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Abstract
In computer vision, the 3D structure estimation from 2D images remains a fundamental problem. One

of the emergent applications is 3D urban modelling and mapping. Here, we are interested in street-level

monocular 3D reconstruction from mobile vehicle. In this particular case, several challenges arise

at different stages of the 3D reconstruction pipeline. Mainly, lacking textured areas in urban scenes

produces low density reconstructed point cloud. Also, the continuous motion of the vehicle prevents

having redundant views of the scene with short feature points lifetime. In this context, we adopt the

piecewise planar 3D reconstruction where the planarity assumption overcomes the aforementioned

challenges.

In this thesis, we introduce several improvements to the 3D structure estimation pipeline. In particular,

the planar piecewise scene representation and modelling. First, we propose a novel approach that

aims at creating 3D geometry respecting superpixel segmentation, which is a gradient-based boundary

probability estimation by fusing colour and flow information using weighted multi-layered model.

A pixel-wise weighting is used in the fusion process which takes into account the uncertainty of

the computed flow. This method produces non-constrained superpixels in terms of size and shape.

For the applications that imply a constrained size superpixels, such as 3D reconstruction from an

image sequence, we develop a flow based SLIC method to produce superpixels that are adapted to

reconstructed points density for better planar structure fitting. This is achieved by the mean of new

distance measure that takes into account an input density map, in addition to the flow and spatial

information.

To increase the density of the reconstructed point cloud used to perform the planar structure fitting,

we propose a new approach that uses several matching methods and dense optical flow. A weighting

scheme assigns a learned weight to each reconstructed point to control its impact to fitting the structure

relative to the accuracy of the used matching method. Then, a weighted total least square model uses

the reconstructed points and learned weights to fit a planar structure with the help of superpixel

segmentation of the input image sequence. Moreover, the model handles the occlusion boundaries

between neighbouring scene patches to encourage connectivity and co-planarity to produce more

realistic models. The final output is a complete dense visually appealing 3D models. The validity of the

proposed approaches has been substantiated by comprehensive experiments and comparisons with

state-of-the-art methods.
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Résumé

Dans le domaine de la vision par ordinateur, l’estimation de la structure d’une scène 3D à partir

d’images 2D constitue un problème fondamental. Parmi les applications concernées par cette pro-

blématique, nous nous sommes intéressés dans le cadre de cette thèse à la modélisation d’un envi-

ronnement urbain. Plus spécifiquement, nous nous sommes intéressés à la reconstruction de scènes

3D à partir d’images monoculaires générées par un véhicule en mouvement. Dans ce cas particulier,

plusieurs défis se posent à travers les différentes étapes de la chaine de traitement inhérente à la

reconstruction 3D. L’un de ces défis vient du fait de l’absence de zones suffisamment texturées dans

certaines scènes urbaines, d’où une reconstruction 3D (un nuage de points 3D) trop éparse. De plus,

du fait du mouvement du véhicule, d’une image à l’autre il n’y a pas toujours un recouvrement suffisant

entre différentes vues consécutives d’une même scène. Dans ce contexte, et ce afin de lever les verrous

ci-dessus mentionnés, nous proposons d’estimer, de reconstruire, la structure d’une scène 3D par

morceaux en se basant sur une hypothèse de planéité.

Dans cette thèse, nous proposons plusieurs améliorations à la chaine de traitement associée à la

reconstruction 3D. Tout d’abord, afin de structurer, de représenter, la scène sous la forme d’entités

planes nous proposons une nouvelle méthode de reconstruction 3D, basée sur le regroupement de

pixels similaires (superpixel segmentation), qui à travers une représentation multi-échelle pondérée

fusionne les informations de couleur et de mouvement. Cette méthode est basée sur l’estimation de la

probabilité de discontinuités locales aux frontières des régions calculées à partir du gradient (gradient-

based boundary probability estimation). Afin de prendre en compte l’incertitude liée à l’estimation

du mouvement, une pondération par morceaux est appliquée à chaque pixel en fonction de cette

incertitude. Cette méthode génère des regroupements de pixels (superpixels) non contraints en termes

de taille et de forme. Pour certaines applications, telle que la reconstruction 3D à partir d’une séquence

d’images, des contraintes de taille sont nécessaires. Nous avons donc proposé une méthode qui intègre

à l’algorithme SLIC (Simple Linear Iterative Clustering) l’information de mouvement. L’objectif étant

d’obtenir une reconstruction 3D plus dense qui estime mieux la structure de la scène. Afin d’atteindre

cet objectif, nous avons également introduit une nouvelle distance qui, en complément de l’information

de mouvement et de données images, prend en compte la densité du nuage de points.

Afin d’augmenter la densité du nuage de points utilisé pour reconstruire la structure de la scène sous

la forme de surfaces planes, nous proposons une nouvelle approche qui mixte plusieurs méthodes

d’appariement et une méthode de flot optique dense. Cette méthode est basée sur un système de
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pondération qui attribue un poids pré-calculé par apprentissage à chaque point reconstruit. L’objectif

étant de contrôler l’impact de ce système de pondération, autrement dit la qualité de la reconstruction,

en fonction de la précision de la méthode d’appariement utilisée. Afin d’atteindre cet objectif, nous

avons appliqué un processus des moindres carrés pondérés aux données reconstruites pondérées par

les calculés par apprentissage, qui en complément de la segmentation par morceaux de la séquence

d’images, permet une meilleure reconstruction de la structure de la scène sous la forme de surfaces

planes. Nous avons également proposé un processus de gestion des discontinuités locales aux frontières

de régions voisines dues à des occlusions (occlusion boundaries) qui favorise la coplanarité et la

connectivité des régions connexes. L’objectif étant d’obtenir une reconstruction 3D plus fidèle à la

réalité de la scène. L’ensemble des modèles proposés permet de générer une reconstruction 3D dense

représentative à la réalité de la scène. La pertinence des modèles proposés a été étudiée et comparée à

l’état de l’art. Plusieurs expérimentations ont été réalisées afin de démontrer, d’étayer, la validité de

notre approche.

iv



Acknowledgements
It has been more than three years when I started my PhD as being an old dream. Since

then, I had a pleasant journey full of learning and gaining experience. This journey

would not have been possible without the help and support of many people who

accompanied me during this period.

First of all I would like to thank my supervisor Professor Alain Trémeau for his excellent

guidance, support and the space of freedom I can move without restrictions. He was

available from the initial until the final level of my PhD. His guidance drew the main

guidelines of my PhD which enabled me to achieve the plans on time.

During my PhD I was fortunate enough to spend several months at Heriot-Watt

University in the UK. Here, my great thanks to the Professor Andrew Wallace to give

me this opportunity, and for the experience I gained while working there. I would

like also to thank my co-supervisor Dr. Désiré Sidibé who helped me to improve the

quality of my publications and manuscript. Also for the his valuable comments and

suggestions.

I would like to thank the Professors Paolo Favaro and Joaquim Salvi for accepting to

review this manuscript. Their comments on the manuscript have helped me to clarify

the concepts and expand the target audience of this work. In addition, I would like

to thank Professor Christine Solnon for accepting to be the president of the thesis

committee.

My thanks also go to members of the Hubert Curien laboratory, both labmates and

staff for their kindness and making my PhD life an enjoyable and memorable one.

Last but not least, this thesis would not have been possible without the unconditional

love and support of my family. I dedicate this thesis to them.

v





Contents

Abstract i

Résumé iii

List of Figures xviii

List of Tables xix

List of Abbreviations xxi

1 Introduction 1

1.1 Structure Estimation From 2D Images . . . . . . . . . . . . . . . . . . . 1

1.2 Context & Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Improved Structure Estimation Pipeline . . . . . . . . . . . . . . . . . . 6

1.3.1 Spatial image dimension . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Temporal image dimension . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13

2.1 Urban Reconstruction Techniques . . . . . . . . . . . . . . . . . . . . . 14

2.2 Structure Estimation From 2D Images . . . . . . . . . . . . . . . . . . . 16

2.3 Superpixels For 3D Scene Representation . . . . . . . . . . . . . . . . . 18

2.4 Depth Learning From Single 2D Images . . . . . . . . . . . . . . . . . . 20

2.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Superpixel Segmentation for 3D Scene Representation and Meshing 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



Contents

3.2 Superpixels Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Superpixels Generation Scheme . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Relative Motion Recovery . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Dense Optical Flow and Depth Map Estimation . . . . . . . . . 33

3.3.3 Pixel-Wise Optical Flow Channels Weighting . . . . . . . . . . . 35

3.3.4 Generalized Boundary Probability . . . . . . . . . . . . . . . . . 37

3.3.5 Superpixels Formation and Mesh Generation . . . . . . . . . . 39

3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Constrained Superpixel Segmentation for 3D Scene Representation 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Constrained Superpixel Generation . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Proposed Method Inputs . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Clustering Distance Measure . . . . . . . . . . . . . . . . . . . . 51

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Planar Structure Estimation From Monocular Image Sequence 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Structure Estimation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Joint Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Pose Estimation and 3D Reconstruction . . . . . . . . . . . . . . . . . . 68

5.3.1 Frame-to-Frame Superpixels Correspondence . . . . . . . . . . 70

5.3.2 Weighted Total Least Squares for Planar Structure Fitting . . . 71

5.3.3 Boundary Probability to Improve Connectivity . . . . . . . . . 76

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Feature Matching Methods Selection . . . . . . . . . . . . . . . 78

5.4.2 3D Model Reconstruction . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusions and Future Directions 89

6.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

viii



Contents

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Conclusion général et perspectives (En français) 95

Appendix 99

A List of Publications 99

B Spatio-Temporal Depth Fusion for Monocular 3D Reconstruction 101

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2 Spatio-Temporal Depth Fusion Framework . . . . . . . . . . . . . . . . 104

B.2.1 Image Representation . . . . . . . . . . . . . . . . . . . . . . . . 104

B.2.2 Spatial Depth Features . . . . . . . . . . . . . . . . . . . . . . . . 105

B.2.3 Temporal Depth Features . . . . . . . . . . . . . . . . . . . . . . 106

B.2.4 Occlusion Boundaries Estimation . . . . . . . . . . . . . . . . . 108

B.2.5 Markov Random Field for Depth Fusion . . . . . . . . . . . . . 109

B.2.6 Parameters Learning and Inference . . . . . . . . . . . . . . . . 113

B.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 119

ix





Table des matières

Résumé iii

Liste des Figures xviii

Liste des Tables xix

Listes des Abréviations xxi

1 Introduction 1

1.1 Estimation de la Structure 3D à partir d’images 2D . . . . . . . . . . . 1

1.2 Cadre d’étude & Problèmes posés . . . . . . . . . . . . . . . . . . . . . 4

1.3 Améliorations proposées pour l’estimation de la structure 3D . . . . . 6

1.3.1 Aspects liés à l’information spatiale . . . . . . . . . . . . . . . . . 6

1.3.2 Aspects liés à l’information temporelle . . . . . . . . . . . . . . . 7

1.3.3 Base de vidéos considérées . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Organisation du manuscrit . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Etat de l’art 13

2.1 Techniques de reconstruction 3D d’images acquises dans un environ-

nement urbain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Estimation de la Structure 3D à partir d’images 2D . . . . . . . . . . . 16

2.3 Représentation d’une scène 3D sous forme de superpixels . . . . . . . 18

2.4 Extraction de la profondeur à partir d’images 2D . . . . . . . . . . . . 20

2.5 Discussion et Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Représentation structurée et maillage d’une scène 3D par segmentation

en superpixels 27

xi



Table des matières

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Méthode d’évaluation de la qualité des superpixels . . . . . . . . . . . 29

3.3 Processus de génération des superpixels . . . . . . . . . . . . . . . . . 32

3.3.1 Estimation du mouvement relatif . . . . . . . . . . . . . . . . . . 32

3.3.2 Estimation de la carte de profondeur et du flot optique dense . 33

3.3.3 Pondération du flot optique au niveau des pixels . . . . . . . . . 35

3.3.4 Estimation de la carte des contours . . . . . . . . . . . . . . . . . 37

3.3.5 Segmentation en superpixels et maillage associé . . . . . . . . . 39

3.4 Résultats des tests et expérimentations réalisés . . . . . . . . . . . . . 40

3.5 Discussion et Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Représentation structurée d’une scène 3D par segmentation en superpix-

els contrainte 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Processus de génération des superpixels contraint . . . . . . . . . . . 48

4.2.1 Données utilisées par la méthode proposée . . . . . . . . . . . . 50

4.2.2 Algorithme de classification . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Mesure de distance pondérée utilisée par la méthode proposée 51

4.3 Résultats des tests et expérimentations réalisés . . . . . . . . . . . . . 53

4.4 Discussion et Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Estimation de la structure sous la forme d’une représentation de surfaces

planes à partir de séquences vidéo acquises par un capteur monoculaire 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Méthode d’estimation de la Structure d’une scène 3D . . . . . . . . . . 64

