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Résumé

Dans cette thése, nous étudions les algorithmes d’alignement d’interférence dans les
réseaux hétérogénes basés sur la sélection des flux. Tout d’abord, nous considérons dif-
férents scénarios de déploiement des pico-cellules dans un contexte de connaissance parfaite
des canaux de transmission au niveau des émetteurs. Deux algorithmes sont proposés re-
spectivement pour les réseaux totalement et partiellement connectés. Afin d’assurer une
équité entre les liens, les algorithmes garantissent qu’au moins un flux de chaque lien émet-
teur soit sélectionné. La séquence des flux est choisie parmi un ensemble qui contient
les séquences les plus souvent sélectionnées en effectuant une recherche exhaustive. Ces
algorithmes sont significativement moins complexes que la recherche exhaustive tout en
ayant une performance proche de celle-ci. Apreés la sélection d’'un flux, les interférences
entre ce flux et les flux qui n’ont pas encore été sélectionnées sont alignées par projections
orthogonales. Dans une deuxiéme partie de la thése, I'impact de la connaissance partielle
des canaux de transmission sur les algorithmes proposés est analysé. Il est montré que
les interférences entre flux causent alors une forte dégradation des performances en rai-
son des erreurs de quantification. Pour réduire cette dégradation, un nouvel algorithme
est développé pour ce contexte. Finalement, des schémas d’allocation adaptative des bits
pour les voies de retour sont proposés afin d’augmenter les performances des algorithmes
précédents. Les performances de ces schémas et de ces algorithmes sont évaluées en consid-
érant différents scénarios. Nous avons montré que les algorithmes proposés pour le cas des

transmissions avec voie de retour sont significativement plus robustes et plus performants.

Mots clés : les réseaux de communication hétérogenes; alignement d’interférences;

sélection de flux, rétroaction limitée






Abstract

In this thesis, we study the stream selection based interference alignment (IA) algo-
rithms, which can provide large multiplexing gain, to deal with the interference in the
heterogeneous networks. Firstly, different deployment scenarios for the pico cells are inves-
tigated assuming perfect channel state information (CSI) at the transmitters. Two different
stream selection TA algorithms are proposed for fully and partially connected interference
networks and selecting at least one stream is guaranteed for each user. A stream sequence
is selected among a predetermined set of sequences that mostly contribute to the sum-rate
while performing an exhaustive search. In the proposed algorithms, the complexity of the
exhaustive search is significantly decreased while keeping the performance relatively close.
After selecting a stream, the interference generated between the selected and the unse-
lected streams is aligned by orthogonal projections. Then, the influence of the imperfect
CSI on the proposed algorithms is analyzed and it is observed that the intra-stream inter-
ference causes a significant degradation in the performance due to the quantization error.
Therefore, we propose an algorithm for the limited feedback scheme. Finally, adaptive
bit allocation schemes are presented to maximize the overall capacity for all the proposed
algorithms. The performance evaluations are carried out considering different scenarios
with different number and placements of pico cells. It is shown that the proposed algo-
rithm for the limited feedback is more robust to channel imperfections compared to the
existing IA algorithms. The presented bit allocation schemes improve the performances of

the algorithms compared to the equal bit allocation.

Keywords :  heterogeneous networks, interference alignment, stream selection, feedback

schemes
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Chapter 1

Résumé en francais

1.1 Introduction

Les réseaux hétérogénes sont considérés comme une technique prometteuse pour les
réseaux cellulaires puisqu’ils permettent le déploiement d’un grand nombre de petites cel-
lules avec différents niveaux d’émission au sein de la couverture d’une macro cellule clas-
sique. Bien que ce réseau cellulaire superposé apporte une extension de couverture et une
augmentation de la capacité, la topologie du réseau pose le probléme de la gestion des

interférences.

L’alignement d’interférence (IA) est I'une des techniques permettant de réduire effi-
cacement les interférences dans des réseaux cellulaires (Jafar| [2011]). Le concept clé est
d’aligner les signaux d’interférences dans un sous-espace dimensionnel au niveau de chaque
récepteur en concevant des vecteurs de pré codage et de post codage de sorte que le signal

utile puisse étre obtenu dans les sous-espaces sans interférences.

Des solutions au probléme d’IA en boucle fermée sont difficiles & obtenir pour des
réseaux a grande échelle, c’est pourquoi des approches IA distribuée et itératives ont été
intensivement étudiées dans la littérature (Gomadam et al.[[2008a]). L’inconvénient des ap-
proches itératives est qu’elles nécessitent généralement un trop grand nombre d’itérations.
Un autre souci de tels algorithmes itératifs est que la convergence vers une solution optimale

n’a pas été démontrée.

Toutes les études précédemment citées reposent sur une transmission avec un nombre

25



1.2. MODELE DU SYSTEME POUR LE CAS DU CSI PARFAIT

de flux fixe qui dépend des conditions de faisabilité. Les algorithmes de sélection de flux
sont capables de choisir un nombre de flux différent pour chaque utilisateur (Amara et al.

[2011], |Sun and Jorswieck| [2016]).

Puisque les approches d’TA fondées sur la sélection de flux ne sont pas itératives et per-
mettent de sélectionner des flux pour chaque utilisateur de maniére dynamique, ce sont des
techniques prometteuses. C’est pourquoi, dans cette thése, nous étudions les algorithmes
d’TA fondés sur la sélection de flux pour les réseaux hétérogénes. Les algorithmes de sélec-
tion proposés reposent sur la construction d’ensembles de séquences de flux a partir des

caractéristiques du réseau hétérogéne.

L’inconvénient le plus sévére de I’approche TA est la nécessité de connaitre les informa-
tions d’état de canal (CSI) au niveau des transmetteurs. C’est pourquoi nous proposons
dans cette thése des algorithmes d’TA fondés sur la sélection de flux pour des schémas de
retour limités dans des réseaux hétérogénes. Des schémas d’allocation de bit avec retour
adaptatif sont présentés afin d’améliorer la performance des algorithmes proposés avec un

CSI imparfait.

1.2 Modéle du systéme pour le cas du CSI parfait

Dans cette section, un canal d’interférence K paires est considéré avec une antenne
d’émission Nt et une antenne de réception Ng, . Dans cette section, on suppose que les

CSI parfait est disponible au niveau de tous les émetteurs et de tous les récepteurs.

Le signal de sortie au niveau de 'utilisateur k est défini comme suit.

K

i = axkHpx + Y g Hggx; +ny, (1.1)
=1,
ik

ou ay;Hy; est la matrice de canal entre I'émetteur j et le récepteur %, de dimension

Ng, x Nr,. Chaque élément de Hg; contient I’évanouissement qui est modélisé comme

une variable aléatoire gaussienne indépendante et identiquement distribuée avec CN (0, 1).
ay;j décrit les pertes en espace libre et le shadowing. Pour chaque récepteur k, ny est un
vecteur Ng, x 1. Chaque élément de nj représente un bruit blanc gaussien additif avec
kéme

une moyenne nulle et une variance de 2. x}, est le signal transmis depuis le émetteur
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1.2. MODELE DU SYSTEME POUR LE CAS DU CSI PARFAIT

avec une dimension N7, x 1, calculé comme suit.

X = \/PkaSk (1.2)

ol P est la puissance transmise par la station de base k. T}, est la matrice de pré codage
unitaire de I’émetteur £k, de dimension N7, X g, I’émetteur k£ pouvant émettre g flux
indépendants avec g < dj, ol d, = min(Ng,, N7,). sk est le vecteur symbole de dimension
qr X 1 et noté s = [S1...Skq. ). OUE [Hsk\ﬂ = 1 et on suppose que la puissance transmise
est équitablement répartie entre les symboles, E [|skn|2] =1/qx, n =1,...,qr. De plus, le

nombre total maximum de flux dans le réseau est calculé comme suit r = Zle dp.

Les signaux utiles s’obtiennent en multipliant y, par le vecteur de post codage, Dy
de dimension Ng, X g;. Les symboles de données décodés ainsi obtenus peuvent s’écrire
comme ¥, = Dy,

Le débit de données du i®™° flux pour le k°™¢ utilisateur peut étre exprimé comme suit.

Rii = logs (1 + i) (1.3)

otl Y est le SINR du i®™€ flux pour le k™€ utilisateur, calculé comme
(Pk/Qk:)aikdiHHkkﬁztiHHﬁdi
di'By,d;
Ve=1,...K, Yi=1,..,qx

Vki = (1.4)

ol tz est le i®™¢ vecteur colonne de la matrice de pré codage N, de dimension N7, x 1
et d}‘€ est le 1™ vecteur colonne de la matrice de post codage D}, de dimension N Ry X 1.
De plus, By; est définie comme la matrice de covariance de l'interférence plus bruit pour

le ¢°"¢ flux du k*™€ récepteur est donnée par

dk
P,
Bi=)Y q—kakkaktk ) +ZZ akJH DR + 0%y, (1.5)
=1, j=1 ¢g=1
14 J#k

Vk=1,..K, Yi=1, .. q

Par conséquent, le sum rate (SR) est calculé comme suit.

K qx

SR = Z Zlog2(1 + Vki) (1.6)

k=1 1i=1
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1.3 Algorithmes d’TA itératifs

L’étude de Gomadam et al.|[2008b| a présenté la premiére solution distribuée utilisant
la réciprocité du canal pour identifier des pré codeurs et des post codeurs d’TA MIMO. De
nombreux algorithmes d’IA dans la littérature reposent sur des approches d’IA itératives.
Cependant l'inconvénient des approches itératives est qu’elles nécessitent généralement de
nombreuses itérations dans des régimes a fort SNR. De plus, hypothése que le canal de
propagation n’évolue pas durant I’échange de données entre les émetteurs et les récepteurs

n’est pas réaliste.

L’algorithme de fuite d’interférence minimale réduit 'interférence de maniére itérative
en concevant les vecteurs de post codage au niveau de chaque récepteur de chaque réseau.
Bien que cet algorithme exploite la réciprocité du canal pour réaliser I'opération, il peut

également étre exécuté dans un noeud centralisé en utilisant une topologie centralisée.

Au lieu de minimiser la puissance d’interférence a chaque itération, le SINR est itéra-
tivement maximisé dans un algorithme max-SINR. A chaque itération, l’algorithme met &
jour les matrices de post codage du réseau considéré, puis le sens de la communication est

inversé. L’algorithme continue jusqu’a convergence.

1.4 Algorithmes de sélection du flux

Dans les algorithmes d’TA basés sur la sélection du flux, chaque flux est sélectionné
dans le noyau des flux précédemment sélectionnés & chaque itération ou les flux sont cal-
culés a partir de la décomposition en valeurs singuliéres (SVD) de I’ensemble des canaux
(g Hir) = UkSkaH. De plus le [°™€ vecteur colonne de V}, et Uy, est noté ka et uﬁg re-
spectivement. L’interférence est alignée aprés chaque étape de sélection de flux en utilisant

des projections orthogonales.

Il v a deux sortes d’interférences entre les flux. La premiére est l'interférence du flux
sélectionné vers les autres flux et la seconde est l'interférence des autres flux vers le flux
sélectionné. C’est pourquoi, deux types de canaux virtuels sont définis : les Canaux Virtuels

de Réception (VRC) et les Canaux Virtuels de Transmission (VIC) (Amara et al.|[2012b]).
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1.4. ALGORITHMES DE SELECTION DU FLUX

Ils peuvent étre exprimés comme suit.

e Canal Virtuel de Réception: le VRC est le canal entre 'émetteur k et le récepteur

k* comprenant le vecteur de post codage du flux sélectionné [*, ug*.

VRCL., = (ul.)THp, (1.7)

e Canal Virtuel de Transmission: le VT'C est le canal entre I’émetteur £* et le récepteur

k comprenant le vecteur de pré codage du flux sélectionné [*, Vé;.

VTCL,. = Hyp-vhe (1.8)

Les matrices de pré codage et de post codage sont construites & partir des vecteurs de
pré codage et de post codage correspondant aux flux sélectionnés et elles sont exprimées

comme Ty = [vj.,vi., ..., vit] and Dy« = [uj., ui., ..., ujt], respectivement.

Les vecteurs des matrices projetées Hﬁk, initialement Hﬁk = Hyy, Vk # k*, sont dans
le noyau des VRC et VTC de tous les flux précédemment sélectionnés. La procédure
de projection est implémentée en deux étapes. Dans la premiére étape, 'interférence en
provenance des flux restants vers le flux sélectionné est réduite en projetant les matrices

de canal Hy;, générées orthogonalement aux VRC, (uk.)?Hy« et calculée comme

L Lpl
Hie = Hie Pl ) (1.9)
ol Ptlf*HHk*k) est la matrice de projection orthogonale associée & la matrice (uf*)HH’f*k

et peut s’exprimer comme

l** HH ) l** HH .
P(Jzul* ((uk ) k /ﬂ) ((uk ) k k‘) (110)
k*

VHHp.,) = INn, () T H ) [

La seconde étape de la procédure de projection est de réduire l'interférence générée
par les flux restants et consiste & projeter les matrices de canal Hﬁk générées sur les
VTC,Hkk*Vg*. L’objectif principal est de réduire interférence tout en identifiant la
meilleure séquence de flux. Le schéma de sélection de flux qui maximise le sum rate
global donné dans I’équation Eq. peut étre formulé comme suit.

{(TszZ)}ke[l,...,K] = argmax (SR) (1.11)
Ty, Dy
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1.4. ALGORITHMES DE SELECTION DU FLUX

La procédure d’alignement d’interférence pour un flux sélectionné I* de 'utilisateur k*

est résumée dans Alg.

Alg. 1 Algorithme d’Alignement d’Interférences

Entrée: ALk, HkLk, Hkk* and Hk*k Vk, V;;, llfy:*, Tk*, Dk*
Projeter orthogonalement & VRC, (u}. )7 Hj.
Hj, = Hi-_kPi_?*HHk*k for k=1,..,K ot k # k*
Projeter orthogonalement & VTC, Hkkvi:
Hj; =Py, - Hy pour k=1,.., K ou k # k*
Calculer la SVD ]aes matrices projetées
(akkHik) = UkSka pour k=1,...,. K
Mettre & jour
Ty = [Tk* Vg;]
Dk’* = [Dk* 115:*]
Sortie: Hyy,, Vi, Uy et Sy, Vk; Tpe, Dy

1.4.1 Recherche exhaustive d’une sélection de flux successifs

L’objectif des algorithmes de sélection de flux est de sélectionner des flux successivement
tout en maximisant le sum rate. La meilleure séquence de flux parmi toutes les séquences
de flux possibles peut étre établie par une recherche exhaustive (Amara et al.| [2012b]). Les
flux, les séquences de flux et les ensembles qui s’y rapportent sont définis comme suit.

Chaque flux ¢ peut étre exprimé¢ comme m; = (k;,l;) ou ki € {1,....,K}, [; €
{1,...,qx} et i € {1,...,r}. L’ensemble de toutes les séquences de flux possibles peut

étre défini comme suit,
e=0,U...UP;U...UD, (1.12)

ot ®; est I'ensemble de toutes les permutations de longueur j € {1,...,r} donné par

(I)j :{7'&’: (7T17T2...7Tj)|

(1.13)
Vi,il € {1,..., ), m g ifi # i’}

Alg. 2| détermine les matrices de pré codage et de post codage pour une séquence de

flux m donnée. Il calcule également le sum rate obtenu par la sélection de cette séquence.

En utilisant Alg.[2] Alg. [3]réalise une recherche exhaustive qui teste toutes les séquences

de flux pertinentes et sélectionne la séquence avec le plus fort sum rate.
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1.4. ALGORITHMES DE SELECTION DU FLUX

Alg. 2 Algorithme de sélection de flux

Entrée: ayj, Hy; Vk,j, m
Initialisation des variables
T=0;D=0;i=1;q.=0and H} = Hy pour k=1, ..., K
Calculer de la SVD de tous les canaux
(OzkkH]JC'k) = UkSkaH pour k= 1, ...,K
while i < |7| do
Choisir le 7™ flux dans =
(k*,01*) =m
Mettre & jour
Qe = qr~ + 1
Appliquer Alg.
Incrémenter ¢
1=1+1
end while
Calculer le sum-rate SR, donné dans Eq.
Initialisation des variables pour le flux sélectionne
(Tk)ﬂ_ = Tk, (Dk)ﬂ_ = Dk pour k= 1, ,K
Sortie: (Tk)w, (Dk)w Vk

Alg. 3 Recherche exhaustive

Entrée: agj, Hy; Vk,j
Initialiser 'ensemble &
for chaque séquence de flux 7 € ® do
Appliquer Alg.
end for
Sélectionner la meilleur sséquence de flux d’aprés Eq.

m* = argmax SR,
well
T, = (Tg)r, D = (Dg)a= pour k=1,..., K

Sortie: T, Dy Vk
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1.5. SELECTION DE FLUX BASEE SUR I’ALIGNEMENT D’INTERFERENCES
POUR LES RESEAUX HETEROGENES

L’inconvénient majeur de la recherche exhaustive est sa complexité, directement liée au

nombre de flux.

1.4.2 Sélection successive de flux (SNSSS)

Dans cet algorithme, une seule séquence de flux est construite en sélectionnant suc-
cessivement les flux avec les valeurs singuliéres les plus élevées (c.a.d. les flux les plus
forts) (Amara et al.|[2012b]). Alors que les flux sont sélectionnés, leurs contributions au
sum rate sont évaluées, que la capacité du systéme augmente ou non. Puisque la puis-
sance d’émission est équitablement répartie entre tous les flux, ajouter un flux pour un
utilisateur déja servi n’augmente pas nécessairement le sum rate total. La valeur singuliére
maximale augmentant le sum rate est choisie 4 chaque itération dans ’ensemble €2, o1 €2 est
I’ensemble ol sont stockées les valeurs propres des flux disponibles. En outre, la séquence

de flux construite a la fin de 'algorithme est notée W.

1.4.3 Sélection successive améliorée de flux (ESNSSS)

Dans I'algorithme SNSSS, seul un chemin spécifique est construit en sélectionnant la
plus grande valeur singuliére augmentant le sum rate. Cependant cette stratégie peut
conduire & une solution sous-optimale. C’est pourquoi construire des initialisations autres
que la valeur de flux maximale peut conduire a de plus grandes valeurs de sum rate. Afin de
réduire la complexité de la recherche exhaustive et de surmonter le caractére sous-optimal
de l'algorithme SNSSS, "algorithme ESNSSS introduit des points d’initialisation différents
dans le processus de recherche de flux. Chaque séquence de flux est initialisée avec tous
les flux possibles dont les valeurs singuliéres sont initialement calculées et stockées dans

I’ensemble Q.

1.5 Sélection de flux basée sur l'alignement d’interférences
pour les réseaux hétérogenes

Le modéle de systéme utilisé pour les réseaux hétérogénes est le méme que le modéle de
systéme décrit dans les sections précédentes. Par exemple, le signal recu par 'utilisateur

k, le SINR du ™€ flux du k®™® récepteur et le sum rate total (SR) peuvent étre calculés
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en utilisation Eq. (1.2), Eq. (1.4) et Eq. (1.6), respectivement.

L’objectif principal des algorithmes d’IA basés sur la sélection de flux est donné par
Eq. . Du fait de 'hétérogénéité, une contrainte supplémentaire permettant d’allouer
au moins un flux & chaque utilisateur est ajoutée dans ’objectif principal. Le schéma de
sélection de flux qui maximise le sum rate total du réseau tout en garantissant la sélection
d’au moins un flux pour chaque utilisateur peut étre comme suit.

{(Ty: Di) e, i = argmax (SR) (1.14a)

T,Dg

st. q>1, Vk (1.14b)

1.6 Réseaux d’interférences partiellement connectés

Dans cette section, nous proposons ’algorithme ISNSSS pour les réseaux d’interférences

partiellement connectés.
Algorithme (ISNSSS) de sélection successive perfectionnée de flux

L’algorithme ISNSSS construit d’abord des séquences de flux en commencant par un
pico-flux, puisque le SNR moyen des pico-utilisateurs est plus grand que celui des macro-
utilisateurs. Aprés avoir sélectionné un pico-flux, les flux avec la contribution la plus
forte au sum rate sont sélectionnés. A chaque étape de la sélection, nous effectuons des
projections orthogonales successives sur le noyau du flux sélectionné. La clé de cette
approche réside dans la détermination des séquences de flux qui produisent le plus haut

sum rate parmi toutes les combinaisons de flux initialisées par les pico-flux.

L’ensemble d’initialisation qui inclut uniquement les flux des pico-utilisateurs est =.
Une fois le premier flux sélectionné parmi les pico-flux, le flux avec la valeur singuliére
maximale augmentant le sum rate est choisi dans I’ensemble 2, qui contient tous les flux
disponibles. Si un tel flux n’existe pas, le flux qui entraine la réduction minimale du sum
rate est choisi pour un utilisateur sans flux associé. La construction de la séquence de flux
se poursuit jusqu’a ce qu’aucun flux ne puisse étre sélectionné. La séquence de flux obtenue

aprés convergence de 'algorithme est notée W. L’ensemble de la procédure est décrit dans

I'Alg.

33



1.6. RESEAUX D’INTERFERENCES PARTIELLEMENT CONNECTES

Alg. 4 Algorithme de sélection successive perfectionnée de flux(ISNSSS)

Entrée: oy, Hy; Yk, j
Construction de 'ensemble d’initialisation =
E={(k,))|keTandl=1,..,d}
for chaque flux (k*,1*) € = do
1. Initialisation des variables
U=0;T=0;D=0; g =0et Hyj, = Hy, for k = 1,..., K; finish = FALSE
2. Calculer la SVD de tous les canaux
(akkak) = UkSkVE pour k= 1, ...,K
3. Initialisation l’ensemble a sélectionner (k*,1*)
U =TuU(k*1")
Qer = Qi+ + 1
4. Appliquer Alg.
6. Coustruire
Q={(Sp)(l,)|k=1,...Kand I =1,...,d}
8. Continuer la sélection de flux (cette étape est décrite a la page suivante)
9. Calculer (Tg)w, (Dg)w et SRy pour la séquence de flux ¥
end for
Sélectionner la meilleure séquence de flux d’aprés Eq.

U* = argmax SRy
v
T}, = (Tk)w+, D = (Dg)g- pour k =1,.... K

Sortie: T}, D Vk
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8. Continuer la sélection de flux
while finish = FALSE do
8.1. Calculer le SRy
8.2. Sélectionner un flux
Construire ’ensemble des flux qui augmente le sum-rate
Q = {Sk(l,l) S Q| SR\IJU(k:,l) > SR\I;}
if ' # () then
(K1) = argmax Sk(l,1)
(k,l) such that Sy (1,1)e
else
Construire ’ensemble des flux qui réduit le moins le sum-rate parmi les utilisateurs

sans flux associé

. [Da if dk 7& 0
0, =
k {Sk(l’,l’)] !' = argmin {SRy — SR\I/U(k,l)}} Jifqe =0
l
fork=1,.. K

Q' =0/ U... Uy

if Q" # () then
(K1) = argmin {SRy — SRyu k) }
(k,l) such that Sk (1,1)eQ”
else
finish = TRUE
end if
end if

8.3. Continuer la sélection de flux
if finish = FALSE then
8.3.1. Mettre a jour
U=VU 1), g =aq+1
8.3.2. Appliquer Alg.
8.3.4. Reconstruire
Q={(Sk)(l,)|k=1,... K and I =1, ...,d et (k,l) ¢ ¥}
end if
end while
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1.7 Réseaux d’interférences entiérement connectés

Dans cette section, nous proposons un algorithme pour des réseaux d’interférences en-
tierement connectés ou des pico-cellules sont déployées a proximité les unes des autres.
L’algorithme proposé pour les réseaux d’interférences entiérement connectés est développé
en analysant les données collectées lors des recherches exhaustives. La construction des
séquences de flux basée sur la structure réguliére est exprimée une fois la recherche exhaus-

tive expliquée.
1.7.1 Recherche exhaustive pour les réseaux hétérogénes

Bien que la recherche exhaustive soit expliquée dans les sections précédentes, il y a
une contrainte supplémentaire consistant & sélectionner au moins un flux pour chaque
utilisateur. Puisque I'ensemble ®; défini dans Eq. inclut toutes les séquences de flux
possibles, un ensemble supplémentaire est défini comme ’ensemble II dans lequel toutes les
séquences de flux, incluant au moins un flux pour chaque couple (station de base-utilisateur)

sont stockées. L’ensemble II peut se définir comme suit.

H:{W:(Wlﬂ'g...ﬂj)‘WE‘I}j;jZK;
(1.15)
Vk,3m € {1,...,j} such that ky, = k}

1.7.2 Algorithme (ASNSSS) de sélection successive avancée de flux

Cet algorithme est développé en analysant les données collectées par les recherches ex-
haustives. Il réalise la sélection d’une séquence de flux parmi un ensemble prédéterminé
de séquences afin de réduire la complexité tout en respectant Eq. . Cet ensemble
prédéterminé est composé de séquences ayant la plus forte probabilité d’occurrence lors
de la recherche exhaustive. Les séquences dans cet ensemble prédéterminé ont une struc-
ture réguliére. La construction des séquences de flux basées sur la structure réguliére est

exprimée comme suit.

Les séquences de flux générées sont stockées dans I'’ensemble I1 4, pouvant contenir de
multiples séquences de flux initialisées avec un méme pico-flux. Pour cela, nous définissons

les ensembles suivants construits pour chaque pico-utilisateur k¥’ € T.
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o = = {7r = (7T17T2...7Tdk,) ’7T e d; Vi € {1,...,dk/},7ﬁ‘ = (k/,li)
for some [; € {1,... ,dk/}} (1.16)

ou la définition de ’ensemble ® est donnée dans Eq. (1.12). En d’autres termes, ’ensemble
Hi inclut des séquences de flux 7 qui se composent de permutations de flux de longueur
dy appartenant au pico-utilisateur k’. C’est pourquoi le nombre d’éléments de =y est

‘Ek/’ = dk/!.

o Yip = {7r = (mma.. .7T|1"|_2) | e @
Vi€ {l,...,IT| =2}, ki e T\ {K', '}, and k; # k; ifz’yéj} (1.17)

L’ensemble Y}/ comporte deux indices. L’indice k' est utilisé pour isoler les flux
du pico-utilisateur &’ qui sont utilisés pour la construction de Z;, et I'indice h’ est utilisé
pour isoler les flux du pico-utilisateur A/, un flux parmi ceux-ci étant considéré pour la

construction de I’ensemble Ay,. Le nombre d’éléments de cet ensemble est calculé comme

suit.
Tow|=(T1=2)!x [ (1.18)
iem\{k',h'}
Notez que si [I'| =2, Ty pr = 0.
. A:{p|p:(k,l) and k:,lzl} (1.19)

Puisque I'ensemble A ne contient que le flux le plus fort du macro-utilisateur, |A] = 1.

o A = {p| p=(1,1)and | = 1} (1.20)

Par ailleurs, le nombre d’éléments de cet ensemble est |Ayp| = 1. Clest a dire que

I’ensemble A/ contient le flux le plus fort du pico-utilisateur restant.
D’apreés les ensembles ci-dessus, I14 est construit comme suit.

