Younan, M., Khattab, S., et BAHGAT, R. (2015). An integrated
testbed environment for the web of things. In ICNS 2015, The Eleventh Interna-
tional Conference on Networking and Services, Rome, Italy.

[Yun et al., 2012] Yun, M., Kim, D., seok Lee, H., et Lee, J. (2012). Silent broadcast: Ex-
perience of connectionless messaging using wi-fi p2p. In Information Science and
Digital Content Technology (ICIDT), 2012 8th International Conference on, volume 2,
pages 239–242.

[Zahid Farid, 2013] Zahid Farid, Rosdiadee Nordin, M. I. (2013). Recent advances in
wireless indoor localization techniques and system. Journal of Computer Networks
and Communications, 1(1).

[Zhang Da, 2010] Zhang Da, Feng Xia, Z. Y. L. Y. W. Z. (2010). Localization technolo-
gies for indoor human tracking. CoRR, abs/1003.1833.

[ZigBee, 2015] ZigBee (2015). The zigbee alliance. Technical Report, ZigBee. http:
//www.zigbee.org/.

http://www.zigbee.org/
http://www.zigbee.org/

LIST OF FIGURES

1.1 Internet of Things [Kirk, 2015] . 7

2.1 Roadmap of key technological developments in the context of IoT applica-
tion domains envisioned . 12

2.2 IoT Testbeds [Gluhak et al., 2011] . 13

3.1 The meta-model of a Web Application [Di Lucca et al., 2004] 29

4.1 IoTaaS Concept . 38

4.2 IoTaaS Architecture . 39

4.3 IoTaaS NEP Architecture . 43

4.4 IoTaaS - Scenario’s General Architecture 45

4.5 IoTaaS - Scenario Manager . 49

4.6 IoTaaS - Scenario Launcher . 50

5.1 Top 5 Mobile & Tablet Operating Systems 56

5.2 CEMAT Server Architecture . 58

5.3 CEMAT Daemon - Parameter Types . 59

5.4 Android Debug Bridge (ADB) . 60

5.5 Android Emulators - Ports Forwarding . 62

5.6 Java Application - Distributed Services Scenario 64

5.7 CEMAT - XML GUI . 65

5.8 CEMAT - Servers’ Tree . 67

5.9 CEMAT Server - Controller Architecture . 68

5.10 CEMAT Server - Services Exchange . 69

5.11 CEMAT - Batch-based Scenario . 71

5.12 CEMAT - XML-based Scenario . 72

5.13 CEMAT Experiment Design . 75

6.1 Network Models . 81

6.2 802.11 standards in the IEEE 802 standard Suit 82

147

148 LIST OF FIGURES

6.3 MAC frame format . 83

6.4 MAC Management frame format . 85

6.5 Wi-Fi STA Access Phases . 86

6.6 COLDE Protocol Stack . 87

6.7 COLDE Extenstion - Working Method . 89

6.8 Vendor-Specific Information Element . 90

6.9 COLDE General Frame Format . 91

6.10 COLDE - Broadcasting Structure . 92

6.11 COLDE - Main Node Selection . 95

6.12 LightWeight Service Mechanism . 97

6.13 SOS Service Security . 99

7.1 Simulation - Broadcast Duration Comparison 105

7.2 COLDE - Procedures and communications 107

7.3 COLDE Indoor Positioning - Request Frame 110

7.4 COLDE Indoor Positioning - Time Format 111

7.5 COLDE Indoor Positioning - Response Frame 111

7.6 Indoor Positioning - Procedures and communications 112

7.7 COLDE - Number of Scans . 115

7.8 COLDE-Client - Trilateration . 117

7.9 Scan and Positioning Duration . 118

7.10 Real-world Experiment Architecture . 122

7.11 Evacuation Server . 123

7.12 Evacuation Client . 124

A.1 Web - Fundamental Technologies [Gandon, 2015] 158

B.1 RFID System Interaction . 168

B.2 LR-WPAN device architecture . 169

B.3 IEEE 802.15.4 Topologies . 170

B.4 Constrained Network - Protocol Stack . 171

B.5 The Constrained RESTful Environment architecture 177

B.6 IoT Architectural Reference Model building blocks 178

B.7 IoT ARM Entities . 179

B.8 IoT ARM Devices . 180

B.9 IoT ARM Domain Concepts Relationships 181

LIST OF FIGURES 149

B.10 IoT-A Functional Model . 182

LIST OF TABLES

3.1 Types of testing . 27

3.2 Criteria defined based on challenges . 34

6.1 IEEE 802.11 Standards . 83

6.2 COLDE - Service Categories . 91

6.3 COLDE - Node Types . 94

7.1 Simulation scenarios . 106

7.2 The effect of Adding COLDE into Probe Frames 116

7.3 COLDE Evacuation - Experiment Criteria 120

B.1 Classes of Constrained Devices (KiB = 1024 bytes) 171

B.2 REST operations mapping . 175

151

V
ANNEXES

153

A
NETWORK-BASED APPLICATIONS

TECHNIQUES AND EVALUATION

According to Internet World Stats, there were more than 3 billions worldwide Internet
users in the world by June 30, 2014. That means more than 42.3% of population
had access to Internet. Many techniques have been developed in order to implement
network-based applications and to give network services. In this chapter, we present a
brief summary of these techniques and how they evolved by time, we present also the
transition to the era of the web services.

A.1/ INTRODUCTION

Distributed Computing is the process of aggregating the power of several computing en-
tities, which are logically distributed and may even be geologically distributed, to collab-
oratively run a single computational task in a transparent and coherent way, so that they
appear as a single, centralized system [Ernst et al., 2007].
Telnet (Telecommunications Network) can be considered the first step in distributed
computing protocols, in which it allows users to run programs on another system. The
syntax and semantics of Telnet vary from one system to another and are unregulated by
the protocol, the user and server processes simply shuttle characters between the human
user and the target system [White, 1976].
Remote Procedure Call (RPC) is a protocol that one program can use to request a ser-
vice from a program located in another computer in a network without having to under-
stand network details. Procedure calls are a well-known and well- understood mechanism
for transfer of control and data within a program running on a single computer. Therefore,
it is proposed that this same mechanism be extended to provide transfer of control and
data across a communication network. When a remote procedure is invoked, the calling
environment is suspended, the parameters are passed across the network to the envi-
ronment where the procedure is to execute (which we will refer to as the callee), and the
desired procedure is executed there. When the procedure finishes and produces its re-
sults, the results are passed backed to the calling environment, where execution resumes
as if returning from a simple single-machine call [Birrell et al., 1984]. Several software
companies began to develop RPC implementations, such as Open Network Connectivity
(ONC) [Sun, 1988] by Sun Microsystems and Distributed Computing Environment (DCE)
[Johnson, 1991] by Open Software Foundation (OSF), the latter is a consortium that in-

155

156APPENDIX A. NETWORK-BASED APPLICATIONS TECHNIQUES AND EVALUATION

cluded Apollo Computer (later part of Hewlett-Packard), IBM, Digital Equipment Corpora-
tion, and others. Later, Microsoft released Distributed Component Object Model (DCOM)
as an extension of the DCE-RPC standard.
Common Object Request Broker Architecture (CORBA) is a standard defined by the
Object Management Group (OMG) designed to facilitate the communication of systems
that are deployed on diverse platforms. CORBA is an object-based distributed computing
specification. Rather than remote procedures, self-contained components are transferred
by middleware mediators [Ernst et al., 2007].
Remote Method Invocation (RMI) is an RPC-like remote object protocol. The real ad-
vantages of RMI are the excellent integration in Java, simplicity and efficiency.
Enterprise JavaBeans (EJB) was proposed by Sun Microsystems as a solution for devel-
oping complex distributed systems, in which architectures, like CORBA or RMI, weren’t
effective in handling complexity. EJB release was the first development of application
servers, where a central server, contains the application and business logic, delivers ap-
plications to client machines.
Starting from the first appearance of the World Wide Web (Web), distributed computing
technologies leveraged this new opportunity. In section A.2, we present a summary of
the Web protocols.
Tim Berners-Lee’s (inventor of the Web) vision for the Web was a two-way (or even multi-
person to multi-person) medium, more close to a peer-to-peer system than a client-server
one. In section A.3, we discuss the structure of Peer-to-Peer applications. Section A.4
presents a review of mobile applications. Section A.5 discusses Cloud-Based Applica-
tions.

A.2/ WORLD WIDE WEB (WEB)

Web, as an example for Internet application, had been invented by Tim Berners-Lee in
1989 at CERN. The Web was originally conceived and developed to meet the demand for
automatic information-sharing between scientists in universities and institutes around the
world. Three fundamental technologies [CERN, 2015] [webfoundation, 2015] had been
specified (Figure A.1), in which they remain the foundation of today’s Web: HTML , URI
and HTTP.
These three technologies are presented in the following subsection A.2.1, A.2.2 and
A.2.3.

