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Claude Bernard Lyon 1
NADINE PIAT Examinateur Professeur des Universités,

ENSMM, Besançon
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THESIS OUTLINE

To begin this thesis, I present in Chapter 1: Introduction and research objectives the
general context of the research. We will see some generalities about passive safety and
legislation which allow the evaluation of the safety car. After that, a presentation about the
crash tests in general, then the dummies used in order to simulate the injury severity of
the car occupants during a frontal impact crash. The dummy instrumentation that helps
measure this injury severity will be also explained. The last section is focused on the
requirements of the firm and thus of the thesis’ objectives.

I then present the literature in Chapter 2: State-of-the-art. After a review of the current
researches in automobiles crashes, the literature review is focused on the Knowledge
Discovery in Databases (KDD) process and especially the clustering and classification
methods. The literature review for these two methods has been focused on the auto-
mobile domain, especially safety systems and reduction of the injury severity during a
road accident. It will help understand the state-of-the-art in data analysis, data mining
methods, clustering and classification applying in the field of automobile safety.

I finally present the core of this thesis from Chapters 3 until 6.

As the benefits of the KDD has been described, I continue with the application of this
process on the crash tests data through Chapter 3: Sled tests classification through
k-NN method. Firstly, a short explication of the available data will be done. In fact,
we have to differentiate the inputs (parameters of the restraints systems available during
the crash) and the outputs (dummy biomechanical values measured through high tech
sensors in order to evaluate the injury severity of the car occupant). The KDD process
will be applied on the inputs, i.e. on the parameters of the airbags, seat belts and dummy
position. These parameters have been chosen for their eventual influence on the outputs.
A data mining method, the k nearest neighbour, has been also applied in order to find
the nearest sled test included in the database to a new sled test. Section 2 regroups the
validation for the different used algorithms. The first one helps replace some parameters
missing values and the following validations are focused on for the k-nearest neighbour
which allows to have a first idea of the expected score in EURO NCAP and FMVSS NR.208.

The next chapter, Chapter 4: Clustering of the dummy biomechanical values, is fo-
cused on the outputs, i.e. the dummy biomechanical values. In order to find correlations
between the inputs and outputs, the outputs have been ranged into clusters. I present
in Section 1 the outputs’ clustering obtained on the passenger side for the EURO NCAP

rating. The results for the driver side will be also resumed but the graphs are gathered in
Appendix D. I continue with the next section, Section 2 which is based on the first section
but for the FMVSS NR.208 legislation. This section also presents only one configuration for
the passenger side (HIII 50th dummy belted) and the results for the others configurations
and the driver side. The additional graphs can be found in Appendixes E and F.

Chapter 5: Parameters’ influence through decision trees proposes an analysis of
the parameters’ influence for the two ratings: the EURO NCAP and the US NCAP. After a
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data description, the methodology is discussed and the CART algorithm is applied, using
the parameters as inputs and the clusters obtained in Chapter 4 as outputs. Only the
relevant dummy parts are studied in this chapter, it means that only the results for the
dummy chest for the EURO NCAP are presented and those for the dummy head and neck
are resumed in Appendix G. The dummy femurs are for this test configuration not relevant
because of the absence of a knee bag. All the four parts of the HIII 5th dummy influence
the U.S. rating score and for this reason, is widely discussed in this Chapter.

Finally Chapter 6: General conclusion summarises the results obtained during this
thesis and their benefits for the passive safety engineers in their daily work. Some per-
spectives with the application of Variational Bayesian methods are also discussed in order
to improve the data clustering and the results. This project aims at being a starting point
for the engineers in their objectives to improve the car safety through the amelioration of
the restraint systems.
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1
INTRODUCTION AND RESEARCH

OBJECTIVES

Worldwide road accidents kill 1.2 million persons per year and hurt forty times
more [80]. Government and international associations campaign since many years

for safe roads and their actions have already proved their efficiency, without being able to
influence the inequalities between countries. Indeed, more than 90% of the deaths take
place accidentally in low-income or in developing countries, which have less developed
active and passive safety systems compared to Europe or North America.

Since several years, the automobile safety is one of the priorities of all countries and is of
increasing customer anxiety. The automobile manufacturers continually develop new re-
straint systems to help improve occupant protection during a vehicle collision. The active
safety regroups all the elements connected to the vehicle and to the environment, which
thanks to their presence or functionality can avoid the occurrence of an accident. This
is always on call before the accident whilst the passive safety occurs during the accident
and aims at minimizing the gravity of an accident. The development of the new safety
systems involves the execution of crash tests based on the use of specific dummies. The
test configuration depends on the legislation of the country. The injuries imposed on the
dummies are estimated through the measurement of biomechanical criteria. 28 000 sled
tests data, including frontal, side and rear impact crashes have been collected by auto-
motive suppliers. A part of them will be used to discover correlations between all the sled
tests. These correlations will help engineers to understand the relationships between the
input’s parameters (test configuration, restraint systems) and the outputs (injury severity)
and also to reduce the daily amount of sled tests.

1.1/ BACKGROUND ON PASSIVE SAFETY

1.1.1/ PASSIVE SAFETY AND ACCIDENT’S CAUSES

The automobile is nowadays the most often used mean of transport. Safety had to be
developed during the last years to reduce the accidents that this popularity engenders.
In 2003, 6.613 people died in Germany in an automobile accident and, mainly thanks to
the development of active and passive safety, this number has been reduced in 2011 by
almost 42% (3.648 deaths) [73]. As shown in Fig. 1.1(a) [43], the percentage of accidents
was decreasing during the years but also the proportion of accidents which caused not
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2 CHAPTER 1. INTRODUCTION AND RESEARCH OBJECTIVES

damages, even if automobile buyers take safety into consideration before choosing their
car (Fig. 1.1(b)).

(a) Repartition of the accidents in Germany (with and
without damages) from 1950 until 2010

(b) Repartition of the factors influencing the buy of a
car (survey 2013) [61]

Figure 1.1: Reduction of accidents and consideration of the car safety

The reasons explaining an automobile accident are multiple, but driver behaviour is often
the main cause. Passive safety aims at ”repairing” human errors. It was established
(Fig. A.1) that driver mistakes by turn or priority mistakes are the main causes responsible
of an accident. Seat belt and airbags cannot avoid an accident (this is the objectives of
active safety) but aim at protecting car occupants during the crash. Without passive safety
systems, humans errors would have irreversible effects. Fig. 1.2 presents the repartition
of collision’s impact and most exposed occupants to injuries (i.e. the driver and passenger
seated on the first row). According to Johannsen [65], the most common impact direction
on the German roads is the frontal collision, with 53% of the total number of accidents
(Fig. 1.2(b)). The remaining 47% are separated between right side, left side and rear
evenly. The data was collected by the German In Depth Accident Study (GIDAS) between
July 1999 and June 2013. The driver and passenger are the most sensitive occupants
(Fig. 1.2(a)) because of the predominance of frontal impact crashes. There are good
arguments to focus this doctoral research on frontal impact sled tests, especially on the
driver and passenger occupants.

1.1.2/ LEGISLATION AND RATINGS

In the last thirty years, lots of new legislation and programmes have been established
in order to test the car safety, but also to support the customer’s choice with the help of
released passive safety results.

Legislation and ratings have to be differentiated. The legislation has to be completed
to enable a new car model to go on the market. It regroups many test configurations for
frontal, side and pedestrian safety (Fig. 1.3). The most famous legislation is the Economic
Commission for Europe (ECE) regulations and for the American market the Federal Motor
Vehicle Safety Standards (FMVSS).

All new car models must pass certain safety tests before they are sold. The test configu-
ration (dummies, initial velocity, direction of the impact crash) is defined by the legislation
of the country and depends on the restraint systems that have to be validated. Addi-
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(a) Repartition of the accidents’ frequency according
to the occupant position in car

(b) Repartition of the collision’s impacts - Dominance
of frontal impact crashes

Figure 1.2: Preponderance of frontal impact crashes with driver and passenger as
most exposed car occupants

Figure 1.3: Main crash regulations in Europe and USA

tionally customer ratings are executed independently of the customer and legislation to
provide a minimum safety for new cars. European New Car Assessment Program (EURO

NCAP) evaluates the car safety for Europe, US NCAP for the U.S.A. and LATIN NCAP for
South America. New Car Assessment Program (NCAP) is a non government program
based on the ”Allgemeine Deutsche Automobil-Club” (ADAC) programm which regroups
methods of tests, automobile designs and others tests relating to the automobile. The
first one NCAP has been created in America by the United States National Highway Traf-
fic Safety Administration (NHTSA) in 1979. Its methods have been continually improved
during the years by adapting it to the new technologies and restrictions. ADAC is yet
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an active member of the EURO NCAP, as other famous associations like the ”Fédération
Internationale de l’Automobile” (FIA). Each rating stipulates the test setup (rigid barrier,
overlap), impact velocity and dummy type. This independent assessment evaluates the
occupants damages and informs the customer on the car safety level (star evaluation).

1.1.2.1/ ECE REGULATIONS AND EURO NCAP RATING

The United Nations Economic Commission for Europe (UNECE or ECE) regulations are
European vehicle requirements initiated by the legislation for car safety, lighting and envi-
ronment protection. Five main rules regulate frontal impact crashes. ECE-R94 is in charge
of the occupant protection for a frontal collision which is defined as an impact between
two cars. This collision is simulated through an automobile crash against a deformable
barrier with an overlap of 40%. The impact velocity is fixed at 56 km/h and the driver and
passenger occupants must be HIII 50th dummies belted. This dummy corresponds to the
supposed median adult male drivers (based on U.S. data).

Since 1997, EURO NCAP is a programme based in Brussels, Belgium which is in charge
in Europe to evaluate the passive and active safety on cars and which attributes a stars
number corresponding to the obtained score in the test. Table 1.1 resumes the safety
performance’s definition according to EURO NCAP [72].

Table 1.1: Definition of the safety performance for the EURO NCAP rating

Definition of the safety performance according to EURO NCAP

? ? ? ? ? Overall good performance in crash protection. Well equipped with robust
crash avoidance technology

? ? ?? Overall good performance in crash protection; additional crash avoidance
technology may be present

? ? ? Average to good occupant protection but lacking crash avoidance technol-
ogy

?? Nominal crash protection but lacking crash avoidance technology
? Marginal crash protection

Since 2009, EURO NCAP gives one overall star rating per vehicle. This score takes four
sections into consideration:

q Section I: Adult occupant protection

q Section II: Child occupant protection

q Section III: Pedestrian protection

q Section IV: Safety assistance

For the offset frontal impact crash, the EURO NCAP rating test depicts that the driver and
the passenger have to be a HIII 50th Percentile dummy. The impact velocity is 64 km/h
against a deformable barrier (with an overlap of 40%), the crash velocity for the rating is
thus higher as for the ECE-R94 regulation. Fig. 1.4 resumes the crash configuration for
ECE regulation and EURO NCAP rating.
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Figure 1.4: European regulation and EURO NCAP rating for frontal impact

For each section of the rating, a weight factor is applied on the score. These weights are
continually updated from time to time. Table 1.2 summarises the weight factors for the
period 2013-2015 [59] and confirms the importance of the adult occupant protection in
EURO NCAP rating.

Table 1.2: Weight factors for the EURO NCAP sections

Year 2013 2014 2015
Section I: Adult occupant protection 50% 40% 40%
Section II: Child occupant protection 20% 20% 20%
Section III: Pedestrian protection 20% 20% 20%
Section IV: Safety assistance 10% 20% 20%

Table 1.3 explains the overall calculation of the EURO NCAP rating score including all four
sections with their weights from 2014 [75]. It specifies for example that for adult occupant
protection (Section I), the offset frontal impact crash represents 16 points out of 38. The
Section I is additionally weighted at 40% for the whole rating score calculation. The rating
score is then deduced from the four sections score.

For the frontal occupants, the maximal points that can be reached by the driver and
the passenger is 16 points each, allocated evenly between the four dummy regions :
head/neck, chest, knee/femur/pelvis and leg/foot (Table 1.4). Only the half score (i.e. 8
points) is considered for the overall score calculation, which explains the 16 points (driver
and passenger) of the Section I adult occupant protection (Table 1.3).

The ECE-R94 regulation and the EURO NCAP rating control the car safety intended for the
European market. Their equivalence for the U.S.A. are the FMVSS regulation (in particular
the section 208 for occupant crash protection) and the US NCAP rating, which represent an
additional challenge for the passive safety engineers because of the variety of dummies
type and test configurations.

1.1.2.2/ FMVSS NR.208 REGULATION AND US NCAP RATING

Federal Motor Vehicle Safety Standard (FMVSS) are the regulations provided by the U.S.
legislation, specifying the design, construction and safety requirements for the automo-
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Table 1.3: Calculation of the overall EURO NCAP rating score (2014)

Section I: Section II: Section III: Section IV:
Adult occupant
protection

Child occupant
protection

Pedestrian protec-
tion

Safety assistance

Offset frontal impact
: 16

Dyn. tests frontal:
16

Head impact: 24 Seat belt reminder :
3

Side impact (MDB) :
8

Dyn. tests side : 8 Leg impact : 6 Speed assistance
system: 3

Side impact (Pole) :
8

Installation of CRS :
12

Upper leg impact : 6 ESC

Whiplash front : 2 Vehicle : 13 LDW / LKD : 1
Whiplash rear : 1 AEB interurban : 3
AEB city : 3

Max. score 38 49 36 13
Normalised
score (2)

Actual score / 38 Actual score / 49 Actual score / 36 Actual score / 13

Weighting
(2014)

40% 20% 20% 20%

Weighted
score (4)

Normalised
score*40%

Normalised
score*20%

Normalised
score*20%

Normalised
score*20%

Rating Min. normalised score (2) by box for the respective star rating
? ? ? ? ? 80% 75% 60% 65%
? ? ?? 70% 60% 50% 55%
? ? ? 50% 30% 40% 30%
?? 30% 25% 20% 20%
? 20% 15% 10% 10%

Table 1.4: EURO NCAP rating score repartition for the driver and passenger

Maximal of points
Dummy region (worst performing region) Driver Passenger
Head / Neck 4 points 4 points
Chest 4 points 4 points
Knee / Femur/ Pelvis 4 points 4 points
Leg / Foot 4 points 4 points
Total score 16 points 16 points
Half score for EURO NCAP calculation 8 points 8 points
Offset frontal impact 16 points

bile. The FMVSS NR.208 regulation is focused on the occupant crash protection. The
tests are executed with and without seat belts (Fig. 1.5) and the HIII 50th and HIII 5th
dummies are used as frontal car occupant (both dummies tested on both sides). The
HIII 50th dummy represents the median adult male and the HIII 5th dummy corresponds
with females, which are larger than the supposed smallest 5th. The velocity impact for
the belted test is 56 km/h (35 mph) and for the unbelted configuration, 40 km/h (25 mph),
both against a full-width rigid barrier.

The US NCAP rating is based on this regulation. As for the EURO NCAP rating, it enables
the evaluation of the car through a stars evaluation. The U.S. rating depicts that the
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Figure 1.5: The four FMVSS NR.208 test configurations (in-position and full-width
test)

driver has to be a HIII 50th dummy and the passenger a HIII 5th dummy. Both have to
be belted, i.e. the impact velocity against the full-width rigid barrier is fixed at 56 km/h
(35 mph), instead of 64 km/h against a deformable barrier (overlap of 40%) for the EURO

NCAP rating. The stars number is defined according to the Relative Risk Score (RRS)
(Table 1.5). This parameter is based on the combined probability Pcomb, which evaluates
the whole injury severity of the occupant by taking the single probabilities of the dummy
part into account. The single probabilities are based on the Abbreviated Injury Scale
(AIS), a coding system created to describe the injury severity and to symbolize the risk
(from 1 to 6) to life associated with the injury. For example, AIS 1 regroups minor injuries
and AIS 6 fatal injuries. AIS 1+ regroups all risk injuries from the minor one. Generally
AIS 3+ injury risk curves are taken into account (it corresponds to serious to fatal injuries),
except for the femur forces which use AIS 2+ (moderate to fatal injuries).

The injury criterion measured by the dummy sensors during the crash enables the calcu-
lation of the single injury probability which is expressed differently for the HIII 50th dummy
(Table. 1.6) and HIII 5th dummy (Table 1.7) [42]. The single probabilities of the head are
calculated with the cumulative normal distribution defined as:

Φ(x) =
1
√

2π

∫ x

−∞

e
−1
2 t2dt (1.1)

The combined probability Pcomb is calculated according to Eq. 1.2 (valid for the driver and
passenger side):

Pcomb = 1 − (1 − Phead) · (1 − Pneck) · (1 − Pchest) · (1 − P f emur) (1.2)
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Table 1.5: Star rating according to the injury probability and/or the Relative Risk
Score (RRS)

Probability RRS
? ? ? ? ? Pcomb < 0, 10 RRS < 0, 667
? ? ?? 0, 10 ≤ Pcomb < 0, 15 0, 667 ≤ RRS < 1, 0
? ? ? 0, 15 ≤ Pcomb < 0, 20 0, 10 ≤ RRS < 1, 33
?? 0, 20 ≤ Pcomb < 0, 40 1, 33 ≤ RRS < 2, 667
? 0, 40 ≤ Pcomb 2, 667 ≤ RRS

Table 1.6: Injury criteria and probabilities for the HIII 50th dummy (driver side)

Dummy part Injury criterion Single injury probability
Head HIC 15 (-) Phead(AIS 3+) = Φ( ln(HIC15)−7,45231

0,73998 )
where Φ is the cumulative normal distribution (Eq. 1.1)

Neck Ni j and tension/compression PNeckNi j(AIS 3+) = 1
1+exp (3,2269−1,9688∗Ni j)

(in kN) PNeckTension(AIS 3+) = 1
1+exp (10,9745−2,375∗NeckTension)

PNeckCompression(AIS 3+) = 1
1+exp (10,9745−2,375∗NeckCompression)

⇒ PNeck = max(PNeckN i j, PNeckT ension, PNeckCompression)
Chest Deflection (in mm) Pchest(AIS 3+) = 1

1+exp (10,5456−1,568∗(ChestDe f lection)0,4612)

Femur Force left and right (in kN) P f emur(AIS 2+) = 1
1+exp (5,7949−0,5196∗(FemurForce))

Table 1.7: Injury criteria and probabilities for the HIII 5th dummy (passenger side)

Dummy part Injury criterion Single injury probability
Head HIC 15 (-) Phead(AIS 3+) = Φ( ln(HIC15)−7,45231

0,73998 )
where Φ is the cumulative normal distribution (Eq. 1.1),

Neck Ni j and tension/compression PNeckNi j(AIS 3+) = 1
1+exp (3,2269−0,7619∗Ni j)

(in kN) PNeckTension(AIS 3+) = 1
1+exp (10,958−3,770∗NeckTension)

PNeckCompression(AIS 3+) = 1
1+exp (10,958−3,770∗NeckCompression)

⇒ PNeck = max(PNeckN i j, PNeckT ension, PNeckCompression)
Chest Deflection (in mm) Pchest(AIS 3+) = 1

1+exp (10,5456−1,7212∗(ChestDe f lection)0,4612)

Femur Force left and right (in kN) P(AIS 2+) = 1
1+exp (5,7949−0,7619∗(FemurForce))

Once Pcomb is determined, the ratio called Relative Risk Score is deduced from it, set to
15%. This percentage is imposed by NHTSA and allows an eventual adaptation of the
values’ conditions for reaching 5 stars.

Each measured criterion influences the rating score differently. Fig. 1.6 represents the
single probability of each dummy part and their influence on the rating for the HIII 50th
dummy (driver side) and for the HIII 5th dummy (passenger side) (graphical logarithmic
representation through the curves −100 ∗ log(1 − Pdummypart)).

The FMVSS NR.208 regulation as well as the US NCAP and EURO NCAP ratings are consid-
ered in this study. Because of a lower velocity in comparison with the rating, the ECE-R94
regulation is not taken into consideration. Dummies enable the validation of these regula-
tions with the evaluation of the occupant injury severity measured with high tech sensors.
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Figure 1.6: Injury criteria and their logarithmic representation using for the U.S.
rating score calculation
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1.1.3/ CRASH TESTS DUMMIES AND INJURIES CRITERIA

The level of injury severity of the car occupant is simulated with the help of sled test
facilities and calibrated devices. These high tech dummies are composed of sensors
which measure in real time the biomechanical values during the frontal sled test.

1.1.3.1/ DESCRIPTION OF THE SLED TEST FACILITY AND MEASURED DATA

For the development and dynamical testing of frontal airbags as well as seat belt systems,
the automotive suppliers are equipped with a servo hydraulic HyG-Sled-facility from MTS
Systems Corporation. The sled facility with the test setup is accelerated by a hydraulic
shock piston from the standstill on the given speed. Besides, a defined acceleration is
considered. The required impulse energy to reach the aimed acceleration is provided by
compression and storage of nitrogen gas in hydro pneumatic pressure warehouses.The
hydro system liquid is passed on to the three-stage servo-ventilation system which steers
the oil flow in dependence of the wished acceleration to the concentric ordered working
cylinder. The shock piston in the working cylinder accelerates the sled test platform with
the test setup applied to it. For the simulation of a frontal impact, a massive reinforced
buck of a certain vehicle type is fixed on the sled test facility with all system components,
required dummies and measurement instrumentation (Fig. 1.7(a)). This type of facility,
which acceleration can reach 110 g with a weight of the buck of maximal 2500 kg, is
intended to reproduce a realistic, repetitive, and as a rule non-destructive way, the effects
of a real automotive crash. With the given acceleration-time, the buck is implemented
against the original direction of the traffic of the real vehicle. The facility is composed of:

q a jack of push with a force between 1500 and 4000 kN (or more) equipped with
a servo valve of which the last floor has a flow of more than 100 000 L/min
(Fig. 1.7(b));

q a trolley of shocks as a support of the reinforced buck which slips on a rail equipped
with an autonomous braking system;

q a track with rails from 30 to 40 meters long, necessary for the braking of the buck.

The dummies used in the sled test are retained by the restraint systems, the dummy
biomechanical values are recorded and all data and videos are documented and stored.

Since 2000, a large amount of data coming from the frontal sled test facility have been
collected by some automotive suppliers. The number of available data is estimated at
approximately 28,000 data (2001-2014).

1.1.3.2/ CRASH TEST DUMMIES AND INSTRUMENTATION

The Anthropomorphic Test Devices (ATD), or crash test dummies, are used by automotive
companies as occupant to test the safety of any type of vehicle. There are different types
of dummies, according to the kind of collision being checked. The most famous are:

q Hybrid: the first type of ATDs to be created. It is used for frontal impact crashes;
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(a) Sled test sequence (b) Principle of a sled test facility

Figure 1.7: Description of a sled test facility (HyG)

q SID: Side Impact Dummy. As its name suggests, it is used for side collisions;

q BioRID: Biofidelic Rear Impact Dummy. It is used for rear impact crashes;

q CRABI: Child Restraint Air Bag Interaction. This 12-month-old child is used to test
forward and rear facing car seats.

For frontal impact crashes, three types of adult Hybrid dummies have been determined
based on the characteristics of the people working in the American army:

q Hybrid III 95th Percentile Large Adult Male: it corresponds to the supposed males
larger than 95th of the male drivers;

q Hybrid III 50th Percentile Middle Adult Male: median adult male;

q Hybrid III 5th Percentile Small Adult Female: it corresponds with females, which are
larger than the supposed smallest 5th.

Table 1.8: Characteristics of the three Hybrid III Percentile dummies (weight and
size)

Hybrid III 5th Percentile Hybrid III 50th Percentile Hybrid III 95th Percentile
Weight 50 kg 77 kg 100 kg

Size 152 cm 175 cm 188 cm

All these dummies are calibrated devices which simulate the physical properties of a
human. The high tech sensors measure the injury potential during a sled test like the
velocity of impact, deceleration rates of various body parts, impact forces, etc. A modern
dummy has over 200 sensors.

These sensors are able to acquire lots of data and are regrouped into three types of
instrumentation:
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q Accelerometers (Fig. 1.8(a)): they measure the rate at which speed the body part
moves during the collision, in a particular direction. They are available for the
dummy head, chest, pelvis, legs and eventually feet;

q Load sensors (Fig. 1.8(b)): they measure the amount of force applied on differ-
ent body parts during the collision and convert this input mechanical force into an
electrical output signal (i.e. force-time curves);

q Motion sensors (Fig. 1.8(c)): they are fitted in the dummy chest to measure its
deflection during a collision.

(a) Position of the accelerometers in
the dummy head

(b) Position of the load cells in the dummy
neck

(c) Position of the motion sensors in
the dummy chest

Figure 1.8: Dummy sensors

Table 1.9 and Table 1.10 present the different sensors available for respectively HIII 5th
and HIII 50th dummies constructed by the company ”Humanetics”:

Table 1.9: Instrumentation’s description of the HIII 5th dummy

Location Description Channels
Head 3 Accelerometers in a triax pack Ax, Ay, Az (used for HIC)
Neck Six-Axis Upper Neck Load Cell Fx, Fy, Fz, Mx, My, Mz

Five-Axis Lower Neck Load Cell Fx, Fy, Fz, Mx, My
Thorax 3 Accelerometers in a triaxial array Ax, Ay, Az

Chest Displacement Potentiometer Std Equipment
Fixe-Axis Thoracic Spine Load Cell Fx, Fy, Fz, Mx, My

Lumbar Spine Fixe-Axis Lumbar Spine Load Cell Fx, Fy, Fz, Mx, My
Pelvis 3 Accelerometers or 1 Triax pack Ax, Ay, Az

A.S.I.S. Load Cell (Iliac Wings) Fx, My (per side)
Femur Uniaxial Femur Load Cell Fx (per leg)

Six-Axis Femur Load Cell Fx, Fy, Fz, Mx, My, Mz (per leg)
Knee Shear Displacement Dx (per knee)

Lower legs Biaxial Knee Clevis Load Cells Fx, Fz (per leg)
Four Axis Upper Tibia Load Cells Fx, Fz, Mx, My (per leg)
Four Axis Lower Tibia Load Cells Fx, Fz, Mx, My (per leg)

All these sensors - but also other measurements like the acceleration of the buck - are
connected to one or two mini-Data Analysis Units (mini-DAU) which are able to capture
each 16 gigabytes of data. The computers can record 20.000 data points per second for
every sensor during a full 300-millisecond-long sled test but this recording can record up
to 70.000 data points (Fig. 1.9(a)).
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Table 1.10: Instrumentation’s description of the HIII 50th dummy

Location Description Channels
Head 3 Accelerometers in a triax pack Ax, Ay, Az (used for HIC)

Up to 15 Accelerometers 5X Ax, Ay, Az Head Rotation
Neck Six-Axis Upper Neck Load Cell Fx, Fy, Fz, Mx, My, Mz

Six-Axis Lower Neck Load Cell Fx, Fy, Fz, Mx, My, Mz
Clavicle Biaxial Load Cell (left and right) Fx, Fz
Humerus Four-Axis Load Cell (left and right) Fx, Fy, Mx, My
Thorax 3 Accelerometers in a triaxial array Ax, Ay, Az (Chest Accel)

Chest Displacement Transducer Dx (Stnd. Equipment)
Four-Axis Rib/Spine Load Cells Fx, Fy, Fz, My
Fixe-Axis Thoracic Spine Load Cell Fx, Fy, Fz, Mx, My

Lumbar Spine Three-Axis Lumbar Spine Load Cell Fx, Fz, My
Pelvis 3 Accelerometers (or triax pack) Ax, Ay, Az

Submarining Load bolts Fx (3 per side)
Femur Uniaxial Femur Load Cell Fx (per leg)

or Six-Axis Upper Femur Load Cell Fx, Fy, Fz, Mx, My, Mz (per leg)
Knee Knee Displacement Dx (per knee)
Lower legs Biaxial Knee Clevis Load Cell Fz (per leg)

Four Axis Upper Tibia Load Cell Fx, Fz, Mx, My (per leg)
Four Axis Lower Tibia Load Cell Fx, Fz, Mx, My (per leg)

Ankle Fixe-Axis Load Cell Fx, Fy, Fz, Mx, My (per leg)
Toe Toe Load Cell Fz (per foot)

After measuring the injuries through the sensors, the data is converted and stored digital,
which enables the representation and vizualisation for the analysis of the biomechanical
values (Fig. 1.9(b)).

(a) Dummy connection with
mini-DAU

(b) Preparation of the measured data for the analysis

Figure 1.9: Data measurement and transformation

These measurements are analysed in order to determine the level of injury severity of the
car occupant.

1.1.3.3/ DESCRIPTION OF THE INJURIES CRITERIA FOR THE DUMMY BODY PARTS

With the help of the data coming from the GIDAS database, the German In-Depth Accident
Study, Florian Kramer [65] studied the injuries on each body part of the occupant during
a collision. The head is the body part which is the most exposed, as shown in Fig. 1.10,
with 33,4% of rugged people who had head injuries.
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Figure 1.10: Injuries frequency for each dummy part

The neck, chest and lower extremities are also very sensitive parts and are measured
during any sled test. The injuries suffered by the dummy parts are calculated directly
from the measurements coming from the dummy sensors.

Head: the injuries on the dummy head are estimated with the help of the criterion ”Head
Injury Criterion” (HIC) [39], which is the standardized maximum integral value of the head
acceleration:

HIC(t2−t1) = supt1,t2


(

1
t2 − t1

∫ t2

t1
a(t).dt

) 5
2

(t2 − t1)

 (1.3)

a =

√
a2

x + a2
y + a2

z (1.4)

The European and American legislation impose a maximal value for the HIC:

q EURO NCAP: HIC36 <1000. The length of the time interval (t2-t1) is here 36 ms;

q FMVSS NR.208 : HIC15 <700. The length of the time interval (t2-t1) is here 15 ms.

The acceleration (ax, ay, az) are measured by the three head accelerometers. The US

legislation and EURO NCAP rating take the head acceleration a3ms under consideration,
which is the maximum 3ms-average of the resulting acceleration:

a3ms =
1
∆t

∫ t2+∆t

t1
a(t).dt ∆t = 3ms (1.5)

Fig. 1.11 shows the risk’s function for the head during a frontal impact, with the limit
between reversible and irreversible damages [43]. It concludes that from HIC = 1000, the
risk to have irreversible damages is 50%.
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Figure 1.11: Repartition of the damages’ gravity for the head (HIC criterion)

Neck: the injuries on the dummy neck are estimated through the criterion ”Normalized
Neck Injury Criterion” (Ni j) [39]. This is a combination of the forces and bending moment
around a lateral axis at the transition from the head to the neck:

Ni j =
Fz

Fzc
+

MOCy

Myc
(1.6)

with

q Fz force at the transition from head to neck;

q Fzc critical force;

q MOCy total moment =My − (D.Fx) with D the distance between the force sensor axis
and the condyle axis;

q Myc critical moment.

The neck criterion is thus defined by four possible neck movements (Table 1.11):

q NT E: tension - extension (Fz positive, MOCy negative);

q NT F : tension - flexion (Fz positive, MOCy positive);

q NCE: compression - extension (Fz negative, MOCy negative);

q NCF : compression - flexion (Fz negative, MOCy positive).

Chest: for this body part, there are two criteria to consider: the acceleration and the
deflection. The chest acceleration, measured by the accelerometers only for the FMVSS

NR.208 test, may not excess the value of 60 g. The maximal value of the chest deflection
depends on the regulation and the dummy type. For the EURO NCAP rating, the Vis-
cous Criterion (VC) is also a parameter to be considered. This value corresponds to the
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Table 1.11: Description of the four neck movements using for the points calculation
in FMVSS NR.208 regulation

Tension - Extension Tension - Flexion Compression - Extension Compression - Flexion

maximum crush of the momentary product of the thorax deformation speed and thorax
deformation (Eq. 1.7):

VC = Scaling factor.
YCFC180

Defconst
.
dYCFC180

dt
(1.7)

with

q Y [m] : thoracic deformation;

q dYCFCxxx/dt [m/s] : deformation velocity, CFCxxx corresponds to the filter class applied
on the data;

q De f const [mm] : dummy constant that is depth or width of half the rib cage.

As for the dummy head, Kramer [43] proposed a representation of the chest acceleration
delimiting reversible and irreversible damages (Fig. 1.12). We can remark that the maxi-
mal value for the acceleration imposed by the FMVSS NR.208 (60 g) corresponds to 50%
of the cases to have irreversible damages during a frontal impact.

Lower extremities: the Tibia Index (TI) and tibia compression, which is directly measured
by the sensors, are used in order to evaluate the damages on the dummy legs. The TI
is only taken into account for the EURO NCAP rating and is determined by the following
formula (Eq. 2.4):

T I =

∣∣∣∣∣ MR

(MC)R

∣∣∣∣∣ +

∣∣∣∣∣ Fz

(FC)z

∣∣∣∣∣ (1.8)

MR =

√
(Mx)2 + (My)2 (1.9)

with

q Mx : bending moment [Nm] around the x-axis;

q My : bending moment [Nm] around the y-axis;

q (MC)R : critical bending moment [Nm];

q Fz : axial compression [kN] in z-direction;
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Figure 1.12: Repartition of the damages’ gravity for the chest through its accelera-
tion

q (FC)z : critical compression force [kN] in z-direction.

The high tech dummies enable the evaluation of the occupant damages during a frontal
sled test. Their measured biomechanical values are continually improved by modifying
passive safety systems such as airbags and seat belts.

1.1.3.4/ PASSIVE RESTRAINT SYSTEMS

The passive safety occurs during the accident and aims at minimizing its gravity. The
main passive safety systems for the frontal occupants are the airbags including kneebag
and the seat belts. Each restraint system is adapted according to the customer’s wishes
and legislation. For that, some parameters can be modified such as the volume of the
airbag or the type of forces applied on the dummy (constant, degressive, regressive,
switchable). An expert elicitation conducted with passive safety experts enabled to select
57 parameters on the driver side and 46 parameters on the passenger side which seem
to have a significant influence on the dummy biomechanical values. Input parameters
selected by the experts and considered in this research for studying their influence on the
biomechanical values are regrouped into 5 categories:

q Driver airbag: volume, vent holes, tethers, inflator, steering wheel and column;

q Passenger airbag: divided panel, volume, vent holes, tethers, inflator;

q Knee bag: volume, tethers, inflator;

q Seat belt: pretensioners (retractor, buckle and anchor), angle shoulder/D-ring, web-
bing on spool, height adjustment, dynamic locking tongue;

q General: dummy temperature, dummy neck constellation, pulse evaluation, car
classification.
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Sohr [49] resumed in his publication ”Benefit of adaptive occupant restraint systems” the
benefits of advanced passive technologies on the biomechanical values of the occupant.
His study is focused on the US NCAP rating requirements and based on valid occupant
crash simulations. He showed that the integration of advanced restraint systems can
reduce considerably the biomechanical criteria of the occupant. On the driver side, the
introduction of an adaptive seat belt load limiter with double pretensioning, a knee airbag
and an advanced airbag shape leads to the reduction of the biomechanical values of
more than 60% for the US NCAP rating requirements. The crash pulse also influences the
injury severity of the driver.
On the passenger side, as on the driver side, the knee airbag has a positive influence
on the head and chest and its use can also reduce the chest deflection up to 40%. The
adaptive seat belt load limitation and an adaptive airbag system load lead to the reduction
of the head criterion by 70%. The Japanese firm Takata developed a so-called ”Twinbag”,
a bag with two parallel pockets connected with a horizontal tube, which aims at reducing
the neck injury probability (Ni j) up to 30%. The American firm TRW Automotive also
developed a new generation of passenger airbag called ”Dual Contour Bag” which can
adjust its volume according to the dummy type and which reduces the Ni j values and the
chest deflection, mainly for the HIII 5th dummy. As on the driver side, the harder the crash
pulse is, the higher the biomechanical values are.
Sohr summarized the benefits of the advanced passive safety very well.

This first chapter resumed the context of the doctoral researches. Passive restraint sys-
tems (inputs) and dummy biomechanical values (outputs) have been presented and the
relationships between both inputs and outputs are studied, independently of the customer
and vehicle.

1.2/ RESEARCH OBJECTIVES

These researches are based on an industrial demand coming from a passive safety sup-
plier.

Currently each passive restraint system (airbag, seat belt) are developed for each cus-
tomer independently of one another, and the relationship between restraint system pa-
rameters and results have not yet been studied. After taking the customer demands into
account (type of restraint system, presence or not of a kneebag, cost, etc.), the engineers
develop the desired passive technologies according to the legislation and/or ratings. The
biomechanical values of the dummy are measured and the results have been analysed.
The sled tests are iterated until the results are either under the legal limits as well as the
customer’s limits or sufficient for getting the maximal rating score. These development
steps are resumed in Fig. 1.13(a).

