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Preface 
 
While explaining how the form and function of the tissue reciprocate to guide the tissue 

organization at a TED talk by Mina Bissell, the hero of tissue-microenvironment and cancer 

studies, she said, 

 

“I would like submit to you that we have sequenced the human genome, we know everything 

about the sequence of the gene, the language of the gene, the alphabet of the gene, but we know 
nothing but nothing about the language and the alphabet of form”  

 

You may think that she referred it 20 years ago or so, but she mentioned it recently in 2012, 

eleven years after the first draft of human genome sequence was published. One of the 

reasons why we still do not completely understand function of the genome is because of lack of 

understanding of how DNA is regulated by not only genetic elements but also the environment.  

 

This thesis work is performed in an attempt to understand tissue architecture and plasticity 

through regulation of sub-cellular cytoskeleton and cell-adhesion components. However, I 

would like readers, whether they are from scientific or non-scientific background, to 

appreciate the approach undertaken to study complex behavior of organs in a human body. 

With trillions of cells residing in our body, any model that is at a scale of ten or hundreds of 

cells may sound irrelevant straightaway. But if we look across the planet, the recurrence of 

pattern formation is evident in biological and non-biological forms. For example, fractal 

features seen at different scales in tree branching, river networks, blood vessel networks 

suggest common physical laws binding the final form in various systems. Moreover, branching 

network seen in mammary gland, lung and salivary gland support the notion that patterns 

emerge when subjected to proper boundary conditions. And thus, it is probably not so absurd 

to start thinking of human body as a manifestation of small modules generated with fewer cell 

number.  To reiterate Lewis Wolpert, 

 

It has been a great surprise and of considerable importance to find that most embryonic fields 
seem to involve distances of less than 100 cells, and often less than 50. 



 2 

 

Today the biology is hugely dominated by organism level studies such as whole genome 

screens, the Human brain project etc. The importance of these approaches is undoubtedly 

crucial for medical treatments. However, in my opinion without the thorough understanding of 

the basic functioning unit of tissue we cannot completely comprehend how the organs and 

ultimately the human body work.  

An inspiring and comprehensive description, “Building the cell: design principles of cellular 

architecture’ by Susanne Rafelski and Wallace Marshall certainly provokes the question, do we 

harbor enough knowledge to build the cell?  Cell is complex at the molecular scale, yet simpler 

at the form and it acts like a fundamental functional block of the organ. During the course of 

this thesis we observed amazing recapitulation of the tissue phenotype within mere 2-cell unit, 

which we call a minimal tissue model. Two cells with physical boundary condition and proper 

environmental cues exhibited phenotype that was comparable to tissue phenotype. Again, I 

would like to insist that recapitulation of phenotype with minimal tissue model does not 

implicate replica of the tissue at a smaller scale, but it means that the minimal model is a 

derivative of the final tissue form and function. With this in mind, I hope that the readers would 

appreciate the power of minimal-tissue models, which are extensively used throughout the work 

of this thesis to study tissue plasticity during embryogenesis and cancer progression. Within 

upcoming years, if we aspire to build a tissue or an organ, which will have countless applications 

in medical and fundamental research, I think starting with building a minimal tissue is the first 

step towards it… 

 
 
 
 

Mithila Burute 
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Summary of the thesis (English version) 
 
Development from a single cell embryo to the multicellular adult form of organism involves 

tremendous morphogenesis. The well defined and highly controlled morphonogenetic 

processes are crucial at every stage of the development including gastrulation, organogensis, 

wound healing and tissue maintenance. The necessary harmony between the cells for these 

processes is achieved by integration of internal and external polarity cues. This thesis work is 

focused on understanding how cells integrate polarity cues to drive morphogenetic events 

such as of Epithelial to mesecnhymal transition (EMT) and cancer metastasis. We used 

centrosome position as an indicator of internal cell polarity due to its active role in organization 

of microtubules and orientation of internal traffic of endocytosed and secreted proteins; while 

cortical polarity was inferred by polarized distribution of cell-cell adhesions (CCA) and cell-

matrix adhesions (CMA). In the first part, we studied effect of centrosome amplification, which 

is very common in human cancer; on CCA. Inducible centrosome amplification in mammary 

gland cells led to destabilization of CCA alongwith generation of invasive cell protrusions. 

Using a minimal model of tissue; confined on micropatterns, we demonstrated that cells with 

amplified centrosome correctly oriented their internal polarity axis like normal cells although 

increased centrosomal protein and peri-centriolar material emanated higher centrosomal 

microtubules. Use of in vitro models of cell lines and controlled culture conditions revealed that 

mere amplification of centrosome was sufficient to drive cell fate for cancer-like events in the 

absence of any additional external growth signals capable of affecting cortical polarity. This 

study revealed that internal polarity cues interact with the cortical polarity signals and the 

crosstalk between the two governs the physiological state of the cell during transformation 

events like cancer metastasis. The second part of the study focused on exploring how internal 

polarity during EMT is modulated to drive precise spatial movements during development. Cell 

adhesion remodelling being central to EMT, we hypothesized that it was coupled to internal 

polarity changes. We monitored centrosome position in epithelial and in cells induced for EMT 

by TGF-β1 and we found that nucleus-centrosome axis was reversed after the EMT induction. 

This phenomenon of polarity reversal strongly suggested that internal polarity cues and 

positioning of organelles is coupled to signals that polarize CCA and CMA distribution. A shift 

in the force balance between CCA and CMA was observed upon EMT and suggested that 

CMA forces dominated in mesenchymal cells. Release of cells from the confinement clearly 

revealed that the ability of cell separation was dependent upon their internal polarity. These 

results demonstrated that cell-scattering events observed during mesoderm formation during 

gastrulation or metastasis events in cancer ; involve active and well controlled reversal of 
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internal polarity axis that is coupled to the cortical polarity of cells. From the understanding of 

the above two projects involving cancer-like scattering phenomenon, we developed a product 

to allow robust screening of anti-cancer drugs. We once again used the simplified two-cell 

model on micropattern geometries to develope an assay to detect scattering ability of cells 

after events like EMT. The assay was validated by EMT transformation of 4 different epithelial 

cells lines. The detection of their scattering ability was performed using single time point 

picture assay. We used internuclear distance between the cell-pair as the main parameter for 

scoring the scattering index of cells with a possibility of automated image processing. The final 

product was manufactured in 96-well plate format by our industrial collaborator CYTOO for 

high content screening. Preliminary validation performed using drugs against EMT constituted 

proof of concept of the product.  

 
 

Summary of the thesis (French version) 
 
Au cours de son développement depuis la cellule unique jusqu’à la forme adulte, l’embryon 

passe par de nombreuses étapes de morphogenèse. Les processus morphogénétiques, bien 

définis et très contrôlés, sont essentiels à chaque étape du développement. L'harmonie entre 

les cellules au cours de ces processus est assurée par l’intégration spatiale des signaux 

externes qui assurent la cohérence des polarités internes et externes des cellules. Ce travail de 

thèse se concentre sur la façon dont les cellules intègrent les informations spatiales dans la 

définition de leur polarité au cours de grandes transformations morphologiques comme la 

transition épithélium-mésenchyme et la dissémination des cellules tumorales. Nous avons 

utilisé la position du centrosome comme un indicateur de la polarité cellulaire interne en raison 

de son rôle actif dans l'organisation des microtubules et donc dans l'orientation du transport 

intra-cellulaire. La polarité corticale a été inférée à partir de la répartition spatiale des 

adhérences cellule-cellule (ACC) et cellule-matrice (ACM). 

 Dans la première partie, nous avons étudié l'effet de l'amplification du nombre de 

centrosomes, une caractéristique fréquente dans les cellules tumorales, sur l’adhérence inter-

cellulaire. L'amplification des centrosomes dans les cellules de la glande mammaire a conduit à 

la rupture des adhérences inter-cellulaires ainsi qu’à la genèse de protubérances cellulaire 

invasive. A l’aide d'un modèle minimal de tissu, confiné sur micropatterns, nous avons 

démontré que les cellules comportant un nombre excessif de centrosomes étaient capables 

d’orienter correctement leur axe de polarité interne. Cependant le matériel centrosomal étant 

plus développé, de nombreux microtubules supplémentaires émanait de ces clusters de 

centrosomes surnuméraires. En conséquence Rac1 était suractivé ce qui avait pour effet 

d’induire des protrusions membranaires importantes. L'utilisation de modèles cellulaires in vitro 
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et de conditions de culture contrôlées ont révélé que la simple amplification des centrosomes 

est suffisante pour moduler le destin de cellules transformées et les rendre invasives. Cette 

étude a révélé que les mécanismes régissant l’orientation la polarité interne des cellules sont 

liés à l’arrangement spatial de la polarité corticale et qu’une rupture de conjugation les deux 

perturbrai la physiologie du tissu au point d’induire la formation de métastases tumorales. 

 La deuxième partie de l'étude a porté sur l'exploration de la transition épithélium-

mésenchyme (EMT). Nous avons étudié le rôle potentiel des mécanismes de régulation de la 

polarité pour diriger la précision des mouvements cellulaire au cours de l’EMT. Le remodelage 

des  adhérences inter-cellulaires jouant un rôle central au cours de l’EMT, nous avons supposé 

qu'il était couplé à des changements de polarité interne. Nous avons suivi le positionnement 

du centrosome dans les cellules épithéliales et dans les cellules dans lesquelles l’EMT était 

induite par stimulation au TGF-β. Nous avons constaté que l’orientation des cellules traitées au 

TGFb était complètement inversée. Ce phénomène d'inversion de polarité suggérait fortement 

que l’orientation de la polarité interne et le positionnement des organites étaient couplées à 

l'organisation polarisée des ACM et des ACC. Nous avons en outre constaté que Par3, un 

marqueur des jonctions apicales était responsable du repositionnement du centrosome 

pendant l’EMT. Un changement dans l'équilibre des forces en faveur des ACM par rapport aux 

ACJ nous a amené à penser que ces forces jouaient un rôle important dans les cellules 

mésenchymateuses et ce notamment pour leur capacité de migration. En effet la libération des 

cellules mésenchymateuses de leur confinement nous a montré que la séparation des cellules 

après l’EMT était dépendante de l’inversion de polarité interne dans ces cellules. Ces résultats 

suggèrent que la dispersion des cellules observée pendant la formation du mésoderme au 

cours de la gastrulation impliquent un renversement actif et finement contrôlé du couplage 

entre l’axe de polarité interne et l’asymétrie des deux types d’adhérences cellulaires. 

 Suite à l’étude de ces deux projets impliquant des dispersions cellulaires, nous avons 

développé un dispositif pour permettre le criblage de médicaments contre les dérèglements 

cellulaires impliqués dans la formation des métastases. Nous avons à nouveau utilisé un 

modèle simplifié de paires de cellules sur des micropatterns pour détecter la capacité de 

dispersion des cellules suite à des stimulations externes comme celle induisant l’EMT. Le test, 

qui permet de mesurer le degré de séparation des cellules à l’aide d’une seule image, a été 

validé sur quatre lignées de cellules épithéliales différentes. La distance internucléaire entre les 

deux cellules a été utilisée comme une mesure automatisable des capacités de dispersion des 

cellules. Le dispositif final a été adapté à un format de plaque 96 puits en collaboration avec 

l’entreprise Cytoo afin de permettre des criblages à haut contenu. Ce kit a ensuite été validé 

en testant des médicaments connus contre l’EMT. Enfin, une analyse de 20 gènes candidats a 

été faite à l’aide de siRNA ciblant les adhérences intercellulaires. Elle a abouti à la validation 

des gènes classiquement impliqués dans l’EMT ainsi qu’à la mise en évidence de nouveaux 
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candidats potentiels. 

 
Short summary for the general public (English version) 
 
The epithelial cells line up along the periphery of the organs that have an interface with the 

external environment such as the renal tubules or the mammary glands. This topology is severly 

perturbed during epithelial to mesechmal transition (EMT) that occurs during normal 

development and tumor progression. In this work, we induced this transition by addition of 

TGF-β to the cell culture of human mammary glands. We monitored the centrosome position, 

which is an important marker of cell polarity. We found changes in centrosome position during 

EMT and it’s relocation predisposed mesenchymal cells to separate and migrate to the tissues, 

as they do during metastases. With this observation, we developed a commercial product to 

detect such errors and to test the potential role of new drugs which can interfere with this 

transformation. 

	
  

Short summary for the general public (French version) 
Les cellules épithéliales longent la périphérie des organes qui ont un interface avec le milieu 

extérieur tels que les tubules rénaux ou les glandes mammaires. Cette topologie des organes 

est sévèrement remodelé au cours du développement normal et de progression du cancer r 

par processus nommé transition épithélium-mésenchyme (EMT). Nous avons induit cette 

transition dans des cellules de glandes mammaires humaines en culture en les traitant au TGF-

β. Nous nous sommes intéressés au positionnement du centrosome, qui est un marqueur 

important de la polarité cellulaire.  Nous avons constaté qu'il changeait de position au cours de 

l’EMT et que cette relocalisation prédisposait les cellules mésenchymateuses à se séparer et à 

migrer vers l’intérieur des tissus, comme elles le font au cours de la formation des métastases. 

Forts de cette observation, nous avons développé un produit commercial permettant de tester 

le rôle éventuel de nouveaux médicaments capables d’interférer avec cette transformation. 
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0.0 General introduction to the thesis 
 

Emergence of the epithelium 
 
Primitive life existed in unicellular form.  Multi-cellular metazoans life forms evolved from single 

cell prokaryotes over more than 3 billion years. Multi-cellularity required development of 

intercellular adhesions, synthesis and secretion of intercellular adhesion material, development 

of systems of attachment to extracellular medium and development of intercellular 

communication system. The structural integrity of multicellular organisms depends upon the 

establishment and maintenance of the stable cellular connections. The phyla of metazoans 

provide models of progressive evolution of specialized epithelial structures from primordial 

epithelia. The lower metazoan possess a basic body plan with a single central cavity enclosed by 

epithelia-like monolayers which lack the typical belt-form junctions of epithelial (eg Adherene or 

tight junction proteins) and hence are not capable of isolating any compartments; they are not 

considered to be true epithelial. The multicellular body form of phyla, Porifera (eg. Sponges) are 

considered non-epithelium because of lack of true cell-cell junction and basal lamina (Figure 

0.1A). Their epithelia-like layer lacks typical belt-form of junction and thus do not isolate any 

compartments. The progressive grades of epithelial organization are observed in higher phyla 

of Cnidaria (eg. Hydra, Sea anemone) with formation of true epithelia (Figure 0.1A), which 

segregates internal cavity from exterior (Tyler, 2003).  The salient features of true epithelium are, 

formation of the stable intercellular junctions with specialized functions such as prevention of 

passage of molecules across epithelium (Tight junctions), bringing adjacent cells together 

(adherene junctions), resisting mechanical stress (desmosomal junctions), allowing passage of 

small molecules between adjacent cells (gap junctions) and anchoring epithelium to basal 

lamina (focal adhesion) (Figure 0.1 B) (Abedin and King, 2010). The complexity of metazoan 

body plan arises from their capacity to develop organ systems. Formation of gut, kidney, liver, 

and secretary glands are the modules that are constructed by forming independent cavities 

within the organism. The capacity to develop these organs has emerged from differentiation of 

two main cell forms, epithelial and mesenchymal cell. (Figure0.1C).      

 

Abbreviations: APC: adenomatous polyposis coli, CA: Centrosome amplification, CCA: Cell-Cell 
Adhesion, CDK: Cyclin dependent kinase, MAPs; CMA: Cell-Matrix adhesion, Microtubule associated 
proteins, MTOC: Microtubule organizing center, PCM: Pericentriolar Material, SPD-2: Spindle 
defective-2/CEP192 Centrosome associated pericentrin, +TIPs: plus-end tracking proteins, TGN: 
Tran-golgi network, NC axis: Vector passing through center of centrosome and nucleus 
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Emergence of Epithelial-to-mesenchymal transition 
Over 500 million years ago evolution of the key event wherein epithelial cells could transform 

into migratory mesenchymal cells allowed the possibility of crossing cell sheets to the interior 

and redifferentiating to form epithelial organ structures. The basic difference between 

diploblastic (two germ layers) and triploblastic (three germ layers) metazoans can be visualized 

by their ability to form internal closed structures, which are derived from mesoderm (Figure 

0.1D). The triploblastic body structures have advantage of compartmentalization owing to 

underlying epithelial structures, which enclose coelom (true body cavity) that is separated from 

the gut lumen (Figure 0.1D). The advantages of coelom is that it protects organ from external 

body pressure allows more extensive growth of organs including the digestive tract, it permits 

the formation of an efficient circulatory system and the fluid can transport materials faster than 

by diffusion. 

The epithelium and mesenchyme thus the basic types that constitute metazoan embryo. The 

two types of cells possess different intercellular organization and different capacity to interact 

with the extracellular matrix. The epithelial cells are polarized with segregation of trans-

membrane proteins into apical, baso-lateral and basal region, which are the fundamental 

polarity cues necessarily for polarized tissue formation. On the other hand, mesenchymal cells 

are thought to have emerged as derivative of epithelial cells during evolution (Shook and Keller, 

2003; Tyler, 2003). In the context of development, Epithelial-Mesenchymal transition gives rise 

to mesenchyme-like cells with weaker cell-cell junction, migratory abilities and they can 

dedifferentiate into epithelial structures such as kidney by process of Mesenchyme-Epithelial 

transition (MET). The EMT process is the basis of organ formation consisting coelom in higher 

metazoans. In plants and fungi the body form arises from cell proliferation and cell growth 

(hypertrophy) while in addition to that, diploblastic animals posses ability of epithelial sheet 

folding to form a body cavity. The triploblastic animals can form organs which are separated 

from gastrointestinal cavity by ability of EMT (Tyler, 2003) (Figure 0.1E). The reproducible body 

forms seen across metazoan phyla with involvement of EMT reflect reproducible and tightly 

controlled processes that drive cellular movement in the correct sequence and direction. And 

hence it seems very plausible that execution of epithelial morphogenesis program would 

involve cellular-molecular compasses, which impart ability to cells to recognize their micro-

environment and undergo coordinated local movements within the embryo without disturbing 

the overall body form. Here what I call cellular-molecular compass is the ability of cells to sense 

internal and external directional cues to organize and migrate in polarized manner. It has the 

same notion of what is often referred as  ‘positional information’ of cells. Segregation of cellular 

components, formation of gradients, activation of signaling cascades, morphological asymmetry 

of cell as response to directional cues can be considered as part of cellular-molecular compass.  
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Main questions of the thesis 
 
The two major components of the cellular-molecular compass can be defined, 

 

1. Cortical polarity - Polarized distribution of cell membrane associated proteins such as Cell-

cell adhesion, cell-matrix adhesion. It also involves asymmetric distribution of membrane lipids, 

small GTPases Rac, Rho, Cdc42 (Figure 0.2). 

2. Internal polarity- Asymmetric distribution of organelles within the cell such as Nucleus- 

centrosome-golgi orientation. It also involves position of Cilium, movement of Rab proteins, 

recycling/sorting endosomes, mRNA and protein gradients (Figure 0.2). 

 

Within the framework of this thesis I would like to discuss how these two polarity cues interact 

with each other and integrate the signals to give rise to the final polarity that is necessary for 

tissue establishment as well as tissue morphogenesis. The main questions addressed in this 

work are,  

 

1. How do components of internal and cortical polarity interact with each other to establish 

tissue polarity? 

2. How cortical and internal cell polarity is controlled and altered for the execution of 

morphogenetic events? 

 

In a crowded cytoplasm inside a cell, cytoskeletal networks allow rapid and directed transport of 

organelles by motor proteins and their specific subcellular localization through regulation of 

cytoskeletal distribution and dynamics. Thus chemical and mechanical environmental cues can 

be transmitted to the cell interior by the cytoskeleton engaged at the cell cortex complexes. 

Actin, microtubules and intermediate filaments form distinct cytoskeletal networks within cells 

and perform function of organelle positioning, intracellular trafficking and regulate cytoskeletal 

distribution and dynamics. Microtubules are involved in majority of above function, as they are 

capable of extending over the whole length of cell and thus can transmit signals from the 

farthest part of the cell. Microtubule network generates polarized trafficking of molecules within 

cells, which is required for maintaining cortical polarity components at distinct locations. The 

position of microtubule array can in turn also affect the position of organelles (Rafelski and 

Marshall, 2008). Hence microtubules act as the main link that maintains the crosstalk between 

the internal organelles and cell cortex necessary for establishment of cell polarity. In this thesis 

we studied how cell polarity is modulated during different epithelial morphogenetic processes. 

We focused on understanding the cell-cell adhesions and microtubule network affect each other 

during tissue morphogenesis. 
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Over the 4 years of thesis work with help from collaboration work I explored mechanisms of 

cancer invasion and epithelial-to-mesenchymal transition (EMT), which involve dramatic tissue 

remodeling that mediated by microtubule network. In this thesis asymmetry of microtubule 

array is mainly inferred by centrosome position within the cell as microtubule network in animal 

cells is majorly organized at the centrosome. 

I will begin the thesis introduction by describing cortical and internal polarity components. I will 

introduce fundamental processes of epithelial organization and mechanisms involved in spatial 

segregation of cell adhesion complexes and also describe typical organelle asymmetries 

generated within the epithelial cell.  

The thesis is structured into three chapters for addressing specific aspects as shown in (Figure 

0.2). Each chapter contains an introduction to describe the phenomenon under study and 

focused review of literature to describe synthesis of hypotheses. Chapter I and II include 

manuscripts of the articles. At the end of each chapter, I have taken liberty to discuss the 

implications of the results, possible mechanisms and newer hypotheses that I realized from this 

work.  

In chapter I, I will describe the study undertaken to investigate, how cell-cell adhesions are 

modulated by microtubule network in cells having amplified centrosomes, which is a hallmark of 

human cancers. The altered microtubule network in these cells effectively damages the tissue 

integrity and triggers malignant phenotype. 

In chapter II, I will focus mainly on how internal polarity within epithelial cells is altered during 

the course of EMT and how this change affects the final step of mesenchymal separation. The 

work mainly involves understanding of orientation of internal polarity guided by centrosome-MT 

network coordinated with remodeling of cell-cell adhesion on the onset of EMT.  

This thesis work is also inspired from industrial point of view to develop the “EMT kit” to 

facilitate detection of EMT. I worked as a link between academia and industry to explore basic 

mechanisms of EMT in the lab of Manuel Thery and using this knowledge I developed the ‘EMT 

kit” for pharmaceutical screen of cancer drugs, with the help from CYTOO. Hence in the final 

chapter I will summarize the progress of the “EMT kit” development using the knowledge 

gained from work in first two chapters regarding cell separation.  

In each chapter, I have included a section of short questions and answers called ‘short Q&A’. 

This section is added mainly to discuss technical points about the experiments, which were not 

discussed at length in the results section. I feel these short Q&A would help the reader to 

understand experimental set up more clearly. I have included the cumulative understanding of 

the work described in three chapters into the General Discussion section. The General 

Discussion also includes description of processes that were not studied in this thesis but which 

require consideration to paint the global picture of polarity and epithelial morphogenesis.  
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0.1 Introduction to cortical polarity of the cell 
 

Epithelial polarity is defined by the demarcation of cell membrane into distinct domains, which 

are decorated by different molecular complexes. In an organism, the first event of 

epithelialization occurs very early during embryo development, just after three or four cleavages 

during compaction of embryo (Figure 0.3 A). At this stage 8-16 blastomeres adhere to one 

another to form circumferential junctions and begin physiological separation of internal 

environment from outside resulting into blastocoel cavity (Shook and Keller, 2003). During the 

later stages of embryogenesis and organ development distinct epithelial structures are formed 

such as simple squamous epithelium in lungs and blood vessels for gas diffusion, stratified 

epithelium in skin and the ciliated epithelium in respiratory tract. The polarized epithelial tissue 

decorated by polarity complexes at the cell membrane subdivides cell the cortex into apical, 

lateral, baso-lateral and basal domains (Figure 0.3 B). The protein and lipid composition of these 

domains differ and have specific functions.   

 

Components of the cortical polarity 

The exact molecular players of polarity complexes vary across species such as C elegans, D 

melanogaster and mammals although there are several common components, which are 

essential for the compartmentalization.  Genetic analysis of polarity complexes revealed 

evolutionarily conserved proteins that are necessary for the cell polarization. The main polarity 

complexes are Par6/Par3/aPKC complex, Crib/Pals/Patj complex and Scrib/Dlg/Lgl complex 

which have common conserved members in all the three model organisms suggesting their 

crucial role. Par complex proteins are required for the asymmetric cell division and establishment 

of the apical domain (Assémat et al., 2008; St Johnston and Ahringer, 2010). The mutations in 

these genes lead to defects in partitioning during asymmetric divisions in C. elegans zygote 

(hence the name PAR). Par proteins are therefore essential for the partitioning of early 

determinations and  development of the polarity. Crumbs (Crb) were discovered in D. 

melanogaster by mutations characterized by severe disruption of the cuticle (hence the name 

crumbs). In epithelial cells Crumbs is found extensively in apical membrane and at the borders 

between cells (St Johnston and Ahringer, 2010). The Scribble (Scrib) complex is restricted to 

lateral membranes and the main function of the Scrib in epithelial polarity consists exclusion of 

apical proteins from the baso-lateral membrane. Phoshoinositides (lipids) serve as lipid 

messengers and act as docking sites for signaling molecules. Their spatial localization is 

regulated by kinases and phoshatase and it is essential for fine-tuning the composition of 

membrane-cytosol interphase. Phosphatidylinositol-3,4,5-triphospahtes (ptdIns(3,4,5)P3) is lo-

cated at basolateral membrane while PtdIns(4,5)P2 (PIP2) give apical membrane identity wherein 
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PtdIn-3 kinase (PIK3K) and PTEN; a lipid phosphotase have antagonizing action for conversion of 

PIP3 to PIP2. PIP2 acts as the central determinant of apical identity by recruiting series of 

molecules and activating Par complex at the apical side and subsequent lumen formation 

(Roignot et al., 2013). Another important member of epithelial polarity is RHO family GTPases. 

Over more than 20 member family including CDC42, RAC1, RHOA act as molecular switches that 

cycle between active (GTP-bound) and inactive (GDP-bound) conformations. Their localization 

within the cells is controlled by guanine nucleotide exchange factors (GEFs) and GTPase-

activating proteins (GAPs).  CDC42, Rac, Rho are involved in tight junction and adherene junction 

assembly. Rho GTPases control acto-myosin contractility modulate mechanical cues responsible 

for guiding polarization (Etienne-Manneville and Hall, 2002; Macara, 2004; Rodriguez-Boulan and 

Macara, 2014). The interplay between different polarity determinants also leads to mutual 

exclusions of molecules. The local molecular and mechanical feedbacks result into spatial 

segregation of CMA and CCA, which define the cortical polarity of a cell. In the following review 

we have summarized the key mechanisms that are responsible for modulating cortical polarity in 

an epithelium.  

 

 



Spatial segregation between cell–cell and cell–matrix adhesions
Mithila Burute and Manuel Thery

Cell–cell adhesion (CCA) and cell–matrix adhesion (CMA) play

determinant roles in the architecture and function of epithelial

cells. CCA and CMA are supported by transmembrane

molecular complexes that dynamically interact with the

extracellular environment and the cell cytoskeleton. Although

those complexes have distinct functions, they are involved in a

continuous crosstalk. In epithelia, CCA and CMA segregate in

distinct regions of the cell surface and thereby take part in cell

polarity. Recent results have shown that the two adhesion

systems exert negative feedback on each other and appear to

regulate actin network dynamics and mechanical force

production in different ways. In light of this, we argue that the

interplay between these regulatory mechanisms plays an

important role in the spatial separation of cell–cell and cell–matrix

adhesions components in distinct regions of the cell surface.
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Introduction
The microenvironment of a cell is made of extra-cellular

matrix (ECM) and neighboring cells. Cells adhere to the

ECM and their neighbors through spatially distinct

regions of their surface, which contain molecular com-

plexes interacting with extracellular ligands on one side

and regulating and interacting with the cytoskeleton on

the other side. The best characterized CMA complexes

comprise transmembrane proteins integrins, directly

binding to ECM proteins such as fibronectin, laminin

and collagen and recruiting actin binding and regulatory

proteins (such as talin, paxilin and focal adhesion kinase

(FAK)) [1]. The most studied CCA complex comprise the

transmembrane cadherins, which form homophilic bonds

between neighbor cells and recruit actin binding and

regulatory proteins of the catenin family [2]. This review

focuses on integrin-based and cadherin-based cell

adhesion, though other types of adhesion complexes also

exist. These two types of adhesion complexes are remark-

ably similar. They have in common several structural

components, they can bind actin filaments, they can

utilize some of the same signaling pathways and act as

mechanical sensors [3]. Despite this, they contribute

differently to cell and tissue architecture. In addition

to its well-known role of structural support, ECM

regulates the intra-cellular level of contraction [4,5],

transmits mechanical forces over long distances [6�],
and acts as a basement and signaling platform for epithelia

[7]. For example, CMA signaling regulates lamellipodial

activity at the front of migrating cells [1] and the 3D

organization of CMA regulates the confined migration

processes of individual cells [8,9] and cell groups [10].

CMA signaling also regulates the orientation of epithelial

cell polarity [11,12] as well as branching morphogenesis of

several organs [13]. CCA regulates epithelia shape and

remodeling [2] and propagate polarity signals [14]. CMA

and CCA both act as cues for cell apico-basal polarity

orientation [15] and the expression level of their com-

ponents regulates the degree of polarization during epi-

thelial morphogenesis [16].

These two adhesion systems appear not to act indepen-

dently. Rather, their functions are connected by a per-

manent crosstalk [17]. CCA and CMA can upregulate and

downregulate one another depending on the context

[18,19�]. Spatial segregation of CMA and CCA seems

to act as and/or result from a major morphogenetic force

shaping cells and tissues. Although this segregation has

been observed in many conditions, very few studies have

been directly dedicated to find the underlying mechan-

ism. Here we review recent examples in which CMA and

CCA segregation has been observed in vivo and then

describe the negative local feedbacks they exert on each

other and finally propose a mechanism for their spatial

segregation based on their mechanical interaction.

Spatial segregation in tissues
It has been appreciated for a long time that the expression

of CCA and CMA components is increased during the

epithelial morphogenesis and that they segregate in

opposed locations [15]. Recently the list of organs dis-

playing such a spatial segregation has been extended,

which further confirmed the universal nature of this

feature in multicellular organisms.

In mice, liver bile duct formation proceeds with the

formation of new tubes along the portal vein. During

lumen formation, cadherin localization on the portal side

precedes the localization of laminin on the opposite basal

pole [20,21�]. During pancreatic tubulogenesis, CMA and
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CCA also appeared separated in the cells forming the

early luminal structures [22] (Figure 1).

The direct effect of one adhesion system on the expres-

sion and location of the other has been reported during

various morphogenetic events. During mouse lung and

salivary gland morphogenesis, local engagement of cell–
ECM adhesions reduce the expression of E-cadherin,

which contributes to CCA disassembly and induces cleft

formation [23,13]. During arteriolar morphogenesis in

mice, the beta1 integrin deletion mutants exhibit upre-

gulation of cadherins, extended cell–cell contacts and a

lack of lumen [24], which suggests that assembly of CCA

along short lateral contacts depends on the engagement of

CMA along endothelial cell basal surface. Similarly,

during bone formation, cell adhesion to collagen on basal

surface seems to contribute to proper CCA formation on

the cell’s lateral surfaces [25]. During chick embryo

somitogenesis, basal fibronectin assembly induces the

restricted localization of cadherins at the apical surface

[26�,27]. Conversely, tissue tension that requires cadherin

adhesion on lateral surfaces of blastocoel cell roof cells

mediates fibronectin assembly on upper surface during

xenopus gastrulation [28,29] (Figure 1).

Cell–matrix adhesions locally weaken cell–cell
adhesions
In the next two paragraphs we review recent works in

which some results suggest that the two adhesion systems

can negatively affect each other by various means and in

many different and unrelated conditions. According to

this view, the spatial segregation of the two adhesion

systems may rely on their mutual exclusion by a process of

local negative feedback (Figure 2A).

The local negative regulation of CCA by CMA has been

directly shown in various contexts by several distinct

approaches. Covering the apical poles of a monolayer

of epithelial cells with ECM induced the formation of

apical membrane protrusions leading to the disruption of

CCA localized close to these apical poles and to the

reassembly of CCA in ECM free regions at the opposite

cell side [30]. Similarly, the formation of CMA in cancer

cells prevents the proximal formation of E-cadherin
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Several examples of the spatial segregation of CCJ (green) and CMA (red) in mouse hepatic bile duct (E-cadherin in green and laminin in red) [21�], in

chick somites (N-cadherin in green and laminin in red) [26�], in Xenopus blastocoel roof (N-cadherin in green and fibronectin in red) [29] and in mouse

pancreas (E-cadherin in green and laminin in red) [22].
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complexes when cells are cultured on micropatterned sub-

strate coated with ligands for both types of adhesions [31].

With an increase of cell spreading area on ECM, the rigidity

modulus of a cadherin-mediated contact is reduced [19�].

CMA can activate Src, which in turn phosphorylates FAK.

FAK relocalization to CCA results in the phosphorylation

of b-catenin and the disruption of b-catenin association

with the cadherin complex [32,33] (Figure 2B). The same

Src pathway is involved in VEGF-induced vascular per-

meability [34]. In colon cancer cells, integrin associated Src

activity is enhanced and perturbs E-cadherin localization

[35]. In vivo, in squamous cell carcinoma, CMA activate

FAK, which in turn activates E-cadherin internalization,

CCA weakening and tumor cell dispersal [36].

RhoGTPase, RhoA and Rac1 have similar contributions

CMA and CCA formation [3]. Rac1 is involved in initial

formation and RhoA contributes to maturation, lengthen-

ing and strengthening of the adhesions [37,38�,39].

Excessive activation of RhoA or Rac1 induces junction

disruption [3]. But how Rho GTPases are involved in the

crosstalk between CCA and CMA is not clearly estab-

lished. At first glance, they seem to have the same effect

on both adhesions. For example, increase in the level of

RhoA phosphorylation first activate and then disrupt the

two types of cell adhesions, giving a ‘bell shape’ to CCA

and CMA activation curves (Figure 2c). But if these

similar curves are slightly shifted, a given variation of

Rho concentration in the intermediate regime, between

the two activation maxima, would have opposite effect on

CCA and CMA and thereby mediate a negative corre-

lation between the two types of adhesion (Figure 2C).

Abl kinases are also involved in both CCA and CMA

formation and maintenance. Abl kinases support stabil-

ization of CCA [40] and inhibition of b1-integrin

mediated laminin assembly at the same time [11] and

thus could also be key regulators of their crosstalk.

Noteworthy, the CMA-CCA crosstalk can be either domi-

nated or dampened by CMA maturation in response to

ECM rigidity [41,42,31,43�].

Cell–cell adhesions locally impair cell–ECM
adhesions
Several examples directly showed that CCA locally impairs

CMA formation and downstream signaling. In epithelial

cells plated on micropatterned surfaces of cadherins and

ECM, cadherin engagement prevents the formation of

CMA at the same location, and reduces downstream sig-

naling responsible for membrane protrusion formation in

close-by CMA [44�]. The formation of CCA between two

individual myocytes leads to the disassembly of the CMA

that were present close to the contact region [43�]. When

vascular smooth muscle cell density is increased, the

formation of CCA is increased while the expressions of

talin and vinculin required for CMA maturation and pro-

duction of traction forces are reduced [41].

Downregulation of CMA by CCA is also indirectly

revealed by the CMA formation in response to CCA

disruption. Downregulation of CCA components, such

as E-cadherin or a-catenin, correlates with increased cell

migration on ECM [45,46]. The role of CCA weakening is

particularly critical to epithelium to mesenchyme tran-

sition (EMT) during which CMA is activated. E-cadherin

downregulation is required to potentiate the effect of

TGF-b and promote metastatic growth [42]. Upon
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(A) The negative feedback CCA (green) and CMA (red) exert locally on

each other can account for their spatial segregation. (B) Description of

the players involved in CCA disruption upon CMA activation and vice

versa. (C) Schematic illustration of the possibility for RhoA, or other

RhoGTPases, to exert opposite effects on CCA and CMA despite similar

activation curves. Positive correlation means that both CCA and CMA

are activated, or inactivated, by an increase of RhoA. Negative

correlation means that one gets activated while the other is inactivated.
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E-cadherin loss of function, NCAM is overexpressed and

translocated into lipid rafts where it activates FAK result-

ing into CMA assembly [47]. NCAM-dependent activation of
CMA formation is modulated by polysialic acid [48]. Note-

worthy, during EMT, E-cadherins are replaced by N-

cadherins. During Xenopus gastrulation, tension on N-

cadherins stimulate CMA displacement away from CCA

[28,29]. In mouse astrocytes, N-cadherins maintain cell

polarity by preventing the formation of CMA adjacent to

cell–cell contact [49]. In some neuronal tumors, N-cad-

herin level is reduced resulting into enhanced CMA

activity and increased cell migration [49].

In various physiological contexts, CCA disruption and CMA

formation might be coupled through the regulated distri-

bution of common structural components. Tensin relocali-

zation from CCA to CMA in response cell attachment with

fibronectin reduces the strength of CCA [50]. Zyxin, vin-

culin and talin are well characterized CMA components.

However they are also localized to CCA where they regulate

the strength of the CCA [51,52�,53]. This suggests that in

the case of CCA disruption zyxin, vinculin and talin may be

released from CCA and relocalize to CMA that would be

subsequently reinforced (Figure 2B).

Interestingly, Plakoglobin, a CCA component, has been

shown to stimulate ECM expression and therefore CMA

formation [54]. When Plakoglobin is locally recruited on

CCA subjected to external tension, it reorients the inter-

mediate filament network and promotes the formation of

membrane protrusions at the opposite cell pole [55�].
Although in this case, local CMA disruption is not involved,

the possibility for cells to secrete and adhere to ECM

seems to be limited to the diametrically opposed cell side.

The above examples show that in many conditions associ-

ated to epithelium remodeling (tubulogenesis, EMT,

cancer, . . .) one adhesion system can dismantle or repulse

the other. The signaling pathways involved in these

regulations could, at lower activation levels, contribute

to a local negative regulation and result into spatial

segregation between CMA and CCA (Figure 2). Yet

the mechanism supporting this segregation still has to

be elucidated. In parallel to the cross signaling, several

examples suggest that structural mechanisms participate

in the spatial organization of cell adhesions. Notably, the

two types of adhesions differently regulate the actin

network. Hence, we argue that the coupling of these

different actin-regulating processes could participate in

CMA and CCA spatial segregation.

Actin network dynamics and force
transmission to cell–matrix adhesion sites
CMA assembly, growth and maturation processes are

associated with distinct mechanisms controlling actin

dynamics [1]. Recent studies have shown that upon
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Speculative description of a mechanism supporting CCA displacement away from CMA. Force production on trans-cellular stress fibers lead to CCA

disruption close to the basal surface. Retrograde flow of actin transverse arcs formed on CMA is coupled to CCA through radial fibers. Transmission of

acto-myosin contractile forces through these fibers pulls CCA away from CMA. The accumulation of actin filaments at the apical pole and the

production of acto-myosin forces along these cortical bundles induce CCA strengthening and maturation respectively.

www.sciencedirect.com Current Opinion in Cell Biology 2012, 24:628–636



engagement with the extra-cellular matrix, integrins

induce actin filament growth. Lateral interactions and

translocation of integrins promote their clustering and

early adhesion formation [56]. Nascent CMA are then

associated with Rac activation and the formation of mem-

brane protrusions (lamellipodia, filopodia) based on actin

polymerization and formation of a dendritic network

[57,58]. At a later stage, CMA maturation and the increase

of acto-myosin contraction are inter-dependent

[56,57,59–61].

In migrating cultured cells, the subcellular localization of

mature CMA determines the spatial transition between

the dendritic network of actin filaments next to plasma

membrane and the network of actin bundles in the cell

interior [62]. The compression of this dendritic network

nucleated at the plasma membrane leads to filament

alignment and formation of transverse arcs [63�,64].

Acto-myosin contraction drives the retrograde movement

of these arcs toward cell interior. As these arcs move

inward, they bundle with CMA-associated actin filaments

and induce the formation of radial fibers through which

they transmit contractile forces to the extra-cellular

matrix [65,66,63�] (Figure 3).

Actin network dynamics and force
transmission at cell–cell contacts
The formation of a cell–cell contact triggers actin cytos-

keleton assembly [67]. Extension and retraction of lamel-

lipodia over adjacent cells leads to the formation of

interconnecting actin filaments whose remodeling by

fascin and myosin eventually lead to the assembly of

CCA [68]. Arp2/3 [69], N-WASP [70] and a-actinin [71]

nucleate, recruit and stabilize actin filaments along CCA.

