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Chapter 1

Introduction générale

Dans cette thése, on s’intéresse a des sytémes d’espéces en interaction. Ces dynamiques peuvent
modéliser plusieurs phénomeénes tels que les mouvements de foules, I'interaction entre espéces bi-
ologiques, la croissance de tumeur, 'aménagement urbain etc. Le point commun entre tous ces
modéles est que les mouvements d’une population sont décrits par I’évolution de sa densité et
non de chaque individu. Ces modéles sont appelés macroscopiques. De plus, dans de nombreux
phénoménes comme les mouvements de foule ou la migration cellulaire, la taille de la population
est fixée et reste inchangée et donc la théorie du transport optimal nous offre un bon outils pour
étudier ces systémes.

Le probléme du transport optimal a été introduit par Monge au 18¢me siécle, [95], et consiste a
minimiser I’énergie nécessaire pour transporter une masse de volume donnée vers une autre masse
de méme volume. L’exemple classique introduit par Monge consiste & transporter une pile de
sable vers un trou de méme volume en minimisant la distance parcourue, c’est a dire, on cherche
une fonction T telle que toute la masse de sable & un point x soit transférée & un point 7'(z) du
trou, tout en minimisant le déplacement moyen. Ce probléme est resté sans réponse pendant de
nombreuses années. En 1942, Kantorovich a proposé un probléme relaxé plus facile a resoudre,
[68]. Dans son modéle, la masse au point = peut s’étaler dans le trou et donc on ne recherche plus
une fonction mais un plan de transport. Ce n’est qu’a la fin des année 80 que Brenier a résolu
le probléme de Monge pour le cott quadratique [21]. Depuis, la théorie du transport optimal a
connu un regain d’activité avec de nombreuses applications et les livres de Villani, [116, 117], ou
Santambrogio [112], sont des références trés complétes sur ce sujet.

Une de ces applications est la résolution d’équations aux dérivées partielles (EDPs). En effet, le
probléme de transport optimal pour le colit quadratique défini une distance sur ’espace des mesures
de probabilité et on appelle cette espace muni de cette distance ’espace de Wasserstein. Certaines
équations paraboliques peuvent étre interprétées comme des flots de gradient par rapport a cette
distance. Jordan, Kinderlehrer et Otto ont été les premiers a avoir cette idée dans [65]. Dans
cet article, ils montrent que I’équation de Fokker-Planck peut étre vue comme le flot de gradient
de I’Entropie et d’une énergie de potentiel dans I'espace de Wasserstein. Cette théorie, appelée
flot gradient dans ’espace de Wasserstein, a été largement developpée ces derniers années pour
montrer ’existence de solutions pour de nombreuses EDPs telles que ’équation des milieux poreux
[98], les équations d’aggrégations [37], des équations paraboliques dégénérées [97, 1], ’équation de
Keller-Segel [18] ou encore des équations du quatriéme ordre [86].

Le but de cette thése est d’étendre cette théorie pour étudier des équations ne provenant pas
de flots gradient dans ’espace de Wasserstein, par exemple, les systémes de populations avec des
interactions non locales ou encore des équations de transport avec un champ de vecteur n’étant
pas donné par le gradient d’un potentiel. Les interactions qu’on va étudier vont étre de plusieurs
natures. Tout d’abord, dans les chapitres 4 et 5, on va s’intéresser a des interactions non locales
sur la vitesse qui peuvent modéliser 'attirance ou la répulsion d’une espéce envers une autre. Le
chapitre 6 est consacré a I’étude de modéle de congestion pour une population comprenant différents
types d’individus. Par exemple, lorsque deux foules se croisent la poulation globale des deux foules
doit satisfaire des contraintes sur le nombre de personnes au métre carré. Ce type de modéles a
été introduit dans le cas d’une population par Maury, Roudneff-Chupin et Santambrogio [89], et
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on va étendre ces résultats & une population divisée en deux groupes (ou plus) ayant chacun un
comportement distinct. Le chapitre 7 étudie des systémes oul la taille des populations, fixée dans
les précédents modéles, peut varier en fonction du comportement des autres espéces. Un exemple
pour illustrer ce phénoméne provient des systémes proie-prédateur avec diffusion. En effet, si on
se place dans le cas de deux espéces, une proie et un prédateur, chacune va avoir une diffusion qui
lui est propre dans ’espace mais elle vont interagir car les prédateurs vont chercher & manger leur
proie pour se nourrir. On appliquera aussi cette méthode pour des équations du type Hele-Shaw
pouvant modéliser la croissance tumorale [102, 101]. Le dernier type d’interactions étudiés provient
d’un modéle de planification urbaine. On considére deux espéces, les habitants et les services. Les
habitants cherchent & se rapprocher des services dans le but de minimiser leur cofit de transport et
de plus sont soumis & une congestion car ils ne veulent pas habiter dans un endroit trop peuplé. De
leur coté les services veulent aussi se trouver proches des habitations mais veulent étre concentrés
afin de minimiser leur cotit de gestion. Ce genre de modéle a été introduit dans le cas statique dans
[25, 31]. Dans le chapitre 8, considérant qu'une ville est en constante évolution, on s’est intéressé
au modéle dynamique et on remarque ici, que l'interaction se situe dans un probléme de transport
optimal entre les deux espéces.

Tous les systémes étudiés sont des extensions de la théorie des flots de gradients dans ’espaces de
Wasserstein. Cette théorie consiste a construire par récurrence une suite de mesures de probabilité,
(PF)r C Pa(£2), de la fagon suivante

o1
pit € argmin — W2 (p, pf) + E(p), (1.1)

pePo(Q) 2h

ou 2 est un sous-ensemble de R™, W5 indique la distance de Wasserstein d’ordre 2 sur Pa(),
E : P2(Q) — R est une fonctionnelle donnée et h > 0 est un pas de temps. Ce schéma est appelé
schéma de JKO. D’aprés [65, 97, 4], on sait que I'interpolation en temps constante par morceaux
va converger vers une solution de I’équation de continuité

Orp — div(pV(F'(p) +V)) = 0,

&)= [ Fo)+ [ v

Le premier chapitre 3 est basé sur un article en collaboration avec Jean-David Benamou et
Guillaume Carlier. On y propose une nouvelle méthode numérique, nommée ALG2-JKO, pour
résoudre des flots de gradient dans l’espace de Wasserstein en résolvant (1.1) itérativement. La
difficulté dans ce probléme réside dans le terme de Wasserstein qui implique de résoudre un prob-
léme de transport optimal, souvent trés cotiteux a chaque étape. Il existe plusieurs méthodes pour
résoudre ce problémes.

Notre méthode est basée sur la formulation dynamique de Benamou-Brenier du transport op-
timal,

dans le cas ou

2 : Ll ma(a) P :
W5 (po, p1) = inf / / 1)7 dxdt : Oppy + div(my) =0, pi—o0,1 = po, P1 ¢
L) ¢

qui est convexe. Elle nous permet donc de proposer une formulation convexe de (1.1) a chaque
étape qu’on résout a I’aide d’une méthode de Lagrangian augmenté en utilisant FreeFem+-+. Cette
méthode a été testée sur I’équation des milieux poreux. De plus, elle est trés maniable et on va
pouvoir 'utiliser dans plusieurs chapitres de la thése pour illustrer des résultats notamment sur
I'interaction entre espéces (chapitre 4), les mouvements de foules (chapitre 6), les systémes diffusifs
proie-prédateur (chapitre 7) ou la croissance tumorale (chapitre 7), qui ne proviennent plus de flots
de gradient dans I'espaces de Wasserstein mais qui sont des perturbations de cette méthode.

Les deux chapitres suivants 4 et 5 sont consacrés & ’édude d’existence et d’unicité pour des
équations de continuité du type

Owp + div(pv[p]) =0, (1.2)



o le champ de vecteur v[p| est le somme d’un terme régulier, qui peut se traiter en utilisant
la méthode des caractéristiques, et d’un terme provenant d’un flot de gradient dans ’espace de
Wasserstein, typiquement une diffusion.

Le chapitre 4 presente un premier résultat d’existence et d’unicité pour une classe de systémes
paraboliques avec diffusions non linéaires et interactions non locales,

dpi — AP;(pi) — div(p;VVilp1, ..., p]) =0,

avec i € [1,1] sur © un ouvert de R™ Dans ce chapitre, le terme régulier est toujours donné
par le gradient d’un potentiel mais ces systémes ne sont pas des flots de gradient dans ’espace
de Wasserstein produit car les V; n’ont a priori aucun lien entre eux. Ils peuvent étre considérés
comme des perturbations réguliéres de cette théorie. Pour contourner cette difficulté, Di Francesco
et Fagioli ont introduit, dans le cadre non diffusif, un schéma de JKO semi-implicite [54]. Il consiste
a fixé le poteniel V' dans I’énergie de potentiel avec les mesures définies a I'instant précédents, a
chaque étape: On construit des suites (pf,) C Pa(Q) telles que p? ), = pio et

pit! € argmin {WQQ(/A pEn) + 2k (/Q Fi(p) + /Q Vilph - mf‘ih]p) } :
p

La principale difficultée de ce chapitre est d’obtenir une convergence forte afin de pouvoir passer
a la limite dans le terme de diffusion non linéaire. Pour ce faire, on va utiliser deux méthodes dif-
férentes. La premiére, sur R™, est basée sur 'argument de flow interchange introduit par Matthes,
McCann et Savaré [86] pour obtenir de la compacité en espace et sur une extension du lemme
d’Aubin-Lions die a Rossi et Savaré [107]. La méthode de flow interchange présente cependant le
désavantage d’utiliser la convexité géodésique de I’Entropie ce qui nous oblige a travailler sur un
domaine convexe. Dans le cas d’un ouvert borné de R”, on propose une alternative pour obtenir la
compacité en espace. En utilisant les équations d’Euler-Lagrange associés aux problémes de min-
imisations, on obtient une estimation BV en espace sur une quantité non linéaire de p; 5. On finit
ce chapitre en donnant un résultat d’unicité qui utilise des arguments de convexité géodésique et
des simulations numériques pour des sytémes d’espéces en interactions en se servant de ’algorithme
développé chapitre 3.

Comme on ’a vu dans le cas précédent, le champ de vecteur est donné par un gradient. Le
chapitre 5 étend les résultats d’existence et d’unicité a des champs de vecteur généraux réguliers
et est issue d’articles en collaboration avec Guillaume Carlier [35, 33]. C’est a dire, on cherche a
résoudre

Opi — APi(pi) — div(p:Uilp, ..., p]) = 0.

La premiére méthode pour obtenir ce résultat est complétement parabolique. On régularise
Péquation (1.2) et on la réécrit de la maniére suivante

dp — div(a=(p)Vp) + blp] - Vp + c[p]p = 0,

avec a.(p), bp] et c[p] appartenant & L>°((0,T) x ) et 1/e > a.(p) > €. On trouve une solution de
I’équation régularisée par une méthode de point fixe puis en utilisant des méthodes classiques en
équation parabolique, on obtient des estimations indépendantes du paramétre € nous permettant
de passer a la limite dans ’équation. Cette méthode se généralise facilement au cas des systémes.
De plus, on donne un résultat de contraction H ' dans le cas ot la diffusion n’est pas dégénérée.

Cette méthode, bien que simple, a le désavantage de ne pas étre constructive et donc pour
remédier a ce probléme, on a, dans un second temps, développé une méthode de splitting dans
I’espace de Wasserstein. L’idée de notre splitting consiste & utiliser la décomposition d’Helmholtz
sur Ulp] i.e

Ulp] = =Wlp] + VV|p],

ot Wip] est un champ de vecteur a divergence nulle. La partie a divergence nulle va étre traitée
par des phases de transport pur et on va utiliser le schéma de JKO semi-implicite développé
chapitre 4 pour gérer le terme gradient. Dans le but de pouvoir appliquer la théorie de DiPerna-
Lions, on va supposer que W vérifie une régularité Sobolev. L’avantage de ce splitting réside
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dans le fait que la phase de transport pur conserve l’énergie interne ce qui va nous permettre de
retrouver facilement les estimations habituelles dans la théorie des flots de gradient dans I’espace
de Wasserstein (estimation sur Pénergie, estimation sur les moments, compacité en temps). De
plus, on propose une méthode générale s’appliquant sur un ouvert de R”™, pas nécessairement
convexe ou borné, pour obtenir la compacité en espace nous permettant d’appliquer le théoréme
de Rossi et Savaré [107] afin de retrouver la convergence forte de la suite des solutions discrétes.
On remarque que le théoréme d’unicité des solutions démontré au chapitre précédent s’applique a
ce cas. Signalons qu’un schéma de splitting avait déja été introduit par Meszaros et Santambrogio
dans [94] pour résoudre 1'équation de Fokker-Planck munie d’une contrainte de densité p < 1. Leur
méthode consiste a suivre ’équation de Fokker-Planck pendant une durée h puis de projeter par
rapport a la distance de Wasserstein sur ’ensemble des densités inférieure & 1. Notre méthode
permet aussi de contourner une des difficultés listées dans leur article (section 5, variant 3).

La fin du chapitre 5 est dédiée a ’extension de la méthode de splitting dans l'espace de Wasser-
stein pour des coiits plus généraux. On remplace la distance de Wasserstein d’ordre 2 dans le
schéma de JKO par

W)=t { [ eyt v et |

o ¢ : R™ — [0, +00) est une fonction réguliére, strictement convexe telle que ¢(0) = 0 et
alz| < efz) < B+ [2|7),
pour certains a, 5 > 0 et ¢ > 1. En utilisant cette distance, on veut résoudre
Op — div(pVe™ (F'(p))) — div(pUlp]) = 0,

avec c¢* la transformée de Legendre de c¢. Sans le champs de vecteur U, ce systéme a déja été
étudié par Otto [97] (dans le cas ou le colt est donné par ¢(z) = |x|P) et par Agueh [1] dans le cas
général. Notre méthode consiste & réutiliser le shéma de splitting mais en effectuant la phase de
transport pur avec tout le vecteur Ulp]. En supposant des bornes par en dessous et au dessus sur
la condition initiale, on arrive a les itérer en temps, nous permettant de controler I’évolution de
I’énergie interne lors de la phase de transport pur.

Le chapitre 6 est consacré a 1’étude de systémes ou l'interaction se trouve dans le terme de
diffusion. Ce champ de recherche a connu une grande activité ces derniéres années, voir par exemple
[79, 53, 66, 67, T2]. Ici, nous nous interesserons plus & une interaction modélisant la congestion de
deux populations. Les modéles de congestion de foule dans le cadre macroscopique ont été proposés
par Maury, Roudneff-Chupin et Santambrogio [89] dans le cadre d’une population pour modéliser,
par exemple, I’évacuation d’une piéce. Ces modéles consistent & dire que la population suit un
vecteur vitesse, mettons le gradient de la distance & une sortie, et ce vecteur est adapté dans les
zones ol la contrainte p < 1 est saturée. Les auteurs prouvent que ce probléme a une structure de
flot de gradient dans l’espace de Wasserstein. Plus récemment, Meszaros et Santambrogio dans [94]
ont proposé un modéle de congestion dure ot les individus sont soumis a une diffusion brownienne.
Cela revient & montrer l'existence de solution de 1’équation

dhp—Ap—div(pV(V +p)) =0,  p<1,
avec p un terme de pression satisfaisant
p =0, and p(1 - p) = 0.

Une variante naturelle de ce systéme consiste a considérer deux populations, chacune d’entre
elles ayant son propre potentiel mais étant sujet a une pression commune. Pour une diffusion
linéaire, cela correspond & mettre un bruit brownien sur chaque espéce. La dynamique des mou-
vements de foules & deux espéces s’exprime par

atpl — Apl — dlv(pl(VVl + Vp)) = 0,

O¢pa — Apa — div(pa(VVa + Vp)) =0,
p=0,p1+p2 <1, p(l—p—p2)=0.



Ce systéme peut étre vu comme le flot de gradient pour la distance de Wasserstein produit de

HCEDY /Qm- log(p:) + Vips) + / Xioa) (01(2) + pa(2)) da.

Plus généralement, on va étudier I'existence de solutions pour des systémes de la forme

9ep1 — Apr —div(p1(VVi + VI, (p1 + p2))) =0,
Op2 — Apa — div(p2(VVa + VI, (p1 + p2))) =0,

avec pour m € [1,4+o0[, F,,, : RT — R définie par

zlogx ifm=1,
Fm(x){ 2 ifm> 1.

Ce systeme est le flot de gradient pour la distance de Wasserstein produit de

Enpa) = Y [ (pi1orp) + Vi) + | Fulpr(a) + pata) do

La difficulté est de passer a la limite dans le terme de diffusion croisée. Pour ce faire, on va
utilisé ’argument de flow interchange pour obtenir des estimations a la fois sur p; et sur la somme
p1+p2. Alafin du chapitre, on montrera des simulations numériques faites en utilisant I’algorithme
défini chapitre 3.

Dans les systémes précédement étudiés, il n’y avait pas de réaction et donc la masse était fixée
ce qui permettait de travailler dans I’espace des mesures de probabilité muni de la distance de
Wasserstein. Dans le chapitre 7, on va s’intéresser au cas des sytémes de réaction-diffusion ot les
populations intéragissent entre elles via le terme de réaction. Ces systémes apparaissent beaucoup
en biologie, le modéle le plus simple étant les systémes diffusifs proie-prédateur [96]. L’analyse de
ce type de systémes est déja trés développée, voir par exemple article de Michel Pierre [105] pour
une vue d’ensemble sur le sujet. Dans ce chapitre, nous allons étudier deux fagons différentes pour
étendre la méthode des flots de gradient dans I’espace de Wasserstein aux équations de réaction-
diffusion.

La premiére méthode a été proposée par Kinderlehrer et Walkington dans [70] ou ils présentent
un algorithme de splitting pour résoudre les équations du type

dup — div(pV (F'(p) + V) = (p). (13)

Le schéma consiste a introduire une densité intermédiaire ou la masse est mise & jour puis
d’utiliser le schéma de JKO en utilisant la densité intermédiaire comme instant précédent: si on se
donne un pas de temps h > 0 et pﬁ la solution au temps hk, on commence par construire

~k+1 ._ k k
P =+ hfpn),
puis on définit pi“ comme le minimum, sur les mesures positives de méme masse que ﬁi“, de

1

5 W3 (00 ) + /(F(p) +Vp).

p

Petrelli et Tudorascu démontrérent dans [103] la convergence de ce schéma vers une solution
de (1.3). La démonstration est basée sur un principe du maximum et sur le théoréme de Fréchet-
Kolmogorov pour obtenir une convergence forte. Dans la premiére partie de ce chapitre, section 7.1,
on va étendre ce résultat aux systémes avec un terme d’interaction dans la réaction en utilisant
le schéma de splitting présenté plus haut. Tout d’abord, on étend le principe du maximum de
Petrelli et Tudorascu au cas des systémes. La convergence forte est retrouvée en utilisant la

bounded Lipschitz distance pour obtenir de la compacité en temps alors que la compacité en espace
est obtenue a l'aide des équations d’Euler-Lagrange associées aux problémes de minimisation. La
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fin de cette section est consacrée aux simulations numériques notamment sur des sytémes proie-
prédateur.

La seconde méthode est basée sur une méthode de splitting sur la distance de Wasserstein-
Fisher-Rao. Cette métrique a été introduit récemment par trois équipes différentes 43, 44, 71, 80,
81]. Elle permet d’étendre la distance de Wasserstein aux mesures positives de masses différentes.
Dans [63], Gallouét et Monsaingeon ont proposé une méthode de splitting pour résoudre les flots de
gradient pour cette métrique. Ils ont remarqué qu’infinitésimalement, la métrique de Wasserstein-
Fisher-Rao devrait étre la somme orthogonale de la métrique de Wasserstein et celle de Fisher-Rao.
Cela les a menés naturellement a diviser une étape de minimisation par rapport & la distance de
Wasserstein-Fisher-Rao d’une énergie £ en une sous-étape du schéma de JKO pour £ et une sous-
étape de minimisation par rapport a la distance de Fischer-Rao définie par

Jdpo _ [dpy
dA dA

pour toute mesure de référence \ telle que pg et p; soient absolument continues par rapport a A.

Dans [63], ils démontrent que les solutions discrétes ainsi créées convergent vers la solution de

2
FR(po, p1) ::4/ dA,
Q

Orp — div(pV(F'(p) + V) = —p(F'(p) + V),

£0)i= [ Fio)+ [ Vo,

Une variante naturelle de ce schéma est de minimiser des fonctionnelles différentes pour ’étape
de Wasserstein et 1’étape de Fischer-Rao. En collaboration avec Gallouét et Monsaingeon, nous
proposons d’étudier ce type d’équations dans la seconde partie du chapitre 7. Puis on appliquera ce
schéma pour retrouver 'existence de solutions faibles pour des modéles de croissance tumorale et
les simuler numériquement en utlisant ’algorithme du chapitre 3 pour la partie JKO. Ces modéles
ont été étudiés par Perthame, Tang et Vauchelet [102] et permettent de résoudre des équations du
type Hele-Shaw.

si € est de la forme

Le dernier chapitre 8 étudie un systéme d’équations paraboliques ot l'interaction est donnée
par le potentiel de Kantorovich d’un probléme multi-marges entre toutes les populations. Dans le
cadre simple de deux populations, ce modéle a été inspiré d’un article récent de Kinderlehrer, Mon-
saingeon et Xu [69] ou ils proposent une approche par flot de gradient dans 'espace de Wasserstein
pour résoudre le systéme de Poisson-Nernst-Planck

Op — alp™ —div(pV(U + ¢))
Opp — BA™ — div(uV(V — ¢))
—Ap=p—p

:O’
207

On s’est intéressé au cas "non linéaire" ol p et u sont couplés par I’équation de Monge-Ampére a
la place de I’équation de Poisson,

Op — aAp™ — div(pVU) — div(pVy) = 0,
O — BAP™ — div(pVV) — div(pVe©) = 0, (1.4)
det(I — D*p)u(Id — Vi) = p,

o ¢° est la c-transformée de @, ¢°(z) = sup, |z — y[* — ¢(y) et |z[* — ¢ est convexe. Le couple
(¢, ¢°) est une paire de potentiel de Kantorovich pour le probléme Wa(p, u). Ce type de probléme
peut apparaitre en aménagement urbain. Divers modéles ont été proposés dans le cas statique
par exemple voir [25, 26, 36, 31, 32, 109, 108, 111]. Dans un cas simple, on considére une région
) représentant une ville, une densité d’habitants p € P(Q2) et une densité de services u € P(Q).
Pour atteindre une configuration optimale, (p, 1) doit minimiser une fonctionelle £(p, ) modélisant
plusieurs aspects. Tout d’abord, p et © veulent minimiser un cotit de transport pour venir des zones
d’habitations aux zones ol se trouvent les services. Ce coiit peut étre modélisé par W3 (p, ). De



plus, les habitants veulent minimiser un terme de congestion di au fait que la population ne veut
pas se retrouver dans une zone trop peuplée. Ce terme de congestion est modélisé par

Flp) = /Q Fp),

ol F' : RT — R™ est une fonction continue convexe superlinéaire. Les services, contrairement aux
habitants, cherchent & se concentrer pour augmenter leur efficacité et diminuer les cotits de gestion.
On modélise ce phénoméne par la minimisation de

6(p) = [ b~ vl dot@)ipty),
QxQ
avec h une fonction croissante. Donc p et p veulent minimiser un coiit total donnée par

E(ps i) == W3 (p, ) + F(p) + G(1).

Partant du principe qu’une ville est en constante évolution, on s’est intéressé au probléme dy-
namique c’est & dire au flot de gradient par rapport & la distance de Wasserstein produit de &.
Formellement, le flot de gradient converge vers une solution d’un systéme de la forme (1.4). Dans
le chapitre 8, on va étudier I'existence des solutions de systémes plus générales que (1.4), notament
en augmentant le nombre de densités et en supposant que chaque population veut minimiser un
probléme de transport avec des colits qui peuvent étre différents. Cette derniére hypothése est
assez naturelle, par exemple les travailleurs doivent payer I’essence pour se rendre au travail tandis
que les entreprises ne s’en soucient pas. On va montrer I’existence de solutions du systéme suivant

Opi = APi(pi) + div(piVus), piji=o = pio,

pour tout ¢ € [1,1], on u; est un potentiel de Kantorovich associé au probléme multi-marges

WCz(pla--'7pl) = inf{/lCi(l‘l,...,J)l)d'y(l‘l,...,xl) : VEH(pla"-apl)}v
Q

ou I(py,...,p1) représente 'ensemble des plans de transport entre pi,...,p;. Comme on utilise
des coiits différents pour chaque densité, ce sytéme n’est pas un flot de gradient et on va alors
devoir utiliser un schéma de JKO semi-implicite pour le résoudre. On donnera ensuite un résultat
d’unicité basée sur la convexité géodésique des problémes de transport ainsi que des exemples
de fonctionnelles vérifiant cette hypothése. Dans la derniére partie, nous donnerons quelques
problémes ouverts qui feront ’objet de recherches ultérieures.
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Chapter 2

Introduction to optimal
transportation and gradient flows

In this thesis, we wish to extend the usual theory of gradient flows in Wasserstain space to treat
systems of parabolic equations with different forms of interaction. These systems appear in various
domain as population dynamics, crowd modelling, tumor growth, urban planning etc. The main
tool comes from the optimal transport theory. We recall here some results about optimal trans-
portation theory and gradient flows theory. We refer to [116, 117, 112] to a detailed exposition of
optimal transport and [4] for gradient flows.

2.1 Optimal transport

2.1.1 Generalities on optimal transport

The optimal transport problem was introduced in 1789 by Gaspard Monge in [95]. The problem is
the following: given a pile of sand and a hole with same volume, we want to fill up the hole with
the sand minimizing a cost function given by the euclidian distance in [95].

In a more mathematical framework, the pile of sand and the hole are represented by two
probability measures p and p defined respectively on complete and separable metric spaces X and
Y. In the sequel, we will often work with probability measures defined on the same subset §2 of R"™.
The cost function is given by a countinuous (or lower semi continuous) map ¢ : X xY — [0, 4+00).
Then the problem consists in finding a map 7' : X — Y which pushes p to p i.e Tiup = p where
Tup is called image measure or push-forward of p through 7" and is defined by

(Typ)(A) := p(T~(A)) for every measurable set A,

or

/ dpd(Tup) = / ¢ o T dp for every measurable function ¢,
Y X

such that T solves

(M) inf {/X c(z, T(z))dp(x) : Tup= /1}. (2.1)

A minimizer of this problem is called optimal transport map. We remark that (2.1) does not
allow splitting of mass. Indeed, all the mass in x has to be send in T'(z) due to the constraint
Typ = p

Moreover, if X,Y are two subsets of R™ and p and p are induced by two densities (dp(z) =
p(z)dx and du(y) = p(y)dy with p € LY(X) and p € L'(Y)) assuming p, u and T smooth and T
injective, we can rewritte, using the change-of-variables formula, the constraint Tiup = p as

p(T(x)) det(DT(x)) = p(x). (2.2)

11



12CHAPTER 2. INTRODUCTION TO OPTIMAL TRANSPORTATION AND GRADIENT FLOWS

This equation is highly nonlinear and is the main difficulty to prove the existence of a minimizer
in (2.1). Indeed, the usual approach is to take a minimizing sequence (7}); and prove a bound
on it to have compactness. If we assume that Y is compact or supp(u) is compact, then Ty, is
bounded in L which implies the weak® convergence in L* of the sequances to a limit T'. Since ¢
is assumed lower semi continuous, we have

[ et @) dota) <tin [ el Teta) dota),

however, the weak convergence does not permit to pass to the limit in the nonlinear PDE (2.2),
To overcome this problem, Kantorovich introduced, in 1942 (see [68]), a relaxation of Monge’s
problem allowing the splitting of mass called Monge-Kantorovich problem,

o) t{ [ e e}, (2.3)

where II(p, 1) is the set of probability measure on X x Y with marginals p and u,

(p, p) :== {7677()( xXY) : mpyuy = pand ﬂy#’y:u},

and 7, and 7, are the projections of X xY onto X and Y. Elements of II(p, ;1) are called transport
plans between p and p. Contrary to the Monge’s problem, the distination of the mass in a point
x is not specify and v(x,y), for v € II(p, u), coresponds to the amount of mass transferred from
x to y and then the mass located in z may split into several parts. This definition generalizes the
constraint for the Monge’s problem. Given a transport map 7', we define yp := (Id,T)4p and it
is easy to checked that yr is in II(p, ). This leads directly to

inf( MK) < inf(M).

Moreover, II(p, 1) is never empty because p® u satisfies all the constraints and is tight so using
Prokhorov theorem and the lower semi continuity of ¢, we obtain

Theorem 2.1. Let X and Y be complete and separable metric spaces, p € P(X),u € P(Y) and
c: X xY = R alower semi continuous function. Then (M) admits at least one solution.

Remark 2.2. This result is false for the Monge’s problem: take p = dy, it can not exists a transport
map between p and p if p is not a single Dirac mass.

Another interesting aspect of the Monge-Kantorovich problem is the fact it is a linear problem
under linear constraints then it is important to study the dual problem in order to exploit relations
between dual and primal. Since, the constraint v € II(p, u) can be rewritten

sup /@dﬁ/wdu—// (p(x) +¥(y)) dy(z,y) =0,
(P ) ECL(X)XCp(Y) /X Y XxY

we remark that if v ¢ II(p, ) the supremum becomes +oo, then the Monge-Kantorovich problem
becomes

eain <//Xxyc(x,y) dy(z,y)
+ sup /wdp+/wdu—// (@(I)er(y))dv(axy))-
(P ) ECL(X)xCp(Y) /X Y XxXY

Assuming we can interchange the infimum and the supremum, we get the dual problem

(D) sup{/x wdp+/y1/1du tp €G(X), ¥ € C(Y), p(2) +(y) < ez, y) on X x Y}~
(2.4)
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If (D) admits a solution (p, %), then ¢ and 1 are called Kantorovich potentials. The existence
of such a functions is not so obvious and comes from the fact that the supremum in (D) can be
taken on ¢ € ¢ — conc(X) with ¢ — conc(X), the set of function f : X — R such there exists
g : Y — R such that f = g¢ with ¢° : X — R is the c-transform of g defined by

g°(z) = ylgg c(x,y) — g(y)-

Theorem 2.3. Problem (D) admits a solution (p, p°) where ¢ € ¢ — conc(X).

In fact the inversion "inf-sup" can be made rigorous using Fenchel-Rockafellar theorem (see
[106]), then we have

Theorem 2.4. Let X,Y be complete and separable metric spaces and let ¢ be a lower semi-
continuous nonnegative function on X XY then

inf(MK) = sup(D).

In addition the constraint on the dual problem is saturated a.e with respect to an optimal transport

plan of (MK).

Until now, we show the existence of solution for the relaxed problem and the dual of this one.
Then we show the equality between (MK) and (D). Now we will come back to the Monge problem.
In the sequel, we focus on the case where X =Y = ) a subset of R™ and the cost function c is
given by ¢(x,y) = h(z — y) with h a strictly convex function. In this framework, Brenier (for
h(z) = |x|? in [21]) and in a more general case Gangbo and McCann (h strictly convex in [64])
prove the existence and uniqueness of an optimal transport map.

Theorem 2.5. Given p,u € P(QQ), such that the transport cost from p to u is not always infinite.
If p is absolutely continuous with respect to the Lebesque measure and OS2 is negligible, then the
optimal transport plan of (MK) is unique and is on the form vyp = (Id,T)up. Moreover, there
exists a Kantorovich potential . The potential ¢ and T are linked by

T(x) =z — Vh 1 (Ve(x)) a.e.

When the cost is quadratic, c¢(x,y) = |z — y|?, we recover the result proved by Brenier in [21].
In this case, the map is given by T'(x) = x — V¢ = Vu. It is easy to show that u := |z|> — ¢ is a
convex function using the fact that ¢ is in ¢ — conc(Q2). Moreover, if p and p are two densities with
respect to the Lebesgue measure, then the Brenier’s map Vu satisfies the Monge-Ampére equation

det(D*u)u(Vu) = p.

This equation is elliptic and highly degenrate. In [27, 28|, Caffarelli proved the following result
on the regularity of solution of the Monge-Ampére equation.

Theorem 2.6. Let p,ju € C(Q)%* (0 < a < 1) be Holder-continuous functions on ), a conver
bounded subset of R™, which are bounded from above and below by positive constants. Then the
unique Brenier solution u belongs to C**(2) NCH*(Q) and u satisfies the Monge-Ampére equation
in the usual sense.

2.1.2 'Wasserstein space

In this section, we consider costs of the form c¢(x —y) = | — y|P, p > 1, in  a subset of R™. All
the results and more details can be found in [116, 117, 112, 4]. We will used problems introduced
previously to define a distance on the space of probability measures P(Q2). If Q is unbounded, we
define the set

Py(0) = {p e P : My(p) = [ [l dola) < +oo},

and we note Pg¢(2) the subset of P,(Q2) of probability measures on €2 absolutely continuous
with respect to the Lebesgue measure. We remark that if Q is bounded P,(2) = P(Q), for all
p € [1,+00[. In the rest of the manuscript, since we will often work in P5(2), the second moment
M>(p) will be denoted M(p).
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Definition 2.7. For all p, ;1 € Pp(Q2), the p-th Wasserstein distance between p and p is defined by

Wp(p, p) := inf {//QXQ |z —y|Pdy(z,y) : v € H(p,u)}l/p-

Since p,pu € Pp(92), the p-th Wasserstein distance is finite then, provided that p € P;¢(Q2),
theorem 2.5 gives that Wa(p, 1) admits a unique transport plan induced by a map T and, if p = 2,
T is the gradient of a convex function.

Note that, since =y is a probability measure, the Holder inequality implies that for all 1 < p <

q < +o0o,
1/p 1/q
(// |z —ylP dv(x,y)> < (// |z — yl"ﬂh(%@/)) ,
QxQ QxQ

which directly implies that W, (p, 1) < Wy(p, ). In addition if €2 is bounded we obtain the opposite
inequality,

Wo(p, ) < diam(Q) 7" W, (p, 1)"/7.

Proposition 2.8. The quantity W, is indeed a distance on Pp(Y). We called the Wasserstein
space of order p this space endowed with this distance.

The difficulty is to prove the triangle inequality and we need of the next lemma using the
disintegration of measures.

Lemma 2.9. Given two measures v1 € H(p,v) and v2 € (v, p), there exists a measure v €
P(Q x Q2 x Q) such that TayuY = Vs TyzpY = V2.

Proof of the triangle inequality. Let p,u,v € Pp(?), v1 an optimal transport plan for Wy(p,v)
and ~, an optimal transport plan for W, (v, ). Applying the previous lemma, there exists v €
P(Q x Q x Q) such that TayyY = M, TyzuY = V2. Moreover, m; ., belongs to II(p, i), then
immediately we get the result from the standard triangle inequality of the LP distance. U

We have already seen that W),(p, i) is equal to is dual formulation,

Wy(p,p) = sup {/wdp+/<pcdu}-
pec—conc(Q) Q Q

In the special case where p =1, ¢© = —p and

Wi(p, p) == Sup{/ﬂwd(p—u) : wGLl(de—ul)ﬂLim(Q)},

where Lip; () is the set of 1-Lipschitz continuous functions. Then we have the following usefull
inequality,

/Q@d(p — ) < CWi(p, ) < CWa(p, ), (2.5)

for all Lipschitz function .

We have defined a distance on the probability space P,({2), and now, we have to analyse the
convergence in the the Wasserstein space with respect to this distance. We start to state a result
on the stability of optimality

Proposition 2.10. Let (px), (i) C Pp(Q) be two sequences narrowly converging to p, i respec-
tively, and v an optimal transport plan in Wy(px, ux) such that Wy(pk, px) is bounded. Then ()
is narrowly relatively compact in P(Q x Q) and any narrow limit point v is an optimal transport
plan in Wy(p, ) and

Wp(p7 :u) < liminf Wp(pka ,U/k:)
k— 400

Now, we state the following theorem which gives equivalence between the convergence with
distance W), and the narrow convergence.
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Theorem 2.11. P,(2) endowed with the p- Wasserstein distance is a separable metric space which
is complete. A set K C Pp(2) is relatively compact iff it is p-uniformly integrable and tight. In
particular, for a given sequence (pr) C Pp(2) we have

lim Wy(pk,p) =0 <

pr narrowly converges to p,
k—+oo

My(pr) = My(p).

In some chapter, we have to work in a product of probability space, Pp(Q)l. We define the
product distance on P, ()" by

1 1/p
Wy(p, 1) == (Z Wé’(mw)) :
i=1
The previous results stated in this section holds for this distance.

2.1.3 Geodesics in Wassertein space and Benamou-Brenier formula

Another important aspect in Wassertein space is the understanding of curves and geodesics with
respect to W,,. In the sequel, we focus on the case of the quadratic cost and we refer to [4, 112] for
more detailed presentation. In this section we will recall the link between absolutely continuous
curves in Wassertein space and solutions of the continuity equation

Op + div(pv) = 0.
To do so, we need to recall some definitions from the analysis in metric space.

Definition 2.12. o A curve (pi)icjo,1) in Pa(Q) is said absolutely continuous if there erists
g € LY([0,1]) such that, for all 0 < s <t <1,

t
Wa(ps, pt) </ g(r)dr.

e The metric derivative, | P w, of a curve (py)ieo,1] in P2() is defined by

; o Walprsn, pr)

provided the limit exists.

Let us remark that if the curve (p;)icpo,1 in P2(f) is a Lipschitz continuous curve then as a
consequence of a result in the same spirit of Rademacher’s theorem, the metric derivative exists
for a.e t € [0,1] and we can replace g is the definition of absolute continuity by | 2 |w,. Moreover,
every absolutely continuous curve can be reparametrized in time and become Lipschitz continuous.
Then the previous result holds for every absolutely continuous curve.

Now we can state the theorem of charaterization of absolutely continuous curves in Wasserstein
space.

Theorem 2.13. Let (pt)icpo1] be an absolutely continuous curve in (P2(S2), Ws). Then for a.e
€ [0,1], there exists a vector field vy € L*(p;) such that the continuity equation dypy+div(psvy) = 0
is satisfies in the sense of distribution and |vi||r2(p,) < | P lw,(t) for a.e t € [0, 1].
Conversely, if a narrowly continuous curve p; : [0,1] — P2(Q) satisfies the continuity equation
for some vector field vy with ||ve|| 12,y € L*([0,1]), then py is absolutely continuous and | P |y, (t) <
lvell L2(pr) for a.e t €[0,1].

Now assuming that € is a convex subset of R”, McCann introduced in [93] the McCann inter-
polation between py and p;. It consists in taking v an optimal transport plan between pg and pq
for the 2-Wasserstein distance and define p, := ((1 —t)z + ty)»7, for all ¢ € [0, 1]. It is well known
that this interpolation is a constant speed geodesic i.e

Wa(pt, ps) = (t — s)Wal(po, p1), forall 0 < s <t < 1.
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This implies that the Wasserstein space is a geodesic space,

Wa(po, p1) = min{/ol |2 [w, () dt} ;

where the minimum is taken on the asolutely continuous curve (pt)te[o,l] such that p;—g = po and
Pt=1 = P1.
Then inspired by these results and by problems from the fluid mechanics, in the seminal paper,

[11], Benamou and Brenier introduced a dynamic formulation of the Wassertein distance. This
formulation is called the Benamou-Brenier formula

1
W3 (po, p1) = inf {/ / |2 dpedt = Oppy + div(prvr) = 0, pr—o = po, pr=1 = P1} .
0 Jo

Now setting E; = pvt, the Benamou-Brenier formula can be rewritten as

1
WZ(po, p1) = inf {/ / Y(dp/dL,dE/dL)dxdt : Oipr + div(Er) = 0, pt—o = po, Pt=1 = pl} ,
0o Ja

where ¢ : R"™! — R U400 is defined by

5t (r,m) €]0, +00[x R™,
Y(r,m) =14 0 if (r,m) = (0,0),
+o0  otherwise,

as in [11] and where do/dL is the Radon-Nikodym derivative of o with respect to Ljo,71xq. The
advantage of this formulation is the convexity with respect to p and E. This formulation has been
used in [11] to introduced a numerical scheme based on an augmented Lagrangian method. In
chapter 3, we extend this method to solve numerically gradient flows in Wasserstein space.

2.2 Gradient flow theory in Wasserstein space

Here we recall the general theory on gradient flows and the connection with PDE’s. First we give
the definition in an euclidian setting and how we can extend this in a metric space. This exposition
comes from the textbook of Santambrogio [112] and we refer to the textbook of Ambrosio, Gigli
and Savaré [4] for a complete and detailed reference on the subject.

2.2.1 Gradient flows in metric space

In the euclidian case, given a function F : R™ — R and a point xy € R", we said that a curve z
is a gradient flow of F starting at xg if at each time z(t) goes in the direction where F decreases
the most. More precisely, x is the solution of the Cauchy problem

{ x'(t)=-VF(z®t) t>0,

z(0) = xp. (2.6)

If F is CH*(R™) then the Cauchy-Lipschitz theory implies that there exists a unique solution.
However, this definition is very rigid because, we need strong assumption on the energy F and we
need a gradient structure on the space.

An interesting remark is that the ODE (2.6) can be seen as the optimality condition of a
minimizing problem. Indeed, given a time step h > 0, using the Euler-implicit scheme of (2.6), we
obtain

xﬁ“ —ak
h

for all k > 0. zf** is an approximation of the solution of (2.6) at time h(k 4 1) and can be seen
as the minimizer of

= 7v‘/—.'(pﬁ+1)7

1 k|2
T %kv xp|* 4+ F(x).
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Then the sequence (x’,?b)k can be construct by induction, with x% = x9, under weaker assump-
tion on F (coercivity and lower semi-continuity). Moreover, we know that a piecewise constant
interpolation of this sequence goes to converge to the solution of (2.6), when h N\ 0.

Another advantage of this interpretation is that it can be easily generalized to metric space
(X,d). Given a time step h > 0, a starting point zp € X and an energy functional 7 : X — R,
we define by induction a sequence (x’fb) k, by x% = x¢ and for all k > 0,

. 1
it € argmin —d(z, x§)* + F(x).
zeX 2h )

Then we denote x;, the piecewise constant interpolation of this sequence,
zp(t) =2yt if t € (kh, (k + 1)h).
De Giorgi introduced in [51] the notion of minimizing movements:

Definition 2.14. A curve z : [0,T] — X is said to be a Minimizing Movement if there exists
a sequence of time steps hj 0 such that the piecewise constant interpolations xp; uniformly
converge to x on [0,T].

In the sequel, we will use this definition of minimizing movements for the one of gradient flow in
a metric space. We observe that there exist others definitions for gradient flow which need stronger
assumption on the energy F. In several chapters, we will use the Evolution Variational Inequality
(EVI) which needs convexity assumption on F. The definition is given in chapter 5 and we refer
to [4] for the equivalence of definitions in this case.

2.2.2 Application to Wasserstein space

Since we saw that the Wasserstein space (P2(€2), W) is a metric space, we can apply this method
in this space. It is well-known that many parabolic PDEs can be recovered as the gradient flows
of well-chosen functionals. The seminal papers on this subject is due to Jordan, Kinderlehrer
and Otto, see [65], where they proved that the Fokker-Planck equation is the gradient flow in the
Wasserstein space of the energy

E:p— A plog(p)+/ V.

Their proof is based on the scheme of minimizing movements called JKO scheme in the Wasser-
stein setting: for a time step h > 0, and an initial condition py € P2(R"™), we define by induction
a sequence (pf)y, as p) := po and for all k > 0,

1
2h

pﬁ“ = argmin {

W2(sk, p) +e<p>}.
pEP2(R™)

They proved that this sequence is well defined using the control of the Entropy by the second
moment. Then the optimality condition of this problem at step k£ + 1,

VSOZH _ [*Tflfﬂ k+1
h h h

where T,f“ and <p],3+1 are respectively the optimal transport and a Kantorovich potential associated
to Wa(pit, pf). Then, they define a discreet velocity

Vliog(pi ™) + VV =

a.e,

k+1 k+1
k+1 — Th -1 — _vph —VV.
o - : Pz s
They proved that the constant piecewise interpolations of (pf)x and (vy)y solve

Ospn + div(ppvn) = O(h),
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and converge to p and v := —% — VV, which imply that
Op = — div(pv) = Ap + div(pVV).

The theory of gradient flows in Wasserstein space has been developped rapidly in the last twenty
years with many applications for example to porous media equation [98|, aggregation equation
[37], double degenerate diffusion equations [97], general degenerate parabolic equation [1] etc. The
reference textbook of Ambrosio, Gigli and Savaré gives a very detailed account of this theory.



Chapter 3

An augmented Lagrangian approach
to Wasserstein gradient flows

Taking advantage of the Benamou-Brenier dynamic formulation of optimal transport, we propose
a convex formulation for each step of the JKO scheme for Wasserstein gradient flows which can be
attacked by an augmented Lagrangian method which we call the ALG2-JKO scheme. We test the
algorithm in particular on the porous medium equation. We also consider a semi implicit variant
which enables us to treat nonlocal interactions.