These researches aim at reducing the number of repeated sled tests through the op-
timisation of the passive safety configuration, and in particular through the discovering
of relationships between the inputs parameters of the restraint systems and the outputs
(biomechnical values). For that, data coming from the existing sled tests are studied
independently of the vehicle and customer. A database containing all relevant data
(airbag’s parameters, seat belt parameters, dummy position) has been constructed for
each dummy and legislation/ratings, thereby 5 databases have been created for each
occupant side:
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q EURO NCAP;

q FMVSS NR.208 with a belted HIII 5th dummy;

q FMVSS NR.208 with a belted HIII 50th dummy;

q FMVSS NR.208 with an unbelted HIII 5th dummy;

q FMVSS NR.208 with an unbelted HIII 50th dummy.

The researches are focused on the discovering of pattern / muster between the restraint
system parameters and the dummy biomechanical values of each dummy part. The found
pattern will help create an algorithm which will work before running a sled test, present
the parameter’s influence and finally propose a new solution based on the maximisation
of the score. The engineers will thus be able to adapt the sled test’s configuration before
running it by learning on the already sled tests. It help reach better results while reduce
the number of sled tests (which involves the reduction of time and cost). A representation
of the new process including the discovered pattern / musters is proposed in Fig. 1.13(b).

In order to find such a model, a previous work on the crash data should be carried out.
Firstly, in comparison with the researches on the road safety, it seems to be difficult to
obtain a large among of data because of the lack of information for earlier sled tests. This
reduced number of data causes a modification of the first thinking and produces some
difficulties to work with methods specifying a large database. Moreover, once the sled
tests have been selected, the first task will consist in preparing it, i.e. in researching
the missing values or in replacing it principally. A big work should be thus done first
on the data preparation and conversion in order to have anyway a enough big database
containing clear information. The aim is here to obtain any useful information out of them.
After preparing and cleaning the database, two tasks have to be differentiated: the first
one will be focused on the dummy biomechanical values, i.e. the outputs. A discretization
of the data in order to gather it into classes (clustering methods) could eventually help
define the level of injury severity that could be then useful for the second step. The next
task is focused on the inputs of the model, i.e. the parameters of the restraints systems
(airbags, knee bag, seat belt), especially on the links between the inputs and the outputs.
Because of the gathering of the outputs into classes, classification methods seem to
be appropriate. The created model will help the engineers understand the relationships
between some parameters and the test results. They can thus take into account these
links before choosing / modifying a parameter. This learning on previous data will increase
the understanding of the restraint systems and their influence on the car occupant.



20 CHAPTER 1. INTRODUCTION AND RESEARCH OBJECTIVES

(a) Actual process (b) Future process

Figure 1.13: Actual and future processes for the development of passive systems



2
STATE-OF-THE-ART

In this chapter, a literature review focused on automobile crashes is presented. It aims at
understanding the current state-of-the-art for crash data and defining the best appropriate
methods/algorithms for the database used in this doctoral thesis.

2.1/ METHODS FOR CRASH DATA ANALYSIS

2.1.1/ CURRENT RESEARCHES IN AUTOMOBILE CRASHES

Many researches are focused on the prediction of collisions or of injury severity according
to external factors (lighting, seat belt wearing, etc.). The common used techniques are
data mining methods which help find out relationships between factors and crash severity.

Data mining technology can be used to predict and describe the driver’s behaviour in
order to understand and reduce the injury severity during an automobile crash. Many
studies are being conducted in order to evaluate and to control the injury severity with the
help of data mining methods. The most popular methods in this domain are the decisions
trees and the neural networks. Fayyad et al. [13] enumerated some data mining methods:

1. Decision trees and rules: the decision tree is a binary tree in which a parameter is
compared to some constants at each node;

2. Non linear regression and classification methods: the classification method uses
a set of parameters to characterise each object. They regroup the techniques for
prediction like neural networks or nearest-neighbour classifiers;

3. Example-based methods: it is a method which consists of using representative
examples from the database to approximate a model;

4. Probabilistic graphical dependency models: the probabilistic model uses a graph
which denotes the conditional dependence structure between random variables;

5. Relational learning models: also called ”inductive logic programming”, it uses the
more flexible pattern language of logic ;

6. rough set theory: this theory is based on the study of the formal approximation of a
set which gives the lower and upper approximations of the original set.

21
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7. Theory of association rules : it allows the discovery of correlations and patterns in
a database;

8. Clustering: grouping of objects in a same group (called cluster) which present more
similarities between them rather than with others objects belonging to another clus-
ter.

This literature review is separated according to the data mining techniques: the unsuper-
vised learning (grouping of set objects and discovery of relationships between objects)
through the clustering and the supervised learning (grouping of predefined classes and
classification of new object affiliated to these classes) through the data classification.
Both of them can be here applied on the input’s parameters (classification) and on the
outputs (clustering).

2.1.1.1/ CLUSTERING METHODS

The clustering is one of the data mining techniques that aims at describing and finding
similarities between data. This technique can be applied on the dummy biomechanical
values (outputs) in order to form groups of values (clusters) which present some similari-
ties and then to classify the input’s parameters.

Mohamed et al. [67] applied two partitioning clustering methods (i.e. which divide the
data into k clusters) on data from crashes involving pedestrian and vehicle. The data has
been collected in New York City, U.S.A. and in Montreal, Canada. For the first city, they
applied the latent class analysis as unsupervised method used for multivariate categorical
data. Different numbers of clusters from one to eleven have been tested and the BIC, AIC
and CAIC criteria, combined with the entropy calculation and the R-squared criterion,
helped at determining the optimal number of clusters. For each discovered cluster, the
distribution of the variable allows a better analysis of the data set and help at finding the
variables influencing the most the injury severity of the pedestrian. The authors preferred
the k-means algorithm, an other unsupervised method, on the Montreal data set because
the latent class algorithm regrouped 90% of the data in the first two clusters, regardless
of the selected clusters number. Both methods are conclusive and provide information on
the link between the pedestrian injury severity and the factors that caused the collision
(traffic, lighting conditions, environmental conditions). Throughout this publication, the
authors putted forward the importance of the data set segmentation and the analysis of
contributing factors.

Furthermore, Geurts et al. [28] analysed crash data from the National Institute of Statis-
tics in Belgium to discover patterns. They divided the traffic accident data into clusters
by using a latent class clustering, which is in this case more effective as the Poisson
distribution. Each cluster gives a indication of the accident risk factor. The profile of the
clusters of traffic roads is conduced with the association algorithm in order to discover
the most interesting patterns. Wherewith, the authors defined the roads circumstances
which mainly involve an accident on the Belgian roads and their frequency through the
clusters. The comparison between the clusters helped at finding the frequent patterns
and at improving the knowledge on the accident characteristics.

Magidson et al. [22] have also studied particularly this type of clustering and compared it
to the k-means method, by demonstrating the key and weak points of the latent class clus-
tering. They used a simulated data favourable to k-means method. They demonstrated
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that when the true group membership is known, it outperforms the k-means technique.
Additionally, the latent class clustering presents more advantages in comparison with the
k-means methods: it allows a better determination of the number of clusters by using
diverse diagnostics (such as the BIC statistic) and does not need to standardise the vari-
ables. Without the variable standardization, the variance between the clusters can differ
and the scale difference produces clusters with diverse variation. The clusters having the
most variation will automatically dominate the others.

Finally, Babuska et al. [24] focused their study on the Gustafson-Kessel (GK) clustering
algorithm and on its fuzzy covariance matrix (see Chapter 2.2 Section 2.2.2.3). They
described two techniques for improving the calculation of the fuzzy covariance matrix
of the GK algorithm by using a small number of data. The authors focused their theory
on the singularity of the covariance matrix and overfitting problem. If the covariance
matrix is singular (i.e. an eigenvalue which defines the shape of the cluster is equal
to zero or the ratio between the minimal and maximal eigenvalue is very large), the
inverse of the covariance matrix Fi defined in Eq. 2.30 cannot be calculated. In this case,
the algorithm is sometimes not able to compute a correct partitioning of the data. The
first proposed technique which should avoid this problem is focused on the limitation of
the ratio between the maximal and minimal eigenvalues of the covariance matrix. The
second technique aims at avoiding the problem of overfitting which occurs when the
number of data in a cluster is too low. Additionally to the limitations of the ratio between
the maximal and minimal eigenvalues, another method is proposed by the authors: the
add of a scaled identity matrix to the covariance matrix. Both modifications have been
included in the GK algorithm and applied on chemist data (enzymes) with of the aim of
improving GK performance for small data sets. For the crash data, the GK algorithm
presents an advantage in comparison with other clustering methods: the adaptation of
the distance between a point and the clusters centre for the creation of the clusters does
not restrict the clusters to a circular shape. The implementation of the two above men-
tioned modifications should not be necessary for the collected data for this doctoral thesis.

Independently of the chosen clustering method, the clusters have to be validated. Many
validity indexes have been developed during the last years. Xie et al. [9] benchmarked
some current validity indexes used with fuzzy algorithms, such as the Dunn and Davies-
Bouldin validity criteria. The last one presents the particularity that the distance used
for calculating the compactness and the separation of the clusters can be adapted to an
Euclidean or Mahalanobis distance. The performance of four validity indices have been
evaluated by Maulik et al. [23]: the Davies-Bouldin, the Dunn’s, the Calinski Harabasz
Indices and the Index I. For that, three clustering methods (k-means, single link and
simulated annealing) have been applied on artificial data sets and for each method, the
four validity indices have been tested. This experimentation demonstrated that the Index
I indicated the correct number of clusters, independently of the clustering technique but
one of its disadvantage is the use of the Euclidean distance to form the clusters, what
influences the clusters shape. The DBI provided also good results even if the number of
clusters was not always optimal. Its advantage is its adaptability to the clustering method
through the distance’s calculation (Euclidean or Mahalanobis distance).

The clustering can be applied on the dummy biomechanical values, especially the GK
algorithm which is able to detect different cluster’s shapes. After the output’s clustering,
a classification method could help find relationships between the restraint system param-
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eters (inputs) and the occupant damage (outputs).

2.1.1.2/ CLASSIFICATION METHODS

In the recent years, the classification methods became one of the most commonly su-
pervised learning methods applied on traffic accident data. They allow the extraction of
knowledge on factors responsible of severe injuries.

In point of fact, Chong, Abraham and Paprzycki [30] compared two classification methods,
the artificial neural networks and the decision trees, concerning their ability to predict the
drivers’ injury severity in head-on front impact point collisions. The data set contains
reports of 6,4 million police accidents in the U.S.A. and includes information about the
accidents happened between 1995 and 200 (e.g. the year, the vehicle model and the
travel speed). The experiments showed the most important factors in fatal injury: driver’s
seat belt usage, light conditions on the road and alcohol consumption of the driver. They
also demonstrated that in this very severe case, the decision tree outperforms the artificial
neural networks in accuracy, independently of the injury class. The difference between
the neural network and the decision trees can reach until 14% in the case of fatal injury.
The performance of the decision trees is confirmed in another publication [34].

In fact, in this study [34], they presented some models using four machine-learning ap-
proaches: neural network, decision trees, hybrid model involving decision trees and neu-
ral network and support vector machines. The aim of this comparison is to find the best
model that classifies the injury severity (separated in 5 categories) more accurately. this
study is focused on the same data set as in their precedent publication [30]. After trying
all 4 methods, the authors concluded that the decision trees outperforms the neural net-
work for the 5 injury classes and shows similar results as the hybrid model in accuracy,
what confirms the performance of the decision trees with crash data.

As the decision trees, the rough set theory is also frequently used in research to identify
factors and to predict the injury severity during a crash. Tian, Yang and Zhang [53] applied
two data mining methods with the aim of analysing road traffic accidents on crash data
containing the factors responsible of an accident as physiological factors (e.g. fatigue,
alcohol, etc.) or mental factors (e.g. driving habits, mental, etc.). The first method is the
rough set theory which allows an approximation of a set through an upper and a lower
approximation sets. The second one is the theory of association rules which identifies
relationships between variables. By using both methods together, they define a standard
model set for analysing road traffic accidents. This study shows the advantages of the
data mining when the amount of data is relatively important and explained a simple way
to identify the key factors in order to prevent and reduce the road traffic accidents.

Another data mining used with crash data is the Principle Component Analysis (PCA)
method. It helps find relationships between variables. This technique consists of trans-
forming a number of correlated variables into a number of uncorrelated variables called
principal components in order to reduce the number of variables. Hilmann [46] used this
method in his thesis on the structural optimization in the automobile passive safety. Af-
ter applying the PCA to reduce the number of variables and to find some relationships
between the variables, he used the decision trees, especially the CART, to identify the
design variables having an influence on the crash car performance. The authors present
this method as containing various advantages over the others, such as the little data
preparation and the handling of both continuous and categorical data. The decision trees
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are also simple to understand and interpret.

More recently, in 2013, Chang and Chien [62] were focused on the non-parametric regres-
sion models in order to discover the factors that influence the driver injury severity during
a crash. The study explores the truck accidents data collected in the Taiwan area for
2005 and 2006: the data base regroups 705 cases of truck collisions. The data contains
information about the injury severity level of each occupant, the occupant himself (age,
gender, degree of sobriety), the time of the accident and the type of vehicle involved in
the collision. All these data produced a database of 1620 observations (after the deletion
of missing data). Two types of non-parametric tree-based methods are practicable: the
classification and the regression trees (depending of the target value). In this publication,
the driver injury severity is separated into 3 categories (no injury, injury and fatal), and for
this reason the classification tree has been developed (categorical target value). The Gini
Index criterion has been chosen to evaluate the node impurity and to build the decision
tree. The analysis of the classification tree showed that the main factors influencing the
driver injury severity are the drinking-driving, the seatbelt use and the vehicle type.
Few years ago, Chang and Wang [38] already applied non-parametric classification tree
techniques on traffic injury severity data. The data was supplied by the Taiwan Ministry
of Transportation and Communications and regrouped the same information type as in
their publication in 2013 [62]. They concluded that the vehicle type is the most important
variable associated with an accident.

The next publication confirms the popularity and the potential of the Classification and
Regression Trees (CART) in the road safety field. According to Lopez et al. [66], the
CART combined with the Gini Index is the most commonly applied algorithm with traffic
accident data. They first preferred to test three decision trees methods (CART, ID3 and
C4.5) to compare their performance. The database contains information about the level
of occupant injury severity, the factors that occur (factors based on the original dataset
but also on others studies) such as the context of the collision (lighting) and the driver
characteristics (age and gender). The data has been collected during 7 years (2003-
2009) in Spain and is focused on the accidents happened on two-lane rural highways.
Even if the CART showed higher values in the precision and specified parameters, they
did not want to privilege a method to the other because the C4.5 algorithm also produced
very good results (only the ID3 presented worst results). The C4.5 algorithm seems to be
more comfortable for studying the influence of a specific category on the injury severity
because of its non-binary structure. The CART becomes more familiar for an overall
study.

In a similar publication, Abellan, Lopez and al. [60] studied the decision trees, especially
the extraction of their rules, in order to extract more knowledge from data. The selected
data is the same as in the precedent publication of Lopez [66]. The standard decision
tree is based on a selected split criterion which allows the separation of a non terminal
node into branches. The structure is formed with the help of decision rules, defined as
”I f AthenB”. A represents one of the variables (here the factors that occur, the driver
characteristics) and B gives the consequences of the accident (here the occupant injury
severity). Each rule begins at the root node of the tree, and each variable that intervenes
in the tree division engenders an ”I f ”. The rule ends in terminal nodes with ”Then” and
presents the results. Independent of the number of variables, only one decision tree is
formed. The authors preferred to compile a method which develops a decision tree for
each variable in order to extract more knowledge. Two split criteria have been applied:
the GIx based on the Gini Index (see Eq. 2.41) and the Information Gain Ratio based on
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Shannon’s entropy. Both criteria enable to select the attributes (or variables) which are
used for building the decision tree and which are placed in a node and branching. They
developed a method, called ”Information Root Node Variation”, which compiles different
trees obtained by varying the root node. Each variable is taken as root and produces
one decision tree, from which a rules set is extracted. Only rules with the most severe
consequences have been considered in order to extract much more knowledge about
the factors causing an accident. They extracted more than 70 significant validated rules
and concluded thanks to them, the importance of the environment conditions (e.g. safety
barriers, visibility, etc.) in the occupant injury severity.

Moreover, Iragavarapu et al. [76] and Kashani et al. [51] also suggested the same ap-
proach as the above authors (CART method combined with the Gini Index applied on
accident data). The originality of the publication of Kashani, Shariat-Mohaymany and
Ranjbari [51] is the application of the Variable Importance Measure (VIM) to discover the
most important variable causing injury severity. They showed that on the rural roads in
Iran, the non wearing of the seat belt causes severe injuries (VIM equal to 0,8214), very
far away from the type of roads, improper overtaking or speeding (VIM equal to 0,1484).

As the literature review shows, lots of authors analysed the relationships between injury
severity and risks factors for automobiles accidents by using non-parametric modelling
techniques, especially the CART. But no one was focused on the relationships between
occupant injury severity and passive safety systems. The classification tree combined
with the Gini Index can be considered in this thesis to discover the main parameters of
the restraints systems that influence the occupant injury severity (regrouped into clusters,
i.e. the outputs are categorical values).

2.1.2/ SYNTHESIS OF THE RESEARCH BIBLIOGRAPHY

As stated in the literature review, many authors focused their study on the injury severity
during an automobile crash. With the aim of creating an overview of the used methods,
Table 2.1 classifies the common approaches.

In the automotive field, both supervised and unsupervised learning methods have been
used. The majority of the publications are focused on factors influencing the severity
of the occupant injuries. It aims at identifying these key factors in order to understand,
reduce and predict the injury severity.

According to Table 2.1, the decision trees method seems to have a good reputation for
the analysis of crash data, not only because of its performance but also because of its
ease of use. This method can be applied on the crash data collected for this doctoral
thesis with the restraint systems parameters as inputs and the dummy biomechanical
values as outputs. Because of the variation between two similar sled tests (due to foreign
parameters), it seems to be more suitable to clusters the results before applying the CART
method. It will help discover the influence of each input on the dummy injury severity.

2.2/ THE KDD PROCESS AND DATA MINING METHODS

After resuming the literature review for data analysis, especially automobile crash data,
a description of the KDD process and data mining methods including classification and
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Table 2.1: Synthesis of the supervised and unsupervised methods used in the
literature

Methods Authors’ references
Supervised learning methods

Decision trees (included CART) [30, 34, 46, 51, 62, 38, 66, 60, 76]
Artificial neural networks [30, 34]
Hybrid model (Artificial neural networks and decision trees) [34]
Rough set theory [53]
Theory of association rules [53]
Principle component analysis [46]
Gini index validity [62, 66, 60, 76, 51]
Shannon’s entropy [60]

Unsupervised learning methods
K-means methods [22, 67]
Latent class clustering [28, 67, 22]
Gustafson-Kessel algorithm [24]
Dunn index validity [9, 23]
Davies-Bouldin index validity [9, 23]
Calinski Harabasz indices validity [23]
Index I [23]

clustering is conduced in this chapter.

2.2.1/ DESCRIPTION OF THE KDD PROCESS

”Knowledge Discovery in Databases” (KDD) is the process of discovering useful and un-
derstandable patterns and knowledge from a collection of data. The process’s goal is
the extraction of knowledge from data in large databases, using data mining methods
(algorithms). The KDD process is commonly defined with the following steps (Fig. 2.1):

Figure 2.1: Overview of the KDD process’s steps [14]

1. Selection: this first step aims at creating a data set using for detecting pattern;

2. Pre-Processing: the data is cleaned (noise removal or missing data replacement)
and completed from different sources. It is also defined how many samples are
needed;

3. Transformation: if necessary, the attributes are discretised and the data mining al-
gorithms are chosen;
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4. Data mining: once the method is selected, the search for patterns through classifi-
cation and clustering can begin;

5. Interpretation / Evaluation : this last step consists of the interpretation of mined
patterns, of the consolidation of discovered knowledge and of the evaluation of the
model’s limits.

Data mining, one of the most difficult steps of the KDD process, is generally focused on
large databases but works also very well with a reduced amount of data. It uses algo-
rithms to segment the data, to extract patterns or trends and to evaluate the probability of
future events from data. Leung et al. [58] defined the data mining as

”[. . . ] the process of extracting hidden and useful patterns and information
from data”

Data mining involves six common tasks:

q Summarisation of the data: it helps have a smaller data set which gives a general
overview of the data through the abstraction of the whole data set;

q Classification: this task aims at determining the class of a new data based on its
attributes. The initial data set is given as training set which is divided into two or
more classes according to the data attributes;

q Association: it helps discover relationships among data which make them statisti-
cally dependent, and establish so-called ”association rules” defining the together-
ness between data;

q Clustering: it identifies classes, also called clusters, for a data set whose classes
are, unlike the classification, unknown. The data in a class presents similarities in
some ways with other data from this class. This task aims at discover sensitivities,
in particular which parameters have a significant influence on the outputs;

q Regression: as the association, it aims at estimating relationships among data.
Here, it helps discover how a dependent variable is related to independent variables
and predict future output based on given inputs;

q Anomaly detection: identification of unusual data records that might be interesting
or data errors that require further investigation.

The data mining is a complete method that need to be executed for finding relationships
between variables.

In the field of machine learning, the automatic learning can be summarised in three steps:

1. Observations of a phenomenon;

2. Construction of a model based on this phenomenon;

3. Predictions and analysing of this phenomenon with the help of the model.

The machine learning regroups two types of methods: supervised and supervised learn-
ing methods. In supervised learning, the dataset used by the machine learning algorithm
to get the desired outputs is known whereas unsupervised learning systems do not pro-
vide any datasets for predicting the outputs. It conduces to a clustering of the data.
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2.2.2/ UNSUPERVISED LEARNING THROUGH THE CLUSTERING

In unsupervised learning, there are no explicit outputs values associated with each input.
The unsupervised methods have to work with the observed inputs xi, which are often
supposed in this manuscript to be independent samples, i.e. they determine the values
of other variables. One aim of the unsupervised learning is to regroup the data which
present some similarities into clusters. The unsupervised classification, also called clus-
tering, is the most common task for the unsupervised learning: the algorithm regroups
the data with similar attributes according to a split criterion. For the clusters’ validation,
some algorithms enables their evaluation, such as the Davies-Bouldin Index method.

Generalities on the clustering

The clustering consists of the grouping of objects which present some similarities. This
task is a main part of the data mining analysis and is used in many fields such as machine
learning or pattern recognition. The first step of this thesis consists of the clustering of
the outputs data ( dummy biomechanical values) in order to analyse the parameters’
influence of them. There are two ways to cluster the data:

q Hard clustering: an object belongs definitively to only one cluster;

q Soft clustering: an object can belong to different clusters and has a probability
distribution over its cluster.

The term of cluster is not precisely defined [19], what engenders the availability of many
clustering algorithms. Jain, Flynn and Murty [18] proposed to classify the clustering meth-
ods into fours groups:

q Hierarchical clustering methods:

This unsupervised learning method aims at building a hierarchy of clusters. It gen-
erates clusters based on the distance between the objects and the cluster’s centres.
A cluster is defined by the maximum distance needed to connect its parts. It does
not provide a single partitioning of the data set but a hierarchy of clusters. The
two types of the hierarchical clustering (bottom-up and top-down approaches) are
represented in Fig. 2.2.

q Density-based clustering :

The key point of these algorithms is to create clusters based on density functions.
Their main advantage is the arbitrary creation of shaped clusters.

q Grid-based clustering :

These types of algorithms are mainly proposed for spatial data mining. They quan-
tise the search space into finite number of cells.

q Partitioning clustering methods:

Also called flat methods, the partitioning methods decompose a set of data into dis-
joint clusters. According to Adriano Cruz [64], the most used partitioning methods
are:
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Figure 2.2: Graphical representation of the hierarchical clustering

? K-means: this method is based on the Euclidean distance among objects of
the cluster. Each object belongs to a single cluster which its center is the mean
value of the objects included in the cluster;

? Fuzzy c-means: this method is a fuzzy version of the k-means. The term fuzzy
refers to something not clear, not distinct. In the field of Artificial Intelligence,
the term fuzzy-set is introduced on a domain and defined by a membership
function which mapped the domain to the unit interval [0; 1]. One object can
be classed into more than one cluster. Its degree of membership gives an
information about its belonging to the cluster relative to the other clusters. This
method also uses the Euclidean distance in order to calculate the distance
between the ith data and jth cluster’s centre;

? Possibility clustering: this method works with the help of the data membership
degrees in the clusters;

? Gustafson-Kessel algorithm: this method is similar to the fuzzy c-means but
uses the Mahalanobis distance, which is the general case of the Euclidean
distance. It allows the formation of ellipsoidal clusters;

? Gath-Geva algorithm: this method is also similar to the fuzzy c-means but uses
the Gauss distance;

? K-medoids: this algorithm uses the most centrally object (medoid) as the ref-
erence point instead the mean value.

The Gustafson-Kessel algorithm seems to be the most appropriated algorithm for the
biomechanical values’ clustering because, after a first analysis, it could be possible that
for some dummy parts, the spherical clusters are inappropriate, i.e. the algorithm has
to be able to recognize ellipsoidal forms. The clustering of the dummy’s biomechani-
cal values should help study the influence of the restraint systems parameters (airbag,
kneebag, seat belt and dummy position) on it. Sled tests included in the database have
been studied, i.e. all the parameters of the restraint systems (see section 3.1.1) and the
dummy biomechanical values (outputs) are known. After the creation of the clusters for
each dummy part, each output can be gathered into one of the discovered clusters. The
study of the sled tests parameters will enable to uncover if their modifications have an
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influence on the output’s cluster. If the output stays in the same cluster, it means that the
modification affects the injury values in the corresponding dummy region only minor.

2.2.2.1/ THE GUSTAFSON-KESSEL ALGORITHM AS UNSUPERVISED LEARNING

The Gustafson-Kessel (GK) algorithm is a powerful clustering technique with a large num-
ber of applications in various domains (e.g. image processing, classification, system iden-
tification). Its main feature is the local adaptation of the distance metric to the cluster’s
shape by estimating the cluster covariance matrix and by using the Mahalanobis distance.
It is applied as clustering method on the dummy biomechanical values.

It associates a point and a matrix to each cluster, which represent the cluster centre and
its covariance respectively. Whereas the original fuzzy c-means method makes the im-
plicit hypothesis that clusters are spherical (through the Euclidean distance [47]), the GK
algorithm uses an adaptive distance norm, the Mahalanobis distance, to compute the dis-
tances and thus does not impose any conditions on the cluster’s form. The Mahalanobis
distance is the general case of the Euclidean distance.

2.2.2.2/ FUZZY CLUSTERING

Fuzzy c-means (FCM) is one of the most known clustering algorithms [3]. This
method,developed by Dunn in 1973 and improved by Bezdek in 1981, is frequently used
in pattern recognition.

The fuzzy clustering aims at subdividing a data set Y into c subsets (clusters) which
are pairwise disjoint, all non empty and reproduce Y via union. It produces fuzzy c-
partitions of Y which characterize the membership of each point in every cluster through
a membership function. Memberships close to 1 correspond to a high degree of similarity
between the sample and a cluster while memberships close to zero imply little similarity
between the point and this cluster [1]. Obviously, the sum of the memberships for each
point must be equal to 1.

The algorithm works by assigning membership to each data point to a cluster through the
distance calculation between the point and the cluster’s centre. More the data is near to
the cluster’s centre, more is its membership high to this cluster.

This membership calculation can be mathematically modellised as follows [20]:

Let Y = {y1, y2, ..., yN} be a sample of N observations in Rn (n-dimensional Euclidean
space), yk is the k-feature vector and yk j the jth feature of yk. The set of N observations
can be represented by a (n × N) matrix:

Y =



y11 y12 ... y1N

y21 y22 ... y2N

. . ... .

. . ... .

. . ... .

yn1 yn2 ... ynN


(2.1)

In the pattern-recognition terminology, the columns of this matrix are called patterns or
objects, the rows are called features or attributes, and Y is called pattern or data matrix.
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If c ∈ N, 2 ≤ c < n, a conventional c-partition is defined by ( Y1,Y2, ...,Yc) subsets (or
clusters) of Y which verify:

Yi , ∅ 1 ≤ i ≤ c (2.2)

Yi ∩ Y j = ∅ i , j (2.3)

∪c
i=1 Yi = Y (2.4)

∅ represents the empty stand. The membership function of the sample can be yet mod-
ellised as follows:

Considering U a real (c×N) matrix with U = [uik]c×N . U is the matrix representation of the
partition Yi in Eq. 2.2 with:

ui(yk) = uik =

{
1 yk ∈ Yi

0 otherwise

}
(2.5)

c∑
i=1

uik = 1 f or 1 ≤ k ≤ N (2.6)

N∑
k=1

uik > 0 f or 1 ≤ i ≤ c (2.7)

The space of possible hard partition matrices for Y, called hard partitioning space [3], is
thus defined as following:

Mhc =

U ∈ Rc×N |uik ∈ {0, 1}∀i, k
c∑

i=1

uik = 1,∀k 0 <
N∑

k=1

uik,∀i

 (2.8)

U is called a hard c-partition of Y. Bezdek et al. [3] refer to U as a fuzzy c-partition of Y
when the elements of U are numbers in the interval [0;1] which continue to satisfy Eq. 2.6
and Eq. 2.7. In Eq. 2.8, Eq. 2.5 is replaced by:

uik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N (2.9)

and thus the corresponding fuzzy partitioning space for Y is yet defined as:

M f c =

U ∈ Rc×N |uik ∈ [0, 1],∀i, k
c∑

i=1

uik = 1,∀k 0 <
N∑

k=1

uik,∀i

 (2.10)

It can be concluded that Mhc ⊂ M f c (hc means hard clustering and f c fuzzy clustering),
i.e. the fuzzy clustering algorithms can obtain hard c-partitions.

Several clustering criteria have been proposed for identifying the optimal fuzzy c-partitions
in Y. The most popular and well studied method is associated with the generalized least-
square errors functional, also known as the objective function of the fuzzy c-means:
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Jm(Y; U, v) =

N∑
k=1

c∑
i=1

(uik)m · d2
ik (2.11)

=

N∑
k=1

c∑
i=1

(uik)m · ‖yk − vi‖
2
A (2.12)

=

N∑
k=1

c∑
i=1

(uik)m · (yk − vi)T · A · (yk − vi) (2.13)

with:

q Y = {y1, y2, ..., yN} ⊂ Rn = the data;

q c number of clusters in Y; 2 ≤ c < n;

q m ∈ [1,∞[: weighting exponent;

q U = [uik]c×N ∈ M f c : fuzzy c-partition of Y;

q v = [v1, v2, ..., vc] : vector of centres, vi ∈ Rn;

q vi = (vi1, vi2, ..., vin)T : centre of the cluster i;

q ‖. . . ‖A : induced A-norm on Rn with A, called norm-inducing matrix, a positive-
definite (n × n) matrix.

q d2
ik = ‖yk − vi‖

2
A : squared distance between an observation yk and the cluster’s

centre vi computed in the A-norm (or matrix-norm)

In particularly, each tern of Eq. 2.11 can be defined as follows:

q d2
ik = squared A-distance from point yk to centre of mass vi;

q (uik)m · d2
ik = squared A-error incurred by representing yk by vi weighted by the mem-

bership of yk in cluster i;

q
∑c

i=1(uik)m · d2
ik = squared A-error due to yk replacement by all centres {vi};

q
∑N

k=1
∑c

i=1(uik)m · d2
ik = overall weighted sum of generalized A-errors due to the re-

placement of Y by v;

The parameter m controls the relative weights placed on each of the squared errors d2
ik. If

m = 1, Jm minimizes only for hard c-partitions. Thus vi corresponds to the geometric cen-
troid of the corresponding Yi cluster. According to authors, no theoretical or computational
evidence distinguishes an optimal m. Each choice for m defines one FCM algorithm when
all other parameters are fixed. The range of useful values for m seems to be between 1
and 30 and for most studies, 1, 5 ≤ m ≤ 3 gives good results.

The parameter A of Jm controls the shape that optimal cluster can assume in Rn. Because
every norm on Rn is defined as:
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< x, y >A= xT · A · y (2.14)

there are infinitely many A-norms available in Eq. 2.11, however in practice only a few of
them are used. The FCM allows a choice of three norms [4]:

A = I ⇒ dik ∼ Euclidean norm

A = D−1
y ⇒ dik ∼ Diagonal norm

A = C−1
y ⇒ dik ∼ Mahalanobis norm

Each norm is induced by a specific weight matrix.

Let’s define:

cy =
1
N

N∑
k=1

yk (2.15)

Cy =

N∑
k=1

(yk − cy) · (yk − cy)T (2.16)

respectively the sample mean (Eq. 2.15) and the sample covariance matrix (Eq. 2.16) of
the data set Y.

When A = I, Jm identifies spherical clusters (fuzzy c-means algorithm) and the distance
d2

ik corresponds to the Euclidean distance. When A , I, the clusters are essentially
ellipsoidal (Mahalanobis distance), as represented in Fig. 2.3:

Figure 2.3: Representation of c-means clustering through Euclidean and Maha-
lanobis distances

Optimal fuzzy clusterings of Y are defined as pairs (U, v) that minimize Jm locally. For
m > 1, if yk , vi for all i and k, (U, v) may be locally optimal for Jm if :
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vi =

∑N
k=1(uik)m · yk∑N

k=1(uik)m
1 ≤ i ≤ c (2.17)

uik =

 c∑
j=1

(
dik

d jk
)

2
m−1


−1

1 ≤ k ≤ N 1 ≤ i ≤ c (2.18)

with dik = ‖yk − vi‖A

The FCM algorithm is based on the assumption that the clusters are spherical shaped.
In real problems, the clusters are of different shapes and with different orientations in the
data space. Therefore, Gustafson and Kessel (1979) extended the FCM algorithm by em-
ploying an adaptive distance norm for each cluster in order to detect different geometrical
shapes in data sets.

2.2.2.3/ THE GK ALGORITHM

The target applications of the Gustafson-Kessel algorithm are similar to those of the fuzzy
c-means algorithm. Because of the adaptation of the distance function (Mahalanobis) to
the clusters, the results for non-spherical clusters correspond better to a intuitive partition
(Fig. 2.3).

Each cluster has its own norm-inducing matrix Ai, which yields the following norm:

d2
ikAi

= ‖yk − vi‖
2
Ai

= (yk − vi)T · Ai · (yk − vi) with 1 ≤ k ≤ N 1 ≤ i ≤ c (2.19)

The matrices Ai are used as optimization variables in the c-means functional, allowing
each cluster to adapt the distance norm to the local topological structure of the data.
Let A denote a c-tuple of the norm-inducing matrices corresponding to the clusters A =

(A1, A2, ..., Ac). The objective functional J (Eq. 2.11) of the GK algorithm is defined by:

J(Y; U, v, Ai) =

N∑
k=1

c∑
i=1

(uik)m · d2
ikAi

(2.20)

To minimize this objective function J with respect to Ai, Ai must be constrained. It means
that the determinant of Ai has to be constrained, so that:

|Ai| = det(Ai) = %i %i > 0, ∀i (2.21)

The expression of Ai is obtained by using the Lagrange multiplier method. and the modifi-
cation of the parameters %i allows the modification of the cluster’s shape while its volume
remains constraint.