Rac-induced actin-network polymerization promotes

cell–cell contact area growth and Rho activation promotes

further CCA maturation [37,38�]. Furthermore, CCA are

reinforced upon application of external or internal stress

[72,73�,38�]. The application of tension can lead to the

recruitment of vinculin [52�] and additional actin fila-

ments through VASP and EPLIN [74�,75,76], which

strengthen cell–cell adhesion [77]. However, excess

forces can result in junction disassembly [78,79]. Abl

kinase [40] and Cdc42 are involved in the fine regulation

of that threshold [80].

Thus, mature CCA anchor acto-myosin bundles [81]

(Figure 3). Myosin IIb recruits actin filament along the

junctions [82] and Myosin IXA supports the formation of

actin bundles orthogonal to the junction [79]. Both myo-

sin types ensure cell–cell contact integrity by resisting

destructive orthogonal forces on the CCA.

Coupling of actin dynamics associated with
CMA and CCA
The nucleation, stabilization, capture and disassembly of

actin filaments have to be integrated at the cell level to

ensure the stationary state of the entire network. The

cytoskeletal forces applied on CCA and CMA also have to

be balanced to ensure cell mechanical stability. These

forces may be responsible for adhesion  maturation as well

as for their rupture or displacement in the membrane.

The spatial distribution of forces in the actin network and

the spatial arrangement of filament nucleation, bundle

assembly and bundle stabilization  processes may be

responsible for CMA and CCA displacement away from

each other. As cells come into contact and assemble CCA,

traction force on CMA close to the contact region get

turned into tugging force at cell–cell contacts that result

into local CMA disassembly [43�]. The magnitude of the

tugging force at cell–cell contacts is proportional to that

of cell traction forces exerted through CMA [83�]. How

the magnitude of these forces relate to CCA positioning

with respect to CMA has been studied in a minimal

system of two cells in which CMA is confined on

ECM micropatterns of controlled geometry [84�]. In this

system, CCA are subjected to high tugging forces when

they are close to CMA sites and lower forces when

positioned away from them [84�]. As a consequence,

the contact plane is moved away from CMA sites and

cells adopt a stationary position in which the cell–cell

contact is as far as possible from CMA. Thereby the

steady state of multicellular organizations corresponds to

the minimization of the overall magnitude of tensional

forces [84�].

How force production on CCA lead to such a controlled

junction displacement and cell positioning remain to be

elucidated. There are at least two ways to apply forces on

CCA [85,86]. Contractile acto-myosin bundles can med-

iate forces orthogonal [71,87–90] or parallel to the junc-

tion [91]. Mechanical forces applied orthogonally to the

CCA can be transmitted to the CMA sites through radial

actin bundles (Figure 3). Such a configuration may occur

in a flat epithelium such as the vascular endothelium

[87,89]. This configuration could also occur at CCA close

to basal surfaces of simple epithelia [71,88,51]. Since

integrins may support higher forces than cadherin on

comparable substrate stiffness [73�], mechanical force

could lead to CCA disruption near CMA sites [92,51]

(Figure 3). In addition, at the apical pole of epithelial

cells, the retrograde movement of transverse arcs linked

to radial bundles orthogonal to the CCA produces ten-

sional forces on CCA [90,93�]. We speculate that the

retrograde movement of transverse arcs and radial bun-

dles from CMA (described above) exert forces on CCA

responsible for their rupture and displacement away from

CMA (Figure 3). Indeed, actin network dynamics has

been shown to be responsible for a basal-to-apical flow of

CCA in moving epidermal cells [94]; and apical enrich-

ment of actin filaments is necessary for the maintenance

of the apical localization of CCA in intestinal cells [70].

We suggest that the actin flow initiated by bundle for-

mation at CMA sites and their retrograde movement
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could pull CCA away from CMA. The accumulation of

these contractile actin bundles at CCA distant from CMA

could contribute to the strengthening and stabilization of

CCA (Figure 3).

Conclusion
The complete mechanism supporting the spatial segre-

gation of CCA and CMA remains elusive. Future insights

should be expected from the analysis of actin network

dynamics and its relationship with mechanical force pro-

duction. In addition, the coupling between CCA com-

ponents renewal at the membrane and force production

[70,95] could play a key role in epithelial morphogenesis

[96–99]. Unravelling the mechanisms supporting spatial

segregation of cell adhesions during epithelial morpho-

genesis, which is tightly coupled to apico-basal polarity,

could greatly improve our understanding of organogen-

esis and oncogenesis.
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Silberzan P, Mège R-M: Strength dependence of cadherin-
mediated adhesions. Biophys J 2010, 98:534-542.

This study uses micropatterned cadherins on substrates on various
stiffness to highlight the mechanosensation properties of CMA.

74.
�

Taguchi K, Ishiuchi T, Takeichi M: Mechanosensitive EPLIN-
dependent remodeling of adherens junctions regulates
epithelial reshaping. J Cell Biol 2011, 194:643-656.

This study reveals how EPLIN regulates the switch between the two types
of actin filament network architecture either parallel or orthogonal to cell–
cell contact plane.

75. Chervin-Pétinot A, Courçon M, Almagro S, Nicolas A,
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0.3 Introduction to internal polarity of the cell 
 

Striking feature of the epithelial organization is that the cells contained in an epithelial structure 

such as mammary gland acini, kidney tubule, intestine or pancreatic gland exhibit a concerted 

polarization (Figure 0.3 B). These cells are capable of individually responding to external cues 

and thus polarize in a fashion that collectively constitutes physiologically functioning units such as 

secretory lumens, tubules or absorptive ducts. The asymmetric organization of internal organelles 

in a cell is responsible for attributing its intrinsic polarity, which I will term as ‘internal polarity’ 

hereafter. This property of establishing intrinsic self-organization can be primarily revealed by 

relative location of the nucleus and centrosome. Centrosome of animal cells consists of pair of 

centriols surrounded by pericentriolar material (PCM). Microtubules are nucleated from the γ-
tubulin ring complex (γ-TuRC), which is part of the PCM, and these microtubules eventually get 

anchored at the mother centriole (Figure 0.3 A).  Centrosome location in the cell is important 

because Golgi apparatus is organized and actively maintained adjacent to centrosome and its 

position is dependent on both microtubules and dyneins (Rios and Bornens, 2002). In motile cells 

trans-golgi network (TGN) from which vesicles that are destined for plasma membrane are 

orientated towards the cell cortex, whereas the cis-Golgi is orientated inward (Figure 0.3 B). 

Extensive work performed using MDCK cell line model identified TGN as a major sorting station. 

TGN and recycling endosome (RE) sort apical and basolateral proteins and serve as important 

recycling routes (Deborde et al 2008). As a result of this organization, cell establishes intracellular 

axis of polarization, which can be defined by Nucleus-centrosome-golgi axis (also referred as NC 

axis). The idea of NC axis as structural axis was first conceived by Van Beneden in 1883 (Figure 

0.3 C). One hundred and thirty two years after van Beneden’s first proposition, it has been well 

established that centrosome functions as the main organelle responsible for non-random 

distribution of cellular transport owing to its microtubule organization property (Luxton and 

Gundersen, 2011; Théry et al., 2006). The NC axis orientation allows demarcation of cellular 

domains where the intracellular trafficking will be dominated e.g. NC axis orientated toward 

lumen and the secretion of milk proteins into lumen occurs from the apical side of mammary 

gland acini.  As a result of which Nucleus-centrosome orientation is considered a faithful 

indicator of internal cell polarity (Figure 0.3 B). Concerted NC axis orientation is observed within 

cells of intestinal, kidney, mammary gland tissue. In various physiological events such as wound 

healing, fibroblast migration and immune response; NC vector is re-positioned demonstrating 

reorientation of cell’s internal polarity (Dupin et al., 2009; Luxton and Gundersen, 2011; Reversat 

et al., 2015).  

In a stable epithelial tissue, the polarization cues from cortical polarity (Figure 0.3 C) and internal 

polarity (Figure 0.3 C) are well coordinated to generate polarized epithelium. Live cell imaging of 
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acini formation from single cell indicated that internal and cortical polarity are tightly coupled at 

every stage of acini development (Bryant et al., 2014; Wang et al., 2013). The presence of 

feedback loops between the polarity cues can be witnessed in several other examples wherein 

centrosome position seems highly modulated within epithelial tissue subjected to remodeling 

(Figure 0.5). Centrosome (Latin Centrum Sōma) has self-centering ability because of its 

microtubule -nucleating and -anchoring activity in tissue, cell, cytoplasts and the in artificial 

minimal systems (Bornens, 2008; Holy et al., 1997; Rodionov and Borisy, 1997). Despite having 

the self-centering ability, centrosome can be also found highly off-centered in stable epithelium 

and during in remodeling epithelium (Figure 0.5 A). In intestinal, respiratory, secretory epithelia 

centrosome is preferentially positioned close to apical/luminal side. In other instances like 

zebrafish gut formation, centrosome is located close to the midline while it is present at the cell-

center in mouse cornea cells (Figure 0.5 B-C). (Blitzer et al., 2011; Feldman and Priess, 2012). The 

capacity of the centrosome movement can be attributed to microtubules anchored at the 

centrosome, which interact with the cell cortex as well as with other organelles and balance 

pulling and pushing forces to determine the final localization of centrosome within the cell (Zhu 

et al., 2010). A prominent example of microtubule and cortex interaction is spindle position 

orientation during cell division (Cowan and Hyman, 2004; Moore and Cooper, 2010). In non-

dividing epithelial cells, microtubule arrays are organized in apical-basal direction close to cell 

cortex possibly by selective microtubule anchoring or stabilization at the cell cortex (Moss et al., 

2007).  Centrosome position within the cell can be modulated by variety of factors such as 

cortical pulling of microtubules, Pushing on cortex by growing microtubule +tips, microtubule 

sliding along the cortex, Pulling on microtubules by cytoplasmic organelles (Zhu et al., 2010). In 

addition number of microtubules nucleated at the centrosome, mechanical properties of 

microtubules, post-translational modification of tubulin can also affect the forces exerted on the 

centrosome by microtubules.  

Over the next two chapters I will address the effect of cortical and internal polarity components 

on each other, which is mainly mediated by microtubules. We have studied two specific 

morphogenetic events to understand how microtubules mediate crosstalk between cells’ 

interior and its periphery. Centrosome being the main microtubule organizer it acts as a good 

indicator of MTOC position and also of internal polarity orientation. In the first chapter, we 

have studied a human cancer model with centrosome abnormalities to understand how 

microtubules affect cell junction dynamics to trigger malignant phenotype of tumors. In second 

chapter, we have studied general mechanism of Epithelial-to-mesenchymal transition to 

understand how cell-cell junction remodeling is coupled by microtubules to cell’s interior and 

affects centrosome position. 
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1.0 Effect of Centrosome Amplification on epithelial organization 

 
The typical epithelial organization is severally altered in human carcinoma and is correlated with 

the occurrence of the centrosome amplification (CA). Centrosome suepernumery is the hallmark 

of human cancers and the centrosome cluster in these cells is highly mis-organized with several 

amplified centriols (Figure 1.1). A century ago, Boveri proposed that increased numbers of 

centrosomes cause cancer when he observed eggs harboring extra centrosomes underwent 

multipolar mitoses and divisions of cells to give aneuploid progeny (Boveri, 1887). Aneuploidy 

being another common feature of cancer, it was also thought to be responsible for generation of 

invasive structures. Whether chromosome segregation abnormalities cause cancer has been 

debated over 100 years (Godinho and Pellman, 2012). The model that centrosome amplification 

caused mis-segregation of chromosomes during mitosis, which triggered malignancy, was 

popular until late 1900. This model was supported by high occurrences of extra-centrosomes in 

tumorogenic cells however the important issue of whether chromosomal instability caused by 

amplified centrosomes leads to tumorogenesis was still unresolved.  A report by R. Basto 

showed that tumorogenesis in flies caused by PLK4 overexpression is accompanied by only 

minor frequency of aneuploidy (Basto et al., 2009). Ganem et al., demonstrated the direct link 

between extracentrosomes and cause of centrosomal instability. The authors demonstrated that 

cells with amplified centrosomes rarely undergo multipolar division and instead undergo bipolar 

division by clustering of centrosome to constitute bipolar spindle (Ganem et al., 2009). The 

mitotic defects observed in these cells are result of lagging chromosomes because of the 

observed defects in chromosome number is result of merotely, where a single kinetochore 

attaches to microtubules emanating from different poles. This leads to lagging chromosomes 

during anaphase and results into aneuploid daughter cells, which often have tumorogenic 

potential. Furthermore study of breast tumors showed alteration of centrosome number, 

amplification of centrioles, accumulation of PCM, inappropriate phosphorylation of centrosomal 

protein, higher microtubule nucleation is associated with disorganized tissue structures like 

mammary gland acini (Lingle et al., 1998). Thus two important questions that were still 

unanswered about malignant tumors with amplified centrosomes were that was it the aneuploidy 

that is responsible for malignant phenotype of cells? Secondly, do higher microtubules 

nucleation and their interaction with cortex promoted the tissue disorganization that causes 

malignant behavior? To answer these questions, our collaborator Susana Godinho designed the 

experiments by generating a cell line model of human mammary gland cells (MCF10A) with 

inducible expression of polo-like-Kinase-4 (PLK-4) that is responsible for centrosome duplication. 
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To dissect the effect of ploidy of the cell and presence of amplified centrosomes, aneuploid cells 

with normal centrosome number and diploid cells with amplified centrosomes were generated.  

The following article explains the methodology and experiments performed to demonstrate that 

the presence of extracentrosomes directly triggers cell invasion by microtubule interaction with 

cell-cell adhesions. This study reveals a new mechanism showing centrosome amplification and 

subsequent effect of microtubule- cell junction interaction can severally affect the stability of cell-

cell junction and thus promotes metastatic behavior. 
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Oncogene-like induction of cellular invasion from
centrosome amplification
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Joan S. Brugge2, Manuel Théry3,4 & David Pellman1,2

Centrosome amplification has long been recognized as a feature of
human tumours; however, its role in tumorigenesis remains unclear1.
Centrosome amplification is poorly tolerated by non-transformed
cells and, in the absence of selection, extra centrosomes are sponta-
neously lost2. Thus, the high frequency of centrosome amplification,
particularly in more aggressive tumours3, raises the possibility that
extra centrosomes could, in some contexts, confer advantageous
characteristics that promote tumour progression. Using a three-
dimensional model system and other approaches to culture human
mammary epithelial cells, we find that centrosome amplification trig-
gers cell invasion. This invasive behaviour is similar to that induced
by overexpression of the breast cancer oncogene ERBB2 (ref. 4) and
indeed enhances invasiveness triggered by ERBB2. Our data indicate
that, through increased centrosomal microtubule nucleation, centro-
some amplification increases Rac1 activity, which disrupts normal
cell–cell adhesion and promotes invasion. These findings demonstrate
that centrosome amplification, a structural alteration of the cytos-
keleton, can promote features of malignant transformation.

The centrosome is the major microtubule-organizing centre in mam-
malian cells and comprises of a pair of centrioles surrounded by the
pericentriolar material5. Centrosome abnormalities, usually increased
numbers, are common in human tumours1 and have been positively
associated with advanced tumour grade and metastasis3, suggesting a
possible role in tumour progression. This is somewhat surprising given
the well-documented deleterious effects of centrosome amplification
on cell proliferation6; such amplification can be lethal if it compromises
the ability of cells to organize multiple centrosomes to generate pseudo-
bipolar spindles2. These seemingly paradoxical observations suggest that
centrosome amplification might enhance other aspects of tumorigenesis.

We have developed orthogonal approaches to generate genetically
comparable cells that do or do not carry extra centrosomes2. Here we adapt
these methods to determine how centrosome amplification influences
epithelial organoid integrity, making use of the well characterized three
dimensional (3D) culture model for MCF10A cells, a non-transformed
human mammary epithelial cell line. This model recapitulates many
aspects of breast glandular architecture7.

We engineered MCF10A cells to enable the inducible overexpression
of Polo-like kinase 4 (PLK4), an essential regulator of centrosome dup-
lication, whose overexpression induces supernumerary centrosomes8,9.
As a negative control, we transiently overexpressed a truncated form of
PLK4 (PLK41–608) that retains kinase activity but does not induce cen-
trosome amplification10. As expected, transient induction of PLK4, but
not of PLK41–608, led to centrosome amplification (Fig. 1a and Extended
Data Fig. 1). Strikingly, centrosome amplification induced by PLK4
resulted in the formation of invasive protrusions, cytoplasmatic exten-
sions that invade the surrounding matrix (Fig. 1b and Extended Data
Fig. 1f, g). Expression of centrin1–GFP to visualize the centrioles revealed
that virtually all cells with invasive protrusions exhibited centrosome

amplification (Fig. 1c). An independent approach, using an organotypic
culture system to assay for fibroblast-led collective migration, confirmed
that centrosome amplification promotes invasion, both of MCF10A cells
and non-transformed keratinocytes (HaCaTs) (Fig. 1d and Extended
Data Fig. 1h).

Cytokinesis failure was induced in MCF10A cells using dihydrocyto-
chalasin B (DCB) to generate centrosome amplification without PLK4
overexpression. Newly generated tetraploid cells, with doubled centro-
some content, were isolated by fluorescence-activated cell sorting (FACS).
A control population of tetraploid cells in which extra centrosomes were
spontaneously lost were generated, as previously described2 (evolved
tetraploids, 4N.evo, Extended Data Fig. 2a–e). Tetraploid cells with extra
centrosomes were invasive in 3D cultures, whereas 4N.evo cells were
not (Fig. 1e). PLK4 overexpression in 4N.evo cells induced centrosome
amplification accompanied by invasive protrusions, demonstrating that
4N.evo cells still retained the ability to become invasive (Extended Data
Fig. 2g, h).

Invasive protrusions are accompanied by the degradation of laminin-V
(Fig. 1f) and collagen-I (Extended Data Fig. 1i), contain actin and micro-
tubules (Extended Data Fig. 3a) and are surrounded by the extracellular
matrix component fibronectin (Extended Data Fig. 3b). Consistent with
centrosome amplification promoting matrix degradation, the invasive
phenotype was partially suppressed by inhibition of metalloproteinases
using marimastat (Extended Data Fig. 3c). Live-cell imaging showed
that protrusions are highly dynamic, constantly extending and retract-
ing (Supplementary Videos 1 and 2), which may partially explain why
only a fraction of acini with extra centrosomes exhibits invasive pro-
trusions at a given time (Fig. 1c). The formation of an initial protrusion
provided a track for the collective migration of multiple cells out of the
acinus and into the surrounding matrix (Extended Data Fig. 3d, e and
Supplementary Video 3). This type of collective invasion resembles what
has been observed in tumours in vivo. Indeed, many solid tumours typ-
ically exhibit collective invasion, which often involves the degradation
of the extracellular matrix11.

Invasion induced by centrosome amplification strongly resembled that
induced by a bona fide breast cancer oncogene, ERBB2 (ref. 4) (Extended
Data Fig. 4). As in ERBB2 tumours12, cells with extra centrosomes retained
the expression of E-cadherin (Extended Data Fig. 3f), suggesting that
mechanisms other than a classical epithelial-to-mesenchymal transi-
tion account for the invasive phenotype. Importantly, when combined
with ERBB2 overexpression, centrosome amplification enhanced the
frequency of invasive acini (Fig. 1g).

The induction of invasive protrusions by extra centrosomes could be
an indirect consequence of aneuploidy that results from chromosome
missegregation2,13. To directly address this possibility, we depleted MCAK
(also known as KIF2C), a kinesin important for chromosome segregation
during mitosis14, to induce a comparable degree of aneuploidy before
(48 h after PLK4 induction) and after 4 days in 3D culture (Fig. 2a, b).

1Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Children’s Hospital, Boston, Massachusetts 02115, USA.
2Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. 3Institut de Recherche en Technologie et Science pour le Vivant, UMR5168 CEA/UJF/INRA/CNRS, Grenoble,
France. 4Hôpital Saint Louis, Institut Universitaire d’Hematologie, U1160 INSERM/AP-HP/Université Paris Diderot, Paris 75010, France. 5CYTOO SA, Grenoble 38054, France. 6Department of Medical
Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. {Present addresses: Barts Cancer Institute, Queen Mary University of London, Charterhouse Square,
London EC1M 6BQ, UK (S.A.G.); Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA (C.T.L.).
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Cells depleted of MCAK neither increased centrosome number nor exhib-
ited a significant increase in invasive protrusions (Fig. 2c, d). Similarly,
aneuploidy, generated by inhibition of the spindle assembly checkpoint
kinase MPS1 (using the inhibitor reversine)15 also failed to induce inva-
sion (Extended Data Fig. 5a–c). In addition, although 4N.evo cells exhibit
substantial aneuploidy, they did not form invasive acini (Fig. 1e and
Extended Data Fig. 2f). Finally, single-nucleotide polymorphism ana-
lysis (SNP-arrays) demonstrated that neither cells with extra centro-
somes nor depletion of MCAK accumulate a recurrent aneuploidy after
4 days in 3D culture (Fig. 2e and Extended Data Fig. 5d). Thus, aneu-
ploidy per se is not responsible for the invasive behaviour.

Centrosome amplification also leads to altered cilia signalling16 and
to increased levels of p53 (ref. 17). However, we found that neither the
parental MCF10A cells nor the derivatives with extra centrosomes formed
detectable cilia after 4 days in 3D culture. Moreover, depletion of p53
did not alter centrosome amplification mediated invasion (Extended
Data Fig. 6a–d). In a transplant model using asymmetrically dividing
neuroblasts from Drosophila melanogaster, centrosome amplification
induces tumours that, interestingly, are capable of metastasis18. Centro-
some amplification in this system disrupts asymmetric cell division, result-
ing in stem cell expansion, potentially contributing to tumorigenesis.
Because MCF10A cells do not undergo asymmetric cell division, this
mechanism does not apply to our results. In the Drosophila neuroblasts,
centrosome amplification may also disrupt cell polarization, which can
trigger tumorigenesis in many systems. Although we cannot exclude
effects on cell polarization in our system, we do note that MCF10A cells
cannot form tight junctions and do not exhibit polarization of the apical

Par3–Par6–aPKC complex19. Moreover, centrosome amplification does
not impair the ability of MCF10A cells to asymmetrically position cen-
trosomes, the main detectable polarization in these cells (Extended Data
Fig. 6e, f).

Insight into why cells with extra centrosomes are invasive in 3D cul-
tures first came from observing the adhesive properties of single cells
after cell division. As expected because they are epithelial cells, following
mitosis, MCF10As formed cell–cell contacts, and remained as apposed
cell pairs. By contrast, cells with extra centrosomes ‘scattered’, result-
ing in a high fraction of individual cells (Extended Data Fig. 7a, b and
Supplementary Videos 4 and 5), a characteristic associated with loss of
cell–cell adhesion. Furthermore, live cell imaging in cells with a fluores-
cent membrane marker revealed that cell–cell contacts are not stable and
often overlap in cells with extra centrosomes (Fig. 3a, Supplementary
Videos 6 and 7). As a direct measure of cell–cell junction integrity, we
plated cells onto fibronectin micropatterns that were specifically designed
to promote the formation of adherens junctions at a stereotypical posi-
tion between the two cells (Fig. 3b)20. Consistent with the cell scattering
effect, centrosome amplification produced marked defects in cell–cell
junction positioning and size (Fig. 3c, d). This effect of centrosome amp-
lification is similar to that described for loss of p120 catenin, whose
knockdown weakens cell–cell contacts20, although centrosome ampli-
fication does not affect p120 levels (Extended Data Fig. 7c).

These phenotypic characteristics induced by centrosome amplifica-
tion are similar to what has previously been observed upon activation
of Rac1 (refs 21, 22), a small GTPase strongly associated with oncogenic
signalling and with the induction of invasiveness and metastasis23,24.
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This motivated the hypothesis that extra centrosomes might promote
invasive-like effects through inappropriate activation of Rac1. Indeed,
we found that centrosome amplification induced a consistent ,1.5-fold
Rac1 activation using a biochemical pull-down assay to measure GTP-
bound Rac1 in multiple cell lines. Maximal Rac1 activity induced by
EGF in MCF10A cells is ,2-fold (Fig. 3e and Extended Data Fig. 7d, e).
This was confirmed by monitoring Rac1 activation in single cells using the
Raichu-Rac1 fluorescence resonance energy transfer (FRET) biosensor25

(Fig. 3f and Extended Data Fig. 7f, g). Consistent with the commonly
reported antagonism between Rac1 and RhoA, we found that cells with
extra centrosomes have decreased active RhoA (Extended Data Fig. 7h).
Thus, centrosome amplification in MCF10A cells activates Rac1.

Small molecule Rac1 inhibitor (NSC23766) inhibited Rac1 activation
and partially rescued defects in cell–cell adhesion, suggesting that Rac1
activation is responsible for the cell–cell adhesion defect in cells with cen-
trosome amplification, (Fig. 3g and Extended Data Fig. 7i). Similar results
were obtained in tetraploid MCF10A cells (Extended Data Fig. 8a, b).
Furthermore, treatment with CK-666, an inhibitor of the Arp2/3 complex,
an actin nucleator and important downstream target of Rac1 (ref. 23),
also partially rescued the defects in cell–cell adhesion induced by cen-
trosome amplification (Extended Data Fig. 8c–e). These findings demon-
strate that the cell–cell adhesion defects in cells with extra centrosomes
are, to a substantial degree, caused by increased Arp2/3-dependent actin
polymerization that occurs downstream of Rac1 signalling. In addition,
we found that Rac1 inhibition blocked the formation of invasive acini
without impairing the ability of cells to form normal acini (Fig. 3h).

Previous work has established that microtubule polymerization after
nocodazole washout induces Rac1 activation. This activation appears to
require dynamic microtubules because it is suppressed by the microtubule-
stabilizing agent, paclitaxel26. We considered the possibility that centro-
some amplification induces Rac1 activation through effects on centrosomal

microtubule nucleation. As expected27, MCF10A cells with extra cen-
trosomes display elevated levels of centrosomalc-tubulin (Extended Data
Fig. 9a-c) and an increased capacity for microtubule-nucleation (Fig. 4a,
note that amplified centrosomes are almost always clustered in inter-
phase). Moreover, paclitaxel blocked the activation of Rac1 in cells with
extra centrosomes (Fig. 4b), indicating a similar requirement for dynamic
microtubules26. These results were independently confirmed when Rac1
activity was monitored by FRET (Fig. 4c). Finally, Rac1 activation mea-
sured by FRET was also observed in cells with extra centrosomes deprived
of EGF (Extended Data Fig. 9d), indicating that this Rac1 activation is
independent of any effects on growth factor signalling. Furthermore,
induction of centrosome amplification (at 48 h) does not alter the cell
cycle profile (Extended Data Fig. 9e) arguing against cell cycle effects
as the cause for Rac1 activation in cells with extra centrosomes.

We next examined the impact of increased centrosomal microtubule
nucleation on cell–cell adhesion and the development of invasive struc-
tures. To do so, centrosomal microtubule nucleation was moderately
decreased by RNAi-mediated knockdown of CEP192, which encodes a
centrosomal protein required for interphase recruitment of c-tubulin
to the centrosomes28. As described28, this protocol decreases centroso-
mal c-tubulin without affecting centrosome number (Extended Data
Fig. 10a, b, d, e). Consistent with our hypothesis, the depletion of CEP192
inhibited Rac1 activation and restored normal cell–cell adhesion among
cells with centrosome amplification (Fig. 4d–f). Most notably, partial
depletion of CEP192 after short hairpin RNA (shRNA) treatment fully
suppressed the invasive phenotype in cells with extra centrosomes with-
out compromising cell viability or centrosome amplification, even
after 4 days in 3D cultures (Fig. 4g and Extended Data Fig. 10c, f–h).
These results indicate that increased centrosomal microtubule nucle-
ation in cells with extra centrosomes triggers invasion. Although it remains
unclear how dynamic microtubules activate Rac1 (ref. 29), our data
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indicates that Rac1 activation downstream of microtubule nucleation
plays a central role in this phenomenon.

Deregulated Rac1 activity has been implicated in the pathogenesis of
many tumour types and is known to drive tumour invasion and metastasis24.
Previous studies have demonstrated that Rac1 activation in tumours
can be regulated by many mechanisms24. Our data indicate that centro-
some amplification is probably another common mechanism for Rac1
activation during tumorigenesis, and that centrosome amplification may
augment other oncogenic signals. In addition to Rac1 activation, additional
mechanisms probably contribute to the effects of centrosome amp-
lification. Gene expression analyses of 3D cultures showed that TGF-b
pathway, involved in metastasis formation and associated with tumour
aggressiveness30, is strongly upregulated in cells with extra centrosomes
(S.A.G. and D.P., unpublished data).

Many studies have noted a positive correlation between centrosome
amplification and advanced-stage tumours, recurrence and poor survival3,
yet the mechanistic basis for this correlation has remained unclear. Here
we provide evidence that centrosome amplification can mimic and accen-
tuate the effects of oncogenes in triggering cellular invasion. These find-
ings illustrate the integral relationship between cellular signalling and
the cytoskeleton, underscoring the importance of this relationship to
tumour progression.

METHODS SUMMARY
Human mammary epithelial MCF10A cells were maintained at 37 uC with 5% CO2

atmosphere. PLK4 overexpression to induce centrosome amplification was induced
by treatment with 2mg ml21 of doxycycline (48 h). Alternatively, centrosome amp-
lification was induced by inhibition of cytokinesis with 4mM of DCB (18 h) and
tetraploid cells were isolated by FACS, as previously described2. A more detailed
description of methods used can be found in the Methods section.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Cell culture. Human mammary epithelial MCF10A cells were maintained at
37 uC with 5% CO2 atmosphere and cultured as previously described31. Briefly,
MCF10A cells were grown in DMEM/F12 (Invitrogen) supplemented with 5%
donor horse serum (Sigma), 20 ng ml21 epidermal growth factor (EGF; Sigma),
10mg ml21 insulin (Invitrogen), 100mg ml21 hydrocortisone (Sigma), 1 ng ml21

cholera toxin (Sigma), 100 U ml21 penicillin and streptomycin (Invitrogen). The
MCF10A cell line overexpressing the human ERBB2 gene (MCF10A.ErbB2 or
MCF10A.NeuN) was previously characterized32,33. For 3D cultures, cells were grown
in the same medium with reduced horse serum (2%) and EGF (5 ng ml21). To assay
invasion in 3D cultures, cells were grown in a mix of Matrigel:collagen-I, as previ-
ously described34. The addition of collagen-I to Matrigel facilitates invasion by increa-
sing matrix stiffness35. We used growth factor-reduced Matrigel (BD Biosciences) lots
with protein concentrations between 9 and 11 mg ml21. Collagen-I (BD Biosciences)
was used at 1.6 mg ml21. Cells were grown for 4 days in 3D cultures before quan-
tification of invasion. Between 200–300 acini were scored per condition for each
experiment. To assess collagen-I degradation in 3D cultures, we added to the Matrigel:
collagen-I mix 25mg ml21 of quenched DQ-collagen-I (Molecular Probes). After
degradation, DQ-collagen-I becomes fluorescent.

To collect cells from 3D cultures, we incubated cells with Dispase (BD Bio-
sciences) for 30–60 min at 37 uC, according to the manufacturer’s instructions.
Cell aggregates were then trypsinized to obtain single cells suspensions and pro-
cessed either for western blotting or to prepare chromosome spreads.

The alveolar epithelial cell line 16HBE, provided by Alan Hall, was cultured in
MEM (Invitrogen) supplemented with GlutaMAX, Earle’s salts, 10% of FBS and
100 U ml21 penicillin and streptomycin36. The non-transformed keratinocyte line
(HaCaT), primary breast fibroblasts (1492N) and skin fibroblasts (HDFs) were
provided by John Marshall. HaCats and HDFs were cultured in DMEM supple-
mented with 10% of FBS and 100 U ml21 penicillin and streptomycin, 1492N were
cultured in 50:50 Ham’s F12:DMEM supplemented with 10% of FBS and
100 U ml21 penicillin and streptomycin We used tetracyclin-free FBS (Hyclone)
to grow the 16HBE and HaCaTs cells expressing the PLK4 construct to inhibit
PLK4 expression in the absence of doxycycline.
Organotypic culture system. The organotypic culture system was adapted from
previously described methods37,38. Briefly, 200ml of culture media containing epi-
thelial cells or epithelial cells plus fibroblasts was added on top of the polymerized
Matrigel:collagen-I mixture in each well. Co-culture of epithelial cells with fibro-
blasts was carried out as follows: HaCaTs cells were grown with HDF fibroblasts
and MCF10A cells were grown with human primary fibroblasts (1492N). 600ml of
culture media was added to the bottom of the transwell. Fibroblasts invade the
Matrigel:collagen-I layer whereas most of the non-invasive epithelial cells grow on
top of this layer. Medium was changed every 2 days. Cells were grown for 7 days
before samples were fixed and stained.

Cells in transwells were fixed in formalin overnight at room temperature.
Inserts were removed using scalpels and placed in 70% ethanol and processed
for histology. Paraffin embedded inserts were sectioned and stained for haema-
toxylin and eosin (H&E). For both MCF10A and HaCaTs, the percentage invasion
was calculated as the number of cells that entered the Matrigel:collagen-I layer
relative to the total number of cells per each well.
Lentiviral and retroviral vectors. For the generation of the inducible PLK4 over-
expression system we used the lentiviral vectors pLenti-CMV-TetR-Blast (17492,
Addgene) and pLenti-CMV/TO-Neo-Dest (17292, Addgene)39. Wild-type PLK4
and PLK41–608 cDNAs were cloned using the Gateway system into the pLenti-
CMV/TO-Neo-Dest vector. Cells were first infected with a lentivirus containing
the TetR and selected with Blasticidin (10–5mg ml21). After selection, cells were
infected with the lentivirus containing the wild-type PLK4 or PLK41–608 transgenes
and selected with Geneticin (200–100mg ml21). Note that no clones were selected
at any point and that all the selected cells were pooled to make a population. All the
cell lines generated were induced with 2mg ml21 of doxycycline for 48 h to induce
the expression of the transgenes. pLKO.1 lentiviral vector containing Cep192
shRNA hairpin sequence was obtained from the RNAi consortium (TCR) at the
Broad Institute (59-CCCGG GAGGCATCAGTTAATACTGAT-CTCGAG-AT
CAGTATTAACTGATGCCTCTTTTTTG-39). pLKO.1 lentiviral vector expres-
sing p53 shRNA was obtained from Addgene (19119)40. Lentilox Centrin1–eGFP
construct was a gift from J. Loncarek. pLenti6/V5 lentiviral vector expressing
H2B–GFP was cloned as previously described2. The Raichu-Rac1 biosensor, a gift
from M. Matsuda, was subcloned into the retroviral vector pWZL-blast using the
restriction sites EcoR1 and SalI.
Chemicals. Doxycycline (Sigma) was used at 2mg ml21. The following doses of
inhibitors were used: 25mM NSC23766 (EMD Millipore), 50mM CK-666 (Sigma),
0.1mM Reversine (Cayman Chemical), 10 mM paclitaxel (Sigma), 4mM of dihy-
drocytochalasin B (DCB; Sigma), 200 ng ml21 doxorubicin (Sigma), and 5mM and
10mM of marimastat (BB-2516; Sigma).

2D indirect immunofluorescence microscopy. Cells plated in glass coverslips
were washed in PBS and fixed with 4% of PFA for 15 min at room temperature
(RT). For centriole/centrosome staining, cells were fixed with ice-cold methanol
at 220 uC for 10 min. Following fixation, cells were permeabilized with PBS and
0.2% Triton X-100 for 5 min, blocked in PBST (PBS, 5%BSA, 0.1% Triton X-100)
for 30 min, and then incubated with primary antibodies in PBST for 60 min. Cells
were washed with PBS and incubated with species-specific fluorescent secondary
antibodies (Alexa-conjugated, Molecular Probes). DNA was stained with Hoechst
33342 (1:5,000; Invitrogen) for 5 min in PBS. Coverslips were mounted with
ProLong Antifade mounting medium (Molecular Probes). Antibodies used included
anti a-tubulin DM1a (1:500; Sigma-Aldrich), anti-centrin2 (1:100; Santa Cruz),
anti c-tubulin GTU88 (1:500; Sigma-Aldrich) and anti b-catenin (1:500; Abcam).
Phalloidin was used to stain F-actin (1:250; AlexaFluor 568; Invitrogen). Images
were collected with a Yokogawa CSU-22 spinning disk confocal mounted on a
Zeiss Axiovert microscope using 404, 488 and 561 nm laser light. Captured images
from each experiment were analysed with Slidebook software (Intelligent Imaging
Innovations). Measurement of centrosome number was performed in mitotic cells,
,100 were scored in each experiment.
3D indirect immunofluorescence microscopy. Immunofluorescence of 3D cul-
tures was carried out as previously described31. Briefly, cells grown in 3D cultures
were washed with 13 PBS and fixed in 5% of formalin (Sigma) in PBS for 20 min at
37 uC. After fixation cells were rinsed 3 times, 10 min each, with PBS:glycine
(100 mM) and permeabilized with 0.5% Triton X-100 in PBS for 10 min. Cells
were blocked with 10% of goat serum (Sigma) in IF buffer (130 mM NaCl, 7 mM
Na2HPO4, 3.5 mM NaH2PO4, 7.7 mM NaN3, 0.1% BSA, 0.2% Triton X-100, 0.05%
Tween-20) for 1 h at room temperature and primary antibodies were incubated in
the same solution over night at 4 uC. Cells were washed 3 times, 20 min each, with
IF buffer. When required, cells were incubated with secondary antibodies for 1 h at
room temperature (Alexa-conjugated, Molecular Probes). Cells were washed twice
with IF buffer and once with PBS followed by incubation with Hoechst 33342
(1:2,500; Invitrogen) for 20 min. 3D cultures were then mounted in ProLong
Antifade mounting medium (Molecular Probes). Antibodies used included anti
a-tubulin FITC conjugated DM1a (1:100; Sigma), anti Laminin-V AlexaFluor
488 conjugated (1:100; Millipore), anti-acetylated-tubulin 611B-1 (1:100; Sigma),
anti-fibronectin (1:100; BD Biosciences) and anti-Pericentrin (1:100; Abcam).
Phalloidin was used to stain F-actin (1:100; AlexaFluor 568; Invitrogen). Images
were collected with a Nikon A1R laser scanning confocal head mounted on a Nikon
Ti-E motorized inverted microscope using 404, 488 and 561 nm laser light. Cap-
tured images from each experiment were analysed using NIS-Elements software
(Nikon).
Long-term live-cell imaging. H2B–GFP expressing cells were grown on glass-
bottom 12-well tissue culture dishes (MatTek) for 2D imaging or in Lab-Tek cham-
bered coverglass for 3D imaging. Cells were imaged on a Nikon TE2000-E2 inverted
microscope equipped with a cooled CCD camera (TE2000, Orca ER, Hamamatsu;
Ti-E, Coolsnap HQ2, Photometrics), a precision motorized stage (Bioprecision,
Ludl), and Nikon Perfect Focus. Microscope was enclosed within temperature-
and CO2-controlled environments that maintained an atmosphere of 37 uC and
3–5% humidified CO2. GFP and bright field images were captured at multiple points
every 4 min for 1–2 days with either 103 (0.3 NA) or 203 (0.5, 0.75 NA) objectives.
Captured images from each experiment were analysed using NIS-Elements software.
Immunofluorescence quantification. Quantification of c-tubulin fluorescence
intensity associated with the centrosomes was performed as previously described41.
Images were acquired with a 1003 NA 1.45 Plan Apo objective. Stacks of 6 images
with 0.6mm step size were collected. Step size was calculated to have minimal pixel
overlapping between steps. SUM intensity projections of the images were used to
quantify fluorescence intensity using ImageJ. Computer generated 50 3 50 and
80 3 80 pixel regions were centred over each centrosomes (as shown in Extended
Data Fig. 9). The intensity value measured for the 50 3 50 pixel region include both
centrosome and background fluorescence. Background fluorescence was obtained
by subtracting the integrated value of 50 3 50 pixel region from the larger 80 3 80
pixel region. Integrated centrosomal fluorescence intensity was calculated by sub-
traction of the background fluorescence intensity from total fluorescence inten-
sity (Extended Data Fig. 9). The advantage of this approach is that it controls for the
non-homogeneity in background fluorescence.
2D cell–cell adhesion analysis. MCF-10A cells expressing the Raichu-Rac (here
used just to visualize the cell membrane), with and without centrosome amplifica-
tion, were plated on glass-bottom tissue culture dishes (MatTek) coated with
20mg ml21 fibronectin (Sigma-Aldrich) for 20 min. Centrosome amplification
was induced by 48 h PLK4 induction, as described above. To monitor the cell–
cell contact dynamics, we acquired time-lapse series of images, visualizing the CFP
moiety of the Raichu-Rac FRET reporter (Fig. 3a and Supplementary Videos 6
and 7) at 5 min intervals over 12.4 h. To illustrate differences in cell–cell contact
dynamics, we generated kymographs (Fig. 3a). The kymograph was obtained by
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sequentially mounting a 1 3 336 (pixel) region of interest from the videos, using
ImageJ. Time-lapse series were collected with a Nikon inverted microscope with
epi-fluorescence optics using a 403 plan Apo NA 1.4 objective. The microscope
was equipped with a Nikon Perfect Focus System and a Hamamatsu ORCA ER
cooled CCD camera and controlled with Nikon NIS-Element software. To reduce
illumination intensity, minimizing phototoxicity and photobleaching, we used a
ND8 (1/8 transmission) neutral density filter.
Western blotting. Cells were collected and ressuspended in Laemmli buffer and
proteins were separated on sodium dodecyl sulphate polyacrylamide gel electro-
phoresis (SDS–PAGE) and transferred onto PVDF membranes. Antibodies used
included anti a-tubulin DM1a (1:2,000; Sigma), anti-CEP192 (1:1,000; gift from L.
Pelletier), anti-MCAK (1:1,000; Bethyl Laboratories), anti-p53 (1:1,000, Cell Signaling),
anti-P-p53 (1:1,000, phospho-Ser15, Cell Signaling), E-cadherin (1:1,000, Invitrogen)
and anti-Rac1 (1:1,000, BD Biosciences). Images were acquired using ImageQuant
LAS4000 (GE Healthcare) and when required band intensity was quantified using
ImageJ.
siRNA. siRNA was performed using Lipofectamine RNAiMax (Invitrogen)
according to the manufacturer’s instructions. 50 nM of CEP192, MCAK and luci-
ferase (negative control) siRNA was used per well in a 6-well plate. After 6 h of
incubation, transfected cells were washed and normal growth medium was added.
Cells were analysed at 48 h after transfection. ON-Target plus SMART pools were
used for MCAK and CEP192 siRNA (Dharmacon). Human KIF2C/MCAK siRNA
(L-004955-00-0005): GGCAUAAGCUCCUGUGAAU (J-004955); CCAACGCA
GUAAUGGUUUA (J-004955-07); GCAAGCAACAGGUGCAAGU (J-004955-
08); UGACUGAUCCUAUCGAAGA (J-004955-09). Human CEP192 siRNA (L-
032250-01-0005): UGUGAAGAAAUACGAGAUA (J-032250-09); GCUCAGC
GGUAUUUGGGAA (J-032250-10); GUCUAGAACUCGAGAAUCA (J-032250-
11); GGUUGAAGCAGUAGAGAGU (J-032250-12).
Single-nucleotide polymorphisms (SNP). Cells from 3D cultures were recovered
after 4 days as described above (see Cell Culture section for details) and genomic
DNA was prepared using DNA purification Kit (Qiagen) according to the man-
ufacturer’s instructions. Genomic DNA was used to perform analysis with gen-
ome-wide human SNP 6.0 arrays to determine copy number in MCF10A control
cells, MCF10A after induction of centrosome amplification and MCF10A depleted
of MCAK. SNP array data was analysed with the Nexus Copy Number Software
(BioDiscovery; http://www.biodiscovery.com/software/nexus-copy-number/), using
the ‘Matched Paired Analysis’ module. The SNP data discussed in this publication
have been deposited in NCBI’s Gene Expression Omnibus42 and are accessible through
GEO accession number GSE55042.
Microtubule polymerization assay. Cells plated in glass coverslips were trans-
ferred to ice cold medium and incubated 1 h on ice to depolymerize microtubules.
Cells were then incubated with medium at 37 uC for 30 s to allow microtubules to
polymerize and fixed immediately in ice-cold methanol for 10 min. Cells were
stained for microtubules and centrioles (as described above) and microtubule num-
ber was quantified manually. Images of cells used in the analysis were acquired from
2 independent experiments.
qRT–PCR. PLK4 is highly unstable and we were not able to monitor its transient
overexpression by western blotting. qRT–PCR was therefore used to analyse the
extent of its expression. RNA was prepared using Qiagen RNAeasy kit according
to the manufacturer’s instructions. For 3D cultures, RNA was initially harvested
using TRIzol, and after chloroform extraction, the upper aqueous phase was used
to purify RNA using the RNAeasy kit. 300 ng of RNA was used to produce cDNA
using qScript cDNA SuperMix kit (Quanta Bioscience), according to the manu-
facturer’s instructions. For qRT–PCR, we used Power SYBR Green followed by
analysis with ViiA PCR machine (Applied Biosystems).

