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Executive Summary 

 

Breastfeeding is a most valuable source of nutrition for infants, especially in under-resourced 

areas, and has been a corner-stone for infant health through centuries. The anti-infective 

properties of breast milk are well documented and breastfeeding protects infants against 

gastrointestinal and respiratory illnesses. There is no disagreement that breastfeeding is the 

best form of nutrition for all infants everywhere, for a minimum of 6 months, and ideally to at 

least 2 years of life. Exclusive breast-feeding for 6 months is recommended for the general 

population primarily because human milk can satisfy all of an infants’ nutritional and hydration 

needs through the first 6 months of life.  

 

New perinatal HIV infections in resource-rich countries have nearly been eliminated with the 

combination of universal, opt-out antenatal HIV testing, antiretroviral prophylaxis of the 

mother and infant, elective cesarean delivery, and avoidance of breastfeeding. Although 

effective interventions are available to reduce in utero and intrapartum transmission in 

resource-limited settings, postnatal transmission of HIV through breastfeeding has remained a 

significant problem. Acquisition of HIV through breast milk accounts for an estimated 40% of 

new infections in sub-Saharan Africa, where more than 90% of perinatal infection occurs  

 

The studies performed during this PhD were part of a larger intervention programme in 

KwaZulu-Natal that focused on the use of different forms of infant feeding within a rural 

setting. The Umkhanyakude district in northern KwaZulu-Natal, South Africa, is one of the areas 

worst affected by the HIV and AIDS pandemic, and has some of the highest prevalence figures 

in the world. Women were enrolled into this study prior to commencement of the South 

African national antiretroviral roll-out in 2005. This PhD research forms part of efforts to gain a 

better understanding of postnatal transmission of HIV-1 via breastfeeding, and to support the 

World Health Organization in their goal to reduce all forms of mother-to-child transmission 

(MTCT) to below five percent by the end of 2015.  
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In the first study performed, we provide for the first time evidence that cumulative exposure to 

HIV-1 RNA in breast milk is a key risk factor associated with postnatal mother-to-child 

transmission, independent of maternal CD4 and plasma HIV-1 viral load. Cumulative exposure is 

attributable to viral shedding in, rather than volume of, breast milk consumed. This data 

provides a better evaluation of the risk of HIV-1 MTCT and intra-breast viral load.  

 

In the second study we confirm that cell-associated virus load in breast milk is a stronger 

predictor of the risk of early postnatal MTCT than cell-free virus, independent of HIV-1 

replication in blood and breast milk. In contrast, cell-free virus load is a stronger predictor of 

later postnatal HIV-1 transmission. We provide evidence that the HIV-1 reservoir is a main risk 

factor for post-natal MTCT of HIV-1.  

 

In the third study performed, we investigated the significance and impact of Cytomegalovirus 

(CMV) and Epstein-Barr virus (EBV) in breast milk from HIV-infected mothers, and MTCT of HIV-

1. High levels of CMV is shed in breast milk, and frequently a significant level of EBV is shed in 

HIV-infected women. Hence, mothers whose breast milk contained high levels of CMV, were up 

to two and a half times more likely to transmit HIV-1 to her infant via breastfeeding compared 

to women with low levels. This is the first evidence of an association, independent of HIV-1 viral 

load, between CMV in breast milk and postnatal MTCT of HIV-1. 

 

In contemporary breastfeeding populations with access to antiretroviral prophylaxis, the 

residual HIV-1 transmission risk, especially in the early postpartum period, is explained in part 

by the persistence of cell-associated virus in breast milk. More studies are needed to further 

knowledge on the mechanism of HIV-1 transmission during lactation, and factors associated 

with compartmentalized shedding of HIV-1 in breast milk, and to help develop more effective 

drugs for use in resource-limited populations where avoidance of breastfeeding is almost 

impossible.  
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Introduction 

 

In 2012, there were 35.3 million people living with Human Immunodeficiency Virus Type 1 (HIV-

1) infection worldwide. New infections among children have declined by 52% since 2001. 

Worldwide, 260,000 children became newly infected with HIV-1 in 2012, down from 550,000 in 

2001. Implementation of World Health Organization (WHO) guidelines has been associated with 

significant reductions in mother-to-child transmission (MTCT) of HIV-1, as well as improved 

child survival. Expanded access to services for prevention of mother-to-child transmission 

(pMTCT) prevented more than 670,000 children from acquiring HIV-1 from 2009 to 2012 [1, 2]. 

 

Risk of HIV-1 MTCT by breastfeeding (BF) and advantages of BF in resource constrained areas 

In the absence of antiretroviral prophylaxis, breastfeeding (BF) accounts for almost one-third to 

one-half of mother-to-child transmissions of HIV-1 [3]. However, infant feeding in the context 

of HIV is complex because of the advantages of BF for infant survival in resource-limited 

settings [4]. The dilemma is to balance the risk of HIV transmission from mother-to-child 

through BF with the higher risk of death from malnutrition and serious illness among non-

breastfed infants [5]. Hence, in Africa according to individual circumstances, environment and 

local situation, BF is frequently chosen as the most appropriate infant feeding option for HIV-

infected mothers. 

 

BF is known to have significant nutritional, immunological, and developmental advantages for 

the neonate and has been the foundation of child health and survival for centuries. BF in HIV-

infected mothers may be efficiently circumvented in resource-rich countries by replacement 

feeding that is acceptable, safe and affordable. However, this is not currently possible in most 

of the developing world such as southern and eastern Africa where HIV/AIDS, diarrhea, 

pneumonia and malnutrition are leading causes of under 5-year mortality [4, 6]. There is thus a 

dilemma in predicting the risk of MTCT of HIV-1 to their infants via BF, versus the risk of infants 

dying from common infectious diseases by avoiding BF. Achieving an optimal balance would 

require reduced HIV-1 transmission through BF, improved child survival, and enabling HIV-
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infected lactating mothers to benefit from interventions through ART. In recent years, research 

has identified ART interventions that significantly reduce HIV-1 transmission through BF. The 

WHO now recommends BF as well as the provision of ART to both mother and infant [7].  

 

Exclusive breastfeeding (EBF), regardless of maternal HIV-1 status, is currently recommended 

by the WHO for the first 6 months of life [8]. The risk of postnatal MTCT of HIV-1 via 

breastfeeding (BF) is significantly higher in women with low CD4 T-cell counts and high plasma 

and breast milk (BM) viral load. In the absence of intervention using antiretroviral therapy 

(ART), postnatal MTCT of HIV-1 depends on maternal CD4 T-cell count with transmission rates 

of 1.57% versus 0.51% per month of breastfeeding when maternal CD4 T-cell count is less or 

more than 350 cells/µl, respectively [9]. This translates into a cumulative postnatal transmission 

risk of 14-20% when HIV-exposed infants breastfeed for 18-24 months. However, with the 

initiation of ART at diagnosis, intra-uterine (from time of initiation of ART) and intra-partum 

transmission are largely prevented, leaving postnatal MTCT via BF contributing to the majority 

of infections, especially in settings where rates of incident infections are high [10].  

 

Antiretroviral interventions that reduce postnatal MTCT of HIV-1 

A number of reports on the implementation of global recommendations are discussed and 

summarized in [4]. However, most of these recent reports focus on approaches for resolving 

implementation issues, rather than investigating new clinical interventions. Several 

investigators argue in favour of lifetime ART for all pregnant HIV-infected women in resource-

limited settings [11-13]. In addition, from 2010 to 2013 WHO guidelines recommend that HIV-

exposed infants be breastfed for 12 months [14], with mothers and infants receiving ART in the 

form of three pMTCT programmes; Option A, option B and option B+ [15]. Updated WHO 

guidelines in June 2013 endorse this approach [16], although there remains diverse opinion in 

southern Africa whether BF with ART is the appropriate method to reduce MTCT of HIV [17, 18]. 

WHO set a global target to reduce by at least 90% the number of new infections among 

children by 2015, to reduce all forms of MTCT of HIV-1 to a rate below 5% and to decrease the 

annual number of new paediatric infections to a value below 40,000 [19]. Achieving WHO goals 
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by 2015 will be challenging, and very few clinical trials that have evaluated the efficacy of either 

treatment option have shown a reduction in MTCT of HIV to levels below 5%. There is a need 

for a better understanding of what drives residual HIV MTCT in mothers receiving effective ART, 

more specifically to identify factors responsible for MTCT of infectious HIV-1 particles that 

remain cell-associated, and refractory to maternal ART intervention [20, 21]. In an 

observational cohort of ART-treated, HIV-infected pregnant women from the Kesho Bora trial 

with fewer than 200 CD4+ T-cells/µl, or with WHO stage 4 AIDS, the 18-month probability of 

HIV transmission was 7.5% [22-24]. In mothers on successful ART with undetectable HIV-1 RNA 

in blood and breastmilk, the risk of HIV-1 transmission through BM remain significant and is 

estimated at 0.2% per month of breastfeeding [9]. 

 

Impact of BM HIV reservoirs and coviral infections on HIV MTCT by BF 

Potential HIV-1 reservoirs in BM include T-lymphocytes, macrophages, mammary epithelial cells 

(MEC) and stem cells. Although the importance of these reservoirs in HIV-1 transmission 

through BM has been demonstrated, the respective roles of each of these reservoirs still 

remain to be elucidated. The presence of these reservoirs poses a significant challenge to 

prevention of BM HIV-1 transmission. Indeed, these intra-cellular reservoirs of HIV-1 (both RNA 

and DNA) persist despite effective maternal ART, which could explain residual postnatal 

transmission [11, 12]. BM cell-free viral load is correlated with plasma viral load but may also 

vary with local intra-mammary factors. Coviral infections [13] and conditions such as clinical 

and subclinical mastitis [14, 15] have been shown to be associated with increased HIV-RNA 

shedding in BM, which in turn is associated with increased MTCT of HIV-1. Mastitis increases 

BM HIV RNA in the affected breast by up to 10-fold [16], and a similarly though less significant 

increase in BM HIV RNA is associated with subclinical mastitis [17]. In addition to HIV-1 viral 

load in BM, coviral infection with CMV (see below) and EBV, and BM composition (neutralizing 

antibodies, oligosaccharides and cytokines) play an important role. Innate immunity is an 

important concept in understanding why the majority of HIV-exposed breastfeeding infants 

never become infected with HIV.  
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Coviral infections in BM: The role of Human Cytomegalovirus 

Human cytomegalovirus (CMV) is an ubiquitous herpesvirus that causes serious disease in 

congenitally infected neonates as well as in immunocompromised individuals suffering from 

AIDS and solid-organ and bone marrow transplant recipients [25]. It is the most common cause 

of congenital and perinatal viral infections throughout the world and is the leading non-genetic 

cause of congenital malformation in developed countries [26]. Congenital infection occurs in 1% 

of all live births in developed countries and in higher percentages in developing countries [27]. 

As a result of transmission during birth and by breast milk, perinatal infections are much more 

prevalent than congenital infections. The vast majority of these infections are chronic and 

subclinical, but symptomatic infections represent a major public health problem throughout the 

world [28]. CMV reactivates from latency sporadically throughout life but is enhanced by 

immunosuppression and allograft rejection in transplant recipients, in whom virus can be 

detected in the peripheral blood as well as in body fluids e.g. urine and breast milk. Studies 

have identified monocytes and their progenitors as major sites of lifelong latent infection [29] 

where the viral genome is maintained as an extrachromosomal plasmid at between 2 and 13 

genome copies per infected cell [30, 31]. Maintenance of latency and reactivation in peripheral 

blood monocytes are linked to the cellular differentiation state and activated macrophages 

support reactivation and active replication [32, 33]. In addition to leukocytes of the 

hematopoetic cell lines, CMV can infect a broad range of other cell types including epithelial 

cells, endothelial cells, fibroblasts and smooth muscle cells [43]. In the United States primary 

CMV infection during pregnancy occurs in approximately 40 000 pregnant women every year 

and of these, approximately 8000 infants develop severe permanent neurologic damage, with 

neonatal death in utero in 10% of fetuses infected in utero. Neurologic damage include 

impaired development, mental retardation, and sensory hearing deficit [34] with a significant 

proportion (~15%) of initially asymptomatic CMV-infected babies, developing disease between 

birth and 5 years of age [35, 36]. 
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HIV-1 and CMV coinfections have been shown to increase infant morbidity, mortality and AIDS-

progression. Studies in the United States showed increased neurological disease and AIDS-

progression in co-infected infants [37]. In HIV-endemic areas, maternal HIV-exposed but 

uninfected infants, which is the majority of children affected by HIV, also show poor growth and 

increased morbidity [38]. HIV-infected mothers can have reduced maternal passive immunity to 

protect their infants against CMV disease. Moreover, immunosuppression can lead to increased 

CMV levels due to reactivation or secondary infection. In a study performed in Zambia it was 

shown that in HIV-exposed uninfected infants, CMV infection was associated with increased 

prevalence to stunting, reduced head size and decreased psychomotor development [38]. It has 

also been shown that prenatal ART reduced perinatal and early postnatal CMV among HIV-

infected as well as HIV-exposed uninfected infants [39]. Perinatal and postnatal CMV infection 

results in chronic viral excretion for years [28]. Although its sequelae are less severe than those 

of congenital infection, higher-risk infants, i.e. preterm or HIV-exposed, may develop hearing 

loss and clinical illnesses such as pneumonia, hepatitis, hepatosplenomegaly, anaemia, 

thrombocytopaenia and abnormal hepatic function [40].  

 

Composition of BM and reservoirs of HIV-1 

To gain a better understanding of HIV-1 MTCT by breastfeeding it is critical to decipher the 

breast milk environment. 

Non-cellular components of the mammary gland environment – cell-free HIV-1 particles 

The stroma of the lactating mammary gland is an effector site for mucosal immunity that 

interacts with the mucosal associated lymphoid tissue (MALT) [41]. Its resident immune cells 

also have activation and cytokine profiles different from those of blood that can influence the 

dynamics of HIV-1 replication [42-44]. This environment could encourage initiation of the viral 

cycle or promote ongoing replication in CD4+ T lymphocytes harbouring HIV-1 DNA [45, 46]. In 

contrast, an antiviral TH1 environment in BM could limit HIV-1 replication through direct effects 

of cytokines such as interferon-!"#$%&-!'"()*"+,"-./0/12)3"4,1/1/524"6"4788".79-/)979"[47, 48]. 

Cytokines of the CXC and CC chemokine families, are found in large amounts in BM, and act as 

mediators of inflammation that can activate leukocytes. These cytokines are secreted by both 
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mammary epithelial cells and BM leukocytes. Subclinical and symptomatic mastitis  [49, 50] are 

both associated with an increase of pro-inflammatory cytokines in the mammary gland, as well 

as increased risk of MTCT of HIV-1 via breastfeeding [51, 52]. This could be related to an 

imbalance between antiviral and proinflammatory cytokines that facilitates HIV-1 replication in 

the mammary gland. 

 

Seventy percent to 80% of HIV-1–infected, lactating women not treated by ART have detectable 

HIV-1 RNA in the whey, more if breast milk sampling is repeated because most women have 

intermittent viral shedding in breast milk [53-56]. In addition, up to one-third of the HIV-1 RNA 

in milk may be sequestered in the lipid fraction [57], and HIV-1 particles can be passively carried 

on the surface of breast milk cells. Thus, the frequency of HIV-1 RNA shedding in breast milk has 

probably been underestimated in studies testing only the liquid fraction of milk. The 

relationship between the level of HIV-1 RNA in breast milk and that in blood and the origin of 

cell-free HIV-1 particles in breast milk remain uncertain. Although correlated with plasma HIV-1 

RNA levels [54], breast milk viral load is most frequently lower (by about 2 log10) than plasma 

viral load [58]. In addition, HIV-1 RNA levels may differ in milk collected from the right and left 

breasts [59], suggesting that local factors in the mammary gland contribute to viral production. 

The association of mammary gland inflammation (clinical or subclinical mastitis, breast abscess, 

engorgement, and systemic or multiorgan inflammation) with elevated breast milk HIV-1 RNA 

supports this conclusion [51, 54, 60-62]. Thus, cell-free HIV-1 particles in human milk, as 

measured by HIV-1 RNA, originate at least partly from local replication in the mammary gland 

[63, 64]. 

 

BM contains numerous soluble factors with antimicrobial, anti-inflammatory, and 

immunomodulatory activity, many of them yet to be characterized, that guards the integrity of 

the infant’s gut (Table 1).  
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Table 1. 

Constituents of human milk with potential to influence infants’ immune development and 

defenses (adapted from Blewett, 2008) 

 

Non-cellular components include cytokines, nucleotides, and immune components such as 

immunoglobulins, chemokines, long-chain polyunsaturated fatty acids, anti-infective 

oligosaccharides, and numerous other anti-infective soluble factors. In addition there are 

compounds that promote microbial colonization of the infant’s colon including hormones, 

growth factors and bio-active peptides, all factors involved in the antimicrobial innate immune 

response. In broad, these substances protect the infant by:  
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I. bacterial lysis or inactivation. Well-characterized factors with a broad spectrum of 

antimicrobial activity against a wide range of Gram-positive and Gram-negative 

bacteria, include lactoferrin that removes LPS from the outer microbial cell 

membrane [65, 66] and fatty acids that may damage bacteria by disrupting their cell 

membranes or by changing intracellular pH [67].  

II. boosting the cellular immune response to bacteria. A soluble form of CD14 (sCD14) 

is present in BM in concentrations ~20 times higher than in serum [41], and along 

with maternal soluble Toll-like receptors [68], exerts its gram-negative antibacterial 

function. :+;)*()1" <;0()" =-defensin-1 expression in milk and mammary gland 

epithelium has also been described [69].  

III. blockade of pathogen attachment and entry into host cells. Non-digestible 

oligosaccharides are important antibacterial constituents of human milk (6). 

Lactadherin has been shown to prevent rotavirus attachment [70], and similarly 

secretory leukocyte protease inhibitor (SLPI) prevents HIV-1 entry into cells [71]. In 

addition to Lactoferrin, several components and activation fragments of 

complement, likely to participate in the infant’s intestinal innate immune response 

against bacteria, have been described [72].   

IV. mitigation of infant gut inflammation. BM downregulates inflammation in the 

infant’s gut. Immediately after birth, new antigens and LPS from pathogens and 

colonizing commensal bacteria, can induce an excessive mucosal inflammatory 

response, as shown in vitro [73]. In severe cases, this may contribute to necrotizing 

enterocolitis in preterm infants. Factors in BM may mitigate the T helper 1 (TH1) or 

inflammatory response and thereby preserve the gut mucosal barrier, likely 

accounting for the lower frequency of NE in breast-fed than formula-fed infants [74]. 
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Cellular components 

 

Mammary Epithelial cells 

Epithelial cell adhesion molecule-positive (EpCAM
+
) epithelial cells from the mammary gland 

are the most abundant cells [75]. Stem and progenitor cells have also been identified in BM [76, 

77]. The function of either these cell types, after ingestion via BF, remains unknown. 

Mammary gland epithelial cells, the major cellular component of breast milk [75], are also 

susceptible to HIV-1 infection [78]. These cells express CCR5, CXCR4 (co-receptors necessary for 

HIV-1 entry), galactosyl ceramide (GalCer), and, unexpectedly, CD4 surface markers [79]. When 

these cells are exposed to HIV-1 in vitro, HIV-1 is taken up into endosomal vacuoles. Co-culture 

of activated CD4+ T cells with HIV-1–exposed mammary epithelial cells can result in their 

productive infection, suggesting that epithelial cells can enhance infection in vivo, probably by 

transcytosis. Therefore, mammary epithelial cells may transport HIV-1 across the epithelial 

surface of the mammary gland acini and lactiferous ducts to contribute to HIV-1 shedding in 

breast milk, but because HIV-1 does not replicate in these cells, they are not likely to be an 

active reservoir for the virus. 

 

Leukocytes (Lymphocytes and macrophages) 

Mature breast milk, differing from colostrum and transition milk where leukocytes are 

abundant, contains a small and inconsistent concentration of leukocytes (~1-5 x 10
5
 cells/ml).  

Of these, neutrophils account for 80%, macrophages for 15%, and lymphocytes for less than 5 

% [75]. 

 

Lymphocytes 

Various lymphocyte types coexist in breast milk: CD3+ T cells (representing about 83% of 

lymphocytes, almost equally distributed between CD4+ and CD8+ lymphocytes), !> T cells 

(11%), CD16+ natural killer cells (3 to 4%), and B cells (2%). CD4+ T cells, one of the main target 

cells for HIV-1, represent almost 40% of the total lymphocyte population with 1 ml of breast 

milk containing about 2000 CD4+ T lymphocytes (by comparison, blood contains almost 1 
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millionCD4+T lymphocytes/ml). During feeding, the mucosal area of the tonsil and the gut is 

exposed to, on average, 700 ml of maternal milk each day, exposing the infant to more than 1 

million maternally derived CD4+ T cells. After 6 months of life, a baby will have ingested about 2 

× 10
8 

breast milk–derived CD4+ T cells. HIV-1 infection of the mother depletes CD4+ T cells 

more rapidly in blood than in breastmilk, so that CD4+ T cells, particularly CCR5+ CD4+ T cells, 

persist longer in breast milk than in other mucosal sites [80, 81]. 

 

Breastmilk T and B lymphocytes are distinct from circulating blood lymphocytes (Fig. 1 – 

adapted from [6]).  

 

First, breast milk contains almost exclusively memory T and B lymphocytes, which have 

previously encountered antigens. Indeed, very few breast milk cells express the CD45RA 

receptor that characterizes naïve T cells [21]. Likewise, more than 70% of breast milk B cells are 

IgD?"@ABCD memory B cells [82], most of which carry somatically mutated variable region genes 

and are class-switched B lymphocytes expressing surface IgG or IgA molecules. Therefore, most 

breast milk T and B cells are antigen-experienced and so can respond efficiently to bacterial and 

viral pathogens. 

 

Second, many T and B lymphocytes from breast milk are activated, frequently expressing 

activation markers such as human leukocyte antigen (HLA)–DR, CD38, and CD69 [21, 80]. Many 

of these activated cells in breast milk are effector memory cells (which are therefore primed to 

respond to antigen exposure) [48], in contrast to blood T cells, which are primarily central 

memory cells. An average of 42% of CD4+ memory T lymphocytes are activated in breast milk 

[21], a proportion 5 to 10 times higher than in blood. HIV-1–specific CD8+ T cells are more 

frequent in breast milk than in blood, where they may help to limit HIV-1 production by 

infected CD4+ T cells [47]. The high frequency of activated immune cells in breast milk is 

paradoxical because human milk per se does not confer immune activation and is in fact anti-

inflammatory. Breast milk lymphocytes most likely become activated through extravasation or 

during transepithelial migration [83]. In addition, breast milk B cells include mainly large-sized B 
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cells, plasmablasts, and plasmacells [82], which do not express complement receptor but are 

switched memory B cells primed to secrete antibodies. 

 

Third, most breast milk T and B cells express the mucosal homing markers E  integrin (CD103), 

E4 integrin (CD49d), =7 integrin, and CCR9, confirming that they were primed in mucosal-

associated lymphoid tissues (MALTs) and migrated to the mammary gland as an effector site. 

Milk B cells seem to have migrated preferentially from the gut-associated lymphoid tissues 

(GALTs).  

 

Fourth, most breast milk CD4+ T lymphocytes express high levels of chemokine receptors CCR5 

and CXCR4, the major co-receptors required for HIV-1 attachment and entry. 

 

These characteristics of breast milk lymphocytes reinforce the idea that human milk provides 

neonates and infants with supplemental, highly immunologically active components designed 

to protect the mother-infant dyad from potential pathogens. Nevertheless, some of the same 

cells that provide these functions are ideal targets for HIV-1 infection and transmission: They 

are memory cells, of mucosal origin, with a high level of activation and abundant cell surface 

expression of HIV-1 co-receptors. 

 

 

 

18



 

 

Fig. 1. Comparison of breast milk and peripheral blood CD4+ T cells. 