5.2.1 Méthode d’appariement de différents types de descripteurs . . 66

5.3 Estimation de la position du capteur et reconstruction 3D . . . . . . . 68

5.3.1 Appariement de superpixels d’une image à l’autre dans une

séquence vidéo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Modélisation d’une scène 3D par des surfaces planes par la méth-

ode des moindres carrés . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Méthode d’amélioration basée sur l’appariement des contours 76

5.4 Résultats des tests et expérimentations réalisés . . . . . . . . . . . . . 78

5.4.1 Sélection de différentes méthodes d’appariement de descripteurs 78

xii



Table des matières

5.4.2 Reconstruction 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Discussion et Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion général and perspectives (En Anglais) 89

6.1 Résumé des problématiques abordées et discussion . . . . . . . . . . 89

6.2 Listes des contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Futures perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Conclusion général et perspectives (En français) 95

Annexes 99

A Liste des Publications 99

B Méthode de reconstruction 3D par fusion des informations spatiales, tem-

porelles et de profondeur acquises par un capteur monoculaire 101

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2 Méthode de fusion des informations spatio-temporelles . . . . . . . . 104

B.2.1 Représentation d’une image 2D . . . . . . . . . . . . . . . . . . . 104

B.2.2 Paramètres de profondeur liés à la dimension spatiale . . . . . . 105

B.2.3 Paramètres de profondeur liés à la dimension temporelle . . . . 106

B.2.4 Estimation des contours liés à des zones d’occlusion . . . . . . . 108

B.2.5 Fusion des informations de profondeurs basée sur les champs

de Markov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.2.6 Apprentissage pour la sélection des paramètres . . . . . . . . . . 113

B.3 Résultats des tests et expérimentations réalisés . . . . . . . . . . . . . 113

B.4 Discussion et Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xiii





List of Figures

1.1 Examples of rural (first raw) and urban (second raw) scenes. Source:

Google Earth 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Overview of the proposed superpixel method. . . . . . . . . . . . . . . 30

3.2 Two frames from KITTI dataset [Geiger 2012] (first row), and the hand-

made ground truth segmentation as provided in [Sengupta 2013] (sec-

ond row) and provided in [Ros 2015] (third row). The idea is to show

the significant difference in terms of number of labels, level of details

and localization of boundaries. . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Two depth maps computed using two pairs of images that shares the

same first image. (a) The image pair are shifted horizontally (stereo

pair); (b) The image pair are obtained with dominant forward motion

(Epipole near the center, borders problem). . . . . . . . . . . . . . . . 33

3.4 An example of possible correspondences frame O computed using local

homographies. The rest of the image (M −O) is projected to outside

the the second image as (I −M). . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Original image (a), and the obtained boundary probability based on

optical flow (b), colour (c), both colour and optical flow (d). . . . . . . 38

3.6 Multiple Superpixel segmentations generated from the generalized

boundary probability (Figure 3.5d) using watershed approach. (a) with-

out post-filtering. (b,c,d) iterative median filter is applied before water-

shed segmentation, more iterations for less number of superpixels. . . 39

3.7 Exemplar 3D mesh (a) and the corresponding textured 3D model of the

scene (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Detailed relative mean error. . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Overall relative mean error. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xv



List of Figures

4.1 Original SLIC superpixels with overlaid 3D reconstructed points. (a)

From Herz-Jesu-P8 and Mirbel datasets as presented in [Bódis-Szomorú 2014].

(b) From KITTI dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Superpixels formation pipeline. . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Feature points density map. The two equal Euclidean distances d1 and

d2 are weighted with the local density so thatΨd1
p >Ψd2

p . . . . . . . . . 52

4.4 Example of superpixels obtained using the proposed SLIC-UV-D method. 55

4.5 Example of superpixels obtained using original SLIC method [Achanta 2012]. 56

4.6 Example of superpixels obtained using the graph-based method [Felzen-

szwalb 2004]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Overall relative mean error. In SLIC-UV-D η= 5, the detailed feature

points STD is as given in Table 4.1 . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Detailed Experimental results for respecting the 3D geometry (bound-

aries quality). (a) and (b) show the effect of varying the spatial com-

pactness parameter η on the boundaries quality. For each η value we

provide the error introduced by the segmentation and also the STD of

the number of feature points per superpixel. (c) and (d) show a detailed

comparison for the proposed method SLIC-UV-D with the state-of-the-

art methods LABUV-PW, SLIC and the Graph-based. In SLIC-UV-D, the

parameter η is set to 5, while the mean STD is 9.56, the details are as

given in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Proposed 3D structure estimation pipeline. . . . . . . . . . . . . . . . . 65

5.2 Estimated trajectory using fixed configuration assumption and Monoc-

ular visual odometry [Esteban 2010] compared to Inertial Navigation

System (GPS/IMU) data superimposed onto a Google Earth image of

KITTI dataset sequences 0095. . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Example of frame-to-frame superpixels correspondence. . . . . . . . . 70

5.4 Illustration of finding superpixels correspondence using local homo-

graphies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Boundary probability computation. . . . . . . . . . . . . . . . . . . . . 72

5.6 Example of 3D model without integrating boundary information, most

of adjacent patches are not connected. . . . . . . . . . . . . . . . . . . . 77

xvi



List of Figures

5.7 Original frame from the sequence 95 and a Dense 3D model obtained

using the proposed method from several view points. . . . . . . . . . . 80

5.8 Original frame from the sequence 93 and a Dense 3D model obtained

using the proposed method from several view points. . . . . . . . . . . 81

5.9 Comparison of 3D models created by different methods. Our proposed

method (a), Poisson surface reconstruction [Kazhdan 2006] using dense

optical flow and sparse points (b), surface reconstruction of sparse

points using the greedy triangulation method [Marton 2009] (c), and

Delaunay triangulation based manifold surface reconstruction [Lhuil-

lier 2013] (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10 3D models to show the significance of integrating the boundary infor-

mation, also show the robustness of the ground floor estimation. (a)

boundary information are used. (b) boundary information are not used,

many adjacent patches are not connected, some are floating. . . . . . 83

B.1 Acquiring geometry: Camera installed on a moving vehicle with Z axis

coincides with forward motion direction. . . . . . . . . . . . . . . . . . 102

B.2 Illustration for how to compute the error in depth between the esti-

mated value and the depth for a given αi . . . . . . . . . . . . . . . . . . 106

B.3 (a) Original image. (b) Superpixels segmentation. (c) Occlusion sur-

faces. (d) Estimated occlusion boundary map (colour coded from green

(strong boundary) to red (weak boundary)). . . . . . . . . . . . . . . . . 109

B.4 Graphical representation of our MRF; for a given input of image se-

quence, occlusion boundaries and sparse SFM are estimated from two

frames t and t +1, while monocular depth features are extracted from

the current frame t , the MRF model integrate this information in order

to produce a joint result of 3D structure estimation . . . . . . . . . . . 110

B.5 (a) Depth estimation from single image. (b) Depth estimation using

SFM technique. (c) The estimated depth using the combined method.

(d) The triangulations associated with the depth estimation shown in (c).112

B.6 Estimated depth relative error | d̂
d −1| versus (left) Number of matching

feature points (frame to frame) (right) Number of inliers feature points

used to compute the Fundamental matrix using RANSAC. . . . . . . . 116

xvii



List of Figures

B.7 Estimated trajectory (dashed red) and ground truth (blue) obtained

from Inertial Navigation System (GPS/IMU) superimposed onto a Google

Earth image of KITTI dataset sequences 0009 (left) and 0095 (right) . . 116

xviii



List of Tables

4.1 Analysis of feature points distribution over superpixels. In SLIC-UV-D,

the spatial compactness parameter η is set to 5. . . . . . . . . . . . . . 54

5.1 Comparison between some selected feature matching methods based

on KITTI dataset [Geiger 2012] (BA refers to the results after performing

global Bundle Adjustment). . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Normalized learned weights associated to 3D points obtained using one

combination of feature matching methods and the number of frames

the feature point is tracked (point’s lifetime). . . . . . . . . . . . . . . . 79

B.1 Experimental results of spatial (SIE), temporal (SFM) and combined

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.2 Relative error distribution as a function of depth. . . . . . . . . . . . . 115

xix





List of Abbreviations

BM Block Matching

BA Bundle Adjustment

CRF Conditional Random Field

DoF Degrees of Freedom

DLT Direct Linear Transformation

EM Expectation Maximization

FM Fundamental Matrix

GBP Generalized Boundary Probability

GPS Global Positioning System

HSI Hue-Saturation-Intensity

IMU Inertial Navigation System

LiDAR Laser scanner

LF Low Level Features

LK Lucas-Kanade method

MRF Markov Random Field

MVS Multi View Stereo

PMVS Patch-based Multi View Stereo

RF Random Forest

RANSAC Random Sample Consensus

SLIC Simple local iterative clustering

SVD Singular Value Decomposition.

SFM Structure from Motion

VRML Virtual Reality Modeling Language

xxi





1 Introduction

Contents

1.1 Structure Estimation From 2D Images . . . . . . . . . . . . . . . . . . 1

1.2 Context & Problem Statement . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Improved Structure Estimation Pipeline . . . . . . . . . . . . . . . . 6

1.3.1 Spatial image dimension . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Temporal image dimension . . . . . . . . . . . . . . . . . . . 7

1.3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Structure Estimation From 2D Images

Nowadays, cameras are becoming one of the favourite personal devices that we use in

our daily life. Either in their standalone form or embedded in other devices such as

mobile phones and tablet PCs. This popularity has as a consequence a huge amount

of photos and videos being captured and stored worldwide. Some of those photos and

videos are being taken in an organized way for more useful purposes, and here is our

interest. For instance, image sequences in urban scenes.

When a picture is taken by a camera, depth information about the scene is lost. Indeed,

one of the early topics of computer vision is recovering the three-dimensional (3D)
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structure of a scene using two-dimensional (2D) images. Inspired by human stereo

vision system, the early techniques focused on performing depth estimation using

stereo pair of vertically aligned cameras, where the computed points disparity is di-

rectly related to their depth. Later on, approaches for multi-view scene reconstruction

start to appear and widely attract researchers from early nighties. Motivated by the

increase availability of digital images and the computational speed from one side,

and the interest in the digital 3D modelling from another side. Such approaches are

dedicated to estimate the depth using information from several overlapped images

of a scene [Hartley 2004]. This results in establishing the fundamentals of 3D recon-

struction in the general case. Most of the successive works in this domain aim at

increasing both the density and the reconstruction quality of the obtained 3D models

[Furukawa 2010]. Some went further by performing surface reconstruction and 3D

meshing [Wu 2012, Lhuillier 2013].

In the meanwhile, other specific cases such as 3D reconstruction from monocular

image sequence have been treated as a multi-view problem, as it follows the same

assumptions on which the multi-view fundamentals are based. However, applying

the common multi-view vision techniques in this context faces several challenges,

which will be explained later on in details. The resulting 3D models are generally

less dense and have lower quality. Although several works have been dedicated to

deal with the aforementioned context [Vedaldi 2007, Micusik 2009], this special case

remains challenging and did not receive the same attention as for the stereo and multi-

view vision. Here come our motivations to target the monocular vision setup in this

thesis. We demonstrate that there are several cues that can be exploited to improve

the output quality and density. Among several possible contexts, we target specifically

building in-city 3D models from monocular image sequence. The motivation of using

a single camera is for its cheap price and simple setup which is available to everyone,

compared to other sophisticated image acquisition configurations, such as omni-

directional camera and rolling-shutter camera rigs. The common acquisition setup in

this case is a camera installed on a mobile vehicle and pointing forward. This setup

already exist in many mobile vehicles as a part of their surveillance (and recently

safety) systems [McCall 2006].

Regarding the assumed context, we differentiate between two kinds of targeted scene
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1.1. Structure Estimation From 2D Images

Figure 1.1: Examples of rural (first raw) and urban (second raw) scenes. Source: Google
Earth 2014.

types: rural and urban environment. The rural environment is known to be rich in

texture with less planar structures. It is also more open so the majority of the scene

is located out of the range of vision system (Except for aerial images where several

successful methods for 3D reconstruction exist). In contrary, urban environment is

poor with texture, while it tends to have more planar structures, mostly vertically

aligned. Figure 1.1 shows typical examples for rural and urban environments which

confirm the above mentioned properties. Given these facts, some adopted approaches

for one scene’s kind may not be the best for the other kind. We dedicate our thesis to

the latter case, motivated by the increasing interest in building 3D city models. More

precisely, the building façades, road structure and other stationary objects.