HA = U Ek’ X U Tk’,h’ X A X Ah’ (121)
k'el h'el\{k'}

En construisant ’ensemble IT4 I’alignement d’interférence est implémenté suite a la sélec-

tion de chaque flux. Aprés la séquence de sélection de flux dans I14, il peut encore étre
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possible d’augmenter le sum-rate en sélectionnant des flux supplémentaires. Ceci est réal-
isé en essayant de sélectionner le plus fort des flux depuis ’ensemble composé des flux

non-sélectionnés restants et défini comme suit:
0= {(sk)(z,mk — 1, K, [ =1,...dy and (k1) ¢ n;}

ou 7y est la séquence des flux sélectionnés.

L’ensemble de la procédure de I'algorithme ASNSSS est décrit dans Alg.

Alg. 5 Algorithme (ASNSSS) de sélection successive avancée de noyaux de flux

Entrée: oy, Hy; Vk, j
Initialiser ’ensemble II 4
for chaque séquence de flux 7 € II4 do
Appliquer Alg.
end for
Sélectionner les matrices de pré- et post-codage pour la permutation qui maximise le
sum-rate
w7y = argmax SR
melly
Tk = (Tk)ﬂ-z, Dk = (Dk)ﬂj1 pour k= 1, ,K
Initialisation des variables
finish = FALSE
Construjre €2
0= {(Sk)(l,l)\k — 1, Kandl=1,..dyand (k1) ¢ w;}
while finish = FALSE do
Construire 'ensemble de flux augmentant le sum-rate
Q = {Sk(l,l) € Q| SRyy(r,y > SR\I,}
if Q' # () then
(k*,1*) = argmax Sk(1,1)
(k,l) such that Sg(I,1)eY
Mettre a jour
=7y U (kK5 17)
qk* = gk + 1
Appliquer Alg.
Reconstruire 2
0= {(sk)(z,mk — 1, Kandl=1,..,dyand (k1) ¢ wg}
else

finish = TRUE
end if
Créer les matrices de pré- et post-codage pour la séquence construite
z = Tk, DZ = Dk for k = 1,...,K
end while
Sortie: T}, Dj Vk
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1.8 Résultats de performance pour le cas CSI parfait

Dans cette section, les performances des algorithmes proposés a la fois pour les réseaux
d’interférences partiellement et entiérement connectés sont fournies en incluant un nombre

différent de pico-cellules.

Nous considérons des scénarios dans lesquels il y a 2 antennes d’émission par pico-cellule
et 4 antennes d’émission par macro-cellule. Chaque cellule comprend un utilisateur placé
aléatoirement dans sa zone de couverture et chaque utilisateur dispose de 2 antennes de
réception.

Pour étudier les résultats de performance des algorithmes proposés, les pico-cellules sont
déployées en bordure d’une macro-cellule. Les emplacements des pico-cellules sont identifiés
en utilisant le rapport d/R ou R est le rayon de la macro-cellule et d est la distance entre
la station de base macro et chaque station de base pico. De plus, le niveau d’interférence
généré entre les pico-cellules est étudié en modifiant la distance L entre pico-cellules, alors

que d/R reste fixe.

1.8.1 Scénarios pour les réseaux d’interférences partiellement connectés

Scénario 1.2 : d/R varie pour 2 pico-cellules

Dans ce scénario, il y a au total 6 flux dont 4 appartiennent aux pico-utilisateurs. C’est

pourquoi 4 séquences de flux sont initialisées par les pico-flux.

Dans la Figure [I.1] ces méthodes sont également comparées aux méthodes d’TA ex-

P

istantes. La performance de I'algorithme ISNSSS est ainsi supérieure & celle des autres

algorithmes d’'TA.

Par ailleurs les complexités des algorithmes de sélection de flux sont comparées dans le
Tableau Il apparait que la recherche exhaustive est plus complexe par comparaison a

I’algorithme ISNSSS, le nombre total de flux du réseau augmentant sensiblement.
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52 T T T
—#— Exhaustive Search
50 —+H&— ISNSSS (Proposed Alg.)
—<O— SNSSS [Amara et. al. (2012)]
—<— max-SINR [Gomadam et al. (2011)]
48 X
—p— min-Leak [Gomadam et al. (2011)]
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Figure 1.1: Scénario 1.2: Sum-rate moyen par rapport a d/R.

Table 1.1: Scénario 1.2: Complexité des algorithmes de sélection de flux dans le cas de 2 pico-
cellules

Recherche exhaustive | ISNSSS | SNSSS
9720 24 6
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1.8.2 Scénarios pour les réseaux d’interférences entiérement connectés

Scénario 2.1: d/R varie alors que L reste fixe

Afin d’évaluer I’algorithme ASNSSS pour ce scénario, les pico-cellules sont rapprochées
de la bordure de la macro-cellule en modifiant le rapport d/R. La distance entre les pico-

cellules reste constante avec L = 150m pour permettre des scénarios entiérement connectés.

Les valeurs de sum rate atteintes avec différentes approches d’IA sont fournies & la

Figure On observe que 'algorithme ASNSSS est plus performant que les méthodes de

sélection de flux existantes et que les approches itératives.

48
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44

IS
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—+H— max-SINR (2 stream) [Gomadam et al. (2011)]
—<— SNSSS [Amara et al. (2012b)]
34 —<— max-SINR (1 stream) [Gomadam et al. (2011)]
—%— min-Leak (1 stream) [Gomadam et al. (2011)]

—
32 :

Il Il
0.6 0.65 0.7 0.75

Figure 1.2: Scénario 2.1: Sum-rate moyen par rapport a d/R entre 0.6 et 1

Table 1.2: Scénario 2.1: Comparaison de la complexité pour les algorithmes de sélection

de flux dans le cas de 2 pico-cellules

i i
0.8 0.85

d/R

Il
0.9 0.95

1

Recherche exhaustive

ASNSSS

ESNSSS

SNSSS

9720

24

36

6

Les résultats montrent que ’algorithme ASNSSS a une complexité plus faible avec

une structure réguliére simple par comparaison aux autres algorithmes d’TA basés sur la
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sélection de flux.

1.9 Modéle du systéme pour le cas CSI imparfait

Les modeles pour la transmission et la quantification du canal dans le cas CSI imparfait

sont donnés dans les sections suivantes.

1.9.1 DModéle de transmission

Nous modifions Eq. (1.1)) pour le cas CSI imparfait et définissons le signal transmis en

utilisant Ty, et Dy, au lieu de Ty, et Dy, qui sont obtenus par les algorithmes proposés dans
le canal quantifié I]ij, entre le j4™¢ émetteur et le k™€ récepteur, de dimension N Re X N

Le débit de données atteignable pour le ™€ flux du k°™® utilisateur peut étre exprimé

comme suit.

Ry, = log, (1 + Fh,) (1.22)

ot 7}, est le SINR atteignable pour le M€ flux du k®™® récepteur et est donné par
(Pr/ai) oy, (a;)H szkEZ (EZ)H Hﬁ;a;

~iNH <1 i
(dk> B,dy,
VE=1,.. K, Yi=1,..q

(1.23)

Yri =

. . . ) . , Sme s =/ ps
La matrice de covariance interférence plus bruit du flux ¢« du £“™° récepteur, By,; est définie

comme
- 9k Pk 1 ~lH K g5 P ea~a
=1, j=1 g=1 J
144 ik

Vk=1,...K, Vi=1,.. q

Le sum rate atteignable est calculé comme suit.
K

SR =33 Ry, (1.25)

k=1 1i=1
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FLUX

1.9.2 Modéle de retour limité

Dans cette section, un schéma de retour limité est présenté, reposant sur la quantifi-
cation vectorielle aléatoire (RVQ). Les algorithmes d’TA proposés nécessitent tous les CSI
afin d’obtenir les vecteurs de pré- et post-codage. C’est pourquoi un modele de retour cen-
tralisé est adopté, dans lequel la station de base macro collecte tous les CSI en provenance
des stations de base pico via des liens backhaul dépourvus d’erreurs et de retards. Il est
supposé que le CQI est immédiatement disponible au niveau de la station de base et que

les récepteurs ne renvoient que leur CDI.

1.10 Algorithme de sélection successive avancée restreinte de
flux

Dans cette section, I’algorithme (RASNSSS) de sélection successive avancée restreinte
de flux est présenté pour le schéma de retour limité. Lorsque le nombre de flux augmente,
Ierreur de quantification augmente également pour un nombre de bits de retour donné.
Autrement dit, lorsque le nombre de bits de retour est fixé, le fait de sélectionner moins de
flux pour chaque utilisateur peut réduire l'interférence intra-flux dans le schéma de retour
limité. Dans 'algorithme RASNSSS, une fois que les séquences de flux dans ’ensemble
II4 sont sélectionnées, il n’y a plus de sélection de flux supplémentaire, par opposition a
I’algorithme ASNSSS. L’algorithme RASNSSS applique Alg. [2[ en utilisant I:ij Vk,j au
lieu de Hy; Vk, j.

La construction de ’ensemble des séquences de flux,I14 est la méme que celle donnée

a la Section [L7.2]

1.11 Algorithme de sélection K-flux

Dans cette section, 1'algorithme de sélection K-flux (KSS) est décrit, dans lequel une
séquence de flux est sélectionnée & partir d’un ensemble prédéterminé de séquences de taille
limitée. Chaque séquence de flux est construite avec différentes combinaisons des meilleurs
flux de chaque utilisateur. De cette facon toutes les séquences de flux incluent un seul flux

par utilisateur pour empécher des interférences intra-flux. Chaque séquence est initialisée
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avec les flux des pico-utilisateurs puisque les pico-utilisateurs sont plus susceptibles d’avoir

des valeurs de SNR plus élevées en moyenne.

Chaque flux i peut étre exprimé comme m; = (k;,l;) ou k; € {1,...,K}, l; €

{1,...,qr} et i € {1,...,r}. L’ensemble de toutes les permutations de longueur j €
{1,...,r} peut étre défini comme suit.
o = {w: (mimy...m) | Vi, € {1,...,j}, m # ifi;éz"} (1.26)

Toutes les séquences de flux incluant au moins un flux de chaque couple (station de base-

utilisateur) sont stockées dans I’ensemble II qui peut étre défini comme suit.

H:{Tf‘: (mmy...mj) | medy; j> K,
(1.27)
Vk,3m e {1,...,j} such that ky, = k}

Les séquences de flux générées sont stockées dans I’ensemble II,, définit comme suit.
II, = {7’[': (mmg...mj)|lmell; j=K;lh=...=1;=1; k GF} (1.28)

L’Alg. @décrit Ialgorithme KSS qui applique Alg. en utilisant ICij VEk,j.

Alg. 6 Algorithme KSS

Entrée: ay;, I:ij Vk,j
Initialiser ’ensemble II,, tel que donné par Eq.( [5.14)
for chaque séquence de flux m € II,, do
Appliquer Alg.
end for
Sélectionner les matrices de pré- et post-codage pour la permutation maximisant le sum-
rate

. -
m, = argmax SRy
welly

TZ = (Tk)ﬂz, ]52 = (]f)k)ﬂg pour k=1,... K
Sortie: TZ, DZ, vk

1.12 Schéma d’allocation de bit adaptatif pour CSI quantifié

Dans cette section, une allocation de bit de retour adaptative est présentée. L’objectif
principal est de maximiser le sum rate moyen en optimisant le nombre de bits pour quanti-

fier les CDI macro et pico pour chaque utilisateur. Puisque 'optimisation du nombre total
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de bits pour I’ensemble du systéme est trop complexe, une borne supérieure est obtenue
pour le débit de données de chaque utilisateur. De cette facon, le nombre total de bits de

retour pour chaque utilisateur est alloué localement et de maniére adaptative aux canaux.

Le probléme d’optimisation de I'allocation de bit pour les algorithmes d’TA basés sur

la sélection de flux peut étre formulé pour le k™€ utilisateur comme suit.

dk B
E [Ry
BijimL. K ; Rl

P (1.29)

s.t. Z By; < By,
j=1

Ou By, est le nombre total de bits de retour pour 'utilisateur k.

Une borne supérieure approximative est dérivée pour la solution au probléme d’allocation
de bit dans Eq. . La borne supérieure pour le débit de données total de chaque util-
isateur est la somme des bornes supérieures des débits de chaque flux. C’est pourquoi une
borne supérieure est obtenue pour chaque flux (Anand et al.|[2013]). Ainsi, E [Ry;] peut

étre réécrit en utilisant Eq. (1.22)) comme suit.

~i\H ~i ~i ~i
E [log, ((Pkk/qk) <dk) HkktktkHchdk) —

a

qk K 49

~1 H -]~ ~1 ~ H i ~

E[log2<§:(m/qk> (4) HuB & BEd+ >0 (Pu/e) (4)) HyEE "B +021NRk>]
=1, j=1 g=1
1#£4 G#k

bl b2

(1.30)

ou Py; est la puissance moyenne regue par 'utilisateur k& depuis la station de base j, calculée
comme Py; = Pjaij.

Le probléme d’optimisation peut s’exprimer comme suit pour tout flux du k®™® utilisa-
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teur.

— Brk
Bkmmjl},(...,f( [IOg? <(Pk'k/%) <1 -2 NTkNRk1>> —

K B
Pu(qr — 1) ~w = ~ Ny NA T
10g2 (qu NTkNRk ! +Zpkj2 75" R (131)
j=1
J#k
K
s.t. Z Bkj < Bk
Jj=1

1.13 Résultats de performance pour le cas CSI imparfait

Les performances des algorithmes d’TA basés sur la sélection de flux avec CSI quantifié
sont évaluées dans le Scénario 1.2 et le Scénario 2.1. Pour tous les scénarios, des schémas
d’allocation de bits (BAS) différents sont réalisés pour différents nombres de bits de retour.
Br = 25:1 By, tels que By = 63 et By = 120. Les valeurs de B, Bs et Bs pour By = 63
sont BAS-3, B1 =9, By = By = 27 et BAS-4, By = By = B3 = 21. Les valeurs de By, B>
et Bs pour By = 120 sont BAS-7,B; = 10, Bo = B3 = 55 et BAS-8, B; = By = B3 = 40.

Dans les scénarios considérés, il y a 9 canaux comprenant les canaux d’intérét et les
canaux interférents. C’est pourquoi, le nombre de bits alloués a chaque canal est 7 avec

Br = 63 dans le schéma d’allocation de bits égal (EBA).

1.13.1 Scénario pour des réseaux d’interférences partiellement connectés

Scénario 1.2: d/R varie pour 2 pico-cellules

Pour les réseaux d’interférences partiellement connectés, nous évaluons les algorithmes

KSS et ISNSSS pour le Scénario 1.2.

Les nombres de bits alloués a chaque canal sont présentés en détail dans le Tableau
pour le schéma BAS-3 avec Br = 63. Pour l'algorithme KSS, la plupart des bits sont
associés aux canaux d’interférence entre la station de base macro et les pico-utilisateurs.
Pour I'algorithme ISNSSS, les canaux d’intérét des pico-utilisateurs ont plus de bits que
les autres canaux afin de réduire les interférences intra-flux entre les pico-flux, puisque

plusieurs flux sont sélectionnés pour les pico-utilisateurs.
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Table 1.3: Scénario 1.2: Nombre moyen de bits alloués pour By = 63.

| | Bi=9 [ By=27 | B3=27 |
Bi1 = 4.7 [ By = 21.8 | Bs: = 21.8
KSS B12 =2.0 B22 =5.2 B32 =0
Bis = 2.3 By3 =0 B3z =5.2

Bi1 = 8.6 B2 =9.3 Bs1 =9.3
ISNSSS Bi2 =0.2 Bay = 17.7 Bss =0
Bis =0.2 Bss =0 B33z = 17.7

Les comparaisons entre le KSS, 'ISNSSS et les algorithmes existants sont présentées
en Figure [[.3] pour le schéma BAS-3 avec By = 63. L’algorithme KSS est plus performant
que P'ISNSSS puisqu'un seul flux est sélectionné pour chaque utilisateur, évitant ainsi

Iinterférence intra-flux. Les comparaisons de performance des algorithmes pour By = 120

34

Sum-Rate (bps/Hz)

—8B— KSS (BAS-3)
—<— ISNSSS (BAS-3)
—4— max-SINR (BAS-3)(1 stream)|
—<+— min-Leak (BAS-3)(1 stream)
—6&— SNSSS (BAS-3)

T

22

20 : :
0.6 07 0.8 0.9 1

dR

Figure 1.3: Scénario 1.2: Comparaison des différents algorithmes avec By = 63.

sont présentées en Figure [[.4] L’algorithme ISNSSS est plus performant que le KSS et les
autres algorithmes existants. Puisque U'interférence intra-flux est réduite avec une erreur

de quantification décroissante, sélectionner plusieurs flux améliore la performance.

Pour By = 120, 'allocation de bits détaillée pour chaque canal est donnée dans le

Tableau On remarque que le nombre de bits alloués aux canaux d’interférence entre
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42 T

—<— ISNSSS (BAS-7)

—4A— max-SINR (BAS-7) (1 stream)
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—&— SNSSS (BAS-7)

—<— min-Leak (BAS-7) (1 stream)
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Figure 1.4: Scénario 1.2: Comparaison des différents algorithmes avec By = 120.

la station de base macro et les pico-utilisateurs est plus élevé que pour le cas ot By = 63.
Par ailleurs, les pico-canaux d’intérét ont également suffisamment de bits de retour pour

réduire l'interférence intra-flux entre les pico-utilisateurs.

Table 1.4: Scénario 1.2: Nombre moyen de bits alloués pour By = 120.

| | Bi=10 | By=55 | Bs=55 |
Bi1 = 4.8 [ Boy = 49.4 [ Ba; = 49.4
KSS Bia=25 | Bp=52 Bsy =04
Bi3 =27 | By =04 B3z =5.2
Bi1 = 9.5 [ By = 26.5 [ Bs; = 26.5
ISNSSS | B12 =02 | Bas =28.2 [ B3 =03
Bi3 =03 | B3 =03 | Bss = 28.2

1.13.2 Scénario pour des réseaux d’interférences entiérement connectés

Scénario 2.1: d/R varie alors que L reste fixe

Les performances sont comparées dans la Figure pour un schéma BAS-3 avec By =

63. Le Tableau montre en détail le nombre moyen de bits alloués a chaque canal.
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Figure 1.5: Scénario 2.1: Comparaison des différents algorithmes avec By = 63.

Pour I’algorithme KSS, puisque l'interférence générée depuis la station de base macro vers

les pico-utilisateurs est fortement dominante, les canaux d’interférences entre les pico-

utilisateurs et la station de base macro se voient allouer un plus grand nombre de bits, Ba;

et Bsi. Pour l'algorithme RASNSSS, les pico-canaux d’intérét requiérent un plus grand

nombre de bits car une pico-cellule posséde plus d’un flux dans I'algorithme RASNSSS.

Les performances des algorithmes proposés et existants sont données a la Figure pour

Table 1.5: Scénario 2.1: Nombre moyen de bits alloués pour By = 63.

[ | Bi=9 [ B2=27 | B3=27 |
Bi1 = 4.8 | Ba; = 18.8 | B3; = 18.7
KSS Bz =21 | Byn=55 By = 2.8
Biz =21 | By =27 B3z = 5.5
Bi1 =48] By =91 B3 =9.1
RASNSSS | Bi; =21 | Bz =16.5 | By =11
Blg =21 B23 =14 B33 = 16.8

le schéma BAS-7 avec Br

120. Dans ce cas, I'algorithme RASNSSS a une meilleure

performance que ’algorithme KSS puisque le nombre de bits alloués est suffisant pour

résoudre & la fois les canaux d’intérét et d’interférence.
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Figure 1.6: Scénario 2.1: Comparaison des différents algorithmes avec By = 120.

L’allocation de bits détaillée pour chaque canal est donnée dans le Tableau pour

le schéma BAS-7 avec By = 120. On observe que 'algorithme RASNSSS a une meilleure

performance que 'algorithme KSS car les séquences de flux construites par l'algorithme

RASNSSS ont une plus grande probabilité d’occurrence lors de la recherche exhaustive.

Table 1.6: Scénario 2.1: Nombre moyen de bits alloués pour By = 120.

| | Bi=10 [ By=55 | Bs=55 |
Bi; = 4.8 [ By = 41.5 | Bs; = 40.6
KSS Bia=25 | Bxn=59 B3z = 8.5
B13 = 2.7 323 = 7,6 Bg3 =59
Bi1 = 4.8 [ Ba1 = 23.7 | Bsi = 23.6
RASNSSS | Bia =25 | Ba2 =27.3 | Bsx=4.1
Bi3 =27 | Byp3=40 | Bss =273

1.14 Conclusion

Dans cette thése, nous avons développé différents algorithmes d’IA basés sur la sélection

de flux pour des réseaux hétérogénes en considérant & la fois le cas de CSI parfait et

imparfait.
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Pour le cas CSI parfait, deux cas différents ont été étudiés, ceux de réseaux hétérogénes
partiellement et entiérement connectés. L’algorithme ISNSSS a été présenté pour le réseau
d’interférence partiellement connecté et I’algorithme ASNSSS a été proposé pour les réseaux
d’interférence entiérement connectés. Les résultats montrent que les algorithmes ISNSSS et
ASNSSS ont de meilleures performances que les algorithmes d’TA itératifs. Par comparaison
aux algorithmes d’TA basés sur la sélection de flux existants, les algorithmes proposés
peuvent en moyenne allouer davantage de flux aux pico-utilisateurs tout en assurant un
meilleur service et en augmentant le sum rate. Par ailleurs les algorithmes ASNSSS et

ISNSSS réduisent significativement la complexité de la recherche exhaustive.

Pour le cas CSI imparfait, un schéma de retour limité a été considéré pour les algo-
rithmes proposés. L’algorithme ASNSSS a été adapté en algorithme RASNSSS. De plus,
un nouvel algorithme de sélection de flux, nommé KSS, a été proposé. Les résultats ont
montré que les schémas d’allocation de bit adaptatifs améliorent les performances des al-
gorithmes par rapport aux allocations de bits égales. On a observé qu’allouer plus de bits
aux canaux d’interférence entre la station de base macro et les pico-utilisateurs donne de
meilleurs résultats. Pour un nombre raisonnable de bits de retour, ’algorithme KSS a une
meilleure performance que les algorithmes de sélection de flux et les algorithmes d’TA itérat-
ifs existants. D’un autre c6té, lorsqu’il existe un nombre suffisant de bits pour améliorer
la qualité CSI, les algorithmes RASNSSS et ISNSSS ont de meilleures performances que
I’algorithme KSS. En d’autres termes, allouer plus de bits réduit I'interférence intra-flux;
c’est pourquoi plus de flux peuvent étre sélectionnés pour chaque utilisateur ce qui résulte
en une augmentation du sum rate. Cependant, la charge de retour augmente et la concep-
tion du code-book devient plus complexe avec le nombre croissant de bits, ce qui n’est pas
pratique pour un schéma & retour limité. C’est pourquoi nous proposons l'algorithme KSS

pour les implémentations pratiques.
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Introduction

1.15 Motivation of the Thesis

As the demand of higher data rates and the quality of service are increasing in wireless
communication, innovative approaches and solutions have been investigated to increase
the spectral efficiency. Drastic changes are required in wireless communication systems to
maintain the quality of service (QoS) in a heavy loaded network. In order to provide the
necessary capacities to support high data rate services, novel wireless system architectures
will be utilized. Therefore, heterogeneous networks are considered as a promising technique
for cellular networks since they provide a deployment of large number of smaller cells with
different transmit power levels under the coverage of the conventional macro cell. Even
if this overlaying cellular network provides a coverage extension and a capacity increase,
the network topology brings up the technical challenge of the interference management.

Therefore, several interference management approaches have been developed.

Interference alignment (IA) is one of the techniques to effectively mitigate the inter-
ference in wireless networks (Jafar [2011]). It has been introduced as a linear precoding
technique that aligns the interfering signals in time, frequency, or space. The key idea
is to align the interfering signals into one dimensional subspace at each receiver by de-
signing precoding and postcoding vectors so that the desired signal can be obtained in
the interference-free signal subspaces. In the study of (Cadambe and Jafar| [2008], it has
been shown that all the interference can be concentrated on one half of the signal space at
each receiver, leaving the other half available to the desired signal and free of interference.
However, there are some problems due to the nature of interference alignment methods.

For instance, the number of alignment constraints grows very rapidly as the number of the
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users increases in the network, so larger signal space is required for each user to recover

nearly half of it.

Closed form solutions for the IA problem are difficult to obtain for large scale net-
works; therefore, iterative and distributed TA approaches have been intensively studied
in the literature (Gomadam et al.|[2008a]). Multiple input multiple output (MIMO) IA
precoders and postcoders are iteratively designed in the distributed IA solutions under the
assumption of the channel state information (CSI) availability at the transmitters. One of
the studied iterative IA algorithm is called the minimum interference leakage (min-Leak)
algorithm in which the users reduce the interference leakage in the received signal at each
iteration. Another iterative A algorithm has been examined that maximizes the signal-to-
interference-plus-noise ratio (SINR) per stream and it is called max-SINR algorithm. Only
the local channel knowledge at each node is required for both iterative algorithms. In the
study of |Schreck and Wunder| [2011], max-SINR algorithm has been adapted for the cellular
networks by considering the intra-cell interference only at the receivers. Another iterative
IA approach has been studied based on an alternating minimization method (Peters and
Jr.[2009]). In the study of Schmidt et al. [2009], an algorithm similar to max-SINR which
iteratively minimizes the sum mean square error (MSE) of all the receivers has been stu-
died. The disadvantage of the iterative approaches is that they generally require too many
iterations. Another problem in such iterative algorithms is that converging to an optimal
solution has not been proven. In the study of |Wilson and Veeravalli [2013], max-SINR
algorithm has been modified by adding a power control step performed at each iteration
to balance the received SINR at both forward and reverse direction of communication and

it has been shown the algorithm converges to a local maximum.

All the aforementioned studies are based on a transmission with a fixed number of
streams that depends on the feasibility conditions. It has been shown that the TA is
achievable if and only if (N7, + Ng,) > ¢x(K + 1) where K is the number of user and
the base station pair, N7, and Ng, are the number of transmit and receive antennas of
each user, respectively, and g is the number of data streams (Yetis et al.|[2010]). Stream
selection algorithms are able to select different number of streams for each user (Amara

et al.| [2011], Sun and Jorswieck| [2016]). Stream selection based IA approaches are inspired
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from user selection problems (Yoo and Goldsmith| [2006], Sun and McKay| [2010]). The
idea is to mitigate the interference between the selected streams by performing orthogonal

projections after selecting each stream (Amara et al. [2011], Amara et al|[2012b], Amara

et al. [2012a]).