Primers used to assess the levels of PLK4 overexpression only amplify the exo-
genous wild-type PLK4 or PLK41–608 sequences. The primers used for qRT–PCR
were: PLK4 forward: 59-CAGGATTTGCCCGGGATGGCG-39; PLK4 reverse: 59-
AACCAGTGTGAATGGACTCAGCTCT-39; GAPDH forward: 59-TTAAAAG
CAGCCCTGGTGAC-39; GAPDH reverse: 59-CTCTGCTCCTCCTGTTCGAC-39.
Rac1–GTP pull-down. The Rac1–GTP pull-down assay was performed using the
Rac1 activation kit (Cytoskeleton) according to the manufacturer’s instructions.
We used cells plated in one 10 cm dish per assay. Cells were resuspended in 400ml
of lysis buffer and 15ml of CRIB/PBD beads were used to pull-down active Rac1.
Extracts were incubated with the beads for 30 min. All the procedures were done at
4 uC and buffers were kept ice-cold. After washing, beads were resuspended in
15ml of Laemmli buffer and processed for western blotting. To inhibit microtubule
dynamics, cells were treated with 10 mM of paclitaxel for 1 h26.
Generation of tetraploid cells with normal centrosome number. MCF10A cells
were treated with 4mM DCD for ,18 h, washed every 5 min over 30 min, and then
FACS sorted by DNA content using Hoechst at 1:2,500 (Molecular Probes) to
isolate tetraploid cells with extra centrosomes. To isolate tetraploid cells with
normal centrosome number, cells with a DNA content of 8c (dividing tetraploid

cells) were isolated and cultured for ,8 days before a second FACS sorting to re-
isolate 8c cells. By sort 4, nearly 100% of tetraploid cells (as assessed by FACS and
karyotyping) had two centrosomes2.
Chromosome spreads. MCF10A cells were treated with 20 ng ml21 colcemid
(Gibco) for 4 h, trypsinized, resuspended in 75 mM of KCl and incubated for
30 min at 37 uC. Cells were then fixed with 3:1 ice-cold methanol:acetic acid,
(Carnoy’s solution) pelleted, and then washed three times more with methanol:
acetic acid before being dropped on a pre-cleaned glass side. Cells were allowed to
dry on the slide and were then stained for 3 min with Giemsa stain in 13 Gurr’s
buffer (Gibco). Following a wash in Gurr’s buffer, coverslips were added to slides
and sealed with Permount (Fisher). Images of spreads were taken with a 1003

objective on a Zeiss upright microscope and chromosomes were counted manually
using Adobe Photoshop. The chi squared test of independence for nominal vari-
ables was used to calculate the P value.
FACS. Cells were fixed with 70% ethanol at 4 uC followed by incubation with
250mg ml21 RNaseA and 10mg ml21 propidium iodide (Invitrogen) at 37 uC for
30 min. FACS analysis was performed with a FACSCalibur flow cytometer (Becton
Dickinson) and data analysed with CellQuest software.
Micropatterning. Glass coverslip micropatterning was performed as previously
described43. Coverslips were first spin-coated with adhesion promoter Ti Prime
(MicroChemicals) and then with 1% polystyrene in toluene at 3,000 r.p.m.
Polystyrene coated coverslips were oxidized through oxygen plasma (FEMTO;
Diener Electronics) for 15 s at 30 W before incubating with 0.1 mg ml21 PLL-
PEG in 10 mM HEPES pH 7.4 for 30 min. After drying, coverslips were exposed
to deep ultraviolet (UV) (UVO cleaner, Jelight) through a photomask (TOPPAN)
for 5 min. Right after UV activation, coverslips were incubated with 20mg ml21 of
fibronectin (Sigma), and 20mg ml21 of fluorescent fibrinogen conjugate (Invitrogen)
solution in PBS for 30 min. Coverslips were washed 3 times with sterile PBS before
plating cells. Approximately 0.5 million cells were seeded onto micropatterned
chips and were washed after 30 min to remove non-attached cells, which almost
always resulted in single cells per micropattern. Cells were allowed to divide for
16 h prior to fixation. For Rac1 and Arp2/3 inhibition, cells were treated with
NSC27633 (25mM) or CK-666 (50mM), respectively, for 6 h, before fixation. For
CEP192 siRNA, cells were plated after 48 h of siRNA treatment. Images of cells
used in the analysis were acquired from 2 independent experiments. The hourglass
micropattern guides intracellular junction positioning as shown in Figure 3b,
where most of the junction extremities are positioned in the region deprived of
extracellular matrix (fibronectin). We measure the angle and size of the junctions
to assess junction position and length in the different conditions.

Note that when the cells divide on these patterns, spindle orientation is com-
pletely random with respect to the geometry of the pattern. The cells also move
after division before establishing normal cell–cell contacts, further altering the
position of the prior division site relative to the site of eventual cell–cell contact.
Thus, the final adhesion pattern is completely random relative to the initial (and
random) orientation of the spindle, as previously described20.
Rac1 FRET. For FRET experiments we used MCF10A cells stably expressing
Raichu-Rac25. Centrosome amplification was induced with Dox for 48 h and
,10,000 cells per ml of control and extra-centrosomes cells were plated onto
20mg ml21 fibronectin (Sigma-Aldrich) coated glass-bottom dishes/plates (MatTek)
for 6 h. For EGF depletion experiments cells incubated without EGF for 15 h.
FRET acquisition. Before acquisition, to increase the signal to noise, the culture
medium was exchanged with 199 medium (Life Technologies) without serum and
phenol red. For FRET imaging, cells were excited using a Nikon Intensilight source
with a 430/24nm (for CFP) excitation filter with a dual band pass (ECFP/EYFP
#89002) dichroic mirror and 470/24 (for CFP) and 535/40 (for FRET and YFP)
emission filters from Chroma (Bellows Falls, VT). To reduce illumination intens-
ity and thus minimize phototoxicity and photobleaching, we used a ND8 (1/8
transmission) neutral density filter. All images were collected with Nikon Ti
inverted microscope with epi-fluorescence optics equipped with a 340 plan
Apo NA 1.4 object lens, perfect focus system and a Hamamatsu ORCA ER cooled
CCD camera controlled with Nikon NIS-Element software.

The following steps were taken to calculate the average magnitude and spatial
variation of the camera’s noise for image correction of the acquired channels (CFP,
FRET): (1) a sequence of 10 dark-current images were taken with 600 ms exposure
time and 4 3 4 binning as the experimental images, but with no light incident on the
CCD; (2) a sequence of 10 shade/illumination correction images for each channel
(CFP and FRET) were taken with 600 ms exposure time and 4 3 4 binning as the
experimental images, but acquired on a blank area without any objects. The average
dark-current and shade images were calculated by averaging the acquired 10 images
by using ImageJ. Single channel images (CFP, FRET) for each field view visualizing
maximum four non-contacting cells were collected by using an exposure time of
600 ms, 4 3 4 binning, a ND8 (1/8 transmission) neutral density filter and illumina-
tion light shuttered between acquisitions.
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FRET analysis. The Biosensor software from Dr. Gaudenz Danuser’s laboratory
(http://lccb.hms.harvard.edu/index.html) along with a series of automated ImageJ
macros were used to calculate the FRET ratio images. The acquired CFP and FRET
images were corrected for the average dark-current, shading and background
subtracted by using Biosensor or ImageJ. Then, single-cell images from each
channel (CFP and FRET) were segmented by using the ImageJ minimum and
mean threshold method, and the relative regions of interest (ROIs) were recorded.
Single cell mask images having background and foreground (cell image) pixel
values equal to zero and one, respectively, were calculated from each cell ROI
by ImageJ. To set the image background pixels to zero, CFP and FRET images were
multiplied by the corresponding calculated image masks. Finally the FRET ratio
images were obtained by dividing the processed FRET image by the CFP image.

Single cell average FRET/CFP values representing the Rac1 activation levels
were obtained by calculating the mean pixel value of the FRET ratio images for
each ROI (single cell). FRET/CFP values were collected from 2 independent exper-
iments. An unpaired two-tailed Student’s t-test statistical analysis was used to obtain
level of significance between different experiment conditions.
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Extended Data Figure 1 | Characterization of cells after transient
overexpression of PLK4 or PLK41–608. a, Scheme of the experimental design
to induce centrosome amplification. Transient overexpression of PLK4 and
PLK41–608 was achieved by addition of Dox for 48 h (2D culture) followed by
removal of Dox and growth in 3D culture for 4 days in the absence of Dox.
b, qRT–PCR showing the levels of induction of the PLK41–608 and wild-type
PLK4 transgenes in cells after 48 h of Dox. Error bars represent mean 6 s.e.
from 3 independent experiments. c, qRT–PCR showing the expression of
PLK4 after 48 h of Dox (2D) and after 4 days in 3D cultures (3D). Note that
PLK4 overexpression after 4 days in 3D cultures is down to control
levels after Dox removal. Error bars represent mean 6 s.e. from 3 independent
experiments. d, Proliferation curve of cells after induction of PLK4 and
PLK41–608 over 72 h. Centrosome amplification decreases cell proliferation.
Error bars represent mean 6 s.e. from 3 independent experiments. e, The
fraction of cells with centrosome amplification at the indicated time points
after PLK4 induction. Note that, because centrosome number is quantified in
mitotic cells, this result demonstrates that cells with extra centrosomes can
enter mitosis even after 72 h of Dox treatment. Error bars represent mean 6 s.e.

from 3 independent experiments. f, Fraction of cells with centrosome
amplification in an independently generated MCF10A.PLK4 cell line. Error
bars represent mean 6 s.e. from 3 independent experiments. g, Corresponding
fraction of invasive acini in 3D cultures. Error bars represent mean 6 s.e.
from 3 independent experiments. h, Centrosome amplification (PLK4
overexpression, 1Dox) in non-transformed keratinocytes (HaCaTs) promotes
invasion in the organotypic culture model. Images show H&E staining of
sections of HaCaTs cells. Black arrows indicate cells invading the
matrix. Note that the invasion of groups of cells was only detected in the
1Dox condition (black arrowhead). Scale bar, 100mm. Graph shows
quantification of the percentage of cells that invade. Each dot in the graphic
represents the percentage of invasion in each individual well per
experiment analysed. The P value was derived from unpaired two-tailed
Student’s t-test *P , 0.05). i, Collagen-I degradation induced by
centrosome amplification (green). Collagen degradation is visualized by
DQ-Col-I, which becomes fluorescent after degradation because of fluorophore
dequenching. Scale bar, 10mm. See Methods for more details.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Figure 2 | Characterization of evolved diploid and tetraploid
cells. a, Scheme of the experimental design to obtain fresh MCF10A
tetraploid cells with extra centrosomes (4N) and ‘evolved’ tetraploid cells that
lost the extra centrosomes (4N.evo), as previously described2. b, FACS
profiles of ‘evolved’ diploid (2N.evo) and tetraploid cells (4N.evo). c, Western
blotting to detect E-cadherin in the ‘evolved’ cells indicates that 4N.evo
maintain epithelial characteristics. d, Representative images of metaphase
chromosome spreads of 2N.evo and 4N.evo and quantification of chromosome
number by karyotyping (,30 chromosome spreads were quantified in each
condition). 4N.evo cells have a near-tetraploid karyotype. e, Centrosome
amplification in diploid cells (2N or 2N.evo) newly generated tetraploid cells
(4N) and evolved tetraploid cells (4N.evo). f, Quantification of the

percentage of aneuploid cells in the ‘evolved’ cells. The 4N.evo cells are
aneuploidy despite their near-tetraploid genomes (,30 chromosome spreads
were quantified in each condition). g, Quantification of centrosome
amplification of 4N.evo cells overexpressing PLK4. Error bars represent
mean 6 s.e. from 3 independent experiments. h, Quantification of the invasive
acini in 4N.evo cells after PLK4 overexpression. This experiment serves as a
control to demonstrate that the 4N.evo cells retain their ability to amplify
centrosomes and, after centrosome amplification, retain the capacity to form
invasive acini. Error bars represent mean 6 s.e. from 3 independent
experiments. P value derived from unpaired two-tailed Student’s t-test
(**P , 0.005).
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Extended Data Figure 3 | Characterization of invasive structures in cells
with extra centrosomes. a, F-actin and microtubules in invasive protrusions:
F-actin (red), microtubules (a-tubulin, green) and DNA (blue). Insets show
higher magnification images of the invasive protrusions. Scale bar, 10mm.
b, Fibronectin at invasive protrusions: cells were stained for F-actin (red),
fibronectin (green) and DNA (blue). Scale bar, 10mm. c, Fraction of invasive
acini in 3D cultures after treatment with the broad spectrum matrix
metalloprotease (MMP) inhibitor, marimastat (BB-2516). Error bars represent
mean 6 s.e. from 3 independent experiments. P value derived from unpaired
two-tailed Student’s t-test (**P , 0.005). d, Images from videos of PLK4
overexpression cells (Supplementary Video 3), showing nuclei (labelled with
H2B–GFP) migrating into an invasive protrusion (red arrows). Time scale

shown as h:min. Scale bar, 20mm. e, Multiple cells can migrate into invasive
protrusions. Cells were stained for F-actin (red), laminin-V (green) and
DNA (blue). Red arrows mark cells that migrated into the invasive
protrusion. Scale bar, 10mm. f, Western blot showing levels of E-cadherin,
N-cadherin and vimentin in cells with (1Dox) and without (2Dox) extra
centrosomes before and after 4 days in 3D culture. The western blots
show that, unlike cells treated with TGF-b, cells with extra centrosomes do not
acquire a canonical epithelial–mesenchymal transition (EMT) phenotype.
We do note a small increase in the levels of vimentin in cells with extra
centrosomes before plating in 3D cultures. Dox treatment was given for 48 h
before 3D cultures in all experiments.
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Extended Data Figure 4 | Similarity between cells with centrosome
amplification and cells with oncogene-induced invasion. Cells were stained
for F-actin (red), laminin-V (green) and DNA (blue). Similarity between
the invasive protrusions of cells with extra centrosomes and the ones generated

by cells overexpressing ERBB2, as previously reported4,44. In both conditions,
invasive protrusions are characterized by the formation of actin-rich
protrusions that are accompanied by degradation of the basement membrane.
Scale bar, 10mm.
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Extended Data Figure 5 | Reversine treatment induces aneuploidy but not
invasive acini in MCF10A cells. a, Quantification of the chromosome
number in cells after treatment with with 0.1mM of reversine (Rev) for 24 h
before and after 4 days in 3D cultures (,20 chromosome spreads were
quantified in each condition). The concentration of reversine used does not
induce cytokinesis failure and therefore would not induce centrosome
amplification by inducing tetraploidy. b, Fraction of invasive acini after
MCF10A cells are treated with reversine. Increased aneuploidy from reversine

treatment does not induce invasion. Error bars represent mean 6 s.e. from 3
independent experiments. c, Images of 3D cultures after treatment with
reversine showing normal appearing acini. Scale bar, 50mm. d, SNP
analysis of MCF10A cells (without centrosome amplification) compared
with Human Reference Genomic DNA 103 from Affymetrix. Previously
reported genomic alterations in MCF10A cells can be detected in our analysis,
namely: 15q, 16p and 18q.
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Extended Data Figure 6 | Invasive protrusions from 3D cultures of
MCF10A cells with extra centrosomes are not an indirect consequence of
altered cilia signalling, increased p53 expression or defects in centrosome
polarization. a, Cells in 2D were stained for pericentrin (green, inset),
acetylated tubulin (red, inset) and DNA (blue). Cells were arrested for 48 h in
G1 to induce primary cilium formation. Note that even in this case most of the
cells do not form cilia. This is expected because MCF10A cells have limited
proficiency for cilia formation, with only ,7% of the cells assembling cilia even
after 7 days of serum starvation45. Cells in 3D were stained for centrin (GFP,
green inset), acetylated tubulin (red, inset) and DNA (blue). Cells do not form
cilia after 4 days in 3D cultures. This is expected because, unlike MDCK cells,
MCF10A cells do not have a discernable apical polarity and lumen after 4 days
in 3D cultures and thus are unlikely to form primary cilium at this time. b, As
expected17, centrosome amplification in MCF10A cells induces modest p53
activation. Note that this degree of p53 activation has a minor effect on the
proliferation of MCF10A cells (Extended Data Figure 1d). Expression of PLK4
and PLK41–608 was induced by Dox for the indicated times: 0, 24, 48 and 72 h.
c, Western blotting showing the levels of induction of p53 after doxorubicin
treatment (200 ng ml21 for 4 h) in control and p53-depleted cells,
demonstrating that the p53 shRNA efficiently prevents p53 activation.

d, Fraction of acini with invasive protrusions from cells with (1Dox) or
without (2Dox) centrosome amplification after depletion of p53. The ability of
cells to form invasive acini is not significantly affected by their p53 status. Error
bars represent mean 6 s.e. from 3 independent experiments. P values were
derived from unpaired two-tailed Student’s t-test (***P , 0.0005; *P , 0.05).
e, Cells were stained for a-catenin (green), c-tubulin (red), DNA (blue) and the
fibronectin micro-pattern visualized in red. Dashed boxes outline the
centrosomes. Note that after PLK4 overexpression, extra centrosomes
(clustered in interphase) are correctly positioned towards the cell–cell junction
(similar to the control) even when the junction is defective, suggesting that
centrosome amplification is not impairing the polarity axis of these cells.
f, Centrosome positioning is not altered in cells with (1Dox) and without
(control) extra centrosomes. Left image shows representative images of cells
showing centrosomes (c-tubulin) in relation to adherens junctions
(a-catenin). Right image shows scheme with quantification of the fraction of
centrosomes at the indicated positions on the micropatterns (see Fig. 3a).
Note that the position of centrosomes in cells with centrosome
amplification does not differ from that in control cells. Cells were plated
on the patterns 48 h after induction of centrosome amplification with PLK4.
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Extended Data Figure 7 | Centrosome amplification induces cell scattering
and Rac activation. a, Quantification of number of cells with (1Dox) or
without (2Dox) extra centrosomes that remain as pairs within 10 h time after
mitosis. For –Dox n 5 180; 1Dox n 5 98. Cell scattering occurred in most
of the cases within the first 2 h after mitosis. Cells were imaged on 2D
substratum. Similar results were obtained with fixed cells. Error bars represent
mean 6 s.e. from 3 independent experiments. b, Still images from videos
showing examples of cells that stay together (2Dox) or move apart (1Dox).
Time scale shown as h:min. c, Western blot showing levels of p120 catenin in
cells with (1Dox) and without (2Dox) extra centrosomes in 2D and 3D
cultures. d, Western blot from a pull-down experiment to detect GTP-bound
Rac1 in HaCaTs cells. Graph shows quantification of active Rac1 from pull-
down experiments. Error bars represent mean 6 s.e. from 3 independent
experiments. e, Western blot from a pull-down experiment to detect
GTP-bound Rac1 in 16HBE cells. Graph shows quantification of active Rac1

from pull-down experiments. Error bars represent mean 6 s.e. from 2
independent experiments. f, FRET control demonstrating increased CFP
emission after photobleaching of the YFP fluorophore at an excitation
wavelength of 510 nm for 10 min in MCF-10A single cells expressing Raichu-
Rac. g, Levels of active Rac1 measured by FRET in cells overexpression
PLK41–608. For –Dox, n 5 25; 1Dox, n 5 22. Error bars represent mean 6 s.e.
h, Western blot from a pull-down experiment to detect GTP-bound RhoA in
MCF10A cells showing decrease RhoA activity in cells with extra centrosomes.
i, Levels of active Rac1 measured by FRET in cells with extra centrosomes
treated with the Rac1 inhibitor NSC23766, demonstrating that NSC23766
inhibits Rac1 activation in cells with extra centrosomes. For 2NSC23766,
n 5 37; 1NSC23766, n 5 36. Error bars represent mean 6 s.e. All the P values
were derived from unpaired two-tailed Student’s t-test (***P , 0.0005;
**P , 0.005; *P , 0.05). Scale bar, 10mm.
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Extended Data Figure 8 | Cell–cell adhesion defects caused by centrosome
amplification can be observed in tetraploid cells and can be suppressed by
Arp2/3 complex inhibition. a, Western blot from a pull-down experiment
to detect GTP-bound Rac1 in tetraploid MCF10A cells. b, Distribution of the
cell–cell junction angles (left) and size (right) in the indicated tetraploid cells,
with or without treatment with the Rac1 inhibitor, NSC23766. Note that
tetraploid cells with extra centrosomes (4N) have a striking defect in junction
positioning by comparison with tetraploid cells with normal centrosome
number (4N.evo). This severe phenotype is only partially rescued by Rac1
inhibition. For 4N.evo, n 5 106; 4N, n5 70; NCS23766, n5 47. Error bars
represent mean 6 s.e. c, Examples of cell doublets with (1Dox) or without

(2Dox) centrosome amplification on the fibronectin micro-patterns. Cells
were stained for F-actin (red), b-catenin (green), DNA (blue). d, Examples of
cell doublets with (1Dox) or without (2Dox) centrosome amplification
on the fibronectin micro-patterns treated with the Arp2/3 inhibitor (CK-666).
Cells were stained for F-actin (red), b-catenin (green), DNA (blue).
e, Distribution of the junction angle and quantification of the junction size in
cells with extra centrosomes treated with 50mM of Arp2/3 inhibitor (CK-666)
for 6 h. Cells were analysed 48 h after Dox treatment. For –Dox, n 5 251;
1Dox, n 5 160; CK666, n 5 168. Error bars represent mean 6 s.e. All the
P values were derived from unpaired Student’s two-tailed t-test
(***P , 0.0005; **P 5 0.005). Scale bar, 10mm.
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Extended Data Figure 9 | Quantification of centrosomal c-tubulin in cells
with extra centrosomes and levels of active Rac1 in the absence of EGF.
a, Images of centrosomes from interphase MCF10A cells stained for c-tubulin.
Boxes represent the region for measurement of centrosomal c-tubulin signal
(inside) and background (area between inner and outer boxes). b, Method used
to determine the integrated fluorescent intensity of centrosomal c-tubulin, as
previously described41. c, Measurement of c-tubulin intensity at the
centrosomes showing that in interphase, increased centriole number is
sufficient to increase c-tubulin levels at the centrosomes whereas increased
ploidy per se does not (4Nevo). For PLK4 –Dox, n 5 60; PLK4 1Dox, n 5 49;
4N.evo. PLK4 –Dox, n 5 34; 4N.evo. PLK4 1Dox, n 5 35. Error bars represent
mean 6 s.e. d, Increased Rac1 activity in cells with extra centrosomes can be

detected in arrested cells deprived of EGF. Quantification of Rac1
activity by FRET in single cells with (1Dox) and without (2Dox) extra
centrosomes in the absence of EGF, and examples of FRET images of cells in the
absence of EGF. For PLK4 2Dox, n 5 36; PLK4 1Dox, n 5 47. Error bars
represent mean 6 s.e. Scale bar, 10mm. e, FACS profiles of control (2Dox) and
cells with extra centrosomes (1Dox) after 48 h of Dox treatment showing that
there is not major difference in the cell cycle profiles of these cells. Note that
at this time point centrosome amplification does not produce a
striking defect in cell proliferation (Extended Data Fig. 1d). All the P values
were derived from unpaired two-tailed Student’s t-test (**P , 0.005;
***P , 0.0005).
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Extended Data Figure 10 | Depletion of CEP192 suppresses the invasive
properties of cells with centrosome amplification. a, Scheme of the
experimental design to induce centrosome amplification in cells depleted of
CEP192 by siRNA. Transient overexpression of PLK4 is induced 6 h after
siRNA to allow efficient centrosome overduplication. As expected, after
depletion of CEP192 for 48 h, cells are partially compromised in their ability to
overduplicate centrosomes after PLK4 overexpression46. b, Western blot
showing efficient depletion of CEP192 after 48 h treatment of cells with CEP192
siRNA. c, Western blot showing partial depletion of CEP192 by shRNA.
d, Quantification of centrosomal c-tubulin after depletion of CEP192 by siRNA
for 48 h. Similar results were observed with CEP192 esiRNA (not shown). It is
notable that at least for a three-day period, cells remain viable after CEP192
knockdown. For control siRNA, n 5 22; CEP192 siRNA, n 5 20. Error bars
represent mean 6 s.e. Quantification of centrosome amplification after
depletion of CEP192 by siRNA (e) or shRNA (f). Error bars represent

mean 6 s.e. from 3 independent experiments. g, Bright field images of acini
after 4 days in 3D culture, demonstrating that partial CEP192 depletion by
shRNA does not significantly impair cell growth or the formation of acini. Red
arrows indicate the invasive acini. h, Quantification of PLK4-mediated
centrosome amplification in cells depleted of CEP192 after 4 days
in 3D cultures showing that these cells still carry extra centrosomes. Error bars
represent mean 6 s.e. from 3 independent experiments. Images show
normal acini displaying centrosome amplification after partial knockdown of
CEP192. Cells were stained for F-actin (red), centrioles (centrin1-GFP,
green) and DNA (blue). Scale bar, 10mm. i, Levels of active Rac1 measured
by FRET after CEP192 depletion. For ctr.siRNA –Doc, n 5 51; ctr.siRNA
1Dox, n 5 35; CEP.siRNA –Dox, n 5 53; CEP.siRNA 1Dox, n 5 37.
Error bars represent mean 6 s.e. All the P values were derived from unpaired
two-tailed Student’s t-test (*P , 0.05; **P , 0.005).
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1.3 Short Q&A 

 
Q. Can the invasive phenotype observed in PLK4 overexpressed cells possessing amplified 

centrosome be also the effect of kinase activity of PLK4? 

 

A: Polo-like-kinase (PLK4) has catalytic kinase domain at its N terminal and non-catalytic 

domain at the C-terminal, which is responsible for localization of PLK4 to the centrosome. In 

this study truncated form of PLK4 (1-608) was used which had kinase domain but lacked the 

centrosome-targeting sequence. As centrosome duplication requires PLK4 at the centrosome, 

the truncated for of PLK4 did not induce centrosome amplification. Hence the control cells 

without centrosome amplification possess PLK4 kinase activity and do not show invasive 

protrusions while only the cells with full length PLK4 overexpression have amplified 

centrosomes and show invasiveness.  

 

Q. Do cells with extra-centrosome involve epithelial-to-mesenchymal pathway for cell 

scattering? 

 

A: Cells with extra-centrosomes did not show classical EMT markers such as E-cadherin 

reduction, increase of N-cadherin and vimentin. As E-cadherin levels in these cells are high 

which suggests that CCJ weakening did not occur because of lack of cell adhesion molecules. 

Thus we think that the scattering phenotype seen in the cells with amplified centrosomes 

occurs by non-canonical EMT pathway such as ERBB2-overexpressed human breast cancer. 

Tumors with ERBB2 also show invasive phenotype of tumors but maintain E-cadherin 

expression. 

 

Q. Does cell division axis influences preferred configuration of cell daughter doublets on 

‘bowtie’ pattern?  

 

A: On ‘bowtie’ or ‘hourglass’ shaped micropattern, cells divide with random orientation of 

spindle position and so there is no preferential cell-division axis on this micropattern geometry. 

Daughter cells reposition their newly formed cell junction after the cell division. Thus the cell 

junction can move all over the micropattern. The cell junction then stabilizes to ECM-deprived 

region on the micropattern. Thus the final orientation of cell junction is independent from 

spindle pole orientation and cell division axis.  
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1.4 Comments 
 

Does centrosome amplification confer advantages to the cancer 

cell? 
Over the past decade mounting evidences have clearly implicated a robust correlation between 

centrosome amplification (CA) and malignant transformation (Godinho and Pellman, 2012). CA 

correlates with increased tumor grade, metastasis and recurrence in various types of cancer of 

the blood, bone, breast, cervix, kidney and prostrate (Chan, 2011). Given CA is a hallmark of 

cancer aggressiveness; it presumably confers advantages to the transformed cells, in terms of 

their migratory ability and invasive capability.   Centrosome implements an extensive repertoire 

of molecular tools such as microtubule plus-end tracking proteins (+TIPS), Microtubule 

associated proteins (MAPs) to accomplish polarization that necessary for cancer cell migration 

(Ogden, 2008). 

In this study we validated that over-amplified centrosomes accentuate filopodia formation 

machinery at the cell-cell adhesion (CCA ), which are otherwise stable structures in epithelia. This 

mechanism was guided by abundance of growing MTs from clusters of amplified centrosomes. In 

addition to this mechanism, CA may provide other cytoskeleton advantages to the cancer cells 

that enhance their metastatic progression. Microtubule growing end harbors TIPs such as EB1, 

CLIP-170 and adenomatous polyposis (APC), which make contact with the cell cortex and can 

alter activities of cortex-associated components like focal adhesions, lipid rafts and actin-

nucleation proteins (Ogden, 2013). Mesenchymal migrating cell establishes front-rear polarity by 

relocalizing the centrosome toward the leading edge (exceptions of lymphocytes, natural killer 

cells) with forward-orientated actin polymerizes and retrograde flow of actin toward cell center. 

Microtubules growth at the leading edge activates Rac1 and lamellopodial protrusion while 

microtubule turnover in the cell body activates RhoA-mediated stress fibre formation. In the 

model that we studied here, cells produced protrusions and escaped acini by maintaining their 

centrosome toward interior side (Figure 1C in (Godinho et al., 2014). This poses a possibility 

whether cells harboring amplified centrosome adapt the mode migration mode with the 

centrosome at the back of the cell. It is also possible that cells initially escape from acini by 

maintaining centrosome at their back and during invasion through stromal cells; they acquire 

centrosome toward the cell front. Current evidences also suggest that cancer cells employ 

amoeboid movement through extracellular matrix, which is a distinct mode of migration than the 

mesenchymal mode, which is dominated by lamellopodia formation (Liu et al., 2015). Rapid 

cancer cell migration within sites of pre-cleared matrix is achieved by collective mode of 

migration as also seen in 3D acini culture Figure S3 D-E in (Godinho et al., 2014). A stepwise 
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inspection of centrosome position through different stages, namely, within acini, degradation of 

basement membrane, escape from acini and single cell migration will reveal different modes of 

centrosome-assisted polarization. The presence of enlarged centrosome and depending on 

whether it is clustered or not can effect Golgi organization and ability to polarize the migrating 

cell. 

 

Dialogue between centrosome and cell-cell junction 

 
Microtubules are inherently polarized structures and in centrosome-nucleated aster organization 

they are capable of long-range interaction with cortex though their plus tips. Adherene junctions 

(AJ) associate with microtubules. Cadherin-homophilic interactions are sufficient to recruit 

microtubules and microtubule depolymerization can disrupt AJ organization (Harris and Tepass, 

2010; Stehbens et al., 2006). Microtubules support CCA assembly by kinesin dependent 

trafficking of CCA components and also by targeting cellular components like APC, connexin-43 

to their respective domains while CCA disassembly and remodeling is modulated by selective 

endocytosis (Harris and Tepass, 2010). Interestingly, small GTPases are also known to regulate 

CCA endocytosis during epithelial remodeling and we can not rule out the possibility that the 

weakening of CCA in centrosome amplified cells can result from increased endocytosis of CCA 

molecules. Inhibition of Rac1 and Arp2/3 complex recovered CCA stability in cells with CA 

(Figure S8 in (Godinho et al., 2014)) and generated non-invasive 3D structures confirming active 

role of Rac1 in CCA remodeling (Figure 3 in (Godinho et al., 2014)). On the other hand, small 

GTPases are also involved in cell-cell junction formation by generating E-cadherin rich filopodia, 

which rapidly engage in homophilic adhesion with opposing cell (Vasioukhin et al., 2000). Thus 

the optimal level of filopodia formation in the cell seems crucial in maintaining dynamics of cell 

junction. Actin regulators, Formins, which nucleate actin to generate unbranched parallel 

bundles of actin, also regulate the filopodia formation. Formins are as well regulated for their 

activity and localization by small GTPases. Particularly, MCF10A cells depleted for FMNL2 

(Formin like-2) were impaired for contact formation but not for lamellopodia protrusion upon 

Rac1 activation, suggesting cell-cell adhesion specific role of the Formins (Grikscheit and Grosse, 

2015). Additionally FMNLs are unregulated in some invasive colorectal cancer metastasis (Zeng 

et al., 2015).  Hence it seems important to decipher the possible role of Rac1-Formin interaction 

in observed invasive behavior of cells with extra-centrosomes to understand mechanistic details, 

which could be mechanical or biochemical. Advances in light-induced activation/inactivation of 

small GTPases at intracellular precision will be helpful to dissect the spatial and temporal 

regulation of molecular mechanisms initiating cell protrusions (Wu et al., 2009). 
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Does centrosome control non-centrosomal MTOC organization? 

 
Our study showed that cancer cells with CA maneuver their amplified centrosomes and achieve 

metastatic transformation. Higher number of microtubules nucleated from the amplified 

clustered centrosomes ensure the remodeling of CCA necessary for this transformation (Figure 4 

in (Godinho et al., 2014). Surprisingly, in terminally differentiated cells like polarized epithelial 

cells and neurons the microtubule cytoskeleton is not focused at the centrosome.  Particularly, in 

epithelial cells, non-centrosomal arrays of microtubules are observed in apical and lateral region 

(Figure 1.4A). The reassignment of the MTOC function from non-centrosomal site to the 

centrosome during malignant transformation can be correlated to intestinal cells of developing C 

.elegans. In post-mitotic intestinal cells, MTOC function is assigned to the apical membrane and 

the centrosome is required for specifying apical membrane as the new MTOC (Feldman and 

Priess, 2012). The required role of centrosome to generate the new MTOC sites could be 

guessed as to provide structural scaffold for assembly of PCM at the non-centrosomal sites. 

Although de novo PCM assembly is possible, which can be generated by action of microtubule-

specific molecular motors acting towards microtubule reorganization (Khodjakov et al., 2000). 

Centrioles are still required for conferring efficiency to the de novo generated PCM for spindle 

poles and rapid nuclear division in early syncytial flies embryos contesting de novo PCM may not 

be functionally equivalent to centriol associated PCM (Stevens et al., 2007). Systematic cell fusion 

of interphase and mitotic intestinal cells of C. elegans cells showed that the centrosome acts as a 

dominant MTOC suggesting molecular signals which confirm this function (Feldman and Priess, 

2012). Another elegant set up of centrosome free cytoplast used by Chausovosky and colleagues 

showed that non-centrosomal microtubules populate the epithelial cells with the density similar 

to that of cytoplasts with the centrosome. E- and N- cadherin expression is required for 

generating these non-centrosomal microtubules in centrosome-free cytoplasts; which again 

suggests that centrosome acts as a dominant MTOC in epithelial cells (Chausovsky et al., 2000). 

Similar approaches will be helpful to understand whether generation of non-centrosomal MT 

network in epithelial cells depends on the centrosome. It is widely believed that MTs in epithelial 

cells are released from the centrosome and anchored/organized at the apical and lateral sides. 

However, MT regrowth from cytoplasmic sites and self-organization microtubules still remain 

valid possibilities to explain MTs at apical/basal membrane.  In my view, the correlation between 

apical localization of centrosome prior to apical-lateral organization of microtubules suggests a 

causal link. As suggested in (Figure 1.2 B), active relocalization of centrosome close to the apical 

region can be followed by capture/anchorage/stabilization of MTs on lateral/apical region by β-

catenin dynein, Adherene junctions or MAPs (Bartolini and Gundersen, 2006). Finally their 

release from centrosome by MT pulling at the stabilization zone and/or MT release from 
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centrosome seems a likely mechanism for generating in epithelial microtubule organization. Live 

imaging showed that MT could be released with its nucleating structure, which could act as a 

minus end cap (Keating and Borisy, 1999). This mechanism ensures apical pool of MTs as well 

directional organization of lateral MTs (-ve end towards apical) (Figure 1.2 B). Moreover, this 

orientation of non-centrosomal MTs seems crucial for lumen formation in mammary gland acini 

(Akhtar and Streuli, 2013). Systematic analysis of centrosome position and its MTOC activity 

during course of polarization can address the interconnection between centrosome and non-

centrosomal sites. In addition, the capacity of centrosome to crosstalk at distance locations in cell 

is complemented by molecular signals. For example, the dominant role of centrosome as MTOC 

is assured by phsophorylation of SPD-2/CEP192 by Cyclin-dependent kinases for recruitment γ-
tubulin at the centrosome (Yang and Feldman, 2015). 

 

Centrosome as the structural and molecular hub 

 
“Several principles of construction of a microscopically small device for locating the directions of 

signal sources in microscopic dimensions. It appears that the simplest and smallest device that is 

compatible with the scrambling influence of thermal fluctuations as are demonstrated by 

Brownian motion is a pair of cylinders oriented at right angle to each other”- Guenter Albrecht-

Buehler 1981. 