[Fig 1 caption] Breast milk T lymphocytes have four characteristics that differentiate them from 

circulating blood lymphocytes: They express the CD45RO receptor almost exclusively (upper and lower 

panel), which is characteristic of memory T cells. They exhibit more markers of activation (upper and 

lower panels). The expression of HIV-1 co-receptors on the surface of breast milk cells is stronger than it 

is on T cells from blood (upper panel). Unlike blood cells, breast milk cells exhibit mucosal homing 

markers (upper panel) ((adapted from Van de Perre, 2012). 
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Latently HIV-1–infected, resting CD4+ T lymphocytes harbor HIV-1 proviral DNA. These cells are 

very rare, estimated at 10
3
 to 10

7
 for an entire infected individual [84]. Although the decay 

characteristics of this latent reservoir remain uncertain, these cells have a very long half-life of 

about 44 months and are not affected by conventional ART ([85, 86]. These latently infected, 

resting CD4+ T cells in both breast milk and blood of HIV-1–infected women can transcribe HIV 

DNA and generate viral particles [87, 88]. Even when the HIV-1 DNA viral load is comparable in 

blood and BM, polyclonal activation results in 10 times more HIV-1 antigen–secreting cells (Ag 

SCs) in BM than in blood (500 versus 45 antigen secreting cells/10
6
 cells). If one assumes that 

one to three copies of HIV-1 are integrated in latently infected cells, the efficiency of 

transcription and translation after activation is 1 to 2% in blood and 10 to 30% in breast milk 

[87]. Thus, the CD4+ T cells in breast milk are potentially 17 times more effective than their 

blood counterparts in producing HIV-1 antigens. The trafficking route and functional role of 

breast milk lymphocytes in the recipient infant remain unclear. Nevertheless, these cells likely 

produce HIV-1 if they become activated in the mammary gland or later in the infant’s digestive 

track. Indeed, latently infected, resting CD4+ T cells in breast milk are probably an HIV 

sanctuary from which the virus can be released after activation. The pronounced differences 

between CD4+ T cells in the blood and the breast milk may arise from several nonmutually 

exclusive causes. 

a) First, as suggested by the absence of correlation between HIV-1 Ag SCs in blood and breast 

milk, T cells in milk may be a different functional cell population from those in peripheral 

blood. Most breast milk CD4+ T cells exhibit markers of the MALT system, showing that 

they originate from, differentiate within, or migrate through mammary gland tissue, where 

they may acquire properties different from those of blood T cells.  

b) Second, the HIV-1 quasi species in milk may differ from their counterparts in peripheral 

blood [63]. At least some breast milk HIV-1 in CD4+ T lymphocytes originates from 

maternal epithelial cells; this HIV-1 can invade local CD4+ T lymphocytes with more 

accurate proviral integration than can blood HIV-1; and it is likely to be better adapted to 

mucosal transmission than is blood HIV-1 [89]. Thus, breast milk HIV-1 is particularly prone 

to transmission to the infant.  
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c) Third, the cytokines IL-F=G"$H-6, TNF-EG"()*"6&%"2)"<;0()"028I"[90] may stimulate latently 

infected lymphocytes to produce HIV-1 virions.  

d) Fourth, protein S100, present in high concentrations in breast milk [91], may induce HIV-1 

transcription from latently infected human CD4+ T lymphocytes by up-.73;8(12)3" &%JK"

through a viral enhancer sequence that positively modulates HIV replication [92].  

 

In blood, almost all of the HIV-1 RNA originates from functional, activated CD4+ T cells that are 

in a productively infected state. These cells are short-lived, with a half-life of only 24 to 36 

hours, and in viraemic subjects, they spontaneously secrete HIV-1 antigens, as measured by 

enzyme-linked immunospot (ELISPOT), and can produce HIV-1 RNA in culture [20]. Even in ARV-

treated individuals, these functional, activated CD4+ T cells can support residual viral 

replication that can infect new susceptible cells and perpetuate infection [93]. In women with 

successful responses to ART, undetectable HIV-1 RNA in plasma and breast milk has been 

interpreted to mean that breast milk HIV-1 is no longer being replenished by lymphoid tissue 

viral replication [80] and that HIV-1 replication has been suppressed in the mammary gland 

[94]. But this may not be the case. Although ART causes a marked decrease of HIV-1 RNA and to 

a lesser extent HIV-1 DNA in breast milk [95], cell-associated HIV-1 RNA is not, or is only 

moderately, affected [96] Fig 2 – adapted from [6].  
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Fig. 2. HIV-1 reservoirs in breast milk and blood.

[Fig 2 caption] (A) In HIV-1–infected, lactating women without treatment with ART, activated CD4 T cells 

in blood and in the mammary gland are in a productively infected state, and new target cells become 

infected through ongoing cycles of viral replication (arrows).  

(B) In HIV-1–infected, lactating women who have been successfully treated with ART, protease inhibitors 

(PI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase 

inhibitors (NNRTI) suppress the release ofmature infectious forms of the virus (virions) and inhibit the 

ongoing cycles of replication in blood. However, these cells become activated through extravasation or 

transepithelial migration in the mammary gland. After activation, virus from stable reservoirs such as the 

latent reservoir in resting CD4 T cells is released in the breast milk where PIs are present in low 

concentration, but NNRTI and NRTI inhibit ongoing cycles of replication. Small yellow spheres, HIV-1 

virions. (adapted from Van de Perre, 2012).
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Indeed, CD4+ T cells spontaneously secreting HIV-1 antigen can be detected by ELISPOT in both 

breast milk and blood of all HIV-1–infected women, whether untreated or virally suppressed by 

ART [21]. More than half of these patients also show cell-associated HIV-1 RNA in blood and 

breast milk. Further, when these cells are cultured, HIV-1 RNA could be detected and quantified 

in the supernatant, and this harvested HIV-1 is infectious. Thus, cells that can secrete HIV-1 

antigens are present in breast milk of ART treated and untreated women, and these cells may 

be responsible for a residual mother-to-child viral transmission in the virally suppressed 

patients on ART [9]. 

 

The fact that HIV antigen-producing T cells can be identified in samples that have no detectable 

HIV-1 RNA suggests that these cells may only release tiny amounts of HIV-1 RNA or that their 

residence time in breast milk is very short. But these cells may be involved in cell-to-cell 

transfer of the virus. Thus, HIV-1–secreting CD4+ T cells in breast milk, which can be detected in 

vitro by their HIV-1 antigen or HIV-1 RNA production, are the most plausible source of HIV-1 

transmission by breast-feeding from women successfully treated with ARV regimens [97]. 

 

Macrophages 

BM macrophages differ from their blood counterparts in that they have a higher phagocytic 

capacity and a more effective defense against pathogens [98]. More frequently activated, their 

motility is also higher. BM macrophages and dendritic cells probably facilitate antigen 

transport, cell signaling, and cell-to-cell antigen trafficking (including HIV-1 and CMV, other). 

HIV-1 infection does not kill macrophages but severely impairs their function. It is not fully 

established whether HIV-infected macrophages in milk contribute to HIV-1 replication and 

release of viral particles. The DC-SIGN surface receptor, frequently expressed on breast milk 

macrophages [98], may bind HIV-1 and aid its transport in breast milk, and expression of DC-

SIGN on the mucosal surfaces of the breast-fed infant could also facilitate transmission.  In 

colostrum and transition milk from HIV-1–infected women, 0.1 to 1% of macrophages are 

infected, and some can actively produce viral particles. These macrophages have a longer half-

life than T lymphocytes, are resistant to apoptosis, and could contribute to transmission [99]. It 
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is likely that breast milk macrophages contribute minimally to HIV-1 replication in the 

mammary gland. Nevertheless, breast milk macrophages expressing DC-SIGN may augment 

HIV-1 transport in the infant mucosa and cell-to-cell infection of infant T lymphocytes. Indeed, 

HIV-1 may behave similarly to other viruses transmitted through breast milk. The lentiviruses 

maedi-visna virus (MVV) and the related caprine arthritis-encephalitis virus (CAEV) are 

transmitted to newborn lambs through colostrum and milk. The virus is excreted from highly 

productive germinal centers in the vicinity of the lactiferous ducts and is propagated in 

macrophages [100]. The human T cell leukemia virus type I (HTLV-I) is also transmissible by 

breastfeeding; in this model, macrophages are thought to play a central role in viral 

propagation since an infected breast milk macrophage cell line can efficiently transmit the virus 

to activated T lymphocytes in vitro [101]. 

 

Cell-free and cell-associated HIV-1 in MTCT 

High concentrations of cell-free HIV-1 RNA in breast milk, although an imperfect reflection of 

infectiousness, are associated with postnatal HIV-1 transmission by breast-feeding. We have 

shown that infants infected with HIV-1 by breast-feeding have been exposed to 17 times more 

cell-free HIV-1 RNA in milk than age-adjusted exposed but uninfected controls [58]. It has been 

shown that each log10 increase in breast milk cell-free HIV-1 RNA doubles postnatal 

transmission risk [102]. Postnatal transmission risk also increases during the rebound of virus 

concentrations in milk after ARV treatment is interrupted in the mother [97]. Nevertheless, two 

studies show that 15% of HIV-1–infected mothers who transmitted the virus to their offspring 

by breast-feeding had undetectable HIV-1 RNA in the breast milk samples collected before 

transmission occurred [5, 97], indicating that cell-free HIV-1 in breast milk is not the sole viral 

reservoir that contributes to transmission. Indeed, we [103], and others [104-106], have shown 

that both cell-free and cell-associated HIV-1 mediate transmission events.  

For HTLV-I as well as for bovine leukemia virus and other animal retroviruses transmissible by 

breast milk, cell-to-cell transfer is considered the predominant mechanism of transmission from 

mother to infant. One milliliter of human mature breast milk from an HTLV-I–infected mother 

contains 1000 infected cells but very few virions [107]. HTLV-I infection can be experimentally 
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transmitted to susceptible animals by ingestion of breast milk from infected mothers [108]. 

Converging arguments suggest that similar mechanisms apply to HIV-1. 

Detection of HIV-1 proviral DNA in human breast milk indicates that infants are exposed to HIV-

1–infected cells and, indeed, proviral DNA is associated with breast milk transmission of HIV-1 

[103-105]. The proportion of HIV-1–infected cells in breast milk is strongly and independently 

(from cell-free viral load) associated with postnatal transmission; each log10 increase in number 

of infected cells per milliliter triples the risk of transmission [106]. Therefore, cell-associated 

HIV-1 in milk is at least as important as cell-free virus in transmitting HIV-1 to infants. In fact, 

transmission probably arises from multiple pathogenic pathways of varying importance during 

the lactation process and according to breast-feeding practices.  

For example, in a study conducted in Botswana, the comparison of C2 to C5 env fragment 

sequences among cell-free HIV-1, cell-associated HIV-1 in breast milk, and the virus transmitted 

to the infants suggested that before infants are 9 months old, HIV-1 is mainly transmitted by 

cells containing HIV-1 provirus, whereas cell-free virus is frequently the culprit later on [105].  

We showed similarly that there were higher median levels of cell-free than cell-associated HIV-

1 virus (per ml) in breast milk at 6 weeks and 6 months. By multivariable analysis, adjusting for 

antenatal CD4 count and maternal plasma viral load, at 6 weeks, each 10-fold increase in cell-

free or cell-associated levels (per ml) was significantly associated with HIV-1 transmission but 

stronger for cell-associated than cell-free levels [2.47 (95% CI 1.33–4.59) vs. aHR 1.52 (95% CI, 

1.17–1.96), respectively]. At 6 months, cell-free and cell-associated levels (per ml) in breast milk 

remained significantly associated with HIV-1 transmission, but was stronger for cell-free than 

cell-associated levels [aHR 2.53 (95% CI 1.64–3.92) vs. 1.73 (95% CI 0.94–3.19), respectively]. 

The findings suggest that cell-associated virus level (per ml) is more important for early 

postpartum HIV-1 transmission (at 6 weeks) than cell-free virus [103].  

Some babies breast-fed by HIV-1–infected women taking ART or ARV prophylactic treatment 

become infected despite undetectable levels of HIV-1 RNA in their mother’s plasma and breast 

milk [22, 24, 109]. A stable HIV-1 reservoir in breast milk within CD4+ T lymphocytes, which 

have a much higher propensity to enter the viral cycle after activation than do blood CD4+ T 

cells [87], and within infected macrophages of HIV-1–infected mothers with immune activation, 
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likely fuels cell-to-cell transmission. In vitro infectivity of HIV-1 is 100 to 1000 times higher from 

cell-associated virus than from cell-free virus stocks [110]. HIV-1–secreting cells [21] in breast 

milk have direct access to infants’ intestinal and respiratory mucosae, and active immune cells 

from breast milk can infiltrate the intestinal mucosae of the breast-fed infant - Fig 3. 

  

 

 

Fig. 3. Mechanisms of HIV-1 transfer from breast milk to the infant’s intestinal 

mucosae. 

[Fig 3 caption] Cell-free HIV-1 and infected cells producing viruses encounter GalCer+ CCR5+ CXCR4! 

epithelial cells of the gut mucosal surface. In the upper small intestine, cell-free virus enters epithelial 

cells through endocytosis at the luminal surface in a GalCer/CCR5 receptor–mediated mechanism (center 

of illustration). HIV-1–infected cells may also bind to the epithelial cell and induce the polarized budding 

of newly formed viruses that are rapidly endocytosed via GalCer (left side of illustration). HIV viruses able 

to penetrate into the lamina propria infect CCR5+CXCR4+CD4+ T lymphocytes. The capacity of human M 

cells to translocate HIV-1 remains unclear (right side of illustration). (adapted from Bomsel, 2002) 
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Cell-associated viral particles can also penetrate to the submucosa of the infant gut through 

mucosal breaches or via transcytosis. Viral transcytosis occurs through a virological synapse 

scaffold and integrin- and agrin dependent molecular machinery in epithelial cells [111-114].  

Filopodia and nanotubes may also facilitate cell transfer of HIV-1 [115, 116]. HIV-1 transmission 

can occur across polysynapses between one infected cell and multiple recipient cells [117]. 

These structures may facilitate exponential viral growth and sustain sufficient viral propagation 

to establish infection from a very small inoculum. Virological synapses and polysynapses also 

allow the virus to avoid host immune cells and the innate protective substances present in 

breast milk. Indeed, although soluble factors in milk can prevent cell-free HIV-1 propagation in 

vitro, they cannot prevent cell-associated virus propagation [118]. 

 

An infant breast-fed by an HIV-1–infected woman ingests an average of 178 HIV-1–secreting 

cells per day during the first 4months of life [21]. Because one cell with replicating HIV-1 

produces at least 1000 viral particles [110], the infant’s daily exposure could be as high as 

178,000 cell-associated viruses, with a high capacity for cell-to-cell transfer. It is therefore likely 

that cell-associated HIV-1 in breast milk transferred by mother-infant cell-to-cell contact 

contributes substantially to transmission of HIV-1 from breast milk to infant. 
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Research Papers Personal Contribution 

The general objectives of my work was twofold: 

1. To describe the exposure of infants born to HIV-1 infected mothers to cell-free and cell-

associated virus in breast milk and its relationship to breast milk transmission of HIV-1. 

2. To evaluate the impact of shedding and/or reactivation of infectious agents other than 

HIV-1 in breast milk and their impact on HIV-1 viral load and transmission. 

My contribution to these three papers were conception and design of laboratory protocols, 

contribution to reagents/materials/analysis tools, implementation of the study and performing 

the laboratory analyses, contribution to statistical analyses and interpretation of data, writing 

of the manuscripts. 
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The Vertical Transmission Study 

The Vertical Transmission Study (VTS) which formed the basis for the laboratory analysis on BM 

presented in this thesis, has shown that EBF reduces transmission risk in the first 6 months by 

approximately half [5]. The mechanism by which exclusive BF protects against transmission is 

unclear as mixed BF practice is not associated with an increase in BM HIV RNA [18]. The three 

papers of BM laboratory analysis presented here were all nested in the VTS, a large infant 

feeding intervention cohort among both HIV-infected and HIV-uninfected mothers in KwaZulu-

Natal, South Africa, with enrollment between August 2001 and September 2004. Rates of MTCT 

of HIV-1 via breastfeeding and detailed description of the study design and methods are 

published [5]. Study participants were ART naïve except for single dose nevirapine (sdNVP) 

provided to all HIV-infected women and their newborns during delivery as per national 

guidelines at the time [19]. Mothers and infants attended clinics for monthly follow-up and 

collection of an infant dried blood spot (DBS) sample by heel prick for HIV-1 molecular testing, 

and a BM sample (10 ml) from each breast of the mother. BM samples were maintained at 4°C 

and transported overnight to the Africa Centre Virology Laboratory in Durban, where it was 

stored as whole BM at -80°C until further analysis. Infants were considered to have been 

infected postnatally if they had a negative HIV-1 RNA viral load result at 6 weeks of age and a 

positive result at any time thereafter. 
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Article 1: 

Neveu D*, Viljoen J* (*co-first author), Bland RM, Nagot N, Danaviah S, Coutsoudis A, Rollins 

NC, Coovadia HM, Van de Perre P, Newell ML. Cumulative exposure to cell-free HIV in breast-

milk, rather than feeding pattern per se, identifies postnatally infected infants. Clin Infect Dis 

2011 Mar 15;52(6):819-25. 
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Background 

We quantified the relationship between HIV-1 RNA shedding in BM, cumulative RNA exposure, 

and postnatal transmission, relating timing of infection in the infant to estimated total volume 

of milk exposure. This was a nested case-control study of 36 infants of HIV-infected mothers. 

Case patients were infants who acquired HIV infection through breastfeeding from age 6 

through 28 weeks, and control subjects were uninfected infants matched on age at obtainment 

of a breast milk sample. Feeding data were collected daily and infant anthropometry was 

performed at 6 weeks and monthly thereafter. Volume of milk ingested was estimated using 

infant weight and feeding pattern.  

 

Results 

Before HIV acquisition in case patients, feeding pattern (exclusive breastfeeding; median 

duration, 65 vs 70 days; P 5 .6) and daily milk intake (mean volume, 638 vs 637 mL; P 5 .97) did 

not differ significantly between case patients and control subjects. Controls were exclusively 

breastfed for longer than cases (median duration 183 vs. 157 days; p=0.003), although overall 

duration of any breastfeeding was not significantly different between the two groups (p=0.17). 

The median duration of EBF before HIV acquisition was 65 days for cases and 70 days for 

controls, with nonsignificant difference in median duration of any breastfeeding for both 

groups. The estimated milk volume ingested at age 6-28 weeks or before HIV acquisition did not 

differ significantly between cases and controls: mean daily intake of 638 ml/day (cases) versus 

637 ml/day(controls) (p=0.97). Case mothers were more likely to shed virus (64% vs 9% always, 

22% vs 20.5% intermittently, 14% vs 70.5% never shed; overall, P , .001). Case patients ingested 

~15 times more HIV-1 RNA particles than did control subjects (196.5 vs 13 3 106 copies; P , 

.001). Allowing for maternal antenatal CD4 cell count and plasma HIV-1 load, child sex and 

duration of mixed breastfeeding, the association between HIV RNA exposure and infection 

remained statistically significant (P , .001). 
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Discussion 

We showed that infants who become postnatally infected at 6-28 weeks ingested significantly 

more cell-free HIV RNA particles, and that it is independent of maternal CD4 cell count and 

plasma viral load. Postnatal acquisition of HIV-1 is more strongly associated with cumulative 

exposure to cell-free particles in breast milk than with feeding mode. Because estimated 

volume of breast milk ingested did not differ significantly between cases and controls, the 

difference in exposure to virus was driven by increased HIV shedding in breastmilk from 

mothers of case patients. Samples obtained from both breasts allowed comparison and we 

confirm a strong correlation in breastmilk HIV RNA load between breasts, and although there 

was differential shedding profiles between breasts, there was seldom a predominant breast 

throughout lactation, suggesting that breast milk samples may be collected from either breast 

for studies investigating HIV shedding patterns in breastmilk. There was no significant variation 

in HIV RNA load in breastmilk slope between last negative and first positive PCR in infants, 

suggesting transmission is not explained by an abrupt increase of HIV RNA load, and favours 

cumulative exposure as important predictor of transmission. 
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Cumulative Exposure to Cell-Free HIV in Breast
Milk, Rather Than Feeding Pattern per se,
Identifies Postnatally Infected Infants

Dorine Neveu,1,a Johannes Viljoen,2,a Ruth M. Bland,2,6 Nicolas Nagot,1 Siva Danaviah,2 Anna Coutsoudis,3

Nigel Campbell Rollins,3,8 Hoosen M. Coovadia,4,5 Philippe Van de Perre,1 and Marie-Louise Newell2,7

1Département d'Information Médicale et Laboratoire de Bactériologie-Virologie, Université Montpellier 1, EA 4205 and CHU Montpellier, Montpellier,

France; 2Africa Centre for Health and Population Studies, University of KwaZulu-Natal, South Africa; 3Department of Paediatrics and Child Health,

University of KwaZulu-Natal; 4Victor Daitz Professor of HIV/AIDS Research, University of KwaZulu-Natal, KwaZulu-Natal, and 5HIV Management,

Maternal, Adolescent and Child Unit, University of the Witwatersrand, South Africa; 6Division of Developmental Medicine, University of Glasgow;
7Centre for Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health London, London, United Kingdom; and 8Child and Adolescent

Health, World Health Organization, Geneva, Switzerland

Background. We quantified the relationship between human immunodeficiency virus (HIV) RNA shedding in

breast milk, cumulative RNA exposure, and postnatal transmission, relating timing of infection in the infant to

estimated total volume of milk exposure.

Methods. Nested case-control study of 36 infants of HIV-infected mothers. Case patients were infants who

acquired HIV infection through breastfeeding from age 6 through 28 weeks, and control subjects were uninfected

infants matched on age at obtainment of a breast milk sample. Mothers and infants received peripartum single-dose

nevirapine prophylaxis. Feeding data were collected daily; breast milk samples were collected and infant

anthropometry was performed at 6 weeks and monthly thereafter. Volume of milk ingested was estimated using

infant weight and feeding pattern.

Results. Before HIV acquisition in case patients, feeding pattern (exclusive breastfeeding; median duration, 65

vs 70 days; P5 .6) and daily milk intake (mean volume, 638 vs 637 mL; P5 .97) did not differ significantly between

case patients and control subjects. Case mothers were more likely to shed virus (64% vs 9% always, 22% vs 20.5%

intermittently, 14% vs 70.5% never shed; overall, P , .001). Case patients ingested �15 times more HIV-1 RNA

particles than did control subjects (196.5 vs 13 3 106 copies; P , .001). Allowing for maternal antenatal CD4 cell

count and plasma HIV-1 load, child sex and duration of mixed breastfeeding, the association between HIV RNA

exposure and infection remained statistically significant (P , .001).

Conclusions. Postnatal acquisition of HIV-1 is more strongly associated with cumulative exposure to cell-free

particles in breast milk than with feeding mode. Reducing breast milk viral load through antiretroviral therapy to

mother or child can further decrease postnatal transmission in exclusively breastfed infants.

The 2009 World Health Organization infant feeding

recommendations for human immunodeficiency virus

(HIV)–infected mothers in settings where replacement

feeding is neither safe nor affordable are to breastfeed

the infant for the first year, with antiretroviral treatment

and/or prophylaxis for mothers or their infants [1]. This

advice aims to reduce the risk of mother-to-child

transmission of HIV through breastfeeding, which is

estimated to be 4% during the first 6 months of exclu-

sive breastfeeding and 1% per additional month of

breastfeeding thereafter [2–5]. It has previously been

estimated that the risk of acquisition of infection

Received 7 July 2010; accepted 3 December 2010.
aD.N. and J.V. contributed equally to this work

Correspondence: Marie-Louise Newell, MD, Africa Centre for Health and

Population Studies, University of KwaZulu-Natal, KwaZulu-Natal, PO Box 198,

Mtubatuba 3935, South Africa (mnewell@africacentre.ac.za).

Clinical Infectious Diseases 2011;52(6):819–825

Ó The Author 2011. Published by Oxford University Press on behalf of the Infectious

Diseases Society of America. All rights reserved. For Permissions, please

email:journals.permissions@oup.com. This is an Open Access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/2.5/), which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original

work is properly cited.

1058-4838/2011/526-0001$37.00

DOI: 10.1093/cid/ciq203

HIV/AIDS d CID 2011:52 (15 March) d 819

 b
y
 g

u
e

s
t o

n
 M

a
rc

h
 3

, 2
0

1
1

c
id

.o
x
fo

rd
jo

u
rn

a
ls

.o
rg

D
o

w
n

lo
a

d
e

d
 fro

m
 

33



through breast milk is .00064 per liter of breast milk ingested

[6]. However, this estimate does not account for breastmilk viral

load, the intermittent nature of virus RNA shedding in milk, and

the intensity of breastfeeding [7]. Three major HIV reservoirs

coexist in breast milk: RNA, which represents cell-free viral

particles; proviral DNA as cell-associated virus integrated in

latent T cells; and intracellular RNA representing cell-associated

virus in activated producing T cells [8–13]. Their respective role

in breast milk transmission of HIV-1 is poorly understood.