A.2.1/ HYPERTEXT MARKUP LANGUAGE (HTML)

The publishing format for the Web, including the ability to format documents and link
them to other documents and resources. HTML is a simple markup language used to
create hypertext documents that are platform independent. HTML documents are Stan-
dard Generalized Markup Language (SGML) documents with generic semantics that are
appropriate for representing information from a wide range of domains. HTML markup
can represent hypertext news, mail, documentation, and hypermedia; menus of options;
database query results; simple structured documents with in-lined graphics; and hyper-
text views of existing bodies of information [Berners-Lee et al., 1995].
HTML5 adds many new features. These include the new tags to support video, audio and
canvas elements, as well as the integration of Scalable Vector Graphics (SVG) content.

A.2. WORLD WIDE WEB (WEB) 157

HTLML5 presented MathML for mathematical formulas, in addition to many tags to enrich
the semantic content of documents.

A.2.2/ UNIFORM RESOURCE IDENTIFIER (URI)

It is a compact sequence of characters that identifies an abstract or physical resource.
Uniform Resource Locator (URL) is a subset of the URI that specifies where an identified
resource is available and the mechanism for retrieving it [Berners-Lee et al., 2005].

A.2.3/ HYPERTEXT TRANSFER PROTOCOL (HTTP)

HTTP is an application-level protocol for distributed, collaborative, hypermedia informa-
tion systems. It allows retrieval of linked resources from across the Web. It is a generic,
stateless, protocol which can be used for many tasks beyond its use for hypertext, such
as name servers and distributed object management systems, through extension of its
request methods, error codes and header [Berners-Lee et al., 1996].
The set of common methods [Fielding et al., 1999] for HTTP/1.1 is defined below. It is
important to understand these methods in general and separate way from its use with
hypertext:

• OPTIONS: It allows the client to determine the options and/or requirements asso-
ciated with a resource, or the capabilities of a server, without implying a resource
action or initiating a resource retrieval.

• GET: It retrieves whatever information (in the form of an entity) is identified by the
Request-URI.

• HEAD: It can be used for obtaining meta-information about the entity implied by
the request without transferring the entity-body itself. This method is often used for
testing hypertext links for validity, accessibility, and recent modification.

• POST: It is used to request that the origin server accept (from the client) the en-
tity enclosed in the request as a new subordinate of the resource identified by the
Request-URI in the Request-Line.

• PUT: It requests that the enclosed entity be stored (to be created if the resource
doesn’t exist, otherwise to replace the original one) under the supplied Request-
URI. The fundamental difference between the POST and PUT requests is reflected
in the different meaning of the Request-URI. The URI in a POST request identifies
the resource that will handle the enclosed entity, while the URI in a PUT request
identifies the entity enclosed with the request.

• DELETE: It requests that the origin server delete the resource identified by the
Request-URI.

• TRACE: It is used to invoke a remote, application-layer loopback of the request
message. It allows the client to see what is being received at the other end of the
request chain and use that data for testing or diagnostic information.

• CONNECT: It can be used with a proxy that can dynamically switch to being a
tunnel.

158APPENDIX A. NETWORK-BASED APPLICATIONS TECHNIQUES AND EVALUATION

WEB

HTTPHTML

URL

Reference Address

Communication

Figure A.1: Web - Fundamental Technologies [Gandon, 2015]

A.2.4/ WEB STAGES

The Web has gone through several distinct evolutionary stages. These stages have been
characterized mainly on how the data is gathered and processed [Hall et al., 2012]:

1. The Web of documents (Web 1.0): At that stage, the Web appeared to be a
technological artifact could be accessed using a personal computer, and which was
initially a source of information and news and, later, a place to make purchases.
That period is often referred to as the read-only Web. From the name, we can say
that the element was the documents, and mostly, they weren’t provided by users.
Web 1.0 lasted from 1989 to 2005.

2. The Web of people (Web 2.0): It is called also the "read-write Web", in which
people started to be a more significant part by contributing to the web contents.
One of the fundamental ideas underlying Web 2.0, namely that successful net-
work applications are systems for harnessing collective intelligence. Such appli-

A.2. WORLD WIDE WEB (WEB) 159

cations depend on managing, understanding, and responding to massive amounts
of user-generated data in real time. [O’Reilly et al., 2009]. This idea has led to
the concept of Crowdsourcing, which is the process of obtaining needed services,
ideas, or content by soliciting contributions from a large group of people, and es-
pecially from an online community, rather than from traditional employees or suppli-
ers [Merriam-Webster, 2012]. Since then, Crowdsourcing has been utilized to build
sites such as Wikipedia

3. The Web of data and social networks (Web 3.0): The main idea behind the Web
3.0, also known by its pseudonym as Semantic Web, was the creation of Web con-
tent by not using natural language but a form of script that could be understood and
gauged by software agents in order to allow them to find, share or integrate infor-
mation much more easily and efficiently, meeting the first stepping stone towards
intelligent applications [Dwivedi et al., 2011]. While the specific nature of Web 3.0
technologies are difficult to define precisely, the outline of emerging applications
has become clear over the past year. Web 3.0 is about linking and connecting web
of data but transforming it in knowledge. With the web 3.0, search engines produce
different results by the user: one user, one question, one result according to his/her
profile. The Web 3.0 organizes and assembles the pages found in a search engine,
by themes, topics. The idea is to read, analyze and identify the directions of se-
mantical words so as to relate the information to each other. Additionally it is able
to deal with the interests previously defined by people themselves. In addition, the
browsers themselves over time analyze the main interests of the person and use it
to improve the quality of searches. The more we research, the more the browser
learns [Almeida et al., 2014] [Hendler, 2009]. Some references describe this stage
as read-write-execute, while others consider it as an extension for Web 2.0 because
we use the same technologies that had been developed in Web 2.0.

4. Web 4.0 and Web of Things: There is still no exact definition of it. Web 4.0 is
also known as symbiotic web, it is expected to give a standardization for interaction
between humans and machines.

A.2.5/ WEB SERVICES

A Web service is a software system designed to support inter-operable machine-to-
machine interaction over a network [Booth et al., 2004]. In other words, it provides a
method of communication between two electronic devices over a network. With web ser-
vices, the web protocol suite can be used to achieve the same goal as other technologies
such as: RPC, RMI, etc. A Web service enables this communication by using a combina-
tion of open protocols and standards as follows:

• Data Structure - Extensible Markup Language (XML): It is a markup language,
similar to HTTP, that defines a set of rules for structuring of electronic documents
and describing data in a text-based format which is both human-readable and
machine-readable.

• Message Transfer - Web Service Definition Language (WSDL): It enables
language-independent description of Web services. In particular, it can describe the

160APPENDIX A. NETWORK-BASED APPLICATIONS TECHNIQUES AND EVALUATION

structure of the messages the service accepts and produces, simple message ex-
changes (called operations) and all necessary networking details [Kopecký, 2006].

• Service Definition - Simple Object Access Protocol (SOAP): It is a lightweight
XML-based protocol for exchange of information in a decentralized, distributed en-
vironment. SOAP doesn’t specify a transport mechanism, most SOAP implementa-
tions use HTTP [Davis et al., 2002]. SOAP is not bound to a particular programming
language or software platform.

Web services have two advantages over the other distributed-based technologies. Firstly,
HTTP-based SOAP implementations utilize the standard ports so they can transverse
firewalls seamlessly, because firewalls will treat SOAP messages similarly as other HTTP
messages. Secondly, SOAP enables interoperability with services developed on other
platforms (such as Microsoft .NET, Java, etc.).

A.3/ PEER-TO-PEER APPLICATIONS

Peer-to-peer systems and applications are distributed systems without any centralized
control or hierarchical organization, where the software running at each node is equiva-
lent in functionality [Stoica et al., 2001].
In the year 2000, a music-sharing application called Napster was the beginning of
peer-to-peer networks, as we know them today. Millions of users connecting to the
Internet have started using their ever more powerful home computers for more than
just browsing the Web and trading email. Over 50% of traffic is due to Peer-to-Peer
applications, sometimes even more than 75% [A. Duraisamy, 2013].
there are three common characteristics defining a P2P application
[Aringhieri et al., 2006]:

• The ability to discover other peers without the need of a centralized index.

• The ability to query other peers.

• The ability to share content with other peers.

The following characteristics are general features that can be used to identify peer-to-peer
systems [Mauthe et al., 2003]:

• Decentralization is One of the major concepts of peer-to-peer computing. This
includes distributed storage, processing, information sharing, etc. Even control in-
formation can be held in a distributed manner rather than centrally. The advan-
tage of decentralization is an increased extensibility, higher system availability and
improved resilience, transferral of ownership and control (of data, information and
computational resources) to the application users.