In order to take the constraints of constant cluster volumes, c Lagrange multipliers have
to be introduced, such that the objective function (Eq. 2.20) results in :

J =

N∑
k=1

c∑
i=1

(uik)m · d2
ikAi
−

c∑
i=1

λi · (det(Ai)) λi, i ∈ N≤c (2.22)
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Taking the derivative of J with respect to the matrix Ai, we go belong the restriction to sym-
metric, positive definite matrices with determinant equal to 1, and instead we consider all
regular matrices of Rp×p. The partial derivatives with respect to all matrix elements can be
then calculated. With the assumption that the set of irreversible matrices is differentiable
in all directions under the continuous mapping, we have:

5 yT
k · Ai · yk = yk · yT

k and 5 det(Ai) = det(Ai) · A−1
i (2.23)

For minimizing the objective function, the gradient should be equal to 0:

0 = 5J = (
N∑

k=1

c∑
i=1

(uik)m · (yk − vi) · (yk − vi)T ) − λi · det(Ai) · A−1
i (2.24)

The derivatives with respect to the Lagrange multipliers lead to the constraint det(Ai) = 1
for i ∈ N≤c. With the notation S i =

∑N
k=1

∑c
i=1(uik)m · (yk − vi) · (yk − vi)T , Eq. 2.24 can be yet

written:

0 = S i − λi · A−1
i (2.25)

⇔ S i · Ai = λi · I (because of the reversibility of Ai) (2.26)
⇔ det(S i · Ai) = λ

p
i (2.27)

⇔ λi =
p
√

det(S i) with det(Ai) = 1 (2.28)

By replacing the Lagrange multiplier λi in Eq. 2.25, we obtain :

Ai =
p
√

det(S i) · S −1
i (2.29)

It remains to be shown that Ai also satisfies the constraint of a positive definite and sym-
metric matrix. For that, we assume that there are p linearly independent vectors ξ ∈ Rp

in the data set. Then, the matrices ξξT are symmetric and positive semi-definite and
also their weighted sum and consequently Ai is symmetric and positive definite. The
irreversibility of the matrix Ai is also satisfied.

Instead of the matrices S i, Gustafson and Kessel use the so-called fuzzy covariance
matrices Fi defined as:

Fi =

∑N
k=1

∑c
i=1(uik)m · (yk − vi) · (yk − vi)T∑N

k=1(uik)m
(2.30)

However, the factor 1∑N
k=1(uik)m is not relevant for the result, because the matrices are scaled

to the unit determinant.

Finally the matrix Ai can be resumed as :

Ai =
p
√
%i · det(Fi) · F−1

i with %i
1 the volume of the ith cluster (2.31)

The substitution of Eq. 2.31 in Eq. 2.19 gives a generalized squared Mahalanobis dis-
tance norm, where the covariance is weighted by the membership degrees in U.
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Finally, the steps for finding the best clustering with the GK method can be resumed as
follows:

Given the data set X, a number of clusters comprised between 2 and n (2 ≤ c < n), the
weighting exponent m > 1, the termination tolerance ε > 0 (usually ε = 0, 001 is taken),
an initial matrix U(0) ∈ M f c mostly randomly initialized, a step l with l ∈ [0, · · · , Lmax] and
the cluster volumes %i (without a prior knowledge, %i is simply fixed at 1 for each cluster,
i.e. the GK algorithm only can find clusters of approximately equal volumes). First the
iteration step l is setted at 0. The process follows the steps:

For l = 1, 2, ..., Lmax

q Step 1: Calculation of the clusters centres vi:

v(l)
i =

∑N
k=1(u(l−1)

ik )m · yk∑N
k=1(u(l−1)

ik )m
1 ≤ i ≤ c (2.32)

q Step 2: Determination of the cluster covariance matrix Fi:

Fi =

∑N
k=1

∑c
i=1(u(l−1)

ik )m · (yk − v(l)
i ) · (yk − v(l)

i )T∑N
k=1(u(l−1)

ik )m
(2.33)

q Step 3: Calculation of the distance between an observation Yk and a clusters centre
vi :

d2
ikAi

=
∥∥∥∥yk − v(l)

i

∥∥∥∥2

Ai
= (yk−v(l)

i )T ·Ai ·(yk−v(l)
i ) with 1 ≤ k ≤ N and 1 ≤ i ≤ c (2.34)

q Step 4: Actualisation of the partition matrix by comparing U(l+1) to U l:

u(l)
ikA =

 c∑
j=1

(
dikAi

d jkAi

)
2

m−1


−1

1 ≤ k ≤ N 1 ≤ i ≤ c until
∥∥∥U(l) − U(l−1)

∥∥∥ < ε (2.35)

q Step 5: When
∥∥∥U(l) − U(l−1)

∥∥∥ < ε, the algorithm stops. Otherwise, U(l−1) = U(l) is
considered and the algorithm returns to Step 1.

Practically through experiments, Bezdek et al [4] reveal that numerical convergence is
usually achieved in 10-25 operations. The GK algorithm is computationally long because
the inverse and the determinant of the cluster covariance matrix must be calculated for
each iteration.

Whether local minima of Jm are good clusterings of Y is another matter. In order to de-
termine the validity of the clusters, several types of validity measures have to be applied.
One of the most popular is the DBI method.

2.2.2.4/ THE DAVIES BOULDIN INDEX

2.2.2.5/ GENERALITIES

Clustering is an unsupervised learning process, that is why the evaluation of the clustering
algorithms is very important. Before using the GK algorithm, the choice of the number of
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clusters is the most important parameter.
Two main approaches to determining the appropriate number of clusters in data can be
distinguished:

q Validity measures: they are scalar indices that assess the goodness of the ob-
tained partition. Clustering algorithms generally aim at locating well separated and
compact clusters. When the number of clusters is chosen equal to the number of
groups that actually exist in the data, it can be expected that the clustering algorithm
will identify them correctly. If it is not the case, misclassification appears, and the
clusters are not likely to be well separated and compact. In fact, most cluster valid-
ity measures are designed to quantify the separation and the compactness of the
clusters. However according to Bezdek [3], the concept of cluster validity is open to
interpretation and can be formulated in different ways. Consequently, many validity
measures have been introduced in the literature [12, 8, 3].

q Iterative merging or insertion of clusters: the basic idea of cluster merging is
to start with a large number of clusters, and successively reduce this number by
merging clusters that are similar or compatible with respect to some defined crite-
ria [10, 11]. The opposite approach is also possible, i.e. start with a small number
of clusters and iteratively insert clusters in the regions where the data points have
low degree of membership in the existing clusters [8].

The aim of the cluster validity is to find the partitioning that best fits the underlying data.
The process of evaluating the results of a clustering algorithm is called cluster validity
assessment. Two measurement criteria have been proposed [15] for evaluating and se-
lecting an optimal clustering:

q Compactness: the member of each cluster should be as close to each other as
possible. A common measure of compactness is the variance;

q Separation: the clusters themselves should be widely separated. There are three
common approaches measuring the distance between two different clusters:

? the distance between the closest members of the clusters;
? the distance between the most distant members of a cluster;
? the distance between the centres of the clusters.

There are different techniques for the evaluation of the result of the clustering algo-
rithms [40]:

q External Criteria

q Internal Criteria

q Relative Criteria

The evaluation of the clusters’ pertinence is a complicated task. Because of the compu-
tational complexity of external and internal criteria techniques, Kovacs et al. [35] focused
their study on the relative criteria technique which compares different clustering schema.
This technique aims at defining the best clustering schema with the help of the validity
index. The most used measurement techniques for the cluster validation are ( [35], [21]):
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q Dunn index: ratio of the maximal distance which separates two objects from the
same cluster over the minimum distance which separates two objects from different
clusters;

q Davies-Bouldin index: ratio of the within cluster spread for the cluster i over the
separation between the ith and the jth cluster;

q Root-Mean-Square Standard Deviation (RMSSD) and R-Squared (RS) validity indices:
usable only if the clustering is hierarchical. The RMSSD measures the homogeneity
of the clusters for each step of the hierarchical algorithm [21]. The RS validity
index is the ratio of the sum of squares between the clusters over the total sum of
squares of the entire data set;

q SD validity index: it measures the compactness and the homogeneity of the discov-
ered clusters through their variance and the variance of the entire data set;

q S-Dbw validity index: additionally to the properties of the SD index (compactness
and homogeneity), it also takes the density of the clusters into account.

These validity indices work principally with separated hyper-sphere shaped clusters. Be-
cause of its adaptability to the Mahalanobis distance, the DBI method can be combined
with the GK algorithm to form non spherical clusters for the dummy biomechanical values.
It enables to keep a certain coherence between the clustering and its validity method.

2.2.2.6/ DAVIES-BOULDIN INDEX

This criterion evaluates the well-separated and compact clusters between the ith cluster
and the cluster’s centroid through the similarity measure of clusters Ri j, which corre-
sponds to:

Ri j =
d̄i + d̄ j

di, j
(2.36)

with

q d̄i the average distance between each point in the ith cluster and his centroid

q d̄ j the average distance between each point in the ith cluster and the centroid of the
jth cluster

q di, j the Euclidean distance between the centroids of the ith and jth clusters

The similarity measure Ri j must satisfy the following conditions [2]:

q 0 ≤ Ri j

q Ri j = R ji

q if d̄i = 0 and d̄ j = 0 then Ri j = 0

q if d̄ j > d̄c and di j = dik then Ri j > Rik



40 CHAPTER 2. STATE-OF-THE-ART

q if d̄ j = d̄c and di j < dik then Ri j > Rik

The DBI is thus defined as:

DBI =
1
k
·

k∑
i=1

max j,i · Ri j (2.37)

with k the number of clusters

max j,i · Ri j refers to the worst-case scenario and corresponds to Ri j for the most similar
cluster j to cluster i. That is why the optimal clustering has the lowest DBI value (compact
and well-separated clusters, i.e. no similarities between them). For a better correlation
with the GK algorithm and in order to detect non-spherical clusters, the average distances
d̄i and d̄ j can be replaced by the Mahalanobis distance.

For the FMVSS NR.208 legislation, the DBI values are calculated from 4 up to 10 clus-
ters. To be used in the next study of relevant inputs parameters, the clusters have to be
exploitable. A clustering of the output’s values in 1 or 2 clusters seems to be not appro-
priated because the parameters’ influence cannot be evaluated if the number of clusters
is too small. The US NCAP rating is a challenge for the engineers because this rating is
based on the FMVSS NR.208 and the restraint systems have to work with the HIII 50th
dummy and the HIII 5th dummy, with and without belt. That is why it is preferable for this
rating to cluster the outputs into many clusters. Therefore the DBI values are calculated
from 6 up to 15 clusters.

However, the very good results obtained in EURO NCAP rating do not involve the necessity
of a high number of clusters. The DBI values are estimated for 3 until 10 clusters, but the
expert knowledge will often help regroup some clusters together and thus improve the
quality of the EURO NCAP clustering for the study of the input’s influence.

2.2.3/ SUPERVISED LEARNING THROUGH THE CLASSIFICATION

Unlike the unsupervised method, this learning method is based on the knowledge of
examples coming from the database. The objective is to model the relation between an
input value X = xn and an output value Y = yn in order to predict a new output Ynew. It
produces an inferred function yn = f (xn) + ε, where ε represents the noise.

Two types of problems can be solved with the help of the supervised learning:

1. the regression if Y ∈ R, i.e. if the output value belongs to the continuous group.
The most famous regression methods are the Bayesian statistics and the Gaussian
process regression;

2. the classification if Y = {1 · · · I}, i.e. if Y is a finite set of outputs. The most famous
classification methods are the decision tree learning, the naive Bayes classifier, the
neural network and the nearest neighbour algorithm (used also for regression).

The performance of the model stemming from a method of learning can be estimated by
its capacity of prediction. The generalisation error E represents the number of learning
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examples for which the prediction calculated with the function f is false. This generalisa-
tion error of the hypothesis function f , given X, is defined by:

E( f , τN) =
1
N

N∑
i=1

ψ( f (xi), yi) (2.38)

with τN = (xi, yi)N
i=1

ψ is the error criterion on Y (as small as possible) and defined by:

ψ =

{
1 if f (xi) , yi

0 if f (xi) = yi

A confusion matrix is a tool helping at summarizing the classification performance of a
classifier (or rule) [31]. It is a two-dimensional matrix; each column of the matrix repre-
sents the instances in the predicted class, while each row represents the instances in the
real class. Table 2.2 presents an example of confusion matrix for a three-class classifi-
cation task (A, B and C classes). The first row of the matrix indicates that eleven objects
belong to the class A but just eight objects are correctly classified as belonging to A. The
three other objects are misclassified. Note that the exact proportion of successes pi for
the row and for the column equals 1.

Table 2.2: An example of confusion matrix

Predicted class Total

R
ea

lC
la

ss A B C pi

A 8 2 1
pAA = 0,2222 pAB = 0,0556 pAC = 0,0278 0,3056

B 0 5 7
pBA = 0 pBB = 0,1389 pBC = 0,1945 0,3334

C 10 3 0
pCA = 0,2778 pCB = 0,0833 pCC = 0 0,3611

Total p j 0,5 0,2778 0,2223 1

2.2.3.1/ BACKGROUND OF THE BASIC TREE MODEL

Decision trees are predictive modelling approaches used in machine learning and data
mining and regroup classifiers and regression models. They are represented graphically
as hierarchical structures, which make them easy to interpret. The decision tree algorithm
creates a model (tree) that predicts the target value Y based on several input variables
Xi. For building the tree, a learning sample composed of historical data enables the
classification of new data. This sample contains information on input variables and on
class variables. Within a decision tree, each node corresponds to an input variable. Each
branch represents one or many states of this variable and connects to the next or terminal
nodes, which specify the expected value of the class variable Y. Decision trees are built
recursively, starting with the data set by the root node. Then, with the help of a split
criterion, the learning sample is split into smaller and smaller parts. The process is repeat
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until all nodes are pure, i.e the conditions in each subset belong to the same class. This
method enables also an evaluation of the interactions and influences between variables.

The following decision tree (Fig. 2.4) gives as example the repartition of legislations and
ratings for the driver side:

Driver Side

Split

HIII 50th dummy HIII 5th dummy

Split Split

With Seatbelt Without Seatbelt With Seatbelt Without Seatbelt

Split FMVSS NR.208 FMVSS NR.208 FMVSS NR.208

64 km/h 56 km/h

EURO NCAP rating US NCAP rating

Figure 2.4: Determination of the legisltation with a desicion tree (driver side)

Notice that the values of the predicted variables (EURO NCAP rating, US NCAP or FMVSS

NR.208) are at the bottom of the tree and the predictors (HIII 50th dummy, with seatbelt,
without seatbelt, HIII 5th dummy) come into the system at each node of the tree.

The top node contains the entire sample. Each remaining node contains a subset of the
sample in the node directly above it. Furthermore, each node contains the informations of
the samples in the nodes connected and directly below it. Each node can be considered
as a cluster of objects, or cases, that is to be split in further branches in the tree. Tree
prediction models add two ingredients: the predictor and predicted variables labelling the
nodes and the branches.

Decision trees are composed of two main types:
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q classification tree: the target variables are categorical (finite set of elements) and
the class of each observation of the learning sample is known;

q regression tree: the target variables are continuous values and the observations’
classes are unknown.

Classification And Regression Tree (CART) method was developed by Breiman et al. [5]
and can handle both numerical and categorical variables. Only binary trees can be pro-
duced by splitting a node into two child nodes repeatedly. The root node contains the
whole learning sample.

2.2.3.2/ CART AS SUPERVISED LEARNING

CART ,a recursive partitioning method, builds classification and regression trees for pre-
dicting continuous variables (regression) and categorical variables (classification). In gen-
eral, the objective of the tree-building algorithms is to determine a set of i f − then rules
(logical split conditions) that enables the prediction or the classification of a new data.

2.2.3.3/ NOTATIONS

This paragraph resumes the variables that are used to define the DBI:

q Y = {y1, y2, ..., yN} : a dependent variable which represents the target variable. It can
be categorical or continuous;

q If Y is categorical with J classes, its class yk takes values in c = {1, ..., J} with J ∈ N;

q X = {x1, x2, ..., xN} : a sample of N observations in Rn(n-dimensional Euclidean
space);

q n : the set of all predictor variables;

q xk : k-feature vector;

q xk j : jth feature of xk;

q xk = (xk1, xk2, ..., xkn)T .

The set of N observations Y is represented by a (N × n) matrix:

Y =



x11 x12 ... x1n

x21 x22 ... x2n

. . ... .

xk1 xk2 ... xkn

. . ... .

xN1 yN2 ... xNn


(2.39)

The predictor can be categorical or continuous.

q H = {(x1, y1), ..., (xN , yN)} : the whole learning sample;
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q H(t) : the learning samples that falls in node t;

q π( j) with j = 1, ..., J : the prior probability of Y = j when Y ∈ C = {1, ..., J};

q p( j, t) with j = 1, ..., J : the probability of a case in class j and node t;

q p(t) : the probability of a case in node t;

q p( j|t) with j = 1, ..., J : the probability of a case in class j given that it falls into node
t;

q ∆i(s, t) : the splitting criterion with s the best split at node t.

2.2.3.4/ THE GROWING PROCESS

The basic idea of tree growing is to choose a split among all the possible splits at each
node, so that the resulting child nodes are the ”purest”. In the DBI algorithm, only uni-
variate splits are considered. It means that each split depends on the value of only one
predictor variable. All possible splits consist of possible splits of each predictor. If X de-
notes a nominal categorical variable of I categories, there are 2I−1 − 1 possible splits for
this predictor. If X is a continuous variable with K different values, there are K−1 different
possible splits on X. A tree is grown starting from the root node by repeatedly using the
three following steps on each node:

1. Find each predictor’s best split:

q For each continuous predictor variable, sort its K values from the smallest to
the largest. Then, determine the K − 1 possible split points by taking a value
between two consecutive values. Mostly, the average value of two consecutive
value is taken. Then, let S = [s1, s2, ...sK−1] be the split sample, each split points
si is evaluate as following:
If X ≤ si, the case goes to left child node, otherwise, goes to the right. The best
split s is obtained for the one that maximizes the splitting criterion;

q For each categorical predictor, examine each possible subset of categories
(calling it A, if x ∈ A, the case goes to the left child node, otherwise, goes to the
right.) to find the best split.

2. Find the node’s best split.
Among the splits found in Step 1 (a best split is found for each predictor variable),
choose the one that maximizes the splitting criterion;

3. Split the node using the best split chosen in Step 2 if the stopping rules are not
satisfied.

2.2.3.5/ SPLITTING CRITERIA AND IMPURITY MEASURES

Split criteria are applied in order to split the learning sample into smaller subsets and
thus to build the tree. The most commonly used criteria were listed in the litera-
ture [62] [66] [60]:
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q Gini Index GIx based on Gini impurity: this measure of diversity evaluates the
node impurity of the classification tree and is defined as:

Gini(S ) = 1 −
∑

i

p2
i (2.40)

The split criterion GIx enables the building of the decision tree and is based on the
Gini Index. It is defined as follows:

GIx(S , A) =
∑

i

|S i|

|S |
·Gini(S i) (2.41)

This criterion should be as low as possible and is often used to build CART algo-
rithms.

q Information Gain based on Shannons entropy: used in ID3 algorithms, this split
criterion is based on the entropy from information theory and measures the degree
of confusion. The process of pruning consists of simplifying and adjusting the model
of the tree more closely to the data set used to build it.

The Information Gain is based on the Shannons entropy E(S ) of a data set S , de-
fined as:

E(S ) = −

m∑
i=1

pi · log2(pi) (2.42)

If the entropy is high, it means that the impurity is maximal, i.e. the set S is from a
uniform distribution. If the entropy is low, it means that the node is pure.

The Information Gain IG(S , A) for an attribute A is thus defined as:

IG(S , A) = E(S ) − I(S , A) (2.43)

= E(S ) −
∑

i

|S i|

|S |
· E(S i) (2.44)

where S i are the subsets from the set S and I(S , A) the weighted average over all
sets resulting from the split.

Contrary to the Gini Index, IG(S , A) should be maximized, i.e. the average entropy
I(S , A) has to be minimized (because the entropy is constant for all attributes). The
attribute A that maximizes this criterion reduces the disorderedness.

q Information Gain Ratio: applied by C4.5 algorithms, the Information Gain Ratio
IGR(S , A) is an amelioration of the Information Gain by taking the intrinsic informa-
tion IntI(S , A) of a split into consideration. It takes the number and size of tree
branches into consideration when selecting an attribute A. It is defined as:

IGR(S , A) =
IG(S , A)
IntI(S , A)

(2.45)

= −
IG(S , A)∑

i
|S i |
|S | · log( |S i |

|S | )
(2.46)
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Categorical target variable

If Y is categorical, the Gini Index measure for impurity is mostly used among splitting
criteria.

At node t, the probabilities p( j, t), p(t) and p( j|t) are estimated by:

p( j, t) =
π( j) · Nw, j(t)

Nw, j
(2.47)

p(t) =

J∑
j=1

p( j, t) (2.48)

p( j|t) =
p( j, t)
p(t)

(2.49)

where

Nw, j =
∑
n∈H

I(yn = j) (2.50)

Nw, j(t) =
∑

n∈H(t)

I(yn = j) (2.51)

with I(a = b) the indicator function taking the value 1 when a = b , 0 otherwise.

This criteria is based on the Gini impurity2. As an impurity measure, it reaches a value 0
when only one class is present at a node. With prior estimated from class sizes and equal
misclassification costs, the Gini impurity measure is computed as the sum of products of
all pairs of class proportions for classes present at the node. It reaches its maximum
value when class sizes at the node are equal. The Gini index is equal to 0 if all cases in
a node belong to the same class. The Gini impurity measure at a node t is defined as :

imp(t) =
∑
i, j

·p(i|t)p( j|t) (2.52)

=
∑
i, j

p(i|t) · (
∑
i, j

1 − p(i|t)) (2.53)

= 1 −
∑

i

p(i|t)2 (2.54)

The Gini splitting criterion is the decrease of impurity defined as:

∆imp(s, t) = imp(t) −Gdiv with Gdiv = pL · imp(tL) + pR · imp(tR) (2.55)

where pL and pR are probabilities of sending a case to the left child node tL and to the
right child node tR respectively, and Gdiv is the combine Gini impurity measure of the child
nodes. Gdiv has to be minimized in order to maximize ∆imp(s, t). The probabilities pL and
pR are estimated through Eq. 2.56:

2 refers to impurity function which measures the extent of purity for a region containing data points from
possible different classes
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pL =
p(tL)
p(t)

and pR =
p(tR)
p(t)

(2.56)

Continuous target variable

When Y is continuous, the splitting criterion defined in Eq. 2.55 is used with the Least
Squares Deviation (LSD) impurity measures.

2.2.3.6/ STOPPING RULES AND EVALUATION OF THE TREE

Stopping rules are necessary to control the growing process. It is stopped when [5]:

q a node is pure, i.e. all cases in the node have identical values of the dependant
variable Y;

q all cases in a node have identical values for each predictor;

q the current tree depth recalls the user-specified maximum tree depth limit value;

q the size of a node is less than the user-specified minimum node size value;

q the split of a node results in a child node whose node size is less than the user-
specified minimum child node size value.

Once the tree is built, its quality of the prediction has to be evaluated. It can also help
”prune back” the tree, i.e. select a simpler tree than the original, but containing the same
information. There are two main model validations to estimate how the predictive model
perform in practice:

q Cross validation: it involves the partitioning of a sample of data into complementary
subsets. One is called training set and the other validation test. The model fits a
function with only the training set and validates the model on the validation set;

q K-fold cross validation: the dataset is separated into K subsets randomly. One
fold is used as validation set and the other K − 1 folds are used as training set.
The classifier fits a function using only the training set and then predicts the output
values for a data included in the validation test. This process is repeated K times.
The average error rate based on each error (i.e. the difference between the real
and the predicted values) enables the evaluation of the model;

q Leave-one-out cross validation: it corresponds to the K-fold cross validation with
K = N (N the number of points in the dataset). This method performs very well but
can be expensive to compute.





3
SLED TESTS CLASSIFICATION

THROUGH K-NN METHOD

The Knowledge Discovery in Databases (KDD) and data mining methods are being
increasingly developed in industrial applications, especially automobile crash stud-

ies. KDD is the process of discovering useful and understandable patterns and aims at
extracting knowledge from data, using data mining methods.

In order to extract knowledge from data in databases, the steps of the KDD are applied
on the restraint systems parameters (inputs): selection of the data, pre-processing, trans-
formation, application of a data mining method and evaluation of the model. This method
is adapted to large databases as well as databases containing a limited amount of data.

3.1/ APPLICATION OF THE KNOWLEDGE DISCOVERY IN

DATABASES

3.1.1/ STEP 1: DATA SELECTION

The KDD process is applied on the passive restraint systems, especially the parame-
ters which could have an influence on the biomechanical criteria of the dummy. Three
components of the passive safety have been studied: the airbag (driver and passenger),
kneebag and seat belt. The dummy position and the quality of the pulse have been also
analysed. In the analysis, the potential modification of the environment like the buck, in-
strumental panel or seat, is not taken into consideration. An expert elicitation has been
conducted, it aims at defining the key factors of the components with the help of a ques-
tionnaire filling in by passive safety experts. 57 parameters on the driver side and 46 pa-
rameters on the passenger side have been selected as influencing the occupant’s injuries
during a crash. Table 3.1 resumes the selected parameters for each restraint system.

These parameters have been researched and stored for different regulations and ratings.
The number of complete available sled tests is indexed in Table 3.2.

3.1.2/ STEP 2: DATA PRE-PROCESSING

The collected data covers the period 2000-2014. The data has been prepared and com-
pleted from different sources (dummy instrumentation with electronics devices, measure-

49
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Table 3.1: Input parameters influencing dummy biomechanical values

Driver airbag Passenger airbag Kneebag (both sides) Seat belt (both sides)

N
um

er
ic

al
in

pu
ts

* Volume * Volume * Volume * Load limiter values
* Time to fire * Time to fire * Time to fire * Webbing on spool once

the dummy is belted
* Steering wheel diame-
ter
* Steering wheel angle
* Steering column break-
ing distance
* Steering column break-
ing deformation force
* Steering column maxi-
mum deformation force

C
at

eg
or

ic
al

in
pu

ts

* Type (round, not round) * Type (L-shape, Square-
shape, 3D-shape, etc.)

* Number of ventholes
(with their diameter)

* Type (constant, de-
gressive, regressive or
switchable load limiter)

* Type of fabric (350 dtex
Polyester, 470 dtex Ny-
lon, etc.)

* Type of fabric (350 dtex
Polyester, 470 dtex Ny-
lon, etc.)

* Number of tether * Retractor pretensioner
(with its time to fire)

* Number of tear seams
(with their orientation
and length)

* Divided panel * Buckle pretensioner
(with its time to fire,
length of pretension)

* Inflator name * Anchor pretensioner
(with its time to fire,
length of pretension)

* Number of ventholes
(with their diameter)

* Number of ventholes
(with their diameter)

* Angle between shoul-
der/seat and D-ring

* Active bag vent (with its
size and time to fire)

* Active bag vent (with its
size and time to fire)

* Height adjustment (with
its position)

* Tethers (with their
length and position)

* Tethers (with their
length and position)

* Dynamic locking
tongue

* Inflator name * Inflator name
* Inflator type (pyrotech-
nic, hybrid or cold gas)

* Inflator type (pyrotech-
nic, hybrid or cold gas)

* Number of stages (sin-
gle or dual stages)

* Number of stages (sin-
gle or dual stages)

* Steering wheel design
(2, 3 or 4 spokes)
* Steering column type
(mechanical or electrical)

Table 3.2: Database including sled tests with known input parameters

Regulation / rating Dummies Sled tests included in the database
Driver Passenger

EURO NCAP rating 50th / 50th 27 140
US NCAP rating 50th / 5th 115 216

FMVSS NR.208 with seat belt 5th / 50th 51 61
FMVSS NR.208 without seat belt 50th / 5th 80 42
FMVSS NR.208 without seat belt 5th / 50th 34 62
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ments of the dummy position) and it is possible that some input values are not available
and must be estimated.

This step of data replacement is one of the most important challenges of the data pre-
processing and is known in literature as ”missing data”. Tseng et al. [29] were confronted
with this problem and they developed a new method based on cluster properties. Batista
and Monard [26] also studied this problem by using the 10-NNI method, a k-nearest neigh-
bour imputation algorithm. The term of imputation denotes a procedure that replaces the
missing values by plausible values. This replacement is independent of the machine
learning algorithm. For this study, the k-NN imputation method is applied as learning
algorithm and allows the treatment of the missing values included in the database. The
algorithm for this analysis employs some known relationships that already exist between
sled tests from the same legislation, sled tests from the same project or theoretical rela-
tionships between restraints systems and biomechanical values.

Two types of ”missing data” are distinguished:

q Case 1: the parameter’s value is not given but this parameter must be defined, e.g.
the dummy position or temperature. This case will be reported in this section;

q Case 2: the parameter’s value is not given because the restraint system is not used
or does not have some properties, e.g. if the seat belt system does not have a
buckle pretensioner, data such as time to fire or length of pretension cannot be
recorded. These values are not directly considered as missing values.

There are three possibilities to solve the problem of missing data (from case 1):

1. Repeat the sled test: this solution seems to be the best one but it is also expensive
and sometimes impossible (old projects, trim parts no more available);

2. Average calculation: this method replaces the missing value through the average of
the values of other sled tests;

3. Imputation method by using the k-NN: some algorithms can be used in order to
define the missing value according to the values included in the database.

The created algorithm takes 3 types of missing data into consideration:

1. The missing data is independent of the sled test, e.g. the dummy temperature. In
this case, the average of all dummy temperature values included in the database is
calculated;

2. The missing data is dependent on the project, e.g. the dummy position. The dummy
position is dependent on the trim parts (seat, instrumental panel) and car body. In
this case, the algorithm first selects the sled tests only from the same project and
then calculates the average of the values from these sled tests;

3. The missing data is dependent on the project and other parameters, e.g. the ”web-
bing on spool” of the seat belt. It is one of the parameters which influences directly
the dummy shoulder force. In this case, the algorithm first selects only the sled tests
of the same project, then compares their dummy shoulder force (with a tolerance of
+/- 500N) and finally calculates the average of these sled tests.
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This algorithm only intervenes if a parameter is missing and should be defined. After
running this algorithm, the database is complete and is ready to be exploited for the next
KDD step, the data transformation.

3.1.3/ STEP 3: DATA TRANSFORMATION

Because of the different provenance and scale of the data, it has to be transformed before
applying a data mining method. Some parameters of restraint systems (e.g. the type of
seatbelt) are defined through a nominal description. In order to interpret it in the algorithm,
a numerical code has been given for each nominal description (Fig. 3.1):

Type of seat belt

Constant (CLL)

Degressive (DLL)

Progressive (PLL)

Switchable (SLL)

1

2

3

4

Figure 3.1: Numerical transformation of nominal parameters

Moreover, the parameter’s values have a different range. For example, the vent hole
diameter of the airbag often does not excess 60 mm and the length of the tethers can
vary between 100 mm and 300 mm. Their use without any changes gives automatically
more weight to a data with an important spread and under evaluate the other [33]. The
data transformation step thus consists in the normalization of all numerical values into a
range (except for the binary values). The range [-1;1] has been chosen arbitrarily.

Table 3.3 presents numerical values of some parameters Pi for 4 tests and Table 3.4 their
corresponding normalised value. The ”New Test” is not already done, only the inputs
parameters are known and the objective is the classification of this ”New Test” in the
database.

Table 3.3: Example of parameter’s values

Parameter P1 P2 P3 P4 P5 P6 P7 P8
Test 1 13 406 NaN 121 114 0 30 3,5
Test 2 18 NaN NaN 130 135 0 30 3
Test 3 13 411 300 118 109 15 35 3,5
Test 4 13 411 304 125 118 NaN 35 NaN

New test 18 440 NaN NaN 133 30 40 2,5

If the missing data is represented as NaN, the parameter is not available in the specific
test.

After transforming and normalising the data, the database is yet homogeneous and the
classification through a data mining method can be performed.
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Table 3.4: Example of normalised parameter’s values

Parameter P1 P2 P3 P4 P5 P6 P7 P8
Test 1 -1 -1 NaN -0,5 -0,615 -1 -4 1
Test 2 1 NaN NaN 1 1 -1 -1 0
Test 3 -1 -0,706 -1 -1 -1 0 0 1
Test 4 -1 -0,706 1 0,167 -0,308 NaN 0 NaN

New test 1 1 NaN NaN 0,846 1 1 -1

3.1.4/ STEP 4: DATA MINING METHOD: K-NEAREST NEIGHBOURS CLASSIFICA-
TION

Wu et al. [45] listed the top 10 algorithms in data mining in the IEEE International Confer-
ence on Data Mining 2006. The k-nearest neighbours (k-NN) classification is one of those
and uses the Euclidean distance for estimating the similarity between the inputs’ param-
eters of a new test xnew and those of the ith training set xi

train. The k-NN is mathematically
represented by Eq. 3.1:

d(xnew, xi
train) =

√√√ p∑
j=1

(
xnew( j) − xi

train( j)
)2

(3.1)

The main target of this algorithm is the calculation of the Euclidean distance between a
new sled tests and each test included in the database by comparing the inputs param-
eters (setup, airbags, dummy specification). The parameters taken into account for the
determination of the nearest neighbour are indexes in Table 3.1.

In order to collect the information of the sled tests and to calculate the smallest
d(xnew, xi

train) which represents the next nearest neighbour, a graphical user interface (GUI)
has been created (Fig. 3.2(a)). The programme includes sled tests data of different cus-
tomers from 2000-2014 and also the k-NN programme.

This GUI has been created during the Master internship of Pablo Juesas (from ENSMM
engineering school) that I have supervised in 2013. The detailed presentation of the GUI
panels can be found in Appendix C.

Thanks to it, the classification of the sled tests can be executed and presented to the
user.

3.1.5/ STEP 5: DATA CLASSIFICATION

The last step of the KDD process, the classification, consists in finding the closest training
instance by minimizing the Euclidean distance given by Eq. 3.1.

Through the GUI, the parameters of the sled tests included in the database can be com-
pared (Fig. 3.2(b)), and the configuration’s difference can be analysed. The sled tests are
classified according to their Euclidean distance values (Eq. 3.1). The smaller this value
is, the more the input configuration of the new one is similar to its compared test. It gives
for the upcoming tests a first indication of the expected results for different regulations.
Some additional tools implemented in the GUI allow a personalisation of the comparison.
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(a) General panel of the GUI (b) Example of sled tests classification

Figure 3.2: Graphical User Interface (GUI)

Thanks to this method, expected sled test trends can be estimated and the initial config-
uration of the sled test can be adapted before running the test. With the knowledge of
the relationships between in- and output parameters, it could even become possible to
influence future sled test results positively before having run it via the variation of input
parameters.

3.2/ VALIDATION OF THE K-NN CLASSIFICATION

Two algorithms have been programmed in order to classify the data: the first one allows
the replacement of missing values and the second one the classification of the sled tests
through the k-NN method. The ”leave-one-out cross validation” (LOOVC) method has
been applied for the validation of these algorithms.

The validations have been conducted with the data from EURO NCAP rating on passenger
side

3.2.1/ ALGORITHM FOR MISSING DATA

LOOCV is a model validation method of machine learning which uses one value as vali-
dation and the remaining values as a training set. This method enables the validation of
the algorithm which should be able to replace a missing value. The algorithm has been
validated for the 3 types of missing data described in Section 3.1.3:

q dummy temperature : this missing value is determinate through the average calcu-
lation;
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q dummy position through the distance ”left knee, shorter distance ahead” (chosen
arbitrary): this missing data depends on the sled test and is obtained with the help
of the created algorithm;

q webbing on spool of the seat belt, which depends on the sled test project but also
has a influence on other parameters (such as the shoulder force applied on the
dummy). The created algorithm enables the estimate value of the missing value.

The data set contains 140 sled tests: 139 values are used as training set and 1 value
is the validation value. For each missing value, the algorithm calculates an approximate
value and its corresponding relative error E defined as:

E =
|exact value − estimated value|

|exact value|
(3.2)

Fig. 3.3, 3.4 and 3.5 present the curves of the exact and approximate values and of the
relative error for the different missing parameters.
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Figure 3.3: Estimation’s curves for the dummy temperature

As shown in Fig 3.3, all dummy temperature values estimated by the algorithm are similar.
In fact, for parameters which are independent on the sled test, the approximate value is
determined through the average of all available values. Lots of dummy temperatures are
between 20◦C and 22◦C. The average temperature is estimated as 21,3◦C. The maximal
difference is +2,2◦C for only one sled test. It is acceptable since, according to the Euro-
pean legislation, the dummy temperature must be between 19◦C and 22◦C (these limits
are also valid for the rating).