Because of the low estimated probability of transmission

through breast milk per liter of milk ingested and the in-

termittent pattern of cell-free virus shedding in milk, postnatal

HIV transmission through breastfeeding likely depends on the

cumulative HIV exposure (ie, the overall amount of cell-free and

cell-associated viral particles ingested by the infant during

breastfeeding) and pattern or intensity of feeding [exclusive vs

mixed or partial] and possibly by factors other than HIV. We

aimed to quantify the relationship between cell-free HIV shed-

ding in breast milk, cumulative cell-free HIV exposure, and

postnatal acquisition of infection at age 6–28 weeks.

METHODS

We nested a case-control study in a large infant feeding in-

tervention cohort (Vertical Transmission Study) of women at-

tending 9 clinics (8 rural and 1 urban) in KwaZulu-Natal, South

Africa, which aimed to examine breastfeeding and HIV trans-

mission in a community with a high prevalence of HIV infection

[2, 14]. Single-dose nevirapine was provided to all HIV-1–in-

fected women and their infants peripartum; women were

counselled antenatally on infant feeding options in accordance

with policy recommendations at the time: commercial formula

feeds or exclusive breastfeeding for the first 6 months of life.

Women were supported in their feeding choice by lay-workers

who visited breastfeeding mothers at home. Maternal socio-

economic level was defined by education level and household

water type [2]. Venous samples were taken from women at

enrollment and at 6 months after delivery, for plasma RNA load

assessment and CD4 cell count. Daily infant feeding data were

collected at weekly home visits. Infant weight was collected at

birth. Breast milk samples and dried blood spot samples from

infants were collected and anthropometry was performed at 6

weeks and monthly thereafter; an additional dried blood spot

sample was taken from infants after delivery [14, 15].

Postnatal transmission was defined as HIV infection acquired

at age 6–28 weeks. The estimated age at HIV-1 infection was

taken as the midpoint between the last negative RNA polymerase

chain reaction (PCR) result and the first positive RNA PCR

result [2]. Case patients were postnatally infected infants [2, 14];

42 infants received a diagnosis of HIV infection at age 49.5–197

days. Control subjects were HIV-uninfected infants matched for

infant age at the time of obtainment of breast milk samples that

was closest to a case patient’s age at first positive PCR result and

last negative PCR result (in a 1:1 ratio).

Breast milk lactoserum, including the lipid fraction, was

collected from stored (280°C) whole breast milk samples.

RNA was isolated from 500 lL of lactoserum with use of the

magnetic particle-based ASPS method (Abbott), and HIV

load was quantified using the HIV Charge Virale assay

(Biocentric) on the MJ MiniOpticon quantitative PCR

detection platform (Biorad), with a sensitivity of 375 copies

per mL of lactoserum [16]. This method enabled accurate

assessment of cell-free viral load that is preferentially

entrapped by lipids [17]. Feeding categories followed World

Health Organization definitions [2, 14, 15].

The Vertical Transmission Study and breast milk analyses

were approved by the Biomedical Research Ethics Committee of

the University of KwaZulu-Natal.

Statistical Methods

Case-control pairs with information on feeding pattern, infant

weight, and breast milk viral load were included in the present

analysis. Duration of breastfeeding was estimated using the

Kaplan-Meier method and was compared between case patients

and control subjects with use of the log-rank test. Half the value

of the threshold (375/2 copies/mL of lactoserum; 50/2 copies/

mL of plasma) was assigned to samples with undetectable HIV

RNA load for the purpose of logarithmic transformation. Viral

shedding in breast milk was categorized as never, intermittent,

and permanent shedders [18].

The volume of milk ingested per day was estimated according

to Arcus-Arth [19] as (2.312*age1157.7*weight) in exclusively

breastfed infants, with a multiplicative correction factor when,

in addition to breast milk, the infant was given water (1), for-

mula (.7), solids (.9), or at least 2 other foods (.7) [20]. Monthly

weight measurements were linearly interpolated to obtain

daily weight. In 3 control subjects and 1 case patient, missing

birth weights were replaced by the median birth weight observed

in the overall cohort (3100 g) [2]. The probability of trans-

mission per liter of breast milk ingested was computed using

estimated milk volume ingested and estimated risk of postnatal

transmission through breastfeeding in the Vertical Transmission

Study cohort [2]. Daily HIV RNA exposure (ie, the amount of

cell-free viral particles in the volume of milk ingested) was equal

to the product of linearly interpolated milk HIV RNA load and

daily milk intake. By assuming that there was no predominant

breast, mean daily HIV RNA exposure between breasts could be

estimated. Cumulative HIV RNA exposure was estimated as the

sum of daily RNA exposure between the first breast milk sample

at �6 weeks and HIV acquisition, with left and right truncating

to elicit summation over the same period in each case-control

pair. For each woman, the slope of HIV RNA load between the
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last negative HIV PCR result and the first positive test result was

computed as the ratio of HIV RNA load variation over the time

between the 2 PCR tests.

Associations between parameters with non-Gaussian dis-

tributions were assessed using the Spearman correlation co-

efficient. TheWilcoxon signed-rank test for paired data was used

to compare HIV RNA exposure and RNA load between case

patients and their matched control subjects and between right

and left breasts. To estimate the risk of postnatal transmission

associated with cumulative HIV exposure in breast milk, we built

a conditional logistic regression model with use of the PHREG

procedure in SAS, version 9.1 (SAS Institute). Variables shown

to be associated with postnatal transmission on the basis of

a P value ,.2 in univariate analysis were included in the mul-

tivariable model, after verifying the absence of multicollinearity.

All analyses were performed using SAS version 9.1 (SAS In-

stitute).

RESULTS

Of 42 case-control pairs, 6 were excluded from further analyses

because only 1 breast milk sample was available (5 pairs) or

feeding data were collected after the estimated age of HIV ac-

quisition (1 pair). In the remaining 36 pairs, the median esti-

mated infant age at HIV acquisition was 89.5 days (interquartile

range [IQR], 66–128 days; range, 49.5–186.5 days), with a last

negative PCR test result at a minimum of 39 days; the median

duration between the last negative and the first positive PCR test

results was 28 days (IQR, 28–43 days). Case patients were mostly

male, with a nonsignificantly higher birth weight, significantly

higher maternal socioeconomic status, significantly lower ma-

ternal antepartum and postpartum CD4 cell count, and higher

antepartum plasma RNA load (Table 1). Breast health problems,

particularly serious breast pathologies, were rare (2 mothers of

case patients) [21].

Table 1. Maternal and Infant Characteristics of HIV-1–Infected Infants and HIV-1–Uninfected Infantsa

HIV-1–infected infants HIV-1–uninfected infants

No. No. P value

Maternal characteristic

Age at delivery, years 36 25.1 (22–28.2) 36 26.4 (20.0–30.8) .88

Enrolment clinic, no. (%) .77

Urban 9 (25) 8 (22.2)

Semi-urban 13 (36.1) 11 (30.6)

Rural 14 (38.9) 17 (47.2)

Highest level of education, no. (%) .59

No education 2 (5.6) 3 (8.3)

Some primary 9 (25) 13 (36.1)

Secondary and tertiary 24 (66.7) 20 (55.6)

Unknown 1 (2.8)

Water type, no. (%) .06

Borehole, tank, well 1 (2.8) 3 (8.3)

River, stream 8 (22.2) 14 (38.9)

Piped water 27 (75) 17 (47.2)

Other 2 (5.6)

Previous liveborns, no. (range) 35 0 (0–2) 36 1 (0–2) .07

Mode of delivery, no. (%) .71

Vaginal 31 (86) 33 (92)

Caesarean 5 (14) 3 (8)

Duration of rupture of membranes, h 24 0.25 (.1–9.5) 31 0.5 (.1–5) .83

Antenatal CD4 cell count, cells/lL 34 369 (223–558) 35 519 (443–600) .037

Antenatal plasma HIV-1 RNA load, log10 copies/mL 32 4.38 (4.02–4.90) 34 4.00 (2.99–4.82) .02

CD4 cell count at 6 months postpartum, cells/lL 28 376 (224–666) 36 623 (417–703) .01

Plasma HIV-1 RNA load at 6 months post-partum, log10 copies/mL 27 4.45 (3.88–4.92) 30 4.06 (3.08–4.65) .095

Infant characteristics

Sex male, no. (%) 22 (61) 15 (42) .098

Birth weight, g 35 3200 (2800–3500) 33 3000 (2650–3300) .37

Age at last HIV negative test result (day) 36 68 (44–116) 36 458 (410–548)

Age at first HIV positive test result (day) 36 115 (88–154) Not applicable

a median (inter-quartile) are reported for quantitative variables
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Breastfeeding Pattern

Overall, during the first 28 weeks of life, data on the breast-

feeding pattern was collected up to 200 days for control subjects

and for a slightly shorter period for case patients (median, 200

days; IQR, 198–200 days). Control subjects were exclusively

breastfed for longer than case patients (median duration, 183 vs.

157 days; P 5 .003), although the overall duration of any

breastfeeding was not significantly different between the 2

groups (P 5 .17). Before the age at HIV acquisition in the case

patients (and matched age in the control subjects), cumulative

feeding patterns did not differ significantly: 20 case patients

(69%) and 25 control subjects (76%) were exclusively breastfed

from birth (P 5 .55). The median duration of exclusive

breastfeeding before HIV acquisition was 65 days (IQR, 51–95

days) for case patients and 70 days (IQR, 53–107) for control

subjects (P5 .6), with again nonsignificant difference in median

duration of any breastfeeding for both case patients and control

subjects (90 days; IQR, 67–128 days).

Milk Intake and Risk of Postnatal Transmission through Breast

Milk

The estimated milk volume ingested at age 6–28 weeks (Figure

1A) or before HIV acquisition (Figure 1B) did not differ sig-

nificantly between case patients and control subjects, with

a mean daily milk intake of 638 mL in case patients and 637 mL

in control subjects (P 5 .97).

The estimated risk of postnatal transmission through

breastfeeding in this study was previously estimated at .032 per

100 child-days (95% confidence interval [CI], .0222–.0455 per

100 child-days)[2], which translates to an estimated probability

of .0005 (95% CI, .00035–.00071) per liter of breast milk in-

gested.

HIV Shedding in Breast Milk in the First 6 Months of Life

From 34 days through 28 weeks postpartum, there were a total

of 318 samples from both breasts taken at the same visit; median

number of breastmilk samples per woman was 5 in case mothers

(range, 2–6) and 4 in control mothers (range, 3–5). The mean

breast milk HIVRNA load over the first 28 weeks per mother was

inversely correlated with maternal antepartum CD4 cell count

(q 5 2.47; 95% CI, 2.63 to 2.26; n 5 69) and positively with

maternal plasma HIV RNA level before (q 5 .46; 95% CI, .24–

.63; n5 66) or 6 months after delivery (Appendix Tables A1 and

A2, Figures A1 A and B).

Undetectable HIV RNA in milk was quasi-uniformly dis-

tributed over time (Appendix Figures A2 A and B), and there

was no statistically significant variation in viral load slope (mean

difference,2.0001; n5 33 in right breast;2.0000; n5 34 in left

Figure 1. A, Daily milk volume before 28 weeks of age in HIV-infected infants (case patients) and in uninfected infants (control subjects). B, Daily milk

volume before HIV acquisition in HIV-1–infected infants (case patients) and in uninfected infants (control subjects).
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breast). Comparing left and right breast, breast milk HIV-1 RNA

load was always at least .3 log10 copies/mL higher in the left

breast in 2 case mothers (3%), intermittently higher in 1 breast

in 44 (61%) mothers (33 case patient and 11 control subjects),

and always similar in both breasts (difference,, .3 log10 copies/

mL) in 26mothers (36%; 1 case patient and 25 control subjects).

Breast milk viral load did not vary statistically significantly be-

tween breasts (mean difference, 2.04 log10 copies/mL; P 5 .29;

n 5 318), and loads in breasts per woman were strongly cor-

related (q5 .61; 95%CI, .54–.68). Further analysis assumed that

there was no predominant breast.

By 28 weeks postpartum, mothers of case patients were more

likely to shed virus from either breast than were mothers of

control subjects (44% vs 3% always, 53% vs 35% intermittently,

and 3% vs 62% never shed; overall P , .001).

Accounting for episodes with detectable breast milk viral load,

either for all or only for those before HIV acquisition in case

patients, the mean HIV RNA load was significantly higher in

breast milk of case mothers (Table 2).

Cumulative Cell-Free HIV Exposure Through Breast Milk Before

HIV Acquisition

Cumulative HIV RNA exposure was estimated from a me-

dian age of 44.5 days (range, 38–68 days) for a median du-

ration of 41 days IQR, 22–72 days). Infants ingested

a median estimated amount of 231,325 free HIV particles

daily IQR, 138,439–1,416,627 particles; case patients: me-

dian, 1,349,530; IQR, 341,400–4,328,963; control subjects:

median, 142,118; IQR, 125,116–179,289). We estimated that

case patients ingested �15 times more cell-free HIV RNA

particles than did control subjects (196.5 3 106 vs 13.0 3 106;

P, .001). To investigate whether the association remained after

allowing for maternal disease progression, we analyzed the 12

case-control pairs in which both members had a maternal

postpartum CD4 cell count .350 cells/lL. In this comparison,

infected infants were still estimated to have been exposed to

significantly more cell-free HIV particles than control subjects

(22.4 3 106 vs. 8.05 3 106; P , .001) before HIV acquisition;

maternal antepartum CD4 cell count (median, 518 vs 510 cells/

lL; P5 .66), and maternal antepartum plasma HIV-1 RNA load

(median, 3.98 vs 4.04 log10 copies/mL; P 5 .56) did not differ

significantly between case patients and control subjects in these

pairs. After adjustment for infant sex, maternal antepartum CD4

cell count, maternal antepartum plasma viral load, and duration

of mixed breastfeeding, a 1 3 107 increase in HIV-1 RNA in-

gested particles was associated with a 2-fold increased risk of

postnatal infection in the infant (adjusted odds ratio, 2.06;

95%CI, 1.02–4.16) (Table 3).

DISCUSSION

We estimated the number of HIV cell-free particles in breast

milk ingested by an infant before acquiring infection and

showed that infants who became postnatally infected at 6–28

weeks of age ingested significantly more cell-free viral particles

from breast milk than did uninfected infants, independently of

maternal HIV CD4 cell count and plasma viral load. Because the

estimated volume of breast milk consumed did not significantly

differ between case patients and control subjects, the difference

in exposure of the virus particles was driven by increased HIV

shedding in breast milk from mothers of case patients. Our

estimated probability of breast milk transmission (.0005 per liter

ingested) was of the same order of magnitude as a previous

estimate reported from a Kenyan study (.00064 per liter in-

gested) [6].

Our stusy was a case-control study nested in a well-designed

prospective cohort, with intensive infant feeding support and

follow-up and high-quality longitudinal data [2, 14, 22].

Mothers and infants were given single-dose nevirapine pro-

phylaxis at or shortly after delivery only. Most importantly, the

daily collected breastfeeding information, monthly collected

maternal and child clinical data, infant HIV status, and breast

milk samples from both breasts allowed the estimation of

quantity of virus shedding in the breast milk, volume of milk

intake, HIV RNA exposure, and assessment of the association of

these factors with postnatal transmission. In addition,

Table 2. Median HIV RNA Load in Breast Milk in Episodes with Detectable HIV RNA

Case patients Control subjects

No of

samples

HIV RNA load,

log10 copies/mL (IQR)

No of

samples

HIV RNA load,

log10 copies/mL (IQR) P

Before HIV-1 acquisition

Right breast 45 3.37 (3.13–3.82) 6 2.93 (2.72–3.08) 0.005

Left breast 43 3.45 (3.07–4.02) 9 3.06 (2.83–3.28) .045

Before 28 weeks

Right breast 98 3.32 (3.05–3.75) 12 2.99 (2.74–3.15) .001

Left breast 103 3.43 (2.98–4.01) 16 3.06 (2.91–3.51) .09

Abbreviations: IQR, interquartile range.
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comparison between the 2 breasts and adjustment on con-

founding factors was also possible.

However, our study presents some limitations. We used the

midpoint between the last negative and the first positive HIV

PCR test results to estimate timing of acquisition of postnatal

infection. This assumption may underestimate variance [23];

however, because the length of the interval (median, 28 days)

was relatively short, compared with the 22-weeks duration of

follow-up, the potential bias is unlikely to be substantial. Fur-

thermore, we estimated daily milk intake using a formula based

on infant weight and feeding pattern that was validated with

healthy, full-term European or northern American infants [19].

We used correction factors based on a survey conducted in

Brazil [20] to account for introduction of food other than breast

milk. Although our cohort differs from these populations, our

daily milk intake estimates are close to age-specific standards

(658 mL vs standard 670 mL from day 8 through month 2, and

788 mL vs standard 750 mL from month 3 through month 5

[24]). The plateau in estimated volume of breast milk intake that

we observed from 8 weeks postpartum is similar to that reported

in previous studies in which investigators directly estimated milk

volumes by weighing infants before and after each feed [25].

Finally, although it has been suggested that subclinical mastitis

may be associated with higher breast milk viral load [9, 26], with

the intensive breastfeeding counseling, episodes of clinical and

subclinical mastitis were rare [21].

We confirm a strong correlation in breast milk HIVRNA load

between breasts [27], and although we show differential shed-

ding profiles between breasts, there seldom was a persistently

predominant breast throughout lactation, suggesting that breast

milk samples may be collected from either breast for studies

investigating HIV shedding patterns in breast milk. We also

confirm the correlation between breast milk and maternal

plasma HIV RNA loads, with lower values in breast milk, and

an inverse correlation with maternal antepartum CD4 cell

count [10].

Intermittent HIV RNA shedding was common, supporting

the need for frequent breast milk sampling to identify un-

derlying mechanisms of shedding. Mothers of case patients were

more likely to shed virus and at higher levels than were mothers

of control subjects, which confirms breast milk HIV RNA load

as a strong predictor of postnatal HIV-1 transmission [9]. There

was no significant variation in HIV RNA load in breastmilk

slope between the last negative and the first positive HIV PCR

test result in case infants of mothers, which suggests that

transmission is not explained by an abrupt increase of HIV RNA

load and favors cumulative HIV exposure as important pre-

dictor of transmission.

Mechanisms of HIV breast milk transmission remain poorly

understood. Because of the dynamic nature of the relationship

between the source of HIV reservoirs (breast milk) and the

potential target host (the maturing gastrointestinal tract of the

young infant), multiple mechanisms are likely to be at stake. A

remaining question relates to the nature of HIV reservoirs in

milk involved in transmission, and the association of HIV RNA

exposure per se with postnatal transmission does not necessarily

prove causation between the 2 events. Breast milk cellular res-

ervoirs are likely to play a major role in transmission [28]. Both

B and T lymphocytes in breast milk harbor homing markers

strongly suggesting migration from mucosal sites, particularly

from the gut [11, 29]. Recent studies identified latently infected

CD4 T cells [13] and spontaneously activated CD4 T cells [12] in

breast milk as likely reservoirs involved in transmission. These 2

reservoirs are unaffected by maternal antiretroviral therapy [12,

13, 30] and are likely responsible for residual transmission from

antiretroviral-treated lactating women. In the present study, one

transmitting mother never shed HIV-1 in breast milk, despite

multiple measurements, which confirms that at least some

breast milk transmission is attributable to cell-associated HIV

reservoirs [8, 10].

In conclusion, higher cumulative exposure to cell-free HIV

RNA in breast milk is associated with higher rates of postnatal

infection in the infant, independent of maternal CD4 cell count

and plasma viral load; cumulative exposure is attributable to

viral shedding in, rather than volume of, breast milk consumed.

The contribution of exposure to cell-associated HIV remains to

be determined, as do factors associated with compartmentalized

shedding of HIV in breast milk.

Table 3. Risk of Postnatal HIV Infection Associated with Cumulative HIV RNA Exposure in Breast Milk Between 6 Weeks of Age and

Estimated Age of HIV Infection

Variable Adjusted OR 95% CI P

Cumulative HIV-1 RNA exposure in milk (for each additional 107 copies) 2.06 1.02–4.16 .04

Maternal antepartum CD4 cell count (for each additional 100 cells/lL) 1.20 0.80–1.81 .37

Maternal antepartum plasma HIV load (for each additional log10 copies/mL) 1.05 0.45–2.46 .92

Duration of mixed breastfeeding (for each additional week) 1.04 0.94–1.15 .43

Male infants compared to female infants 3.40 0.44–26.40 .24

NOTE. The estimated age at mother-to-child HIV-1 transmission was taken as the midpoint between the last negative RNA PCR and the first positive RNA PCR

tests. Estimated by conditional logistic regression with adjustment on the other factors reported in the table.

Abbreviations: CI, confidence interval; OR, odds ratio.
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Background 

We quantify the relationship between cell-free (RNA) and cell-associated (DNA) shedding of 

HIV-1 virus in breastmilk and the risk of postnatal HIV-1 transmission in the first 6 months 

postpartum. Thirty-six HIV-positive mothers who transmitted HIV-1 by breastfeeding were 

matched to 36 non-transmitting HIV-1 infected control mothers. RNA and DNA were quantified 

in the same breastmilk sample taken at 6 weeks and 6 months. Cox regression analysis assessed 

the association between cell-free and cell-associated virus levels and risk of postnatal HIV-1 

transmission. 

 

Results 

There were no significant difference between left and right breast for DNA or RNA.  

There were higher median levels of cell-free than cell-associated HIV-1 virus (per ml) in 

breastmilk at 6 weeks and 6 months. Multivariably, adjusting for antenatal CD4 count and 

maternal plasma viral load, at 6 weeks, each 10-fold increase in cell-free or cell-associated 

levels (per ml) was significantly associated with HIV-1 transmission but stronger for cell-

associated than cell-free levels (2.47  vs. 1.52, respectively). At 6 months, cell-free and cell-

associated levels (per ml) in breastmilk remained significantly associated with HIV-1 

transmission but was stronger for cellfree than cell-associated levels (2.53 vs. 1.73, 

respectively). 

 

 

Discussion 

We show that at 6 weeks, DNA was more strongly associated with postnatal HIV-1 transmission 

than RNA while at 6 months, RNA was more strongly associated than DNA; few studies have 

compared RNA and DNA levels and the risk of postnatal HIV-1 transmission in the same 

population in the early postpartum period. Our results suggest that breastmilk cell-associated 

levels decrease earlier than noted in previous studies (9 months). The findings suggest that cell-

associated virus level (per ml) is more important for early postpartum HIV-1 transmission (at 6 

weeks) than cell-free virus. Our study also confirms a positive correlation between breastmilk 
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HIV-1 RNA and DNA and maternal antenatal plasma viral load and a negative correlation with 

maternal antenatal CD4 cell count. As cell-associated virus levels have been consistently 

detected in breastmilk despite antiretroviral therapy, this highlights a potential challenge to 

achieve the goal of eliminating vertical transmission. 
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Abstract

Introduction: Transmission through breastfeeding remains important for mother-to-child transmission (MTCT) in resource-
limited settings. We quantify the relationship between cell-free (RNA) and cell-associated (DNA) shedding of HIV-1 virus in
breastmilk and the risk of postnatal HIV-1 transmission in the first 6 months postpartum.

Materials and Methods: Thirty-six HIV-positive mothers who transmitted HIV-1 by breastfeeding were matched to 36 non-
transmitting HIV-1 infected mothers in a case-control study nested in a cohort of HIV-infected women. RNA and DNA were
quantified in the same breastmilk sample taken at 6 weeks and 6 months. Cox regression analysis assessed the association
between cell-free and cell-associated virus levels and risk of postnatal HIV-1 transmission.

Results: There were higher median levels of cell-free than cell-associated HIV-1 virus (per ml) in breastmilk at 6 weeks and 6
months. Multivariably, adjusting for antenatal CD4 count and maternal plasma viral load, at 6 weeks, each 10-fold increase in
cell-free or cell-associated levels (per ml) was significantly associated with HIV-1 transmission but stronger for cell-associated
than cell-free levels [2.47 (95% CI 1.33–4.59) vs. aHR 1.52 (95% CI, 1.17–1.96), respectively]. At 6 months, cell-free and cell-
associated levels (per ml) in breastmilk remained significantly associated with HIV-1 transmission but was stronger for cell-
free than cell-associated levels [aHR 2.53 (95% CI 1.64–3.92) vs. 1.73 (95% CI 0.94–3.19), respectively].

Conclusions: The findings suggest that cell-associated virus level (per ml) is more important for early postpartum HIV-1
transmission (at 6 weeks) than cell-free virus. As cell-associated virus levels have been consistently detected in breastmilk
despite antiretroviral therapy, this highlights a potential challenge for resource-limited settings to achieve the UNAIDS goal
for 2015 of eliminating vertical transmission. More studies would further knowledge on mechanisms of HIV-1 transmission
and help develop more effective drugs during lactation.
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Introduction

Globally, in 2010, an estimated 2.7 million people became

infected with human immunodeficiency virus (HIV); 1.9 million

(70%) of new infections occurred in sub-Saharan Africa (SSA) [1].