This chapter is based on a joint work with J-D. Benamou and G. Carlier (see [17]) and we will
use this method to illustrate theorical results proved in the other chapters.

3.1 Introduction

It is well-known since the seminal work of Jordan Kinderlehrer and Otto [65] that the Fokker-Planck
equation

Op = Ap + div(pVV), pli=o = po (3.1)

where the initial condition pg is a probability density may be viewed as the Wasserstein gradient
flow of the (relative) entropy functional

sv(p) = [ pletog (L5 )as. (:2)

More generally, given an internal energy E, a potential V' and an interaction potential W,
evolution equations of the form

Orp = div(pV(E'(p) +V + W p)), pli=o = po (3:3)

is the Wasserstein gradient flow of the energy

£ = [ Bo@)ar+ [ v@pwdstg [ W= gl

For instance, if E(p) = ﬁpm and V = W = 0 one in particular recovers the porous medium
equation O;p = Ap™, see the seminal work of Otto [98]. Convolution terms VW % p in 3.3 arise
naturally in aggregation equations [37] and models of granular media [41], [42].

The celebrated Jordan-Kinderlehrer-Otto (henceforth JKO) scheme consists, given a time-step
7 > 0 in constructing inductively, starting from py a sequence of probability measures p* by the

implicit Euler scheme:
. 1
p'*! € argmin {2W22(p7 p*) + 5(p)} (3.4)
pPEP2 T

19
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where P, denotes the set of probability measures on R? having finite second moments and W2 is
the squared 2-Wasserstein distance defined for every (p,v) € Py x Py by

Wa(p,v) == inf {/ II—yIZdv(I,y)}Q
YEI(p,v) L JRd x R

where TI(p, v) is the set of transport plans between p and v i.e. the set of Borel probability measures
on R? x R? having p and v as marginals. When £ = Sy is given by 3.2, Jordan, Kinderlehrer and
Otto [65] proved that one recovers the solution of the Fokker-Planck equation 3.1 by letting 7
tend to 0 in the JKO scheme. Similar convergence results hold for the more general equation 3.3
under suitable assumptions on E, V and W. The theory of Wasserstein gradient flows is by now
well-developed and it is detailed in the textbooks of Ambrosio, Gigli and Savaré [4], Villani [116],
[117] and Santambrogio [112].

We remark that the JKO scheme 3.4 is constructive and it is very natural and tempting to
try to apply it for numerical purposes. The positivity, mass conservation and energy dissipation
are inbuilt in the JKO scheme and non trivial to preserve with non-linear finite-difference or finite
volume schemes (see [29] and references therein). Also some JKO gradient flows, like congested
crowd motions [89], cannot be formulated as nonlinear PDEs and the JKO semi-discretisation is
the only numerical option.

A serious difficulty with this approach is in the Wasserstein term which involves solving a costly
optimal transport problem at each step. In dimension one, this is not really an issue since the
optimal transport is essentially a rearrangement problem, and in fact, this 1-D numerical approach
was proposed in the early work of Kinderlehrer and Walkington [70] and was used repeatedly.
See in particular the recent work of Osberger and Matthes [88] for application to fourth-order
evolution PDEs of thin films type. In higher dimensions, the optimisation problem in 3.4 is much
more complicated because the optimal transport is given by Brenier’s map, the gradient of a convex
potential which solves some Monge-Ampére equation.

At least three categories of approaches have been followed to solve 3.4 numerically. A first
"Lagrangian" strategy based on Brenier’s Theorem is to formulate the problem in terms of the
transport map or its potential instead of the density p to avoid dealing with the positivity and mass
constraints. It also allows a more consistent discretisation of the mass when the density concentrates
or dilates. This is done for instance in Carrillo and Moll [40] who proposed a Lagrangian scheme,
based on a gradient flow for evolving diffeomorphisms (not necessarily the optimal transport maps)
related to a system of evolution equations which is very nonlinear since it involves cofactors.
Diiring, Matthes and Miligi¢ [59] and Osberger and Matthes [87] used a Galerkin discretisation of
the potential. As illustrated in [38], where another Lagrangian method is introduced, a difficulty
with the Lagrangian approach is the construction of a discrete density to be used in the internal
energy. A semi-discrete solution to this problem has been proposed in [9] based on optimal maps,
a discretisation of the Monge-Ampére operator and techniques of computational geometry. This
method is provably convergent and enables one to use of a Newton method. Note that using
monotone finite difference Monge-Ampeére solvers as introduced in [16], [15] could be an option but
it does not seem to have been tried.

A second strategy, which is Eulerian, is to use the Monge-Kantorovich linear relaxation of the
Wasserstein distance in 3.4. The size of the discretisation is very limited by the linear programming
approach. However, Peyré [104] recently generalised entropic regularisation techniques that are
computationally efficient in optimal transport [14] to treat JKO gradient flows.

In the present paper we investigate a third approach, also Eulerian, based on replacing the
Wasserstein distance with the Benamou-Brenier formulation [11]. This idea has already been used
in [22], [23], [8], [10] either for JKO steps or in optimisation problems where the Wasserstein distance
intervenes. Our original contribution, initiated in [13] on a general class of optimal transport
problems and variational mean field games [76], is to extend this convex reformulation and its
augmented Lagrangian numerical resolution based on the algorithm ALG2 of Glowinski and Fortin
[61] to solve a succession of problems of the form 3.4, we will call this method ALG2-JKO. We also
show that the method can be adapted to treat systems (which are not necessarily gradient flows)
using the relaxation introduced in [54] by Di Francesco and Fagioli and extended to the diffusive
case in [35].
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The Benamou-Brenier formulation induces an extra time dimension in each of the JKO steps.
The resulting extra cost because of the discretisation of the inner (Benamou-Brenier) time dimen-
sion is usually considered a draw back. In the ALG2-JKO scheme however, since the successive
JKO density time snapshots are close only a very few inner timesteps are needed in practice.
The ALG2 augmented Lagrangian method is very robust, can deal with non-smooth energies but
remains a proximal splitting first order method and converges slowly [99].

The chapter is organized as follows. In section 3.2, we describe the ALG2-JKO scheme. In
section 3.3, we illustrate the algorithm on two examples: the porous medium equation and a model
of crowd motion with diffusion introduced by Santambrogio and Mészaros in [94].

3.2 The ALG2-JKO scheme

Let us consider one step of the JKO scheme 3.4 in the case where the energy £ is of the form

&)= [ Bpa)ds+ [ Vizplaps

R R4

with E a convex internal energy (typical cases being the entropy or a convex power), which corre-
sponds to the time discretization of the PDE:

dip = div(pV(E'(p) + V), plio = po- (3.5)

Our goal is to rewrite 3.4 as a tractable convex problem. To do so, we use the Benamou-Brenier
dynamic formula [11] to rewrite W3 as

()]

1
W3(p,v) := inf {/ / Imtidacdt 2 O+ div(m) =0, pli=o1 = p,l/} (3.6)
0o Jrd

pe ()

which is a convex variational program (it is implicit that the energy above is set to +0o whenever
1 becomes negative or when g = 0 and m # 0 so that momentum m can be written as m = uv
that is m vanishes where u does and then |m|?/u = u|v|? is the kinetic energy).

Thanks to 3.6 one can rewrite one step of the JKO scheme 3.4 as the convex minimization:

|mt
d dt + & 3.7
(Mmmmm m(l D) 27‘/ /]Rd (;ul) ( )

subject to the constraints that ;4 > 0, m = 0 when p = 0 and the linear constraint
Aep + div(m) = 0, pli—o = p". (3.8)

One then recovers p*+! = y; (and actually even an interpolation (14t )tefo,1] between p* and pFt1).

Of course we can consider variants, for instance the periodic (in space) case or the case of a
smooth bounded domain Q of R%. In the latter case, we have to supplement the PDE 3.5 with the
Neumann boundary condition:

V(E'(p) +V))-v =0, on dQ (3.9)

this amounts to modify 3.7-3.8 as

(b )2//|mtx dadt + 7€ (i) (3.10)
t7nlt

(x)
subject to the constraints that p > 0, m = 0 when pu = 0 and the linear constraint

g+ div(m) = 0, pli—o = p*, m-v =0 on 9. (3.11)
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3.2.1 Augmented Lagrangian formulation

Convex time-dependent problems like 3.10 subject to a divergence constraint 3.11 appear in various
contexts, they are actually particular cases of deterministic Mean-Field Games (a class of games
with a continuum of players introduced by Lions and Lasry [74], [75]). Such problems can be
solved by Augmented Lagrangian methods, see in particular [13] for applications to Mean-Field
Games, Papadakis, Peyré and Oudet [99] for connections with proximal schemes and Buttazzo,
Jimenez and Oudet [24] for applications to congested transport. We now recall the principle of the
Augmented Lagrangian approach and explain how to use it in the JKO framework.

As was observed by Benamou and Brenier [11] the convex lower semicontinuous 1-homogeneous
function defined for (u, m) € R x R? by:

%, if u >0,
Q(p,m) =<0, if p=0and m=0
400, otherwise.

is the support function of the convex set
1
K :={(a,b) € R™" a+ §\b|2 <0} (3.12)

ie.
®(u,m)= sup {ap+b-m}.
(a,b)eK

Rewriting 3.10-3.11 in Lagrangian form as

az(;if,li,m){ /01 /Q ®(p,m) + 7€)+
sﬁp{/ﬂm’-)ﬂl —/Q¢(07-)p’“—/OI/Q(atgbqus.m)}}

and then switching the inf and the sup and using the fact that the Legendre transform of ® is 0
on K and +oo outside, we formally obtain (see for instance [24] for a rigorous derivation) that the
convex problem 3.10-3.11 is dual to:

. o 9N 1
¢:1££m{/ )t e (- 200y at¢+§|v¢|2go} (3.13)

where £* is the Legendre tranform of £ (extended by 400 on (—oo
£*(¢) = sup{ [ ((c(x) = V(2))u(x) — E(u(x))dz} = / & (w,c(a
n>0 JQ

where, slightly abusing notations, we have set

& (. ) i=sup {(c = V(@) ~ E() }.

n=0

We then rewrite the dual as

JntJ(6) = F(9) + G(A0) (3.14)

where

A¢ := (D¢, —¢(1,.)) = ((8:, V), —&(1,.)), F(¢) = | ¢(0,.)p"
and for ¢ = (a,b,¢)

G(q):/01/QXK(a,b)dxdt+7'8*(i)
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where x i denotes the indicator function

0, if (a,b) € K

~+00, otherwise.

Xk (a,b) = {

Now the variables o := (u, m, 1) play the role of Lagrange multipliers associated to the constraint
qg=A¢ie a=0;p, b=V¢and c = —¢(1,.), note in particular that p; is a multiplier associated
to the constraint ¢ = —¢(1,.) it coincides with p(1,.) for the saddle-point but not necessarily along
the iterations of the augmented Lagrangian algorithm below.

The primal-dual extremality relations are formally equivalent to finding a saddle-point of the
Lagrangian
in the sense that (¢, o) satisfies the optimality conditions of 3.14 and 3.10-3.11 respectively if and
only if

(¢7 q, U) = (¢a A¢a U)

is a saddle-point of L. Now for » > 0, we consider the augmented Lagrangian function
r
Ly(¢,q,0) == F(¢) + G(a) + o - (A — ) + 5|Ad — g (3.16)

where q = (a,b,c), o = (p, m, 1),
1
7-0o=0)= [ [ (#(t.0)@0(0.3) = alt.)) + mt.a) - (Vo(t.3) = b(t.2)) o
+ [ m@)(=0(12) - e(a))ds

and
A6 — qf? = / / (1066(t, 7) — alt, ) + [V(t, z) — b(t, 2)|?)dadlt
—l—/ﬂ((b(l,x)—kc(x)) dx

and recall (see for instance [61], [62]) that being a saddle-point of L is equivalent to being a
saddle-point of L,..

The augmented Lagrangian algorithm ALG2 consists, starting from (¢°,¢",0") to generate
inductively a sequence (¢", ¢",0™) as follows:

e Step 1: minimization with respect to ¢:
n+1 : n T n|2
@" T := argmin {F(QS) +o" - Ap+ §|A¢—q \ }, (3.17)
¢
e Step 2: minimization with respect to ¢:

. n r n
¢ = argmin {Glg) = 0" - g + SA6" — g}, (3.18)
q

e Step 3: update the multiplier by the gradient ascent formula
o™t = o f (AT — g™, (3.19)

The convergence of ALG2 to a saddle-point is well documented see in particular the general
results of Bertsekas and Eckstein [60] in finite dimensions. We therefore have to understand that
in the problems above, we have already projected the potentials in 3.14 on a finite-dimensional
space of finite-elements and therefore deal with a finite-dimensional problem for which existence
of a saddle-point is rather standard and convergence follows from [60]. Once we have reached a
minimizer o = (u, m, uq) for 3.10-3.11 by ALG2, we recover the density of a single JKO step by

PP = .
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3.2.2 Details for the three steps

Step 1 corresponds to a linear elliptic problem in ¢ and x,

— rAm(b"H = (}iv((,u",m”) —r(a™,b")), in (0,1) x Q, (3.20)
T

together with the boundary conditions

rat¢n+1(07 ) = pk - /u'n(oa ) + Ta‘n(oa ')a (321)

T(at¢n+1(17 ) + ¢n+1(17 )) = :U’71Z - :un(la ) + T(an(la ) - Cn('))a (322)
and )
n+

ra(gy + (m"™ —=rb")-v =0 on ON. (3.23)

(or periodic boundary conditions if  is replaced by the flat torus).
Step 2 splits into two convex pointwise (i.e. for every ¢ and x) minimization subproblems, the
first one (minimization with respect to (a,b)) is a projection problem onto the parabola K:

1
(a,ibr)lfe‘K |D¢n+1(t,$) + ;(un(tax)vmn(t7 JJ)) - (a7b)|2 (324)

ie.
(@16 2), 0 (6, 2)) = P (D8 (2) + (0" (1,2),m" (1,2) )

where the projection Pk onto K is explicit (see [11] or [99]):

(a, B), if (o, B) € K,
(a— A, 1%\), with A > 0 root of 3.25 otherwise

Pk (a,B) = {
where 3.25 is the cubic equation (with a single positive root if («, ) ¢ K):
a1+ A2 = X142+ %\W =0. (3.25)
The second subproblem gives the update for ¢ which is obtained by solving for each = € Q)

1
" T(z) = argmin {f|q§”+1(1,x) — —p(z) + | +TE (x, E) } (3.26)
¢€R 2 r T

Remark 3.1. Given a convex lower semicontinuous function f: R" — RU{+o0}, we recall that
the prozimal operator of f, prox; is defined by

(1 n
prox; (o) := argmin { 5[y — g0l + /(y) }, Yo € R
yeRrn 2
so that 3.26 can be rewritten as
T n 1 n
" (z) = PrOXz e (5 -) ( — "1, 2) + it (m))
Thanks to the well-known (and actually easy to check) Moreau’s identity

prox(y) = y — prox;. (y), (3:27)

we see that it is not necessary to compute E* to solve (3.26) if the computation of proxy turns out
to be easier.
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Step 3 is an explicit update which may be detailed as

p" = g (9™t — a™ ), (3.28)
m" = m" 4 (Ve — o), (3.29)
pr = = (@M (L) + ). (3.30)

Note that only the minimization with respect to ¢ 3.26 in step 2 depends on the form of the
energy £, we shall give details for this step in each application given in the sequel.

In the discretisation of this algorithm, we use P2 finite elements (in time and space) for ¢ and
P1 finite elements for o so that in 3.24, in fact, one has to understand D¢"*! as its projection
onto P1 finite elements. It was implemented in FreeFeem-++'. In practice, a discretization with
32 x 32 triangles in space and 4 inner timesteps needs a few hundreds iterations of ALG2 for each
JKO time step. This is a few minutes on a standard laptop. Larger discretizations can be done
using FreeFem mpi version which uses for instance MUMPS parallel linear solver?.

3.3 Applications

We now present two appplications of the ALG2-JKO scheme: the first one deals with the porous
medium equation and the second one with a diffusive model of crowd motion recently introduced
in [94]. In the sequel, all the simulations are made using a discretization 16 x 16 in space. We use
8 internal time steps in each JKO step and make sure the ALG?2 iterations converge "reasonably"
(a 1076 tolerance is prescribed in the optimality system). There are 200 JKO steps (7 = 0.01).

3.3.1 Application to the porous medium equation

The porous medium equation

Op = div(pV(%pm*1 +V)) =Ap™ +div(pVV) (3.31)
corresponds to
1
B(p) i= " £(0) = [ Blo)+ [ oV,
m—1 Q Q
In this case
. m— 1\ w1 T
&0 = (") [ (o) - Vi) e
m Q
and then 3.26 consists in a pointwise minimization problem: given x € Q, setting ¢ = —¢" (1, 2)+

@ and V = V(z), we have to solve

. 1 _ T ) 1 m— 1\ m=1
érelufg {5‘6 -2 + 9((0 - TV)+> } with 6 := e (T) (3.32)
whose solution is
_Jo ife<TV,
| the root in (7V, +00) of 3.33 otherwise
where 3.33 is the equation
_ om 1
c=c+—— 1(c—TV)m—l. (3.33)

The case of a linear diffusion (Fokker-Planck) corresponds to an entropic internal energy E(p) =
plog(p), in which case by similar computations, one finds ¢ = ¢(z) by solving

c=c+ 1eg’v’l. (3.34)
r

Lhttp://www.freefem.org
2http://mumps.enseeiht.fr/
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The fact that there is a dichotomy for the porous medium case (in contrast with the linear diffusion
case leading to 3.34) corresponds to the finite speed of propagation and support containment in
this case.

Figure 3.1 shows the evolution of the density for m = 3 and V = % As expected (see [41]),
we converge towards the stationary Barenblatt profile BB(x) = (=1 max(1 —|z/?, 0))ﬁ Figure

3.2 gives quantitative information on the convergence towards the stationary profile, decrease of
energy and conservation of mass (only external JKO time steps k7 are represented here).

211010 €

t=20 t=0.15 t=0.6 t=209 t=1.5

Figure 3.1: Density at different time steps for the porous medium equation with a confining potential

I I I
_ Log‘lO{Mass EI’I’OI’}
Log10(L" Distance to BB)|_
- Log{Energy-EBB}

Figure 3.2: This simulation shows the time evolution towards the stationary Barenblatt profile for
m = 3. The first curve shows the mass of the density remains within the discretization error to the
constant value (in log scale). The second curve is the L' distance of the density to the Barenblatt
ezact profile BB(z) = (2! max(1 — |x|2,0))ﬁ, reached up to discretization error again (in log
scale). The last curve shows the decrease of the difference between the density energy (potential +
entropy) E(p) and Barenblatt energy E(BB) in log scale. As expected (see [41], [4]) the decrease

behaves like —2t down to numerical discretization error.

3.3.2 Application to crowd motions

In [94], Santambrogio and Mészaros considered a model of congested crowd motion with diffusion
which leads to

op — Ap =div(p(VV +Vp)), p>0,p <1, p(1 —p) =0, (3.35)

with no flux boundary condition. In the nondiffusive case (no Laplacian in the left hand side), this
model is due to Maury, Roudneff-Chupin and Santambrogio [89] who made it clear that it has a
gradient flow structure. The diffusive case 3.35, of course also has a gradient flow structure for the
following energy

E(p) = / E(p(x))de + / V(@)p(z)ds
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with
plog(p), if p € [0,1]

E' = 1 + =
(p) := plog(p) + x(0,11(p) {+oo,otherwise.

A direct computation gives

E*(z,c) = max (5 —V(x), ef_v(m)_1>

and then, again setting, ¢ = —¢"*1(1,2) + ﬁnr(li) and V = V(z), 3.26 becomes
. 1 _2 T C c_Vy—-1
m1n{—|c—c| +—max(——V,eT )}
c L2 T T

whose solution is explicit:
Lo ifezT4 V)4
the root of 3.34, otherwise.

The alternative in the previous formula somehow corresponds to the pressure p being on/off.

t=0 t =0.02 t=0.04 t =0.06 t =0.08 t="1T;

Figure 3.3: Crowd motion evolution of one species with potential V ((x1,22)) = 30(((z3) — 1/4)

(2 4+ 1/4)?)((w2 — 1/2)? + 2%). The first row represents the evolution under the constraint p
and the second the evolution under the constraint p < 2.

2
<

27

+
1

In figure 3.3, we represent the evolution of one species, the potential has three minima (hot
spots where the crowd wants to go) but with two different density constraints. When the density
threshold is higher (second row p < 2) then, at the end, the density is more concentrated around

the three minima of the potential.
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Chapter 4

Drift interactions: Potential case

This chapter presents existence and uniqueness results for a class of parabolic systems with non
linear diffusion and nonlocal interaction. These systems can be viewed as regular perturbations
of Wasserstein gradient flows. Here we extend results known in the periodic case ([35]) to the
whole space or on a smooth bounded domain. Existence is obtained using a semi-implicit Jordan-
Kinderlehrer-Otto scheme and uniqueness follows from a displacement convexity argument.

This work is based on On some non linear evolution systems which are perturbations of Wasser-
stein gradient flows, [73] and numerical simulations come from a joint work with J-D. Benamou
and G. Carlier [17].

4.1 Introduction

In this chapter, we study existence and uniqueness of solutions for systems of the form

{ Oypi — div(piV(Vilp])) — ai div(pi VE](pi)) =0 on RY x Q,

pi(0,-) = pio on £, (41)

where i € [1,1] (I € N*), Q@ = R" or is a bounded set of R" and p := (p1,...,p) is a collection
of densities. Our motivation for this system comes from its appearance in modeling interacting
species.

In the case of V(V;[p]) = 0 or V;[p] does not depend on p, this system can be seen as a gradient
flow in the product Wasserstein space i.e VF/(p;) can be seen as the first variation of a functional
F; defined on measures. This theory started with the work of Jordan, Kinderlehrer and Otto in
[65] where they discovered that the Fokker-Planck equation can be seen as the gradient flow of
fRn plogp+ fRn Vp. The method that they used to prove this result is often called JKO scheme.
Now, it is well-known that the gradient flow method permits to prove the existence of solution
under very weak assumptions on the initial condition for several evolution equations, such as the
heat equation [65], the porous media equation [97], degenerate parabolic equations [1], Keller-Segel
equation [18]. The general theory of gradient flow has been very much developed and is detailed
in the book of Ambrosio, Gigli and Savaré, [4], which is the main reference in this domain.

However, this method is very restrictive if we want to treat the case of systems with several
interaction potentials. Indeed, Di Francesco and Fagioli show in the first part of [54] that we
have to take the same (or proportional) interaction potentials, of the form V[p] = W * p for all
densities. They prove an existence/uniqueness result of (4.1) using gradient flow theory in a product
Wasserstein space without diffusion (o; = 0) and with I = 2, Vi[p1, p2] := Wi 1% p1+ Wi 2% p2 and
Valp1, p2] := Wa o % pa+Wa 1% p1 where Wi 5 and Wy 1 are proportional. Nevertheless in the second
part of [54], they introduce a new semi-implicit JKO scheme to treat the case where W7 o and W 3
are not proportional. In other words, they use the usual JKO scheme freezing the measure in V;[p].

The purpose of this paper is to add a nonlinear diffusion in the system studied in [54]. Unfor-
tunately, this term requires strong convergence to pass to the limit. This can be obtained using
an extension of Aubin-Lions lemma proved by Rossi and Savaré in [107] and recalled in theo-
rem 4.15. This theorem requires separately time-compactness and space-compactness to obtain a

29



30 CHAPTER 4. DRIFT INTERACTIONS: POTENTIAL CASE

strong convergence in L™((0,7) x Q). The time-compactness follows from classical estimate on
the Wasserstein distance in the JKO scheme. The difficulty is to prove the space-compactness. In
the following, we show this result on the whole space R™ or on a smooth bounded domain. On the
one hand in R", we use the powerful flow interchange argument of Matthes, McCann and Savaré
[86] and also used in the work of Di Francesco and Matthes [55]. On the other hand in a bounded
domain, the flow interchange argument is very restrictive because it forces us to work in a convex
domain and to impose some boundary condition on V;[p]. To avoid these assumptions, we establish
a BV estimate to obtain compactness in space and then to find the strong convergence needed.

This chapter is composed of seven sections. In section 4.2, we state our main result, theorem
4.3. Sections 4.3, 4.4 and 4.5 are devoted to prove theorem 4.3. In section 4.3, we introduce
a semi-implict JKO scheme, as in [54], and resulting standard estimates. Then, in section 4.4,
we recall the flow interchange theory developed in [86] and we find a stronger estimate on the
solution’s gradient, which can be done by differentiating the energy along the heat flow. In section
4.5, we establish convergence results and we prove theorem 4.3. Section 4.6 deals with the case
of a bounded domain. In the final section 4.7, we show uniqueness of (4.1) using a displacement
convexity argument.

4.2 Main result

Let | € N* and for all i € [1,1], we define V; : P(R™)! — C2(R"™) continuous such that:

e Forall p=(p1,...,;m) € PR,

Vilp] = 0, (4.2)

e There exists C' > 0 such that for all p € P(R™)!,
IV Vil [l ) + 1 D (Vilp) [l L ey < C, (4.3)
i.e V;[p] and V(V;[p]) are Lipschitz functions and the Lipschitz constants do not depend on
the measure.
e There exists C' > 0 such that for all v,o € P(R")!,

IV(Vilv]) = V(Vi[oD) | L~ @ < CWa(v, o). (4.4)

Remark 4.1. The assumption (4.2) can be replaced by V;[p] is bounded by below uniformly in p.

Let m > 1, we define the class of functions H,, by
Hp, = {z— xlog(z)} if m=1,
and, if m > 1, H,, is the class of strictly convex superlinear functions F : RT — R which satisfy
F(0)=F'(0) =0, F"(x) > Cx™ 2 and P(z) := oF'(z) — F(z) < C(x + 2™). (4.5)
The two first assumptions imply that if m > 1 and F € H,, then F controls z™.

Before giving a definition of solution of (4.1), we recall that the nonlinear diffusion term can
be rewrite as
div(pVF'(p)) = AP(p),

where P(z) := xF’'(x) — F(z) is the pressure associated to F'.
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Definition 4.2. We say that (p1,...,p) : [0,+00o[— PE(R™)! is a weak solution of (4.1) if
for all i € [1,1], pi € C([0,T],P3¢(R™)), Pi(p;) € L*(J0,T[xR™) for all T < oo and for all
Py, 01 € Cso([oa +OO[X Rn)}

+o0o
| [ 0= e VWil i aieiPilp] = - [ oi0a)pia(o)

With this definition of solution we have the following result

Theorem 4.3. For alli € [1,1], let F; € Hyp,, with m; > 1, and V; satisfy (4.2), (4.3) and (4.4).
Let ay, ..., qq positive constants. If p; o € P3°(R™) satisfy

Fi(pio) + Vi(piolpo) < +oo, (4.6)
with ‘
Filp) = { e PPN < 2 i vilol) o= [ Vilpds
Ehen) there exist (p1,...,p;) : [0, +oo[— P(R™)!, continuous with respect to W, weak solution of
4.1).

Remark 4.4. In the following, to simplify the proof, we take a; = 1.

4.3 Semi-implicit JKO scheme

In this section, we introduce the semi-implicit JKO scheme, as [54], and we find the first estimates
as in the usual JKO scheme.

Let A > 0 be a time step, we construct ! sequences with the following iterative discrete scheme:
for all i € [1,1], p)}, = pio and for all k > 1, pf’h minimizes

En(ploy ™) == W3 (p, pi7 ") + 20 (Filp) + Vilploy ™)) .

on p € Pg¢(R™), with pj ! = (plf;ll, . ,pﬁgl).

In the next proposition, we show that all these sequences are well defined. We start to prove
that there are well defined for one step and after in remark 4.6, we extend the result for all k.

Proposition 4.5. Let py = (p1,0, .-, pr0) € PSS(R™)!, there exists a unique p}, = (p ..., pi,) €
Pse(R™)! such that, for all i € [1,1],

piy, = argmin&; 1 (p|pp)- (4.7)
Proof. First of all, we distinguish the case m; > 1 from m; = 1.

o If m; > 1, then & n(plpr) > 0, for all p,p1,..., € PI(R"™). Let p, be a minimizing
sequence. As & p(piolpy) < +oo (according to (4.6)), (& n(pv|py))y is bounded above. So
there exists C' > 0 such that

0< Filpy) < C and Wa(py. pi) < C.

From the second inequality, it follows that the second moment of p, is bounded.

e Now if m; = 1, following [65], we obtain

M(p) ~ OO+ M(p))* — M (p0), (18)

] =

Ein(plph) =

with some 0 < a < 1. And since z — +z — C(1 + ) is bounded below, we see that &, is
bounded below.
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Let p, be a minimizing sequence. Then we have (F;(p,)), bounded above. Indeed, as
Ein(piolpy) < 400, (Ein(pvlpg))y is bounded above and from (4.2) we get,

/ Vilpo) (2)pu () daz > 0,
R

so (Fi(pv))» is bounded above. According to (4.8), (M(py)), is bounded. Consequently
(Fi(pv))w is bounded because F;(p) = —C(1+ M(p))*.

In both cases, using Dunford-Pettis’ theorem, we deduce that there exists p; n € P3°(R"™) such
that
Py — p}’h weakly in L'(R").

It remains to prove that pg, 5 is a solution for the minimization problem. But since F; and W3 (-, pio)
are weakly lower semi-continuous in L'(R™), we have

Ein(pinlpo) < Hminf &1 (pypo)-

To conclude the proof, we show that the minimizer is unique. This follows from the convexity
of Vi(-|py) and p € P§¢(R") — W3 (p, p?,,) and the strict convexity of F;.
O

Remark 4.6. By induction, proposition 4.5 is still true for all k > 1:
the proof is similar when we take k — 1 instead of 0 and if we notice that for all i,

Filpin) + Vilpinlen) < Filpio) + Vilpiolpo) + CWalpg, py) < C.

The last inequality is obtained from the minimization scheme and from the assumptions (4.2), (4.4)
and (4.6). By induction it becomes, for all k > 2,

k—1
fi(Pﬁﬁl) + Vi(/)iﬁwpifl) < Filpio) + Vilpiolpo) + CZ W2(Pi;17 pr) < C.

Jj=1

This inequality shows & 1, (ot |pF~1) < +o0o and so we can bound (Fi(p,)), in the previous proof.

Thus we proved that sequences (pic k>0 are well defined for all ¢ € [1,1]. Then we define the
interpolation p; p, : RT — PS¢(R™) by, for all k € N,

pin(t) = pf, if t € ((k— 1)k, kh). (4.9)

The following proposition shows that p; j, are solutions of a discrete approximation of the system
(4.1).

Proposition 4.7. Let h > 0, for all T > 0, let N such that N = [%] Then for all (¢1,...,¢1) €
C([0,T) x R™)! and for all i € [1,1],

T N—1
/ / pin(t,x)Od;(t, x) dedt = —hZ/ Pi(pﬁzl(x))A(bi(tk,x)dx
0 n = Jre
N710
b Y [Vl Vorltn,a)plt @) de
k=0 Y R”
N—1
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where t, = hk (tx :=T) and ¥ ', is the optimal transport plan in Wg(pl h,ple) Moreover, R is

defined such that, for all ¢ € C*([0,T) x R™),

IR[¢](z,y)| < *IID &l oo (0,7 x|z — 9.
Proof. We split the proof in two steps. We first compute the first variation of & p(:| p’fL) and then

we integrate in time. In the following, i is fixed in [1,].

o First step: For all k > 0, if ’yﬁh is the optimal transport plan in Wy (pf)h, ple) then

[ e@ @@ - @) = [ P e)Ae) d

R

— b | VWileh)@) - Veilalol (@) dr

- / R[QDZ](.%, y)dﬁ)/zk,h(xa y)v
R™ x R™
for all p; € C°(R™).

To obtain this equality, we compute the first variation of & 5, (+|p5). Let & € C°(R™, R") and
7> 0 and let ¥, defined by

0.V, =& oW, Uy = Id.
After we perturb p’c+1 by pr = (¥, )ﬁpf# According to the definition of ple, we get
1
~ (&nlorloh) = EintotT Ioh)) > 0. (4.10)

By standard computations (see for instance [65], [1]) we have

. 11 1
hmsup*(ngz(pnpf,h) -5 (i pEn)) < / (y—a)- &) dyfp(a,y),  (4.11)
T R” x R»

™0
where fyf’h is the optimal transport plan in Wg(pﬁh, pﬂ;l),
fmsup (F(pr) — Filpk1) < - [ okt @) divtéo(a)) d, (4.12)
and
lirfl\sgpi (Vi(pflp’;i) -V, pfil\ph / V(Viler)(x) - &i(a)pi (@) de. (4.13)

If we combine (4.10), (4.11), (4.12) and (4.13), we get

/ (W -2) &@) ey +h [ VVPD@) - &@)tt @) de
R™ x R™ R

—h [ Pl (@) div(Ea)) de > 0.

And if we replace & by —¢;, this inequality becomes an equality.

To conclude this first part, we choose §; = V¢,; and we notice, using Taylor’s expansion, that

vi(x) —i(y) = Vei(y) - (z —y) + Rlpil (2, y),
with R[p;] satisfying

1
[Rlpil(z,y)| < §||D280i||Lw([o,T)an)|x -yl
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e Second step: For all (¢1,...,¢;) € C([0,T) x R™)!, extended, for all i € [1,1], by ¢;(0,-) on
[—h,0), then

T N tr
/ / pin(t,x)Op;(t, x) dedt = Z/ / pf’)h(x)at(éi(t, x) dxdt
0 n k=0 Y tk—1 n

N
_ Z / PE (@) (i(th, ) — bi(th 1, 7)) da

= Z it V(o () = pitH(z) da

—/n pio(x)$:(0,z) dx

Using the first part with ¢; = ¢;(t, ), we get the desired equality.

The last proposition of this section gives usual estimates in gradient flow theory.

Proposition 4.8. For all T < +oo and for all i € [1,1], there exists a constant C < 400 such
that for all k € N and for all h with kh <T and let N = [L], we have

M(py) < C, (4.14)
Fi(pfy) < C, (4.15)
o WE(pF . pf ) < Ch. (4.16)

Proof. The proof combines some techniques used in [65] et [54]. In the following, 7 is fixed in [1,].
As pﬁzl is optimal and pﬁ 5 is admissible, we have

Ein( P%”Ph) gi,h(Pﬁh|Plﬁ)~

In other words,

1
SWEPE R )+ (Flol) + Vi(okE10k) ) < B (Filpkn) +Vilokaloh))

From (4.3), we know that V;[p] is a C-Lipschitz function where C' does not depend on the
measure. Hence, because of (?7), we have

Vi(okulok) = Vi(pkitpr) < CWalpftt, pk ).

Using Young’s inequality, we obtain

Vi(pkulpk) = Vi(pi it er) < CQthEWz(p’fZl,pzh)

It yields
1
W30l iR ") < M(Filpln) = Filpi ) + C2h%, (4.17)
Summing over k, we can assert that

N
Z Wz 1hapf—}tl h (Z ( Plh (Pft”) +02T>

< h(Filpio) — Filphy) + C°T).
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But by assumption, F;(pi0) < +oo and —F;(p) < C(1+ M(p))*, with 0 < a < 1, then

N
1
Z W3 0in i) < B (Filpio) + C(L+ M(p)* + C°T) . (4.18)
=1

Thus we are reduced to prove (4.14). But

M(pF,) < 2W3 (05, pio) +2M (pio)
k—1
< 2k ) WP plth) + 2M (pio)
m=0
< 8kh (Filpio) + C(1+ M(pf))* + C*T) +2M (pi0)
< 8T (Filpio) + C(L+ M(p ) + C*T) +2M (p;0).

As a < 1, we get (4.14). The second line is obtained with the triangle inequality and Cauchy-
Schwarz inequality while the third line is obtained because of (4.18). So we have poved (4.14) and
(4.16).

To have (4.15), we just have to use (4.17) and to sum. This implies
Filpin) < Filpio) + C°T,

which proves the proposition.

4.4 k-flows and gradient estimate

Estimates of proposition 4.8 permit to obtain weak convergence in L! (see proposition 4.13).
Unfortunately, it is not enough to pass to the limit in the nonlinear diffusion term P;(p; ). In
this section, we follow the general strategy developed in [86] and used in [55] and [35] to get an
estimate on the gradient of pml/ % This estimate will be used in proposition 4.14 to have a strong
convergence of p; j, in L™ (]0, T[>< R™). In the following, we are only interested by the case where
m; > 1 because if m; =1, P;(p; ) = pi,, and the weak convergence is enough to pass to the limit
in proposition 4.7. In the ﬁrst part of this section, we recall the definition of k-flows (or contractive
gradient flow) and some results on the dissipation of F; +V; then, in the second part, we use these
results with the heat flow to find an estimate on the gradient.

4.4.1 xk-flows

Definition 4.9. A semigroup Gy : RT xP(R") — P§R™) is a k-flow for the functional
U : PgY(R™) — RU{+o0} with respect to Wy if, for all p € P§°(R"), the curve s — &5 [p| is
absolutely continuous on R, &Y, = Id and satisfies the evolution variational inequality (EVI)

1d+ _ i
— lo=s W3 (83l0], p) + Wz (S%[pl, p) < ¥(p) — W (Sy[p)), (4.19)

for all s > 0 and for all p € P3°(R™) such that ¥ (p) < oo, where

o flt+s) = ft)
Ef(t) = limsup ————~=.

s—0t s

In [4], the authors showed that the fact a functional admits a k-flow is equivalent to -
displacement convexity (see section 4.7 for definition).

The next two lemmas give results on the variations of pf) ,, along specific k-flows and are ex-
tracted from [55]. The goal is to use them with the heat flow.
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Lemma 4.10. Let ¥ : P$¢(R™) — RU{+o0} ls.c on P§S(R™) which possesses a r-flot Sy.
Define the dissipation D; v along Sy by

D;w(plp) = lirzl\sgp % (Filp) = Fi(&y[p]) + Vilplp) — Vi(&[pl|1))

for all p € P$(R™) and p € P(R™)L.
If pfgl et pﬁh are two consecutive steps of the semi-implicit JKO scheme, then

_ _ K _
‘I’(Pﬁhl) - ‘I’(Pf,h) > th(pf,hlpZ N+ §W22(P?,h’/7§,hl)- (4.20)

Proof. Since the result is trivial if \I/(pfgl) = 400, we assume \If(pfi;l) < 4o00.
Thus we can use the EVI inequality (4.19) with p := pfyh and p = pﬁzl. We obtain

— s 1 d+ s K s —
‘I’(Pihl) - ‘I’(pr[/’?,h}) |cr s W3(8% [Pz nl, Pq h N+ §W22(6\I/[p§,h]»pf,h1)'

By lower semi-continuity of ¥, we have

(o)~ wobn) > Wl ~ limint (S [f))

> limsup [ ¥( plh —U(&% (o} h)))
s\,0

> limsup |o' s W3Sy [Pz nls P§h1)>
sN\,0

K
+ §W22( fhvpzh )-

The last line is obtained thanks to the Wa-continuity of s — G‘fy[pf,h] in s = 0. Moreover, the
absolute continuity of s — & [pF,] implies

1 d _
lim sup ( lo=s W3(EY, [Pz nls Pf,hl)>
s\,0

1 . _
111’11 sup — (W2 (6 [pz h} pz h ) W;(ﬂﬁh, pf,hl)) .
s\0 2s

But since pﬁh minimizes & ,(-|pf "), we get, for all 5 > 0,

W5 (& [05nl ) = W5 (05 ns 0l ) = 20 (Falpiy) — Fi(S% [0k s)))
+ 20 (Vi(pbulpl ™) = Vi@l ) -

This concludes the proof.
O

Corollary 4.11. Under the same hypotheses as in lemma 4.10, let Sy a k-flow such that, for
all k € N, the curve s — &5 [p},] lies in L'(R™). Moreover, assume that s — F;(&%[pF,]) is
differentiable for s > 0 and is continuous at s = 0 in L'(R™).

In addition, we assume that the family _%Ia:s (fz(GfI,[pfh]) —&—Vi(Gg[pf’thZ*l)) is bounded

from below by an integrable function as s goes to 0 and let R w : P(R"™) —] — 00, +x] be a
functional such that

d

iigt (— (RO VA > Sl a2

Then, for all k € N,

- K -
U(pint) = Wpin) = hfsw(pfnlph” )+§W§(pfih70ﬁhl)- (4.22)
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Proof. Tt is sufficient to show that D; ¢ (-|pf~") is bounded below by & ¢(:|pf~'). The proof
is as in corollary 4.3 of [55]. The hypotheses of L!-regularity on FZ(GS‘I,[pfh]) imply that s +—

Fi(&y[pF ) is differentiable for s > 0 and continuous at s = 0. We have the same regularity for
5 Vi(6§1,[pfyh]|p271). By the fundamental theorem of calculus,

B . 1 .
Diw(pfnlpf™) = hm\f‘gp;(fi(pi-“,h)—fi(%[pﬁh])
Vil nler ) = Vi(S3let ek )
, ! d _
= hmsup/ ——  (F(SLoE) + Vi(ST ok ller ) ) dz
sN\O0 0 dO—‘o:sz
! d k k k—1
> [Cimint (< (RS + VSt ) ) ds
> Riw(pfulef ).

The last line is obtained by Fatou’s lemma and assumption (4.21). To conclude we apply lemma
4.10. O

4.4.2 Gradient estimate

Proposition 4.12. For all i € [1,1] such that m; > 1, there exists a constant C' which depends
only on p; o such that

1075 1 (o, 750 ey < C(L+T)

for all T > 0.

Before starting the proof of the proposition 4.12, we recall the definition of the Entropy func-
tional ,

E(p) = / plog p, for all p € P*(R™).

We know that this functional possesses a k-flow, with £ = 0 which is given by the heat semigroup
(see for instance [49], [65] or [116]). In other words, for a given 7y € P$°(R"), the curve s —
n(s) := &%[no] solves

{ d,m=An on Rt xR
n(0) =no on R,

in the classical sense. 7(s) is a positive density for all s > 0 and is continuously differentiable as
a map from R* to C* N L'(R™). Moreover, if 79 € L™(R"), then 7(s) converges to 7y in L™ (R™)
when s N\ 0.

Proof. Based on the facts set out above, G satisfies the hypotheses of the corollary 4.11. We just
have to define a suitable lower bound K; g to use it. The spatial regularity of n(s) for all s > 0
allows the following calculations. Thus for all u € P$¢(R™)!, we have

0y (FSylml) + ViSiylnollw))
- [ aFmdr+ / Vilul@un(s, z) de
R™ R»

F!(n(s,z))An(s,z) dz + /n Vil An(s, x) dx

R™

- [ R VasoF dot [ AWVil)a(s.o) de
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According to (4.5), F/(z) > Cx™i~2 thus
Os (Fi(Sglml) +  Vi(Sxlnollw))
< =0 [ sy Vals o do+ [ AWkl o) do
Rn

R

< ¢ [ [Vts.a e+ / A(Vilg))n(s, ) de.

n

Since (4.3), we obtain a lower bound on the family —9, (F;(&%[no]) + Vi(6%mo]|p)). Indeed,
—0s (Fi(S&%lml) + Vi(Sglnollw)
> O [ |Vn(s,a)™?Pde— [ AVil))n(s, ) da,
. _CRn R™

because [|&%[no]llL1rny = 1.
Then we define

fip(plh) /|v m2)2 g~ [ AVl de.

Rn

We shall now establish that R; g satisfies (4.21). First of all, we notice that

liminf <dd (fz(GE[pfh]) + Vi(G%[pf,h]lpﬁ_l)>

sN\0 O |o=s

> lim inf <—d Fi(G%[pf,hD) + hm 1nf <

s\O do|,—,

v-<6ﬂp§,hnpﬁ-1>). (4.23)

Thanks to the proof of lemma 4.4 and with lemma A.1 of [55], we obtain

d0|a R

o d o
hgn\(lglf (_dUlas(]: &%k ) C’/ IV (pk ), (x)™/2)|? dae. (4.24)
Moreover, as &%, is continuous in L!'(R") at s = 0 and according to (4.3),
o d - _
it (0 V(@ElEE)) > - [ AWl D) (425)
s\0 do |,—, R7

The combination of (4.23), (4.24) and (4.25) gives (4.21) for &; . We apply corollary 4.11 and
we get

E(p;y") = B(pfn) = h&as(pinlen ). (4.26)
But since A(V;[p]) € L*°(R"™) uniformly on p (4.3),
Ch/ IV (pf ()™ )P de < E(pf,") — E(pfy) + Ch.

Now we sum on k from 1 to N = [£]

N
ChY IV (pEn (@)™ )22 gy < E(pin) = E(p) + CT. (4.27)
According to [65] and [55], there exists a constant C' > 0 and 0 < « < 1 such that for all
p € Pge(R™),

—C(1+ M(p))* < E(p) < CFi(p).
Since for all k, h, M(pfh) is bounded, according to (4.14) and the fact that F;(p; o) < +o00 by

(4.6), we have
hY IV k(@)™ ) a@ey < CA+T).

To conclude the proof, we use (4.5) and (4.15).
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4.5 Passage to the limit

In this section, we establish weak and strong convergences for sequences (p; 1), in order to pass to
the limit in the discrete system of proposition 4.7.