A general requirement that needs to be discussed in most of computer science related

methods is the computational time. In the assumed context, having the reconstruction

algorithm in real time is an advantage, as this will extend the number of applications

where the method can be applied. For instance, driving assistant systems. However,

as our focus is on the output quality, in our specific context, there is more information

that can be extracted in off-line processing than real-time. We explain this point in

simple words, when the acquisition system is far from a certain object, details are

less clear, and when it is getting closer, everything in the scene is becoming clearer

(except for boundary objects which will become out of the view). This means that at
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any frame within the sequence, complementary information from both frames before

and after can improve the reconstruction quality, which prevents providing real-time

output. Overall, we adopt a general policy in this thesis; we worry about computation

time except if there is a processing time-quality trade-off, where in this case we go for

the reconstruction quality.

1.2 Context & Problem Statement

Most of the methods proposed for 3D reconstruction from 2D images use the camera

motion as a cue (Temporal cue) to reveal the 3D structure. The common pipeline of

such methods, which are so-called Structure from Motion (SFM), mainly relies on

feature points detection, matching and 3D triangulation [Hartley 2004]. This process is

followed by a global bundle adjustment to minimize the re-projection error and refine

both the structure and the relative camera motion [Triggs 2000]. The density of the

obtained 3D model in this case is directly related to the number of matches. In case of

stereo vision, a semi dense matching could be obtained using a stereo pair that allows

forming fairly good 3D model [Hirschmuller 2007]. Similarly, in case of having a set of

unstructured images for a scene, where there exist several redundant laterally shifted

views, up to semi-dense reconstruction could be obtained using Multi View Stereo

(MVS) approaches, which mainly extend the sparse feature points correspondence to

patch matching (Sometimes called PMVS, being patch based MVS) [Furukawa 2010].

This results in quite dense and visually appealing models.

Now if we come to the case of camera forward motion in urban environment, sev-

eral challenges arise at different stages of the traditional 3D reconstruction pipeline.

Mainly, lacking textured areas in urban scenes, which results in less feature points, and

consequentially, less 3D reconstructed points. Additionally, the continuous motion of

the vehicle prevents having redundant views of the scene with short feature points

lifetime. Mathematically speaking, depth recovery from points correspondence of

two images taken in forward camera motion (Epipole inside the image) is noisier, and

even it is subject to ill-posed problems [Vedaldi 2007] for some points, than laterally

shifted images. This is because in the latter case, the depth is directly proportional to

disparity, while in the first case the disparity is a function of points spatial position
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and depth together (this will be discussed later in details). Applying the standard

MVS in this context is difficult, or results in non-dense unrecognisable 3D models.

Which is also due to the fact that most of MVS methods rely on good feature matching

methods such as; SIFT [Lowe 2004], SURF [Bay 2006], and recently ORB [Rublee 2011].

The quality here is defined by two features, first is to be sufficiently discriminative,

that is, being distinguished from other features, and second, to be invariant to sim-

ilarity transformations, such as rotation, translation and scale changes, as well as

illumination variations. However, these methods have a drawback that they provide

relatively small number of matches (which is not a problem when redundant views are

available). In contrast, extending the number of matches by allowing more tolerant

feature point’s quality or using denser matching methods affects the quality of the

3D reconstruction and the relative motion estimation. From another side, extending

the sparse feature point to match patches is more difficult in the assumed context

because image pixels in forward motion undergo an affine transformation, while in

the laterally shifted case is up to similarity transformation, whereas the photometric

information are due to less change than the first case.

In the area of 3D reconstruction, assumptions about the scene rigidity has to be de-

fined in advance. Non-rigid scenes can be encountered when we have a deformation

of objects in the scene such as human faces and bodies, or due to mobile objects in

the scene. Considering non-rigid scenes requires major modification in the traditional

3D reconstruction procedure since matched points are no longer static in the scene,

whereas conventional stereo vision fundamentals do not apply here. In our work,

as we focus on 3D urban reconstruction, possible mobile objects in the scene are

pedestrians and vehicles. For both of them, there is no interest to be reconstructed.

Hence, in this dissertation we consider only the rigid case.

Apart from the camera motion cue, other cues can be also employed to achieve the

goal of 3D reconstruction. Here, we mainly emphasis on the spatial cues that exist

in a single image, which helps to infer (some) depth information. Several cues have

been exploited in research such as depth from defocus [Favaro 2008], vanishing points

[Wang 2009], horizontal line [Alvarez 2010], patterns and structure [Hoiem 2007],

shading variations and lighting [Alvarez 2010]. Unfortunately, most of these cues

are not present in all kinds of images, and generally not robust. However, since the
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last decade a new generation of methods have been developed to perform 2D to 3D

conversion based on a single image using machine learning techniques. They are

based on the use of exhaustive feature extraction and probabilistic models to learn

depth using some priors. Although this is not the main topic in this dissertation,

the idea here is to use such kind of techniques together with SFM to improve depth

estimation.

Hence, this thesis mainly aims at addressing the 3D reconstruction of urban scenes

while the camera is undergoing forward motion, which is still considered a challenging

problem given the above mentioned points. The goal is to provide a complete scene

3D model that is as dense as possible and visually appealing 3D models. As we have

seen, the main issue faced in the assumed context is the lack of feature points matches

among the image sequence (Temporal dimension) which leads to non-dense 3D

model.

1.3 Improved Structure Estimation Pipeline

In this thesis, we propose a solution that deals with the mentioned challenges by

exploiting visual information in two dimensions;

1.3.1 Spatial image dimension

We exploit the spatial image information by taking advantage of appearance similarity

to assume spatial belonging to same object in the 3D scene. For this aim, we are

inspired by computer graphics applications where the virtual world is represented by

a mesh composed of small planar patches, mostly triangles. Each of these patches has

a unique colour. For a given 2D view capture of such virtual world, the relationship

between every two adjacent patches is either connection (hinge or coplanar) or occlu-

sion. By transferring this concept to real world, the 3D scene can be represented when

projected to 2D by small planar patches. Now, when there are some known 3D location

for a set of points in the same scene, and if it is known that those points belong to the

scene structure. i.e. are contained in the planar patches, the plane parameters for

each of the planar patches can be obtained if there is enough number of known 3D
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points associated to each of them. For instance, a point cloud obtained using SFM

technique. In practice, several homogeneous regions in urban scene, such as building

windows, columns, side-walks and roads, are poor with feature points, whereas they

can be well fitted to planar patches. The proposed approach in this case is expected to

perform well. From another side, trees and other greenery areas that may be present

in urban scenes violate the planar assumption, so the proposed representation may

not be the best option. We propose a solution to deal with the later problem through

an adaptive patches size in the scene based on the level of texture. Going back to the

assumed representation, the 2D decomposition of the scene into planar patches is

obtained using an over-segmentation of the input image, that is called superpixel

segmentation, which tends to group pixels based on their appearance properties, and

hence to increase their probability to belong to one surface in the 3D scene. However,

there are some issues related to superpixel generation that need to be addressed:

• How much should the image be over-segmented (number of superpixels).

• What is a good superpixel segmentation method specifically adapted to our

defined purpose of 3D representation.

• Are there any specific constraints on the size, regularity and boundaries of the

formed superpixels.

In this thesis, we allocate Chapters 3 and 4 to propose efficient methods and address

these problems in details.

1.3.2 Temporal image dimension

We also exploit the temporal dimension. Particularly, to increase the number of feature

points matches, and hence, to increase the density of the obtained 3D models. As

mentioned earlier, one of the drawbacks of the good feature points matching methods

is that they produce relatively small number of feature points. The main idea proposed

in this context is to combine several feature matching methods to increase the number

of matches. Furthermore, to consider a noisy dense optical flow as being a part of

the matches involved in the 3D reconstruction. The main issue when using such

mixture of matches is that it affects the output quality, because the number of matches
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obtained using some feature matching methods (e.g. dense optical flow) is large and

of low quality compared to such of good methods (e.g. obtained using SIFT). So the

impact of lower quality matches will have more impact on the obtained model than

the better quality ones. Therefore, our proposed solution takes this issue into account

by a kind of weighted impact of each point when used to fit the scene structure. More

precisely, a weighted plane fitting model. This approach raises another issue about

how to define the weights, which is not trivial. Although we know that those weights

should be in some sort proportional to the accuracy of the used feature matching

method. Hence, we also exploit this issue in details and a learning based approach is

proposed to compute the proper weights (more details in Chapter 5). Furthermore,

by using the concept of variable weights, other factors can be also considered while

allocating the weights to points. Commonly, those factors are known a priori to affect

the accuracy of the 3D reconstructed points. For instance, the feature point which is

matched/tracked in five frames is likely to produce more accurate 3D reconstructed

point than a point reconstructed using a feature point that is only trackable in two

frames . Another important point that affects the reconstruction quality is the distance

to the camera, from stereo vision fundamentals we know that the error introduced in

the depth estimation grows non-linearly with the distance to the camera. Moreover,

at certain depth the vision based system becomes blind so that all points located

after certain distance will be assigned same depth value (in the best case). Indeed, we

extend the weighting model to consider other factors that we believe they affect the

accuracy. The learning procedure validates the necessity of any added factor.

1.3.3 Dataset

In this thesis, we mainly rely on the image sequences provided in KITTI dataset

[Geiger 2012]. The main reasons beyond this choice are;

• It provides the same assumed configuration (beside other configurations such

as colour/grayscale stereo).

• Relatively high resolution images (375 × 1242 Pixels). For instance, compared

to MIT DARRA urban challenge dataset [Huang 2010] (376x240) and The CMU

Visual Localization Data Set (256 × 192) [Badino 2011].
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• The sequences cover most of the scenarios and contains most of the various

objects we see in urban environment (28 sequences in the raw data section, 21

sequences in the odometery section. In total there are around 30K images).

• Large range laser scanner data, one point cloud per image (∼ 100k points per

frame). We rely on the provided laser scanner data as a ground truth for any

learning related method we propose.

• Precise trajectory obtained using Inertial Navigation System (GPS/IMU), which

is used to validate the visual odometrey.

• Provides all necessary calibration parameters (Camera, Camera-to-GPS/IMU,

Camera-to-Laser scanner, etc).

• It is being widely adopted by recent and high quality works in several domains

of computer vision, for instance, [Vogel 2013, Sengupta 2013, Yamaguchi 2013,

Ros 2015].

1.4 Contributions

The main contributions of this thesis are the following: (Logically ordered)

• We propose a procedure to evaluate superpixel segmentation for the goal of 3D

scene representation. This procedure provides a measure that shows if a given

superpixels segmentation respects the 3D geometry of a scene, which is achieved

by the mean of computing the error introduced when converting a dense depth

map into a triangular mesh based on superpixels. This allows selecting and

improving the existing general-purpose state-of-the-art superpixel generation

method to be used in any piecewise 3D reconstruction pipeline. (This work is

published as a part of [Nawaf 2014a], and detailed in Chapter 4).

• A novel approach that aims at creating 3D geometry respecting superpixels. The

superpixel generation is based on a generalized boundary probability estimation

using colour and flow information similar to [Leordeanu 2012]. However, we

propose a pixel-wise weighting in the fusion process which takes into account

the variable uncertainty of computed dense depth using optical flow. This
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method is applicable to any active/passive 3D reconstruction application. In

particular, a method that models the output (e.g. point cloud or dense depth

map) as a mesh with minimum loss of precision. (This work is published in

[Nawaf 2014a], and detailed in Chapter 3).

• Adaptive simple local iterative clustering (SLIC) superpixel segmentation method.

The original method is extended to be adaptive to the sparse feature points den-

sity for more balanced 3D structure fitting. This is achieved by the mean of new

distance measure that takes into account the feature points density. And also

we initialize the clustering with feature points density adapted seeds instead of

the originally regular seeds. The superpixels obtained in this case are regular

and limited by size, so this method is suitable to be applied if the reconstruction

method requires establishing superpixels correspondence between several con-

secutive frames in a sequence (unlike the previous method, where superpixels

are not constrained). (This works is published as a part of [Nawaf 2014b], and

detailed in Chapter 4)

• Closed-form plane parameters estimation scheme that involves using 3D points

obtained using several feature points matching techniques including a noisy

dense optical flow. We use a weighted total least squares model to handle the

uncertainty of each depth source. This model is employed to perform a weighted

fitting of the slanted-planes structure, and hence to form the 3D model. (This

work is published in [Nawaf 2014b], extension is submitted to [Nawaf 2014-1],

and detailed in Chapter 5)

• We exploit using depth learning from single image approach together with

SFM to improve the 3D structure estimation. Based on the depth estimation

method from single image presented in [Saxena 2009b], we extend the proposed

Markov Random Field model to include new potential functions related to 3D

reconstructed points using SFM technique, and also constrained by the limited

planar motion of the vehicle. The obtained results are improved with respect to

the depth computed using single image. However, the method proposed in the

previous point provides better outputs. (This work is published in [Nawaf 2012],

extended in [Nawaf 2013] and detailed in Appendix B)
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1.5 Thesis outline

This thesis is structured as follows:

• Chapter 2 surveys the current state-of-the-art and contrasts the proposed 3D

reconstruction approach with respect to previous works. We also provide a

literature review on superpixel segmentation methods as being an essential part

that we rely on in our framework.