• Extensibility: Peer-to-peer applications can potentially grow very large since re-
sources can be added almost indefinitely. Though, another issue here is that espe-
cially in heterogeneous systems no performance guarantees can be given since it
is not known which instance is serving a request.

A.4. MOBILE APPLICATIONS 161

• Self-organizing: different system components work together without any central
management instance assigning roles and tasks.

• Fault-tolerant: There is no central point of failure, so peers can easily compensate
the loss of a peer or even a number of peers.

The concept of Napster has inspired new structures and philosophies in many areas of
human interaction. The following list summarizes the most important categorizes with
some example:

• File-sharing networks: Many peer-to-peer file sharing networks, such as Kazza,
Gnuttella, eDonkey/overnet, BitTorrent network popularized peer-to-peer technolo-
gies [Qiu et al., 2004].

• Multimedia: such as P2PTV and PDTP protocols.

• Commercial applications: Tradepal, M-commerce, Bitcoin, Midpoint and Curren-
cyFair.

Due to its main design principle of being completely decentralized and self-organizing;
as opposed to the Internet’s traditional Client-Server paradigm; the Peer-to-Peer concept
emerges as a major design pattern for future applications, system components, and
infrastructural services, particularly with regard to scalability and resilience. The growth
in the usage of these applications is enormous and even more rapid than that of the
World Wide Web. Nowadays, according to several Internet service providers, such
applications represent more than 50% of Internet [Steinmetz et al., 2005].

A.4/ MOBILE APPLICATIONS

In the 1990s, the mobile phone systems emerged. Mobile was just a phone that can make
and receive telephone calls over a radio link while moving around a wide geographic
area. Mobile applications were simple applications, such as Short Messaging System
(SMS) applications, small arcade games, ring tone editors, calculators, calendars, and so
forth. Mobile systems and applications were produced in-house. Mobile Internet services
had been introduced around the end of the 1990s. At the beginning, these services
were provided mainly with characters and without graphics or pictures on the existing
black-and-white small displays of mobile handsets [Adachi, 2006]. But there were two
limitations:

• Mobile phone: It includes CPU performance, amount of memory, electricity (for
battery-powered units), and input-output interface.

• Mobile Network: It includes transmission bandwidth, delay, and stability.

With the emergence of mobile Internet service, Wireless Application Protocol (WAP) was
presented as a major technological evolution. WAP is a standardized technology for
cross-platform, distributed computing very similar to the Internet’s combination of HTML

162APPENDIX A. NETWORK-BASED APPLICATIONS TECHNIQUES AND EVALUATION

and HTTP, except that it is optimized for: low-display capability, low-memory and low-
bandwidth devices, such as personal digital assistants (PDAs), wireless phones, and
pagers [tutorialspoint, 2015].
A smartphone (or smart phone) is a mobile phone which combines the features of a cell
phone with different features which vary from device to another, such as PDA, media
player (Global Positioning System) GPS navigation unit, camera, Bluetooth, Wi-Fi, video
camera, speech recognition, voice recorder, near field communication (NFC), infrared
blaster, etc. In 2007, Apple Inc. introduced the iPhone, one of the first smartphones to
use a multi-touch interface. In 2008, Android released its first smartphone, followed by
Windows Phone from Microsoft Inc in 2010. Other smartphone operating systems have
been developed over the years, such as Firefox OS, Sailfish OS, Tizen, Ubuntu Touch,
BlackBerry 10, etc.
Mobile platform are different from desktop systems in many ways. The main differences
are:

• Hardware Limitation: Mobile platforms are constrained in terms of available re-
sources such as: CPU, memory capacity and bandwidth, power consumption and
physical size.

• Display: Mobile devices provide smaller screen with lower resolution pixel density
compared to computer displays.

• User input technology: Mobile devices have pioneered the use of non-keyboard
"gestures"; such as Touch, swipe, and pinch; as an effective and popular method of
user input [Williamson, 2012]. In addition to tactile user input, mobile devices are a
natural target for voice-based user input and camera-based input. This difference
has a significant impact on the usability and user interaction design.

Therefore, traditional software engineering approaches and methods used in the devel-
opment of desktop applications may not be directly applicable to a mobile environment.
There is still lack of research initiatives and insufficient understanding of real issues and
challenges faced during the development of mobile applications [Flora et al., 2014]. Lack
of standard to develop mobile applications complicates applications evaluation mission.
Mobile applications can be classified into three categories [Nagesh et al., 2012]:

• Native: Native applications are those which are developed using mobile software
development kits (SDK), tools and languages that are native to a particular mobile
OS.

• Mobile-web: Mobile-web applications are those which use an instance of a mobile
web browser to run the application. The user interface (UI) is developed in HTML5
and JavaScript and the logic is defined by JavaScript.

• Hybrid: They are developed using open source libraries but also have access to
some of the native capabilities of a device such as Camera, GPS, Accelerometer,
File System, etc.

The next list gives a short introduction to each of the main mobile platforms:

• Android: Android is built on the open Linux Kernel. It utilizes a custom virtual ma-
chine that was designed to optimize memory and hardware resources in a mobile

A.5. CLOUD-BASED APPLICATIONS 163

environment. Android is open source; it can be liberally extended to incorporate
new cutting edge technologies as they emerge [Alliance, 2015a]. Each android ap-
plication is executed within a Dalvik Virtual Machine (DVM) running under a unique
UNIX User Identifier (UID).

• iOS: It is the operating system for several Apple devices, one of the most important
of which is the iPhone. Applications for iOS are written in Objective-C using the
Cocoa Touch library. Objective-C is an extension to the C language, while Cocoa
Touch is a collection of classes [Grønli et al., 2014].

• Windows Phone: Applications for Windows Phone 7 are written in .NET man-
aged code. Managed code is code written in languages that are available for
use with the Microsoft .NET Framework, for example C#. One of the benefits is
that many of the error-prone and often complex tasks, such as type safety check-
ing, memory management and destruction of unneeded objects, are taken care of
[Grønli et al., 2014].

Android dominates the market with a 76.6% share in 4th Quarter 2014, followed by iOS
with 19.7% and Windows Phone with a 2.8%, 0.9% of the market share is divided between
the rest of the mobile OS [IDC, 2015].

A.5/ CLOUD-BASED APPLICATIONS

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction [NIST, 2011]. In other words,
Cloud-based applications are distributed applications but on centralized facilities operated
by third-party compute and storage utilities.
Cloud computing has been enabled by the developments in virtualization, distributed
computing, utility computing, web and software services technologies [Vouk, 2008]. It
is especially based on two key concepts. The first one is Service-Oriented Architecture
(SOA), which is the delivery of an integrated and orchestrated suite of functions to an
end-user. The functions can be both loosely or tightly coupled. SOA enables end-users
to easily search, use and release services on-demand and at a desired quality level.
Workflows allow integration of services to deliver a business-valued application. The sec-
ond key concept is virtualization. Virtualization allows abstraction and isolation of lower
level functionalities and hardware, which enables portability of higher level functions and
sharing and/or aggregation of the physical resources [Incki et al., 2012].

There are four deployment models [NIST, 2011]:

• Private cloud: The cloud infrastructure is provisioned for exclusive use by a single
organization comprising multiple consumers (e.g., business units). It may be owned,
managed, and operated by the organization, a third party, or some combination of
them, and it may exist on or off premises.

• Community cloud: The cloud infrastructure is provisioned for exclusive use by
a specific community of consumers from organizations that have shared concerns

164APPENDIX A. NETWORK-BASED APPLICATIONS TECHNIQUES AND EVALUATION

(e.g., mission, security requirements, policy , and compliance considerations). It
may be owned, managed, and operated by one or more of the organizations in the
community, a third party, or some combination of them, and it may exist on or off
premises.

• Public cloud: The cloud infrastructure is provisioned for open use by the general
public. It may be owned, managed, and operated by a business, academic, or
government organization, or some combination of them. It exists on the premises
of the cloud provider.

• Hybrid cloud: The cloud infrastructure is a composition of two or more distinct
cloud infrastructures (private, community, or public) that remain unique entities, but
are bound together by standardized or proprietary technology that enables data
and application portability (e.g., cloud bursting for load balancing between clouds).

There are five acknowledged types of service offerings:

• Software-as-a-Service (SaaS): SaaS cloud systems enable application service
providers to deliver their applications via massive cloud computing infrastructures
[Du et al., 2014].

• Platform-as-a-Service (PaaS): It is also known as Cloud platform service, provides
a computing platform or solution stack on which software can be developed for later
deployment in a cloud [Ludwig et al., 2010].