The dummy is defined by 6 positions. Only one has been chosen arbitrary to validate
the algorithm: the distance between the left dummy knee and the instrumental panel
(shorter distance). Fig. 3.4 shows the dummy position values estimated with the help
of the algorithm. For such types of parameters which depend on the sled test project,
the algorithm takes only the data coming from the same project into consideration. The
database contains 140 values at the moment, and per project, it is possible that only one
sled test is available. That is why some missing values cannot be determined (rupture in
the curve). The maximal difference between the exact and approximate values is 22 mm.
Even if the sled tests come from the same project (and thus the same buck), it is difficult
to seat the dummy exactly at the same position as the reference. That is why the experts
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Figure 3.4: Estimation’s curves for the dummy position (type 1 of the possible miss-
ing values)

estimate that a tolerance of 10 mm is acceptable and should not influence the results. A
difference of 22 mm could have an influence on the results.
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Figure 3.5: Estimation’s curves for the webbing on spool of the seat belt

As illustrated in Fig. 3.5, the lengths of the webbing on spool estimated with the help of
the algorithm are similar in trend to the real values. Some approximate values are a little
bit far away from the real values. The webbing on spool determination is based on the
data of the sled tests coming from the same project and on their dummy shoulder force.
In fact, the webbing on spool has a direct influence on this criterion. If only a few sled
tests from the same project are available, the estimate value can differ from the real one.
These approximations can be rectified by adding more sled tests.

These three validations of the algorithm responsible for the replacement of missing values
confirm its potential and allows its use for replacing the missing data if desired.

3.2.2/ THE SLED TESTS CLASSIFICATION

One sled test of the database is taken as validation test, the remaining tests as training
set (leave-one-out cross validation). This validation compares two classifications: the
first one is based on the clear database, i.e. all the inputs parameters are known. For
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the second classification, three parameters have been deleted and thus replaced by the
algorithm itself. The missing values are the three parameters described in Section 3.1.2.
There are the most often missing values. The graphs in Fig. 3.6 represent the comparison
between the k-NN sled tests, with k ∈ {1, 2, 3}, determined with and without missing values.
If the value is equal to 1, it means that the k-NN sled test obtained without any missing
parameters is the same as the k-NN sled test obtained when three values are missing.
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(a) Comparison between the 1-NN sled test deter-
mined with and without missing values
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(b) Comparison between the 2-NN sled test deter-
mined with and without missing values
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(c) Comparison between the 3-NN sled test deter-
mined with and without missing values

Figure 3.6: Comparison’s curves between the k-NN sled test determined with and
without missing parameters

As showed in Fig. 3.6, for 72% of cases, the 1-NN sled test estimated with the help of the
algorithm is unchanged by replacing the missing values. It means that the replacement of
the missing values by the algorithm affects only minor the determination of the 1-NN sled
test. In only 40% and 35% of cases, respectively the 2-NN and the 3-NN are identical.

3.2.3/ ESTIMATION OF THE EURO NCAP SCORE WITH ALL KNOWN PARAME-
TERS

For this validation, all inputs parameters of the validation test are considered as known.
The validation aims at estimating with the help of the k-NN method its expected score for
the EURO NCAP rating on the passenger side. Each 140 sled test included in the database
is taken one by one as validation test. The curves of the exact and estimate scores are
represented in Fig. 3.7. The rating scores are the real obtained rating score of the sled
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test, the rating score obtained by its nearest neighbor sled test and the average of the
ratings scores obtained by its two first nearest neighbours sled tests. The relative error,
according to Eq. 3.2, is also calculated to evaluate the precision of the algorithm.
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(a) Estimation of the EURO NCAP rating score (without
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Figure 3.7: Estimation’s curves of the EURO NCAP rating score with all known pa-
rameters

According to the error’s curve, the average of the score obtained by the 2 first NN sled
tests seems to give a good approximation of the expected EURO NCAP score. The esti-
mation is not successful if the sled test obtained a low score in the rating (because the
database contains mostly score above 10 points).

3.2.4/ ESTIMATION OF THE EURO NCAP SCORE WITH UNKNOWN PARAMETERS

This validation is a combination of the two last validations. As usual, the LOOCV is applied.
The aim of this validation is the estimation of the score that can be expected in EURO NCAP

rating for the passenger side. Three inputs parameters (dummy temperature, dummy
position and webbing on spool) have been manually deleted and estimated by the created
algorithm. Fig. 3.8 presents diverse rating scores and their corresponding error. The
rating scores are the real obtained rating score of the sled test, the rating score obtained
by its nearest neighbor sled test and the average of the ratings scores obtained by its two
first nearest neighbours sled tests.

The relative error curves between each rating score are similar and do not significantly
advantage a method to the other. We can remark that the sled tests for which the score is
not satisfactory are the same as in Section 3.1.3 (Fig. 3.7). It confirms that the algorithm
has some difficulties to estimate the score if the sled tests present a low one in the EURO

NCAP rating.

These two last validations confirm the performance but also show the limits of the algo-
rithm which should learn on the existing data for replacing missing parameters’ values
(no distinct influence on the results).
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(a) Estimation of the EURO NCAP rating score (with
missing parameters)
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Figure 3.8: Estimation’s curves of the EURO NCAP rating score with unknown pa-
rameters

3.3/ DISCUSSION ON THE K-NN CLASSIFICATION

In order to study and classify the sled tests, the 5 steps of the KDD process have been fol-
lowed. The first step, the data selection, defines the parameters of each restraint system
which could influence the dummy biomechanical criteria. Thanks to an expert elicitation,
57 parameters on the driver side and 46 parameters on the passenger side (driver / pas-
senger airbag, kneebag, seat belt, environment) have been identified by passive safety
experts as influencing the dummy biomechanical values. Others external parameters
such as the car pulse and dummy position have been also selected. These parame-
ters are independent of the considered legislation / rating but additionally parameters are
considered for the driver side (steering column and steering wheel).

After the data selection, the next step consists of the data pre-processing. This is a
critical task of the KDD process because of the so-called ”missing data”. If a parameter
is missing, it has to be defined to enable its exploitation by the data mining method. This
is the aim of the created algorithm which is able to deal with three types of missing data,
according to their dependency to others parameters.

Once the database is complete, the data transformation enables an homogenisation of
the data through a numerical transformation for categorical data and a normalisation for
the numerical values.

Then the k-nearest neighbour classification is applied as data mining method. The in-
puts configuration of a new sled test is compared with the configuration of all sled tests
included in the database through the calculation of the Euclidean distance.

Finally, according to the Euclidean distance estimated between two sled tests, a rank of
the nearest neighbour of a new sled test informs the engineers to the expected results in
the chosen regulation.

For a better data processing and practical use for the engineers, a GUI has been created
for entering, saving, analysing and classifying the sled tests. This rank responds to an
industrial request and enables the analysis of passive safety systems of existing sled
tests results before running a new one.





4
CLUSTERING OF THE DUMMY

BIOMECHANICAL VALUES

4.1/ OUTPUTS’ CLUSTERING EURO NCAP

In order to regroup dummy biomechanical values that are similar into a same group,
an unsupervised learning method, the clustering, is applied. The influence of the input
parameters on these clusters will be then analysed. In this chapter, the clustering of the
data is focused on the EURO NCAP rating, especially the passenger side. The results of
the clustering for the driver side are resumed in Section 4.1.2. As a reminder, for the adult
occupant protection, the EURO NCAP score is the sum of the scores obtained by the four
dummy parts (head/neck, chest, knee/femur and leg/foot). Each part can reach up to 4
points.

4.1.1/ CLUSTERING FOR THE HIII 50TH DUMMY (PASSENGER SIDE)

4.1.1.1/ GENERALITIES

The considered biomechanical values for the estimation of the EURO NCAP score (adult
protection, frontal impact) are referenced in Table 4.1 with the upper and lower values
necessary for the score’s calculation. The points are computed considering the worst
injury criterion (and also applicable modifiers, that are not here taken into account). Be-
tween the upper and the lower limits, the score is estimated by linear interpolation. Be-
cause 86% of the studied sled tests on the passenger side do not have a knee bag,
which should help the reduction of the legs damages, the biomechanical values of the
femur compression, knee slider displacement, tibia compression and tibia index are not
regrouped in clusters. The eventual damages on these body regions could come from the
contact between the legs and the buck environment (glove box), which is not modifiable
by the supplier himself. Moreover, the chest damages is represented only by the chest
deflection (the viscous criterion is non-critical).

The biomechanical values of the dummy have been clustered according to the body re-
gion:

q outputs’ combination for the dummy head: acceleration (3 ms) and criterion HIC 36;

q outputs’ combination for the dummy neck: neck shear, tension and extension;

61
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Table 4.1: Dummy biomechanical values and their limits for the EURO NCAP rating
(available for the driver and the passenger)

Injury criteria Lower limit (4
points in EURO
NCAP rating)

Upper limit (0 point
in EURO NCAP rat-
ing)

Evaluated
values
(driver
side)

Evaluated
values
(pas-
senger
side)

Head Injury Criterion 36
(HIC 36)

650 1000 X X

Acceleration (3 ms) 72 g 88 g X X

Neck shear @ 0 ms 1,9 kN @ 0 ms 3,1 kN X X
@ 25-35 ms 1,2 kN @ 25-35 ms 1,5 kN
@ 45 ms 1,1 kN @ 45 ms 1,1 kN

Neck tension @ 0 ms 2,7 kN @ 0 ms 3,3 kN X X
@ 35 ms 2,3 kN @ 35 ms 2,9 kN
@ 60 ms 1,1 kN @ 60 ms 1,1 kN

Neck extension (Moc-) 42 Nm 57 Nm X X

Chest deflection 22 mm 50 mm X
Chest Viscous Criterion
(VC)

0,5 m/s 1,0 m/s X —

Femurs compression (left
and right)

3,8 kN 9,07 kN (@ 10 ms
7,56 kN)

X —

Knee slider displacement
(left and right)

6 mm 15 mm X —

Tibia compression (left and
right)

2 kN 8 kN X —

Tibia index (left and right) 0,4 1,3 X —

q outputs’ combination for the dummy chest: chest deflection (criterion VC uncritical
for the EURO NCAP rating).

The legs (knee, femur) are not studied on the passenger side (absence of knee bag in
EURO NCAP rating).

As explained in Section 2.2.2.1, the GK algorithm is one of the clustering methods
which can help identify the similarities (clusters) between the biomechanical values. The
Davies-Bouldin Index (DBI) method allows the evaluation of the formed clusters. The
more the value is low, the more the evaluated cluster is separated and compact. For
the passenger side, 431 sled tests coming from the EURO NCAP database are available
in order to figure out the clusters (November 2014). All their biomechanical values are
correctly measured and plausible. A clustering is conducted for each dummy part.

4.1.1.2/ DUMMY HEAD: CLUSTERS’ FORMATION AND EVALUATION

For the dummy head, 431 values of the database are taken into account. The limits for
reaching 4 points are listed in Table 4.1.

The GK algorithm is applied on these values, as described in Section 4.1.1.1, with the
two available head outputs: the acceleration (3 ms) and the criterion HIC 36. It aims
at creating clusters for only the dummy head in order to discover the influence of a pa-
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rameter’s change only on this dummy part. After running the algorithm, the DBI criterion
evaluates the compactness and the separation of the found clusters. Fig. 4.1(a) shows
the DBI values from 3 to 10 clusters for the two head outputs.
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(a) Representation of the DBI values (b) Clustering dummy head (4 clusters): graphical repre-
sentation

(c) Clustering dummy head (4 proposed clusters): graphical
representation

Figure 4.1: Head combination (passenger, Europa, HIII 50th dummy)

The best clustering according to the DBI is the clustering with 4 clusters (lowest DBI
value), which are represented in Fig. 4.1(b). The properties of the discovered clusters
are indexed in Table 4.2.

As shown in Fig. 4.1(b), the clusters are pretty well-separated, in the sense that each
value belongs to only one cluster. According to the clusters’ repartition (Table 4.2), the
clusters #1 and #2 are very similar in size and in results (both clusters include sled tests
with 4 points) and the cluster #4 gathers sled tests with a low score for both outputs. The
score’s range for both outputs in cluster #3 is large and gathers all possible scores. It
can be thus difficult to evaluate the influence of a parameter by keeping this clustering. In
fact, a change of a parameter that involves a cluster’s change must involve a modification
of the score’s value. That is why the more distinguish the clusters are, the more precise
the influence study will be. For this reason, the distribution proposed by the GK algorithm
into a cluster is not optimal.
An analysis of the dummy head values shows that already 89% of the sled tests get
the maximal score. It is thus useful to gather all sled tests with 4 points overall in only
one cluster, even if this cluster contains the majority of the sled tests. That is why a
new clustering based on this observation is proposed (Table 4.3). For each output, two
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Table 4.2: Dummy head, 4 clusters: characteristics (passenger, Europa, HIII 50th
dummy)

Item Number of elements Head acceleration (3 ms) HIC 36
in the cluster

Range of values
#1 164 [26 g ; 50 g] [92 ; 345]
#2 164 [44 g ; 59 g] [303 ; 532]
#3 83 [53 g ; 85 g] [344,86 ; 895]
#4 20 [73 g ; 155 g] [816 ; 1668]

Number of points obtained for the dummy head
(EURO NCAP rating)

#1 164 4 points 4 points
#2 164 4 points 4 points
#3 83 0,64 - 4 points 1,2 - 4 points
#4 20 0 - 3,76 points 0 - 2,10 points

clusters are formed by taking the score into consideration, one with results of 4 points and
another one with results under 4 points. It aims at helping the engineers to understand
which head output value has to be improved. Fig. 4.1(c) represents the new proposed
clusters graphically.

Table 4.3: Dummy head, 4 clusters: proposed clustering (passenger, Europa, HIII
50th dummy)

Item Number of elements Head acceleration (3 ms) HIC 36
in the cluster

Range of values
#1 382 < 72 g < 650
#2 20 < 72 g > 650
#3 3 > 72 g < 650
#4 26 > 72 g > 650

Number of points obtained for the dummy head
(EURO NCAP rating)

#1 382 4 points 4 points
#2 20 4 points < 4 points
#3 3 < 4 points 4 points
#4 26 < 4 points < 4 points

These clusters will be used as classes for the study of the parameters’ influence.

4.1.1.3/ DUMMY NECK: CLUSTERS’ FORMATION AND EVALUATION

The procedure for the dummy neck is the same as for the head, even if three outputs
have been used to form the clusters: the neck shear (Fx), the neck tension (Fz) and the
neck extension (Moyc). Fig. 4.2(a) shows the DBI values for 3 until 10 clusters for the neck
outputs combination.

According to the DBI, the best clustering should be with 5 clusters (lowest DBI value),
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(a) Representation of the DBI values (b) Clustering dummy neck (5 clusters): graphical represen-
tation

(c) Clustering dummy neck (2 proposed clusters): graphical
representation

Figure 4.2: Neck combination (passenger, Europa, HIII 50th dummy)

as represented in Fig. 4.2(b). Table 4.4 resumes the values’ range and scores of the
sled tests for each cluster. The overall score corresponds to the minimal score obtained
between the 3 neck outputs.

As before for the head, this clustering does not present the propriety of uniqueness. It
means that sled tests with 4 points overall can be gathered either in cluster #3, #4 or#5.
The influence of a parameter’s change cannot thus be correctly evaluated.
However, we can remark that 97% of the sled tests have already reached the 4 points
overall for the neck. Therefore, it does not make sense to separate them into several
clusters. That is why sled tests obtaining 4 points overall can be regrouped into a same
cluster. Because of the low number of sled tests with an overall score under 4 points
(11 sled tests out of 431), their separation into several clusters according to the critical
neck outputs is not necessary. The clustering based on this observation is represented
in Fig. 4.2(c) and resumed in Table 4.5.

The two clusters will be used as classes for the study of the parameters’ influence.
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Table 4.4: Dummy neck, 5 clusters: characteristics (passenger, Europa, HIII 50th
dummy)

Item Number Neck shear Neck tension Neck extension Neck overall
of elements

in the cluster
Range of values

#1 5 [0.158; 0.781] [0.150; 0.226] [0.563; 1] —
#2 13 [0.002; 0.078] [0.642; 1] [0.097; 0.699] —
#3 170 [0.002; 0.203] [0.160; 0.561] [0.039; 0.330] —
#4 196 [0.112; 0.402] [0.091; 0.385] [0.291; 0.223] —
#5 47 [0.162; 0.762] [0.129; 0.556] [0.146; 0.563] —

Number of points obtained for the dummy neck
(EURO NCAP rating)

#1 5 0 - 4 points 4 points 0 point 0 point
#2 13 4 points 0 point 0 - 4 points 0 point
#3 170 4 points 0 - 4 points 4 points 0 - 4 points
#4 196 0 - 4 points 0 - 4 points 4 points 0 - 4 points
#5 47 0 - 4 points 0 - 4 points 0 - 4 points 0 - 4 points

Table 4.5: Dummy neck, 2 proposed clusters : characteristics (passenger, Europa,
HIII 50th dummy)

Item Number of elements Neck score overall
in the cluster (minimal score between the three neck scores)

#1 420 4 points
#2 11 0 - 3,99 points

4.1.1.4/ DUMMY CHEST: CLUSTERS’ FORMATION AND EVALUATION

The procedure to form the clusters is the same as for the other dummy parts. For the
chest, only one output is considered for forming the clusters: the chest deflection. The
chest viscous criterion, which characterises the thoracic injury risk through the velocity
of deformation and the compression of the chest, is uncritical for this rating. Fig. 4.3(a)
shows the DBI values from 3 until 10 clusters.

According to the DBI, the best clustering should be with 3 clusters (lowest DBI value).
But the chest defection is a sensitive output for which it is often difficult to reach 4 points.
Moreover the range for the chest deflection is pretty small (from 22 mm to 50 mm for
the HIII 50th dummy) and a modification of a few millimetres can cause the loss of points.
This extreme sensitivity is not taken into account by the DBI method, which only evaluates
the separation and the compactness of the clusters.
In order to consider this particularity, the optimum number of clusters (10 clusters) has
been chosen by the expert knowledge, independently of the DBI values, but according
to the separation of the clusters proposed by the GK algorithm. The 10 clusters are
formed by the algorithm itself without any modifications and the clusters’ characteristics,
especially the values’ range, represent well the output’s sensitivity. Fig. 4.3(b) illustrates
the 10 clusters formed by the GK algorithm and Table 4.6 resumes the characteristics of
each cluster. This is a very good example to justify why the Mahalanobis distance was
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(a) Representation of the DBI values (b) Clustering dummy chest (10 clusters): graphical
representation

Figure 4.3: Chest combination (passenger, Europa, HIII 50th dummy)

preferred to the Euclidean distance (ellipsoidal clusters).

Table 4.6: Dummy chest, 10 clusters: characteristics (passenger, Europa, HIII 50th
dummy)

Item Number of elements Chest deflection
in the cluster

Range of values
#1 14 [45,65 mm ; 51,07 mm]
#2 26 [40,49 mm ; 45,18 mm]
#3 35 [36,08 mm ; 39,99 mm]
#4 38 [32,67 mm ; 35,56 mm]
#5 61 [30,04 mm ; 32,38 mm]
#6 76 [27,91 mm ; 29,92 mm]
#7 56 [26,10 mm ; 27,87 mm]
#8 49 [23,96 mm ; 25,96 mm]
#9 51 [21,56 mm ; 23,79 mm]

#10 29 [16,3 mm ; 21,11 mm]
Number of points obtained for the dummy chest

(EURO NCAP rating)
#1 14 0 - 0,62 points
#2 26 0,69 - 1,36 points
#3 35 1,43 - 1,99 points
#4 38 2,06 - 2,48 points
#5 61 2,52 - 2,85 points
#6 76 2,87 - 3,16 points
#7 56 3,16 - 3,41 points
#8 49 3,43 - 3,72 points
#9 51 3,74 - 4 points

#10 29 4 points

This clustering is interesting because the chest’s sensitivity is expressed by the clusters’
limits. Clusters #9 and #10 can both gather sled tests which obtained 4 points but the
value’s range of the chest deflection is different (the minimum for the cluster #9 is 21,56
mm and the highest value for the cluster #10 is 21,11 mm). 22 mm for the chest deflection
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is the limit to reach 4 points and the minimal value in the cluster #9 is 21,56 mm. It
means that only sled tests which reached the 4 points narrowly are included in this cluster.
In cluster #10 are present only sled tests with a safety margin of almost 1 mm for the
chest deflection. The clustering into smaller clusters did not regroup together the sled
tests which reached 4 points, that is why the 10 clusters proposed by the GK algorithm
have been kept such as it for studying the influence of the inputs’ parameters on the
biomechanical values.

4.1.2/ CLUSTERING FOR THE 50TH DUMMY (DRIVER SIDE)

The same procedure has been conducted on the driver side. Due to the use of the same
dummy (HIII 50th) on the driver side, the clustering procedure is similar to the passenger
side. The outputs and their limits are the same as for the passenger side (Table 4.1).
For these reasons, only the results are resumed in Table 4.7. The selected number of
the clusters for the dummy head, neck and chest are the same as for the passenger
side (because of the same reasons detailed for the passenger). Only the limits of the
clusters can differ to those for the passenger side. Because of the common availability
of a knee bag, a clustering has also been done for the dummy femurs. The graphical
representations of the clusters and their values’ repartition are indexed in Appendix D.

4.1.3/ CONCLUSION FOR THE EURO NCAP RATING CLUSTERING

For each dummy part (head, neck, chest and femurs for the driver side), the GK algorithm
and the DBI method have been applied on the data in order to find similarities between
the values and to evaluate it. The database contains 395 results for the driver side and
431 for the passenger side. Independently of the occupant side, several clusters have
been modified taking the ground truth (based on the points reached in the rating) into
account.

In fact, for the dummy head, lots of sled tests already reached the maximum of points,
and a separation of these sled tests into 2 or 3 clusters does not present any advantages
for the study of the parameters’ influence. For the dummy neck, the proposed clustering
separated sled tests which obtained the same points’ number in the rating. The clusters
have thus been modified according to the expert knowledge such that all the sled tests
with 4 points overall are gathered in the same cluster. The GK algorithm is indeed based
on the numerical values, independently of the rating score. For the chest, the GK algo-
rithm showed its potential. Despite of the non consideration of the DBI values, the values’
repartition into the clusters was very interesting and unmodified.
Table 4.7 and Table 4.8 resume the clusters on the driver and passenger sides respec-
tively that will be considered for studying the parameters’ influence. These conclusions
show that the DBI method was not be adapted to this crash test data for selecting the
clusters’ number.

4.2/ OUTPUTS’ CLUSTERING FMVSS NR.208 SLED TESTS

Because of the complexity of the U.S. legislation, a separate chapter is proposed. The
FMVSS NR.208 legislation gathers four configurations for the frontal tests. Each of these
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Table 4.7: Resume for the EURO NCAP clustering (driver, Europa, HIII 50th dummy)

Dummy part Outputs Number of clusters
Head Acceleration (3 ms) and HIC 36 4 (expert knowledge)
Neck Shear, tension and extension 2 (expert knowledge)
Chest Deflection 10

Femurs Forces (left and right) 4 (expert knowledge)

Table 4.8: Resume for the EURO NCAP clustering (passenger side)

Dummy part Outputs Number of clusters
Head Acceleration (3 ms) and HIC 36 4 (expert knowledge)
Neck Shear, tension and extension 2 (expert knowledge)
Chest Deflection 10

configurations has to be tested on the driver and the passenger sides:

q full width, velocity of 35 mph with a Hybrid III 50th Percentile dummy, belted (US

NCAP rating for the driver side);

q full width, velocity of 35 mph with a Hybrid III 5th Percentile dummy, belted (US NCAP

rating for the passenger side);

q full width, velocity of 25 mph with a Hybrid III 50th Percentile dummy, unbelted;

q full width, velocity of 25 mph with a Hybrid III 5th Percentile dummy, unbelted.

In this chapter, only the passenger side is detailed. The results for the driver side are
resumed in Section 4.2.6. Because of the future application of the CART algorithm (each
terminal node is assigned with a class), the clusters are chosen according to their pos-
sibility to be considered as class, additionally to the legislation’s requirements. It is thus
important to have clusters that can be used as class.

4.2.1/ CLUSTERING FOR THE FMVSS NR.208 LEGISLATION

The approach to form clusters with FMVSS NR.208 data is the same as for the EURO

NCAP rating. The GK algorithm enables the formation of the clusters (and determinesthe
values’ repartition into it), which are evaluated afterwards using the DBI method. It gives
an indication on the best clustering but is not decisive. The number of clusters is chosen
according to its DBI value but also according to the expert knowledge and legislation’s
requirements. It means that the customer’s and legal values’ limits play an important role
in the choice of the clusters’ number.

The biomechanical limit values for each biomechanical criterion naturally depend on the
dummy type and a comparison of the parameters between sled tests with and without
seat belts could produce wrong results. That is why four clustering have been produced
for this legislation:

q a clustering for the Hybrid III 50th Percentile dummy belted;
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q a clustering for the Hybrid III 50th Percentile dummy unbelted;

q a clustering for the Hybrid III 5th Percentile dummy belted;

q a clustering for the Hybrid III 5th Percentile dummy unbelted.

638 sled tests, including 265 with seat belt, have been selected with the Hybrid III 50th
Percentile dummy as passenger (March 2015) and 714 sled tests, including 514 with seat
belt, with the Hybrid III 5th Percentile dummy as passenger (April 2015). The data has
been collected from 2001 until 2015.

The upper limits for the biomechanical values are referenced in Table 4.9 for the Hybrid III
50th Percentile dummy and in Table 4.10 for the Hybrid III 5th Percentile dummy. For all
the cars going on the market, the biomechanical values of the occupants do not have to
excess the maximal legal values (for belted and unbelted configuration). However most
of the customers prefer to have a safety margin and impose the biomechanical values
under 80% of these legal biomechanical values.

Table 4.9: Legal and customer’s values for the Hybrid III 50th Percentile dummy
(FMVSS NR.208 legislation)

HIII 50th percentile dummy Maximal legal values Customer’s limits
FMVSS NR.208 80% of FMVSS NR.208

Head HIC 15 700 560
Neck Nte max 1 0,80

Ntf max 1 0,80
Nce max 1 0,80
Ncf max 1 0,80
Compression 4 kN 3,20 kN
Tension 4,17 kN 3,34 kN

Chest a3ms 60 g 48 g
Deflection 63 mm 50,40 mm

Femurs Force left 10 kN 8 kN
Force right 10 kN 8 kN

4.2.2/ CLUSTERING FOR THE HIII 50TH DUMMY BELTED (PASSENGER)

As for the EURO NCAP rating, clusters are formed for each dummy part in order to study
the influence of relevant parameters on it. The applied method is the same as in Chap-
ter 4.1. For this configuration (HIII 50th dummy belted), the sled test is not evaluated into
a rating. The limits are thus the legal and the customer’s limits described in Table 4.9.
The database contains 265 sled tests for this configuration. All sled test results are used
for creating the clusters. The considered dummy parts are the head, the neck, the chest
and the femurs (presence of a knee bag possible).

4.2.2.1/ DUMMY HEAD: CLUSTER’S FORMATION AND EVALUATION

The GK algorithm is applied on 265 head values (HIC 15 criterion). The DBI evaluates the
compactness and the separation of the clusters. For the FMVSS NR.208, the legislation’s
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Table 4.10: Legal and customer’s values for the Hybrid III 5th Percentile dummy
(FMVSS NR.208 legislation)

HIII 5th percentile dummy Maximal legal values Customer’s limits
FMVSS NR.208 80% of FMVSS NR.208

Head HIC 15 700 560
Neck Nte max 1 0,80

Ntf max 1 0,80
Nce max 1 0,80
Ncf max 1 0,80
Compression 2,52 kN 2,02 kN
Tension 2,62 kN 2,10 kN

Chest a3ms 60 g 48 g
Deflection 52 mm 41,60 mm

Femurs Force left 6,8 kN 5,44 kN
Force right 6,8 kN 5,44 kN

requirements specifie the values’ limits for each output. They must be first under the max-
imal values imposed by the legislation (to be authorized to sell the car in the U.S.A.) and
then under the customer’s limits (safety margin). These limits are resumed in Table 4.9
and are considered before choosing the most appropriate clusters’ number. Fig.4.4(a)
shows the DBI values from 4 until 10 clusters for the head output.
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(a) Representation of the DBI values (b) Clustering (5 clusters): graphical representation

Figure 4.4: Head combination (passenger, U.S.A., HIII 50th dummy belted)

According to Fig.4.4(a), an acceptable clustering for the 265 dummy values is between
4 and 7 clusters. The clustering with 4 clusters obtained the lowest DBI value. After
an analysis of all possible clustering, the values’ separation into 5 clusters enables an
interesting grouping of the values (Fig. 4.4(b)).
In fact, according to Table 4.11, the clusters #1, #2 and #5 regroup only values under
the customer’s requirements (80% of the legal values). Their separation into 3 clusters
enables the engineers to evaluate their development’s margin. In fact, if the head value
is located in cluster #1, any modification in the sled test could produce adverse effects,
i.e. the value can be above the 80% limit. The cluster #4 regroups the values comprised
between 80% and 112% of the legal values. However only two head values out of 37 that
are above 100% are located in this cluster, that is why this cluster is kept such as it is. All
the sled tests included in cluster #3 satisfy either customer’s or legal requirements. Their
results have to be definitely improved.
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Table 4.11: Dummy head, 5 clusters: characteristics (passenger, U.S.A., HIII 50th
dummy belted)

Item Number of elements HIC 15
in the cluster

Range of values
#1 62 [442;563]
#2 75 [335;438]
#3 8 [875 ; 1351]
#4 37 [567;787]
#5 83 [154;325]

Percentage of the legal values
FMVSS NR.208

#1 62 63% - 80%
#2 75 48% - 63%
#3 8 125% - 193%
#4 37 81% - 112%
#5 83 22% - 46%

This clustering presents 5 interesting separated clusters. The limit of the legal value
(HIC15 = 700, which corresponds to 100% of the legal value) and the limit imposed by
the customer (HIC15 = 560, which corresponds to 80% of the legal value) are very well
represented into distinct clusters. These clusters can be defined as classes for the study
on the parameters’ influence.

4.2.2.2/ DUMMY NECK: CLUSTER’S FORMATION AND EVALUATION

The GK algorithm is applied on the 265 neck results, composed of three outputs: criterion
Ni j (see Section 1.1.3.3 for more details), neck compression and neck tension. The DBI
evaluates the compactness and the separation of the clusters. As for the dummy head,
the values must not excess the legislation’s and customer’s limits (Table 4.9). These two
conditions are taken into account by evaluating the pertinence of the clusters.

For a better clustering of the neck, only the criterion Ni j is used to form the clusters
because of its predominance in neck score due to its extreme sensitivity. Fig.4.5(a) shows
the DBI values from 4 until 10 clusters for the neck output Ni j. The values of the neck
tension and compression are added after the clustering. According to Fig.4.5(a), the best
clustering for the 265 values of the dummy neck is a clustering with 4 or 5 clusters. The
4 clusters are represented in Fig. 4.5(b) and the values’ range per cluster is resumed in
Table 4.12.

This clustering presents a well separation for the Ni j values. We can remark that all the
values are under the customer’s limits (80% of the legal values). Only 1 value out of
9 (cluster #4) is comprised between 70% and 77% for the Ni j. For all 264 values, the
margin to customer’s, especially legislation’s limits, is quite enough. The neck tension
and compression have been added after the clustering and have not been considered for
the formation of the clusters, that is why the values of the neck compression and tension
are not specially well separated. This clustering with 4 clusters can be used such as
defined by the algorithm for the input classification through the decision trees method.
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(a) Representation of the DBI values (b) Clustering (4 clusters): graphical representation

Figure 4.5: Neck combination (passenger, U.S.A., HIII 50th dummy belted)

4.2.2.3/ DUMMY CHEST: CLUSTER’S FORMATION AND EVALUATION

The GK algorithm is applied on the chest values: the acceleration (3 ms) and the deflec-
tion. Fig. 4.6(a) illustrates the DBI values from 4 until 10 clusters for the chest outputs.
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(a) Representation of the DBI values (b) Clustering (4 clusters): graphical representation

Figure 4.6: Chest combination (passenger, U.S.A., HIII 50th dummy belted)

According to Fig. 4.6(a), the best clustering for the 265 dummy values is the values’
separation in 4 clusters, eventual also in 6 clusters. After analysing both possibilities, the
clustering with 4 clusters presents a better separation with respect to the requirements.
They are represented graphically in Fig. 4.6(b) and the values’ range of each cluster is
resumed in Table 4.13.

According to Table 4.13, we can first remark that all the values of the chest deflection
stand under the customer’s limits (80% of the legal values) and therefore under the legal
values. The separation of the acceleration’s values do not exactly define the customer’s
and legal requirements. Cluster #1 can gather values under and above this 80%-limit.
But they cannot excess 88% of the legal values and thus respond in any case to the
legal requirements. Cluster #2 is particularity interesting because all these values are
comprised between 75% and 99%, what corresponds approximately to the customer’s
and legal limits (80% and 100% respectively). Some sled tests are included in this cluster
even if their value is under 48 g (80% of the legal value). But it represents the practical
advantage to prevent the engineers that the margin to the customer’s requirements is
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Table 4.12: Dummy neck, 4 clusters: characteristics (passenger, U.S.A., HIII 50th
dummy belted)

Item Number of elements Ni j Neck compression Neck tension
in the cluster

Range of values
#1 121 [0,16 ; 0,26] [31 kN ; 1086 kN] [404 kN ; 1595 kN]
#2 95 [0,27 ; 0,35] [ 30 kN ; 1250 kN] [ 412 kN ; 1751 kN]
#3 40 [0,36 ; 0,47] [ 59 kN; 1243 kN] [ 389 kN ; 2080 kN]
#4 9 [0,49 ; 0,77] [ 53 kN ; 2191 kN] [ 280 kN ; 2846 kN]

Percentage of the legal values
(FMVSS NR.208)

#1 121 16% - 26% 1% - 27% 10% - 38%
#2 95 27% - 35% 1% - 31% 10% - 42%
#3 40 36% - 47% 1% - 31% 9% - 50%
#4 9 49% - 77% 1% - 55% 7% - 68%

very low. As for the cluster #4 which gathers sled tests with a value at 90% of the legal
values. Even if some tests satisfy the legal requirements, the safety of the most of them
must be completely modified to authorise the car to go on the market. Finally, the cluster
#3 is the only cluster that gathers values which respond to both customer’s and legal
requirements.

These 4 clusters can be thus kept such as it is without any modification.

4.2.2.4/ DUMMY FEMURS: CLUSTER’S FORMATION AND EVALUATION

Because the FMVSS NR.208 regulation imposes the validation of the passive systems for
four configurations (two types of dummies belted and unbelted), the kneebag is often a
non negligible support to improve the femur values for the sled tests without seat belt.
That is why the femur forces (left and right) are also considered.

According to Fig. 4.7(a), the clustering in 6 clusters gives the lowest DBI value. Their
graphical representation in Fig. 4.7(b) and the values’ repartition in Table 4.14 show a
successful clustering, even if the cluster #5 contains a value at 99% (right femur) and
96% (left femur). This value is however very far away from the other 264 values and
could comes from an error of measurement during the test. For this reason a cluster
gathering only this value does not make sense. The femurs clustering is kept such as
proposed by the GK algorithm. Moreover, a linearity’s relationship between the left and
right femurs is visible.

4.2.3/ CLUSTERING FOR THE HIII 50TH DUMMY UNBELTED (PASSENGER)

Even if the HIII 50th dummy is unbelted, it does not change the procedure to form the
clusters. That is why only the results of the clustering are resumed in this section (Ta-
ble 4.15). The curves of the DBI values and the graphical representations of the clusters
can be found in Appendix E.

*Table 4.15 : for a better clustering of the neck, only the criterion Ni j is used to form the
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Table 4.13: Dummy chest, 4 clusters: characteristics (passenger, U.S.A., HIII 50th
dummy belted)

Item Number of elements Chest acceleration Chest deflection
in the cluster (3 ms)

Range of values
#1 95 [38 g; 53 g] [ 33 mm; 47 mm]
#2 92 [45 g; 59 g] [19 mm; 35 mm]
#3 57 [30 g; 47 g] [ 20 mm; 34 mm]
#4 21 [54 g; 80 g] [ 33 mm; 44 mm]

Percentage of the legal values
(FMVSS NR.208)

#1 95 63% - 88% 53% - 74%
#2 92 75% - 99% 31% - 56%
#3 57 50% - 78% 31% - 54%
#4 21 90% - 134% 52% - 70%
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(a) Representation of the DBI values (b) Clustering (6 clusters): graphical representation

Figure 4.7: Femurs combination (passenger, U.S.A., HIII 50th dummy belted)

clusters because of its predominance in neck score due to its extreme sensitivity. The
values of the neck tension and compression are added after the clustering.