4.5.1 Weak and strong convergences

The first convergence result is obtained using the estimates on the distance (4.16) and on the
energy JF; (4.15).

Proposition 4.13. FEvery sequences (hi)ken of time steps which tends to 0 contains a subsequence,
non-relabelled, such that p; 1, converges, uniformly on compact time intervals, in Wy to a %—Ht’ilder
function p; : [0, +o00[— PI(R™).

Proof. The estimation on the sum of distances (4.16) gives us for all ¢,s > 0,
Wa(pin(t, ), pin(s,) < C(It = s +1)'/2,

with C independ of h.

According to the proposition 3.3.1 of [4] and using a diagonal argument, at least for a subse-
quence, for all 7, p; p, converges uniformly on compact time intervals in W to a %—Hélder function
pi = [0,4+00[— P2(R™). To conclude we show that for all ¢t > 0, p(t,-) € P§°(R™). But as F; is
superlinear, Dunford-Pettis’ theorem completes the proof.

O

With the previous proposition, we can pass to the limit in the case m; = 1 because P;(p; ) =
pi.n and the term V(V;[p,]) is controlled thanks to the hypothesis (4.4). Unfortunately, it is not
enough to pass to the limit in P;(p; ) when m; > 1. In the next proposition, we use proposition
4.12 to get a stronger convergence.

Proposition 4.14. For alli € [1,1] such that m; > 1, p; , converges to p; in L™ (]0, T[x R™) and
Py(pin) converges to P;(p;) in L'(]0,T[x R™), for all T > 0.

The proof of this proposition is obtained by using an extention of Aubin-Lions lemma given by
Rossi and Savaré in [107] (theorem 2) and recalled in [55] (theorem 4.9).

Theorem 4.15 (th. 2 in [107]). On a Banach space X, let be given

e a normal coercive integrand G : X — RT, ie, G is lLs.c and its sublevels are relatively
compact in X,

e a pseudo-distance g : X x X — [0, +0o<], i.e, g is l.s.c and
[9(p, 1) = 0, p, p € X with G(p),G(pn) < o] = p = p.
Let U be a set of measurable functions u :10, T[— X with a fired T > 0. Under the hypotheses
that
T T—h
sup/ G(u(t))dt < +o00 and lim sup/ g(u(t+ h),u(t))dt =0, (4.28)
uelU Jo hN\OweU Jo

U contains a subsequence (up)nen which converges in measure with respect to t €)0,T[ to a limit
Uy 1]0,T[— X.

To apply this theorem, we define on X := L™ (R"™), as in [55], g by

_ | Walp,p) if p, € P2(R™),
g(p: p) = { +00 otherwise,

and G; by

Gi(p) = o™ 2| 1 @y + M(p) if p € P°(R™) and p™/* € H'(R™),
P +00 otherwise.

Now, we show that G; satisfies theorem 4.15 conditions.
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Lemma 4.16. For alli € [1,1] such that m; > 1, G; is l.s.c and its sublevels are relatively compact
in L™ (R™).

Proof. The Ls.c of G; on L™ (R"™) follows from lemma A.1 in [55]. To complete the proof we have

to show that sublevels A. := {p € L™ (R™) | G;(p) < ¢} of G; are relatively compact in L™ (R").
To do this, we prove that B, := {77 = pmil? |pe Ac} is relatively compact in L?(R™) and since

the map j : L?(R™) — L™ (R™), with j(n) = #*/™, is continuous, A, = j(B.) will be relatively

compact in L™ (R™).

We want to apply the Fréchet-Kolmogorov theorem to show that B, is relatively compact in L*(R™).

e B, is bounded in L?*(R™): Since n* = p™ with G;(p) < ¢, it is straightforward to see

/ n” <ec.

e B, is tight under translations: for every n € B, and h € R™ we have that

2

1
/|n(x+h)fn(x)\2dz < |h\2/]R ‘/0 IVn(z + zh)|dz| dx
< P [ @) do < dlbP,
R’Vl

thus the left hand side converges to 0 uniformly on B, as |h| \, 0.

e Elements of B. are unifomly decaying at infinity: For all n € B, and R > 0, we have

1
/ 772 dx < / ‘x|1/”n1/nmin271/nmi dz.
R

If we use Holder inequality with p = 2n and ¢ = %, we get

2n—1

1 1/2n =
/ nde < —; (/ x|2772/mi> </ nz(zmil/nvmi(zl/n))
|z|>R RY/n R n

As n?/™i = p with Gi(p) < ¢, we have
/ P2 < e

To bound the other term we use the Gagliardo-Nirenberg inequality: for 1 < ¢,r < 400, we
have

[ullr < Cl[Vul
for all 0 < a < 1 and for p given by

1_a<1_1>+(1_a);

.,

«
LT

We choose p = %7 g=r=2and a =gy "”_l/n) (since m; > 1 we have 0 < a < 1)

Qmi —1
then we obtain:

ap/2 (1—a)p/2
/ 772(2mi—1/n)/m7¢(2—1/n) < </R |V7’]|2> (/ ,'72) )

but since n = pmi/2 with G;(p) < ¢, the second term is bounded then

C

2

Pdr < —— =0,
/|w>R RYn

as R goes to 4o00.
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We conclude thanks to the Fréchet-Kolmogorov theorem. O

Proof of the proposition 4.14. We want to apply theorem 4.15 with X := L™ (R"), G := G;, g and
U = {pin, | k € N}. According to lemma 4.16, G; satisfies the hypotheses of the theorem. It’s
obvious that it is the same for g. Thus we only have to check conditions for U. The first condition
is satisfied because of (4.14) and proposition 4.12 and the second is satisfied because of (4.16) (the
proof is done in [55] proposition 4.8, for example).

According to theorem 4.15 and using a diagonal argument, there exists a subsequence, not-
relabeled, such that for all ¢ with m; > 1, there exists p; :]0,T[— L™ (R"™) such that p;,
converges in measure with respect to ¢ in L™ (R") to p;. Moreover, as p; , (t) converges in W for
all t € [0,T] to p;(t) (proposition 4.13) then p; = p;. Now since convergence in measure implies a.e
convergence up to a subsequence, we may also assume that p; p, (t) converges strongly in L™ (R")
to p;(t) t-a.e. Now, thanks to (4.15) and (4.5) we have

/ pin(t x) de < CFi(pin(t,-)) < O,

then Lebesgue’s dominated convergence theorem implies that p; 5, converges strongly in L™ (]0, T[x R™)
to p’f.o conclude the proof we have to show that P;(p; ) converges to P;(p;) in L*(]0, T[x R™). First
of all, up to a subsequence, we may assume that there exists g € L™ (]0, T[x R™) such that
Pihe — pi (t,z)-a.e and p;p, < g (¢, 2)-ae.
Thus according to (4.5)
Pi(pin.) = Pi(pi) (t,2)-a.e and 0 < P(pin,) < C(pin, +9™) (L, 7)-a.e.
So when we pass to the limit we have (¢, z)-a.e

0< P(p;) < Clpi+g™) € L'(J0, T[x R").

Then C(p; p,, + pi +29™) — |Pi(pi,ne) — Pi(pi)| = 0 and using the a.e convergence of p; j,, and
Pi(pin)s

20T + 20// g(x)™ dadt
10,T[x R»

N // liminf (C(pi,n, + pi +29™") — |Pi(pi,ng) — Pi(pi)l)
10,T[x R™

2CT + 20// x) dedt — lim sup// | Pi(pin,,) — Pi(pi)l-
0,T[x Rn 0,T[x R»

To do these computations, we used that ||p; n,||z1qo,rix &) = llPillL1qo,7(x rry = T and Fatou’s
lemma. Since g € L™ (]0,T[x R™), we obtain

iimsup | (Pl - Pip] <0,
10,T[x R®

N

which concludes the proof.

4.5.2 Limit of the discrete system

In this section, we pass to the limit in the discrete system of proposition 4.7. In the following, we
consider ¢; € C°([0,T) x R") and N = [£].

proof of theorem 4.3. We will pass to the limit in all terms in proposition 4.7.
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o Convergence of the remainder term: By definition of R, we have
1
/R . RI¢i(te, (@, y)dyip (z,y) < 5||V2¢i||L°°([o,T]an)sz(ﬂf,h,pf?{l)-
" R7

and according to the estimate (4.16), we get

R($i(tr, )] (z,y)dyE (2, y)

N—-1
<C Y Wi (pfn ") < Ch—0.
k=0

n x R™

o Convergence of the linear term:

T
pi,h(t7x)at¢i(t7x) dzdt — / / pi(tvx)at¢i(tax) dadt
n 0 n

< CcT sup WQ(p’i,h(t7 )7Pz(t7 )) — 07
t€[0,T]

when h N\, 0 because of proposition 4.13.

o Convergence of the diffusion term:

h Z/ pf'gl ) - A (tg, x) dx f/ /n (pi(t,2))Ad;(t, x) dxdt

k=0

C(1L+T)|D*6llL~h + / | (Ppun(t) = Pott.a)) A 1. dact.

If m; = 1, the right hand side converges to 0 because of proposition 4.13 and otherwise it
goes to 0 because of proposition 4.14.

o (Convergence of the interaction term:

hZ / )+ Voulti,2)ol 1 (@) da
/ . V(Vilp(t, )])(x) - Vi(t, x)pi(t, z) dedt
< hZ B @) - Vouta ) pl (@) da
/ [ V0lplt @) Vil ok ) dac
' g / [ Wit @) - (V) - Vot o) o
X [ W) Ttk @) - ) dsa

< i+ Jo+ Js.

— As p; p, converges weakly L'(]0,T[x R"™) to p; and (V(V;[p]) - Vi) € L>=([0,T] x R"),
then
J3 —0as h—0.

— For Jz, we use the fact that V¢, is a Lipschitz function and that V(V;[p]) is bounded
thanks to (4.3), and then,

Jy < CT||D?¢s| .= ([0, 7] xRyl — 0.
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— Using assumption (4.4), we have

try1
5o< cnwzummmz / Walph, p(t, ) dt
tr

Then using triangle inequality and Cauchy-Schwarz inequality, we obtain

treya
J1 < C||V¢z||L°° ([0,T]xR™) Z/ W2 P}u k+1)+W< k+1,p(t,-)))

< C||v¢i||L°°([O,T]><]R")< Z S (pk, Py

k=
N—1 thot1
k=0
N-—1
< ClIVoill e (jo,1)xrm) (T Z W3 (py. py )
k=0

T
n / W2<ph<t,->,p<t,->>dt>

According to (4.16), we obtain

=z
L

Ty Wipk,pith) <CTh —0
0

~
Il

when h ~\, 0. Moreover,

T
| Walbu(t.).p(t ) de ST sup Walpy(t,).p(t.)) >0,
0 t€[0,T]

when h goes to 0, which proves that

Ji —0as h — 0.

If we combine all these convergences, theorem 4.3 is proved. O

4.6 The case of a bounded domain 2

In this section, we work on a smooth bounded domain 2 of R™ and only with one density but, as
in the whole space, the result readily extends to systems. Our aim is to solve (4.1). We remark
that  is not taken convex so we can not use the flow interchange argument anymore because
this argument uses the displacement convexity of the Entropy. Moreover since €2 is bounded, the
solution has to satisfy some boundary conditions contrary to the periodic case [35] or in R™. In
our case, we study (4.1) with no flux boundary condition, which is the natural boundary condition
for gradient flows, i.e we want to solve

Op — div(pV(V(p])) = AP(p) =0 on R* x Q,
(pV(V[p]) + VP(p)) - v=0 on RT x99, (4.29)
p(0,-) = po on R”,

where v is the outward unit normal to 0S2.

We say that p : [0,400[— P() is a weak solution of (4.29), with F € H,,, if p €
C([0, +o0[; P2<(Q)) N L™(]0, T[xQ), P(p) € L*(]0,T[xQ), VP(p) € M"™([0,T] x Q) for all T' < oo
and if for all ¢ € C°([0, +00[x R"), we have

/ | 100 =V YVl = VP(0) - Vil = = [ ol0.00m(o).
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Since test functions are in C°([0, +o0o[x R™), we do not impose that they vanish on the boundary
of ©, which give Neumann boundary condition.

Theorem 4.17. Let F € H,, form > 1 and let V satisfies (4.2), (4.3), (4.4). If we assume that
po € P*(R2) satisfies

F(po) + V(polpo) < +oo0, (4.30)

with
Fipyi= { SN0 Vil = [ Vidpa.

400 otherwise,

then (4.29) admits at least one weak solution.

The proof of this theorem is different from the one on R™ because we will not use the flow
interchange argument of Matthes, McCann and Savaré to find strong convergence since {2 is not
assumed convex. First, we will find an a.e equality using the first variation of energies in order to
have a discrete equation, as in proposition 4.7. Then, we will derive a new estimate on the gradient
of some power of p, from this a.e equality. To conclude, we will use again the refined version of
Aubin-Lions lemma of Rossi and Savaré in [107].

On 2 we can define, with the semi-implicit JKO scheme, the sequence (pf )y, where pf minimizes

b En(plph L) = = W2(p, 1) + Flp) + Vol ™)

2h

on P(£2). The proof of existence and uniqueness of p¥ is the same as in proposition 4.5. It is even
easier because on a bounded domain F is bounded from below for all m > 1. We find also the same
estimates than in the proposition 4.8 on the functional and the distance (see for example [1],[35]).

Now we will establish a discrete equation satisfied by the piecewise interpolation of the sequence
(pF)r defined by, for all k € N,

pn(t) = pk if t € ((k — 1)h, kh).

Proposition 4.18. For every k > 0, we have
(y — k()™ + AV (Voo + AV (P(pE) = 0 a.e on €, (4.31)

where Ty, is the optimal transport map between pﬁ“ and pZ. Then py, satisfies

T
| [ omttsioett,a) dode hZ / V(VIE])(x) - Vepltr, 2)pl (z) dadt
0 Q

+hZ/VP (1)) - Voo(ty, 2) do (4.32)
N—-1
+3° Rl (tr, ))(z, y)dy(z,y)

k=0 QxQ

- [ po(@)e(0,2) da.
Q
with N = [%1, for all ¢ € C*([0,T) x R™), i, is the optimal transport plan in Wa(pf, pZ‘H) and

R[¢](z,y)] < *HD 20l o (r x rmy [ — yl*.
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Proof. First, we prove the equality (4.31). As in proposition 4.7, taking the first vartiation in the
semi-implicit JKO scheme, we find for all £ € C2°(2; R"™),

/(y—Tk(y))-f(y) n ) dy+h/V [oh]) - €pptt - h/P( phdiv(e) =0, (4.33)
Q Q

where T} is the optimal transport map between ph L and p’c Now we claim that P(plflﬂ) S
WH(Q). Indeed, since F controls 2™ and P is controlled by 2™ then (4.15) gives P(pf ™) € L'(Q).
Moreover, (4.33) gives

‘/ k+l le ’ |:/ |y7 | k+1+cj| ||€||Loc(Q)

WQ(pha k+1)
h

N

€1l o ()-

This implies P(p} ™) € BV(Q) and VP(p; ™) = VV[pk]pp T + LTk pit! in M™(Q). And, since
VV kit + LTk pitt € L1(Q), we have P(pft!) € W1 1(Q) and (4.31).

Now, we verlfy that pn statisfies (4.32). We start to take the scalar product between (4.31) and
Ve with ¢ € C°([0,T) x R™), and we find, for all ¢ € [0,T),

/Q (v — Te(w)) - Veolt, ) () dy

—|—h/ V(VIer(y) - Vot y)pi T ( dy—!—h/ V(P(ps ™) (y) - Ve(t,y) dy = 0. (4.34)

Moreover, if we extend ¢ by ¢(0,-) on [—h,0), then

T
| [ onteoioete. oy dode = Z / [ et
= kZZO/QPZ(QT)@P(th)—@(tk1,$))dx

N-1
- 3 [ et i
- [ m@ypl0.)da.

And using the second order Taylor-Lagrange formula, we find

/ ((kh, z) — p(kh, y)) dyi(z, y)
QxN

— [ Vetbhy)- -y dnle)+ [ Rlpt e pdny).
QxQ QxQ
This concludes the proof if we sum on &k and use (4.34).
O

Remark 4.19. We remark that equality (4.31) is still true in R™. Indeed, the first part of the
proof does not depend of the domain and we can use this argument on R™. This equality will be
used in section 4.7 to obtain uniqueness result.

In the next proposition, we propose an alternative argument to the flow interchange argument
to get an estimate on the gradient of p;,. Differences with the flow interchange argument are that we
do not need to assume the space convexity and boundary condition on VV[p]. Moreover we do not
obtain exactly the same estimate. Indeed, in proposition 4.12, Vp;?ﬂ is bounded in L?((0,7) xR™)
whereas in the following proposition we establish a bound on V7 in L!((0,T) x R") using (4.31).



46 CHAPTER 4. DRIFT INTERACTIONS: POTENTIAL CASE

Proposition 4.20. There exists a constant C which does not depend on h such that

||pZL||L1([O,T];W171(Q)) <CT
for all T > 0.
Proof. According to (4.31), we have

h [ VP < Walh ) + e

Then if we sum on k from 0 to N — 1, we get

T N-1
/ |V(P(pn))| dxdt < ZWQ phapZ—H L TC
0o Ja
N-1
< N Wi e, ot +TC
k=0
< CT,

because of (4.16).
If F(z) = xlog(x) then P'(z) = 1 and if F satisfies (4.5), then F(z) > C2™~ 2 and P'(z) =
xF"(x) > Ca2™~ 1. In both cases, we have P'(x) > Ca™~ ! (with m = 1 for zlog(x)). So

T T
| [ v @ldede= [ [ o) Vo) o
0 Q 0 Q
T T
>C/ /p;"*1|vph|dxdt:c/ /|vp’;;|dxdt,
0 Q 0 Q

Which proves the proposition. O
Now we introduce G : L™(Q) — [0, +oc] defined by

G(p) = e BV if p€ P*(Q) and p™ € BV (Q),
Pl +o0 otherwise.

Proposition 4.21. G is lower semi-continuous on L™ () and its sublevels are relatively compact
in L™(Q).

Proof. First we show that G is lower semi-continuous on L™(2). Let p, be a sequence which
converges strongly to p in L™(Q) with sup,, G(pn) < C < +oo. Without loss of generality, we
assume that p, converges to p a.e.

Since C' < 400, the functions p”* are uniformly bounded in BV (€2). So we know that p”* converges
weakly in BV (2) to u. But since  is smooth and bounded, the injection of BV (Q) into L(€) is
compact. We can deduce that u = p™ and p"* converges to p™ strongly in L*(£2). Then by lower
semi-continuity of the BV-norm in L', we obtain

G(p) < liminf G(py).

n_+oo

Now, we have to prove that the sublevels, A, := {p € L™(Q) : G(p) < c}, are relatively
compact in L™ (). Since i : n € L'(Q) — n*/™ € L™ () is continuous, we just have to prove that
B.:={n=p™ : p € A.} is relatively compact in L*(£2). So to conclude the proof, it is enough
to notice that B. is a bounded subset of BV () and that the injection of BV (Q) into L'(Q) is
compact. O

Now we can apply Rossi-Savaré theorem (theorem 4.15) to have the strong convergence in
L™(]0, T[xQ) of py to p and then we find the strong convergence in L'(]0, T[xQ) of P(ps) to P(p),
for all T > 0, using the fact that P is controlled by 2™ (4.5) and Krasnoselskii theorem (see [50],
chapter 2).
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Moreover, since
T
/ / [V (P(pr))| dzdt < CT,
o Ja

we have
V(P(ppr))dzdt = p in M™([0,T] x Q), (4.35)

/OT/QaWP(ph))dde/OT/Q@ an,

for all £ € Cp([0,T] x ) (this means that we do not require £ to vanish on 9€). But since P(pp,)
converges strongly to P(p) in L*([0,T] x Q), u = V(P(p)).
To conclude, we pass to the limit in (4.32) and theorem 4.17 follows.

i.e

4.7 Uniqueness of solutions

In this section, we assume that ) is a convex subset of R™, not necessarily bounded. Let F an
energy defined on P2(Q2). Let p,u € P2(2), we recall that the geodesics for W5 are of the form
pt = T 47, where v is an optimal transport plan for Wa(p, 1) and m¢(z,y) := (1 — t)x + ty.

F is said displacement convex if
t €10,1] — F(p;) is convex.

It is well known that if F is displacement convex and VF'(p) € L?(p), then

F(v) - Flp) > / VF (p(x)) - (T () — ) dp(x),

for all v € P§¢(Q)), where T is the Wa-optimal transport map between p and v. In particular, if
VF'(p) € L*(p) and VF'(v) € L*(v), then

/Q (VE' (T () = VF'(p(x)) - (& — T (x)) dp(x) < 0. (4.36)

These results can be seen in the caracterization of the subdifferentiel of A-geodesic convex fonctional
of [4]. Now we state a general uniqueness argument based on geodesic convexity.

Theorem 4.22. Assume that V; satisfy (4.3) and (4.4) and F; such that F; is displacement
convez. Let p* == (pi,...,p}) and p? == (p%,...,p}) two weak solutions of (4.1) or (4.17) with
initial conditions p}(0,-) = pi o and p3(0,-) = piq. If for all T < 400,

T T 1
| Stz e+ 3 lokilagn, dt < oo, (437)
=1 =1

with, for j € {1,2}, .
VPi(p} ) ;
——— = = Vi),
Pit
then for every t € [0,T],
W3(pi, pi) < "' W3 (pg, p3).

In particular, we have uniqueness for the Cauchy problems (4.1) and (4.17).

Proof. The proof is a little perturbation of the one of theorem 11.1.4 of [4] and is based on dis-
placement convexity argument and Gronwall’s lemma. Using Theorem 5.24 and Corollary 5.25
from [112], assumption (4.37) guarantees that ¢ — W3 (p} ,, p7,) is differentiable for a.e ¢ € (0,T)
with

GWEekerto = [ @-TR@) - (E(TH@) -~ oli@)pl (o) do.
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where T? is the optimal map between p}7t and P?,r Now, since F; is displacement convex and
recalling (4.36), we have

/Q (VF/ (52 (T2 (x) — VF'(p(2)) - (& — T2(x))pl, (&) da <0,

so that, using (4.3)-(4.4) yields

d

dtWQ (PissPie) < /Q(z = T{(2)) - (VVi[p{ (T} (2)) = VVilpi](2))pi 4 () dw

< [ @ TH@) - (VLRI @) - TVlpt )l (o) do
[ -T2 (Wilpil(e) - Vlet)l (o) do
< 0 [ lo=TEa)Pplila) da

l

1/2
i c( / |x—Tf<x>2p%,t<x>dx) S Walpl,2,)

j=1
l
< C W3l pls) + Walplss 020) > Walp) s p30)

j=1

Summing over ¢ and using Gronwall’s lemma gives the desired inequality. O
Remark 4.23. We say that F : [0,+00) = R satisfies McCann’s condition if

€ (0,+400) — z"F(xz™") is conver nonincreasing. (4.38)

McCann showed in [93] that if F satisfies (4.38), then F is displacement convex. Then if for
all i, F; satisfies McCann’s condition, we have uniqueness in (4.1). Moreover we remark that
F(z) = zlog(xz) (linear diffusion) and F(z) = —25a™,m > 1 (porous medium diffusion) satisfy
this condition.

In the following proposition, we will prove that assumption (4.37) holds if € is a smooth bounded
convex subset of R" or if ) = R"™.

Proposition 4.24. Let p := (p1,...,p1) be a weak solution of (4.1) obtained with the previous
semi-implicit JKO scheme. Then p; satisfies (4.37) for all i € [1,1].

Proof. We do not separate the cases where (2 is a bounded set or is R"™. We split the proof in two
parts. First, we show that (4.37) is satisfied by p; 5 defined in (4.9). Then by a l.s.c argument we
will conclude the proof.

o In the first step, we show that p; j, satisfies

T
| | IVE i) + Vil o dodt < C. (4.39)
0 Q

where C' does not depend of h.
By equality (4.31) and remark 4.19, we have

Th(y) —y k1

VE/ (i) + VVilph] = == Pt —a.e on Q,

where T}, is the optimal transport map between ple and pf_ - Then if we take the square,

k+1

multiply by p;} " and integrate on Q, we find

[ IVFGA) + ViR de = WG o).
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Now using (4.4), we get

IVE(pin") + VViler I IVE (pi7) + VVilpill + [V Vilpi] = VVilpy ]

<
< IVE (i) + VVilprll + CWa(pp ™, o)

So we have
/ IVE (o) + VVilpi TP e de < C <h2W2 (5T Pin) + W3 (pﬁ“,p’ﬁ))

Then using (4.16), we finally get

T
/ / VE(pin) + VVilon)2pin dudt
0 Q

hz / VE(pE) + TVilpk 208 da

N

1
k=0
< C

To conclude, we have to pass to the limit in (4.39). First, we claim that VP;(p; ) converges
to VP;(p;) in M™([0,T] x £2). In a bounded set, this has been proved in (4.35). In R™ thanks

to the previous step, we have
T
/ / IV (pi,n)|pi,p dedt
0 n

T
//|Vpi(pi,h)|dt
0 n
T
/ / (VEL(pin)? + Lpin
0 n
C

which gives the result because P;(p; ) strongly converges in L' ([0, T] x R™) to P;(p;).

N

<

Let 1) : R™™ — RU{+oc} defined by

Lml® if (r,m) €]0, +o0[x R™,

P(r,m) = 0 if (r,m) = (0,0),
400 otherwise,

as in [11]. And define ¥ : M((0,T) x Q) x M™((0,T) x Q) = RU{+0c0}, as in [24], by

U(p, E) fo [, ¥(dp/dL,dE/dL) dxdt  if p >0
otherwise,

where do/dL is Radon-Nikodym derivative of o with respect to Lo r1xo. We can remark
that since (0, m) = 400 for any m # 0, we have

U(p,E) < +o0 = E < p.

With this definition, we can rewrite (4.39) as

(pz h> VP; (pz h) +VV; [ph]pz h) = / / |VF/ pz h) + VV; [ph]| Pi,h dxdt < C

which, in particular, implies that VP;(p; 1) < pin < Lijo,1)x0-
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Moreover, according to [19], ¥ is lower semicontinuous on M([0,T] x Q) x M™([0,T] x Q).
So, it holds

U(p;, VPi(pi) + VViplp:) < ligl\iglf‘ll(m,m VP;(pin) + VVilpplpin) < C,

which imply VP;(p;) < p; < Ljjo,1)xo and conclude the proof because

T T (0 . |2
0 Q 0 Q }

pi
U(pi, VP;(pi) + VVilplps)
C.

2

VP;(pi
P‘(p) + VVilpl

N

4.8 Numerical simulations

4.8.1 Nonlocal interactions

If we consider a nonlocal interaction term [, o W(z,y)p(x)p(y)dzdy (with W symmetric and
smooth) in the general form of the equation

Orp = div(pV(F'(p) + V + W xp)), pli=0 = po, (4.40)
the final term &,
Ep) = / F(p(e))d + /Q Viahp@de+ [ Wia)ol)pl)dady,

becomes nonconvex. Therefore, in order to be able to use our Augmented Lagrangian strategy,
we have to modify the JKO scheme in a semi-implicit way by replacing the nonconvex bilinear
term % [, o W(z,y)p(x)p(y)dady by the linear one [, W(z,y)p(x)p*(y)dzdy. This leads to the
semi-implicit scheme

pk“earpgergjn{;vv;@,pk)+5<p|pk>} (4.41)
where
Eply) = / F(p(x))da + / V@pdz+ [ Wepp(opw)dedy.  (442)
Q Q QxQ

The convergence of this scheme to the solution of equation (4.40) has been proved previously. For
each time step, we then have to solve exactly the same type of problems as in section 3.3.1 except
that the potential has to be updated at each step. In figure 4.1, we see final sate starting from a
uniform measure with interaction potential of the form W (x) = |z|* — |z|".

4.8.2 Systems

Let us take two species for the sake of simplicity and consider the evolution of the densities of these
two species, coupled only through interaction terms:

dpr = div(p1 (VF{(p1) + VUilp1, p2])), Orp2 = div(p2(VF3(p2) + VUz[p1, p2])) (4.43)

with energies F; and Fy corresponding to independent linear or non linear diffusion terms and
the coupling drift terms given (as in Di Francesco and Fagioli [54]) by convolutions with smooth
kernels and individual potentials V; and V5:

Uilp1, p2) = Vi + Wit % p1 + War % pa, Us|p1, p2] = Vo + Wiz * p1 + Waa * pa.

The nondiffusive case where F; = F» = 0 was studied by Di Francesco and Fagioli [54] (see Zinsl
[118] for extensions to more than two species). Note that 4.43 is not a gradient flow except in the



4.8. NUMERICAL SIMULATIONS 51

a=2,b=14 a=2,b=6 a=2,b=38

Figure 4.1: Q = (—0.5,0.5)2, final state, starting from a uniform measure, with potential V = 0,
F(p) = 0.01 % (plog(p)) and interaction potential W (x) = |z|* — |z|°.

particular case where interactions are symmetric i.e. Wi = Wsy. The semi-implicit JKO scheme

first proposed by Di Francesco and Fagioli in the nondiffusive case consists in defining inductively
K and p b

p1 and py Dy

1
P+ = axgmin o3 (p, o) + / Fy(p(e))de + / UL [0}, 8] ()l e (4.44)
P
and )
5™ = argmin = W3(p, ) + / Fy(p(z))de + / Ualo, ob)(x)pla) . (4.45)
P

The convergence of this scheme is established in Di Francesco and Fagioli [54] in the nondiffusive
case and in theorem 4.3 and theorem 4.17 (see [73]) in the diffusive case. Clearly, each independent
subproblem 4.44 and 4.45 can be solved by the ALG2-JKO scheme described in chapter 3 and the
extension to more than two species is direct as shown in the simulations below.

In figure 4.2, we see the evolution of two species which solve (4.43) with Fy(p) = Fz(p) = 1p°,
Vi=Ve =0, Win(z) = War(x) = Waa(z) = @ and Wig(z) = —@. In other words, the first
species is attracted by the second one but the second species is repelled by the first one. Since we
have attractive self-interactions, the two species do not spread too much.

This scheme can treat systems with more than two species. In figure 4.3, we represent the
evolution of three species which run after each other and with linear diffusion. More precisely, the

interaction potentials we use in this example are of the form
Uilp1, p2, p3] = [2|* % pig1 — |2 % pie,

where p4 := p1 and pg := p3.
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Figure 4.2: Fvolution of two species where the first one is attracted by the other and the second one
is repelled by the first one. Top row: display of p1 + p2. Middle row: display of p1. Bottom row:

display of ps.

Figure 4.3: Fwvolution of three species running after each other with linear diffusion. Top row:
display of p1 + p2 + ps3. Bottom row: display of p1.



Chapter 5

Drift interactions: non potential case

The continuity equation with a density-dependent drift
Orp = div(pv), with v = V]p]

is ubiquitous in modeling and arises in a variety of domains such as biology, particle physics,
population dynamics, crowd modelling, opinion formation... It should actually come as no surprise
since it captures the dynamics of a population of particles following the ODE X = —v(t, X)
where v = V[p] depends itself on the density in a way (local, nonlocal, attractive, repulsive etc..)
depending on which phenomena (aggregation, diffusion...) one aims to capture and the type of
applications.

Of course, at this level of generality not much can be said on existence and uniqueness. There
are however two cases which may be treated in a rather systematic way. The first one, is the regular
case where V[p] is a smooth vector field whatever the probability measure p is, with some uniform
bounds on some of its derivatives and p — V[p] is Lipschitz in the Wasserstein metric. In this
regular case, existence and uniqueness can be proved by the method of characteristics and suitable
fixed point arguments (see [47] as well as [46], [45] for a different approach with applications to
crowd dynamics). This regular case (a typical example being that of a convolution) is however
rather restrictive and for instance rules out diffusion. The second case where there is a general
theory is the Wasserstein gradient flow case. In this case, at least at a formal level, v may be written
asv = v% that is the gradient of the first variation of a functional £ defined on measures. In their
seminal paper [65], Jordan, Kinderlehrer and Otto discovered that the heat flow is the gradient
flow of the entropy functional £(p) = [ plog(p) which corresponds to the case v = Y2 The theory
of Wasserstein gradient flows has been very succesful in addressing a variety of nonlinear evolution
equations such as the porous medium equation [98], aggregation equations [37] or granular media
equations [42]. This powerful theory is presented in a complete and detailed way in the reference
book of Ambrosio, Gigli and Savaré [4].

The purpose of this chapter is a contribution to the following general question: can one hope for
an existence/uniqueness theory in the case where V' is the sum of a Wasserstein gradient flow term
and a regular term (not necessarily a gradient). Our motivation for this question actually comes
from systems. For instance, a simple but natural model, for the evolution of two (say) interacting
species is:

Oip1 = v1Ap1 + div(p1(Ui1 * p1 + Uz x p2)),
8tp2 = VQApQ + diV(pQ(UQl * P1 + U22 *pg)).

—~~
[N
~— ~—

If the vector-fields U;; have potentials i.e. U;; = VV;; and there is no diffusion i.e. when vy =
vy = 0, this is exactly the system studied by Di Francesco and Fagioli [54]. As emphasized in [54],
if cross-interactions are symmetric i.e. Vi5 = Va; (or more generally Vi5 and Vs are proportional),
this system has a (product) Wasserstein gradient flow structure but this is certainly a restrictive
and often unrealistic assumption in applications. This is why Di Francesco and Fagioli, still taking
advantage of the similarity with Wasserstein gradient flows used a semi-implicit scheme & la Jordan-
Kinderlehrer-Otto to obtain existence and uniqueness results. In [54], there is no diffusion and we

53
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refer to chapter 4 (or [73]) for an extension of the semi-implicit method to the diffusive case. Clearly
the structure of the system (5.1)-(5.2) belongs to the mized case where drifts can be decomposed
as the sum of a Wasserstein gradient and a regular term. It is worth noting though that the
semi-implicit scheme of [54] cannot cover the case of general (not gradients) vector-fields Us;.

In this chapter, we propose two different methods to overcome this difficulty. The first one is
completly parabolic. For general drifts (not gradients) and possibly with nonlinear diffusion, we
develop some simple arguments in the sequel which give an alternative to mass transport arguments
and that enable us to address regular drifts without a gradient structure. Regularizing the diffusive
term, we first prove the result on the approximated equation using a fixed point argument and
then we find uniform bound with standard parabolic estimate allowing us to pass to the limit on
the parameter. The advantage of this method is to use simple argument from parabolic theory but
it is not constructive.

On the other hand, the second section present a splitting transport-JKO scheme to study
nonlinear diffusion equations (or more generally, systems) with a general density-dependent drift:

drp(t, x) — AP(p(t, 2)) — div(p(t, 2)Ulp(t, )](x) = 0, ¢ > 0, z € O,
(VP(p) + Ulpl]) - v = 0 on 99, pluzy = po.

where for every probability density p, U[p] is a-not necessarily potential- vector field, for instance,
in even dimensions, it can mix a gradient and Hamiltonian structures i.e. be of the form VV|[p] +
JV H|p| (where J is the usual symplectic matrix). The potential case where Ul[p] = VV[p] can be
studied by means of a semi-implicit JKO scheme introduced by Di Francesco and Fagioli [54] in the
nondiffusive case and further developed in chapter 4 (or [73]) for the case of a non linear diffusion.
The idea of our splitting scheme is natural and consists in performing a Helmholtz decomposition
of Ulp]. We then treat the divergence-free part purely by (continuous in time) transport and the
potential part by the semi-implicit JKO scheme. For the transport steps of the splitting scheme,
we essentially need the divergence-free part to have some Sobolev regularity in z so as to be able
to apply DiPerna-Lions theory, we will also need both the potential and divergence-free part of
p — Ulp] to satisfy some Lipschitz continuity condition with respect to the Wasserstein distance.
One advantage of the constructive splitting method presented here is that the transport steps
by a divergence-free vector field preserve the internal energy, this is one way to overcome some
difficulties discussed in [94] (section 5, variant 3). Moreover, we extend the method to obtain
the strong convergence developped in the bounded case in the previous chapter 4 to handle the
unbounded case which allows us to work in -possibly non convex- unbounded domain.

Another advantage of the splitting method is the extention on more general degenerate diffusion
present in section 5.3. In this section, the drift is handle by a pure transport step (we do not split
the drift using the Helmotz decomposition) and the diffusion comes from a JKO step replacing the
usual 2-Wasserstein distance by a general distance

Wlp) =int { [ o)) €}

Unfortunately, during the pure transport phase, we do not have mass conservation anymore and
then we have to use a maximum /minimum principle to recover usual estimates in the gradient flow
theory.

5.1 Parabolic regularization method

This section is devoted to existence and uniqueness results for some classes of nonlinear diffusion
equations in the presence of a regular drift term. These equations may be viewed as regular pertur-
bations of Wasserstein gradient flows but the drift terms are not necessarily gradients (which makes
it difficult to use Wasserstein gradient flows techniques). We obtain existence by a regularization
procedure and parabolic energy estimates and address the uniqueness issue by an elementary H !
contraction argument if the diffusion is nondegenerate. Our arguments directly extend to systems
with diagonal nonlinear diffusions which are coupled through regular drifts.
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This section is based on a joint work with G. Carlier, see [35], and is organized as follows. In
section 5.1.1, we give an existence result by a suitable regularization of the diffusion and energy es-
timates. In section 5.1.2, we give an elementary H ~!-contraction argument from which uniqueness
follows. Finally, we observe that these arguments easily extend to the case of systems (without
cross-diffusion) in section 5.1.3.

5.1.1 Existence

For the sake of simplicity, we shall work in the periodic in space case so as to avoid boundary issues
and thus take the space variable in the flat torus T¢ := R? /Z¢. We then consider the following
nonlinear diffusion equation with a nonlocal drift:

Do — A(F'(p)) + div(pUlp]) = 0. plizo = o, (5.3)

on (0,T) x T¢. Denoting by H~'(T%) the dual of H'(T?%) and by P(T¢) the set of probability
measures on T¢, we assume the following regularity on the drift term U[p]:

Vp e L2 NP(TY),Ulp] € L>=(T?) and div(U[p]) € L°°(T)
with

sup  {[|U[plllLe + [| div(U[p])|[ L=} < +o0 (5.4)
pEL2AP(T4)

and for every R > 0, there exists a modulus wg such that, for every (p,n) € (L*(T9) N P(T%))?
such that [|p| g-1(rey < R and ||| g-1(1¢) < R, one has

1Ulp] — U[W]HL?(W) < wr(llp— 77||H*1(11‘d))~ (5.5)

Examples: Typical examples of velocity fields p — U[p] that satisfy the above assumptions
(5.4)-(5.5) are those of the form Ulp](z) = [;. B(x,y)p(y)dy, in which case (5.4) is satisfied as
soon as B and div, B are bounded. As for (5.5), it holds (with a linear modulus) as soon as

/ |D,B(z,y)|*dedy < +o00
TdxTe
since in this case
%
IU16] = Ulillaczoy <l = nla-scoo ([, 1BE+|DyBP)".
TdxTd

One can also consider a velocity of the form Ulp|(x) = [pa, s B(z,y,2)p(y)dyp(z)dz, if B €
L>®(T? x T¢ x T9), div, B € L®(T¢ x T¢ x T?) then (5.4) obviously holds; if, in addition the
constant

C% = / (|B* + |D,B(z,y,2)|*> + |D,B(z,y,2)|* + \D;ZB(x,y,z)F)dxdydz
TdxTd x T

is finite then (5.5) follows from

1U[p] — U[U]HB(W) <llp— 7I||H—1(Td)(||P||H—1(Td) + ||77||H—1(Td))OB-

Concerning the diffusion term, we make the following assumptions on F' (which are satisfied
whenever F'(p) = p™ with m > 1):

F e C*(R",R), F(0) = F'(0) = 0, F is convex, (5.6)

F" is nondecreasing, and for every p > 0, F"(p) > 0 (5.7)

and there is a constant C > 0 such that

F'(p) < C(1 4 p* + F(p)), ¥p € RT. (5.8)
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Finally, for the initial condition py we assume that it is a probability density such that
po € L*(T%), F(po) € L*(T?). (5.9)
A nonnegative weak solution of the PDE
9p — A(F'(p)) + div(pUlp]) = 0, pli=o = po- (5.10)
is by definition a function p € L?((0,T) x T¢,R") such that
F'(p) € L*((0,T), H'(T*))
and -
||, oo+ VP @) Vo - Voyaaat = [ o0z (511

for every ¢ € C1([0,T] x T?) such that ¢(7,.) = 0.

Before we proceed to the existence proof, we need some preliminary results. Let us first study
the continuity of the drift term p = p(t,x) — Ulp(t,.)](z). It is easy to see that when (5.4) and
(5.5) are satisfied and p™ converges strongly in L?((0,7T) x T¢) (hence in L2((0,T), H=(T%))) to
some p then U[p"] converges to U|p] in L2((0,T) x T4), but we wil need a variant in the sequel:

Lemma 5.1. Assume that (5.4) and (5.5) are satisfied. Let p™ be a sequence in L*((0,T) x T4)
such that 0;p™ € L*((0,T), H1(T%)) with

sup [[0ep" | 22 (0,1, 11 (T4)) < +00, (5.12)
and p € L2((0,T) x T4) such that p™ — p in L2((0,T) x T?), then U[p"] converges to U[p] strongly
in L?((0,T) x T%).

Proof. First observe that (5.12) implies that for some constant C' one has

o™ (t,.) — p" (5, M- < OVt — s|, ¥n, Y(t,s) € (0,T)>. (5.13)
Let ¢t € (0,T) and for h € (0,t) define
I I
pin(x) = 7/ p" (s, x)ds, Py = f/ p(s,z)ds
hJi-n hJi—n

thanks to (5.13), we obtain, for every n, t and h:
||pn(t7 ) - pzh”H*1 < C\/Ea ||p(t7 ) _ﬁt,hHH’l < O\/E (514)

For fixed h > 0, 5}, = Py, in L?(T?) as n — oo, and since the imbedding of L?(T?) into H~!(T%)
is compact we also have [[p}'), — Dy || gr-1(r¢) — 0 as n — oo. We then get

1" (t:) = p(ts M1 < 20Vh + ) = Pl vy

from which we deduce that ||p"(t,.) — p(¢,.)||g-1 tends to 0. Thanks to (5.5), this implies that
|U[p"(t,.)] = Ulp(t, )]l 2(ray tends to 0. The claimed L? convergence then follows from (5.4) and
Lebesgue’s dominated convergence Theorem.

O

We now introduce a regularized nonlinearity to approximate (5.10) by a uniformly parabolic
equation as follows. Let € € (0,1), let 0. and M, be respectively the smallest p for which F”'(p) > ¢
and the largest p for which F”(p) < e~1. Let then F. be defined by

F(6:) + F'(6:)(p — 0:) + §(p — 0:)% if p € [0, 6.5
F.(p) =< F(p) if p € [0, M,], (5.15)
F(M.) + F'(M:)(p — M.) + é(p - MS)Q if p > M.
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Clearly, by construction F. is convex and C2? on R, with

e<F'<=-onR" (5.16)
9

and F. converges pointwise to F since d. and M. converge respectively to 0 and +oo. In fact, this
approximation also has good I'-convergence properties:

Lemma 5.2. Let 0 € L*((0,T) x T4, R™), then

T
lim/ / F.(0(t,x))dedt = / / ))dxdt (5.17)
e—=0t Jo JTd Td

moreover if 0. € L*((0,T) x T4), R") weakly converges to 6 in € L*((0,T) x T¢), then

liminf/ / - (t, 7)) d:vdt>/ / ))dzdt (5.18)
e—0+ Td Td

Proof. Fatou’s lemma first yields

T
liminf/ / F.(0(t,x dxdt>/ / ))dadt
e—0t 0 Td Td
on the other hand

/OT /T F.(6(t,z))dzdt < /OT /T d F(O(t,z))dzdt + / /{ GSJE}(FE(G)— F(6))dzdt

since the second term in the right hand side converges to 0, we easily deduce (5.17). Let us now
assume that 0. € L%((0,T) x T¢ R™) weakly converges to 0 in € L?((0,T) x T¢). Let v > 0 (fixed
for the moment) and denote by F'7 the function defined by

vy ) F(p)if pe[0,9],
) {F(VH'F'(W)(P—V) if p >~

by construction F7 is convex and below F. For € > 0 small enough so that v € [§., M], we
similarly define

Fi(p) = | Fele) ifp €10,9),
: F(y)+F'(y)(p—7)ifp>~

so that F2 is convex and coincides with F7 on [dc, +00). We then have

T
liminf/ / ))dadt > hmlnf/ / F2(0-(t,x))dzdt
e—0+ Td e—0t Td

> liminf/ / F7(0:(t,z))dzdt + liminf// (F(0:) — F(6.))
e—=0t Jo Td e—0t {6.<5.}

the second term converges to 0 whereas by weak lower semi-continuity (thanks to the convexity of
F7) we have

T T
lim inf / FI(0.(t, 2))dadt > / F(0(t, ))dadt,
0 Td 0 Td

e—0+

liminf/ / (¢, @ dxdt>sup/ / FY(0(t, x))dzdt
e—07+ Td >0 Td

and then (5.18) easily follows from the previous inequality, the fact that F7 converges monotonically
to F' and Beppo-Levi’s monotone convergence Theorem. O

hence



58 CHAPTER 5. DRIFT INTERACTIONS: NON POTENTIAL CASE

Theorem 5.3. Assume (5.4)-(5.5)-(5.6)-(5.7)-(5.8)-(5.9), then (5.10) admits at least one weak
nonnegative solution.