• Chapter 3 presents the first proposed superpixel segmentation method, which

is non-constrained gradient based aims at generating superpxiels for the goal

of creating mesh representation that respects the 3D scene geometry. Unlike

the method proposed in Chapter 4, there are no constraints on the size, shape

and number of superpixels. This method uses a new fusion framework which

employs both dense optical flow and colour images to compute the probability

of boundaries. The main contribution of this approach is that we introduce a

new colour and optical flow pixel-wise weighting model that takes into account

the non-linear error distribution of the depth estimation from optical flow. We

also introduce the evaluation procedure we are based on to assess the quality of

superpixel segmentation in terms of respecting the 3D geometry.

• Chapter 4 presents the second proposed superpixel segmentation method,

which is based on adaptive simple local iterative clustering (SLIC). This method

differs from the one proposed in Chapter 3 that it aims at producing constrained

size superpxiels, which is an important property when the used 3D modelling

approach involves establishing explicit/implicit superpixel correspondence

between views. The superpixels shape and size is locally controlled based on

an input density map. We adapt the method for the application of 3D planar

structure fitting by using the feature point density as an input to control locally

the size of superpixels for balanced feature points distribution over superpixels.

• Chapter 5 explains the proposed planar 3D reconstruction pipeline from monoc-

ular image sequence. The focus is on the following components: first, a sparse

3D reconstruction scheme using several feature matching methods. Second, a

frame-to-frame superpixel correspondence method. This method is essential in
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the proposed pipeline as it is used to integrate the temporal information along

the image sequence. Third, a boundary probability map computation based

on colour and flow information. The boundary information are used in the

planar fitting procedure to integrate the spatial depth information. Fourth, the

weighted structure fitting scheme which is based on a total least square model.

Then we present the experiments to evaluate the proposed method, with a

detailed discussion that highlights both the advantages and the limitations.

• Chapter 6 Draws the conclusions, and possible future directions that are aimed

to address the limitations and the further improvements.

• Appendix A list the publications which are related to the topics presented in

this thesis.

• Appendix B This chapter presents a work which is not in main track of thesis

thesis. It presents a novel approach to improve 3D structure estimation from

an image stream in urban scenes. The idea is to introduce the monocular

depth cues that exist in a single image, and add time constraints to improve

the 3D structure estimation with respect to structure from motion traditional

techniques. The scene is also modelled as a set of small planar patches obtained

using over-segmentation, and the goal is to estimate the 3D positioning of these

planes. We propose a fusion scheme that employs Markov Random Field (MRF)

model to integrate spatial and temporal depth features. The proposed MRF

model is then solved using convex optimization techniques.
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In this chapter, we give an overview of related works. First, we review available tech-

niques for urban reconstruction, which can be divided into four categories [Musial-

ski 2013] depending on the used acquisition technique; image-based or active-sensing

(Laser scanner). For each case it could be applied in the context of aerial imaging or

ground-level acquisition setup. Being focused on image-based techniques, we review

the general dense 3D reconstruction from 2D images techniques. We explain the

difficulties faced with these methods when applied to our context. Next, we move to

the particular case of monocular image sequence and the related techniques.

As many of successful methods in literature adopt the superpixel representation of

the scene, we also review the state-of-the-art methods for superpixels generation, in

particular, the methods which are employed in 3D world modelling. We also discuss

their advantages and disadvantages, and the ideas and constraints we considered in

our proposal in order to implement an improved solution.
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Finally, we review depth estimation from single image approaches, specifically, the

general methods based on machine learning techniques. Also we mention the ex-

isting methods which fuse both spatial and temporal information to improve depth

estimation.

2.1 Urban Reconstruction Techniques

Several techniques have been used in order to perform urban 3D reconstruction.

Here in this section we mention the modalities used for this purpose rather than the

previously assumed configuration (Mobile vehicle with forward motion). The main

purpose is to show their advantages and current drawbacks. These techniques include

aerial imaging and the laser scanner (LiDAR).

Urban reconstruction from aerial imaging methods uses the same concepts of multi-

view geometry, although these methods rely more on matching line segments over

multiple views instead of the common point matching procedure in traditional multi-

view approaches [Baillard 1999]. The triangulated lines in 3D are used to compute

the roof planes orientation. Hence, piecewise planar rooftops are reconstructed.

A successful method for automatic 3D reconstruction proposed in [Zebedin 2008]

requires each building to be segmented, and then converted into simplified models

composed of planes and surfaces of revolution. We also use a similar concept of

planar reconstruction, although we have a different aim by targeting street-level

reconstruction rather than top-view reconstruction.

Laser scanners (LiDAR) represent an alternative technique to computer vision based

methods to perform sparse depth reconstruction. LiDARs are based on push-broom

shaped pulse emitters/receivers, which can be static or rotating depending on the

acquisition configuration. This allows to compute the depth for a set of points in the

scene by measuring the phase shift between the emitted and the received pulse. In

general, they provide more accurate measures compared to image-based techniques,

in addition to its larger range (modern ground-level LiDARs has a range of 80 meters).

Similar to image-based techniques, urban reconstruction LiDAR related techniques

are also used in two contexts; aerial and ground-level acquisition. In the aerial con-
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text, the point could obtained by LiDAR is fitted to geometric primitives in order to

reconstruct surface models [Zhou 2013]. Other techniques employ both aerial im-

ages and LiDAR data to model the surfaces. For instance, the method proposed in

[Sohn 2007] fuses segmented buildings and range measurements in order to refine

the reconstruction. However, similar to aerial image-based techniques, the obtained

reconstruction contains mostly rooftops, whereas vertically oriented surfaces (such as

building façades) are occluded. Moreover, the overall obtained model has lower reso-

lution. Nevertheless, it has some advantages such as the greater coverage especially in

non-accessible areas and requires relatively smaller number of images. Commercial

products of big companies such as Apple, Google and Acute3D, provide successful

reconstructed city 3D models produced using semi-automatic techniques relying on

the above mentioned approaches. Again, the available created maps deliver no street-

level detail. In the context of ground level LiDAR, there exist recently several attempts

[Früh 2004, Pandey 2011, Geiger 2012, Smith 2009] to provide 3D point clouds of urban

environment using mobile vehicle equipped with 360◦ rotating LiDAR scanner. This

allows to provide sparse depth map of the scene. Further processing is then needed to

provide 3D models through surface reconstruction techniques (discussed in details in

the next section). Modern LiDARs, such as the one used in [Geiger 2012, Pandey 2011]1,

provide up to 100K points per measuring cycle which covers 360◦. The measures are

arranged in horizontal lines (Modern LiDARs provides 64 lines). To create colourful 3D

models, RGB cameras are used together with LiDARs to provide colour information.

Based on the configuration used by [Geiger 2012], from a looking forward RGB camera

which is 0.5 MB resolution, the depth can be obtained for around 16K points. This

represents 0.032% of the pixels in the image. Which is another significant weaknesses

related to this approach beside the issues we discussed earlier that are related to cost

and system implementation. Hence, image-based 3D reconstruction is still an open

problem in 3D reconstruction domain. Related works for urban reconstruction from

monocular image sequence will be reviewed after introducing the literature review of

3D reconstruction from 2D ground-level images in the next section.

1Both implementations use Velodyne HDL-64E LiDAR system
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2.2 Structure Estimation From 2D Images

Structure from motion (SFM) methods aim at creating 3D point cloud from 2D images.

Given the ongoing development in feature detection, description and matching, effi-

cient state-of-the-art SFM techniques are capable of providing high quality sparse 3D

point clouds [Agarwal 2009, Frahm 2010, Crandall 2011, Pollefeys 2008]. The common

SFM pipeline consists of feature matching, robust relative motion estimation, which

mostly employs RANSAC procedure, and finally simultaneous structure and motion

bundle adjustment [Lourakis 2009, Wu 2011] to minimize the re-projection error and

refine the structure. As mentioned earlier, the density of the reconstructed point

cloud is limited by the number of matched features per frame. Also, the quality of the

reconstructed point cloud is related to feature points lifetime (the number of frames a

feature point is tracked). This later fact is limited by the context (e.g. the point leaves

the viewed scene). However, most of the 3D reconstruction and modelling techniques

rely on SFM output as initialization. In this thesis, we do not aim at improving SFM

pipeline, whereas we use it as a tool.

Towards more detailed 3D reconstruction, many methods have been proposed to

extend the sparse SFM to provide denser representation of a scene. In particular the

Multi-View Stereo (MVS) algorithms that aims at producing very dense point clouds or

surface meshes [Vogiatzis 2007, Furukawa 2010, Hiep 2009] by employing the photo-

consistency constrain across multiple views. For instance, the patch based MVS

[Furukawa 2010] uses SFM as an initial solution, then it matches small rectangular

patches in the scene by minimizing a photometric discrepancy function. This allows to

grow the initial key points to neighbouring points under the photometric criteria and

hence to have a denser reconstruction. This results in a semi-dense cloud of patches

which is later employed in surface reconstruction. As mentioned earlier, this approach

performs poorly in low textured areas, and requires redundant views [Mičušík 2010].

The 3D models we obtained using MVS applied to KITTI dataset [Geiger 2012] are not

recognizable due to low density point cloud. Hence, is out of the scope of this thesis

to provide a full review for other general MVS methods. However, we refer the reader

to [Musialski 2013] for a complete survey of MVS and urban reconstruction.

According to our knowledge, no prior work uses several feature matching methods
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together in a weighting scheme as we propose in our approach. Nevertheless, some

works use a combination of several tolerance levels of salient points quality. For

instance, in [Hiep 2009], after generating the SIFT matches and estimating the pose, a

denser point cloud is generated by extracting more matches based on quality tolerant

DOGs and Harris detectors, and using block matching procedure. At the end, the

matches are categorized as false or true, and the mesh generation is based on true

matches and deals with them equally. In our approach, each matching point is

associated with a learned weight that controls its impact in fitting the structure.

In the context of urban reconstruction, a manifold surface reconstruction [Lhuil-

lier 2013] is based on the sparse 3D point cloud obtained using SFM. The 3D model

generation is an independent post processing that considers only the obtained point

cloud. The goal is to generate a mesh representation of the scene, then to use the

colour information to produce textured 3D model by interpolation. The keypoint is to

perform 3D Delaunay triangulation by ray tracing and iterative region growing while

maintaining the manifold property. Here, we could also mention the surface recon-

struction approaches which also can be also applied in this context. For instance, the

Poisson reconstruction [Kazhdan 2006] has been widely applied to object reconstruc-

tion. In this method, an implicit function is derived from a Poisson equation, providing

the best match between the gradient of such function and the normals of the input

point cloud. However, this approach tends to produce smooth surfaces which is not

suitable for urban environments. Other concurrent solution is the triangulation based

surface reconstruction such as the method proposed in [Marton 2009]. Which is based

on incremental surface growing by incrementally selecting k-neighbourhood in a

sphere, and projecting them on a plane that is approximately tangential to the surface

formed by the neighbourhood. The points are then pruned by visibility and connected

to consecutive points by edges to form the triangles. All mentioned triangulation

and surface reconstruction methods [Lhuillier 2013, Kazhdan 2006, Marton 2009]

do not take into account the image colour and appearance information, and more

important the object boundaries. The reconstructed models using such methods

are generally deformed in low density feature points, whereas occluded objects are

fused with the background. Another method for urban scenes reconstruction which

employs images spatial information is the 3D piecewise planar dense reconstruction

approach [Mičušík 2010], which uses images from Google Street-view. This method
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adopts the superpixels representation to deal with the problem of correspondence

ambiguities in low texture areas. It assumes a predefined geometry of the scene as

each superpixel is assigned a depth and one of the three urban scene normals. A

Markov Random Field (MRF) model is formed to handle the geometric properties and

the neighbouring coherence of superpixels. In our approach, we also adopt the super-

pixel representation. However, we use a closed-form model to fit the structure and to

enforce smooth depth transitions between coplanar superpixels. Beside the piecewise

planar representation, other approaches use simplified geometric assumptions of the

scene. For instance, the 3D reconstruction method proposed in [Cornelis 2008] mod-

els the urban scene as a set of vertical folded planes that could be reconstructed using

vertical lines matching. Folds detection relies on a stereo camera pair. The method

employs object recognition to detect some objects, such as cars, to help refining the

trajectory, and also treat such objects independently. This approach does not general-

ize well to all standalone objects that are present in urban scenes. Meanwhile, in our

approach we control the scene geometry (i.e. number of independent planes) through

a co-planarity enforcing parameter. In the street-side reconstruction context, the

method proposed in [Xiao 2009] provides urban reconstruction of building’s façades.

The method uses a classifier based on colour and texture to segment buildings from

ground, vegetation and sky. The buildings are reconstructed using a rectilinear model.