For the dummy head, the cluster #1 gathers some values that satisfy the legal require-
ments but not their of the customer. A value above 58% of the legal values for the head
is considered by the passive safety experts already as critical. That is why this cluster
has not been modified. The 3 values above 100% have been gathered together by the
GK algorithm in the same cluster (cluster #5).
For the dummy neck, one cluster (cluster #3) gathers sled tests that could be not
accepted by the customer (values until 86% for the Ni j). These sled tests are legally
acceptable. On the contrary, the cluster #4, and especially the cluster #5 regroup only
sled tests for which the criterion Ni j is very critical. The uppermost of them did not satisfy
the legal requirements.
For the chest, even if the best DBI value is obtained for 4 clusters, a values’ separation
in 6 clusters has been privileged. First of all, one cluster (cluster #1) has been created
for chest accelerations above 60 g, i.e. legally incorrect, and another one (cluster #3)
for which the value of the chest deflection is legally not acceptable (above 63 mm).
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Table 4.14: Dummy femurs, 6 clusters: characteristics (passenger, U.S.A., HIII 50th
dummy belted)

Item Number of elements Femurs forces
in the cluster Left Right

Range of values
#1 83 [699 kN - 2102 kN] [ 779 kN - 2833 kN]
#2 61 [2061 kN - 3378 kN] [ 828 kN - 2473 kN]
#3 39 [3172 kN - 5888 kN] [ 3306 kN - 5495 kN]
#4 33 [1731 kN - 3652 kN] [2600 kN - 4473 kN]
#5 18 [5132 kN - 9565 kN] [ 4461 kN - 9949 kN]
#6 31 [3397 kN - 5146 kN] [ 774 kN - 3209 kN]

Percentage of the legal values
(FMVSS NR.208)

#1 83 7% - 21% 8% - 28%
#2 61 21% - 34% 8% - 25%
#3 39 32% - 59% 33% - 55%
#4 33 17% - 37% 26% - 45%
#5 18 51% - 96% 45% - 99%
#6 31 34% - 51% 8% - 32%

The cluster #2 gathers only sled tests that satisfy the legal requirements for the chest
acceleration but not their of the customer. Some tests of the cluster #5 present the same
results. For only 14 tests out of 61 that are above 100%, it is not necessary to modify the
proposed clustering.
Finally, the GK algorithm works also well with the femurs forces. Indeed, the cluster #3
contains sled tests which did not satisfy either the customer or the legal requirements for
both femurs. In the cluster #5, only 5 values for the right femur have a value above 80%
(but under 90%, what represents a certain safety margin to the legal value). All other
clusters contain only sled tests which successful satisfy both demands.

To sum up, the GK algorithm proposed interesting clusters for this configuration even if
some of them could be eventually improved. For the chest, a clusters’ number near to the
lowest DBI value has been preferred (6 clusters instead 4).

4.2.4/ CLUSTERING FOR THE HIII 5TH DUMMY UNBELTED (PASSENGER)

The procedure for the clustering with a HIII 5th dummy unbelted is also the same as for
the HIII 50th dummy. Only the limits of the biomechanical values differ due to the use of
the HIII 5th dummy. They are referenced in Table 4.10. Only the results of the clustering
are resumed in this section (Table 4.16). The curves of the DBI values and the graphical
representations of the clusters can be found in Appendix E.

*Table 4.16: for a better clustering of the neck, only the criterion Ni j is used to form the
clusters because of its predominance in neck score due to its extreme sensitivity. The
values of the neck tension and compression are added after the clustering.

The values of the dummy head have been separated in 5 clusters, even if the lowest DBI
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value is obtained for 4 clusters. All the values except one are under the customers limit:
the maximal value is 630, what corresponds to 90% of the legal value. The clustering in
5 clusters allows the formation of one cluster that gathers this high value. Because of the
general low values of the database (the maximal values do not excess 469), it has been
preferred to gather the values into 5 clusters to separate the high value to the others. All
the values included in the database are under the legal limit of 700.
The values of the dummy neck have been gathered in 6 clusters, according to the Ni j

because of the predominance of this criterion in the neck evaluation. The GK algorithm
has been particularly powerful because both customer’s and legal limits have been
represented. In fact, the clusters #1 to #3 only regroup the Ni j values that respond
to the customer’s requirements, i.e. that are under the 80%-limit. The range of each
cluster is approximately 20%. The cluster #4 regroups only values that do not satisfy
the customer’s but the legal requirements, i.e. all values comprised between 80% and
100% of the legal values. The 14 remaining sled tests have been gathered into 2
different clusters. The first one, the cluster #5 regroups values that are until 123% of the
legal values while the cluster #6 regroups only values that are widely above the legal
requirements. These last two clusters could be combined together but it was preferred to
keep the clustering with the lowest DBI value. This clustering gives also an indication to
the engineers about the improvements of the restraint systems that have to be achieved.
The number of clusters has been also chosen according to the DBI values for the chest
outputs. First of all, we can remark that the deflection values do not excess 44% of the
legal values, what satisfies widely the customer’s requirements. Clusters #1, #3, #4, #5,
#7 and #8 fan out almost equitably out 162 of 199 values. All these values satisfy the
customer’s limits for both outputs (acceleration and deflection). The cluster #2 contains
acceleration values between 69% and 98%. It means that some values that satisfy
the customer’s requirements are regrouped together with values that do not satisfy it.
Because only 25 values are under the 80%-limit, this cluster is kept such as it. Finally,
the cluster #6 is very similar as the cluster #2 but differs with the values’ range of the
chest deflection.
As for the head, the clustering in 5 clusters for the femurs outputs was preferred to
4 clusters, despite the DBI value. It help at forming a cluster, the cluster #3 that
only regroups values above the customer’s limit for the left femur and above the legal
requirements for the right femur. The cluster #1 also contains values that are above the
customer’s limit but all these values for left and right femurs stand under the legal values
(maximal value : right femur at 6460 N). The remaining 146 values are apportioned
between the clusters #1, #2 and #4.

To sum up, the clustering proposed by the GK algorithm does not have been modified.
For the dummy head and femurs, a number of clusters different of the lowest DBI value
has been chosen in order to have a cluster that regroups the values above the customer’s
limits (80% of the legal values).

4.2.5/ CLUSTERING FOR THE HIII 5TH DUMMY BELTED (US NCAP RATING,
PASSENGER)

The test configuration with a HIII 5th dummy belted on the passenger side is also used for
the US NCAP rating according to the FMVSS NR.208 legislation. It means that the sled test
does not have to excess the customer’s and legal values (Table 4.10) but additionally the
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dummy biomechanical values must be as low as possible to improve the number of stars
(see Section 1.1.2.2). That is why it is important in this case to produce many clusters
for each output’s combination. For this reason, the DBI values have been estimated from
6 to 15 clusters. The procedure for the clustering performed on 169 sled tests stays
unchanged that is why only the results are presented in this section (Table 4.17). The
curves of the DBI values and the graphical representations of the clusters can be found
in Appendix E.

*Table 4.17: for a better clustering of the neck, only the criterion Ni j is used to form the
clusters because of its predominance in neck score due to its extreme sensitivity. The
values of the neck tension and compression are added after the clustering.

**Table 4.17 : only the chest defection is considered for the calculation of the US NCAP

rating score. However, as the chest deflection, the acceleration values have to satisfy the
customer’s and legal limits (80% and 100% respectively). That is why the clusters have
been first created by taking only the values of the chest deflection into consideration and
then their of the acceleration have directly been incorporated in the clusters.

The values of the dummy head have been separated in 7 clusters by the GK algorithm,
according to its DBI value. The cluster #3 and #4 contain sled tests which mainly do not
satisfy the legal requirements. Only 15 sled tests included in cluster #4 respond to the
legal conditions. The other 5 clusters contain sled tests which respond to both customer’s
and legal condition, even if the cluster #1 contains 2 values above this 80%-limit (but
under 84%, what stays acceptable). A clustering into more clusters did not gather the
values above the 80%-limit in the same group.
The procedure for the clustering of the neck values is the same as for the other FMVSS

NR.208 configurations. It means that the clusters have been formed with only the criterion
Ni j due to its influence on the neck score results. 6 clusters have been formed. The cluster
#6 does satisfy either the customer’s or the legal requirements. The cluster #5 could be
eventual improved because it gathers values between 69% and 102%. It means that this
cluster regroups sled tests that respond to both conditions, sled tests that respond to the
customer’s requirements but also sled tests that do not satisfy both conditions (maximal
value at 102% of the legal value). Sohr [49] prescribes that for reaching the 5 stars on
the passenger side, the values for the criterion Ni j should be under 0,3, i.e. under 30%
of the legal value. The engineers are thus more focused on values under 50% of the
legal values, what is confirmed here: 433 values out of 514 stand under 50%. Thus it
is not essential to separate the cluster #5 into two distinct groups. The clusters #1 to #4
gather the remaining values, from 19% to 67% with the mainly results contained in the
clusters #1 to #3. The proposed clustering responds well to the exigences of this critical
load criterion.
Concerning the chest outputs, the clustering has been done only with the values of the
chest deflection. As explained in Section 1.1.2.2, the chest acceleration is not taken into
account for the rating calculation. However, this criterion must respond to the customer’s
and legal requirements. That is why for the chest, only the value of the chest deflection
has to be improved. The lowest DBI value is obtained for 9 clusters. First of all, we can
remark that all the values for the chest deflection are under the 80%-limit. The values
are separated in 9 clusters and the maximal range for a cluster is 4% of the legal value,
what corresponds to 2,1 mm. This restricted range allows the engineers to evaluate the
modification of the rating score by changing an input parameter more precisely. The
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values of the chest acceleration have been added after the clustering, that is why these
values are not well separated. In any case, only 44% of the values are under the limit
of 80% and 52% of the values are comprised between 80 and 100% of the legal values.
The rating is one of the challenges for the engineers and for this reason, the clustering
on the chest deflection in 9 clusters is privileged and kept such as it is.
Finally, the GK algorithm provided an interesting clustering of the right and left femur
values into 6 clusters. Only a value for the left femur has been measured above 5,44 kN,
that is why an additional cluster for this value is not necessary.

To sum up, the clusters have been formed according to the lowest DBI value for each
dummy part. Because of their influence on the rating in comparison with other dummy
part criteria, the clustering for the neck and for the chest have been created with only one
output, the criterion Ni j and the deflection respectively. The choice of a higher number
of clusters (6 to 15 clusters) in comparison with the other FMVSS NR.208 configurations
enables to have clusters with a limited range of values and thus have a better precision
for the rating score.

4.2.6/ CLUSTERING ON THE DRIVER SIDE

The method is similar for the driver side: the GK algorithm allows the formation of the
clusters that are evaluated through the DBI method. Only the results of the clustering are
thus presented in this section. Moreover, we will see in Chapter 5 that not enough sled
tests on the driver side have been conducted to enable the study of the input parameters’
influence.

769 sled tests, including 438 with seat belt, have been selected with the Hybrid III 50th
Percentile dummy as driver (March 2015) and 475 sled tests, including 282 with seat
belt, with the Hybrid III 5th Percentile dummy as driver (April 2015). The data has been
collected from 2001 until 2015.

The upper limits for the biomechanical values are the same as the passenger and are
referenced in Table 4.9 for the Hybrid III 50th Percentile dummy and in Table 4.10 for the
Hybrid III 5th Percentile dummy.

The DBI curves and graphical representations of the clusters can be found in Appendix F.
As for the passenger side, only the sensible criterion Ni j has been taken into account for
a better clustering of the neck outputs (Ni j, tension and compression). The values of
the neck tension and compression have been added after the clustering and must also
respond to the customer’s and legal conditions.

However, the US NCAP rating imposes the Hybrid III 50th Percentile belted dummy on the
driver side. Therefore the clustering has to be performed with a large number of clusters
(improvement of the biomechanical values). It means that for the chest, the clustering
is based on the values of the deflection because only this criterion is considered in the
rating score. However the chest acceleration must respond to the customer’s and legal
requirements.

HIII 5th dummy, belted and unbelted

Table 4.18 resumes the clustering for the HIII 5th dummy belted and Table 4.19 for the
HIII 5th dummy unbelted. For both clustering, the DBI values have been calculated from
4 to 10 clusters. For the dummy head and chest (HIII 5th dummy belted), it has been
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decided to form an additional cluster in order to separate better the values.

*Table 4.18 and Table 4.19: for a better clustering of the neck, only the criterion Ni j is
used to form the clusters because of its predominance in neck score due to its extreme
sensitivity. The values of the neck tension and compression are added after the clustering.

HIII 50th dummy, belted and unbelted

Table 4.20 resumes the clustering for the HIII 50th dummy belted. For the driver side, it
corresponds to the rating. It means that the number of clusters has to be higher as for
the legislation in order to improve the rating score. That is why the DBI values have been
calculated from 6 to 15 clusters.

Table 4.21 resumes the clustering for the HIII 50th unbelted dummy. The DBI values have
been calculated from 4 to 10 clusters.

*Table 4.20 and Table 4.21: for a better clustering of the neck, only the criterion Ni j is
used to form the clusters because of its predominance in neck score due to its extreme
sensitivity. The values of the neck tension and compression are added after the clustering.

4.3/ OVERVIEW OF THE CLUSTERING RESULTS

The GK algorithm and the DBI method have been applied on data coming from EURO

NCAP rating and FMVSS NR.208 sled tests (including US NCAP rating), respectively to form
the clusters and to evaluate its compactness and separation. In some cases the clusters
needed to be adapted in order to take the expert knowledge (rating requirements, sen-
sibility of some outputs) into account. Table 4.22 resumes the cases where the clusters
have been kept such as given by the GK algorithm or not.

As we can see in Table 4.22, the GK algorithm is not well adapted for the collected EURO

NCAP data. Only one dummy is evaluated for both sides, the HIII 50th dummy, that is
a significant advantage in comparison with the FMVSS NR.208 legislation. As explained
in Section 1.1.2.1, each dummy part can receive until 4 points and the rating score is
the sum of each dummy region’s score. For the dummy head, neck and femurs (only
on the driver side), more than 80% of the sled tests already became 4 points, that is
why a clustering based on the expert knowledge and rating results is preferred to them
proposed by the GK algorithm. However, because of the difficulty for the engineers to
reach 4 points for the chest, the panel of the available chest values is more extended and
the clusters formed by the GK algorithm (by choosing the clusters’ number independently
of the lowest DBI value) are already well separated and usable. Many clusters’ numbers
have been tested and the number of 10 clusters proposed the best separation for both
occupant sides.

Concerning the results obtained for the U.S. legislation, as described in Section 1.1.2.2,
the restraint systems of a vehicle have to work with two types of dummies (HIII 50th
and HIII 5th dummies), with and without seat belt. For these four configurations, the
biomechanical values have to be under the limits defined by the legislation but also under
the customer’s requirements, that impose that the biomechanical values do not have to
excess 80% of the legal values (margin safety). The configuration HIII 50th dummy on
the driver side and HIII 5th dummy on the passenger side is the official configuration for
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the U.S. rating, that is why, the dummy biomechanical values for this configuration have to
be additionally to the requirements, as low as possible to reach the best possible score in
the US NCAP rating. The score calculation for this rating is also a little bit more complex as
for the EURO NCAP rating (estimation of the probability for each dummy part). For these
reasons, the DBI values have been calculated from 4 to 10 clusters for the legislation and
from 6 to 15 clusters for the rating. Because of the influence of the criterion Ni j in the
neck score calculation and of the chest deflection in the chest score calculation (only for
the rating), the clusters have been first formed with only these values. Finally, according
to Table 4.22, the GK algorithm works very well for the FMVSS NR.208 legislation and
rating, presumably because of a larger scattering of the data. The DBI values have not
been taken into account for some cases, but once the clusters’ number has been defined,
the GK proved its potential (the proposed clusters have not been modified).

To sum up, the GK algorithm is useful for data with a high scattering, as for the U.S.
database. Due to the good and similar results of the EURO NCAP sled tests included in
the database (restricted range of values), it is then more complicated for the algorithm to
form its clusters. The clusters for this rating had to be often reformed taking the obtained
score into account.

The Variational Bayesian methods could be also an alternative to the clustering and would
enable add some conditions (or a priori), such as the limits of the biomechanical values
which depend on the legislation. The publications of Sutton-Charani et al. [69] [74] on
decision trees with uncertain data could be very useful to develop new algorithms with
the actual database.
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Table 4.15: Clustering for each dummy part (passenger, U.S.A., HIII 50th dummy
unbelted)

Dummy Outputs Number Elements Percentage of the legal values
part of clusters in the clusters (FMVSS NR.208)
Head HIC 15 5 #1 (25 tests) 58% - 92%

#2 (144 tests) 6% - 23%
#3 (133 tests) 23% - 38%
#4 (63 tests) 39% - 57%
#5 (3 tests) 130% - 135%

Neck* Ni j, tension 5 #1 (124 tests) 13% - 37%, 3% - 49% and 3% - 52%
and compression #2 (137 tests) 38% - 55%, 5% - 60% and 5% - 66%

#3 (81 tests) 56% - 86%, 12% - 94% and 3% - 46%
#4 (30 tests) 89% - 145%, 12% - 133% and 3% - 66%
#5 (1 test) 214% , 87% and 42%

Chest Acceleration (3ms) 6 #1 (1 test) 242% and 28%
and deflection (lowest #2 (98 tests) 48% - 95% and 26% - 63%

DBI: 4) #3 (1 test) 58% and 130%
#4 (120 tests) 61% - 85% and 4% - 25%
#5 (61 tests) 83% - 110% and 12% - 33%
#6 (92 tests) 38% - 66% and 10% - 30%

Femurs Forces 6 #1 (87 tests) 21% - 44% and 19% - 50%
(left and right) #2 (93 tests) 32% - 58% and 51% - 77%

#3 (30 tests) 75% - 113% and 72% - 111%
#4 (99 tests) 38% - 67% and 35% - 53%
#5 (55 tests) 54% - 79% and 52% - 90%
#6 (4 tests) 2% - 6% and 2% - 20%
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Table 4.16: Clustering for each dummy part (passenger, U.S.A., HIII 5th dummy
unbelted)

Dummy Outputs Number Elements Percentage of the legal values
part of clusters in the clusters (FMVSS NR.208)
Head HIC 15 5 #1 (74 tests) 2% - 16%

(lowest #2 (332 tests) 16% - 29%
DBI: 4) #3 (53 tests) 29% - 47%

#4 (9 tests) 50% - 67%
#5 (1 test) 90%

Neck* Ni j, tension 6* #1 (36 tests) 19% - 46%, 1% - 48% and 10% - 53%
and compression #2 (39 tests) 48% - 63%, 8% - 47% and 8% - 44%

#3 (58 tests) 64% - 79%, 9% - 125% and 6% - 68%
#4 (53 tests) 80% - 99%, 28% - 82% and 8% - 86%
#5 (10 tests) 101% - 123%, 7% - 85% and 8% - 119%
#6 (4 tests) 165% - 219%, 9% - 286% and 13% - 269%

Chest Acceleration (3 ms) 8 #1 (2 tests) 27% - 37% and 31% - 39%
and deflection #2 (29 tests) 69% - 98% and 19% - 33%

#3 (47 tests) 48% - 61% and 15% - 28%
#4 (15 tests) 54% - 74% and 27% - 44%
#5 (18 tests) 65% - 79% and 0% - 12%
#6 (8 tests) 78% - 92% and 4% - 17%
#7 (34 tests) 42% - 60% and 1% - 18%
#8 (46 tests) 59% - 74% and 12% - 25%

Femurs Forces 5 #1 (52 tests) 47% - 88% and 62% - 95%
(left and right) (lowest #2 (39 tests) 32% - 55% and 47% - 71%

DBI: 4) #3 (2 tests) 95% - 101% and 99% - 126%
#4 (59 tests) 1% - 52% and 2% - 56%
#5 (48 tests) 50% - 80% and 44% - 62%
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Table 4.17: Clustering for each dummy part (passenger, U.S.A., HIII 5th dummy
belted, US NCAP rating)

Dummy Outputs Number Elements Percentage of the legal values
part of clusters in the clusters (FMVSS NR.208)
Head HIC 15 7 #1 (54 tests) 61% - 84%

#2 (81 tests) 47% - 61%
#3 (7 tests) 125% - 172%
#4 (27 tests) 87% - 120%
#5 (83 tests) 11% - 25%
#6 (142 tests) 25% - 36%
#7 (120 tests) 36% - 46%

Neck Ni j, tension 6* #1 (151 tests) 19%- 35%, 1%- 31% and 13%- 68%
and compression #2 (169 tests) 36%- 43%, 1%- 37% and 15%- 77%

#3 (113 tests) 44%- 52%, 2%- 43% and 14%- 54%
#4 (61 tests) 53%- 67%, 3%- 50% and 15%- 78%
#5 (17 tests) 69%- 102%, 2%- 65% and 10%- 61%
#6 (3 tests) 123%- 154%, 22%- 71% and 19%- 57%

Chest Acceleration 9** #1 (50 tests) 48% - 100% and 26% - 33%
(3 ms) and #2 (76 tests) 57% - 120% and 34% - 38%
deflection #3 (62 tests) 61% - 101% and 38% - 43%

#4 (60 tests) 56% - 112% and 43% - 48%
#5 (74 tests) 55% - 118% and 48% - 52%
#6 (85 tests) 58% - 109% and 52% - 56%
#7 (61 tests) 61% - 106% and 57% - 61%
#8 (38 tests) 73% - 109% and 62% - 69%
#9 (8 tests) 74% - 103% and 72% - 80%

Femurs Forces 6 #1 (64 tests) 35% - 67% and 11% - 44%
(left and right) #2 (16 tests) 46% - 93% and 46% - 73%

#3 (43 tests) 20% - 44% and 36% - 66%
#4 (69 tests) 25% - 48% and 8% - 26%
#5 (156 tests) 17% - 35% and 21% - 36%
#6 (166 tests) 0% - 24% and 7% - 32%
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Table 4.18: Clustering for each dummy part (driver, U.S.A., HIII 5th dummy belted)

Dummy Outputs Number Elements Percentage of
part of clusters in the clusters the legal values

(FMVSS NR.208)
Head HIC 15 5 #1 (23 tests) 55% - 88%

(lowest #2 (46 tests) 37% - 53%
DBI: 4) #3 (96 tests) 10% - 24%

#4 (3 tests) 109% - 157%
#5 (114 tests) 24% - 36%

Neck Ni j, tension 4 #1 (130 tests) 23%- 45%, 2%- 27% and 28%- 65%
and compression* #2 (99 tests) 45%- 65%, 2%- 39% and 34 %- 78%

#3 (50 tests) 66%- 105%, 2%- 32% and 43%- 90%
#4 (3 tests) 128%- 167%, 8%- 28% and 72%- 96%

Chest Acceleration (3 ms) 5 #1 (83 tests) 83% - 103% and 36% - 57%
and deflection (lowest #2 (26 tests) 97% - 131% and 52% - 76%

DBI: 4) #3 (42 tests) 70% - 94% and 58% - 75%
#4 (48 tests) 59% - 82% and 35% - 50%
#5 (83 tests) 60% - 88% and 49% - 63%

Femurs Forces 6 #1 (18 tests) 12% - 33% and 16% - 26%
(left and right) #2 (28 tests) 2% - 16% and 10% - 22%

#3 (24 tests) 29% - 52% and 1% - 16%
#4 (35 tests) 12% - 30% and 8% - 15%
#5 (102 tests) 2% - 13% and 1% - 10%
#6 (75 tests) 14% - 33% and 1% - 8%

Table 4.19: Clustering for each dummy part (driver, U.S.A., HIII 5th dummy un-
belted)

Dummy Outputs Number Elements Percentage of
part of clusters in the clusters the legal values

(FMVSS NR.208)
Head HIC 15 4 #1 (53 tests) 11% - 18%

#2 (14 tests) 29% - 46%
#3 (35 tests) 19% - 28%
#4 (91 tests) 3% - 11%

Neck Ni j, tension 4 #1 (99 tests) 12%- 37%, 1%- 34% and 12%- 58%
and compression* #2 (52 tests) 38%- 55%, 2%- 62% and 21%- 58%

#3 (26 tests) 60%- 85%, 1%- 78% and 31%- 86%
#4 (16 tests) 87%- 142%, 4%- 122% and 30%- 75%

Chest Acceleration (3 ms) 7 #1 (16 tests) 47% - 68% and 51% - 90%
and deflection #2 (47 tests) 52% - 63% and 16% - 48%

#3 (30 tests) 69% - 83% and 53% - 83%
#4 (7 tests) 89% - 110% and 62% - 93%
#5 (32 tests) 62% - 83% and 24% - 51%
#6 (50 tests) 28% - 52% and 11% - 37%
#7 (11 tests) 66% - 83% and 91% - 117%

Femurs Forces 4 #1 (66 tests) 19% - 69% and 36% - 87%
(left and right) #2 (34 tests) 60% - 100% and 49% - 86%

#3 (88 tests) 6% - 56% and 7% - 53%
#4 (5 tests) 90% - 125% and 101% - 120%
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Table 4.20: Clustering for each dummy part (driver, U.S.A., HIII 50th dummy belted,
US NCAP rating)

Dummy Outputs Number Elements Percentage of
part of clusters in the clusters the legal values

(FMVSS NR.208)
Head HIC 15 7 #1 (92 tests) 42% - 55%

#2 (4 tests) 130% - 159%
#3 (95 tests) 13% - 31%
#4 (75 tests) 55% - 71%
#5 (11 tests) 96% - 124%
#6 (110 tests) 31% - 42%
#7 (51 tests) 72% - 94%

Neck Ni j, tension 6 #1 (59 tests) 15%- 26%, 1%- 19% and 13%- 41%
and compression* #2 (150 tests) 27%- 32%, 0%- 35% and 12%- 41%

#3 (135 tests) 33%- 38%, 1%- 49% and 14%- 50%
#4 (67 tests) 38%- 47%, 1%- 30% and 16%- 66%
#5 (19 tests) 50%- 65%, 1%- 33% and 46%- 93%
#6 (8 tests) 77%- 86%, 2%- 63% and 18%- 74%

Chest Acceleration (3 ms) 12 #1 (54 tests) 67% - 82% and 27% - 42%
and deflection #2 (3 tests) 86% - 100% and 56% - 67%

#3 (58 tests) 86% - 97% and 44% - 54%
#4 (1 test) 140% and 96%
#5 (56 tests) 76% - 86% and 40% - 51%
#6 (39 tests) 47% - 75% and 36% - 47%
#7 (29 tests) 68% - 80% and 57% - 72%
#8 (32 tests) 79% - 87% and 62% - 78%
#9 (28 tests) 82% - 95% and 28% - 44%
#10 (37 tests) 67% - 78% and 45% - 57%
#11 (56 tests) 77% - 87% and 51% - 61%
#12 (13 tests) 99% - 122% and 36% - 64%

Femurs Forces 6 #1 (49test) 43% - 68% and 51% - 82%
(left and right) #2 (230 tests) 7% - 23% and 8% - 31%

#3 (23 tests) 14% - 30% and 35% - 67%
#4 (136 tests) 18% - 37% and 10% - 38%
#5 (38 tests) 32% - 55% and 21% - 60%
#6 (2 tests) 11% - 17% and 109% - 137%
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Table 4.21: Clustering for each dummy part (driver, U.S.A., HIII 50th dummy un-
belted)

Dummy Outputs Number Elements Percentage of
part of clusters in the clusters the legal values

(FMVSS NR.208)
Head HIC 15 4 #1 (15 tests) 44% - 80%

#2 (110 tests) 16% - 27%
#3 (147 tests) 5% - 16%
#3 (59 tests) 27% - 41%

Neck Ni j, tension 4 #1 (153 tests) 17%- 34%, 1%- 47% and 4%- 49%
and compression* #2 (112 tests) 35%- 49%, 1%- 60% and 5%- 67%

#3 (47 tests) 50%- 73%, 2%- 107% and 2%- 81%
#4 (19 tests) 76%- 117%, 7%- 130% and 2%- 83%

Chest Acceleration (3 ms) 5 #1 (127 tests) 60% - 85% and 15% - 53%
and deflection (lowest #2 (93 tests) 62% - 87% and 53% - 91%

DBI: 4) #3 (66 tests) 36% - 59% and 9% - 56%
#4 (38 tests) 78% - 99% and 25% - 73%
#5 (7 tests) 57% - 113% and 49% - 121%

Femurs Forces 8 #1 (69 tests) 33% - 54% and 23% - 43%
(left and right) (lowest #2 (83 tests) 7% - 38% and 17% - 41%

DBI: 4) #3 (12 tests) 39% - 79% and 81% - 102%
#4 (36 tests) 51% - 74% and 28% - 55%
#5 (44 tests) 26% - 51% and 44% - 70%
#6 (38 tests) 49% - 71% and 56% - 77%
#7 (22 tests) 84% - 110% and 87% - 113%
#8 (27 tests) 78% - 102% and 61% - 88%
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Table 4.22: Resume of the use of the clusters given by the GK algorithm according
to the dummy part and sled test configuration

Lowest DBI Clusters given by the
Legislation Configuration Dummy part value taken GK algorithm

into account taken as proposed

Driver HIII 50%

Head × ×

Neck × ×

Chest × X
Euro NCAP Femur × ×

rating

Passenger HIII 50%

Head × ×

Neck × ×

Chest × X
Femur — —

FMVSS Nr.208

Driver HIII 5%
Head × X

legislation

with seat belt
Neck X (just Ni j) X (based on Ni j clusters)
Chest × X
Femur X X

Driver HIII 50% Head X X

with seat belt Neck X (just Ni j) X (based on Ni j clusters)

(US NCAP rating) Chest X X
Femur X X

Driver HIII 5%
Head X X

without seat belt
Neck X (just Ni j) X (based on Ni j clusters)
Chest X X
Femur X X

Driver HIII 50%
Head X X

without seat belt
Neck X (just Ni j) X (based on Ni j clusters)
Chest × X
Femur × X

Passenger HIII 50%
Head × X

with seat belt
Neck X (just Ni j) X (based on Ni j clusters)
Chest X X
Femur X X

Passenger HIII 5% Head X X

with seat belt Neck X (just Ni j) X (based on Ni j clusters)

(US NCAP rating) Chest X X
Femur X X

Passenger HIII 50%
Head X X

without seat belt
Neck X (just Ni j) X (based on Ni j clusters)
Chest × X
Femur X X

Passenger HIII 5%
Head × X

without seat belt
Neck X (just Ni j) X (based on Ni j clusters)
Chest X X
Femur × X



5
PARAMETERS’ INFLUENCE THROUGH

DECISION TREES

The study of the parameters’ influence involves the output’s clustering detailed in Chap-
ter 4.1 for the EURO NCAP rating and in Chapter 4.2 for the FMVSS NR.208 legislation

and US NCAP rating. The relationships between the input parameters and the clustered
dummy biomechanical values are modeled with the help of the CART algorithm. As
presented in Chapter 2.2 Section 2.2.3.2, the classification and regression trees are su-
pervised methods that are widely employed in many scientific domains. The fact that the
target of the tree is here the clusters, i.e. categorical variables, imposes to build a classi-
fication tree.
This chapter aims at presenting a method that enables to understand the relationships be-
tween the input parameters and the dummy biomechanical values. Because of a reduced
number of available data for the driver side, the study is focused on the passenger side,
especially on the EURO NCAP and US NCAP ratings, in which the engineers are mostly
interesting.

5.1/ DATA DESCRIPTION AND METHODOLOGY

The crash database contains the same data and information as the database created for
the k-NN classification, detailed in Chapter 3.1 Section 3.1.1, especially through Table 3.1
that references the selected input parameters and Table 3.2 that sums up the number of
available sled tests for each configuration.
For each sled test, 46 attributes describe the restraint systems, the position of the pas-
senger in the vehicle and the car characteristics. The step ”pre-processing” of the KDD
process is afresh applied on these 46 attributes in order to select those used for building
the trees. In fact, even if the database does not contain missing data anymore, some at-
tributes are not necessarily defined for all sled tests. For example, some sled tests do not
have a buckle pretensioner and thus this parameter is declared as undefined and cannot
be supported by the CART algorithm. By deleting these variables, the new database in-
cludes 27 parameters used as the predictors variables (Table 5.1). The data also includes
information about the injury severity level for each dummy part by means of the clusters
representing the target variable (Table 5.2). Table 5.3 presents the color code that is here
used for describing the clusters.

89
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Table 5.1: Data description

Variables Symbol Type Description
Clusters LEVEL Qualitative Target variable
Type of airbag PAB Qualitative 1:L-shape; 2:Square-shape; 3: 3D Add-On; 4:3D-

shape; 5:Other
Divided panel DP Qualitative 0:No;1:Yes
Volume VOL Continuous Volume of the airbag
Number of holes Num-VH Qualitative 0:unknown or zero; 1:one; 2:two
Hole diameter 1 H-diam1 Continuous Diameter of the vent hole
Active bag vent ABV Qualitative 0:No; 1:Yes
Tether 1 Tether-1 Qualitative 0:No; 1:Yes
Tether 2 Tether-2 Qualitative 0:No; 1:Yes
Number of stages Num TTF Qualitative 0:unknown or zero;1:one;2:two
TTF S1 TTF-S1 Continuous Time of trigger of the airbag in ms
TTF S2 TTF-S2 Continuous Time of trigger of the airbag in ms
Type of load limiter LL Qualitative 1:constant; 2:degressive; 3:regressive; 4:switchable
Load limiter value 1 LL-V1 Continuous Value of the load in kN
Retractor pretensioner RP Qualitative 0:No; 1:Yes
Buckle pretensioner BP Qualitative 0:No; 1:Yes
Anchor point pretensioner AP Qualitative 0:No; 1:Yes
Webbing on spool WB Continuous Value webbing on spool in mm
Height adjustment H-Adj Qualitative 0:No; 1:Yes
Dynamic locking tongue DLT Qualitative 0:No; 1:Yes
Kneebag KnAB Qualitative 0:No; 1:Yes
Chin to IP P1 Continuous Distance between the chin and the IP
Sternum to IP P2 Continuous Distance between the sternum and the IP
Left knee shorter distance
ahead

P3 Continuous Distance between the left knee and the IP

Right knee shorter dis-
tance ahead

P4 Continuous Distance between the right knee and the IP

OLC/OLC++ OLC/OLC++ Continuous Characteristic of the hardness of the pulse
Time velocity at 0 m/s Tv0 Continuous Value of time when velocity = 0 m/s
Dummy temperature T Continuous Temperature of the dummy

Table 5.2: Target variable: reminder of the clusters’ number

Rating Number of clusters per dummy part
Head Neck Chest Femur

Euro NCAP 4 2 10 —
US NCAP 7 6 9 6

Table 5.3: Target definition (color code)

Percentage of the legal values
≤ 80% [80 ; 100%] ≥ 100%

No-
injury ... ... ... Injury ... ... ... ... Fatal-

injury
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5.2/ EURO NCAP RATING: ANALYSIS OF THE DUMMY CHEST

Analysis of the clusters’ material

According to the database, the dummy head and neck are uncritical dummy parts (see
Chapter 4.1). The dummy chest is the most sensitive part and for this reason, the en-
gineers are generally only focused on this part. In this section, the case of the chest is
discussed and the decision trees for the other dummy parts can be found in Appendix G.
Table 5.4 presents the distribution of the input parameters into the 10 clusters. It gives an
indication about the parameters that are more present in a specific cluster.
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According to Table 5.4, some trends about inputs parameters distributed into specific
clusters enable to have a first indication about their importance for the dummy chest.
Concerning the passenger airbag (PAB), all the studied 140 sled tests with a 3D-shape
PAB are located either in cluster #9 or in cluster #10, which correspond to the best clusters
according to their values for the chest deflection. Having the new 3D Add-On form seems
to be rather a disadvantage for this test configuration because no one of the sled tests
equipped with this type of airbag obtained a deflection value under 30,04 mm. In the aim
of reaching 4 points in the EURO NCAP rating, the clusters #9 and #10, possibly #8 are
the most appropriated. For that, having a PAB with a volume comprised between 101
and 110 L is an advantage because the available sled tests having such as a volume are
all included in cluster #9. More interestingly, a cold gas inflator, which is not the most
popular type of inflator, seems to have a positive effect on the chest deflection because
the values of the sled tests having this atypical inflator are located either in cluster #9 or
in cluster #10.