Proof. The proof proceeds in three steps.
Step 1: Regularized equation. We first prove existence of a weak solution to the regularized
equation:
0rp* = AFL(p)) + div(p=U o)) = 0, plizo = po. (5.19)

Let
X :={ne€ L*(0,T) x T",R") : / n(t,x)dz =1 for a.e. t € (0,7)}
Td

for fixed € > 0 and 1 € X, consider the linear parabolic equation in divergence form:
Opu — div(FY (n)Vu) + div(uU|[n]) = 0, ui—o = po (5.20)
which can be rewritten in nondivergence form as
Owu — div(aes(n)Vu) + b[n] - Vu + c[nju =0 (5.21)

where the coefficients a.(n) := F/(n), bln] := U[n] and ¢[n] := div(U|n]) all belong to L>((0,T) x
T?) with a.(n) > ¢ by (5.16). It follows from standard linear parabolic theory (see e.g. [82])
that (5.21) admits a unique weak solution which we denote u := T¢(n) € L2((0,7), H'(T%)) N
C([0,T), L*(T%)) with yu € L%*((0,T), H~1(T%)). Obviously, u(t,.) is a probability density for
every t € [0,T]: it remains nonnegative by the maximum principle and its integral over T¢ is
constant in time, in other words T°(X) C X. Moreover, multiplying (5.21) by w thanks to (5.4)
and (5.16) there is a constant C. (independent of 1) such that w := T=(n) satisfies

T T
/ / (|Vu|2+u2)dxdt+/ |0pul|3;-1 < Ce. (5.22)
0 Td 0

The bound (5.22) and the Aubin-Lions lemma (see [5], [114]) thus imply that 7¢(X) is relatively
compact in L2((0,T) x T¢). Thanks to (5.5), the continuity of F” and Lebesgue’s dominated
convergence theorem, it is easy to check that T° is continuous with respect to the L2((0,T) x T%)
norm. Schauder’s fixed-point Theorem then ensures that 7° admits at least one fixed point i.e. a
solution of (5.19) which we from now denote p°.

Step 2: A priori estimates. We aim now to derive estimates independent of € on p°. Let § > 0
such that § € (., M. ), we then take (p°—d) as test-function in (5.19) (which is actually licit since
this test-function belongs to L2((0,7), H'(T%))) integrating between 0 and ¢ € [0, T this yields

t t t
/ (0up%, (p° = )4 ) -1 mrds +/ / F/(p)IVp = / / pU[p"] - Vp©
0 0 J{ps>5} 0 J{p==>5}

hence, using Young’s inequality, for every p > 0

1 (>4 1 K £ £
SN =01~ 5l =0l [ [ E)veP
0 Jipeay

t t
1 2 1 2
(2 0 {pfza}| | 21 Jo {pfza}( ))
t t
M c12 1 e 2 2
colt [ [ wor L[ [ oo
(5 Ny N R LG )

since F!'(§) = F"(6) > 0 and F"” nondecreasing, we can choose y small enough so that the first
term in the right hand side is absorbed by the left hand side of the inequality. Gronwall’s lemma
then gives
sup |[|p°(¢,.)[[2 < C (5.23)
€(0,T)
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for a constant C' that does not depend on e. Next we take F/(p%) as test-function which similarly

gives:
[rwen- [ mws [ [ wrer=[ [ s e

<ot [ [ v o [ [ o)

using (5.23) and chosing p small enough we thus get

T
sup / Fu(pe(t,) + / / VE () < C (5.24)
te[0,7]JTd 0 JTd

for a constant C' not depending on ¢. Next we use (5.8) and (5.23)-(5.24) to deduce that

sup Fl(p°)<C (5.25)
t€(0,7] J T4

together with Poincaré-Wirtinger inequality, using again (5.24), this gives
I FL(0%) | 20,1y, 10 (1Y) < C. (5.26)
Step 3: Passing to the limit. Let us set
=F/(p°), 0° := Vu® — p*V[p] (5.27)
so that (5.19) can be rewritten as
Oup* = Auf — div(pU[p°]) = div(o®), plico = po- (5.25)
We know from the previous step that
10N oo (0,7, L2(Tayy + 1= || L2 (0,7, L2 (1)) + Ul L2((0,7), 117 (1)) < C (5.29)

as well as
Hatps||L2((07T)7H—1(']1-d)) < C. (530)

Passing to subsequences if necessary, we may therefore assume that
p° — pin L2((0,T) x T4), v — w in L3((0,T), H*(T4)) (5.31)
and thanks to Lemma 5.1, (5.4) and (5.30), we have
0° = 0 :=Vu— pU[p] in L?((0,T) x T9). (5.32)
Obviously one then has:
Orp = div(o) = Au — div(pU[p]), pli=o = po- (5.33)

So to establish that p is a weak nonnegative solution of (5.10), it is enough to prove that u = F’(p).
Thanks to the convexity of F' this amounts to prove that

/ FO(t,x dxdt>/ / p(t,x)) dxdt+/ / (0 — p)dzdt (5.34)
Td Td Td

for every 6 € L?((0,T) x T¢,R"). By definition of u® we know that

/ F.(6(t,x)) dxdt>/ / °(t,x)) dxdt—i—/ / £(0 — p°)dzdt. (5.35)
Td Td T4
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Let us prove that

T T
lim/ / u®p® :/ / up. (5.36)
¢ Jo Jrd 0 JTd

For that purpose, let ) be the potential defined by
— Ay = pf, /w Y =0, ¢ € HY(T?). (5.37)

Thanks to (5.23), we have ¢ € L>((0,T), H*(T?%)) with a bound independendent of e:

VY& || oo 0,7y, 11 (1)) < C. (5.38)
As for the time derivative of V¢ we observe that

—A(0)%) = Opp® = div(c®)
so that, thanks to (5.29), we have 8;V° € L%((0,T) x T¢) and more precisely

10: VY= L2 0,1y x4y < o] L2((0,7)xTe) < C

this proves that V¢ is bounded in H((0,T) x T%), hence converges in L?((0,T) x T%), up to an
extraction if necessary, to v given by

—AY=p, /wazo, ¥ e HY(TY). (5.39)

Weak convergence of Vu® and strong convergence of V¢ in L? then give

T T
lim/ / uEpE:Iim/ / VutVip©
¢ Jo Jrd £ Jo Jrd
T T
[ Lo [
0 Jrd 0o Jrd

which establishes (5.36). Next, we use Lemma 5.2, letting € tend to 07, using (5.36) we obtain
inequality (5.34) which proves that u = F’(p) and so p is a weak solution of (5.10), concluding the

proof.
O

5.1.2 H™! contraction and uniqueness

We still assume that the diffusion F' and the drift U satisfy (5.4)-(5.5)-(5.6)-(5.7)-(5.8). Given pg
and 79 in L?(T%) N P(T%) such that F(py) € L'(T¢) and F(ny) € L'(T¢), we have found in the
previous section weak solutions p and 7 of the Cauchy problems:

Orp — A(F(p)) + div(pUlp]) = 0, pli=o = po, (5.40)

and
A — A(F'(n)) + div(nUl[n]) = 0, nl=0 =m0 (5.41)

such that (recalling (5.23) in the proof of Theorem 5.3) for some Ry > 0

||pHL°°((O,T),L2('ﬂ'd)) < Ry, H77||Loo((o,T),L2(1rd)) < Ry, (5.42)

as well as
19epll 20,1y, 51 (14y) < Ros 19enllL2(0,1),55-1(Tay) < Ro- (5.43)

We then set u := p—n (so that u(t,.) has zero mean for a.e. ¢ € (0,7) and dyu € L2((0,T), H~*(T4))
and our aim is to prove an H ! contraction estimate, that is some decay estimate on

sun{ [ uteye [ 96l <1, [ o =0}
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slightly abusing notations, we shall denote the previous quantity ||u(t,.)||z-1 (actually since u(t, .)
has zero mean, this is indeed an equivalent norm) and thus

Jutt s = [ eltputt,a)as

where ¢(t,.) is the potential of u(t,.) i.e.

— Ap(t,.) = ult,.), /T o(t,.) = 0. (5.44)

For this contraction estimate, we need two additional assumptions. The first one is a strong
ellipiticty condition, namely that there exists a > 0 such that

(F'(s) — F'(t))(s — t) > a(s — )%, ¥(s,t) € RT x RT. (5.45)

The second assumption is on the drift U and requires that for every R > 0, there is some Cg > 0
such that for all (p,n) € (L*(T?) N'P(T%))? such that ||p||r2(re) < R and |||/ p2(ra) < R, one has

1U[p] — U[77]||L°°(11‘d) < Crllp— 77||L2('J1‘d)~ (5.46)

Note that (5. 46) 1s satisfied for Ulp = |uB p(y)dy with B € L3°(L2) or when
= Jra B(z,y,2)p(y)dyp(z)dz w1th B € L (LZ) Under these extra assumptions, we
have the following contraction result:

Theorem 5.4. Under the assumptions above there exists a constant A = A(a, Ry, Cr,, |U[p]ll L)
such that

HP(L ) - 77(t7 ')”H*1 < eAtho - TIOHH*la vt € (07 T)a (547)
so that in particular there is uniqueness for (5.40).
Proof. Again we define u(t,.) = p(t,.)—n(t,.) and ¢(¢, .) by (5.44), setting G(t, .) := p(t, )U|[p(t,.)]—
n(t,.)U[n(t,.)], and defining the potential H(t,.) by:
AH(t,.) = div(G(t,.)), H(t,.)=0, (5.48)
Td

we then have
(e, s = 200(t, ) ot Vs
= 2<A(F/(p(t, )) - F/(T](tv ))) - diV(G(t> ))7 (p(tv ')>H*1,H1
_2/ (F'(p(t, ) —F’(n(t,.)))u(t,.)—i—Q/ H(t, Jult, )
'H‘d

Td

so that, thanks to (5.45), we have

d
Z llut, W= < =2allu(t, Mz + 2llult, Y- | HE, ) (5.49)

But since [H(t, )| < IG( )er < lo(t:.) — 0t Moz [Vt iz~ + It o 10 ol )] —
Uln(t,.)]llze, thanks to (5.4), (5.46) and (5.42), we arrive at

[H () < Cllult, )2,
together with (5.49) and Young’s inequality, this gives

d 02
Sl - < =2affult, e + 20 ult -1 [[ult; )z < S=llult, )5

from which (5.47) directly follows with A = %:.
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So far, we have only considered probability distributions as initial conditions, and since the
evolution equation conserves total mass, one may think that the previous argument enables one
to compare two solutions with the same total mass only. In fact, one can also obtain stability,
in a similar ways as above but between solutions p and 7 corresponding to nonnegative initial
conditions pg and 7y not necessarily with the same total mass. Indeed, in this case, set again
u(t,.) :== p(t,.) —n(t,.) and define by u its integral (note that this is constant in time) as well as
the zero-mean function v = u — u and its potential ¢ by —Ap = v, then computing, as before,
the time derivative of ||[v]|3,_, = ||[V¢| 12, we just have an extra term to take care of, namely
w [ra(F'(p(t,.) — F'(n(t,.)) but this term typically can be bounded by a constant times |u|, thanks
to the uniform in time bounds on ||p(t, .)| 2, [[9(t, .)|| L2, the energies [, F(p(t,.)) and [, F(n(t,.))
and inequality (5.8). Doing so, one arrives easily at

d

ot -2 < Cllot - + Clul

which, together with Grownwall’s Lemma, gives the H~! stability estimate

ut,.) — ull— < u(0,.) — ul|f—1e“" + Ju|(e“" — 1).

5.1.3 Extension to systems

The previous arguments clearly adapt to systems. More precisely, let us consider the system for
the evolution of I densities p := (p1,...,p1):

dipi — A(F](pi)) + div(p:Us[p]) = 0, pili=o = pio (5.50)

on (0,+00) x T¢. Assuming that each function F; satisfies (5.6)-(5.7)-(5.8), that the initial condi-
tions are probability densities which satisfy

pio € L*(T%), Fi(pio) € L'(TY), Vi=1,...,1, (5.51)
and for every ¢ = 1,...,[, the map V; satisfies
Vp € LT nP(TY!, Us[p] € L>=(T) and div(U;[p]) € L>=(T¢)
with
sup {IUilplll L + [ div(Uilp])[[ =} < 400 (5.52)
pEL2(T4)lNP(T4)!

and for every R > 0, there exists a modulus wg such that, for every (p,n) € L2(T%)! x L?(T4)!
such that [|p|| -1 (pey < R and |||/ g-1(payr < R, one has

l
1Vile] = Vilnlll 2oy < wr (D los = mill vy ). (5.53)

j=1
A direct adaptation of the proof of Theorem 5.3 gives

Theorem 5.5. Assume that each function F; satisfies (5.6)-(5.7)-(5.8), and that (5.51)-(5.52)-
(5.53) are satisfied for i =1,...,1, then (5.50) admits at least one weak solution (p1,...,p;) with
each p; nonnegative.

As for uniqueness, the H ! contraction argument of section 5.1.2 also easily adapts to systems
of the form (5.50). Provided that there is an « > 0 such that

(Fl(s) — Fl(t))(s —t) > a(s — )%, ¥(s,t) € IJ% X ]lf, Vi=1,...,1, (5.54)

and, for every R > 0, there is some Cr > 0 such that for all (p,n) € (L?(T¢)! N P(T9)")? such that
lpllLz(ray < R and |[n]|g2(ray < R, one has

|Uilp] = Uilnlll o (ray < Crllp = nllL2(ray, Yi=1,...,1, (5.55)
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if p=(p1,...,p1) and n = (1, ...m) both solve the system (5.50) then exactly as in the proof of
Theorem 5.4 there is some A such that

lp(t, ) = n(t, - < e*p(0,.) = (0, )] z-1, Vt € (0,T).

In particular, our results apply show well-posedness for systems like (5.1)-(5.2) presented in the
introduction.

5.2 Splitting method in Wasserstein space

We prove an existence result for nonlinear diffusion equations in the presence of a nonlocal density-
dependent drift which is not necessarily potential. The proof is constructive and based on the
Helmholtz decomposition of the drift and a splitting scheme. The splitting scheme combines
transport steps by the divergence-free part of the drift and semi-implicit minimization steps a la
Jordan-Kinderlherer-Otto to deal with the potential part.

This section is based on a joint work with G. Carlier, see [33], and is organized as follows. Section
5.2.1 recalls some results from DiPerna-Lions theory. Section 5.2.2 lists the various assumptions,
explains the splitting scheme and gives the main result. Section 5.2.3 gives estimates on the discrete
sequences of measures obtained by the splitting scheme. Convergence of the scheme as the time
step goes to 0 to a solution of the PDE is proved in section 5.2.4. In the concluding section 5.2.5,
we briefly discuss extension to systems and uniqueness issues.

5.2.1 Flows of weakly differentiable vector fields

We will also need to apply the DiPerna Lions theory [57] in the special case of divergence-free vector
fields. Let W e W,"!(R”, R"™) be divergence-free div(W) = 0 and with at most linear growth

loc
(W(z)| < C(1 + |z).

Then there exists a unique flow map X : Ry x R® — R"”, X € C(R4, L{ .(R™)) such that

loc

e X(0,.) =id and for a.e. x, t € Ry — X(.,z) is a solution of the ODE X = W (X) i.e.:

X(t,x) = x+/OtW(X(s,x))ds, t>0,

e X satisfies the group property X (¢, X (s,z)) = X(t + s, ) for a.e. x and every t,s > 0,
o for every X (t,.) preserves the n-dimensional Lebesgue measure.

Moreover given py € P3¢(R™), p(t,.) :== X(t,.)#po = po(X(¢,.)~1) is the unique weak solution
of the continuity equation
atp + le(pW) =0, Plt=0 = PO, (556)

which, since W is divergence-free, can also be rewritten as the transport equation d;p+ Vp-W = 0.
If we are given an open subset Q of R" with a smooth boundary and which is tangential (in the
sense of traces) to Jf1, then the DiPerna-Lions flow X leaves €2 invariant so that if py € P3°(Q)
(extended by 0 outside 2, say), the solution p, = X (¢,.)xpo of (5.56) remains supported in 2 hence
may be viewed as a curve with values in P3°(Q).

5.2.2 Assumptions and main result

Given a suitable convex nonlinearity F' and its associated pressure P(p) = pF'(p) — F(p) as well
as a nonlocal drift p — Ulp], our goal is to solve

Op — AP(p) — div(pUlp]) = 0, Plt=0 = Po, (5.57)
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on (0,400) x Q, where Q is a smooth domain of R™ (not necessary bounded), in case  has a
boundary, the previous equation is supplemented with the no-flux boundary condition (v denotes
the outer unit normal to 0):

(VP(p)+ Ulplp) - v =0 on 99. (5.58)

For every p € P(f2), we assume that the Helmholtz decomposition of the vector field Ulp]:
Ulpl = =Wlp] + VVpl, (5.59)

with
V- -Wlp] =0, W[p] - v =0 on 99,

satisfies the following assumptions.

Assumptions on the potential part V:

o VVip] € LS

loc

uniformly in p i.e for all K CC €, there exists C' > 0 such that for all p € P(Q),
[VV[pllloo,c < C. (5.60)

Note that by Rademacher’s condition, this condition implies that V[p] is differentiable a.e.,

Vp] is semi-convex uniformly in p i.e there exists C such that for all p € P(Q), for every
y € Q and every x € Q, point of differentiability of V[p]:

ViAW) > Vi@ + (W [A@).y 2 — Sy~ ol (5.61)

there exists C' > 0 such that for all p € P(Q), for all z €

Vipl(z) =2 —=C(1 + [z), (5.62)
e VV]p] € L?(p) uniformly in p, i.e there exists C' > 0 such that for all p € P(f),

; [VVIpl|*dp < C, (5.63)

There exists C > 0 such that for all p, u € P(Q),
[ IOVl = OV do < CWi .10, (5.64)

Assumptions on the divergence-free part W:

o there exists C' > 0 such that for all p € P(Q2) and

Wlp] € Wh(R™) and [Wpl(x)] < C(1+ |z|), for all z € R" (5.65)

loc

e There exists C' > 0 such that for all p, p € P(£2),
| Wl =Wl do < CWEp. ), (5.66)

Assumptions on the internal energy I’ and the associated pressure P:
The nonlinear diffusion term is given by a continuous strictly convex superlinear (i.e. F(p)/p —
+00 as p — +00) function F : RT — R of class C?((0, +00)) which satisfies

F(0) =0, and P(p) < C(p + F(p)). (5.67)
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where P(p) := pF’'(p) — F(p) is the pressure associated to F'. Moreover, we define F : P(Q) - R
by
| [oF(p(x))de if p< L,
Flo) = { +00 otherwise.

And we assume that

F(p) = —C(1+ M(p))°, for all p € P(Q), (5.68)

where a € (0,1) and M (p) := [, |#|* dp(x) is the second moment of p.

The typical examples of energies we have in mind are F(p) := plog(p), which gives a linear
diffusion driven by the laplacian, and F'(p) := p™ (m > 1) which corresponds to the porous medium
equation.

A weak solution of (5.57)-(5.58) is a curve p : t € (0,400) — p(t,-) € P3°(Q) such that
VP(p) € M"™([0,400) x Q) and

/OOo </Q(8t¢p— Vo - Ulplp)dx —/QV(;S~dVP(p)) dt = —/Qqs(o,a:)po(a:) dz, (5.69)

for every ¢ € C2°([0, +00) x R™).
Our main result is the following:

Theorem 5.6. Assume py € P3°(Q) such that
F(po) < +o0, (5.70)

then (5.57) admits at least one weak solution.

The proof of this theorem is given in the next sections and is based on the following splitting
scheme that combines pure transport steps by the divergence-free part of the drift U and Wasser-
stein gradient flow steps taking into account the potential V' in a semi-implicit way. More precisely,
given a time step h > 0, we construct by induction a sequence p’fL € P3°(Q2) by setting p% = po and

given pZ we find pﬁ“ using the following scheme:

e pure transport phase: we introduce an intermediate measure, ﬁi'H (with 59 = po) defined
by
~k41 k k
ph+ = Xy, (h, ')#pha (5.71)

where X ’}f is solution of

Xk, =id.

Since W [pf] satisfies (5.65), as recalled in section 5.2.1, DiPerna-Lions theory [57] implies that
X }’f is well defined. Moreover, since W[p’,fb] is divergence-free then X ,’f preserves the Lebesgue
measure and leaves the domain € invariant thanks to the fact that W{p] is tangential to 0.

Therefore ﬁffl = pﬁ(X }’f_l) which implies the conservation of the internal energy:
- -1
P = [ PG @) de
= | Fek@) = Foh) (5.73)

In addition, we can see ﬁ’,ﬁ“ is the value at time h of the solution u of the continuity equation

: k7Y —
{ Ot +i11v£uW[ph]) =0, (5.74)
Hit=0 = Pp-
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Thanks to these observations, we can easily control the W)-distance between ﬁﬁ“ and pf.
Indeed, using Benamou-Brenier formula and (5.65), we obtain

h
WG < h [ [ WP dua

h

< Ch/ /(1+|x|2)dﬂ'tdt
0 Q
h

< Ch/ (14 M(p)) dt
0

Moreover,
d
G = | 1aPou
=~ [ lolPaiv Wik

= 2 [ o Wiel
< C(M(u)+1).

We obtain the last line using (5.65), Cauchy-Schwarz inequality and Young’s inequality.
Then,
M(u) < C(t+ 1)eCt < 2Ce” for t < 1,

which implies
W3 (P, pf) < Ch?. (5.75)

e semi-implicit JKO scheme: In the second step we use a semi-implict version of the Jordan-
Kinderlehrer-Otto scheme [65], introduced by Di Francesco and Fagioli in [54] and used in
[73], with [)ﬁ“ being the measure defined in the previous step. More precisely, we select p’,j“

as a solution of

. Enlplpy™) == W3(p, oY) + 20 (F(p) + V(plpp ™)) s (5.76)

where

V(plp) = /QV[M] dp.

By standard compactness and lower semicontinuity argument, (5.76) admits at least one
solution (see for example [65, 73]) so the sequence pf is well defined (it is even actually
unique by strict convexity of &, (.[pFT)).

To summarize, given a time step h > 0, we construct by induction two sequences PZ and ﬁfl
with the following splitting scheme: pY) = 59 = po and for all k > 0,

i by 2 Sk Dol o o (577)
Pt € argmin e pac o) {W5 (p, g ) + 20 (F(p) + V(plpp ™)) } -
We finally introduce three different interpolations:
o We denote p;, the usual piecewise constant interpolation of the sequence p’fL
pn(t,-) == pitt if t € (hk,h(k +1)], (5.78)

e similarly, we interpolate in a piecewise constant way the sequence ﬁﬁ:

pr(t,-) = pitt if t € (hk, h(k +1)], (5.79)
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e finally, we denote by ﬁ% the continuous interpolation of ﬁﬁ
pa(t,-) := XK (t — hk,-)upk if ¢ € (hk, h(k +1)]. (5.80)
We remark that on (hk, h(k+1)], 57 is the solution on (0, k) of the continuity equation (5.74).

The next two sections are devoted to the proof of theorem 5.57. In section 5.2.3, we derive
various estimates on the sequences generated by the splitting scheme above, in particular thanks to
the Euler-Lagrange equation of the semi-implicit JKO steps. This enables us to pass to the limit
as the time step goes to 0 (the difficult term being of course the nonlinear pressure term) and thus
to conclude the existence proof, this is done in section 5.2.4.

5.2.3 Estimates

Basic a priori estimates

Using the semi-implicit JKO scheme we first obtain the following a priori estimates on py, p7, and
~2

Ph-

Proposition 5.7. There exists hg > 0, such that for T > 0, there exists C' > 0 such that, for all
h,k, with h € (0,hg) and hk <T, N = f%], we have

M(py) < C, (5.81)
F(pp) <C, (5.82)
N WR(ARL ph Ty < O (5.83)

Proof. Using ,EZ"’ as a competitor of pkJrl (5.76), we obtain

VR S FGT) ~FOl + [ VIG5

Let v be the optimal transport plan between p’”‘1 and pZ'H. Then we have
[ VIR =) = [ T - VI I6) die)
= / (VI () = VIgy () + YV (@) - (y — 2)) dy(a,y)

) (y —z)dy(z,y).

I
S— 5
<
<

-E

Using (5.61) for the first part and Cauchy-Schwarz inequality and (5.63) for the second part of
the right hand side, we find

/V ~k+1 k+1 k+1 /|x—y|2 (z,v) C(/ |x—y\2~y(m,y))§

§W2(~k+1 P 4 CW (A, ),
Choosing h < hg < 55 and using Young’s inequality

W (pZ"Fl’pZ"Pl) < ShCWQ( k"rl’pﬁ‘f‘l) +20h,

(5.84) becomes

WA A < F@EH) — Flt) + O,

Now using (5.73), to recover a telescopic sum, and summing over k, we obtain
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i

W2 (pr ™, i) < 8h (Flpo) — Flpi) + CT),
0

£
I

this inequality and (5.70) imply (5.82). In addition, since the lower bound of F is controlled
by the second moment,

N—-1
W3 (pr ™, gty < 8h (F(po) + C(1+ M(ph))* + CT) . (5.85)
=0

=

But, with (5.85) and by standard arguments (see [65, 73]), we deduce that M(p}) satisfies
(5.81) and then (5.85), (5.70) and (5.81) give (5.83). O

Remark 5.8. Using estimate (5.75) between py ' and pf, and (5.83), we also have

N-1 N—-1
W3 (pf, ok ™) < Ch and Y W3 (a5, ppt") < Ch.
k=0 k=0

Moreover, using (5.73), we have for all t € [0,T],
Flpn®), F(pr(t) <C  and  M(p,(t)), M(p;(t)) < C.

Discrete Euler-Lagrange equation and stronger estimates
Let us start with the Euler-Lagrange equation of (5.76).
Proposition 5.9. For all k > 0, we have P(pi ™) € WHH(Q) and

h (VV[E T pE ™t + VP(pf ) = =Vt phtt a.e, (5.86)

’Z'H KL 4o p,f1 (so that its gradient is unique ph La.e.)

where is a Kantorovich potential from p;

fO’I‘ W2 .

Proof. The proof is the same as in [1, 73] for example. We start by taking the first variation in
the semi-implicit JKO scheme along the flow of a smooth vector field. Let £ € C°(2; R™) be given
and @, the corresponding flow defined by

87_@7.:50@7-7 @OZId

k+1

We define a pertubation of pp " by pr := @T#p’;H. Then we get

(5h(prlp’““) EnlpyAp)) = 0. (5.87)

By standard computations, we have

lim sup — (Wz(pT,N’““) W3 (p ’““,ﬁi“))é/ (z —y) - &(@) dyy ™ (2, ), (5.88)
~o T QxQ

k+1 . k+1 ~k+1

with 4y is the Wa-optimal transport plan in II(pF ™!, 5FHY) and 4™ = (id xTF) g pf ™ with
T’CJr1 id - VgokH Moreover, using (5.67), (5.82) and Lebesgue’s dominated convergence theo-
rem, we obtain

. 1 .
mT?TGmonﬁw<AP%“mmm&mm- (5.89)
Finally,
. 1 . .
lim sup ~(V (ool ™) = V(i at) <‘K;VmeZ+W-§pZ+1dx, (5.90)
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If we combine (5.87), (5.88), (5.89) and (5.90), and if we replace £ by —¢, we find that, for all
§ € C(RY),

/ Vet gl —h / P(p ™) div(€) +h / VVIg o =0, (5.91)
Q Q

Now we claim that P(pf*!) € W'(Q). Indeed, since P is controlled by F thanks to assumption
5.67), (5.82) gives P(pFt1) € LY(Q). Moreover, using (5.91), we obtain
g Ph g

A\
P k+1 ) div(€ ‘ [/ Soh 0l k+1 /|VV ﬁiﬂ k+1] ||§||L°°(Q)

But using (5 64), (5.63), (5.83) and Cauchy-Schwarz inequality we get

[(/ IVV i = vVt Pe k+1> / (/QWV[ k+1]|2p2+1)1/2:|

C[Wa(pptt o) +1]
C.

’/P kL) div(e )‘\

This implies P(s*) € BV(9) and VP(p ') = (=VV[5§]pht! - W’T}kflpgﬂ) in M"(Q).

In fact, P(p*!) is in WH'(Q) because VV[pi T prt! + %pﬁ“ € LY(Q) and we have proved
(5.86).

N

N IN

We thus have
Wg( k+1)p2+1)

W Cl €l

O
We immediately deduce an L'((0,7T), BV(Q2)) estimate for P(py):
Corollary 5.10. For all T > 0, we have
1P (o)l Lt ((0,7)w 11 () < CT. (5.92)
Proof. If we integrate (5.86), we obtain
h [ VPG < Wah ) + O
Then we sum from k£ =0 to N — 1 and thanks to (5.83), we have
/ / IVP(pn)|
We conclude thanks to (5.67) and (5.82). O

Proposition 5.11. Let h > 0, N € N*, T := Nh, t; := hk, for k =0,--- ,N, then, for every
¢ € C°([0,T) x R™)

T
|| )@t + Wit =) Vo(t.o) dra

hZ/VP K1) - Vo (ty, x) da

i hZ/VV (351 - V(ty, )k+1

N-1

+ Ro(tr, )] (2, y)dvi T (2, y)
k=0 Y 2%

po(2)9(0,2) dz,

|
S
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with, for all ¢ € C([0,T) x R™),

IR[¢](z, y)| < *IID |l o< (o.0yx ) |7 =y,
and 7’”1 is the optimal transport plan in I1(p k“,ﬁﬁ“),

Proof. Let ¢ € C°(R™), multiplying (5.86) by V¢ and integrating on 2, we obtain
/ Vg0§+1 V(ppk+1 —h (/ VP k+1 VSO“F/ vv[ﬁz+1} . V@pi+1> )
Q
But, we can rewrite the left hand side by

/Vw’““ Vepit! _/Q S Vel ) dyy (2, y)-
X

A second-order Taylor-Lagrange formula then gives

/ (v— ) Vo(x) df = / (6) — o) A @) — [ Rl ) ()
QxQ OxQ

QxQ

- / P = = [ Ryt ). (5.93)
Q QxQ

Now let ¢ € C°([0,T) x R™), we have
T
/O / AR (2) @1 (t.) + Wl (t = W] - Vo(t,) dacs
- ; / / o ()06 + W0k - Vo) (b, XE(t — ty, ) derdt

But, on [tg, tgt1],

L1606, XKt — 1 2)] = 006+ WIoh]- Vo)t XE(t — 1y,2))

Then
N-1 thi1
/ /Q P (2)(Du6 + Wok] - Vo)t XE(t — ty, x) duds
k=0 7tk
N-1 tpp
_ / L1000 XE(t ~ by, )] dad
k=0
N—-1
_ / PE (@) [0(tksrs XE(h2)) — Blti, z)] de
k=0 v
N-1
_ / (trs1, 2)P5 1 (2) — Btn, @)k ()] da
k=0

N-—1
=3 [ ottiina) (7@ = ok @) - [ 2000
k=0

Then the proof is complete by applying (5.93) with ¢ = ¢(tgy1, ).
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5.2.4 Convergence and proof of Theorem 5.6
Weak and strong convergences

Using a refined version of Ascoli theorem (see [4]), estimate (5.83) and remark 5.8 and taking sub-
sequences, if necessary, we have that, for every T' < +o0, py, g}, and p7 converge in L>((0,T), W2)
to some respective limits p, p! and p:

S max(Wa(pn(t, ), p(t..)), Wa(pp(t, ), p'(¢,.)), Wa(pi(t,.), p*(t, ) — 0 as h — 0.

In fact, these three sequences have to converge to the same limit, p. Indeed, for all ¢ € C°((0,T) x

Q),
/OT/Qw(ph—ﬁi)

N—-1 thi1 . N

1 ~k+1
S [ [ etk -k
k=0 tr Q

N—-1
Ch Z WQ(prJrlv ﬁ]fi+1)
k=0

N

N_1 1/2

< ChN'? (Z W%(p’;“,ﬁZ*l))
k=0

< CTY?h,

because of (5.83). With a similar computation, we find that p; and p7 converge to the same limit.
We thus have

teSEEJl%“] maX(WQ(ph(t7 ')7 p(tv ))7 WQ(ﬁllz(ta ')a p(ta ))a WZ(ﬁi(tv ')7 p(tv ))) —0ash—0. (594)

Moreover it is classical to deduce from (5.83) and remark 5.8 an Holder-like estimate of the
form
Wa(pn(t,.), pr(s,.)) < Cy/|t — s| + h from which one deduces that the limit curve p actually be-
longs to C1/2((0,T), Ws). This kind of convergence will be enough to pass to the limit in VV'[}]pp
and Wpp]ps, because of assumptions (5.64) and (5.66), but we will need a stronger convergence
to deal with the nonlinear diffusion term P(p;). Fo this purpose, we will use an extension of the
Aubin-Lions Lemma due to Rossi and Savaré in [107]:

Theorem 5.12 (th. 2 in [107]). On a Banach space B, let be given

e a normal coercive integrand G : B — RT, i.e, G is l.s.c and its sublevels are relatively
compact in B,

e a pseudo-distance g : B x B — [0,+0o¢], i.e, g is l.s.c and
l9(p; ) =0, p,p € B with G(p),G(n) < oo] = p = p.

Let T >0 and U be a set of measurable functions u : (0,T) — B. Under the hypotheses that
T T—h
sup/ Gu(t)) dt < +o0 and lim Sup/ g(u(t+ h),u(t))dt =0, (5.95)
uelU Jo N0 wer Jo

U contains a subsequence (up)neny which converges (strongly in B) in measure with respect to
t€(0,T) to a limit u, : (0,T) — B.

We now apply this theorem to B = LY(Q), U = {ps }1, g defined by
Walp, 1) if p, i € Pa(Q),
g(p, p) == { 2(p, 1) Py 1 >(2)

400 otherwise,
and G by
G(p) = F(p) +1P(p)llpva) + M(p) if p € P5(Q), P(p) € BV(Q) and F(p) € L'(Q),
P 400 otherwise.
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Lemma 5.13. G is l.s.c on L'(Q) and its sublevels are relatively compact in L'(Q).

Proof. Let us start by proving that sublevels of G are relatively compact in L(£2). Let
Ac:={pe L (Q) : G(p) <c}

and (pr) be a sequence in A. then P(p;) is bounded in BV (£2) thus, up to a subsequence P(py)
converges to some ® in Ll (©2) and a.e.. Since P is continuous, one to one and its inverse is
continuous, p; converges to p := P~!1(®) a.e.; and, since G(pr) < c and F is superlinear, py
is uniformly integrable, using Vitali’s convergence theorem, we obtain that pi converges to p in
LY(K N Q) for every compact K. To conclude that there is convergence in L(£2), we use the fact
that the second momentum of py, is uniformly bounded:

||?
lo —pl < 523 Ik — p| + lor — pl
Q Q\BR BrNQ

< 2¢c +/ | |
= pr — pl-
= R2 BrNQ

The first term in the right hand can be made arbitrary small by choosing R large enough and the
second term converges to zero by L'(Bg N Q)-convergence.

Now we have to show the lower semi-continuity of G on L*(2). Let (pi) be a sequence which
converges strongly to p in L!(Q) with (without loss of generality) sup, G(pr) < C < +oo. Without
loss of generality, we can assume that py converges to p a.e. Since sup, G(pr) < C, P(pg) is
uniformly bounded in BV (£2) so P(py) converges weakly to pin BV (§2). Moreover, P(p;) converges
strongly to u in L (). We can conclude that u = P(p) and by lower semi-continuity of F, M

loc
and the BV-norm we have

G(p) < lirg inf G(pr)-
O

Thanks to lemma 5.13, to apply theorem 5.12, it remains to verify (5.95). The first condition
of (5.95) is satisfied because of the estimate on the momentum, (5.81), on the internal energy F,
(5.82) and on the gradient of P(py) (5.92). The second condition of (5.95) comes from the estimate
on the distance (5.83) and remark 5.8 (see for example [55] for a detailed proof). Then theorem
5.12 implies that p; converges in measure with respect to ¢ in L'(£2) to p. Since convergence in
measure implies a.e convergence, up to a subsequence, we may also assume that p,(t,.) converges
strongly in L1(2) to p(t,.) for a.e. t. Then Lebesgue’s dominated convergence theorem implies
that pj,, converges strongly in L*((0,7) x Q) to p.

Thanks to (5.67) and (5.82) P(py) is uniformly bounded in L>°((0,T), L'(Q2)). In addition, by
corollary 5.10, P(py,) is uniformly bounded in L'((0,T), W1(Q)). Thanks to the Sobolev embed-
ding, we deduce that P(pj) is uniformly bounded in L*((0,7T), L*(2)) N L'((0,T), L™/"~1(£)).
To have uniform integrability of P(pp) both in the time and space variables, the following will be
useful:

Lemma 5.14. Let p > 1, q := 2’;%1 and f € L*>((0,T),L*(Q)) N L' ((0,T), LP(Q)) then f €
L((0,T) x ) and we have

A1 e oy sy < IS o) 11l 2ty

Proof. Writing
L p

1-—0 p—1
= =0+ — ith 0 = 0,1
o1 + » , wi 2p—1€(’)

and observing that (1 — 8)g = 1 and g = g — 1, the interpolation inequality yields that

-1
117 < NAIZL I N,
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since f € L*((0,T), L*(Q)) N L*((0,T), LP(Q2)) this implies that f € L9((0,T) x ) and

T T
11 o 0.y = / 1712, = < / LA 1 e
< ||f||L°°(L1)||f||L§(L§)-
]

Applying lemma 5.14 we deduce that P(py) is uniformly bounded in L("+1/((0,T) x ). This
implies that P(py) is uniformly integrable and since we know that it converges a.e. to P(p), we can
deduce from Vitali’s convergence theorem that P(pjy,) converges strongly to P(p) in L. ((0,T) x Q).

Thanks to Corollary 5.10 we deduce that VP (p,) converges vaguely to VP(p) in M} _((0,T) x
). In fact, we have VP(p) in M™((0,T) x Q) and narrow convergence of VP(py) to VP(p),
thanks to Prokhorov Theorem and the following tightness estimate:

Lemma 5.15. The family VP(py,), viewed as vector-valued measures on [0,T] x §2, is tight, more
precisely, for every h and every A measurable, A C Q)

//|vpph|<c (1+va)( //phtxdxdt)IQ. (5.96)

Proof. Integrating (5.86) on (0,7) x A together with Cauchy Schwarz inequality and (5.83), we
get (taking N = [L] 41, say)

/ [ 1vP@) Z / Tkt ok + /OT 9V
< ([roan ) [y [ 1ovidtio

k=0
N

<(Swaetra) ([ [ o) s [7 [ wvizio
< ovi( / /phtzdxdt //IVV lion.

Moreover, with Cauchy Schwarz inequality, (5.63) and (5.64), we also have

/0 ' /A VIl < / : /A 9V Ionllon + / : /A WV~ YV onllon
C’(l+\/ﬁ)(/OT/Aph(t,x)dxdt)l/Z

which proves (5.96). The tightness of VP(py,) therefore immediately follows from that of p, and
(5.96).
O

We can summarize all of this in the next result:

Theorem 5.16. Up to a subsequence py, converges strongly in L*((0,T) x ), P(pn) converges
strongly to P(p) in L ((0,T) x Q) and VP(py,) converges to VP (p) narrowly in M((0,T) x ).
End of the proof of theorem 5.57

So we just have to check the convergence in the transport terms, in what follows the test-function
¢ belongs again to C°([0,T) x R™).
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e term in W: We have to show:
/ / P (1) W [on(t — 1)(x) - V(t, ) ddt — / / plt, )W [p(t, () - (¢, x) ddt.
0 Q 0 Q

We first have

T T
/ / PRt )W pn(t — W))(x) - V(t, x) ddt = / / R (D)W (1)) - Volt, z) dudt
0 Q 0 Q
T
4 / / P2, ) (Wpn(t — )](z) — WIR ()](2)) - Vo(t, z) dardt.
0 Q

The second term in the right hand side goes to zero when h goes to 0. Indeed,

T
[ [ AV = 1)) - W)@ - Vot.a) dode

. o
<[ ([ At - i@ - wiowPa) .
then using (5.66),
| T o ) W lon(t — D)) — WIR (0](x)) - Vot ) d
< C fy Walpn(t—h), () dt
< CYly [ Walpl, XE(t — tr)4p}) dt

< CTh,

because of (5.75). Moreover, using (5.64), we get

T
[ [ Gl Ol Vot.a) - ot WipO)(e) - Vot.a)) dade|
T
<c [ [ ReoWiOlw - Wbl d
+|/ / (plt.x) — (6 0)Wlp(D) (@) - V(t, 2) dd

< COT sup Wa(BR(t +‘ / / (t, ) L 2))Wp)](z) - Vo(t, x) drdt

t€[0,T

the first term in the right hand-side converges to 0 because of (5.94). As for the second
one, it also converges to 0, because Wp] - V¢ belongs to L>((0,7) x ) and p7 is uniformly
integrable by remark 5.8 and the superlinearity of F', hence, up to a subsequence it converges
to p weakly in L*((0,T) x Q).

o term in VV: We claim that

hZ/VV R () - Vo(ty, z)pi T dx—>/ /vv ) - Vo(t,z)p(t, z) dudt.

The proof is the same as the previous one for W, using (5.64), (5.60) and the convergence of
pn to pin LY((0,T) x Q)) N L>((0,T), Wa).
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5.2.5 On extension to systems and uniqueness

The splitting transport-JKO scheme described above, can easily be adapted, under suitable as-
sumptions to the case of systems for the evolution of N species coupled by nonlocal drifts:

atpi - Api(pi) - div(piUi[plv t va]) =0, pi(o’ ) = Pi,0, t=1,---,N, (5'97)

where P;(s) = sF}(s) — F;(s) is the pressure associated to a strictly convex superlinear func-
tion F; with corresponding internal energy Fi(p;) := [ Fi(pi(z))dz. Decomposing each drift
Uilp1, -+ ,on] = VVilp1, -, o8] —Wilp1, -, pn] with div(W;[p1, - - , pn]) = 0 and under similar
assumptions as in paragraph 5.2.2, one can show, by similar arguments as above, convergence as
h — 0 to a solution of (5.97) of the following splitting scheme.

Starting form p?,h = pio and given pf = (p’ih,~ pN n) we find karl (p’fJ,rll7 = p’fvﬂi) by:
e setting kar1 Xi}fh(h,.)#pﬁh where
3tX¢k, = Wilpy] o Xz hs sz,h(oa -) =id,
e defining pk+1 = (p’lﬁ,;l7 e ,ﬁf\,"’,i) p]ffl = (p’f‘zl,- pf\,"’;) is obtained by the semi-implicit

JKO scheme:

ol = argmin {Wf(m,ﬁff)+2h (fi(p) Vg )}
piEP3(Q)

Finally, let us say a few words on uniqueness which we have not addressed here, but which
can be obtained at least in two ways: either by assuming some displacement semiconvexity of the
internal energy and proving some exponential in time contraction estimate on the W5 distance
between two solutions (see section 4.7 or in [54, 73]), or by assuming some nondegeneracy of the
diffusion and establishing some H~! contraction estimate (see section 5.1.2 or in [35]).

5.3 Remarks on general costs

The first two chapters deal with gradient flows in Wasserstein space endowed with the Wasserstein
distance of order 2. A natural extention is to study gradient flow in probability space endowed
with the Wasserstein distance of order p > 1 or more generally an optimal transport distance with
a general convex cost c¢. Several works have already considered this approach. The first one is due
to Otto in [97], where he studied the doubly degenerate diffusion equation

Bpp — div(|Vp"[P2Vp")) =0,
with p > 1,n > 0, as the steepest descent of the functional
. moo p—2
sign(m —1) [ p™, with m:=n+——,
Q p—1

with respect to the Wasserstein distance of order p*, where p* is the conjugate of p. In [1], Agueh
generalized this result to more general costs. In this section, we give a slight perturbation of
their result in order to adapt our splitting method to general costs. We will prove existence and
uniqueness of solutions of nonlinear degenerate parabolic equation of the form

Ohp — div(pVe" (VF(p)) — div(pU[p]) = 0. (5.98)

In the literature, other generalizations have been proposed. Dolbeault, Nazaret and Savaré
introduced in [58] a new class of transport distances between probability measures which are con-
structed in a dynamical way as a generalization of the Benamou-Brenier formula. They introduced
a mobility function m : R™ — R™ to define

W2, 500, p1) : mf{ / | lon@) (@) dad = 01+ div(m{p)) = 0 pt_o,lzuo,m}.
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We remark that when m(z) = z, we recover the Benamou-Brenier formula. We refer to
[58, 39, 83, 84, 119| for the analysis of this distance and the study of usual gradient flow with
respect to Wiy, 2.