 

Guenter Albrecht-Buehler claimed that the centrosome could act as cell’s angular detector by 

virtue of its 9-fold symmetry, precisely oriented blades (centriole microtubule arrangement) and -

orthogonal arrangement of centrioles (Albrecht-Buehler, 1981). Although not conclusively 

proven, the intriguing symmetry of centrioles, template based duplication and tight control of 

centriole number had prompted researchers to call this organelle as ‘Conspicuous’. Hundred 

years after Boveri’s suggestion it was shown that microtubule asters were result of centroplasm 

(PCM) rather than centrioles themselves. With the advances of new 3D structured illumination 

microscopy (3D-SIM) sub-diffraction light microscopy techniques allowed to image PCM 

organization (Sonnen et al., 2012). Similar studies revealed that PCM, which was termed as 

amorphous cloud, is rather a structured complex. As shown in the (Figure 1.2 A), PCM possess 

radial symmetry which extends from centriole cylinder and concentric rings in layers around 

centriole (Figure 1.2 A). This may be partly explains why in the absence of centrioles de novo 

assembled PCM at spindle poles lacks the efficiency. So it is likely that centrosome is important 

in generating structured PCM for mitosis and in interphase cell, which is conserved across 

species as well (Lüders, 2012). Comparison of non-centrosomal PCM and centrosome-PCM will 
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indicate whether non-centrosomal PCM assembly is also assisted by the centrosome as 

explained above for hand-over MTOC function.  

The PCM also contains hundreds of proteins including important cell cycle regulators and 

signaling molecules and many proteins that help to organize and nucleate microtubules (Arquint 

et al., 2014). The age of the centrioles is important because of PCM associated with it. The 

difference between PCM proteins of mother and daughter centrioles decides MT nucleating 

properties of centriols. Malignant cells have non-orthogonal centrioles and the centriolar number 

is altered (as in centrosome amplification) and the associated PCM assembly is altered too. These 

evidences suggest that PCM is structurally and functionally modified during morphogenetic 

events like cancer progression. 

A study showed that β-catenin is present at the centrosome along with its interacting partners 

GSK3β, Axin and APC upon Wnt signaling (Huang et al., 2007). Modulation of β-catenin levels 

can affect centrosome maturation, organization and MT nucleating capacity. β-catenin, which is 

known for its multifunctional roles, shuttles between CCA and centrosome and effectively affect 

centrosome position, MT nucleation at the centrosome and mitotic progression (Bertrade et al., 

2013; Ligon et al., 2001). In the context of cancer progression, two known tumor suppressors, 

BRCA1 and p53 have been found to localize at the centrosome of mammalian cells and it has 

been speculated that part of their tumor suppressor function takes place at the centrosome 

(Lingle and Salisbury, 2000). BRCA1 protein is associated with centrosome during mitosis and 

thought to contribute to genome instability in tumorogenic cells (Brown et al., 1994). While p53 

that has cell cycle checkpoint function is partly localized to centrosome in addition to its nuclear 

portion. There is strong correlation between depletion of p53, centrosome amplification and 

genome instability and thus possible role of p53 at the centrosome controlling microtubule 

related function is highly anticipated. Cells lacking Cep192 show enhanced MT nucleation from 

Golgi apparatus which showed that PCM proteins at centrosome directly or indirectly result into 

MT nucleation ability at non-centrosomal sites (O’Rourke et al., 2014). Electron dense spots 

around centriols seen by electron microscopy studies are now referred to as “centriolar 

satellites”, which move along the microtubules to minus end direction towards the centrosome 

and accumulate there (Bärenz et al., 2011). Growing knowledge on ‘centrosomal satellites’ is now 

shining some light on understanding how protein complexes at the centrosome are formed, 

maintained and exchanged. Further investigations of dynamic regulation of signaling at the 

centrosome will help to integrate different pieces of evidences showing centrosome crosstalk 

with cytoplasmic and cell cortex components.  
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2.1 Introduction to the polarity reversal 
 

The epithelial plasticity is the prerequisite for driving tissue remodeling. As described in 

Chapter I, instances like branching morphogenesis involve local modification of cell polarity to 

form clefts and invaginations within the tissue. These events are initiated by Epithelial-to-

Mesenchymal transition (EMT) where cells can switch between non-motile to migratory states to 

move across the cell layers. It is quite evident that the processes like gastrulation, tubulogenesis 

and mammary gland branching are guided using positional information within the tissue. As 

discussed in the introduction of the thesis the cellular compass that holds the positional 

information and directs the cells is mainly composed of internal polarity of cells, which responds 

to external environmental cues by dynamically interacting with cell cortex through cytoskeleton 

network. Morphogenetic events involve drastic remodeling of extracellular matrix within the 

tissue and this change is transmitted to cell interior through cell adhesions and cytoskeleton 

network engaged at these adhesions. The literature on EMT is vast and there are many studies 

dedicated to understand remodeling of cell adhesions accompanied by actin and microtubule 

network modification. There is plethora of molecules involved in mediating the crosstalk 

between cell adhesion and cytoskeleton network. However the question of how internal polarity 

within the cell is actively reoriented during EMT is still unclear. And the subsequent question of 

whether organelle asymmetry in generating this polarity is required for allow precise embryonic 

movements within an embryo still remains unanswered. How positional information is set up, 

how it is recorded and how is it interpreted by cells during pattern formation? Here I describe 

different mechanisms involved in the whole organisms, tissues as well as at the cellular level to 

guide directional growth, movements and pattern formation.  

 

Polarity reversal - a feature of cell’s positional information 
 

In early stages of metazoan embryos and also in the primitive metazoan animal, hydra, 

positional information is set up by gradients of morphogens. Early graft experiments with hydra 

showed polarity reversal of the whole animal after regeneration (Figure 2.1 A). Initially it was 

thought that the nerve stem cells within hydra were responsible for the polarity reversal of the 

organism. When nerve cells from hydra were experimentally removed, the organism still 

retained the property of polarity reversal after the graft and thus it was clear that epithelial cells 

resting within the organism were responsible for polarity cues and regeneration of the organism 

(Marcum et al., 1977). Hydra is categorized as eumetazoan since it has true tissue layers, 

neurons and the embryo goes through gastrula stages. Study of hydra provides some important 

aspects of evolution of epithelium and its plasticity. Epithelial cells in hydra form two layers, 
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endoderm and ectoderm, which are separated by an ECM layer called mesoglea and it is 

composed of laminin, collagen and fibronectin like molecules (Figure 2.1B). Interestingly, this 

ECM layer is not only required for epithelial cells to maintain their polarity but also to retain 

their stem cell-ness which is essential for regeneration (Bosch, 2007). In addition, the 

remodeling of epithelial cells involves majority of classical EMT-signalling pathways such as Wnt, 

Mitogen Activation Kinase, Ras and PI3-kinase pathways (Bosch, 2007). Regeneration of hydra at 

the ultrastructure level is described as wound healing process initiated by the endoderm cells 

similar to that of wound healing by EMT process. Thus given that the definition of epithelial 

polarity emerged from the first occurrence of sealed cell-cell junctions in lower metazoans like 

hydra along with presence of molecular pathways employed for epithelial remodeling during 

regeneration (in hydra) and EMT (in higher metazoans), it is plausible that common features like 

polarity reversal are conserved in the higher metazoans to provide positional information to 

cells while undergoing pattern formation. In addition, events like gastrulation where cells move 

in the directions away from their current location, must involve complete re-orientation of 

polarity. We looked for evidences of polarity reversal, which involved either inversion of cell 

cortex features such as filopodia formation, dissolution of tight junction or inversion of position 

of the internal organelles, especially centrosome and golgi during course of morphogenesis.  

One of the earliest demonstration of the correlation between the intracellular position of the 

Golgi apparatus and cell movement in an epithelium comes from the work of Cajal (1914) who 

showed that ganglion cells extend migratory process from their basal poles only after the golgi 

has moved from the apical to the basal pole (Bentivoglio, 1999). Investigation of ultrastructure 

of thyroid follicles maintained in suspension cultures showed intermediate stages of polarity 

reversal when cells were subjected to higher serum concentration. As serum contains several 

growth factors such as EGF and TGF-β, which can induce epithelial transformations, the study 

suggested that initial stages of follicles morphogenesis involve polarity reversal without the 

collapse of the lumen (Nitsch and Wollman, 1980). An elegant study of developing chick 

auditory system by Carney and Couve in 1989 provided clear evidences of polarity reversal 

wherein epithelial cells from otic structure progressively internalize cilia, reposition golgi and 

form filopodia at the basal surface (Carney and Couve, 1989). Systematic analysis of 7-26 stages 

of chick development and quantification of organelle position revealed that otic placode 

invagination is accompanied by inversion of organelle position within the cells with acquisition 

of mesenchymal phenotype (Figure 2.2 A). Authors of this study hypothesized that basal 

position of the Golgi towards basal surface could be related to the directed secretion of 

components, which today is designated as the secretion Metalloproteases for degradation of 

the basement membrane. The development of in-vitro 3-D culture assay using reconstituted 

basement membrane provided a powerful tool to study epithelial morphogenesis. Extensive 

studies of epithelial organization and change of polarity of cells by Mostov and colleagues 
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showed transient polarity changes occur in cells forming branches to form kidney tubules 

(Figure 2.2B). Change of Laminin to collagen rich basement membrane in the presence of 

Hepatocyte-growth  factor (HGF) and increased serum concentration was sufficient to induce 

tubulogenesis in MDCK 3D acini (Yu et al., 2003). Similar studies were conducted in mammary 

gland cells cultured in 3D matrix. Mere change of basement membrane from laminin to collagen 

completely reverted apical and basal cortex within the acini. Collagen matrix promoted 

localization of the apical cortex outside with disappearance of the lumen (Figure 2.2 C). This 

study also provided crucial information about the role of myoepithelial cells in imparting correct 

mammary gland acini organization and causing changes in surrounding matrix, which may 

promote breast cancer (Gudjonsson et al., 2002). Recent investigation of kidney acini formation 

revealed that at early stage, two kidney cells have apical markers extending over all over the cell 

cortex. Progressive cell divisions and phosphorylation of the membrane lipids guide transcytosis 

of the apical membrane proteins to interior side of the cells in a spheroid causing formation of 

distinct apex and lumen (Bryant et al., 2014). Interestingly, immunological response by T-cell 

forming an immune synapse also showed relocalization of the centrosome towards the immune 

synapse. This relocalization of the centrosome was required to release cytolytic granules to 

destroy the target cell. The repositioning of centrosome towards the membrane area reduced in 

actin density and phospholipid PIP2 takes place within 5 minutes suggesting centrosome 

repositioning is an early event and affected by actin and membrane lipids (Ritter et al., 2015).  

 

Does polarity reversal occur during Epithelial-to-mesenchymal transition ?  

 
All the above examples unambiguously demonstrate the presence of polarity reversal 

mechanisms involving active repositioning of the internal organelles of cells for achieving 

various functions. Although EMT has been studied extensively in the context of development 

and cancer progression wherein severe alteration of cell adhesion takes place but there isn’t any 

evidence about how cells rearrange internal polarity to achieve their reorientation within the 

tissue to allow scattering during instances like cell ingression, mesoderm movement, mammary 

gland branching. Instances like kidney tubulogenesis involve alteration of the organelle 

positioning for the tube extension but it does not include cell scattering like in EMT (Pollack et 

al., 1998). Thus it is still unexplored whether the rearrangement of internal organelle positions 

precedes cells separation of mesenchymal cells after the EMT. The report from Carney and 

Couve suggested that a epithelial remodeling program controlling centrosome, golgi, nucleus 

repositioning alongwith filopodia formation underlies at developmental stages (Carney and 

Couve, 1989). This report was an eminent evidence for the existence of mechanisms that are 

responsible for organelle positioning during developmental EMT. However 27 years later, the 
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clear description of the proposed mechanisms is still missing.   Simple geometric constrains and 

cell orientations required during EMT-induced morphogenesis suggest that polarity reversal is 

required, may be transiently to modulate internal polarity to follow tissue transformation. In 

order to first investigate whether polarity reversal exists within the context of EMT, we looked at 

the nucleus-centrosome axis orientation during gastrulation and mammary gland branching in 

mouse. We found evidences of polarity reversal in very localized areas of embryo and tissue 

structures indicating that these cells have probably coupled EMT with polarity reversal. As the 

polarity changes involved centrosome repositioning, we hypothesized that centrosome and 

associated microtubule network had important role in governing cell’s internal polarity as well as 

for coupling changes of cell-cell and cell-Matrix adhesions to cells’ interior. In the following 

article we have revealed for the first time the presence of polarity reversal during process of 

EMT using mouse model, 3D organoid and 2-D cell line models. This polarity reversal was not 

only the consequence of EMT as it took place at the early stages of EMT induction and in 

addition, the reorganization of MT network was necessary for separation of resulting 

mesenchymal cells. We approached the problem of understanding complex EMT processes by 

breaking the tissue model to smaller scale, which can be considered as minimal unit of tissue. 

By studying the smallest fundamental unit of tissue, which is made up two cells, we observed 

robust phenotype of cells with polarity reversal. How far can we extrapolate the two-cell model 

to understand tissue remodeling, is a matter of debate and I will discuss in the final discussion 

of the thesis. Whether the mechanisms that were revealed by this study of EMT are truly global 

and applicable to all different types of EMT during embryonic development and cancer 

progression requires further investigations. 

 

 

 

 

 

 

 

 

 

 

 



Chapter II 68 

Polarity Reversal Primes Cell Scattering  

during Epithelial to Mesenchymal Transition 
 

 

Mithila Burute 1,2,3, Magali Prioux 1, Sandrine Truchet 4, Guillaume Blin 5, Gaëlle Letort 1, 

Qingzong Tseng 1, Thomas Bessy 3, Joanne Young 2, Odile Filhol-Cochet 6, Manuel Théry 1,3* 

 

1 Laboratoire de Physiologie Cellulaire et Végétale, Biosciences & Biotechnology Institute of Grenoble, 

UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, Grenoble, France. 
2  CYTOO SA, 7 Parvis Louis Néel, BP50 38040, Grenoble, France 
3 Unité de Thérapie Cellulaire, Hôpital Saint Louis, Institut Universitaire d’Hématologie, UMRS1160, 

INSERM/AP-HP/Université Paris Diderot, Paris, France. 
4 INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France 
5 MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 

University of Edinburgh, United Kingdom 
6 Laboratoire de Biologie du Cancer et de l’Infection, Biosciences & Biotechnology Institute of Grenoble, 

UMRS1036, CEA/INSERM/Université Grenoble-Alpes, Grenoble, France. 

*Correspondence: manuel.thery@cea.fr 

 

Abbreviations: CCJ- cell-cell adhesions, CMA- cell matrix adhesions, EMT- epithelial to 

mesenchymal transition, HGF- Hepatocyte growth factor, TGF-β - Transforming growth factor-

beta, ECM-extracellular matrix, EB1- end binding protein 1. 

 

Summary 

 

During epithelial to mesenchymal transition (EMT), cells lining the tissue periphery break 

up their cohesion to migrate within the tissue. This dramatic reorganization involves a poorly 

characterized remodeling of the baso-apical polarity of static epithelial cells into the front-rear 

polarity of migrating mesenchymal cells. We monitored centrosome positioning during this 

transition in developing mouse embryos and mammary gland, in cultured 3D cell aggregates 

and in micro-patterned cell doublets. In all conditions, centrosomes left their peripheral 

localization next to cell-cell junctions (CCJ) to reposition at the cell center, while nuclei moved 

away from cell-matrix adhesions (CMA). This resulted in a complete cell polarity reversal, 

accompanied by a redistribution of intracellular tensional forces. Sequential release of cell 

confinement using dynamic micropatterns showed that polarity reversal promotes cell 

disengagement and scattering. These results reveal that polarity is not lost during EMT and on 
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the contrary that cytoskeletal remodeling and polarity reorientation are highly controlled and 

coordinated to direct cell scattering across the basement membrane. 

 

 

Introduction 
 

 

 Epithelia line the periphery of organs that lie at the interface with the outer medium, 

such as the airways, intestinal track or secretory tubular glands. During specific developmental 

stages, and later during adult development, these peripheral cell layers invaginate to expand 

their contact area or develop internal tissues (Kalluri and Weinberg, 2009). As they do so, some 

epithelial cells convert into mesenchymal cells, which migrate into and populate the underlying 

interstitial tissues. This topological tissue remodeling, during which peripheral cells become 

internal cells, is accompanied by dramatic intra-cellular reorganization (Lamouille et al., 2014). 

Epithelial cells disassemble the tight junctions they had with their neighbors and that were 

ensuring the interface permeability. As they move in the organ, they lose the contact-free edge 

they had toward the outer medium and get fully surrounded by cells and extra-cellular matrix. 

Their secretory and endocytic functions, which were directed by the presence of this contact-

free interface get redistributed toward adhesive edges (Akhtar and Streuli, 2013). Therefore the 

epithelial-to-mesenchymal transition (EMT) not only involves reorganization of cell position and 

acquisition of a migratory phenotype but also implies a reorientation of cell function and 

polarity (Godde et al., 2010; Huang et al., 2012; Rodriguez-Boulan and Macara, 2014). 

 Cell polarity is an intrinsic bias in internal cell organization which is spatially adapted to 

extra-cellular cues and which direct cell functions (Bornens, 2008). In epithelia, cell-cell junctions 

(CCJ) form a diffusion barrier between distinct plasma membrane domains and thus define the 

apical pole, toward the outer medium, and the basal pole, toward the extra-cellular matrix 

(ECM) that cells are attached to (Dickinson et al., 2011). The spatial segregation of cell-matrix 

adhesion (CMA) and CCJ, and thus the physical separation of the signaling and anchoring 

proteins they are associated with (Burute and Théry, 2012; Rodriguez-Boulan and Macara, 

2014), defines the baso-apical orientation of epithelial cell polarity from ECM toward the 

contact free edge (Figure S1)  (Yeaman et al., 1999). Microtubule orientation along the CMA-

CCJ axis directs intra-cellular trafficking and establishment of the cell apical pole away from the 

basement membrane (Akhtar and Streuli, 2013). In mesenchymal cells, CCJ are much weaker 

and don’t define membrane domains as in epithelial cells. Instead, it is the cell migration 

machinery that directs cell polarity (Etienne-Manneville, 2013). Here also, mutual exclusion of 

signaling pathways segregate actin network polymerization at the advancing cell edge and actin 
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contraction at the retracting edge and thereby define the mesenchymal front-rear polarity axis. 

Thus, during EMT the baso-apical polarity axis is converted into a front-rear axis (Godde et al., 

2010; Nelson, 2009; Xu et al., 2009). The mechanism supporting this conversion has not been 

specifically addressed. 

 As epithelial cells disassemble CCJ, the apical pole components become free to mix 

with the rest of the plasma membrane. Therefore the transition from apico-basal to front-rear 

polarity has often been designated as a “loss of polarity” (Thiery, 2002; Thiery et al., 2009; 

Zavadil and Böttinger, 2005) (Figure S1). This widely accepted nomenclature echoes the parallel 

between physiological EMT and the initiation of metastasis during which the tight control of the 

epithelial program is lost, polarity is disorientated and cancer cells acquire migration capacities 

allowing them to scatter through surrounding tissues (Huber et al., 2005; Micalizzi et al., 2010; 

Spaderna et al., 2008; Thiery et al., 2009; Xu et al., 2009). However, it seems unlikely that key 

developmental stages involving EMT, such as gastrulation, neural crest induction or mammary 

branch network development, pass through an uncontrolled step during which polarity would 

be ill-defined. 

 Simple geometrical considerations rather suggest that during EMT the epithelial polarity 

toward the contact-free edge is literally inverted toward the underlying basement membrane 

that mesenchymal cells digest as they move inward (Figure S1). It is possible that the complexity 

of multi-cellular arrangements may have disguised the determinism of a well-controlled polarity 

reversal as a transient loss of polarity. Indeed genuine polarity reversals have been observed 

within simplified epithelia in vitro, in response to conditions that are close to the changes that 

occur during EMT. Thus, modifying the composition of the extra-cellular matrix surrounding 

epithelial cyst, or modulation of integrins activation state, can induce the relocalization of 

polarity surface markers from the outside surface to the internal lumen and vice versa (Akhtar 

and Streuli, 2013; Gudjonsson et al., 2002; Mauchamp et al., 1979; Ojakian and Schwimmer, 

1994; Rodríguez-Fraticelli et al., 2012; Wang et al., 1990; Yu et al., 2005). While the 

characterization of the mechanism supporting surface marker inversion has been addressed 

(Bryant et al., 2014), the reorganization of intracellular organization has not yet been studied. 

Interestingly, analyses of intermediate stages of developing chick auditory system and neural 

network, as well as observations of branching kidney tubules and inversion of thyroid follicles in 

culture have suggested the existence of concerted repositioning of internal organelles such as 

nucleus, Golgi apparatus, lysosomes and centrosome (Carney and Couve, 1989; Das and 

Storey, 2014; Nitsch and Wollman, 1980; Pollack et al., 1998). 

 The microtubule network regulates the organization and trafficking of the 

endomembrane network (de Forges et al., 2012). As such, the position of the centrosome, the 

main microtubule-organizing center, is central to the establishment of an asymmetric 

microtubule array directing cell polarity (Bornens, 2008). In epithelial cells, the centrosome is 
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off-centered toward the actin-rich apical pole (Hebert et al., 2012). Although the underlying 

process supporting this peripheral positioning is still unknown, it plays a key role in the proper 

assembly of the primary cilium in the apical pole (Tang and Marshall, 2012) and the orientation 

of intracellular trafficking toward the primary cilium and the apical pole (Nelson, 2009; 

Rodriguez-Boulan and Macara, 2014). In mesenchymal cells, centrosome positioning toward the 

cell front and the associated asymmetric microtubule network organization is pivotal for the 

establishment and maintenance of the front-rear polarity axis of migrating cells (Etienne-

Manneville, 2013; Luxton and Gundersen, 2011). Microtubules notably regulate the turnover 

and trafficking of adhesion components that are required to trigger and direct cell motion (Paul 

et al., 2015). These considerations suggest that centrosome position and the associated 

asymmetric geometry of the microtubule network may be modulated during the early stages of 

EMT and actively contribute to the reorientation of cell function and polarity. 

 Here we use in-vitro models of mammary gland development (Debnath et al., 2003) and 

kidney tubulogenesis (Pollack et al., 1998) to study cell polarity during epithelial 

morphogenesis. In order to distinguish the effect of cell neighbors, cell migration, cell spreading 

and adhesion remodeling on cell polarization, we use micropatterns to control the shape and 

position of cells forming doublets. We show that polarity reversal occurs in response to TGF-β in 

mammary gland and as a response to both TGF-β and HGF in MDCK cells by nucleus-

centrosome axis reorientation. Polarity reversal was a consequence of centrosome repositioning, 

which appeared to be modulated by a change in microtubule number and the localization of 

Partitioning defective protein Par3 at CCJ. This polarity reversal occurred along with an increase 

of cellular contractility and redistribution of inter and intra-cellular forces that primes cells for 

scattering. Finally, we show that polarity inversion by centrosome repositioning occurs prior to 

cell scattering and was necessary for cell dissociation during EMT. 
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Results 
 

Polarity reversal during EMT in mouse development 

Several key developmental stages involve EMT and thus could display the polarity reversal 

we hypothesize. The first EMT event occurs at gastrulation, 5-6 days post fertilization. The 

primitive streak forms at the future posterior end of the embryo wherein a subset of epiblast 

cells differentiate into primary mesenchyme and ingress between the epiblast and endoderm 

layer (Acloque et al., 2009; Tam and Behringer, 1997). Epiblast cells are marked by expression 

of nuclear T-Brachyury along with breakdown of Collagen IV (Figure 1A). Using g-tubulin as a 

marker for centrosome, we investigated polarity of cell populations destined for different cell 

fates. The centrosome in epiblast cells was localized close to the amniotic cavity, resulting in a 

nucleus-centrosome axis oriented toward the cavity. The epiblast cells undergoing EMT showed 

higher T-Brachyury expression and were positioned farther from the cavity. In these cells, 

centrosomes appeared relocated away from the cavity and the nucleus-centrosome axis pointed 

toward the endoderm layer. This supported our hypothesis that upon the onset of EMT, when 

epiblast cells move inward to form the primitive streak, the nucleus-centrosome axis gets 

inverted. 

Later, at puberty, the ductal network within the mouse mammary gland expands by 

invading the surrounding fat pad. At this stage, specialized structures called terminal end buds 

appear at the end of the primary ducts (Hinck and Silberstein, 2005). EMT induces complex 

reorganization of cell arrangement and polarity and promotes the collective migration of cells to 

drive ductal morphogenesis (Ewald et al., 2008, 2012; Godde et al., 2010). Cell polarity axis 

orientation was inferred from the orientation of the Golgi apparatus with respect to the nucleus. 

In luminal cells, the Golgi apparatus was positioned toward the duct (Figure 1B) as in the case of 

lactating acini (Akhtar and Streuli, 2013). Interestingly, a few cells at the tip of the growing 

terminal end buds showed complete inversion of the nucleus-golgi axis (Figure 1B). Other cells 

near the tip displayed a mispositioned Golgi apparatus suggestive of intermediate stages of 

polarity reversal (Figure 1B). 

We thus found indications of nucleus-centrosome axis inversion at two distinct stages of 

mouse development, supporting our working hypothesis of polarity reversal occurring during 

EMT. Investigating the mechanics of polarity inversion in vivo at single cell resolution remains 

technically challenging. In order to obtain further insights into this process we used simpler and 

more accessible working systems to study the induction and consequences of those polarity 

reversals where parameters of interest could be better controlled. 
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Polarity reversal in 3D mammary gland cell  culture 

Self-organized mammary acini in 3D gels recapitulate numerous features of native tissue, 

including epithelial cell polarization (Debnath and Brugge, 2005; Underwood et al., 2006) and 

constitute a robust system amenable to induction of morphogenesis by the addition of growth 

factors (Debnath et al., 2003; Montesano et al., 2007; Nelson and Bissell, 2005; Seton-Rogers et 

al., 2004). We used MCF10A 3D cultures as a model of mammary gland acini to investigate 

polarity changes that may occur upon induction of EMT by TGF-β (Xu et al., 2009; Zhang et al., 

2014) (Figure S2A-C). After seven days culture in 3D gels of laminin-rich basement membrane 

(commercialized as Matrigel), MCF10A show acini-like structures with enriched apical actin 

indicating the site of a future lumen (O’Brien et al., 2001) (Figure 1C). Nontreated cysts showed 

a regular arrangement of nuclei in a single layer and were placed equidistant from the acinus 

center (Figure 1C). This regular geometric organization was lost in cysts treated with TGF-β1 (5 

ng/ml) for 5 days. The severe disorganization of cell arrangement in cysts was also associated 

with misorientation of the polarity axes (Figure 1D). We found a similar disorganization of acini 

assembled from MDCK cells of kidney origin upon treatment with HGF (Figure S2D-F). Thus, cell 

mispositioning and polarity axes disorientation are closely connected in these 3D architectures. 

This complex interplay between cell shape, position and polarity raised a few central questions 

that are difficult to address in 3D culture systems. How does cell mislocalization impact  polarity 

axis orientation? Does the cell internal polarization mechanism no longer orient properly with 

respect to external cues or is it responding normally in a perturbed context due to 

mispositioning of neighboring cells? Furthermore, cell migration is known to actively regulate 

both epithelial (Wang et al., 2013) and mesenchymal (Luxton and Gundersen, 2011) cell 

polarities. Is TGF-β-induced motility involved in the reorientation of cell polarity in these 3D 

cysts? 

 

Centrosome reposit ioning is associated with cell  scattering 

The structural complexity and lack of reproducibility of multicellular systems are recurrent 

limitations precluding the precise dissection and analysis of polarity reorientations in response 

to changes in cell microenvironment. This prompted us to adapt a simpler but more controlled 

cell culture model, which can still recapitulate important aspects of morphogenesis, to the study 

of cell migration and polarity (Théry, 2010). We first aimed at eliminating the variable effect due 

to the presence of multiple neighbors while keeping the possibility for cells to stay in contact or 

dissociate and move away from each other. We designed a minimal system comprised of only 

two cells on a micropatterned-ECM-track of finite length to constrain cell migration in a 

reproducible manner. We first monitored daughter cell motion following cell division by video 

microscopy in three distinct epithelial cell lines (Movie S1, S2). In most cases, control (CTR) 

epithelial cells stayed in contact after cell division whereas the vast majority of TGF-β or HGF 
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treated cells separated after division (Figure S3A,B). Importantly, nontreated cells which 

maintain their intercellular junction, tend to polarize toward their neighbor, whereas TGF-β 
treated cells which move away from each other, tend to polarize in the opposite direction, 

toward their newly created front edge (Figure S3C). These observations support the view that 

EMT-induced migration is intimately coupled to polarity reversal although we couldn’t 

distinguish whether polarity reversal was a cause or a consequence of cell migration. 

 

Polarity reversal is an early feature of EMT 

To solve the ambiguity of polarity reversal contribution to cell scattering, we looked for 

micropattern geometries that could prevent cell migration. Restricting micropattern size is not 

sufficient to prevent cell motion because cells can exchange their positions and rotate within the 

micropatterned area (Huang et al., 2005; Tseng et al., 2012). Square-shaped micropatterns 

could not prevent the rotation of normal epithelial cells and were even less able to constrain 

that of TGF-β-induced mesenchymal cells (Figure 2A-i). Bowtie-shaped micropatterns stabilized 

the position of epithelial cells but could not prevent mesenchymal cell motion (Figure 2A-ii). H-

shaped micropattern could block both epithelial (Tseng et al., 2012) and mesenchymal cell 

motion, placing them in similar and thus comparable conditions (Figure 2A-iii). Hence H-shaped 

micropatterns were used in further experiments to compare epithelial and mesenchymal cell 

polarity. 

Single MCF10A or MDCK cells were plated on H-shaped micropatterns and fixed 24 hour 

later to give them enough time to divide once and form daughter cell doublets. Nucleus-

centrosome vector orientations were measured with respect to the nucleus-nucleus axis 

pointing toward the adjacent cell (Figure 2C). Nucleus-centrosome distances were normalized 

with respect to nucleus size (Figure 2C). Thus, positive coordinates corresponded to nucleus-

centrosome axes pointing toward adjacent cells and large values to highly eccentric centrosome 

positions. Both epithelial MCF10A (cultured in defined medium) and MDCK cells (cultured in 

classical growth medium with serum) displayed marked polarization toward the CCJ formed 

between adjacent cells (Figure 2D). Strikingly, MCF10A cells treated with TGF-β for 5 days and 

MDCK cells treated with HGF for 3 days both displayed the opposite polarity orientation, 

although confined daughter cells could not migrate away from each other (Figure 2D). This 

polarity reversal was also quantified by measuring the centrosome X coordinate along the 

nucleus-nucleus axis, hereafter referred to as the cell polarity index toward CCJ. The coordinate 

sign change attests to the centrosome repositioning from the nucleus side oriented toward the 

CCJ to the side oriented toward CMA (Figure 2E). Interestingly, in MCF10A treated with TGF-β, 
this polarity reversal was due to both centrosomes moving away from the CCJ to the cell center 

and nuclei moving away from CMA toward CCJ (Figure 2E, Figure S4A). By contrast, in MDCK, 
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nuclei positioning was not affected by HGF treatment, and centrosome repositioning alone 

contributed to polarity reversal (Figure 2E).   

 

Progressive reversal of cell  polarity  

TGF-β treatment is known to take several days to induce a full EMT although the very first 

changes appear a few hours after TGF-β addition (J. D’Souza et al., 2014). We thought to 

evaluate the timing of cell polarity reversal with respect to the entire EMT process. Cells were 

first plated on micropatterns and then treated with TGF-β for increasing periods of time. In 

MCF10A, polarity was reversed in less than 24 hours (Figure 2F). In MDCK, TGF-β effects were 

detectable after 4 hours of treatment and polarity was reversed after 8 hours only. HGF effects 

on MDCK were even faster; polarity changed almost immediately and was reversed completely 

within 4 hours (Figure 2F). These data imply that centrosome repositioning and polarity reversal 

are early signs of EMT concomitant with the first changes in protein expression following TGF-β 
addition (J. D’Souza et al., 2014). 

 

Cell  shape and contracti l ity in polarity reversal  

Actin dynamics at the cell front have been shown to be involved in organelles, and notably 

centrosome and nucleus positioning (Dupin et al., 2009; Gomes et al., 2005; Hale et al., 2011; 

Rodríguez-Fraticelli et al., 2012). This raised the possibility that nucleus and centrosome 

repositioning during early EMT stages are consequences rather than causes of actin network 

remodeling. Interestingly, inhibition of acto-myosin contractility with blebbistatin (or inactivation 

of MLCK with Y-27632) could reinforce cell polarization toward CCJ in control MDCK cells and 

revert polarization toward CMA in MDCK treated with HGF by acting on nucleus but not on 

centrosome positioning (Figure S4C,D). Hence, nucleus repositioning away from CMA and 

toward CCJ, at least in MDCK, appeared to depend directly on acto-myosin contractility. On 

the contrary, centrosome repositioning toward CMA and away from CCJ was independent of 

cell contractility. 

Cell size usually increases during EMT (Lamouille and Derynck, 2007) but this could not 

happen in our conditions in which cells were confined in micropatterns. Since cell shape 

extension has been shown to induce polarity reversal in MDCK (Rodríguez-Fraticelli et al., 2012) 

we tested whether it could further contribute to polarity reversal during EMT. Indeed we found 

that allowing MCF10A and MDCK cells to spread on larger micropatterns (1600 or 2200 µm2 

instead of 1100 µm2) reduced epithelial cell polarization toward CCJ and amplified cell polarity 

reversal in TGF-β and HGF-treated cells (Figure S5A). 
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Matrix st if fness promotes polarity reversal 

We further investigated polarity orientation changes in other classical models of EMT. 

NMuMG and EpH4 are luminal mammary cells that are known to be highly sensitive to EMT 

induction (Lamouille and Derynck, 2007; Montesano et al., 2007) (Figure S2G,H). To our 

surprise, when plated on micropatterns, both cell types were polarized toward CMA 

(mesenchyme-like polarity) and not toward CCJ. Since TGF-β was absent from the growth 

factor-defined serum-free culture medium, we reasoned that EMT might have been induced by 

the cell culture substrate. Indeed, matrix stiffness is a potent EMT inducer (Markowski et al., 

2012; Wei et al., 2015). Cells were thus plated on micropatterned poly-acrylamide gels of 

controlled stiffness (Vignaud et al., 2014). On such soft substrates, cell doublets spread to a 

lesser extent and adopted a more compact geometry. When cultured on 10kPa gels, EpH4 

displayed a typical epithelial polarity with the nucleus-centrosome axis oriented toward CCJ, 

opposite to their polarization on glass, the stiffness of which is of the order of gigapascals 

(Figure 3A). Stiffness had to be further reduced to 1 kPa for NMuMG to recover a typical 

epithelial-like polarity (Figure 3B). These results show that matrix stiffness is sufficient to induce 

polarity reversal in the absence of TGF-β and thereby predispose epithelial cells to a 

mesenchyme transition. They also revealed that polarity reversal is quite reactive to EMT factors 

and that it can be easily induced in sensitive epithelial cells in response to mechanical and/or 

biochemical stimulations. 

 Matrix stiffness modulates CMA turnover and the production of traction forces on ECM 

(Levental et al., 2009; Paszek et al., 2005) suggesting that activation of CMA during EMT might 

be sufficient to promote polarity reversal independently of the concurrent remodeling of CCJ. 

However, modulation of matrix composition by using different combinations and concentrations 

of ECM protein coatings was not sufficient to induce epithelial polarity reversal (Figure S5B). 

Furthermore, single MCF10A cells plated on asymmetric micropatterns did not increase the 

orientation of their nucleus-centrosome axis toward CMA at the cell front in response to TGF-β 
stimulation (Figure S4B). These observations suggest that the presence and remodeling of CCJ 

during EMT played an important role in polarity reversal. 

 

 

 

Microtubule network remodeling accompany centrosome re-centering  

Since centrosome positioning mostly depends on the microtubule network (Mimori-

Kiyosue, 2011; Tang and Marshall, 2012), we compared microtubule network architectures 

before and after induction of EMT to gain further insight in the mechanism supporting 

centrosome repositioning. TGF-β treatment induced a drastic drop in the total amount of 

microtubules (Figure 4A). This reduction was even more drastic at the CCJ along which 
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microtubules are concentrated when cells are in their epithelial state (Figure 4A). These changes 

could be quantified by the diminution of polymerized a-tubulin intensity (Figure 4A) as well as 

the reduction in the number of EB1 comets (Figure 4B). Those differences could be explained 

by a reduction of centrosomal microtubules, as suggested by the reduction in g-tubulin intensity 

(Figure 4C) and the number of EB1 comets at the centrosome (Figure 4B). These observations 

suggest, in addition to the classical view that dynein associated to Par3/Par6 and b-catenin at 

CCJ pulls on the centrosome contributing to its off-centering (Harris and Peifer, 2005, 2007; 

Ligon and Holzbaur, 2007; Ligon et al., 2001; Schmoranzer et al., 2009), that the increase in the 

amount of microtubules may also be involved. We tested this new hypothesis by performing 

numerical simulations with Cytosim (Nedelec and Foethke, 2007) in which the number of 

microtubules was modulated. Asters were constrained to grow in a confined space similar to the 

cell shape obtained on square micropatterns. Cytoplasmic dyneins were scattered throughout 

the cytoplasm so that their minus-end directed motion could promote aster centering by 

exerting pulling forces on microtubules (Wu et al., 2011). Microtubules were allowed to glide 

along and to push on cell edges as they grow. Interestingly, at low microtubule numbers (10-

100), asters moved and stabilized at the cell center whereas with higher numbers of 

microtubules (200-350), the pushing forces exceeded the centering force and moved the 

centrosome off-center, toward the cell edge (Figure 4D, movie S3 and S4). Measuring 

centrosome final position in relation to the number of microtubules confirmed this observation 

(Figure 4E). Importantly, this behavior was quite robust and did not depend on centrosome 

initial position (Figure 4F). Accordingly, microtubule network disassembly in response to TGF-β 
could actively contribute to centrosome displacement from CCJ to cell center. These results 

suggest that both the amount of polymerized tubulin and the local stabilization of microtubules 

along CCJ were involved in the transition from an off-centered microtubule network in epithelial 

cells to a centered conformation in mesenchymal cells. 

 

Par3 regulates centrosome reposit ioning during EMT 

To further understand the molecular mechanism allowing CCJ to modulate microtubule 

network asymmetry and centrosome off-centering, we quantified the changes in CCJ 

composition during the early stages of EMT. We first confirmed in our minimalist model of 

multicellular organization that the classical markers of EMT followed the trends described in 

physiological conditions (Xue et al., 2012). As expected, the concentration of E-cadherin at the 

CCJ decreased while the level of N-cadherin increased upon induction of EMT (Figure 5A). 

Interestingly, levels of a and β-catenin were strongly reduced, suggesting that the strength of 

the CCJ was diminished although cells were forced to stay in contact. 

Partitioning defective proteins (PAR) polarity complexes Par3/Par6/aPKC are associated to 

CCJ and have ben shown to regulate centrosome positioning in a wide range of cell types 
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(Feldman and Priess, 2012; Oliaro et al., 2010; Schmoranzer et al., 2009; Solecki et al., 2009; St 

Johnston and Sanson, 2011). Par3 is notably involved in centrosome translocation from central 

to apical positioning during mesenchyme-to-epithelium transitions during neurulation (Hong et 

al., 2010). It was therefore likely to be involved in centrosome repositioning during EMT. After 

5-day treatment of TGF-β, Par3 localization at CCJ was drastically reduced (Figure 5B). 

Interestingly the junction density of Par3 appeared related to centrosome positioning. Direct 

measurement of the distance separating centrosome and CCJ was sometimes made difficult by 

the curvy and non-vertical shape of the junction. Therefore, the measurement of the distance 

separating the two centrosomes was used instead as it also reflects centrosome positioning with 

respect to the interface between the two cells. These measures revealed a clear correlation 

between Par3 concentration and centrosome distance to CCJ: the higher the concentration of 

PAR3 at CCJ, the closer the centrosome (Figure 5B). Inhibition of signaling downstream of TGF-

β type I receptor by SB431542 (Inman et al., 2002) restored Par3 levels at CCJ, centrosome off-

centering and cell polarity index toward CCJ, showing that Par3-mediated centrosome 

repositioning was a direct outcome of TGF-β signaling (Figure 5B).  

We further tested the direct role of Par3 by modulating its cellular concentration. Down-

regulation of Par3 levels by Pard3 siRNA in MCF10A cells increased the inter-centrosome 

distance. The overall polarity index however remained unaffected, because nuclei were also 

further separated due to junction weakening and cell separation (Figure 5C). More strikingly, 

overexpression of Par3b in TGF-β treated cells, restored centrosome positioning close to CCJ 

along with cell polarization towards CCJ, suggesting that Par3 down-regulation at the junction 

was actually responsible for centrosome repositioning at the cell center during polarity reversal 

(Figure 5D). 