Regarding the seat belt, for the sled tests having a DLL that produces a force on the
dummy chest comprised between 4.6 kN and 5.5 kN, the value of the chest deflection
is more located in the middle of the values’ range, i.e. from cluster #4 to cluster #6.
Additionally, the analysis of these sled tests shows that a reduced webbing on spool
(value <750 mm) produces good results because located in clusters #7 and #8. However
if this length increases, it does not mean that the value of the chest deflection is degraded:
no conclusions can be drawn from the available data. In theory, the length of the webbing
on spool is directly linked with the dummy chest: the longer the webbing on spool is, the
lower the shoulder force should be. In fact, the longer the webbing on spool is, the lower
force is needed to turn the torsion bar of the seat belt.

Moreover, the dummy position also does not give information. As shown in Table 5.4,
many EURO NCAP sled tests already have a similar dummy position, and the restricted
values’ range does not enable a correct analysis of this parameter. In any case, it is
difficult for the engineers to influence or alter this parameter because the dummy position
is defined by the legislation.

Finally, the repartition of the Occupant Load Criterion (OLC) shows that if its value is
above 28 g, which is already considered as ”hard pulse”’ by the experts, the sled tests
cannot pretend to the 4 points for the dummy chest. This parameter is directly linked to
the vehicle type and cannot be easily altered by the engineers.
This first analysis of the values’ repartition into the clusters enables to discover the trends
of decisive parameters. It is supported by the decision tree1 using the Gini Index as split
criterion, represented in Fig. 5.1.

1Shifted values to avoid representing a real case
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Analysis of the variables’ links via decision tree

An analysis of the tree (Fig 5.1) firstly shows that all the clusters are not represented as
terminal nodes and logically the clusters containing the most number of sled tests are the
most represented (i.e. clusters #8 to #10). The first conclusion that can be drawn from
this decision tree is the influence of the time to fire of the PAB first stage. As a reminder,
it corresponds to the time at which the inflator is triggered. The inflator is mainly triggered
in 2 times to share out the whole power and thus to avoid the dummy receiving a too high
pressure in one time. In fact, a value above 39.5 ms immediately produces a very not
satisfying result for the chest deflection : if the inflator is triggered too late, the dummy
comes in contact with the airbag when it is deploying. During this deployment, it directly
presses on the dummy chest that becomes the whole power proposed by the inflator,
which involves a high value for the deflection.

The left branch of the decision tree gathers 26 out of 27 terminal nodes. It means that
if the triggering of the first PAB stage is under 39.5 ms, more parameters are necessary
to predict the chest value and thus that this parameters is not really relevant in defining
the chest deflection (it is not frequent that the first stage is triggered below 39.5 ms). The
best results can be obtained according to a combination of different parameters but the
dummy temperature and its position mainly have an importance in attributing the cluster.
For these two parameters, the engineers do not have a real impact because they are
defined by the legislation and must be respected. To reach the two best clusters (#9 and
#10), 9 combinations are available. The simple way to reach a very good value for the
chest deflection (cluster #9) is an earlier TTF for the first stage (TTF <39.5 ms), a volume
for the airbag under 112,5 L, a dummy temperature under 22,05 ◦C and finally a distance
between the right knee and the IP above 149 mm.
To sum up, according to the decision tree, the parameters that mostly influence the value
of the chest deflection in a EURO NCAP sled test would be:

q Time to fire of the first stage (PAB inflator);

q Volume of the PAB;

q Dummy position, especially the distance knee / IP;

q Dummy temperature (its range is defined by the legislation).

The decision tree is supported by the calculation of the Variable Importance Measure
(VIM). The higher this measure is, the more is the influence of the corresponding criterion
on the tree. This interpretation of the decision tree is thus confirmed by the VIM values
(Table 5.5): the parameter ”TTF PAB first stage” receives the highest value, followed by
the dummy temperature and two dummy positions.

Once the decision tree is built, even if the parameters extracted as influencing the chest
deflection are confirmed with the calculation of the VIM, the model has to be validated.
As done before, the LOOCV method is applied. This method has been already employed
to validate several algorithms (see Chapter 3.2): it takes one sample as validation sample
and the (k-1) samples as training set, this operation is repeated k times. The results of
the validation are summarised in Table 5.6.

The model is encouraging because 37% of the results have been correctly predicted in
the right cluster; it practically means that the model is able to estimate the chest deflection
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correctly. It is interesting to point out that each cluster for the chest has a values’ range of
approximately 2 mm. Also during a repeated sled test, it is possible that the chest value
swings between 1 and 3 mm. That is why the percentage of good predicted results has
been also calculated if the value has been estimated in the cluster ”before” or ”after” the
right cluster. With this condition, the percentage of right predicted values increases to
68%.
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Finally, the analysis of the decision tree shows that the time to fire of the ”PAB first stage”
plays an important role in determining the value of the chest deflection. Moreover, the
seat belt’s parameters are not so decisive as those of the PAB or dummy position. The
remaining webbing on spool appears as the most decisive parameter for the seat belt,
which is coherent because this parameter is directly linked to the force applied on the
chest.
More surprisingly, parameters such as the diameter of the vent hole are not considered
for building the tree, although this parameter has an influence on the pressure in the PAB
and thus on the force applied on the dummy chest. Unfortunately, the repartition of the
sled tests into the clusters are not homogeneous and a better one could produce rules
explaining how to avoid having such unexpected results.

Because of the good results obtained by the head and the neck for the EURO NCAP rating,
only the chest deflection is studied in this section. The challenge for the engineers in
reaching the 5 stars in US NCAP rating is more complex and it is thus more interesting to
focus the decision trees analysis on the four dummy parts of the HIII 5th dummy.

5.3/ US NCAP RATING: HIII 5TH BELTED DUMMY (PASSENGER)

This test configuration is one of the challenges for the engineers because of the difficulties
to reach 5 stars for the passenger side. The restraint systems have to work with two types
of dummies, belted and unbelted, making this rating difficult. For this reason, the analysis
of the parameters’ influence is conducted on the four dummy parts of the passenger, i.e.
the head, neck, chest and femurs. All four parts are considered in this chapter.

5.3.1/ DUMMY HEAD

Analysis of the clusters’ material

Table 5.7 provides some information about the injury severity distribution for the dummy
head, according to the 27 key factors that characterize the restraint systems and the
vehicle, such as the volume of the passenger airbag or the type of seat belt. 103 out of
216 passenger tests received a high level of protection (clusters #5 and #6), 57 a good
protection (cluster #7), 53 a protection that should be improved (clusters #1 and #2) and
3 passengers tests are confronted to a protection that probably does not enable to let the
car going on the U.S. market.

As shown in Table 5.7, for all the sled tests with a seat belt load limiter value above 5.6 kN
and a distance between the dummy sternum and the instrumental panel (IP) above 550
mm, the HIC value is comprised between 251 and 325, what corresponds to 36% and
46% of the legal value respectively. However these two parameters values are very high
and unusual, like the triggered of the inflator second stage. In fact, according to Table 5.7,
100% of the sled tests which this value is comprised between 14 ms and 16 ms, had a
HIC value that does not satisfy the requirements.
We can also remark that a PAB 3D-shape airbag, with a volume under 110 L and a vent
hole diameter comprised between 61 and 70 mm provided good results for the head
because a majority of the sled tests with one of these parameters does not have a HIC
value that excess 325, which corresponds to 46% of the legal value. Another trend that
can be analysed from the sled tests repartition is the dummy temperature. In fact, having
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a cold dummy (i.e. a dummy temperature under 20 ◦C) provides a very good HIC value,
what is not surprising. The colder the dummy is, and thus the sensors are, the less
sensitive the sensors are and thus the less high the measured values are. That is why
the dummy temperature is imposed by the legislation and a dummy temperature under
20 ◦C is not legal. For the US NCAP rating, it has to be comprised between 20.6 ◦C and
22.2 ◦C (i.e. 69◦F to 72◦F).

Table 5.7: Sled tests’ repartition for the dummy head (passenger, US NCAP)

Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
430-591 329-428 873-1202 610-838 74-175 176-249 251-325

Number of sled
tests

19 34 0 3 43 60 57

PAB
L-shape 6.2% 16.7% 0.0% 0.6% 16.0% 29.6% 30.9%
Square-shape 23.7% 15.8% 0.0% 5.3% 28.9% 15.8% 10.5%
3D Add-on 0.0% 16.7% 0.0% 0.0% 33.3% 50.0% 0.0%
3D-shape 0.0% 0.0% 0.0% 0.0% 33.3% 66.7% 0.0%
Other 0.0% 0.0% 0.0% 0.0% 42.9% 14.3% 42.9%
Divided panel
no 12.1% 14.6% 0.0% 1.9% 19.1% 30.6% 21.7%
yes 0.0% 18.6% 0.0% 0.0% 22.0% 20.3% 39.0%
Volume
<90 L 0.0% 0.0% 0.0% 0.0% 90.0% 10.0% 0.0%
90-100 L 0.0% 0.0% 0.0% 0.0% 33.3% 33.3% 33.3%
101-110 L 0.0% 0.0% 0.0% 0.0% 33.3% 66.7% 0.0%
111-120 L 3.9% 16.1% 0.0% 0.0% 17.8% 31.1% 31.1%
>120 L 60.0% 25.0% 0.0% 15.0% 0.0% 0.0% 0.0%
Number of Vent-
holes
1 0.6% 14.4% 0.0% 0.0% 23.3% 31.7% 30.0%
2 50.0% 22.2% 0.0% 8.3% 2.8% 8.3% 8.3%
Hole diameter 1
<40 mm 2.6% 17.9% 0.0% 0.0% 15.4% 17.9% 46.2%
40-50 mm 10.7% 17.3% 0.0% 2.7% 29.3% 26.7% 13.3%
51-60 mm 12.2% 17.1% 0.0% 1.2% 8.5% 30.5% 30.5%
61-70 mm 0.0% 0.0% 0.0% 0.0% 40.0% 40.0% 20.0%
>70 mm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
ABV
no 41.9% 23.3% 0.0% 7.0% 7.0% 4.7% 16.3%
yes 0.6% 13.9% 0.0% 0.0% 23.1% 33.5% 28.9%
Tether 1
no 12.6% 15.9% 0.0% 2.0% 15.9% 29.8% 23.8%
yes 0.0% 15.4% 0.0% 0.0% 29.2% 23.1% 32.3%
Tether 2
no 10.7% 14.7% 0.0% 1.7% 18.6% 31.6% 22.6%
yes 0.0% 20.5% 0.0% 0.0% 25.6% 10.3% 43.6%
Number of Stages
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 8.8% 15.7% 0.0% 1.4% 19.9% 27.8% 26.4%
TTF Stage 1
<14 ms 6.6% 14.3% 0.0% 1.1% 27.5% 24.2% 26.4%
14-16 ms 2.0% 13.3% 0.0% 2.0% 16.3% 36.7% 29.6%
17-20 ms 37.5% 33.3% 0.0% 0.0% 4.2% 8.3% 16.7%
>20 ms 66.7% 0.0% 0.0% 0.0% 33.3% 0.0% 0.0%
TTF Stage 2
<14 ms 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
14-16 ms 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
17-20 ms 4.5% 13.5% 0.0% 1.3% 24.5% 32.9% 23.2%
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>20 ms 20.0% 20.0% 0.0% 1.7% 8.3% 15.0% 35.0%
Type of LL
CLL 6.0% 12.0% 0.0% 2.0% 42.0% 14.0% 24.0%
DLL 58.3% 33.3% 0.0% 0.0% 0.0% 0.0% 8.3%
PLL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
SLL 5.8% 15.6% 0.0% 1.3% 14.3% 34.4% 28.6%
LL Value 1
<2.5 kN 0.0% 0.0% 0.0% 0.0% 75.0% 25.0% 0.0%
2.5-3.4 kN 7.7% 2.6% 0.0% 2.6% 46.2% 33.3% 7.7%
3.5-4.5 kN 12.9% 17.8% 0.0% 2.0% 15.8% 31.7% 19.8%
4.6-5.5 kN 4.3% 21.4% 0.0% 0.0% 8.6% 18.6% 47.1%
5.6-6.5 kN 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
Retractor Preten-
sioner
no 0.0% 0.0% 0.0% 0.0% 0.0% 50.0% 50.0%
yes 8.9% 15.9% 0.0% 1.4% 20.1% 27.6% 26.2%
Buckle Preten-
sioner
no 16.5% 15.6% 0.0% 2.8% 17.4% 32.1% 15.6%
yes 0.9% 15.9% 0.0% 0.0% 22.4% 23.4% 37.4%
Anchor Point Pre-
tensioner
no 11.3% 16.1% 0.0% 1.8% 22.0% 20.8% 28.0%
yes 0.0% 14.9% 0.0% 0.0% 12.8% 51.1% 21.3%
Webbing on Spool
<750 mm 6.7% 6.7% 0.0% 0.0% 20.0% 60.0% 6.7%
750-800 mm 0.0% 16.1% 0.0% 0.0% 6.5% 51.6% 25.8%
801-850 mm 24.2% 12.1% 0.0% 6.1% 18.2% 18.2% 21.2%
851-900 mm 0.0% 12.9% 0.0% 0.0% 25.8% 32.3% 29.0%
901-950 mm 0.0% 13.6% 0.0% 0.0% 40.9% 31.8% 13.6%
951-1000 mm 0.0% 11.1% 0.0% 0.0% 22.2% 25.9% 40.7%
>1000 mm 17.5% 24.6% 0.0% 1.8% 15.8% 8.8% 31.6%
Height Adjustment
no 1.3% 11.4% 0.0% 0.0% 30.4% 31.6% 25.3%
yes 13.1% 18.2% 0.0% 2.2% 13.9% 25.5% 27.0%
DLT
no 9.2% 16.0% 0.0% 1.5% 19.9% 26.7% 26.7%
yes 0.0% 11.1% 0.0% 0.0% 22.2% 55.6% 11.1%
KnAB
no 0.9% 16.8% 0.0% 0.0% 17.7% 32.7% 31.9%
yes 17.5% 14.6% 0.0% 2.9% 22.3% 22.3% 20.4%
Chin to IP
<420 mm 15.4% 15.4% 0.0% 2.6% 5.1% 20.5% 41.0%
420-470 mm 14.6% 12.4% 0.0% 2.2% 33.7% 24.7% 12.4%
471-500 mm 0.0% 18.0% 0.0% 0.0% 16.0% 48.0% 18.0%
501-550 mm 0.0% 21.1% 0.0% 0.0% 7.9% 15.8% 55.3%
>550 mm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Sternum to IP
<420 mm 8.1% 11.1% 0.0% 2.0% 28.3% 28.3% 22.2%
420-470 mm 24.4% 22.0% 0.0% 2.4% 24.4% 17.1% 9.8%
471-500 mm 2.6% 15.4% 0.0% 0.0% 7.7% 48.7% 25.6%
501-550 mm 0.0% 22.2% 0.0% 0.0% 5.6% 16.7% 55.6%
>550 mm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
Left Knee - Shorter
Distance Ahead
<40 mm 13.7% 17.6% 0.0% 2.0% 31.4% 15.7% 19.6%
40-49 mm 5.3% 14.0% 0.0% 1.8% 14.0% 21.1% 43.9%
50-59 mm 23.3% 3.3% 0.0% 3.3% 16.7% 40.0% 13.3%
60-69 mm 4.3% 19.6% 0.0% 0.0% 15.2% 37.0% 23.9%
70-79 mm 0.0% 18.2% 0.0% 0.0% 31.8% 22.7% 27.3%
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>80 mm 0.0% 25.0% 0.0% 0.0% 0.0% 62.5% 12.5%
Right Knee -
Shorter Distance
Ahead
<40 mm 17.2% 24.1% 0.0% 3.4% 27.6% 6.9% 20.7%
40-49 mm 18.5% 7.4% 0.0% 0.0% 29.6% 40.7% 3.7%
50-59 mm 4.9% 13.1% 0.0% 3.3% 11.5% 16.4% 50.8%
60-69 mm 12.2% 16.3% 0.0% 0.0% 12.2% 40.8% 18.4%
70-79 mm 0.0% 17.9% 0.0% 0.0% 28.6% 28.6% 25.0%
>80 mm 0.0% 18.2% 0.0% 0.0% 27.3% 40.9% 13.6%
OLC++
<26 g 0.0% 8.5% 0.0% 0.0% 38.3% 31.9% 21.3%
26-26.9 g 12.1% 15.2% 0.0% 0.0% 21.2% 21.2% 30.3%
27-27.9 g 20.4% 16.3% 0.0% 6.1% 14.3% 28.6% 14.3%
>28 g 1.9% 22.2% 0.0% 0.0% 7.4% 31.5% 37.0%
Tv0
<65 ms 4.9% 18.3% 0.0% 0.0% 9.8% 36.6% 30.5%
65-69.9 ms 14.3% 17.1% 0.0% 2.9% 22.9% 20.0% 22.9%
>70 ms 0.0% 3.4% 0.0% 0.0% 37.9% 31.0% 27.6%
Dummy Tempera-
ture
<20 ◦C 0.0% 0.0% 0.0% 0.0% 50.0% 50.0% 0.0%
20-20.9 ◦C 5.3% 18.4% 0.0% 1.3% 21.1% 32.9% 21.1%
21-21.9 ◦C 8.8% 12.4% 0.0% 1.8% 17.7% 27.4% 31.9%
>22 ◦C 20.0% 24.0% 0.0% 0.0% 24.0% 12.0% 20.0%

Results and discussion (dummy head)

Fig. 5.2 presents the results of the classification for the dummy head2 and supports the
analysis done with Table 5.7. This tree has 35 terminal nodes, which correspond to the 7
clusters formed by the GK algorithm.

2Shifted values to avoid representing a real case
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The first analysis that can be directly drawn from the tree (Fig 5.2) is the influence of the
variable ”Number of vent holes”. Except if the volume of the airbag is under 113 L, having
an airbag with 2 vent holes is very harmful for the head. In this case the best possible
value for the head is 430 (61% of the legal value), what is insufficient for reaching 5 stars
in the rating. This is a little bit surprising because having a second vent hole aims at
reducing the pressure inside the airbag that is often too high for a HIII 5th dummy (the
airbag has also to work with a HIII 50th dummy for which the pressure in the airbag
has to be enough to retain the dummy). The common solution for reducing the airbag
pressure for the HIII 5th dummy and maintaining it for the HIII 50th dummy is the use
of an Adaptive Bag Vent (ABV) which can be triggered or not. But this variable is not
considered as relevant for building the tree.

Also surprisingly, the most impressionable variables for the head are the dummy position.
Some seat belt parameters are used as splitters for determining the clusters but a pre-
dominance of non restraint systems parameters for estimating the head value is visible.
In fact, the value of the pulse through the criterion OLC++ is used as splitter very early in
the tree, it means that this criterion is important for the head value.

To sum up, this tree shows that a prediction for the dummy head is complex and involves
many non restraint systems parameters, such as the pulse criterion and the dummy po-
sition. One of the airbag parameters is nevertheless decisive: the number of vent holes.
The second restraint system parameter that is used as splitter for building the tree is the
load limiter value of the seat belt. After analysis of the tree, it can be noted that the
branches coming from this variable can produce both worst and good results. The head
value is finally more sensitive to the crash pulse, dummy position and temperature as to
the airbag and seat belt configurations.

Table 5.8 presents the validation of the tree done with the LOOCV method: 53% of the
head values have been correctly estimated by the tree.
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The tree can be supported by the calculation of the VIM (Table 5.9). It confirms the
importance of the pulse criterion and the number of vent holes of the airbag. The variable
”Load limiter value” of the seat belt is considered as influencing the head value, which is
in agreement with its position as splitter in the tree. Seven variables, independently of the
restraint systems, are ordered in the first 12 variables influencing the head value. This
method (Table 5.9) confirms the results obtained by the tree (Fig 5.2).

Table 5.9: Calculation of the VIM for the dummy head (passenger, US NCAP)

Predictor Variable Variable Importance Measure
OLC++ 0.002644228
LL Value 1 0.002366675
Volume 0.001865089
Number of Ventholes 0.001638526
Tv0 0.001467101
Dummy temperature 0.001442678
PAB 0.000799332
Right Knee - Shorter Distance Ahead 0.000797897
Left Knee - Shorter Distance Ahead 0.00076299
Chin to IP 0.000549878
Sternum to IP 0.000498894
H Adjustment 0.000331336
ABV 0.000247574
Webbing on Spool 0.000222404

5.3.2/ DUMMY NECK

Analysis of the clusters’ material

Table 5.10 summarises the injury severity distribution for the dummy neck, according
to the same 27 attributes as for the dummy head. The target variable, the injury severity
level, is separated into 6 distinct clusters, cluster #1 corresponds to ”No-injury” and cluster
#6 to ”Fatal-injury”. From the cluster #5, the customer’s and thus legal requirements are
no more satisfied.

Firstly, for 84 out of 216 sled tests, the measured neck value Ni j is under 35 % of the
legal value, that signifies that the neck requirement defined by Sohr [49] for reaching
the 5 stars is completed (the Ni j does not have to excess 0.3 of the legal value). The
restraint systems of the 128 tests included in clusters #2, #3 and #4 have to be definitively
improved if the specification sheet imposes 5 stars for the US NCAP rating.

Then, according to Table 5.10, cluster #3 principally contains sled tests for which the
airbag form is not standard or unknown. On the contrary, the standard forms ”3D Add
on” and “3D shape” seems to have a positive influence on the neck criterion, because
approximately 67% of the sled tests using these types of airbag are located in cluster #1
(Ni j < 0,35). Moreover, if its vent hole has a diameter comprised between 40 and 50 mm
or between 61 and 70 mm, the probability to be in cluster #1 is improved. The inflator of
the PAB also plays an important role through the triggering of its second stage (TTF-2).
In fact, for 100% of the sled tests for which the second stage is triggered between 14 and
16 ms, the Ni j value has been measured between 0.36 and 0.43 (cluster #2). This is a
good indication that is easy to take into consideration because it does not require any
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expensive modification.
The seat belt is the second restraint system that can be modified by the engineers.
The constant and degressive load limiters represent respectively 58% of the sled tests
included in cluster #1 and 58.3% in cluster #2. Moreover, if the force applied on the
shoulder is under 2.5 kN (LL value), the chances to obtain good results (cluster #1) are
very high, as the probability to be in cluster #2 if the LL value is comprised between 5.6
and 6.5 kN. Finally, the chances to reach 5 stars are upgraded if the webbing on spool
has a length between 801 and 850 mm.
As shown in Table 5.10, the dummy position also influences the results for the neck,
especially the distances sternum-IP and knee-ahead. This first distance should be above
471 mm to hope being in the 3 first clusters and then under 500 mm to stay in the first
one. If this value is above 550 mm, the chances to be in cluster #3 are maximum (100%
of the sled tests with a value above 550 mm are in this cluster). Cluster#1 contains 72.7%
of the sled tests for which the distance between the left knee and ahead is comprised
between 70 and 79 mm. But this parameter is hardly altering by the engineers.
Finally, the dummy temperature is one of the modifiable parameters that also influences
the neck criterion. Under 20◦C, its value can be expected between 0.36 and 0.52
(clusters #2 and #3) and above 22◦C, 50% of the sled tests are located in cluster #1.

Table 5.10: Sled tests’ repartition for the dummy neck (passenger, US NCAP)

Variables Cluster #1 Cluster #2 Cluster #3 Cluster #4 Cluster #5 Cluster #6
0-0.35 0.36-0.43 0.44-0.52 0.53-0.67 0.69-1.02 > 1.02

Number of sled
tests

84 75 45 8 4 0

PAB
L-shape 38.3% 35.2% 20.4% 4.3% 1.9% 0.0%
Square-shape 42.1% 36.8% 15.8% 2.6% 2.6% 0.0%
3D Add-on 66.7% 16.7% 16.7% 0.0% 0.0% 0.0%
3D-shape 66.7% 33.3% 0.0% 0.0% 0.0% 0.0%
Other 0.0% 28.6% 71.4% 0.0% 0.0% 0.0%
Divided panel
no 42.7% 33.1% 19.1% 3.8% 1.3% 0.0%
yes 28.8% 39.0% 25.4% 3.4% 3.4% 0.0%
Volume
<90 L 40.0% 20.0% 20.0% 10.0% 10.0% 0.0%
90-100 L 33.3% 66.7% 0.0% 0.0% 0.0% 0.0%
101-110 L 66.7% 33.3% 0.0% 0.0% 0.0% 0.0%
111-120 L 39.4% 34.4% 22.2% 2.8% 1.1% 0.0%
>120 L 30.0% 40.0% 15.0% 10.0% 5.0% 0.0%
Number of Vent-
holes
1 41.1% 31.7% 22.2% 2.8% 2.2% 0.0%
2 27.8% 50.0% 13.9% 8.3% 0.0% 0.0%
Hole diameter 1
<40 mm 30.8% 30.8% 35.9% 0.0% 2.6% 0.0%
40-50 mm 56.0% 25.3% 14.7% 4.0% 0.0% 0.0%
51-60 mm 23.2% 45.1% 22.0% 6.1% 3.7% 0.0%
61-70 mm 55.0% 35.0% 10.0% 0.0% 0.0% 0.0%
>70 mm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
ABV
no 27.9% 46.5% 18.6% 7.0% 0.0% 0.0%
yes 41.6% 31.8% 21.4% 2.9% 2.3% 0.0%
Tether 1
no 41.1% 33.1% 18.5% 4.6% 2.6% 0.0%
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yes 33.8% 38.5% 26.2% 1.5% 0.0% 0.0%
Tether 2
no 42.9% 32.8% 18.1% 4.0% 2.3% 0.0%
yes 20.5% 43.6% 33.3% 2.6% 0.0% 0.0%
Number of
Stages
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 38.9% 34.7% 20.8% 3.7% 1.9% 0.0%
TTF 1
<14 ms 47.3% 28.6% 9.8% 1.1% 3.3% 0.0%
14-16 ms 33.7% 39.8% 20.4% 5.1% 1.0% 0.0%
17-20 ms 29.2% 41.7% 25.0% 4.2% 0.0% 0.0%
>20 ms 33.3% 0.0% 33.3% 33.3% 0.0% 0.0%
TTF 2
<14 ms 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
14-16 ms 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%
17-20 ms 40.6% 35.5% 18.1% 3.2% 2.6% 0.0%
>20 ms 35.0% 31.7% 28.3% 5.0% 0.0% 0.0%
Type of LL
CLL 58.0% 28.0% 12.0% 2.0% 0.0% 0.0%
DLL 0.0% 58.3% 33.3% 8.3% 0.0% 0.0%
PLL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
SLL 35.7% 35.1% 22.7% 3.9% 2.6% 0.0%
LL Value 1
<2.5 kN 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2.5-3.4 kN 76.9% 12.8% 7.7% 2.6% 0.0% 0.0%
3.5-4.5 kN 40.6% 37.6% 15.8% 3.0% 3.0% 0.0%
4.6-5.5 kN 12.9% 42.9% 37.1% 5.7% 1.4% 0.0%
5.6-6.5 kN 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%
Retractor pre-
tensioner
no 50.0% 0.0% 50.0% 0.0% 0.0% 0.0%
yes 38.8% 35.0% 20.6% 3.7% 1.9% 0.0%
Buckle preten-
sioner
no 42.2% 36.7% 14.7% 4.6% 1.8% 0.0%
yes 35.5% 32.7% 27.1% 2.8% 1.9% 0.0%
Anchor preten-
sioner
no 36.9% 35.7% 22.6% 3.6% 1.2% 0.0%
yes 46.8% 29.8% 14.9% 4.3% 4.3% 0.0%
Webbing on
Spool
<750 mm 53.3% 13.3% 13.3% 6.7% 13.3% 0.0%
750-800 mm 41.9% 41.9% 9.7% 6.5% 0.0% 0.0%
801-850 mm 60.6% 30.3% 9.1% 0.0% 0.0% 0.0%
851-900 mm 41.9% 32.3% 22.6% 3.2% 0.0% 0.0%
901-950 mm 54.5% 18.2% 13.6% 9.1% 4.5% 0.0%
951-1000 mm 29.6% 44.4% 22.2% 0.0% 3.7% 0.0%
>1000 mm 17.5% 42.1% 36.8% 3.5% 0.0% 0.0%
Height Adjust-
ment
no 58.2% 24.1% 16.5% 0.0% 1.3% 0.0%
yes 27.7% 40.9% 23.4% 5.8% 2.2% 0.0%
DLT
no 38.8% 34.0% 21.8% 3.9% 1.5% 0.0%
yes 50.0% 33.3% 0.0% 0.0% 16.7% 0.0%
KnAB
no 31.0% 37.2% 23.9% 4.4% 3.5% 0.0%
yes 47.6% 32.0% 17.5% 2.9% 0.0% 0.0%
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Chin to IP
<420 mm 25.6% 48.7% 25.6% 0.0% 0.0% 0.0%
420-470 mm 53.9% 23.6% 15.7% 4.5% 2.2% 0.0%
471-500 mm 44.0% 32.0% 16.0% 4.0% 4.0% 0.0%
501-550 mm 10.5% 50.0% 34.2% 5.3% 0.0% 0.0%
>550 mm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Sternum to IP
<420 mm 46.5% 29.3% 19.2% 2.0% 3.0% 0.0%
420-470 mm 34.1% 34.1% 24.4% 4.9% 2.4% 0.0%
471-500 mm 51.3% 33.3% 10.3% 5.1% 0.0% 0.0%
501-550 mm 11.1% 52.8% 30.6% 5.6% 0.0% 0.0%
>550 mm 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
Left Knee -
Shorter Dis-
tance Ahead
<40 mm 21.6% 45.1% 25.5% 3.9% 3.9% 0.0%
40-49 mm 26.3% 40.4% 29.8% 3.5% 0.0% 0.0%
50-59 mm 56.7% 36.7% 0.0% 6.7% 0.0% 0.0%
60-69 mm 45.7% 23.9% 23.9% 4.3% 2.2% 0.0%
70-79 mm 72.7% 18.2% 9.1% 0.0% 0.0% 0.0%
>80 mm 37.5% 37.5% 12.5% 0.0% 12.5% 0.0%
Right Knee -
Shorter Dis-
tance Ahead
<40 mm 20.7% 48.3% 27.6% 3.4% 0.0% 0.0%
40-49 mm 29.6% 37.0% 18.5% 7.4% 7.4% 0.0%
50-59 mm 24.6% 42.6% 29.5% 3.3% 0.0% 0.0%
60-69 mm 51.0% 30.6% 14.3% 4.1% 0.0% 0.0%
70-79 mm 53.6% 21.4% 17.9% 3.6% 3.6% 0.0%
>80 mm 68.2% 18.2% 9.1% 0.0% 4.5% 0.0%
OLC++
<26 g 40.4% 29.8% 23.4% 2.1% 4.3% 0.0%
26-26.9 g 42.4% 28.8% 22.7% 6.1% 0.0% 0.0%
27-27.9 g 34.7% 51.0% 12.2% 2.0% 0.0% 0.0%
>28 g 37.0% 31.5% 24.1% 3.7% 3.7% 0.0%
Tv0
<65 ms 39.0% 36.6% 19.5% 2.4% 2.4% 0.0%
65-69.9 ms 43.8% 31.4% 20.0% 3.8% 1.0% 0.0%
>70 ms 20.7% 41.4% 27.6% 6.9% 3.4% 0.0%
Dummy Temper-
ature
<20 ◦C 0.0% 50.0% 50.0% 0.0% 0.0% 0.0%
20-20.9 ◦C 38.2% 32.9% 22.4% 5.3% 1.3% 0.0%
21-21.9 ◦C 37.2% 37.2% 21.2% 2.7% 1.8% 0.0%
>22 ◦C 52.0% 28.0% 12.0% 4.0% 4.0% 0.0%

Analysis of the variables’ links via decision tree

27 predictor variables have been used to identify the pattern that influence the level of
severity injury for the neck of the HIII 5th dummy in a US NCAP sled test. The binary
tree represented in Fig. 5.3 is composed of 34 terminal nodes which represent 4 out
of the 6 clusters formed by the GK algorithm. Clusters #5 and #6 are not represented
as terminal nodes, because of the low number of sled tests included in these clusters
(respectively 4 and 0 sled tests). Cluster #2 is the most represented terminal node with
44% of the total terminal nodes. The second is cluster #3 but relatively far away, with
only 26% of the branches that arrive in this terminal node. The analysis of the tree shows
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that 16 attributes are used as splitters to frame the tree, it means that these variables
are important for classifying the injury severity for the neck. These key factors contain for
example the first value of the seat belt load limiter (LL-V1), the time to fire of the inflator
second stage (TTF-S2) and the dummy position (P1, P2, P3 and P4). One advantage of
the CART is its straightforward interpretation. According to Fig. 5.33, the split at node 1 is
based on the predictor variable ”Load limiter value of the seat belt (LL-V1)”, that indicates
that this value influences the most the injury severity. This is also confirmed by calculating
its variable importance (Table 5.11). If this value is equal to 5.5 kN, the neck criterion has
a value comprised between 44% and 52% of the legal value. If this value is under 4
kN, except for an exact value of 3.5 kN, the criterion Ni j has a maximal value of 0.67,
independently of the other parameters. If moreover the length of the webbing on spool is
above 995 mm and the seat belt has a degressive or switchable load limiter, the value of
the neck is in any case under 52% of the legal value. The prediction of the injury severity
can be known by continuing down each tree branch until a terminal node is reached.

To sum up, the parameters that influence the most the criterion Ni j for the HIII 5th dummy
are:

q Load limiter value;

q Second time to fire of the PAB inflator;

q Dummy position.

3Shifted values to avoid representing a real case
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This deduction is partially confirmed by the Variable Importance Measure (VIM). Accord-
ing to Table 5.11, the load limiter value and the webbing on spool of the seat belt are
the two most important predictor variables (the values of VIM are ordered down). The
dummy position also plays a role because three distances out of 4 are classified in the 9
first places.

Table 5.11: Calculation of the VIM for the dummy neck (passenger, US NCAP)

Predictor Variable Variable Importance Measure
LL Value 1 0.002158827
Webbing on Spool 0.002151536
OLC++ 0.001849383
Chin to IP 0.001481697
Dummy temperature 0.000766602
Left Knee - Shorter Distance Ahead 0.00059397
Volume 0.000516073
Right Knee - Shorter Distance Ahead 0.00047086
Anchor Point Pretensioner 0.000455156
PAB 0.000441881
Tv0 0.000400457
Type of LL 0.000344884
Number of Ventholes 0.000290031
Sternum to IP 0.000157179
TTF Stage 2 0.00015229
Hole Diameter 1 0.0000900206

In order to evaluate the performance and reability of this decision tree, a comparison
between the predicted and real injury severity has been conducted through the LOOCV
method. Table 5.12 resumes the results obtained for the model validation and shows that
44% of the neck values have been predicted in the right cluster by the decision tree. The
database contains 84 values for which the value for the Ni j criterion is under 0.35 (cluster
#1) and 49 of them have been predicted by the tree as belonging to this cluster. It means
that 58% of the values have been correctly estimated. Likewise, 34 values out of 75 (i.e.
45%) have been estimated as belonging to cluster #2 and 12 out of 45 (i.e. 27%) to
cluster #3.

5.3.3/ DUMMY CHEST

Analysis of the clusters’ material

The second sensitive part of the dummy after the neck is the chest. The values for the HIII
5th dummy have been separated into 9 clusters (only formed with the chest deflection)
and the same 27 parameters have been used as predictor variables.
According Table 5.13, the form of the PAB is a factor that influences the value of the chest
deflection. 66.7% of the sled tests that have a 3D Add-on airbag are located in cluster
#2 (chest deflection ≤ 19.74 mm). Moreover, the chances to be in cluster #5 with a 3D
shape are maximum (100%). A divided panel also improves the chances to be located
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Table 5.12: Validation of the decision tree for the dummy neck (passenger, US

NCAP)

Predicted injury
Cluster #1 Cluster #2 Cluster #3 Cluster #4 Cluster #5 Cluster #6

O
bt

ai
ne

d
in

ju
ry Cluster #1 49 19 13 2 1 0

Cluster #2 19 34 18 1 3 0
Cluster #3 12 17 12 2 2 0
Cluster #4 2 3 3 0 0 0
Cluster #5 0 1 3 0 0 0
Cluster #6 0 0 0 0 0 0
Prediction accuracy 44%

in the 2 first clusters. Then a diameter for the vent hole under 40 mm has a negative
influence on the chest deflection but a diameter around 70 mm should improve very well
the biomechanical value. The diameter regulates the pressure into the bag which is in
contact principally in contact with the chest. Higher the pressure is, worst the values for
the chest deflection should be. As for the neck, the trigger time of the second stage for the
PAB inflator is decisive: all the sled tests for which the second stage has been triggered
between 14 and 16 ms are included in cluster #5. The other parameters of the PAB do
not influence a lot the chest deflection.
Concerning the seat belt proprieties, the only possible conclusion according to Table 5.13
is the negative influence of a high load limiter value and having a DLT could help improve
the chest deflection of the dummy because most of the sled tests equipped with it are
located either in cluster #1 or in cluster #2. When the dummy applies a small load on
the seat belt webbing, the DLT clamps onto the webbing in order to reduce the amount of
webbing that can slip and then to reduce the load on the dummy chest.
Moreover, as for the neck, the dummy position influences the chest deflection, especially
the distance dummy sternum - IP. The higher this distance is, the better the criterion value
should be because the airbag will have more time to deploy before the dummy comes in
contact with. In fact, all the sled tests for which the distance sternum - IP is above 550
mm are located in cluster #2. The distributions of the knees distance show that these
parameters are not decisive. More surprisingly, the height adjustment and the webbing
on spool are two parameters that are directly in contact with the dummy chest but their
influence is more unclear.
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Analysis of the variables’ links via decision tree

After analysing the distribution of the variables into each cluster, the classification tree4

(Fig. 5.4) can give a hand in determining the most influential variables concerning the
dummy chest. For building it, 14 predictors variables are used as splitters and only cluster
#6 is not considered as terminal node. Clusters #3 and #4 are the most represented
clusters with respectively 7 and 10 possibilities out of 38 to arrive at these clusters.