Since the stream selection based [A approaches are not iterative and they can dynami-
cally select streams for each user, they are promising techniques. Therefore, in this thesis,
we study on the stream selection based IA algorithms for heterogeneous networks. The
proposed selection algorithms are based on constructing sets of stream sequences derived

according to the heterogeneous network characteristics.

The most challenging drawback of the [A approach is the requirement of the CSI at
the transmitters. Most of the [A algorithms are based on the perfect CSI at the transmit-
ters and/or receivers, however this assumption is not realistic. Therefore, there are many
studies that focus on CSI in IA methods and techniques to increase the accuracy of the
channel (Kim et al. [2012]), (de Kerret and Gesbert| [2012]), (Rao et al.| [2013]), (Schreck
et al. [2015]). In addition, obtaining CSI in heterogeneous networks has been investigated
considering the distinctive features of the heterogeneous networks, such as the unequal
number of transmit antennas and transmit power levels (Niu et al|[2014]), (Rihan et al.
[2015]). Therefore, we propose stream selection based IA algorithms for the limited feed-
back schemes in heterogeneous networks in this thesis. Adaptive feedback bit allocation
schemes are presented to improve the performance of the proposed algorithms with the

imperfect CSI.

1.16 Organization of the Thesis

The organization of the thesis is given as follows.

Chapter [2] gives background knowledge for the following chapters. We first define the
wireless interference channels and the concept of the interference alignment. Next, we
briefly review the wireless channel models. Since CSI is very important for interference
alignment, we explain the quantization procedure and CSI feedback topologies. Finally,

we introduce the concept of the heterogeneous networks.
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In Chapter [3] the IA algorithms that have been addressed in the thesis are presented in
detail. The existing [A algorithms, including iterative and stream selection based IA, are
explained and their performances are compared for K pair interference channel assuming

each transmitter has equal transmit power and each user has the same location in the cell.

In Chapter [] interference in the heterogeneous networks is handled assuming the per-
fect CSI is available at the transmitters. Two stream selection based IA algorithms are
proposed for two different deployments of pico cells named partially connected and fully
connected networks. The networks in which the interference between the pico cells can
be negligible are referred as partially connected networks. To obtain a partially connected
network, a scenario in which the pico cells are separately deployed is considered, so that
they do not generate any interference to each other. They only receive interference from
macro cell. For this kind of scenarios, the improved successive null space stream selection
(ISNSSS) algorithm is proposed for the heterogeneous networks with one pico cell (Aycan
et al. [2014]), two pico cells (Aycan Beyazit et al. [2015]) and three pico cells where the
initial streams of the constructed stream sequences are selected among the pico streams.
The networks in which the interference generated to a pico user from other pico BSs is
very dominant are referred as fully connected networks. In the fully connected network
scenario, pico cells are deployed closer to each other and each pico cell receives the in-
terference generated from both the macro BS and other pico BSs. For this scenario, the
advanced successive null space stream selection (ASNSSS) algorithm is proposed where
the selection of a stream sequence is performed among a predetermined set of sequences
(Aycan Beyazit et al. [2016a]). For the ISNSSS and the ASNSSS algorithms proposed for
partially and fully connected networks, respectively, the aim is to increase the overall rate
of the system while mitigating the interference and assigning at least one stream per each

user.

In Chapter[5] the proposed ISNSSS and ASNSSS stream selection based TA algorithms
are studied with imperfect CSI. For the partially connected interference networks, the per-
formance of the ISNSSS algorithm is evaluated with the imperfect CSI (Aycan et al. [2015]).
For the fully connected interference networks, the ASNSSS algorithm is modified for the
case of limited feedback and it is called restricted ASNSSS (RASNSSS). RASNSSS does not

58



1.16. ORGANIZATION OF THE THESIS

continue to select more streams after the stream sequence selection from a predetermined
set of sequences, because continuing to select more streams generally causes a degradation
in the achievable sum rate due to the quantization. In addition, a novel stream selection
based IA algorithm is proposed called as K-stream selection (KSS) algorithm where the
stream sequences are constructed by different stream combinations of the best streams from
each user for both the partially and the fully connected interference networks. Similarly
to the other proposed algorithms, stream sequences are initialized with the streams of pico
users. In all cases, a centralized feedback topology is considered, because the proposed
stream selection based TA algorithms require all CSI to compute all precoding and post-
coding vectors. The macro BS collects all the CSls from pico BSs through the delay free
backhaul links. Different adaptive feedback bit allocation schemes are presented for the
ISNSSS (Aycan Beyazit et al. [2016b]), the RASNSSS (Aycan Beyazit et al|[2016¢|) and
the KSS (Aycan Beyazit et al.|[2016d]) algorithms in order to increase the system capacity

for a fixed feedback load per user.

Finally, the major contributions are summarized and the perspectives to further develop

the proposed approaches for next generation wireless networks are given in Chapter [5.7]

In Appendix the justification for the initialization of stream sequences with pico
streams is given and statistical analysis of the exhaustive search are provided for the sce-

narios of the partially and the fully connected interference networks in Appendix [B]
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Chapter 2

Preliminaries

In this chapter, we provide a technical background which is necessary for the following
chapters. Firstly, interference channels (ICs) are described to give fundamental insights
on the interference alignment (IA) method since IC is a good model for communication in
cellular networks. Secondly, we introduce the wireless channel model that we use for the
rest of the thesis. Then, the techniques to obtain CSI are explained, because TA algorithms
require CSI to be available at the transmitters and /or the receivers to design precoding and
postcoding vectors. For this purpose, feedback topologies and quantization techniques are
discussed in detail. Finally, heterogeneous networks are introduced since the main objective

of this thesis is to mitigate the interference in the wireless heterogeneous networks.

2.1 Interference Channels

The K user interference channel is a simple network composed of K transmitters with

N,

. antennas and K receivers with Ng, antennas, where each transmitter has a message

for only one of the receivers, as shown in Figure 2.1 Each transmitter-receiver pair causes
interference to the other pairs. Hence, if one of the pair achieves higher rate by increasing
its signal-to-noise ratio (SNR), the link quality of the other pairs is decreased by the strong

interference coming from the corresponding pair.

For the K user IC, the received signal can be described as follows (Cadambe and Jafar,

[2008]):
Yi = Hiix1 + Hipoxo + ... + Hpgxg + ng (2.1)
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Figure 2.1: K user network interference network

where k € {1,2,..., K} is the user index, y;, is the output signal of the Eth receiver with
dimension Npg, X 1, x;, is the transmitted signal from the kth transmitter with dimension
N, x 1, Hy; is the channel fading coefficient with dimension Ng, X N7, from transmitter
J to receiver k and ny, is the N, x 1 additive white Gaussian noise (AWGN) term. In this
system model, each noise term is independent identically distributed (i.i.d.) zero-mean
complex Gaussian with variance of ¢, and channel knowledge is available at both the

transmitters and the receivers.

Degrees of freedom (DoF) is the multiplexing gain and it characterizes how the achiev-
able rate scales with transmit power as the SNR goes to infinity. In general, the spatial
degrees of freedom can be considered as the number of non-interfering paths that can be

obtained in an interference channel.

In a K user IC, each user can communicate with a fraction of 1/K DoF which is also
known as a "cake-cutting" approach while IA can achieve K/2 DoF at each receiver. In

other words, each user gets half of the cake.

IA is a linear precoding technique that aligns interfering signals in time, frequency, or
space. In MIMO networks, TA uses the spatial dimension offered by multiple antennas
for alignment. The key idea is that users coordinate their transmissions by using linear

precoding, such that the interference signal lies in a reduced dimensional subspace at each
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receiver.

The IA can be illustrated in Figure There are three transmitter-receiver pairs. At
each receiver, the undesired signals received from other transmitters are aligned onto one
dimension, so that the desired signal is left out in an interference free space. For instance,
Histe and Hjsts are aligned at the first receiver, Hoit; and Hasts are aligned at the
second receiver, and Hs1t; and Hasts are aligned at the third receiver. In this way, Hytq,
Hooto and Hsgts are obtained in an interference free space at each receiver where t1, to and
t3 are the precoder vectors of transmitter 1, transmitter 2 and transmitter 3, respectively.

Therefore, TA can increase the DoF, which is also known as the multiplexing gain of the

Figure 2.2: Tllustration of TA for K = 3 with Ny, = N, = 2 case.

channel, so the sum rates provided by TA can approach the theoretical maximum sum
capacity. Since A can achieve maximum DoF by efficiently mitigating interference, most

of the studies have been mainly focused on maximizing the sum rate of the overall system

by designing and optimizing the precoders and postcoders, (Jafar and Shamai [2008]),
(Cadambe and Jafar| [2008]), (Gomadam et al. [2008a]), (Zhao et al|[2012]), (Fadlallah|
et al.|[2012]), (Shi et al.|[2011]), (Westreicher and Guillaud|[2012]), (Amara et al. [2012D]),
(Tang and Lambotharan| [2013]).

The benefit of TA can be exemplified as follows. In the study of Jafar and Shamai
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[2008], the DoF region D of the K user is defined as
D= {(dl,dQ, ,dk) S Rf :V(wl,wg, ...,wk) S Rf,

widy + wads + ... + widy, < lim sup sup [wrFa(p) + ... + wiRi(p)]
=00 | R(p)EC(p) log(p)

} (2.2)

C(p) is the capacity region of the K-user IC, composed of the set of all achievable rate-tuples
R(p) = {Ri(p),..., Rk (p)}, i.e. the sets of rate tuples for which each transmitter-receiver
pair is able to reliably communicate (Jafar and Shamai [2008]) and p defines the SNR.
If the receiver is able to suppress all undesired interference, the k" transmitter-receiver
pair will be able to achieve dy DoF. Finally, the number of DoF for the K user IC can be
expressed as follows (Cadambe and Jafar [2008]):

K
1 .
(dl—i-dz—l-...—f—dk) > 5 E mln(NRk7NTk>

=1

Figure illustrates the DoF region of the 3-user IC shown in Figure 2.2] It is seen
that points A, B and C are achieved by allocating all the resources to any of the 3 users.
As a result, segments AB, AC and BC can be achieved by time-sharing between any two
users. However, point D can only be achieved by using IA, where each user is able to

achieve 1/2 DoF, therefore maximizing the sum-rate capacity to 3/2 for the 3-user IC.

The closed form solutions to IA for both SISO and MIMO interference channels are

given in the following sections.

2.1.1 K User SISO Interference Channels

For SISO channels, interference signals cannot be aligned in the space domain. However,

IA is still possible in time-varying or frequency-selective fading environments.

The TA problem for the K user SISO IC can be explained by the following example.
Let us consider a K = 3 user IC. The system model at time slot ¢ € N can be given as

follows.
y1(t) = har(t)z1(t) + haa(t)w2(t) + has(t)ws(t) 4+ na(t)
Y2 (t) = hgl(t)lj (t) + hao (t)xg(t) + hgg(t)wg(t) + ng(t) (23)
Y3 (t) = h31(t)$1 (t) + hgg (t)xg(t) + hgg(t)flig(t) + ng(t)
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A(0,0,1)

B(0,1,0)

dz

Figure 2.3: DokF region for the 3-user IC

In the study of|Cadambe and Jafar [2008], since each terminal has only one antenna and

there is not enough space dimension to separate interference subspace with desired signal

subspace, time extension method over 7 time slots is used to achieve the IA as follows.

y1(t) = Hyp (8)x1 () + Hip(£)x5(t) + Hig(t)x3(t) +ni(t) (2.4)
ya(t) = Hy (£)x1 () + Hay (£)x5(t) + Hog(£)x3(t) +nj(t) (2.5)
y3(t) = Hyy (£)x71 () + Haa(£)x5(t) + Haa(¢)x3(t) + n3(t) (2.6)

where x(t) is a column vector with dimension 7 x 1 representing the 7 symbol extension of
the input signal x4 (¢) and y7 (¢) represents the 7 symbol extension of the output signal yy(t).
1y, (t) represents the 7 symbol extension of ny,(t). Hy;(t) is the 7 x 7 dimensional diagonal
extended channel matrix of the channel hy;(t) between the receiver k and transmitter j

over the time slot ¢ such that

i (7t — 1) + 1) 0 0
) 0 hkj(T(t:_l)+2) 0 @
0 0 hkj(’ft) T
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This model is the so called extended 1C model where each destination has a 7 dimensional
received signal and only the channel gain remains constant within one time slot but changes

independently across different time slots.

Let 7 = 2n+1, where n is a positive constant. At transmitter 1, the message is encoded
into n + 1 independent data streams sy ;(t); ¢ = 1,...,n+ 1. Each sy ;(¢) is transmitted by

a precoding vector ¢} with dimension 7 x 1 so that the x;(¢) is given as follows.

n+1 '
xi(t) = s1i(t)t] = Tisy (2.8)
=1
. T . . . /. .
where 81 = [s1,i(t),..., S1,n41(t)]" with dimension (n + 1) x 1 and T7 is the precoding

matrix as T} = [t],...,¢]"] with dimension (2n 4+ 1) x (n + 1). Similarly, transmitter 2

and transmitter 3 encode their messages to n independent data streams.

Since IA method aligns all the interference signals at each receiver within one half of
the total received signal space and separates the desired signal to the other half interference
free signal space, interference should occupy a subspace with less dimensions than the total

signal space dimensions.

Thus, in order to obtain the (n+ 1) dimensional interference-free signal, the dimension
of the interference subspace should be less than or equal to n. This condition can be
achieved at transmitter 1 by aligning the interference signals received from transmitter 2

and transmitter 3 as follows:
(Hi2(1)T3) = (Hi3(t)T3) (2.9)

In addition, it should be guaranteed that the subspace spanned by the interference
from transmitter 1 contains all the interference generated from the other transmitters.
Therefore, to have n dimensional interference-free subspaces at receiver 2 and receiver 3,

the interference signals must be aligned as:
span (H, (#)T%) C span(H, (£)T4) (2.10)
span(Hj, (1) T5) C span(Hj, (£)T7) (2.11)

where span(A) represents the space spanned by the column vectors of matrix A. By sat-

3n+1
2n+1

isfying these conditions, DoF is achieved, which converges to 3/2 as n — oo.
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Different precoding matrices can be constructed using the conditions above; one set of

solutions that meets these conditions are given as follows (Cadambe and Jafar [2008]):

| =, L, L] (2.12)

h=Hy (HH, ()W, L'y, ..., L' ] (2.13)

b =Hy;'(H)HS, (¢)[L'v/, L. ,L"] (2.14)

where L/ = H,(t)HS, ! (1) Hby (1) Hay (1) H, (H)H)3 () and o/ = [1... 1]T is a column
vector with dimension (2n + 1) x 1.

In case of K > 3, the signals from transmitter 1 should be aligned at receivers 2, ..., K.

As the alignment restrictions increase, the number of constraints on T} increase. This

situation can be generalized as follows.

IA problem is transformed to a problem of finding common non-trivial invariant sub-
spaces of all L' with the above deductions. However finding common non-trivial invariant

subspaces is an infeasible approach due to the following reasons:

o L'Ds are determined by the channel coefficients, therefore there is no control over

their construction.
e Generic linear transformations do not have non-trivial common invariant subspaces.

The solution given in the study of|Cadambe and Jafar [2008] is based on the assumption
that the linear transformations L' are commutative with respect to multiplication. This
assumption is valid for the channel matrices that have a diagonal structure, such as those
that are obtained by time extension over time varying channels. However, the desired
signals must be aligned separately from the interference signals at each receiver. Therefore,

the trivial common invariant subspaces of diagonal matrices can not solve the IA problem.

As a conclusion, IA solutions based on symbol extensions are necessary when we are

dealing with SISO networks.
2.1.2 K User MIMO Interference Channels

In the previous section, symbol extension has been explained to increase the dimen-

sionality of the vector space in K user SISO IC since the number of antennas is insufficient
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to achieve IA. In this section, we assume that there are multiple antennas at both trans-
mitters and receivers, so that the spatial domain can be used to perform IA. If the SISO
is expanded to N7, > 1, Np, > 1 case with the assumption of Ny, = Np, = M (when all
nodes have the same number of antennas), total DoF will become KM /2, because it can
be simply thought as splitting each node into M separate nodes. Then, K user M x M
MIMO IC is transformed into the KM user 1 x 1 IC.

In this section, the precoding matrix T}, of the k" transmitter is obtained for K = 3
MIMO IC case where N7, = Ngr, = M to show that the dimension of interference is equal

to M /2 at all the receivers without symbol extension (Cadambe and Jafar| [2008]).

In order to obtain M/2 data streams, the interference at each receiver should have
at maximum M /2 dimensions in M dimensional signal space. The interference alignment

constraints that should be satisfied by designing T, Vk can be expressed as follows.

At receiver 1:  span(H;9T2) = span(H13T3) (2.15)
At receiver 2: span(HyT1) = span(Ha3T3) (2.16)
At receiver 3: span(Hs;T1) = span(H32T9) (2.17)

As a consequence, the interference signals only occupy an M /2-dimensional subspace
(Cadambe and Jafar| [2008]|). The above equations can be rewritten by substituting To

and T3 into the first equation as follows.

span(T;) = span(ET)) (2.18)
span(Ts) = span(H;,) H3; T) (2.19)
span(T3) = span(Hy, Ho1 T) (2.20)

where E = (Hgzp) 'Hao(Hio) 'Hi3(Haoz) 'Hap. Let us define the eigenvectors of E as

e1...ey, then T; =[e; .. .e]\/[/Q]. So that T and T3 can be solved as follows.
Ty = (H32)71H31[e1 e eM/Q} (2.21)

T3 = (Haz) 'Hailer ... ey o] (2.22)

In this example, each transmitter can transmit a single stream by performing [A and the

receivers can retrieve the desired message from the received signal by designing postcoding
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matrices with zero forcing. If the IA conditions given above are fulfilled, then the precoding

and the postcoding matrices satisfy the following conditions.

DiH,;T; =0, Vj#k (2.23)

rank(DIH,, Ty) = M/2, Vk
where Dy, is the postcoding matrix of the k" receiver.

It is clear that the explained closed form solutions are difficult to find for the large
scale networks. Therefore, different IA solutions have been investigated in the literature
(Gomadam et al. [2008b]), (Aycan et al|[2014]), (Akitaya and Sabal [2013]),(Westreicher
and Guillaud| [2012]).

Furthermore, the CSI must be available at the transmitters and /or receivers to compute

the closed form expressions. We will discuss methods for obtaining CSI in the next sections.

2.2 Wireless Channel Models

The characteristic of a wireless channel model can be defined depending on the factors

that affect the received signal power. Main factors are explained as follows.
Path Loss:

The path loss depends on the distance between the transmitter and the receiver. If the
signal travels along a straight line where there is no obstacle between the transmitter and
the receiver, then the received signal is called a line-of-sight (LOS) signal. The power loss
in the received signal is inversely proportional to the square of the distance between the
transmitter and receiver which is also known as free-space path loss. Path loss is usually
represented by traveling distance and path loss exponent which depends on the signal

propagation environment (Goldsmith|[2005]).

Since the path loss increases with the distance between the transmitter and the receiver,

the path loss experienced by a small cell user is comparatively smaller than the macro user.
Shadowing:
The reason for shadowing is the presence of obstacles between the transmitter and the

receiver that attenuate signal power through absorption, reflection, scattering, and diffrac-
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tion. The variation is referred as large-scale propagation effects since the variation due to
the shadowing occurs over large distances. The most common model for the shadowing
effect is log-normal shadowing (Goldsmith) [2005]).

Fading:

The reason of the fading is the multi-path propagation due to the scattered, reflected
and diffracted components of the received signal. The variation caused by the fast fading is
referred as small-scale propagation effects since the variation due to the multipath occurs
over short distances. Multipath fading effect can make the received signal either stronger
or weaker due to the different phases of the received rays, and is modeled as Rayleigh
or Rician distribution. Different power delay profiles are standardized for pedestrian or

vehicular to characterize different environment for multipath fading (Goldsmith|[2005]).

2.3 Channel State Information

IA methods can achieve high number of DoF by designing the precoding and postcoding
vectors to align the interfering terms on the same signal space at each receiver. However,
IA algorithms require CSI to be available at the transmitters and/or receivers to calculate
precoders and postcoders to align the interference generated by each transmitter. This
assumption is problematic for practical systems; therefore, two methods are used to obtain

CSI, which are reciprocity and feedback.

In time division duplexed systems (TDD), forward and reverse transmission share the
same frequency spectrum, but they are separated in time. The channels are reciprocal
in such systems, so that the channel responses are the same in both directions. Uplink
channel measurements are used to obtain precoders with the reciprocity property of the
networks. However, this technique has a number of potential drawbacks. The reciprocity
requires tightly calibrated RF devices in TDD systems (Love et al. [2008]). On the other
hand, exploiting reciprocity of the channel in frequency division duplexed (FDD) system
is not possible, since the uplink and the downlink channels are separated in frequency.

Therefore, the feedback schemes have been implemented for FDD systems.

CSI feedback methods are based on sending the CSI to the transmitters through feed-
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back channels (Ozbek and Le Ruyet| [2014b]). In these systems, receivers estimate the
forward channels by using the training sequences. After the estimation of the forward
channels, receivers quantize the CSI, and feedback it to the transmitters, so that the
precoders and postcoders can be calculated to align the interference. However, quantiza-
tion procedure introduces some distortion on the CSI. Therefore, there are studies that
have focused on designing quantized feedback strategies with low distortion in CSI for [A

(de Kerret et al.|[2013b]), (Rao et al.|[2013]), (Chen and Yuen|[2014]).

2.3.1 Quantization

The fundamental idea behind the limited feedback is to quantize the normalized channel
which is also known as channel direction information (CDI) and channel quality indicator

(CQI) at each receiver due to the limited bandwidth of the feedback channel. The CDI is
Hy;
[P
Vk, Vj, where ||Hp;|| is the channel gain which is assumed to be perfectly known at

obtained by normalizing the channel matrix using its Frobenius norm as }_ij =

all transmitters and all receivers. The quantized CDI is fed back to the corresponding

transmitters. However, quantization process introduces some distortion on the CSI.

There are different channel quantization methods implemented in the literature related
with limited feedback approaches for IA, such as Grassmannian line packing (Krishna-
machari and Varanasi [2010]) and random vector quantization (RVQ) (Chen and Yuen
[2014]). Although RVQ is not a practical solution, it is generally used for the analytical
approaches. It has been shown to be asymptotically optimal for the point-to-point MIMO
link as the number of antennas tends to infinity both at the transmitter and the receiver

sides (Santipach and Honig| [2009]).

In case of RVQ), codewords in codebook are randomly generated for a given number
of feedback bits and the CDI is quantized by selecting the codeword with the minimum
distance. The distance metric used in the quantization of the CDI is an indicator of the
quantization error, because distortion is caused when the CDI is replaced by the selected
codeword. Chordal distance is the most utilized distance metric to obtain the quantized
CDI (Rao et al. [2013], |Chen and Yuen| [2014]). Different channel quantization strategies
have been studied to design the feedback channels for IA (Aycan et al.|[2015]).
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As the size of the codebook increases, the distortion caused by the limited feedback
decreases, but the feedback overhead increases in the network. Therefore, the number of

bits should be optimized depending on the channel conditions.
Codebook Design:

For RVQ, each codebook contains 25+ codewords which are randomly generated, where
By, is the number of quantization bits to quantize the channel between the jth transmitter
and the k*" receiver. The codewords are independent and isotropically distributed over the

unit sphere.
Quantization Metrics:

First, the CDI is obtained by normalizing the channel matrix using its Frobenius norm

as Hy; = ”;7]”“, Vk, Vj, where ||Hy;| . is the channel gain which is perfectly known
ki || g

at all transmitters and all receivers. Afterwards, ﬁkj is vectorized as flkj = vec(ﬁkj) by

stacking the columns of }_ij where I_ij e CN1 VR X1

Then, the codebook for each transmitter and receiver pair is generated using RVQ as

. By .
R 1 ) 27kj _ - 7 NT NR x1
Wi = {ij"'ckj .o Chj } where ‘ ‘ =1, Vi and ¢j; € C™% 77" The codeword

Cij
cz*] that minimizes the given distance metric is selected as the quantized CDI, flkj = cz,*]
Then, c% is reshaped to a matrix form as }:7 € CNr XN Accordingly, the quantized
channel Hy; is calculated as Hy; = C};; X || Hgj| g

Chordal distance and the Fuclidean distance metrics are explained as follows.

1. Chordal Distance Metric (M1): The codeword CZ; that minimizes the Chordal

distance metric is chosen by

cj; = min d(hyj, ¢i,;) (2.24)

2

_ . ~H
where dc(hkpcfgj) =4/1- ‘hkjczj

2. Euclidean Distance Metric (M2): The codeword c}c”; that minimizes the Euclidean

distance metric is chosen by
ci; = min d(hy;, c;) (2.25)
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where de(ﬁkj,c};j) = Hflkj — C}WH
The quantization error caused by RVQ can be modeled as follows (Cho et al|[2012],
Ravindran and Jindal [2008]).

ﬁkk = COS ekkflkk + sin Hkk Zik (2.26)
= V1 — exrhir + /errzin

where ), is the angle between hyy, and ﬁkk and ey, = sin? 0. zpy is the unit vector
representing the direction of the quantization error vector and it is isotropically distributed
in the null space of hyy. ey, is the minimum of 28+ independent B((Nt, Ny, —1),1) random
variables (Jindal [2006]). Accordingly, Eq. can be expressed in matrix form using

the channel matrix as follows.
ﬁkk = COs Gkkflkk + sin Oy Zigg (2.27)

= V1= ewHir + /ernZik

where Zy;, € CVEXNT: is reshaped as matrix using the vector zyy, € CNEe VX1,

In order to generate values for Z = ey, the following cumulative distribution function

(CDF) can be used in inverse transform sampling (Jindal| [2006]).

Fy(z) = P(Z < 2z)=1— (1 — 2Nm N1 —1)2%k (2.28)
2.3.2 Feedback Topologies

CSI can be shared using centralized or distributed feedback topologies. In the cen-
tralized topologies, IA precoding and postcoding vectors are computed in a central unit
and then, these vectors are transmitted to the related nodes. In the distributed topolo-
gies, on the other hand, IA precoding and postcoding vectors are computed locally at each

transmitter or receiver.

There are advantages and disadvantages of both centralized and distributed CSI feed-
back topologies. For instance, centralized topologies can cause feedback delay. On the
other hand, in the distributed feedback systems, the precoding and postcoding vectors are
separately calculated at each related terminals. However, designing an efficient exchange

mechanism between transmitters and receivers is still an open issue.
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Centralized Feedback Topologies:

There are different kinds of centralized topologies depending on the network structure.
For example, an additional central unit is introduced to the network or one particular trans-
mitter can be selected as a central unit with backhaul connections only to the transmitters

(Cho et al.| [2012]).

An example for a centralized topology can be shown in Figure (Rao et al. [2013]).