 

Cell-cell  and Cell-Matrix force redistr ibution upon EMT 

To understand further how CCJ remodeling and centrosome-microtubule network 

reorganization in static and contacting cells could impact subsequent EMT physical processes 

such as cell separation and cell migration, we looked next at the cell contractile machinery, 

which is a central regulator of EMT (O’Connor and Gomez, 2014). We first quantified the 

localization of several structural components of contractile structures by taking advantage of 

normalized cell shapes to average immuno-stainings and calculate the spatial distributions of 

filamentous actin (F-actin), phosphorylated-myosin II and paxillin. TGF-β induced an increase of 

F-actin in stress fibers connecting the peripheral CMA, along the vertical H bars, and newly 

formed CMA next to CCJ, along the horizontal H bar (Figure 6A). This remodeling was 

accompanied by a relocalization of myosins along these fibers and a very strong increase of 

paxillin concentration on both previous and newly formed CMA (Figure 6B). All these changes 

suggested an increase of traction forces on the ECM and a redistribution of intra-cellular 
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tensional forces. We measured those forces by applying traction force microscopy to 

micropatterned cells on poly-acrylamide gels (Butler et al., 2002; Martiel et al., 2015). When 

applied to cell doublets, this method allowed the quantification of both traction forces on ECM 

and inter-cellular tensional forces since the sum of both should be null in each cell and the sum 

of traction forces for the entire doublet should be null as well (Liu et al., 2010). As expected 

from the immuno-stainings, TGF-β treated MCF10A cells showed overall higher total traction 

forces compared to control cells (Figure 6C). To our surprise, average inter-cellular forces were 

not reduced in those cells despite the apparent weakening of CCJ (Figure 5A). However, we 

detected a clear decrease of inter-cellular tension to extra-cellular traction ratio in individual 

cells in response to TGF-β treatment (Figure 6 C). The overall increase of cell contractility upon 

TGF-β treatment was consistent with our previous observation of a global disassembly of the 

microtubule network since both phenomenon are intimately linked (Guilluy et al., 2011; Rape et 

al., 2011). The specific increase of mechanical forces on CMA, while tension on CCJ remained 

unchanged, suggests that any subsequent separation and scattering processes would be mostly 

promoted by biochemical and mechanical activation of CMA, rather than by the weakening of 

CCJ (Rooij et al., 2005). 

The observed redistribution of actin dynamics and balance of forces  away from CCJ and 

toward CMA was reminiscent of the changes observed during neural crest cell repulsion and 

scattering (Scarpa et al., 2015). In both cases, traction forces on CMA appear to promote cell 

migration away from each other. This reinforces our hypothesis that polarity reversal in static 

cells is instrumental in the subsequent induction of cell scattering. 

 

 

Polarity reversal is necessary for cell  scattering 

Our previous experiments showed that polarity reversal was not just a consequence of cell 

migration since it could be induced in non-migrating cells. Furthermore, they suggested that 

polarity reversal was coupled to the redistribution of traction forces, which could prime cell 

scattering. However, direct evidence for polarity reversal being at the origin of cell scattering is 

still lacking since it was difficult to temporally and spatially dissect these two phenomenons. 

Indeed, on micropatterned lines, TGF-β treated cells separated and reversed polarity 

synchronously (Figure S3C). On small micropatterns, cells could revert polarity but couldn’t 

move, preventing any conclusion about the role of polarity reversal on cell motion (Figure 2). To 

directly test the potential upstream effect of polarity reversal on cell motion we decided to use 

dynamic micropatterning to first allow polarity reversal and then trigger the spatial release of 

previously confined cells. Thus, we could compare the scattering of cells with pre-established 

epithelial or inverted polarities. 
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Dynamic micropatterning relies on the use of click chemistry to graft RGD peptides to the 

PEG chains preventing cell adhesion around micropatterns (van Dongen et al., 2013). The mild 

conditions of the azide-alkyne cycloaddition offer the possibility to graft a RGD-alkyne 

compound to a PEG-azide chain in the presence of living cells (Figure 7A). Thus, micropatterned 

cells can start migrating out of the micropattern upon addition and grafting of RGD groups to 

the PEG chains. 

We first confirmed the expected outcomes of EMT induction i.e. that most MCF10A 

epithelial cells remain in contact with each other while TGF-β treated cells tend to separate 

within 4 hour after cell release by addition of RGD (Figure 7B). Interestingly, not all TGF-β 
treated cells separated. Considering that all cells did not fully revert their polarity in response to 

TGF-β (Figure 2C, D), we hypothesized that scattering ability could be linked to the occurrence 

of polarity reversal. To challenge this hypothesis, we segregated the TGF-β treated cell 

population on the basis of their nucleus-centrosome orientation toward CCJ or CMA (Figure 

7C). For this, we used the larger Golgi apparatus rather than small centrosome markers to 

facilitate their detection by live cell microscopy. We saw a clear difference in scattering behavior 

of TGF-β treated and transiently expressing Golgi apparatus marker cells depending upon the 

initial orientation of their polarity axis (Figure 7C, movie S5, S6). Cells with the polarity axis 

pointing toward CCJ (similar to non-treated epithelial cells) had less propensity (24%, n=25) to 

separate from each other compared to cells with a polarity axis pointing toward CMA (69%, 

n=43). This experiment conclusively proved that, upon TGF-β induced EMT, cells which 

maintained their polarity toward CCJ behaved like epithelial cells with less scattering potential 

while cells with inverted polarity are primed for cell scattering. Hence, we establish that EMT 

induction involves polarity reversal by centrosome repositioning away from inter-cellular 

junctions to promote cell separation and single cell migration. 
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Discussion 

 
These results have revealed the existence of a global intra-cellular rearrangement occurring in 

the few hours following the addition by TGF-β, which therefore appeared as one of the earliest 

morphological sign of EMT that precedes complete inter-cellular junction disassembly. 

Microtubule network geometry and centrosome position rapidly adapt to early modifications of 

CCJ composition and notably to the reduction of Par3 concentration. Decreases in microtubule 

nucleation and polymerization in addition to the decrease of selective microtubule stabilization 

along the CCJ lead to centrosome displacement from the CCJ to the cell center. These changes 

were coupled to a relative increase of traction forces on the extra-cellular matrix compared to 

inter-cellular tensions. This redistribution of intra-cellular forces moves the nucleus back toward 

CCJ and thereby leads to an effective complete reversal of cell internal polarity with nucleus-

centrosome axis switching from an orientation toward CCJ to an orientation toward CMA. The 

internal rearrangement and associated redistribution of mechanical forces put cells in an 

appropriate conformation to then separate and move away from each other (Figure 7D).  

The difficulty to follow cytoskeleton reorganization at a subcellular scale in vivo, and the 

disordered and poorly reproducible arrangements of multi-cellular aggregates in 3D culture 

have somehow hidden the systematic repositioning of the centrosome toward the cell edge in 

contact with ECM during EMT. The use of micropatterned lines or square shapes to control cell 

number and position, with or without the possibility to migrate, shined some light on this central 

cell response during early stages of EMT. Polarity was not lost but physically reversed from the 

lumen toward the basement membrane by both centrosome and nucleus repositioning. 

Moreover, dynamic micropatterning, to sequentially confine and then release cells, allowed us 

to demonstrate that polarity reversal was not a consequence of cell migration but instead 

actively promoting it.  

The centrosome-microtubule network appears to act as an extensive and sensitive spatial 

integrator of cell adhesion cues. Subtle variations of inter-cellular adhesion maturation, as 

revealed by the level of Par3 for example, were directly translated into modulations of 

centrosome positioning. Thereby, the centrosome-microtubule network allows the orientation of 

cell internal polarity to adapt to changes in the spatial organization of cell adhesion. How the 

centrosome adopts an off-center position toward CCJ in epithelial cells is not well understood. 

Our observations fit with two types of mechanisms: selective pulling forces along the CCJ and 

global pushing along cell edges. Presence of Par3 at the CCJ and the local accumulation of 

cortical microtubules are consistent with the local production of pulling forces on the 

centrosome as it has been described during immune synapse formation (Yi et al., 2013), planar 

cell polarity establishment (Jiang et al., 2015; Sipe et al., 2013), intestinal cell polarization 
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(Feldman and Priess, 2012), neurulation (Buckley et al., 2012; Hong et al., 2010) and spindle 

orientation (Hao et al., 2010). The ability of Par3 to recruit dynein, which captures and pulls on 

microtubules, would be consistent with this interpretation (Ligon et al., 2001; Schmoranzer et 

al., 2009). The reduction of Par3 and cortical microtubules at the CCJ are also consistent with 

the centrosome moving back to the center upon EMT induction. Interestingly, Par3 

downregulation was sufficient to re-center the centrosome in epithelial cells but inefficient to act 

upon nucleus positioning and thus could not trigger polarity reversal, which probably requires 

other pathways down-stream of TGF-β. Nucleus positioning toward the future back of the cell is 

likely to depend on the development of actin retrograde flow from activated CMA (Dupin et al., 

2009; Gomes et al., 2005; Théry et al., 2006). The shape and spatial organization of 

microtubules also suggest another interpretation in which microtubules that are longer than the 

cell size push the centrosome away from the center, as it has been observed in lymphoblastic 

cells (Bornens et al., 1989) and in reconstituted microtubule networks in lipid vesicles (Pinot et 

al., 2009) or microfabricated chambers (Faivre-Moskalenko and Dogterom, 2002). Our numerical 

simulations show that a high number of microtubules should have similar off-centering effects. 

This is in line with the recent observation of off-centered centrosomes in cells bearing excessive 

microtubules (Godinho et al., 2014). Microtubule capture and stabilization at CCJ (Chausovsky 

et al., 2000; Shahbazi et al., 2013; Shtutman et al., 2008), without any specific production of 

tensile forces, could bias this off-centering (Harris and Peifer, 2007; Sugioka and Sawa, 2012; 

Sumigray et al., 2011). This interpretation would be consistent with our observation that 

centrosome centering after EMT induction is associated with a reduction in the number of 

microtubules nucleated from the centrosome. Noteworthy, the reductions of g-tubulin, ninein 

and EB1 at the centrosome suggest that TGF-β not only acts on the microtubule network 

geometry via its effect on actin network organization but also modulates centrosome 

composition.   

Importantly, our results show that centrosome-microtubule network geometry adapts to 

but also actively feedbacks to the adhesion-actin network configuration. Centrosome 

repositioning away from CCJ and toward CMA was required for cell scattering and migration. 

TGF-β treated cells that did not undergo polarity reversal could not separate upon the release 

of spatial constraint suggesting that the centrosome stabilizes CCJ as long as it stays close to it 

and promotes the migration machinery as it comes close to CMA at the cell front. Indeed 

microtubules interact and feedback with both CCJ and CMA (Akhmanova and Stehbens, 2009). 

The centrosome and CCJ exchange materials: some centrosomal proteins transit from 

centrosome to CCJ allowing microtubule anchoring and stabilization at CCJ (Gavilan et al., 

2015; Lechler and Fuchs, 2007; Moss et al., 2007; Sumigray et al., 2011). In return, microtubules 

stabilize CCJ (Meng et al., 2008), notably by the dynein-dependent recruitment of CCJ 

components like occludin (Glotfelty et al., 2014). Some translocated centrosomal proteins even 
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promote CCJ reinforcement and epithelial cell acquisition of a columnar shape (Gavilan et al., 

2015). Similarly, as the centrosome leaves CCJ and comes closer to CMA, microtubule density 

increases close to CMA and can promote actin polymerization and CMA turnover and thereby 

foster cell migration (Etienne-Manneville, 2013). Interestingly, during epithelial scattering 

occludin and Par3 have been shown to relocalize from CCJ to the cell front where they promote 

leading edge protrusion and cell migration (Du et al., 2010). Par3 relocalization was also 

observed in our working conditions on micropatterns. These considerations account for the 

capacity of centrosome relocalisation from CCJ toward CMA to actively weaken inter-cellular 

interaction and promote the cell migration machinery even before effective cell displacement 

and thereby primes cell scattering. 

It is noteworthy that some forms of EMT, such as zebrafish lateral line development 

(Revenu et al., 2014) are not associated with centrosome inversion. In such cases, the 

centrosome stays at the migrating cell rear as in many other examples of amoeboid-like type of 

cell migration (Doyle et al., 2009; Pouthas et al., 2008; Ratner et al., 1997). These counter 

examples, in which centrosome position is not inverted prior to cell migration, suggest that the 

polarity reversal we describe here may be specific to the acquisition of a mesenchymal type of 

migration. 

Whether early stages of cancer cell disengagement and dissemination from tumors 

proceed through polarity reversal is a question that needs to be further investigated. It does not 

seem to be required for epithelial cells with extra-centrosomes to break through their basement 

membrane (Godinho et al., 2014). But this particular case should not be taken as a rule for other 

types of tumor transformation since those cells have specific defects in the regulation of the 

microtubule network. Indeed, the loss of Par3, which was sufficient to induce centrosome 

repositioning away from CCJ in our conditions, has been shown to promote breast cancer 

metastasis (Xue et al., 2012). 

Our results reveal the key role of centrosome-microtubule and actin network interplay in 

the geometrical and mechanical regulation of complex tissue remodeling such as EMT. They 

should prompt us to investigate further the mechanism supporting their biochemical and 

physical interactions in various morphogenetic processes. 
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Materials and Methods  
 
MCF10A cells were cultured in Lonza MEGM medium (Lonza #CC3150) as described by ATCC 

protocol. MDCK, NMuMG and EpH4 cells were cultured as described in extended experimental 

procedures. EMT was induced by addition of 5 ng/ml TGF-β1 to MCF10A for 5 days, 2 ng/ml to 

NMuMG & EpH4 for 3 days and 10 ng/ml of HGF for MDCK for 3 days. Micropatterns on glass 

were fabricated as described previous ly (Azioune et al., 2010). Cell seeding was optimized to 

achieve single cell attachment per micropattern and cells were fixed 24 hours after. MCF10A 3D 

cultures were prepared as described previously (Debnath et al., 2003). Micropatterning on soft 

substrate and Traction force microscopy was performed for measuring cellular forces using 

Fourier transform traction cytometry analysis as described (Martiel et al., 2015; Vignaud et al., 

2014). Dynamic micropatterning was performed using Azide-PLL-PEG and BCN-RGD (van 

Dongen et al., 2013).  

 
Supplemental Information 
Supplemental Information includes Supplemental Experimental Procedures, five figures, and 
five movies. 
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Figure Legends 
 

Figure 1. Evidence of polarity reversal at various stages of mouse development 

and within 3D organotypic cell  culture 

(A) Scheme representing germ layers of E8 mouse embryo, site of primitive streak formation and 

deduced nucleus-centrosome orientations from images in inset 1,2. Inset 1: Posterior end of 

embryo stained for T-Brachyury(white), γ-tubulin(red) and DAPI (blue). Arrows indicate cells 

expressing T-Brachyury with nucleus-centrosome axis (white arrows) orientated away from 

amniotic cavity (marked c). Inset2: Anterior end of E8 mouse showing cells without T-Brachyury 

and nucleus-centrosome axis pointing toward the amniotic cavity. Scale bar represents 20 μm. 

(B) Scheme representing nucleus-Golgi apparatus axis of cells in growing terminal end bud of 

female mouse mammary gland at 6-7 weeks of age. Inset 1: Merged image of terminal end bud 

stained for Golgi apparatus (green), F-actin (red) and nucleus (blue). Images of separate 

channels are below. Scale bar represents 50 μm. 

(C) Examples of control and TGF-β treated MCF10A 3D cultures (Day7) labeled for Golgi 

apparatus (green), centrosome (white), F-actin (green) with zoomed and cropped image 

showing nucleus-centrosome orientation on the right. Scale bar represents 20 μm. 

(D) Scheme represents angle a contained by normal to cell base and nucleus-centrosome 

vector. Scatter plots show quantification of angle a for control and TGF-b treated MCF10A cells. 

N represents total number of cells quantified from CTR (n=23) and TGF-β (n=25) acini. Two 

tailed-non-parametric Mann-Whitney test was used, ****: p<0.0001. 

 

Figure 2. Polarity reversal is an early feature of EMT 

(A) Images of nuclei (blue) of MCF10A cell doublets on square (i), bowtie (ii) and H-shaped (iii) 

microcropatterns (grey). Graphs represent angular distribution of nucleus-nucleus axis (NN axis) 

orientation of cell doublets on micropatterns. n indicates number of cell doublets.  

(B) MCF10A and MDCK cell doublets on H-shaped micropattern were stained for and F-actin 

(green) (top) or centrosome (red) and DNA (blue) (bottom).  

(C) Axes system defined by NN axis (X axis) passing through center of nuclei of cell doublets on 

micropattern and an axis perpendicular to NN axis (Y axis). Normalized nucleus-centrosome 

vector coordinates (NCx, NCy) were calculated by subtracting coordinates of centrosome (Cx, 

Cy) from Nucleus (Nx, Ny) and normalized by the length of nucleus radius (NR).  

(D) Scatter plot of normalized NC vector of MCF10A Control and TGF-β cells on left and MDCK, 

control and HGF treated cells on right.  The total number of cells and the respective proportions 

(%) on positive and negative x-axis are indicated.  

(E) Horizontal histograms show the quantification of polarity index, ie of normalized X 
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coordinate of NC vectors, for control (blue) and TGF-β (red) treated MCF10A cells, and for 

control and TGF or HGF-treated (red) MDCK cells. N indicates the number of independent 

experiments, whereas n indicates the total number of single cells. Vertical box plots show the 

quantification of inter-nuclear and inter-centrosome distance of MCF10A and MDCK.  

(F) Polarity index toward cell-cell junction in control (blue) MCF10A cells after varying the 

duration of TGF-β treatment (pink to red, left graph). Polarity index of MDCK cells treated with 

TGF-β or HGF for different durations (middle and right graphs). h indicates hours and d 

indicates days. 

Two tailed-non-parametric Mann-Whitney tests were used. ****: p<0.0001. Errors bar indicate 

SEM. 

 

Figure 3. Matrix st if fness promotes polarity reversal 

(A) Images of control (left) and TGF-β treated (middle) EpH4 cell doublets on H-shaped glass 

micropattern stained for E-cadherin (green), centrosome (red) and DNA (blue). Cell doublets on 

10kPa Polyacrylamide gel (right) were stained for F-actin (green).  

(B) Control NMuMG cells on glass and polyacrylamide gels are stained for Giantin (Golgi 

apparatus marker) (red), F-actin(green) and DNA (blue). Horizontal histograms show 

quantification of polarity index toward cell-cell junction. Scale bars represent 5 μm. Errors bar 

indicate SEM. 

 

Figure 4. Microtubule network remodeling accompanies centrosome re-centering 

during EMT 

(A) Images of control and TGF-β treated MCF10A cell-doublets on H-shaped micropattern 

stained for a-tubulin. Box plot shows quantification of total microtubule density and density at 

cell-cell junction based on fluorescence intensity in Z-stacks projections (arbitrary fluorescence 

units). 

(B) Images of control and TGF-β treated MCF10A cell-doublets stained for EB1. Scatter plots 

show quantification of total EB1 comet count and density at cell-cell junction. A circular region 

of interest of 1.5 μm radius (yellow dotted circle) was used to count EB1 comets at the 

centrosome. 

(C) Images of control and TGF-β treated MCF10A cell-doublets on H-shaped micropattern 

labeled for g-tubulin (red) and DNA (blue). Scatter plots show quantification of g-tubulin 

fluorescence intensity within the selected area (yellow circle) around centrosome.   

(D) Numerical simulation showing microtubules (white) and centrosome (yellow) motion in 

response to varying microtubules number in a rectangular cell. Green dots correspond to 

cytoplasmic dynein (green).  

(E) Effect of varying microtubule number on centrosome trajectory and final position. Different 
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colors represent different number of microtubules. The graph shows the relationship between 

the number of microtubules and the final position of the centrosome relative to cell center.  

(F) Centrosome trajectories when starting from various initial positions (marked by cross) for 

either 100 (top) or 250 (bottom) microtubules. 

Two tailed-non-parametric Mann-Whitney tests were used. ***: p<0.001, ****: p<0.0001. 

 

Figure 5. Par3 regulates centrosome posit ioning during EMT 

(A) Averaged images of E-cadherin, N-cadherin, α-catenin, β -catenin staining before (CTR) and 

after EMT induction by TGF-β of MCF10A cells on H-micropattern. Number of images used to 

obtain averaged image is indicated. Intensity at cell-cell junction per unit area (density in 

arbitrary units) of images was measured for CTR (blue) and TGF-β (red) treated cells.  

(B) Par3 (green), g-tubulin (red) and DNA (blue) stainings of control and TGF-β treated MCF10A 

cells on H-micropattern. Central graph shows the relationship between Par3 enrichment at cell-

cell junction and inter-centrosome distance. Pearson's correlation test r, ****: p<0.001, *: p<0.1, 

ns>0.1. Vertical histograms show measurement of polarity index toward cell-cell junction of 

control (blue), TGF-β (red) or TGF-β and SB3451542 treated cells (black).  

C) Image of control cell doublet on H-shaped micropattern treated with Par3 siRNA and 

labelled for Par3 (green), g-tubulin (red) and DNA (blue). Box plots show quantification of 

nucleus-nucleus distance and inter-centrosome distance within cell doublets in control (blue) 

and siPar3 treated cells (grey). Horizontal histogram shows quantification of cell polarity index 

toward cell-cell junction. 

(D) Same as (C) to measure the effect of exogenous Par3b over-expression in TGF-β treated 

MCF10A cells. 

Arrows point at centrosomes. Scale bars represent 5 μm. Errors bar indicate SEM. Two tailed-

non-parametric Mann-Whitney test were used **:p<0.01, ***:p<0.001, ****:p<0.0001, ns: 

p>0.1. 

 

Figure 6. Cell-cell  and cell-matrix forces redistr ibution upon EMT 

(A) Immuno-stainings of F-actin (red), paxillin (green) and DNA (blue) in control and TGF-β 
treated MCF10A cells spread on H-micropattern.  

(B) Averaged stainings of F-actin, phospho-myosin II, and paxillin in control and TGF-β treated 

MCF10A cells. Fluorescence intensity scales are displayed with colored LUT in arbitrary units. 

Numbers of images used to obtain averaged images are indicated.  

(C) Average stress field (in Pascal) of MCF10A cell doublets on H-shaped micropattern.  

(D) Schematic of cell-pair on micropattern with force balance measurement of intercellular (Fcell-

cell) and total traction (Ftotal) forces in MCF10A cell doublets.  
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Figure 7. Polarity reversal is necessary for cell  scattering 

(A) Schematic depicting principle of dynamic micropatterning with azide-PLL-PEG (orange) and 

cell motion on BCN-RGD modified substrate (red). 

(B) Time-lapse sequence images of cells on H-shaped micropattern in response to BCN-RGD 

addition in transmitted light. Histograms show measurement of the proportion of cell separation 

and maximum inter-nuclear distance between the MCF10A cells two hours after addition of 

BCN-RGD.  

(C) Time-lapse sequence images of TGF-β treated MCF10A cells expressing Golgi apparatus 

markers (visualized in green at t=0) in response to the addition of BCN-RGD. Histogram shows 

measurement of the proportion of cell separation depending on their initial polarity orientation. 

(D) Schematic description of centrosome repositioning along with microtubule reorganization 

and Par3 reduction at CCJ in the course of EMT.  
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Supplemental Experimental Procedures 
 

Cell Culture and EMT Induction 

Michigan Cancer foundation  (MCF10A) human mammary gland cells (ATCC #CRL-10317) were 

maintained at 37°C at 5% CO2 in Lonza Mammary Epithelial Growth Medium (Lonza MEGM 

bullet kit #CC3150 without Gentamycin) in the presence of 100 ng/ml of cholera toxin (Sigma 

#C-8052) and 0.5% antibiotic-antimycotic (Life Technologies #15240062). Cells were harvested 

by TrypLE™ (Life technologies #12605036) treatment for 12 min. An equal volume of soybean 

defined trypsin inhibitor (Life Technologies #R007100) was added followed by centrifugation at 

200xg for 4 min. Cells were subcultivated in ratios less than 1:5 to maintain a stable epithelial 

phenotype.  Medium was renewed every 2-3 days. 8000 cells/cm2 were treated with 5 ng/ml 

TGF-β1 (R&D systems #240-B-002) in complete medium containing DMEM/F12 (Life 

Technologies #31331093), 5% horse serum (Gibco #16050-122), 25 ng/ml EGF (Peprotech 

TEBU #100-15), 100 ng/ml of cholera toxin, 10 µg/ml insulin (Sigma #I-1882), 500 ng/ml 

hydrocortisone (Sigma #H-0888), 0.5% antibiotic-antimycotic. Cells were passaged after 3 days 

and cultured for another 2 days in the presence of TGF-β. At the end of 5 days, cells were 

harvested for further experiments. Madin Darby Canine Kidney (MDCK) cells were maintained in 

DMEM-High glucose (Life Technologies #31966047) containing 10% fetal bovine serum 

(Invitrogen). EMT was induced by addition of 10ng/ml Hepatocyte Growth factor (Gibco 

#PHGO254) or 5ng/ml TGF-β for different durations ranging from 1 h to 3 days. EpH4 cells 

(Clone J3B1A) were a gift from Priscilla Soulie. Cells were maintained in DMEM containing 10% 

decomplemented Donor Bovine Serum (Gibco #16030-074). NMuMG cells (ATCC #CRL-1636) 

were cultured in DMEM containing 10% decomplemented fetal bovine serum and 10 µg/ml of 

insulin. EMT was induced in both cell lines by addition of TGF-β to the medium at 2 ng/ml for 

up to 3 days. 

 

3D Acini Culture and Immunofluorescence Microscopy 

Tip boxes, pipettes, eppendorf tubes, culture plates were pre-chilled at 4°C before the start of 

the experiment to prevent Matrigel polymerization. 50 µl of Matrigel (Sigma #E1270) was 

spread at the bottom of chamber slides-8 well (VWR #734-0088). MCF10A cells were trypsinized 

and resuspended in DMEM/F12 Glutamax medium (Life Technologies #31331093) 

supplemented with 2% horse serum, 500 ng/ml of hydrocortisone, 100 ng/ml of cholera toxin, 

10 µg/ml of insulin, 5 ng/ml of EGF and 2% Matrigel. 4000 cells were seeded per well in 400 µl 

of medium. Medium was changed every 3 days.  A similar procedure was performed for MDCK 

cells except using Minimal Essential Medium (Gibco #11140035) supplemented with 4% fetal 

bovine serum and 2% Matrigel. Acini were cultured for 8-10 days and fixed in 2% PFA for 20 

min at room temperature. Acini were permeabilized with 0.5% Triton X-100 in PBS for 10 min at 
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4°C followed by 3 washes with 100 mM Glycine in PBS (Wash solution). Cells were saturated 

with 0.1% BSA in the presence of 0.2% Triton X-100 and 0.05% Tween-20 in PBS (Saturation 

solution) for 1 h at RT. Acini were incubated with primary antibody diluted in Saturation solution 

for 3 h followed by 3 washes of 15 min each at room temperature. Secondary antibody was 

diluted in Saturation solution and acini were incubated in it for 2 h followed by 3 washes of 

Wash solution. Acini were mounted on a coverslip with Prolong gold antifade reagent 

(Molecular Probes #P36935). 

 

Mouse Mammary Gland Tissue and Immunofluorescence 

C3H mice were bred at INRA (UE0907 IERP, Jouy-en-Josas, France). Mice were euthanized by 

cervical dislocation at 6-7 weeks of age, and the inguinal mammary glands were immediately 

excised. All ethical aspects of animal care complied with the relevant guidelines and licensing 

requirements laid down by the French Ministry of Agriculture and the procedures used were 

approved by the local ethics committee (Comethea Jouy-en-Josas/AgroParisTech). Mammary 

fragments were rinsed in PBS and fixed with 4% PFA in PBS for 10-15 min at 4°C. Fixed tissues 

were infused for 16-24 h at 4°C in 40% sucrose in PBS, embedded in Tissue-Tek (VWR #25608-

930), frozen in liquid nitrogen and stored at -80°C. Ten micrometer sections were rinsed with 

PBS at room temperature, permeabilized with 0.2% Triton-X100 in PBS and saturated with 3% 

bovine serum albumin (BSA) in PBS for 1 h. Incubation with the primary antibody (anti-giantin 

rabbit pAb, Abcam ab24586, 1:300 dilution) was allowed overnight at 4°C followed by four 

washes (10 min each) with PBS. Tissue sections were incubated with an Alexa Fluor 488-

conjugated donkey anti-rabbit IgG (Molecular Probes #A-21206, 1:1000) secondary antibody for 

1.5 h at room temperature and then washed with PBS as above. Actin was stained using 

Rhodamine Phalloidin (Molecular Probes #R415, 1:300 dilution in PBS) for 15 min at RT. Slides 

were mounted with Vectashield containing DAPI (Vector Laboratories #H-1200) and stored at 

4°C until observation. Primary and secondary antibodies were all diluted in 2% BSA. Each 

experiment was performed at least twice and included control sections without primary 

antibody. Images were acquired with CSUX1-A1N Nikon Spinning Disk confocal microscope 

(Yokogawa) and EMCCD evolve 512 camera (Photometrics) using plan apochromat 40x, 1.3 NA 

oil objective.  

 

Mouse Embryo Whole Mount Immunofluorescence 

Wild type, outbred MF1 mice were maintained on a 12-h-light/12-h-dark cycle. For timed 

matings, noon on the day of finding a vaginal plug was designated E0.5. Dissections of post-

implantation embryos were performed as described in (Copp AJ et al., Prog Neurobiol. 

1990).  Post-implantation mammalian embryos were costained (overnight incubation of 

antibodies) for g-Tubulin (Abcam #ab11316, 1:250), T-brachyury (R&D #AF2085, 1:200), 
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Collagen IV (Abcam #ab6586, 1:400) and counterstained with Dapi. Confocal microscopy was 

performed after dehydration through a PBS/methanol series (10 min each), three 5 min washes 

in 100% methanol, clearing in 1:1 v/v methanol/BA:BB (2:1 benzyl alcohol:benzyl benzoate), and 

two washes in BA:BB. Embryos were imaged directly in BA:BB using a Leica Sp8 confocal 

microscope and a 40X oil objective. 

 

 

 Micropattern Fabrication and Cell Seeding 

Fabrication of micropatterns on glass 

A glass plate 10 x10 cm (Schott #1304369) was cleaned using an air pistol and the surface of the 

glass plate was coated with adhesion promoter, TI Prime (Microchemicals) using a spin-coater 

(Laurell #WS-650m2-23NPPB) at 3000 rpm for 30s. The glass plate was baked at 120°C for 2 min 

on a hot plate. The glass plate was then coated with 1% solution of polystyrene (MW 260,000 

Acros Organic # 178891000) in toluene (Sigma #179418) using a spin-coater at 1000 rpm. The 

polystyrene layer was further oxidized with an air plasma treatment (Plasma Etch #PE-30) for 20 s 

at 30W under vacuum at a 10 cc/min flow rate of air and incubated with Poly-l-Lysine-

Polyethylenglycol (PLL(20)-g[3.5]-PEG(2) SurfaceSolutionS, Switzerland) in 10mM HEPES, pH 7.4 

at room temperature for 30 min. PLL-PEG coated slides were placed in contact with an optical 

mask (Toppan Photomask) containing the transparent micropatterns using a vacuum chamber, 

then exposed to deep UV light using UVO cleaner (Model No. 342A-220, Jelight, USA) for 4 min 

at power 6mW/cm2, λ 190nm at a distance of 1cm from the lamp. Micropatterned slides were 

subsequently incubated with a PBS solution containing 20 µg/mL fibronectin (Sigma #F1141) or 

laminin (Sigma #L2020) or collagen (Life Technologies, #A1048301) along with 20 µg/mL Alexa 

647-fibrinogen (Gibco #F135200) for 30 min followed by 3 washes of PBS. Coverslips were dried 

and then rinsed in sterile PBS before cell seeding. 

 

Fabrication of micropatterns on PAA gel 

To achieve compliant substrates for cell attachment, micropatterns were prepared on a 

polyacrylamide gel attached to a glass coverslip. For a detailed protocol, refer to Mask method 

(Vignaud et al., 2014). Briefly, a photomask was plasma treated and coated with PLL-PEG using 

surface activation as explained above. The mask was exposed to UV light for 4 min. The 

fibronectin and fibrinogen mixture was prepared in sodium bicarbonate buffer, 100 mM, pH 8.3 

and incubated on the mask for 30 min. The solution was allowed to flow by keeping the mask 

vertical. A mixture of acrylamide and bis-acrylamide was freshly prepared for desired rigidity 

(Tse and Engler, 2010) and was degassed for 30 min. TEMED at 0.1% of total volume and 10% 

APS at 1% total volume were added to the acrylamide solution. 25 µl of acrylamide was placed 

onto the photomask where protein was adsorbed. A silanized glass coverslip was placed gently 
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to spread the drop and the gel was allowed to polymerize for 30 min. The coverslip was 

removed gently with a scapel and was placed into PBS solution with micropatterns facing up. 

 

Dynamic micropatterning 

Azide-PLL-PEG was coated onto a coverslip in a similar manner as for PLL-PEG. Micropatterns 

were etched by UV irradiation. Cells were seeded onto the coverslip and allowed to form cell 

doublets after 16 h. Cells were released from confinement by addition of 20 µM BCN-RGD 

dissolved in 1x PBS. (van Dongen et al., 2013). Note that micropatterns were not coated with 

any ECM protein to facilitate cell movement onto the RGD-coated surface upon addition of 

BCN-RGD. 

 

Cell seeding 

Approximately 0.5 million cells were seeded onto micropatterned chips of 20x20 mm size and 

non-adhered cells were washed off after 30 min, which almost always resulted in single cell 

attachment per micropattern. Cells were allowed to divide over 24 h prior to fixation. 

 

Cell  Scattering on Line Micropatterns and Video Microscopy 

For video microscopy, glass coverslips were patterned without the layer of polystyrene and then 

plated with 150,000 cells per 20x20 mm coverslip. Medium was changed once enough cells 

were attached to the coverslip. Coverslips were mounted on Chamlide chmabers (CM-s20-1). 

Cells were then recorded with a Nikon Eclipse Ti-E with 10x phase contrast objective in 

transmitted light and a 15 min interval was set between pictures. The number of cell separation 

events after a single cell division was then counted manually. 

 

Indirect Immunofluorescence 

Cells plated on glass coverslips were fixed with 4% parafomaldehyde in Cytoskeleton buffer 

(10mM HEPES pH 6.1, 138 mM KCl, 3 mM MgCl2, 2 mM EGTA) containing 0.01% Triton-X100 

for 15 min. Autofluorescence was quenched by treatment with 1 mg/ml sodium borohydrate in 

PBS for 7 min. For centrosome staining, cells were fixed with ice-cold methanol at -20°C for 5 

min. Coverslips with cells were incubated in primary antibody diluted in 1.5% BSA containing 

0.1% Tween-20 for 60 min. After 2 washes of PBS, the coverslip was incubated with specific 

secondary antibodies (Alexa Fluor Conjugated, Thermo Fischer Scientific) diluted in 1.5% BSA 

containing 0.1% Tween-20 for 30 min in the dark. DNA was stained with DAPI (1:5000, Sigma 

#D9542) for 2 min in PBS. Coverslips were mounted with Mowiol 4-88 (Sigma #81381). 

Antibodies used included γ-tubulin (1:5000, abcam #ab11317), giantin (1:500 abcam #24586), α-
tubulin (1:500, Sigma #T6557), Par-3 (Millipore 07-330), E-cadherin (1:500, BD Biosciences 

#610181), N-Cadherin (1:500, BD Biosciences #610920), p-MLC (1:100, Cell Signalling #3671), 
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EB1 (1:200, BD Biosciences #610534), Paxillin (1:200, abcam  #ab32084) and human ninein 

(1:100) was a gift from James Sillibourne. 

 

Chemical Treatments 

Blebbistatin (Sigma #B0560) and Y-27632 (Selleckchem #S1049) were added onto cell doublets 

on micropatterns formed 16 h after seeding at 25 µM and at 20 µM respectively for 6 h. Smad 

pathway inhibitor SB431542 was added to MCF10A cells along with TGF-β (Selleckchem 

#S1067) for 5 days. DMSO vehicle was added to control samples at an equivalent volume. 

 

Microscopy and Image Analysis 

Fixed and fluorescently labelled cells were imaged using an epi-fluorescence Olympus 

microscope (up-right BX61) with 100x NA 1.4 oil objective. Stacks of images spanning 12 µm z-

distance were acquired using a piezo motor at the same illumination setting for control (CTR) 

and TGF-β treated sample. Image analysis for centrosome positioning was performed using a 

series of Macros in Image J. Briefly, z-projection of each color channel was obtained using 

'maximum z-projection' plugin followed by merging the 4 channels to obtain a composite 

image. Using Pattern Alignment plugin (https://sites.google.com/site/qingzongtseng/template-

matching-ij-plugin) images were aligned with the reference micropattern image. Nuclei in DAPI 

channel were detected using image thresholding and object size criteria. Centrosomes were 

detected with similar thresholding and by using nuclei Region Of Interest (ROI) as spatial 

reference. Finally nucleus-centrosome vector was computed by subtracting co-ordinates of 

centrosome from nucleus co-ordinates and was normalized by the nucleus radius as indicated in 

Figure 3. 

 

EB1 Comet Quantif ication 

Z-projected images of EB1 comets were obtained as described above. Background substraction 

was performed using a rolling ball radius of 50. For analyzing nucleation capacity of the 

centrosome, ROI of 1.5 µm radius was drawn around the centrosome labeled by ninein. EB1 

comets were detected in the selected ROI by 'Find Maxima' Process. 

 

Microtubule Intensity Quantif ication 

Images of microtubules were acquired using CSUX1-A1N Nikon Spinning Disk microscope 

(Yokogawa) with 100X, 1.3 NA objective and Evolve 512 EMCCD camera (Photometrics). Z-

projected images 'Maximum z intensity' of alpha-tubulin staining were obtained as described 

above. A ROI 46x46 µm was selected containing the cell pair on <H> micropatterns. Total 

intensity of the image was measured in Image J for each image to quantify total microtubule 

density in each cell-pair. To quantify microtubule density at the cell-cell junction, a ROI of 3.2 
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µm thickness was drawn along the cell-cell junction and intensity of alpha-tubulin staining was 

measured. 

 

Generating Averaged Images 

Images of E-cadherin, N-cadherin, b-catenin and α-catenin, actin, phospho-myosin II and paxillin 

were averaged using Z project. Cell-doublets on H-shaped micropatterns were stained for 

junction proteins and images were aligned using 'Pattern Alignment plugin' with reference to 

the micropattern. Average intensity at each pixel of the image was calculated using the 'average 

intensity' projection type in Image J. 

 

Three-dimentional Acini Quantif ication 

Images of acini were acquired on a Nikon Spinning Disk microscope at 60x oil objective with a 

z-step of 500 nm. To determine angle alpha formed between normal to cell periphery and the 

nucleus-centrosome vector (Figure 1), 4-5 central planes of acini images were selected to obtain 

single layers of cells at the center of the acini. A normalizing line was drawn to the basal surface 

of cells, which was marked by phalloidin staining. Using the 'angle' measurement in Image J, 

the value of alpha (0-180°) was determined providing the angle formed by vectors in the same 

plane. Only the central plane of acini was considered for these measurements in order to have a 

planar distance of cells to the center of the acini. 

 

Traction Force Microscopy 

Passivation of beads with poly-ethylene-glycol (PEG) 

Fluorescent beads were PEG passivated to avoid cell attachment and intake of the beads by 

cells. Carboxylated polystyrene beads, 200 nm, dark red (660/680), 2% solids (Molecular Probes 

#F-8807) were diluted to 1:4 in 10 mM MES buffer pH 5.5 containing 8 mg/ml of N-

hydroxysuccinimide (NHS) (Sigma #1130672) and 4 mg/ml 1-ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride (EDC) (Molecular Probes #E-2247). This 

solution was mixed with 4 mg/ml PLL-PEG prepared in 10 mM HEPES buffer pH8.5. The mixture 

was incubated on a rotator for 2 h at RT. The beads were finally spun down and resuspended in 

10 mM HEPES buffer, pH 7.4 in 2x the original bead volume. NHS and EDC solutions were 

prepared freshly and the mixing step with PLL-PEG was performed within 30 sec to avoid 

formation of bead aggregates. PEG passivated beads were stored at 4oC over 1-2 months and 

before every use beads were sonicated for 5 min to remove small aggregates. 

 

Silanization of coverslips 

20x20mm glass coverslips were plasma cleaned for 3 min, 30W, 10 cc/min gas level with plasma 

cleaner (Plasma Etch #PE-30). Coverslips were treated for 10 min in solution containing 2% 3-
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trimethoxymethylsilane (Sigma #M6514) and 1% (v/v) acetic acid in ethanol. Coverslips were 

rinsed with ethanol and dried with air-gun followed by baking at 120oC for 1 h. 

 

Fabrication of micropatterns on PAA with fluorescent beads 

10 kPa polyacrylamide gels were prepared using 5% acrylamide and 0.3% bis-acrylamide 

solution. The solution was degassed for 15 min in a vacuum bell. Quartz mask (Toppan) was 

washed with soap followed by milliQ water and dried using nitrogen gas flow. The surface of 

the quartz mask was activated by plasma treatment at 100W for 3 min in air plasma cleaner. A 

drop of PLL-PEG solution (0.1 mg/ml, 10 mM, pH 7.4) was added onto the chromium side of the 

mask at the region of interest (ROI) and was covered with a clean 20x20 mm glass coverslip. 