One of the difficulties of problem (5.98) is in the passage to the limit in the very nonlinear
term Vc*(VF'(p)). Indeed, following our previous method in section 5.2, we only have a narrow
convergence for the gradient of the pressure associated to F', then stronger estimates will be needed.
Actually, in the porous medium case and using the flow interchange argument we will see in chapter
6 and 7 that is possible to obtain a L?((0,T), H*(£2)) estimate for F’(p) := -5 p™~'. In addition,
since the vector field Ulp] is not assumed to be divergence free, we do not have conservation of the
internal energy during the pure transport step, as in the previous section, and then, we have to
find another way to control the energy dissipation during this phase. To deal with these issues, we
assume that the initial condition is bounded from below and above and, in section 5.3.2, we start
to prove a maximum,/minimum principle which is a variant of the one proved by Otto in [97] and
generalized to general costs by Agueh in [1]. In this section, we obtain several estimates useful in
section 5.3.3 to prove theorem 5.17.

5.3.1 Assumptions and main result

Our goal is to solve (5.98) on Q a smooth bounded convex subset of R” with the usual Neumann
boundary condition
p(Ve (VF/ () + Ulp]) - v = 0 on 99,

where v denotes the outer unit normal to 0.

Assumption on the cost ¢: We assume that ¢ : R™ — [0,+00) is a smooth strictly convex
function which satisfies 0 = ¢(0) < ¢(z), for all  # 0, and there exists a, 8 > 0, ¢ > 1 such that

afz|? < e(z) < B(L+ [z]7), (5.99)
for all x € R™. We denote ¢* the Legendre transform of the function ¢, i.e for all z € R"™,

c*(z) = Sélﬂg) x-z—c(x).
2R

As in [1], we denote ¢, the function define by

ep(z) :=c (%) .

Assumption on the internal energy F: We assume that F' : [0,4+0c0) — R is a continuous
strictly convex superlinear function of class C2((0, +00)) which satisfies F'(0) = 0 and

The map = € (0, +00) — z"F'(x~™) is convex and nonincreasing. (5.100)

As usual, typical examples are functions of the form F(p) = p™ (m > 1).

Assumption on the drift Ulp]:

e There exists C' > 0 such that for all p € P(Q2),

Ulp] € WH(R™), Ulp] - v = 0 on 9Q and |U[p]| < C(1 + |z|), for all z € R”,  (5.101)

e There exists C > 0 such that for all p, u € P(Q),

[ 0= Ul dp < CWE o), (5.102)

for some p > 1.
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A weak solution of (5.98) with Neumann boundary condition is a curve p : ¢t € (0,400) —
Pe(Q) such that p—i—% € L=((0,T)xQ), VF'(p) € LT ((0,T) x Q), Vc*(VF'(p)) € L1((0,T) x Q)
and for all ¢ € C°(R x R™),

/ @@w—mvawuwm»—vavw=—/ﬁamwa@¢n
R x R™ Q

Then our main result is the following:
Theorem 5.17. Assume that p € P(Q) satisfies
0<m< pg <M< +o0,
then (5.98) admits at least one weak solution.

The proof of this theorem, given in the next sections, is based on the same kind of splitting
scheme using before. We combine pure transport steps by the drift U and Wasserstein gradient
flow steps to handle the diffusive term. Given a time step h > 0, we construct by induction two
sequences pZ and ﬁ’fL in P*¢(Q2) by setting p?L = ﬁ% = po and using the following scheme:

{ P, = X Dyl e (5.103)
Ph+ = argimin,cp(q) hWe, (Ph+ ,p) + F(p),

where X ,’f is the solution of

{ 8tX,’f = U[pfb] OX,’f,

XE(0,) = 14, (5.104)

Since we assume that U [p] satisfies (5.101), the DiPerna-Lions theory implies that X} is well defined
and there exists a constant C' > 0 such that for all ¢ € [0, 4] and z € R",
|XF(t,z) — x| < Ch and | det(VXF(t,x)) — 1| < Ch. (5.105)
We define two interpolations: the piecewise constant interpolation p; defined by
pu(t) i= pi 1 if ¢ € (hk, h(k+ 1)),
and the continuous interpolation during the pure transport phase

ﬁh(t) = Xilf(t’ )#pﬁ ifte (Oa h]

5.3.2 Maximum/minimum principle and standard estimates
We start this section by proving that sequences are bounded from below and above for all T < +o0.

Proposition 5.18. Let T' < +00 be a fized time. There exists C > 0 such that, for all k > 0 and
h such that kh < T,
me= €T < ﬁﬁ,pﬁ < MeCT.

Proof. By definition of pj, for all z € €,
po(x) = pp,(Xp (b, x)) det(VXR (h, ).

Then using (5.105), for & small enough, we have

m 10 M
< pp(Xp(h,z)) < ;
1+ Ch P (Xp(h,x)) 1-Ch
which implies that
M < Bha) < T
1+Ch =" S 1 - Ch



78 CHAPTER 5. DRIFT INTERACTIONS: NON POTENTIAL CASE

Now we can apply the maximum /minimum principle developped by Otto in [97] and generalized
to general costs by Agueh in [1] to obtain

m <p1(:c)< M
1+Ch MY S _Cn

Then by induction, the following holds

m K k M

which gives the desired result.

O
In the next proposition we recover usual estimates from the gradient flow theory
Proposition 5.19. For all T and for all h, k such that hk < T, we have
Flok) < CT + Flpo). (5.106)
N-1
WY W, (pf ™ ) <1+ 1). (5.107)
k=0

Proof. To find the first estimate, we use the fact that p’,?L is optimal is the minimization problem.
Since pk lisa competitor we have

F(ph) < WWe, (0 1) + Fph) < hWe, (05, o) + F(pg, )
But using (5.105),
We, (o4, 1) < C,

then
F(py) < Ch+F(py 1),

and by induction we have (5.106). Now we want to prove (5.107). First we remark that using
minimization scheme we have

N-1
WY W (0L A < S FEEET) - Fopth)
k=0
N—-1
< (F) = F(oR) + Flpo) — Flpp))-
k=0

Using the Monge-Ampére equation, we find

. i)
FA -7 < [ P (i) vk - [ Pob
k
h

Py () _ k e k(b 2)) — kY (de kb ) —
/ (F( e (W))) F(pg)dt(vxh(h, )= [ Flbaenv ) -1
< I+ J

N

For J, since | det(VXF(h,z)) — 1| < Ch, we have

J < Ch/ IF(pb)] < Ch
Q

because F(p§) is bounded above and below. And for I we will use that for all k, we have

L< k<L
1+ Ch)k SPrS T —cnyr
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according to the proposition 5.18 and since

1 < 1 < 1 |
14+ Ch = det(VXF(h,z)) = 1—-Ch

we have that and pf are in [e=“Tm,e“T M| and since F' is C? it is locally lipschitz

ok,
det(VXF(h,z))

and we get
1< [|r (G ) - R e xtn) (5.108)
Q det(VXF(h, z)) '
1
< O |——————— —1||det(VXF(h, K 5.109
| |y 1| 1w Xk oo (5.109)
< C / | det(VXE(h, ) — 1]0f () (5.110)
Q
< Ch. (5.111)
So if we combine I and J we obtain F(5F™) — F(pf) < Ch and the conclusion follows. O
A direct consequence is
Corollary 5.20. For all T and for all h, k such that hk <T
qu k+17ph < Chi~ iy
Proof. First combining (5.99) and (5.107), we have
N-1
Z Wq k+1’ ~k+1 <C Z thCh k-‘rl,ﬁz-‘rl) < Cha—1. (5.112)
k=0
By definition of 5! and (5.105), we obtain
N-1
Z ok A < X [ X)) do < 0 (5.113)
k=0 k=0
Then the result is proved combining (5.112) and (5.113).
O

Remark 5.21. We directly obtain that

ZW(] k+17~k < Chi™ 1

and
N-1
> WE(ept pp) < Che
k=0

with

_J g1 fqg<2
“T11 if ¢ > 2.

In the next proposition, we establish the Euler-Lagrange equation for JKO step. We only state
the result and we refer to proposition 2.6 from [1] for the proof.

Proposition 5.22. For all k > 0, prH satisfies

[T () sk @+ [ Pk o) aow i =o

for all ) € C°(Q;R™), with P(z) := aF'(z) — F(x) is the pressure associated to F and vy is the
Set1 k+1

W, -optimal transport plan between p, "~ and p, Moreover,
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1. Pl e Wh(@),
2. If T,’f"'l is the W, -optimal transport map between p’,j'H and [)Z“, then

Tk+1 _
% =V (VF (pi™h) a.e in Q. (5.114)
We immediately deduce estimates on Ve*(VE'(pp,)) and VEF/(py,).

Corollary 5.23. For allT > 0, Vc*(VE'(pr)) is bounded in L1((0,T) x Q) and F'(pp,) is bounded
in L9 ((0,T) x Q).

Proof. Using (5.114) and proposition 5.18, we obtain

q

1 Ty (y) —y
V * VF/ k+1 q g / h k+1 d
Lve @R < [P ) ay
1 -
en (0T ),

ame=C¢T

when we used assumption (5.99). Then summing over k and (5.107), we obtain
T N-1
| [ e @R < on Y w ekt < o
N=0

To prove that F’(py,) is bounded in L7 ((0,T) x ), we just have to remark that using (5.99), we
have

x 1 .
O < B+ () S Ve'(2) -2 < VeI + ]2l
q q

which concludes the proof for € small enough. O

5.3.3 Convergences and conclusion

Convergences Corollary 5.20 and remark 5.21 give q%—Hélder estimates on p;, and py, then using
a refined version of Ascoli theorem, we have that pp, and pp, converge in L>((0,7T"), W) to the same
limit p.

Moreover, using corollary 5.20, proposition 5.19 and Rossi-Savaré theorem 5.12, we obtain that
pn, strongly converges in L*((0,T) x Q) to p. Then since py, is bounded in L>((0,T) x Q), pj, con-
verges strongly in LP((0,T) x Q) for all p € [1,+00), F'(ps,) converges strongly in LP((0,T") x )
for all p € [1,400) to F'(p). In addition, proposition 5.19 gives that VF'(py) converges weakly to
VEF'(p) in L9 ((0,T) x Q) and Ve*(VF'(py)) converges weakly to o in L9((0,T) x ).

The next theorem proves that o = Vc*(VF’(p)) and is due to Agueh in [1].

Theorem 5.24 (Theorem 3.10 from [1]). Assume that F' satisfies (5.100), then for all nonnegative
function u € C2(R),

i [ Ve (Y () -V (pult) det = / Ve (VE () - VF (pue).

Therefore, (div(pnVe*(VF'(pr))) converges weakly to div(po) in C2(R x R™) and
div(po) = div(pVc* (VE (p))).

Proof. The proof is based on an argument of geodesic convexity and the Minty’s trick using the
convexity of ¢*. We refer to [1] for more details. O
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Conclusion For all ¢ € C2°([0,4+00) x Q), with supp ¢(-,x) C [0,T),

k41)
[ [t — Ulok)- Vo)t ) dad
hk Q

hk+1) g
i / 1ot XE(t, 2))] deda

:a\@\

Summing over k, (N := [%Da

/ [ pnlt)@up(t. ) = Ulpn(t = W)(@) - Viplt.)

—1 ch(k+1)

2

| it )@ = Ul]- D)t ) dads
k Q

Il
o

Il
s

i

() (p(h(k + 1), XF(h(k + 1),2)) — p(hk,z)) dx

=
Il
o

I
S~
>
>

2
L

Pt () dep(h(k + 1), 2) dz — Y /Q ok () dop(hk, z) da

I
o

Il
S

i

(41 () — o (@) p(hk, 7) der — / po(2) (0, ) d.

Q

=
Il
o

I
S

Combining with (5.22), we conclude that

/ / on(t, ) (Opp(t,z) — Ulpn(t — h)]|(z) - Vp(t, x)) dedt

-1

@\

Ve (VF (@) - Vithh,a) da = [ po(e)e(0,1) da

k=0
N—1
+ X [ Rlpnb ) o ),
k=0 Y 2%
where
IR[¢](z, y)| < *llD | o< 0.0y %y [z =y,
and 7k+1 is the optimal transport plan in II(p k'H, ﬁkH).
Remark 5.21 implies directly that
N-1
Rlp(hk, )] (z,y) dv ™ (z,y) = 0,
o JaxQ

as h (0. Then we can pass to the limit in the discreet equation and theorem 5.17 follows.

or( h(k + 1), XF(h(k +1),2)) — p(hk,z)) da.
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Chapter 6

Systems with cross-diffusion

The modelling of crowd behaviour has become a very active field of applied mathematics in recent
years. These models permit to understand many phenomena as cell migration, tumor growth, etc.
Several models already exist to tackle this problem. The first one, microscopic, consists to seeing
a population as a high number of individuals which satisfy ODEs, see for instance [92] and the
second is macroscopic and consists in describing a population by a density p satisfying one PDE,
where p(t, ) represents the number of individuals in = at time ¢. In this last framework, different
methods to handle the congestion effect have been proposed. The first one consists in saying that
the motion has to be slower when the density is very high, see for example [47, 46, 45] for a different
approach with applications to crowd dynamics. Another way to modelling the congestion effect is
to use a threshold: the density evolves as we would expect until it touches a maximal level and
then the motion has to be adapted in these regions, see for example [89] for crowd motion model
and [90] for application to dendritic growth. In [91], we can see a comparison between microscopic
and macroscopic models. Recently in [94], Meszaros and Santambrogio proposed a model of hard
congestion where individuals are subject to a Brownian diffusion. This corresponds to modified
Fokker-Planck equation with a constraint on the density.

Since in macroscopic models, we have mass conservation, the theory of optimal transportation
is a very natural tool to attack it. In [89], the authors investigated a model of room evacuation.
They showed that if the velocity field is given by a gradient, say V' = VD, where D is the distance
to a given target, then the problem has a gradient flow structure in the Wasserstein space and
the velocity field has to be adapted by a pressure field to handle congestion effect. More recently
in [94], a splitting scheme has been introduced to handle velocity fields which are -not necessarily
potential- vector field. The scheme consists in combining steps where the density follows Fokker-
Planck equation and Wasserstein projections over the set of densities which cannot exceed 1.

A natural variant of the model of [94], consists in considering two (or more) populations, each
of whom having its own potential but coupled through the constraint that the total density cannot
exceed 1 and then subject to a common pressure field. Note that variant problems with total
density equal to 1 were treated in [48, 7, 12] and for more general cross-diffusion systems, we refer,
for example, to [79, 53, 66, 67, 72|. For a linear diffusion (corresponding to a Brownian noise on
each species), the two-species crowd dynamic is expressed by the PDEs

dip1 — Apy — div(p (VVL 4 Vp)) = 0,
8tp2 — Apg — diV(pg(VVz + Vp)) =0, (61)
p>0,014+p2<1, p(l—p1—p2)=0.

In this chapter, we prove that this system is the gradient flow (for the product Wasserstein
distance) of the energy

Elprp) =Y /Q (pilog(pi) + Vips) + /Q Xio (01(2) + pa(z))dz,

83



84 CHAPTER 6. SYSTEMS WITH CROSS-DIFFUSION

and for a more general energy of the form

E(p1,p2) = E1(p1) + E2(p2) + Fmlp1 + p2)

with

MM?A%MWHMMJMM?AMMMM

with F,, define as in (6.4). The gradient flow of £ is the following system with a coupling in the
diffusion:
depi = Api +div(piV (Vi + Fp, (p1 + p2))), i =1, 2. (6.2)

The JKO scheme for this energy then reads

2

_ 1
(Py+h, p5T) = argmin { 57 Ws (pi, o)+ E(p1, pz)} (6.3)
(P1>P2) i=1

which, in the particular case of the linear diffusion crowd motion problem with two species, takes
the form

S

( k+1  k+1
2h

2
Pyt phth) = argmin {Z(
p1t+p2<1 ~ 4

W3 (pi, pf) +/Q(Pz' log(pi) +Vipz')> }

This chapter is composed of five sections. In section 6.1, we introduce our assumptions and
we state our main results. In section 6.2, we prove existence of solution of system (6.2). The
key ingredient is the flow interchange argument (see [86, 55, 73| for example or chapter 4) which
gives an estimate on the gradient of p; + p2 and on the gradient of p;. Section 6.3 gives the proof
of existence of solution for system with hard congestion (6.1). In this section we use again the
flow interchange argument to obtain stronger estimates. In section 6.4, we focus on the particular
case where V3 = V4. In this case, we state the convergence when m — 400 of solution of (6.2)
to solution of (6.1) and we prove a L!-contraction theorem. In the final section 6.5, we present
numerical simulations.

6.1 Assumptions and main results:

Let Q a convex bounded subset of R". For ¢ € {1,2}, we define V; : P(2) — R the potential
energy associated to V; € W1°°(Q) by

wm:éwmmm.
Let m € [1, +00), we define F,, : R" — R by

Fon(z) " (6.4)

L ifm> 1.

m—1

{ zlogz ifm=1,

We remark that Fj, is a convex superlinear continuous function. We denote F,,, : M(Q) - R
the internal energy defined by

_f JaFulpe) de if p< Ly,
Fm(p) = { +00 otherwise,

and the functional F, is defined by

_J0 if [|plloo < 1,
Foolp) '_{ 400  otherwise.

In the following, we focus on the case where the individual diffusion is linear but the proof can
be adpated to deal with individual nonlinear diffusions.
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We say that (p1,p2) @ [0, +00) — P2¢(2)? is a weak solution of (6.2) if for all i € {1,2} and
for all T' < +00, p; € C([OuT]upac(Q))7 pi € LOO([OaTLBV(Q))? vaFrln(pl + p2) € Ll((O,T) X Q)
and for all ¢ € C°([0, +00) x R™),

/O+°°/Q ([maﬂb— (piVVi+ piVE, (p1 + p2)) - D d:}:—/ﬂvqb. dei(x)> _ _/52¢(07x)pi70(x) e

and we say that (p1, p2,p) : [0,+00) — P3¢(Q)? x HY(Q) is a weak solution of (6.1) if for all
i € {1,2} and for all T < +o0, p; € C([0,T], P¢(2)), p; € L>=([0,T], BV(Q)), p € L%([0,T], H(Q))
with p > 0, p1 + p2 <1 and p(1 — p; — p2) = 0 a.e. In addition, for all ¢ € C2°([0, +00) x R™),

/O+°°/Q ([Pi3t¢— (piVVi + piVp) - V] dx—/Qv¢. dei(m)> _ —/Qqﬁ(O,x)pi,O(x) d.

Main results of this chapter are
Theorem 6.1. Assume that (p1,0,p2,0) € P*(Q)? satisfy
Fi(p1,0) + Fi(p2,0) + Fmlp1,0 + p2,0) < +00, (6.5)
then (6.2) admits at least one weak solution.

and

Theorem 6.2. Assume that [Q > 2. If (p1,0,p20) € K := {(p1,p2) € P*()? : p1 +p2 <1}
satisfies
Fi(p1,0) + Fi(p2,0) < 400,

then there exists at least one weak solution of (6.1).

We assume that || > 2 to be sure that K is not empty or trivial.

Remarks on possible extensions:

1. These models can be generalized to more than two species. Moreover, instead of assumed
that all the densities take the same space, we can generalize to densities evolving under the
constraints on aqp; + aepe. Then system (6.2) becomes

8tpi = dlv(pZVVz) + Apz + o diV(inF,,/n(Ozlpl + 0[2,02)), 1= 1, 2.
and system with hard congestion becomes

dp1 — Apr — div(p1(VVi 4+ Vp)) =0,
Orp2 — Apa — div(p2(VVa + Vp)) =0,
p>0,a1p1 +agpe <1, p(1 —a1p1 — agp2) =0.

2. We can deal with more general velocities. Indeed, using the semi-implicit scheme introduced
in chapter 4 or the splitting method introduced in chapter 5, we can treat vector fields which
depend of the densities and which come not necessarily from a potential. These extensions
allow to treat nonlocal interactions between different species which are subject to a common
congection effect.

6.2 Entropy of the sum

In this section, we prove theorem 6.1 using the implicit JKO scheme, first introduced by Jordan,
Kinderlherer and Otto in [65]. Given a time step h > 0, we construct by induction two sequences
p’fvh and péﬁ p With the following scheme: p?, = p; o and for all k > 0,

2
(Pt P55t € ( ar)grgin(mz {Z (W3 (pir 1) + 20 (Fi(pi) + Vi(pi)) + 2hFm (1 pr + azpz)} (6.6)
p1,p2)EPC i=1
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These sequences are well-defined by compactness and l.s.c standard argument. Then we define the
piecewise constant interpolations p; 5, : RT — P2¢(Q) by

pi,h(t) = pﬁ‘;’;% ifte (k’h, (k‘ + 1)h]
In the first part of this section, we prove the convergence of these sequences and then we give

the proof of theorem 6.1.

6.2.1 Estimates and convergences

In this section, we present basic estimates in JKO scheme ([65]) and a stronger one using the flow
interchange argument ([86, 55]).

First, using the minimization scheme, we prove

Proposition 6.3. For all T < 400 and for all i € [1,2], there exists a constant C' < +oo such
that for all k € N and for all h with kh < T and let N = (%], we have

Filpin) < O, (6.7)
Fu(pf p + 05,) < C,
oo WE(pF . piF") < Ch. (6.9)
Proof. These results are obtained easily taking p; = pﬁ ,, as competitors in (6.6), see [65]. O

Using the refined version of Ascoli-Arzela’s theorem (see [4], proposition 3.3.1), p; j, converges
to p; € C/2([0, T],P2¢(2)) in L>=([0,T7], P*(R2)).

Remark 6.4. We notice that estimate (6.9) does not depend of m, then the refined version of
Ascoli-Arzela’s theorem gives

Wa(ps(t), pi(s)) < Clt — 5|2,
for allt,s <T and C which does not depend of m.

But to pass to the limit in the nonlinear diffusive term we have to obtain a strong convergence
so we have to find stronger estimates.

Proposition 6.5. There exists a constant C > 0 such that, for all T > 0,

||p},/}?HL2((O,T),H1(Q)) + ||p;,/}?HL2((O,T),H1(Q)) + [[(p1,n + p2,0)™ 2| L2 (0.1, 11 (02)) < C(1 + T).(6.10)

Proof. We use the flow interchange argument, introduced in [86], to find a stronger estimate as in
[55, 73]. In other words, we perturb P’f,h and pg,h by the heat flow. Let n; be the solution of

o = An; in (0,7) x Q,

Vni-v=0 in (0,T) x 09, (6.11)
, _ ok

Mijt=0 = Pi h-

The entropy is geodesically convex then the heat flow is a 0-flow of the Entropy JFi, [65, 116,
4,49, 112], i.e

1d*
§%|0:€W22(77(8)a P) < }-1(,0) - .7:1(7](8)), (612)
for all s > 0 and p € P3°(2), where

2 t) = timoup L+ =0,

s—0t S
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Moreover, using the scheme (6.6), we get

2
1 d+ 2 k—1
Z §%|U:SW2 (Ui(s),ﬂi,h )

=t (6.13)

2
Z% ]:1 ni(s)) +Vi(1i(s))) + Fm(n1(s) + n2(s)))
- z:: (/Q An;(s)((1 + log(n;)) + ‘/i> + /Q A +12)E! (m1(8) + 712(5)) (6.14)

i=1

2
Vn,
:—Z( ‘ ” / vV - nz»)— /Q V0 (5) + o)) 2E2 (1 (5) + o)),
=1
But using Young’s inequality,
—/vww < /|vvi|\w5>\
Q

/2, IVni(s)]
< /lvvl V2 (s) 172()

) L [Vini(s)]?
< 2/ww W) g

Then, we have

0.3 5 (Fi(n(s)) +Vilm(s))) + Funlm(5) + 12 (5))

_Z( |V772 /|VV| n:(s )
_ / [V (1 (s) +n2(5) P Epn (i (s) + 1 (s))-

By definition of F,,, for m > 1, F = maz™~2 for all x > 0. And since V; € W1°°(Q),

=1
1< 4
<C-—= (\1/212 _ m/2|2
<C 2?_1/9Vm(8) | m/QIV(m(S)Jrnz(s)) \

Using (6.12) and a lower semi-continuity argument,

2

2
ah . _
B [ IVGE) R [Vt b < Y (B = Rl + Ch
i=1 =1
Then if we sum over k, we obtain

/2Nl 22 oy, i ) + 195 2 e ooy, i @) + (o1 + p2n)™ L2 (o, m1 ) < C(L+T).
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Remark 6.6. The bound on ||p,}l’/hQHL2((O7T)7H1(Q)) does not depend of m.
Now, let G : L'(2) — (—o0,+o00] and g : LY(Q) x L}(Q) — [0, +o0o] defined by

G(p) = { 1Pl i p € P(Q) and p!/* € H'(Q)
’ 400 otherwise,

and

— ) Walp.p) if p,p € P*(Q)
9(p: p) = { +00 otherwise,

G is Ls.c and its sublevels are relatively compact in L'(Q) (see [55, 73] or lemma 4.16 from
chapter 4) and ¢ is a pseudo-distance. According to (6.9) and (6.10), we have

T T—1
sup/ G(pin(t))dt < 400, and lim sup/ g(pin(t+7),pin(t))dt =0,
h<1Jo ™O0nrg<1 Jo

then applying an extension of the Aubin-Lions lemma proved by Rossi and Savaré in [107] (theorem
2), there exists a subsequence, not-relabeled, such that for i = 1,2, p; , converges in measure with
respect to ¢ in L'(Q) to p;. Moreover Lebesgue’s dominated convergence theorem implies that p; p,
converges strongly in L'((0,T) x Q) to p;.

Now we use the same argument to obtain a strong convergence on a nonlinear quantity of
P1,h + p2,n. We define G by

o) = { 1072 iy if p € PAE(R) and /2 € HI(Q)
Pl = 400 otherwise,

and ¢ is defined as before. We want to apply theorem 2 of [107] in L™(Q2) over the sequence
LLrtpan Using (6.10), we obtain

T
sup/ G(pin(t))dt < +oo.
r<1 Jo

Moreover, we know that for all p1, pa, g1, 2 € P2¢(Q),

w2 (m +p2 p1+ e

1 1
5 5 )<W22(P17M1)+2W22(P2»M2)-

2

Indeed, if we note ~; an optimal transport plan for Wa(p;, i), ¥ = % defines a transport plan
in IT (%, %) then

p1+ P2 p1+ p2
W22( g > </ |z —y|* dy(z,y)
QxQ

1
< ([ l-sPanen+ [ o-slnts)
QxQ QxQ

1 1
< §W22(P17/~L1) + §W22(P27M2)~

Using (6.9), we obtain

T—1
. P1,h T+ P2.h P1,h + P2.h )
lim su ELA 2 Ph i 4 7), B2 2R ) ) de = 0.
timsup [ g( e ey

Theorem 2 of [107] and Lebesgue’s dominated convergence theorem imply that p1 p+p2 5 converges
strongly to p1 +po in L™((0,T) x Q). In addition, Krasnoselskii theorem (see [50], chapter 2) implies
that (p1.5 + p2.n)™/? converges to (p1 + p2)™/? in L2((0,T) x Q).
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6.2.2 Euler-Lagrange equation and proof

In this section, we first give the optimality conditions of (6.6). Instead of using horizontal per-
turbations, p. = @E#p’,frl as introduced in by Jordan, Kinderlherer and Otto in [65] and used in

previous chapters, we will perturb p]”'1 with vertical perturbations introduced in [25, 36, 110, 112]
k+1

which consist to take p. = (1 —e)p,, ™" + €p, for all p € L>(2). Before giving the optimality
conditions of (6.6), we state the following lemma.
Lemma 6.7. Forallk > 1, pﬁh >0 a.e and log(pf,) € L'(Q).

Proof. The proof is the same as lemma 8.6 from [112]. Let p = ¢ = ﬁ the uniform density on €.

We define p; . as the vertical perturbation of p; hl by p,
Pie = (1 - E)ple + ep.
Using (p1,¢, p2,e) as a competitor in (6.6), we obtain

Fi(pyhh) — Falpre) + ]:1(0]2“;;1) Fi(pa,e)

1
(/sze Pt + Qth(pzs,pzh) oTALE (pfil,pm)>

+ fm(pl,s + p2.e) = Flpi 3 + 0550
‘We remark that
[ Viose =it < e,

and using the convexity of - W3 (-, P?,h) we obtain

1
W (pf—gl?pz h) < (2hW2 (pvpz h) 2hW2( f—}tlapz h)) g Ce.

W2 (pl e P4 h) 2%,

2h
If m > 1, then since p; . + p2. € L™(2) N LY (), by convexity of F,,,
Fn(pre + p2.e) = Fulpi ! + ") < Ce.
Now we denote A; and B; the sets defined by
= {kar1 >0} and B; := {karl = 0}.
k1 k41 k+1 _

On 4, since Fy(x) = wlog(z) is convex, Fi(pt!) = Filpsc) > (o551 — pie) Fllpic) > (ol
¢)(1 4 log(c)). And on B;, Fl(ple) Fi(pie) = —eclog(ec). This implies

—clog(ec)(|B1| + |B2]) + Z/ ple )(1+log(pie)) < C. (6.15)

Since —clog(ec) — 400, when & \ 0, we conclude that |B1| = |Bs| = 0.
If m = 1, the proof is the same introducing
A= {py}! + 057" > 0} and B = {p{}! + py}t = 0}

Then we prove in both case that p’€+1 > 0 a.e.

Now using (6.15) and the fact that (pﬁzl —¢)(1+1log(pse)) is bounded from below by (pf;;l
¢)(1 + log(c)) which is in L' and applying Fatou’s lemma, we obtain

/ (P4 — &) (1 + log(P11) < C.

This implies that (pf;;l )1+ log(pf;gl)) is L' and since karl and pf’zl log(pf;;l) are in L', we

conclude that log(ple) is in L.
O
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This lemma is needed to ensure the uniqueness (up to a constant) of the Kantorovich potential in
the transport from ple and pﬁ , and then we can easily compute the first variation of Wa(., pﬁ )
according to proposition 7.17 of [112]. However, this lemma can be skip allowing to deal with

nonlinear diffusion (see example 7.22 from [112]).

Proposition 6.8. Fori € {1,2}, plI! satisfies
VL,OI-CJFI
VVipi i+ Vol + VEL (o3 + o5t el + Tmpf;:l =0 ae (6.16)

where gof;gl is the (unique) Kantorovich potential from ple to pé‘ih,

Proof. We prove the result for ¢ = 1 and the proof is the same for i = 2. Define p; . = p]f";l +

e(p— p’fj’ll), for p € L*°(§). Using optimality of p]f;};l in (6.6), we obtain
1/1 1
- 7W22(p1,67p’1€,h) - 7W22(p11€i}r117p11€,h)
e \2 2
+h (Vilor.e) = Vi(p 5N + Filore) = Fuph ) + Funlpre + o5 = Fulolit + 0550 ) > 0.
(6.17)

Lemma 6.7 ensures uniqueness (up to a constant) of the Kantorovich potentiel between p’le

and p’f’h (proposition 7.18 of [112]). Then applying the proposition 7.17 of [112], the first variation
of the Wasserstein distance exists and

. 1/1 1 ~
lim sup — <2W22(P1,57P]1€,h) - 2W22(P]1€,J;rzlvplf,h)> < / 90]16.21 d(p — Plf;l)v (6.18)
eNo € Q
where gpf"};l is the (unique) Kantorovich potential from pf}}tl to pﬁ h- 1t is clear that
1 -
lim = (Vip1.) = V(oY) = / Vid(p— pt ). (6.19)
eNO € ' Q '

Arguing as in the proof of lemma 3.1 of [25], since F} : x +— xlog(x) is convex, the monotonicity
of the incremental ratio gives for € < 1,

|F1(p1,c) — Fi(p )] i
D R ) - A

Since F} (p]f;l) — Fi(p) € L' (Q2), Lebesgue’s dominated convergence theorem implies
.1 , ~ ,
lim = (Fi(010) = FED) = [ (1 lox(ok i) d( - o5 (6.20)

With the same argument since Fj, is convex,

|Fo(pre + 05151 — Fn (05" + o5 . .
5 5 ,h < |Fm(p17-;1 _|_p2)-zl

~ k
- )_FnL(p‘sz:’};l”-

Then we obtain

1 . _
lim = (Fm(m,s + o5t = Fn(ot 5t + p’ﬂl)) = /Q Fr (o + o5 da—pi3h. (6.21)

Combining (6.17), (6.18), (6.19), (6.20), (6.21), we obtain, for all p € L>°(Q),

/Q (A hVi + B0+ Tog(pE ) + R (0551 + o5 ) dp

> /Q (55 + hVa + B+ Tog(pf ) + (055! + o5 ) ot
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Applying proposition 7.20 from [112], there exists a constant C' such that
P+ hVi + h(1+1og(pf31) + hEL (DT + bty = ¢ il —ae. (6.22)

Since gpkH + hV1 is a Lipschitz function, it is differentiable a.e (Rademacher’s theorem). Moreover

p’ftbl is absolutly continuous with repsect to Lebesgue measure then <pk+1 is differentiable plffll—a e

and it is the same for h(1 +log(p} ")) + hE), (o} 1" + p57") because (6.22). Then

V<pk+1 + hVVi + hV log(plf*,;l) +hVF), (p]“C+1 + k+1) =0, p’fﬁl — a.e,

which concludes the proof.
O

A consequence of previous proposition is that p; j, and ps 5, are solutions of a discrete approxi-
mation of system (6.2), see for example proposition 4.18 from chapter 4.

Proposition 6.9. Let h > 0, for all T > 0, let N such that N = [%j Then for all (¢1,d2) €
C>([0,T) x R™)! and for all i € {1,2},

T N-1
. ) ) ) - . . . k41
/0 /sz,h(t,a:)atqﬁz(t,x)dxdt—i—/Qplﬁo(m)@(o,a:)dx hZO/QVVZ(:U) Vi(ty, z)pi; () dx
+WE3/VM“ Vit @ ¢HWE3/VF (Ph! + p53) - Voultn, )pi (@) do

+—§£I Rigi (e, )] (@, y)dvl s (x, v)

QxQ

where t, = hk (txy :=T) and 'sz,h 18 the optimal transport plan in WQ([)ﬁ}pr:}tl) Moreover, R is

defined such that, for all ¢ € C°([0,T) x R™),

[R[)(2,y)| < *IID Sl o< (p0,7) xmmy lx — yl*.

Now we prove theorem 6.1.

Proof of theorem 6.1. We have to pass to the limit in all terms in proposition 6.9. The remainder
term converges to 0 using estimate (6.9) and the linear term converges to

T T
/ /piat@-—/ /VVi'V@Pi,
0o Ja 0o Ja

when h goes to 0 because p; j, converges to p; € C([0,T], P**(R2)) in L*([0,T], P>*(Q)).
Moreover since Vp; , = 2p1/2Vp21/h2, then Vp; p, is bounded in M™((0,T) x ) because propo-
sition (6.10). We conclude that sz,h converges in M"((0,T) x Q) to Dp; because p; j, strongly

converges to p; in L*((0,T) x Q). This implies that the diffusive linear term converges to

T
/‘/V@wwm
0 Q

It remains to study the convergence of the cross diffusion term. First we remark that we can
rewrite VE! (p’f'};l + pk'H) by

(P53 + P2

vE (karl + k+1) — . I v(pllcjll _’_pIQf}LLI)m/Q7
Pin T P2p

then
VEL (V3 4 o5 3ok = 2G 1 a (05 055DV (5 + o552,
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with G, : RT x Rt — R is the continuous function (for a < 1) defined by

—L— ifx>0y>0
Galz,y) =4 EFo™ S
() { 0 otherwise.

Asm>1,1— % < 1so Gl_m/Q is continuous and since, up to a subsequence, p; ;, converges to p;

a.e, we obtain that Gy_,,/2(p1,n, p2,n) converges to Gy_p,/2(p1, p2) a.e. Moreover,

m/2 P1,h

< (prn =+ pan)™?2. 6.23
oin+ pon (p1,n =+ p2,n) (6.23)

|G1_my2(prns pa,n)| = ‘(Pl,h + p2.n)

We complete the proof if we prove

N-1 T
hy /QVFLL(plffﬂLp’Sf)-V@(tk,:v)pff(fff) dw—>/ /Q2G1—m/2(,01,pz)V(P1+p2)’”/2-V¢i dud.
k=0 0

N-1
030 [ SR+ A Vool ) do
k=0 7
T
—/ /2G17m/2(P1,p2)V(Pl +p2)™? Ve dmdt’
o Ja

N—-1
< WX [ R Vol ) do
k=0

T
—/ /VF%(Pl,h + p2.n) - Voi(t, 2)pin(t, z) dxdt’
0o Ja

T
+’/ / 2G1 /2 (P10 P2,0)V (P11 + po.n) ™% - Vi (t, x) ddt
0 Q

T
—/ /2G17m/2(/)1,02)v(01,h+ﬂz,h)m/2'V@'(tyx) dﬂ?dt’
0 Q

T
+‘ / / 2G1 i j2(p1, p2)V (prntpan)™? - Vu(t, x) dedt
0 Q

T
[ [ 2Gmalon )V 2" Vst o]
0 Q

The first term on the right hand side converges to 0 because V¢; is Lipschitz and

T
/ / \VE}, (p1,n + p2.0)|pin < C,
0o Ja

where C is a constant that does not depend of h. Indeed since p%f is bounded in L2((0,T), H()),
Vpin = Qp;/hzv;)if is bounded in L!((0,T) x ), then using (6.16) and (6.9) we prove the state-
ment.

The second term is handled using (6.10) and Lebesgue’s dominated convergence theorem.

‘fOT Jo(Gromy2(prns p2,0) = Giomy2(p1, p2))V (p1h + p2,n)™? - Vi

N . 1/2
<V (p1n + p2.0)™ 2| L2 (0,1 %) (fo Jo |G1—my2(p1,hs p2,0) — Glfm/2(p1ap2)|2|v¢i|2) :
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IV (p1n + p2.0)™ 2| 22((0.7)x02) is bounded using (6.10) and Gi_,,/2(p1,h, p2,n) converges to
Gi—m2(p1, p2) ae. Since (p15, + pa,n)™/? converges to (p1 + p2)™/% in L2((0,T) x ), there exists
a function g € L2((0,7T) x Q) such that, up to a subsequence,

[(pLn + p2.0)™? < g.

Then using (6.23),

|G1—m/2(p1hs p2.0) — Giomy2(p1, p2) PV il* < 47|V 5] L € L'((0,T) x Q).

Lebesgue’s dominated convergence theorem implies that the second term converges to 0 when
h goes to 0.

The third term goes to 0 because V(py 5 + p2.n)™/? converges weakly to V(p1 + p2)
Lz((O,T) X Q) and Gl_m/g(pl,pg)Vrbi S Lz((O,T) X Q)

m/2 in

O

6.3 Crowd motion with diffusion for two species

In this section we will prove an existence result for system of Fokker-Planck equations coupled by
hard congestion on the sum. In other word we prove the existence of weak solution in (6.1). This
system can be seen as gradient flow in a Wasserstein product space. Using the Jordan-Kinderlherer-
Otto scheme ([65]), we construct two sequences defined in the following way: Let h > 0 be a time
step, we construct a sequence (p’f)h, p’ih) with (p%h, pg,h) = (p1,0, p2,0) and (plﬁll, pgzl) is a solution

of

z;{ W3 (pis Pn) + Fi(pi) +Vilpi) | (6.24)

PI:PZ)E

where K := {(p1,p2) € P*(Q)? : p1 + p2 < 1} and [Q] > 2. The existence of these sequences
is obvious by standard compactness and 1.s.c argument. As before, we define the piecewise constant
interpolations p; , : RT — P3(Q) by

pin(t) == pit,  ift € (kh, (k+1)h].

6.3.1 Properties of sequences
Estimates and convergences
Lemma 6.10. Minimizers of (6.24) satisfy pﬁh >0 a.e. and log(pfyh) € LY(Q).

Proof. The proof is the same as in lemma 8.5 from [112] (see also lemma 6.7). Indeed we can use
a constant perturbation p because (p, p) is admissible in (6.24) (p+ p = 2/|Q] < 1). O

This lemma will help us because it implies the uniqueness of the pair of Kantorovich potentials
from pk+1 to pf ', and then the existence of the first variation of Wi(-, pi—f ) (propositions 7.18 and
7.17 from [112]).

Moreover, standard gradient flow theory implies that for ¢ € {1,2} and for all k > 0,

N—
Plf,h + Pg,h <1, fl(ﬂ?,h) <G, W Pz mpﬁl) < Ch, (6-25)
k=0

,_.

as in proposition 6.3. Using (6.25) and the refined version of Ascoli-Arzeld’s theorem (see [4],
proposition 3.3.1), p; , converges to p; € C*/2([0,T],P2(Q)) in L= ([0, T], P2(2)).

In order to obtain an estimate on the gradient, we apply the flow interchange argument as
previously. We keep same notations than in the previous section. We note 7; the heat flow with
initial condition pﬁh. Since the heat flow decreases the L>°-norm, (n;(t),72(t)), defined in (6.11), is
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admissible for problem (6.24), for all ¢ > 0. Then using the same computations than in proposition
6.5, we obtain

1/2 1/2
||P1,/h ||L2((0,T),H1(Q)) + ||P27/h ||L2((0,T),H1(Q)) <C. (6.26)
With the same argument as in the previous section, we obtain the strong convergence of p; p,
to p; in L*((0,T) x Q).
First variation and pressure associated to K

Lemma 6.11. Let (p’fjll,pgf) be the unique solution of (6.24). Then for all (p1,p2) € K,
[ o= ok + [ 05 o=k 2 0 (6.27)

k+1
where YT = %Th +Vi+1 —l—log(pfﬁl) and Lpfj;l is the optimal (up to a constant) Kantorovich
potential in Wo(p' 1, pf,h).

Proof. We refer to the proof of lemma 3.1 from [89]. O
In the next proposition, we introduce the pressure associated to the constraint /.
Proposition 6.12. There exists pr > 0 such that for all, k > 1,

Vsﬁf’,h
h

Vpp = — — YV, — Viog(pl), (6.28)

fori=1,2 and py(1—pf, —ph,) =0 a.e.

Proof. Before starting, we remark that (6.27) can be rewrite as

/w’fh1+/¢§h2 >0,
Q Q

for all functions hi, hy such that

1k _ ok ok
h1+h2<%, hi > Z“" and /hl:o, (6.29)
Q

for all e > 0. Let S := {Plf,h + pgvh = 1} be the set where the constraint is saturated.
First, we choose ho =0 on 2 and h; =0 on S. Then we have

Yrhy > 0.
Sc

Since ¢ is not fixed and p’ih > 0 a.e., this implies that there exists a constant C such that y¥ = C;
a.e. on S¢. And using the same argument, with h; = 0 on  and he = 0 on S, we find a constant
C5 such that w’g = (C5 a.e. on S°.

Since h; satisfy (6.29), we have

\/(f(/}llC - Cl)hl + / (1/)5 - Cz)hz 2 0.
Q Q

Now if we choose hy = h and ho = —h on S and we interchange after, we find
[ (wh=cn -t -cpn=o.
for all h € L>(£2). We conclude that (1)f — C;) = (5 — Cy) = ¢ a.e on S. This implies that

S
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But, since hy + ha <0 on S, ¢ <0 a.e on S. Then we define pf} by
ph = (C1 = 91)4 = (Co — ¥5) .

We define the piecewise interpolation p : Rt — W1H1(Q) by
pult) ==pitt, ift € (kh, (k+ 1)h).

We remark that py(¢) > 0 and for all ¢ > 0, pp(£)(1 — p1,n(t) — p2,n(t)) = 0 a.e. Moreover, we can
immediately deduce the following estimate on the pressure.

Proposition 6.13. For all T > 0, py, is bounded in L*((0,T), H*(Q)).

Proof. First, we prove that pj is bounded in L?((0,7) x ) and then we will conclude using
Poincaré’s inequality. By definition of prH, we have

/‘Vle»l 2 plch}rll +pk+1) _ Z/ ‘v'(/}z, hk+1|2 k+1

2
V(;Sk';;l | pk-}&l-l
< C /71 P /sz B / i
; “‘ h ! o
2
1
< X (EWHeku ki) + CH I Pl )
=1

where the last line is obtained using the fact that VV; € L*°(Q). Summing the previous inequalities
over k and using (6.25) and (6.26), we obtain that

T
/0 19O (010 0)+ pan(t) < C.

And since pp,(t) = 0 a.e on {p1,1(t) + p2.n(t) < 1},

/OT/Q|Vph(t) / / V(O (t) + pon(t)) < C.