Forward Link Receivers

S g

Distribute
~ Distribute 1he postcoders D
the precoders
and postcoders e i A
Precoder L
.

and postcoder design /. ~
—(_] 1 o S,
— T [
: y D; T . S

Central Uni

Transmitters

Each transmrtter send
the indices of the ‘
codebooks to the central umt\
Backhaul

Codebook

Feedback Link indices

Figure 2.4: Centralized Feedback Topology

This feedback scheme adapting TA can be explained as follows.

e Fach receiver quantizes all the CSI belonging to all transmitters.
e The codeword indices are fed back to the associated transmitters using feedback link.
e Transmitters forward the indices to the centralized unit through the backhaul link.

e Based on the collected information from all transmitters, centralized unit computes

all the precoding and postcoding vectors.

e Centralized unit distributes the precoding and the postcoding vectors to the trans-

mitters.

e Fach transmitter forwards the postcoding vectors to its receiver using the forward

control link.
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from receivers
to transmitters

The feedback overhead in Figure m can be calculated as K x K x By;.
S

Another centralized feedback topology is based on selecting one particular transmitter

as a central unit that collects all the codeword indices from all other transmitters through

the backhaul as shown in Figure [2.5] (Rao and Lau| [2014]).

Forward Link
y Distribute .
Transmitters i Receivers
The calculated postcoders

precoder and postcoders

to other transmitters [/ N |~ ~---.__
Precoder
and postcoder design

in the central transmitter |~

\\\\\\\\\\\\\\
_____

Backhaul
qu'
N

Quantization|

Feedback Link Codebook
indices

Figure 2.5: Centralized Feedback Topology

Distributed Feedback Topologies:

In the distributed CSI feedback topologies, receivers broadcast their quantized code-
word indices (for the CSI), so that all the transmitters can have all the indices from all the

receivers. Then the transmitters can locally calculate their own precoders and postcoders.

In comparison to the centralized feedback topology, the adaptation of the distributed
feedback topology eliminates the information exchange step between the transmitters and

the centralized unit. The feedback scheme illustrated in Figure [2.6] can be summarized as

follows.

e Each receiver sends its codeword indices for the quantized CSI through the feedback

channels.
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e All the transmitters compute the precoding and postcoding vectors in a distributed

manner.

e The transmitters transmit the postcoding vectors to the corresponding receivers.

Transmitters Receivers

Figure 2.6: Distributed Feedback Strategy

Another distributed feedback topology has been studied using transmitter cooperation

in the study of |de Kerret et al.| [2013a]. In this topology, each transmitter receives its own

CSI and then all the transmitters cooperatively share their received information.

In addition, there are studies to decrease the feedback overhead for the distributed
feedback topology. In case of having incomplete knowledge of the CSI at the transmitters,

the problem of robust precoding and poscoding schemes with the partial CSI has been

investigated in the literature (de Kerret and Gesbert| [2012], |de Kerret et al.|[2013b]).

2.4 Heterogeneous Networks

Heterogeneous networks are one of the next generation network structures since they

provide coverage extension and spectral efficiency (Sambo et al.[2014], Han et al|[2015]).

There is a large number of base station deployment of small cells with different power levels
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(micro, pico or femto cells) in the coverage of the conventional macro cell using the same
spectrum. These small cells are categorized according to their transmit powers, antenna
sizes, access types, and the backhaul connection to the existing cells. The goal of using
low power nodes is to offload the traffic from macro cells, enhance indoor coverage, and
increase the spectral efficiency in the cell edges (Zou et al. [2015]). In addition, the cost of

deploying small cells is lower than the conventional macro cell.

A heterogeneous cellular network composed of micro, pico, femto and macro cell is
illustrated in Figure Solid green lines show useful signals and red dashed lines show

interference signals.

Pico cell area with CRE |
N e |

\A '//' T

~

Figure 2.7: Heterogeneous network architecture.

The evaluation of the heterogeneous network technology started in the beginning of 4th
generation mobile communication system that offers different services in different radio
environments. The number of studies on this type of network is increasing to achieve
the network densification without any wireless communication limitations, i.e. limited
spectrum, limited power. Network densification is composed of dense deployment of small
cells and dense radio spectrum in diverse frequency bands. This wireless evolution is called
5th generation where many different radio access technologies have the interoperability

mechanisms.
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DEPLOYMENT SCENARIOS

There are different types of small cells that are targeted at different types of environ-

ments and traffic. These small cells are classified as follows.

e Pico cells: They are low power cells deployed indoors or outdoors often in a planned
manner in hot-spots or cell-edge areas of the macrocells. Their transmit power ranges
between 23dBm and 30dBm and they can cover 300m or less (Lopez-Perez et al.
[2011]). Pico cells serve an Open Subscriber Group (OSG) and can be accessed by

any user.

e Femto cells: They can be also called as home base station (BS). Their transmit
power is less than 23dBm and they can cover at most 50m (Lopez-Perez et al. [2011]).
They can serve a Closed Subscriber Group (CSG) or OSG.

Since there are many ways to build a heterogeneous network, some important points about
small cells must be considered while planning the deployment of pico or macro BSs. These

points can be listed as follows:

e Transmit power: It should be chosen considering the requirement of both signal

quality and interference management.

e Location: The distance between the small cells and the macro cell should be properly

chosen.

e Deployment density: Since the amount of interference coming from other small cells
is an important factor in the signal quality of the users, the distance between small

cells and their densities should be carefully planned.

The answers of where and how many nodes should be deployed play an important role
in increasing the system throughput (Tian et al.[[2012]). On the other hand, the unplanned
deployment of femto cells increases the interference in the heterogeneous cellular networks
(Zhang et al. [2015]). These problems have been investigated in the study of (Obaid and
Czylwik [2013] by implementing an adaptive power control among the macro and the pico

cells.
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Another critical challenge is the offloading from the macro cell to the small cells. Many
metrics such as signal strength, distance, SNR, bit error rate (BER), traffic load, quality
indicator and some combination of these indicators can be used in order to decide offloading.
In addition, a balanced user association can reduce the load on the macrocell to provide

better services to the macro users.

User association to the cells increases the Quality of Service (QoS) for users and balances
the system load (Park et al. [2013]). Existing cell selection schemes have been mainly based
on the received signal strength interference (RSSI), signal-to-interference-plus-noise ratio
(SINR) or the distance from the nearby BSs to achieve a successful cell association for each

user (Yang et al. [2015]).

In general, pico cells are aimed to be deployed in areas where macro signal is weak.
Therefore, it is more efficient to place the pico cells at the cell edge zones rather than
to place in the cell center of the macro cell (Landstrom et al||2011]). However, even if
there are small nodes at the cell edges, most users in the network continue to receive the

strongest signal from the macrocell BSs.

In order to overcome the disparity between the transmit power levels of macro and
small cell BSs, and make a fairer cell association, users can be shifted to the lightly loaded
small cells by cell range expansion (CRE) techniques (Okino et al.| [2011]), (X.Chu and
Gunnarsson| [2013]). The traffic of the macro cell is offloaded to pico cells by adding a bias
to the pico received powers, so that the network capacity is increased by achieving a fairer
user association among the cells. However, shifting macro users to the pico cells increases
the inter-cell interference, since the shifted users still receive strong signal from the macro

BS.

Accordingly, in the context of heterogeneous networks, interference management has

become more critical to overcome the inter-cell interference problem.

INTERFERENCE MANAGEMENT

There are two types of interference in HetNets as follows:
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e (Co-layer Interference: Co-layer interference is the interference generated from a node
to another node which belongs to the same type of cell in the downlink or uplink
(Lopez-Perez et al|[2009]). For instance, a pico BS generates co-layer interference to

other pico users that are in other pico cells.

e Cross-layer Interference: Cross-layer interference is the interference generated from
a node to another node which belongs to a different type of cell in the downlink
or uplink (Lopez-Perez et al.| [2009]). For instance, a pico BS generates cross-layer

interference to a macro user.

So far there are different kinds of interference mitigation approaches which are inves-
tigated in a multi cell environment. These mitigation approaches are classified into two

major categories:

e Interference Cancellation: It is based on receiver processing. The main aim is to min-
imize the effects of interference at the receiver part. Interfering signal characteristics
are estimated, such as phase, amplitude, angle of arrival. After these estimations, in-
terference can be canceled at the receiving system by using antenna arrays (Rahman

et al.|[2009], Osman et al. [2010]).

e Interference Avoidance: It is based on resource usage in terms of resource partitioning
and power allocation (Bernardo et al. [2010]). In general interference avoidance
techniques are based on resource allocation methods such as frequency allocation
(Tan et al.|[2011]; Cao et al.||2010]), sub-channel allocation (Jung and Lee| 2011},
2010]; Cao et al. [2011]), spectrum allocation and frequency reuse methods (Rahman
and Yanikomeroglu [2010]; Lee et al. [2010]; Akoum et al.| [2010]). These techniques

also can be implemented as a combination.

In addition, self configuration and self-adaptation techniques give promising and effec-
tive results in the absence of the synchronization mechanisms among small cells (X.Chu
and Gunnarsson| [2013]). Power control approach is one of these methods that small cells
can dynamically adapt their transmission power according to the network situation. More-

over, resource allocation can also improve the power efficiency of the network and perform
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the interference control keeping the interference in an acceptable level in the heterogeneous

networks (Bu et al. [2015]).

Interference alignment is also interference mitigation technique that has been imple-
mented for heterogeneous networks to handle the problems caused by the coexistence of
macro and small cells. In the study of Lv et al.|[2010|, a spectral transmission scheme for
femtocell networks, which includes an adaptive subband partition method and an adaptive
IA transceiver has been introduced. Another TA approach on femtocellular networks has
been given in the studies of (Guler and Yener [2011] and |Guler and Yener| [2014] where
the uplink interference is aligned caused by the macro cell users to the closest femtocell
by satisfying the required QoS. Clustering the pico cells based on the strength of inter-
pico interference has been studied to eliminate the interference in the clusters (Seno et al.
[2015]). In the study of Shin et al|[2012]|, beamforming matrices have been sequentially
determined for small cells and macro cells in order to mitigate interference in the hetero-
geneous networks. Beamforming vectors are designed based on the number of antennas in
each base station and it is assumed that the number of antennas of macro base station
is higher than those of pico cells. The transmit beamforming matrices are successively
constructed according to the ascending order of the number of transmit antennas in order
to align the interference vectors in a small dimensional space. However, this method has
been implemented for 2 pico cells, which is a problem in dense deployment of small cells.
This problem has been handled and hierarchical TA has been extended to more than 2 pico
cells by multi stage alignment process with a decrease in per user capacity performance

(Akitaya and Sabal[2013]).

In addition, resource allocation and IA methods have been compared for a femto cel-
lular network (Lertwiram et al.|[2012]). Limited spectrum resources are divided into two
groups for each method. The results indicate that the highest sum-rate can be achieved
by performing resource allocation in low SNR regions. On the other hand, performing TA

maximizes the sum-rate in the high SNR regions.

Furthermore, partial and fully connected interference networks have been investigated
for IA approach to increase the performance of heterogeneous networks due to the random

and distributed deployment of femto cells (Liu et al. [2015]).
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In Chapter [4] and Chapter [5] we study stream selection based IA algorithms for the

heterogeneous networks for the perfect and the imperfect CSI cases.
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Chapter 3

Interference alignment algorithms

3.1 Introduction

Interference alignment is an interference mitigation technique that aligns the interfering
signals by exploiting the available signaling dimensions provided by time slots, frequency
blocks, or antennas. In MIMO networks, TA uses the spatial dimension offered by multiple
antennas for alignment. The key idea is that users coordinate their transmissions by using
linear precoding, such that the interference signal lies in a reduced dimensional subspace

at each receiver.

Since finding the closed form IA solutions can be difficult for large networks, distributed
IA approaches based on iterative schemes in which MIMO TA precoders and postcoders are
iteratively designed have been studied (Gomadam et al. [2008a], Gomadam et al. [2011],
Schreck and Wunder| [2011], Zhao et al.|[2012]). However, the convergence to the global
minimum is not always guaranteed and these algorithms generally require too many iter-
ations in high SNR regions. In addition, these algorithms can allocate a fixed number of

streams to each user.

In order to overcome the disadvantages of the iterative algorithms, different TA solutions
based on stream selection have been presented in the studies of Amara et al.|[2011], Amara
et al.| [2012b] and Amara et al.|[[2012a]. IA is achieved by performing successive orthogonal
projections after the stream selection. Hence, as the stream selection continues, the channel
of each selected stream is guaranteed to become orthogonal to the channels of the previously

selected streams.
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In this chapter, the iterative IA algorithms and stream selection based IA algorithms
that have been addressed in this thesis are presented in detail. First, the system model
is specified for K-pair MIMO interference network. Then, the existing iterative and the
stream selection based [A algorithms are explained. The chapter is concluded by comparing

the performances of the presented IA algorithms.

3.2 System Model

In this chapter, a K-pair interference channel is considered with N7, transmit and Ng,
receive antennas as illustrated in Figure 3.1 In this chapter, it is assumed that perfect

CSI is available at all transmitters and receivers.

BS 1
Hi‘f
q,:
BS 2 Y
HZZ
q;:
BS K
s HKK‘
dyx

Figure 3.1: System Model for K-pair IC.

The output signal at user k is defined as follows.

K
Vi = omeFHiexp + Y | apHix; + 0y (3.1)

&
where, agjHy; is the channel matrix between transmitter j and receiver k with dimension
Ng, x Nr;. Each element of H; includes fading which is modeled as an independent and

identically distributed complex Gaussian random variable with CA/(0,1). ag; denotes the
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pathloss and shadowing. For each receiver k, n; is a N, x 1 vector. Each element of
n;, represents additive white Gaussian noise with zero mean and variance of 2. x;, is the
transmitted signal from the k' transmitter with dimension Ny, x 1 and it is calculated as

follows.

X = \/PkaSk (32)

where Py is the transmit power of BS k. T is the unitary precoding matrix of transmitter
k with dimension N7, X qi, and transmitter k£ can transmit ¢, independent streams with
qr < dj, where dj, = min(Ng,, N7, ). si is the symbol vector with dimension of g5 x 1 and
denoted as s = [Sk1 ... Skq,]] Where E [||sk||2} = 1, and it is assumed that the transmit
power is equally shared between the symbols, E [|skn\2] =1/qkx, n=1,...,q. In addition,

the maximum total number of streams in the network is calculated as follows.
K
r=> d (3.3)
k=1

Desired signals are obtained by multiplying y; with the postcoding vector, Dy with a

size of Nr, X qi. The obtained decoded data symbols can be written as
Vr =Dy (3.4)
The data rate for the i*" stream of the k™ user can be expressed as follows.

Ryi = logo (1 4 y:) (3.5)

where v;; is the SINR for the i** stream of the k" user and it is calculated as
(Pe/qr)o2, diF Hy ti tiFHE d)
difB,,di
Vek=1,.,K, Yi=1,..,q

Vri = (3.6)

where ti) is the i*" column vector of the precoding matrix T}, with dimension Nr, x 1, and
d}'C is the 7' column vector of postcoding matrix Dy, with dimension N. R, X 1. Furthermore,
By, is defined as the interference plus noise covariance matrix for the i*? stream of the k"

receiver and it is given by

qdk K g
Py
B = ) q—kakkaktk ) THE + )0 %H 1D TH + 0Ty, (3.7)
=1, j=1 gq=1
I4i £k

VeE=1,.,K, Yi=1,..q
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Accordingly, the sum rate (SR) is calculated as follows.

K qx

SR =" logy(l + i) (3.8)

k=1 i=1
3.3 Iterative IA Algorithms

The study of |Gomadam et al.| [2008b| has presented the first distributed solution ex-
ploiting channel reciprocity to find MIMO TA precoders and postcoders. The idea of
designing the precoding and postcoding matrices to achieve IA is that at each iteration,
the users minimize the interference leakage which their signal leaks into the desired signal
subspaces of the other users. After the algorithm converges, the TA condition that is de-
fined as DkHijTj =0, Vj,k and j # k should be satisfied and the desired signal spaces
should be free of interference. While the algorithm performs well at high SNR, it can be
far from optimal at low SNR values. This algorithm is also known as minimum interference
leakage (min-Leak) in the literature. Since this algorithm deals with only minimizing the
interference, another algorithm has been studied that iteratively maximizes the per stream
SINR. In the proposed algorithm, perfect alignment conditions are relaxed by eliminating
the assumption that all the precoders are orthogonal to each other. By this relaxation

max-SINR algorithm performs better at moderate SNR levels.

Many IA algorithms in the literature are based on the iterative IA approaches. However,
the disadvantage of the iterative approaches is that they generally require many iterations
in high SNR regimes. Besides, the assumption that the wireless channel remains unchanged

during the data exchange between the transmitters and receivers is unrealistic.

The mentioned iterative algorithms are described in detail in the following sections.

The notation x indicates the value of vector x in the reciprocal channel.

3.3.1 Min-Interference Leakage Algorithm

The minimum interference leakage algorithm iteratively reduces interference by design-
ing the postcoding vectors to minimize the remaining interference in the desired signal

subspace at each receiver within each network. While the algorithm exploits channel reci-
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procity to perform the iteration, it can also be performed in a centralized node using a

centralized topology explained in Section This iterative procedure is given in Alg. [7]

Alg. 7 Min-Leak Algorithm

Input: ag;, Hyj Vk, j

Step 1. Start with arbitrary precoding matrices T;, Vj = 1, ..., K, with the constraint
that the column vectors of each precoding matrices are orthonormal to each other.

Step 2. Compute the interference covariance matrix Q,, (Eq. (3.11), Vk =1, ..., K at

each receiver.

Step 3. Compute the postcoding matrix Dy column by column (Eq. (3.13)), Vk =
1,..., K at each receiver.

Step 4. Reverse the communication direction, passing to the reciprocal network and set
pil
Tr= Dy, Vk =1, ..., K at each receiver.

e
Step 5. In the reciprocal network, compute the interference covariance matrix Q;

(Eq. (3.12)), Vj = 1,..., K at each transmitter which becomes receiver of the reciprocal
channel.

Step 6. In the reciprocal network, compute the interference suppression matrix column

&
by column D; (Eq.(|3.14))), Vj = 1,..., K at each transmitter which becomes receiver of
the reciprocal channel.

Step 7. Reverse the communication direction, returning to the original network, and
$—
set T; =Dy, Vj =1,..., K at each transmitter.

Step 8. Repeat from Step 2 until convergence.

Output: Ty, Dy V&

The main aim is to minimize the total interference leakage at each receiver and can be
expressed as follows.

min [, (3.9)
Dy

where [} is the total interference leakage at receiver k due to all undesired transmitters
(j # k) is expressed as follow.

I, = Tr[DEQ,Dy] (3.10)
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Q. is the interference covariance matrix at receiver k

K
> PjajHy T, T HY, (3.11)
i=1.i#k
For the reciprocal network,
<— +— <« +H+H
}: Pkc%kILkaTkII (3.12)
k=1,k#j
H
where H ;= HkH]
di =[Q] Vi=1,..,q (3.13)

where v;[A] denotes the eigenvector corresponding to the i smallest eigenvalue of the
matrix A. For the reciprocal network,

«—1

—ulQ,] Vi=1,..q (3.14)

3.3.2 Max-SINR Algorithm

Instead of minimizing the interference power at each iteration, SINR is iteratively max-
imized in max-SINR algorithm. In this method, perfect alignment conditions are relaxed
by eliminating the condition that all the precoders are strictly orthogonal to each other.
At each step, the algorithm updates the postcoding matrices in the considered network
and then the communication direction is inverted. In the following step the postcoding
matrices used in the previous iteration become the new precoding matrices and the post-
coding matrices are set as the precoding matrices used in the previous step. The algorithm
continues until the convergence is achieved. This method is summarized in Alg. [§

—
By; is the interference plus noise covariance matrix in the reverse channel and it is
calculated as follows.

— k — el ol —

P
B=> ?:aik Hyty (t4)" (Hy) ™+

(3.15)

b H
where H; = H};
The column vectors of the interference suppression matrix that maximizes the SINR of
the ' stream of the k" receiver are given as

(B )71Hkkti

di = k=1, K, i=1,.., 3.16
k H( 1Hkkt H 1 gk ( )
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Alg. 8 Max-SINR algorithm

Input: ay;, Hyj Vk, j

Step 1. Start with arbitrary precoding matrices T;, Vj = 1,..., K, so that the column
vectors of each precoding matrix are linearly independent.

Step 2. Compute the interferences plus noise covariance matrix By; for stream i of
receiver k (Eq. (3.15)), Vk =1,..., K, Vi = 1, ..., q; at each receiver.

Step 3. Compute the postcoding matrix (interference suppression matrices) Dy column
by column (Eq.([3.16)), Vk =1, ..., K at each receiver.

Step 4. Reverse the communication direction, passing to the reciprocal network and set
H
Tr= Dy, Vk =1, ..., K at each receiver.

Step 5. In the reciprocal network, compute the interference plus noise covariance matrix

pil
B (Eq.(13.15),Vj =1,..., K, Vi =1,...,q; at each transmitter which becomes receiver
of the reciprocal channel.

—
Step 6. In the reciprocal network, compute the interference suppression matrix D;

column by column, Vj = 1,..., K, Vi = 1,...,¢; (similar to step 3) at each transmitter
which becomes receiver of the reciprocal channel.

Step 7. Reverse the communication direction, returning to the original network, and
—
set T; =Dj, Vj = 1,..., K at each transmitter.

Step 8. Repeat from Step 2 until convergence.

Output: Ty, Dy Vk
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In Figure [3.2] and Figure the convergence of the iterative algorithms is illustrated
for low SNR and high SNR values, respectively. It is observed that as the SNR increases,
the number of required iteration increases.

Sum-Rate vs. lterations (SNR = 0dB)
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Figure 3.2: Sum rate vs. number of iterations for SNR = 0dB for N7, = 4, Ng, = 2 and
K=2

Max-SINR algorithm has been interpreted in the study of Schmidt et al. [2009] as a
variation of an algorithm that minimizes the sum Mean Squared Error (MSE) for single
stream per user. In order to maximize the sum utility that depends on rate or SINR metrics,
a weighted sum MSE beamforming objective function is used to compute the beams. The
weights are updated according to the sum utility objective function. A distributed approach
as in the max-SINR algorithm is implemented by pricing the interference coming from
the other transmitters. To maximize the utility objective function, the MSE weights are
adapted according to the user priorities. So that the maximization is achieved in a two stage
algorithm. In the first stage, beams are adapted in an inner loop with fixed weights and in
the second stage these weights are updated to minimize a weighted sum MSE objective.

Another study on [A that maximizes the network sum rate is given in the study of [Shi
et al. [2011]. A distributed linear transceiver design approach has been implemented by the
weighted minimum mean square error (WMMSE) algorithm to utilize maximization in an
interfering broadcast channel. Interference is treated as noise coming from the other cells
and the weighted sum-rate is maximized. The main goal is to find the precoding and the
postcoding matrices {T,D} that maximize the system utility. The utility maximization
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Sum-—Rate vs. Iterations (SNR = 30dB)
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Figure 3.3: Sum rate vs. number of iterations for SNR = 30dB for N7, = 4, Ng, = 2 and
K=2

problem is the weighted sum rate maximization that can be formulated as follows.

hax Zszl ST wiloga (1 + ki)

where wy; denotes the weight for the priority of the " stream of the k' user. This
problem formulation is transformed to an equivalent sum-MSE cost minimization problem
by defining a weight matrix. The solution is based on an iterative approach which requires
only local channel knowledge and converges to a stationary point of the weighted sum rate
maximization problem.

In the study of Zhao et al.| [2012], max-SINR algorithm has been used as an initial step
to determine the precoding vectors. Distributed convex optimization based on TA method
has been studied in both single and multi-beamn cases to maximize the weighted sum rate
problem given in Eq. . Since the rate function is non-concave, this formulation is
hard to solve. Therefore, linear receiver filters as auxiliary optimization variables have
been introduced and this problem is transformed into a convex problem. In order to solve
this convex optimization problem, an algorithm consisting of two stages is implemented,
as [A phase and post-alignment optimization phase. The output of the first stage is used
as the input for the second stage.

The first study TA solution for cellular networks is given in the study of [Suh et al.
[2010]. The authors apply sub-space IA approach to cellular systems in order to increase
the throughput of the network considering the cell-edge area. In the study of [Schreck and
Wunder| [2011], max-SINR algorithm (Gomadam et al.|[2011]) is extended for the cellular
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networks. In this study, degrees of freedom are analyzed for MIMO cellular systems for
different number of antennas per base station.

A different family of TA is based on successive stream selection where the least inter-
fering stream is selected in the null space of the previously selected streams at each step
(Amara et al| [2011], Amara et al. [2012b]). Such approaches have been inspired from
user selection problems (Yoo and Goldsmith [2006], Sun and McKay| [2010]). They are not
iterative, since they perform IA by successively selecting the streams as long as the total
sum rate increases.

3.4 Stream Selection Algorithms

In stream selection based TA algorithms, each stream is selected in the null space of
the previously selected streams at each step where streams are computed from the singular
value decomposition (SVD) of all the channels, (axHyr) = UkSkaH. In addition, the [**
column vector of Vi and Uy are denoted as V% and ui/,, respectively. The interference is
aligned after each stream selection step using orthogonal projections.

There are two kinds of interference between the streams. The first one is the interference
from the selected stream to the unselected streams and the second one is the interference to
the selected stream from the unselected streams. Therefore, two types of virtual channels
are defined as Virtual Receiving Channels (VRCs) and Virtual Transmitting Channels
(VTCs) (Amara et al. [2012b]). These can be expressed as follows.

e Virtual Receiving Channel: VRC is the channel between the transmitter k£ and the
receiver k* including the postcoding vector of the selected stream [*, uﬁ;.

VRC[.;, = (u).) "Hyy (3.17)

e Virtual Transmitting Channel: VT'C is the channel between the transmitter £* and
the receiver k including the precoding vector of the selected stream [*, Vﬁ;.

VTCL,. = Hyp-vh (3.18)

For each selected stream, multiple VRCs and VTCs are designed by using the pre-
coder and decoder vectors, respectively. These vectors are obtained from the SVD proce-
dure. Precoding and postcoding matrices are constructed from the precoding and post-
coding vectors corresponding to the selected streams, and they are expressed as Ty« =

Vi, Vi, oy V5] and Dy+ = [uf., ul., ..., ut], respectively.

Therefore, after the virtual channels of user k£* are obtained, the impact of the selected
stream of user k* to the unselected streams is reduced by orthogonal projections. More
precisely, the space spanned by the unselected potential precoding and postcoding of each
user k # k* is projected orthogonally to the corresponding VRC and VTC of the selected
stream [* belonging to user k*. Projected matrices are denoted by H%k and, initially,
H; = Hyy.