• Infrastructure-as-a-Service (IaaS): IaaS refers to computing resources as a ser-
vice. IaaS provides virtual machines, virtual storage, networking technology, data
center space, and other hardware assets as resources that clients can provision.
The IaaS service provider manages the entire infrastructure, while the client is re-
sponsible for the deployment aspects [Innocent, 2012].

• Testing as a Service (TaaS): gives the ability to test local or cloud delivered sys-
tems by using remotely hosted testing software, hardware, services. It has the
ability to test cloud applications, web sites and systems of the internal enterprise
which do not need a hardware or software. An amount of leading companies
are providing testing as a service such as SOASTA, and PushToTest, and so on
[Mosbah et al., 2013].

• Mobile Testing as a Service (mTaaS): One of the most important phases in the
Software Development Model is Testing. Testing is the phase where the developer
can run the application in different scenarios, to find out the bugs, to determine the
applicable scenarios and to make sure of the application behavior and performance
by applying some real circumstances.
Unlike the familiar realm of desktop-based and web-based software, Mobile appli-
cations developers and testers are immediately confronted by multiple operating
systems (and different versions of each OS, especially with Android), multiple de-
vices (different makes and models of phones, tablets, phablets), multiple carriers
(including international ones), multiple speeds of data transference (3G, LTE, Wi-
Fi), multiple screen sizes (and resolutions and aspect ratios), multiple input con-
trols (including BlackBerry’s eternal physical keypads), and multiple technologies

A.5. CLOUD-BASED APPLICATIONS 165

— GPS, accelerometers — that web and desktop applications almost never use
[Software, 2015].

B
INTERNET OF THINGS (IOT)

B.1/ COMMUNICATION TECHNOLOGIES

Radio frequency identification (RFID) is a method of uniquely identifying an object using
a tag that carries a unique code or identification.
NFC as one of the enablers for ubiquitous computing is a combination of contactless
identification and interconnection technologies [Lopez-De-Ipina et al., 2007]

B.1.1/ RADIO FREQUENCY IDENTIFICATION(RFID)

An RFID tag is a small, low-cost device that can hold a limited amount of data and report
that data when queried over radio by a reader [Molnar et al., 2004].
RFID systems are composed of three core components (Figure B.1)

• Tag or transponder (often used interchangeably) uses a silicon microchip to store
a unique serial number and usually some additional information. A tag is com-
posed of: an Integrated circuit (IC) and an antenna. There are 3 categories of tags
[Weis, 2007]:

– Passive or battery-less tags have no on-board power source and must pas-
sively harvest all energy from an RF (Radio Frequency) signal. They have the
shortest read range of all three powering types (max range is 10 meters).

– Active or battery-powered tags require a power source for additional range
(20 to 100 meters), processing capabilities, and autonomy. There are two
types of active tags: transponders and beacons. Active transponders are wo-
ken up when they receive a signal from a reader. These are used in toll pay-
ment collection, checkpoint control and other systems. Beacons are used in
most Real-Time Locating Systems (RTLS), where the precise location of an
asset needs to be tracked. A beacon emits a signal with its unique identifier at
pre-set intervals (it could be every three seconds or once a day, depending on
how important it is to know the location of an asset at a particular moment in
time) [Violino, 2005].

• Reader uses RF signals to communicate with Tags to obtain identifying information.

• Database associates records with tag identifying data.

167

168 APPENDIX B. INTERNET OF THINGS (IOT)

Tag 1

DatabaseTag 2

Tag n

Reader
..

.

Figure B.1: RFID System Interaction

B.1.2/ IEEE 802.15.4

IEEE 802.15.4 is developed for applications with relaxed throughput requirements which
cannot handle the power consumption of heavy protocol stacks. It provides network flex-
ibility, low cost, very low power consumption, and low data rate. IEEE 802.15.4 is a
low-rate wireless personal area network (LR-WPAN) [Ergen, 2014]. The standard covers
(Figure B.2):

• Physical layer (PHY): The features of the PHY are activation and deactivation of
the radio transceiver, ED, LQI, channel selection,clear channel assessment (CCA),
and transmitting as well as receiving packets across the physical medium.

• Medium Access Control (MAC): The features of the MAC sublayer are beacon
management, channel access, GTS management, frame validation, acknowledged
frame delivery, association, and disassociation. In addition, the MAC sublayer pro-
vides hooks for implementing application-appropriate security mechanisms.

Some of the main characteristics of LoWPANs are as follows:

1. Small packet size: Given that the maximum physical layer packet is 127 bytes, the
resulting maximum frame size at the media access control layer is 102 octets. Link-
layer security imposes further overhead, which in the maximum case (21 octets of
overhead in the AES-CCM-128 case, versus 9 and 13 for AES-CCM-32 and AES-
CCM-64, respectively), leaves 81 octets for data packets.

2. Low bandwidth: Data rates of 250 kbps, 40 kbps, and 20 kbps for each of the
currently defined physical layers (2.4 GHz, 915 MHz, and 868 MHz, respectively).

3. MAC Addresses: Support for both 16-bit short or IEEE 64-bit extended media
access control addresses.

Two different device types can participate in an IEEE 802.15.4 network:

• Full-Function Device (FFD) is a device that is capable of serving as a personal
area network (PAN) coordinator or a coordinator.

• Reduced-Function Device (RFD) is intended for applications that are extremely
simple, such as a light switch or a passive infrared sensor; it does not have the
need to send large amounts of data and only associates with a single FFD at a
time.

IEEE 802.15.4 LR-WPAN operates in either of two topologies (Figure B.3):

B.1. COMMUNICATION TECHNOLOGIES 169

PHY

MAC

Upper layers

Physical medium

{IEEE802.15.4

Figure B.2: LR-WPAN device architecture

• Star topology: FFD can establish its own network and become the PAN coordina-
tor. All star networks operate independently from all other star networks currently in
operation.

• Peer-to-Peer: Each device is capable of communicating with any other device
within its radio communications range. One device is nominated as the PAN co-
ordinator, for instance, by virtue of being the first device to communicate on the
channel.

Several protocols have been built on top of the IEEE 802.15.4 protocol. A brief overview
of the most commonly used is given below.

• ZigBee is a low data rate, low power consumption, low cost, wireless net-
working protocol targeted towards automation and remote control applications
[ZigBee, 2015].

• HART (Highway Addressable Remote Transducer) is a bi-directional communication
protocol that provides data access between intelligent field instruments and host
systems. A host can be any software application from technician’s hand-held device
or laptop to a plant’s process control, asset management, safety or other system
using any control platform [HART, 2015].

• ISA100 addresses wireless manufacturing and control systems, developed by the
International Society of Automation (ISA).

B.1.3/ NEAR FIELD COMMUNICATION (NFC)

According to NFC Forum [NFC_Forum, 2015], NFC is a standards-based short-range
wireless connectivity technology that makes life easier and more convenient for con-
sumers around the world by making it simpler to make transactions, exchange digital
content, and connect electronic devices with a touch. NFC is compatible with hundreds
of millions of contactless cards and readers already deployed worldwide. The commu-
nication occurs between two compatible devices within few centimeters with 13.56 MHz

170 APPENDIX B. INTERNET OF THINGS (IOT)

Star Topology Peer-to-Peer Topology

FFD

RFD

PAN
Cordinator

Figure B.3: IEEE 802.15.4 Topologies

operating frequency. NFC protocol supports different data transmission rates such as 106
kbps, 212 kbps, and 424 kbps.
NFC devices can operate in three different modes based on the ISO/IEC 18092, NFC
IP-1 and ISO/IEC 14443 contactless smart card standards.

• Device/Tag (Read/Write): NFC-enabled device can read or write data to any of the
supported tag types in a standard NFC data format.

• Peer-to-Peer (Communication): Two NFC-enabled devices can exchange data,
which can be setup parameters for different type of connection (such as, Wi-Fi or
Bluetooth) or any other type of data.

• Card Emulation: NFC-enabled device can be a card or a tag for existing reader.

NFC protocol supports two communication modes (according to the device that generates
the RF signal) [Coskun et al., 2013]:

• Active mode: both devices use their own energy to generate their own RF field to
transmit the data.

• Passive mode: only initiator generates the RF field while the target device makes
use of the energy that is created by the active device.