An estimated 390,000 (340,000–450,000) new infections occurred

in children, 90% of these in SSA, mainly through mother-to-child

transmission (MTCT) [1]. MTCT can occur before, during and

after delivery, with postnatal transmission through breastfeeding

which accounts for one-third to one-half of MTCT remaining an

unresolved issue [2]. With maternal antiretroviral therapy (ART),

the risk of MTCT can be substantially reduced [3–5]. However,

ART is not always available in resource-limited settings with high

HIV prevalence, where breastfeeding is the norm for infant

survival, and where the provision of ART to the mother or the

infant for up to one year of breastfeeding as per the current WHO

guidelines [6] poses a challenge. Therefore, postnatal transmission

of HIV-1 through breastfeeding is likely to remain an issue for the

foreseeable future in resource-limited settings.

Although factors associated with MTCT have been quantified

[7–10], the mechanisms underlying postnatal transmission remain

poorly understood, in particular the relative roles of cell-free

(RNA) and cell-associated (DNA) HIV-1 in breastmilk trans-

mission. High levels of cell-free virus in maternal plasma and

breastmilk are associated with a high risk of HIV-1 transmission

during breastfeeding [11–16]. Similarly, an association has been

observed with cell-associated virus in breastmilk, suggesting both

cell-free and cell-associated are involved in breastmilk HIV-1
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transmission [11,17,18]. We previously showed that cumulative

exposure to RNA particles in breastmilk significantly increased the

risk of HIV-1 acquisition postnatally independently from maternal

antenatal CD4 cell count, plasma HIV-1 load, child sex and

duration of breastfeeding [19]. Recent studies observe that while

ART leads to undetectable levels of cell-free HIV-1 virus, cell-

associated virus levels are still detected in breastmilk [20,21].

Additionally, there are suggestions that cell-free and cell-associated

virus vary in their prediction of HIV-1 transmission at early and

late lactation stages [18]. If studies confirm such variations in

HIV-1 transmission, and cell-associated virus levels are barely

affected by maternal ART, this could account for the residual

HIV-1 transmission during lactation.

This study examines the prevalence of, and quantifies the

relationship between, cell-free and cell-associated shedding of

HIV-1 virus in breastmilk and the risk of postnatal HIV-1

transmission, in both right and left breasts over the first 6 months

postpartum.

Materials and Methods

Study Population
HIV-infected and HIV-uninfected women were enrolled in an

intervention cohort study, between August 2001 and September

2004 [22,23], to investigate whether breastfeeding in a high HIV

prevalence, poor rural setting in South Africa could be made safe

in terms of both HIV-1 transmission and infant morbidity and

mortality. Weekly home visits documented infant feeding and

morbidity while clinic follow-up of the infants and mothers were

scheduled monthly between 6 weeks and 9 months. Ten milliliters

of breastmilk were collected from each breast for HIV-infected

and uninfected breastfeeding mothers at each scheduled clinic

visit. Samples were transported and maintained at 4 degrees

Celsius overnight and stored long-term as whole breastmilk at

minus 80 degrees Celsius until testing.

A dried blood spot for each infant was collected at each visit and

stored at minus 20 degrees Celsius. HIV-1 RNA quantification

was performed using the Nuclisens HIV-1 QT assay (Organon

Teknika, Boxtel, Netherlands) and Nuclisens EasyQ HIV-1 assay

(Biomerieux, Boxtel, Netherlands) with a sensitivity of 80 copies

HIV-1 RNA per ml of blood (equivalent to 1600 copies HIV-1

RNA per 50 ml dried blood spot) [24]. Rates of MTCT of HIV-1

during breastfeeding have been described previously [23].

Children were considered infected through breastfeeding if they

had a negative HIV polymerase chain reaction (PCR) assay at 6

weeks of age and a positive PCR at any time thereafter. Single-

dose nevirapine (sdNVP) for use during labour/delivery was

provided for all HIV-infected women and to their newborns; ART

for treatment or as MTCT prophylaxis from early in pregnancy or

during the postnatal period was not available in the public health

setting at the time of this study. Maternal viral load and CD4

count were collected antenatally. The project was approved by the

Biomedical Ethics Review Committee (BREC) at the University of

KwaZulu-Natal South Africa.

Study Design

A case-control study was nested in this intervention cohort [22].

The primary study identified 42 babies who had acquired HIV

infection postnatally (as diagnosed by PCR conversion) [23]. Our

study includes 36 postnatally infected children who had both cell-

free and cell-associated data on samples at 6 weeks and 6 months,

and who were matched to controls. Cases and controls were

matched (in a 1:1 ratio) on infant age at breastmilk sampling with

a maximum allowance of 2 weeks of the sample date of the case to

reduce potential bias of varying concentrations of breastmilk RNA

and DNA over time [25]. Cases were mothers who transmitted

HIV-1 to their infants through breastmilk between 6 and 28 weeks

postpartum while controls were non-transmitting HIV-1 infected

mothers. Transmission was estimated to have occurred at the

midpoint between an infant’s last HIV negative PCR test and first

positive result. Infants were included if they had at least one cell-

free and one cell-associated breastmilk sample available close to

the estimated time of transmission (ETT). Breastmilk samples from

both breasts, for postnatal transmitters and controls had DNA

quantified twice (at 6 weeks and 6 months) and RNA at multiple

time points before 6 months. Thirty-six transmitting mothers had

85 samples tested for HIV-1 RNA and DNA in both left and right

breast; 36 control mothers had 81 samples. This study differs from

the previous study which investigated the association between

postnatal HIV acquisition at 6–28 weeks and cumulative cell-free

HIV exposure (i.e. the overall amount of cell-free viral particles

ingested by the infant during breastfeeding, upto infection or

equivalent age of control) [19]. The volume of milk ingested per

day was estimated by pattern of feeding and the probability of

transmission estimated per liter of breastmilk ingested. However,

that study did not access the influence of cell-associated virus

integrated in latent T cells on postnatal transmission. In contrast,

the current study presents the association between cell-free and

cell-associated shedding of HIV-1 virus in breastmilk and postnatal

HIV-1 transmission.

Quantification of HIV-1 Cell-free and Cell-associated Virus
Cell-free HIV-1 quantification on breastmilk samples was

performed as described previously [19]. Cell-associated HIV-1

quantification on whole breastmilk samples was performed using

the Generic HIV DNA Cell assay (Biocentric, Bandol, France).

Breastmilk samples were thawed at room temperature and vortex

mixed. A maximum of 1.5 ml (range 0.5–1.5 ml) of breastmilk was

aliquoted into a 2 ml microtube, centrifuged at 2000 g for 15 min

and the lactoserum-lipid layer was removed to a 1.5 ml microtube.

The lactoserum-lipid fraction was stored at 280uC. The

remaining breastmilk pellet was used in the HIV DNA real time

PCR (qPCR) assay. RNA was isolated from 500 mL of lactoserum

with use of the magnetic particle-based ASPS method (Abbott),

and HIV load was quantified using the Generic HIV Charge

Virale assay (Biocentric, Bandol, France) on the MJ MiniOpticon

quantitative PCR detection platform (Biorad), with a sensitivity of

375 copies per mL of lactoserum [26]. This method enabled

accurate assessment of cell-free viral load entrapped by lipids [27].

The Qiagen DNA Mini Kit was used to isolate total DNA from

the dry breastmilk pellet according to the manufacturer’s

instructions. Total DNA concentration was measured with the

Nanodrop instrument using 1 ml of sample. Samples with a DNA

concentration of ,50 ng/ml were tested neat. For samples with

a DNA concentration of .50 ng/ml an appropriate dilution of up

to 1:10 was performed. The total reaction volume was 50 ml with

a 20 ml sample input volume, according to manufacturer’s

instructions.

The human GAPDH housekeeping gene (Primer_F : 59-

AAGGTCGGAGTCAACGGATT-39; Primer_R R: 59-

CTCCTGGAAGATGGTGATGG-39) was quantified by real-

time PCR using SybrGreen to verify the integrity of the extracted

DNA, to determine the presence or absence of inhibitors/

contaminants, and to act as a reference gene for quantitative

analysis [28–30]. Quantifying the host gene GAPDH provided an

estimate of the number of cells per PCR, allowing expression of

the number of copies of HIV per 106 cells in our sample despite

not having a cell count.

HIV-1 Transmission through Breastfeeding
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Statistical Analysis
The analyses included transmitters and controls with both cell-

free and cell-associated results available from the same breastmilk

sample at 6 weeks and 6 months. When the 6 months results were

more than 4 weeks after transmission, the RNA result closest to the

transmission was used (RNA was quantified at multiple time

points) while the average between the two DNA results was

calculated, otherwise the result at 6 months was used. Breastmilk

HIV-1 RNA viral load levels below the lower detectable limit (375

copies/ml) were assigned a value at the midpoint between this and

zero (187.5 copies/ml) [31,32]. Breastmilk HIV-1 DNA samples

below the lower detectable limit were normalized for the amount

of cells used to isolate the DNA (based on the GAPDH

measurement which is different for each cell) [33]. No breastmilk

samples were excluded because of low cell counts as all samples

had DNA values above zero. Cell-free and cell-associated virus

levels were analyzed on a decimal logarithmic scale to base-10

[11,18]. Counts of DNA quantified per million cells were

converted to concentrations of DNA per milliliter by multiplying

by 0.086106 at 6 weeks and 0.056106 at 6 months breastmilk cells

per milliliter, as suggested in previous studies [11,34].

Chi-square test assessed differences in categorical variables

while Wilcoxon rank-sum test was used for non-parametric

analysis of continuous variables. Spearman rank correlation

estimated correlation between continuous variables. Cox re-

gression models, pooling multiple measurements from the left

and right breastmilk samples, assessed the association between

breastmilk cell-free and cell-associated virus levels and risk of

postnatal HIV-1 transmission. Observation time was taken from 6

weeks of age (last negative HIV PCR assay) to the estimated time

of HIV-1 infection or end of observation (6 months of age),

whichever came first. Multivariable models included maternal

antenatal CD4 cell count and plasma RNA [18], and were

stratified by time (6 weeks and 6 months) because there are more

infected cells in early than mature breastmilk [11]. The model

adjusting for both antenatal CD4 count and viral load represented

the best fit of the data using BIC and was thus retained as the final

model. Data were analysed using Stata Version 11.2 (2009

StataCorp, College Station, Texas, USA).

Results

A total of 166 HIV-1 RNA and DNA samples were included in

this analysis from 72 mothers (36 in each of transmitters and

controls); 81% predominantly breastfed (infants mainly received

breastmilk plus water or water-based drinks but no other milk or

food based fluid) for the first 6 months. 13.9% (5 of 36) of

transmitting mothers had RNA and DNA below lower detectable

limit in the last available breastmilk sample before transmission

occurred. Transmitting mothers were more likely to have lower

antenatal CD4 cell counts (p,0.001) and higher plasma viral load

(p,0.001) than controls (Table 1). The median time to trans-

mission in the cases was 85 (IQR 66–114) days (Figure 1).

Across all samples tested, cell-free virus was above detectable

limit in 76.5% (65/85) of breastmilk samples in the 36

transmitters and in 55.6% (44/81) in controls (p = 0.004); at 6

weeks and 6 months, prevalence was 79.1% and 73.8% in

transmitters and 60.9% and 50.0% in controls, respectively.

Overall, cell-associated virus was above detectable limit in

76.5% (65/85) of breastmilk samples in transmitters and in

45.7% (37/81) in controls (p,0.001); at 6 weeks and 6 months,

prevalence was 76.7% and 76.5% in transmitters and 46.3%

and 45.0% in controls, respectively. The detection levels of cell-

free and cell-associated virus were similar in right and left

breast; 43.8% and 56.9% (p= 0.092), respectively, for cell-free

virus and 67.5% and 55.8% (p= 0.122), respectively, for cell-

associated virus.

HIV-1 RNA and DNA Loads in Breastmilk
Cell-free virus levels ranged from below detection to a maximum

of 1,590,000 copies per ml at 6 weeks and 6 months; cell-

associated virus levels ranged from below detection to a maximum

of 137,441 copies per ml. Median log10 cell-free values per

milliliter were higher than cell-associated values per milliliter (2.8

vs. 2.3 at 6 weeks; p,0.001 and 2.7 vs. 2.4 at 6 months; p,0.001,

respectively). Transmitting mothers had significantly higher log10
values of cell-free (median: 3.6 vs. 2.7; p,0.001 at 6 weeks and 3.5

vs. 2.3; p,0.001 at 6 months) and cell-associated per milliliter

(median: 2.7 vs. 2.1; p,0.001 at 6 weeks and 2.6 vs. 2.2; p,0.001

at 6 months) values than controls (Figure 2).

The breastmilk cell-free and cell-associated levels were similar

between breasts at both time points in the first 6 months

postpartum (Figure 3). Overall, cell-free virus per milliliter and

cell-associated virus levels per million cells were significantly

positively correlated (r=0.34, p,0.001); these correlation was

maintained at 6 weeks (r=0.37, p,0.001) and at 6 months

(r=0.32, p,0.001). Similarly, a positive correlation was obtained

between cell-free virus per milliliter and cell-associated virus per

milliliter (r=0.33, p,0.001); these correlation was also maintained

at 6 weeks (r=0.38, p,0.001) and at 6 months (r=0.32,

p,0.001). Breastmilk cell-free virus levels were positively corre-

lated with antenatal maternal plasma viral load (overall RNA:

r=0.46, p,0.001; at 6 weeks r=0.46, p,0.001 and at 6 months

r=0.47, p,0.001) and negatively with maternal CD4 cell count

(RNA: r=20.44, p,0.001; at 6 weeks r=20.43, p,0.001 and at

6 months r=20.46, p,0.001). Similarly, breastmilk cell-associat-

ed virus levels per milliliter were positively correlated with

antenatal maternal plasma viral load (overall DNA: r=0.30,

p,0.001; at 6 weeks r=0.35, p,0.001 and at 6 months r=0.26,

p,0.001) and negatively with maternal CD4 cell count (DNA:

r=20.33, p,0.001; at 6 weeks r=20.37, p,0.001 and at 6

months r=20.29, p,0.001). Log10 cell-free and cell-associated

virus levels in breastmilk were significantly higher in mothers with

antenatal CD4 count below 500 compared to those with at least

500 cells per mm3 (median: 3.2 vs. 2.7, p,0.001 for cell-free and

3.7 vs. 3.3, p,0.001 for cell-associated virus levels).

Correlation with HIV-1 Transmission
In univariate Cox analysis, each 10-fold increase in the average

(between 6 weeks and 6 months) cell-free and cell-associated levels

was associated with a significant 2- and a 4-fold increase in

breastmilk transmission (HR 2.18 (95% confidence interval (CI)

1.66–2.87) and 4.18 (95% CI 2.24–7.79) respectively). Multi-

variably, adjusting for antenatal CD4 count and maternal plasma

viral load, each 10-fold increase in cell-free or cell-associated levels

was significantly associated with an approximate 2-fold increase in

breastmilk transmission [adjusted hazard ratio (aHR) 1.96 (95%

confidence interval (CI), 1.17–1.96) and 2.57 (95% CI 1.26–5.28)

respectively].

A Cox regression model was fitted for the HIV-1 RNA and

DNA breastmilk samples collected at both 6 weeks and 6 months

to control for potential variation in levels over time [11]. The

trend suggested that at 6 weeks, HIV-1 DNA levels in breastmilk

were more important for HIV-1 transmission than RNA (aHR

1.98 vs. 1.16, both P.0.05). Conversely, at 6 months, RNA levels

were more important than DNA (aHR 1.99 vs. 1.21, both

p.0.05). However, statistical power was lost, possibly due to

collinearity between the 6 weeks and 6 months HIV-1 RNA and

HIV-1 Transmission through Breastfeeding
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DNA results. Therefore, we stratified the analysis by timing of the

sample at 6 weeks and 6 months.

In univariate analyses, at 6 weeks, each 10-fold increase in

breastmilk cell-free or cell-associated levels per ml was associated

with significantly increased hazard of postnatal HIV-1 trans-

mission [HR 1.63 and 3.38, respectively] (Table 2). Multivariably,

DNA was more important for HIV-1 transmission than RNA

[aHR 2.47 vs. 1.52].

At 6 months, each 10-fold increase in breastmilk cell-free or cell-

associated levels per ml was univariately associated with an almost

3-fold significantly increased hazard of postnatal HIV-1 trans-

mission (Table 2). However, multivariably, the association was

stronger for RNA than DNA levels [aHR 2.53 vs. 1.73].

Figure 1. Kaplan-Meier curve showing transmission probabilities after 6 weeks of age.
doi:10.1371/journal.pone.0051493.g001

Table 1. Baseline characteristics of Infants and HIV-positive mothers transmitting HIV-1 through breastmilk and their controls.

Infant or Maternal characteristic Cases (n=36) Controls (n=36) P

Age (years), median (IQR) 25.5 (22.2–28.2) 27.3 (21.1–29.9) 0.502

Antenatal CD4 count cells/mL, median (IQR) 337 (198–540) 524 (369–697) ,0.001

Antenatal viral load log10 copies/mL, median (IQR) 4.5 (4.2–5.0) 4.0 (3.5–4.6) ,0.001

Water source

Non-piped 13 (36.1) 11 (30.6) 0.714

Piped 23 (63.9) 25 (69.4)

Enrollment clinic

Rural 16 (44.4) 14 (38.9) 0.764

Peri-urban 11 (30.6) 12 (33.3)

Urban 9 (25.0) 10 (27.8)

Maternal education

None 2 (5.6) 5 (13.9)

Some primary 12 (33.3) 14 (38.9)

Secondary and above 22 (61.1) 17 (47.2) 0.226

Birth weight (grams), median (IQR) 3200 (2800–3400) 3100 (2800–3500) 0.572

Birth head circumference, median (IQR) 34.8 (33.5–36.4) 35.0 (33.6–36.0) 0.828

Chi-square test assessed differences in categorical variables while Wilcoxon rank-sum test was used for non-parametric analysis of continuous variables.
Abbreviations: Cases, HIV-1 infected postnatal transmitters; Controls, non-transmitting HIV-1 infected mothers.
doi:10.1371/journal.pone.0051493.t001
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Discussion

We examined the prevalence of detectable RNA and DNA and

levels of cell-free and cell-associated HIV-1 and associated risk of

postnatal transmission at 6 weeks and 6 months in a case-control

study nested in a cohort of HIV-infected mothers in KwaZulu-

Natal. We showed higher median levels of cell-free than cell-

associated HIV-1 virus per milliliter in breastmilk at 6 weeks and 6

months, with similar levels between breasts. Both cell-free and cell-

associated virus levels in breastmilk were significantly associated

with HIV-1 transmission, with a suggestion that cell-associated

virus levels per milliliter may be more strongly associated with

transmission than cell-free virus levels per milliliter at 6 weeks and

less so at 6 months.

The prevalence of detectable HIV-1 cell-free virus in all

breastmilk samples was comparable to that in previous African

Figure 2. Distribution of observed log10 cell-free and cell-associated values by age of infant.
doi:10.1371/journal.pone.0051493.g002

Figure 3. Distribution of log10 cell-free and cell-associated values (per ml) by breast and infant age.
doi:10.1371/journal.pone.0051493.g003
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studies [12,18,31] as was that of cell-associated virus [35,36].

Among the HIV-1 transmitting mothers, the prevalence of cell-

associated virus in our study was similar to a Ugandan study at 6

weeks postpartum (77% vs. 80%, respectively) [37]. Our study

showed no statistically significant difference between breasts in the

levels of HIV-1 cell-free and cell-associated virus, and confirms

a strong correlation of HIV-1 cell-free and cell-associated virus in

breastmilk [19,38]. This would suggest that breastmilk samples can

be collected from either breast in future studies investigating HIV-

1 shedding in breastmilk. Our study also confirms a positive

correlation between breastmilk HIV-1 RNA and DNA and

maternal antenatal plasma viral load and a negative correlation

with maternal antenatal CD4 cell count [11,12].

Previous studies have suggested that cell-associated virus levels

in breastmilk decline over time [35,36] whereas cell-free virus

levels increases [39]. Overall, we show a marginally declining

trend in both cell-free and cell-associated virus levels in breastmilk

starting at 6 weeks postpartum [12,36], although mothers

transmitting HIV-1 had significantly higher levels of cell-free

and cell-associated virus over time, as seen elsewhere [11].

Breastmilk cell-free and cell-associated levels (per ml) were

significantly associated with postnatal HIV-1 transmission both

univariately and multivariately. The overall adjusted model

showed a 2-fold increased risk of HIV-1 transmission through

breastmilk with each 10-fold increase in RNA or DNA levels as

previously reported [12,18,19]. This is in line with results from

a study in Nairobi which reported a significant association between

the infected breastmilk cells and the risk of HIV-1 transmission

during or after delivery [11]. Unlike our study, almost two-thirds

of the first breastmilk samples in that study were collected less than

10 days after birth. Additionally, we show that at 6 weeks, DNA

was more strongly associated with postnatal HIV-1 transmission

than RNA while at 6 months, RNA was more strongly associated

than DNA; few studies have compared RNA and DNA levels and

the risk of postnatal HIV-1 transmission in the same population in

early postpartum. Our results suggest that breastmilk cell-

associated levels decrease earlier than noted in previous studies

investigating HIV-1 transmission 9 months post-delivery [18,40].

Future studies investigating cell-associated virus levels - especially

distinguishing latently non-producing infected cells from activated

producing cells - and HIV-1 transmission during lactation should

be designed to focus on early life.

The current prevention of mother-to-child transmission

(PMTCT) guidelines in South Africa recommend zidovudine

(AZT) from 14 weeks of pregnancy, sdNVP and 3-hourly AZT

intrapartum, and a single dose of tenofovir and emtracitabine

postpartum, for women not eligible for lifelong ART. Their infants

receive daily NVP for 6 weeks and then for up to one year during

breastfeeding. Women with CD4 below 350 are eligible for

lifelong ART and their infants get 6 weeks daily NVP only [41].

However, during the study period, only sdNVP was available for

HIV infected women during labour/delivery and for their

newborns immediately postnatally [42]. Previous studies suggest

that sdNVP may reduce early postnatal HIV-1 transmission [43],

as the drug has a long half-life and can be found in maternal

plasma and breastmilk up to 3 weeks postpartum [44], and may

reduce cell-free virus levels in the early postpartum period [45].

NVP also has a good penetration in anatomic compartments

leading to reduced levels of HIV-1 plasma viral loads [46]. In our

study, the estimated risk of HIV-1 transmission associated with

RNA relate to samples taken at 6 weeks after perinatal sdNVP

exposure, while the 6 months samples are in the absence of ART,

which may partly explain the higher risk of transmission associated

with RNA at 6 months. In our primary study, without ART, the

HIV-1 transmission rate was 14.1% at 6 weeks and 19.5% at 6

months in exclusively breastfed infants [23]. In the recent clinical

trials, where HIV-infected pregnant women took triple-ARV

regimen from about 28 weeks in pregnancy (or after delivery) to 6

months postpartum, HIV transmission ranged from 3.3%–4.2% at

6 weeks and from 1.1%–8.2% at 6 months [47–51]. These findings

suggest that giving breastfeeding women a triple-ARV regimen is

safe and feasible to reduce MTCT in resource-limited settings.

However, there are suggestions that the effect of ART is

different on cell-free and cell-associated virus in breastmilk [20].

Results from two separate clinical trials comparing HIV-1 cell-free

and cell-associated virus in breastmilk suggest that triple-ARV

regimen during pregnancy or after delivery suppressed cell-free

but not cell-associated HIV-1 loads in breastmilk [33,52]. The

undetectable HIV-1 RNA in both plasma and breastmilk has been

interpreted as reflecting the cessation of viral replication within

maternal lymphoid tissues [53] and in the mammary gland [54].

As cell-associated HIV-1 virus in breastmilk is associated with

HIV-1 transmission through breastfeeding [11,18], their detection

in breastmilk of untreated as well as those receiving antiretroviral

therapy might be responsible for a residual breastmilk transmission

with maternal ART.

Opportunistic infections such as congenital cytomegalovirus

during pregnancy or delivery, mastitis and breast abscess have

Table 2. Risk factors for HIV-1 transmission through breastfeeding.