The vectors of the projected matrices Hék, Vk £ k*, are in the null space of the VRC
and VTC of all previously selected streams. The projection procedure is implemented in
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two steps. In the first step the interference coming from the remaining streams to the
selected stream is reduced by projecting the channel matrices Hﬁk generated orthogonally
to the VRC, (ul.)”Hj, and it is calculated as

1 _plpl
H = HAP o ) (3.19)
where P(luﬁf*HHk*k) is the orthogonal projection matrix parallel to matrix (u?)HHkk and

can be expressed as

PJ- I* \H :IN — ((uge**)HHk*k)H((u?*)HHk*k) (320)
(W) ) — TV [((ul ) H B ) ||

The second step of the projection procedure is to reduce the interference generated to
the remaining streams and consists in projecting the channel matrices Hﬁk generated to
the VTC, Hkk*vg*, and it is calculated as

1L _pl 1
where P(LHMW;:*) is the orthogonal projection matrix parallel to matrix Hkk*v?* and can

be mathematically expressed as

1 e (e v ) (Hygevi )" (3.22)
(Hkk*vf*) B NRk ‘ (Hkk*VZ;) ‘2 . .

An illustration of the explained interference alignment process is given in Figure [3.4]
In this figure, it is assumed that the first stream of the first user is selected. The channel
of the second user is orthogonally projected to both VTC and VRC of the selected stream.
In this way, when another stream is to be selected, its channel is guaranteed to become
orthogonal to the channels of the previously selected streams and, thus, it does not generate
any interference to them.

The main objective is to mitigate the interference while finding the best stream se-
quence. The stream selection scheme which maximizes the total sum rate given in Eq. (3.8])
of the network can be formulated as follows.

{(TszZ)}ke[l,...,K] = argmax (SR) (3.23)
T, Dy

The interference alignment procedure for a given selected stream [* of user £* is sum-
marized in Alg. 9l The worst case computational complexity of Alg. [0 is calculated as
follows (Golub and Van Loan|[1996]), (Rosen| [2002]).

O(K(NM?+ N*M + M?)) (3.24)

where M = %%X(NTk) and N = Iré%x(N R,,) are the maximum number of transmitter and

receiver antennas, respectively.
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Figure 3.4: The visualization of the interference alignment process for K = 2 MIMO
network.

Alg. 9 Interference Alignment Algorithm

Input: aig, HkJ‘k, Hj.- and Hy-p VE; vg;, uf;, Ty, Dy
Project orthogonally to VRC, (ul. )" Hy-j,

H}, = Hé-kPi_f*HHk*k for k =1,..., K where k # k*
Project orthogonally to VTC, Hkk*vf*

Hj, = Pﬁkk*vg* Hj, for k= 1,..., K where k # k*
Compute the SVD of projected matrices

(e HE) = UpSp Vi for k=1,..., K
Update

Tpr = [Tk~ vg;]

Dj- = [Dg- ul.]

Output: H;, Vi, Uy, and S Vk; T, Dy
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3.4.1 Exhaustive Search of Successive Null Space Stream Selection

The objective of the stream selection algorithms is to select the streams successively
while maximizing the sum rate. The best stream sequence among all the possible stream
sequences can be found by an exhaustive search (Amara et al. [2012b]). Streams, stream
sequences and the related sets are defined as follows.

Each stream ¢ can be expressed as m; = (k;,1;) where k; € {1,..., K}, Lie {1,...,qx}
and ¢ € {1,...,7}. The set of all possible stream sequences can be defined as follows.

O=0,U...UP;U...UD, (3.25)

where ®; is the set of all permutations of length j € {1,... 7} given by

D :{71' = (mme...75)|

(3.26)
Vi,i' € {1,..., 5}, m # mifi % i’}

The number of elements of the set ® is calculated as follows.

@] < Z (:)

1=K

x
where < > is the number of y permutations of x elements.

Alg. determines the precoding and the postcoding matrices for a given stream se-
quence 7. It also calculates the sum-rate achieved by the selection of this sequence.

Using Alg. [10} Alg. performs an exhaustive search which tries all relevant stream
sequences and finds the sequence that yields the greatest sum-rate.

The most challenging drawback of the exhaustive search is the complexity that depends
on the number of streams. The total number of calls to Alg. [9] in the exhaustive search
algorithm can be formulated as follows.

> ( (M) * -~ ) (3.27)

=1 The number of times Alg. E]

The total number of is called for each stream sequence

stream sequences of length 4

Since this brute force approach is too complex to implement in systems with large
number of streams, an approach that has a lower complexity and a closer performance to
the exhaustive search is required.

3.4.2 Successive Null Space Stream Selection (SNSSS)

In this algorithm, only one stream sequence is constructed by successively selecting
the streams having the highest singular values (i.e., the strongest streams) (Amara et al.
[2012b]). While the streams are selected, their sum rate contributions are checked whether
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Alg. 10 Stream Selection Algorithm

Input: ag;, Hyj Vk,j, ©
Initialize the variables
T=0;D=0;i=1;q =0and H{, = Hy for k=1,...
Compute the SVD of all the channels
(aeHin) = UpSp VI for k=1,... K
while i < |7| do
Pick the ith stream in 7
(k*, 1) =m
Update
Qe = Qi + 1
Apply Alg. [9]
Increment 4
t=1+1
end while
Calculate the sum-rate SR, given in Eq.
Set the variables for the selected streams
(Ti), =Tk, (Dg), =Dpfork=1,.. K
Output: (T4),., (D), Yk

Alg. 11 Exhaustive Search

Input: ag;, Hyj Vk, j
Initialize the set ®
for each stream sequence m € ® do
Apply Alg.
end for
Select the best stream sequence according to Eq.

7% = argmax SR,
mell

T;Z = (Tk)ﬂ'*7 D;:, == (Dk)ﬂ'* fOI‘ k — 1, ,K
Output: T, Di Vk
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the system throughput increases or not. Since the transmit power is equally shared between
the streams, adding a stream to a user already served does not necessarily increase the
total sum-rate. The maximum singular value that increases the sum rate is chosen at each
iteration from the set , where €2 is the set which keeps track of the eigenvalues of the
available streams. In addition, the constructed stream sequence at the end of the algorithm
is denoted as W.

The whole procedure is described in Alg.

The complexity in terms of the number of calls to Alg. [9]by SNSSS is r. This algorithm
has a very low complexity, and is a suboptimal solution due to the searching of only one
stream sequence which is one of the searched stream sequence by the exhaustive search.

3.4.3 Enhanced Successive Null Space Stream Selection (ESNSSS)

In the SNSSS algorithm, just one specific path is constructed by choosing the largest
singular value that increases the sum rate. However, this strategy can lead to a suboptimal
solution. Therefore, constructing different initializations rather than the maximum stream
value can give a higher sum rate values.

In order to decrease the complexity of exhaustive search and to overcome the subop-
timality of SNSSS algorithm, ESNSSS algorithm introduces different initialization points
for the search process of the streams. Fach stream sequence is initialized by all possible
streams which are initially computed singular values and they are kept in set 9. This
algorithm can be summarized as in Alg. 13| (Amara et al. [2012Db]).

The complexity in terms of the number of calls to Alg. @] by ESNSSS is 2.

3.5 Performance Evaluation

The iterative and the stream selection based [A algorithms, such as max-SINR, min-
Leak, SNSSS and ESNSSS have been implemented for K-pair MIMO interference channels
(Gomadam et al.| [2011], Amara et al. [2011], |Amara et al.| [2012b]). The comparison of
these algorithms is given in Figure for K = 3 and N7, = Npg, = 2. It is assumed that
the transmit power for all the BSs and the received SNR for all the users are the same.

Figure shows that the exhaustive search has the best performance in terms of the
average sum rate in high SNR regions. On the contrary, SNSSS algorithm has the lowest
performance. The reason is that starting with the best stream does not always yields the
higher sum-rate. In addition, it can be observed that ESNSSS, minimum interference leak-
age (min-Leak) and maximum SINR (max-SINR) algorithms have the same performances
in higher SNR regions.

The average number of selected streams is given in Table 3.1} It can be observed that
the exhaustive search selects more streams than ESNSSS and SNSSS algorithms while
SNSSS selects fewer stream on the average. In addition, the average total number of
streams selected by the max-SINR and the min-Leak algorithms is 3, since they select
a fixed number of streams per user as 1 for the considered configuration. Although the
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Alg. 12 Successive Null Space Stream Selection

Input: ag;, Hyj Vk, j
Initialize

U=0;T=0;D=0; g =0and Hy;, = Hy, for k =1, ..., K;
SRy = 0;finish = FALSE

Compute the SVD of all the channels
(apeHG) = UpSiVE for k=1,... K
Construct 2
Q={Sk)(l,)|k=1,...,Kandl =1,...,dy}

while finish = FALSE do
Construct the set of streams which increases the sum-rate

Q' = {Sk(l,1) € Q| SRy > SRy}
if Q' # () then

(k*,1*) = argmax Sk(1,1)
(k,l) such that Sg(1,1)eY

Update
U =vu (k"%
Qrr = Q= + 1
Apply Alg. [9]
Reconstruct 2
Q={(Sk)(l,)|k=1,...,K and l =1, ...,d and (k,l) ¢ U}
else

finish = TRUE
end if

end while

Set the precoding and the postcoding matrices for the constructed sequence
T, =Ty, D, =Djfork=1,...K

Output: T, D}, Vk
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Alg. 13 Enhanced Successive Null Space Stream Selection

Input: ay;, Hy; Yk, j
Initialize the set of all streams
Qo={(k,D|k=1,..,Kandl=1,...,dg}
for each stream (k*,1*) € Qo do
Initialize the variables to perform stream selection starting with (k*,1*)

U =0;T=0;D=0; g =0 and Hy, = Hyy, for k = 1, ..., K; finish = FALSE
Compute the SVD of all the channels

(apeH,,) = UpSpVE for k=1,..., K
Set the stream to be selected initially (k*,1*)
U =UU(k* 1)
Qe = qr= + 1
Apply Alg. [0
Construct €2
Q={Sp)(,)|k=1,...Kand =1, ....d;}
Run While loop of Alg.

Compute (Tx)w, (Dg)g and SRy for the stream sequence W

end for

Select the best stream sequence according to Eq. (3.23)

U* = argmax SRy
v

T;’; = (Tk‘>\ll*7 DZ‘ = (Dk)\If* for k = 1’ ’K
Output: T, D Vk
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25 T T T T T T T
—#— Exhaustive Search
—+&— ESNSSS (Amara et al. (2012))
—A— SNSSS (Amara et al. (2012))
20| —©— max-SINR (Gomadam et al. (2011))
—H— min-Leak (Gomadam et al. (2011))
g
% 151 b
o
£=)
Q
T
T
€ 10 b
>
(7]
Il Il Il

15 20 25 30

SNR (dB)

Figure 3.5: Sum rate vs. SNR for K = 3, Ny, = Ng, =2

average total number of selected streams by the iterative TA algorithms is higher than those
of stream selection based algorithms, the performances of the ESNSSS and the iterative
algorithms are almost the same in higher SINR regions. This can be explained by the fact
that the stream selection based algorithms can select different number of streams for each
user at each channel realization which is not the case for the iterative algorithms. For the

Table 3.1: The average total number of selected streams

SNR(dB) | Exhaustive Search | ESNSSS | SNSSS
-10 4.89 4.36 4.21
) 2.71 2.50 241
30 2.10 2.02 2.00

stream selection based TA algorithms, it is possible that no stream is selected for a user in
some cases. Mostly, this behavior is undesired; therefore, in the following chapters, we will
propose solutions to avoid this drawback.

3.6 Conclusion

In this chapter, both iterative and stream selection based interference alignment algo-
rithms have been explained for K-pair MIMO interference channels for the same received
SNR.
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In the iterative algorithms, namely min-Leak and max-SINR, the precoding and post-
coding matrices are obtained at the end of the iterations; whereas, in the stream selection
based algorithms, the column vectors of the precoding and postcoding matrices are con-
structed after each stream selection. Furthermore, iterative algorithms either minimize the
interference or maximize the SINR; however, stream selection based [A algorithms aim
to achieve both at the same time. The interference is mitigated by performing orthogo-
nal projections and the sum-rate is maximized by selecting a stream which increases the
sum-rate at each stream selection.

The comparison of the algorithms demonstrates that the max-SINR performs better
in lower SNR regions. In higher SNR regions, the performances of max-SINR, min-Leak
and ESNSSS algorithms are almost the same. In addition, ESNSSS can achieve better
performance than SNSSS with an extra complexity while getting closer to the performance
obtained by the exhaustive search. Furthermore, stream selection based IA algorithms
can adaptively select different number of streams depending on the selection criteria while
iterative [A algorithms always select a fixed number of streams.
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Chapter 4

Stream selection based interference
alignment for heterogeneous
networks

4.1 Introduction

In this chapter, stream selection based TA methods are investigated for heterogeneous
networks with different deployment scenarios for the pico cells. Since the purpose of using
pico cells is to enhance the spectral efficiency or to increase the capacity in areas of high
demand, pico cells can be deployed very close to each other or far away from each other.
Therefore, both the partial and fully connected interference networks (Liu et al. [2015]) have
been investigated for the stream selection based TA approaches to increase the performance
of the heterogeneous networks by selecting at least one stream for each user.

In this context, two different scenarios are considered in this chapter. In the first
scenario, the pico cells are deployed far away from each other where the interference is
weak among the pico cells. In the second scenario, the pico cells are deployed closer to
each other where the interference is strong among the pico cells. Therefore, we propose
two different stream selection based IA algorithms for these two different scenarios. The
objective of stream selection algorithm is to select a stream sequence composed of streams
depending on the selection criteria.

In the fist part, a partial connected interference network is considered. The interference
generated from each pico cell to the users of other pico cells is negligible in this scenario,
since the pico cells are separately deployed from each other. Therefore, interference align-
ment algorithm, Alg[d] is not performed among the pico BSs. For this kind of scenarios,
the ISNSSS algorithm is proposed where the initial streams of the constructed stream se-
quences are selected among the pico streams. In other words, to build the set of tentative
stream sequences, the streams are initially selected from the users of pico cells, continuing
with the strongest streams that increase the sum rate. If it is not possible to select a
stream that positively contributes to the sum rate, a stream that decreases the sum rate
the least is selected. The process is repeated until each user receives at least one stream.
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The constructed stream sequences are compared and the sequence leading to the greatest
sum rate is chosen. The main aim is to increase the overall rate of the system by designing
the precoding and decoding matrices while mitigating the interference and assigning at
least one stream per each user. The performance of the ISNSSS algorithm is evaluated for
one pico cell (Aycan et al.|[2014]), two pico cell (Aycan Beyazit et al.| [2015] and three pico
cell cases.

In the second part, the pico cells are deployed closer to each other. Therefore, a
fully connected interference network between pico cells is considered where the mutual
interference between pico cells is very strong. Therefore, TA is performed between all
pico cells. In such networks, the best stream sequence achieving the highest sum-rate
can be found with exhaustive search by considering all possible combinations. However,
exhaustive search is too complex due to the large search space. Thus, the main goal
of this study is to decrease this search space. To that end, we propose the advanced
successive null space stream selection (ASNSSS) algorithm which decreases the complexity
significantly while keeping the performance relatively close to that of the exhaustive search
(Aycan Beyazit et al. [2016a]). In addition, the proposed algorithm is designed in such a
way that it guarantees the selection of at least one stream from each user while mitigating
the interference among the selected streams. The performance of the ASNSSS algorithm
is evaluated in different scenarios composed of one, two and three pico cells which are
deployed close to each other.

In this chapter, we first introduce the system model in Section[4.2] Then, we propose the
ISNSSS algorithm for the partially connected interference networks in Section and we
propose the ASNSSS algorithm for the fully connected interference networks in Section 4.4
Next, we evaluate the performance of the proposed algorithms in Section [4.5] Finally, we
conclude the chapter in Section

4.2 System Model

A K-pair heterogeneous network is considered composed of pico cells and a macro cell
as illustrated in Figure . Each pair k has N7, transmitter antennas and Ng, receiver
antennas. In addition, the transmit power of the macro and pico BSs are different. For the
sake of simplicity, macro BS - macro user pair is defined as the pair k = 1, and pico BS -
pico user pairs are kept in the set k € I' = {2,..., K'}. It is assumed that the required CSI
is available at the transmitters in a centralized topology as explained in Section [2.3.2]

The system model used in this chapter is the same as the system model given in
Chapter For instance, the received signal at user k, the SINR of the i** stream of
the k" receiver and the total sum rate (SR) can be calculated using Eq. , Eq. ,
Eq. , respectively.

The main objective of the stream selection based IA algorithms is given in Chapter
by Eq. . Due to the heterogeneity, such as different transmit power levels, there can
be an unfair stream selection for the pico cell users. To avoid this problem, an additional
constraint which allows allocating at least one stream to each user is introduced to the
main objective. The stream selection scheme which maximizes the total sum rate of the
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Figure 4.1: System model for MIMO heterogeneous network

network while guaranteeing at least one stream selection from each user can be formulated
as follows.
{(T%, DZ)}k:L...,K = argmax (SR) (4.1a)
T, Dy
st. q=>1, Vk (4.1b)

4.3 Partially Connected Interference Networks

In this section, we propose the ISNSSS algorithm for the partially connected interference
networks. The algorithm only considers the stream sequence starting with a pico stream.
After a pico stream is selected, the strongest streams with a contribution to the sum rate
are selected. In each selection step, we perform successive orthogonal projections to the
null space of the selected stream. The key point of this approach is to determine the
stream sequences that give the highest sum rate among all the stream combination paths
initialized by the pico streams. In the following, improved stream selection is explained in
detail.

Improved Successive Null Space Stream Selection (ISNSSS) Algorithm

ISNSSS algorithm first constructs stream sequences starting with a pico stream, since
the average SNR of the pico users is higher than the macro user. The related justification
is given in Appendix
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The initialization set that only includes pico user streams is =. After the first stream is
selected from pico streams, stream with the maximum singular value which increases the
sum rate is chosen from the set €2, which keeps the track of all the available streams. If
there is no such a stream, a stream that causes the minimum sum-rate decrease is selected
from a user with no selected streams. The construction of the stream sequence continues
until no more streams can be selected. The constructed stream sequence at the end of the
algorithm is denoted as W.

The whole procedure is described in Alg.

Alg. 14 Improved Successive Null Space Stream Selection (ISNSSS)

Input: ag;, Hyj Vk, j
Construct the initialization set =
E={(k,))|keTandl=1,..,d}
for each stream (k*,1*) € = do
1. Initialize the variables
U =0;T=0;D=0; g =0and Hy;, = Hy, for k = 1,..., K; finish = FALSE
2. Compute the SVD of all the channels
(o Hyy) = UkSka fork=1,...,.K
3. Set the stream to be selected initially (k*,[*)
U =wU (k%1%
Qe = e+ 1
4. Apply Alg. [9]
6. Construct
Q={(Sk)(l,))|k=1,...Kandl=1,...,d}
8. Continue selecting streams (This step is in the following page)
9. Compute (Ty)w, (Dg)y and SRy for the stream sequence ¥

end for
Select the best stream sequence according to Eq. 1}
U* = argmax SRy
U
TZ = (Tk)qj*7 D]: = (Dk)‘l/* for k = 17 7}'{
Output: T, D Vk
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8. Continue selecting streams

while finish = FALSE do
8.1. Compute the SRy

8.2. Select a stream
Construct the set of streams which increases the sum-rate
Q = {Sk(l,l) € Q| SRyyk,) > SRq,}
if Q' # () then

(K1) = argmax Sk(l,1)
(k,1) such that Sy (1,1)e

else

Construct the set of streams which decreases the sum-rate the least from the users
with no stream

, 0, if g #0
Q =
k {Sk(l/, l/)| I'= arggnin {SR\p - SR\IIU(k,l)}} 7if qr = 0
fork=1,... K

Q' =0 U...UQy

if Q" # () then
(K1) = argmin {SRy — SRyuk) }
(k,I) such that S(1,1)eQ
else
finish = TRUE
end if
end if

8.3. Continue stream selection
if finish = FALSE then
8.3.1. Update
U=VUE, ), g =qw+1
8.3.2. Apply Alg. [9]
8.3.4. Reconstruct €2
Q={Sk)(,)|k=1,...,Kand l =1,...,dy and (k,l) ¢ ¥}
end if

end while
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The Complexity of the ISNSSS Algorithm

An upper bound on the number of Alg. [9] calls in the ISNSSS algorithm can be formu-
lated as follows.

K
E dk X r (4.2)
~—
k=2 Maximum number of times Alg. 0]
N is called for each stream sequence

The total number of
stream sequences

4.4 Fully Connected Interference Networks

In this section, we propose an algorithm for the fully connectivity interference networks
where pico cells are deployed closer to each other.

The proposed algorithm for the fully connected interference networks is developed by
analyzing the data collected from extensive exhaustive searches. It performs the selection of
a stream sequence among a predetermined set of sequences in order to reduce the complexity
while guaranteeing at least one stream selection from each user as given in Eq. .

The construction of the stream sequences based on the regular structure is expressed
after the exhaustive search is explained.

4.4.1 Exhaustive Search for Heterogeneous Networks

Even if the exhaustive search is explained in the previous chapter, there is an additional
constraint which is selecting at least one stream for each user. Since the set ®; defined
in Eq. includes all possible stream sequences, an additional set is defined as the set
IT in which all stream sequences including at least one stream from each BS-user pair are
kept. The set II can be defined as follows.

H:{ﬂ': (mimg...mj) | me @ j> K,
(4.3)
Vk,3m € {1,...,5} such that kn = k}

In other words, 7 is a stream sequence of length j which is constructed by including at
least one stream from each user k. The maximum number of stream sequences in the set

IT is calculated as follows.
T
r
m=3 (1) (4.4)

i=K

The algorithm is the same as Alg. [II] in Chapter [3] with only a difference in the con-
struction of the sets. The main drawback of the exhaustive search is its complexity that
depends on the number of streams. An upper bound on the number of Alg. [J] calls by the
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exhaustive search can be formulated as follows.

> <<'>'> " - ) (15)

i=K The number of times Alg. []is

lled fi T
An upper bound on the number of called for each stream sequence

stream sequences of length

4.4.2 Advanced Successive Null Space Stream Selection (ASNSSS) Al-
gorithm

The algorithm is developed by analyzing the data collected from extensive exhaustive
searches. It performs the selection of a stream sequence among a predetermined set of
sequences in order to reduce the complexity while satisfying Eq. . This predetermined
set is composed of the sequences with the highest probability of occurrence while performing
the exhaustive search. The sequences in this predetermined set have a regular structure
which can be achieved by selecting the initial streams from the users that have higher SNR
values. Counsequently, the proposed stream selection approach starts with pico streams,
because pico users are more likely to have higher SNR values on average as justified in
the appendix. The construction of the stream sequences based on the regular structure is
expressed as follows.

Generated stream sequences are kept in set I14 in which there can be multiple stream
sequences initialized with the same pico stream. For this purpose, we define the following
sets constructed for each pico user k' € T.

o = = {7[' = (7['17T2...7Tdk,) |7T € P;Vie {1,...,dk/},ﬂ'i = (k‘/,li)
for some [; € {1, ... ,dk/}} (4.6)

where the definition of the set ® is given in Eq. (3.25]).

In other words, the set =5/ includes stream sequences m which are composed of stream
permutations of length djs that belong to pico user k’. Therefore, the number of elements
of Ek:’ 18 |Ek/’ = dkl'

o Ty = {7r = (mm2.. .7T|p|,2) | e ®;
Vi€ {1,...,[0| =2}, k € D\ {K, 2}, and k; # k; ifi;«éj} (4.7)

The set Tj pr has two indices. Index %’ is used to leave out the streams of pico user &’
which are considered in construction of Z; and index A’ is used to leave out the streams of
pico user b’ one of which is considered in construction of set Ay/. The number of elements
of this set is calculated as follows:

| T

=(T-2x ] d (4.8)

i€D\{k',h'}

Note that if |F| = 2, Tk;’,h’ = @
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. A:{p\p:(m) and k,lzl} (4.9)
Since set A only includes the strongest stream of the macro user, |A| = 1.
o Ay = {p| p=(h,l)andl = 1} (4.10)

In addition, the number of elements of this set is |Ax/| = 1. That is to say, the set Ay
includes the strongest stream of the remaining pico user.

Based on the above sets, I14 is constructed as follows:

HA = U Ek’ X U Tk’,h’ x A x Ah’ (411)
k'el’ h'el\{k'}

Furthermore, the number of elements of set II4 is computed as follows.

Al =D qu! x do(r=2tx ] & (4.12)

k'el W eT\{k'} i€\ {k',h'}

While constructing set Il14, interference alignment is implemented after the selection
of each stream. Following the selection of a stream sequence from Il,4, it might still be
possible to increase the sum-rate further by selecting additional streams. This is realized by
attempting to select the strongest streams from the set which is composed of the remaining
unselected streams and defined as follows:

Q= {(Sk)(l,l)\k =1, K, 1 =1,...dy and (k, 1) ¢ w;}

where 7% is the sequence of the selected streams.
The whole procedure of the algorithm ASNSSS is explained in Alg. [T5]

The Complexity of the ASNSSS Algorithm

The number of Alg. [J calls at each stream selection step of the proposed algorithm can
be formulated as follows:

(de/!x S(r-2tx [ dix o ) (4.13)

k'el’ h'er ) ZIEF , Maximum number of times
B! k! i£k! ji#£h Alg.[lis called

Total number of stream sequences
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Alg. 15 Advanced Successive Null Space Stream Selection

Input: oy, Hy; Vk, j

Initialize the set II4

for each stream sequence m € 114 do
Apply Alg.

end for

Select the precoding and postcoding matrices for the permutation that maximizes the
sum-rate

7y = argmax SRy
welly

Ti = (Tk)ar, Dr = (Dk)n; fork=1,...,.K
Initialize the variables

finish = FALSE
Construct 2

Q= {(Sk)(l,l)\k —1,.,Kandl=1,..,d,and (k1) ¢ 71':"4}
while finish = FALSE do

Construct the set of streams which increases the sum-rate

Q = {Sk(l,l) € Q SRyy(r,y > SRq,}
if Q' # () then

(k*,1*) = argmax Sk(L,1)
(k,l) such that Sg(1,1)e

Update
=1y U (K5, 17)
QG = qr= + 1
Apply Alg. [9]
Reconstruct €2
Q= {(SO@OIk=1,... K and I = 1,....dg and (k,1) & 73 }
else
finish = TRUE
end if
Set the precoding and the postcoding matrices for the constructed sequence
=Ty Dy=Dyfork=1,.. K

end while
Output: T, D Vk
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4.5 Performance Results

In this section, the performances of the proposed algorithms for both fully and par-
tially connected interference networks are given with different scenarios including different
number of pico cells.

We consider scenarios where there are 2 transmit antennas for each pico cell and 4
transmit antennas for the macro cell. Each cell has one user that is randomly placed inside
its coverage area and there are 2 receive antennas at each user.