We conclude using the same argument as [94]. Using Poincaré’s inequality, since |{pp(¢t) = 0}| >
{p1.n(t) + p2n(t) <1} = [2] —2 > 0, we obtain that py, is bounded in L?((0,T), H(£2)). O

Proposition 6.14. Let h > 0, for all T > 0, let N such that N = L%J Then for all (¢1,¢2) €
C>([0,T) x R™)! and for all i € {1,2},

T N—1
|| ounttaioot.a st + | piote)ono. do=h Y /Q VVi(e) - Véiltn, 2)p (@) do

+h2/w’f“ Vit dx+hZ/Vp"“ Vi(tr, )pi 1" () do
N—-1
k=0 Y 2xQ

where ty, = hk (ty :=T) and ’yﬁh 1s the optimal transport plan in WQ(p§h7pi-}tl). Moreover, R is
defined such that, for all ¢ € C°([0,T) x R™),

[R[)(2,y)| < *IID Sl o= (f0,7) xmm = yl*.

Proof. We multiply (6.28) by p]“'1 and the proof is the same as in proposition 6.9. O
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6.3.2 Proof of theorem 6.2

First, we recall the lemma given in [89, 94] useful to analyse the pressure field.

Lemma 6.15. Let (pn)n>o be a bounded sequence in L2([0,T], HY(Q)) and (pn)n=0 a sequence
of piecewise constant curves valued in P(S2) which satisfiy Wa(pn (), pr(s)) < CvVt —s —h for all
s<t€l0,T) and pp, < C for a fized constant C. Suppose that

P20, pu(l—pn)=0, pn<l,

and that
pn — p weakly in L*([0,T], H*(Q)) and p;, — p uniformly in P(S).

Then p(1 —p) = 0.

We apply this lemma to pp := p1,5 + p2,, and pp. According to proposition 6.13, p, weakly
converges in L?((0,T) x ) to p such that

p=0, p(l—p1—p2)=0, p1+p2<L1. (6.30)

Moreover, using the estimate on py,, we know that Vp;, weakly converges to Vp in L2((0,7T) x Q).
Then since p; p strongly converges to p; in L'((0,T) x Q) with p; ,p; < 1, we have p; ,Vpy,
narrowly converges to p; Vp.

Using the same argument as in the previous section, Vp;j converges in M™((0,T) x Q) and
the other terms, which are linear, in proposition 6.14 converges because of the convergence of p; 5

in L*=((0,7),P(2)).

Remark 6.16. With a finer analysis, we can prove that Vp; , converges weakly to Vp; in L*((0,T)x
Q). Indeed, if we use again (6.28) and pf}tl < 1, we obtain that

k+1‘2

|vpfj21|2 <C <|<‘0“h

S+ [TV + |Vp§“|2> .

Since Vpy, is bounded in L*((0,T) x Q) and

N1 gt
Cin I° 4
h E #pi,h <C,
k=0 7€

because of (6.25), then
IVpinllLzomxe) < C.

6.4 Links between these systems and remarks on uniqueness

In this section, we focus on the special case where V; = Vo = V € WhH*(Q). We denote
(P1,m» P2,m) and (p1,00, P2,00) solutions of (6.1) and (6.2), respectively. In the following, we prove
that (p1.m, p2,m) and (p1,00, P2,00) are unique and that (p1,m, p2,m) converges to (p1,00, P2,00) in L'
when m goes to +oo.

These results are based on the remark that py ., + p2,m solves

Op — Ap — div(pVV) — div(uVF,, (1)) = 0, (6.31)

with initial condition ;=g = p1,0 + p2,0- By geodesic convexity of & and F,,, we know that
solution of (6.31) is unique (see, for example, [35] theorem 6.1 and [73] theorem 7.1). In the next
proposition, we give an estimate L2((0,T), H*()) of F!, (1) independant of m.

Proposition 6.17. Let p,, be the solution of (6.31). Then F), (fim) is bounded independently of
m in L?((0,T), H(2)), for all T < +oo0.
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Proof. We use the flow interchange argument with 8, = Av™ ! 4+ eAv to obtain a L? bound of
VE! (ttm). We refer to lemma 7.30 from chapter 7 for the proof of this result. Using the L'-bound
of F! (um) and the Poincaré-Wirtinger inequality, we conclude the proof. O

Proposition 6.17 and an L!-contraction argument yield the following:

Theorem 6.18. For 1 < m < +oo, there is a unique solution of (6.1) ((6.2) if m = +o0).
Moreover, if (p1 , Pb ) and (p3 ., P3,,) are two solutions of (6.1) ((6.2) if m = 400),

”pzl,m(t? ) - p?,m(tv ')”Ll(ﬂ) < ||p%,m(07 ) - pzz,m(oa ')”Ll(ﬂ)-

Proof. First if m < +o0, since p1m,m + p2,m solves (6.31), then it is unique and according to
proposition 6.17, py, := F! (p1.m + pa.m) is in L2((0,T), H*(Q)). Moreover, if m = +o0, we have
already shown that the pressure po, associated to the constraint pi . + p2,00 < 1 in theorem 6.2 is
in L2((0,T), H'(9)). According to [85], we know that (p1,00 + p2,00, Peo) is unique.

Now, we will give the proof of the L!-contraction. We follow the line of [1]. We start to remark
that pf ,, solves

atpi,m - Apll,m - div(pi,m(vv + vpm)) = 07

for all 1 < m < +o0.
We note Qp := (0,7) x Q. For § > 0, define

C5 = ¢5(pim - p%,m)7

where

if 2 <0,
if0<2z<9,
if z>6.

Ps(z) ==

—oln ©

Using (5, or a smooth approximation of (s in the equation satisfies by pi ,,, and pf ,,, we obtain

[ 0ok = stis == [ (@l = )TV + ) Vs + (ol = ) V65)
T T

We introduce QJ. := Qr N {0 < pim - pim < ¢}. Then by definition of (5 and using Young’s
inequality

/ 6t(p%,m - pim)Cé
Qr
1
= —g //Qé ((pim - pim)(vv + me) . V(pim — pim) + |V(pim _ p%,m)|2) dadt
T
1 1
Q. o
1
<SIVV 4+ Vomliznd = 0,

when § N\, 0.
If we reverse the roles of pj ,, and p ,,, we have

‘// at(|p%,m - p%,m|) < 0’
Qr

which concludes the proof.
O

In the end of this section, we prove that (p1m,p2,m) converges to the solution (o100, P2,00) Of
(6.2) when m 7 +o0.
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Theorem 6.19. Up to a subsequence, as m — +oo, the solution of (6.1) (p1.m,pP2,m) con-
verges strongly L*((0,T) x Q) to (p1.005P2.00) and pm = F' (p1.m + pa.m) converges weakly in
L2((0,T), H (Q)) to poo, where (p1.00, P2,00, Poo) 8 the solution of (6.2).

Proof. First we prove the convergence of p; ,,. We start noticing that the estimate (6.10) does not
depend of m and then using remark 6.4, we have

1oi 2 2 0.0y, 11 ) < Cr and Wa(pim (£), pim(5)) < Clt — 52,

for all t,s < T and with C independant of m. Then using the Rossi-Savaré theorem we obtain
that p; m converges to p; o in L'((0,T) x ). Moreover, proposition 6.17 gives that p,, converges
weakly in L?((0,T), H'(2)) to ps and obviously p,, > 0.

To conclude the proof, by uniqueness of the solution of (6.2), we only have to prove that

P1,00 + 2,00 < 1 and poo(l — p1.00 — P2,00) =0 a.e.

We start to show that p1 o0 + 2,00 < 1. To do that we use the argument of lemma 4.4 from [2].
The estimate (6.8) does not depend of m so we have

T
/"/mm+mmm<m7na
0 Q

and for m > 2,

m(m —1
// (P1,m + p2,m)™ dedt > // Q(pl,m + p2,m — 1)2 dxdt.
{Pl,m+P2,7n21} {Pl,m+P2.7n>1} 2

Then we obtain

T ) 2C
/0 /Q(pl’m + p2.m — 1)1 drdt < = 0, (6.32)

when m — 400, which implies that p1 oo + p2,00 < 1.
To obtain the second part of the claim, we start to prove

T T
/ / P (1 — p1,m — p2,m) dedt — / / Doo(l — P1.00 — P2,00) dxdt.
o Ja o Ja

Indeed we have

T
/ ,/g (pm(l — P1m — p2,m) _poo(l — Ploo — p2,oo)) dl‘dt’
0 2

<

T
/ / (pm _poo)(]- — Pl,co — P2,oo) dxdt
0 Q

+

T
/ / pm(pl,oo + P2,00 — P1lm — p2,m) dxdt
0 Q

The first term on the right hand side goes to 0 because p,,, converges weakly to p. in L?((0,T) x
Q) and 1 — p1 00 — p2.00 € L=((0,T) x Q) C L((0,T) x Q). To handle the second term, we split
the integral in two parts.

T
’ / / pm(pl,oo + P2,00 — P1lom — p2,m) dlﬂdt‘
0 Q

// Pm(p1,00 + P2,00 = P1,m — P2,m) dxdt
{pP1,m+p2,m>1}

// Pm(P1,00 + P2,00 — P1,m — P2,m) daxdlt
{plﬁm""PZ,mgl}

<

+
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Since p1.00 + P2,00 < 1 and p,, >0,

’ // pm(pl,oo + P2,00 — P1,m — p27m) dﬁﬁdt‘
{p1,m+p2,m=>1}

// Pm (1 = p1,m — p2,m) dzdt
{p1,m+p2,m=>1}

. 1/2
1/2
< ”pm”L/z((O,T)xQ) </0 A(Pl,m + p2,m — 1)3_ dxdt)

c
Sz 70

<

because of proposition 6.17 and (6.32). Moreover, on {p1,m + p2.m < 1}, pm < 1, so we obtain

// pm(pl,oo + P2,00 — P1,m — pz,m) dxdt
{p1,m+p2,m<1}

< P10 = PrmllLr 0.1y x0) + 192,00 = P2,mllL1((0,7)x02) = 0,

by L!-convergence. Now, to conclude the proof, since poo(1 — p1.0o — p2.00) = 0, we just have to
prove that

T
/ / Pm (1 — p1,m — p2,m) dxdt — 0.
0o Jo

And since we already know that

// P (1 — p1,m — p2,m) dxdt — 0,
{p1,m+p2,m=1}

we just have to prove that

// Pm (1 = p1m — p2,m) dzdt — 0.
{p1,m+p2,m<1}

Since py, 1= %(pl,m + p2,m)m71a we have

m _
o< J| P (L=prm—pam) drdt < — (1] lprm + prml| 5" = llorm + p2oml| )
{p1,m+p2,m<1} m—

which concludes the proof.

6.5 Simulations

To end this chapter, we propose to use the algorithm presented in chapter 3 to give numerical
simulations. The first system we study is transport equation with porous media congestion,

815[)1' - le(pZVF/n(Ollpl + Olgpg)) - le(pZVV;) = 0, 1= ]., 2, (633)

which, as we saw, is the gradient flow in Wasserstein space for the energy
E(p1,p2) = / Vipr +/ Vap2 +/ Frn(ca1p1 + agps).
Q Q Q

ArgUing as in section 327 Setting ¢ = ((bla ¢2)7 (D(bl? D(b?) = (at(blv v¢17 8t¢27 V(b?)a q= (fh» (]2) -
(a1,b1,c1,a9,b2,¢2), 0 = (01,02) = ((p1,m1, 11), (2, M2, fiz)) and defining the convex set K by
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3.12, one can rewrite the discretization of the JKO scheme with £ as a saddle-point problem for
the augmented Lagrangian

2
+ Z/Q ((Mz’;mi) - (Doi — (ai, b;)) + ng(bz _ (ai,bi)|2)dl‘dt

2
r ~
+ /Q (5101, 2) + ci(@)Pdz = (9:(1,2) + cs(@))is() ) do
i=1
+ & (2, 9) .
T T
One can then again use ALG2 for this Lagrangian, note that since the coupling between the two

1 C2
pb g K

species only appears in term 7E* ( the only significant difference is in the proximal problem

in the variables ¢ = (¢1, ¢2) of the second step of the algorithm. Taking r = 1 for simplicity and
using remark 3.1, we see that the two-populations analogue of 3.26 simply takes the form

(@), 5 (@) = Proxeee o) (= 01 (1,2) + i (@), —05 7 (1) + 5 (1))
= (=6 (@) + (@), —05 (1, 2) + i3 ()
= prox () (<07 (1, @) + i (2), 95T (1,2) + i3 (x))

Then setting V; = Vi(z) and &; = —¢! ™ (1, z) + i? (x), PIoX,¢(,, )(C1,C2) is obtained by solving

2
1
inf { Z i(cl —@)? +1Vic; + TF,(ancq + agey) ¢ ¢ > O}.

i=1
and the solution is given by
ProX gy 1(C1,C2) = (€1 — (€1 — Vi — Ta1 Iy, (w)) 4, €2 — (€2 — TV — Taa Iy, (u))4)
where u is the nonnegative root of
c—ai(ep —1V1) — as(a — Vo) + 7(a1 + ) Fl, (¢) = 0.

Figure 6.1 represents two populations crossing each over subject to porous media congestion
with a; = as = 1 and m = 50. We remark that the two populations have the same behaviour and
when they cross each over, the density has to spread. In figure 6.2, we study the same behaviour
but subject to the porous medium constraint on p; + 2p2. We can see that the population where
the constraint plays a higher role, ps, has to deviate in order to let pass p; through.

In the two populations crowd motion model with linear diffusion, prox,¢(, )(1,¢2) is obtained
by solving

2
1
inf { Z 5(01- — )2+ 7(cilog(cs) + Vies) = ¢ >0, ajer + agey < 1}

i=1
whose solution is again quasi explicit. More precisely
ProX,¢(, ) (C1,¢2) = (¢r(¢1 — 7V1), - (C2 — 7V2))
if a1¢,(¢1 — 7V1) + aad, (G2 — 7Va) < 1 where ¢, («) is the positive root of

c+7(loge+1)=a
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and

1 —onir <51—7'V1—%§(E2—TV2))

Q2

«
ProX g(, ) (C1,02) = | ¥r (51 —TVi— a—:(ﬁz - TVz)) :
where 1, () is the root in (0,1/ay) of

2
1—
<1+<ﬂ> )c+7'log(c)—rﬂlog( alc) =a+a—;,
o) Qg Qg az

otherwise. This proximal computation therefore only involves scalar monotone equations and is
therefore not more complicated than what we saw in the case of a single equation.

In figure 6.3, we see two populations which cross each other. When they start to cross each
other at time ¢ = 0.05, we remark that the density of p; and py decrease and the sum is saturated.
Figure 6.4 represents the same case but in this example the second population is bigger than the
other one, meaning that we can allow twice less people of py than p; at every space point . In
figures 6.5 and 6.6, we add a obstacle in the middle. This can be done using a potential with very
high value in this area.

t=0 t =0.05 t=0.1 t=0.15 t=20.2

Figure 6.1: FEwvolution of two species crossing each other with porous media congestion, m = 50.
Top row: display of p1 + p2. Bottom row: display of p1.
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t=0 t =0.05 t=0.1 t=0.15 t=0.2 t=0.3

Figure 6.2: FEwvolution of two species crossing each other with weighted porous media congestion,
(p142p2)™, m =50. Top row: display of p1+ p2. Middle row: display of p1. Bottom row: display
of pa.

t=0 t =0.05 t=0.1 t=0.15 t=02 t=0.3

Figure 6.3: Evolution of two species crossing each other with density constraint. Top row: display
of p1 + p2. Bottom row: display of p1.

t=20 t=0.05 t=0.1 t=0.15 t=02 t=03

Figure 6.4: Fvolution of two species crossing each other with weighted density constraint, p1+2ps <
1. Top row: display of p1 + p2. Middle row: display of p1. Bottom row: display of po.
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t=0 t=0.1 t=0.2 t=0.3 t=04 t=20.5

Figure 6.5: Fwvolution of two species crossing each other with density constraint and an obstacle.
Top row: display of p1 + p2. Bottom row: display of p1.

t=20 t=0.1 t=0.2 t=0.3 t=04 t=20.5

Figure 6.6: Evolution of two species crossing each other with weighted density constraint, p1+2ps <
1, and an obstacle. Top row: display of p1 + p2. Middle row: display of p1. Bottom row: display

of pa.
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Chapter 7

Nonlinear reaction-diffusion systems

In the previous chapters, we investigated existence of solutions for equations or systems with mass
conservation. Nevertheless in biology, for example for diffusive prey-predator models, this property
may not be satisfied. In this chapter, we study two different methods to extend the Wasserstein
gradient flow to general parabolic equations with reaction terms.

The first one was proposed by Kinderlherer and Walkington in [70]. They presented a numerical
algorithm based on a splitting JKO scheme. Given a time step h and the solution at step hk, pZ,
they introduced an intermediary step where the mass is updated, ﬁZH = p¥ + hf(pf) and then
they use the usual JKO scheme

. 1 -
P+ e argmin {%WS(p, ) + f<p>} .
\

~k+1
p.lpl=Ipy"

The motivation of this update comes from the equation we want to solve. If we integrate in time
and in space

Op — div <pv(?p:(p)) = f(p),

with Neumann boundary condition, V%(p) -v =0 on 012, between two times t + h, t, then

/Qp(t—&—h,:c)dm:/Qp(t,x)dm+/tt+h/9f(p(s,m))dccds,

which implies the formula if we assume that p is constant in [¢t, ¢ + h).

In [115, 103], Petrelli and Tudorascu proved the convergence of this scheme for general diffusion
problems with drift, diffusion coefficient and forcing term which may be explicitly time dependent.
The proof of the convergence of this scheme is based on a maximum principle and the Fréchet-
Kolmogorov theorem. The first part is an extension of the maximum principle developped by Otto
in [97], to deal with potential terms. The Fréchet-Kolmogorov theorem gives strong convergence
which allows to pass to the limit in the Euler-Lagrange equation.

The advantage of this scheme is that the intermediary step permits to have a good control on
the L°°-bound. In the first part of this chapter, we investigate the case of several species with
interactions in reaction terms. The proof is based on the splitting scheme introduced in [70]. First,
we extend the proof of the maximum principle of Petrelli and Tudorascu to systems. Moreover,
we propose a new method to recover the strong convergence. We use the bounded Lipschitz dis-
tance to obtain time-compactness and the space compactness is recovered using the Euler-Lagrange
equation. Then, the strong convergence is obtained using an extention of Aubin-Lions lemma due
to Rossi and Savaré in [107]. Finally, several extensions of (7.1) are presented and we give some
numerical results based on the augmented Lagrangian method introduced in [17] and presented in
chapter 3.

The second method is based on a splitting method for the Wasserstein-Fisher-Rao metric.
This metric was introduced in [43, 44, 71, 80, 81| by three different teams at the same time.

105
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It is an extension of the Wasserstein metric allowing for mass variations. In [63]|, Gallotiet and
Monsaingeon proposed a splitting method to solve gradient flows for this metric. They remark that,
infinitesimally, the Wasserstein-Fisher-Rao metric should be the orthogonal sum of the Wasserstein
metric and the Fisher-Rao metric, which leads to a natural splitting scheme to study Wasserstein-
Fisher-Rao gradient flows. For a functional &, they split one-step of minimizing scheme for &
between one substep of JKO scheme with £ and one substep of minimizing scheme for £ with

respect to the Fisher-Rao metric
Jdpo [P
dA dA

1
FR(pg, p1) == min / / |74|? dpy(x)dt = 4/
(pe,re)€EAFRRIPoP1] Jo JQ Q

where the admissible set Apg[po, p1] is the set of curves ¢t € [0,1] — (p¢,7¢) such that ¢ — p; is
weakly continuous with values in M™(Q) with endpoints p;—o = po and p;—; = p; and

2
d,

8tpt = Pt in D/((O, 1) X Q),

and A is any reference measure such that pg and p; are both absoltely continuous with respect
to A. In [63], they proved that discrete solutions constructed using this scheme converge to the
solution of

Op — div(pV(F'(p) +V)) = —p(F'(p) + V),

ew= [Fo)+ [

However, this class of equation is very restrictive because there is a strong link between the diffusion
and the reaction since we minimize the same energy at each substep. In the second section of this
chapter, we propose, in collaboration with Galloiiet and Monsaingeon, an extension of this method
to treat a larger class of equations where there is not link between the diffusion and the reaction.
Moreover, we apply this method to solve the tumor growth model introduced in [101].

if

7.1 Variational principle for reaction-diffusion systems

In this work, we investigate existence of solutions to general parabolic systems without cross-
diffusion but with interactions in the reaction terms,

{ Oip1 — APy (p1) — div(p1 VV1) = fi(p1, p2) (7.1)
Orp2 — APy (p2) — div(p2VVa) = fa(p1, p2), '

on RY xQ with initial condition, p;(0,-) = p;o. In the sequel, Q is an open bounded subset of R™
and (7.1) is endowed with no flux boundary conditions.

The section is organized as follows. In section 1, we recall some facts on Wasserstein spaces
and we state our main result. Section 2 is devoted to a time-compactness result based on the
maximum principle introduced in [103]. In section 3, we recover the Euler-Lagrange equations and
prove the space-compactness estimate. Then we pass to the limit in section 4 using an extension of
Aubin-Lions lemma. We present in section 5 several extensions of this result and give a uniqueness
argument in section 6. The final section 7 is devoted to numerical simulations.

7.1.1 Preliminaries and main result

Wasserstein space and bounded Lipschitz distance In this paragraph, we recall some re-
sults from optimal transport theory and we refer the reader to the textbooks of Villani [116, 117],
Ambrosio, Gigli and Savaré [4] and Santambrogio [112] for a detailed exposition.

Let © be an open bounded subset of R", we denote M., () the set of nonnegative integrable
functions with mass m. Then the Wasserstein metric of order 2 is defined for all p, p € M,,, () by

W lpop) = _inf //Q o=y dr(a.g),
) X

YEIL, (
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where the set of admissible plans is
M (p, ) := {7 € M (XX Q) & Tupyy =p, my v = u} .

We recall also that the 1-Wasserstein distence between p, u € M,,(€2) is given by

Wim(ps ) : inf // |z —yldy(z,y),
’yEH (1) JJaxa

and the well-known Kantorovich duality states that W7 ,,, can be also expressed as

W1 m(p, i) := sup {/ pd(p— ) : p1— Lipschitz on Q} .
Q

Since we have to deal with variation of mass, we also introduce the bounded Lipschitz distance
defined by, for all p, u € L' (Q;RT),

doae (o) = sup{ [ 6a(p= 1) s [ollmiay + I6llip <1}, (7.2
e 6(2) = 6(0)|
T)— oy
18]l Lip 1= sup ————=.
Tz#Yy ‘.73 - y|
We remark that for all p, u € L*(2) N L>(Q),
der-(p, 1) < llp = pllLr) < Qe — pllL=(9), (7.3)
and, if p and p have the same mass m, we have
dpr-(p, p) < Wi(p, ) < mWa(p, ). (7.4)

Assumptions and main result The nonlinear diffusion terms are given by continuous strictly
convex superlinear functions F; : RT — R of class C?((0,+00)) which satisfy F;(0) = 0 and
define P;(x) := «F/(z) — F;(z) as the pressure associated to F;. Since F] is strictly increasing,
continuous on (0, +00) and F/((0,+00)) = (F/(0),+o0), F/ is inversible and (F})~! is increasing
and continuous. In addition, F; verifies one of the following technical assumptions, for all r large
enough and for all @ > 1,8 > 0, z,y € R, either

aF{(ar + f) = F{'(r) <0 and (F;) ™" (z +y) < Ai(F) ™ (2)(F) ™' (y),, (7.5)
where A; is a positive constant, or
F/(r)>1and oF (ar + 8) — F/'(r) > 0. (7.6)

Moreover, we assume that P; is continuous on [0, +00). Define F; : M(Q2) — R by

Jo Filp(x))dz if p<< L7,
Filp) = { +oo otherwise.
Typical examples of energies we have in mind are F;(z) := xlog(z), which verifies (7.5) and

gives a linear diffusion driven by the laplacian, and F;(x) := 2™ (m > 2), which verifies (7.6) and
gives porous media diffusion.

The reaction terms are given by continuous functions f; : [0,+00) X [0,400) — R such that
there exsits K > 0 such that, for all zq, 25 € [0, +00),

filzi,22) < K(1+z1 + 22), (7.7)
filz1,22) > —K(1 4 x2)z1, fa(z1,22) = —K(1 + 21)72 (7.8)
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For example, these assumptions can been verified for model of diffusive prey-predator system
(cf [96]) with the choice

Bop2
1+ Eo’

Ji(p1,p2) = Ao (1 — %) _

and f2(p1,p2) = — Dpo, (7.9)

where ¢ = min(K, p1), A,B,C,D,E, K > 0. In this model, p; is the density of preys and po
is the density of predators. Another model is the one of pattern formation in animal coating (cf
[96]) where f; and fo are given by

fi(p1,p2) = A= p1 — h(p1, p2), and fao(p1,p2) = C(B — p2) — h(p1,p2),

Dpip2

where h(pl,pQ) = TFpi+Epr°

Remark 7.1. Assumption (7.7) can be replaced by, for all p1, ps € L=(Q),

filp1, p2) < K(1+ [[p1llze= (o) + [lp2llL=())-

This modification allows to consider nonlocal reaction terms like

fi(phpz)=/QWi,l(x7y)p1(y)dy+/QWZ-,Q(w,y)pz(y) dy,

with Wl"j >0 and Wi’j S L;O(Q, Lz(Q))
Definition 7.2. We say that (p1,ps) : [0,400) — LY (,RT)? is a weak solution of (7.1) if, for
all T < 400, p; € L=((0,T), L*(2)), VPi(p;) € L?>((0,T) x ), fi(p1,p2) € L=((0,T), L*(2)) and

/ / i — V- VPpi) — V- Vs + bfilpu, p) devdt = / 6(0,2)pio(x) dz,  (7.10)

for every ¢ € C°([0,+00) x R™).
Now we state the main result of this section,

Theorem 7.3. Assume that p;o € L'(Q,R") satisfies ||po,i|| 1) < Mo and V; € W1>°(Q), then
system (7.1) admits at least one weak solution.

The proof of this theorem is given in the next section and is based on a splitting scheme. This
scheme was proposed in [70] by Kinderlehrer and Walkington to present a numerical algorithm to
solve parabolic equations with forcing terms. Then in [115, 103], Petrelli and Tudorascu proved
the convergence of this scheme for one equation with nonnegative forcing term.

Let h a time step, for ¢ € {1,2}, we define two sequences, (pﬁh);.c and (ﬁﬁh)k such that P?,h =
ﬁ%h = pi 0, and for all £ > 0,

<k
pﬁ;l =¥, + hfi (05 s 051, . 711)
. ~ 1 .
pz,h € argmlnpe/\/lmwrl QL}LW2277L79+1 (P, pz-}t ) + ‘/—.;(p) + Vi(p)v

where m’CJrl fQ [)iﬁh'l dz. In the sequel, we fixe a time 7" > 0 and we note t, := hk for all k, h
such that hk < T'. For h ﬁxed7 we note IV := LNJ Without loss of generality, we can assume that
T = Nh. Then we define the piecewise interpolation p; , : RT — LY(Q;R™) by

pin(t) = pipt,  ift € (hk,h(k+1)].

7.1.2 Properties of sequences and time compactness

First, we have to prove that the sequences (piC p)k and (ﬁf »)k are well defined at least for A small
enough. Let R be defined by R := max {||Vi||r= (), [|V2|lL=(o) }- In the sequel, we define My by

My = max((Fy) " (F/((2Mo + AR + 1)eX7T) + 2R), (F3) " N(F}((2Mo + 4R + 1)e5T) + 2R)),
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where K = max(K (1 + C),2K) and C = max(C}, Cs) with

O e A2(F3)7Y(2R)  if Fy satisfies (7.5), O A (F))"Y(2R) if Fy satisfies (7.5),
271 if Fy satisfies (7.6), ' | 1 if F satisfies (7.6).

We start to recall a general maximum principle for the JKO scheme proved in [103].
Lemma 7.4. Let yp € L*(Q,R") (u(2) = m) and p one minimizer in M., of

1

57 Wam (o 1) + /Q(F(p) +Vp),

Enlu] = p
where ' : RT — R is a convex continuous function of class C*((0,4+00)) and V€ Wh>(Q). If
there exists C > 0 such that p < (F')™1(C = V) then p < (F')~HC - V).

Remark 7.5. We remark that (F')~1(C — V) is a steady solution of the equation
Op = AP(p) — div(pVV) = div(pV(F'(p) + V).

Since we have a comparaison principle for this equation, at the continuous level the conclusion of
lemma 7.4 is easy. Lemma 7.4 proves this result at the discrete level.

Proof. This lemma is an adaptation of the one of Otto in [97] and Agueh in [1] to handle the
potential energy and the proof comes from [103]. We note U := (F')~1(C — V). Assume that
E := {p > U} has positive measure. Take v € II(u, p) to be the optimal transport plan, then
Y(E€ x E) > 0. Indeed, otherwise we have

p(x) dxg/ U(z) dx,

/EU(x)dx</Ep(x)dx:v(QxE):q/(ExE)<7(E><Q):/ )

E

which gives a contradiction. Consider v := 1gcx gy and denote vy and vy its marginals. We
remark that vo(E) = v1(£°) = 0. For ¢ small enough, we define p. := p+e(vg — v1) € M,
(because vg(€2) = y(E° x E) = v1(2)) and ~. by

//me(x,y) dve(z,y) == //QXQ«S(:E,y) dv(w,y)ﬁ//%[i(%w)—£(x,y)] dy(z,y).

Since 7y € II(y, p) and v has for marginals vg and vy, we obtain that . defines a transport plan
between p and p.. We want to prove that p. verifies

Enlp](pe) < Enlul(p),

which gives a contradiction by definition of p.
We first remark that, by definition of ~.,

Winloe) = Wm0 < = [ o =P drtey) <o,
°X
because y(E° x E) > 0. So we have

Elillos) < Enlil(p) + /Q [F(pe) — F(p) + Ve — Vil da
< Elul(p) + B,

where

Ble) == / [F(p+ e(wo — 1)) — Fp) + £V (vo — )] da.

To conclude the proof, we have to show that 3 is negative for € small enough. We have

B(0) = - /Q(Uo —v1)(F'(p) + V) da.
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Since F” is increasing and vg(E) = v1(E°) = 0, the decomposition

WlF'(p) = F'©)]da = [ (o0 = o)V + P/(0) do

B'(0) = —/EUl[F'(p) — F'(U)] dx+/

c

shows that 8/(0) < 0. Indeed, the last term vanishes because by definition of U, V + F'(U) = C
and vg and vy have the same mass. So § is decreasing for € small enough and since 5(0) = 0, we

can choose ¢ such that, 8(g) < 0, which gives a contradiction.
O

Proposition 7.6. For all h < m, (pﬁh)k and (ﬁﬁh)k are well defined. For all k such that
hk < T; p?,haﬁ?,h € L1(97R+) and

Hp?,h”LOC(Q)a ||ﬁ§€,h||L°°(Q) < Mr. (7.12)
Proof. We prove by induction that for all k£ these sequences are well defined and
108 nll e @) 185wl Loe (@) < (F))H(Fi (aik) — b + R = VA), (7.13)

with
ar k1 = (1+ Kh)ai g + Kh(1+ b7 5),
azk+1 = (1 + Kh)age + Kh(1+ b5 ),
a;0 = Mo + b,

where b; is defined by
b e 0 if F; verifies (7.5),
! 2R if F; verifies (7.6),

and
bf 5 = (F3)~'(Fy(azk) — ba + 2R) and b5 ; = (F)~ ' (F{(a1k) — b1 + 2R).

First, if £ = 0, then if F; satisfies (7.5),
P2 = 02 < My < (F))7H(E!(Mo) + R — V),

because (F})~! is increasing and R — V; > 0, so we proved the claim with b; = 0. Otherwise, if F;
satisfies (7.6), then x — F/(z) — x is increasing for x large enough and then

pin = Pin < Mo < (F{)7H(F{(Mo +b;) = bi+ R = V).

Now assume that for k£ > 0, pﬁh and ﬁﬁh are well defined and verify (7.13). Let i € {1,2} and
j € {1,2} with j # i. We first prove that ﬁfj{l > 0. Using (7.8) and (7.13),

ﬁfj{l(m‘) ﬂ?,h(x) —hK(1+ Pfh(@)ﬂfh(l‘)
pin(@)(1 = hK 1+ (F) " (F/(aix) — bi + R—V3)))

0,

VoV WV

because (F})~'(F/(a; ) —b; + R —V;) < Mr (see at the end of the proof) and h < m
Then using the definition of ﬁfﬁgl, (7.7) and (7.13),

~k+1

Pip () (1+ K)o} pllpee (o) + BE (1 + (|05 | L ()

<
< (1 + Kh)(Fi’)_l(Fi’(ai,k) —b;+R-— V;) + Kh(l + (Fj{)_l(FJf(aj,k) — bj + 2R))
< (L+ Kh)(F) ™ (F/(aix) —bi + R— Vi) + Kh(1 +b];).

It remains to show that

(1—|—Kh)(FZ.’)_1(Fi’(ai7k)—bi—i—R—Vi)—i—Kh(l—i-bf,j) < (Ff)_l(Fi’((l—i—Kh)ai,k-l-Kh(l—i—bﬁj))—bi—&—R—Vi),

?
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that is equivalent to prove
F{((+KR)(F) ™ (F](ai,p) =bit R=Vi) + Kh(14b7 ;) —(R=Vi) < F{ (1+Kh)ai, -+ Kh(1+07 ;) =bi.
To do so, we show that

q:s— F/((1+ Kh)(Fi’)fl(Fi’(ai,k) —b;+s)+ Kh(l+ bﬁj)) —s

is increasing, if F; satisfies (7.6), or decreasing, if F; satisfies (7.5). Since

q(s) = (L+Kh) [(F) 7 (Fl(air) = b+ )] F/(1+ Kh)(F)) 7 (F(aix) = bi + ) + Kh(14bf;)) - 1
_ (1+Kh)F;/((1+Kh)r+Kh(1+b§j))F%m—1,

where r = (F/)~™'(F/(a; 1) — b; + s). Then we obtain the result using assumption (7.5) or (7.6).
Now, if F; satisfies (7.5), then b; =0 < R —V; and q is decreasing so

q(R—Vi) < q(0),
and if F; satisfies (7.6), then b; = 2R > R — V; and ¢ is increasing so

q(R—Vi) < q(bs),

which implies that

3

Pt < (FD)N(F/(aips1) — bi + R—V3).
Since it € L*(Q;RT), it is well-known that pf " is well defined, see for example [65] or chpter

4. Then using lemma 7.4 we obtain

Pf}:l < (F) "N F/(aips1) — bi + R—V5),

3

that gives the result.
To conclude the proof, we have to bound a; ;. We remark that,

(F))~ (Fj(ajx) — b; + 2R) < Cjaj,

where 1 ) .
O Aj(F))~H(2R)  if F} satisfies (7.5),
J 1 if F; satisfies (7.6),

Then,
A 1 < (1 + hK)ai’k + hK(l + Cjaj,k).

If we sum, we obtain

a1 +azps1 < (L+AK(1+C))(ary + azy) +2Kh
< (1+hK)(a1k +aoy) + Kh,

where C' = max(Cy, Cy) and K = max(K (1 + C),2K). Then
a1 pi1 + az g1 < eKT(2Mo + by + by +1) — 1 < KT (2M + 4R + 1),
which concludes the proof. O

In the next lemma, we state an usual estimate in gradient flow theory, [65], and proved in this
case in [103].

. 1
Lemma 7.7. There exists a constant C' > 0 such that for all h < RO

N
Z W22,m,’i“ (pf,l"w ﬁf,h) < Ch. (714)
k=1
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Proof. The proof is the same as in [103]. Since pﬁh is optimal in the minimization problem and
ﬁﬁ 5, is a competitor, we have

Wim? (p?,hvﬁ?,h) < 2h (]:i(ﬁf,h) - ]:i(/)f,h) + Vi(ﬁi‘ih) - Vi(Pﬁh)) .

Moreover, F; is convex then
F(k) < R+ [ RGO )
< Filplnt) + hE (Mr)K (1 +2M7)|Q),
because F is increasing and (7.7). Moreover,
Vi(ﬁf,h) - Vi(ﬁﬁh) < Vi(ﬂﬁl) - Vi(Pf,h) + hK (14 2M7)|Q||Vi] L ()
Then we obtain
W2 (0 ) < 20 (Filpln ) +Vilokn ) = (Filokn) + Vilokn)) + Ch) .
Summing over k drom 1 to N, we have
N
> W3 (05 s By i) < 20 (Filpin) + Vilpio) — Filpin) — Vi(piy) + CT)
k=1
which concludes the proof because F; and V; are bounded from below and F;(p; ) + V; is finite

(F; is continuous on [0, Mr] and V; € L>®(2)).
O

The next proposition gives a time compactness result on p; 1.

Proposition 7.8. Fori € {1,2},

T—1
lim sup/ dpr~(pin(t+7), pin(t))dt = 0.
™0 n Jo

Proof. First, using (7.3) and (7.4), we remark that

k+1)

dpr-(Pin PiT, dpr- (s Ph ') + dpr- (575 o)

<
k ~k+1 k+1 ~k+1 k+1
< Cllpgn = 05 e @) + Cmi ™ Wa (75 050

Since mf < Mr|Q|, (7.14) and ||pf,, — 55 || L= () = O(h), we obtain

N—-1
> dpr-(pfy, pi")? < Ch. (7.15)
k=0

Let7>0,f0rallh<K

W, there exists j,r € N such that 7 = jh + v with v < h and
(5 + 1)h < 77, then
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T—r1
| dnituntt 7)., pun(e)
0
T—7J—1
=/ ZdBL*(pi,h(t+ (I+1)h), psn(t +1h))dt
0 1=0
T—1
[ e (unle 7)o+ gh)
0
N=j=1 4, -1
< ) / > dpr-(pin(t+ (14 1)), pin(t+1h)) dt
k=0 ‘=0
N—j—1 tht1
+ / dpr+(pin(t+7), pin(t + jh))dt
k=0 “te+1=Y
N—j—1j-1 N—j—1 '
<h dpr- (P2 o5 0 Y0 deee (AT
k=0 1=0 k=0
N—j—-1 j
<h Zd (piczwz’ ic;glJrl)
k=0 1=0
N-1
<A +1) Y dpr- (o} pkn)
k=0
No1 1/2
< rTNY/? dpr- (Pf,Jﬁ17 Pﬁh)2>
k=0
Then, using (7.15), we obtain
T—1
SI;LP/ dpr-(pi,n(t +7), pin(t)) dt < CT.
0
O
7.1.3 Euler-Lagrange equations and space compactness
Proposition 7.9. For every k > 0, VP, (pf‘){l) € L*(Q) and
(y— Elf;jl(y))PkH( )+ hVP; (ple( )+ hVV,okJrl =0 a.e on €, (7.16)
where Tf,fl is the Wa-optimal transport map between pk+1 and pkH. Then p; , satisfies, for all

¢ eC((0,T) x ),

T
/ / Pi,n0:C
0 Q

where, ’yk'H = (Id x Tf;ﬁ'l)#pf'};l
v)| < HIDXC<la — yP.

RN,y

Pt (@) VVi(x)) - VC(tk, z) da

hZ/ (VP () +

- hZ / FAAR @), P55 (@) 0k, ) da (.17)
n hz (b )@ m) 't (2, )
k=0
[ pola)0,2) da.
Q
is the Wa-optimal transport plan between pﬁ",; and pk"'1 and
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Proof. The proof is the same as in [65, 1, 103] for example. Let £ a smooth vector field in C°(Q2, R™)
and consider @, the corresponding flow defined by

0,0, =Eo0d,, Dy = Id.

k+1

We define a pertubation of p;’},~ by pr := (I’T#PZZI~ Then we get

1 /1 ~
T<2h( W3 s (o B = W5 e (1 P13
+Fi(pr) = Flplh) + Vilps) = ViloE ) > 0. (7.18)

By standard computations, we have

11

limsup — (W3 e (pra 6041 = W3 e (003 604)
7N\0 T 2h 2,m; ’
1
<3| @-u-g@al ), (719)
QxQ
with 'yk;lrl is the W, mhH1- -optimal transport plan between pf;; and karl and 7’“*1 = (Id x

TkH)#pr,gl with T’“Jr1 = Id — Vgokﬂ. Moreover, using (7.12) and Lebesgue’s dominated con-

i,h
vergence theorem we obtains

. 1
s (Fpr) ~ FiolE) < - [ POk ) divig @) de (7.20)
Finally,
1
limsup = (V;(p-) — Vi (pf;gl ) < / VprﬁJ,gl dx. (7.21)
™o T Q

If we combine (7.18), (7.19), (7.20) and (7.21), and if we replace & by —¢, we find, for all
§ € C (R,

/ Vet et —h /Q Pi(pfit) div(€) + h /Q VVi it =0, (7.22)

Now we claim that P;(pF*!) € H'(Q). Indeed, since P; is continuous, (7.12) gives P; (ple)
L>®(Q)) C L?(2). Moreover, using (7.22), we obtain

Wit (P4 P51
] / Pilpii") div( 5)‘ < [M%” p + [[Vill o (o MrlQ2 | 11|22 (-

then by duality VP, (pf;gl) € L*(Q) and hVP; (ple) + hVVpk+1 + V(plepf;gl =0 a.e on Q.
For fixed ¢ € C2°(Q), we integrate (7.16) against V¢ to obtain
| =T ) ot ) dieh [ VPG W) Vo duh | IV ook () dy = o

Using Taylor’s expansion,

o(z) — o(y) = Vo(y) - (z —y) + R[](z,y),
where R[] (z,y)| < C||D*¢|| |z — y[*. Then

[ =T ) Vot iy = [ @) - o5 @ )+ [ Rlol(w ) ik (729



7.1. VARIATIONAL PRINCIPLE FOR REACTION-DIFFUSION SYSTEMS 115

Let ¢ € C°([0,T) x Q) and extend ¢ by ¢(0,-) on [~h,0). Then
Z/t /(%Ctxplh()dtda:
- Z [ (6ttm)  Gltss s o)

- Z / Cti 2) (P () — 3 (2)) i — / pi0C(0,2) da

T
/ / Bt 2)pon(t, ) dide
0 Q

— T k+1 k+1 d _ ’ O, d
Z/ctk Y @) — o (2)) do /QP,OC( z)dz

_hz fz plh )s P2 h( )C(tr, x) da,

and combining with (7.23) and (7.17) concludes the proof.

Corollary 7.10. There exists a constant C' which does not depend on h such that

1P (pin)llL2(0,7), 11 (02)) < C-

Proof. Since P; is continuous and p; j, satisfies (7.12), P;(p; ) € L*((0,T) x Q). Moreover, using

(7.16),
T
[ [ Ivrenr - / VPP
0o Ja
_ 13 k+12 k)2 2
= E / ch +hz |VVP
L N
< Z it (P PEET) Vil e () MEIQIT
k:
< G,
using (7.14). O

7.1.4 Convergence

In this section, we prove weak and strong convergence for p; .

First, since p;j, is bounded in L*°((0,T) x €)), up to a subsequence, p; j, converges weakly s
in L*((0,T) x Q)) to p;. Unfortunately, this convergence is too weak to pass to the limit in the
nonlinear terms. We improve the convergence using an extension of the Aubin-Lions lemma given
by Rossi and Savaré in [107] (theorem 2).

Theorem 7.11 (th. 2 in [107]). On a Banach space X, let be given

e a normal coercive integrand G : X — R, ie, G is l.s.c and its sublevels are relatively
compact in X,

e q pseudo-distance g : X x X — [0,400], i.€, g is l.s.c and

l9(p, 1) =0, p,p € X with G(p),G(n) < oo] = p = p.
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Let U be a set of measurable functionsu : (0,T) — X with a fired T > 0. Under the hypotheses
that

T T—h
sup/ Gu(t)) dt < +o0 and lim Sup/ g(u(t+ h),u(t))dt =0, (7.24)
uel Jo MNOweu Jo

U contains a subsequence (un)nen which converges in measure with respect to t €]0,T[ to a limit
Uy 10, T[— X.

We apply this theorem in X = LY(Q), U = {pis | h < m}, where g is defined by

9(ps) = dpr-(p,p)  if p,p € LN(Q)
and G; by

i o { TP iy i p € L), (o) € H(@) and Filp) € L'(9),
i\p): +00 otherwise.

G; is Ls.c and its sublevels are relatively compact in L!'(Q) (see lemma 5.13 from chapter 5)
and U satisfies (7.24) because of corollary 7.10 and (7.8). Then theorem 7.11 implies that p; 5
converges in measure with respect to t in L!(Q) to p;. Now since convergence in measure implies
a.e convergence up to a subsequence, we may also assume that p; 5 (¢) converges strongly in L(Q)
to p;(t) t-a.e. Then Lesbegue’s dominated convergence theorem imply that p; , converges strongly
in L*((0,T) x Q) to p; and P;(p; ) converges strongly in L'((0,T) x Q) to Pi(p;).

Moreover, according to corollary 7.10, VPi(p; ) is bounded in L?((0,T) x Q) which implies,
with the strong convergence of P;(p; ) to P;(p;), that VP;(p; ) converges weakly to VP;(p;) in
L2((0,T) x Q).