A similar method that is based on the rectilinear assumption is presented later in

[Vanegas 2010] which assumes a Manhattan world 3D structure. The 3D model is

generated based on constrained shape and multi-view photoconsistency grammar.

In both of the aforementioned methods, the authors consider the architecture of a

specific building and assume more redundant views. Whereas our proposition aims

at full scene reconstruction.

2.3 Superpixels For 3D Scene Representation

A wide range of methods aiming at 3D modelling employ a piecewise representation

of the scene using superpixels. This includes the areas of stereo matching [Yam-

aguchi 2012], optical flow [Vogel 2013], monocular optical flow [Yamaguchi 2013],

3D scene modelling [Saxena 2009b, Mičušík 2010, Bódis-Szomorú 2014], occlusion

boundaries detection [Sun 2014, He 2010]. These methods use a variety of superpix-

18



2.3. Superpixels For 3D Scene Representation

els generation techniques which provides different output in terms of size, shape,

regularity and number of superpixels. Apart from speed, there is no other explicit

justification for the choice of the superpixels generation algorithm. In this thesis, we

consider this issue by proposing a superpixels evaluation method for the purpose of

3D scene modelling.

Several superpixels generation methods use colour, texture and position information

as features. An early example for colour based superpixels method is the graph-based

model [Felzenszwalb 2004]. In this method, the pixels are represented as nodes

and the edges are computed as the similarity between nodes. Then, superpixels are

obtained by applying the minimum spanning tree algorithm. In this method, there

is no restriction on the shape/number/alignment of the resulting superpixels. In

contrast, a remarkable property in several other superpixels methods is that they

consider the regularity and the arrangement of the superpixels. For instance, the

simple linear iterative clustering (SLIC) method [Achanta 2012] introduces a new

distance measure that involves the position of the pixel as well as colour. This distance

measure is taken into account when a label is assigned to each pixel. Hence, there is a

limit on the size of the formed superpixels subject to a regularization parameter.

Among the methods that tend to produce a grid aligned superpixels are SEEDS (Super-

pixels Extracted via Energy-Driven Sampling) [Van den Bergh 2012a] and Turbopixels

[Levinshtein 2009]. SEEDS uses a fixed number of uniformly distributed seeds (rect-

angular shape clusters) for initialization, and then refines the boundaries between

them based on minimizing an energy function that consists of a colour distribution

and boundary terms. Opposite way, Turbopixels method starts with rectangular grid

distributed clusters centers and then it grows them based on a Boundary Velocity

which is computed from local image gradients. These regularity aware methods pro-

duce superpixels with relatively similar size and regular shape, and the output is

more or less aligned to a grid. For 3d modelling purposes, having such property is

not necessary as it does not reflect the real world structure. Moreover, it produces

unnecessary additional number of superpixels which will result in more mesh faces in

the reconstructed 3D model (e.g. an extreme case if we have a single homogeneous

surface in the image). However, constrained superpixel size and shape is needed in

case it is necessary to establish superpixels correspondence between overlapping
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views. Otherwise, a large error may be introduced by mismatches. In Chapter 3 and

4, we propose two superpixel generation methods, regularity aware and regularity

aware-less. In the first method, the number of superpixels varies based on the nature

of scene, whereas it is controllable in the second method . For more details about

colour-based superpixels methods we refer the reader to the review in [Achanta 2012].

Recently, due to the increasing use of depth information (obtained from different types

of sensors) for computer vision tasks, superpixels generation including depth appears

as an important issue. Specially, it is important to know how to incorporate/fuse

depth, and what superpixels method to use. Several methods [Jebari 2012, Van den

Bergh 2012b] already exist for this purpose. For instance, the method proposed in

[Jebari 2012] fuses depth information in a watershed based superpixels algorithm. The

fusion approach takes the maximum of the Laplacian computed from a grayscale and

depth image. In [Van den Bergh 2012b] the authors proposed a SLIC [Achanta 2012]

based method where they incorporate depth in the distance function. Both methods

use global weight for each channel/layer (e.g. colour and depth). That means all

pixels of a particular channel have the same weight. Our both proposed methods are

inspired by these methods in including optical flow. Further more, we introduce a

new distance measure for the regularity aware SLIC based method, and local depth

weighting for the gradient based method (as been justified earlier in Chapter 1).

2.4 Depth Learning From Single 2D Images

In computer vision, structure from motion (SFM) has taken a great attention by re-

searchers, it is considered as one of the well-studied problems. However, most of

the efforts are focused on a certain number of aspects. For instance, improving fea-

ture points matching [Lowe 2004], formalizing better constraints to improve relative

camera pose estimation [Pollefeys 2008], robust methods for outliers rejection [Ragu-

ram 2008], linear/non-linear re-projection error optimization and bundle adjustment

[Triggs 2000], formalizing a set of constraints on more than two frames [Hartley 2004].

Most of these contributions do only consider temporal information that results from

image stream variation with respect to time, without trying to analyse the monocular

depth cues that are present in every single image.
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From another side, several monocular cues that exist in a single image have been

exploited by researchers, that includes; vanishing points [Hoiem 2006], shades and

shadows [Savarese 2007], haze, patterns and structure [Lindeberg 1993]. Unfortu-

nately, most of these cues are not present in all kinds of images, and they require

specific settings. Meanwhile, a new generation (since last decade) of methods that

perform 2D to 3D conversion using a single image have been proposed. Generally

these methods have no constraints and are based on the use of exhaustive feature

extraction and probabilistic models to learn depth. An early approach that attempts

to estimate general depth of an image is proposed in [Torralba 2002], which employs

Fourier spectrum to compute a global spectral signature of a scene to estimate the

average depth of the image scene. Later on, an innovative attempt to perform 3D

reconstruction from one image was proposed in [Hoiem 2005]. In this approach, the

image is first over-segmented into superpixels, then each superpixel is classified as sky,

vertical (objects) or planar (ground). It employs a wide set of colour, texture, location,

shape and edge features for training. Finally, the vertical region is “cut and folded” in

order to create a rough 3D model. Although this method has been improved later by

considering some geometric subclasses (centre, left, right, etc.) in [Hoiem 2007], the

“ground-vertical” world assumption does not apply for wide range of images. A similar

concept is proposed in [Pfeiffer 2012], which is extended to motion classes such as

“right headed, left headed, oncoming and static background”. Such a medium-level

representation of 3D scenes named “stixel world” allows the extraction of multiple ob-

jects in complex inner city scenarios, including pedestrian recognition and detection

of partially hidden moving objects. The best class assignment and the dependencies

between neighbouring stixel labels are dynamically defined from prior knowledge

about the current local 3D environment and temporal information using a condi-

tional MRF. A more general method is proposed in [Liu 2010] which estimates the

depth from a single image based on some predicted semantic labels (sky, tree, road,

etc.) using multi-class pixel-wise image labelling model. Then, the computed labels

guide the 3D estimation by establishing a possible order and positioning of image

objects. In [Alvarez 2012], a convolutional neural network based method is proposed

to learn features from noisy labels to recover the 3D scene layout of a road image. It

combines colour planes to provide a statistical description of road or side-walk areas

(i.e. horizontal ground), that exhibits maximal texture uniformity. In [Sturgess 2009],

21



Chapter 2. Background

11 object classes (road, building, sky, tree, side-walk, car, etc.) are used for labelling.

Motion and structure features (height above the camera, distance to the camera path,

projected surface orientation, feature track density and residual reconstruction error,

inferred from 3D point clouds) and appearance features (textons, colour, location

and HOG descriptors) are combined thanks to a Conditional Random Field model.

Another general approach has been proposed in [Saxena 2009b] which does not have

initial assumption about scene’s structure. It proceeds by over-segmenting the image

similar to [Hoiem 2005]. The absolute depth of each image patch is estimated based

on learning a MRF model, where a variety of features that capture local and contextual

information is employed. As an extension, the authors proposed a model to create

3D reconstruction from sparse views. We see later in Appendix B that a part of our

work is inspired by this method. The idea that we propose here as contribution is

to adapt (and train) our method to road scenes and forward motion. The added

constraints have been defined to improve relative motion. Also the optical flow based

SFM provides approximate but denser feature points as an alternative to points tri-

angulation since the later tends to fail near image plane axes. Another improvement

in the proposed work is that we compute occlusion boundaries based on the motion

between two frames which is more robust and accurate than a multi-segmentation

based approach using a single image.

In the context of combining both spatial and temporal depth information, a method

that combines SFM with a simultaneous segmentation and object recognition is

proposed in [Sturgess 2009], it targets road scene understanding. The task is achieved

through a conditional random field model which consists of pixel-wise potential

functions that incorporate motion and appearance features. The author claims that

it overcomes the effect of small baseline variations. In our method, we adopt direct

depth estimation rather than object recognition. However, similar to [Sturgess 2009],

our method is also supervised and learning oriented, we benefit from computed

features to capture contextual information and to learn depth. In comparison with our

approach, we use small planar patches to model the world rather than the pixel-wise

approach used in [Sturgess 2009] as we think they better describe the world around us.

This idea is also supported by the experimental results in [Saxena 2009a]. The method

in [Li 2008] proposes to combine sparse reconstruction using SFM with a surface
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reconstruction using MRF optimization. The main difference with our approach is

that in this work they do not use the superpixels segmentation to model the depth of

objects but a 2D tetrahedral mesh segmentation to fit objects surfaces. In our study we

use superpixels as we think they preserve more neighbouring relationships between

uniform 2D surfaces and temporal-consistency. Another approach in the same context

is to use the semantic structure from motion approach [Bao 2011] which is based on a

probabilistic model. The proposed model incorporates object recognition with 3D

pose and location estimation tasks. Also it involves potential functions that represent

the interaction between objects, points and regions. Another approach that combines

both spatial and temporal information is proposed in [Cigla 2012]. A stereo matching

algorithm with ground plane and temporal smoothness constraints is proposed for

vehicle control and surveillance applications. In this paper, the authors exploit the

geometry of the scene (the road plane geometry) and a vertical damping scale in order

to enforce temporal consistency. This method enables to relax the smoothness of

disparity maps along vertical axis and to prevent disparity resolution loss due to lack of

texture or occlusions due to motion. Spatial and temporal information are aggregated

via permeability filter and guided filter. Compared to other aggregation methods, this

approach does not exploit contextual information nor the intrinsic complementarity

of spatial and temporal information.

2.5 Discussion and Conclusion

To summarize, the main innovations that we propose in this thesis, in comparison

with the state-of-the-art are:

• Although many methods use a piecewise representation for 3D modelling, no

criteria have been defined for the selection of the superpixel segmentation for

this purpose. We consider this lack in our proposal and a new measure is defined

for the goal of 3D modelling.

• Existing superpixel methods are for general purpose. Improvements are made

in terms of computation speed and respecting hand-made ground truth seg-

mentation. None of them consider the goal of 3D modelling and meshing. Here,

we propose two methods towards this goal, each method is adapted to certain
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scenario:

– The first method produce non-constrained superpixel segmentation which

respect the 3D geometry of the scene. This method is applicable to any

active/passive 3D reconstruction application. In particular, a method that

models the output (e.g. point cloud or dense depth map) to a mesh with

minimum loss of precision. In this method, there is no constraints on the

shape/size of superpixels. The superpixel generation is based on a general-

ized boundary probability estimation using colour and flow information

similar to [Leordeanu 2012]. However, we propose a pixel-wise weighting

in the fusion process which takes into account the variable uncertainty of

computed dense depth using optical flow.

– In some 3D modelling approaches, it is necessary to establish superpixels

correspondence between two or several consecutive frames in a sequence.

In this case, non-regular superpixels such as the output of the first pro-

posed method makes finding such correspondence difficult. Moreover,

in some approaches, the superpixels are used for planar fitting to create

3D models. This fitting is based on a 3D point cloud which is computed

from overlaid feature points on the superpixels. A balanced feature points

distribution over superpixels is an advantage in this case (more details in

Chapter 4). Here, we propose an adaptive simple local iterative clustering

(SLIC) based segmentation that deals with both aforementioned issues.

First, the original method is extended to be adaptive to the feature points

density for more balanced 3D structure fitting. This is achieved by the

mean of new distance measure that takes into account the sparse points

density. And also we initialize the clustering with feature points density

adapted seeds instead of the originally regular seeds. Second, the super-

pixels obtained using clustering based approach are regular and limited by

size, so the superpixels correspondences can be established efficiently.

• As we have seen in 3D reconstruction from monocular image sequence related

works, this area remains an open problem. The solutions that have been pro-

posed assuming same configuration remains relatively few and went in the

direction of surface reconstruction rather than benefiting from appearance
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similarity. In our proposition, we benefit from the appearance similarity by

adopting the piecewise representation. For fitting the planar structure, we pro-

pose a closed-form plane parameters estimation scheme that involves using 3D

points obtained using several feature points matching techniques including a

noisy dense optical flow. We use a weighted total least squares model to han-

dle the uncertainty of each depth source. This model is employed to perform

a weighted fitting of the slanted-planes structure, and hence to form the 3D

model.