In order to study the performance results of the proposed algorithms, pico cells are
deployed at the cell edge regions under the coverage of a macro cell. System behavior is
observed by varying the locations of the pico BSs with respect to macro BS. More precisely,
pico BSs are initially placed relatively close to the macro BS and they are shifted together
with the pico users from the inner area to cell edge area of the macro BS which is fixed at
location (0,0). Locations of the pico cells are identified using the ratio d/R where R is the
macro cell radius and d is the distance between the macro BS and each pico BS. Since, in
practice, pico cells are generally deployed closer to the cell edge areas of the macro cells, the
ratio ranges from 0.6 to 1. In addition, the interference level between pico cells generated
to each other is investigated by changing the distance between the pico cells, L, while d/R
is fixed. Simulations are carried out using the system parameters listed in Table

Table 4.1: System Parameters

Parameter Name ‘ Parameter Value
Macro BS Power 43dBm
Pico BS Power 24dBm
Bandwidth 10MHz
Carrier Frequency 2.1GHz
Noise Power —174dBm/Hz
Macro Cell Radius 1000m
Pico Cell Radius 100m
Path loss (macro) 128.1 + 37.6logl0( R, (km))dB
Path loss (pico) 140.7 + 36.7logl0( Ry (km))dB
Shadowing std. dev. (macro) 8dB
Shadowing std. dev. (pico) 10dB

The received SINR by the macro user is illustrated in Figure

Table 4.2: Received SNR (dB) and SINR (dB) of the Macro User for Different d,,, Values.

dpy, = 150m dpm = 200m dpm = 250m
SNR | SINR | SNR | SINR | SNR | SINR
26.31 | 2540 | 27.61 | 26.63 | 28.92 | 28.03

118



4.5. PERFORMANCE RESULTS

SINR(dB)
70
800

60
600 -

150
400

140
200

130

y—axis
000000s
0000000:
000s00s:
ccssese
ove:
oo
r00sss

_ooee
 coeeeess:

 coeeseess
 cceesesss

120
—-200+

110
—400 -

0
-600 -

-10
-800 -

-20
SL000 - - el Ll
-1000 -800 -600 -400 -200 O 200 400 600 800 1000

Figure 4.2: Received SINR of the macro user when pico BSs at d/R = 0.8

The received SNR and SINR of the macro user are given in Table for different
distances between the macro user and a pico BS, d,,. It can be observed that the macro
user receives negligible interference from the pico BSs for d,, > 250m. Therefore, TA
algorithm, Alg. [9] is applied to mitigate the interference generated from pico BSs to the
macro user when d,, < 250m. Since the SNR and the SINR can vary with the different
transmit power values, this condition on d,, may change for different transmit power values.

4.5.1 Scenarios for Partially Connected Interference Networks

For partially connected interference networks, we evaluate the algorithm ISNSSS con-
sidering three different scenarios including different number of pico cells. These scenarios
are explained in detail in the following.

Scenario 1.1: d/R is changing for 1 Pico Cell

In Scenario 1.1, there is only 1 pico cell deployed at the cell edge regions under the
coverage of a macro cell as illustrated in Figure |4.3]

In order to analyze the behavior of the stream selection algorithms, the selection prob-
abilities of the stream sequences in the exhaustive search with their average sum rate are
given in Figure in Appendix [Bl It can be observed that the probability of selecting the
first stream from the pico user is greater than selecting it from the macro user.

Since there are two pico streams in this scenario, Alg. constructs two stream se-
quences by selecting the first streams from these pico streams. The obtained stream paths
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Figure 4.3: Scenario 1.1: One Pico cell is deployed under the coverage of a macro cell

are compared in terms of their sum rates and the path with the highest sum rate is selected.

In Figure[d.4] ISNSSS algorithm is also compared to the existing IA methods, max-SINR
and min-Leak explained in the Chapter 8] The performance of the min-Leak algorithm
with one stream per user case is very poor compared to the stream selection algorithms
and max-SINR algorithm with one stream per user case. The comparison of the number
of selected streams for each user for different distance ratios can be listed in Table [4.3]
The results confirm that the proposed method allocates more streams to the users while

increasing the sum rate.

Table 4.3: Scenario 1.1: The Average Number of the Selected Streams Per User

| d/R=0.6 | d/R=0.8 [ d/R=1 |

Macro User (ISNSSS) 1.89 1.9 1.92
Macro User (SNSSS (Amara et al. [2012b])) | 1.79 1.83 1.85
Pico User (ISNSSS) 1.5 1.55 1.58
Pico User (SNSSS (Amara et al.|[2012b])) 1.5 1.47 1.42

In addition, the complexities of the stream selection algorithms are compared in Ta-
ble 4.4 It can be seen that the exhaustive search is very complex when compared to the
ISNSSS and the SNSSS algorithms. On the other hand, the ISNSSS algorithm provides
better performance than the SNSSS algorithm with a small increase in complexity.
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Figure 4.4: Scenario 1.1: Average sum rate vs. distance ratio d/R comparison with existing
IA methods

Table 4.4: Scenario 1.1: Complexity Comparison of Stream Selection Algorithms for 1 Pico
Case

Exhaustive Search | ISNSSS | SNSSS
240 8 4
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Scenario 1.2: d/R is changing for 2 Pico Cells

In Scenario 1.2 there are 2 pico cells deployed at the cell edge regions under the coverage
of a macro cell as illustrated in Figure {.5]

<,
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Pico BS 2, PicgiEs i

(SN VA
)

~

s ‘Pico User i

\\ Pico User y
randomly placed rand‘om‘l!r_pEEgd -

Macro BS
located at (0,0)

Figure 4.5: Scenario 1.2: Two Pico cells are deployed under the coverage of a macro cell

In this scenario, there are 6 streams in total and there are 4 streams that belong to the
pico users. Therefore, 4 stream sequences are constructed initialized by the pico streams.

Figure given in Appendix [B] justifies the initial streams of the selected stream
sequences in the form of trees. Each node in a given tree contains a total probability and
a total weighted sum rate of the constructed stream sequences which are initialized by the
corresponding initial stream. It can be seen that the stream sequences initialized by the
pico streams have higher sum rate values comparing to the stream sequences initialized by
the macro streams.

In Figure [£.6] these methods are also compared to the existing TA methods. Exhaustive
search gives the upper bound. The performance of the ISNSSS algorithm also higher than
the other TA algorithms.

The comparison of the number of selected streams for each user for different distance
ratios can be listed in Table [4.5] The results confirm that the proposed method allo-
cates more streams on average to pico users while ensuring better service to the users and
increasing the sum rate.

Furthermore, the complexities of the stream selection algorithms are compared in Ta-
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Figure 4.6: Scenario 1.2: Average sum rate vs. distance ratio d/R comparison with existing
IA methods

Table 4.5: Scenario 1.2: The Average Number of the Selected Streams

| d/R=0.8 | d/R-1 |

Macro User (ISNSSS) 1.82 1.85
Macro User (SNSSS (Amara et al. [2012b])) | 1.82 1.84
Pico 1 User (ISNSSS) 1.55 1.58
Pico 1 User (SNSSS (Amara et al. [2012b])) | 1.53 1.52
Pico 2 User (ISNSSS) 1.59 1.61
Pico 2 User (SNSSS (Amara et al. [2012b])) | 1.58 1.57
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ble Once again, it can be seen that the exhaustive search is more complex when
compared to the ISNSSS algorithm as the total number of streams increases in the net-
work.

Table 4.6: Scenario 1.2: Complexity Comparison of Stream Selection Algorithms for 2 Pico
Case

Exhaustive Search | ISNSSS | SNSSS
9720 24 6

Scenario 1.3: d/R is changing for 3 Pico Cells

In Scenario 1.3, there are 3 pico cells deployed at the cell edge regions as shown in
Figure [4.7

-
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Figure 4.7: Scenario 1.3: Three pico cells are deployed with an equal distance to each
other.

Figure given in Appendix [B] illustrates the initial streams of the selected stream
sequences for Scenario 1.3. It can be seen that the total weighted sum rates (P x SR) of
the stream sequences initialized by the pico streams have higher values than those of the
stream sequences initialized by the macro streams.

In Figure[4.8] these methods are compared to the existing iterative and stream selection
based TA algorithms.
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Figure 4.8: Scenario 1.3: Average sum rate vs. distance ratio d/R comparizon with existing
TA methods

Furthermore, the complexities of the stream selection algorithms are compared in Ta-
ble It can be seen that the difference between the complexities of the ISNSSS and
the SNSSS algorithms is insignificant when compared to the exhaustive search, but the
performance of the ISNSSS algorithm is approximately 5bps/Hz higher than the SNSSS
algorithm.

Table 4.7: Scenario 1.3: Complexity Comparison of Stream Selection Algorithms for 3 Pico
Case

Exhaustive Search | ISNSSS | SNSSS
766080 48 8

4.5.2 Scenarios for Fully Connected Interference Networks

The scenario for fully connected interference network is realized by four different sce-
narios to evaluate the performance of the proposed algorithm in the following sections. In
Scenarios 2.1 and 2.2, two pico cells are deployed at the cell edge regions of the macro cell
as illustrated in Figure In Scenarios 2.3 and 2.4, three pico cells are symmetrically
deployed with respect to the macro cell as illustrated in the Figure [4.10] The number of

Nr, and Ng, are same as in Scenarios 2.1 for each pico cell and for macro cell.

The related exhaustive search analysis for the scenarios of the fully connected interfer-
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Figure 4.9: Scenario 2.1 and 2.2: Two pico cell case with different values of d and L
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Figure 4.10: Scenario 2.3 and 2.4: Three pico cell case with different values of d and L.
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ence networks is given in Appendix [B] Using the given analysis, the proposed algorithm
builds the set of stream sequences having a regular structure.

Scenario 2.1: d/R is changing while L is fixed

In order to evaluate the ASNSSS algorithm for this scenario, pico cells are shifted
towards to the cell edge of the macro cell by changing the ratio d/R. The distance between
the pico cells is constant and it is L = 150m to have fully connected scenarios.

The sum rate values achieved by different IA approaches are given in Figure [4.11] It
can be seen that the ASNSSS algorithm outperforms the existing stream selection methods
and iterative approaches.
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Figure 4.11: Scenario 2.1: Sum-Rate vs d/R between 0.6 and 1

The comparison of the number of selected streams for each user for different distance
ratios can be seen in Table .8 The results confirm that the proposed method allocates
more streams to pico users at the cell edge regions while increasing the sum rate.
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Table 4.8: Scenario 2.1: The Average Number of the Selected Streams.

| d/R=0.6 | d/R=0.8 | d/R~1 |

Macro User (ASNSSS) 1.59 1.63 1.7

Macro User (ESNSSS (Amara et al.|[2012b])) | 1.67 1.74 1.81
Macro User (SNSSS (Amara et al. [2012b])) | 1.91 1.89 1.93
Pico 1 User (ASNSSS) 1.47 1.46 1.5

Pico 1 User (ESNSSS (Amara et al.|[2012b])) | 1.18 1.2 1.25
Pico 1 User (SNSSS (Amara et al.|[2012b])) 1.34 1.30 1.29
Pico 2 User (ASNSSS) 1.58 1.59 1.56
Pico 2 User (ESNSSS (Amara et al. [2012b])) | 1.28 1.26 1.24
Pico 2 User (SNSSS (Amara et al.|[2012h])) 1.31 1.30 1.29

Scenario 2.2: d/R is fixed while L is changing

In this scenario, pico cells are shifted away from each other along the y-axis while the
z-axis is fixed for the pico cells. The distance between the pico cells is kept maximum
L = 400m to be ensure to have fully connected network.

The SNR and SINR values of each pico user are listed in Table and Table
for L = 100m and L = 400m, respectively. These values are obtained when there is only
pico BSs generating interference to each other at different distances. Since the received
SNR and SINR of the pico users are close to each other when L = 400m, the generated
interference can be negligible between the pico cells. Therefore, the distance between the
pico cells is kept maximum L = 400m in the scenarios.

Table 4.9: Scenario 2.2: Received SNR (dB) and SINR (dB) of the Pico Users when
L = 100m.

| | SNR | SINR |

Pico 1 User | 40.50 | 26.38
Pico 2 User | 40.00 | 25.87

Table 4.10: Scenario 2.2: Received SNR (dB) and SINR (dB) of the Pico Users when
L = 400m.

] | SNR | SINR |

Pico 1 User | 40.50 | 39.42
Pico 2 User | 40.00 | 39.07
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Figure shows the performance comparison between the proposed algorithm and
the existing algorithms. It can be seen that the gap between the exhaustive search and the
proposed ASNSSS algorithm is very small, only approximately 1.3 bps/Hz; and ASNSSS
algorithm outperforms the existing stream selection methods and iterative approaches.
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Figure 4.12: Scenario 2.2: Sum-Rate vs Distance L between 100m and 400m

Complexity Comparison of the Stream Selection Algorithms for Scenario 2.1
and Scenario 2.2:

The complexity of the stream selection algorithms are calculated in terms of the number
calls to Alg. [0 and the comparison is given in Table for Scenario 2.1 and Scenario 2.2,
since the total number of streams is same in scenarios with the same network configurations.
It can be observed that Alg. [9]is called by the ASNSSS algorithm at most 24 times which
is much fewer than the number of calls to Alg.[9 by the exhaustive search and the ESNSSS
algorithm. It should be noted that these results represent upper bounds for the given
algorithms as given in Eq. , since different stream sequences constructed with the
different number of streams can be selected by the stream selection algorithms. In the
exhaustive search, although the number of the searched stream sequences is fixed, it is
difficult to obtain the exact number of the stream sequences and, thus, the exact number
of calls to Alg. @] due to the constraint defined in Eq. (4.1b)). Therefore, an upper bound is
also calculated for the exhaustive search using Eq. (4.5)).

Further simulations are performed to compare the complexities of the stream selection
algorithms. The average number of calls to Alg. [9]is calculated when pico cells are located
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Table 4.11: Scenario 2.1 and Scenario 2.2: Complexity Comparison of Stream Selection
Algorithms for 2 Pico Case

Exhaustive Search | ASNSSS | ESNSSS | SNSSS
9720 24 36 6

at d/R = 0.8 and L = 150m. The related results are shown using histograms for SNSSS,
ASNSSS, ESNSSS algorithms in Figure[£.13] The number of calls to Alg. [J]is fixed which is
equal to 9216 for the exhaustive search. In addition, the average number of calls to Alg.[9]
does not change with either d/R or L as illustrated in Figures .
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Figure 4.13: Comparisons of the Average Number of Calls to Alg. @ at d/R=0.8 and
L=150m for two pico cell case

The results demonstrate that the ASNSSS algorithm has a lower complexity with a
simple regular structure when compared to the other stream selection based IA algorithms.

Scenario 2.3: d/R is changing while L is fixed

In this scenario, pico cells are shifted towards to the cell edge of the macro cell by
changing the ratio d/ R while the distances between the pico cells are kept fixed as L = 200m
and S = 200m.

The sum rate values achieved by different approaches for the first case of this scenario
are given in Figure It is shown that the performance of the proposed algorithm is
quite close to the one of the exhaustive search; and the gap is approximately 1 bps/Hz.
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between 0.6 and 1

Additionally, the ASNSSS algorithm shows better performance than the other existing
stream selection approaches.

Scenario 2.4: d/R is fixed while L is changing

In this scenario, Pico cell 2 and Pico cell 3 are shifted away from each other along the
y-axis while Pico cell 1 is fixed.

The performances of the proposed and the existing algorithms for this case is shown in
Figure .16] Similar to the previous cases, the performance of the proposed algorithm is
quite close to that of the exhaustive search; and the gap is approximately 1 bps/Hz while
its performance is better than the other existing algorithms.

Complexity Comparison of the Stream Selection Algorithms for Scenario 2.3
and Scenario 2.4:

To evaluate the complexities, once again, the number calls to Alg. [9] is considered
for Scenario 2.3 and Scenario 2.4. To compute the maximum numbers of calls to Alg. [9]

Eq. (4.5) and Eq. (4.13)) are used and the results are given in Table[d.12| As in the two pico
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Figure 4.16: Scenario 2.4: Sum-Rate vs Distance L between 200m and 600m
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cell case, given results represents the upper bounds for the given algorithms. In other words,
the results given in the table can be obtained when the selected stream sequence includes
all the streams. On the other hand, the upper bound for the exhaustive search is obtained
due to the difficulty in computing the exact number of the stream sequences considering
the constraint defined in Eq. . Therefore, an upper bound is also calculated for the
exhaustive search even if the number of the searched stream sequences is fixed.

Table 4.12: Scenario 2.3 and Scenario 2.4: Complexity Comparison of Stream Selection
Algorithms for 3 Pico Case

Exhaustive Search | ASNSSS | ESNSSS | SNSSS
766080 192 64 8

It can be observed that there is a significant complexity reduction by performing the
ASNSSS algorithm. In addition, although ESNSSS and SNSSS algorithms have lower
complexities, the ASNSSS algorithm can achieve almost the same performance with the
exhaustive search.

Furthermore, histograms of the numbers of calls to Alg. [9] are obtained for SNSSS,
ASNSSS and ESNSSS algorithms as seen in Figure for d/R = 0.8 and L = 150m.
Since the number of calls to Alg. [Jis fixed for the exhaustive search and it is equal to
729216, it is not shown in Figure 4.17]

In addition, the average number of calls to Alg. @] does not change with either d/R or
L for the ASNSSS, ESNSSS and SNSSS algorithms and it is illustrated in Figure [4.18
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Figure 4.17: Comparisons of the Average Number of Calls to Alg. @ at d/R=0.8 and
L=150m for three pico cell case

The results demonstrates a clear advantage of the ASNSSS algorithm compared to
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Figure 4.18: Scenario 2.3: Comparisons of Average Number of Calls to Alg.1 vs d/R
between 0.6 and 1

the exhaustive search in terms of complexity and applicability due to the fact that the
ASNSSS algorithm avoids from searching all stream paths by making use of a simple
regular structure. In addition, as the number of the pico cells increases, the performance
of the ASNSSS algorithm gets closer to the performance of the exhaustive search.

4.6 Conclusion

In this chapter, we have presented two efficient stream selection approaches for hete-
rogeneous networks in order to reduce the complexity of the exhaustive search and, still,
achieve a performance closed to the one of the exhaustive search. The proposed algorithms
deal with the interference among the macro and pico cells; after each stream is selected, we
perform orthogonal projections in order to handle the interference to and from the selected
stream. Furthermore, the algorithms satisfy the constraint that at least one stream must
be allocated to each user, which is not required by the existing stream selection approaches.

For the partially connected interference networks, the proposed algorithm called ISNSSS
constructs a set of stream sequences by initializing each of them with the streams of the
pico users. Then the best stream sequence that gives the highest sum rate is selected from
the set.

For the fully connected interference networks, the proposed algorithm called ASNSSS
selects the best stream sequence in terms of sum rate from a predetermined set of sequences
that is constructed from an analysis of the behavior of the exhaustive search algorithm. It

134



4.6. CONCLUSION

is observed that initializing the stream sequences using the streams of pico users generally
leads to better stream sequences since it is more likely for pico users to have a higher SNR
value than the macro user.

The performance of the ISNSSS and the ASNSSS algorithms have been evaluated for
different scenarios with different number of pico cells by varying the positions of pico
BSs at the cell edge zone of the macro cell. The performance results indicate that the
proposed algorithms outperform the existing stream selection approaches and iterative TA
solutions by getting closer to the upper bound set by the exhaustive search while achieving
significantly lower complexities. Moreover, as the number of pico cells increases, it has
been observed that the performance gap between the ASNSSS and the exhaustive search
decreases with an increased complexity which is still significantly lower than the one of the
exhaustive search.
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Chapter 5

Interference alignment with
imperfect CSI

5.1 Introduction

The algorithms proposed in the previous chapters assume that the CSI is perfectly
known at the transmitters in a centralized topology. Thus, the interference can be per-
fectly aligned by designing the precoders and the postcoders. Since this assumption is
not realistic for practical systems, feedback schemes have been commonly implemented in
cellular networks (Love et al.| [2008]).

In the feedback mechanism, receivers estimate the channel coefficients by using training
sequences. After the channel estimation, receivers feedback the quantized CSI to the trans-
mitters with a certain number of bits using codebooks known at both the transmitters and
the receivers. Thus, precoders and postcoders can be calculated to align the interference.
The quality of the obtained CSI by the limited feedback affects the performance of the IA.
It has been shown that increasing the size of the codebook decreases the distortion caused
by the limited feedback, and increases the feedback overhead in the network. Therefore, the
number of bits for CSI should be optimized depending on the channel conditions (Ozbek
and Le Ruyet| [2014b]).

Equal bit allocation in which the number of feedback-bits for each channel is fixed is not
efficient for the heterogeneous networks due to different pathloss and shadowing effects.To
increase the system throughput with the quantized channel, different feedback bit allocation
schemes have been studied for the interference alignment in K pair MIMO systems. In
order to minimize the effect of the distortion, an adaptive feedback bit allocation scheme
that adaptively selects the number of feedback bits to the links of each transmitter-receiver
pair have been designed in the studies of |Cho et al.| [2012]) and (Chen and Yuen|[2014].

In the context of the heterogeneous networks, optimizing the bit allocation can increase
the performance of the feedback schemes for TA technique by considering the distinctive
features of the heterogeneous networks, such as unequal number of transmit antennas and
transmit power levels (Niu et al.[[2014]), (Rihan et al.[[2015]).
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In this chapter, we consider a limited feedback scheme for the proposed stream selection
based TA algorithms. To decrease the intra-stream interference in the quantized CSI case, a
restricted version of the ASNSSS algorithm is presented as restricted ASNSSS (RASNSSS)
algorithm which does not select additional streams after the construction of the stream
sequences. However, there are still multiple pico streams in the constructed stream se-
quences and it yields a performance degradation due to the quantization in the case of a
reasonable number of limited feedback bits. To avoid the intra-stream interference and to
decrease the feedback overhead, K-stream selection (KSS) algorithm is proposed where only
the best streams of each user is selected. Instead of allocating equal number of feedback
bits to each channel (Aycan et al. [2015]), an adaptive bit allocation scheme is presented
to maximize the average sum-rate by optimizing the number of bits to quantize the CDI
of each user. The adaptive bit allocation is presented for ISNSSS (Aycan Beyazit et al.
[2016b]), RASNSSS (Aycan Beyazit et al. [2016¢|) and KSS (Aycan Beyazit et al.| [2016d])
algorithms. The performance is evaluated for both the partial and the fully connected
interference network scenarios.

We first introduce the system model in Section including the limited feedback
model. Next, the stream selection based [A algorithms for the heterogeneous networks
which are RASNSSS and KSS, are proposed for the imperfect CSI in Section and
Section respectively. Different adaptive feedback bit allocation schemes are presented
for the RASNSSS, KSS and ISNSSS algorithms in order to increase the sum rate of the
network for a fixed feedback load per user in Section Next, we evaluate the performance
of the proposed algorithms in Section Finally, we conclude the chapter in Section [5.7

5.2 System Model

In this chapter, a K-pair heterogeneous network is considered as defined in Chapter []
The transmission and the channel quantization model for the limited feedback scheme are
given in the following sections.

5.2.1 Transmission Model

We modify Eq. (3.1)) for the case of imperfect CSI and define the transmitted signal as
follows.

X = \/PkaSk (5.1)

where T}, is the unitary precoding matrix of the k** transmitter with dimension N7y X g
and it is obtained by the proposed algorithms under the quantized channel, Hy;, between
the j** transmitter and the k" receiver with dimension Npg, x Nr;.

Each user decodes the received signals by multiplying them with the postcoding matri-
ces, Dy, of dimension Ng, X ¢, and they are obtained by the proposed algorithms under

the quantized channel. Thus, the decoded data symbols are given as y, = lijyk.

The evaluated data rate for the i*" stream of the k' user can be expressed as follows.

Ry; = 10g2(1 + :)/]m) (5.2)
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where 7y; is the evaluated SINR for the i** stream of the k™" user and it is given by
SiNH ~ s NH o
(Pr/qr) a%k (d;e) Hk‘k’t;{; (t;g) Hkkd;

~i H . ~i
(dk> B.d,
Vk=1,... K, Yi=1,...q

Vi = (5.3)

where t}, is the " column vector of matrix T}, with the size of Ny, x 1 and d,, is the i*"
column vector of matrix ﬁk with the size of Ng, x 1. Since the perfect CSI is not available
at the transmitters, Hk] is used in the algorithms. The interference plus noise covariance
matrix of the k" receiver, Bk, is defined as

qr K gqj

- P ~ HoH
Bk: = Z qfk&kkaktktk Hkk‘ + Z Z Oék,]Hk] ;1 Hk‘] + O‘QINRk
ll:; J;H1C q=1 (5.4)
i J

The evaluated sum rate is calculated as follows.

K gk

SR=> > Ru (5.5)

k=1 i=1
The achievable data rate for the i* stream of the k** user can be expressed as follows.
- ~
Ry = logy (1 + F1s) (5.6)

where 7, is the achievable SINR of the ith stream of the k' receiver and it is given by

o (=i vi (7T o g i
L (Be/ar) agy (dk> Hyrty, (tk) Hjdy,
Vi = iNH -, - (5.7)
(dk) Bydy,
Vi=1,..K, Yi=1,..q

. . . : . . 5
The interference plus noise covariance matrix for stream 4 of the k' receiver, By, is defined
as

qk

~ s Py -1 ~1H H

B, =) o “Eo? Hyt, b, HE +ZZ J%Hk] ] Hi + 0%l (5.8)
=1, j=1 q= 1
1#i i#k

Ve=1,..K, Yi=1,.. q

The achievable sum rate is calculated as follows.

K
=> > R (5.9)

k=1 1i=1
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In the stream selection algorithms, the sum rate is calculated using SR, since only the
quantized channel is available in the transmitters through the communication channels.
On the other hand, the performances of the proposed algorithms are determined using
SR’ Therefore, the stream selection scheme aims to maximize the total sum rate of the
network while guaranteeing to select at least one stream from each user as follows.

{(Tka ﬁk)}kzl,...,K = a;gr%ax SR (5.10a)
ky»YEk
st. gp>1 k=1,..K (5.10b)

5.2.2 Limited Feedback Model

In this section, a limited feedback scheme is presented based on RVQ. The proposed TA
algorithms require all the CSI to obtain all precoding and postcoding vectors. Therefore,
a centralized feedback model is considered in which the macro BS collects all the CSIs
from pico BSs through the error and delay free backhaul links. It is assumed that CQI is
perfectly available at the BS and the receivers only feedback their CDI.

Each step of the feedback scheme that is illustrated in Figure |5.1| can be explained as
follows.