Now we can prove theorem 7.3,

Proof of theorem 7.3. The goal is to pass to the limit in (7.17). The left hand side converges to

/OT/QPiatQ

because p; 5, converges weakly * to p; in L°((0,7) x ) and 9;¢ € L*((0,T) x Q). For the same

reason, the potential term converges to
T
| [ wvieve
o Ja

Using the definition of R[¢] and (7.14), the remainder term goes to 0 when h goes to 0. Since
V Pi(p;.p) is bounded in L?((0,T) x Q) and converges weakly to VP;(p;) in L2((0,T) x £2), we have

N—-1 T
(oF LY. T % (p;) - ,T).
DY /Q VR - V() - / /Q VE(p) - V(b )

To conclude, since f; is bounded (using (7.7) and (7.12)) and continuous on [0, +00) X [0, +00),
by Lebesgue’s dominated convergence theorem, we get

N—-1 T
h};}/gfi(ﬁlf,hapg,h)f(fkvﬂf)%/0 /sz‘(Pth)C

7.1.5 More general cases

In this section, we give a non exhaustive list of possible extensions to theorem 7.1.
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General diffusion problems: Asin [103], we can add a drift and impose a dependence in time
for the drift, the diffusion and a dependence in time and space for f;. In other words, we solve

{ op1 — ar1(t) AP (p1) — div(p1 VVi(t, 2)) = f1(t, @, p1, p2) (7.25)
Op2 — az(t)AP2(p2) — div(p2VVa(t, x)) = fa(t, @, p1, p2). '

Here the diffusion is given by]@(t,x) = a;(t)Fi(z) and Pi(t,z) = a;(t)(zF!(x) — F;(z)) is the
pressure at time t associated to F;. Since the diffusion and the drift depend on time, Petrelli and
Tudorascu consider times averages for these quantity i.e

~ 1 [hke+D) 1 [h+D)
FF, = - a;(t) dtF; and V¥, = =5 Vi(t,-)dt.

Then the functional S; := F; + V; that we want to minimize at each step becomes

h(k+1)
/h / a;(t)Fi(p(x)) + Vi(t,x)p(z)) dedt,

and the scheme (7.11) becomes

~k
p}:ﬁl =k + FE ok, p’zi,h) " (7.26)
pz7h € a’rgminpe_/\/lm;?+1 EW% k+1 (pa p@—;l_ ) + Sf’h (p)a ’

h(k+1
Wherefkh'—f( )fz 77P1h»P2h)dt
To obtain estimates that we have with scheme (7.11), we need to assume uniform estimates on
Vi, F; and f; as in [103]. We assume that for all 7" < +o00, there exists Ct > 0 such that, for all
t,s < T,

Vit )z + [IVVilts )L < Cp and [[VVi(t, ) = VVi(s, )|~ < Orlt — 5.

The diffusion terms F; : [0,+00) have to satisfy the same assumptions as before and a; is a
Lipschitz continuous function bounded from below by a positive constant i.e a;(t) > o > 0.

Now, we make the following assumptions on f; : RT xQ x [0, +00) x [0,4+00) — R. There
exists K > 0 such that, for all ¢,21, 25 € [0,400) and = € Q,

filt,z,x,22) < K(1+a1 4 22), (7.27)
filt,z,xy,20) 2> =K (14 x2)1, fa(t,w, 21, 0) 2> —K (1 4 1) 2. (7.28)

Moreover, we assume that f;(t,z, -, ) is continuous on [0, +00) x [0, +-00) and (f;(-, Z, 1, 22)) (2,21 ,22)
is equicontinuous on [0, +00) with respect to (z, z1, z2).

There were two main steps in our previous proof. The first one is proposition 7.12 to obtain a
uniform bound on p; ;. The proof can be extended to this framework and this is again a subcase
of what is done in lemma 2 in [103]. We remark that using this bound, we can obtain the same
type of estimate as in (7.14) and then (7.15) so we have time compactness for the sequence (p; p)p-
The second step is space compactness. Since a; is assumed to be bounded from below, we obtain
the same estimate as (7.10) and then we can apply Rossi, Savaré’s theorem 7.11 to retrieve strong
convergence.

Nonlocal drift: Another problem we can think of is when the motion of each species depends
of the others. In other words, we allow interactions in the drift,

{ dip1 — APy (p1) — div(p1 V(Vilp1, p2])) = fi(t, 2, p1, p2) (7.29)

Op2 — AP(p2) — div(p2V(Valp1, p2])) = fa(t, x, p1, p2).

This kind of system appears naturally in a variety of domains such as biology, population
dynamic, etc. Without mass creation, this problem has been study in [35, 73]. The proof of
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existence is based on a semi-implicit JKO scheme introduced by Di Francesco and Fagioli in [54]
to solve the same problem without diffusion. In our case we have to combine the splitting scheme
(7.11) and the semi-implicit JKO scheme. If h > 0 is a fixed time step, we construct (pf,)x and

(ﬁi'c,h)k by induction using

k+1

ﬁf;«fl = Pﬁh + hfi(ﬂlf,m p'ﬁ,h% i (7.30)
. ~k+1 ~ ~ .
pz‘,h € argmlnpe./\/lwll_c-u ﬁWimkH (pv pi; ) + }—Z(p) + fQ V;[pllc,h’ Pg,h},ﬂ

Assume that V; : LY(QRT)2 — CY(Q) is continuous and verifies, uniformly in pi,ps €
LY (% RT),

[Vilp1, p2lll e 0y + IV (Vilpr, p2))ll e 0) < ClllprllLrce) + o222 (e)), (7.31)
and
IV (Vilp1, p2]) = V(Vilur, p2))ll L) < Cllp1 — pallr) + o2 — p2llzr@))- (7.32)
For example, drifts we have in mind are of the form
Vilp1, p2] = Wi % p1 + Wi 2 * pa,
where the kernels W, ; and W; 5 are in W1H(Q).

Here, drifts are not supposed bounded so we can not apply directly proposition 7.6 but if we
assume that f; satisfy again (7.28) and (7.27) then

o ) = 185 ) < ofnller @) + RE L+ 1165l + 10540l @)-
Then if we sum on 4, and note Ay = ||plih||Ll(Q) + ||p§1h||Ll(Q), we have
A1 < A+ hK)AL + WK,
which imply for all k, h such that hk < T,
Ap <efTAg+ 5T — 1.

Then [|V;[5 1, 55 4]l L) < Rr and we can apply proposition 7.6. Moreover, estimate (7.14) is
rediscovered using the same argument than in [54] (proposition 4.1) or [73] (proposition 3.4), so
we have time-compactnes. And the rest of the proof does not change.

Unbounded domains: Under some assumptions on the reaction term, we can extend this
result to the whole space. Indeed, if we assume moreover that,

[fi(2, pr, p2)llr < Clllprllze + ol + llp2llze + llp2ll 1), (7.33)

then we control the L'-norm of p; during the step where the mass is updated and then we recover

dBL*(ﬁfj{l,Pf,h) = O(h).

7.1.6 Uniqueness

In this section, we state an L!-contraction result under some restriction on the diffusion, the
reaction terms and assuming some regularity on solutions. The argument comes from [1, 103]. We
assume that F; satisfies: there exists o;; > 0 and §; € (1, 3] such that

(Pi(z) = Pi(y)) - (z —y) = o —y
Moreover, we assume that f; is Lipschitz i.e

|fi(x1,22) — fi(yr,y2)| < Lip(fi)(Jzr — yo| + |22 — y2l).

B, (7.34)

Then, we have



7.1. VARIATIONAL PRINCIPLE FOR REACTION-DIFFUSION SYSTEMS 119

Theorem 7.12. Assume f; satisfies (7.35) and F; satisfies (7.34). Then under the assumption of
theorem 7.3, let (p1, p2) and (u1, p2) two solutions of problem (7.1) with initial conditions (p1,0, P2,0)
and (p1,0, pi2,0)- If ipr, Orpa, Oppur, g € LY((0,T) x Q), then

o1 () — pa ()l iy + llp2(t) — p2(®)ll @) < € (lpro — trollzi@) + p20 — 20l @) »
where f:= Lip(f1) + Lip(f2). In particular, if (p1,0,p2,0) = (11,0, #2,0), we have uniqueness.
Proof. We note Qp := (0,T) x Q. For § > 0, define

Giyo = &6 (Pi(pi) — Pilps)),
where
if 2<0,

if 0 <2<,
if 2> 6.

ds(z) :==

ol O©

Using ¢; 5, or a smooth approximation of (; s in the equation satisfied by p; and p;, we obtain

/ Oulp: — )i

//Q — 1))VV; - V5 + V(Pi(pi) — Pi(i)) - VGs — (filp, p2) — filua, p2))Gs) dadt.

We introduce now Q. := QpN{0 < Pi(p;) — Pi(p:) < 6} and R}, := Qp N {5 < Pi(p:) — Pi(pai)}-
Then by definition of ; s,

/ 8t(pl - Mi)Ciﬁ - // M'L VV V( ( ) - PZ(MZ)) + ‘V(P,L(pl) _ Pl(lu/z))|2) dadt
Qr o

5 L o) = f ) (R) = Pu) das

- //Ra (filp1, p2) = filpa, p2)) ddt.

Since solutions of (7.1) are bounded (proposition 7.12), p1, pe, p1, 2 < Mp, and f; satisfies
(7.7),

P;(pi) — Pi(pi)

LT (Filoraps) = s 1)) (Pu(ps) — Puls)) dadt < 2C(1+ 207) /
o Jas. Q3. 0

< 20(1 +2M7)|Q%] — 0,
when ¢ N\, 0. Moreover,

//Ra (fi(p1, p2) = fi(pa, p2)) dzdt < Lip(fi)(llpr — pallzrqry + lo2 — p2llzr@q))-

Now, it remains to pass to the limit in the first term in the right-hand side. We first remark,
using (7.34), that

P < (Pi(pi) — Pi(ps))(pi — pi) <|Pi(pi) — Pi(a)| <6

ailpi —
lpi — il
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in Q‘%. Then, using Young’s inequelity,

5 [ (VTR0 P
< ! VV; 2, 1 V(P P 2
S 35 Q%(H illzee (pi = 114)) +%|| (Pi(pi) = Pilpa)ll72 (03,
1 1
< CVVil[7= 0/ CmDHOG] + IV (Pi(pi) = Pipa)) |72 0g.

This implies
//Q (s = )TV V(Pilps) = Piu) + IV (Pipi) — Pi(pi)) ) divd

1y 1
< C||VVi|[ 18P D705 | - 251V (Filpi) — Pi(pi))l720s.)
< OlIVVil7= 7010z = 0,

when 0 goes to zero. Passing to the limit in § and noticing that {P;(p;)—P;(u;) = 0} = {p;—u; = 0},
we obtain

/ [ oup = < Lin( o1 = gy + oz = el )
T

If we exchange the roles of p; and u; and we sum inequalities obtained for i = 1 and i = 2, we
have

/Q Or(lpr — pal + [p2 — pal) < (Lip(f1) + Lip(f2))(lpr — il + lp2 — p2llor@q));
T

which concludes the proof using Gronwall’s lemma.

Remark 7.13. If V; =0, we can dispense from assumption (7.34) in theorem 7.12.

7.1.7 Simulations

In [70], Kinderlherer and Walkington present an numerical scheme to compute the solution of
general parabolic equation in dimension 1. In this section, we present an alternative method to
numerically solve system (7.1) based on the Benamou-Brenier formula, [11] and an augmented
Lagrangian method. We solve the JKO part using the augmented lagrangian algorithm introduced
in chapter 3 (see [17]) and the mass update step is easy because it is just a pointwise sum.

The first application is for the diffusive prey-predator model. We come back to the model of
three species runing after each other studied in chapter 4, figure 4.3 and we add a reaction term
corresponding to the prey-predator model (7.9).

Here we assume that p; is the predator for p;y; and the prey of p;_1, where py := p; and
po := p3. Then, the reaction term for p; is

pi Bi_1pipi—1 | Bipipit1
(propasps) = Api (1= 25) - n ~ Cpa,
fi(p1, p2, p3) pi I 1T By, 1+ Epis p2

with By = Bs. Figure 7.1 represents the evolution of this model with A =15, K = 1,C =5 and
B; = 50 for all 7 € {1,2,3}. Since the interactions are symetric, we observe that the behaviour
of the species are similar. Moreover, we can see starting from time 0.5, the quantities of mass
decreases since the species do not interact (see fourth row from figure 7.1). In figure 7.2, we impose
that one species, ps, is a better hunter than the others (Bs = 100) and ps is a bad predator
compared to the others (By = 40). In addition, we impose By = 60. Since the coefficient B3 for ps
is largest one, we can notice that the quantity of mass of p3 increases and consequently the mas of
p1 decreases.
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)

Figure 7.1: Ewvolution of three species running after each other with linear diffusion and symetric
prey-predator interactions. First row: display of p1 with mass my. Second row: display of ps with
mass mo. Third row: display of p3 with mass ms. Fourth row: display of p1 + p2 + p3

Another model that we can study numerically is the tumor growth model with elliptic equation
for the nutrient, studied in [102]

On — An™ = nG(c),
—Ac+ anc =0,

where n represents the population density of cells and ¢ the nutrients which are diffused in the
tumor. This system is endowed with no flux boundary condition for n and with Dirichlet boundary
condition for nutrients, ¢ = 1 on the boundary. In this context the elliptic model for the nutrients
describes the fact that their diffusion is fast compared to the time scale of cell division.

This system is not covered by the previous theory (from section 7.1) but we can solve easily the
elliptic equation using Freefem++ and use the scheme where at each step, we update the mass by

fLZH = nﬁ + hnﬁG(cﬁ)7

where cﬁ is the solution of
—Ac+ankc=0.

In figure 7.3, we compute the density of cells and nutrients with
m = 100, G(c) = 200(c — 0.3), o = 4.

We remark that we obtain similar results to [102]. When there are not enough nutrients to feed
the cells and then cells die in the middle of the tumor.
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my = 0.173,

msz = 0.200,

Figure 7.2: FEwvolution of three species Tunning after each other with linear diffusion and prey-
predator interactions. First row: display of p1 with mass my. Second row: display of pa with mass
meo. Third row: display of ps with mass ms. Fourth row: display of p1 + p2 + ps3

t=20 t = 0.06 t=0.12 t=10.24 t=20.3 t =0.36 t=0.5

Figure 7.3: Ewvolution of tumor growth with elliptic model for nutrient. Top row: display of p.
Bottom row: display of the density of nutrient n.

7.2 Wasserstein-Fisher-Rao splitting

In this section, we propose to solve parabolic equation of the form

Oyp — div(pV(Fi(p) + V1) = —p(F3(p) + V2), pi=o = po, (7.35)

in a bounded domain 2 C R™ with Neumann boundary condition. This is a work in preparation
in collaboration with Gallouét and Monsaingeon.

This section is organized as follow. In section 7.2.1, we recall some results on the Wasserstein-
Fischer-Rao metric. Section 7.2.2, we extend the result of [63] to solve (7.35) then we apply our
scheme to solve equations coming from tumor growth models in sections 7.2.3 and 7.2.4.
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7.2.1 The Wasserstein-Fischer-Rao metric

Recently, a new optimal transport distance was introduced on the space of positive Radon measures.
This distance was simultaneously introduced by three different teams, [43, 44, 71, 81, 80], and, here,
we call it the Wasserstein-Fischer-Rao metric. We refer to [43, 44, 71, 81, 80| for a more detailed
exposition. The advantage of this distance is that it allows mass variations, contrarily to the
Wasserstein metric.

Definition 7.14. The Wasserstein-Fisher-Rao distance between po, p1 € M™T(Q) is

1
WFER?(po,p1) := inf / /Q(|vt(:13)|2 + |re]?) dpe(x)dt,
0

(p,v,r)EAW FR([p0,p1]

where the admissible set Ay rr[po, p1] is the set of curves t € [0,1] = (pg,ve, ) € RT x R* x R
such that t — p; € Cy ([0, 1], M™) is weakly continuous, for the narrow convergence of measures,
with endpoints py—o = po, pr=1 = p1 and the velocity and the reaction v,r € L2((0,1), L*(p))
solve the continuity equation with source

Oupy + div(prve) = pere.

Comparing (7.14) with the Benamou-Brenier formula and the Fisher-Rao metric, this dynamic
formulation & la Benamou-Brenier [11] shows that the WEFR distance can be viewed as an inf-
convolution of the Monge-Kantorovich and Fisher-Rao distances W, F'R. By the results of [43, 44,
80] the infimum in the definition is always a minimum, and the corresponding minimizing curves
t — py are of course called geodesics. This distance is a metric in the space of positive Radon
measures and metrizes the narrow convergences of measures. Interestingly, there are other possible
formulations of the distance in terms of static unbalanced optimal transportation, primal-dual
characterizations with relaxed marginals, lifting to probability measures on a cone over €2, and
duality with subsolutions of Hamilton-Jacobi equations. See also [80, 81] for a related version with
mass penalization.

As an immediate consequence of the definition 7.14 we have a first interplay between the
distances WFR, Wa, FR (see [43, 44, 71, 81, 80]):

Proposition 7.15. Let pg, p1 € Mg such that |po| = |p1]. Then
WFR?(po, p1) < W5 (po, p1)-

Similarly for all po, 1 € M™ (with possibly different masses) there holds
WFR*(po, 1) < FR? (o, p11).-

Moreover, there exists the following link between the reaction and the velocity (see [43, 44, 71,
81, 80]).

Proposition 7.16 (Proposition 2.2 from [63]). The definition (7.14) of the W FR distance can be
restricted to the subclass of admissible paths (ve,7¢) such that vy = Vry.

This connection suggests that we have no hope to treat general reaction-diffusion equation
using a W 'R gradient flow. However, this difficulty can be overcome using the splitting scheme
introduced by Gallouét and Monsaingeon in [63] as we will see in the next section.

7.2.2 Existence result for general parabolic equations

In this section, we extend the method introduced in [63] to solve (7.35). We assume that F; : R —
R is given by Fi(z) = xlog(x) (which gives a linear diffusion) or Fy(z) = mll_lxml, with my > 1
(which gives porous media diffusion) and F5 : R — R is given by Fa(z) = m;lxm?, with mg > 1.
In addition, we assume that V; € W1>(Q) and Vo € L>®(Q2). We denote £1,E : MT — R the
energy given by

Ei(p) == Fi(p) + Vi(p),
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where

400 otherwise,

Filp) : {fﬂ fp<Lio L avip) ::/m-p.
Q

A weak solution of (7.35) is a curve p : t € (0,+00) — p(t,-) € L*(Q) N L>®(Q) such that
VPi(p) € L*([0,T] x ), where Py (x) = xF|(x) — Fy(z), for all T < +o00, and

+oo
| (000 = 9% - Vop = TP V6 - ) + Vi) o) dt = [ 000.2)m(0) da
0 Q
for every ¢ € C2°([0, +00) x R™).

In order to solve (7.35), we introduce the splitting scheme, which comes from [63], and which
consists in splitting one step of the usual minimizing movement method between one substep of
Wasserstein gradient flow and one substep of Fisher-Rao gradient flow. Let h > 0 be a time step,

+1/2)

we construct two sequences (pf)y and (p; ;. by induction such that p9) := py and for k >0

k+1/2 .
o € argmingear i) {33 (0, 0F) + E4(0)}

(7.36)
ot € argminge s { i FR3(0, 0} ™%) + E2(0) }

This scheme is well-posed (see [63]) and we construct two piecewise-constant interpolating
curves

_ k+1
{ 2:8 22“/2 for all t € ((k — 1)h, kh]. (7.37)
= P2

Theorem 7.17. Assume pg € L>®(Q) then py and py, strongly converge in L'((0,T) x Q) to p,
where p is one weak solution of (7.35).

We remark that the proof of uniqueness used in theorem 7.12 can be used to prove the uniqueness
of (7.35) if we assume that F satisfies (7.34).
The difficulty is that we do not have direct control on the total square distance. Indeed,

o (W2 A7) 4 PR G2, 0h)) < 60(oh) — E40 /%) + &l ™72 — £} ),

therefore when we sum on k we do not recover a telescopic sum in the right hand side. We therefore
study the dissipation of & during the Fisher-Rao step driven by £ and the dissipation of £ during
the Wasserstein step driven by &;.

Optimality conditions and maximum principle

We start recalling that the optimality conditions for (7.36) are (see [63])

Ve s R TR, (759
where prLH/ 2 is an optimal Kantorovich potential for W5 (pZH/ 2, ,ol,fb)7 and
(Vo = VAP ) ol = =Sk (k4 ae (750
Proposition 7.18. For all h < hy < m,
PR () = 0 = phH(2) = 0, (7.40)

and there exists C = C'(hg, V2) > 0 independant of h, such that

P @) <A+ Ch)p T P (@) ae. (7.41)
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k+1( )

Proof. Assume that p > 0, otherwise the inequality is trivial. Then (7.39) implies

\/p,cJr1 \/pk+1/2 _ h\/frl()(F/( (1)) 4 Va(x))

< —hVa(@)y/ ol (@),

k+12
Von' @) 1fh\|v2 Vo

and to conclude the proof of (7.41), we remark that

2
1 <1 h<2||v2”oo+|v2”oo
(1= 2[Vzllo) 1= ho|[Vallo

Then (7.40) follows directly from (7.41). O

since Fj > 0. We deduce

lloo

) =1+ C(hg, Va)h.

Remark 7.19. We deduce directly from (7.41) that we have a mass control
vt € 0,77, llon (t, L1y, 1n () < e“Tllpollnro)-
Now we can state a maximum principle.

Proposition 7.20. Let T > 0. There exists a constant M such that for all t € [0,T],

[lon () lloos 1An(E)lloo < M.

Proof. The proof is the same as in [115, 103] or proposition 7.6 from section 7.1 because the step
of reaction gives an at most linear estimate by proposition 7.18. O

We deduce from this proposition a bound from below for pk“,

Corollary 7.21. For h small enough,
pr (@) =0 & pf T (2) =0, (7.42)
and
(1= Ch)p (@) < pp (@) S L+ Ch)p (@) ae. (7.43)

Proof. We have already proved phﬂ/z( )=0<% pk+1( ) = 0 in proposition 7.18. We refer the
reader to proposition 5.1 from [63] for the inverse statement. The proof of (7.43) is the same as
proposition 7.18. Indeed, we assume that pkH( ) > 0 otherwise the inequality is trivial. Then
(7.39) gives

Vo @ = 2@ = o @) FE T @) + V)
> —h(EY(Mr) + Vol ).

Then the result is proved if h is chosen small enough. O

Energy dissipation
In the Wasserstein minimization problem (first line of (7.36)), taking p = p§, we get

S W2 k) < Falo) — Rl + / Va(oh = o). (7.44)

Since V1 € WH*°(Q) using standard methods from [54, 73], we obtain
W2 ) < Falo) — Rl ) + O (7.45)

Here the difficulty is that we do not recover a telescopic sum on the internal energy. The next
proposition gives a control on the dissipation of F; during the Fisher-Rao step.
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Proposition 7.22. There exists a constant C > 0, such that for all k > 0,

Fi(ph ) < F(fT?) + Ch. (7.46)
Proof. The first case: Fy(x) = m1171x7’“, with my > 1. Since F} is increasing and using (7.41), we
obtain
k 1 m k m
Rt - AT < [ cnym =1yt
my — 1 Q
< Ch|QMF™.
Now if Fy(z) = xlog(z), we have
k+1 k+1 n+1 k+1 k+1
Pkt = [ AT e [k os(eh)
Py <e } {pp "2t}

Since Fy is increasing on {z > e~} and using (7.41), the second term in the right hand side
becomes

N

/{ WIN s Ch)py ™ log((1 + Ch)py /%)
P e

k+1/2 k+1/2
/k1 Ph+/1g(0h+/)
{pyTze"1}

k+1/2 k+1/2
+ Ch {pg+1>efl}ph log(py," ")

k+1 k+1
ey log(py ™)
/{p'ﬁ,*l?el} " s

N

+ (1+Ch)/ pi 2 10g(1 4 Ch)
{py T ze"1}
< / pn 2 10g () %) + O,
{1 e}

because pﬁH/Q < My and log(1 + Ch) < Ch. Using the same method with the bound from below
(7.43), we obtain

/ pit log(pf ) </ oy log(py T2 + Ch.
ey

(ot <e1}

Then combining these inequalities, we get

/pﬁﬂlog(P';i“)</p'§“/210g(p'§“/2)+0h-
Q Q

O

Remark 7.23. If Fy(x) = —L=a™ then the dissipation (7.46) is still true on R™. Indeed, since

mlfl
prH/Q is bounded in L>°(Q) N LY(Q), the L™ -norm is bounded. Then theorem 7.17 is still true on

R"™. However, if Fi(z) = xzlog(z), we need to have a control on the second moment to bound the
negative part.

Now it is easy to deduce from (7.45) and proposition 7.46 that

N-1

1
> 5 MR 2 o) < Falpo) = Fio}) + CT, (7.47)
k=0

where N = [T ].
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+1/2

Now, taking p = pr in the second problem in (7.36), we obtain

%FR% P o) < Falph TY?) = Falpl ™) / Va(op ™% = pfth). (7.48)

Using (7.43) and V, € L>(2), and arguing as in proposition 7.22
Vel = k) < WallCh (7.49)
Q
Faloy %) = Falpl™) < Ch. (7.50)

The proof of the second estimate is the same than the one of the first part of proposition 7.46 and
is still true on R™. Combining (7.48), (7.49) and (7.50), we immediately deduce that

N—1
1
> g PR k) < o (7.51)
k=0
where N = L%j

Proposition 7.24. There exists a constant C > 0 such that for all h small enough and k > 0 such
that kh < T,

Fi(of). Filpy %) < Filpo) + CT, 7.52
Falpf). Falpy ™% < Falpo) + CT, 7.53)
N-1
> WER(pf, pi ) < h(Fa(po) + C(1+1T)). (7.54)
k=0

Proof. Proofs of (7.52) and (7.53) are trivial and to prove (7.54) we just remark that (see [63] or
proposition 7.15)

WER(pf, pf ™) < 2(FR3(oy 2, o) + WE2(py T2, o)),

and use (7.47) and (7.51). O

Estimates and convergences

As in [63], we recover the classical %—H(’jlder estimate, using (7.54), for all T > ¢,s > 0,
WFR(pn(t), pa(s)) < Clt — s + h|'/* and WFR(pu(t), pn(s)) < Clt —s+h|"/?, (7.55)
and
WER(pn(t), pn(t)) < FR(pi (1), pn(t)) < CVh. (7.56)

Then proposition 4.1 from [63] gives that for all T > 0, p;, and p, converge (up to a subsequence)
to a WFR-continous curve p € CY/2([0,T], My, ) and

tes[lépT](WFR(ph(t% p(t)) + WFR(pn(t), p(t))) — 0.

Proposition 7.25. For all T > 0, py and py, satisfies
I1Pr(pr)ll 22 o, 1) (2)) < C(L+T), (7.57)

Proof. The proof is a consequence of (7.38), (7.47) and proposition 7.20. O
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Then using an extention of Aubin-Lions lemma due to Rossi and Savaré in [107] with (7.54)
and (7.57), we obtain that jj, strongly converges to p in L'([0,7] x Q) (see [73]). Then

llon — P||L1((0,T)xQ) < lpn — ﬁh”Ll((o,T)xQ) + [|pn — P||L1((0,T)x9)-

The second term in the right hand side converges to 0 when h tends to 0 by strong convergence in
L' of py, and using (7.43), we have

llon — prllzro,myx0) < Ch,

which implies that pj, strongly converges to p in L'([0,7] x ). Moreover, since P;(py,) is bounded
in 12((0,T), H'(2)), Pi(p) € L2((0,T), H*(2)).
Then the proof of theorem 7.17 is complete arguing as in [63].

Remark 7.26. Theorem 7.17 can be extend to all F» € C*([0,+00)) such that F5 > C, with C € R.

7.2.3 Application to Hele-Shaw equation

In this section we are interested in the equation

Op — div(pVp) = p(1 —p),
Plt=0 = Po-

on 2 a open convex subset of R™. This equation is motivated by tumor growth models, see for
example [101, 102]. At least formally, we remark that (7.58) is the Wasserstein-Fisher-Rao gradient
flow for the singular functional

prAM*Am

with,
] 0 if p<lae,
Foolp) 1= { +o0o  otherwise.

However, the splitting approach introduced in the previous section does not work in this cas.
Indeed, the scheme would be

k1
Ph e ATGMIN, gy, |p|=|pt | s W3 (. P ) = Jo, P

Pyt e argmin { =FR3(p, p), k+1/2 — o p} :

The Wasserstein step conserves the mass so we can drop the mass penalization. As pﬁ is smaller
or equal than 1, then the Wasserstein projection step (we minimise the Wasserstein distance on
the convex set of densities less than 1) returns always pf and so we do not have any diffusion effect
contrarly to (7.58). Denote by F,,, the functional defined by

s it e LY(Q),
Fmlp) 1= { +o0 otherwise.

Since F,,, I-converges to Foo, see [20], we approximate Fo, by Fip.
Given a time step h > 0, we construct by induction two sequences, (phtn/Q) and (p27m)k, with

Phm = po and for all k > 0,

k+1 .
Ph+ /2 ¢ argmin , x| {ﬁWf(p, pﬁm) + Fm(p)} ,

(7.59)

k+1

P € argming,c g+ { PR3 (p, kﬂ/z) + Fn(p) = Jo p}
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We define ph+ /2 and p]€+1 by

kt+1/2 M (k+1/2 k+1 . _ M (k+1)

phm '7m—1 h,m ) B andp *m phm
Then we denote ph,m, Ph,m, Ph,m and pp m the piesewise constant interpolations of pﬁt;, p’;fﬁ/ 2, Zﬁ/ 2
and pﬁﬁ respectively.

Theorem 7.27. Assume pg € BV (Q) and po < 1, then ppm and pp.m strongly converge to pso in
LY((0,T) x Q) when h \, 0 and m * +o0o0. Moreover, if mh — 0, then ppm,m and pp, converge
weakly to peo Tespectively in L2((0,T), H(Q)) and L2((0,T) x Q) where (poo, Poc) is a solution of
(7.58).

Estimates and convergences

In this section, we improve some previous estimates from section 7.2.2. The next lemma gives an
explicit L°°-norm.

Lemma 7.28. Assume that po < 1, then for all t € RT,

lonm (s Mloos 1onm (£ oo < 1.

Proof. Assume that || pﬁ mlloo < 1, the maximum principle proved by Otto in [97] implies that

||pk+1/2||oo < 1. Now, by contradiction, we assume that F := {pk+1 > 1} has positive Lebesgue
measure. The optimality condition in the Fisher-Rao minimisation, (7.39), gives

k+1 k+1/2_h k+1 m k+1ym—1
\/phj:n_\/ph,m —2\/ph,+m(1_m_1(f’h,+m)m )

On E, 1-— L(pﬁtﬁ)m 1 < 0 then pﬁti < p’,it;ﬂ < 1 which is absurd. Since ||polleo < 1, the

lemma is proved by induction.
O

Moreover, proposition 7.18 gives, with Vo, = —1, that p’“L1 (1+h)p, k+1/2 We deduce that
for all ¢,

lohm (£ )l zx () 17mm ()1 () < € llpollzaey-

Indeed, the Wasserstein part conserves the mass and the Fischer-Rao part is controlled by

k+1/2
[k <asn [ =aen [ o
Q Q Q

/Plfiﬁ\(lﬂLh)k/Po,
Q Q

k+1/2

By induction,

which gives the result.

Then testing (7.59) with p = pj . and p = p," /", we obtain, as in [63],

k+1/2 k+1/2 k+1/2
o7 (W2 P82 4 FRAGEE2 00)) < o) = Fnloi) + /Q (Phom’™ = Phin)-

which implies, using p’“"’1 (1+h)p, k+1/2 and the L'-bound on pk+1/2,

1

k k
o W3k )+ FR2 0502 000) < Fulohm) = Funlohlh) + O

Summing over k from 0 to N := |T'/h] and using proposition 7.15, we get

Z WFR2 ph m?pﬁt;) g h(]:m(po) - ‘Fm(pi]Xm) + CT)?
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with C' a constant independant of m and h. In addition, F,, is nonegative and

Fuim <2 [

with C independant of m because py < 1 and in L(Q).
Consequently, we obtain the classical é Holder estimate, for all ¢, s < T,

WER(pnm(t, ), prm(s, ) < C|t — s+ h|Y/2,
WFR(ﬁh,m(tv ')7 ﬁh,m(sa )) < C|t —s+ h|1/2'

Lemma 7.29. If po € BV (Q),

(7.60)

S {lonm (v @) 1nm ) Bv) ) < ellpolly)-

elo,T

Proof. The argument follows the lines of proposition 5.1 from [63]. First we remark that using
theorem 1.1 from [52], the BV-norm is nonincreasing during the Wasserstein step,

||th/ ”BV(Q) ||th||Bv

Now we prove that p"c+1 = R(pzﬂ/z) with R a (1 + h)-Lispchitz function, using the implicit

function theorem. This will prove that

IoE By < X+ B)llor A llsv ),

k+1/2

see [3], and conclude the proof. We already know from (7.43) that Ph. and ph+1 have the same

support. In this support and from (7.39) pﬁti( ) is solution of

m

f(p,pffiﬂ( )) = 0 with f(p, ) = \/ﬁ<1— g (1— " 1)) — V-

For p1 > 0, the implicit function theorem gives the existence of a C* map, R, such that the solution,
p, of f(p, ) =0 is given by p = R(u). Moreover,

1
dR(p) _  Ouf _ 2k
i O \p=R(u) obs (1= 4 (1= 2m1)) + hmypon=2
< Zciyn,
i

Extending R by continuity R(0) = 0, we proved as required that pk+1 = R(pﬁtnl/ 2) with R a
Lipschitz function with Lipschitz constant 1 + h.
O

Then Rossi-Savaré theorem [107], using the %—Hélder estimates (7.60), gives that pp ., and
Ph.m converges strongly in L'((0,7) x Q) to pe. Moreover, since pp, ,, and pp, ,, are bounded in
L' N L*((0,T) x Q) and by definition of pj_, and pp, m, we obtain that pp ., and Py, converge
weakly in L2((0,T) xQ), for every q € [1, +00], t0 poo and Po.. Now we have to show that poo = Poo.

We start by recalling that piﬁ}b <(1+ h)pﬁtnl/z and p’fbt;, ﬁ]flti € L'(©;[0,1]). Then, for all ¢, and
k=[t/h],

/Q Do (t7) — Fmn(t, )] = / Tl () = A )
k+1/2 _
= [ Sl =
m/ |pk+1 P12

m</pzti/2>h:Chm—>0,
Q

N

N
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since hm — 0 by assumption. In the next lemma, we improve the convergence of py, ., in order to
pass to the limit in the diffusion term.

Lemma 7.30. There exists a constant C, independantof h and m, such that

1Br,ml 22 ((0,7), 11 (02)) < C-
Consequently, up to a subsequence, pp . converges weakly in L*((0,T), H'(Q)) to peo-

Proof. The proof is based on the flow interchange argument developped by Matthes, McCann and
Savaré in [86] and recalled in chapter 4. Let n be the solution of

{ dm =A™t +eAn,
n+1 2
n(0) = Ph+ /
It is well known, [4], that 1 is the Wasserstein gradient flow of
m—1

Gp)=| ° 2+8/Qplog(p)-

Qm—

Since G is geodesically convex, 7 satisfies the evolution variational inequality (EVI)

lﬂ W2( < g _g
5L s V2 105):2) < G(p) = G (),

for all s > 0 and for all p € P?¢(2), where

o ft+s) = f@©)
Ef(t) := lim sup —_—

s—0+
Using the minimization scheme (7.59), we obtain that

d+
Eﬁ:s

1d+ .

5 dE s V2 (1(5), Phm) = — Fn(n(s)).

Since 7 is smooth, the following calculations are allowed for all s > 0,

m

OsFm(n(s)) = TU( s)" 1 (An(s)™ ™ +eAn(s))

-1
mfl 2 m—2 2
— - \Y
/m Va1 == [ (s V(o)
< /—Wn (5P
By an easy lower semi-continuity argument, we obtain that
m—1 w2 (Y 2ym= 2 _dt
-/Q - Phom | /m Phom’ ) | ghmlnfd— Fm(n(s)).
Then we have
m — k+1/2 k+1/2
[ T R < o) = Faa 1)
k+1/2 k+1/2
ve ([ hmtonth )~ [ o rontakti).

Arguing as in proposition 7.46, we have

Foner(PEH) < Fruca (f 51%) + Ch,
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with C independant of h and m. Moreover, one step of JKO scheme controls the second moment,
the entropy is bounded and then we can pass to the limit in € \ 0:

m —
h/ |V V22 Fonea (0 ) — Frner (0f51) + Ch.

Summing over k gives

/ / IV Dh,m(t, ) V2 dxdt < 2F,_1(po) + CT,

for all T' < +o00. And since Fp,—1(po) < ||pollz1(0), the result is proved.

Properties of p,, and conclusion
In the next lemma, we show that p., satisfies conditions in (7.58).

Lemma 7.31. The weak limit of Dh.m, Poo, Satisfies

Poo 2 0,P00 <1 and poo(l — poe) =0 a.e.,

where po 1s the limit of pp.m and pp m.

m— 1pZLm1 = mml
and po < 1 a.e. Now we notice that for (¢,2) € (0,1) x Q, if poo(t,2) < 1 then p;’ Y(t,x) — 0,
otherwise pp m (t,2) — 1. In both cases,

Proof. It is obvious that p,, > 0. Lemma 7.28 with pp ., =

gives that po < 1

mo o
Pt 2) (1= pm (t, 7)) = ——=pi (6 2)(1 = pum(t,2)) = 0.

Since phm(1l — ph,m) is bounded in L>*((0,T) x Q) and converges a.e to 0, using Lebesgue’s
dominated convergence Theorem, we obtain for all ¢ € C2°((0,7) x Q),

T
/ / ph.,m(l - Ph,m)‘P — 0.
0 Q

In addition, since py ., strongly converges to po in L'((0,7) x 2) and pp,, is bounded in
Li((0,T) x ), for all ¢ € [1,400], and then converges weakly to po, in LI((0,T) x Q) we deduce
that

/ Phom(1 = prm)e — / Poo (1 = poc) s
Q Q

which proves the lemma. O

The end of the proof of theorem 7.27 is as in [63]. We write the Euler-Lagrange equations of
(7.59) and since pp, m,, Pr,m converge strongly in L7((0,7) x ), for all ¢ € [1, +00), and ppm, Vinm
converge weakly in L2((0,T) x ) the result is proved.

Numerical simulation

Since the scheme (7.59) is constructive, we can do numerical simulations. We use the algorithm
presented in 3 (or [17]) to solve the Wasserstein step and the Fisher-Rao step is a convex pointwise
minimization problem: for all z € Q,
o ( )
M —

[ k+1/2
Pﬁti( = argmin 4 ‘\[ Ph m/ (x)
In figure 7.4, we see the evolution of the approximative solution pp, ,, for m = 100 and with a

peERT
time step h = 0.005. We remark that the tumor starts to saturate the constraint in its support
and then grows.
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t=20 t=0.3 t=0.5 t=0.7 t=1

Figure 7.4: Shape of approximative solution pp, m of equation (7.58) with m = 100, h = 0.005.

7.2.4 Model of tumor growth with nutrient

Now, we want to apply this method to study models of tumor growth with nutriments, see [101],

Oep — div(pVp) = p((L = p)(c+c1) — c2),
Oyc — Ac = —pc,

p>0>p(17p) =0,p< 1,
Plt=0 = P05 Clt=0 = Co,

(7.61)

on () a convex bounded subset of R™ and where ¢; and ¢ are two positive constants. This system
is endowed with Neumann boundary conditions.
We introduce a semi-implicit splitting scheme to solve this problem. We construct four se-

quences pﬁi/z, piym, cﬁi/z and ch,m such that for all £ > 0,

k+1/2 .
ph,m/ € argmlanM*,lplz\pﬁ,m\ {ﬁwg(p» p’ii,m) + ]:m(p)} )

(7.62)

k+1/2 . Lyi2(,. ok
Chom' € ATEMIMee p+ je|=|ck | | {ﬁ”@ (c, Ch,m) + 5([))} )

and
. k+1/2 k+1/2
o € argminge v { 5 FR2 (0,0 7%) + En(pleh 1) }

(7.63)

k41 k+1/2

. k+1/2
Chﬂn € argmiil,c a4+ {ﬁFRQ(Q ch,rn )+52(C|ph,m/ )}7

where £, &, and & are defined as follow,

am=4m%w,

E1(ple) = / (2 +er) L=+ / (e2 = cin* = c)p,
Q ’ m — 1 Q ’
and

Exclp) = / .

k+1/2 k+1/2 m k+1/2)m_1

k+1 _
h,m m by ph,m T mfl(ph,m

These sequences are well-defined and we define p and p;,

[, ha)™ L. Then we denote ph i, fhms Phms Phomy Chm and &, and the piece-

o m
and ph,m T mfl(ph,m
k+1  k+1/2 k41 k+1/2 k41 k+1/2

wise constant interpolations of P Phom’ Phom>Phom’ +Chom and Chom respectively.

Theorem 7.32. Assume pg € BV (Q) with po <1 and c¢o € L*°(Q). Then ppm and ppm strongly
converge to peo in LY((0,T) X Q) and cpm and épm strongly converge to coo in L((0,T) x )
when h N\, 0 and m  4+o0o0. Moreover, if mh — 0, then pp m and ppm converge weakly to Poo
respectively in L*((0,T), H () and L*((0,T) x Q) where (oo, Poo, Coo) i the solution of (7.61).
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Estimates and convergences

We start by recalling the optimality conditions for the scheme (7.62)-(7.63). The Euler-Lagrange

k+1 k+1/2

equations satisfy by p," and Ph. are

k+1/2v k+1/2 W k+1/2

h,m
(7.64)
\/karl \/ kt+1/2 _ \/pk+1 ( Pﬁnl)(citiﬂ te)— 62> ’
: ~ : k+1/2
where ¢ is a Kantorovich potential for Wa(pj, |, ,ph ) and
Ve k+1/2 Ty k+1/2
k+1 k+1/2 1 k+1/2 (7.65)
Ch h m Ch
k+1/2

with ¢ a Kantorovich potential for Wa(c), ,ch m)-
Using the optimality conditions for Fischer-Rao steps, we obtain directly the following estimate
on the L*> bound.

Lemma 7.33. For allk > 0,

k+1/2

”Ch ||L°°(Q HC ||L°°(Q) ||ChmHL°°(Q)

In particular, for allt € R,

llen,m (t ) Lo @), [Ch,m (¢, )l Lo (@) < lleollLoe (-

Moreover,

Consequently,
PEEL < (L4 Ch)py L2

Proof. The proof of estimates on ¢y, and ¢y, is obvious because one step of Wasserstein gradient

k+1 k+1/2 .

flow with the Entropy decreases the L>-norm (see [98, 1|) and since the product 4/c; P18

nonnegative, the L>°-norm also decreases during the Fischer-Rao step. Moreover the proof for
Phom(t,-) and pp (¢, -) is the same as in lemma 7.28. Now, using the fact that @(pflti, ﬁtﬂl/z) =

(1-— pﬁt;)( REL2 4 o) ) — ¢o is bounded uniformly in k and arguing as in proposition 7.18, we

conclude the proof O

With these bounds it is easy to prove that

Fulohin) < Fulohi®) +Ch,
Epr i) = Skl ?) < on,

EGm) < E?) v e,
Eae "ok *) — &AL 0" < O,

see proposition 7.46. One readily checks that C' does not depend on m. Then we obtain the usual
Holder estimates which imply that pp m, and pp ., converge to pe in L([0,T], L*(Q)) and cp
and ¢, ,, converge to oo in L([0,T], L*(£2)). Now we need to improve the convergence of these
sequences. For pp, n,, and pp m, this follows from

sup {llonm (t, My @) 1onm (N ave } < e lpollav)-
te[0,T]
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The proof is the same as in lemma 7.29. Then the Rossi-Savaré theorem, [107], gives that pj ., and
Ph.m converges strongly in L((0,7T) x Q) to ps. Now using the Euler-Lagrange equation satisfied
by 712 we obtain that ¢h.m is bounded in L%((0,T), H'(2)). Using again the Rossi-Savaré

h,m
1/2
h,m

bounded in L*(2), for cﬁtﬁ >(1- h)c}fbjﬁ/z (see the general case (7.43)) which implies that cp, m,
converges strongly in L((0,7) x ) to cso-

To conclude the proof we have to charaterize the limits of p’fbti and f)ﬁti This can be done
arguing as in the previous section. Moreover, all the nonlinear terms such as Ph,mCh,m and
Ph.m®(Ph.ms Chm), With ®(p,c) = (1 —p)(c+ ¢1) — c2 converge weakly t0 pooCoo and Poo®(Poo, Coo)
because pn.m, Ph,m; Ch,m and €, converge strongly and py, ., converge weakly.

theorem, [107], we find that &, ,, converges strongly in L'((0,7) x Q) to cs. Now, since p,’" is
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Chapter 8

Systems of PDEs coupled with
multi-marginal problems

Recently, Kinderlehrer, Monsaingeon and Xu proposed in [69] a gradient flow approach to solve
the Poisson-Nernst-Planck system

Op — aAp™ — div(pV (U + ¢)) =0,
Op — BAP™ — div(uV(V —¢)) =0,
—Ap=p—p.