B.2/ IETF - CONSTRAINED NETWORKS

IoT aims at integrating constrained devices into the Internet. Constrained Device is a
small device with limited CPU, memory, and power resources (also known as sensor,
smart object, or smart device). Several constrained devices can constitute a network,
becoming "constrained nodes" in that network [LWIG-WG, 2014]. This integration
collided with the limitation of the existing Internet technologies, which were not designed
for this class of devices.
Constrained devices form constrained networks, the latter have different characteristics
(such as, traffic patterns, high packet loss, low throughput, frequent topology changes

B.2. IETF - CONSTRAINED NETWORKS 171

CoAP

UDP

IPv6/RPL

6LoWPAN

802.15.4

Application

Transport

Network

Data Link

Physical

Figure B.4: Constrained Network - Protocol Stack

Name data size (e.g., RAM) code size (e.g., Flash)
Class 0, C0 � 10 KiB � 100 KiB
Class 1, C1 ∼ 10 KiB ∼ 100 KiB
Class 2, C2 ∼ 50 KiB ∼ 250 KiB

Table B.1: Classes of Constrained Devices (KiB = 1024 bytes)

and small useful payload sizes) than the traditional networks [Ishaq et al., 2013]. Each
vendor developed a protocol stack to address this problem. This protocol stack bridges
the constrained network with the Internet, and performs the routing inside the constrained
network itself. Such scenario limits the interoperability between devices from different
vendors.

To address the need for a standard protocol stack, the IETF has released three standards
(Figure B.4):

• IPv6 over Low Power WPAN (6LoWPAN).

• IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) : Routing Over
Low Power and Lossy Networks (ROLL) [roll WG, 2015].

• Constrained Application Protocol (CoAP) : Constrained Restful Environments
(CORE) [core WG, 2015].

Due to the popularity of IEEE 802.15.4 [802.15.4, 2011], this standard is used at the
physical layer and the medium access control layer. Classes of Constrained Devices and
the three IETF standards are briefly described in the following subsections.

B.2.1/ CLASSES OF CONSTRAINED DEVICES

IETF divides Constrained Devices into the following three classes (Table B.1)
[LWIG-WG, 2014]:

• Class 0 devices are very constrained sensor-like motes. They are so severely
constrained in memory and processing capabilities that most likely they will not

172 APPENDIX B. INTERNET OF THINGS (IOT)

have the resources required to communicate directly with the Internet in a secure
manner. Class 0 devices will participate in Internet communications with the help
of larger devices acting as proxies, gateways or servers. They generally cannot be
secured or managed comprehensively in the traditional sense. They will most likely
be preconfigured (and will be reconfigured rarely, if at all), with a very small data set.
For management purposes, they could answer keepalive signals and send on/off or
basic health indications.

• Class 1 devices are quite constrained in code space and processing capabilities,
such that they cannot easily talk to other Internet nodes employing a full protocol
stack such as using HTTP, TLS and related security protocols and XML-based data
representations. However, they have enough power to use a protocol stack specif-
ically designed for constrained nodes (such as CoAP over UDP) and participate in
meaningful conversations without the help of a gateway node. In particular, they can
provide support for the security functions required on a large network. Therefore,
they can be integrated as fully developed peers into an IP network, but they need to
be parsimonious with state memory, code space, and often power expenditure for
protocol and application usage.

• Class 2 devices are less constrained and fundamentally capable of supporting most
of the same protocol stacks as used on notebooks or servers. However, even these
devices can benefit from lightweight and energy-efficient protocols and from con-
suming less bandwidth. Furthermore, using fewer resources for networking leaves
more resources available to applications. Thus, using the protocol stacks defined
for more constrained devices also on Class 2 devices might reduce development
costs and increase the interoperability.

B.2.2/ IPV6 OVER LOW POWER WPAN (6LOWPAN)

Since IPv6 requires support of packet sizes much larger than the largest IEEE
802.15.4 frame size, an adaptation layer is required. The IPv6-over-IEEE 802.15.4
[Montenegro et al.,] document specifies how IPv6 is carried over an IEEE 802.15.4 net-
work with the help of an adaptation layer that sits between the Media Access Control
(MAC) layer and the IP network layer. A link in a Low-power Wireless Personal Area Net-
work (LoWPAN) is characterized as lossy, low-power, low-bit-rate, short-range; with many
nodes saving energy with long sleep periods [6lowpan WG, 2012].
The 6LoWPAN format specifies the adaptation layer’s key elements. 6LoWPAN adapta-
tion layer has four primary elements:

• Header compression: IPv6 header fields are compressed by assuming usage of
common values. Header fields are elided from a packet when the adaptation layer
can derive them from link-level information carried in the 802.15.4 frame or based
on simple assumptions of shared context.

• Fragmentation and Reassembly layer: the IEEE 802.15.4 data units may be as
small as 81 bytes. This is obviously far below the minimum IPv6 packet size of 1280
octets, and in keeping with Section 5 of the IPv6 specification [Deering et al., 1998],
a fragmentation and reassembly adaptation layer must be provided at the layer be-
low IP.

B.2. IETF - CONSTRAINED NETWORKS 173

• Stateless auto configuration Stateless auto configuration is the process where
devices inside the 6LoWPAN network automatically generate their own IPv6 ad-
dress. There are methods to avoid the case where two devices get the same ad-
dress; this is called duplicate address detection (DAD) [Olsson, 2014].

• Routing and Forwarding: The adaptation layer can also be responsible to take
routing and forwarding decisions instead of the network layer. Depending on which
layer is in charge of routing and packet forwarding, 6LoWPAN divides routing in two
schemes: mesh under if routing is done at the adaptation layer and route over if
done at the network layer [Ludovici et al., 2010].

B.2.3/ IPV6 ROUTING PROTOCOL FOR LOW-POWER AND LOSSY NETWORKS
(RPL)

There are two main points that distinguish LLNs from the traditional networks. Firstly, they
consist largely of constrained nodes (LLNs may potentially comprise up to thousands of
nodes). Secondly, the traffic patterns are not simply point-to-point, but in many cases
point-to-multipoint or multipoint-to-point. These characteristics offer unique challenges to
a routing solution (such as AODV, OLSR or OSPF).
In order to address this challenge, IETF formed new working group ROLL (Routing Over
Low Power and Lossy Networks) [roll WG, 2015], which released IPv6 Routing Protocol
for Low-Power and Lossy Networks (RPL) [RFC6650, 2012].
RPL is a Distance Vector IPv6 routing protocol for LLNs that specifies how to build a
Destination Oriented Directed Acyclic Graph (DODAG) using an objective function and a
set of metrics/constraints. The objective function operates on a combination of metrics
and constraints to compute the best path. There could be several objective functions in
operation on the same node and mesh network because deployments vary greatly with
different objectives and a single mesh network may need to carry traffic with very different
requirements of path quality [IPSO, 2011].

B.2.4/ CONSTRAINED RESTFUL ENVIRONMENTS (CORE)

CoRE (Constrained RESTful Environments) working group is providing a framework for
resource-oriented applications intended to run on constrained IP networks. Constrained
Devices Class 1 are in the focus of the CoRE working group, yet Class 2 devices can still
benefit from lightweight and energy-efficient protocols to free resources for the application
or reduce operational costs. CoRE defined a Constrained Application Protocol (CoAP)
for the manipulation of Resources on a Device.
First, we are going to discuss REST architecture, which plays an important role in the
web services in traditional Internet and IoT. Then, a brief study follows to describe CoAP.

B.2.4.1/ REPRESENTATIONAL STATE TRANSFER (REST)

REST is an architectural style consisting of the set of constraints applied to elements
within the architecture. By examining the impact of each constraint as it is added to the
evolving style, we can identify the properties induced by the Web’s constraints. Additional
constraints can then be applied to form a new architectural style that better reflects the

174 APPENDIX B. INTERNET OF THINGS (IOT)

desired properties of a modern Web architecture [Fielding, 2000].
REST is neither a product nor a standard, REST is an architecture that describes how
the Web should work. REST has gained widespread acceptance across the Web as a
simpler alternative to SOAP- (Simple Object Access Protocol) and WSDL (Web Services
Description Language)-based Web services. REST defines a set of architectural princi-
ples by which you can design Web services that focus on a system’s resources, including
how resource states are addressed and transferred over HTTP by a wide range of clients
written in different languages.

REST constraints are design rules that are applied to establish the distinct characteristics
of the REST architectural style.

• Client-Server: A server component, offering a set of services, listens for requests
upon those services. A client component, desiring that a service be performed,
sends a request to the server via a connector. The server either rejects or performs
the request and sends a response back to the client.

• Stateless: Communication must be stateless in nature, each request from client
to server must contain all of the information necessary to understand the request,
and cannot take advantage of any stored context on the server. Session state is
therefore kept entirely on the client.

• Cache: In order to improve network efficiency, the data within a response to a
request should be implicitly or explicitly labeled as cacheable or non-cacheable. If a
response is cacheable, then a client cache is given the right to reuse that response
data for later, equivalent requests.