Step 1:
Forward Link
Step 7: Distribut
BS 1 (Macro) Piep-rrisiroute

postcoders
D,, Vk

Step 6: The calculated User 1

precoder and postcoders

to other transmitters

Ay

Step 5: Precoder .-
and postcoder design
in the central trapsmitter)

User 2

A, H,|

i A
Etg)AQuantization‘

Step 3: Codebook

Feedback Link indices

Figure 5.1: Centralized CSI Feedback Scheme (without an additional unit): Macro BS acts
as the central unit
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SELECTION ALGORITHM

e Step 1: It is assumed that the CSI has been perfectly estimated at each receiver as
Hy; = Hyy x ||Hyl[ -

e Step 2: Each receiver quantizes the desired and the interference CDI. In order
to quantize each CDI, codebooks are generated by using RVQ which contains 25
codewords. The codeword c};‘; is selected as the quantized CDI.

e Step 3: The indices of the selected codewords are fed back to the associated trans-
mitters through feedback links.

e Step 4: Each pico BS receives the codebook indices and sends them to the macro
BS through the backhaul links.

e Step 5: The macro BS reconstructs CSIs by using the codebooks known at both
sides. After, the precoding and postcoding vectors are computed by implementing
the proposed algorithm.

e Step 6: The macro BS distributes the precoding and the postcoding vectors to the
pico BSs.

e Step 7: Each transmitter forwards the postcoders to the corresponding receivers
using the forward link.

The Chordal distance metric is used in Step 2 to select the codeword c}:] Since the
codewords and normalized channel are lying in the non-Euclidean space of Grassmann
manifolds, Chordal distance metric yields better performance than the Euclidean distance
as shown in Figure The comparison results are obtained using SNSSS algorithm with
different number of Bs = By, Vk, j, bits for Scenario 2.1 given in Chapter .

5.3 Restricted Advanced Successive Null Space Stream Se-
lection Algorithm

In this section, the restricted advanced successive null space stream selection (RASNSSS)
algorithm is presented for the limited feedback scheme. As the number of the streams in-
creases, the quantization error also increases for a given number of feedback bit. In other
words, when the number of feedback bits is fixed, selecting less streams for each user can
decrease the intra-stream interference in the limited feedback scheme. In the RASNSSS
algorithm, after the stream sequences in the set I14 are selected, there is no additional
stream selection when compared to the ASNSSS algorithm. Therefore, RASNSSS algo-
rithm given in Alg. [16] is the restricted version of the ASNSSS algorithm presented in
Alg. [15in Section 4.4.2] The RASNSSS algorithm applies Alg. |10| using ﬁkj Vk, 7 instead
of ij Vk‘, j

The construction of stream sequence set, I14, is the same as the one given in Sec-
tion [4.4.21
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SELECTION ALGORITHM
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Figure 5.2: The comparison of two metrics for SNSSS with different Bs values for Scenario
2.1.

Alg. 16 Restricted Advanced Successive Null Space Stream Selection

Input: ay;, I:ij vk, j
Initialize the set II4
for each stream sequence m € 114 do
Apply Alg.
end for
Select the best stream sequence according to Eq.

T = argmax SR
melly

TZ = (Tk)ﬂ-z, f)z = (f)k)ﬂz fOI‘ k = 1, ,K
Output: TZ, f)z vk
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The Complexity of the RASNSSS Algorithm:

The number of calls to Alg. [9] at each stream selection step of the proposed algorithm
can be formulated as follows:

(de/!x Sar-2x ] dix(dk/—i—(|1“|—2)+2)> (5.11)
k'el’ h'er i€l aximum number o
h!#k! i#k! iR é\'/[unes Alg.[lis téallecf

Total number of stream sequences

5.4 K-Stream Selection Algorithm

In this section, the K-stream selection (KSS) algorithm is described where a stream
sequence is selected from a predetermined set of sequences of limited size. Each stream
sequence is constructed with different combinations of the best streams of each user. So
that all the stream sequences include one single stream per user to prevent the intra-stream
interference. Each sequence is initialized with the streams of the pico users since the pico
users are more likely to have higher SNR values on average.

To analyze the behavior of the stream selection process, the selection probabilities of
the stream sequences in the exhaustive search with their average sum rate are given in
Figure in Appendix B] It can be observed that the probability of selecting the first
stream from the pico user is greater than selecting it from the macro user. In addition, the
selection of pico streams as the initial streams is justified in Appendix [A]

The construction of the stream sequences based on the regular structure is described
as follows.

Each stream i can be expressed as m; = (ki,[;) where k; € {1,..., K}, i € {1,...,q} and i €
{1,...,7}. The set of all permutations of length j € {1,...,r} can be defined as follows.

O = {77: (mimy...m) | Vi, i € {1,...,j}, m # ifi;éi’} (5.12)

All stream sequences that include at least one stream from each BS-user pair are kept in
set IT which can be defined as follows.

H:{W:(mm...ﬂjﬂﬂeq)j;jZK;

(5.13)
Vk,3m € {1,...,5} such that ky, = k:}
The generated stream sequences are kept in the set II, and it is defined as follows.
I, = {7[': (mmy..)|mell; j=Kili=...=1; =1; ki er} (5.14)

Alg. [17] performs the KSS algorithm which applies Alg. [L0]| using I:ij vk, j.
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Alg. 17 KSS Algorithm

Input: ay;, flkj vk, j

Initialize the set II,, as given in Eq.( [5.14)

for each stream sequence 7 € 1I,, do
Apply Alg.

end for

Select the precoding and postcoding matrices for the permutation that maximizes the
sum-rate

. -
7, = argmax SR
welly

TZ = (Tk‘)ﬂ';7 :DZ - (Dk)ﬂ; fOI‘ k - 1, ,K

Output: TZ, f),: vk

The Complexity of the KSS Algorithm:

The number of calls to Alg. [0 at each stream selection step of the proposed algorithm
can be formulated as follows:

( o, x K ) (5.15)
~ The number of

Total number of = oL TATe [is called

stream sequences

5.5 Adaptive Bit Allocation Scheme for Quantized CSI

In this section, an adaptive feedback bit allocation is presented. The main objective
is to maximize the average sum rate by optimizing the number of bits to quantize the
macro and pico CDIs for each user. Since optimizing the total number of bits for the whole
system is too complex, an upper bound on the each user’s data rate is obtained as defined
in Eq. . In this way, the given total number of feedback bits for each user is adaptively
and locally allocated to the channels.

The optimization problem of the bit allocation for the stream selection based TA algo-
rithms can be formulated for the k™ user as follows.

dk B
E [Rg;
B,gj;jmzaf,(..‘,K ; (R

X (5.16)

s.t. Z Bkj < Bk
7=1

where By, is the total number of feedback bits for user k.
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An approximate upper bound is derived for the solution of the bit allocation problem
in Eq. The upper bound for the total data rate of each user is the sum of the
upper bounds of the rate of each stream. Therefore, an upper bound is obtained for
each stream (Anand et al.|[2013]). The problem is considered for the high SINR region
where log, (1 + ) ~ logy(x) since the interference is mitigated by performing the stream
selection based IA algorithms. Furthermore, the interfering and the desired channel terms

are modeled as independently distributed random variables. Therefore, E [PN{;W] can be
rewritten by using Eq. (5.6]) as follows.

~i\H ~i ~i ~i
E |log, ((Pkk/Qk) (dk) HkktktkHkadk> -

ak K 9
JINH 1 <l o\ H - -
E |:10g2 < Z (Prr/qr) (dk) HkktLtLHHi{kdk + Z Z (Prj/ ;) (d?) ijt?tgHHlljdeq' +UQINRk >:|
=1, =1 g=1
£ Gk

bl b2

(5.17)

where Py; is the average received power at user k from BS j and it is calculated as Py; =
Pj()é]%j.

_ The channel matrix Hyy can be expressed as a function of the quantized channel matrix
Hy as given in Eq. (2.27). Accordingly, the first term of Eq. 1) can be rewritten as
follows (Anand et al. [2013]).

a= 10g2(<Pkk/Qk) 1 Hr |7 ‘ (%)H (v T— epHp + \/@Zkkﬁzr) (5.18)

Assuming large number of feedback bits, the error magnitude, egg, is small, so that
it can be neglected (Anand et al. [2013]). Consequently, Eq. (5.18) can be rewritten as
follows.

2

)) (5.19)

Since |z +y|? < (|| + |y|)?, the third term of Eq. (5.17), b2, can be written as follows.

a= 10g2<(Pkk/%) Hk || ((1 — €kk) (dk) Hppty

2

~i\H =~ .
()" Bx| +

K g
b2 < 3> (Pay/ay) I[Hgll ((1—€kj)

i=1, g=1
ik

24/1 — €Li\/€Ekj

v

2
) + (5.20)

)

~4 H ~q
(d1)" 2zt

~i\H ~ .
(d,) Ft]
e

~i H ~q
(a4)" 2zt
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~\H =~ _
The term ‘ (dk) ijtj‘ can be considered approximately zero due to the IA scheme.
Therefore, the terms v and z vanish and Eq. (5.20)) can be rewritten as follows.

K g

12 < 35" (Py/ay) [Hag % (e

i=1 g=1
i#k

(aZ)H Zyjt; 2) (5.21)

Similarly, b1 can be obtained as follows.

9k

bl < > (Pu/ar) | Hyel 7 (ekk

=1,
14

2

(a1)" 2t ) 5.22)

Using Jensen’s inequality, the upper bound for Eq. (5.17) can be obtained as follows.

Ela] — E[b] <
IOgQ(E[(Pkk/Qk) [ Hi |5 ((1 — ek <a;c>H Hif) 2>D a
T1
dk i 2
IOgQ(_ZE[(Pkk/Qk) [ k[ <€kk (a;f)HZk’ffﬁf ﬂ * (5.23)
— T2
K g5 ~i\H 2
ZZE[(ij/qj) ||ij||12v <ekj (d;c) ijf? )D
j=1 g=1

j#k

T3

Since E HHkkav} = N7, Npg,, the first term of Eq. (5.23)), T'1 can be expressed using the
Eq. (2.28) as follows (Zhang and Andrews| [2010]), (Ozbek and Le Ruyet| [2014a)).

T1 =~ (Pyx/qr) 250 825,
By (5.24)
< (Pkk/ka) <1 -2 NTkNRk_1>

The second and the third term of Eq. (5.23)), 72 and T'3, can be expressed as follows
(Ravindran and Jindal [2008]), (Jindal [2006]).

K
Pu(ar —1) .5 B Nr, Ng, Br oiaBe, N3 NR,
T2+ T3~ 28 “JoBrkg(oBre _— kT T ) 4 P, 2Bkip(2Bki - Tk
Gk
Bk K o Bry
< Prr.(qk 1)2 N7 Np, 1 +ZP’W'2 N7, Ny, -1
dk o
Sk
(5.25)
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Using Eq. (5.24) and Eq. (5.25)) in Eq. (5.17)), the optimization problem can be expressed
for any stream of the k' user as follows.

_ Bk

_ _ Brk _ Pkj
log2<Pkk(% Dy T ZP’W NTNRkl)] (5.26)

qk
3#16

K
s.t. Z By; < By,
7=1

The solutions for the problem expressed in Eq. (5.26)) are obtained by using a Matlab
based software for convex optimization (Grant and Boyd [2014]). After obtaining the By;
values which are real numbers, a round operation is applied to get integer values.

In order to perform the IA algorithms, each transmitter should know the complete
quantized CSI of the network or obtain the precoding and the postcoding vectors (Anand
et al.| [2013]). Since it is achieved by the given feedback topology in Section the
optimization problem defined in Eq. is also suitable for any [A algorithms such as
Max-SINR or min-Leak.

On the other hand, depending on the stream selection approach, the solution to the
optimization problem defined in Eq. (5.26)) can be varied. The solutions of the adaptive
bit allocation for the RASNSSS, KSS and ISNSSS algorithms are given in the following.

5.5.1 Adaptive Bit Allocation for RASNSSS Algorithm

RASNSSS algorithm proposed for the limited feedback scheme just selects the streams
from the constructed stream sequences kept in set I14 and do not continue to select streams
as in the ASNSSS algorithm given as Alg. [I5] In the constructed stream sequence, there
is only one selected stream for the macro user; however, multiple streams can be selected
for a pico user.

Since the number of selected streams is not known in advance for a pico user, the
optimization problem is defined for the case where all the streams of all the pico users are
selected.

Accordingly, the optimization problem for a pico user k where k € " can be expressed
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as follows.
7%
Bkj;jm:aﬁ“’K log, <(Pkk/Qk) (1 _ 9 Np Vg, >> B
K B, i
Pulas = 1), N5V, - N
10g2 <qk2 T, "Ry, + JZ; Pk] k + Pk: T NRy, (527)
J#k

K
s.t. Z Bkj < By,
7j=1

On the other hand, the optimization problem for a macro user where kK = 1 can be
expressed as follows.

Bl]
_ " Np. N
BU;?L%%..,KIIO& (a (1-2%7)) - ZP“ o )]

K

s.t. Z Blj < Bl
7=1

(5.28)

5.5.2 Adaptive Bit Allocation for the KSS Algorithm

The KSS algorithm constructs stream sequences by different stream combinations of
the best streams of each user and each sequence is initialized by the streams of the pico
users.

Since the intra-stream interference has a severe impact on the performance of the TA in
the limited feedback schemes, each constructed stream sequence includes only one stream
for each user. In this way, for a given number of feedback bits, transmission with single
stream per each user reduces the quantization error compared to the transmission with
multiple streams.

Avoiding the intra-stream interference for the limited feedback scheme, the optimization
problem for the KSS algorithm can be expressed as follows.

___ Brr __Bri
max  |logy [ P (1 —2 NTkNRk1)> lo ( P2 Y5VRe ) ; Yk
Bkj;jzl,...,K[ 52 ( . ( i ]z; b2
g7k 5.29
} (5.29)
s.t. Z By; < By,
j=1

5.5.3 Adaptive Bit Allocation for the ISNSSS Algorithm

The ISNSSS algorithm given in Alg. in the previous chapter is described assuming
perfect CSI at the transmitters. In this chapter, the ISNSSS algorithm is evaluated for
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the partially connected interference networks with the imperfect CSI. Therefore, Alg. [14]is
performed using Hy; Vk, j instead of Hy; Vk, j and, thus, the precoding and the postcoding
matrices are calculated using the quantized CSI.

Since the number of the selected streams is not known in advance for each user, the
optimization problem is defined for the case where all the streams of all the users are
selected. Therefore, the problem expressed in Eq. ((5.26) is considered.

A similar case applies to the existing stream selection based IA algorithms, such as,
ESNSSS and SNSSS (Amara et al.| [2012b]).

5.6 Performance Results

The performances of the stream selection based TA algorithms with the quantized CSI
are evaluated in Scenario 1.2 which is illustrated in Figure .5 Scenario 2.1 and Scenario
2.2 which are illustrated in Figure 4.9 For these scenarios, we consider that there are
2 transmit antennas for each pico cell and 4 transmit antennas for the macro cell. Each
cell has one user that is randomly placed inside its coverage area. Each user has 2 receive
antennas.

The locations of the pico BSs are varied with respect to macro BS. More precisely, pico
BSs are initially placed relatively close to the macro BS and they are shifted together with
the pico users from the inner area to cell edge area of the macro BS located at (0,0).

Locations of the pico cells are identified using the ratio d/R where R is the macro cell
radius and d is the distance between the macro BS and each pico BS. Since, in practice,
pico cells are generally deployed closer to the cell edge areas of the macro cells, the ratio
ranges from 0.6 to 1.

Simulations are carried out using the system parameters listed in Table [4.]

As in the previous chapter, both the fully and the partially interference networks are
considered for the performance evaluations. For partially connected networks, the ISNSSS
and the KSS algorithms are evaluated for the Scenario 1.2 and the RASNSSS and the KSS
algorithms are evaluated for the Scenario 2.1 and the Scenario 2.2. For all the scenarios,
different bit allocation schemes (BAS) are performed for the different total number of
feedback bits By = Ziil By, such as By = 45, By = 63, By = 90 and By = 120. The
values of By, By and Bs for By = 45 is given as follows.

[ ] BAS—l: B1 = 7, BQ == B3 =19

e BAS-2: By =By=B3=15
The values of By, By and Bs for By = 63 is given as follows.

e BAS-3: B1 = 9, B2 = B3 =27

® BAS—4: B1 == B2 = Bg =21

The values of By, By and Bs for By = 90 is given as follows.

151



5.6. PERFORMANCE RESULTS

e BAS-5: By =10, By = B3 =40
e BAS-6: By = By = B3 =30
The values of By, By and Bs for By = 120 is given as follows.
e BAS-7: B; =10, By = B3 =55
e BAS-8: By = By = B3 =40

In the considered scenarios, there are 9 channels including the desired channels and
the interfering channels. Therefore, the number of allocated bits to each channel is 5 with
By =45, 7 with By = 63 and 10 with By = 90 in the equal bit allocation scheme (EBA).

For the KSS algorithm, the considered stream sequences are illustrated in Figure [5.3]
The selected stream sequences are initialized by the pico streams, such as the best stream
of Pico 1 user is P1 1 and the best stream of Pico 2 user is P2 1. M1 1 is the best

macro stream.

. J
4

Stream sequences constructed by
the best streams of each user.

Figure 5.3: Stream sequences constructed by the KSS algorithm.

5.6.1 Scenario for Partially Connected Interference Networks

Scenario 1.2: d/R is changing for 2 Pico Cells

For partially connected interference networks, we evaluate the KSS and the ISNSSS
algorithms for Scenario 1.2 as illustrated in Figure 4.5 Pico cells are deployed far away
from each other, so that the pico cell users only receive interference from the macro BS.

The results are presented in two stages: First, the results for reasonable number of
bits for the practical implementations of the limited feedback, Br = 45 and Br = 63,
are presented. Later, the results for the number of limited feedback bits for theoretical
analysis, By = 90 and Br = 120, are given.

152



5.6. PERFORMANCE RESULTS

The performance comparisons of the KSS and the ISNSSS algorithms for By = 45 and
Br = 63 are given for different bit allocation schemes in Figure[5.4l The proposed adaptive
feedback bit allocation scheme outperforms the EBA scheme using both the KSS and the
ISNSSS algorithms. In addition, it can be observed that the performances of the ISNSSS
and the KSS algorithms increase when more bits are allocated to the pico users.

The allocated bit numbers to each channel can be seen in detail in Table B.J] for BAS-3
scheme with By = 63. For the KSS algorithm, the most of the bits are allocated to the
interference channels between the macro BS and the pico users. Since, the interference
generated from macro BS to pico users is very strong, more bits are required to have better
information on the interference channels in the limited feedback case. For the ISNSSS
algorithm, desired channels of pico have more bits than the other channels to decrease the
intra-stream interference between the pico streams, since multiple streams are selected for
the pico users.

Table 5.1: Scenario 1.2: Average Number of Allocated Bits for By = 63 at d/R = 0.8 for
the KSS and the ISNSSS algorithms.

B =9 By =27 By =27 |
Bi{1 = 4.7 | By = 21.8 | B3; = 21.8
KSS B12 =2.0 BQQ =5.2 ng =0
B13 =23 ng =0 ng = 5.2

Bi1 =8.6 | D2 =93 B3 =9.3
ISNSSS | Bi2=0.2 | By = 17.7 B3y =0
Bi3 =0.2 Bos =0 B33 = 17.7

The comparisons between the KSS, the ISNSSS and the existing algorithms are shown
in Figure for BAS-3 scheme with Br = 63. The KSS algorithm outperforms the
ISNSSS and the SNSSS (Amara et al.|[2012b]) algorithms since only one stream is selected
for each user, so that the intra-stream interference is avoided. On the other hand, the
KSS algorithm also outperforms the existing iterative max-SINR and min-Leak algorithms
(Gomadam et al.|[2011]), even they are performed with a single stream. It has been shown
that the max-SINR and min-Leak algorithms are very sensitive to the imperfect CSI as
demonstrated in the studies of Xie et al. [2013] and Razavi and Ratnarajah| [2014].

The performance degradations between the evaluated and the achievable sum-rate
shown in Figure are approximately 3bps/Hz, 8.5bps/Hz and 7bps/Hz, in the KSS,
max-SINR and min-Leak algorithms, respectively, at d/R = 1. Therefore, it can be ob-
served that the KSS algorithm is more robust to channel uncertainties when compared to
the iterative algorithms.

In addition, in Figure we have compared the evaluated and the achievable sum-rate
as a function of the number of iteration when the pico cells are located at d/R = 0.8 for
the max-SINR algorithm. It can be seen that the increase in the evaluated sum-rate is
approximately 4bps/Hz while the increase in the achievable sum-rate is only 2bps/Hz.
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Figure 5.4: Scenario 1.2: Different adaptive bit allocation schemes with By = 45 and
Br = 63 for the KSS and the ISNSSS algorithms.
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Figure 5.5: Scenario 1.2: Comparison of different algorithms for adaptive bit allocation for
BAS-3 scheme with By = 63.

The performance comparisons for By = 90 and By = 120 are given in Figure It
can be observed that the increase in the performance of the ISNSSS algorithm is greater
than the KSS algorithm for higher number of feedback bits.

Detailed comparisons of the algorithms for By = 120 can be seen in Figure 5.9 The
ISNSSS algorithm outperforms the KSS algorithm and the other existing algorithms. Since
the intra-stream interference is reduced with the decreasing quantization error, selecting
multiple streams increases the performance. However, the feedback overhead increases as
the number of the bits increases.

For By = 120, the detailed bit allocation to each channel is given in Table 5.2] Tt
can be seen that the number of allocated bits for the interference channels between the
macro BS and the pico users is greater when compared to the case By = 63. In addition,
the pico desired channels can also have enough feedback bits to decrease the intra-stream
interference between for the pico users. Accordingly, the ISNSSS algorithm achieves higher
performance than the KSS algorithm.
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Figure 5.8: Scenario 1.2: Different adaptive bit allocation schemes with By = 90 and
Br = 120 for the KSS and the ISNSSS algorithms.
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Figure 5.9: Scenario 1.2: Comparison of different algorithms for adaptive bit allocation for

BAS-7 scheme with By = 120.

Table 5.2: Scenario 1.2: Average Number of Allocated Bits for By = 120 at d/R = 0.8 for

the KSS and the ISNSSS algorithms.

0.9

By =10 By =55 B3 =55 |
Biy = 4.8 | Byy = 49.4 | B3y = 49.4
KSS B12 =25 BQQ =5.2 ng =04
Bi3=27 | Bys=04 | Bs3=52
B11 = 9.5 | Ba1 = 26.5 | B3 = 26.5
ISNSSS | Bi =02 [ By =28.2 | Bs;=0.3
B13 =0.3 BQg =0.3 B33 = 28.2
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5.6.2 Scenarios for Fully Connected Interference Networks

Scenario 2.1: d/R is changing while L is fixed

In Scenario 2.1, pico cells are shifted towards the cell edge of the macro cell by changing
the ratio d/R. The distance between the pico cells is constant and is L = 150m. Once
again, the results are presented in two parts: For By = 45 and Br = 63, and for By = 90
and By = 120.

The performance comparisons of the KSS and the RASNSSS algorithms with By = 45
and By = 63 are given for different bit allocation schemes in Figure The proposed
adaptive feedback bit allocation outperforms the EBA scheme for both the KSS and the
RASNSSS algorithms. In addition, it can be observed that the BAS-3 scheme performs
better than the BAS-4 scheme. In other words, allocating more bits for the pico users
improves the performance of the algorithms. The reason is that the interference generated
from the macro BS to the pico users is very strong. Therefore, as the number of the
feedback bits increases for the pico users, the quantization error can be decreased.

Table [5.3] shows the average numbers of bits allocated to each channel in detail for
the KSS and the RASNSSS algorithms. For the KSS algorithm, since the interference
generated from macro BS to pico users is very dominant, it is observed that the interference
channels between the pico users and the macro BS allocates higher number of bits, Be; and
B31. On the other hand, for the RASNSSS algorithm, it is observed that the pico desired
channels require higher number of bits, because a pico cell has more than one stream in
the RASNSSS algorithm. In addition, the interference channels between the pico users and
the macro BS have more bits than the other interference channels.

Table 5.3: Scenario 2.1: Average Number of Allocated Bits for By = 63 at d/R = 0.8 for
the KSS and the RASNSSS Algorithms

| Bi1=9 | By=27 By =27 |
Biy = 4.8 | By; = 18.8 | By = 18.7
KSS Big=21 | Byp=55 | Bs=28
Blg =21 ng =27 ng =5.5
Bi1 =48] By =91 | By =91
RASNSSS | By =21 [ By, =16.5| By =11
Blg =21 ng =14 B33 = 16.8

Moreover, the proposed bit allocation is performed for the existing stream selection
based TA algorithms, such as ESNSSS, SNSSS (Amara et al.| [2012b]) and the iterative
IA algorithms, such as max-SINR and min-Leak (Gomadam et al,||2011]) algorithms for
the single stream case. The performance comparisons are shown in Figure for BAS-
3 scheme with Br = 63. It can be observed that the KSS algorithm achieves higher
performance than the max-SINR and the min-Leak algorithms. The reason is that the
KSS algorithm is less sensitive to the channel uncertainties than the max-SINR and the
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Figure 5.10: Scenario 2.1: Different adaptive bit allocation schemes with Br = 45 and

Br = 63 for the KSS and the RASNSSS algorithms.

min-Leak algorithms as shown in Figure The performance degradations between
the evaluated and the achievable sum-rate for the KSS, the max-SINR and the min-Leak
algorithms are observed as approximately 3bps/Hz, 8bps/Hz and 7bps/Hz, respectively, at

d/R=1.

In addition, in Figure we have compared the evaluated and the achievable sum-
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Figure 5.11: Scenario 2.1: Comparison of different algorithms for adaptive bit allocation
for BAS-3 scheme with By = 63.

rate as a function of the number of iteration when the pico cells are located at d/R = 0.8 for
the max-SINR algorithm. It can be seen that while the increase in the evaluated sum-rate
is approximately 4bps/Hz, the increase in the achievable sum-rate is only 1.5bps/Hz.

When the total number of feedback bits is increased to By = 90 or By = 120 for both
the KSS and the RASNSSS algorithms, similar behavior with By = 45 and By = 63 is
observed as shown in Figure As the number of allocated bits increases for the pico
users, the average sum rate also increases.

In addition, the average numbers of allocated bits for By = 90 are given in Table [5.4
for the KSS and the RASNSSS algorithms considering the BAS-5 scheme. For the KSS
algorithm, allocating more bits for By; and Bs; is important to handle the interference
generated from the macro BS to the pico users. For the RASNSSS algorithm, it is seen
that Bos and Bsz have more bits for the pico desired channels to decrease the intra-stream
interference.

The performance comparisons of the proposed and the existing algorithms are given
in Figure for the BAS-7 scheme with By = 120 since the BAS-7 scheme allocated
more bits to pico users when compared to the BAS-6 scheme. In this case, the RASNSSS
algorithm outperforms the KSS algorithm since the number of allocated bits is enough to
resolve both the desired and the interference channels.

The detailed bit allocation to each channel is given in Table for the BAS-7 scheme
with By = 120. It can be seen that the number of allocated bits for the interference chan-
nels between the macro BS and the pico users increases when compared to the case By = 90.
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Figure 5.12: Scenario 2.1: Comparison of the achievable and the evaluated sum-rate for
the KSS, max-SINR and min-Leak algorithms for By = 63 and BAS-3 scheme.