• Independent from the main track of this thesis, we exploit improving 3D struc-

ture estimation by fusing SFM sparse output with monocular depth estimation

learned from single image as in the approaches we reviewed already. Based

on the monocular depth estimation method proposed in [Saxena 2009b], we

extend the proposed MRF model to include new potential functions related

to 3D reconstructed points using SFM technique, and also constrained by the

limited planar motion of the vehicle.

In this chapter we have explained what are the main argues which motivate the

approaches selected/proposed in this study.
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In this chapter, we propose a gradient based superpixel segmentation method for the

goal of creating mesh representation that respects the 3D scene geometry. Unlike the

method proposed in Chapter 4, there are no constraints on the size, shape and number

of superpixels. In this method, we propose a new fusion framework which employs

both dense optical flow and colour data to compute the probability of boundaries. The

main contribution of this approach is that we introduce a new colour and optical flow

pixel-wise weighting model that takes into account the non-linear error distribution

of the depth estimation from optical flow. Experiments show that our method is better
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than the other state-of-the-art methods in terms of smaller error in the final produced

mesh.

3.1 Introduction

Superpixels can be defined as an over-segmentation of an image which is obtained by

dividing the image into small homogeneous colour/texture regions so that each of

them belongs to only one object/surface. Superpixels has been widely used in many

computer vision tasks such as object detection [Shu 2013], depth estimation and 3D

scene modelling [Saxena 2009b, Mičušík 2010, Bódis-Szomorú 2014], stereo vision

[Yamaguchi 2012], optical flow [Vogel 2013], monocular optical flow [Yamaguchi 2013],

occlusion boundaries detection [He 2010] and scene segmentation [Jebari 2012, Silber-

man 2012, Van den Bergh 2012b]. In the aforementioned works, the choice of the used

superpixel segmentation algorithm is not explicitly justified. However, the clustering

based algorithm [Achanta 2012] is being increasingly adopted in recent works due

to its real-time performance. We observe also that the graph-based segmentation

method [Felzenszwalb 2004] comes second in its popularity for the purpose of 3D

modelling. Both mentioned methods provide an output that largely vary in terms

of size, shape, regularity and number of superpixels. Here arises the question about

what method is better for the purpose of 3D modelling, and what is the criteria to

make such decision. In this chapter, we consider this issue by proposing a superpixels

evaluation method for the purpose of 3D scene modelling. This allows evaluating and

comparing the existing superpixel generation methods. Moreover, we propose a new

superpixel generation pipeline which provides better superpixels for 3D representation

and meshing.

In this work, we provide superpixel segmentation method that can be used as a tool to

decompose a scene into piecewise planes. In particular, to reconstruct a scene using

triangular mesh based on the obtained superpixels, so that the mesh respects the 3D

geometry of the scene. A triangle mesh comprises a set of triangles that are connected

by their common edges or corners. We are motivated by the fact that many graphics

softwares represent 3D world structures by meshes. Moreover, modern software

packages and hardware devices can operate more efficiently on meshes compared
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to the massive cloud of points. Also, meshes have an advantage of being compact

to represent continuous structures. Therefore, our aim is to propose a method that

is applicable to any active/passive 3D reconstruction application. In particular, a

method that models the output (e.g. point cloud) to a mesh with minimum loss of

precision.

Superpixels are mainly computed using colour information of an image [Achanta 2012,

Felzenszwalb 2004, Levinshtein 2009]. Recently, depth and/or flow information have

been used with colour [Van den Bergh 2012b, Leordeanu 2012, Silberman 2012]. We

believe that flow information is an essential source based on the fact that spatially uni-

form regions have continuous flow whereas occlusion boundaries are often associated

with flow disturbances. Hence, flow information can be used to detect boundaries.

Moreover, in combining colour and flow, false boundaries in colour based segmenta-

tion can be identified.

In our method, we mainly target outdoor scenes. In this case, the popular structured

light based depth sensors fail due to sunlight, which makes depth computation diffi-

cult. As an alternative solution, we rely on stereo vision to obtain depth information

computed from optical flow using a pair of images of the target scene. Hence, we

propose a fusion scheme that incorporates a dense optical flow and colour images to

compute superpixels and generate the mesh. In contrary with the methods proposed

in the literature [Leordeanu 2012, Van den Bergh 2012b], our fusion method takes

into account (a) the non-linear error distribution of the depth estimation obtained

using optical flow; (b) the fact that it has a limited range; and (c) that it could not

be computed in parts of the image due to the view change between two images. To

incorporate such information, we introduce a pixel-wise weighting to be used while

fusing boundary information using optical flow and colour. Hence, our contribution

is a novel locally adaptive weighting approach.

3.2 Superpixels Evaluation Method

In image segmentation area, evaluating the performance of the proposed approaches

is often based on testing the output segmentation with a ground truth. The obtained

score in this case is computed based on how accurate the boundaries provided by the
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Figure 3.1: Overview of the proposed superpixel method.30



3.2. Superpixels Evaluation Method

Figure 3.2: Two frames from KITTI dataset [Geiger 2012] (first row), and the hand-
made ground truth segmentation as provided in [Sengupta 2013] (second row) and
provided in [Ros 2015] (third row). The idea is to show the significant difference in
terms of number of labels, level of details and localization of boundaries.

algorithm coincide with the ground truth. In practice, this ground truth is hand-made

and can vary based on many aspects. For instance, The same user may not be able

to produce the same segmentation again. In KITTI dataset, state-of-the-art methods

involve a hand-made validation for the segmentation method. Figure 3.2 shows two

examples of two frames. For each, we provide two different segmentations which

are treated as a ground truth by the methods proposed in [Ros 2015, Sengupta 2013].

Furthermore, the well known segmentation dataset that we encounter in most of the

segmentation methods (as well as superpixel segmentation methods) is The Berkeley

Segmentation Dataset and Benchmark (BSDB) [Martin 2001], where it is mentioned

that ”The human segmented images provide our ground truth boundaries. We consider

any boundary marked by a human subject to be valid”.

Given these facts, we seek a new evaluation method that is not subject to human

assessment from one side, while it is specifically dedicated for the proposed applica-

tion which is 3D modelling from another side. For this aim, we propose to assess the

quality of superpixel segmentation for the goal of 3D modelling by analysing the error

introduced by the 3D mesh generated based on such segmentation, with respect to

the original depth map provided with the used dataset. Figure 3.1 shows an example
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of an input image pair, obtained superpixels and corresponding 3D mesh (last row

in the Figure). The mesh is obtained by dividing the image into a set of triangles that

covers the whole image, and each triangle lies completely in one superpixel (more

details in Section 3.3.5). Our method is evaluated and compared to state-of-the-art

superpixels methods using the KITTI dataset [Geiger 2012] which is provided with

depth ground truth.

3.3 Superpixels Generation Scheme

The block diagram of our proposed method is illustrated in Figure 3.1. Starting from a

pair of colour images, we compute a sparse feature points correspondences. These

sparse feature points are used to recover the relative motion of the two images, and to

compute local homographies that are used to define a mask of the overlap between

the two images. At the same time, based on the pair of the input images, we compute

a dense optical flow, which is used to obtain a rough dense estimation of the scene.

Then, we use the relative motion estimated parameters and the mask of overlap to

compute the pixel-wise weights for each optical flow channel. Then, we employ a

global boundary probability generator that takes as input: (a) the two channels of

the optical flow; (b) the three layers of one input colour image (in CIELAB colour

space) and (c) the pixel-wise and layer-wise learned weights. This step is followed by

watershed segmentation to generate the superpixels. Finally, a mesh representation is

obtained based on the superpixels. Each of these steps is described in the following

subsections.

3.3.1 Relative Motion Recovery

An accurate relative motion [R|T ] is needed to compute a depth map, to estimate

the pixel-wise weights and also to perform a minor outliers correction of the optical

flow. For this purpose, we use a traditional approach by first performing SIFT feature

points matching [Lowe 2004] on the image pair, and estimating the Fundamental

matrix 1 using RANSAC procedure. Then, given the camera intrinsic parameters1, we

compute the Essential matrix1 that encodes the rotation and translation between the

1 For detailed explanation about epipolar geometry fundamentals we refer to [Hartley 2004]
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3.3. Superpixels Generation Scheme

(a) (b)

Figure 3.3: Two depth maps computed using two pairs of images that shares the same
first image. (a) The image pair are shifted horizontally (stereo pair); (b) The image
pair are obtained with dominant forward motion (Epipole near the center, borders
problem).

two images. Before extracting [R|T ] we perform rank correction on the essential matrix

by forcing the two eigen values to be equal by taking their mean, and setting the third

eigen value to zero. Now, [R|T ] can be extracted using SVD according to the method

proposed in [Hartley 2004]. Note that the translation at this step is computed up to

scale. Which is enough for the proposed method (see Equation 3.4 for clarification).

3.3.2 Dense Optical Flow and Depth Map Estimation

The usage of optical flow in this work is essential. It helps to identify the spatial unifor-

mity in the scene and hence it works as a complement to colour images. We adopt

the dense optical flow underlying median filtering method proposed in [Sun 2010b]

(We use the publicly available code [Sun 2010a]). Among the proposed variations, we

use Classic-C method which involves minimizing the classical optical flow objective

function:

E(u,v) =∑
i , j
ρD (I1(i , j )− I2(i +ui , j , j + vi, j ))

+λ[ρs(ui , j −ui+1, j )+ρs(ui , j −ui , j+1)+
ρs(vi , j − vi+1, j )+ρs(vi , j − vi , j+1)], (3.1)

where u and v are the horizontal and vertical components of the optical flow field to be

estimated from images I1 and I2,λ is a regularization parameter, and ρs and ρD are the

data and spatial penalty functions. The Classic-C method uses a Charbonnier penalty

term ρ(x) =
p

x2 +ε2 and 5×5 median filtering window size. This method showed to

have better occlusions handling and flow de-noising. Additionally, we perform a minor
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outliers detection and correction based on the recovered fundamental matrix. Given

the dense points correspondences obtained by the optical flow, we compute a simple

first-order geometric error (Sampson distance) for each point. We allow more relaxed

(3-5 times) distance threshold compared to the average distance of the selected inliers

model computed using the sparse SIFT features (in the previous Section). The flow

vectors that exceed this threshold are replaced by linearly interpolated new values.

For dense depth map computation, we apply the Direct Linear Transformation (DLT)

triangulation method followed by structure only bundle adjustment, which involves

minimizing a geometric error function as described in [Hartley 2004]. We use the

Levenberg-Marquardt based framework proposed in [Lourakis 2009]. In the special

case of close to degenerated configurations (e.g. epipole inside the image), computing

the depth map in the epipole’s neighbouring is difficult. In this particular case we cal-

culate a rough relative depth map by removing spatial correlation from the magnitude

of the optical flow. This correlation results from the presence of x and y in the optical

flow equation (see Equation 3.3). To remove this correlation, we first search for the

correlation centre (ĉx , ĉy ) by maximizing the following pairwise correlation formula:

argmax
ĉx ĉy

∑
i j

√
(i − ĉx)2 + ( j − ĉy )2.

√
u2

i j + v2
i j (3.2)

where i and j are the image coordinates, u and v are the optical flow components.

Then, we divide each point in the optical flow magnitude by the euclidean distance to

image centre shifted by [ĉx ĉy ]. Figure 3.3b shows an example of an approximation

of the depth map computed using this method. The input image pair in this case

are taken with the same camera moving forward. Applying traditional triangulation

approach to obtain the depth in this case results in undefined depth in the epipole

point’s 2 neighbourhood. Having such undefined depth for some points in the image

prevents integrating the estimated depth in the gradient based method proposed here.

Hence, we believe that the depth map obtained by this approach is good enough to

extract boundary information compared to the laterally shifted images (e.g. Figure

3.3a).

2Triangulation of close to parallel lines. See figure 12.6 in [Hartley 2004] for illustration.
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3.3. Superpixels Generation Scheme

3.3.3 Pixel-Wise Optical Flow Channels Weighting

The desired pixel-wise weighting should reflect the uncertainty in depth information

obtained from the optical flow. The weights are computed based on: (a) the error dis-

tribution of depth estimation as a function of the optical flow error; and (b) handling

the occlusions on the boundaries of the image. There are several error sources that

disturb the depth estimation from images. In the scope of this study, we only consider

the error made during computing pixels correspondences (or flow vector) which is

assumed to be uniform in the image (assuming we have undistorted images). Our aim

is to establish an uncertainty measure of the depth based on the aforementioned error.