After 30 min of incubation at RT, the mask was tilted to let the coverslip flow off with excess 

solution and the mask was allowed to dry by dewetting. The mask was UV insulated with the 

chromium side facing the UV lamp (UVO cleaner Model No. 342A-220, Jelight, USA) for 4 min 

at power 6mW/cm2, λ 190nm at a distance of 1cm from the lamp. The ROI on the mask was 

coated with 20 µg/ml of fibronectin (Sigma #F1141) and fibrinogen Alexa Fluor 647 (Molecular 

Probes #F135200) dissolved in 100 mM of sodium bicarbonate buffer, pH 8.3 and was 

incubated for 30 min at RT. At the end of the incubation, excess solution was allowed to flow off 

the mask which was then gently rinsed once with sodium bicarbonate buffer. PEG passivated 

polystyrene beads were sonicated in a water bath for 5 min and immediately added to 

Acrylamide-bis-acrylamide solution to 1:16 dilution (0.06% solid beads) and mixed well with the 

help of a pipette. Once the mask was dried, 25 µl of Acrylamide and Bis-acrylamide solution was 

put onto the ROI on the mask and was immediately covered with a silanized glass coverslip 

while making sure there was no bubble introduced in the gel. After 25 min of polymerization, 

the polyacrylmide gel with coverslip was flooded with sodium bicarbonate buffer to facilitate 

detachment of the gel. The gel was detached gently from the mask using a sharp scapel. The 

silanized coverslip containing polymerized gels with micropatterns was stored at 4oC in PBS 

solution with micropatterns facing up until further use. 

 

Cells were seeded onto micropatterns on PAA as described for glass substrates. A glass 

coverslip with PAA gel and cells was mounted in a magnetic chamber (Live Cell Instrument, 

Chamlide CMS). Images of fluorescent beads were acquired at 63X, 1.4 NA Plan Apochromat 

VC (Nikon) on CSUX1-A1N Nikon Spinning Disk microscope (Yokogawa) and Evolve 512 

EMCCD camera (Photometrics). Stacks of five images with 0.5 µm z-distance were acquired 

around the topmost focused beads plane. Cells were trypsinized at 37oC in the chamlide 

chamber with extreme care so as to not move the chamber on the microscope. Cells were 

washed away with the help of the pipette after 10 min. Images of the beads were acquired at 

the positions registered before. 
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Calculations of cellular forces 

Image analysis macros and plugins and tutorial for Image J for traction force microscopy analysis 

can be found at (https://sites.google.com/site/qingzongtseng/piv). Briefly, the best-focused and 

top-most plane of bead images of before and after trypsinzation of cells was selected. Images 

of beads from independent cell doublets were aligned using normalized cross-correlation 

algorithm of the plugin-'Align slices in stack' and with the micropattern as a reference. The 

dDisplacement field was computed from bead movements using iterative Particle Image 

velocimetry (PIV) algorithm. Parameters used for Iterative PIV were 3 interrogation window 204, 

25, 12 pixel and correlation 0.6 Traction forces were calculated from displacement field using 

Fourier Transform Traction Cytometry (FTTC) algorithm. Parameters used for FTTC were, 

Young's Modulus 10000 Pa, Regularization factor of 10^-9, Poisson ratio 0.5. The stress field 

values were obtained in Pascal units. The product of unit grid area (3.2x3.2 µm) and the traction 

stress vector generated the traction force vector (nN). 

Force vectors at each position were averaged over several images to obtain averaged force 

fields for cell-pairs. Cell-cell force (Fcell-cell) was computed by from the vector sum of traction 

forces for each cell on H-micropatterns and negative imbalanced force was designated as Fcell-

cell. The sum of magnitudes of the each traction force exerted at each point was obtained as 

total Traction force. 

 

Transient Cell  Transfection 

250,000 MCF10A cells were seeded in a single 6 well plate. Par3 siRNA was added to the 

defined MEBM medium to 10 nM along with RNAiMax reagent (Invitrogen #13778030). After 24 

h, cells were seeded onto micropatterns and were allowed to divide for another 24 h before 

fixation. On-Target plus SMART pool was used for Par3 siRNA (Dharmacon L-015602-00-0005) 

J-015602-05, AAGCAUGGAUUUAGGUAUA, J-015602-06 AGACUAAACUCAAUACAGU, J-

015602-07 CGAUAAAGACAGACUGGUA, J-015602-08 GAUGGCGACCUUCGAAAUA. Control 

siRNA (Qiagen #SI03650318) was used at 10 nM. MCF10A cells were transfected with pk-myc-

Par3b construct (Addgene #19388) using Plus Reagent (Invitrogen #11514015) according to 

manufacturer instructions. 24 h after transfection cells were treated with TGF-β and seeded onto 

micropatterns 24 h after. Following one cell division, cells on micropatterns were fixed. Cells 

used for dynamic micropatterning were seeded at a density of 125,000 the previous day 

followed by addition of 2 μl of CellLight Golgi-GFP BacMam 2.0 (Molecular Probes #C10592) 

per 10,000 cells. Cells were imaged after 30-48 h of incubation. 

 

Quantitative PCR 

qRT-PCR was used to analyze mRNA expression levels of E-cadherin, snail1, vimentin and g-
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Tubulin. RNA was extracted in TRIzol (Ambion 15596-026) and chloroform extraction. RNA 

quantity was measured using Nanodrop2000. cDNA was synthesized using Affinity script qPCR 

synthesis kit (Stratagene #600559). The reagents used were SYBR® Green PCR Master Mix and 

SYBR® Green RT-PCR Reagents Kit (CFX96 Touch™ Real-Time PCR Detection System from 

BioRad). 

 

Primers for MDCK cells (Dog origin) 

E-Cadherin F:  5’-TGACAGCTACACGTTCACCG-3’ R: 5’-TTCAAAACTCACCCTGCCCA-3  

Snail1 F 5’-AAGATGCACATCCGAAGCCA-3’ R 5’-CTTCTCACCGGTGTGGGTC-3,  

Vimentin F 5’-AAATGGCTCGTCACCTTCGG-3’ Vimentin R 5’-GAGCAATCCTGCTCTCCTCG-3’, 

U6 F 5’GCAAGATGGCGGACAAAGAG-3’ U6 R 5’-TCGAACCCCTTCAAGATGCC-3’  

g-Tubulin F 5’-CCGGTACCTGAGGAGCGAT-3’ R 5’-TTCCAGAACTCGAACCCAATCTG-3’ 

Primers used for NmuMG (Mouse)  

Vimentin F 5’-TGCACGATGAAGAGATCCAGG -3’ , R  5’-AGGCTTGGAAACGTCCACAT  -3’  

g-Tubulin forward  5’-GGAGCGATGCCGAGAGAAAT-3’R 5’-CCAGAACTCGAACCCAATCTGA -

3’  

Snail1 5’-TGTGTGGAGTTCACCTTCCAG-3’ Snail1 R 5’-AGAGAGTCCCAGATGAGGGT -3’ 

g-Tubulin forward  5’-GGAGCGATGCCGAGAGAAAT-3’  

g-Tubulin-reverse 5’-CCAGAACTCGAACCCAATCTGA -3’  

E-Cadherin F 5’-GAAGGCTTGAGCACAACAGC -3’, R 5’-CCCTGATACGTGCTTGGGTT -3’  

U6 F  5’-TGTGCTGTTGACGAGGACTT-3’, R 5’-GTTCCACAGATGCTCAGGTCA-3’ 

  

Primer used for MCF10A (Human origin) 

E-Cadherin F 5’-CCCACCACGTACAAGGGTC-3’ R 5’-CTGGGGTATTGGGGGCATC-3’ 

Snail1 F 5’-AGGCAGCTATTTCAGCCTCCTGTT R 5’=TGACAGCCATTACTCACAGTCCCT-3’ 

Vimentin F 5’-AGAACCTGCAGGAGGCAGAAGAAT,R 5’-TTC CAT TTC ACG CAT CTG GCG 

TTC-3’  

U6 F 5’-CTCGCTTCGGCAGCAGA-3’, R 5’-AACGCTTCAGGAATTTGCGT-3 

 

Western Blot 

For immunoblot analyses of proteins, cell lysates were prepared in RIPA lysis buffer (10 mM Tris-

HCl [pH 7.4], 150 mM NaCl, 1% (v/v) Triton X-100, 0.1% (v/v) SDS, 0.5% (v/v) DOC and 1 mM 

EDTA) containing a protease inhibitor cocktail (Sigma P8340), phosphatase inhibitor cocktails 1 

and 2 (Sigma-Aldrich P2850, P5726), and were cleared by centrifugation. Equivalent amounts of 

protein were processed to SDS-PAGE electrophoresis and transferred to nitrocellulose or PVDF 

membrane (Hybond-P, Amersham Biosciences). Immunoblotting was performed using the 

primary antibodies (anti-E-cadherin, anti-N-cadherin from BD Biosciences Pont de Claix, France; 
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anti-HSP90 (Cell Signalling), anti-vimentin (clone Vim13.2) was from Sigma-Aldrich (Lyon, 

France), anti-GAPDH from (Invitrogen). The blocked membranes were incubated overnight with 

primary antibodies, washed with TBST and incubated with secondary antibodies conjugated to 

horseradish peroxidase. Detection was achieved by using Enhanced chemiluminescence 

method (ECL Plus, GE Healthcare). 

 

Numerical Simulations using Cytosim Software 

Simulations were performed using the Cytosim software (www.cytosim.org). Microtubules are 

considered as elastic fibers surrounded by a viscous fluid following Langevin dynamics (Nedelec 

and Foethke, 2007). We simulated only microtubules nucleated from and anchored to a 

centrosomal complex. New nucleation of microtubules, microtubules unbinding from 

centrosome or steric interactions between microtubules are not taken into account. 

Microtubules can grow at a force-dependent speed (Dogterom, 1997), can undergo catastrophe 

events and shrink, and can undergo rescue events. Their bending elasticity is modelled 

following Euler's buckling description. Microtubules are initially uniformily distributedaround the 

centrosome and can freely rotate around it. They are constrained into a rectangular space with 

an Hookean rappel force and will push against this border but can glide freely along it. 

Cytoplasmic dyneins are modeled as immobile objects spread into the cellular space that can 

bind/unbind microtubules and move toward the MT minus end when bound, thus generating a 

pulling force on the centrosome. 

 

Main parameters: 

 
Name Value Description 

General   

Cell confinement 18 * 10 µm2 Rectangular space 

Cell viscosity 1 pN.s.µm-2 (Kimura and Onami, 2010) 

Simulated time 400 s  

Time step 0.05 s Compromise exactitute / simulation time 

Temperature 25°C Room temperature 

Centrosome   

Anchoring stiffness 500 pN/µm Stiffness of each MT minus_end anchoring to 

centrosmal complex 

Radius  0.5 µm ~ centrosome radius 

Microtubules MT   

MT segmentation 0.5 µm Compromise exactitude / simulation time 

MT persistence length 5200 µm (Gittes et al., 1993) 

Polymerization force 5 pN  (Dogterom, 1997)  
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Polymerisation (resp. 

shrinking) speed 

0.13 (resp. -0.27) 

µm.s-1 

(Burakov, 2003) 

Rescue rate 0.064 s-1 (Burakov, 2003) 

Catastrophe rate 0.01, 0.04 s-1 Free and stalled catastrophe rate, Janson 2003 

Initial MT length 0.75 µm (+-0.05) Initial length distribution of Mts around centrosome 

(mean and standard deviation) 

Dyneins   

Dynein stall force 1.1 pN (Soppina et al., 2009), (Gross et al., 2000) 

Dynein max speed  1.5 µm/s (Soppina et al., 2009), (Gross et al., 2000) 

Dynein stiffness 10 pN/µm Strength of dynein anchoring to their cytoplasmic 

position 

Binding rate 5 s-1 Binding rate of a free dynein within binding range of 

MT 

Binding range 0.1 µm Distance to MT from which dynein can bind it 

Unbinding rate 0.05 s-1 Unbinding rate of bound dynein 

Unbinding force 2 pN Opposite force that will make dynein unbind MT 

Dynein density ~1.5 dyn/µm2 Estimated in (Zhu et al., 2010) 

 

Statist ical Analysis 

Mann-Whitney non-parametric test was used to compare differences between the samples. 

Error bars indicate standard error mean (SEM). N indicates numbers of experiments while n 

indicates sample size. 
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Supplemental Figure Legends 
 

Figure S1. Two models of polarity changes during EMT progression  

Possible models for driving changes from epithelial (apico-basal) polarity to mesenchymal (front-

rear) polarity. Intermediate states involve either loss of polarity (top) or polarity reversal 

(bottom). Nuclei (dark blue), centrosome (red dot), basolateral (green) and apical membrane 

(red) are depicted. 

 

Figure S2. Molecular characterization of EMT induction in MCF10A, MDCK and 

NMuMG 

(A) Western blot of MCF10A cell lysate probed for E-cadherin, N-cadherin and loading control, 

HSP90 at different concentrations of TGF-β treatment over 3-5 days. 

(B) Quantitative-PCR to analyze mRNA expression of E-cadherin, Snail1 and vimentin for cells 

cultured in defined growth medium. 

(C) Images of MCF10A cells stained for E-cadherin, N-cadherin and F-actin before (CTR) and 

after TGF-β treatment. 

(D) Western blot of MDCK cell lysate probed for E-cadherin, vimentin and GAPDH loading 

control. 

(E) Quantitative-PCR to analyze mRNA expression of E-cadherin, Snail1, g-tubulin, vimentin 

using U6 as control mRNA of MDCK cells.  

(F) Images of MDCK acini immune-stained for Golgi apparatus (red), F-actin (green) and nuclei 

(blue) in control and HGF treated cells. 

(G) Western blot of NMuMG cells probed for E-cadherin, vimentin and loading control HSP90. 

(F) Quantitative-PCR to analyze mRNA expression of E-cadherin, Snail1, g-tubulin, vimentin 

using U6 as a control mRNA of NMuMG cells. 

 

Figure S3. Centrosome reposit ioning is associated with cell  scattering 

(A) Time-lapse sequence of control and TGF-β treated NMuMG cells on micro-patterned lines. 

Histograms show quantification of the proportion of cell separation in control and TGF-β treated 

cells for various cell types. Numbers indicate the number of cell division events measured 

before cell separation. 

(B) Images of fixed NMuMG cells stained for F-actin (green) and nucleus (blue) on 

micropatterned lines. Scale bar represent 30 μm. Histograms show the quantification of inter-

nuclear distance between two NMuMG, MCF10A and MDCK cells occupying the same 

micropatterned line 24 hours after cell plating.  

(C) Images of control and TGF-β treated MCF10A cells on micropatterned lines stained for g-

tubulin (white) and DNA (blue). Histogram shows the proportion of cells with polarity index 
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oriented toward CCJ in control and TGF-β treated cells. Scale bar represents 10 μm. 

 

Figure S4. Nucleus-centrosome reposit ioning in single and cell-doublets after 

EMT 

(A) Distribution of nucleus (blue) and centrosome (red) positions in MCF10A cell doublet spread 

on H-micropattern (grey). Histograms show quantification of nucleus and centrosome distance 

from cell center of mass (cell centroid) in control and TGFb treated cells. 

(B) Distribution of nucleus (blue) and centrosome (red) positions in single MCF10A cell spread 

on crossbow-micropattern (grey). Histograms show quantification of nucleus and centrosome 

distance from cell center of mass (cell centroid) in control and TGFb treated cells. 

(C) Horizontal histograms shows measurements of polarity index of control or HGF-treated 

MDCK cells after blebbistatin (BB) treatment. Vertical histograms show inter-nuclear (NN) and 

inter-centrosome (CC) distance within cell pairs after blebbistatin treatment (green). 

(D) Horizontal histograms shows measurements of polarity index of control or HGF-treated 

MDCK cells after Y-27632 treatment. Vertical histograms show inter-nuclear (NN) and inter-

centrosome (CC) distance within cell pairs after Y-27632 treatment (green). 

 

Figure S5. Effect of cell  spreading and different ECM proteins on cell  polarity 

(A) Quantification of the polarity index of cells spread on micropatterns of 1600μm2 (MCF10A), 

1100μm2 and 2200μm2 (MDCK) before and after EMT. 

(B) Effect of different ECM proteins coated on micropatterns on cell polarity in MCF10A, MDCK 

and EpH4. 

 

Movie S1. Movie showing control NMuMG cells migrating on line micropatterns of 10 μm 

thickenss. 

Movie S2. Movie showing TGF-β treated NMuMG cells migrating on line micropatterns of 10 

μm thickeness. 

Movie S3. Cytosim simulation showing 100 microtubules emanating from MTOC (yellow circle) 

and effect of their interaction with cell border and cytoplasmic dynein (green dots) on 

centrosome trajectory and final position. 

Movie S4. Cytosim simulation showing 250 microtubules emanating from MTOC (yellow circle) 

and effect of their interaction with cell border and cytoplasmic dynein (green dots) on 

centrosome trajectory and final position. 

Movie S5. TGF-β treated MCF10A cells with nucleus-centrosome axis toward CCJ are released 

from confinement by addition of BCN-RGD. 

Movie S6. TGF-β treated MCF10A cells with nucleus-centrosome axis toward CMA are 

released from confinement by addition of BCN-RGD 
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2.3 Short Q&A 
 

Q. Why are the cell culture mediums switched from Defined medium to Growth medium during 

EMT induction of MCF10A cells? 

A. Classical growth mediums contain 10% fetal bovine serum. The serum contains growth 

factors including TGF-β. Nanomolars of TGF-β concentrations in the serum can induce 

mesenchymal characteristics and initiate branching morphogenesis in 3-D cultures of mouse 

mammary gland (Montesano et al., 2007). Secondly, when cultured in GM, we had troubles to 

get reproducible results over independent experiments. So in order to restrain from the use of 

serum we adapted the defined  cell culture medium from Lonza. The cells did show 

reproducible polarity orientations over several experiments as compared to when they were 

cultured in growth medium. However, TGF-β treatment was not efficient in defined medium 

suggesting other growth factors in serum were required for TGF-β treatment. Hence we 

switched the medium during EMT induction. Please note that Lonza medium is not completely 

defined, as Pituitary gland extract from the kit, is not a defined component.  

 

Q. Why did we choose MCF10A as the main epithelial cell line model? 

A: MCF10A cells are of human origin and thus they were the first choice for development of the 

‘EMT kit’ (Chapter III), which was developed with the aim to screen anti-cancer drugs against 

human cancers.  Secondly, the cell line has normal chromosome number and is widely used as a 

model of mammary gland. We chose this cell line primarily to develop EMT kit for screening 

drugs against human cancers.  However, MCF10A cells show phenotype of basal (myoepithelial) 

cells as characterized by their cytokeratin expression. EpH4 (mouse origin) are clonally selected 

and thus would show lesser variation in phenotype. In addition EpH4 cells are very sensitive to 

TGF-β and thus would be more suited to study EMT. 

 

Q. Why different cell lines of mammary gland show difference in polarity behavior on different 

substrates? 

A: This was a genuine surprise to us in the beginning to observe drastically different polarity 

orientations of mammary gland cells, MCF10A, NMuMG and EpH4. One major difference could 

be the integrin expression of these cell lines. Secondly, the source of cell line generation can be 

heterogeneous. MCF10A and NMuMG cells are established from human and mouse tissue 

respectively but the cell population is not homogenous. While EpH4 clone we received from 

Priscilla soulie is selected for their ability to form 3-D cultures (Montesano et al., 1998) 

 
 



Chapter II 115 

2.4 Comments  
 
In the two projects (Chapter I and II) I studied different mechanisms that enable the cell to 

communicate and respond to the cues for undergoing transformations. I described the 

mechanisms by subdividing polarity into two groups, cortical and internal polarity. In this thesis I 

have emphasized on cell-cell adhesion that make up part of cortical polarity and their interaction 

with internal polarity cues. However, another important element of cortical polarity is Cell-Matrix 

adhesion and the discussion of thesis will be incomplete without describing how cell adhesions 

formed with extra-cellular matrix affects internal polarity and direct tissue formation.  

 

Microtubule and Cell-Matrix adhesion interaction for polarity establishment 
 

In the physiological environment, cells of the tissue are in contact with the basement membrane 

and extracellular matrix (ECM). Cells can sense and modify the chemical composition, assembly, 

stiffness and other mechanical properties of ECM. This can be mediated by interaction of cells 

with their ECM through various receptors, such as integrins, dystroglycan and proteoglycan. 

Massive changes of tissue microenvironment including changes in deposition, degradation and 

structural organization of ECM components provide cues for cell survival, proliferation, 

migration, differentiation and polarization during normal development as well as at the onset of 

cancer. As we saw in Chapter II, Figure 2.1 that mere change of ECM matrix from collagen to 

reconstituted basement membrane was sufficient to invert the acini organization (Gudjonsson et 

al., 2002). Also a complete polarity inversion of the nucleus-centrosome axis by merely changing 

matrix stiffness clearly suggested that CMA provides vital cues for orientation of internal cell 

polarity (Figure 3, Burute et al.,).  

 

Microtubule organization is crucial link between cell internal components and cell cortex. 

Microtubules are involved in orientation of centrosome, nucleus, golgi, directed trafficking as 

well as formation and maturation of CCA and CMA, actin polymerization and contractility. MTs 

also interact with the third major cytoskeleton component, intermediate filaments. Thus MTs 

interact with all the major cellular components and are essential for polarity program. Hence it is 

not surprising to see that CMA also communicates with MTs for polarity guidance. However, the 

molecular players that mediate CMA-MT interaction remain mostly elusive. A study from Akhtar 

and Streuli showed that during mammary gland development, integrin linked kinase (ILK) is 

required for generating polarized microtubules array (minus end toward basolateral surface) in 

apical-basal direction, which are responsible for targeting apical complex proteins to the apical 

side of the acini. Orientation of microtubules is likely to be driven by EB1 capture and 

microtubule anchorage at the Integrins (Akhtar and Streuli, 2013). This study shows an exclusion 
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mechanism by which apical surface protein, which are at the basement membrane are 

selectively transported to apical surface. Similar exclusion mechanism of apical markers from 

basal surface is observed in MDCK cells while forming 3D acini. At the initial stages, cells have 

apical plasma membrane protein Podocalyxin/gp135 decorating entire cell surface. Deposition 

of β1-integrin signaling initiated phosphorylation cascade by RhoA, which removes gp135 from 

basal surface and trancytoses it to the opposite end where lumen formation begins (Bryant et 

al., 2014). The authors argue that MDCK acini formation although involves exclusion mechanism 

like in mammary gland acini formation, the process is not mediated by microtubules and thus 

tissue-type differences in polarization mechanism may therefore exist. Notably, mammary gland 

and kidney have different germ layer origins. Mammary gland is derived from ectoderm while 

kidney is a result of mesoderm. Hence the kidney cells have undergone EMT during gastrulation 

and formed the organ by reverse process of MET. Thus it is possible that mesoderm-derived 

tissues retain the feature of mesenchyme-origins involving contractility based mechanisms. 

Surprisingly, in our study we also observed that contractility inhibition of HGF-induced MDCK 

cells reversed the polarity to epithelial-like phenotype while polarity of MCF10A cells was not 

altered by contractility inhibition (Figure s4). These results support the hypothesis that 

mesoderm and ectoderm derived tissues could employ different polarization mechanisms.  

 

Link between Actin and Microtubule network 
A very interesting report by Joo and Yamada revealed a missing link between microtubule and 

contractility involved in morphogenesis. Using a branching morphogenesis model of 

submandibular gland mice tissue, authors demonstrated that Myosin phosphatase 1 acts as 

intermediate link for microtubule acetylation and myosin light chain phosphorylation in a 

competitive manner. Acetylated microtubules enhance α5β1 recycling and decrease cell 

migration and thus inhibit branching morphogenesis. An increase of contractility can 

counterbalance this phenotype. Thus, cellular contractility is inversely regulated by microtubule 

acetylation through myosin phosphatase and HDAC6 (Histone Deacetylase-6) (Joo and Yamada, 

2014). Previously, the actin-microtubule crosstalk was mainly described by 

polymerization/depolymerization via availability of signaling components such as Rac1 and Rho-

A GTPases, their regulators, GEFs and GAPs (Etienne-Manneville and Hall, 2002; Rodriguez et 

al., 2003). This study by Yamada group provided the evidence for post-polymerization crosstalk 

between actin and microtubules. Another study by Deakin and colleagues reported that HDAC6 

inhibition by paxillin is responsible for microtubule acetylation and golgi organization.  The 

outcome of this interaction affects final cell migration and invasive capacity (Deakin and Turner, 

2014). Traditionally, HDAC6 was known as a chromatin modifier and now with its role in 

cytoskeleton reorganization further dominates its importance for cancer therapeutics. 
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Control of the cell architecture by photoactivation technology 
In our system of MCF10A cell doublets we did not observe any clear difference in polarity upon 

inhibition of HDAC6 by tubacin or pan-HDAC inhibitor Trichostatin A. However, this does not 

rule out the possibility of microtubule acetylation playing an active role in centrosome position. 

The cytoskeleton inhibitor approach is powerful to answer some key question such as whether 

global contractility affects organization of acini. Acetylated tubulin staining in MCF10A epithelial 

doublets was preferentially located close to cell-cell junction (Figure 2.3A). Thus there is a 

possibility that selective acetylated tubulin at the cell-cell junction could affect centrosome 

position by changing mechanical force transmitted to the centrosome or by molecular motors 

selectively interacting with acetylated tubulin. Global inhibition of HDAC6 acetylates majority of 

the microtubules in the cell, which abolishes local asymmetry of forces that could be involved in 

affecting centrosome position and thus we do not see any net effective change. Similar 

limitation was faced with Myosin II isoform repartition within the cell after EMT induction. We 

observed local differences in Myosin IIA and IIB decoration within cells, which is important for 

invasiveness of cells after TGF-β treatment (Figure 2.3B) (Beach et al., 2011). It is possible that 

balance between inter- and intracellular forces which we saw (Figure 6, Burute et al.,) after EMT 

could be result of difference in local contractility guided by different myosin isoforms. Inhibition 

of overall contractility by chemical inhibition like Blebbistatin or siRNA knockdown masks the 

effect of local changes. Recent advances in light-induced recruitment of molecular motors or 

activation of small GTPase have provided tools to answer these types of questions (van Bergeijk 

et al., 2015).  Proteins that change conformation in response to light can be adapted to regulate 

a wide array of activities of genes, proteins, protein-complexes and sub-cellular organelle 

positioning (Tischer and Weiner, 2014). Light-oxygen-voltage-sensitive domains isolated from 

several organisms are sensitive to blue light (440-473nm) and are successfully used as 

optogenetic tools (Figure 2.4A). For example, a cell line expressing photosensitive LOV peptide 

linked to tubulin acetyltransferase (TAT1) and complementary ePDZ linked to E-cadherin can be 

used to activate the TAT1 recruitment specifically to E-cadherin, whose expression in epithelial 

cell is enriched at the cell-cell junction (Figure 2.4A). Selective recruitment of TAT1 close to the 

CCA would acetylate microtubules that are close to the CCA and thus its subsequent effect on 

centrosome position can be studied. On the other hand, Rab11 recycling endosomes localize to 

pericentriolar material via microtubule-dependent transport. During interphase, Rab11 localizes 

to the mother centriole and proteins associated with the mother centriole regulate Rab11 

localization and their activity (Hehnly et al., 2012). In addition, during mitosis, dynein dependent 

Rab11 endosome localization to spindle pole increases γ-tubulin and astral microtubules(Hehnly 

and Doxsey,  2014). Thus photo-activation of dynein-mediated transport of Rab11 can increase 

MT nucleation at the centrosome while kinesin-mediated transport would decrease MT 

nucleation at the centrosome (Figure 2.4B). Kinesin-mediated activation is also likely to increase 
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γ-tubulin localization at CCJ where +tip of MTs are anchored (Figure 2.4B). Temporal and 

spatial control of organelle positioning using light-controlled activation technology holds a 

great promise incoming years to reveal cellular architecture.  

 

 

 Dialogue between Cell-Matrix adhesion and centrosome 
 

In chapter I discussion, I described the cell-cell junction molecules which are found at the 

centrosome and have a regulatory function.   Similarly focal-adhesion proteins; Paxillin is also 

found at the centrosome (Herreros et al., 2000; Robertson and Ostergaard, 2011). Paxillin is a 

multidomain adapter protein and is enriched at integrin-focal adhesion but also present in 

cytosol and can be membrane-associated. Paxillin is associated with the α-tubulin network and 

also present at the immune synapse of T-lymphocyte, which do not form focal-adhesions. 

Tyrosin phosphorylated Paxillin in T cells is recruited to MTOC and responds to ERK signaling 

upon TCR stimulation. It is constitutively localized at the MTOC upon engagement of CTL with 

the target cell and helps orientation of MTOC in the direction of immune synapse so that 

supramolecular activation complex (SMAC) could be released precisely at the target cells for its 

destruction (Robertson and Ostergaard, 2011). In adherent cell lines, where integrins are 

involved in formation of focal adhesion, they can regulate microtubule nucleation at the 

centrosome. Inhibition of signaling through cytoplasmic tail of β1-integrin reduced microtubule 

nucleation at the centrosome and it is controlled by MEK/ERK signaling pathway probably by 

affecting γ -tubulin accumulation (Colello et al., 2012).  In our study we saw that EMT induced 

mesenchymal cells had reduced microtubule nucleation capacity along with reduction of γ -

tubulin accumulation at the centrosome. Hence within the context of EMT, it will important to 

understand how different pathways such as Smad, MEK, Ras etc. affect MTOC activity of the 

centrosome and thereby affect the polarity reversal and cell-separation. Another study by the 

same group revealed that these cells with non-functional β1-integrin tail also forms multipolar 

spindles and have cytokinetic failure (Reverte et al., 2006). Furthermore, β1 integrin null mice 

have severely fragmented centrosomes, which affects polarization of cells during wound healing 

response. Inhibition β1-integrin function by blocking antibody also perturbed centrosome 

integrity in Brain, muscle and skin cells dissociated from 18 day embryonic chick thus suggesting 

the integrin regulation of centrosome integrity is not tissue-specific (Peng et al., 2013). These 

evidences are very important to realize multifaceted role of centrosome during interphase and 

during cell division. As described in chapter I, defects in centrosome morphology is associated 

with errors in chromosome segregation and aneuploidy. Focal adhesion proteins could affect 

the centrosome integrity by signaling molecules activated at the cytoplasmic integrin tails or by 

selective transport of molecules via FA-associated MTs to the centrosome. It will be important 
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to validate whether inhibition of β1-integrin function during EMT directly affects MTOC activity 

of the centrosome which can give a clue about mechanisms that control centrosome 

composition and microtubule nucleating activity (Figure 4 Burute et al). 
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3.1 Introduction 
 

Need for developing a new assay to detect EMT 
 

The ‘War on Cancer’ was declared in 1971 that led to National Cancer Act (1971) because of 

the lack of cures for cancer malignancies. Metastasis, which is the spread of cancer cells from 

site of origin to other parts of the body accounts for 90% of deaths in cancer patients (Cavallo 

et al., 2011; Nixon and Act, 1973). Tumor metastasis is a multistep process in which tumor cells 

disseminate into surrounding tissue and form secondary tumors at a distance site. Metastasis 

occurs through a series of steps: invasion, intravasation, transport, extravasation and 

colonization. Metastasis of primary tumor is associated with secretion of cytokines, growth 

factors and metalloproteases (MMPs) in the surrounding tissue. Epithelial to mesenchymal 

transition is thought to play a critical role in promoting metastasis in epithelium-derived 

carcinoma (Kalluri and Weinberg, 2009; Tsai and Yang, 2013). 

The process of EMT was originally described in the context of normal cell differentiation during 

developmental processes (Hay, 1995; Thiery, 2002). Mesenchymal cell dissociation is observed 

at early stages of vertebrate gastrulation, neural plate formation, branching morphogenesis of 

mammary gland (Micalizzi Neoplasia 2010). For more than a decade EMT has been proposed 

as a potential mechanism for cancer progression (Thiery, 2002). Cancer patients have higher 

levels of growth factors such as Insulin-growth factor (IGF-1), Transforming growth factor (TGF-

β), Epidermal growth factor (EGF) and Hepatocyte growth factor (HGF) in the blood, which are 

also the key drivers of EMT during development (Huang et al., 2012). Despite the vast available 

knowledge on EMT and cancer, the discovery of anticancer drugs remains a highly challenging 

endeavor. A typical drug development program requires progressive selection of drugs 

depending upon their anticancer activity (Figure 3.1A). In the 1930s, the drug developmental 

programs were small scale and based on rational selection of chemical compounds (up to 10-

1000). These early strategies of drug screening were mostly focused on the end point 

phenotype of cancer. For example, inhibition of cell migration by targeting matrix 

metalloproteases (MMPs). With the mounting knowledge of the active role of EMT in cancer 

progression, new strategies for cancer drug screening are being based on exploiting the anti-

EMT activity of chemical compounds. EMT induction elicits the action of several downstream 

molecular pathways, wherein subcellular changes occur at the level of transcription, post-

translational and cytoskeleton level. The effect of EMT inducers can be observed starting from 

5 minutes with protein phosphorylation to changes in proteome profile over days (J. D’Souza 

et al., 2014). To comprehend these molecular complexities a range of drug screening 

strategies are employed (Figure 3.1B). Beginning with rational design where the highest 
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degree of knowledge of inhibitors is required to high-throughput screening (HTS) where up to 

a million compounds can be screened per week with minimum knowledge of inhibitors 

required (Hoelder et al., 2012). Another advantage of HTS is that it is a relatively unbiased 

approach and can identify compounds with novel modes of action. Immortalized cell lines are 

commonly used in cell-based drug screening assays because of their controlled growth 

behavior, ease of handling, low maintenance costs and ability to divide in culture forever. Thus, 

the combination of HTS using cell-based arrays provides a promising approach for testing 

large-scale compound libraries comprising hundreds of thousands of molecules. High content 

screening (HCS) combines HTS with the power of cell imaging. Complex cellular behavior can 

be studied at a phenotypic level using the advances provided by fluorescent probes and high-

throughput microscopy (Zanella et al., 2010). 

 Current cell based screening assays used for cancer drug screening are based on detecting 

molecular changes of EMT-induced cells such as vimentin expression, E-cadherin reduction, 

increase of smooth-muscle actin (SMA) along with changes in cell morphology such as weak 

cell-cell junctions and cell migration ability. Quantification of the extent of cell dispersion upon 

addition of an EMT-inducer is termed a ‘Cell scattering assay’ and this specific assay is widely 

used in the pharmaceutical industry (Graham et al., 2008). Standardization of cell seeding 

methods and quantification of different morphological parameters such as cell dispersion index 

and loss of cell adhesion provide a promising assay that can be used for HCS (Chua et al., 

2012; Loerke et al., 2012). Having said that, the inherent sensitivity of cell behavior to different 

experimental assay parameters poses problems for achieving reproducible behavior of cells. 

For example, rate of cell growth, E-cadherin expression and strength of cell-cell junctions can 

vary depending upon the density of cell seeding. Even automation of cell seeding can still 

result in variable cell island densities used in cell scattering assays (Cichon et al., 2015). In 

addition, several studies aimed at generating a HCS EMT assay, selected well-established but 

rather specific model systems (MDCK and DU-145 cell lines stimulated by HGF or a single cell 

line induced to undergo EMT initiated by different growth factors) which does not promise 

whether the assay could be adapted to other different cell lines and/or EMT inducers (Chua et 

al., 2012; Loerke et al., 2012). 

Previously in Chapter II we saw that two different cell lines (NMuMG, EPH4) originated from 

mouse showed different sensitivity and polarity markers in response to TGF-β (Figure 3, Burute 

et al,). Use of different methods to generate cell lines from human tissues and lack of clonal 

selection pose severe questions about homogeneity of model cell lines and is probably part of 

the reason for non-reproducible behavior of cell lines. In addition, EMT is considered as a 

Abbreviations: EMT: Epithelial to Mesenchymal Transition, HCS: High Content Screening, HTS: 

High Throughput screening 
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multi-cellular phenomenon and the majority of methods employed for developing drug 

screening assays have involved multi-cellular structures. Previously, we could recapitulate 

important aspects of epithelial polarity using a minimal-tissue model of two cells (Chapter II) 

and it seemed likely that a similar model could be used to develop a robust assay to detect 

EMT. As I was working in an academic lab of Manuel Thery at CEA and partly at CYTOO, it was 

ideal for me to exploit the ideas and assays developed in the lab and assess them for their 

utility as an EMT assay and a future marketable product in the form of a kit. The use of 

micropattern arrays on a chip had already demonstrated advantages for automated 

quantification, which was the critical need for developing an assay for industrial use (Degot et 

al., 2010). Thus, to circumvent problems faced by the classical scattering assay, we decided to 

develop an EMT assay using micropattern geometries and a minimal-model of tissue 

comprised of two cells. In addition, CYTOO as a start-up company has the main goal of 

developing cell-based assays compatible with High Content Screening (HCS). The EMT assay 

development task was part of a bigger project called Evolved Tissue Inspired Cell System 

(ETICS) funded by Bpifrance (Banque Publique d’Investissement). Guidance from Joanne 

Young and Sebastien Dêgot at CYTOO helped me to understand critical considerations for a 

developing an assay for the industrial screening purpose. The main consideration of 

developing the assay was to choose the suitable parameter, which is simple to quantify and 

represents general phenotype of the EMT. Earlier in Chapter II, we had observed occurrence of 

polarity reversal upon EMT induction by centrosome repositioning that precedes cell 

separation. There was a possibility to directly use nucleus-centrosome vector (NC axis) 

orientation as a parameter to detect EMT, although we had seen that NC axis orientation was 

sensitive to matrix rigidity in EpH4 and NMuMG cell lines (Figure 3, Chapter II). In addition, NC 

axis determination would have required centrosome detection, which limits the use of lower 

magnification (below 40x) objectives because of its small size (about 0.6 µm radius with γ-

tubulin label).  Interestingly, we had observed reproducible cell-cell junction destabilization 

upon EMT induction as well during centrosome amplification (Chapter I&II) and there was a 

possibility of using orientation of nucleus-nucleus axis within a cell pair spread on bow-tie 

micropattern as indicator of EMT. However, cell-cell junction destabilization is an early event 

during EMT progression, which is followed by cell separation of mesenchymal cells. Thus 

instead of using early markers of EMT induction such as NC vector and NN axis orientation, we 

decided to choose a parameter, which directly represents EMT cell scattering phenotype.  Thus 

we designed the EMT detection assay to avoid inherent limitations of classical cell scattering 

assay in addition to allow automated high throughput imaging and analysis.  
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3.2 Experimental Methods 
Cell Culture and EMT Induction 

 

Michigan Cancer foundation  (MCF10A) human mammary gland cells (ATCC #CRL-10317) were 

maintained at 37°C at 5% CO2 in Lonza Mammary Epithelial Growth Medium (Lonza MEGM 

bullet kit #CC3150 without Gentamycin) in the presence of 100 ng/ml of cholera toxin (Sigma 

#C-8052) and 0.5% antibiotic-antimycotic (Life Technologies #15240062). Cells were harvested 

by TrypLE™ (Life technologies #12605036) treatment for 12 min. An equal volume of soybean 

defined trypsin inhibitor (Life Technologies #R007100) was added followed by centrifugation at 

200xg for 4 min. Cells were subcultivated in ratios less than 1:5 to maintain a stable epithelial 

phenotype.  Medium was renewed every 2-3 days. 8000 cells/cm2 were treated with 5 ng/ml 

TGF-β1 (R&D systems #240-B-002) in complete medium containing DMEM/F12 (Life 

Technologies #31331093), 5% horse serum (Gibco #16050-122), 25 ng/ml EGF (Peprotech 

TEBU #100-15), 100 ng/ml of cholera toxin, 10 µg/ml insulin (Sigma #I-1882), 500 ng/ml 

hydrocortisone (Sigma #H-0888), 0.5% antibiotic-antimycotic. Cells were passaged after 3 days 

and cultured for another 2 days in the presence of TGF-β. At the end of 5 days, cells were 

harvested for further experiments. Madin Darby Canine Kidney (MDCK) cells were maintained 

in DMEM-High glucose (Life Technologies #31966047) containing 10% fetal bovine serum 

(Invitrogen). EMT was induced by addition of 10ng/ml Hepatocyte Growth factor (Gibco 

#PHGO254) or 5ng/ml TGF-β for different durations ranging from 1 h to 3 days.  