Table 5.4: Scenario 2.1: Average Number of Allocated Bits for By = 90 at d/R = 0.8 for
the KSS and the RASNSSS Algorithms

B =10 By = 40 By =40 |
B11 =4.9 le = 30.1 B31 = 29.8
KSS B1y=25 | Byp=56 | Byp=44
Blg =2.6 323 =4.3 ng =5.8
Biy = 4.9 | By1 = 16.2 | B3 = 16.2
RASNSSS | By =25 | By =21.4 | By =24
Bi3=26 | By3=24 | Bgg =214
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Figure 5.13: Scenario 2.1: Comparison of achievable and evaluated sum-rates vs. iterations
at d/R = 0.8 for max-SINR algorithm

In addition, the pico desired channels can also have enough feedback bits to decrease the
intra-stream interference for the pico users. Accordingly, the RASNSSS algorithm achieves
higher performance than the KSS algorithm as the stream sequences constructed in the
RASNSSS algorithm have higher probability of occurrence while performing the exhaustive

search.

Table 5.5: Scenario 2.1: Average Number of Allocated Bits for By = 120 at d/R = 0.8 for
the KSS and the RASNSSS Algorithms

| | B =10 By =55 By =55 |
B1; = 4.8 | By; = 41.5 | Bs; = 40.6
KSS Bia=25 | Bp=59 | B3p=385
Bis=27 | By3=176 | Bs3=59
Bi1 = 4.8 | By = 23.7 | Bg; = 23.6
RASNSSS | Bip =25 | Bys =27.3| By =41
Bi3 =27 | By3=4.0 | Bsg=27.3

Complexity Comparison of the Considered Algorithms:

We compare the complexities of the stream selection algorithms in terms of the number
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Figure 5.14: Scenario 2.1: Different adaptive bit allocation schemes with Br = 90 and

0.8
d/R

Br =120 for the KSS and the RASNSSS algorithius.

of calls to Alg.[9)and they are given in Table [5.6|for Scenario 2.1, since the total number of
streams is the same in scenarios with the same network configurations. It can be observed
that Alg. [9] is called by the KSS algorithm at most 12 times which is much fewer than
invocations performed by the exhaustive search and also the other algorithms except for
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Figure 5.15: Scenario 2.1: Comparison of different algorithms for adaptive bit allocation
for BAS-7 scheme with By = 120.

the SNSSS algorithm. However, the SNSSS algorithm has the poorest performance. It
should be noted that these results represent upper bounds for the given algorithms, since
the stream selection algorithms can select different stream sequences with different lengths.

Table 5.6: Complexity Comparisons of the Stream Selection Based TA Algorithms for 2
Pico Case in Scenario 2.1.

Exhaustive Search

KSS

RASNSSS

ISNSSS

ESNSSS

SNSSS

9720

12

16

24

36

6

On the other hand, the structures of the proposed stream selection based A and the
iterative algorithms are completely different. The proposed algorithms are successive algo-
rithms while max-SINR and min-Leak algorithms are iterative algorithms. Therefore, the
comparison of the complexities of these algorithms is not straightforward. The required
number of the iterations increases in the high SNR regions for the iterative algorithms
while the number of calls Alg. [0 does not change with different SNR values in the proposed
stream selection based TA algorithms.

In fact, the given threshold and the maximum number of iterations affect the complexi-
ties of the iterative algorithms. The given threshold is the sum-rate difference between the
previous iteration and the last iteration for the max-SINR and the min-Leak algorithms.
As the threshold decreases, the complexity of the algorithms increases. If the threshold
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cannot be achieved, then the algorithms are performed until the given maximum number
of iterations is reached. We choose the threshold as 0.01 and the maximum number of the
iterations as 3000 for Scenario 1.2 and Scenario 2.1. The average number of iterations is
107.20 for the max-SINR algorithm and 371.54 for the min-Leak algorithm.

5.7 Conclusion

In this chapter, we have studied imperfect CSI case for the RASNSSS and the ISNSSS
algorithms presented in the previous chapter. In addition, we have proposed the KSS
algorithm for the limited feedback schemes in the heterogeneous networks with an adaptive
bit allocation to reduce the quantization error. Since the intra-stream interference has a
severe impact on the performance of the IA with the limited feedback schemes, the KSS
algorithm is proposed where we select only one stream for each user.

The precoders and postcoders have been obtained by the proposed algorithms under
the quantized CDI. The presented adaptive bit allocation scheme has been performed for
the heterogeneous networks. The number of bits of each user is optimized for the CDI
feedback to maximize the average sum rate of the network.

The performance of the proposed algorithms, RASNSSS, KSS and ISNSSS, have been
evaluated by varying the positions of pico BSs. Simulation results demonstrate that the
KSS algorithm achieves higher performance gain when compared to the RASNSSS, ISNSSS
and the existing stream selection based TA algorithms with the limited feedback scheme
for a given number of feedback bits. Since the KSS algorithm selects only one stream for
each user, quantization error can be reduced when compared to the other algorithms that
can potentially select more streams for each user. On the other hand, the KSS algorithm
is also compared with the max-SINR and min-Leak algorithms. It has been observed that
the KSS algorithm achieves higher performance, although only one stream is considered
for the max-SINR and min-Leak algorithms and it has been shown that the KSS algorithm
is more robust to the channel uncertainties.

Furthermore, the presented adaptive bit allocation schemes improve the performances
of the algorithms compared to the equal bit allocation. It has been observed that most of
the bits should be allocated to the interference channels between the macro BS and pico
users for the KSS algorithm, since the generated interference by the macro BS to the pico
users is dominant. For the RASNSSS and the ISNSSS algorithms, on the other hand, since
more streams can be selected for each user, the number of bits allocated to the desired
channels also increases to reduce the intra-stream interference.

When the total number of bits increases, the RASNSSS and the ISNSSS algorithm
achieve better performance than the KSS algorithm since the number of allocated bits is
enough to decrease intra-stream interference for both the desired channels and the interfer-
ence channels. In this case, the feedback overhead will also increase. Therefore, we propose
the KSS algorithm for the practical implementations of the limited feedback scheme.
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5.8 Summary

In this thesis, we have developed different stream selection based IA algorithms for the
heterogeneous networks considering both perfect and imperfect CSI.

In Chapter [3] a general system model has been given assuming the perfect CSI is
available at the transmitter side. The presented IA algorithms in this chapter have been
evaluated in the homogeneous networks where the number of transmit and receive anten-
nas are equal and the transmit power is the same for all the transmitters by assuming all
users have the same distances from their serving BSs. The existing IA algorithms includ-
ing iterative and stream selection based interference alignment algorithms, are explained
and their performances are compared. In the iterative algorithms, the precoding and the
postcoding matrices are designed in order to minimize the total interference experienced by
all the receivers, or to maximize the SINR at each receiver. In the stream selection based
algorithms, on the other hand, the precoding and the postcoding matrices are obtained by
selecting the best stream sequences that maximizes the sum rate depending on the stream
selection scheme. SNSSS algorithm constructs a single stream sequence by selecting the
strongest streams, while ESNSSS constructs multiple stream sequences initialized with dif-
ferent streams and selects the best sequence. It has been observed that the performances
of the mentioned TA approaches are almost identical in a homogeneous network model. In
addition, the performance of the stream selection based TA algorithms increase when the
search space of the stream sequences increases. Furthermore, the stream selection based
IA algorithms construct stream sequences with a different number of streams depending on
the selection criteria while iterative IA algorithms always select a fixed number of streams.
However, this feature of the stream selection based IA approaches can not always guarantee
for the users to receive a stream due to the channel conditions.

Allocating at least one stream to each user has been studied in Chapter |4] for hete-
rogeneous networks assuming perfect CSI availability at the transmitters. Depending on
the pico cell deployments, two different cases have been considered as partially connected
and fully connected heterogeneous networks. ISNSSS algorithm has been presented for the
partially connected interference network where the pico users do not receive interference
from other pico BSs. Therefore, TA procedure is only performed to mitigate the inter-
ference generated to pico users from the macro BS and the interference generated to the
macro user from the pico BSs. In order to construct better stream sequences, ISNSSS
starts selecting streams from the pico users, because pico users have a higher SNR value
than the macro user in general. On the other hand, ASNSSS algorithm has been proposed
for fully connected interference networks where each pico cell generates interference to all
other pico users. The sequences with the highest probability of occurrence while perform-
ing the exhaustive search are included in a predetermined set. It has been shown that
the sequences in this predetermined set have a regular structure which requires selecting
the initial streams from the pico users. Performance results show that both ISNSSS and
ASNSSS algorithms achieve good performances when compared to the iterative IA algo-
rithms. When compared to the existing stream selection based IA algorithms, the proposed
algorithms can allocate more streams on average to the pico users while ensuring better
service and increasing the sum rate. In addition, the ASNSSS and ISNSSS algorithms sig-
nificantly reduce the complexity of the exhaustive search and achieve a closer performance
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of the exhaustive search.

In the context of TA, the knowledge of CSI plays a very crucial role in designing pre-
coding and postcoding matrices to achieve the perfect alignment. Since assuming the
availability of the perfect CSI at the transmitter is not realistic for practical systems, a
limited feedback scheme for the ISNSSS and the ASNSSS algorithms has been presented
in Chapter 5] The ASNSSS algorithm has been modified as RASNSSS algorithm which is
the restricted version of the ASNSSS algorithm by selecting less streams for each user to
reduce the quantization error. In addition, a novel stream selection algorithm called KSS
has been proposed. The KSS algorithm selects a single stream for each user to reduce the
intra-stream interference with the imperfect CSI. Stream sequences are initialized with the
pico streams and the selection continues with the best streams of the other users. In order
to improve the performance of the algorithms in the limited feedback case, different adap-
tive feedback bit allocation schemes have been proposed for the algorithms. Performance
results have shown that the adaptive bit allocation schemes improve the performances of
the algorithms compared to the equal bit allocation. It has been observed that allocating
more bits to the interference channels between the macro BS and pico users gives better
results due to the dominant interference generated by the macro BS to the pico users.
For a reasonable number of feedback bits, the KSS algorithm performs better than the
existing stream selection and the iterative IA algorithms. On the other hand, when there
is a sufficient number of bits to increase the CSI quality, the RASNSSS and the ISNSSS
algorithms achieve better performance than the KSS algorithm. In other words, allocating
more bits reduces the intra-stream interference; therefore, more streams can be selected
for each user and as a result the average sum rate increases. However, the feedback load
increases and the codebook design gets more complex with the increasing number of bits,
which is not practical for the limited feedback schemes. Therefore, we propose the KSS
algorithm for the practical implementations.

5.9 Perspectives

There are additional aspects that can be considered to further develop the approaches
given in this thesis. These aspects can be identified as follows.

e Although most of the studies on IA have focused on interference channel, there are
also TA studies to improve the user throughput in multi-user MIMO (MU-MIMO)
cellular networks. Since the stream selection based IA algorithms have been inves-
tigated for single user MIMO systems so far, the extension to multi-user MIMO
heterogeneous networks is a possible direction for future work. As a starting point,
we can extend the scenarios that are described in this thesis by considering a hetero-
geneous network composed of one pico cell with one user and one macro cell with two
users. In this case, the proposed algorithms are applicable with slight modifications.
Further analysis can be carried out using exhaustive search to identify better criteria
for constructing stream sequences.

e In case of multiple pico cells with multiple users, the number of transmit antennas
will probably need to be increased to handle the interference in multi-user MIMO
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heterogeneous networks, since, from the DoF perspective, as the number of the users
increase, more antennas at the transmitters are required to perform the alignment
properly. In other words, IA in the spatial domain is only achievable among a lim-
ited number of antennas. Therefore, user selection methods can be applied before the
proposed stream selection based TA algorithms. There are different user scheduling
algorithms based on different criteria, such as maximum SNR, minimum interference-
to-noise ratio (INR), maximum SINR, Opportunistic TA (OTA), opportunistic maxi-
mum rate (OMR) (Maciel-Barboza et al.|[2015]).

Another possible extension for this thesis can be to consider dense deployment of
small cells. In this case, clustering and user scheduling approaches can be jointly
applied before the stream selection based 1A algorithms. For instance, first, pico
cells can be clustered depending on their interference level or their distance to each
other and then the interference between the macro cell and the pico cells inside the
clusters can be aligned. Next, the interference inside the cluster can be aligned by
applying user scheduling algorithms. In such a scenario, a coordination between the
pico cells is required (Chen et al. [2014]).

On the other hand, fairness is important in terms of the QoS for the networks (Hong
and Luo| [2014]). Selecting multiple streams for each user in MU-MIMO systems is
difficult to achieve in the areas with high user density. Therefore, achieving QoS
targets becomes a challenging research problem, especially in the high SNR regime.
There are studies that improve the worst user SINR by power control approaches
(Liu et al.|[2013], Yetis et al.| [2014]). In this way, a fair transmission can be achieved
with the cost of a reasonable sum-rate degradation. To this end, new stream selection
criteria can be developed for MU-MIMO systems while ensuring fairness among the
streams of each user.

Acquiring accurate CSI is also an important problem to achieve perfect alignment.
In this thesis, we have considered a limited feedback scheme in a centralized manner.
In order to approximate the CSI more accurately, improving the codebook design to
reduce the quantization error and the feedback overhead can further be investigated
in future studies. In addition, it has been shown that achieving TA using the delayed
CSI can be possible (Maddah-Ali and Tse [2012]), (Lee et al.|[2014]). Therefore, the
delayed CSI can be exploited to increase the performance of the proposed stream
selection based TA algorithms under more realistic conditions.
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Appendix A

JUSTIFICATION FOR THE
INITTALIZATION OF STREAM
SEQUENCES WITH PICO-USER
STREAMS

Although the collected data do not yield a complete criterion for step-by-step selection
of each stream, it is possible and important to justify the selection of pico streams as
the initial streams. The data show that stream paths leading to relatively higher sum
rate values generally start with the streams of the user which has the greatest SNR value.
Below, it is justified that with high probability, this user is a pico user.

P, :
Let pp = 5> and p, = Ij;m be the average SNR values of pico and macro users,

respectively. Furthermore, let PTZ = P,(dB) — Pr,(dB) and P,,, = Pi(dB) — Pr,, (dB) be
the received powers of the corresponding pico and macro users, respectively, where Pr,, and
Py, are the path loss for pico and macro users, and Py, k € I' and P; are the transmitted
powers of the corresponding pico and macro BSs, respectively. Also, P, is the noise power.

In order to find the probability that the SNR of the pico user is greater than the SNR
of the macro user, P(p, > pm), the following inequality can be considered.

PP, — P, > R, — Pr,,) (A1)

Using the path loss equations given in Table [£.1]in Section [4.5] which are some of the most
commonly employed path loss models in the heterogeneous network scenarios (Ghosh et al.
[2012] BGPP|[2010]), Equation (A.1)) can be expressed as follows.

P((Ptp — (140.7 + 36.7logy o (rp(km))) > P, — (128.1 + 37.610g10(rm(km))))(dB)> -

(P, — Pi,,)(dB) — 12.6 + 37.610g10(rm)> B
36.7 -

P(logyq(ry) <

(Py,, —Pt,, ) (dB)—12.6 >

P(r—p < 10¢ 36.7
Tm
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where 7, is the distance between the pico user and the pico BS and r,, is the distance
between the macro user and its BS. In addition, it is assumed that 37.6/36.7 ~ 1. For
heterogeneous networks, pico transmit power, P, k € I', can range between 23dBm and
30dBm and typical macro transmit power, Py, is 43dBm. Therefore, the probability of
P(2 < Q) can vary between 0.12 to 0.2. In this study, Q is 0.1377 because Py, k € I is

T'm

24dBm.

In order to calculate the probability that P(:—Z < @), let X be the random variable
to represent the distance between the pico BS and the pico user and Y be the random
variable to represent the distance between the macro BS and the macro user. These
random variables are independent and the cumulative distribution functions of X and Y
are given as follows (Leon-Garcia [2008]).

2

P(X <) = Fx(2) = 1. (A2)
o
PIY <y) = Fr(y) = 3

where R, is the range of a pico BS and R,, is the range of a macro BS. Consequently, the
probability density functions of X and Y are as follows.

fele) = =5, ) = (A3)
D m

To calculate the probability that P(:—Z < K), a new random variable Z = X/Y can be
used as follows (Leon-Garcia [2008]).

P(Z<2)=Fy(z2)=P(X)Y <z2)=P(X >2Y,Y <0)+ P(X <2Y,Y >0)

T e - [T @] s,
[ ] s [7[[7 svwier

Since z € [0, Rp] and y € [0, Ry,

P = | v [ / N fx(l’)dx] Fr(v)dy (A4)
-/ Y o) - fy)dy

where Fx(z) =1if x > R,. For z > Rp/Rm,

Ry,/z Rm 2y 1 R2 1
_ _ P
Fy(z) = /0 R2 Rg dy +/ d o 2 (A.5)

If Z=Q =0.1377, R, = 0.1km, R,, = 1km, then

1012 1
PXJY <@ =F2Q) =1- 57 a3 (4.6)
~ 0.736
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Thus, a pico user has a higher SNR value than a macro user with a probability of 73.6%.
Note that these derivations are obtained for K, = 1 where K, is the number of pico users.
For cases K, > 1, then the probability of having higher SNR values for pico users becomes
as follows.

1= P(Z>Q)fr =1-(1-P(Z< Q)< (A7)

Therefore, pico users have higher SNR values than a macro user with a probability of 92.7%
for K, = 2 as in Scenario 2.1 and Scenario 2.2 and 98% for K, = 3 as in Scenario 2.3 and

Scenario 2.4.
For the given scenarios for partial and fully connected interference networks, the fol-

lowing Table supports the justification for the initialization of stream sequences with
pico-user streams. It can be observed that the SNR values of the pico users are higher

than the macro user.

Table A.1: SNR and SINR Values of Pico Users vs. Shift Number for Different Scenarios
at d/R = 0.8

Scenario 1.3 | Scenario 2.3
Use‘(“ d‘g;l“es SNR | SINR | SNR | SINR

Macro User | 36.09 | 35.84 35.40 | 27.32
Pico 1 User | 39.32 | 14.78 39.32 | 3.46

Pico 2 User | 38.97 | 14.12 38.97 | 14.90
Pico 3 User | 39.59 | 1493 | 39.59 | 15.32
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Appendix B

EXHAUSTIVE SEARCH
STATISTICAL ANALYSIS

In order to analyze the behavior of the stream selection algorithms depending on the
position of the pico cell, the selection probabilities of each stream path and the average
sum rate obtained after the possible selections are given in the stream sequence trees. In
addition, the weighted sum-rates are computed by the production of the given probabilities.
These results are obtained by the exhaustive search.

The proposed algorithm ISNSSS for the partially connected network achieves to con-
struct stream sequences by examining certain metric values obtained from the exhaustive
analysis. These metrics can be defined as follows.

e P is the selection probability of each stream sequences.

e SR is the average of the sum rates achieved by the sequence only when the sequence
is selected.

e The multiplication of P and SR represents the sum rate contribution of the selected
stream sequence.

Scenarios for Partially Connected Interference Networks:

P and P x SR are given in the stream trees, as in Figure [B.1] Figure and Figure[B.3
for Scenario 1.1, Scenario 1.2 and Scenario 1.3 studied in Chapter 4] respectively.

It can be seen that from the given stream trees for the three scenario considered for
the partially connected networks, initializing the stream sequences with the streams from
the pico user has higher probability than selecting the first streams from the macro user.
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Scenarios for Fully Connected Interference Networks:

The construction of the stream sequence set by the ASNSSS algorithm is explained
in Chapter [l The selected stream sequences in the exhaustive search are analyzed by
examining metrics P, SR and P x SR.

The analysis in Scenario 2.1 show that different stream sequences with different lengths
can be selected by the exhaustive search. The tree of the selected stream sequences starting
from pico streams, such as P1 1, P1 2 which belong to pico 1 user and P2 1, P2 2
which belong to pico 2 user, can be seen in Figure for d/R = 0.7. The stream sequences
constructed by the proposed ASNSSS algorithm are highlighted in the given tree. It can
be also observed that the selected streams starting from macro streams, M 1 and M 2,
have lower sum rate contributions. The predetermined set constructed by the proposed
approach are highlighted in the tree. It can be seen that the weighted sum rate of the
selected stream sequences (P x SR) are higher than the other selected sequences in the
exhaustive search. This observation can be used to achieve higher sum rate values while
decreasing the size of the search tree. The tree given in Figure shows that it is possible
to shrink the tree in Figure while still achieving high sum rate values.

The analysis for the Scenario 2.2 show that the weighted sum rate of the selected stream
sequences (P x SR) are higher than the other selected sequences in the exhaustive search
and it can be illustrated in Figure

The stream sequences constructed by the ASNSSS algorithm for Scenario 2.3 and Sce-
nario 2.4 can be seen in Figure [B.7]
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Acronyms

e ASNSSS : Advanced Successive Null Space Stream Selection
e BER : Bit Error Rate

e BS : Base Station

e CDI : Channel Direction Information

e (ST : Channel State Information

e CSIT : Channel State Information at the Transmitter

e CQI : Channel Quality Indicator

e C'RE : Channel Range Expansion

e DoF' : Degrees of Freedom

e FSNSSS : Enhanced Successive Null Space Stream Selection
e F'DD : Frequency Division Duplex

e KSS : K-Stream Selection

o [ A : Interference Alignment

e JC' : Interference Channel

e ISNSSS : Improved Successive Null Space Stream Selection
e max —SINR : Maximum Signal to Interference Noise Ratio
e min —Leak : Minimum Interference Leakage

e MIMO : Multiple Input Multiple Output

e MSE : Mean Squared Error

e RSSI : Received Signal Strength Interference

e SISO :Single Input Single Output

e MSE : Mean Squared Error
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ACRONYMS

e SINR : Signal to Interference Noise Ratio

e SNR: Signal to Noise Ratio

e SNSSS : Successive Null Space Stream Selection
e SR : Sum Rate

e SV D : Singular Value Decomposition

e RV : Random Vector Quantization

e T'DD : Time Division Duplex

e VTC : Virtual Transmitting Channel

e VRC : Virtual Receiving Channel
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Abbreviations

e Nr,: The number of transmit antennas

e Npg,: The number of receive antennas

e n;: Additive white Gaussian noise (AWGN) vector with dimension Np, x 1

e Hj;: Channel matrix between the ;' transmitter and the k' receiver

e H;,;: Quantized channel matrix between the j transmitter and the k% receiver

° ﬁkj: CDI between the j* transmitter and the k** receiver

° ﬁkj: Quantized CDI between the j** transmitter and the k" receiver

e Pj: Transmit power of the k*" base station Pyj: Received power of the k" user from
the k" base station

e x;(t): Input signal transmitted by the k' transmitter with dimension N, x 1

e ¢;: Number of the selected streams of the &k user

e dj;: Total number of the streams of the k** user

e s;: Symbol vector with dimension of ¢ x 1

e T;: Precoding matrix of the kP transmitter with dimension N1, X qi

° }c ith column vector of the precoding matrix T}, with dimension N7, x 1

e D;: Postcoding matrix of transmitter & with dimension Ng, x gx

e d;: i'® column vector of the precoding matrix Dy, with dimension Ng, x 1

e ~ii: SINR of the i*" stream of the k" receiver

e B.;: Interference plus noise covariance matrix for the ith stream of the k' receiver

e Byj: Number of quantization bits to quantize the channel between the 4t transmitter
and the k" receiver
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ABBREVIATIONS

202



Symbols

e Lower-case Letters: Scalars

e Bold Lower-case Letters: Vectors

e Bold Upper-case Letters: Matrices

e Capital Greek Letters (i.e. ®): Sets

e (): Empty set

e rank(A): Rank of matrix A

e AT: Transpose of matrix A

e A Complex conjugate transpose of matrix A
e det(A): Determinant of matrix A

e |®|: Cardinality of set ®

e |la||: Euclidean norm of vector a

e ||A||;: Frobenius norm of matrix A

e E[A]: Expectation of random variable A

e span(A): Space spanned by the column vectors of matrix A

e vec(A) : Vectorization of a channel matrix A € C%*? as a € C%*!
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Esra AYCAN BEYAZIT
INTERFERENCE ALIGNMENT
le cnam TECHNIQUES FOR lecnam

HETEROGENEOUS WIRELESS
NETWORKS

Résumé :

Dans cette thése, nous étudions les algorithmes d’alignement d’interférence dans les réseaux hétérogénes basés sur
la sélection des flux. Tout d’abord, nous considérons différents scénarios de déploiement des pico-cellules dans un
contexte de connaissance parfaite des canaux de transmission au niveau des émetteurs. Deux algorithmes sont
proposés respectivement pour les réseaux totalement et partiellement connectés. Afin d’assurer une équité entre
les liens, les algorithmes garantissent qu’au moins un flux de chaque lien émetteur soit sélectionné. La séquence
des flux est choisie parmi un ensemble qui contient les séquences les plus souvent sélectionnées en effectuant une
recherche exhaustive. Ces algorithmes sont significativement moins complexes que la recherche exhaustive tout en
ayant une performance proche de celle-ci. Aprés la sélection d’un flux, les interférences entre ce flux et les flux
qui n’ont pas encore été sélectionnées sont alignées par projections orthogonales. Dans une deuxiéme partie de la
theése, 'impact de la connaissance partielle des canaux de transmission sur les algorithmes proposés est analysé.
Il est montré que les interférences entre flux causent alors une forte dégradation des performances en raison des
erreurs de quantification. Pour réduire cette dégradation, un nouvel algorithme est développé pour ce contexte.
Finalement, des schémas d’allocation adaptative des bits pour les voies de retour sont proposés afin d’augmenter
les performances des algorithmes précédents.

Mots clés :

les réseaux de communication hétérogenes; alignement d’interférences; sélection de flux, rétroaction limitée

Abstract :

In this thesis, we study the stream selection based interference alignment (IA) algorithms, which can provide
large multiplexing gain, to deal with the interference in the heterogeneous networks. Firstly, different deployment
scenarios for the pico cells are investigated assuming perfect channel state information (CSI) at the transmitters.
Two different stream selection TA algorithms are proposed for fully and partially connected interference networks
and selecting at least one stream is guaranteed for each user. A stream sequence is selected among a predetermined
set of sequences that mostly contribute to the sum-rate while performing an exhaustive search. In the proposed
algorithms, the complexity of the exhaustive search is significantly decreased while keeping the performance
relatively close. After selecting a stream, the interference generated between the selected and the unselected
streams is aligned by orthogonal projections. Then, the influence of the imperfect CSI on the proposed algorithms
is analyzed and it is observed that the intra-stream interference causes a significant degradation in the performance
due to the quantization error. Therefore, we propose an algorithm for the limited feedback scheme. Finally,
adaptive bit allocation schemes are presented to maximize the overall capacity for all the proposed algorithms. The
performance evaluations are carried out considering different scenarios with different number and placements of
pico cells. It is shown that the proposed algorithm for the limited feedback is more robust to channel imperfections
compared to the existing IA algorithms.

Keywords :

heterogeneous networks, interference alignment, stream selection, feedback schemes
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