• Uniform Interface: The central feature that distinguishes the REST architectural
style from other network-based styles is its emphasis on a uniform interface be-
tween components, By applying the software engineering principle of generality to
the component interface, the overall system architecture is simplified and the visi-
bility of interactions is improved. Implementations are decoupled from the services
they provide, which encourages independent evolvability. The trade-off, though, is
that a uniform interface degrades efficiency, since information is transferred in a
standardized form rather than one which is specific to an application’s needs. The
REST interface is designed to be efficient for large-grain hypermedia data transfer,
optimizing for the common case of the Web, but resulting in an interface that is not
optimal for other forms of architectural interaction.

• Layered System: The layered system style allows an architecture to be composed
of hierarchical layers by constraining component behavior such that each compo-
nent cannot "see" beyond the immediate layer with which they are interacting. Lay-
ers can be used to encapsulate legacy services and to protect new services from
legacy clients, simplifying components by moving infrequently used functionality to
a shared intermediary. Intermediaries can also be used to improve system scalabil-
ity by enabling load balancing of services across multiple networks and processors.

• Code-On-Demand: REST allows client functionality to be extended by download-
ing and executing code in the form of applets or scripts. This simplifies clients by
reducing the number of features required to be pre-implemented. Allowing features
to be downloaded after deployment improves system extensibility. However, it also
reduces visibility, and thus is only an optional constraint within REST.

B.2. IETF - CONSTRAINED NETWORKS 175

REST HTTP
Create resource POST
Retrieve resource GET
Change resource PUT
Delete resource DELETE

Table B.2: REST operations mapping

Basic REST design principle establishes a one-to-one mapping between create, read,
update, and delete (CRUD) operations and HTTP methods (POST,GET,PUT and Delete),
according to the mapping in (Table B.2) [Rodriguez, 2008].

B.2.4.2/ CONSTRAINED APPLICATION PROTOCOL (COAP)

The Constrained Application Protocol (CoAP) [RFC7252, 2014] is a specialized web
transfer protocol for use with constrained nodes and constrained networks. The proto-
col is designed for machine-to-machine (M2M) applications such as smart energy and
building automation. CoAP provides a request/response interaction model between ap-
plication endpoints, supports built-in discovery of services and resources, and includes
key concepts of the Web such as URIs (Uniform Resource Identifier) and Internet media
types. CoAP is designed to easily interface with HTTP for integration with the Web while
meeting specialized requirements such as multicast support, very low overhead, and sim-
plicity for constrained environments. A CoAP request is equivalent to that of HTTP and
is sent by a client to request an action (using a Method Code) on a resource (identified
by a URI) on a server. The server then sends a response with a Response Code; this
response may include a resource representation. CoAP is a single protocol, but logically,
CoAP uses a two-layer approach:

• Messaging Layer: CoAP uses it to deal with UDP and the asynchronous nature of
the interactions. CoAP defines four types of messages:

– Confirmable (CON): These are the messages that require an acknowledge-
ment. When no packets are lost, each Confirmable message elicits exactly
one return message of type Acknowledgement or type Reset.

– Non-confirmable (NON): Some messages do not require an acknowledge-
ment. This is particularly true for messages that are repeated regularly for
application requirements, such as repeated readings from a sensor.

– Acknowledgement (ACK): An Acknowledgement message acknowledges
that a specific Confirmable message arrived. The Acknowledgement message
may also carry a Piggybacked Response.

– Reset (RST): A Reset message indicates that a specific message (Con-
firmable or Non-confirmable) was received, but some context is missing to
properly process it. Provoking a Reset message (e.g., by sending an Empty
Confirmable message) is also useful as an inexpensive check of the liveness
of an endpoint ("CoAP ping").

• Request/Response: CoAP request and response semantics are carried in CoAP
messages, which include either a Method Code or Response Code, respectively.

176 APPENDIX B. INTERNET OF THINGS (IOT)

Requests can be carried in Confirmable and Non-confirmable messages, and re-
sponses can be carried in these as well as piggybacked in Acknowledgement mes-
sages.

CoAP provides the support for other functions such as:

• Caching: CoAP endpoints MAY cache responses in order to reduce the response
time and network bandwidth consumption on future, equivalent requests. The goal
of caching in CoAP is to reuse a prior response message to satisfy a current re-
quest.

• Intermediaries or Proxying: A proxy is a CoAP endpoint that can be tasked by
CoAP clients to perform requests on their behalf. This may be useful, for exam-
ple, when the request could otherwise not be made, or to service the response
from a cache in order to reduce response time and network bandwidth or energy
consumption.

– Forward-Proxy: An endpoint selected by a client, usually via local configu-
ration rules, to perform requests on behalf of the client, doing any necessary
translations. Some translations are minimal, such as for proxy requests for
"coap" URIs, whereas other requests might require translation to and from en-
tirely different application-layer protocols.

– Reverse-Proxy: An endpoint that stands in for one or more other server(s)
and satisfies requests on behalf of these, doing any necessary translations.
Unlike a forward-proxy, the client may not be aware that it is communicating
with a reverse-proxy; a reverse-proxy receives requests as if it was the origin
server for the target resource.

– Cross-Proxy: A cross-protocol proxy, or "cross-proxy" for short, is a proxy that
translates between different protocols, such as a CoAP-to-HTTP proxy or an
HTTP-to-CoAP proxy. While this specification makes very specific demands of
CoAP-to-CoAP proxies, there is more variation possible in cross-proxies.

• Resource Discovery: The discovery of resources offered by a CoAP endpoint
is extremely important in machine-to-machine applications where there are no hu-
mans in the loop and static interfaces result in fragility. A CoAP client can ask a
CoAP server about which resources it offers.

• Multicast: CoAP supports making requests to an IP multicast group. CoAP end-
points that offer services that they want other endpoints to be able to find using
multicast service discovery join one or more of the appropriate all-CoAP-node mul-
ticast addresses (IPv4:224.0.1.187, IPv6:FF0X::FD).

B.3/ IOT-A (INTERNET-OF-THINGS ARCHITECTURE)

The European Lighthouse Integrated Project has addressed for three years (2010-2013)
the Internet-of-Things Architecture. The IoT-A project based its work on the current state
of the art, rather than using a clean-slate approach. Due to this choice, common traits
are derived to form the base line of the IoT Architectural Reference Model (ARM). ARM

B.3. IOT-A (INTERNET-OF-THINGS ARCHITECTURE) 177

Server

Server

Server
C

C

C

C

C

HTTP

HTTP

CoGII

CoAP CoAP

CoAP

CoAP

The Internet Constrained Environment

C Constrained Node

CoGII

CoAP to General
Internet Intermediary

Figure B.5: The Constrained RESTful Environment architecture

is built as an abstract design, which can be used by organizations to create compliant
IoT architectures in different application domains.

The IoT ARM consists of three parts (Figure B.6.):

1. IoT Reference Model provides the highest abstraction level for the definition of the
IoT Architectural Reference Model. It promotes a common understanding of the IoT
domain.

2. IoT Reference Architecture is the reference for building compliant IoT architec-
tures. As such, it provides views and perspectives on different architectural aspects
that are of concern to stakeholders of the IoT.

3. IoT Guidelines aim at explaining the usage of the IoT ARM.

Studying the ARM in details is out of the scope of this thesis. Our goal is to clarify the
complexity of the IoT systems. This goal can be achieved by studying the IoT reference
model.
Reference Model provides the highest abstraction level for the definition of the IoT Ar-
chitectural Reference Model. It consists of four sub-models: Domain Model, Information
Model, Functional Model and Communication Model, which are described in the following.

178 APPENDIX B. INTERNET OF THINGS (IOT)

Existing
Architectures

& solutions

ARM-derived
Concrete IoT
Architecture

IoT
Reference Model

IoT
Reference
Architecture

Guidelines

IoT-A Architecture Reference Model

SOTA

Organization Implementation

Guides

Figure B.6: IoT Architectural Reference Model building blocks

B.3.1/ DOMAIN MODEL

The IoT-A defines a domain model as a description of concepts belonging to a particular
area of interest, in addition to the responsibilities of these concepts. Domain Model
defines the relationships between the concepts, and models the data exchange between
them. Therefore, several other parts of the IoT Reference Model, for instance the IoT
Information Model, directly depend on the IoT Domain Model.
Since the technologies used will change over time, Domain Model does not include
particular technologies, but rather abstractions thereof.
Concepts can be any physical or virtual entities. The Physical Entity is an identifiable part
of the physical environment, which means that it can be almost any object; from humans
or animals to cars; from store or logistics chain items to computers; from electronic
appliances to clothes. Physical Entities are represented in the digital world by a Virtual
Entity.
The Virtual Entity can be a 3D model, avatar, database entry, object (or instance of a
class in an object-oriented programming language), and even a social-network account
because it digitally represents certain aspects of its human owner, such as a photograph
or a list of his/her hobbies. An Augmented Entity is the composition of one Virtual Entity
and the Physical Entity it is associated to. There are two fundamental properties for
Virtual Entities: firstly, Virtual Entity can represent only one Physical Entity, while a
Physical Entity can be associated to several Virtual Entities. Secondly, Virtual Entities
are synchronized representations of a given set of aspects (or properties) of the Physical
Entity (e.g., sensor). In the same way, changes that affect the Virtual Entity could
manifest themselves in the Physical Entity (e.g., actuator).