We assume the application targeted have relatively larger translational shift than rota-

tional between the image pair. By this assumption we do not loose generality as it is

the case in most realistic configurations. The optical flow (u, v) for a point P (X ,Y , Z )

in the three dimensional world, in case of translational displacement T (TX ,TY ,TZ )

between two views, is given by:

[
u

v

]
= s

Z

[
TZ x −TX f

TZ y −TY f

]
(3.3)

here s is a constant related to camera intrinsics. f is the focal length. (x, y) is the

projection of P in the image plane. Z axis is normal to image plane and pointing

forward. Based on this equation, we can compute the error in the estimated depth as

a function of error in optical flow as:

[
ru

rv

]
=


∂Z

∂u
∂Z

∂v

= s


− f TX Z 2

(xTZ − f TX )2

− f TY Z 2

(yTZ − f TX )2

 (3.4)

This equation shows that the estimated depth error is non-linear. Also, note that the

depth computed from larger optical flow introduces less error compared with small

one. We use this fact to establish our uncertainty measure. Therefore, we assign an

uncertainty value for the optical flow inversely proportional to the estimated depth in

that point according to Equation 3.4. However, due to the discretized configuration

(pixels array representation), this is only valid up to a certain distance limit where
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HH
i

-1
i

O

M
I

Figure 3.4: An example of possible correspondences frame O computed using local
homographies. The rest of the image (M −O) is projected to outside the the second
image as (I −M).

differences in depth beyond a given point are not recognizable by the computer

vision system. Formally, by considering that the flow vector is defined by a linear

system composed of two types of components; Z dependent and non Z dependent

terms (See the general optical flow Equation B.3). We define a blind zone as the set

of points where the Z dependent terms contribute to the optical flow less than one

pixel. Hence, we build a pixel-wise uncertainty map for each optical flow channel

based on Equation 3.4 and by considering the aforementioned remark by assigning

zero weight for pixels in the blind zone. Computationally, the depth Z is computed as

an average of Gaussian window centred at the related pixel in the depth map. This

helps to handle the noisy depth specially on the occlusion boundaries. Note that it is

enough to have the translation up to scale, as the weights will be normalized later.

Another issue we consider is that in each of the input images, and due to the change

of view point, some parts at the boundaries in one image does not exist in the other

(no correspondence). The optical flow computed in those parts is obtained by data

propagation, which is generally erroneous (see the noisy boundaries in Figure 3.3b).

Hence, we proceed to find these parts in order to take them into account in the

computed uncertainty map. For this purpose, based on the sparse feature points

(obtained in Section 3.3.1), we compute the correspondences of the four image corners

in the other image. Hence, we calculate four local 2D to 2D points homographies for

each of the four corners using n nearest feature points such that:

pi
2 = Hi pi

1 {i = 1 : 4} (3.5)

here pi
1 is the feature point homogeneous coordinates in the first image, which belongs
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3.3. Superpixels Generation Scheme

to the set of n nearest points (n ∼ 50) to the corner i . Hi is the corresponding 3×3

homography. We compute the homographies by using RANSAC with DLT simple

fitting [Hartley 2004]. We assume that the selected points have small depth variations.

However, using RANSAC here helps to reject the points whose depth is far from the

mean depth. We estimate a frame of possible correspondences by applying the inverse

of the computed homographies on each corner. All the points that belong to this frame

are projected in both images, Figure 3.4 illustrates this step. We generate a binary

mask C (which has the same size of the image) based on the computed frame so that a

pixel value is equal to one if it is within the possible correspondence frame.

Now based on the depth error analysis and the binary mask we can write overall

pixel-wise weighting function for optical flow channels as:

[
Wu

Wv

]
=

[
(C+αC̄)Ru

(C+αC̄)Rv

]
(3.6)

where α controls the impact of the pixels that do not belong to possible correspon-

dences area defined by C̄ (the compliment of C), and R. is a unit normalized error

matrix computed as 1/r. (given in Equation 3.4). This proposed function assigns

the weights inversely proportional to the depth error introduced by the each flow

component.

In order to allow contributions from colour channels to fulfil the parts with high

uncertainty in flow channels, we assign the pixel-wise weight for colour channels as:

WLAB = 1−β
√

W2
u +W2

v (3.7)

here β is a normalizer that imposes WLAB ∈ [0..1].

3.3.4 Generalized Boundary Probability

In order to compute the boundary probability, we extend the generalized boundary

detection method proposed in [Leordeanu 2012]. We select this method due to several

advantages such as: (a) significantly lower computational cost with respect to the

state-of-the-art methods and (b) ability to combine different types of information
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(a) (b)

(c) (d)

Figure 3.5: Original image (a), and the obtained boundary probability based on optical
flow (b), colour (c), both colour and optical flow (d).

(e.g. colour and depth) through easily adaptable layer-wise integration. Most impor-

tantly, the closed form formulation of this method allows us to easily incorporate our

proposed locally adaptive weights.

Consider that we have an image with K layers where each layer has an associated

boundary. Now for each layer, let us denote n = [nx ,ny ] the boundary normal,

b = [b1, ...,bK ] the boundary heights and J = n>b the rank-1 2×K matrix. Then, the

boundary detection is formulated as computing ‖b‖ which defines the boundary

strength. The closed form solution [Leordeanu 2012] computes ‖b‖ as the square root

of the largest eigenvalue of a matrix M = JJ>, where the unknown matrix J is computed

from known values of two matrices P and X as: J ≈ P>X. The matrix P associates the

position information and the matrix X associates each layer information. Therefore,

we can redefine the matrix M for a pixel p as: Mp = (
P>Xp

)(
P>Xp

)>
. Note that we

can compute ‖b‖ for an image (using P and X) only if the layers are properly scaled.

Usually, the scale for each layer si is learned [Leordeanu 2012] from annotated im-

ages. However, we also include the pair-wise weighting matrix Wi (Equations 3.6, 3.7).

Therefore, we construct the matrix

Mp =∑
i

si Wi ,p Mi ,p (3.8)

where Mi defines the matrix for the ith layer. In our approach we use the following

layers: L∗, a∗ and b∗ (CIELAB colour components) and optical flow channels u and v .
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(a) (b)

(c) (d)

Figure 3.6: Multiple Superpixel segmentations generated from the generalized bound-
ary probability (Figure 3.5d) using watershed approach. (a) without post-filtering.
(b,c,d) iterative median filter is applied before watershed segmentation, more itera-
tions for less number of superpixels.

Figure 3.5d shows an illustration of a boundary probability map estimated using our

method. It shows the advantage of the pixel-wise weighing such as removing strong

false boundaries originated from colour (Figure 3.5c). It also allows to complete far

details that are not present in the blind zone of the flow-based boundary probability

(Figure 3.5b).

3.3.5 Superpixels Formation and Mesh Generation

We apply watershed algorithm [Szeliski 2011] on the boundary probability in order

to produce superpixels. The number of the resulting superpixels could be roughly

controlled by applying variable window size median filtering on the boundary proba-

bility map. In Figure 3.6, we show some examples of generated superpixels at several

over-segmentation levels. The output shown in Figure 3.6a is generated without ap-

plying median filtering, it corresponds to the maximum number of superpixels that

can be obtained. Whereas there is no minimum number as this can be controlled by

the filtering iterations.

One concern which may arise in this procedure is the effect of texture on producing

false superpixels boundaries. Indeed, in colour images, boundaries in one layer

often coincide with boundaries in other layers, which will produce large boundary
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(a) (b)

Figure 3.7: Exemplar 3D mesh (a) and the corresponding textured 3D model of the
scene (b).

probability. However, when combining colour images with optical flow, the textured

areas provide generally good flow estimation due to the density of extracted feature

points. Hence, when optical flow channels are combined with colour in the proposed

scheme, boundary response at textured areas will be weakened.

After obtaining the superpixels we convert them to a standard mesh representation

(VRML). To this aim, we apply the following procedure on a binary edge map formed

from superpixels; First we detect all the segments that form a straight line in the

edge map. Then, for each of the detected segments we only keep the two ends. The

remaining edges are the vertices of the mesh. The mesh faces are then formed by

the known Delaunay triangulation manifesting on each superpixel’s vertices. This

way guarantees that a triangle is contained in only one superpixel. Converting the 2D

mesh to 3D mesh is then straightforward by knowing the 3D locations of all vertices.

Figure 3.7 shows a 3D mesh example computed using the superpixels shown in Figure

3.6a. Whereas Figure 3.7b shows a textured version where colour information are

obtained by back projecting the input image based on the depth map.

3.4 Experiments and Results

To evaluate our method we use the KITTI dataset [Geiger 2012], which contains

outdoor scenes obtained using a mobile vehicle. The dataset provides depth data

obtained using laser scanner (∼ 80m). This enables us to test our fusion model, and

in particular the efficiency of the pixel-wise weighting. We select our test images3 to

cover most possible camera configurations (stereo, forward motion, rotation, etc.).

3Raw data section, sequences # 0001-0013, 0056, 0059, 0091-0106.
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LA
B
U
V
-P
W

LA
B
U
V
-G
W U

V
LA
B

SL
IC

SL
IC
-U
V

Tu
rb
op
ix
el
s

G
ra
ph
-b
as
ed

5

10

4.57

8.7 8.91 8.78

5.58 5.08 5.22

13.16

O
ve
ra
ll
re
la
ti
v
e
er
ro
r
%

Figure 3.9: Overall relative mean error.

We evaluate the performance of our method (LABUV-PW) compared to the following

methods: SLIC [Achanta 2012], SLIC-UV (an extended SLIC 4 that includes optical

flow), Turbopixels [Levinshtein 2009] and graph-based [Felzenszwalb 2004]. Moreover,

to show the impact of the pixel-wise weighting we test a variation of our method that

uses a global weight (learned according to [Leordeanu 2012]) per layer (LABUV-GW).

Additionally, we include individual results for colour only (LAB) and optical flow (UV).

The evaluation is carried out by producing multiple segmentations with variable

numbers of superpixels that covers a certain range (∼ 25−2000) for each test image.

Each segmentation is converted into 2D mesh according to the method shown in

Section 3.3.5. Then, based on the ground truth depth map, we obtain the 3D location

4Implemented based on the new measure proposed in [Van den Bergh 2012b]
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of the mesh vertices, hence it becomes a 3D mesh. Next, we calculate a relative

depth error |Ẑ − Z |/Z between the ground truth depth Z and the depth obtained

from the 3D mesh Ẑ . Hence we compute a detailed mean error versus the number of

superpixels/vertices. The obtained results are illustrated in Figures 3.8a and 3.8b. It is

shown that LABUV-PW performs the best among all tested methods for any number

of superpixels/vertices. We notice that the extended SLIC-UV approach provides

close performance to LABUV-PW, however it has remarkably large error for small

number of superpixels. We attribute this to the regularity aware behaviour embedded

in SLIC which enforces segmenting large uniform regions. Figure 3.9 shows the overall

mean error for the evaluated methods. Here we notice the large improvement when

considering the pixel-wise weighting LABUV-PW compared to the global weighing

LABUV-GW.

Concerning computation time, our implementation runs on an Intel Xeon 3.20 GHz

(up to 3.6 GHz) with 8 GB of RAM memory. Most of the processing time is allocated to

the optical flow computation (1 minute for a 0.46MP frame). Using other GPU-assisted

or accelerated optical flow methods caused the performance to drop down (due to

less quality of occlusions boundaries). In the rest of the pipeline, for SLIC-UV we use a

modified SLIC implementation in C (vl_feat library [Vedaldi 2010]), and for LABUV-PW

we use the generalized boundary probability (GBP) [Leordeanu 2012] (MATLAB code)

and watershed transform (MATLAB built-in function [Meyer 1994]). For KITTI dataset,

the average computational time for around 1K superpxiels is around 2.7 seconds

for SLIC, against 1.9 seconds for the GBP+watershed. These results change slightly

in the RGB case. Moreover, we notice that SLIC computational time increases (at

least linearly) with the increase of number of superpixels, while it is not the case with

GBP+Watershed. We refer to [Achanta 2012] for a computational time comparison of

colour based methods.

3.5 Discussion and Conclusion

We conclude this chapter by summarizing the major contributions and the imple-

mented ideas in our proposed superpixel segmentation method.

• The output superpixels using the proposed method can be very useful for 3D
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modelling and meshing since it respects the structure of 3D scene.

• The proposed evaluation method measure the error made with respect to the 3D

geometry, which is more representative than using the hand-made subjective

ground truth segmentation.

• The idea of introducing the pixel-wise weighting represents a key advantage

compared to global weighting. Because it assigns a representative value for

each depth measure which reflects its accuracy. The considered accuracy is a

function of depth and spatial position within the 2D image.

• The linear fusion scheme allows a smooth integration of colour and flow infor-

mation with blind zone handling to produce an efficient generalized boundary

probability.

• The boundary probability could be directly converted to superpixels using a

simple watershed algorithm. The mesh is generated based on superpixels so

that mesh’s faces do respect superpixels edges, and hence the scene structure.

• The experiments showed that our method achieved lower error compared to

other state-of-the-art (general purpose) algorithms especially for small number

of superpixels. Also, including flow information gave better performance than

using only colour (SLIC-UV vs SLIC, and LABUV-GW vs LAB).