First sample taken at 6 weeks Second sample close to ETT (or at 6 months)

Univariable analysis Multivariable analysis Univariable analysis Multivariable analysis

Variable HR (95% CI) P aHR (95% CI) P HR (95% CI) P aHR (95% CI) P

RNA load (for each additional
log10 copies/ml)

1.63 (1.33–1.98) ,0.001 1.52 (1.17–1.96) 0.002 2.65 (1.87–3.76) ,0.001 2.53 (1.64–3.92) ,0.001

DNA load (for each additional
log10 copies/ml)

3.38 (1.92–5.93) ,0.001 2.47 (1.33–4.59) 0.004 2.72 (1.55–4.77) ,0.001 1.73 (0.94–3.19) 0.077

Antenatal CD4 count (for each
additional 100 cell/mL)

0.91 (0.79–1.04) 0.173 1.09 (0.97–1.22) 0.147 0.91 (0.79–1.04) 0.173 1.09 (0.96–1.24) 0.200

Antenatal viral load (for each
additional log10 copies/ml)

2.11 (1.30–3.43) 0.002 1.39 (0.79–2.45) 0.252 2.11 (1.30–3.43) 0.002 1.09 (0.60–1.97) 0.777

Estimated by Cox regression with adjustment on the other factors reported in the table.
Abbreviations: HR, hazard ratio; CI, confidence interval; aHR, adjusted hazard ratio; ETT estimated time of transmission.
doi:10.1371/journal.pone.0051493.t002
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been found to be associated with the risk of HIV transmission

intrapartum or postpartum [16,55]. However, in our study, serious

breast health problems were rare and there were no significant

differences between HIV-infected and uninfected women [56].

The strengths of our study include the large number of

breastmilk samples in the first six months postpartum and the

concurrent measurement of cell-free and cell-associated virus in

the right and left breasts. These findings, from a study conducted

before ART was available in public health programmes in South

Africa, increase understanding of the mechanisms of postnatal

transmission, important for optimizing delivery of interventions in

the current period.

In summary, cell-associated virus load in breastmilk is a stronger

predictor of the risk of early postnatal HIV-1 infection than cell-

free virus loads, independent of antenatal CD4 cell count and

plasma viral loads. In contrast, cell-free virus load is a stronger

predictor of later postnatal HIV-1 transmission. In contemporary

breastfeeding populations with access to antiretroviral prophylaxis

and ART, the residual HIV-1 transmission risk especially in the

early postpartum period is partly explained by the persistence of

cell-associated virus in breastmilk, and highlights a potential

challenge of resource-limited settings to achieve the current

UNAIDS goal for 2015 of eliminating new vertical transmission

[57]. More studies are therefore needed to further knowledge on

the mechanism of HIV-1 transmission during lactation and to help

develop more effective drugs for use in resource-limited popula-

tions where avoidance of breastfeeding is almost impossible.
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Background 

Co-infections in BM with CMV and EBV are associated with increased HIV-1 shedding in this 

compartment [119]. Compartmentalized CMV replication and early MTCT in the mammary 

gland are associated with CMV levels in BM and CD4 cell count [120]. In our study we 

investigate the relationship between CMV levels and EBV detection in BM and the risk of MTCT 

of HIV-1 via breastfeeding. Cell-free HIV-1 RNA, cell-associated HIV-1 DNA, CMV and EBV DNA 

were quantified in BM from 62 HIV-infected mothers with proven postnatal MTCT of HIV-1 via 

breastfeeding. Controls were 62 HIV-positive mothers with HIV-uninfected infants.  

 

Results  

BM HIV-1 RNA level was significantly higher in cases than controls. HIV-1 MTCT was significantly 

associated with BM HIV-1 RNA detection. HIV-1 DNA was detected significantly more frequently 

in cases than in controls. CMV DNA was detectable in most BM samples of cases and controls. 

Median (IQR) CMV DNA viral load was significantly higher in cases than controls.  CMV viral load 

in BM was significantly associated with a 2.5-fold increased risk of postnatal HIV-1 MTCT. 

Increased CMV levels in BM were associated with increased HIV-1 RNA shedding in BM. In 

further analysis, HIV-1 MTCT remained independently associated with CMV level after 

adjustment for BM HIV-1 RNA detection and plasma HIV-1 RNA levels. 

Univariately, EBV detection in BM was associated with a three-fold increase in risk of HIV-1 

MTCT. However, in multivariable analysis adjusting for BM HIV-1 RNA detection, EBV DNA 

detection was no longer significantly associated with postnatal transmission of HIV-1.  

 

Discussion 

We show that CMV viral load in BM was significantly associated with MTCT of HIV-1 via 

breastfeeding, with this risk independent of HIV-1 RNA shedding in this compartment. This is 

the first study to demonstrate an independent association between CMV DNA in BM and 

postnatal MTCT of HIV-1. We hypothesize that this association could fuel persistent shedding of 

HIV-1 in BM in women receiving ART. 
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These data imply that an impairment in T-cell response leads to herpes virus reactivation with 

compartmentalized HIV-1 replication. Thus a specific anti-CMV default in T-cell response may 

facilitate intra-mammary CMV replication, which in turn may lead to an increase in HIV-1 

replication and shedding in BM. EBV is less frequently detected in BM with EBV-memory B-cells 

that are the reservoir of EBV. The proportion of B-cells in BM is lower than in blood; B-cell 

count is also much lower than T-cell count in BM. This could explain in part why BM levels of 

EBV DNA were found to be lower than CMV DNA levels. Targeting CMV and perhaps EBV 

replication in the mammary gland may be of interest as an adjuvant to ART prophylaxis of HIV-1 

MTCT, and may have the additional effect of reducing CMV burden overall.  
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Cytomegalovirus, and possibly Epstein–Barr virus,
shedding in breast milk is associated with HIV-1

transmission by breastfeeding

Johannes Viljoena,b, Edouard Tuaillonb,c, Nicolas Nagotb,c,

Siva Danaviaha, Marianne Periesb,c, Prevashinee Padayacheea,

Vincent Foulongneb,c, Ruth Blanda,d, Nigel Rollinse,f,

Marie-Louise Newella,g,M and Philippe van de Perreb,c,M

Objective: Postnatal HIV-1 mother-to-child transmission (MTCT) occurs in spite of
antiretroviral therapy. Co-infections in breast milk with cytomegalovirus (CMV) and
Epstein–Barr virus (EBV) are associated with increased HIV-1 shedding in this compart-
ment. We investigated CMV levels and EBV detection in breast milk as potential risk
factors for MTCT of HIV-1 via breastfeeding.

Methods: Cell-free HIV-1 RNA, cell-associated HIV-1 DNA, CMV and EBV DNA were
quantified in breast milk from 62 HIV-infected mothers and proven postnatal MTCT of
HIV-1 via breastfeeding. Controls were 62 HIV-positive mothers with HIV-uninfected
infants.

Results: Median (interquartile range) CMV DNA viral load was significantly higher in
cases [88044 (18586–233904)] than in controls [11167 (3221–31152)] copies/106

breast milk cells (P<0.001). Breast milk CMV DNA level correlated positively with
breast milk HIV-1 RNA level in cases and controls. EBVDNAwas detectable in a higher
proportion of breast milk samples of cases (37.1%) than controls (16.1%; P¼0.009).
HIV-1 MTCT was strongly associated with HIV-1 RNA shedding in breast milk and
plasma. In multivariable analysis, every 1 log10 increase in breast milk CMV DNA was
associated with a significant 2.5-fold greater odds of MTCT of HIV-1, independent of
breast milk and plasmaHIV-1 levels; the nearly three-fold increased risk of HIV-1MTCT
with breast milk EBV DNA detection did not reach significance.

Conclusion: We provide the first evidence of an independent association between
CMV in breast milk, and postnatal MTCT of HIV-1. This association could fuel persistent
shedding of HIV-1 in breast milk in women receiving antiretroviral therapy. EBV DNA
detection in breast milk may also be associated with MTCT of HIV-1, but only
marginally so. ß 2015 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction

In the absence of antiretroviral prophylaxis, breastfeeding
accounts for up to half of mother-to-child transmission
(MTCT) of HIV-1 [1]. An estimated 260 000 children
acquired HIV infection in 2012, of whommore than 90%
were living in sub-Saharan Africa [2]. However, breast
milk provides essential nutrition and immunological
protection against mucosal pathogens, and breastfeeding
remains crucial for infant survival in resource-limited
settings [3,4].

Apart from HIV-1, breast milk is also a vehicle for the
transmission to the infant of other viruses infecting
leukocytes, such as cytomegalovirus (CMV) and human
T-cell lymphoma/leukemia virus (HTLV-1) [5–7].
Epstein–Barr virus (EBV), although frequently shed in
breast milk, is not significantly transmitted from mother
to child via this route [8,9]. MTCT of HIV-1 via
breastfeeding has been associated with levels of cell-free
and cell-associated virus in breast milk [10], plasma HIV-1
RNA and maternal CD4þ levels [11,12], duration and
pattern of breastfeeding [13,14], and subclinical [15] or
symptomatic mastitis [16]. However, since the vast
majority of breastfed infants of HIV-1-infected mothers
escape infection even without maternal or infant
prophylaxis, other factors must drive HIV-1 transmission
by breastfeeding [17]. Co-infection with CMVand EBV
may be associated with increased risk of HIV-1
transmission through mechanisms enhancing reciprocal
viral replication, as has been shown for herpes simplex
virus type 2 [18].

Cytomegalovirus is commonly excreted in breast milk
with rates of detection estimated to be 88–99% in two
studies on mothers with preterm infants [19,20]. Breast
milk is a main source ofMTCTofCMVand is estimated to
occur in 40–66% of breast-fed infants in early life [21,22].
In HIV-1-infected mothers, breast milk CMV level and
maternal CD4þ cell count have been shown to be
independently associated with early infant CMV acqui-
sition [23]. In a cross-sectional study of HIV-1 -infected
breastfeeding women in Zimbabwe, breast milk CMVand
EBV levels were independently associated with detection
of breast milk HIV-1 RNA after adjustment for indicators
of mastitis and plasma HIV-1 RNA concentration [24].

Systemic CMV reactivation may be accompanied by
CMV antigenemia/viruria; however, local CMV reacti-
vation (intra-mammary, colon, lung, genital) is usually
asymptomatic and without simultaneous detection of
markers of systemic infection measured in peripheral
blood or urine [25]. In-vitro studies have shown that
interactions between HIV-1 and CMV may be bidirec-
tional, with CMV and HIV-1 enhancing each other’s
replication [26]. Indirect interactions may involve CMV-
mediated T-cell activation, facilitating HIV-1 replication,
and coexist with direct facilitating mechanisms involving

CMV proteins such as chemokine receptor homologue
(US28) acting as a co-factor for HIV-1 cell entry [27].

Epstein–Barr virus shedding in breast milk has similarly
been described, but less so than for CMV, with detection
rates of around 45% [8,24]. In addition, breast milk does
not appear to be a significant source of MTCT of EBV
[9]. In-vitro studies have demonstrated that EBV
enhances replication of HIV-1 in CD4þ lymphocytes
[28], and that EBV and HIV-1 co-infection of T cells
increases HIV-1 production by transactivation of the
HIV-1 long terminal repeats by Epstein–Barr nuclear
antigen 2 [29]. An increase of cell-associated EBV DNA
levels in blood is observed in HIV-viremic patients
compared to HIV-nonviremic and healthy controls [30].

To optimize the management of HIV-1-infected
mothers, it is important to understand the pathogenesis
of MTCTof HIV-1, and identify factors associated with
postnatal MTCTof HIV-1. Here, we report the findings
of a case-control study that investigated breast milk CMV
levels and breast milk EBV detection as factors associated
with MTCT of HIV-1 via breastfeeding.

Materials and methods

Study design
The case-control study was nested in a large infant feeding
intervention cohort among both HIV-infected and HIV-
uninfected mothers in KwaZulu-Natal, South Africa –
the Vertical Transmission Study (VTS), with enrollment
between August 2001 and September 2004. Rates of
MTCTof HIV-1 via breastfeeding and detailed descrip-
tion of the study design and methods are published
[14,31]. Study participants were antiretroviral therapy
(ART)-naive except for single-dose nevirapine (sdNVP)
provided to all HIV-infected women and their newborns
during delivery as per national guidelines at the time.
Mothers and infants attended clinics for monthly follow-
up and collection of an infant dried blood spot (DBS)
sample by heel prick for HIV-1 molecular testing, and a
breast milk sample (10ml) from each breast of the mother.
Breast milk samples were maintained at 48C and
transported overnight to the Africa Centre Virology
Laboratory in Durban, where it was stored as whole breast
milk at ÿ808C until further analysis. Infants were
considered to have been infected postnatally if they
had a negative HIV-1 RNA viral load result at 6 weeks of
age and a positive result at any time thereafter. Maternal
plasma viral load (Nuclisens EasyQ HIV-1 assay;
Biomerieux, Boxtel, the Netherlands) and CD4þ cell
count (Epics XL; Beckman Coulter, California, USA)
were obtained from samples taken at enrollment, 6 weeks
or 26 weeks postdelivery. All women provided informed
consent, and the VTS and breast milk analyses were
approved by the Biomedical Research Ethics Committee
of the University of KwaZulu-Natal.
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Study population
Cases were all mothers included in the VTS with
established HIV-1 infection and proven postnatal
transmission of HIV-1 to their infants via breastfeeding
[14]. Sixty-two mothers with breast milk sample available
for HIV-1 and CMV/EBV testing met the criteria of
inclusion. The estimated timing of infant HIV-1
acquisition was taken as the midpoint between the last
negative and the first positive HIV-1RNA test result. The
breast milk sample selected for testing was that obtained
immediately prior to the estimated timing of infant HIV-
1 acquisition. Controls were 62 HIV-positive mothers
with HIV-uninfected infants matched for infant age at the
time of breast milk sample collection in a 1 : 1 ratio and
randomly selected when several samples were available at
the same date. Timing of sampling in days following
delivery in cases and controls were similar, with a
nonstatistically significant median time difference
between groups of �4.0 days [interquartile range
(IQR) ÿ18 to 12) (P¼ 0.4). The median time between
last undetectable and first detectable HIV-1 RNA test in
cases was 145 days (IQR 82–313).

Quantification of HIV-1 cell-free and cell-
associated virus in breast milk
Cell-free HIV-1 RNA quantification in breast milk
samples was performed as previously described [10,13]. In
brief, RNA was extracted from 500ml breast milk
lactoserum, including the lipid fraction, to maximize
detection of virus entrapped by lipids, using the magnetic
particle-based Abbott Sample Preparation System (ASPS)
assay (Abbott Laboratories, Wiesbaden, Germany). HIV-
1 viral load was quantified using the Generic HIV Charge
Virale assay (Biocentric, Bandol, France) on the MJ
MiniOpticon quantitative PCR detection platform
(BioRad, Hercules, California, USA); the lower limit
of detection was 375 HIV-1 copies per ml.

DNAwas extracted from cell pellet obtained from 1.5ml
of whole breast milk using the QIAamp DNA Mini Kit
(Qiagen, Valencia, California, USA). Cell-associated
HIV-1 DNA quantification was performed using the
Generic HIV DNA Cell assay (Biocentric) as previously
described [10], with a sample input normalized through a
human glyceraldehyde 3-phosphate dehydrogenase gene
quantification assay to compensate for cell lysis [32]. HIV-
1 DNA results were expressed as copies per 106 equivalent
breast milk cells with a lower limit of detection of 560
HIV-1 DNA copies/106 breast milk cells.

Quantification of cytomegalovirus and Epstein–
Barr virus DNA in breast milk
Cytomegalovirus and EBV DNA viral load quantification
was performed on pooled left and right breast milk cell
pellets. Although maternal CMVand EBV serostatus was
not determined for individual breast milk samples,
previous investigation into our study population using
antenatal plasma samples yielded very high CMV (99.5%)

and EBV (97%) prevalence rates (unpublished data). We
used commercial quantitative PCR (qPCR) assays for
CMV [PrimerDesign GeneSig qPCR Kit for Human
Herpes Virus 5 (Cytomegalovirus), Southampton, UK]
and EBV [PrimerDesign GeneSig qPCR Kit for Human
Herpes Virus 4 (Epstein Barr), Southampton, UK]
quantification. DNA extraction was performed using
the QIAamp DNA Mini Kit (Qiagen), and qPCR was
performed using the LightCycler 480 system (Roche,
Basel, Switzerland). The input volume into the qPCR
assays for both viruses were 5ml of a 5-ng/ml product
(manufacturer’s instructions), with a total input of 25 ng
DNA per reaction corresponding to an equivalent of
3.8� 104 breastmilk cells.Resultswere expressed as copies
CMVor EBVDNA per 106 breast milk cells, with a lower
limit of detection of 528DNAcopies/106 breastmilk cells.

Statistical analysis
Continuous data were assessed with Student’s t test and
Wilcoxon Mann–Whitney test when their distributions
were normal or non-normal, respectively; categorical
variables were assessed with chi-square or Fisher’s exact
test if the number was small.

The Wilcoxon signed-rank test for paired data with non-
Gaussian distributions and the Student’s t test for paired
data with Gaussian distributions were used to compare
breast milk viral loads of HIV-1 RNA and DNA, and for
CMV and EBV DNA between cases and controls. The
McNemar’s test was used for comparison of EBV DNA
levels between cases and controls. Statistical significance
was set at a P value less than 0.05.

To estimate the adjusted risk of postnatal transmission
associated with CMV and EBV, we built a conditional
logistic regression model. Variables associated with
postnatal transmission on the basis of a P value less than
0.20 in univariate analysis were included in the multi-
variable model, and we used a backward selection. All
analyses were performed using SAS Enterprise Guide
version 5.1 (SAS Institute, Cary, North Carolina, USA).
We used the mean value obtained between left and right
breasts for HIV-1 RNA and DNA as the final value in
breast milk. All specimens with undetectable levels of
breast milk CMVor EBVDNA, breast milk HIV-1 RNA
and DNA, and plasma HIV-1 RNAwere assigned a value
equal to half the lower limit of detection.

Results

Study population characteristics
Maternal HIV-1 plasma viral load was significantly higher
in cases than in controls, and there was a trend towards
lower CD4þ cell counts (Table 1). The two groups were
not significantly different regarding maternal age, socio-
economic and demographic characteristics, mode of
delivery or duration of rupture of membranes, and infant
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characteristics at birth. There were no reports of clinical
mastitis at sample collection in any mothers.

HIV-1 RNA and DNA in breast milk and
association with HIV-1 transmission
Breast milk HIV-1 RNA level was significantly higher in
cases than in controls [median (IQR) 1405 (188–6606)
and 188 (188–188) copies/ml, respectively; P< 0.001]
(Fig. 1a). HIV-1 RNAwas more frequently detectable in
the breast milk of cases [40/62 (64.5%)] than in that of
controls [10/60 (16.7%; P< 0.001]. Since HIV-1 RNA
was frequently undetectable from controls, the detection
rate was used for further analysis. HIV-1 MTCT was
significantly associated with breast milk HIV-1 RNA
detection (Table 2).

Sufficient breast milk sample was available for HIV-1
DNA measurement in 29 of 62 of cases and 40 of 62 of
controls, yielding 23 case-control pairs. HIV-1 DNAwas
detected significantly more frequently in cases (24/29,
82.8%) than in controls (10/40, 25%; P< 0.001). The
median (IQR) breast milk HIV-1 DNA level was
significantly higher in cases [5002 (1993–14890)] than
that in controls [280 (280–462) copies/106 breast milk
cells; P< 0.001] (Fig. 1b). CD4þ cell count was
marginally associated with MTCTof HIV-1 (P¼ 0.068).

Detection and quantification of cytomegalovirus
DNA and Epstein–Barr virus DNA in breast milk
Cytomegalovirus DNA was detectable in most breast
milk samples of cases and controls (both 96.8%, 60 out of
62). Median (IQR) CMV DNA viral load was
significantly higher in cases [88 044 (18 586–233 904)]
than in controls [11 167 (3221–31 152) copies/106 breast
milk cells; P< 0.001] (Fig. 1c).

Epstein–Barr virus DNA was detectable in a higher
proportion of breast milk samples of cases than controls
[23/62 (37.1%) and 10/62 (16.1%), respectively;
P¼ 0.009]. Levels of EBV DNA were higher in cases
than in controls (P¼ 0.023) (Fig. 1d). Since EBV DNA
was frequently undetectable in controls, breast milk
detection rate was used for further analysis. Feeding mode
(exclusive and mixed breastfeeding) was not associated
with significant differences in CMV viral load or EBV
detection in breast milk.

Impact of cytomegalovirus DNA viral load and
Epstein–Barr virus DNA detection in breast milk
and mother-to-child transmission of HIV-1
Cytomegalovirus viral load in breast milk was signifi-
cantly associated with a 2.5-folds greater odds of postnatal
HIV-1 MTCT. Increased CMV levels were associated

148 AIDS 2015, Vol 29 No 2

Table 1. Baseline socio-demographic, clinical, and laboratory characteristics of infants and mothers transmitting HIV-1 through breast milk and
their controlsa.

Maternal characteristics n Cases (n¼62) n Controls (n¼62) P

Age (years), median (IQR) 62 25 (22–28) 62 25 (21–30) 0.948
CD4þ cell count cells/ml, median (IQR)b 62 393 (251–723) 62 526.5 (370–716) 0.070
Plasma HIV-1 RNA (log 10 copies/ml), median (IQR)b 54 4.46 (3.85–4.79) 57 3.78 (3.08–4.43) 0.003
Mode of delivery
Vaginal (%) 54 87.1% 56 90.3% 0.57
Caesarean (%) 8 12.9% 6 9.7%

Duration of rupture of membranes (h) 44 15 (5–350) 44 47.50 (5.0–332.5) 0.389
Water source
Piped water (%) 41 66.1% 41 66.1% 0.736
Borehole, tank, well (%) 5 8.1% 6 8.1%
River, stream (%) 16 25.8% 14 22.6%
Other (%) – – 2 3.2%

Enrollment clinic
Rural (%) 25 40.3% 34 54.8% 0.270
Peri-urban (%) 24 38.7% 18 29.0%
Urban (%) 13 21.0% 10 16.1%

Maternal education
None (%) 2 3.2% 3 4.8% 0.611
Some primary (%) 18 29.0% 23 37.1%
Secondary and above (%) 41 66.1% 36 58.1%
Unknown (%) 1 1.6% – –

Infant characteristics
Birth weight (g), median (IQR) 61 3100 (2800–3400) 59 3050 (2850–3300) 0.981
Birth head circumference, median (IQR) 61 34.6 (33.0–36.0) 60 34.2 (33.35–35.5) 0.515

Child sex
Male (%) 35 56.5% 29 46.8% 0.281
Female (%) 27 43.5% 33 53.2%

IQR, interquartile range.
aMedian (interquartile range) are reported for quantitative variables.
bMajority (n¼105) of samples were collected at 26 weeks postdelivery; n¼8 samples were collected at 6 weeks postdelivery (cases¼5 and
controls¼3); and n¼11 samples were collected at enrollment (cases¼10 and controls¼1).
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with increased HIV-1 RNA shedding in breast milk. In
further analysis, HIV-1 MTCT remained independently
associated with CMV level after adjustment for breast
milk HIV-1 RNA detection and plasma HIV-1
RNA levels.

Univariately, EBV detection in breast milk was also
associated with HIV-1 MTCT. However, in multi-
variable analysis, adjusting for breast milk HIV-1 RNA
detection, EBV DNA detection was no longer signifi-
cantly associated with postnatal transmission of HIV-1
(Table 2).

Association between cytomegalovirus and
Epstein–Barr virus DNA in breast milk with
HIV-1 replication and CD4R depletion
Breast milk CMV levels correlated positively with breast
milk HIV-1 RNA in cases and controls (Fig. 2a and b).

A strong correlation was observed between CMV and
HIV-1 DNA levels in breast milk for cases, but not for
controls (Fig. 2c and d). Breast milk CMV levels
correlated positively with plasma HIV-1 RNA levels
in cases and controls (Fig. 3a and b). A significant inverse
correlation was observed between breast milk CMV level
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Fig. 1. (a) Comparison between cases and controls of breast milk HIV-1 RNA, (b) HIV-1 DNA, (c) CMV DNA and (d) EBV DNA.
Grey line, median value; dotted line, assay lower detection limit.

Table 2. Univariate and multivariable analysis of mother-to-child transmission of HIV-1.