B.3. IOT-A (INTERNET-OF-THINGS ARCHITECTURE) 179

1..*

1

1

1
represents

0..*

0..*

0..*

0..1

0..*

0..1

11..*Virtual Entity

Augmented
 Entity

Augmented
 Entity

Figure B.7: IoT ARM Entities

The interactions between Physical Entities (that have no projections in the digital world)
and Virtual Entities (which have no projections in the physical world) are done by utilizing
Devices. Devices are thus technical objects for bridging the real world of Physical Entities
with the digital world of the Internet. A device can be aggregations of several Devices of
different types, and it can be a Physical Entity, especially in the context of certain applica-
tions. An example for such an application is Device management, whose main concern is
the Devices themselves and not the entities or environments that these Devices monitor.
From an ARM point of view, the following three basic types of Devices are of interest:

• Sensors: provide information, knowledge, or data about the Physical Entity they
monitor.

• Tags: are used to identify Physical Entities, to which the Tags are usually physically
attached. The primary purpose of Tags is to facilitate and increase the accuracy of
the identification process. Tags can be optical, as in the case of barcodes and QR
codes (Quick Response Code), or it can be RF-based (Radio-Frequency Based), as
in the case of microwave car-plate recognition systems and RFID (Radio-Frequency
Identification).

• Actuators: can modify the physical state of a Physical Entity, like changing the
state (translate, rotate, stir, inflate, switch on/off,...) of simple Physical Entities or
activating/deactivating functionalities of more complex ones.

Since that the Devices can be aggregations of several Devices of different types, the
same Device can contains both Sensors (e.g., movement sensing) as well as Actuators
(e.g., wheel engines). Figure B.8 provides UML representation of the device types in IoT.

180 APPENDIX B. INTERNET OF THINGS (IOT)

Device

TagActuator Sensor
reads

0..*0..*

0..*
0..1

contains

Figure B.8: IoT ARM Devices

Resources are software components that provide some functionality. When associated
with a Physical Entity, they either provide some information about or allow changing some
aspects in the digital or physical world pertaining to one or more Physical Entities. ARM
defines two types of resources:

• On-Device Resources: can run on a device, and they are typically sensor re-
sources that provide sensing data or actuator resources. On-Device Resources
may also be storage Resources, e.g.,store a history of sensor measurements.

• Network Resources: run on a dedicated server in the network or in the “cloud”,
they do not rely on special hardware.

IoT Services provide well-defined and standardized interfaces, hiding the complexity of
accessing the resources and the virtual entities. Three different types of services can be
identified in IoT:

• Resource-level Services: expose the functionality of a Device by accessing its
hosted Resources, or read/modify data in case of Network resources.

• Virtual Entity-level Services: provide access to read information from a Virtual
Entity-level, or for updating attributes in order to trigger associations.

• Integrated Services: are the result of a Service composition of Resource-level or
Virtual Entity-level Services as well as any combinations of both Service abstrac-
tions.

Figure B.9 clarifies the relationships between all the mentioned concepts: Physical Entity,
Virtual Entity, Device, Resource and Service.

B.3. IOT-A (INTERNET-OF-THINGS ARCHITECTURE) 181

Device

Physical Entity
Physical
 WorldResource

Service

Virtual Entity

Digital
 WorldService

Server

Resource

Figure B.9: IoT ARM Domain Concepts Relationships

B.3.2/ INFORMATION MODEL

The IoT Information Model details the modeling of a Virtual Entity. Information model
details the association between a virtual entities and a service. The IoT Information
Model models all the concepts of the Domain Model that are to be explicitly represented
and manipulated in the digital world.
The IoT Information Model provides the basis for all aspects of the system that deal with
the representation, gathering, processing, storage and retrieval of information and as
such is used as a basis for defining the functional interfaces of the IoT system.
In addition to modeling the virtual entities, all other information related models can be
illustrated and structured using Information Model. The following list summarizes these
models:

• Entity Model specifies which attributes and features of real word objects are repre-
sented by the virtual entity.

• Resource Model contains the information that is essential to identify Resources
by a unique identifier and to classify Resources by their type, like sensor, actuator,
processor or tag.

• Service Description Model describes a Service, using for instance a service de-
scription language such as USDL (Unified Service Description Language) world.

182 APPENDIX B. INTERNET OF THINGS (IOT)

Application

M
an

ag
em

en
t

S
ec

ur
ity

Service
Organisation

Device

Communication

IoT
Process

Management

IoT
Service

Virtual
Entity

Figure B.10: IoT-A Functional Model

• Event Model are used to track dynamic changes in a (software) system, showing
who or what has triggered it and when, where and why the change occurred.

B.3.3/ FUNCTIONAL MODEL

The Functional Model is an abstract framework for understanding the main Functionality
Groups (FG) and their interactions. This framework defines the common semantics of the
main functionalities and will be used for the development of IoT-A compliant Functional
Views [Brown et al., 2006].

The IoT Functional Model contains seven longitudinal Functionality complemented by two
transversal Functionality (Management and Security) (Figure B.10):

• Application is a set of one or more programs designed to permit the user to perform
a group of coordinated functions, tasks, or activities. Application software cannot

B.3. IOT-A (INTERNET-OF-THINGS ARCHITECTURE) 183

run on itself but is dependent on system software to execute [pcmag, 2015].

• Service Organization is a central Functionality Group that acts as a communication
hub between several other Functionality Groups. It effectively links the Service
requests from high level FGs such as the IoT Process Management FG, or even
external applications, to basic services that expose Resources. It is responsible for
resolving and orchestrating IoT Services and it also deals with the composition and
choreography of Services.

• IoT Process Management provides the functional concepts necessary to concep-
tually integrate the idiosyncrasies of the IoT world into traditional (business) pro-
cesses.
Applications that interact with the IoT Process Management FG can effectively be
shielded from IoT-specific details of lower layers of the functional model, which
greatly reduces integration costs and thus contributes to an increased adoption of
IoT-A based IoT systems [Meyer et al., 2011].

• Virtual Entity contains functions for interacting with the IoT System, as well as
functionalities for discovering and looking up services that can provide information
about virtual entities, and functionalities to interact with them.

• IoT Service contains IoT Services as well as functionalities for discovery, look-up,
and name resolution of IoT Services.

• Communication provides a simple interface for instantiating and for managing
high-level information flow.

• Device: a Device can be as simple and limited as a Tag and as complex and
powerful as a server. It was already introduced in Domain Model (Section B.3.1,
p.179).

• Management combines all functionalities that are needed to govern an IoT system.

• Security is responsible for ensuring the security and privacy of IoT-A-compliant
systems.

IoT-A Functional Model sheds light on the complexity of IoT systems, which complicates
testing the applications that work on these systems.

B.3.4/ COMMUNICATION MODEL

IoT-A proposes a Communication Model that leverages on the ISO OSI 7-layer
[ISO, 2015] model for networks, and aims at highlighting the inter-operations among dif-
ferent stacks using methods such as application layer gateways, transparent proxy, net-
work virtualization, etc. The IoT Communication Model helps to model and to analyze
how constrained Devices can actively participate in an IoT-A compliant communication
and to study possible solutions, such as the usage of application layer gateways, to inte-
grate legacy technologies.

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Abstract:

Researchers across many domains are working to provide solutions that enable integration of objects
and systems into the Internet of Things (IoT). There are two domains which are among the most
important ones in IoT. First domain is IoT testing and evaluation. The billions of objects which
are connected to IoT would intercommunicate without any human intervention. Enterprises and
developers should be able to test and evaluate different operational scenarios of their systems in
different environments. Testing environments should be able to exchange services. We present our
architecture IoTaaS (Internet of Things Testing As A Service). IoTaaS is a hierarchy of a distributed
cloud for testing and evaluating IoT. We also present the pilot implementation of IoTaaS under the
code name CEMAT (Cloud Environment for Mobile Application Testing) which focuses on mobile
devices and their connected objects. The second domain is about communication methods and
techniques. Several IoT applications depend on public data exchange. We present our design to
exchange small amount of public data on wireless network without establishing a connection. COLDE
(Connectionless Data Exchange) is our extension to protocol the IEEE 802.11. COLDE utilizes
the management frames to allow Wi-Fi devices and access points to exchange small amounts of
data without having any association. COLDE describes how we can exchange data without being
connected. Lightweight services concept explains which data could be transferred using COLDE.
Simulation experiments and real world implementation are presented along with their results.