 

 

Micropattern Fabrication and Cell Seeding 

 

Fabrication of micropatterns on glass 

 

A glass plate 10x10 cm (Schott #1304369) was cleaned using an air pistol and the surface of 

the glass plate was coated with adhesion promoter, TI Prime (Microchemicals) using a spin-

coater (Laurell #WS-650m2-23NPPB) at 3000 rpm for 30s. The glass plate was baked at 120°C 

for 2 min on a hot plate. The glass plate was then coated with 1% solution of polystyrene (MW 

260,000 Acros Organic # 178891000) in toluene (Sigma #179418) using a spin-coater at 1000 

rpm. The polystyrene layer was further oxidized with an air plasma treatment (Plasma Etch #PE-

30) for 20 s at 30W under vacuum at a 10 cc/min flow rate of air and incubated with Poly-l-

Lysine-Polyethylenglycol (PLL(20)-g[3.5]-PEG(2) SurfaceSolutionS, Switzerland) in 10mM HEPES, 

pH 7.4 at room temperature for 30 min. PLL-PEG coated slides were placed in contact with an 

optical mask (Toppan Photomask) containing the transparent micropatterns using a vacuum 

chamber, then exposed to deep UV light using UVO cleaner (Model No. 342A-220, Jelight, 
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USA) for 4 min at power 6mW/cm2, λ 190nm at a distance of 1cm from the lamp. 

Micropatterned slides were subsequently incubated with a PBS solution containing 20 µg/mL 

fibronectin (Sigma #F1141) or laminin (Sigma #L2020) or collagen (Life Technologies, 

#A1048301) along with 20 µg/mL Alexa 647-fibrinogen (Gibco #F135200) for 30 min followed 

by 3 washes of PBS. Coverslips were dried and then rinsed in sterile PBS before cell seeding. 

 

Fabrication of micropatterns in 96 well plate format 

The micropatterns and protein coating in 96 well plates were manufactured by CYTOO.  

 

Cell seeding on coverslips 

 

Approximately 0.5 million cells were seeded onto micropatterned chips of 20x20 mm size and 

non-adhered cells were washed off after 30 min, which almost always resulted in single cell 

attachment per micropattern. Cells were allowed to divide over 24 h prior to fixation. 

 

 

Cell seeding in 96-well plates 

 

Wells were prefilled with 50 µl of cell culture medium using a multichannel pipette. Cells were 

trypsinized and resuspended to 40,000 cells/ml. Fifty µl of volume was seeded in each well and 

cells were fixed after 24 hours.  

 

 

Chemical Treatments 

 

Smad pathway inhibitor SB431542 and MAPK pathway inhibitor (U0126) was added to 

NMuMG and MCF10A cells respectively along with TGF-β (Selleckchem #S1067) to 10 µM 

concentration for 5 days. DMSO vehicle was added to control samples at 0.05%. 

 

Indirect Immunofluorescence 

 

Cells plated on glass coverslips were fixed with 4% parafomaldehyde in Cytoskeleton buffer (10 

mM HEPES pH 6.1, 138 mM KCl, 3 mM MgCl2, 2 mM EGTA) containing 0.01% Triton-X100 for 

15 min. Autofluorescence was quenched by treatment with 1 mg/ml sodium borohydrate in 

PBS for 7 min. For centrosome staining, cells were fixed with ice-cold methanol at -20°C for 5 

min. Actin was stained using Alexa-488 Phalloidin (Molecular Probes #A12379 1:300 dilution in 
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PBS) for 30 min at RT. DNA was stained with DAPI (1:5000, Sigma #D9542) for 2 min in PBS. 

Coverslips were mounted with Mowiol 4-88 (Sigma #81381). 

 

Cell  Scattering assay (Figure 4.3A) 

 

20,000 MCF10A cells were seeded on 20X20mm glass coverslip in Defined medium (referred 

above) Cells were allowed to grow for 3 days so that isolated colonies of cells were formed. 

Coverslips were mounted onto Chamlide chambers. TGF-β was added to 5 ng/ml in one 

chamber in DMEM complete medium. The other chamber was used as a control. Images were 

acquired from both the coverslips simultaneously using a dual chamber holder on a Nikon 

Spinning disk microscope. Images were acquired in transmitted light at 30 minute intervals 

using 10x phase contrast objective. Cells were images for 20 h. Positions of cells in a colony 

were manually selected and added to a ROI manager. Using a macro and formula indicated on 

Figure 4.3A, the scatter factor for each colony was computed. 

 

Microscopy and Image Analysis 

 

Fixed and fluorescently labeled cells were imaged using an epi-fluorescence Olympus 

microscope (up-right BX61) with 40x objective. Stacks of images spanning 10 µm z-distance 

were acquired. Image analysis for internuclear distance was performed using a series of Macros 

in Image J. Briefly; z-projection of each color channel was obtained using 'maximum z-

projection' plugin followed by merging the 2 channels to obtain a composite image. Using a 

macro with inputs from the User a standard sized rectangle was placed around micropattern 

with two visible nuclei in DAPI channel. A hyper-stack of selected images with only two nuclei 

on single micropattern was created. Nuclei were detected using image thresholding and object 

size criteria. Internuclear distance was calculated using co-ordinates of center of mass of two 

nuclei.  

 

Statist ical Analysis 

 

Mann-Whitney non-parametric test was used to compare differences between the samples. 

Error bars indicate standard error mean (SEM). n indicates sample size. For classical scattering 

assay in figure 4.6 A, the fraction of single cells against the total number of cells in the field of 

view were plotted. Positive hits are any siRNAs that caused all three experiments to fall above 

the 95% confidence interval for the line describing the behavior of the cells transfected with 

the non-targeting control smart pool. Knockdown of the positive control, CTNND1, caused all 

points to fall above this line. 
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3.3 Results 
Definition of the Benchmark and the application workflow 
As a first step in defining goals for development of a product, CYTOO performed a 

market survey for evaluating the demand and criteria necessary for a cell-based assay 

that can be used for screening anti-cancer drugs within the context of EMT. 

Pharmaceutical companies were currently using the ‘classical scattering assay’, which 

quantifies the dispersion of cell islands in response to EMT inducers (Figure 3.2 A). This 

assay provided advantages of allowing direct use of market available 96-well plates for 

seeding the cells. Ability of anti-cancer drugs to inhibit cell dispersion could be easily 

scored using this set up. However, one of the major disadvantages of this system was 

the variability of the initial cell island size that formed. The cell density is a crucial 

parameter and it affects several cellular processes including cell proliferation, cell 

migration and expression of epithelial markers (Cichon et al., 2015; Varelas et al., 

2010). The image analysis of cell groups is complex since it requires development of 

algorithms suitable for detecting individual cells with the cell-cluster. In addition, on 2D 

surfaces, cells from different islands on same the coverslip/well can mix because of cell 

migration after EMT induction and pose a trouble in correctly identifying cells that 

belong to the initial island of cells.  

The market survey by CYTOO in 2011 revealed that a new assay that takes into 

account the above deficiencies was highly desired by pharmaceutical companies for 

testing anti-cancer drug libraries. They were also favorable to the idea of using a 

complete “EMT kit” that would include all the necessary components for performing 

the assay. We thus aimed to design and produce a cell-based assay with a minimal 

tissue model for detection of EMT inhibitors in the form of a product to be sold as a 

kit. The minimal model of tissue comprised of two cells recapitulates tissue polarity and 

cell dispersion behavior of cells in the process of EMT (Chapter I and II). 

 

The key steps for designing the ‘EMT kit’ were defined as below,  

• Definition of the Benchmark- Classical scattering assay  

• Final Readout- Inter-nuclear distance between cell doublets 

• Contents of the ‘EMT kit’ - Protocol and assay to detect cell scattering in 96-

well format and Image analysis software for calculating the readout 
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Assessment of the assay readout 
First, micropatterns of different lengths were fabricated on 20X20 mm glass coverslip using a 

photomask. Initially, we tested 3 different epithelial cell lines (MCF10A, NMuMG and MDCK) 

for their ability to scatter upon EMT induction in response to TGF-β and HGF. Cells were 

seeded onto these chips and 24 hours later cells were fixed and labeled for F-actin and nuclei. 

EMT induction clearly increased cell separation in all the three cell lines suggesting that the cell 

dispersion criteria as a readout was very versatile (Figure 3.3 A-D). To test whether the 

increased cell separation between the cell pairs was an EMT specific effect, we used inhibitors 

against different EMT pathways (Figure 3.2 B). Inhibition of Smad pathway by SB154342 in 

NMuMG cells clearly restored cell separation between TGF-β treated cells (Figure 3.3 A-B, 

Figure 3.4 A). Similarly inhibition of MAPK pathway by U0126 restored cell separation of 

MCF10A cells subjected to TGF-β stimulation of EMT. These results confirmed that EMT and 

inhibition of EMT could be successfully detected using cell-pairs spread onto a single 

micropattern. On the contrary, the classical scattering assay, which was performed by scoring 

dispersion of MCF10A colonies in response to TGF-β, did not reveal significant cell separation, 

mostly because of the variability in cell dispersion within different colonies (Figure 3.4 B). The 

new EMT assay was further validated in the absence of inducing EMT by using an siRNA 

against Catenin delta 1 (CTNND1), a protein important for cell-cell adhesion formation. 

Inhibition of CTNND1 in MCF10A cells caused an increase in cell-cell separation within cell 

doublets on micropatterns (Figure 3.4 C). 

 

 

Development of the EMT assay 

We chose 300X10 μm patterns for developing the final ‘EMT kit’ as with 200X10 μm 

micropatterns, EMT inhibitor action on TGF-β treated NMuMG cells did not reduce cell 

scattering compared to control samples treated with SB431542 (Figure 3.3 B). On 400X10 μm 

micropatterns, MDCK cells did not show a significant change in cell dispersion upon HGF 

treatment. Hence, we chose 300X10 μm patterns for the assay in 96 well plate format in order 

to accommodate all the cell lines with a single design. The design of the final ‘EMT kit’ in 

CYTOOplates is shown (Figure 3.5 A). Each well contains about 600 micropatterns of length 

300X10 μm. The patterns are fluorescently labeled in order to be able to detect and exploit 

them during image analysis (Figure 3.5 B). The images are acquired at 10x magnification and 

stitched together to obtain an image of the whole well. On the left, the zoomed image shows 

cells that are spread on the micropatterns (red) and are labeled for actin (green) and DAPI 

(blue). Several micropatterns covered with only two cells can be seen (Figure 3.5 B). 
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EMT assay validation by performing a small siRNA screen 
To validate the final EMT kit and tools developed, we approached Lisa Gallegos from 

Joan Brugge’s lab at Harvard medical school who performed a primary screen of 20 

siRNA candidates against cell adhesion molecules. The screen was performed in 

CYTOOplates containing the 300X10µm micropattern and using siRNA treated 

MCF10A cells. In parallel, the effect of these siRNAs were tested using the ‘classical 

scattering assay’ (Figure 4.6 A). Knockdown of CTNND1 was used as a positive control 

for the siRNA screen. The dispersion of cells in response to candidate siRNAs was 

assessed using non-targeting siRNA pool (NTP) as a reference (Figure 4.6 B). 

Comparison of both the screens revealed that 45% (9/20) of the 20 siRNAs showed a 

similar capacity to affect cell-cell cohesion (eg. PKP4, IMPDH2). Thirty five percent 

(7/20) showed a similar trend of cell separation in both assays but the difference 

compared to the reference siRNAs were not statistically significant. Twenty percent 

(4/20) of the candidates did not correlate at all (Figure 4.6 C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter III 147 

3.4 Comments 
 

The new EMT assay is simple and versatile 
Large scale screening of drug libraries requires a robust and simple cell based assay. 

We have developed the new EMT kit that includes an assay using micropattern 

geometries and a minimal cell model system. Use of a low number of cells during 

seeding avoids the variability generated because of various cell arrangements and 

different physiological behavior within group of cells typically observed in the 

conventional ‘cell scattering assay’. We showed that the assay was sensitive enough to 

detect EMT behavior in three different cell epithelial cells lines and two different EMT 

inducers. The assay also allowed successful assessment of EMT inhibitor action. In 

addition, estimation of the internuclear distance, which is the final readout of the assay, 

is simple and universal. Furthermore, the EMT kit can also be adapted for screening 

siRNAs libraries. 

 

High content screening with the new EMT assay 
Most industrial-scale cellular screens prefer the use of fluorescence detection for high 

content screening. The new EMT kit in the format of 96-well plates, provides the 

possibility to use high-throughput anti-cancer drug or siRNA screening by observing 

phenotypic changes in the ability of cells to scatter. The assay readout requires only a 

single picture at the end of the assay with a low magnification objective (10x), which 

can possibly be further reduced down to 4x as the detection of fluorescently labeled 

nuclei is particularly robust. The EMT assay can be readily adapted to HCS bioimaging 

platforms, such “Cellomics” by Thermo-scientific or “Opera” from PerkinElmer. Low 

sample size (up to 100 cell-pairs) is sufficient to detect changes in internuclear distance 

between different treatments. This sample size is 6x less than the number of 300x10 

µm micropatterns in a single well (about 600). Thus, data generation could be reduced 

to the size of a single 96-well, which ensures use of low amounts of library compounds. 

This feature of low sample size requirement may be further exploited in 384 well 

format allowing higher throughput. An siRNA screen performed using the EMT kit 

validated some of the main EMT candidates, thus there is a possibility of adapting this 

assay for screening large-scale siRNA libraries.  
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The assay works on a short-time scale 
The assay window is 24 hours as it relies on formation of cell doublets by one round of 

cell division. In our previous study where we looked at the time course of EMT 

induction for polarity reversal (Figure 2, Burute et al,), we saw that polarity reversal 

could manifest starting from 4 hours after addition of EMT inducer. Hence, although 

conventional EMT treatments extend over days, which cannot be directly tested using 

this EMT assay, the assay allows detection of early changes in EMT induction. Thus the 

EMT assay can be used as an early sensitive marker of EMT and can be useful for 

academic investigation of early EMT changes. The major advantage of the short-time 

scale assay is that one assay can be completed within 24 hours and thus several rounds 

of screening can be performed per week while with the conventional assay, typically 3-

5 days are required to complete one assay. 

 

Shortcomings of the new EMT assay 
The main disadvantage of the new EMT assay is that it requires custom designed 

plates with micropattern geometries. Currently to my knowledge, only CYTOO 

provides these custom designed plates, which can pose a limitation for pharmaceutical 

companies in terms of a lack of alternatives for purchasing and no competition for 

pricing. Secondly, the short assay window can detect only early changes of EMT 

inducers and EMT inhibitors. Also, the 5 days of EMT induction or the siRNA 

treatments, which require 48 hours for knockdown of proteins, cannot be directly 

performed in the CYTOOplates with this short-term assay. This requires an additional 

step of pre-treatment of cells in larger cultivation vessels. Similar pre-treatment step in 

a larger cultivation vessel will be required for anti-cancer compounds (EMT blockers or 

reversers) whose mode of action requires more than 24 hours. Unfortunately, this step 

is difficult to perform in a high throughput setting when working with hundreds of 

precious compounds available in minute quantities, and represents a blocking point 

that will limit adoption of the assay by industrials. Possibly, the assay can be marketed 

instead as a downstream secondary assay with the aim of confirming a handful of 

selected hits rather than primary identification of candidate compounds. 
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Future directions 
The EMT assay has not been yet tested for its robustness which is determined by 

standard Z’ factor to estimate variation of the parameter measured in about 50 

replicates. Estimation of Z’ is a crucial step before the assay can be adapted for HCS. 

In addition, the EMT assay has not yet validated using bioimaging platforms for HCS. It 

still requires optimization of image processing mainly for micropattern detection and 

nuclei detection. Although our preliminary screen with siRNA successfully validated 

some of the main EMT candidates, additional preliminary screening with 20-50 anti-

cancer drugs will be required for final validation of the kit performance and 

determination of false positive and false negative identification rates. These 2 

consequential steps will be essential before CYTOO can approach pharmaceutical 

companies to convince them to apply their library screens using the new ‘EMT kit’. 

 

To summarize, we successfully developed a proof-of-concept of the new ‘EMT kit’ 

using micropattern geometries and a two-cell model, which can be adapted for High 

Content Screening of anti-cancer drugs or siRNA libraries.  
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3.5 Short Q&A 
 

 

Q. Can the “EMT kit” be used for assays other than EMT related cell scattering? 

 

A. We developed the EMT kit with the aim to provide a robust assay for screening 

of anti-cancer drugs. However, the parameters for scoring cell dispersion used 

here are general. So the kit can be used for other types of non-EMT related cell 

scattering for example to study effect of cell-cell junction proteins, cytoskeleton 

elements, different ECM proteins on the ability of cells to separate from each 

other.  

 

Q. Does width of line micropattern affect scattering ability of cells?  

 

A. Cells show increasing scattering behavior on smaller widths of micropattern. 

We tested a range (5-30 μm) width of line micropatterns and on 10 μm cells 

showed 1D morphology and a higher rate of scattering. In addition, 1D mode 

of migration is similar to 3D mode of migration through confined tissue 

microenvironment (Doyle et al., 2009) thus we used 10 μm width for all cell 

lines. Notably, the cells involve different organelle positioning while migrating 

on different widths of substrate (Pouthas et al., 2008) so any further 

investigations to study the role of cell polarity in promoting cell scattering 

behavior would require a consideration of the different mode of cell migrations 

(collective invasion versus individual opportunistic cell motility) and thus 

mechanisms involved. 

 

Q. Are the two cells on micropattern always the two daughter cells? 

 

A. The answer is No. The cell seeding procedure was optimized to have one cell 

attached to a single micropattern although this does not guarantee that more 

than two cells would not attach to a single micropattern. Cell synchronization 

prior to seeding on micropatterns using a cell-cycle block or serum deprivation 

could be an option to rectify this problem. With cell cycle synchronized cells, 

even if more than one cell attaches to a single micropattern, after one round of 

cell division micropatterns containing only two cells would confer presence of 

daughter cells 
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4.0 General Discussion 
 
In this thesis I explored the mechanisms of tissue remodeling which mainly involved 

microtubule-guided processes.  Within the conceptual framework of three projects described 

in this thesis I mainly focused on intra-cellular changes that are responsible for modifying cell-

cell connection which leads to cell dispersion of mesenchymal cells during metastatic cell-

scattering from 3D orgonoid with centrosome abnormality (Chapter I), during EMT (Chapter II).  

Finally we developed an assay to detect cell scattering for drug screening purpose (Chapter III). 

It also appeared quite strikingly that centrosome MTOC activity and position is modulated 

during the EMT and cancer invasion.  The three projects were begun by a common aim which 

was to understand different mechanisms guided by microtubules that affect centrosome 

position and generate different morphological phenotypes like mesenchymal cell, cell 

separation and cell invasion. As the study of centrosome positioning during EMT revealed an 

important evidence of polarity reversal, which may be manifested in other EMT processes 

during development, I would like to discuss possible mechanisms that could be involved in 

polarity reversal. We also found that the cell separation was controlled by different mechanisms 

during different morphological processes and moreover, centrosome directed microtubule 

network played a major role in controlling these distinct mechanisms. Thus I would like to 

discuss mechanisms that lead to cell scattering and plausible role of centrosome as molecular 

signaling center in addition to its MTOC function. As all the three projects involved extensive 

use of tissue models of two cells confined on micropattern geometries, I would like to discuss 

the relevance of minimal tissue models as important tool in cell biology.  

 

4. 1 Mechanisms of polarity reversal 
 

We found that centrosome position responds to different cortical cues provided by cell-cell 

and cell-Matrix adhesions (Figure 4.1A). When a cell is subjected to symmetric or asymmetric 

cell-ECM adhesions, the centrosome localizes to the geometric center of the cell. The 

establishment of NC axis polarization in this case is a result of off-centering of the nucleus with 

respect to the geometric center of the cell. Interestingly, we found that when cells were 

provided with asymmetric cell-cell adhesions using two-cell model confined on <H> 

micropattern, centrosome is off-centered preferentially toward the cell junction (Figure 4.1A). 

The modulation of the centrosome position during EMT suggested that the centrosome 

localization within cell is controlled by dynamic alteration of cell-adhesion landscape, which in 

turn changes the MT interaction with these adhesions. It is well established that cell-adhesion 

landscape of the tissue is highly modified during morphogenetic processes involving EMT and 
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progression of cancer metastasis. We indeed found that alteration of cell-cell junction 

composition by reduction of Par3 was responsible for centrosome off-centering which is 

typically seen in the epithelial cells. We also noticed reduction of MT nucleation in EMT 

induced cells and numerical simulations provided insight into the new role of microtubule 

number at the centrosome which can provide the flexibility for centrosome movement in 

response to cortical cues (Burute et al. Figure 4).  Here I would to discuss possible mechanisms 

for centrosome centering and off-centering that are mainly based on MT-guided processes. 

 

Centrosome Positioning 
In Chapter II we demonstrated that during EMT there is progressive loss of Par3 and 

centrosome off-centering is also progressively lost. This high correlation between between 

Par3 localization at the CCA and centrosome positioning close to the CCA suggests a causal 

link dependent on Par3. In the literature it is shown that Par3 is associated with Dynein which 

can capture, stabilize and pull on microtubules (Ligon et al., 2001; Schmoranzer et al., 2009). As 

Dynein is minus end directed motor and when it is anchored to the cell-cell junction Par3, it 

would pull MTs that have emanated from the centrosome causing centrosome movement 

towards cell-cell junction (Figure 4.2B1). In addition to this widely accepted mechanism, there 

are other mechanisms, which could be involved in centrosome-off centering in epithelial cells. 

Similar to epithelial cells, neurons as well have microtubules bundles, which are formed 

because of Microtubule associated proteins (MAPs) such as Tau protein. Presence of MAPs 

along the microtubules, which are associated at the CCA can increase the rate of stabilization 

and assembly of microtubule bundles that are growing toward the CCA (Figure 4.2 A&B3). 

Another tantalizing hypothesis for the selective MT stabilization close to CCA is, whether 

existing microtubules guide the growth of newly growing microtubules (Figure 4.2B2). An 

existing microtubule could provide a scaffold for a newly growing MT by facilitating its 

polymerization at the plus tip. The mechanism can be of structural or molecular nature meaning 

that existing MT can provide structural stability to protofilaments of growing MT, which will 

increase the instances of MT growing along another MT. Also the proteins attached to existing 

MT could facilitate the assembly and growth of the complex at the plus tip of the MT. For 

example Kinesin-based microtubule guidance for generation of different microtubule arrays in 

the Drosophila neurons has been observed and thus there is a possibility that similar 

mechanisms are involved in epithelial cells, which can control centrosome positioning (Doodhi 

et al., 2014).  

On the other hand forces acting on MTs at the rest of the cortex could generate cumulative 

pushing force on the centrosome, which can push centrosome towards cell-cell junction (Figure 

4.2B4). Using numerical simulations we already saw that in the absence of dynein generated 

pulling forces at the cell cortex only the pushing forces by MT growing ends can generate 
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MTOC off-centering forces (Burute et al. Figure 4). In addition, change of microtubule numbers 

emanating at the centrosome governs efficiency of centrosome centering suggesting that 

microtubule interaction with cortex is indeed important for controlling positioning of the 

centrosome and maintaining its position (Burute et al. Figure 4).  

 

Nuclear Positioning 
An important aspect of polarity reversal is that it involves repositioning of the centrosome and 

the nucleus. We did not see consistent trend for nucleus repositioning in different cells lines 

associated with the polarity reversal during EMT  (Burute et al. Figure 2) and thus we did not 

investigate mechanisms that control nucleus position. However, nucleus is the largest organelle 

and its asymmetric localization is observed in several instances such as neuroepithelium, 

epithelial tissue of kidney and mammary gland (Dupin and Etienne-Manneville, 2011; 

Gundersen and Worman, 2013). We saw that nucleus-centrosome axis orientation is completely 

reversed with respect to the cell-cell adhesion during EMT (Figure 4.1C). It is a possibility that 

the addition of TGF-β, first elicits the cytoskeletal mechanisms to increase lamellopodium 

activity at the cell-ECM adhesions. The increased actin assembly at the focal adhesion can 

generate transverse arcs, which are known to engage at the nuclear envelope through LINC 

(Linker of Nucleoskeleton and cytoskeleton) complexes consisting of Lamins, SUN, KASH, 

Nesprin proteins that can change the nucleus position (Dupin and Etienne-Manneville, 2011). 

The resulting displacement of nucleus at the opposite side of CCA can in turn displace MTOC 

because of geometrical constraints (Figure 4.1C). The resulting change of nucleus-centrosome 

position generates reversed NC axis compared to the epithelial cells. This configuration is 

probably reinforced by lesser MTs growing on the side of the nucleus and increasing 

lamellopodial activity at the cell-ECM adhesions. TGF-β action results into reduction of E-

cadherin and increase of focal adhesion proteins at the late stages of EMT induction, which 

may support reinforcement of this configuration finally culminating into the cell separation. 

Inhibiting the expression of KASH or SUN proteins can verify the definite role of nucleus 

position during the process of EMT. Intermediate filaments surround the nucleus and involved 

in the nucleus positioning through actin retrograde flow (Dupin et al., 2009). Vimentin, is an 

intermediate filament protein and a bona fide marker of EMT. However, mode of action of 

vimentin in driving EMT progression is still mostly elusive and it will be important to investigate 

whether it is involved in controlling nucleus positioning during EMT. 

It is also important to note that centrosome can be linked to the nucleus and the nucleus 

movement can guide the MTOC position. Perturbation of nucleo-cytoskeletal connection by 

Lamin A knockout in mouse fibroblast reduced the polarization extent of the Nucleus-

centrosome axis in the cells (Hale et al., 2011). In epithelial cells, we often observed 

centrosome localization farther from the nucleus (close to CCA) while in mesenchymal cells;  
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nucleus-centrosome is probably strengthened in mesenchymal cells, which have migratory 

potential like fibroblast cells. 

As we observed progressive grades of polarity reversal in temporal manner after TGF-β or HGF 

treatment to cells (Figure 2F Burute et al), we propose that the primitive streak formation at the 

early gastrulation stage in embryo also involves progressive polarity reversal of the cells in the 

epithelial layer. The spatial and temporal polarity reversal in this case would depend upon 

transformation of cells by growth factors (eg. Nodal, Wnt signaling) and different degree 

adhesions formed by the cells (Figure 4.2 C). 

 

4.2 Different modes of Cell Scattering 

  
Cell migration is highly studied in the context of development and cancer progression. 

Different modes of single cell migration are described as amoeboid movement or fibroblast-

like movement depending upon the presence of mature focal adhesions and stress fibers 

within the cell, while collective cell migration serves purpose during morphogenesis, tissue 

regeneration and in pathological conditions (Friedl and Gilmour, 2009). These different modes 

of migration are described by the properties of extra-cellular matrix such as its density, 

dimension, stiffness, topography and cellular components including CCA, CMA and proteolysis 

mechanism, however the detailed description of how cell junctions are dissolved and whether 

cells separate because of weak junctions or simply by pulling on the matrix is still unresolved. 

The combination of all above factors including cell-ECM and cell-cell adhesion, orientation of 

internal cytoskeleton and differences in force generation by Rho/Rac machinery is responsible 

for cell separation. The study of cell scattering within different models in this thesis revealed at 

least two distinct mechanisms, which lead to cell dispersion.  

 

 

By increasing cell-ECM adhesion forces 
The tissue is maintained intact through the mechanical balance between CCA and CMA forces 

as depicted in (Figure 4.4 A). Activation of EMT pathway by TGF-β1 involves reduction of cell 

adhesion protein, E-cadherin. It was previously demonstrated by Liu and colleagues that force 

maintained at the cell-cell junction is directly to proportional to amount of E-cadherin at the 

cell junction so we had expected to observe a drop in cell-cell junction forces after EMT (Liu et 

al., 2010). To our surprise, EMT-induced cells with smaller cell-cell junction sustained 

comparable amount of force like their control counterparts (Burute et al., Figure 6). This cell-

cell force is likely to be either sustained by N-cadherin, which is expressed and recruited at the 

CCA after EMT induction. On the other hand, higher CMA forces associated with increased 
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focal adhesions promoted cell separation. Thus cell separation after EMT, which was coupled 

to polarity inversion of nucleus-centrosome axis was result of increased pulling on matrix by 

cells that most likely ripped apart the cell-cell junction (Figure 4.4 B)(Rooij et al., 2005). Thus 

EMT progression does not simply involve dissolution of CCA, but it seems that cells go 

through sequence of force balance modulation. R. Mayor and colleagues demonstrated similar 

example of polarity reversal coupled with force balance redistribution during contact inhibition 

of neural crest cells after EMT. The study showed that transient CCA formation by 

differentiated Neural crest cell generated polarized activation of Rac1 at the focal adhesion 

which triggered cell junction disassembly and cell scattering (Scarpa et al., 2015). The striking 

feature of contact inhibition of locomotion (CIL) is that when a cell encounters another cell, it 

collapses its protrusion, reorients protrusions and migrates in the opposite direction (180o 

opposite) with the least possibility of encountering the same cell again (Figure 4.3 A). Hence 

the cells exhibit polarity reversal for changing the direction of cell migration and the contact 

site between the cell acts as a reference to guide this directional cues (Figure 4.3 B). It is 

important to note that in the literature, cell separation and invasion during cancer progression 

is mostly described as cell-scattering process as an outcome of cell junction disruption. 

Although CCA dissolution occurs during EMT, it is not clear whether CCA dissolution is 

necessary for promoting cell separation during EMT (Rooij et al., 2005). Recent evidences have 

shown that stability of cell-cell junction is maintained by recycling of junction components 

(Baum and Georgiou, 2011).  We think that change of the Golgi position coupled to the NC 

axis reorientation during EMT facilitates weakening of CCA prior to cell scattering by restricting 

the transport of CCA components to the cell junction. Our study and few other examples 

suggest that cells actively reorient their direction through coupling of internal and cortical 

polarity cues for directional mesenchymal migration that has likened to cancer metastasis 

(Moore et al., 2013).  Further investigations of cell force modulation staring from early stages of 

EMT induction until the final cell separation will reveal that at what point in the course of EMT, 

cell-cell junctions are disrupted.  

 

By weakening cell-cell adhesions 
The second mode of cell scattering was observed in the centrosome-amplified cells by 

destabilization of cell-cell junction (Figure 4.4 C). The destabilization of CCA was result of Rac1 

activation at the microtubule +tips. Centrosome amplified cells did not show classical EMT 

markers and thus retained high E-cadherin expression (Godinho, 2014, Figure S3 F). The cell 

scattering in the 3D organoid system showed that amplified centrosome was maintained 

behind the nucleus during migration away from the 3D organoid suggesting that the 

centrosome was at the back of the cell during initial migration. This mode of migration with 

centrosome at the back of cell has been observed in the immune cells and confined cells on 
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narrow ECM substrate (Luxton and Gundersen, 2011; Pouthas et al., 2008).  Determination of 

force maintained at the CCA using cell-pair model on <H> micropattern will clearly reveal 

whether the cell-cell junction force in centrosome amplified cells is reduced as a result actin 

protrusion close to the CCA. Thorough investigation of mechanisms that are responsible for 

cell-separation is highly desired especially for the development of therapeutic targets against 

cancer metastasis. Currently cell migration is characterized by speed of migration, mode of cell 

migration, ECM remodeling, persistence etc for understanding cancer metastasis. However, 

cell dispersion occurs prior to cell migration during cancer metastasis and understanding origin 

of cell separation will be more important. Thus exploring mechanisms that initiate cell 

dispersion is really important to discover specific inhibitors that could block the cancer spread 

at the early stages.  

 

4. 3 Centrosome in generating the asymmetry 
 

In this thesis we revealed important functions of the centrosome during cell interphase 

however centrosome’s crucial role as a mitotic spindle pole in dividing cell is essential for tissue 

maintenance as well for morphogenesis. Centrosome is inherently asymmetric; owing to its 

morphometric and functional differences of centrioles. Furthermore, mother and daughter 

centrosomes generated prior to the cell division also have different MTOC activity and 

mobility. I would like to discuss different instances where the cellular asymmetry is generated 

by the centrosome since these anisotropies are mainly operated by microtubules emanating 

from the centrosome. Under the scope of this thesis it is important to understand how 

centrosome couples and responds to cortical cues to establish anisotropic phenotype during 

different morphogenetic events.  

 

Asymmetric organ positioning  
The   centrosome position has an important role in oriented planar cell division (OPCD) during 

axial elongation and determining organ shape. A transient ciliated epithelium during 

vertebrate development generates an asymmetric fluid flow across the midline of embryo that 

conveys positional information for organs locations. The left-right organ asymmetry depends 

on tilted motile cilia on the surface of epithelium and thus the role of centrosome as ‘basal 

body’ is critical for orienting the Left-Right (LR) body axis (Figure 4.5 A) (Amack, 2014). Further 

during development, the centrosome plays crucial role by orienting cell-division axis through 

interaction of microtubules with cell cortex and the plane of cell division controls underlying 

tissue architecture (Figure 4.5 B).  
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Local asymmetry in the cell  
Cells can be categorized by their phenotype such as epithelial vs mesenchymal, migrating vs 

non-migrating, differentiated vs non-differentiated etc in the context of tissue morphogenesis. 

The proteomic and mRNA analysis approaches have revealed that there are plethora of 

proteins differently expressed and modified during EMT (J. D’Souza et al., 2014). However, the 

cellular level characterization does not take into account the local asymmetries within the cell, 

which can be central to cell polarization. In the context of EMT, we observed that the 

asymmetry of microtubule arrays in epithelial and mesenchymal cells could be result of 

selective stabilization of MTs close to CCA and/or recruitment of molecular motors to CCA. 

Similarly change of centrosome positioning and associated migration capacity of the cell could 

be direct result of local contractility of the cell generated by the Myosin IIA and IIB isoforms 

(Chapter II Figure 2.3). Thus it is necessary to take into account the architecture of the cell, 

which is generated by local anisotropies of cytoskeletal elements while investigating cell 

phenotype. The work of this thesis emphasizes on how cells sense the environmental cues to 

guide asymmetric organelle positioning inside the cell that defines internal axis of the cell. Use 

of light controlled activation and localization of molecules to different parts of the cell holds a 

great promise for studying cell architecture. (Chapter II Figure 2.5) By locally controlling 

microtubule dynamics, microtubule nucleation, its post-translational modification, MAP binding 

levels in cells constrained on defined geometries will be helpful to reveal how microtubules 

regulate centrosome position in response to environmental cues.  

 

Asymmetric cell division 
As described by Michel Bornens, the centrosome is ‘back in the limelight’ because of one of its 

newly revealed feature that is, generating mother-daughter cell asymmetry. Asymmetric cell 

division generates daughter cells of distinct identities by asymmetrically localizing proteins and 

RNAs, which act as the cell fate determinants to only one of the daughters. Asymmetric cell 

divisions of stem cells are important to generate differentiated cells, which can be tissue-

specific progenitor cells or terminally differentiated cells. In Drosophila, neuroblasts generate 

self-renewing pool of neuroblasts, which retain new centrosome and differentiating ganglion 

mother cell (GMC), which gets the mother centriole with insignificant MTOC activity (Figure 4.5 

C). This asymmetric cell division is tightly linked to the cortical polarity, mitotic spindle 

alignment and additionally to the Centrobin, protein that binds only to the daughter centriole 

to give its high MT nucleating ability (Januschke et al., 2013). The molecular dimorphism 

present at the mother-daughter centrioles imparts different fates to the daughter cells and 

reveals another crucial feature of intrinsic asymmetry of the centrosome. Even within the 

differentiated tissue like mammary gland, tissue specific-stem cells reside which have ability to 

repopulate the tissue. In the typical acini of the mammary gland, epithelial luminal cells 
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surround the central lumen while myoepithelial cells (also called as basal cells) are situated at 

the base of the luminal cells. A study by Prater MD and colleagues revealed that high 

proportion of basal cells have ability to give rise to a mammary repopulating unit (Prater et al., 

2014). Subpopulation of the basally residing stem cells could be capable of asymmetrically 

divisions to give rise to luminal and basal cells. The asymmetric ECM cues provided by the 

basement membrane at only one side of the stem cell could involve mechanisms of asymmetric 

MTOC activity associated with cell fate determinants segregation like seen in the neuroblast 

division described above. Recent study has reported that during the lifetime of a human the 

number of stem cell divisions in a tissue is positively correlated with the occurrence of cancer 

(Tomasetti and Vogelstein, 2015). In tissues like skin, intestine and kidney, which undergo 

several rounds of tissue renewal, harbor tissue specific stem cells. Understanding role of 

centrosome is driving symmetric (stem cell renewal) and asymmetric division (differentiation) 

will be necessary to understand its role in controlling tissue maintenance and in induction of 

cancer phenotype. 

 

EMT and stem cell-like traits 
We observed that gain of mesenchymal properties after EMT induction were associated with 

the reduced MTOC activity in the cells. The mesenchymal state also represents a 

dedifferentiation state of the cell as it acquires ability to harbor a place in another tissue and re-

differentiate. The EMT induction involves dramatic change of transcription profile of the cell 

and imparts dedifferentiated or stem cell-like property. An eminent report in the field by 

Robert Weinberg and colleagues showed that induction of EMT in human mammary gland cells 

result into acquisition of mesenchymal traits and in the expression of stem-cell markers (Mani et 

al., 2008). The stem cell-like traits are confirmed by molecular markers at the protein level 

(Twist, snail), cell-surface markers by FACS (CD44 and CD24) and in addition, ability of cells to 

form mammospheres in suspension cultures. Putting these results in the context of our studies, 

it is tempting to speculate whether acquisition of stem cell traits is associated with the low 

MTOC activity. This speculation certainly needs a critical scrutinization before it can be 

considered as a valid hypothesis, however, a brief phylogenetic overview of the presence of 

centrosome and regeneration capacity of an organism shows that progressive acquisition of 

centrosome is associated with loss of regeneration capacity. For example, Plants (A. thaliana), 

amoeba (D. discoideum), lower eukaryote like S. pombe do not possess centrosome and have 

ability to regenerate (Bettencourt-Dias, 2013). Interestingly, multicellularity within metazoans 

with highly differentiated and polarized organ formation is strongly associated with the 

presence of centrosome. Furthermore, lower metazoans like flatworms (planaria) and hydra do 

not posses centrosome and maintain ability to regenerate (Bornens & Azimzadeh 2007). If we 

extrapolate this observation to the regeneration capacity of the stem cells in higher metazoans, 
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it could be possible that the pluripotent stem cells present at the early developmental stages 

exhibit lower activity of MTOC, which might be necessary for regeneration capacity of the cells. 

Over the past years role of centrosome as molecular hub of signaling molecules has emerged 

(described in chapter I comments) and thus molecules residing at the centrosomal PCM might 

be involved in giving regeneration potential to the cytoplasm.   

 

4.4 How relevant minimal models are?  

 
As most of the work done towards completion of this thesis is affirmed by the use of the 

minimal models of tissue, I have been often encountered with the question of ‘how relevant the 

study with minimal model is’? Although minimal models do have a charm of simplicity and the 

ability to reveal phenomena, which are otherwise hard to observe in the complex multi-cellular 

systems, the relevance of these phenomena is almost always in question. Biological systems 

undoubtedly have a very complex nature and it is obvious to wonder how far can we 

extrapolate the results obtained using in-vitro minimal models of biological systems. To discuss 

this question, I would like to think of the biological systems, whether it is a DNA replication, 

protein translation, a cell, tissue, organ or an organism in a form of a function composed of 

several biophysical laws. The biological processes can manifest themselves when provided by 

minimum essential components and the right boundary conditions (Vignaud et al., 2012).  For 

example, a purified MTOC with its ability to nucleate microtubules possess the self-centering 

property which is attributed by microtubules growth and pushing forces on the walls of the 

chamber (Holy et al., 1997). The system provides understanding of the basic principle that 

gives centering ability to the centrosome, which is often witnessed in single and layers of cells. 

Although this minimal system does not confirm whether microtubule pushing by +tips is the 

sole process involved in centrosome centering, it still provides information about minimum 

requirement of components (Centrosome, tubulin, GTP) that govern properties of the process, 

which probably have evolutionary basis in lower form of organisms. Secondly, it does provide a 

method to test additional possibilities eg. Whether MT sliding and MT pulling by dynein are 

also involved in the centrosome centering. Vertebrate mammalian system evolved from simple 

primitive life forms and hence the properties revealed by use of minimal models provide clues 

about principal mechanisms that probably existed from the beginning of organelle biogenesis. 

Thus use of minimal models could be looked at as fundamental tools that reveal key aspect of 

biological system and this approach is similar to that of reverse engineering. 