Variable Crude ORa (95% CI) P Adjusted ORb (95% CI) P Adjusted ORc (95% CI) P

DNA EBV (detection)d 3.17 (1.27–7.93) 0.014 – –
DNA CMV (log) 2.49 (1.50–4.12) <0.001 1.94 (1.08–3.40) 0.0263M 2.52MMM (1.28–4.99) 0.008
Breast milk HIV RNA (detection) 10.67 (3.27–34.83) <0.001 7.84 (2.28–27.00) 0.0011MM –
Plasma HIV (log10 RNA) 1.897 (1.20–3.00) 0.0057 – 1.58y (0.91–.74) 0.104
CD4þ T cells (cells/ml) 0.270 (0.07–1.10) 0.0678 – –

BM, breast milk; CI, confidence interval; CMV, cytomegalovirus; EBV, Epstein–Barr virus; MTCT, mother-to-child transmission; OR, odds ratio.
aCrude odds ratio using univariate analysis.
bAdjusted odds ratio model 1: Analysis of HIV-1MTCT according to BM CMVDNA levels taking into account BMHIV-1 RNA sheddingM. Analysis
of HIV-1 MTCT according to BM HIV-1 RNA shedding taking into account BM CMV DNA levelsMM.
cAdjusted odds ratiomodel 2: Analysis of HIV-1MTCT according to BMCMVDNA levels taking into account plasmaHIV-1 RNA levelMMM. Analysis
of HIV-1 MTCT according to plasma HIV-1 RNA shedding taking into account the BM CMV DNA levelsy.
dThis variable was removed because it caused a loss of model quality.
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Fig. 2. Correlation between BM CMV DNA and BM HIV RNA in (a) cases and (b) controls. Correlation between BM CMV DNA
and BM HIV DNA in (c) cases and (d) controls. BM, breast milk; CMV, cytomegalovirus.
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and maternal CD4þ cell count for cases, but not for
controls (Fig. 3c and d).

No clear association was observed between EBV and
HIV-1RNA andDNA shedding in breast milk. Similarly,
there was no association found between EBV DNA
shedding in breast milk and CD4þ cell count (data not
shown).

Discussion

We show that CMV viral load in breast milk was
significantly associated with MTCT of HIV-1 via
breastfeeding, independently of HIV-1 RNA shedding
in this compartment. EBV detection in breast milk may
also be associated with MTCT of HIV-1, but only
marginally so. This is the first study to demonstrate an
independent association between CMV DNA in breast
milk and postnatal MTCTof HIV-1. Similar to previous
studies, CMV DNA was detectable in the majority of
breast milk samples studied from this population of
untreated HIV-1-infected mothers, with measured CMV
levels significantly higher in breast milk than levels
previously reported in blood. Recently, Gianella et al. [33]
reported median (IQR) values of 1.73 (0.12–4.54) log10
CMV DNA copies/106 peripheral blood mononuclear
cells, compared to median (IQR) values of 4.4 (3.8–5.2)
log10CMVDNA copies/106 breast milk cells, and Slyker
et al. [23] described median (IQR) values of 1.8 (1.8–2.0)
log10 CMV copies/ml in plasma compared to 5.5 (5.0–
6.4) log10 CMV copies/ml in breast milk. In contrast to
HIV-1, which we previously found to be 1–2 log10 lower
in breast milk compared to blood [13], CMV DNA level
appears to be significantly higher in BM than blood,
suggesting efficient compartmentalized CMV replication
in the mammary gland. CMV DNA may be cell-
associated in a variety of infected breast milk cells,
including mammary epithelial cells, monocytes and T
cells that traffic into breast milk [4,34].

Epstein–Barr virus is less frequently detected in breast
milk [24]. EBV-memory B cells are the reservoir of EBV.
The proportion of B cells in breast milk is lower than that
in the blood; B-cell count is also much lower than T-cell
count in breast milk. This could explain in part why breast
milk levels of EBVDNAwere found to be lower than that
of CMV DNA levels.

HIV-1 DNA and RNA levels in breast milk appeared
strongly predictive of postnatal HIV-1MTCT.We further
observed a greater than two-folds greater odds of HIV-1
MTCTwith every 1 log10 increase in breast milk CMV
DNA, independently of breast milk HIV-1 RNA level. It
has been shown that a short-course prophylaxis of HIV-1
MTCTusing NVP strongly impact on plasma and breast
milk HIV-1 viral load 1 week after delivery with rebound
levels peaking at 4 weeks, significant for plasma but not in

breast milk, to prior levels [35]. Hence, at the time of
breast milk sample collection, NVP traces were most
likely to have disappeared with replication levels in breast
milk rebounding to levels comparable to pre-entry in
this study.

HIV-1 DNA, reflecting cell-associated HIV-1, was not
included in the MTCT model since this parameter was
only available for some breast milk samples. However, a
strong association was observed for cases when CMV
DNA was compared to HIV-1 DNA. High CMV and
HIV-1 DNA levels in breast milk may be associated with
an influx of leukocytes due to local or systemic
inflammatory processes [36], and consequently of both
CMV and HIV-1-infected cells in breast milk. A second
link between the two viruses may involve immune
activation since high levels of CMV shedding in breast
milk may target T-cell activation and facilitate reactivation
of CD4þ cells latently infected by HIV-1 and located in
the mammary gland. Thus, CMV shedding in breast milk
may be one factor driving the high level of immune
activation observed in breast milk cells [37], coupled with
the high capacity of breast milk HIV-1-infected CD4þ

cells to produce HIV particles [38]. Impairment of the
immune response against CMV may be a third
mechanism involved in the poor control of both CMV
and HIV-1 shedding in the mammary compartment.
Hence, our data have shown that CMV DNA level in
breast milk was associated with CD4þ depletion in cases.
We did not observe the same association in the control
group, which may suggest that T-cell responses were
somewhat more preserved in nontransmitters. Consistent
with this observation, MTCT of CMV was recently
shown to be strongly associated with levels of CMVDNA
in breast milk and CD4þ depletion in HIV-infected
women [23]. Similarly, a decrease in T-cell population
due to HIV-1 infection has been associated with the loss
of control of herpes simplex type 2 replication in the
female genital compartment [39]. These data imply that
an impairment in T-cell response leads to herpes virus
reactivation with compartmentalized HIV-1 replication.
Thus, a specific anti-CMV default in T-cell response may
facilitate intra-mammary CMV replication, which, in
turn, may lead to an increase in HIV-1 replication and
shedding in breast milk.

The study had several limitations. Firstly, due to the
observational character, it is difficult to infer causality of
the reported associations as CMV and EBV viral load
might be a consequence of increased immunosuppression
in transmitters. Secondly, since CMVand EBV shedding
is mostly intermittent, interventional clinical trials are
needed to describe longitudinal patterns of intermittent
versus continuous shedding, and its effect on MTCT of
HIV-1. Thirdly, we did not investigate the potential
confounding influence in cases with high breast milk
CMV shedding associated with the different immune
milieu as found in subclinical mastitis.
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The age of the infant was chosen as the only matching
criterion for controls because age is associated with
dramatic changes in breast milk composition over time.
Since breast milk HIV-1 viral load and CD4þ T-cell
count were important risk factors for HIV-1 transmission,
we preferred not to use them as matching criteria. Further
studies on breast milk in women on ART, using
alternative ratios for case-control numbers, and matching
criteria are needed to confirm the findings of this study.

The demonstrated association between CMV and EBV
DNA and HIV-1 levels in this study may explain
persistent shedding of HIV-1 in breast milk. Cell-
associated levels of HIV-1 RNA and proviral DNA in
breast milk have been shown to be refractory to treatment
with ART [38]. We hypothesize that compartmentalized
CMV and EBV replication may contribute to residual
HIV-1 MTCT via breastfeeding for women receiving
ART, as previously described [40].

Targeting CMV and perhaps EBV replication in the
mammary gland may be of interest as an adjuvant to ART
prophylaxis of HIV-1MTCT, and may have the additional
effect of reducing CMV burden overall. Recent data, as to
the longer-term sequelae of early infant CMV infection,
have been published [41]. In addition, maternal plasma
CMV DNA viral load has also been associated with
increased mortality in HIV-1-infected women and their
infants following 2 years after delivery [42].

The study provides the first evidence of an independent
association between CMV in breast milk, and postnatal
MTCTof HIV-1. Further studies are needed to clarify the
relationship betweenCMVand residualHIV-1 shedding in
breast milk of mothers receiving antiretroviral prophylaxis.

Acknowledgements

We thank the participants and co-workers of the Vertical
Transmission and Breast-milk Co-viral Studies.

Author contributions: J.V., E.T., R.B., N.R., M.L.N. and
P.V. designed and supervised the study. J.V., E.T., S.D.,
P.P., and V.F. implemented the study and performed the
laboratory analyses. Data management was organized by
N.N., M.P., M.L.N. and P.V., who also provided input
into statistical analyses. The manuscript was written by
J.V., E.T., M.L.N. and P.V. All authors reviewed and
approved the final version of the manuscript.

Funding: The work was supported by funding from
Wellcome Trust and Agence Nationale de Recherche sur
le SIDA (ANRS) (grant numbers VTS 063009/Z/00/Z,
ANRS 2008–033).

Conflicts of interest
We declare that we have no conflicts of interest.

References

1. Nduati R, JohnG,Mbori-NgachaD, Richardson B,Overbaugh J,
Mwatha A, et al. Effect of breastfeeding and formula feeding on
transmission of HIV-1: a randomized clinical trial. JAMA 2000;
283:1167–1174.

2. UNAIDS. UNAIDS report on the global AIDS epidemic. 2013.
http://www.unaids.org/en/media/unaids/contentassets/documents/
epidemiology/2013/gr2013/UNAIDS_Global_Report_2013_en.
pdf. [Accessed 11 February 2014].

3. Brandtzaeg P. The mucosal immune system and its integration
with the mammary glands. J Pediatr 2010; 156:S8–15.

4. Van de Perre P, Rubbo PA, Viljoen J, Nagot N, Tylleskar T,
Lepage P, et al. HIV-1 reservoirs in breast milk and challenges
to elimination of breast-feeding transmission of HIV-1. Sci
Transl Med 2012; 4:143sr143.

5. Van de Perre P, Simonon A, Msellati P, Hitimana DG, Vaira D,
Bazubagira A, et al. Postnatal transmission of human immuno-
deficiency virus type 1 from mother to infant. A prospec-
tive cohort study in Kigali, Rwanda. N Engl J Med 1991; 325:
593–598.

6. Diosi P, Babusceac L, Nevinglovschi O, Kun-Stoicu G. Cyto-
megalovirus infection associated with pregnancy. Lancet 1967;
2:1063–1066.

7. Ando Y, Nakano S, Saito K, Shimamoto I, Ichijo M, Toyama T,
et al. Transmission of adult T-cell leukemia retrovirus (HTLV-I)
from mother to child: comparison of bottle- with breast-fed
babies. Jpn J Cancer Res 1987; 78:322–324.

8. Junker AK, Thomas EE, Radcliffe A, Forsyth RB, Davidson AG,
Rymo L. Epstein-Barr virus shedding in breast milk. Am J Med
Sci 1991; 302:220–223.

9. Kusuhara K, Takabayashi A, Ueda K, Hidaka Y, Minamishima I,
Take H, et al. Breast milk is not a significant source for early
Epstein-Barr virus or human herpesvirus 6 infection in infants: a
seroepidemiologic study in 2 endemic areas of human T-cell
lymphotropic virus type I in Japan. Microbiol Immunol 1997;
41:309–312.

10. Ndirangu J, Viljoen J, Bland RM, Danaviah S, Thorne C, Van de
Perre P, et al. Cell-free (RNA) and cell-associated (DNA) HIV-1
and postnatal transmission through breastfeeding. PLoS One
2012; 7:e51493.

11. Rousseau CM, Nduati RW, Richardson BA, John-Stewart GC,
Mbori-Ngacha DA, Kreiss JK, et al. Association of levels of HIV-
1-infected breast milk cells and risk of mother-to-child trans-
mission. J Infect Dis 2004; 190:1880–1888.

12. John GC, Nduati RW, Mbori-Ngacha DA, Richardson BA,
Panteleeff D, Mwatha A, et al. Correlates of mother-to-child
human immunodeficiency virus type 1 (HIV-1) transmission:
association with maternal plasma HIV-1 RNA load, genital
HIV-1 DNA shedding, and breast infections. J Infect Dis
2001; 183:206–212.

13. Neveu D, Viljoen J, Bland RM, Nagot N, Danaviah S,
Coutsoudis A, et al. Cumulative exposure to cell-free HIV in
breast milk, rather than feeding pattern per se, identifies
postnatally infected infants. Clin Infect Dis 2011; 52:819–
825.

14. Coovadia HM, Rollins NC, Bland RM, Little K, Coutsoudis A,
Bennish ML, et al. Mother-to-child transmission of HIV-1
infection during exclusive breastfeeding in the first 6 months
of life: an intervention cohort study. Lancet 2007; 369:1107–
1116.

15. Kantarci S, Koulinska IN, Aboud S, Fawzi WW, Villamor E.
Subclinical mastitis, cell-associated HIV-1 shedding in breast
milk, and breast-feeding transmission of HIV-1. J Acquir Im-
mune Defic Syndr 2007; 46:651–654.

16. Lunney KM, Iliff P, Mutasa K, Ntozini R, Magder LS, Moulton
LH, et al. Associations between breast milk viral load, mastitis,
exclusive breast-feeding, and postnatal transmission of HIV.
Clin Infect Dis 2010; 50:762–769.

17. Kuhn L, Sinkala M, Kankasa C, Semrau K, Kasonde P, Scott
N, et al. High uptake of exclusive breastfeeding and
reduced early postnatal HIV transmission. PLoS One 2007;
2:e1363.

18. Van de Perre P, Segondy M, Foulongne V, Ouedraogo A,
Konate I, Huraux JM, et al. Herpes simplex virus and HIV-1:
deciphering viral synergy. Lancet Infect Dis 2008; 8:490–
497.

152 AIDS 2015, Vol 29 No 2

61



 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

19. Yasuda A, Kimura H, Hayakawa M, Ohshiro M, Kato Y,
Matsuura O, et al. Evaluation of cytomegalovirus infections
transmitted via breast milk in preterm infants with a real-time
polymerase chain reaction assay. Pediatrics 2003; 111:1333–
1336.

20. Hamprecht K, Maschmann J, Vochem M, Dietz K, Speer CP,
Jahn G. Epidemiology of transmission of cytomegalovirus from
mother to preterm infant by breastfeeding. Lancet 2001;
357:513–518.

21. Minamishima I, Ueda K, Minematsu T, Minamishima Y, Ume-
moto M, Take H, et al. Role of breast milk in acquisition of
cytomegalovirus infection. Microbiol Immunol 1994; 38:549–
552.

22. Roxby AC, Atkinson C, Asbjornsdottir K, Farquhar C, Kiarie JN,
Drake AL, et al. Maternal valacyclovir and infant cytomegalo-
virus acquisition: a randomized controlled trial among HIV-
infected women. PLoS One 2014; 9:e87855.

23. Slyker J, Farquhar C, Atkinson C, Asbjornsdottir K, Roxby A,
Drake A, et al. Compartmentalized cytomegalovirus replica-
tion and transmission in the setting of maternal HIV-1 infec-
tion. Clin Infect Dis 2014; 58:564–572.

24. Gantt S, Carlsson J, Shetty AK, Seidel KD, Qin X, Mutsvangwa J,
et al. Cytomegalovirus and Epstein-Barr virus in breast milk are
associated with HIV-1 shedding but not with mastitis. AIDS
2008; 22:1453–1460.

25. Reinke P, Prosch S, Kern F, Volk HD. Mechanisms of human
cytomegalovirus (HCMV) (re)activation and its impact on
organ transplant patients. Transpl Infect Dis 1999; 1:157–164.

26. Skolnik PR, Kosloff BR, Hirsch MS. Bidirectional interactions
between human immunodeficiency virus type 1 and cytome-
galovirus. J Infect Dis 1988; 157:508–514.

27. Pleskoff O, Treboute C, Brelot A, Heveker N, Seman M, Alizon
M. Identification of a chemokine receptor encoded by human
cytomegalovirus as a cofactor for HIV-1 entry. Science 1997;
276:1874–1878.

28. Guan M, Zhang RD, Wu B, Henderson EE. Infection of primary
CD4R and CD8R T lymphocytes by Epstein-Barr virus en-
hances human immunodeficiency virus expression. J Virol
1996; 70:7341–7346.

29. Zhang RD, Guan M, Park Y, Tawadros R, Yang JY, Gold B, et al.
Synergy between human immunodeficiency virus type 1 and
Epstein-Barr virus in T lymphoblastoid cell lines.AIDS ResHum
Retroviruses 1997; 13:161–171.

30. Petrara MR, Cattelan AM, Zanchetta M, Sasset L, Freguja R,
Gianesin K, et al. Epstein-Barr virus load and immune activa-
tion in human immunodeficiency virus type 1-infected pa-
tients. J Clin Virol 2012; 53:195–200.

31. Bland R, Coovadia H, Coutsoudis A, Rollins N, Newell M.
Cohort profile: mamanengane or the Africa centre vertical
transmission study. Int J Epidemiol 2010; 39:351–360.

32. Tasker S, Peters IR, Mumford AD, Day MJ, Gruffydd-Jones TJ,
Day S, et al. Investigation of human haemotropic Mycoplasma
infections using a novel generic haemoplasma qPCR assay on
blood samples and blood smears. J Med Microbiol 2010;
59:1285–1292.

33. Gianella S, Anderson CM, Vargas MV, Richman DD, Little SJ,
Morris SR, et al. Cytomegalovirus DNA in semen and blood is
associated with higher levels of proviral HIV DNA. J Infect Dis
2013; 207:898–902.

34. Twite N, Andrei G, Kummert C, Donner C, Perez-Morga D, De
Vos R, et al. Sequestration of human cytomegalovirus by human
renal and mammary epithelial cells. Virology 2014; 460–
461:55–65.

35. Aizire J, McConnell MS, Mudiope P, Mubiru M, Matovu F,
Parsons TL, et al. Kinetics of nevirapine and its impact on HIV-1
RNA levels in maternal plasma and breast milk over time after
perinatal single-dose nevirapine. J Acquir Immune Defic Syndr
2012; 60:483–488.

36. Hassiotou F, Hepworth AR, Metzger P, Lai CT, Trengove N,
Hartmann PE, et al. Maternal and infant infections stimulate a
rapid leukocyte response in breastmilk. Clin Translat Immunol
2013; 2:e3 http://www.nature.com/cti/journal/v2/n4/full/cti20
131a.html [accessed 23 May 2014].

37. Tuaillon E, Valea D, Becquart P, Al Tabaa Y, MedaN, Bollore K,
et al. Human milk-derived B cells: a highly activated switched
memory cell population primed to secrete antibodies. J Im-
munol 2009; 182:7155–7162.

38. Valea D, Tuaillon E, Al Tabaa Y, Rouet F, Rubbo PA, Meda N,
et al. CD4R T cells spontaneously producing human immuno-
deficiency virus type I in breast milk from women with or
without antiretroviral drugs. Retrovirology 2011; 8:34.

39. Mayaud P, Nagot N, Konate I, Ouedraogo A, Weiss HA,
Foulongne V, et al. Effect of HIV-1 and antiretroviral therapy
on herpes simplex virus type 2: a prospective study in African
women. Sex Transm Infect 2008; 84:332–337.

40. de Vincenzi I. Triple antiretroviral compared with zidovudine
and single-dose nevirapine prophylaxis during pregnancy and
breastfeeding for prevention ofmother-to-child transmission of
HIV-1 (Kesho Bora study): a randomised controlled trial.
Lancet Infect Dis 2011; 11:171–180.

41. Gompels UA, Larke N, Sanz-Ramos M, Bates M, Musonda K,
Manno D, et al. Human cytomegalovirus infant infection
adversely affects growth and development in maternally
HIV-exposed and unexposed infants in Zambia. Clin Infect
Dis 2012; 54:434–442.

42. Slyker JA, Lohman-Payne BL, Rowland-Jones SL, Otieno P,
Maleche-Obimbo E, Richardson B, et al. The detection of
cytomegalovirus DNA in maternal plasma is associated with
mortality in HIV-1-infected women and their infants. AIDS
2009; 23:117–124.

Cytomegalovirus, Epstein–Barr virus and postnatal HIV-1 transmission Viljoen et al. 153

62



GENERAL DISCUSSION 

Although HIV-1 can enter breast milk by transudation from the vascular compartment, HIV-1 

can also replicate in mammary gland tissues and breast milk. Transmission of HIV-1 by breast-

feeding is the result of multiple factors: the nature and size of the viral reservoir, host 

susceptibility, and the complex interplay of numerous breast milk factors that may be anti-

infectious, immunomodulatory, and anti- or proinflammatory. Although cell-free HIV-1 particles 

can mediate HIV-1 transmission from breast milk to infant, especially late in lactation [103, 

105], cell-associated HIV-1, either latently infected or activated virus-producing T cells, is 

predominantly responsible for breast milk–mediated HIV transmission. Compared with those in 

blood, breast milk B and T cells are activated more frequently and express higher levels of 

memory and mucosal homing markers. Activation of latently infected immune cells favors HIV-1 

replication and release of viruses from these persistent, stable reservoirs in the mammary 

gland. It is likely that cell-to-cell transfer of viruses from this cell-associated HIV-1 reservoir to 

cells in the infant is a key element during mother-to-child transmission. This mechanism can 

explain the residual risk of HIV transmission to infants by mothers taking combined ARV 

therapies with no or minimal HIV-1 RNA in their body fluids. Indeed, the equation “no 

detectable HIV-1 RNA equals no transmission,” which correctly applies to sexual transmission 

[121, 122] and perinatal transmission of HIV-1 [123], does not apply to breast-feeding 

transmission. The residual HIV-1 cell-associated reservoir in breast milk, which is not eliminated 

by maternal ART—in conjunction with the vulnerability of the infant’s gut mucosal barrier—are 

consistent with this mechanism of maternal-to-infant HIV transmission. 

It is therefore unlikely that mother-to-child transmission of HIV-1 can be eliminated by 

maternal ART alone [124]. In contrast, infant pre-exposure prophylaxis, administered during the 

entire duration of breast-feeding, is more likely to protect exposed babies against all possible 

routes of breast milk transmission, including cell-to-cell viral transfer. To achieve optimal 

adherence during infant pre-exposure prophylaxis, long-acting drugs that can be more 

practically given to infants and that have a good safety profile are urgently needed. 
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Bottlenecks to pMTCT of HIV-1 via breastfeeding 

 

(i) Incomplete understanding of the role of activated T cells 

(ii) Incomplete understanding of the role of immune factors 

(iii) Unclear efficacy of prophylaxis 

(iv) Incomplete understanding of the role of co-viral infections in breast milk 

 

(i) Incomplete understanding of the role of activated T cells 

Although it is clear that both T cells latently infected with HIV-1 and activated HIV-producing T 

cells persist in breast milk and contribute to transmission of HIV to breast-feeding infants, we 

do not understand the respective roles of these two reservoirs. This is important to clarify 

because maternal ART only minimally reduces HIV in these cells. Consequently, because these 

reservoirs contribute to HIV transmission, approaches other than maternal ART should be 

considered to eliminate this source of paediatric infection. For example, if immune activation 

facilitates HIV-1 transmission, strategies such as prevention of inflammation and subclinical 

mastitis in the breast, both causes of immune cell activation, could prove useful. To test 

whether activated CD4+ T cells from breast milk contribute to HIV-1 transmission, these cells 

should be enumerated in breast milk samples from transmitting and nontransmitting mothers. 

Such studies are ongoing on limited numbers of frozen samples, but conclusive findings may 

require fresh cells and rigorous freezing procedures. Identifying a proxy of cell activation by 

measuring the activation-prone environment in breast milk and soluble factors could well prove 

more informative. 

 

(ii) Incomplete understanding of the role of immune factors 

Innate, anti-infectious factors such as lactoferrin, lactadherin, mucins, and anti-secretory 

lectins, may prevent bacterial adherence to the gut epithelial surface and therefore protect 

against alteration of the vulnerable newborn’s gut mucosal barrier. Because bacterial 

translocation and consequent immune activation may boost HIV-1 replication in CD4+ T cells 

and maybe macrophages, it is important to know whether breast-fed HIV-1–infected infants 
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have a slower disease progression or a better ART response than infants deprived of their 

mother’s milk. Other factors, such as SLPI, lysozyme, or lactoferrin, are under scrutiny in studies 

comparing breast milk composition in transmitting and non-transmitting mothers. If proven 

protective, these factors could be included in an intervention package aimed at defending the 

infant’s mucosae against HIV-1.  

Finally, we need to determine whether the humoral immune response, mainly sIgA and sIgM, or 

the local T cell response protects against HIV-1 transmission; positive findings would indicate 

that maternal immunization eliciting such responses may prove beneficial in preventing breast 

milk–mediated transmission. 