Keywords: Internet of Things, IoT, IoT testbed, Testing and Evaluating, IoTaaS, CEMAT, Connectionless,
Wi-Fi, IEEE 802.11, COLDE, lightweight services, Crowd Networking

Résumé :

Les chercheurs au travers de plusieurs domaines essaient de fournir des solutions pour intégrer les
objets et les systèmes dans l’internet des objets (IdO ou IoT pour Internet of Things en anglais). Il y
a deux domaines parmi les domaines les plus importants d’IdO. Le premier est de tester et évaluer
l’IdO. Plusieurs milliards d’objets sont déjà connectés à l’internet. Ces objets peuvent communiquer
entre eux directement sans intervention humaine. Les entreprises et les développeurs doivent
être capable de tester et d’évaluer des scénarios différents dans plusieurs environnements. Ces
environnements doivent être capable d’échanger des services entre eux. Nous présentons notre
architecture IoTaaS (Internet of Things Testing As A Service). IoTaaS est un environnement distribué
pour tester et évaluer l’IdO. Nous présentons aussi la première mise en œuvre expérimentale qui
est appelée CEMAT (Cloud Environment for Mobile Application Testing) qui permet de tester les
applications mobiles et les objets connectés. Le deuxième domaine correspond aux méthodes de
communication. Nous présentons notre conception de communications COLDE (Connectionless
Data Exchange) pour échanger une petite quantité de données publiques entre les clients Wi-Fi et
les points d’accès sans qu’ils aient besoin d’être associés. Alors que COLDE présente la méthode
nécessaire pour échanger ces données, le concept de services Lightweight décrit les données
échangées en utilisant le protocole COLDE.

Mots-clés : Internet des objets, tester et évaluer, sans connexion, sans association

	I Principles and Fundamentals
	1 Introduction
	1.1 Objectives of the thesis
	1.1.1 Internet of Things As A Service (IoTaaS)
	1.1.2 Connectionless Data Exchanges (COLDE)

	1.2 Plan of the thesis

	2 State of the Art
	2.1 Testing Internet of Things
	2.1.1 Test Automation
	2.1.2 Wireless Sensor Network (WSN)
	2.1.3 Smart Cities

	2.2 Wi-Fi-Based Communication Methods
	2.2.1 Multiple-Connections Wi-Fi
	2.2.2 Connectionless Wi-Fi

	2.3 Broadcasting Solutions
	2.3.1 Blind Flooding Method
	2.3.2 Probability-Based Methods
	2.3.3 Area-Based Methods
	2.3.4 Neighbor Knowledge Methods

	2.4 Wi-Fi-Based Indoor Positioning and Localization
	2.4.1 Proximity Detection
	2.4.2 Fingerprinting
	2.4.3 Trilateration and Triangulation

	2.5 Wi-Fi-Based Emergency Evacuation
	2.6 Conclusion

	3 Fundamentals of Application Testing and Evaluation
	3.1 General Categorization
	3.2 Test-Case-Based Categorization
	3.2.1 Random Testing
	3.2.2 Scenario-Based Testing (Structure)

	3.3 Application-Based Categorization
	3.3.1 Web Application Testing
	3.3.2 Mobile Application Testing

	II Contribution - IoTaaS
	4 Internet of Things Testing As A Service (IoTaaS)
	4.1 Introduction
	4.2 IoTaaS Concept
	4.3 IoTaaS Architecture
	4.4 Things
	4.4.1 Entities
	4.4.2 Emulators

	4.5 Gateways
	4.6 Network Emulation Protocol (NEP)
	4.6.1 NEP Server
	4.6.2 NEP Emulator
	4.6.2.1 NEP Controller
	4.6.2.2 NEP Updater

	4.6.3 NEP Client
	4.6.4 NEP Scenario

	4.7 Scenarios
	4.7.1 Scenario Files
	4.7.2 Scenario Manager
	4.7.3 Scenario Launcher

	4.8 Cloud
	4.9 Servers
	4.10 User
	4.11 Conclusion

	5 IoTaaS Pilot Implementation
	5.1 Introduction
	5.2 Mobile Operating System
	5.3 Server Architecture
	5.3.1 Daemon
	5.3.2 Things Manager
	5.3.2.1 Devices
	5.3.2.2 Emulators

	5.3.3 Graphical User Interface (GUI)
	5.3.4 Cloud Manager
	5.3.4.1 Controller
	5.3.4.2 Parent-Communicator
	5.3.4.3 Child-servers Manager

	5.3.5 Scenarios
	5.3.6 Traffic Shaper
	5.3.7 Logging

	5.4 Experiments and Results
	5.4.1 Environment Design
	5.4.2 Environment Installation
	5.4.3 Scenario and Results

	5.5 Conclusion

	III Contribution - COLDE
	6 Connectionless Data Exchange (COLDE)
	6.1 Introduction
	6.2 IEEE 802.11 (Wi-Fi)
	6.2.1 Network Architecture Models
	6.2.2 IEEE 802.11 Key Concepts
	6.2.2.1 IEEE 802.11 Architecture Model
	6.2.2.2 IEEE 802.11 MAC Frames
	6.2.2.3 IEEE 802.11 MAC Management Frames

	6.2.3 IEEE 802.11 Station Access Phases

	6.3 COLDE Protocol Stack
	6.4 COLDE Design and Structure
	6.4.1 COLDE - Working Method
	6.4.2 COLDE Frames
	6.4.3 COLDE Hierarchy
	6.4.3.1 Node Types
	6.4.3.2 Main-Nodes selection criteria

	6.4.4 MULTI-TIER BROADCAST

	6.5 Lightweight Services Exchange System
	6.5.1 System Entities
	6.5.2 System Design
	6.5.3 Service Mechanism

	6.6 COLDE Security
	6.7 Conclusion

	7 COLDE Implementation
	7.1 Introduction
	7.2 Broadcasting Information In Variably Dense Environment
	7.2.1 Introduction
	7.2.2 Simulation
	7.2.3 Experiments and Results
	7.2.4 Conclusion

	7.3 Integration in Embedded System
	7.3.1 Integration Into the Wi-Fi Client Devices
	7.3.2 Integration Into the Wi-Fi Access Points
	7.3.3 Proxy Server (COLDE-Proxy)

	7.4 Indoor Positioning Using COLDE
	7.4.1 Introduction
	7.4.2 Integrating COLDE in Indoor Positioning Systems
	7.4.3 Related Positioning Methods And Applications
	7.4.4 Experiments And Results
	7.4.5 Conclusion

	7.5 Emergency Evacuation
	7.5.1 Introduction
	7.5.1.1 Using Wi-Fi to Broadcast Evacuation Directions

	7.5.2 Simulation Experiments and Evaluation
	7.5.2.1 Experiment Design
	7.5.2.2 Experiment Policies
	7.5.2.3 Experiment Scenarios
	7.5.2.4 Experiment Results

	7.5.3 Real-World Experiments
	7.5.3.1 Evacuation System Design
	7.5.3.2 System Implementation
	7.5.3.3 Experiment Scenario and Results

	7.5.4 Conclusion

	IV Conclusions and Perspectives
	8 IoTaaS
	8.1 Conclusion
	8.2 Perspectives

	9 COLDE
	9.1 Conclusion
	9.2 Perspectives

	V Annexes
	A Network-Based Applications Techniques and Evaluation
	A.1 Introduction
	A.2 World Wide Web (Web)
	A.2.1 HyperText Markup Language (HTML)
	A.2.2 Uniform Resource Identifier (URI)
	A.2.3 Hypertext Transfer Protocol (HTTP)
	A.2.4 Web Stages
	A.2.5 Web Services

	A.3 Peer-to-Peer Applications
	A.4 Mobile Applications
	A.5 Cloud-Based Applications

	B Internet of Things (IoT)
	B.1 Communication Technologies
	B.1.1 Radio Frequency Identification(RFID)
	B.1.2 IEEE 802.15.4
	B.1.3 Near Field communication (NFC)

	B.2 IETF - Constrained Networks
	B.2.1 Classes of Constrained Devices
	B.2.2 IPv6 over Low Power WPAN (6LoWPAN)
	B.2.3 IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL)
	B.2.4 Constrained Restful Environments (CORE)
	B.2.4.1 Representational State Transfer (REST)
	B.2.4.2 Constrained Application Protocol (CoAP)

	B.3 IoT-A (Internet-of-Things Architecture)
	B.3.1 Domain Model
	B.3.2 Information Model
	B.3.3 Functional Model
	B.3.4 Communication Model