First of all, the analysis of the tree shows that the distance Sternum-IP (”Position 2”) is the
most decisive parameter and if its value is above 473.5 mm, the pretensioners (retractor
and anchor) are more involved in the tree and thus in the prediction of the chest value.
Cluster #1, that contains the best values of the chest deflection (≤ 33% of the legal value),
is represented at only 2 terminal nodes and imposes conditions on the dummy position,
load limiter value and webbing on spool of the seat belt, volume and eventually form of the
PAB, depending of the value of the pulse criterion (OLC++). Additionally, the presence
of a tether in the airbag also influences a lot the results and can produced both types
of results, depend on the combinations with the other parameters. The tether should
aim helping the airbag deploy in a defined direction for a better positioning of the bag.
By going down the tree, some conditions for reaching specific deflection values can be
defined.

To sum up, the parameters that influence the chest deflection are similar to those that
influence the value of the neck :

q Distance Sternum-IP and more generally the dummy position;

q Volume of the PAB;

q Tether in the PAB;

q Value of the OLC++ pulse criterion;

q Load limiter value.

4Shifted values to avoid representing a real case
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Table 5.14 supports the parameters’ importance through the calculation of the VIM. It
confirms that the dummy position and the airbag volume are two decisive parameters.
The further the dummy is from the IP, the later the dummy comes in contact with the
airbag. It can thus deploy without any contact with the dummy that could receive too
much power from the inflator. If the dummy is too close to the IP, the biomechanical
values, especially the chest, could be aggravated because the airbag will deploy in this
dummy area. Additionally, the volume of the airbag directly influences the pressure that
is applied on the dummy, that is why it is coherent that this parameter is considered as
playing a role by attributing the value of the chest deflection.

Table 5.14: Calculation of the VIM for the dummy chest (passenger, US NCAP)

Predictor Variable Variable Importance Measure
Sternum to IP 0.002094051
Chin to IP 0.001609263
Volume 0.001231309
Dummy temperature 0.001175684
OLC++ 0.001069725
Webbing on Spool 0.001002823
LL Value 1 0.000940871
Right Knee. Shorter Distance Ahead 0.000797916
Tether 1 0.000778427
Tv0 0.000582996
TTF Stage 1 0.000563691
Left Knee. Shorter Distance Ahead 0.000543875
TTF Stage 2 0.000383884
Type of LL 0.000196625

Table 5.15 summarises the model validation and shows that 33% of the chest values have
been predicted in the right cluster, but also that, if we consider that to be in ± 1 cluster
is correct (the range for each cluster is equal to 2 or 3 mm, that is why this condition is
plausible), 74% of the sled tests have been correctly predicted by the tree.
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5.3.4/ DUMMY FEMURS

Analysis of the clusters’ material

As for the other dummy parts, an analysis of the content of each cluster has been done. It
allows to have a first indication about the parameters and the repartition of the sled tests
into the clusters. This distribution is summarised in Table 5.16.

First of all, concerning the PAB form, no conclusions can be drawn from the distribution.
This is actually obvious because the PAB airbag aims at protecting the upper body of the
human, i.e. the head/neck and the chest. The seat belt and the knee bag should more
influence the results of the femur forces.

Concerning the seat belt, 91.7% of the sled tests having a DLL as load limiter received no
satisfying results (the range of the obtained values is between 11% and 67% of the legal
value). Moreover, a load limiter with a small force (<2.5 kN) or a too high force (>5.6 kN)
would not reduce the femur forces and no having a retractor pretensioner is definitively
not a good deal. The distribution for the other seat belt parameters do not show any
trends.

More surprisingly is the distribution of the sled tests for the knee bag. It does not allow
a distinction of the influence of the knee bag. In theory, the knee bag helps reduce the
femur forces, especially for the HIII 50th dummy tested without seat belt. It means not be
essential for this dummy.

To sum up, the distribution of the sled tests through the different parameters is more
complex for the femur forces as for the other dummy parts. No real trends can be drawn
from Table 5.16.

Table 5.16: Sled tests’ repartition for the dummy femurs (passenger, US NCAP)

Variables Cluster #1 Cluster #2 Cluster #3 Cluster #4 Cluster #5 Cluster #6
Max. left-right forces 0.7-4.6 3.1-6.3 1.4-3.0 0.5-3.3 1.2-2.4 0-2.2
Number of sled tests 28 32 2 40 16 98
PAB
L-shape 9.3% 17.3% 0.6% 18.5% 4.9% 49.4%
Square-shape 28.9% 2.6% 2.6% 26.3% 21.1% 18.4%
3D Add-on 0.0% 33.3% 0.0% 0.0% 0.0% 66.7%
3D-shape 0.0% 33.3% 0.0% 0.0% 0.0% 66.7%
other 28.6% 0.0% 0.0% 0.0% 0.0% 71.4%
Divided panel
no 17.8% 13.4% 1.3% 18.5% 7.0% 42.0%
yes 0.0% 18.6% 0.0% 18.6% 8.5% 54.2%
Volume
<90 L 30.0% 10.0% 0.0% 20.0% 20.0% 20.0%
90-100 L 0.0% 0.0% 0.0% 33.3% 0.0% 66.7%
101-110 L 0.0% 33.3% 0.0% 0.0% 0.0% 66.7%
111-120 L 7.2% 16.7% 1.1% 17.2% 7.8% 50.0%
>120 L 60.0% 0.0% 0.0% 30.0% 0.0% 10.0%
Number of Ventholes
1 3.9% 17.2% 0.0% 17.8% 8.9% 52.2%
2 58.3% 2.8% 5.6% 22.2% 0.0% 11.1%
Hole diameter 1
<40 mm 7.7% 15.4% 0.0% 30.8% 2.6% 43.6%
40-50 mm 18.7% 16.0% 2.7% 12.0% 10.7% 40.0%
51-60 mm 13.4% 15.9% 0.0% 11.0% 6.1% 53.7%
61-70 mm 0.0% 5.0% 0.0% 50.0% 10.0% 35.0%
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>70 mm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
ABV
no 58.1% 0.0% 4.7% 25.6% 4.7% 7.0%
yes 1.7% 18.5% 0.0% 16.8% 8.1% 54.9%
Tether 1
no 16.6% 11.9% 1.3% 17.9% 6.0% 46.4%
yes 4.6% 21.5% 0.0% 20.0% 10.8% 43.1%
Tether 2
no 14.1% 12.4% 1.1% 20.9% 6.2% 45.2%
yes 7.7% 25.6% 0.0% 7.7% 12.8% 46.2%
Number of Stages
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 13.0% 14.8% 0.9% 18.5% 7.4% 45.4%
TTF Stage 1
<14 ms 12.1% 14.3% 1.1% 23.1% 9.9% 39.6%
14-16 ms 3.1% 19.4% 0.0% 17.3% 7.1% 53.1%
17-20 ms 54.2% 0.0% 4.2% 4.2% 0.0% 37.5%
>20 ms 33.3% 0.0% 0.0% 33.3% 0.0% 33.3%
TTF Stage 2
<14 ms 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
14-16 ms 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%
17-20 ms 7.7% 16.8% 0.6% 14.8% 9.7% 50.3%
>20 ms 26.7% 10.0% 1.7% 26.7% 1.7% 33.3%
Type of LL
CLL 18.0% 12.0% 4.0% 12.0% 20.0% 34.0%
DLL 91.7% 0.0% 0.0% 8.3% 0.0% 0.0%
PLL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
SLL 5.2% 16.9% 0.0% 21.4% 3.9% 52.6%
LL Value 1
<2.5 kN 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2.5-3.4 kN 76.9% 12.8% 7.7% 2.6% 0.0% 0.0%
3.5-4.5 kN 40.6% 37.6% 15.8% 3.0% 3.0% 0.0%
4.6-5.5 kN 12.9% 42.9% 37.1% 5.7% 1.4% 0.0%
5.6-6.5 kN 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%
Retractor Pretensioner
no 50.0% 0.0% 50.0% 0.0% 0.0% 0.0%
yes 38.8% 35.0% 20.6% 3.7% 1.9% 0.0%
Buckle Pretensioner
no 42.2% 36.7% 14.7% 4.6% 1.8% 0.0%
yes 35.5% 32.7% 27.1% 2.8% 1.9% 0.0%
Anchor Point Preten-
sioner
no 36.9% 35.7% 22.6% 3.6% 1.2% 0.0%
yes 46.8% 29.8% 14.9% 4.3% 4.3% 0.0%
Webbing on Spool
<750 mm 53.3% 13.3% 13.3% 6.7% 13.3% 0.0%
750-800 mm 41.9% 41.9% 9.7% 6.5% 0.0% 0.0%
801-850 mm 60.6% 30.3% 9.1% 0.0% 0.0% 0.0%
851-900 mm 41.9% 32.3% 22.6% 3.2% 0.0% 0.0%
901-950 mm 54.5% 18.2% 13.6% 9.1% 4.5% 0.0%
951-1000 mm 29.6% 44.4% 22.2% 0.0% 3.7% 0.0%
>1000 mm 17.5% 42.1% 36.8% 3.5% 0.0% 0.0%
Height Adjustment
no 58.2% 24.1% 16.5% 0.0% 1.3% 0.0%
yes 27.7% 40.9% 23.4% 5.8% 2.2% 0.0%
DLT
no 38.8% 34.0% 21.8% 3.9% 1.5% 0.0%
yes 50.0% 33.3% 0.0% 0.0% 16.7% 0.0%
KnAB
no 31.0% 37.2% 23.9% 4.4% 3.5% 0.0%
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yes 47.6% 32.0% 17.5% 2.9% 0.0% 0.0%
Chin to IP
<420 mm 25.6% 48.7% 25.6% 0.0% 0.0% 0.0%
420-470 mm 53.9% 23.6% 15.7% 4.5% 2.2% 0.0%
471-500 mm 44.0% 32.0% 16.0% 4.0% 4.0% 0.0%
501-550 mm 10.5% 50.0% 34.2% 5.3% 0.0% 0.0%
>550 mm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Sternum to IP
<420 mm 46.5% 29.3% 19.2% 2.0% 3.0% 0.0%
420-470 mm 34.1% 34.1% 24.4% 4.9% 2.4% 0.0%
471-500 mm 51.3% 33.3% 10.3% 5.1% 0.0% 0.0%
501-550 mm 11.1% 52.8% 30.6% 5.6% 0.0% 0.0%
>550 mm 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
Left Knee - Shorter Dis-
tance Ahead
<40 mm 21.6% 45.1% 25.5% 3.9% 3.9% 0.0%
40-49 mm 26.3% 40.4% 29.8% 3.5% 0.0% 0.0%
50-59 mm 56.7% 36.7% 0.0% 6.7% 0.0% 0.0%
60-69 mm 45.7% 23.9% 23.9% 4.3% 2.2% 0.0%
70-79 mm 72.7% 18.2% 9.1% 0.0% 0.0% 0.0%
>80 mm 37.5% 37.5% 12.5% 0.0% 12.5% 0.0%
Right Knee - Shorter
Distance Ahead
<40 mm 20.7% 48.3% 27.6% 3.4% 0.0% 0.0%
40-49 mm 29.6% 37.0% 18.5% 7.4% 7.4% 0.0%
50-59 mm 24.6% 42.6% 29.5% 3.3% 0.0% 0.0%
60-69 mm 51.0% 30.6% 14.3% 4.1% 0.0% 0.0%
70-79 mm 53.6% 21.4% 17.9% 3.6% 3.6% 0.0%
>80 mm 68.2% 18.2% 9.1% 0.0% 4.5% 0.0%
OLC++
<26 g 40.4% 29.8% 23.4% 2.1% 4.3% 0.0%
26-26.9 g 42.4% 28.8% 22.7% 6.1% 0.0% 0.0%
27-27.9 g 34.7% 51.0% 12.2% 2.0% 0.0% 0.0%
>28 g 37.0% 31.5% 24.1% 3.7% 3.7% 0.0%
Tv0
<65 ms 39.0% 36.6% 19.5% 2.4% 2.4% 0.0%
65-69.9 ms 43.8% 31.4% 20.0% 3.8% 1.0% 0.0%
>70 ms 20.7% 41.4% 27.6% 6.9% 3.4% 0.0%
Dummy Temperature
<20 ◦C 0.0% 50.0% 50.0% 0.0% 0.0% 0.0%
20-20.9 ◦C 38.2% 32.9% 22.4% 5.3% 1.3% 0.0%
21-21.9 ◦C 37.2% 37.2% 21.2% 2.7% 1.8% 0.0%
>22 ◦C 52.0% 28.0% 12.0% 4.0% 4.0% 0.0%

Analysis of the variables’ links via decision tree

The decision tree5 represented in Fig. 5.5 allows some conclusions on the parameters
influencing the femur forces of the HIII 5th dummy.

5Shifted values to avoid representing a real case
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According to the decision tree, an Additional Bag Vent (ABV) that is triggered or not (most
often triggered by the HIII 5th dummy in order to reduce the pressure into the airbag)
seems to be important for evaluating the femurs forces but not essential because if the
airbag does not have an ABV, the results do not excess anyway 67% of the legal value.
This decision tree contradicts the distribution of the sled tests (Table 5.16) that seems to
indicate the non importance of the PAB concerning the femurs. Many combinations are
then available for reaching the best clusters (i.e. clusters #5 and #6) if an ABV is added
on the PAB and the following decisive parameters are mainly parameters concerning the
dummy position and the car evaluation. 31 variables have been selected to form this tree
and only 13 out of 31 are variables concerning either the passenger airbag (5 variables) or
the seat belt (8 variables). It confirms that the PAB globally does not have an influence on
the dummy legs. This decision tree is supported by the calculation of the VIM (Table 5.17).
This method appoints the ABV as the most important parameter concerning the dummy
legs.
It also confirms the importance of the dummy position and external parameters as the
OLC++ criterion. The first parameter concerning the PAB is only ordered in the 10th
place of the rank.

Table 5.17: Calculation of the VIM for the dummy femurs (passenger, US NCAP)

Predictor Variable Variable Importance Measure
ABV 0.003051477
OLC++ 0.002513954
Right Knee. Shorter Distance Ahead 0.002141061
Webbing on Spool 0.001524438
LL Value 1 0.001483736
Dummy temperature 0.001406577
Left Knee. Shorter Distance Ahead 0.001308783
Chin to IP 0.000996686
Tether 1 0.000697923
Hole Diameter 1 0.000537344
Sternum to IP 0.000506055
KnAB 0.000429752
PAB 0.000280415

To sum up, three different methods - the sled tests’ distribution, the decision tree and
the VIM - enables to conclude that the passenger airbag does not influence a lot the
femurs forces of the HIII 5th dummy. As explained before, this is coherent with the reality
that gives as first priority of the PAB the protection of the upper dummy part, i.e. the
head/neck and the chest. More surprisingly, the knee bag, which should protect the
legs, is not decisive for this dummy. In fact, even if the dummy seat is positioned on
the forwards position, the energy built-up by the dummy is surely high but not enough
to impose having a knee bag. This restraint system is definitely necessary for FMVSS

NR.208 but its influence is more visible on sled tests carried out without seat belt. Finally,
the influential parameters for the HIII 5th dummy legs in the US NCAP rating are:

q Presence of an ABV;

q Dummy position;

q Value of the OLC++;
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q Webbing on spool of the seat belt.

Table 5.18: Validation of the decision tree for the dummy femurs (passenger, US

NCAP)

Predicted injury
Cluster #1 Cluster #2 Cluster #3 Cluster #4 Cluster #5 Cluster #6

O
bt

ai
ne

d
in

ju
ry Cluster #1 49 19 13 2 1 0

Cluster #2 19 34 18 1 3 0
Cluster #3 12 17 12 2 2 0
Cluster #4 2 3 3 0 0 0
Cluster #5 0 1 3 0 0 0
Cluster #6 0 0 0 0 0 0
Prediction accuracy 63%

5.4/ CONCLUSION

This chapter proposes the application of a famous method, the CART, on data coming
from sled tests. The novelty of this chapter is the employment of the decision trees
with parameters of restraint systems. In fact, this doctoral research is focused on an
industrial demand which consists in finding relationships with the available data between
the parameters of seat belt and airbags principally and the dummy biomechanical values.
It aims at understand the effects of some parameters on specific dummy parts and helps
improve the car safety.
This chapter is focused on the two main ratings: the EURO NCAP and the US NCAP

ratings. The legal requirements are in any ways completed before closing the project.
These two ratings, especially the US NCAP, are the main challenges for the passive
safety engineers.
The EURO NCAP is the easiest one because the European legislation uses the same
belted dummy on the passenger side, a HIII 50th dummy. It means that the modifications
done on the restraint systems for the rating are only few consequences on the results
for the legislation. On the contrary, the FMVSS NR.208 imposes the achievement of four
configurations and one of those is used to evaluate the car safety: the HIII 5th dummy
belted (passenger side). The eventual modifications proposed by the decision trees have
automatically an influence on the results of the other configurations and thus have to be
considered carefully.

Table 5.19 resumes the most influential parameters for each rating and dummy parts,
proposed by the decision trees and the VIM.
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The two ratings have to be considered separately. For the EURO NCAP rating, the results
given by the classification tree are very similar that those proposed by the VIM. The
parameter that influences the most the dummy chest according to both methods is the
time to fire of the first stage of the PAB inflator. This is not surprisingly because the
triggered time imposes the time of deploying the PAB. If this time is too early, the pressure
in the bag is already maximum when the dummy comes in contact with the bag, what
could involve a high chest deflection value. If the inflator is triggered to late, the dummy
has already begun its displacement forwards and comes in contact with the bag when it
is deploying. It means that the bag pushes on the dummy chest to have enough place
to deploy itself fully. A specific time cannot be estimated through the decision tree. The
dummy position and temperature also seem to influence the chest value of the HIII 50th
dummy. Finally, the parameter that is ”easy” to modify and that can improve the results of
the dummy chest is the volume of the PAB.

The second rating in which the engineers have some interests is the US NCAP rating on
the passenger side, i.e. with a HIII 5th belted dummy on the passenger side. According to
Table 5.19, the results obtained by the decision trees and the VIM are quite similar. Some
parameters have been selected as modifying the results of the biomechanical values for
each part of the dummy:

q Dummy position;

q The value of the OLC++;

q Value of the load limiter of the seat belt for the dummy head and neck.

The two first parameters are however not parameters of restraint systems and cannot be
easy modified because the first one is defined by the legislation and the second depends
on the car type. The third is a parameter that can be changed by the engineers but its
influence on the head/neck and not on the chest is quite surprising, such as the fact
that a presence of a ABV could modify the femurs forces. The main challenges for this
rating are the improvement of the values for the neck and the chest and according to the
different Tables, some characteristics of the restraint systems (form of the PAB, vent hole
diameter, time to fire of the second inflator stage) seem to influence the dummy neck and
chest for the HIII 5th dummy in a US NCAP rating sled test.

In conclusion, these methods help identify some parameters as influencing the biome-
chanical values in a specific test configuration. Those discovered for the HIII 50th dummy
in a EURO NCAP test are near to the expert knowledge and their modifications will not
affect any legislation results. On the contrary, the modifications proposed by the decision
trees for the HIII 5th dummy are quite surprising, except those for the neck and chest.
Some modifications have to be considered carefully to avoid a conflict with another test
configuration. The dummy position seems to influence each dummy part but is hardly
modifiable.

To sum up, the decision trees are very useful to learn on the already carried out tests and
try to find some similarities but for the US NCAP rating, it did not really proposed some
parameters from the restraint systems influencing the results.
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GENERAL CONCLUSION

The traffic volume on the roads is continually growing and therewith the number of traffic
accidents. Therefore, the automobile safety is one of the actual major concern. In addition
to the country legislation, ratings are carried out by independent assessments to evaluate
car safety. Consequently automotive suppliers continually develop new restraint passive
systems to reduce the occupant damages during a crash. The injury severity is controlled
through high tech dummies during sled tests in order to simulate the injury damages of the
car occupant during an impact. This doctoral research is based on an industrial demand
of an automobile firm which presented some interests in understanding the relationships
between the parameters of restraint systems (frontal airbags, seat belt and knee bag) and
the dummy biomechanical values. The thesis is focused on frontal impact crash tests.

The first step of this thesis has been focused on the literature about data mining methods
used in automobile domain, especially with crash data. This research enabled to define
the state-of-the-art of the actual methods and processes used in this specific domain.
However, most of the publications with crash data have been oriented on the circum-
stances of the accidents, e.g. the gender of the occupant and the weather conditions.
Even if some methods proposed by the authors are applicable, the first observation that
can be done after the publications’ study is the among of available data for this doctoral
research. In fact, even if lots of sled tests have been carried out in different test con-
figurations, only for some of them, all necessary information were available. A work on
the data had to be thus done before applying any data mining methods, that is why the
steps of the Knowledge Discovery in Database have been followed. The first one allows
the selection of the parameters: thanks to an expert elicitation, 63 parameters of the re-
straint systems (driver / passenger airbag, knee bag, seat belt, environment) have been
identified as influencing the dummy biomechanical values during a crash. Some data
were missing and for that a dedicated simple algorithm has been developed. Once the
data has been selected, replacing if necessary and transformed, the data mining method
called k-NN enabled us to have a first classification of the crash data through a ranking
of their rating scores (EURO NCAP and US NCAP rating tests). It aimed at understanding
and optimizing the passive systems before running a test by comparing the configuration
of the already carried out sled tests. The step of evaluation and validation of the model
has been proceeded by the ”leave-one out cross validation” method. The EURO NCAP

rating data on the passenger side has been used as database for the model evaluation:
four validations have been conducted. The first one evaluates the estimation of a missing
value replaced by the algorithm which shows promising results even if some values are
estimated far away from real values. These inconsistencies can be solved by adding new
tests in the database. The second validation consists of evaluating the sled tests classi-
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fication with the aim of comparing the sled tests classification with and without missing
data. It has shown that the first-NN is identical in both cases for 75% of the cases. It
confirms the potential of the algorithm responsible of the replacement of missing data.
The third and fourth validations are focused on the estimation of the EURO NCAP score
without and with missing data respectively. It showed that the majority of the estimated
scores are close to the reality. Finally, this second task of the doctoral thesis gave a hand
in understanding and optimizing the passive safety by comparing, before running the sled
test, the systems parameters in order to adapt it to the desired rating sore. The proposed
method showed its limits when the database does not contain enough sled tests.

After this rating score’s estimation, the doctoral researches have been focused on the
relationships between the restraint systems parameters and the dummy biomechanical
values. Before finding these relationships, a work on the dummy results enabled gather
it into clusters. This step has been done with the help of the GK algorithm, combined
with experts knowledge. According to the test configuration, the data has been gathered
into 2 to 10 clusters: the values of the ratings configurations have been mainly gath-
ered into more clusters as for the legislation tests in order to taken any little changes
that could influence the final rating score into account. This step of clustering has been
done for both car occupants, the driver and the passenger, and for both legislation and
ratings presented in this manuscript. The analysis of the clusters enabled to conclude
that the formed groups can be considered as classes, what allowed the use of a classfi-
cation algorithm to find the relationships and the links between the inputs (parameters of
restraint systems) and the outputs (dummy biomechanical values classed into levels of
injury severity).

The last step of this thesis was thus focused on the classification methods. A powerful
data mining method in the automobile domain is the decision trees, combined with the
Gini split criterion. They have been applied on the data, focused only on the passenger
side. In fact, the data preparation showed that not enough sled tests (under 100 sled tests
per configuration) have been collected and a study on it could not produce solid results.
That is why the last task has been focused only on the passenger side and moreover only
on the two ratings (main challenges for the engineers). In supporting the decision trees,
an additional ranking of the importance of the parameters has been done by calculation
their Variable Importance Measure.
The EURO NCAP rating is the easiest one because of the use of only one belted occupant,
the HIII 50th dummy. Moreover, the eventual modifications done for this rating will not
influence the results of the legislation because of a very similar test configuration. The
analysis has been also focused on the dummy chest because of its sensibility. The study
of the database showed that the majority of the carried out sled tests obtained without dif-
ficulties the 4 points for the head and the neck and because of an absence of a knee bag
for the European market, the femurs have not been considered. For the dummy chest,
the time to fire of the first PAB inflator stage, that regulates the pressure in the bag during
the first contact with the dummy chest, seems to influence the level of severity injury. This
pressure can be also modified through a modification of the PAB volume (also defined by
both methods as influencing the chest deflection value). Finally, external parameters, the
dummy position and temperature, have been also point out as impressionable parame-
ters but their modifications are not so flexible and are controlled by the legislation.
The second rating is the US NCAP rating. This is a part of the FMVSS NR.208 and uses
the HIII 5th belted dummy as passenger. Because of their importance in reaching the
5 stars in the US NCAP rating, the neck and the chest have been in particular studied.
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It enables to define some characteristics of the restraint systems (form of the PAB, vent
hole diameter, time to fire of the second inflator stage) as influencing the dummy neck
and chest for the HIII 5th dummy. The parameters selecting as improving the results for
the four dummy parts were parameters as the value of the OLC++ criterion or the dummy
position that are modifiable only with difficulties because of the legislation and the car
vehicle. Moreover, for this rating, the modification of parameters must be considered in
the other FMVSS NR.208 configurations.
This study demonstrated that CART models are good alternatives for analysing key fac-
tors influencing dummy biomechanical values. It represents an important methodological
step in exploring the factors affecting the outputs. The obtained results provided valuable
underlying relationships between input factors and their outputs.

To sum up, this doctoral study was based on an industrial demand which was focused on
the restraint systems of the car (airbag, knee bag, seat belt), especially on their links with
the level of severity injury of the car occupant during a crash. The first results have been
produced with the help of the k-NN method which enables to classify a new sled test with
the database according to its input configuration. It gives also a first indication on the
expected results. The second and third tasks defined the parameters that influence the
most the dummy biomechanical values for each rating. This study helped the engineers
understand the behaviour of the restraint systems and their role in attributing the score.
These methods, implemented in a GUI for a better use, are a considerable help for learn-
ing on the already carried out sled tests, analysing the passive systems before running a
new one, optimizing the influence of passive restraint systems’ parameters on occupant’s
injury severity and further reducing the number of carried out sled tests.
In term of future works, an upgrading of the database and the removing of parameters
which have non-significant influences could lead to a better decision three models. The
accuracy of the model deserves also to be proved by applying the constructed tree. Fi-
nally other decision trees building algorithms can also be tested to confirm the strength-
ness of the CART model compared to them or provide other interesting results.

The graphical user interface shall be used by the engineers in order to increase the
database and thus the accuracy of the results. These results can be also compared
in the future to the results obtained in simulation in order to improve the models. The
Variational Bayesian methods could be also an alternative to the clustering and would
enable add some conditions (or a priori), such as the limits of the biomechanical values
which depend on the legislation. The publications of Sutton-Charani et al. [69] [74] on
decision trees with uncertain data could be very useful to develop new algorithms with
the actual database.
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A
COMPLEMENT TO CHAPTER 1

This Annex is a complement of chapter 1 and regroups additional information about pas-
sive safety.

Figure A.1: Main accident causes and their frequency

Many types of collision can be registered (Fig. A.2). The collision’s definition between
utility vehicle/passenger car, passenger car/passenger car and passenger car/barrier was
explained by Richter et al. [6]

Fig. A.3 and Fig. A.4 present the history of the major worldwide legislation and ratings for
car safety.

Fig A.6 presents the sign conventions for the accelerations, forces and moments of the
dummy.

Fig. A.7 shows the positioning of the sensors in the HIII 50th dummy.
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Figure A.2: Collision’s types passenger car / passenger car

Figure A.3: History of the major legislation for passive safety

Figure A.4: History of the most major ratings for passive safety
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 TP208-14 A 9

TABLE 1A

SIGN CONVENTIONS FOR
PART 572 SUBPART E TEST DUMMIES

POSSIBLE AR

-AZ

-AX

-AY
+AX

+AY

+AZ

C.G.
TARGET

LEFT FEMUR
LOAD CELL
(FL )

RIGHT FEMUR
LOAD CELL
(FR )

-AX-AZ+AY

-AY+AX

+AZ

3 UNIAXIAL ACCELEROMETERS
LOCATED AT THE C.G. OF THE
HEAD ASSEMBLY

3 UNIAXIAL ACCELEROMETERS
LOCATED AT THE C.G. OF THE
CHEST ASSEMBLY

+ FR

+ FL (Tension)

+ FR

+ FL (Tension)

AR  =   A2
X + A2

Y + A2
Z  Gs

FIGURE 2A 

Figure A.5: Sign conventions for the accelerations, forces and moments [44]



160 APPENDIX A. COMPLEMENT TO CHAPTER 1

 TP208-14 A 10

SIGN CONVENTION FOR HYBRID III TRANSDUCER OUTPUTS

BODY SEGMENT — 

MEASURED FORCE POSITIVE OUTPUT DIRECTION

NECK
FX SHEAR 
FY SHEAR 
FZ AXIAL 

MX MOMENT (ROLL) 
MY MOMENT (PITCH) 
MZ MOMENT (YAW) 

HEAD  REARWARD OR CHEST FORWARD 
HEAD LEFTWARD, CHEST RIGHTWARD 
HEAD UPWARD, CHEST DOWNWARD 

LEFT EAR TOWARD LEFT SHOULDER 
CHIN TOWARD STERNUM 
CHIN TOWARD LEFT SHOULDER 

FEMUR
FX SHEAR 
FY SHEAR 
FZ AXIAL 

MX MOMENT (ROLL) 
MY MOMENT (PITCH) 
MZ MOMENT (YAW) 

KNEE UPWARD, UPPER FEMUR DOWNWARD 
KNEE RIGHTWARD, UPPER FEMUR LEFTWARD 
KNEE FORWARD (TENSION), PELVIS REARWARD 

KNEE LEFTWARD, HOLD UPPER FEMUR IN PLACE 
KNEE UPWARD, HOLD UPPER FEMUR IN PLACE 
KNEE ROTATED CCW WHEN FACING FRONT OF 
DUMMY

KNEE CLEVIS - FZ AXIAL TIBIA DOWNWARD (TENSION), FEMUR UPWARD 

UPPER TIBIA 
MX MOMENT 
MY MOMENT 

ANKLE LEFTWARD, HOLD KNEE IN PLACE 
ANKLE FORWARD, BOTTOM OF KNEE CLEVIS 
REARWARD 

LOWER TIBIA 
FX SHEAR 
FY SHEAR 
FZ AXIAL 

MX MOMENT 
MY MOMENT 

ANKLE FORWARD, KNEE REARWARD 
ANKLE RIGHTWARD, KNEE LEFTWARD 
ANKLE DOWNWARD (TENSION), KNEE UPWARD 

ANKLE LEFTWARD, HOLD KNEE IN PLACE 
ANKLE FORWARD, BOTTOM OF KNEE CLEVIS 
REARWARD 

CHEST DISPLACEMENT CHEST COMPRESSED - NEGATIVE 

KNEE SHEAR DISPLACEMENT PUSH ON FRONT OF TIBIA - NEGATIVE 

NOTE:  DIRECTIONS ARE DEFINED IN RELATION TO A SEATED DUMMY 

Figure A.6: Sign conventions for the accelerations, forces and moments [44]
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Figure A.7: Localisation of the main sensors in a HIII 50th dummy





B
LEGAL REQUIREMENTS FOR THE ECE

LEGISLATION

B.1/ EURO NCAP RATING: ATTRIBUTION OF THE POINTS
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Figure B.1: Attribution of the points for each dummy part according to the EURO

NCAP rating



C
PANELS OF THE GRAPHICAL USER

INTERFACE

C.1/ CONFIGURATION’S PANEL

The created Graphical User Interface (GUI) has a general panel which the user can
choose the configuration of the sled test and enter some general parameters as the test’s
name, customer’s name, type of legislation or rating, dummy, occupant position. This
panel is represented in Fig. C.1. The next panels are according to these choices.

Figure C.1: GUI panel for the sled test’s configuration
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C.2/ GENERAL PANELS

After choosing the initial configuration of the sled test, the four main categories which can
influence the dummy biomechanical values, are available (Fig. C.2):

q Airbag (driver or passenger, depending on the chosen configuration)

q Kneebag

q Seat belt: if the user chooses the FMVSS Nr.208 legislation without seat belt in the
configuration’s panel, the panel ”seat belt” will be unavailable.

Figure C.2: GUI panel for the four main categories

C.2.1/ PANEL FOR THE DRIVER AND PASSENGER AIRBAG

Because the airbag’s parameters are different for the driver and passenger airbag, two
panels have been created for the frontal airbag (Fig. C.3 and Fig. C.4). This panel allows
the entering of many airbags parameters which can have an influence on the dummy
biomechanical values. These parameters have been selected through an expert elicita-
tion. By availability of some parameters (i.e. the active bag vent), additional fiels are
automatically available in order to ”define” this parameters (i.e. through its surface or time
to fire). Because the driver airbag are directly connected on the steering system, the ex-
tra panel is available for the driver side containing information on the steering wheel and
steering column.

C.2.2/ PANEL FOR THE KNEEBAG

This panel is independent of the sled test’s configuration, i.e. it is always available. If no
kneebag is mounted in the buck, its parameters will not be shown (Fig. C.5).
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Figure C.3: GUI panel for entering the driver airbag parameters

Figure C.4: GUI panel for entering the passenger airbag parameters

C.2.3/ PANEL FOR THE SEAT BELT

If the sled test is a EURO NCAP rating or a FMVSS Nr.208 with seat belt, some param-
eters of the seat belt are asked. As for the other panels, the availability of components
causes the appearance of other characteristics (Fig. C.6).
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Figure C.5: GUI panel for entering the kneebag parameters if mounted in the buck

Figure C.6: GUI panel for entering the seat belt parameters if available

C.2.4/ PANEL FOR THE SLED TEST’S GENERAL PARAMETERS

This panel resumes first the sled test’s configuration by inserting the data entering in the
configuration’s panel. It allows to verify the configuration before running the programme
(Fig. C.7). This panel includes the dummy position: it is defined by the chosen law but, in
order to compare it, the distances (and not the coordinate of some points) between the
dummy and the instrument panel have been measured. It allows to compare the dummy
position between different types of cars in accordance to the position of the instrumental
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panel. In fact, theoretic the more nearest from the instrumental panel the dummy is, the
more worst the dummy biomechanical values are.

Figure C.7: GUI panel for the dummy position and car specifications

C.2.5/ OVERVIEW PANEL

After entering all parameters of each restraint systems, the user can check it before run-
ning the programme with the help of the overview panel (Fig. C.8). It is available through
the button ”Dummy values” available on the general panel (Fig. C.2).

C.3/ SLED TEST’S RESULTS

The majority of the sled tests included in the database are already executed. That is
why the dummy biomechanical values are known and can be used in order to predict the
results of a new sled test. The panel C.9 allows the entering of the results for EuroNCAP
rating and FMVSS Nr.208. This panel is available through the button ”Dummy values”
available on the general panel (Fig. C.2).
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Figure C.8: GUI panel for the checking of the entered parameters before running
the programme

Figure C.9: GUI panel for entering the dummy biomechanical values after the car-
rying out of the sled test



D
COMPLEMENT TO CHAPTER 4.1

(EURO NCAP RATING, DRIVER SIDE)

Because the method for the determination of the clusters for the driver side (HIII 50th
dummy) in EURO NCAP is the same as for the passenger side, only the DBI curves and
the corresponding graphical representation of the clusters will be represented.