  

(iii) Unclear efficacy of prophylaxis 

In HIV-1–infected mothers not eligible for ART, triple combination ART administered during 

lactation reduces transmission by only 50 to 60%. This poor response will hamper considerably 

efforts to achieve the WHO objective of reducing mother-to-child transmission of HIV-1 

worldwide to ~10% of present levels. Estimates of residual risk of transmission has been 

provided by meta-analyses and mathematical modelling and are provided in the table 2 below – 

adapted from [9]. For example, the residual transmission by breastfeeding from a mother on 

ART is estimated to be 0.2% per month by breastfeeding. 

The prophylactic efficacy of the WHO-recommended option B (maternal triple prophylaxis) has 

been assessed by the Kesho Bora trial [125]. In this randomized trial, prophylactic ARV therapy 

with three drugs during pregnancy and breast-feeding for a maximum of 6 months was 

compared to a short perinatal AZT/single-dose NVP prophylaxis to prevent mother-to-child 

transmission of HIV-1. In infants whose mothers declared they intended to breast-feed, the 

cumulative rate of HIV-1 transmission at 12 months was 5.6% in the triple ARV group and 10.7% 

in the AZT/single-dose NVP group, corresponding to an intervention efficacy of 52%. This lower 

than expected efficacy of the triple combination prophylaxis could be a result of suboptimal 

maternal adherence, breast milk exposure after maternal prophylaxis had been stopped, or 

transmission via cell-associated viruses not suppressed by maternal prophylaxis.  
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Regimen 

Postnatal transmission per month of any breastfeeding* (except incident 

infection) 

CD4<350 CD4>350 

Incident infections (range of 

reported transmission probabilities) 

28% (14.3%-56%)  

No prophylaxis (range of reported 

transmission probabilities) 

1.57%/mBF 0.51%/mBF 

sdNVP (range of reported 

transmission probabilities) 

1.57%/mBF 0.51%/mBF 

WHO 2006 dual prophylaxis (range 

of reported transmission 

probabilities) 

1.57%/mBF 0.51%/mBF 

Option A+  0.2%/mBF 

Option B§  0.2%/mBF 

ART (range of reported transmission 

probabilities) 

0.2%/mBF  

ART (before pregnancy) 0.16%/mBF  

 

Shading indicates transmission probabilities that are not estimated for a particular regimen either because the regimen is 

not recommended for women with a particular CD4 count, for example, Option A or B for women with CD4 counts less 

than 350 cells/ml, or because transmission data were not available for a regimen by CD4 count, for example, sdNVP in 

women with CD4 350–500 cells/ml. 

*For the transmission probabilities associated with breast feeding the values are given to two decimal places since 

rounding these values up or down would result in significantly greater or lesser transmission rates when multiplied 

according to the duration of breast feeding. 

+In Option A, HIV-positive pregnant women who are eligible for lifelong ART should be started on treatment in the 

first trimester of pregnancy. HIV-positive pregnant women who are not eligible for ART should receive daily AZT from 

14 weeks gestation until delivery, single dose nevirapine during labour and AZT+3TC during labour and for 7 days post 

partum. HIV-exposed infants would receive AZT or NVP until 6 weeks of age and if breast feeding then NVP would 

continue until 1 week after all breast feeding has stopped. 

§In Option B, HIV-positive pregnant women who are eligible for lifelong ART should be started on treatment in the 

first trimester of pregnancy. HIV-positive pregnant women who are not eligible for lifelong ART should receive one of 
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four combinations of ARVs during pregnancy throughout the breastfeeding period and 1 week after. Exposed infants 

would receive either AZT or 

3TC, lamivudine; ART, antiretroviral therapy; ARV, antiretroviral drug; AZT, zidovudine; BF, breastfeeding; sdNVP, single 

dose nevirapine. 

 

Table 2. 

Summary of breast milk transmission probabilities by antiretroviral regimen and maternal CD4 

count (adapted from Rollins 2012) 

 

An unexpected adverse effect of the “option B” maternal triple prophylaxis is development of a 

high rate of resistance to multiclass ARV drugs in babies that become infected despite maternal 

prophylaxis [126]. In a study from Uganda in which mothers initiated ART immediately 

after delivery while breast-feeding, six of seven HIV-1–infected babies harbored multiclass-

resistant viruses at 12 months of age, jeopardizing the success of further ARV therapies [127]. 

This high rate of resistant mutants in these untreated babies is likely a result of exposure to 

suboptimal concentration of ARV drugs in ingested milk caused by variable diffusion of 

maternal drugs into breast milk [128, 129]. 

The prophylactic efficacy of WHO option A (infant peri-exposure prophylaxis) has been 

demonstrated in two proof-of-concept trials [130, 131]. Prophylaxis by treatment of the infant 

with daily NVP from 6 weeks to 6 months has been evaluated in South Africa in a randomized 

placebo-controlled trial [132]. Of the infants receiving this treatment, 1.1% acquired HIV-1 

between 6 weeks and 6 months, whereas 2.4% of the placebo controls became infected, a 54% 

reduction in transmission. However, mortality at 6 months did not differ between the two 

groups.   

 

The optimal drug of choice for infant prophylaxis remains unclear. The ideal drug should have 

excellent efficacy and a very good safety profile because the vast majority of infants will not be 

infected with HIV and so cannot ethically be given drugs with problematic side effects. The drug 

should not compromise or complicate the future HIV-1 treatment of infants who may acquire 

HIV despite the treatment. NVP satisfies the first two points (although its efficacy could be 

improved), but most infants who acquire HIV will become resistant to the whole class of non-
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nucleoside reverse transcriptase inhibitor (NNRTI) drugs. Lamivudine (3TC), which proved as 

efficacious and safe as NVP [133], with a similar rate of resistance, may be a better choice. In 

this case, resistance would be limited to 3TC, and so use of this drug would not compromise the 

successful use of other nucleosidic reverse transcriptase inhibitors. Finally, other drugs could 

prove useful, such as lopinavir/ritonavir (LPV/r), which is more potent and has a high genetic 

barrier to resistance, with a good safety profile in preliminary studies of young infants [134]. 

Lopinavir/Ritonavir versus Lamivudine peri-exposure prophylaxis to prevent HIV-1 transmission 

by breastfeeding is being investigated in a multicenter trial: the PROMISE-PEP trial Protocol 

ANRS 12174 [135]. The ANRS 12174 study aims to compare the risk of HIV-1 transmission 

during and safety of prolonged infant PEP with LPV/r (40/10 mg twice daily if 2-4 kg and 80/20 

mg twice daily if >4 kg) versus Lamivudine (7,5 mg twice daily if 2-4 kg, 25 mg twice daily if 4-8 

kg and 50 mg twice daily if >8 kg) from day 7 until one week after cessation of BF (maximum 50 

weeks of prophylaxis) to prevent postnatal HIV-1 acquisition between 7 days and 50 weeks of 

age. Among the 1273 infants randomised in this trial (636 in LPV/r arm and 637 in 3TC arm), 17 

HIV-1 infections were diagnosed, giving HIV-1 infection rates of 1·4% and 1·5 %, respectively. At 

week 50, HIV-1-free survival was not different between the two arms. Clinical or biological 

severe adverse events were not different between arms. Infant prophylactic LPV/r or 3TC for up 

to 50 weeks of breastfeeding achieved very low rates of HIV-1 postnatal transmission, without 

demonstrated superiority of one drug over the other (Nagot N et al, InPress)  

 

(iv) Incomplete understanding of the role of co-viral infections in breast milk 

Although maternal antiretroviral therapy reduces milk HIV-1 RNA load and postnatal 

transmission, its impact on milk CMV load is unclear. We provide the first evidence of an 

independent association between CMV DNA in BM and postnatal MTCT of HIV-1. Every 1 log10 

increase in breast milk CMV DNA, was associated with a significant 2.5-fold greater odds of 

MTCT of HIV-1, independent of BM and plasma HIV-1 levels. This association could fuel 

persistent shedding of HIV-1 in breast milk in women receiving ART. HIV-1 and CMV are 

important pathogens transmitted via breastfeeding. Perinatal CMV transmission may impact 

growth and disease progression in HIV-exposed infants.  
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It is important to know if impairment of CMV host virus control in the mother impacts on MTCT 

of CMV, in both HIV-exposed-infected (HEI) and HIV-exposed-uninfected (HEU) children. In a 

study done in Kenya, it was shown that CMV DNA levels in plasma correlated strongly with HIV 

status and HIV viral load but not with CD4 count [120]. In this study there was a trend for 

women who were CMV DNAemic to transmit CMV to their (HIV-1 infected) infants earlier than 

women who were not CMV DNAemic, thus there was early transmission and higher CMV VL in 

both HEU/HEI from CMV DNAemic mothers . In another cohort in Malawi, it was found that 

CMV DNA levels in BM correlated with HIV viral load, but CMV DNA in BM was similar in ART-

treated and untreated women [136].  It has also been shown that CMV MTCT is higher in 

mothers not receiving ART treatment and in those with lower CD4count 2012 [39]. 

 

It is not known whether early CMV MTCT is associated with the formation of a larger CMV 

reservoir in children. CMV viral load kinetics studied in the Kenyan cohort, HEU (n=20) and HEI 

(n=44), showed that 90% of children had been infected at 3 months, with no difference 

between HEU and HEI; that CMV viral loads were highest in the 1-3 months following the first 

detection of virus and declined rapidly thereafter; that CMV peak viral loads were significantly 

higher in the HIV-infected infants compared with the HIV-exposed uninfected infants; and that 

the detection of CMV DNA persisted to 7-9 months post-CMV infection in both the HIV-exposed 

uninfected (8/17, 47%) and HIV-infected (13/18, 72%, P = 0.2) children [120]. 

 

There is also the question of whether early MTCT of CMV or a large reservoir of CMV in the 

infant contributes to infant morbidity and mortality. Slyker et al comparing HEU vs HEI and 

children from CMV DNAemic mothers vs not, showed that maternal CMV DNAemia remained a 

significant risk factor for mortality in HEI infants after adjusting for maternal CD 4 T-cell count, 

HIV viral load or maternal death, with HIV-1 infected infants born to CMV DNAemic women 

having a 4-fold increased risk of mortality during 24 months of follow-up.  [120]. In a cohort in 

Zambia it has been shown that human CMV infant infection adversely affects growth and 

development in both HEI and HEU children. In this study human CMV seropositive infants had 

decreased length-for-age development by 18 months of age compared to CMV seronegative 
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infants. In addition HIV-exposed infants positive for CMV serology status and levels of CMV 

DNA, had reduced head size and lower psychomotor development, and was more commonly 

referred for hospital treatment than CMV negative infants. [38]. Impact on infant growth 

characteristics was confirmed in the Malawian cohort, where higher milk CMV load was 

associated with lower length-for-age and weight-for-age Z score at six months in exposed, 

uninfected infants. As the impact of maternal antiretroviral therapy on the magnitude of 

postnatal CMV exposure may be limited, the findings of an inverse relationship between infant 

growth and milk CMV load highlight the importance of defining the role of perinatal CMV 

exposure on growth faltering of HIV-exposed infants [136]. 

Slyker et al showed that CMV viral loads peak in the 1-3 months following the first detection of 

virus and declined rapidly thereafter. CMV peak viral loads were significantly higher in the HIV-

infected infants compared with HIV-exposed uninfected infants. In another study conducted in 

Cape Town on infants with severe pneumonia (HEU=297 and HEI=120), the level of CMV 

viraemia was significantly higher in a subset of infants diagnosed with CMV pneumonia with 

prevalence and level of CMV viraemia peaking at 3-4 months of age [137].  

In a study looking at the effect of prenatal ART on CMV MTCT in the perinatal/early postnatal, it 

was found that MTCT of CMV was associated with the presence or absence of ART, and that For 

HIV-uninfected infants with CMV, symptoms including splenomegaly, lymphadenopathy, and 

hepatomegaly were associated with no maternal ART. These findings confirm the importance of 

prenatal ART for all HIV-infected pregnant women [39].  

 

Control of CMV infection/reactivation 

 

CMV Vaccine 

Pass et al [138] reported on a phase II placebo-controlled, RCT where (n=225) CMV-

seronegative women received 1-3 intramuscular injections/vaccinations of glycoprotein B 

adjuvanted with MF59. Infection occurred in 8% of the vaccine group and in 14% of the placebo 

group, which equates to a vaccine efficacy of 50%. The effect of vaccination in CMV-
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seropositive women, and whether it could modify shedding, especially in BM, has not been 

studied thus far. 

Hamilton et al [26] identified a significant lack of robust clinical data examining either 

prophylaxis or treatment interventions for congenital CMV. Furthermore, high-quality evidence 

from RCTs will be required before any interventions can be recommended and will agree to 

cover the associated costs. 
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CMV Antiviral therapy 

Ganciclovir (six studies - [140-145]) and valganciclovir (2 studies - [146, 147]) therapy have been 

extensively studied in infants who presented with symptomatic congenital CMV disease. All 

were done on symptomatic cCMV except Lackner et al, who initiated 23 asymptomatic but with 

proven congenital cytomegalovirus infection within the first 10 days of life. All but one showed 

some association with neutropaenia. This class of agent currently remains the treatment of 

choice for symptomatic cCMV infections. However, its use as an antiviral to reduce CMV-

associated HIV-1 transmission, through both its association to DNA and/or RNA, as we have 

shown, is unlikely. No study has investigated the effect of ganciclovir or valganciclovir on BM 

CMV and HIV transmission. This would also be difficult to study as large-scale treatment using 

this class of agent could never be justified as an HIV intervention, due to its extensive side-

effect profile and prohibitive cost. Valacyclovir may have a direct effect on HIV-1 and 

Valacyclovir therapy has been shown to decrease the risk of MTCT of HIV-1 even in HSV-

uninfected women [148]. 

Thus, the goal to decrease CMV levels in BM remains an elusive one in the absence of an 

effective vaccine or drug, that can provide protection against primary infection (prevent 

seroconversion, especially during pregnancy), but more importantly can modify CMV 

replication and compartmentalized shedding (breast milk, renal, vaginal, semen, oral), in HIV-

infected mothers.  

 

Three double-blind randomized placebo-controlled phase 2 proof-of-concept studies have each 

identified a novel antiviral drug with activity against CMV infection in bone marrow transplant 

patients. One of these (brincidofovir) inhibits the DNA polymerase that is the target of the 

currently licensed drug ganciclovir) [149]. Another new drug (maribavir) inhibits a protein 

kinase which, coincidentally, is the enzyme responsible for activating ganciclovir through 

phosphorylation [150]. The third drug (letermovir) inhibits the terminase enzyme complex 

responsible for packaging unit length DNA into assembling virions [151]. In addition, in a 

double-blind randomized placebo-controlled trial in neonates with symptomatic congenital 

CMV infection, a 6-month course of valganciclovir was superior to the standard 6-week course 
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of the same drug [152]. In pregnant women with primary CMV infection, administration of 

hyperimmune immunoglobulin did not significantly reduce transmission of CMV across the 

placenta. 

 

Perspectives 

Effective ART is imperative to minimize perinatal and postnatal HIV transmission from mother-

to-child. However, residual transmission is still occurring mostly due to cell-associates HIV 

reservoirs which remain refractory to ART. We have demonstrated that the cumulative dose of 

HIV RNA particles remains one of the most important risk factors. In addition we have shown 

that HIV DNA is also a very important factor especially in the first 3 months postnatally.  

 

However there is still residual HIV shedding despite ART. It appears that it could be a very 

important adjunctive to administer prophylaxis to the breastfeeding infant (Promise PEP). Thus 

treating only the mother is only partially effective and treatment of the infant is important. 

Further information is needed on immune profile and morbidity of HEU children.  

 

The relationship between blood and BM HIV remains complex. Inflammation and coviral 

infections in the mammary gland contributes significantly to intra-mammary 

compartmentalization. 

What is the best therapy to avoid HIV MTCT?  Option B+? A long-acting drug for infant 

prophylaxis? A combination of these strategies? 

Targeting CMV to reduce MTCT is an attractive complementary option, but there is no vaccine 

available yet and antiviral therapy for prophylaxis is not available.  The next decade should see 

major advancement on these questions. 
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There is an urgent need to assess the accuracy/feasibility of using dried blood spots (DBS) for 

monitoring of HIV-1 viral load in resource-limited settings. A total of 892 DBS from HIV-1–

positive pregnant women and their neonates enrolled in the Kesho Bora prevention of mother-

to-child transmission trial conducted in Durban (South Africa) and Bobo-Dioulasso (Burkina 

Faso) between May 2005 and July 2008 were tested for HIV-1 RNA. The combination Nuclisens 

extraction method (BioMe´rieux)/Generic HIV Viral Load assay (Biocentric) was performed using 

one DBS (in Durban) versus 2 DBS (in Bobo-Dioulasso) on 2 distinct open real-time polymerase 

chain reaction instruments. DBS HIV-1 RNA results were compared with plasma HIV-1 RNA and 

HIV serology results used as the gold standards. The limits of detection of assays on DBS were 

3100 and 1550 copies per milliliter in Durban and Bobo-Dioulasso, respectively. DBS HIV-1 RNA 

values correlated significantly with plasma levels (n = 327; R = 0.7351) and were uniformly 

distributed according to duration of DBS storage at 220_C (median duration, 280 days). For 

early infant diagnosis, the sensitivity and specificity were 100% (95% confidence interval: 97.2 

to 100.0 and 96.5 to 100.0, respectively). HIV-1 viral load kinetics in DNase-pretreated DBS 

were similar to those obtained in plasma specimens among 13 patients receiving antiretroviral 

treatment. HIV-1 RNA findings from serial infant DBS collected prospectively (n = 164) showed 

100% concordance with HIV serology at 18 months of life. Our findings strongly advocate the 

implementation of DBS HIV-1 RNA testing in remote areas from low-income and middle-income 

countries.  
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Abstract: There is an urgent need to assess the accuracy/feasibility

of using dried blood spots (DBS) for monitoring of HIV-1 viral load

in resource-limited settings. A total of 892 DBS from HIV-1–positive

pregnant women and their neonates enrolled in the Kesho Bora

prevention of mother-to-child transmission trial conducted in Durban

(South Africa) and Bobo-Dioulasso (Burkina Faso) between May

2005 and July 2008 were tested for HIV-1 RNA. The combination

Nuclisens extraction method (BioMérieux)/Generic HIV Viral Load

assay (Biocentric) was performed using one DBS (in Durban) versus

2 DBS (in Bobo-Dioulasso) on 2 distinct open real-time polymerase

chain reaction instruments. DBS HIV-1 RNA results were compared

with plasma HIV-1 RNA and HIV serology results used as the

gold standards. The limits of detection of assays on DBS were 3100

and 1550 copies per milliliter in Durban and Bobo-Dioulasso,

respectively. DBS HIV-1 RNA values correlated significantly with

plasma levels (n = 327; R = 0.7351) and were uniformly distributed

according to duration of DBS storage at 220°C (median duration,

280 days). For early infant diagnosis, the sensitivity and specificity

were 100% (95% confidence interval: 97.2 to 100.0 and 96.5 to

100.0, respectively). HIV-1 viral load kinetics in DNase-pretreated

DBS were similar to those obtained in plasma specimens among 13

patients receiving antiretroviral treatment. HIV-1 RNA findings from

serial infant DBS collected prospectively (n = 164) showed 100%

concordance with HIV serology at 18 months of life. Our findings

strongly advocate the implementation of DBS HIV-1 RNA testing in

remote areas from low-income and middle-income countries.

Key Words: DBS, HIV-1 RNA quantification, real-time PCR, sub-

Saharan Africa

(J Acquir Immune Defic Syndr 2010;55:290–298)

INTRODUCTION
At present, laboratory capacity for biological monitoring

of HIV-1 infection in sub-Saharan Africa remains insufficient.1

Without individually scheduled HIV-1 RNA viral load (VL)
measurements (as done in developed countries), the recent
gains in HIV treatment in developing countries might fade in
the coming years, given the important risks of virological
failure and subsequent spread of HIV-1 drug-resistant strains.2

To make HIV-1 RNAVL measurements more accessible
in Africa, dried blood spots (DBS) may be a ‘‘field-friendly’’
tool for sample collection and transport from remote resource-
limited settings to central testing laboratories. Compared with
standard plasma specimens, DBS offers a simplified sampling
method eliminating many logistical and technical limitations,
as they are much easier to collect, transport, and store.3–4

However, studies evaluating the usefulness and reliability
of filter papers focused mainly on the role of DBS in public
health HIV-1 drug resistance surveillance.5 Studies using DBS
for clinical HIV-1 RNA VL monitoring on an individual
patient basis are fewer, and testing was mainly performed in
laboratories in developed countries where DBS were
shipped,6–11 prohibiting technology transfer to low-income
countries. Studies performed in African laboratories remain
scarce, with limited sample sizes.12–13 Apart from an assay
developed by Mehta et al,8 expensive Food and Drug
Administration–approved HIV-1 RNA tests on closed plat-
forms have been used, further reducing the potential for
implementation in low-income countries.

We report the accuracy and feasibility of using long-
term stored DBS for HIV-1 RNA VL measurements in 2
African laboratories. We used the combination of the
Nuclisens extraction method (BioMérieux) and the Generic
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HIV Viral Load assay (Biocentric) performed on 2 distinct
open real-time polymerase chain reaction (PCR) instruments.
The rationale for the choice of this combination was the
excellent performance of the BioMérieux technique for DBS
extraction14,15 and the affordability of the Biocentric assay
which accurately amplified non–B HIV-1 subtypes.16

SUBJECTS AND METHODS

Study Design and Selection Criteria
for Specimens

Our study was carried out at two African sites, Bobo-
Dioulasso (Burkina Faso) and Durban (South Africa), where
the Kesho Bora trial aimed at preventing mother-to-child
transmission of HIV-1 was conducted in 2005–2010.17 Written
informed consent was obtained from all participants. The
protocol was approved by the World Health Organization
(WHO) ethics committee and by the Institutional and National
Review Boards in both countries.

The study consisted of 2 parts in which a total of 892
DBS and 69 dried plasma spots (DPS), collected within the
Kesho Bora trial, were tested for HIV-1 RNA (Table 1). Part 1
was a large-scale retrospective survey evaluating VLs obtained
with DBS and DPS, collected at both sites between May 2005
and July 2008. Results were compared with those obtained on
paired plasma specimens used as the gold standard. All
maternal DBS collected at enrollment in Durban were
assessed, whereas in Bobo–Dioulasso, cases were selected
in a blinded manner. DBS from all HIV-1–infected children in
Bobo–Dioulasso, taken between 6 weeks and 18 months, were
tested for HIV-1 RNA. For each infected child, 3 uninfected
infants were randomly selected. Their DBS samples, taken
between 6 weeks and 12 months, were also tested for HIV-1
RNA. Forty-six pregnant women with CD4 count ,200 cells
per cubic millimeter at inclusion received highly active

antiretroviral therapy (HAART) in Bobo–Dioulasso.18 From
this group, we selected sequential DBS from all women (n = 4)
who showed moderate (.300 copies/mL) or major (.5000
copies/mL) plasma viral rebounds at month 6 and/or 12
of follow-up. We also randomly selected 9 women who had
a successful treatment response according to their plasma
values. Part 2 of the study, from August 2008 to April 2010,
was a prospective cohort study in Durban, where all field-
based DBS collected consecutively in infants were used
prospectively for the early diagnosis of pediatric HIV-1
infection and finally compared with HIV serology results
(SD BIOLINE HIV 1/2 3.0, Standard Diagnostics, Inc.
Kyonggi-do, Korea) obtained at 18 months of life.

DBS/DPS Collection
In part 1, DBS were prepared in reference laboratories

using venous blood collected by venipuncture in 5.0 mL
EDTA-anticoagulated tubes. Briefly, 5 spots of whole blood
(50 mL each) were spotted onto filter specimen collection
paper (Whatman no. 903; formely SS903, Schleicher &
Schull, Kenne, NH), dried overnight at room temperature,
placed in individual zip-lock bags containing a silica
desiccant, and stored at 220°C until further testing. The
remaining blood sample was centrifuged, and plasma was used
for preparing DPS (50 mL each). Remaining plasma was
stored at 280°C until further testing.

In part 2, DBS were prepared by health professionals in
2 rural antenatal clinics in South Africa (KwaDabeka and
KwaMsane), from finger or heel prick. Samples were
processed in a similar way as above and transported by road
at ambient temperature within 24 hours to the reference
laboratory in Durban.