 A revolutionary concept of ‘Organs-on-chip’ in the biotechnology field is taking the center 

stage for its use in the academic research as well by pharmaceutical companies with the 

advantage of avoiding animal models for drug screening. The set up of ‘Organ-on-chip’ consist 
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of microfluidic devices for culturing living cells to model physiological function of organs. The 

goal of fabricating such system is not to build whole living organs but rather to synthesize 

minimal functional unites that recapitulate tissue and organ-level functions (Bhatia and Ingber, 

2014). In order to build such tissues, the understanding of basic blocks of functional units of 

tissues is mandatory. Using the two-cell model, which we adopted to describe complex EMT 

process revealed important mechanisms involved during morphogenesis. The knowledge of 

cell confinement, spatial distribution of CCA and CMA, ECM geometry cues will be essential to 

further build minimal mammary tissue which can generate a lumen, allow secretion of milk-

proteins and can also allow investigation of abnormalities. Similar tissue models of kidney 

tubules, lung-capillary surface or blood-brain barrier can incorporate physical forces, fluid flow 

and permit analysis of organ-specific responses. A motivating theme is explained by Susanne 

Rafelski and Wallace Marshall in ‘Building the cell: design principles of cellular architecture’ and 

with the increasing understanding of multi-cellular organization revealed by use of minimal 

tissue system, I believe, we are on the way of ‘Building the tissue’.  
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1Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux,
Paris F-75015, France
2Sorbonne Universités, UPMC, University of Paris 06, IFD-ED 515, 4 Place Jussieu, Paris 75252, France
3Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/UJF/INRA/CNRS, 17 rue des Martyrs, Grenoble 38054,

France
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SUMMARY

Cells of several metazoan species have been shown
to non-randomly segregate their DNA such that older
template DNA strands segregate to one daughter
cell. The mechanisms that regulate this asymmetry
remain undefined. Determinants of cell fate are
polarized during mitosis and partitioned asymmetri-
cally as the spindle pole orients during cell division.
Chromatids align along the pole axis; therefore, it
is unclear whether extrinsic cues that determine
spindle pole position also promote non-random
DNA segregation. Tomimic the asymmetric divisions
seen in the mouse skeletal stem cell niche, we used
micropatterns coated with extracellular matrix in
asymmetric and symmetric motifs. We show that
the frequency of non-random DNA segregation and
transcription factor asymmetry correlates with the
shape of the motif and that these events can be
uncoupled. Furthermore, regulation of DNA segrega-
tion by cell adhesion occurs within a defined time in-
terval. Thus, cell adhesion cues have a major impact
on determining both DNA segregation patterns and
cell fates.

INTRODUCTION

Stem cells can exhibit distinct behaviors in different physiolog-

ical contexts, such as organogenesis and regeneration. For

example, some cells can divide asymmetrically by partitioning

a variety of subcellular components, whereas others can divide

symmetrically. These types of divisions can be governed by

extrinsic stimuli that relay to intrinsic regulators to generate

invariant, or randomized, cell divisions consecutively (Yennek

and Tajbakhsh, 2013). Numerous intrinsic cell fate regulators
have been identified in organisms ranging from flies to humans

(Li, 2013; Neumüller and Knoblich, 2009). Of these, perhaps

the most intriguing is the asymmetric segregation of old and

new template DNA strands, referred to as non-random DNA

segregation (or template DNA strand segregation, biased DNA

segregation, or ‘‘immortal’’ DNA; Tajbakhsh and Gonzalez,

2009; Yennek and Tajbakhsh, 2013).

Semiconservative replication of DNA results in chromatids

containing older template and nascent DNA strands. Label-

retaining experiments with nucleotide analogs suggested that

labeled DNA strands can persist in certain conditions after

extensive cell divisions (Yennek and Tajbakhsh, 2013). These

observations led to the hypothesis that chromatids containing

older DNA strands segregate collectively to only one of the

daughter cells in consecutive asymmetric divisions (Cairns,

1975); however, unequivocal evidence for long-term ‘‘immor-

tality’’ of old DNA strands in vivo is lacking. Support for non-

random DNA segregation comes from studies in several tissues,

including skeletal muscle (Elabd et al., 2013; Falconer et al.,

2010; Karpowicz et al., 2005; Potten et al., 2002; Quyn et al.,

2010; Rocheteau et al., 2012; Shinin et al., 2006; Yadlapalli and

Yamashita, 2013; Yennek and Tajbakhsh, 2013). Adult skeletal

muscle stem cells are quiescent during homeostasis and ex-

press the upstream transcription factor Pax7 (Seale et al.,

2000). After muscle injury, they enter the cell cycle and generate

myoblasts that will divide and differentiate, while a subpopula-

tion ofmyogenic cells that retainPax7 expression will self-renew.

During muscle regeneration, DNA and other molecules are

partitioned asymmetrically or symmetrically as myogenic cells

undergo mitosis (Kuang et al., 2007; Le Grand et al., 2009; Liu

et al., 2012; Rocheteau et al., 2012; Shinin et al., 2006; Troy

et al., 2012). Non-random DNA segregation occurs in a subpop-

ulation of muscle stem cells, and a correlation with the fates of

the resulting daughter cells has been noted (Conboy et al.,

2007; Rocheteau et al., 2012; Shinin et al., 2006; Yennek and Taj-

bakhsh, 2013). Studies examining the mechanisms that regulate

this process have focused essentially on intrinsic regulators,
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notably, epigenetic marks on the DNA molecules or associated

proteins postreplication (Elabd et al., 2013; Evano and Taj-

bakhsh, 2013; Lansdorp, 2007; Lew et al., 2008; Tajbakhsh

and Gonzalez, 2009). However, cell contact, cell density, and

microenvironment have also been reported to play a role in

non-random DNA segregation (Freida et al., 2013; Pine et al.,

2010; Shinin et al., 2006). A network of extracellular matrix

(ECM) that surrounds the cell is connected to intracellular cyto-

skeletal actin via transmembrane proteins. Previous studies

using micropatterns coated with ECM showed that its spatial

distribution plays a critical role in determining the orientation of

the axis of division by controlling the localization of actin-associ-

ated cues at the membrane that can interact with spindle micro-

tubules (Minc and Piel, 2012; Théry et al., 2007). Moreover,

asymmetric distribution of adhesion cues was shown to induce

asymmetric spindle orientation (Théry et al., 2007), suggesting

that it could further impact division symmetry by regulating

non-random DNA segregation and unequal cell fate. Here, we

manipulated the shape of ECM-coated micropatterns and

consequently the spatial distribution of cell adhesion, and exam-

ined the fate outcome of single mouse skeletal muscle stem cells

during cell division.

RESULTS

Polarized Cell Architecture Correlates with Extrinsic
Adhesion Asymmetry on Micropatterns
In a previous study (Rocheteau et al., 2012), we showed that a

subpopulation of skeletal muscle stem cells isolated from

Tg:Pax7-nGFP mice can perform non-random DNA segregation

(Figure S1A). This phenotype was correlated in part with the dis-

tribution of the transcription factors Pax7 (stem/progenitor) and

Myogenin (differentiated). In that study, the overall frequency of

asymmetry in the total population was not determined.

To investigate cell division outcomes in a controlled micro-

environment, we examined single skeletal muscle stem cell

divisions on fibronectin/fibrinogen-Alexa Fluor 594-coated

micropatterns as described previously for other cell types

(Azioune et al., 2010; Théry et al., 2005, 2007), where the differ-

ential adhesion and shape of themicropatterns were asymmetric

or symmetric in design. Muscle stem cells isolated by fluores-

cence-activated cell sorting (FACS) using Tg:Pax7-nGFP mice

(Figure S1B), as well as their progeny cells, are smaller in size

than most somatic cells (Figure 1A), with an average surface

area in culture of about 250–300 mm2. This value was determined

in an initial series of experiments when micropatterns of various

sizes and shapes were designed. The micropattern size was

chosen so that all cells could spread on the entire micropattern

adhesive area (Azioune et al., 2010). One symmetric and two

asymmetric motifs were fabricated for these studies (Figures

1B and 1C). Stainings for F-actin and alpha-tubulin showed

dramatic differences in the polarity of the cells seeded on micro-

patterns. Actin stress fibers were prominently polarized on

asymmetric micropatterns but were relatively homogeneous on

the symmetric motifs, although in both cases, stainings showed

high levels of cortical actin localized at the cell membrane, likely

due to the constraints imposed by the micropatterns compared

with a nonpatterned surface. Tubulin staining was also strikingly
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polarized, and to a greater extent on asymmetric motifs (Fig-

ure 1B). The polarized nature of the cells on the micropattern

motifs that were made for this study is in agreement with previ-

ous observations that adhesion cues can impact cell polarity

(Freida et al., 2013; Théry et al., 2005), validating the use of

micropattern designs for investigating the role of adhesion

cues on asymmetric cell divisions in muscle stem cells.

Non-Random DNA Segregation in Muscle Stem Cells Is
Promoted on Asymmetric Micropatterns
Incorporation of nucleotide analogs into either template or

nascent DNA strands can be achieved by using different labeling

regimes (Figure S1A). To investigate the influence of adhesion

cues on asymmetric cell divisions, in a first series of experiments

we used our previously defined pulse-chase protocol to label

dividing myogenic cells in vivo with 5-ethynyl-20-deoxyuridine

(EdU) from 3 to 5 days postinjury (DPI). Following one cell division

of chase in vivo, the total Pax7-nGFP+ myogenic population was

isolated by FACS and plated on the micropatterns to allow the

second division. Using this labeling regime (inclusion protocol;

Figures 2A and S1A), template DNA strands were EdU positive,

whereas EdU-negative cells contained nascent DNA strands

after the two cell divisions of chase (Figures 2A and S1A; Roche-

teau et al., 2012; Yennek and Tajbakhsh, 2013). The vastmajority

of micropatterns contained a single cell following plating (data

not shown; seeMovies S1 and S2). After a second division during

the chase period, DNA segregation and cell fate outcomes were

assessed by immunostaining. In some cases, videomicroscopy

was used in parallel to ensure that single cells were seeded

and daughter cell pairs were obtained on the patterns (Movies

S1 and S2). These videos showed the extensive motility of the

myogenic cells on the micropattern motifs before and after

mitosis. As a control, Pax7-nGFP+ myogenic cells were seeded

on fibronectin/fibrinogen-Alexa Fluor 594-coated slides to

assess the frequency of asymmetric divisions on a nonpatterned

surface.

Strikingly, on both types of asymmetric micropattern motifs,

themajority of the cells performed non-randomDNA segregation

with a frequency of 60%–62% (n = 2 mice; Asym1, n = 163

daughter cell pairs; Asym2, n = 189 daughter cell pairs; Figures

2B and 2C), which is significantly greater than previous results

obtained at 5 DPI (Rocheteau et al., 2012). Interestingly, the fre-

quency of non-random DNA segregation on a symmetric pattern

was also relatively high at 26% (n = 2 mice; n = 106 daughter cell

pairs; Figures 2B and 2C). To verify this effect of cell adhesion on

DNA segregation patterns and to rule out biases due to the label-

ing regime, we incorporated nucleotide analogs into nascent

DNA strands instead (exclusion protocol; Figure 2D). We ob-

tained similar results, in that about 71% of cells performed

non-random DNA segregation on the asymmetric patterns

(n = 9 mice; Asym1, n = 328 daughter cell pairs; Asym2, n =

304 daughter cell pairs) compared with about 29% for the

symmetric micropattern (n = 9 mice; n = 330 daughter cell pairs;

Figures 2E and 2F). As a control, the frequency of non-random

DNA segregation on a nonpatterned surface coated with fibro-

nectin/fibrinogen-Alexa Fluor 594 was noted to be 33% (n = 5

mice; n = 76 of 231 daughter cell pairs; Figure S1C), which

was not significantly higher than the frequency on the symmetric



Figure 1. Muscle StemCells Are Polarized on

Asymmetric Micropatterns

(A) Examples of muscle stem cells isolated by FACS

from the TA muscle of Tg:Pax7-nGFPmice at 5 DPI,

plated on slides coated with fibronectin/fibrinogen-

Alexa Fluor 594, and then stained for actin (red) and

tubulin (green).

(B) Examples of muscle stem cells isolated and

treated as in (A), seeded on symmetric (top) and

asymmetric (bottom two rows) micropattern motifs

(two examples shown for each). Note the prominent

actin stress fibers, particularly on asymmetric

motifs, and in some cases the polarized distribution

of tubulin on asymmetric motifs.

(C) Examples of muscle stem cells isolated and

treated as in (A), seeded on symmetric (top) and

asymmetric (bottom two rows) micropattern motifs

(two examples shown for each). Cells were allowed

to divide on the micropattern. Note that both

daughter cells occupy the micropattern surface,

and in some cases display polarized tubulin on the

asymmetric motifs.

Scale bars: (A), 10 mm; (B and C), 20 mm.
micropattern (p > 0.37). In this experiment, we used cytochalasin

D to block cell separation after mitosis to ensure the identifica-

tion of daughter cell pairs, as this drug does not appear to overtly

interfere with non-random DNA segregation when applied for a

short interval (Conboy et al., 2007; Huh and Sherley, 2011; Kar-
Cell Reports 7, 961–
powicz et al., 2005; S.Y. and S.T., unpub-

lished data). As an additional control for

cell division ex vivo, in some experiments

we added a second nucleotide analog to

the cells on micropatterns prior to cell divi-

sion to ensure correct nucleotide uptake

by both daughter cells during the experi-

ment (Figure S1D). We performed the re-

maining experiments in this study using

the exclusion protocol because it exposes

cells for a shorter period to the nucleotide

analogs.

Asymmetric Daughter Cell Fates in
Muscle Stem Cells Are Promoted on
Asymmetric Micropatterns
We next asked whether manipulating the

cell adhesion topology would alter the

outcome of the resulting daughter cell

fates. We showed previously that old

DNA strands segregated to the stem

cell and that asymmetric cell fates, as

assessed by the differential distribution

of the transcription factors Pax7 and

Myogenin after mitosis, were correlated

in part with non-random DNA segrega-

tion (Rocheteau et al., 2012). The link

between these distinct asymmetric read-

outs has not yet been established. To

assess the effect of adhesion cues
on these asymmetries, we analyzed DNA and transcription

factor segregation patterns by staining for EdU, Pax7, and

Myogenin. When we examined the total Pax7-nGFP+ popula-

tion on the symmetric motif, we found that the majority of

the cells performed random DNA segregation (70%; n = 78 of
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Figure 2. Extrinsic Cues Mediated by Cell Adhesion Regulate the Frequency of Non-Random DNA Segregation on Micropatterns

(A) Scheme illustrating labeling of old template DNA strands. To label older template DNA strands (‘‘inclusion’’ protocol), label was added for several rounds of cell

division to label both DNA strands. After two cell divisions, non-random DNA segregation patterns were assessed empirically.

(B) Histogram showing the frequencies of non-randomDNA segregation on one symmetric and two asymmetric micropatterns. Pax7-nGFP+myogenic cells were

isolated by FACS from TA muscle of Tg:Pax7-nGFP mice as indicated in (A) (p < 0.007). Error bars indicated as SEM.

(C) Click-iT detection of EdU in examples of daughter cell pairs indicated in (B) after two divisions during the chase period. The micropattern shapes are in red

(scheme below).

(legend continued on next page)
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Figure 3. Cell Adhesion Topology Regulates

Asymmetric Distribution of Transcription

Factors and Correlates with Non-Random

DNA Segregation

(A) Pax7-nGFP+ myogenic cells were isolated by

FACS from TA muscle of Tg:Pax7-nGFP mice as

indicated in Figure 2D. Histogram shows the fre-

quencies of DNA segregation patterns on symmet-

ric and asymmetric micropatterns (n = 6 mice,

obtained from those indicated in Figure 2E). Note

that ASYM represents the average obtained from

Asym1 and Asym2 motifs. Error bars indicated

as SEM.

(B) Random and non-random DNA segregation

patterns indicated in (A) were normalized in each

category to 100%. Symmetric (Pax7/Pax7) and

asymmetric (Pax7/Myogenin) transcription factor

distributions were determined in cell pairs for each

category on symmetric and asymmetric micro-

patterns. Note that Pax7/X cell pairs (X represents a

Pax7-negative cell) were a minor fraction in which

Pax7 stained only one daughter cell (data not

shown). Error bars indicated as SEM.

(C) Examples of Click-iT chemical detection of

EdU with anti-Pax7 and anti-Myogenin antibody

immunostainings of daughter cell pairs indicated in

(B) on the asymmetric micropattern. Examples of

symmetric micropatterns are provided in Figure S2.

Scale bar, 10 mm.
113 total cells, n = 6 mice; Figure 3A), and among these, the

cell fates corresponded to 86.9% Pax7/Pax7, 2.9% Pax7/

Myogenin, and 10.2% Myogenin/Myogenin. Further, 30%

performed non-random DNA segregation (n = 35 of 113 total

cells, n = 6 mice), with 90.4% Pax7/Pax7 and 9.6% Pax7/
(D) Scheme illustrating labeling of nascent DNA strands. To label nascent DNA strands (‘‘exclusion’’ p

administered for the equivalent of one cell division, resulting in labeled nascent strands in hemi-labeled DNA (

chase is needed to distinguish labeled nascent DNA strands and unlabeled old template DNA strands in d

(E) Histogram showing the frequencies of non-randomDNA segregation on one symmetric and two asymmet

were isolated from TA muscle of Tg:Pax7-nGFPmice as indicated in (D). Note that independent experiments

(p < 10�5). Data are represented as Label+/+ or Label+/�. Error bars indicated as SEM.

(F) Click-iT detection of EdU in examples of daughter cell pairs indicated in (E). The micropattern shapes a

Scale bars, 10 mm.

Cell Reports 7, 961–
Myogenin where old DNA strands were

retained in the Pax7+ (EdU�) cell (Figures

3A, 3B, and S2).

In contrast, the majority of the cells per-

formed non-random DNA segregation on

the asymmetric motifs (74%; n = 201 of

272 total cells, n = 6 mice; Asym1/Asym2

motifs combined), and among these, the

cell fates corresponded to 61% Pax7/

Pax7 and 32.6% Pax7/Myogenin or 6.4%

Pax7/X (Figures 3A–3C). In the latter, a

minor fraction of cells that were asym-

metric for Pax7 but negative for Myogenin

were noted, and these were scored as

asymmetric fates. As with non-random

DNA segregation on symmetric patterns,
old DNA strands were retained in the Pax7+ (EdU�) cell. Random

DNA segregation on asymmetric motifs corresponded to 26% of

the total population (n = 71 of 272 total cells, n = 6 mice), with

94.3% Pax7/Pax7 and 5.7% Pax7/Myogenin (Figures 3A–3C

and S2). Therefore, asymmetric cell fates were preferentially
rotocol), several pulses of nucleotide analog were

Rocheteau et al., 2012). A second division during the

aughter cell pairs.

ric micropattern motifs. Pax7-nGFP+myogenic cells

were done with either EdU or BrdU from n = 9 mice

re in red (schemes below).
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Figure 4. Old Template DNA Strands Are Associated with a Low-Adhesion Surface on Asymmetric Micropatterns

(A) Images of daughter cell pairs aligned along the asymmetric micropattern motif. Cells are labeled as indicated in Figure 2D.

(B) Histogram showing the frequencies of cells retaining old template DNA strands in association with high (curved side of micropattern) or low adhesion on

asymmetric micropatterns. n = 168 cells, n = 3 mice; scale bar, 10 mm. Error bars indicated as SEM.
associated with non-random DNA segregation on both motifs,

and cells that retained old DNA strands (EdU�) were associated

with Pax7 expression in Pax7/Pax7 and Pax7/Myogenin

daughter cell pairs. In addition, 4-foldmore asymmetric cell fates

were associated with non-random DNA segregation on asym-

metric motifs compared with symmetric motifs in this category

(9.6% versus 39%). These observations also show that asym-

metric cell fates tend to be associated with non-random DNA

segregation; however, this correlation is not absolute, as these

two events can be uncoupled.

Old Template DNA Strands Are Preferentially
Associated with Low Adhesive Surface after Mitosis
The polarized microtubular network on asymmetric micropat-

terns, as well as the dominant effect of adhesion topology in

determining asymmetric cell divisions outcomes, prompted us

to assess whether old and new DNA strands show a bias relative

to the extent of adhesion on the asymmetric micropattern motifs.

To address this question, we examined EdU+/EdU� daughter

cell pairs (see experimental protocol in Figure 2D) that were ori-

ented along the long axis of the asymmetric micropattern motifs

(Figure 4A). Interestingly, about 70% of cell pairs captured after

mitosis had old template DNA strands (EdU�) retained in the

daughter cell that was located adjacent to the side with low

adhesion (n = 51 of 168 total cell pairs, n = 3 mice; average of

Asym1 and Asym2 motifs; p < 0.0005; Figure 4B).

Prospectively Isolated Cells Performing Non-Random
DNA Segregation Resist Symmetric Micropattern
Adhesion Cues
We showed previously that a subpopulation of muscle stem cells

corresponding to the Pax7-nGFPHi fraction after isolation by

FACS preferentially executed non-random DNA segregation

(Rocheteau et al., 2012). Given the strong influence of extrinsic
966 Cell Reports 7, 961–970, May 22, 2014 ª2014 The Authors
adhesion cues on determining the type of DNA segregation

pattern, we asked whether manipulation of the spatial distribu-

tion of adhesion in micropatterns can override this decision in

cells that are already engaged to perform non-random DNA

segregation. Since relatively large numbers of cells are required

for seeding onmicropatterns, the top 20%of the total population

corresponding to Pax7-nGFPHi cells was isolated by FACS (Fig-

ure 5A) and plated on nonpatterned fibronectin/fibrinogen Alexa

Fluor 594-coated slides as a control. We noted that 68% of the

cells performed non-random DNA segregation (Figures 5B and

5C; compared with 33% indicated above for the total population;

Figure S1C), consistent with our previous findings that non-

random DNA segregation is enriched in Pax7-nGFPHi muscle

stem cells during regeneration.

When we examined the Pax7-nGFPHi population on the asym-

metric motifs, we found that the majority of the cells performed

non-random DNA segregation (75%; n = 146 of 194 total cells,

n = 3mice; Figures 5D and 5E; average of Asym1/Asym2motifs),

similar to the nonpatterned surface. Strikingly, when seeded on

the symmetric motifs, the majority of the Pax7-nGFPHi cells

continued to perform non-random DNA segregation (79%; n =

84 of 107 total cells, n = 3 mice; Figures 5D and 5E). Thus, pro-

spectively isolated cells that perform non-randomDNA segrega-

tion do not alter their mode of DNA distribution significantly when

seeded on a symmetric micropattern.

DISCUSSION

Evidence for the asymmetric distribution of old and new DNA

strands during cell division comes from studies in prokaryotes

and eukaryotes (Yennek and Tajbakhsh, 2013). How this differ-

ential DNA strand identity can be registered during replication

and then propagated to cells at themetaphase plate for selective

distribution of chromatids containing old and newDNA strands is



Figure 5. Prospectively Isolated Muscle

Stem Cells Performing Non-Random DNA

Segregation Resist Extrinsic Symmetry

Adhesion Cues on Micropatterns

(A) FACS profiles of myogenic cells isolated from the

TA muscle of Tg:Pax7-nGFP mice at 5 DPI. Total

Pax7-nGFP and Pax7-nGFPHi (top 20%) cells are

shown.

(B) Pax7-nGFPHi (top 20%) myogenic cells labeled

with EdU (see Figure 2D) were isolated from TA

muscles of Tg:Pax7-nGFP mice at 5 DPI and then

plated on nonpatterned fibronectin/fibrinogen-

Alexa Fluor 594-coated slides. Examples of random

and non-random DNA segregation are shown. Cells

were treated with 2 mM cytochalasin D for 2 hr to

prevent cell separation.

(C) Histogram showing the frequencies of DNA

segregation patterns as indicated in (B). Error bars

indicated as SEM.

(D) Pax7-nGFPHi (top 20%) myogenic cells were

isolated as indicated in (B) and seeded on sym-

metric and asymmetric micropatterns, and EdU

staining was revealed by Click-iT chemistry.

Micropatterns can be seen in red.

(E) Histogram showing the frequencies of DNA

segregation patterns as indicated in (D). Note that

ASYM represents the average obtained from

Asym1 and Asym2micropatterns (non-randomDNA

segregation: SYM, 84/107 cells; ASYM, 146/194

cells; n = 3mice). Error bars indicated as SEM. Scale

bar, 10 mm.
a major unresolved question. Although a clear mechanism to

explain this phenomenon is still lacking for stem cells in vivo,

studies have focused mainly on intrinsic factors that are largely

epigenetic in nature (Elabd et al., 2013; Evano and Tajbakhsh,

2013; Lansdorp, 2007; Lew et al., 2008; Tajbakhsh and Gonza-

lez, 2009). A role for extrinsic cues in guiding template DNA

segregation and cell fates has not been overtly explored. Here,

we focused on extrinsic cell adhesion cues on micropatterned

artificial niches. We report that by manipulating the spatial distri-

bution of adhesion to the ECM, we could significantly alter the

frequency of non-random DNA segregation and corresponding

cell fates.

Various forms of mechanical stimuli, ECM, cell-cell contact,

and signaling have been shown to play critical roles in the orien-

tation of the plane of division to generate symmetric and asym-

metric cell fates after mitosis (Chen et al., 2013; Engler et al.,

2006; Freida et al., 2013). For the segregation of molecules asso-

ciated with themembrane, cytoplasm, or nucleus, the axis of cell

division, which is defined perpendicular to the spindle pole, is

critical for asymmetric or symmetric outcomes. During mitosis,

rotation of the spindle pole complex occurs before its final posi-

tion is fixed, thereby determining the cell fate outcome (Li, 2013;
Cell Reports 7, 961–
Morin and Bellaı̈che, 2011). There is an

additional level of complexity when DNA

segregation patterns are considered. Old

and new DNA strands are identified during

DNA replication, and this information is

thought to be retained in the condensed
chromatin at metaphase prior to DNA segregation. As chroma-

tids are aligned with the spindle pole apparatus, they will segre-

gate to opposite poles along this axis. Therefore, extrinsic cues

that can determine spindle pole orientation have been consid-

ered less likely (compared with intrinsic factors) to directly pro-

mote non-random DNA segregation (Lansdorp, 2007; Yennek

and Tajbakhsh, 2013).

Several studies have shown that the behavior of individual or

groups of cells and their differentiation on artificial surfaces

can be modified on micropatterns (Blong et al., 2010; Freida

et al., 2013; Gilbert et al., 2010; Li et al., 2011; Tang et al.,

2010; Yu et al., 2013). For example, mesenchymal stem cells

plated on microgrooves with regular patterns were reported to

exhibit altered nuclear morphology, reduced levels of histone

deacetylase activity, and increased histone acetylation (Li

et al., 2011). Our finding that cell adhesion can regulate non-

random DNA segregation patterns provides insights into the

role of extrinsic cues in this process, and this finding is supported

by a recent report that non-random DNA segregation in human

bone marrow mesenchymal stem cells is regulated by cell adhe-

sion differences on micropatterns (Freida et al., 2013). Interest-

ingly, in that study, non-random DNA segregation patterns
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involved some, but not all chromosomes as reported previously

(Falconer et al., 2010; Yadlapalli and Yamashita, 2013), in

contrast to muscle stem cells, where all chromatids are engaged

in this process (Rocheteau et al., 2012). Furthermore, we ob-

tained the highest frequencies reported for non-random DNA

segregation in primary cells, and by manipulating cell adhesion

were able to show that the majority of muscle stem cells are

permissive for this type of asymmetric DNA segregation.

To understand the phenomenon of non-randomDNA segrega-

tion, it is important to assess its relationship with the cell fates of

the resulting daughter cells after cell division. We showed previ-

ously that asymmetric cell fates (stem, Pax7; differentiated,

Myogenin) are associated with non-random DNA segregation in

muscle stem cells on a population level (Rocheteau et al.,

2012). Our present study of single cells dividing onmicropatterns

shows that both symmetric and asymmetric fates are associated

with non-random DNA segregation. Interestingly, Pax7/Myoge-

nin asymmetric fates were also found to be associated with

random DNA segregation on micropatterns, and this frequency

was higher on asymmetric micropatterns. Thus, cell adhesion

cues play an important role in the regulation of both of these pro-

cesses. Notably, non-randomDNA segregation was not system-

atically correlated with the asymmetric distribution of Pax7 and

Myogenin in resulting daughter cells. It is possible that we under-

estimated the overall frequency of asymmetric fates if the down-

regulation of Pax7 and concomitant upregulation of Myogenin

take place well after mitosis has occurred. In this scenario, an in-

termediate asymmetric state would be scored as a symmetric

Pax7/Pax7 event if the daughter cell pairs were captured imme-

diately after mitosis. Our preliminary results suggest that this

might be the case, since in Pax7/Pax7 daughter cell pairs, un-

even Pax7 immunostainings were also observed in some cases,

suggesting that one daughter cell might subsequently downre-

gulate this marker. Nevertheless, our findings suggest that in

some cases, DNA asymmetry and cell fate events can be un-

coupled. We speculate that the frequency of non-random DNA

segregation can be regulated by adhesion molecules located

subjacent to the dividing stem cell in the niche in vivo. The

coupling of this event with differential cell fates can occur, likely

with the intervention of another event(s) that is as yet unidentified.

In cases where non-random DNA segregation was associated

with symmetric daughter cell fates, it is possible that the differen-

tial cells fates were not fixed; thus, subsequent rounds of asym-

metric DNA distribution would need to be monitored. We note

also that old template DNA strands were consistently inherited

by the stem cell in Pax7/Myogenin daughter cell pairs indepen-

dently of the labeling regime (labeling of old or new DNA with

nucleotide analog) or themicropattern shape.Moreover,whether

consecutive rounds of non-random DNA segregation occur

without an intervening symmetric DNA distribution remains to

be explored. Previous studies have reported that transcription

factors can be distributed asymmetrically on isolated myofibers,

as muscle stem cells divide planar and perpendicular to the

myofiber and the basementmembrane that ensheathes it (Cossu

and Tajbakhsh, 2007; Kuang et al., 2007; Yennek and Tajbakhsh,

2013). Future studies with micropatterns can attempt to mimic

this topology to explore the influence of different types of ECM

on symmetric and asymmetric cell divisions.
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Given that muscle stem cells are highly motile on micropat-

terns, continuously forming and releasing membrane contacts

with the substrate in a dynamic manner (see Movies S1 and

S2), we propose that the frequencies obtained for non-random

DNA segregation and asymmetric cell fates were underesti-

mated. In other words, a ‘‘symmetric’’ outcome can potentially

arise on an asymmetric pattern depending on the probability of

polarized contact with the substrate. Similarly, although sym-

metric patterns are designed to provide a homogeneous micro-

environment, cells that release membrane contact on one side

can experience temporary asymmetry with a certain probability,

even on a symmetric micropattern. This can explain in part the

finding that asymmetric outcomes were observed on symmetric

micropatterns. Our findings lead us to propose that the adhesive

geometry has a predominant effect on the fate of the dividing

cells. With the caveat that extensive cell movements occur on

the micropatterns, and in contrast to human bone marrow

mesenchymal stem cells (Freida et al., 2013), the daughter cell

that retained old template DNA strands was found to be prefer-

entially associated with the low-adhesion side of the asymmetric

micropattern motif following mitosis. We note, however, that

extrinsic cues might be interpreted well before the initiation of

mitosis. Future studies should focus on defining the timing of

these events in relation to DNA segregation patterns and cell

fates. It is also possible that other as yet undefined cues coop-

erate with cell adhesion to provide a second signaling event for

guiding the type of cell division, as suggested above. Indeed,

the nature of the substrate could potentially play a role, since

fibronectin was suggested to modify Wnt signaling and increase

symmetric cell division frequency (Bentzinger et al., 2013). A sys-

tematic evaluation of different ECMmolecules, as well as the link

among extrinsic cell adhesion cues, mother and daughter cen-

trosomes, and kinetochore proteins (Evano and Tajbakhsh,

2013; Lansdorp, 2007; Lew et al., 2008; Tajbakhsh and Gonza-

lez, 2009) should be a major objective in future studies.

Finally, we report here that prospectively isolatedmuscle stem

cells engaged in non-random DNA segregation resisted rever-

sion to a random segregation pattern when seeded on symmet-

ric micropatterns. Thus, our study shows that adhesion cues

have a major impact on the type of DNA segregation pattern;

however, this mechanism operates with a defined period corre-

sponding to one cell cycle to regulate DNA segregation patterns.

Beyond this window of opportunity, the non-randomDNA segre-

gation is irreversible. In summary, we provide evidence that the

frequency of non-random DNA segregation and cell fates can

be regulated by the spatial distribution of cell adhesion in skeletal

muscle stem cells. The ability to control asymmetric and sym-

metric cell fates is of major interest for stem cell-based therapies

in which a key objective is to maintain the stem cell state during

amplification of the population ex vivo.

EXPERIMENTAL PROCEDURES

Micropatterns

After initial assessment of the size of activated myogenic cells was made,

asymmetric (two types) and symmetric patterns were designed and manufac-

tured on polystyrene-coated glass slides to allow spreading of single muscle

stem cells or two daughter cells after cell division (Azioune et al., 2010). Due

to the relatively small size of the myogenic cells, two asymmetric patterns



were designed, and they yielded similar results. Briefly, glass coverslips were

spin coated at 3,000 rpm with a 1% solution of polystyrene in toluene. This

polystyrene layer was further oxidized with an oxygen plasma treatment

(Harrick Plasma) for 15 s at 30 W and incubated with poly-L-lysine polyeth-

ylene glycol (PLL-PEG; SuSoS) in 10mMHEPES, pH 7.4, at room temperature

(RT) for 30 min. PLL-PEG-coated slides were placed in contact with an optical

mask containing transparent micropatterns (Toppan Photomask) using an

in-house-made vacuum chamber and then exposed to deep UV light (Jelight).

Micropatterned slides were subsequently incubated with a PBS solution con-

taining 20 mg/ml fibronectin (Sigma) and 20 mg/ml Alexa Fluor 594-fibrinogen

(Invitrogen) for 30 min and then rinsed three times in PBS. Coverslips were

dried then rinsed in PBS before cell seeding.

Mice, Muscle Injury, and Injections of Thymidine Analogs

Animals were handled according to national and European community guide-

lines, and protocols were approved by an ethics committee. Tg:Pax7-nGFP

mice were described previously (Sambasivan et al., 2009). Muscle injury was

done as described previously (Gayraud-Morel et al., 2007). Briefly, mice

were anesthetized with 0.5% Imalgene/2% Rompun. The Tibialis anterior

(TA) muscle was injected with 10 ml of notexin (10 mM; Latoxan). 5-Bromo-

20-deoxyuridine (BrdU; #B5002; Sigma) and EdU (#E10187; Invitrogen) ana-

logs were dissolved in 0.9% saline (GIBCO) and stored at 10 and 6 mg/ml,

respectively. For the pulse-chase labeling after notexin injury, transgenic

mice (6–10 weeks old) were injected intraperitoneally with 30 mg/g of EdU or

50 mg/g of BrdU. For the inclusion protocol, EdU was injected five times,

8 hr apart, from 3 DPI (Figure S1A). For the exclusion protocol, BrdU or EdU

was injected three times, 2 hr apart, 14 hr prior to sacrifice (Figure S1A).

Muscle Stem Cell Isolation, Culture, and FACS

Dissections were done essentially as described previously (Gayraud-Morel

et al., 2007). Injured TA muscles were removed from the bone in cold

Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) containing 1% of

penicillin-streptomycin (PS; Invitrogen), minced with scissors, and then

digested with a mixture of 0.08% Collagenase D (Roche) and 0.2% Trypsin

(Invitrogen) in DMEM/1% PS/DNase I (10 mg/ml; Roche) for five consecutive

cycles of 30 min at 37�C. For each round, the supernatant was filtered through

a 70 mm cell strainer and trypsin was blocked with 8% fetal calf serum (FCS;

Invitrogen) on ice. Pooled supernatants from each digestion cycle were centri-

fuged twice at 1,600 rpm for 10 min at 4�C. Between centrifugations, pellets

were resuspended in cold 2% FCS/1% PS/DMEM, washed with 1% PS/

DMEM and filtered through a 40 mm cell strainer. Prior to FACS, the pellet

was resuspended in 500 ml of cold 2% FCS/1% PS/DMEM and the cell sus-

pension was filtered through a 40 mm cell strainer. Cells were sorted using a

FACS Aria III (BD Biosciences) and collected in 1 ml of 2% FCS/1% PS/

DMEM. Cells were displayed as phycoerythrin (PE, red) on the FACS profile.

All analyses and quantitations were performed using FlowJo software. Satellite

cells were cultured in 1:1 DMEM (Invitrogen)/MCDB (Sigma) containing 20%

FCS, 2% Ultroser (Pall), and 1% PS. The medium was filtered through a

0.2 mm filter. Cells were cytospun on the chip at 40 g for 4 min, and 1 hr after

plating, nonattached cells were washedwithmedia. Cells were kept in an incu-

bator (37�C, 5% CO2, 3% O2) for 12 hr.

Immunocytochemistry

For nuclear immunostainings, cells were fixed with 4% paraformaldehyde

(PFA) in PBS 13 (GIBCO) and then washed three times with PBS 13.

Cells were permeabilized with 0.5% Triton X-100 5 min, washed once with

PBS 13, and blocked with 10% serum for 30 min. For the BrdU immunostain-

ing, cells were unmasked with DNaseI (1,000 U/ml; Roche) for 30 min at 37�C

prior to blocking. Cells were incubated with primary antibodies (Pax7, mouse

monoclonal 1/30, DSHB; Myogenin, rabbit polyclonal, #sc-576, Santa Cruz,

1/200; anti-BrdU, BD, 1/100) for 3 hr at RT. Cells were washed with PBS 13

three times and incubated for 1 hr with Alexa-conjugated secondary anti-

bodies (1/500; Life Technologies) and washed in PBS 13. EdU staining was

chemically revealed with the Click-iT kit (#C10640; Life Technologies). For

cytoskeleton stainings, cells were fixed and permeabilized with 0.1% Triton

X-100/0.5% glutaraldehyde in cytoskeleton buffer sucrose (CBS) for 10 min

at RT and then washed three times with PBS 13. Glutaraldehyde was reduced
with 0.1 M glycine for 10 min at RT and then washed three times with PBS 13.

Cells were blocked in 3%BSA for 45min at RT. Cells were incubated with anti-

alpha-tubulin, rat monoclonal (#MCA77G, 1/1,000; Serotec) for 1 hr at RT.

Cells were washed three times with PBS 13 and incubated with alexa 488-

conjugated secondary antibody (1/500, Life Technologies) and phalloidin con-

jugated with rhodamine (1/1,000; Molecular Probes); stainings were protected

from light. After three washes with PBS 13, cells were incubated with Hoechst

33342 (1/1,000; stock 1 mg/ml). Chips were mounted with Slow Fade Gold re-

agent (#S3940; Life Technologies). Chips were analyzed with a Leica SPE

confocal, Zeiss Observer Z1, and Zeiss LSM700. All antibodies were diluted

in 0.1% BSA/0.1% Tween/PBS 13. CBS contains 10 mM of 4-morpholinee-

thanesulfonic acid (pH 6.1), 138 mM of potassium chloride, 3 mM of magne-

sium chloride, and 2mMof ethylene glycol tetraacetic acid (Mitchison lab, Har-

vard Medical School; http://mitchison.med.harvard.edu/protocols.html).

Live Imaging

Cells isolated by FACS were plated on micropatterns as described above

(Azioune et al., 2010). The plate was then incubated at 37�C, 5% CO2,

and 3% O2 (Zeiss, Pecon). A Zeiss Observer.Z1 connected to an LCI PlnN

103/0.8 W DICII objective and Hamamatsu Orca Flash 4 camera piloted

with Zen (Zeiss) was used. Cells were filmed and images were taken every

8 min with bright-field and DICII filters (Zeiss). The raw data were trans-

formed and presented as a video.

Statistics

Statistical analysis was performed with GraphPad Prism software using

appropriate tests and a minimum of 95% confidence interval for significance

(*p < 0.05, **p < 0.001, ***p < 0.0001). Graphs display the average values of

all animals tested (SEM).
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Théry, M., Jiménez-Dalmaroni, A., Racine, V., Bornens, M., and Jülicher, F.
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Annex-2: Candidate siRNAs used for validation of the ‘EMT kit’ 

 

 Gene Name of the Genes 

1 NTP Non	
  Targeting	
  pool	
  of	
  SiRNA 
2 ERBB2 Receptor	
  tyrosine	
  kinase 
3 FAT2 FAT	
  atypical	
  cadherin	
  2 
4 CTNND1 Catenin,	
  delta1 
5 HSPD1 Heat	
  shock	
  protein	
  1 
6 JUP Junction	
  plakoglobin 
7 IMPDH2 Inosine	
  5’-­‐monophosphate	
  dehydrogenase	
  2 
8 ITGB4 Integrin	
  beta	
  4 
9 MAPK1 Mitogen	
  activated	
  protein	
  kinase 
10 P4HA2 Prolyl	
  4-­‐dydroxylase,	
  alpha	
  polypeptide	
  II,	
  Collagen	
  synthesis 
11 PHB Prohibitin,	
  evolutionarily	
  conserved,	
  role	
  in	
  cellular	
  senescence	
  and	
  tumor	
  

suppression 
12 PKP4 Plakophilin	
  4,	
  may	
  be	
  part	
  of	
  desmosomal	
  plaque 
13 PSEN1 Presenilin	
  1,	
  clevage	
  of	
  Notch	
  receptor 
14 PLEKHA6 Pleckstrin	
  homology	
  domain	
  containing 
15 POTEF POT	
  Ankyrin	
  domain	
  family,	
  adapter	
  protein 
16 PPP6C Protein	
  Phosphotase	
  6 
17 RAP1GDS1 RAP1,	
  GTP-­‐GDP	
  dissociation	
  stimulator 
18 REEP4 Receptor	
  accessory	
  protein	
  4 
19 STT3A Subunit	
  of	
  oligosaccharyl	
  trasnferase	
  complex 
20 TJP2 tight	
  Junction	
  protein	
  2 
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