D.1/ DUMMY HEAD

For the dummy head, Fig. D.1(a) presents the DBI values. According to it, the best
clustering is the clustering with 4 clusters (Fig. D.1(b) and Table D.1).
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(a) Representation of the DBI values (b) Clustering dummy head (4 clusters): graphical rep-
resentation

Figure D.1: Head combination (driver, Europa, HIII 50th dummy)

D.2/ DUMMY NECK

For the dummy neck, Fig. D.2(a) presents the DBI values. According to it, the best clus-
tering is the clustering with 3 clusters but after analysis of the sled tests’ results, the
clustering with 2 clusters regrouping sled tests with 4 points overall and sled tests which
did not reach the 4 points overall seems to be more adapted (Fig. D.2(b) and Table D.2).
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Table D.1: Dummy head, 4 proposed clusters: characteristics (driver, Europa, HIII
50th dummy)

Item Number of elements Head acceleration (3 ms) HIC 36
in the cluster

Range of values
#1 372 [31 g; 71 g] [130 ; 643]
#2 12 [63 g; 72 g] [663 ; 1003]
#3 1 72 g 553
#4 10 [73 g; 109 g] [710 ; 1064]

Number of points obtained for the dummy head
(EURO NCAP rating)

#1 372 4 points 4 points
#2 12 4 points < 4 points
#3 1 < 4 points 4 points
#4 10 < 4 points < 4 points
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(a) Representation of the DBI values (b) Clustering dummy neck (2 proposed clusters):
graphical representation

Figure D.2: Neck combination (driver, Europa, HIII 50th dummy)

D.3/ DUMMY CHEST

For the dummy chest, Fig. D.3(a) presents the DBI values. According to it, the best
clustering is the clustering with 3 clusters. Because of the sensibility of this dummy part,
the clustering will be done with 10 clusters, as for the passenger side (Fig. D.3(b) and
Table D.3). These clusters have directly been formed by the GK algorithm. Because for
one sled test the sensor seems to be defect (chest deflection value by 0), this value has
been deleted from the database.

D.4/ DUMMY FEMURS

For the majority of the EURO NCAP tests, the driver has a knee bag. That is why the femur
forces have to be taken into account. Fig. D.4(a) presents the DBI values. According to



D.4. DUMMY FEMURS 173

Table D.2: Dummy neck, 2 proposed clusters: characteristics (driver, Europa, HIII
50th dummy)

Item Number Neck shear Neck tension Neck extension
of elements

in the cluster
Range of values

#1 384 [16 N; 1921 N] [496 N; 2503 N] [2 Nm; 46 Nm]
#2 11 [343 N; 2122 N] [681 N; 4375 N] [11 Nm; 62 Nm]

Number of points obtained for the dummy neck
(EURO NCAP rating)

#1 384 4 points 4 points 4 points
#2 11 0 - 4 points 0 - 4 point 0 - 4 points

Neck score overall
(minimal score between the three neck scores)

#1 384 4 points
#2 11 0 - 3,99 points
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(a) Representation of the DBI values (b) Clustering dummy chest (10 clusters): graphical
representation

Figure D.3: Chest combination (driver, Europa, HIII 50th dummy)

it, the best clustering is the clustering with 4 clusters. But the chosen clusters have been
formed according to the obtained score (Fig. D.4(b) and Table D.4).
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Table D.3: Dummy chest, 10 clusters: characteristics (driver, Europa, HIII 50th
dummy)

Item Number of elements Chest deflection
in the cluster

Range of values
#1 4 [54,58 mm ; 56,90 mm]
#2 64 [31,72 mm ; 35,07 mm]
#3 59 [23,19 mm ; 26,20 mm]
#4 45 [35,35 mm ; 38,81 mm]
#5 26 [39,08 mm ; 43,20 mm]
#6 34 [43,78 mm ; 49,66 mm]
#7 64 [28,88 mm ; 31,66 mm]
#8 4 [61,41 mm ; 68,98 mm]
#9 29 [18,66 mm ; 23,03 mm]
#10 65 [26,25 mm ; 28,76 mm]

Number of points obtained for the dummy chest
(EURO NCAP rating)

#1 4 0 point
#2 64 2,13 - 2,61 points
#3 59 3,40 - 3,83 points
#4 45 1,60 - 2,09 points
#5 26 0,97 - 1,56 points
#6 34 0,05 - 0,89 points
#7 64 2,62 - 3,02 points
#8 4 0 point
#9 29 3,85 - 4 points
#10 65 3,03 - 3,39 points
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(a) Representation of the DBI values (b) Clustering dummy femurs (4 proposed clusters):
graphical representation

Figure D.4: Femurs combination (driver, Europa, HIII 50th dummy)
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Table D.4: Dummy femurs, 4 clusters: characteristics (driver, Europa, HIII 50th
dummy)

Item Number of elements Femurs forces
in the cluster Left Right

Range of values
#1 379 [315 N ; 3798 N] [379 N ; 3795 N]
#2 5 [4273 N ; 4774 N] [2947 N ; 3769 N]
#3 9 [836 N ; 2485 N] [4031 N ; 5900 N]
#4 2 [9996 N ; 10000 N] [10018 N ; 10810 N]

Number of points obtained for the dummy femur
(EURO NCAP rating)

#1 379 4 points 4 points
#2 5 < 4 points 4 points
#3 9 4 points < 4 points
#4 2 < 4 points < 4 points





E
COMPLEMENT TO CHAPTER 4.2

(FMVSS NR.208, PASSENGER SIDE)

E.1/ PASSENGER SIDE : HIII 50TH DUMMY UNBELTED

This section regroups the DBI curves and the graphical representations of the clusters
for the HIII 50th dummy unbelted placed on the passenger side. The head, the neck, the
chest and the femurs have been analysed.

E.1.1/ DUMMY HEAD
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(a) Representation of the DBI values (b) Clustering dummy head (5 Clusters): graphical repre-
sentation

Figure E.1: Head combination(passenger, USA, HIII 50th dummy unbelted)
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(a) Representation of the DBI values (b) Clustering dummy neck (5 clusters): graphical repre-
sentation

Figure E.2: Neck combination (passenger, USA, HIII 50th dummy unbelted)
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(a) Representation of the DBI values (b) Clustering dummy chest (6 clusters): graphical repre-
sentation

Figure E.3: Chest combination (passenger, USA, HIII 50th dummy unbelted)

4 5 6 7 8 9 10
0

1

2

3

4

5
 Femur outputs (left force, right force)

Number of clusters

D
av

ie
s−

B
ou

di
n 

In
de

x 
V

al
ue

(a) Representation of the DBI values (b) Clustering dummy femurs (6 clusters): graphical repre-
sentation

Figure E.4: Femur combination (passenger, USA, HIII 50th dummy unbelted)
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E.1.2/ DUMMY NECK

E.1.3/ DUMMY CHEST

E.1.4/ DUMMY FEMURS

E.2/ PASSENGER SIDE : HIII 5TH DUMMY UNBELTED

This section regroups the DBI curves and the graphical representations of the clusters
for the HIII 5th dummy unbelted placed on the passenger side. The head, the neck, the
chest and the femurs have been analysed.

E.2.1/ DUMMY HEAD
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(a) Representation of the DBI values (b) Clustering dummy head (5 clusters): graphical repre-
sentation

Figure E.5: Head combination (passenger, USA, HIII 5th dummy unbelted)

E.2.2/ DUMMY NECK
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(a) Representation of the DBI values (b) Clustering dummy neck (6 clusters): graphical repre-
sentation

Figure E.6: Neck combination (passenger, USA, HIII 5th dummy unbelted)
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E.2.3/ DUMMY CHEST
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(a) Representation of the DBI values (b) Clustering dummy chest (8 clusters): graphical repre-
sentation

Figure E.7: Chest combination (passenger, USA, HIII 5th dummy unbelted)

E.2.4/ DUMMY FEMURS
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(a) Representation of the DBI values (b) Clustering dummy femurs (5 clusters): graphical repre-
sentation

Figure E.8: Femurs combination (passenger, USA, HIII 5th dummy unbelted)

E.3/ PASSENGER SIDE : HIII 5TH DUMMY BELTED (RATING)

This section regroups the DBI curves and the graphical representations of the clusters
for the HIII 5th dummy belted placed on the passenger side. It corresponds to the rating.
The head, the neck, the chest and the femurs have been analysed.
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(a) Representation of the DBI values (b) Clustering dummy head (7 clusters): graphical repre-
sentation

Figure E.9: Head combination (passenger, USA, HIII 5th dummy belted)
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(a) Representation of the DBI values (b) Clustering dummy neck (6 clusters): graphical represen-
tation

Figure E.10: Neck combination (passenger, USA, HIII 5th dummy belted)

E.3.1/ DUMMY HEAD

E.3.2/ DUMMY NECK

E.3.3/ DUMMY CHEST

E.3.4/ DUMMY FEMURS
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(a) Representation of the DBI values (b) Clustering dummy chest (9 clusters): graphical
representation

Figure E.11: Chest combination (passenger, USA, HIII 5th dummy belted)
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(a) Representation of the DBI values (b) Clustering dummy femurs (6 clusters): graphical
representation

Figure E.12: Femurs combination (passenger, USA, HIII 5th dummy belted)
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COMPLEMENT TO CHAPTER 4.2

(FMVSS NR.208, DRIVER SIDE)

Because the method for the determination of the clusters for the driver side in FMVSS

NR.208 is the same as for the passenger side for both dummies, only the DBI curves and
the corresponding graphical representation of the clusters will be represented.

For the legislation case, the DBI has been calculated from 4 up to 10 clusters. For the
rating (HIII 50th dummy belted), the DBI has been calculated from 6 up to 15 clusters.

F.1/ DRIVER SIDE : HIII 50TH DUMMY UNBELTED

This section regroups the DBI curves and the graphical representations of the clusters for
the HIII 50th dummy unbelted placed on the driver side. The head, the neck, the chest
and the femurs have been analysed.

F.1.1/ DUMMY HEAD

Fig. F.1(a) presents the DBI values for the dummy head. According to it, the best clus-
tering is the clustering with 4 clusters that are represented in Fig. F.1(b). These clusters
have directly been formed by the GK algorithm.

These clusters will be used for the study of the parameters’ influence on the dummy head
for this configuration.

F.1.2/ DUMMY NECK

Fig. F.2(a) presents the DBI values for the dummy neck. According to it, the best clus-
tering is the clustering with 4 clusters that are represented in Fig. F.2(b). These clusters
have directly been formed by the GK algorithm.

These clusters will be used for the study of the parameters’ influence on the dummy neck
for this configuration.
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(a) Representation of the DBI values (b) Clustering dummy head (4 clusters): graphical repre-
sentation

Figure F.1: Head combination (driver, USA, HIII 50th dummy unbelted)
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(a) Representation of the DBI values (b) Clustering dummy neck (4 clusters): graphical repre-
sentation

Figure F.2: Neck combination (driver, USA, HIII 50th dummy unbelted)

F.1.3/ DUMMY CHEST

Fig. F.3(a) presents the DBI values for the dummy chest. According to it, the best cluster-
ing is the clustering with 4 clusters. A fifth cluster has been manually created in order to
regroup the sled tests with values up 80% of the legal values into a same cluster. They
are represented in Fig. F.3(b). The four clusters have directly been formed by the GK
algorithm and the fifth manually.

These clusters will be used for the study of the parameters’ influence on the dummy chest
for this configuration.

F.1.4/ DUMMY FEMURS

Fig. F.4(a) presents the DBI values for the dummy femurs. According to it, the best cluster-
ing is the clustering with 4 clusters. The clustering in 8 clusters presents more advantages
because of the separation of the values up 80% and 100% of the legal values. It will be
helpful for the future anaysis of the input’s parameters. The clusters are represented in
Fig. F.4(b). They have directly been formed by the GK algorithm.

These clusters will be used for the study of the parameters’ influence on the dummy
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(a) Representation of the DBI values (b) Clustering dummy chest (4 clusters): graphical repre-
sentation

Figure F.3: Chest combination (driver, USA, HIII 50th dummy unbelted)
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(a) Representation of the DBI values (b) Clustering dummy femurs (4 clusters): graphical repre-
sentation

Figure F.4: Femurs combination (driver, USA, HIII 50th dummy unbelted)

femurs for this configuration.

F.2/ DRIVER SIDE : HIII 5TH DUMMY UNBELTED

This section regroups the DBI curves and the graphical representations of the clusters for
the HIII 5th dummy unbelted placed on the driver side. The head, the neck, the chest and
the femurs have been analysed.

F.2.1/ DUMMY HEAD

Fig. F.5(a) presents the DBI values for the dummy head. According to it, the best clus-
tering is the clustering with 4 clusters that are represented in Fig. F.5(b). These clusters
have directly been formed by the GK algorithm.

These clusters will be used for the study of the parameters’ influence on the dummy head
for this configuration.
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(a) Representation of the DBI values (b) Clustering dummy head (4 clusters): graphical repre-
sentation

Figure F.5: Head combination (driver, USA, HIII 5th dummy unbelted)

F.2.2/ DUMMY NECK

Fig. F.6(a) presents the DBI values for the dummy neck. According to it, the best clus-
tering is the clustering with 4 clusters that are represented in Fig. F.6(b). These clusters
have directly been formed by the GK algorithm.
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(a) Representation of the DBI values (b) Clustering dummy neck (4 clusters): graphical repre-
sentation

Figure F.6: Neck combination (driver, USA, HIII 5th dummy unbelted)

These clusters will be used for the study of the parameters’ influence on the dummy neck
for this configuration.

F.2.3/ DUMMY CHEST

Fig. F.7(a) presents the DBI values for the dummy chest. According to it, the best clus-
tering is the clustering with 7 clusters that are represented in Fig. F.7(b). These clusters
have directly been formed by the GK algorithm.

These clusters will be used for the study of the parameters’ influence on the dummy chest
for this configuration.
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(a) Representation of the DBI values (b) Clustering dummy chest (7 clusters): graphical repre-
sentation

Figure F.7: Chest combination (driver, USA, HIII 5th dummy unbelted)

F.2.4/ DUMMY FEMURS

Fig. F.8(a) presents the DBI values for the dummy femurs. According to it, the best clus-
tering is the clustering with 4 clusters that are represented in Fig. F.8(b). These clusters
have directly been formed by the GK algorithm.
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(a) Representation of the DBI values (b) Clustering dummy femurs (4 clusters): graphical repre-
sentation

Figure F.8: Femurs combination (driver, USA, HIII 5th dummy unbelted)

These clusters will be used for the study of the parameters’ influence on the dummy
femurs for this configuration.

F.3/ DRIVER SIDE : HIII 50TH DUMMY BELTED (RATING)

This section regroups the DBI curves and the graphical representations of the clusters for
the HIII 50th dummy belted placed on the driver side. The head, the neck, the chest and
the femurs have been analysed. This case corresponds to the rating, it means that the
biomechanical values have to be under the legislation limits but also as low as possible
to get the best score. That is why the DBI curves have been done for 6 until 15 clusters.
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F.3.1/ DUMMY HEAD

Fig. F.9(a) presents the DBI values for the dummy head. According to it, the best clus-
tering is the clustering with 7 clusters that are represented in Fig. F.9(b). These clusters
have directly been formed by the GK algorithm.
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(a) Representation of the DBI values (b) Clustering dummy head (7 clusters): graphical repre-
sentation

Figure F.9: Head combination (driver, USA, HIII 50th dummy belted)

These clusters will be used for the study of the parameters’ influence on the dummy head
for this configuration.

F.3.2/ DUMMY NECK

Fig. F.10(a) presents the DBI values for the dummy neck. According to it, the best clus-
tering is the clustering with 6 clusters that are represented in Fig. F.10(b). These clusters
have directly been formed by the GK algorithm.
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(a) Representation of the DBI values (b) Clustering dummy neck (6 clusters): graphical repre-
sentation

Figure F.10: Neck combination (driver, USA, HIII 50th dummy belted)

These clusters will be used for the study of the parameters’ influence on the dummy neck
for this configuration.
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F.3.3/ DUMMY CHEST

Fig. F.11(a) presents the DBI values for the dummy chest. According to it, the best clus-
tering is the clustering with 12 clusters that are represented in Fig. F.11(b). These clusters
have directly been formed by the GK algorithm. For the US NCAP rating, only the chest
deflection is taken under consideration but the chest acceleration has to be under the
80% limit. Because lots of sled tests were upper this limit, the clustering has been done
with both outputs.
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(a) Representation of the DBI values (b) Clustering dummy chest (12 clusters): graphical repre-
sentation

Figure F.11: Chest combination (driver, USA, HIII 50th dummy belted)

These clusters will be used for the study of the parameters’ influence on the dummy chest
for this configuration.

F.3.4/ DUMMY FEMURS

Fig. F.12(a) presents the DBI values for the dummy femurs. According to it, the best
clustering is the clustering with 6 clusters that are represented in Fig. F.12(b). These
clusters have directly been formed by the GK algorithm.

6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8
 Femur outputs (left force, right force)

Number of clusters

D
av

ie
s−

B
ou

di
n 

In
de

x 
V

al
ue

(a) Representation of the DBI values (b) Clustering dummy femurs (6 clusters): graphical repre-
sentation

Figure F.12: Femurs combination (driver, USA, HIII 50th dummy belted)

These clusters will be used for the study of the parameters’ influence on the dummy
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femurs for this configuration.

F.4/ DRIVER SIDE : HIII 5TH DUMMY BELTED

This section regroups the DBI curves and the graphical representations of the clusters for
the HIII 5th dummy belted placed on the driver side. The head, the neck, the chest and
the femurs have been analysed.

F.4.1/ DUMMY HEAD

Fig. F.13(a) presents the DBI values for the dummy head. According to it, the best clus-
tering is the clustering with 4 clusters. A fifth cluster has been manually created in order
to regroup the sled tests with values up 80% of the legal values into a same cluster. They
are represented in Fig. F.13(b). The four clusters have directly been formed by the GK
algorithm and the fifth manually.
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(a) Representation of the DBI values (b) Clustering dummy head (4 clusters): graphical repre-
sentation

Figure F.13: Head combination (driver, USA, HIII 5th dummy belted)

These clusters will be used for the study of the parameters’ influence on the dummy head
for this configuration.

F.4.2/ DUMMY NECK

Fig. F.14(a) presents the DBI values for the dummy neck. According to it, the best clus-
tering is the clustering with 4 clusters that are represented in Fig. F.14(b). These clusters
have directly been formed by the GK algorithm.

These clusters will be used for the study of the parameters’ influence on the dummy neck
for this configuration.
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(a) Representation of the DBI values (b) Clustering dummy neck (6 clusters): graphical repre-
sentation

Figure F.14: Neck combination (driver, USA, HIII 5th dummy belted)

F.4.3/ DUMMY CHEST

Fig. F.15(a) presents the DBI values for the dummy chest. According to it, the best clus-
tering is the clustering with 4 clusters. The representation in 5 clusters presents a better
separation of the legal values according to the ground truth. They are represented in
Fig. F.15(b) and have directly been formed by the GK algorithm.
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(a) Representation of the DBI values (b) Clustering dummy chest (8 clusters): graphical repre-
sentation

Figure F.15: Chest combination (driver, USA, HIII 5th dummy belted)

These clusters will be used for the study of the parameters’ influence on the dummy chest
for this configuration.

F.4.4/ DUMMY FEMURS

Fig. F.16(a) presents the DBI values for the dummy femurs. According to it, the best
clustering is the clustering with 6 clusters that are represented in Fig. F.16(b). These
clusters have directly been formed by the GK algorithm.

These clusters will be used for the study of the parameters’ influence on the dummy
femurs for this configuration.
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(a) Representation of the DBI values (b) Clustering dummy femurs (6 clusters): graphical repre-
sentation

Figure F.16: Femurs combination (driver, USA, HIII 5th dummy belted)



G
DECISION TREES EURO NCAP

This Appendix contains the decision trees and validation results that have not been ex-
plained in the main report.

G.1/ DUMMY HEAD

Table G.1 resumes the sled tests’ repartition according to the head value and the re-
straint systems parameters. The build of a decision tree1 (Fig G.1) enables to detect the
parameters influencing the dummy head score in a EURO NCAP sled test, supported by
the calculation of the VIM (Table G.2). Finally, Table G.3 presents the results obtained by
the LOOCV validation and confirms the potential of the model: in fact, 82% of the values
have been correctly assigned in the right cluster by the proposed decision tree.

Table G.1: Sled tests’ repartition for the dummy head (passenger, EURO NCAP)

Variables Cluster #1 Cluster #2 Cluster #3 Cluster #4
Number of sled tests 122 10 2 6

PAB
L-shape 95.6% 2.2% 0.0% 2.2%

Square-shape 79.5% 11.5% 2.6% 6.4%
3D Add-on 100.0% 0.0% 0.0% 0.0%
3D-shape 100.0% 0.0% 0.0% 0.0%

other 100.0% 0.0% 0.0% 0.0%
Divided Panel

no 86.6% 7.1% 1.6% 4.7%
yes 92.3% 7.7% 0.0% 0.0%

Volume
<90 L 50.0% 50.0% 0.0% 0.0%

90-100 L 95.7% 0.0% 2.1% 2.1%
101-110 L 0.0% 0.0% 100.0% 0.0%
111-120 L 94.7% 3.5% 0.0% 1.8%
>120 L 67.7% 19.4% 0.0% 12.9%

Number of VH
no 96.9% 1.5% 0.0% 1.5%
yes 78.7% 12.0% 2.7% 6.7%

ABV
no 86.1% 7.4% 1.6% 4.9%
yes 94.4% 5.6% 0.0% 0.0%

Tether 1

1Shifted values to avoid representing a real case

193
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no 86.8% 7.0% 1.6% 4.7%
yes 90.9% 9.1% 0.0% 0.0%

Inflator Type
Pyrotechnic 95.2% 4.8% 0.0% 0.0%

Hybrid 83.3% 8.3% 2.1% 6.3%
Cold gas 100.0% 0.0% 0.0% 0.0%

Number of Stages
1 94.9% 3.4% 0.0% 1.7%
2 81.5% 9.9% 2.5% 6.2%

TTF Stage 1
<14 ms 91.6% 4.7% 1.9% 1.9%

14-16 ms 91.7% 8.3% 0.0% 0.0%
17-20 ms 46.7% 26.7% 0.0% 26.7%
>20 ms 100.0% 0.0% 0.0% 0.0%

Type of LL
CLL 91.6% 4.7% 1.9% 1.9%
DLL 91.7% 8.3% 0.0% 0.0%
PLL 46.7% 26.7% 0.0% 26.7%
SLL 100.0% 0.0% 0.0% 0.0%

LL Value 1
<2.5 kN 50.0% 25.0% 0.0% 25.0%

2.5-3.4 kN 86.7% 6.7% 2.2% 4.4%
3.5-4.5 kN 94.5% 4.1% 1.4% 0.0%
4.6-5.5 kN 100.0% 0.0% 0.0% 0.0%
5.6-6.5 kN 0.0% 0.0% 0.0% 0.0%

Retractor pretensioner
no 92.4% 3.0% 3.0% 1.5%
yes 82.4% 10.8% 0.0% 6.8%

Bucke pretensioner
no 81.0% 11.1% 0.0% 7.9%
yes 92.2% 3.9% 2.6% 1.3%

Anchor pretensioner
no 86.5% 7.1% 1.6% 4.8%
no 92.9% 7.1% 0.0% 0.0%

Seatbelt Position
Steep 91.2% 2.9% 5.9% 0.0%
Mid 77.8% 15.6% 0.0% 6.7%

Down 91.8% 3.3% 0.0% 4.9%
Webbing on Spool

<750 mm 100.0% 0.0% 0.0% 0.0%
750-800 mm 100.0% 0.0% 0.0% 0.0%
801-850 mm 83.3% 0.0% 0.0% 6.7%
851-900 mm 69.2% 23.1% 0.0% 7.7%
901-950 mm 75.0% 15.6% 0.0% 9.4%

951-1000 mm 91.7% 4.2% 0.0% 4.2%
>1000 mm 94.6% 1.8% 3.6% 0.0%

Height Adjustment
no 93.9% 2.4% 2.4% 1.2%
yes 77.6% 13.8% 0.0% 8.6%
DLT
no 87.4% 6.7% 1.5% 4.4%
yes 80.0% 20.0% 0.0% 0.0%

KnAB
no 93.4% 3.3% 1.7% 1.7%
yes 47.4% 31.6% 0.0% 21.1%

Chin to IP
<420 mm 100.0% 0.0% 0.0% 0.0%

420-470 mm 0.0% 0.0% 0.0% 0.0%
471-500 mm 0.0% 0.0% 0.0% 0.0%
501-550 mm 60.0% 20.0% 0.0% 20.0%
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>550 mm 91.5% 5.1% 1.7% 1.7%
Sternum to IP

<420 mm 100.0% 0.0% 0.0% 0.0%
420-470 mm 92.3% 7.7% 0.0% 0.0%
471-500 mm 94.1% 2.9% 0.0% 2.9%
501-550 mm 82.8% 9.4% 1.6% 6.3%
>550 mm 84.6% 7.7% 3.8% 3.8%

Left Knee - Shorter Distance Ahead
<40 mm 0.0% 0.0% 0.0% 0.0%

40-49 mm 0.0% 0.0% 0.0% 0.0%
50-59 mm 0.0% 0.0% 0.0% 0.0%
60-69 mm 0.0% 0.0% 0.0% 0.0%
70-79 mm 0.0% 0.0% 0.0% 0.0%
>80 mm 87.1% 7.1% 1.4% 4.3%

Right Knee - Shorter Distance Ahead
<40 mm 0.0% 0.0% 0.0% 0.0%

40-49 mm 0.0% 0.0% 0.0% 0.0%
50-59 mm 0.0% 0.0% 0.0% 0.0%
60-69 mm 0.0% 0.0% 0.0% 0.0%
70-79 mm 0.0% 0.0% 0.0% 0.0%
>80 mm 87.1% 7.1% 1.4% 4.3%

OLC
<26 g 93.5% 3.7% 1.9% 0.9%

26-26.9 g 79.2% 8.3% 0.0% 12.5%
27-27.9 g 50.0% 33.3% 0.0% 16.7%
>28 g 0.0% 66.7% 0.0% 33.3%

Dummy Temperature
<20 ◦C 100.0% 0.0% 0.0% 0.0%

20-20.9 ◦C 89.2% 5.4% 2.7% 2.7%
21-21.9 ◦C 84.7% 9.4% 1.2% 4.7%
>22 ◦C 93.3% 0.0% 0.0% 6.7%

1 1

2 4 2

1 3 1

1 4

OLC < 26.5885   

Vol < 89.5   T° < 21.25   

P3 < 92.5   P3 < 131   

P2 < 534.5   

P3 < 139   T° < 20.55   

SB_Pos in (0 1)   

  OLC >= 26.5885

  Vol >= 89.5   T° >= 21.25

  P3 >= 92.5   P3 >= 131

  P2 >= 534.5

  P3 >= 139   T° >= 20.55

   SB_Pos = 2

 

Figure G.1: Decision tree for the dummy head (passenger, EURO NCAP) - Shifted
values to avoid representing a real case
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Table G.2: Calculation of the VIM for the dummy head (passenger, EURO NCAP)

Predictor Variable Variable Importance Measure
OLC 0,005472533
Dummy Temperature 0,003769771
Left Knee, Shorter Distance Ahead 0,002906496
Seat belt Position 0,001455026
Volume 0,001341526
Sternum to IP 0,000305456

Table G.3: Validation of the decision tree for the dummy head (passenger, EURO

NCAP)

Predicted injury
Cluster #1 Cluster #2 Cluster #3 Cluster #4

O
b.

in
ju

ry
* Cluster #1 112 5 1 4

Cluster #2 7 3 0 0
Cluster #3 2 0 0 0
Cluster #4 5 1 0 0
Prediction accuracy 82% in the right cluster

*Obtained injury

G.2/ DUMMY NECK

Table G.4 resumes the sled tests’ repartition according to the neck value and the restraint
systems parameters. The build of a decision tree2 (Fig G.2) enables to detect the pa-
rameters influencing the dummy neck score in a EURO NCAP sled test, supported by the
calculation of the VIM (Table G.5). Finally, Table G.6 presents the results obtained by the
LOOCV validation.

Table G.4: Sled tests’ repartition for the dummy neck (passenger, EURO NCAP)

Variables Cluster #1 Cluster #2
Number of sled tests 19 121

PAB
L-shape 2.2% 97.8%

Square-shape 23.1% 76.9%
3D Add-on 0.0% 100.0%
3D-shape 0.0% 100.0%

other 0.0% 100.0%
Divided Panel

no 15.0% 85.0%
yes 0.0% 100.0%

Volume
<90 L 50.0% 50.0%

90-100 L 14.9% 85.1%
101-110 L 0.0% 100.0%
111-120 L 10.5% 89.5%
>120 L 12.9% 87.1%

Number of VH
no 16.9% 83.1%
yes 10.7% 89.3%

ABV

2Shifted values to avoid representing a real case
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no 15.6% 84.4%
yes 0.0% 100.0%

Tether 1
no 14.7% 85.3%
yes 0.0% 100.0%

Inflator Type
Pyrotechnic 14.3% 85.7%

Hybrid 13.5% 86.5%
Cold gas 0.0% 100.0%

Number of Stages
1 22.0% 78.0%
2 7.4% 92.6%

TTF Stage 1
<14 ms 0.0% 0.0%

14-16 ms 0.0% 0.0%
17-20 ms 10.0% 90.0%
>20 ms 13.8% 86.2%

Type of LL
CLL 14.0% 86.0%
DLL 0.0% 100.0%
PLL 26.7% 73.3%
SLL 0.0% 100.0%

LL Value 1
<2.5 kN 25.0% 75.0%

2.5-3.4 kN 17.8% 82.2%
3.5-4.5 kN 9.6% 90.4%
4.6-5.5 kN 0.0% 100.0%
5.6-6.5 kN 0.0% 0.0%

Retractor pretensioner
no 13.6% 86.4%
yes 13.5% 86.5%

Buckle pretensioner
no 15.9% 84.1%
yes 11.7% 88.3%

Anchor pretensioner
no 15.1% 84.9%
no 0.0% 100.0%

Seatbelt Position
Steep 11.8% 88.2%
Mid 8.9% 91.1%

Down 18.0% 82.0%
Webbing on Spool

<750 mm 0.0% 100.0%
750-800 mm 0.0% 100.0%
801-850 mm 16.7% 83.3%
851-900 mm 7.7% 92.3%
901-950 mm 37.5% 62.5%

951-1000 mm 16.7% 83.3%
>1000 mm 1.8% 98.2%

Height Adjustment
no 9.8% 90.2%
yes 19.0% 81.0%
DLT
no 14.1% 85.9%
yes 0.0% 100.0%

KnAB
no 12.4% 87.6%
yes 21.1% 78.9%

Chin to IP
<420 mm 0.0% 100.0%
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420-470 mm 0.0% 0.0%
471-500 mm 0.0% 0.0%
501-550 mm 20.0% 80.0%
>550 mm 12.8% 87.2%

Sternum to IP
<420 mm 0.0% 100.0%

420-470 mm 7.7% 92.3%
471-500 mm 2.9% 97.1%
501-550 mm 23.4% 76.6%
>550 mm 7.7% 92.3%

Left Knee - Shorter Distance Ahead
<40 mm 0.0% 0.0%

40-49 mm 0.0% 0.0%
50-59 mm 0.0% 0.0%
60-69 mm 0.0% 0.0%
70-79 mm 0.0% 0.0%
>80 mm 13.6% 86.4%

Right Knee - Shorter Distance Ahead
<40 mm 0.0% 0.0%

40-49 mm 0.0% 0.0%
50-59 mm 0.0% 0.0%
60-69 mm 0.0% 0.0%
70-79 mm 0.0% 0.0%
>80 mm 13.6% 86.4%

OLC
<26 g 10.3% 89.7%

26-26.9 g 25.0% 75.0%
27-27.9 g 16.7% 83.3%
>28 g 33.3% 66.7%

Dummy Temperature
<20 ◦C 0.0% 100.0%

20-20.9 ◦C 5.4% 94.6%
21-21.9 ◦C 17.6% 82.4%
>22 ◦C 13.3% 86.7%

2

2 1

2 2 1

2 1

TTF_S1 < 28.5   

Vol < 116   

P2 < 524.5   Vol < 123.5   

WB < 990   P4 < 139.5   

P1 < 535.5   

  TTF_S1 >= 28.5

  Vol >= 116

  P2 >= 524.5   Vol >= 123.5

  WB >= 990   P4 >= 139.5

  P1 >= 535.5

Figure G.2: Decision tree for the dummy neck (passenger, EURO NCAP) - Shifted
values to avoid representing a real case
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Table G.5: Calculation of the VIM for the dummy neck (passenger, EURO NCAP)

Predictor Variable Variable Importance Measure
Volume 0,00579165
TTF Stage 1 0,005247813
Sternum to IP 0,005002001
Right Knee, Shorter Distance Ahead 0,001927438
Chin to IP 0,001855288
Webbing on Spool 0,001546073

Table G.6: Validation of the decision tree for the dummy neck (passenger, EURO

NCAP)

Predicted injury
Cluster #1 Cluster #2

O
.I.

*

Cluster #1 8 11
Cluster #2 9 112
Prediction accuracy 86% in the right cluster

*Obtained injury
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Abstract:

Safety is one of the most important considerations when buying a new car. The car has to achieve
crash tests defined by the legislation before being selling in a country, what drives to the development
of safety systems such as airbags and seat belts. Additionally, ratings like EURO NCAP and US NCAP

enable to provide an independent evaluation of the car safety. Frontal sled tests are thus carried out
to confirm the protection level of the vehicle and the results are mainly based on injury assessment
reference values derived from physical parameters measured in dummies.
This doctoral thesis presents an approach for the treatment of the input data (i.e. parameters of
the restraint systems defined by experts) followed by a classification of frontal sled tests according
to those parameters. The study is only based on data from the passenger side, the collected data
for the driver were not enough completed to produce satisfying results. The main objective is to
create a model that evaluates the input parameters’ influence on the injury severity and helps the
engineers having a prediction of the sled tests results according to the chosen legislation or rating.
The dummy biomechanical values (outputs of the model) have been regrouped into clusters in order
to define injuries groups. The model and various algorithms have been implemented in a Graphical
User Interface for a better practical daily use.

Keywords: Passive safety, restraint systems, frontal sled test, dummy biomechanical values, data mining
methods, KDD process, GK algorithm, classification trees

Résumé :

La sécurité automobile est l’une des principales considérations lors de l’achat d’un véhicule. Avant
d’être commercialisée, une voiture doit répondre aux normes de sécurité du pays, ce qui conduit au
développement de systèmes de retenue tels que les airbags et ceintures de sécurité. De plus, des
ratings comme EURO NCAP et US NCAP permettent d’évaluer de manière indépendante la sécurité de
la voiture. Des essais catapultes sont entre autres effectués pour confirmer le niveau de protection
du véhicule et les résultats sont généralement basés sur des valeurs de référence des dommages
corporels dérivés de paramètres physiques mesurés dans les mannequins.
Cette thèse doctorale présente une approche pour le traitement des données d’entrée (c’est-à-dire
des paramètres des systèmes de retenue définis par des experts) suivie d’une classification des
essais catapultes frontaux selon ces mêmes paramètres. L’étude est uniquement basée sur les
données du passager, les données collectées pour le conducteur n’étant pas assez complètes pour
produire des résultats satisfaisants. L’objectif principal est de créer un modèle qui définit l’influence
des paramètres d’entrées sur la sévérité des dommages et qui aide les ingénieurs à avoir un ordre
de grandeur des résultats des essais catapultes selon la législation ou le rating choisi. Les valeurs
biomécaniques du mannequin (outputs du modèle) ont été regroupées en clusters dans le but de
définir des niveaux de dommages corporels. Le modèle ainsi que les différents algorithmes ont été
implémentés dans un programme pour une meilleur utilisation quotidienne.

Mots-clés : Sécurité passive, systèmes de retenue, essai catapulte frontal, valeurs biomécaniques du man-
nequin, méthodes de data mining, procédé du KDD, algorithme de GK, arbres de décision
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