HIV-1 Molecular Techniques
All assays were performed at the Africa Centre Virology

Laboratory for specimens from South Africa and at the

TABLE 1. Selected Populations and Samples Tested

Tested

Subjects (n)

Tested Samples Tests/Samples

for ComparisonDBS (n) DPS (n) Timing

Part 1

HIV-1–positive mothers

Untreated 353 353 69* Incl HIV-1 RNA/PL

Treated with HAART† 13 82 (41 3 2‡) — Incl, delivery, M6, M12 HIV-1 RNA/PL

HIV-1–exposed infants†

HIV-1 uninfected 105 105 — W6, M3, M12 HIV-1 RNA/PL

HIV-1 infected 33 106 — D2, D15, W6, M3, M6, M9, M12, M18 HIV-1 RNA/PL

Part 2*

HIV-1–exposed infants

HIV-1 uninfected 153 220 — W6, M3, M5, M9, M12 HIV-1 Ab/PL

HIV-1 infected 11 26 — D2, D15, W6, M3, M5, M9, M12, M18 HIV-1 Ab/PL

Total 668 892 69 — —

Kesho Bora PMTCT trial. Bobo-Dioulasso and Durban (2005–2010).
*Evaluation conducted in Durban only.
†Evaluation conducted in Bobo–Dioulasso only.
‡41 DBS measurements without DNase pretreatment, and 41 DBS measurements with DNase pretreatment.
PL, plasma; Incl, inclusion; D, day; W, week, M, month.
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Virology Laboratory of Centre Muraz for samples from
Burkina Faso. The Nuclisens miniMag extraction method
(BioMérieux, Boxtel, The Netherlands) was used for
DBS/DPS RNA extraction.14 To assess the sensitivity of
DBS HIV-1 RNAVL testing according to the number of spots
used, the pre-extraction procedure differed between laborato-
ries: in Durban, 1 spot of DBS or DPS was eluted in 9.0 mL of
Nuclisens lysis buffer19 compared with two spots in 2.0 mL
of the same buffer in Bobo–Dioulasso.12 Samples were rotated
for 60 minutes and subsequently processed according to the
manufacturer’s instructions. For paired plasma specimens,
RNAwas isolated from 200 mL of plasma using the QIAGEN
procedure (QIAamp Viral RNA Mini Kit, Qiagen, Courta-
boeuf, France).

HIV-1 RNAwas quantified in all extracts using the long-
terminal repeat–based Generic HIV Viral Load assay (Bio-
centric, Bandol, France), with a limit of detection (LOD)
of 300 copies per milliliter for plasma using an input volume
of 200 mL.16,20 For standardization in DBS results, customized
DBS standards were prepared as follows: the liquid standard
with a known HIV-1 RNA concentration (6,200,000
copies/mL) (Optiquant quantification panel HIV RNA N°6
(Acrometrix Inc, CA) included in the kit) was diluted 1:1 with
HIV-seronegative blood, and spotted onto filter papers (each
spot 50 mL). A DBS for the low-positive control (LPC)
included in the kit (quantified at 6200 copies/mL) was
similarly prepared. DBS standard and LPC were then extracted
together with DBS clinical specimens. Extracted DBS
standard was serially diluted (10-fold) to concentrations from
3,100,000 to 310 copies per milliliter. DPS standard and LPC
were spotted onto filter papers and extracted with DPS clinical
specimens. Extracted standard DPS was 10-fold diluted. All
DBS values from clinical specimens were corrected for
hematrocrit as follows: result in copies per milliliter of blood
3 100/100—hematocrit.9 For patients receiving HAART, we
compared DBS results obtained with or without prior DNase
treatment (DNase I, Applied Biosystems/Ambion Inc, Austin,
TX). Treatment with DNase may prevent co-extraction and co-
amplification of proviral HIV-1 DNA, due to the presence of
white blood cells in whole blood, which can interfere on HIV-1
RNA levels. Amplification and quantification were carried out
with the MiniOpticon (BioRad, Marne-La-Coquette, France)
in Durban and ABI PRISM 7000 (Applied BioSystems, Foster
City, CA) in Bobo–Dioulassso.

Statistical Analyses
In each laboratory, the DBS standard serial dilutions

were tested in .10 independent runs to determine the
analytical sensitivity and linearity of the DBS assay.21

Repeatability (intra-assay variance) was assessed by testing
DBS-LPC in 10 replicates in the same run. Reproducibility
(interassay variance) was calculated by testing DBS-LPC in
.10 separate runs. Clinical sensitivity was calculated as the
number of positive results divided by the total number of
plasma HIV-1 RNAVL results$300 copies per milliliter from
infected subjects. Clinical specificity was calculated as the
number of negative results divided by the total number of
negative results from uninfected individuals with plasma VL
measurement,300 copies per milliliter. Spearman correlation

coefficients were calculated to determine the relationship
between HIV-1 RNA concentrations in DBS versus plasma
specimens or in DPS versus plasma samples, and between
CD4+ T-cell counts and DBS HIV-1 RNA levels. The Bland–
Altman method22 was used to assess the agreement between
HIV-1 RNAvalues obtained with DBS versus plasma and with
DPS versus plasma, and to study the impact of duration of
DBS storage on DBS assay accuracy. For monitoring HAART
efficiency, individual DBS results were compared with plasma
results and analyzed according to a threshold of 5000 copies
per milliliter. The WHO currently recommends this value for
conservation of first-line HAART (or a switch to second-line
regimen) in resource-limited settings.23 These data were also
analyzed by using a Bland–Altman representation. If plasma
and DBS samples were undetectable (,300 and ,1550
copies/mL, respectively), the difference (d) was assigned
to zero.

RESULTS

Retrospective Laboratory Study on
DBS Performance

Analytical Sensitivity, Reproducibility, and
Repeatability of the DBS Assays

In both configurations (1 DBS with the MiniOpticon
versus 2 DBS with the ABI PRISM), the assay was shown
to be linear over the entire range of 3,100,000–3100 copies per
milliliter, with detection rates of 100% at 3100 copies per
milliliter (Fig. 1). The fitted slope was marginally greater in
Durban. At 310 copies per milliliter (dotted sections of the
lines), the assays’ sensitivities decreased to 38% with 1 spot
and 45% with 2 spots. To estimate the LOD more precisely,
10 additional measurements at 1 550 and 775 copies per
milliliter were performed (2-fold dilutions of 3100
copies/mL). Using 1 spot yielded detection rates of 70%
and 40%, versus 100% and 70% using 2 spots. Therefore,
LODs were set at 3100 and 1550 copies per milliliter in
Durban and Bobo–Dioulasso, respectively.

In Durban, the DBS-LPC yielded repeatability and
reproducibility mean values of 3.42 (SD: 60.27) and 3.47
(SD: 60.43) log10 copies per milliliter, with coefficients
of variation of 7.9% and 12.3%, respectively. In Bobo–
Dioulasso, they were 3.65 (SD: 60.23) and 3.32 (SD: 60.30)
log10 copies per milliliter, with coefficients of variation of
6.3% and 8.9%.

Clinical Sensitivity of the DBS Assay Compared
With Plasma Specimens

Overall, of 353 positive ($300 copies/mL) maternal
plasma samples obtained at inclusion from 353 pregnant
antiretroviral (ARV)-naive women, 327 paired DBS [327 of
353, 92.6%, 95% confidence interval (95% CI): 89.5 to 95.0]
tested positive (Table 2). The sensitivity decreased significantly
(x2 test, P , 0.001) for HIV-1 RNA levels approximately
equal to or below the assays’ LODs. Contrary to Bobo–
Dioulasso, where the sensitivity was 100% from 3.51 log10
copies per milliliter, there were 7 discordant pairs in Durban
(plasma positive range, from 3.53 to 4.47 log10 copies/mL but
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DBS negative); 4 of which had DBS VL approximating 3100
copies per milliliter.

For 327 concordantly positive results, plasma and
hematocrit-corrected DBS levels were well correlated
(Fig. 2A) (R = 0.7351; P , 0.001). The overall mean
difference (d) in the HIV-1 RNAvalues obtained with DBS and
plasma samples was +0.28 log10 copies/mL (Fig. 2B). When
considering low-level viremia (,4.0 log10 copies/mL),
d reached +0.39 log10 copies per milliliter. As shown in
Figure 3, DBS levels were negatively correlated with absolute
CD4+ T-cell counts (R = 20.3861; P , 0.001).

Data comparing DPS with plasma from 69 consecu-
tively enrolled women in Durban revealed a lower sensitivity
(62 DPS positive, sensitivity = 89.9%) (Table 2) compared
with DBS but with good correlation (Fig. 2C) (R = 0.7683; P
, 0.001). The overall d between DPS and plasma results was
+0.07 log10 copies per milliliter (Fig. 2D). Thus, we decided to
focus our work on field-friendly DBS only.

Impact of DBS Storage Duration on the Reliability of
the DBS Assay Results

The 327 maternal DBS with concordant positive plasma
results were stored for a median duration of 280 days (range:
1–1599 days) at 220°C. No statistically significant difference

was observed in the mean VL difference (d) (DBS minus
plasma results) obtained between short/medium-term (#280
days; n = 163; d = +0.30 log10/mL) and long-term (.280 days;
n = 164; d = +0.26 log10/mL) stored DBS and plasma
specimens (Wilcoxon signed rank test, P = 0.65) (Fig. 4).

Clinical Evaluations

Early Diagnosis of HIV-1 Infection in Children

In Bobo–Dioulasso, 106 samples from 33 HIV-1–
infected children had detectable RNA in plasma and paired
DBS, leading to a DBS sensitivity of 100% (106 of 106, 95%
CI: 97.2 to 100) at 6 weeks (n = 20), 3–6 months (n = 34), and
9–18 months (n = 52) of life. In 105 HIV-1–uninfected
children, all DBS collected at 6 weeks (n = 94), 3–6 months
(n = 4), and 12 months (n = 7) of life were concordantly
negative with plasma, yielding a DBS specificity of 100%
(95% CI: 96.5 to 100).

Kinetics of DBS Measurements Among Patients
Who Received HAART

Nine women (numbered 1–9, Fig. 5) were treated
successfully with HAARTand maintained plasma HIV-1 RNA
levels ,5000 copies/mL during their entire follow-up (except

FIGURE 1. Standard curves of the
DBS assays using dilutions of known
HIV-1 RNA concentrations. The quan-
tification cycles (Cq),21 which are the
number of cycles before the fluores-
cence passes a fixed limit were
plotted against theoretical standard
concentrations. For each dilution, the
median Cq values are represented by
white circles (for Durban) and black
squares (for Bobo–Dioulasso).

TABLE 2. DBS and DPS Clinical Sensitivity Among Untreated Pregnant Women Enrolled in the Kesho Bora Trial in Durban and
Bobo–Dioulasso (2005–2008)

Plasma HIV-1 VL

RNA Class (in log10/mL)

Clinical Sensitivity, n/N (%)

Durban Bobo–Dioulasso Total

DBSDPS* DBS† DBS‡

2.5–3.0 0/2 (0) 5/11 (45.5) 2/4 (50) 7/15 (46.6)

3.01–3.5 3/5 (60.0) 22/28 (78.6) 8/13 (61.6) 30/41 (73.2)

3.51–4.0 12/14 (85.7) 48/51 (94.1) 12/12 (100) 60/63 (95.2)

4.01–4.5 25/26 (96.2) 69/73 (94.5) 25/25 (100) 94/98 (95.9)

4.51–5.0 14/14 (100) 41/41 (100) 30/30 (100) 71/71 (100)

.5.0 8/8 (100) 21/21 (100) 44/44 (100) 65/65 (100)

Total 62/69 (89.9) 206/225 (91.6) 121/128 (94.5) 327/353 (92.6)

*The sensitivity for DPS was calculated using a theoretical LOD equal to 1200 copies/mL.
†The sensitivity for DBS was calculated using the LOD experimentally determined in Durban (ie, 3100 copies/mL).
‡The sensitivity for DBS was calculated using the LOD experimentally obtained in Bobo–Dioulasso (ie, 1550 copies/mL).
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for woman 9 at delivery). In 17 DBS taken during follow-up,
and not pre-treated with DNase, 10 (10 of 17, 59%) HIV-1 VL
values were discordantly .5000 copies per milliliter. After
DNase treatment that prevented HIV-1 proviral DNA co-
amplification, all (17 of 17, 100%) DBS values became
concordant (,5000 copies/mL) with plasma levels.

Four women (numbered 10–13, Fig. 5) failed ARV
treatment according to their plasma HIV-1 RNA results (viral
rebound at month 6 and/or 12 after an initial decrease at
delivery). DBS treated or not with DNase showed similar HIV-
1 VL kinetics as those obtained for plasma specimens.

The mean difference (d) in log10 copies per milliliter
between DBS HIV-1 VL results and plasma values obtained
from the 28 samples taken during follow-up is summarized in
Figure 6. The overall d between crude DBS results and plasma
values was almost +1.0 log10 copies per milliliter (Fig. 6A). This

difference was particularly marked for samples showing
undetectable (,300 copies/mL) plasma HIV-1 RNA values.
When considering DBS pre-treated by DNase, the overall dwith
plasma concentrations was nil, strongly suggesting that the DBS
enzymatic treatment allowed HIV-1 RNA levels not to be
affected by coquantification of HIV-1 proviral DNA (Fig. 6B).

Prospective Field Study on DBS Feasibility
In Durban, from August 2008 to April 2010, 220 DBS

samples were negative for HIV-1 RNA in 153 infants at 6
weeks of life or thereafter. All of them were HIV antibody
negative at months 18 of life. By testing DBS, 11 children
were diagnosed as HIV-1 infected, including 6 cases of
postnatal transmission by breastfeeding. All of these were
confirmed positive by HIV serology at 18 months of life.

FIGURE 2. Correlation and difference (Bland–Altman representation) between plasma HIV-1 RNA concentrations and HIV-1 RNA
measurements obtained by either DBS (white circles) or DPS (white squares). Kesho Bora trial, 2005–2008. For the correlations (A,
C), the fitted regressions are represented by solid lines. For the Bland–Altman representations (B, D), the mean differences and the
95% CIs are represented by solid lines.
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DISCUSSION
Our open real-time systems using DBS showed excellent

performance characteristics for HIV-1 RNAVL measurements
in South Africa and Burkina Faso. DBS HIV-1 RNA levels
displayed good concordance with plasma values and were
inversely correlated with CD4+ T-cell counts. Long-term
stored DBS (as long as 4 years) at 220°C was accurate as
a repository. Under basic field conditions, DBS were useful for
clinical applications such as early infant diagnosis. Monitoring
the efficiency of HAART was achieved after a prior DNase
treatment step. The cost per test was ;US $12 which made
this strategy cost effective.

This large-scale study was carried out in 2 African
laboratories, reflecting real-life conditions of HIV-1 RNA
monitoring and the relevance of its implementation to similar
settings, despite difficulties in human resources, reagents
supply, and laboratory infrastructure/maintenance. As

previously demonstrated,8,24,25 the use of robust and highly
flexible real-time PCR instruments was a significant advan-
tage, compared with the restrictions of expensive closed
platforms. For instance, the long-life light-emitting diode–
based MiniOpticon, used in Durban, was affordable
(;US $20,000) and required no maintenance.

Compared with liquid plasma-based methods, DBS
nevertheless have some disadvantages. First, the extraction of
nucleic acids from DBS was manual and required extra hands
on time, including their excision with scissors and a potential
DNase pretreatment step. Future operational research studies
should be directed toward automation of both DBS excision
(with automated punchers, instead of scissors) and nucleic
acid extraction by using automated extractors (such as the
EasyMag from BioMérieux), to increase throughput.

Second, as found by others,10–13,15 our study revealed
a reduced DBS sensitivity in comparison with plasma.
However, whatever the number of DBS used (1 or 2), the
sensitivities of our assays fit with the national guidelines
in South Africa and Burkina Faso which recommend, in
accordance with WHO guidelines,23 an ARV therapy switch
above a level.5000 copies per milliliter. Thus, in our clinical
context where VL measurements are required in conjunction
with targeted adherence monitoring for conserving first-line
ARV drugs regimen,26 both methods are acceptable and show
distinct advantages: given its better sensitivity (LOD ;1000
copies/mL), the use of 2 DBS represents the standardized
extraction protocol, currently recommended by BioMérieux.
Tubes containing 2.0 mL of lysis buffer are ready made and
seem more convenient than handling 9.0 mL. Using only 1
DBS, as historically performed at the Africa Center Virology
Laboratory in Durban,19,27 allows usage of additional spot for
other purposes (such as HIV serology, ultrasensitive p24
antigen, HIV DNA PCR or resistance genotyping).

Seven of 186 (3.7%) DBS false negative results were
obtained in clinical specimens from Durban, despite corre-
sponding plasma results higher than the LOD. These
discrepancies could be explained by impaired efficiency

FIGURE 3. Correlation between CD4+ T-cell counts and DBS
HIV-1 RNA levels. Kesho Bora trial, 2005–2008 (n = 327). The
fitted regression between CD4 and DBS HIV-1 RNA levels is
indicated by a solid line.

FIGURE 4. Impact of duration of DBS
storage on HIV-1 RNA levels. Kesho
Bora trial, 2005–2008 (n = 327).

q 2010 Lippincott Williams & Wilkins www.jaids.com | 295

J Acquir Immune Defic Syndr � Volume 55, Number 3, November 1, 2010 DBS HIV-1 RNA VL Monitoring in Africa

90



of nucleic acid extraction (in our experience, some silica-based
reagents were substandard) and nucleic acid degradation
during DBS preparation and/or storage.28 Given that the
Generic HIV Viral Load assay amplifies a small HIV-1 long-
terminal repeat fragment (123 base pairs), it is less likely to be
affected by degradation than techniques amplifying longer ones.

Third, because the Nuclisens extraction method is not
RNA specific but isolates cell-associated DNA as well,

archived proviral HIV-1 DNA may interfere with results
generated by DBS, yielding false-positive results as previously
documented.7 In our study, an overall +0.3 log10 copies per
milliliter difference was obtained between DBS and plasma
levels from untreated subjects. The impact of DNA was more
significant in low-viremia specimens where positive DBS
values could be due to the presence of detectable HIV-DNA.
The presence of HIV-1 DNA in crude DBS interfered with

FIGURE 5. Individual kinetics of HIV-1 VL measurements obtained by using plasma specimens, DBS without DNase treatment, and
DBS with DNase treatment among 13 patients from Bobo–Dioulasso receiving HAART. For each patient, the threshold of 5000 copies
per millimiter is indicated by a dotted line. The median time between inclusion and delivery was 2 months. Patients 1–9: plasma
virological success; Patients 10–13: plasma virological failure (moderate for patients 10 and 11 and major for patients 12 and 13).

FIGURE 6.Difference between the viral loads measured on DBS and plasma specimens among 28 samples taken during the follow-
up of 13 ARV-treated patients from Bobo–Dioulasso. A, DBS not pretreated by DNase. B, DBS pretreated by DNase. Undetectable
(,300 copies/mL) plasma specimens (n = 17) are represented by gray circles. Detectable (.300 copies/mL) plasma samples
(n = 11) are depicted by distinct colored symbols.
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monitoring of successfully ARV-treated patients (with un-
detectable plasma results), whereas this interference was not
significant in individuals with plasma virological failure. The
specificity of our assay was very low (;40% at a threshold of
5000 copies/mL) when using crude DBS in ARV-treated
patients showing plasma virological success. In addition, the
difference between crude DBS and plasma results was high
(oscillating from +0.87 to +1.76 log10 copies/mL). Thus, in our
survey, performing a prior DNase treatment step on DBS was
a prerequisite for accurate monitoring of HAART efficiency.
After enzymatic treatment, DBS specificity reached 100%, and
the difference between DBS and plasma values was virtually
nil. Other solutions may be to use DPS, to perform extraction
with the Abbott method which is more RNA specific than the
BioMérieux technique,13 or to resort to the NASBA
technology which is designed specifically for RNA, as
reported recently by Johannessen et al.11

We have shown in 2 African countries that DBS HIV-1
RNA measurements, using open real systems and long-term
stored spots, are reliable and feasible. These data should
prompt other reference laboratories from similar settings to
revisit and expand DBS HIV-1 RNA monitoring strategies.
They should also help to strengthen the commitment of health
care providers, physicians, and all public health stakeholders
who are not sufficiently aware of this affordable, simple, and
robust sampling method, ideal for HIV-1 infection monitoring
in remote areas from middle-income (such as South Africa)
and low- income (such as Burkina Faso) countries. Consid-
ering the difference between DBS and DPS/plasma values,
clinicians should be informed that it is recommended not to
switch between these 2 formats of testing during monitoring of
efficiency of HAART. It is our view that plasma specimens
should remain the gold standard for adults living in African
cities where tertiary reference laboratories and transportation
facilities are available. However, in remote rural areas, besides
rapid VL testing strategies (such as the BioHelix Express Strip
(BESt) and lab-in-a-tube (Liat) technologies)29–30 which need
to be further evaluated, DBS can pave the way for expanded
access to HIV-1 VL testing for millions of ARV-treated adults
and babies born to seropositive mothers. Such efforts are
imperative to meet the high demand encountered presently in
sub-Saharan African countries endemic for HIV-1.
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Résumé 

L'allaitement maternel est la modalité idéale d’alimentation du nourrisson. Les propriétés anti-infectieuses du 

lait maternel sont bien documentées. L'allaitement maternel protège les nourrissons contre les infections 

intestinales et respiratoires. L'allaitement maternel exclusif est recommandé pendant les 6 premiers mois, 

principalement parce que le lait maternel satisfait de façon optimale à tous les besoins nutritionnels et 

hydriques du nourrisson. Les nouvelles infections périnatales par le VIH dans les pays riches ont presque été 

éliminées grâce à la combinaison du dépistage prénatal du VIH, à la prophylaxie antirétrovirale de la mère et de 

l'enfant, à la césarienne élective et l'évitement de l'allaitement maternel. Bien que les interventions efficaces 

soient disponibles pour réduire la transmission in utero et intrapartum dans les pays à ressources limitées, la 

transmission postnatale du VIH par l'allaitement demeure un enjeu de santé publique. L’acquisition du VIH par 

l’allaitement maternel est responsable d’environ 40% des nouvelles infections en Afrique subsaharienne. Les 

études effectuées au cours de cette thèse faisaient partie d'un programme d'intervention qui a porté sur 

l'utilisation des différentes formes d'alimentation du nourrisson dans un environnement rural, à 

Umkhanyakude, dans le nord du KwaZulu-Natal, en Afrique du Sud. Les femmes ont été incluses dans cette 

étude avant le début de l'accès universel aux antirétroviraux en Afrique du Sud (2005). Le travail de doctorat 

visait à acquérir une meilleure compréhension de la transmission postnatale du VIH-1 par l'allaitement 

maternel, indispensable pour atteindre l’objectif de l'Organisation mondiale de la Santé de réduire toutes les 

formes de transmission du VIH de la mère à l'enfant (TME) à moins de 5% d'ici la fin de 2015. Dans la première 

étude, nous apportons la preuve que l'exposition cumulative à l’ARN VIH-1 par le lait maternel est un facteur 

de risque associé à la transmission postnatale de la mère à l'enfant, indépendamment du taux de CD4 

maternels et de la charge virale plasmatique du VIH-1. Ces données fournissent une meilleure évaluation du 

risque de transmission mère-enfant du VIH-1 et de la charge virale dans le compartiment mammaire. Dans la 

seconde étude, nous confirmons que la charge virale associée aux cellules dans le lait maternel est un meilleur 

facteur prédictif du risque de TME postnatale précoce que la charge virale libre. En revanche, la charge virale 

libre est un facteur prédictif de transmission postnatale tardive (au-delà de 6 mois). Dans la troisième étude, 

nous avons étudié l'impact sur la TME du VIH-1 du cytomégalovirus (CMV) et du virus d'Epstein-Barr (EBV) dans 

le lait maternel des mères infectées par le VIH. Des niveaux élevés de CMV sont excrétés dans le lait maternel, 

et un niveau significatif de l'EBV est fréquemment observé. Les mères dont le lait maternel contient des 

niveaux élevés de CMV étaient jusqu'à deux fois et demi plus susceptibles de transmettre le VIH-1 à leur enfant 

par l'allaitement maternel comparativement aux femmes ayant un faible niveau de réplication de CMV. Nous 

apportons donc la preuve d'une association, indépendante de la charge virale du VIH-1, entre l’excrétion du 

CMV dans le lait maternel et la transmission postnatal du VIH-1. Chez les femmes allaitantes infectées par le 

VIH-1 et sous traitement antirétroviral, le risque de transmission résiduelle par l’allaitement est expliqué en 

partie par la persistance du virus associé aux cellules dans le lait maternel. D'autres études sont nécessaires 

pour approfondir les connaissances sur le mécanisme du VIH-1 transmission pendant l'allaitement, et les 

facteurs associés à l'excrétion compartimentée du VIH-1 dans le lait maternel, et pour aider à développer des 

médicaments plus efficaces pour une utilisation dans les populations à ressources limitées où l'évitement de 

l'allaitement maternel est souvent impossible. 

 