This system is used to model ionic transport of sereval interacting species, for example. Inspired
by this work we are interested by a "nonlinear" version where species p and p are coupled with
the Monge-Ampére equation instead of the Poisson equation,

Op — aAp™ — div(pVU) — div(pVy) = 0,
Opr — BAR™ — div(pVV) — div(uVe©) = 0, (8.1)
det(I — D*@)u(Id — V) = p,

where ¢° is the c-transform of ¢, ¢°(x) = sup, |z — y|* — ¢(y) and |z|* — ¢ is convex. This kind
of systems can arise in urban planning. In a series of work [25, 26, 36, 31, 32, 109, 108, 111] (list
non-exhaustive), a static model of urban planning was proposed. A simplified model consists in
considering an urban area region {2 where residents and services given by two probability densities
on 2, p1 and pa, want to minimize a quantity, £(p1, p2), to reach an ideal organization in the city.
The total cost has to take into account a transportation cost between residential areas and service
areas, a congestion effect for residential areas because the population does not want to live in
very crowded area and on the contrary services want to be more concentrated in order to increase
efficiency and decrease management costs. Particularly, the cost functional £ can be taken as

E(p1,p2) = Welpr, p2) + F(pr) +G(p2), (8.2)

where W, is the value of an optimal transport problem with the cost ¢. The cost ¢ can have several
interpretations. For example, people working in services area want to be close to it in order to
decrease car travel. F is an internal energy given by a convex superlinear function F',

rip={ arieree s

Since F' is superlinear and convex, F can be rewritten as
F(p)

Fo) = [ 2,

Q P

with p — L) increasing function which can be seen as the unhapiness of a citizen when he

lives in a place where the population density is p.

137
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And finally, G is on the form

G(p) = // iz = 3 dp(a)d(y)

with h an increasing function modeling interactions between different services.

Since a city is always in evolution, it seems very natural to look for the gradient flow of £ in
the product of Wasserstein spaces. In the case where c is the quadratic cost, formaly we find to
a system of the form (8.2) and ¢ is a Kantorovich potential of Wa(p1, p2) which implies that is
satisfies the Monge-Ampére equation

det(I — D*@)u(Id — V) = p.

In this chapter, we propose to investigate a generalization of problem (8.1). We extend to
several species and it is very natural to assume that the cost is different for different populations.
For example, workers have to pay for gas to go to work but firms do not. We will use the semi-
implicit JKO scheme introduced in [54] to deal with these different costs. We remark that in (8.2),
the interaction between densities is only in the transport term and we will see at the end possible
extensions in the case of two sectors in the city.

The organization of the chapter is the following. In section 8.1.2, we explain our problem and
state our main result. Sections 8.2, 8.3 and 8.4 are devoted to the demonstration of the existence
of solutions for our evolution problem. The proof is based on a semi-implicit JKO scheme and
on Rossi-Savaré theorem to obtain strong regularity. Using displacement convexity argument, we
prove a uniqueness result for some class of functionals in section 8.5. In the final section 8.6.2, we
propose some extensions and describe some open problems.

8.1 Preliminaries and main result

8.1.1 Multi-marginal transportation

In this part, we recall some results from the multi-marginal transport theory that we will used in
the sequel. We refer to [100, 56] for a complete survey on this subject. The usual transport optimal
can be extend to several marginals p1,...,p; € P(2), where Q is a open bounded domain of R™.
Let ¢ be a cost function from € to R, we define the multi-marginal transport problem W, by

Wc(p17~~apl) = ll’lf{/ C(xla'"7xl)d7(‘r17“~7xl) : ’yen(plwuvpl)}‘
Ol

The existence of an optimal transport plan is the same as in the usual optimal transport

. . . . . . =l
case. Then, as in the classical 2-marginal case, if we assume that ¢ is continuous on ', the dual
formulation holds

l l
Welpty.-yp1) = Sup{Z/Qui(:Ei)dp,;(xi) : ZUZ(IZ) < c(xl,...,xl)}.

We called Kantorovich potential any (uq,...,u;) optimal for the dual formulation. Any Kan-
torovich potentials uy,...,u; are c-conjugate function i.e

l
w;(z;) = inf < c(z1, -, 21) — Z uj(z;), z; €Qyp, foralli=1,...,1
j=1,j#i
For any 7 optimal transport plan and (uq,...,u;) Kantorovich potential, we get

l

Zul(:m) =c(x1,...,x) v —a.e.

i=1
Moreover, if we assume that p; is absolutely continuous with respect to the Lebesgue measure and
c¢ is differentiable in the i-th variable, then u; are Lipschitz functions and

Vui(x;) = Vg, e(zq,...,21) v — a.e.
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8.1.2 Assumptions and main result

Let © be an open bounded subset of R” and [ € N*. For all ¢ € [1,1], we define a cost function
—
ci R™ — R continuous on @ and differentiable with respect to z; such that V,,c; is continuous
— —1
on 2 and bounded on 2 .

The multi-marginal interaction energy W; : P(Q2)! — R is defined by

Wilprs. .. 1) o= inf{/ elen, oz e, m) £y € H(pl,...,m},
Ql

where II(p1,...,p0) == {7 € P*(Q) : wiyy = pi} and 7' denotes the canonical projection from
O to Q.

For all i, let F; : RT — R be a strictly convex superlinear function which satisfies
F;(0) =0, and P;(x) < C(1+ Fi(x)). (8.3)

where P;(z) := zF/(x) — F;(x) is the pressure associated to Fj.

The goal of this paper is to solve the following nonlinear diffusion system with nonlocal inter-
actions:

Opi = AP;(pi) + div(ps Vi), pije—o = pio (84)

on (0,400) x Q, for all 7 € [1,1] where u; is an optimal Kantorovich potential of W;(p1, ..., p1), S0
that
Vuz(xl) = Vwici(an,...,xl) /\1 — a.e.

with \; solving W;(p1, ..., ). Since Q is a bounded subset of R™, (8.4) is equipped with natural
Neumann boundary condition on 952 i.e

(VP;(p;) + Vuip;) - v=0 on 99,

where v is the outward normal to 0.

A weak solution of (8.4) is a curve t € (0,4+00) — (p1(t),...,p(t)) € P*(Q)! such that
VPi(p;) € M™((0,T) x Q), for all T < 400, and

+oo
/ </ 3t<I)pidxf/ V@'dVPi(pi)f/ inci(zl,...,xl)'Vé(xi)d)\,-(xl,...,xl)> dt
0 Q Q Ql
= —/ @(0,z)p; 0(z) de,
Q

for every ® € C°([0,400) x R™) and where J; is an optimal transport plan of W;(p1,..., pi).
Since any Kantorovich potential u; of W;(p1, ..., p;) satisfies
Vuz(xz) :Vzici(xla"'vxl) Ai_aﬁa

we remark that

Varci(zn, . 20) - V@) dhi(an, .., 21) = / Vi (zs) - V() dpi ().
l Q

Since the left-hand side is linear contrarily to the right-hand side, it is easier to pass to the limit
in A than in Vu;p;. That is why we choose this definition for the weak solution of (8.4).

Theorem 8.1. If p; o € P*°(QQ) satisfy

(i : v [ Jo Filp(x)de if p< LT,
Filpso) < Hoo, with Filp) = { +00 otherwise. (8.5)

Then (8.4) admits at least one weak solution.
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8.2 Semi-implicit JKO scheme

In this section we introduce our semi-implicit JKO scheme and we find the usual estimates.
Let h > 0 be a time step, we construct [ sequences with the following iterative discrete scheme: for
all i € [1,1], p?}, = pio and for all & > 0, pf";;l minimizes

Einlplor) = W3 (p, pi 1) + 2h (Filp) + Wi (p))

on p € P*(Q), with Wf(p) = Wl-(p’ih, ey pf_U“p, pf+17,b, ey pf’h) and p’fL = (p’ih, .. ,pﬁh).

These sequences are well defined (the proof is the same as in the usual JKO scheme because of
the regularity of ¢;). Now we define the piecewise constant interpolations by, p; 5 (0) = p; ¢ and for
all t > 0,

pin(t) = pi it if t € (hk, h(k+ 1)]. (8.6)
In the next proposition, we state usual estimates from JKO scheme.

Proposition 8.2. For allT > 0. There exists C > 0 such that, for all h, k, with hk <T, N = [}IL],
for i € [1,1], we have

Filpn) < C, (8.7)

oo W2 ok, ) < Ch. (8.8)

k1

Proof. We start to prove (8.8). Since p;;
competitor, we have

is optimal in the minimization problem and pfh is a

W3 (pk s, pi") < 2h (E(p?,h) — Fi(piih) + WE(pk ) — Wf(pff)) : (8.9)

Let v the Ws-optimal transport plan between pfj;l and pf’ , and T the Ws-optimal transport

map associated to v i.e v = (I X T)#pf};l. Let A € II (p’fﬁh,...,pfﬁl,h,pfjgl,pfﬂyh,...,pf;h>

optimal for W;. We introduce Ay defined by
/l o(z1,...,z)dAp(z1,...,21) = /l o1, ..., T(zi),...,x1) dN\(x1, ..., 2p).
Q Q

By definition, Ay € II (p’f’h, e ,pfﬁl}h, pf,h, p§+1,h’ e ,pﬁh). Then,

WEGED) - WEGEE) < [ oo T m) = cion, )] don )
Q

< IVaeiles [ [T~ @il A, a)
Q
< CWQ([)?’ZI, pih)a

because of the assumption on V,.¢; and Cauchy-Schwarz inequality. Then using this inequality in
(8.9) and Young’s inequality, we find

1
SWE(k s o) <2 (Filokn) = Filplh) + Ch)
Summing over k, we find
N—-1 N—-1
D Wik Pt < 4h (Z(E(pﬁh) = Filpihh)) + C2T>
k=0 k=0
< Ah(Filpio) — Fi(ply) + C°T) . (8.10)

Since 2 is bounded, F; is bounded from below and using the assumption (8.5), we conclude (8.8).
The estimate (8.7) is obvious using (8.10).
O



8.3. DISCRETE SYSTEM AND STRONGER ESTIMATES 141

8.3 Discrete system and stronger estimates

The goal of this section is to find the discrete system solved by the piecewise constant interpolations
(8.6) and then we will deduce estimates on the BV-norm of the pressure.
Let /\f’;;l an optimal transport map for W; (p’f,h, e 7p§_17h, pfjgl? pf+17h, e pf’h> and ul€+1 is

a Kantorovich potentiel so we have
V“ﬁl(ﬂci) = Vaci(z1,...,21) )\f‘,tl —a.e. (8.11)
Proposition 8.3. For alli € [1,1] and for all k > 0, we have
B (Vi o+ VRE) =~V e (8.12)

k+

where ; hl is the (unique) Kantorovich potential from prgl to pﬁh for Ws.

Proof. The proof is similar to chapter 4, proposition 4.18 or section 7 from [73]. We start by
taking the first vartiation in the semi-implicit JKO scheme. Let £ € C°(€2;R™) be given and @,
the corresponding flow defined by

0,8, =Eo0d,, By = Id.

We define the pertubation p, of kar1 by pr = @T#pﬁzl. Then we get
1
~ (Eunlorlof) — Enlpli 1ok ) = 0. (8.13)
By standard computations, we have
timsup ~(W3(pr.pby) - WEGHE o) < [ (@) 6@l e, (81)
™o T axQ
k+1 k+1

with ~;

ih

is an Ws-optimal transport plan in F(pl b Pi ) and AR = (Id x Tf:l)#ple with

ih
Tf,‘fl =TId— Vgokﬂ. Moreover, using (8.3), (8.7) and Lebesgue’s dominated convergence theorem,
we obtains

. 1
s (Fipr) — FiokE) < - [ POk ) divig(@) de (8.15)
Finally,
. 1
llm\sgp ;(W ( ) Wk(pf;;l)) < linci(xla”wxl)'g(xi)d)\fjgl(xla”wxl)? (816)
T Q

If we combine (8.11), (8.13), (8.14), (8.15) and (8.16), and replacing & by —¢, we find, for all
§ € C (LR,

/wk“ P h/ﬂp(pf#)dw +h/ Vit ol =0, (8.17)

Now we claim that P(pf#) € WH(Q). Indeed, since P; is controled by Fj;, (8.7) gives
P (ple) € LY(Q). Moreover, using (8.17), we obtain

k+1

v ‘ch Y| W(pzh?pzh)
’/P (plfh) div(¢ ’ [/ P+ I Vascilloe | 1€llL= () < T‘*‘C €1l oo (2)-

vkt
By duality, this implies P; (pf‘};l) € BV(Q) and VP, (pf‘gl) = ( Vulepf'}tl Tpijl'l) in

M™(Q). In fact, P(ple) is in W11(Q) because Vulepf# + Ve hpfjl'l € L'(Q) and then we
proved (8.12).
O
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The following proposition shows that (p1 p,...,p1n) is solution of a discrete approximation of
system (8.4).

Proposition 8.4. Let h > 0, for allT > 0, let N such that Nh =T and for all ¢ € C°([0,T) xQ2),
then

T
| [ otz dode hZ / VP (@) - Voltn, o) da

+ h Z VLLCI X1y, xp) - Vo(te, x;) d)\f”,:l(ml, coe, @)
N—1

LD DN B C LR CYY
k=0 7 %%

- / pio(2)8(0, ) d,
Q

with, for all ¢ € C([0,T) x R™),

IR[¢](z,y)| < *IID Lo (o, my x|z =yl

’yﬁ;l 18 an optimal transport plan in F(pi—"’h,pf‘);l).

Proof. This is a consequence of (8.12) (see chapter 4 proposition 4.18 or [73] section 7). O
Now we will obtain a stronger estimate to pass to the limit in the nonlinear diffusion.
Proposition 8.5. For all T > 0, we have
1P (pin)ll L1 (0, 7ysw 11 () < CT. (8.18)

Proof. If we integrate (8.12), we obtain

h/IVP (PEID < Walpl . pi41) + Ch,

Then we sum from k£ =0 to N — 1 and thanks to (8.8), we have

T
/ / VP (pin)l < CT
0 Q

We conclude thanks to (8.3) and (8.7). O

8.4 Convergences and proof of main theorem

8.4.1 Weak and strong convergences

As usual, thanks to (8.8) and a rafined version of Arzela-Ascoli theorem (see [4]), p; n converges to
pi in L°°([0, T); P2<(Q)), for all T > 0.

Unfortunately, we need a strong convergence in order to pass to the limit in the nonlinear
diffusion term. To do that we will apply an extension of Aubin-Lions lemma proved by Rossi and
Savaré (theorem 2 from [107]). We start to introduce G; : L'(Q) — (—o00, +00c] defined by

Gi(p) i= Filp) + 1Pi(p)llBviy if p € P*(Q), Fi(p) € L'(Q) and P;(p) € BV(Q),
AU +o0 otherwise.

G; is Ls.c and its sublevels are relatively compact in L'(€2). The ls.c comes from the Ls.c
of the BV-norm. Now we have to show that its sublevels are relativly compact in L'(€). Let
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Ac:={pe L) : Gi(p) < c}. Let (pi)y be a sequence in A, then P;(py) is bounded in BV ()
thus P;(py,) converges to f in L'(2), because the injection of BV (£2) into L!(Q) is compact. Since

P; is continuous, one to one and its inverse is continuous, pi converges to p := Pfl( f) a.e. More-
over, since G;(px) < ¢ and F; is superlinear, using Vitali’s convergence theorem, we obtain that py

converges to p strongly in L(€2).

Assumptions in the Rossi-Savaré theorem are satisfied because of (8.8), (8.7) and (8.18) then
we can apply this theorem in L'(2) and we find that, using a diagonal argument, up to a subse-
quence, for all i, p; 5, converges in measure with respect to ¢ in L*(£2) to p;. Now since convergence
in measure implies a.e convergence up to a subsequence, we may also assume that p; 5 (t) converges
strongly in L(Q) to p;(t) t-a.e. Then Lesbegue’s dominated convergence theorem implies that p;
converges strongly in L*((0,T) x Q) to p;.

Now we want to prove that P;(p; ) converges strongly to P;(p;) in L*((0,T) x Q). First, we
know that P;(p; ) is uniformly bounded in L>((0,7), L'(f2)), using (8.3), and thanks to (8.18),
we have that P;(p; ) is uniformly bounded in L'((0,7T), W!(Q)). Then the Sobolev embedding
gives that Pi(p; ) is uniformly bounded in L>((0,7), L*()) N L*((0,T), L"/"~1(Q)). We recall
now the lemma giving the uniform integrability of P;(p; ;) established in chapter 5 (lemma 5.14):

(

Lemma 8.6. Let p > 1, ¢ := 2= and f € L>((0,T), L' () N L*((0,T), LP(Q)) then f €
L1((0,T) x Q) and we have

A1 oy < IFIE o I Lz -

t

Then, using lemma 8.6, P;(p; ) is uniformly bounded in L"+1/"((0,T) x Q). This implies
that P;(p; 1) is uniformly integrable and Vitali’s convergence theorem gives that P;(p; ;) converges
strongly to P;(p;) in L*((0,T) x ).

Then we can conclude that VP;(p; ) converges to VP;(p;) in M™((0,T) x Q).

8.4.2 Convergence of WW;-optimal transport plans

Before treating the convergence to the interaction term, we introduce several notations. We note
)\f’;;l an optimal transport plan for W (p’fyh, . 7pi?_1,h’ pf’zl, pf—&-l,h’ e p{fh). Then we define the
interpolation A; ;, by

Xin(t) = AF, if t € (h(k — 1), hk].

We introduce the notation pf, := Pip @ @pl @ pf, ® - @ pf, and we define the
shifted interpolation

pin(t) = ply, if t € (hk, h(k + 1)] and p; ,(0) := p, o if t = 0.

It is clear that p; ;, narrowly converges to p; := p1®- - -®pi_1, pi+1®- - -®@py in L= ([0, T], P2¢(Q71)).

To simplify notations, we assume that A; ,(t) € I (p; n(t), p; (1)) and if we identify X; , and
T~ \in, we can assume that \; 5, € P([0,T] x Q x Q=1). \; 4 is tight in P([0,T] x Q x Q1) then
narrowly converges to \; in P([0,7] x Q x Q!71).

Moreover, if we note 712, 713 the projections from [0, T]x Qx Q=1 to [0, T]xQ and [0, T]x Q' L,
with 712(¢,z,y) = (t,z) and 723(¢t,2,y) = (t,v), and 7' (¢,2,y) = t, then we have 77;;2&,;1 =
pin(t)dt, 77;;3)\i,h = p;p(t)dt and wu\ip = T~ Lyjo 7). If we pass to the limit, since p; »(t)dt and
P 5 (t)dt narrowly converge to p;(t)dt and p,(t)dt, then we have 71'71#’2/\1- = p;(t)dt, 7@’3)\1» = p,;(t)dt
and 77#)\@ = T_lACHO’T].

Now, using lemma 5.3.2 of [4], we obtain that the disintegration of \; with respect to T_1£|[07T],
Ai(t), belongs to II(p;(t), p;(t)), t-a.e in [0, T].

It remains to prove that X;(¢) is optimal for W; (p1(t),...,pi(t)). We start to establish an
approximation result for the optimal transport plan between p;(t) and p,(t).
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Lemma 8.7. Let A;(t) an optimal transport plan for Wi (p1(t), ..., pi(t)). There exists a sequence
of transport plans X\ n(t) € I(p; n(t), p; (1)) such that

sup W1 (X7(t)7 Az,h(t)) — 0.
t€[0,T)

Proof. The proof follows the lines of the one of lemma 6.2 in [6]. Let v;(¢) € I(p;(t), pin(t)) the
optimal transport plan for Wy and let ¥,(t) € II(p;(t), p; 5, (t)) the optimal transport plan for W5.
Let us disintegrate ;(¢) and 4, (t) as v;(t) = pi(¢t) @ ¥F (t) and 7,(t) = p;(t) @%Y(t). Now we define
Ain(t) by

Xonlt) = / ) @ A0 K(r . dy).

By construction, X; ,(t) € I(pin(t), P; (). Then we introduce 7 a transport plan between A;(t)
and \; 5 (t) defined by for all ¢ € C(Q*),

[ eleat )y intepat) = [ (/ w(x7y,x’7y’)vf(t,dx’)‘r?(t,dy’)> No(t, da, dy).
Q4 02

02

Since m € TI(\;(t), Ai,n(t)) we have

WiROX®) < [ (o=l +ly = y]) dnlapa',y)
Q
< [ lo—ahrdndn) + [ o= y15tedy)t.d)
< [ lo-ahultdeds)+ [ -y ddy)
Q2 Q2

< Walpin(t), pi(t)) + Wa(pin(t), pi(1))-

Now, using the fact that p;, and p; j, converge in L*°([0, 7], P**(Q2)) and in L>([0,T], P (Q'~1))
to p; and p, respectively, we have the result. O

In the next proposition, we use the previous lemma to show that A;(t) is optimal for W; (p1(¢), . . ., pi(t))
t-a.e in [0, T7.

Proposition 8.8. For almost every t € [0,T], X;i(t) is optimal for W; (p1(t),. .., pi(t)).

Proof. Let A;(t) an optimal transport plan for Wi (p1(t),...,pi(t)). First of all, we define A; 5 (t)
as in lemma 8.7. Since \; j, is optimal for W;(p; n, p; ;) and X 1(t) € I(p; pn, p; ), we have

/ e y) i (t, do, dy) > / ci(@ y)in(t, de, dy).
QxQl-1 QxQl-1

So for all nonnegative function ¢ € C*([0,7T]) we get

T T
/ / ciey it de, dy)p(t) dt > / / cil, ) hin(t, de, dy)o(t) dt.
0 QxQl—1 0 OxQl-1

Since € is bounded and according to lemma 8.7,

T T
/ / i@,y R (t, de, dy)o(t) dt — / / ol y)Xa(t, da, dy)p () dt.
0 QxQl—1 0 QxOl—1

In addition, since A, , narrowly converges to X; in P([0,7] x € x Q'~1), we have

T T
/ / i,y hon(t, de, dy)p(t) dt — / / co(@, y)\i(t, de, dy)p(t) d.
0 QxQl-1 0 QxQl-1
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And then

T T
] ewordndewis [ [ awpriddeoa
0o Jaxai 0o Jaxai1
The inequality holds for all nonnegative function ¢ € C*°([0,T7]), then we obtain for almost every
te€ 0,7
Wi (pl(t)vapl(t)) = / cz(x7y))\l(t7dxady)a
QxQi—1

and the proof is concluded. O

8.4.3 Proof of theorem 8.1

In this section, we have to take the limit in the system of proposition 8.4. The linear term (with
time derivative) and the diffusion term converge to the desired result because p; ; converges to p;
strongly in L'(]0,T[xQ) and VP;(p; ) converges to VPi(p;) in M™([0,T] x Q). The remainder
term goes to 0 when h goes to 0 because of (8.8). So we just have to check the convergence of
multi-marginal interaction term. But, since \; 5, converges to \; in P([0,T] x Q!), we have

N-1 T
h Z / vwici(l‘h"'7xl)'v¢(tk7xi) dAiZl(LU’y) — / / vwiCi(ﬂj]_,...,xl)'v¢(t,.’1}7;) d)‘l(t?w7y)dt
k=0 7 o Ja

Moreover, \;(t) is an optimal transport plan for W;(p1, ..., p;) then for any Kantorovich potential
Us,

Vui(x;) = Vg, ci(x1, ..., 20) Ai(t) — a.e,

which concludes the proof.

8.5 Uniqueness

We will give an uniqueness result based on a displacement convexity argument and some examples
of problem where this condition is satisfied. In the following, 2 is assumed convex.

8.5.1 Displacement convexity in product Wasserstein space

In this section, we will establish several cases where the multi-marginal energy is geodesically
convex in the product Wasserstein space.

Definition 8.9. Let A € R. A functional W : P(Q)! — (—o0,+00] is said A\-geodesically convex
in P(Q) if for every i € [1,1] and for every couple (u?, u}) € P(Q)?

A
W0 ) < (L= WG, ) + V(o) = A= WS (o)), (1, 17)),

where pt is a constant speed geodesic between pud and put and Wy is the product distance on P(Q).
We say that F' : [0,+00) — R satisfy McCann’s condition if
x € (0,400) — 2" F(z™") is convex nonincreasing. (8.19)
McCann showed in [93] that if F' satisfy (8.19), then F, defined by

F(p) 12{ —fkﬂof v icft}i(r/\)z\)zisef @

is geodesically convex (A = 0).

Now we will find some examples of multi-marginal energy which are A-geodesically convex.
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A general classe of functions in 1D: In this paragraph, €2 is a convex bounded subset of R.

Proposition 8.10. Let h :  — R be a convex function. The functional W : P2°(Q) x P**(Q) —
R defined by

W(p,v) = inf / h(z —y) dy(z,y),
YE(1,v) JaxQ

is geodesically conver in P>°(2) x P2(Q).

Proof. Let po, pu1,v0,11 € P2¢(Q) and let p; and v, be constant speed geodesics between pg to g
and vy to vy, i.e puy = T} ,po and vy = TY 4o, where Tf' = (1 — t)Id +¢T#, Ty = (1 — t)Id + tT"
and T and T are respectively the optimal maps between ug to @1 and vy to v.

Let 9 the optimal transport plan between pg and 1y. Since pg is absolutely continuous,
Yo = (Id,S) g0 where S is a non decreasing map. We define v, = (T}, T} ) #v0 and we remark
that vy = (T*,T" o S) g po0.

If we take (T#(z),T" o S(z)) and (T*(x), T 0 .S(x’)) in the support of v, where x, 2’ € supp g
we have that T (z) < T*(z') imply that < 2’ because T* is non decreasing and then since 7% 0 S
is the composition of two non decreasing maps, we obtain 7% o S(z) < T" o S(z’). Lemma 2.8 of
[112] gives that 7, is the optimal transport plan between u; and vy.

Then we have

W(pe,ve) < /Qﬂh(x—y)d%(x,y)

< / BT (2) — TY (4)) drola, )
QxQ
< (1-t) / Wz — y) dyola,y) +t / W(T*(x) — T"(4)) do (2, )
QxQ QAx0
< (1 - t)W(uo, Vo) + tW(,ul, 1/1).

O

Remark 8.11. This result can not be generalized in higher dimension. Indeed, in dimensionn > 1,
it is well known that Wa (-, o) is not A-convex along geodesic on P() (see example 9.1.5 from [4]).

—W2 in dimension n: In this paragraph, we will show that —W3$ is (—2)-geodesically convex
on P(Q2) x P(Q2). We denote IIy(p, 1) the set of optimal transport plans for problem Wa(p, p).

Proposition 8.12. Let puy, o, p3, s € P(Q) and let pu*? € Mo(po, p1), p>* € Ho(ps, pa) and

ptt e To(p ™2, pf ™), with pi™? = (1 — )az + ter)gp'? and 7" = (1 — )z + tag) yp>*.
Then there exists a plan

w € T(p™?, 1) € P(Q*) such that 7rtlﬁ2’3ﬁ4#u = bt

1—>2,3—>4(

where T, 21,2, 3,24) = (1 — t)xa + tay, (1 — t)x3 + tay).

Proof. The proof follows the lines of the proof of lemma 7.3.1 in [4]. Let X, ¥ 0 Q2 — Q2 and
A¢ 2 Q* = O be the homeomorphisms defined by

Yi(x1, ) = (21, (1 — t)xg + txy), Yi(xs, xq) = ((1 — t)xs + tay, x4),

and
Ai(w1, 22,03, 24) 1= (21, (1 — )2y +twy, (1 — t)w3 + twg, 24).

We notice that p has the desired properties if and only if v := A4 p verifies

v = Sun?, 728y = bt and 7ty = ft#u3’4. (8.20)

Since Sy ut? € Mo, pf2), pbt € M(pi =2, pd=*) and Ty p®* € (14, 1), gluing lemma
proves that there exists a plan v € P(Q*) fulfilling (8.20). In addition, existence of u is proved
because A; is inversible. O
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Let po, vo, p1, 1 € P(Q), v, € Ho(pa, po) and v, € Ho(vo,v1). We note py and v, the constant
speed geodesics connecting respectively pg to 1 and vy to v1. Let 4 the optimal transport plan
between u; and v;. Proposition 8.20 says that there exists a plan « such that

1—2,3—4

~ € II(vu,v) and 7 £ =V

By definition of «, we have

Wg(ut,ut) = /4 (1 —t)zs +tx; — (1 —t)as — 16:134|2 dvy(z1,x2,T3,24)
Q

/ (1= 8)(2s — 25) + Hz1 — 22) 2 dy (21, B2, T3, 7).
Q4

Moreover, the Hilbertian identity
(1 —t)a+tb]* = (1 —t)|al* + t|b]* —t(1 —t)|b—al?

gives

W3 (pe,ve) = (1—1t) /94 |2y — x3|dy (31, 22, T3, T4) —H/m (21 — 242 dy(21, 22, 33, 54)
—t(1—1) /94 |y — 23 — 1 4+ x4|2dy (21, T2, 23, T4).
But, since 7T2’3#’7 € (o, vo) and 7r1’4#'y € (p1,v1), we have
/{;4 lzo — w32 dy(x1, w0, 23, 24) = Wi (o, v0),
/94 |2y — 24l dy(ar, w2, 23, 24) = W2(p1,v1).

In addition,

/ |2 — 3 — 21 + 24| 2dy (@1, B2, 3, 74) < 2[/ |x27x1|2d’7+/ x4x32d’7}
Qs o o
< 2 [/ |$2—$1|2d%+/ |5'34_333|2d%]
02 Q2
< 2[W3(po, ) + W3 (vo,11)]
< 2W5 (1o, v0), (11, 1))

Then, if we combine all these inequalities, we obtain

W3 (e, ve) = (1= )W3 (po, vo) + tW3 (p1,v1) — 26(1 — )W3 (10, 0), (11, 11))- (8.21)

As far we know, the identification of others examples is still an open question.

8.5.2 Uniqueness of solution

For the purpose of this chapter, it is enough to work in P2¢(Q) because diffusion implies that
solutions are absolutely continuous. First, we define the Fréchet subdifferential for W : P2¢(Q)! —
(—00, +00] by extending the definition in [4].
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Definition 8.13. Let W : P*(Q)! — (—o0,+00] be a functional and let & = (&1,...,&) €
L2((M17"‘7ul)7ﬂ); i.e

l
S [ 16l < +x.
i=1"9
We say that € is in the Fréchet subdifferential OV (u1, ..., w) if

W) = W) — Sy [ (€i(2), T (2) — @) i) da

lim inf >0 8.22
i ol ) | 52
where = (i1, ..., 1) and Tt is the optimal transport map between p; and v;.

In the next proposition, we want to characterize the subdifferential of A-geodesically convex
functionals.

Proposition 8.14. Let W : P2¢(Q)! — (—o0, +0oc] be a A\-geodesically convex functional. Then a
vector € € L?(p, Q) belongs to the Fréchet subdifferential of W at p iff

A
W) Z [ (6 o) = o) o W), (823)
for all v € P2¢(Q)L. Moreover, if € € OW(u) and k € OW(v) then

Z / () — k(T2 (2), T2 (2) — 2hpa () da < ~AWE(,v). (8.24)

Proof. The proof is the same as in the characterization by Variational inequalities and monotonicity
in [4] p. 231.
O

Now we can find the following uniqueness result

Theorem 8.15. Assume F; satisfy (8.19) and W; is a \;-geodesically convex functional. Let pt :=
(p1s---»pt) and p* = (p, ..., p}) two weak solutions of (8.4) with initial conditions p;(0,-) = p}
and p3(0,-) = piq. If for all T < 400,

T 1 T 1
| S lkilzzg et [l de < 4o (5.29
0 =1 ' 0 =1 ’

with, for j € {1,2}, _ _ _
vy = *VF‘/(Pg,t) - Vuj,

K2 (2

then for every t € [0,T],

Wh(pt, ) < e (X2 WE (o )
Proof. Using theorem 5.24, corollary 5.25 from [112] and assumption (8.25), we obtain

& (3720ks20) = [ (o= Tualoh kel - 2 Tate)lol (),

where T}, is the optimal transport map between le,t and pit. Since F; satisfies McCann’s
condition, we have

[ (@ = Taala), VEL (T (0) = TFphola))ple) da <0,
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In addition, W; is A;-geodesically convex then (8.24) gives
! l
> /Q<Vuzl,t($) — Vi (T4 (), Ty () — 2)pj o (x) de < = > W5 (g, p7)-
i=1 i=1
Then summing over ¢ and combining these inequalities, we obtain
d l
0l < (2300 ) Wi
i=1
Gronwall’s lemma concludes the proof. O

Remark 8.16. Assumption (8.25) in theorem 8.15 is made to ensure the absolute continuity of
Wg(p}’t,p?’t) and it can been checked using (8.12) (see for example proposition 4.24 from chapter

4 or [73]).

8.6 Extensions and open problems

This section is devoted to extensions of this problem and open problems for future work on this
subject.

8.6.1 Urban planning

We will propose some extensions of the previous result with applications to urban planning. In the
introduction of this chapter, we briefly discuss about one model of urban planning where residents,
p1, and services, p2, want to minimize a cost functional

E(p1,p2) = Welpr, p2) + F(pr) +G(p2),

with ¢ : R” — R is a A-convex function,

ripi- { o gz

and

G(p) = 04//QXQ |z — y[? dp(x)dp(y).

In [25, 26, 109, 108], the authors proved that the functional £ admits minimizers (p7, p5) which
are charatherized by

e p; is concentrated on a ball B(zg,r,) N§2 and is given by

pi(z) = m(’“i — |z - $0|2)7

where x is the barycentre of both p} and p3,

e p5 is concentrated on the ball B(zg,7./(2cc + 1)) N Q and it is the image of p; under the
homothety of ratio 1/(2a 4+ 1) and centre x.

The first question we have in mind is: Do the solutions given by theorem 8.1 for the energy £
converge to minimizers of £ when ¢ goes to +oo ?

We recall that the gradient flow of energy £ is a weak solution, (p1, p2), of system

dip1 — Api — div(p1 V) = 0,
Oep2 — 2adiv(pa(| - [ * p2)) — div(p2 V) =0,
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with (p,1) is a pair of optimal Kantorovich potentials for W,.(p1,p2). In dimension n = 1, we
proved that W, is geodesically convex if ¢ is convex then £ is displacement convex in P2¢(Q) x
P2¢(§2). Moreover, theorem 8.15 gives a contraction principle in the Wasserstein product space for
displacement convex energies which implies that

Wa((p1(2), p2(1), (P, p3)) < € M Wa((p1(0), p2(0)), (o7, p3)).

Then if X is positive, (p1(t), p2(t)) converges to minimizers of & when ¢ goes to +o0o. In higher
dimension, we can not apply this argument because even if ¢ is A-convex, a priori W, is not
geodesically convex. However, in the very simple case for two species where ¢ = %, Vi=V=V
and F is the Entropy, then denoting (p1, p2) solution of

{ Oep1 — Apy — div(p VV) — div(p1 V1) =0,
Oep2 — Apy — div(paVV) — div(paVips) = 0,

where 1, @9 are the optimal Kantorovich potential (up to a constant) for Wa(p1, p2), we can use
the same argument that in theorem 8.15 to find the asymptotic behaviour of p; and ps. Indeed,

d

- (;W22<pl(t), Mt))) < / (z = T(x)) - (Viog(p(x)) — Viog(p2(T())))p1(x) dw

+ / (x — T(x)) - (VV(z) - VV(T(2)))ps (x) da
+ / (z — T()) - (Ver(z) — VooT(@)))pu (x) di,

where T is the optimal transport map for Wy(p1, p2). We remark that since p; and p, are positive

densities,
Ves(T(2)) = T(@) - S(T(@)) = T(a) —2 = Vgr(a)  ae,

with S the optimal transport map for Wa(pa, p1). If we assume that V' is A-convex, for some A > 0,
and using the displacement convexity of the Entropy and the potential energy then we obtain

d

4 (3701000 ) < AW (10 pa(0),

which implies that p; (¢) and p2(t) converge to the same limit, when ¢ * +00, which is the minimizer

of
pH/plog(ﬂH/Vp-

In the previous model, we only focus on one sector, but we can assume that residential areas
and service areas are split in two sectors denoted 1 and 2. This model was proposed in 2008 and
studied in the static case, by Carlier, Ekeland and Rochet [34]. Here we are more interested in the
evolution case. We denote f; and f5 the densities of firms and w; and ws the densities of residents
in these areas. Now the congestion costs is on the all population which implies that the congestion
fonctional is

F(w, f) 5:%”/(wl+w2)2+%/(f1+f2)2,

where w := (wq,w2) and f := (f1, f2) and o, and oy represent positive parameters. Moreover all
residents in sector ¢ want to work or use services from the same sector consequently, w and f have
to minimize

We(w, f) = BWe(wy, f1) + BWe(w2, f2).

We have to take into account externalities created by residents and firms, so they have to minimize
CRgS o
6w 1) =3 5 [l sl s drty+ F [ e =P 5@ ws0) + walo) oy
i=1

45 1o = P @) + s i) + wale) dedy,
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where k1, k2,0 are positive parameters and o1 and o2 can be positive (services) or negative
(polluting industries). Under some assumptions in parameters, this minimizing problem admits at
least one solution. In future, we want to combine arguments developped at chapter 6, to study the
existence of a gradient flow in a Wasserstein product space for the functional F + W, + G and the
asymptotic convergence.

8.6.2 Entropic regularization

In this section, we present future works on this subject with numerical applications. Indeed, the
computation of the gradient flow of (8.4) can be very challenging because at each time step we
have two solve two transport problems. To deal with this issue, we want to introduce a smoothing
regularization. For simplicity, we restraint ourselves to the case of one density which interacts with
a prescribed measure o. In other words, (8.4) becomes

pptt € argmin %Wz (0, o8) + F(p) + We(p, 0),

where W, is given by

_ |z —yl” yl”
We(p,o) ;= inf dvy(xz,y) +¢ ~vlog(y
vell(p,0) Jaxa axQ

We remark that W, can be rewritten has the infimum over transport plan of the relative entropy
with respect to a Gibbs measure G(z,y) = exp(—|z — y|? /pe),

We(p,0) = inf H(v|G),

Y€ll(p,0)
with
s
H(YIG) - / log ) dG(z,y).

This problem was introduced by Schrédinger in [113] (see for example 78] for a survey on this
problem). In [77] and more recently in [30] it was proved the following I'-convergence result

Theorem 8.17. Let p, u € Pp(R™) with finite entropy, then

Foomes 4 Moxe U dy (2, ) + € [0 Vlog(y) i v € TH(p, p),
c 400 otherwise,

T'-converges to

—ylP .
Foye d Moxa Ll dy(w,y) ify € T1(p, p),
400 otherwise,
with respect to the weak topology on P,(R™) i.e
o for any sequence (v:) C P(Q x Q) converging weakly to v € P(2 x Q), we have

liminf F.(v:) > F(7),

n—-4oo

o for any v € P(Q x Q), there exists (7:) C P(Q2 x Q) converging to v in P(Q x Q) such that

limsup Fe(7:) < F(7)-

n—-+o0o

Consequently, a sequence of minimizer of We(p, ) converges to an optimal transport plan for
Wy (ps 1)
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In [104], Peyré used the entropic regularization to solve gradient flows in Wasserstein space. He
regularized the W5 metric which permit to have a very simple algorithm to solve each JKO step.
In addition, he applied this algorithm to obtain numerical simulations of sytem with two species
interacting with the Ws distance between each others as system (8.1). In a future work, we want
to extend this method to several species and combine this with the Entropy of the sum to solve
numerically the evolution for the two-sectors case as it was introduced in previously.

In our setting, replaced the W[ (p, o) by We(p, o) means that the population p wants to reach
o but is subject to a noise. In the following, we will discuss about future works on gradient flow
of W, with ¢ fixed and when ¢ goes to 0. Our first aim is to prove the convergence of the JKO
scheme for W, with a fixed €. One difficulty in the previous proof is the identification of the limit
of optimal transport plans \;, for W.(pn,0) as an optimal transport plan for W, (p, o). To solve
this problem, we would like to prove the following I'-convergence result:

Conjecture 8.18. If p, converges to p in L*(Q). We define G, by

Gn(7) = { H(|G) if vy € U(pn,0),

400 otherwise,

and

_ ] HOG) ifyell(p,o),
9(v) = { +00 otherwise,
where G(z,y) = exp(—|z — y|P/pe). Then G,, I'-converges to G i.e

o for any sequence (yn) C P(2 x Q) converging weakly to v € P(Q x Q), we have

légl}r{.lf ng(77L|G) 2 g(’”G)’

o for any v € P(Q2 x Q), there exists (v,) C P(2 x Q) converging to v in P(Q x Q) such that

limsup G,,(,|G) < G(v|G).

n—+oo

Indeed, if we prove this conjecture, arguing as in proposition 8.8, we obtain the desired result.
The liminf condition is not the issue here and is easy to prove by lower semi-continuity of the
relative entropy. For the limsup condition, we will give a formal proof when p,, and p are bounded
from below.

Formal proof. If v ¢ TI(p,o) then for n large enough, 7, ¢ I(p,,0). Then we assume that
Yn € H(pp,o) and v € II(p,0). Then the liminf inequalities comes directly from the duality
formula of the relative entropy, see lemma 9.4.4 of [4],

H(Y|G) sup{/QXQSdfy/QXQ(eSI)dG : Ser(QxQ)}.

Now we give a formal proof for the limsup condition. Assume that p,, and p are smooth, C%%(Q),
and bounded from below. Then the transport map 7;, from p to p,, is given by the gradient of a
convex function u, such that u, € C>*(2) and solves the Monge-Ampére equation

on(Vuy (2)) det(D?u, () = p(x) for all z,

according to Caffarelli’s regularity theorem 2.6 or [27, 28]. Since p,, converges to p a.e, T;, converges
to I a.e. We define v, by v, := (T3, I)%7. Then we have

Yo (Tr (), y) det(VT, (z)) = v(z, y).

We obtain
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B T @) AT (2), ) )
HmlG) = //QXQ det(VT,(Tn ' (x))) log (G(x,y) det(VTn(Tn_l(x)))> dedy
_ v(z,y)
= ], ot oes (G(Tn @) det(vmx))) dedy
_ 77@’2/) — T 0 e x X
— ||| twon (Gt ) oy~ [ e toa(der VT, ) dod.

Since T;, converges a.e to I, we have

e fl o0 (g ) o =000

Moreover, at least formally, det(VT,,(z)) — 1, which implies that

lim sup (—//Qxﬂfy(x,y) log(det(VT,(z))) dxdy) =0.

n—-+oo

Then we obtain
limsup H (7, |G) < H(7|G).

n—-+oo

O

To conclude, we hope to obtain rigourously this result and there are several others issues as
the regularity of Kantorovich potentials of the regularized problem and their stability with respect
to marginals that we need to understand in order to have an existence result for the entropic
smoothing problem.
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Résumé

Depuis I'article fondateur de Jordan, Kinderlehrer
et Otto en 1998, il est bien connu qu’une large
classe d’équations paraboliques peuvent étre
vues comme des flots de gradient dans I'espace
de Wasserstein. Le but de cette thése est
d’étendre cette théorie a certaines équations et
systemes qui n'ont pas exactement une structure
de flot de gradient. Les interactions étudiées
sont de différentes natures. Le premier chapitre
traite des systémes avec des interactions non
locales dans la dérive. Nous étudions ensuite
des systemes de diffusions croisées s’appliquant
aux modeles de congestion pour plusieurs
populations. Un autre modéle étudié est celui ou
le couplage se trouve dans le terme de réaction
comme les systéemes proie-prédateur avec
diffusion ou encore les modeéles de croissance
tumorale. Nous étudierons enfin des systemes
de type nouveau ou l'interaction est donnée par
un probleme de transport multi-marges. Une
grande partie de ces problemes est illustrée de
simulations numériques.

Mots Clés

distance de Wasserstein, flots de gradient,
schéma JKO, splitting, dérive non locale,
diffusions non linéaires, diffusions croisées,
systemes de réaction-diffusion, équations
d'Hele-Shaw, transport optimal, transport
multi-marges, formule de Benamou-Brenier,
lagrangien augmenté, mouvement de foules,
espéces en interaction

Abstract

Since 1998 and the seminal work of Jordan,
Kinderlehrer and Otto, it is well known that a
large class of parabolic equations can be seen
as gradient flows in the Wasserstein space.
This thesis is devoted to extensions of this
theory to equations and systems which do not
have exactly a gradient flow structure. We study
different kind of couplings. First, we treat the
case of nonlocal interactions in the drift. Then,
we study cross diffusion systems which model
congestion for several species. We are also
interested in reaction-diffusion systems as
diffusive prey-predator systems or tumor growth
models. Finally, we introduce a new class of
systems where the interaction is given by a
multi-marginal transport problem. In many
cases, we give numerical simulations to
illustrate our theorical results.

Keywords

Wasserstein distance, gradient flows, JKO
scheme, splitting, nonlocal drift, nonlinear
diffusions, cross-diffusion, reaction-diffusion
systems, Hele-Shaw equation, optimal transport,
multi-marginal transport, Benamou-Brenier
formula, augmented lagrangian, crowd motions,
interacting species