The main limitation of this approach (and also other non-constrained superpixel

generation methods, such as the graph-based method [Felzenszwalb 2004]) is that

it cannot be applied in the case when superpixels correspondence is needed. For

instance, in the piecewise stereo matching [Yamaguchi 2012] and Multi-View 3D

Reconstruction [Bódis-Szomorú 2014, Nawaf 2014b]. This is one of the motivations

for our second superpixel generation method that we propose in Chapter 4.

Another property/drawback for this algorithm (holds also for all gradient based meth-

ods) is that the number of superpixels cannot be controlled. In particular, there is a

limitation of the maximum number of superpixels which cannot be exceeded. In con-

trary, clustering based methods such as SLIC can control the number of superpixels to

some extend. Although, when increasing the number of clusters, the ratio of merged
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clusters increases. However, the upper limit of the number of superpixels remains in

practice quite larger than our proposed method (∼ 30% more). From another side, the

inability of controlling the number of superpixels may not be considered a disadvan-

tage in some applications when it is needed to leave the number of superpixels as a

function of the complexity of the scene.

Note that this chapter is based on the published article [Nawaf 2014a].
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In this chapter we present an adaptive simple local iterative clustering (SLIC) based

superpixel segmentation method for the goal of 3D representation. This method

differs from the one proposed in Chapter 3 that it aims at producing constrained size

superpxiels, which is an important property when the used 3D modelling approach

involves establishing explicit/implicit superpixel correspondences between views.

The original SLIC method [Achanta 2012] is extended to allow local control of the size

of superpixels by the mean of an input density map which reflects the desired size

locally. Here, we consider the application of planar patches fitting. So we consider

the input density such of the 2D projection of 3D reconstructed points on the image

plane. This option is efficient to balance the 3D structure fitting such as in the method

proposed in Chapter 5 and also in other piecewise planar based methods, such as

[Bódis-Szomorú 2014]. The proposed extension is achieved by the mean of new
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(a)

(b)

Figure 4.1: Original SLIC superpixels with overlaid 3D reconstructed points. (a) From
Herz-Jesu-P8 and Mirbel datasets as presented in [Bódis-Szomorú 2014]. (b) From
KITTI dataset.

distance measure that takes into account the input density map. Also, we initialize

the clustering with input density adapted seeds instead of the originally regular seeds.

The superpixels obtained in this case have roughly regular size. Similar to the method

proposed previously in Chapter 3, the distance measure also involves using flow

information which embed the scene discontinuities. This aims at producing more 3D

geometry respecting superpixels.

4.1 Introduction

The piecewise representation approach aims at representing the scene structure

by small slanted-planes, so each of them belongs to only one object/surface in the

scene. Towards this goal, the image is over-segmented into small homogeneous

colour/texture regions, which defines the superpixels. Many recent computer vision

approaches adopt a piecewise representation for the purpose of 3D scene modelling

[Saxena 2009b, Mičušík 2010, Bódis-Szomorú 2014, Vogel 2013, Yamaguchi 2012, Ya-

maguchi 2013]. These methods use several approaches to obtain the initial super-

pixel segmentation. For instance, the graph-based segmentation method [Felzen-
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szwalb 2004] has been applied in the multi-view stereo method [Mičušík 2010] and

the monocular depth estimation from single image [Saxena 2009b], whereas the local

clustering based method [Achanta 2012] is applied in the monocular flow estimation

method [Yamaguchi 2013], the stereo estimation method[Yamaguchi 2012], and the

multi-view 3D reconstruction [Bódis-Szomorú 2014]. The common reason to use the

piecewise representation is mainly to overcome the problem of lack of feature points

in the scene. Based on few reconstructed feature points per patch/superpxiel, it is

possible to approximate other points in that patch by planar fitting. The mentioned

methods use several variations of approaches to handle the intra-patch occlusion

relations based on energy minimization of empirical potential functions. However,

all the aforementioned methods use a superpixel segmentation technique that treat

all image parts equally, and does not take into account the distribution of feature

points in the image. This may produce ill posed plane fitting problem if the number of

points that falls within one patch is less than a certain number, which is three points

in theory. However, in practice more points are needed to compensate for the noise

and the outliers. Our aim here is to develop a method that considers the distribution

of feature points towards generating superpixels that have close numbers of feature

points. One more aspect that has to be considered here is that the superpixels should

have a size constraint, so they can be employed in the reconstruction methods that

require establishing superpixels correspondence between several consecutive frames

in a sequence, such as the method proposed in Chapter 5, or in stereo vision. Figure

4.1 shows three examples of SLIC superpixels with overlaid feature points. We notice

clearly that many superpixels does not contain any feature points (only buildings are

considered in Figure 4.1a), so the plane parameters of such superpixels cannot be

computed. In our proposition, we do not claim that we completely solve this problem.

Instead, we propose a global assessment criteria which is the standard deviation of

the number of feature points per superpixel. Minimizing this value leads towards

balanced distribution of feature points. The remained ill-posed fitting problems can

be handled in the 3D reconstruction pipeline by using other cues such as occlusion

boundaries and depth propagation.

We have seen in the previous chapter that we proposed a method that is more efficient

for general purpose 3D representation. Unfortunately, it is difficult to adapt gradient-

based segmentation approach to provide regular size superpixels. Whereas clustering
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Figure 4.2: Superpixels formation pipeline.

based-methods (such as SLIC) naturally provide this property. This is the reason why

we propose our method here based on a clustering technique. We justify our selection

of SLIC to develop our approach by the experimental study carried out in Chapter 3,

where SLIC-UV (SLIC with extended flow aware distance) performance came second

after the proposed method LABUV-PW (gradient based). Hence, the method proposed

here is feature points density aware extended SLIC-UV.

4.2 Constrained Superpixel Generation

As mentioned earlier, there are two main constraints for the superpixel segmentation

method, one is being size/shape aware, and the other is to take into account an input

density map to control superpixels size. We clarify the explicit contradiction that may

be seen between these assumed two constraints as follows; for the first constraint, we

consider the size/shape regularity constraint compared to gradient based segmen-

tation methods such as [Felzenszwalb 2004] and the method proposed in Chapter

3. In these methods, superpixels area ratios can be very large (upto100×), whereas

the desired ratio is to be within the range (∼ 1−4×). This is because for larger ratios
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4.2. Constrained Superpixel Generation

(i.e. large difference in superpixel sizes) establishing frame-to-frame superpixel cor-

respondences become ambiguous with dominant many-to-many correspondences

relationships. Our proposed method to match superpixels is based on local hologra-

phies so that it fails in this case. Moreover, some features such as colour and shape

cannot be used for the matching. For the second constraint, we mean to vary the

size of the within small range (∼ 1−4×, in practice, the average is less than 1.5 times)

based on the input density map. Although we assume here that the density is such

of feature points, it could be any input density map. For instance, another possible

application is to generate superpixels from RGB-D images while using the depth as

the input density, this will encourage forming small superpixels in far depth areas and

vice-versa. Hence, the obtained superpixels have a kind of equal size in real world

dimension. However, here we will only focus on the first case as it will be used in the

3D reconstruction pipeline proposed in Chapter 5.

Based on our previous study in Section 3.2 on evaluating superpixel segmentation

for the purpose of 3D scene representation, the most efficient superpixel regularity

aware method is a modified flow-based version of [Achanta 2012], which we consider

here with further adaptation. As we target piecewise 3D representation, an important

aspect to take into account is the size of the superpixels; with a larger number of

superpixels, the planar assumption for each superpixel is more satisfied (similar to

image resolution concept). In contrast, if the average number of sparse feature points

per superpixels becomes less, that affects the fitting quality or even lead to ill-posed

problem. To deal with this issue, we develop an adaptive superpixel generation scheme

(see Figure 4.2 for superpixels generation pipeline) by extending the simple linear

iterative clustering SLIC algorithm [Achanta 2012] as follows; first, similar to [Van den

Bergh 2012b], we add a flow difference term to the distance measure to include the

optical flow. The idea is to encourage the segmentation to respect flow discontinuities.

Second, instead of initializing the segmentation by uniformly distributed seeds, we

use the cluster centres that result from applying k-means procedure to spatial feature

points position. This latter step reflects the necessity to have more superpixels in

higher density feature points areas which correspond to more detailed parts of the

image. In the same way, to encourage the superpixels to be smaller in higher density

area, we weight the spatial distance measure by certain value computed based on the

local density of feature points.
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4.2.1 Proposed Method Inputs

We use the following information as input to the proposed extended SLIC method:

• Colour image in CIELAB colour space L∗,a∗,b∗ : Which is the same as in the

original SLIC method.

• Dense optical flow channels u, v : we use the dense optical flow underlying

median filtering method [Sun 2010b] (Classical objective function with Char-

bonnier penalty term), which shows to have better occlusions handling and

flow de-noising, an example is shown in Figure 4.2. Additionally, similar to

the method proposed in Chapter 3, we perform a minor outliers detection and

correction based on computing a first-order geometric error using recovered

fundamental matrix and applying linear interpolation to replace the outliers.

• Density map to control local superpixels size p : We estimate a pixel-wise prob-

ability density based on a Gaussian mixture model (K ∼ 100) fitted to the spatial

coordinates of the feature points using iterative Expectation Maximization (EM)

approach (see Figure 4.3 for illustration). Having the output parameters {µi ,σi },

where i = 1..K . We can compute a density value for each pixel location s as

p(s) =
K∑

i=1
φi N (µi ,σi ) (4.1)

where φi is the weight associated to the normal distribution N (µi,σi). p(s)

represents the local feature points density. It is necessary to spatially normalize

the probability density to be integrated in the colour-spatio-temporal distance

measure. Let p̃(s) denotes the [0..1] normalized representation of p(s).

• Initial spatial clusters centres (x, y) : The clusters centres resulting from apply-

ing k-means procedure on the sparse feature points. The number of k-means

cluster centres has to be slightly more (10%) than the desired number of super-

pixels due to the merging that may occur during the clustering procedure and

also of small superpixels in the post-processing phase. In the general case of an

input density map (not such of feature points), the centres can be obtained as

the means of a Gaussian mixture model fitted to the density map.
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4.2. Constrained Superpixel Generation

4.2.2 Clustering Algorithm

Here the original SLIC algorithm is used, it has been modified to incorporate the

changes we have made in the inputs and also the distance measure. We explain briefly

the algorithm in the following paragraph. For more details we refer to [Achanta 2012].

The first step is to move the initial clusters centres (x, y) away from possible noisy

pixels or edges by computing the gradient of the image and then moving the cen-

tres to the lowers gradient value within its 3 × 3 neighbourhood. The clustering

procedure begins with initializing clusters centres in a seven dimensional space

Ci = [li ai bi xi yi ui vi ]T where (xi , yi ) is the input spatial centres explained be-

fore. An initial rough assignment step associates each pixel with the nearest cluster

centre (spatial distance only). This is followed by an updated assignment using the

distance measure D , which will be introduced in the next section.The search for simi-

lar pixels is done within some limited range around the superpixel centre. This limit

defines actually the maximum desired superpixel size. Next, new clusters centres Ci

values are calculated as the mean (for seven dimensions) of all the pixels that belongs

to the cluster. An error is computed between the new and previous cluster centres. A

loop of assignment and update is repeated until the error converge.

The post processing step enforces connectivity by merging disjoint pixels with nearby

superpixels. Moreover, we observed that this algorithm may results in very small

superpixels (<200 pixels) which may not be desired. We merge such superpixels with a

neighbouring superpixel based on the D distance computed between clusters centres.

4.2.3 Clustering Distance Measure

The distance measure D is used as a metric to assign the belonging of a pixel to a

cluster. The main problem here is to combine the differences in a way that handles

the inconstancy between the various data in colour, location and optical flow spaces.

For two pixels s j and sk , we formulate the distance measure as

D = dl ab +η.Ψp .dx y +ξ.duv (4.2)
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d1 d2 

Figure 4.3: Feature points density map. The two equal Euclidean distances d1 and d2

are weighted with the local density so thatΨd1
p >Ψd2

p .

where dl ab , duv and dx y are the Euclidean distances in CIELAB colour space, optical

flow and pixels spatial coordinates as follows,

dl ab =
√

(a j −ak )2 + (b j −bk )2 +wl (l j − lk )2

dx y =
√

(x j −xk )2 + (y j − yk )2

duv =
√

(u j −uk )2 + (v j − vk )2

(4.3)

where wl is a weight associated to colour intensity. This weight is not considered in the

original SLIC, however, in [Van den Bergh 2012b] the authors claimed that assigning

lower value helps to decrease the effects of shadows (wl is set to 0.5). This is true in

theory since reducing this weight reduce the brightness value and gives more impact

to the colour. However, we did not observe a remarkable change in the output.

Going back to Equation 4.2, ξ controls the temporal compactness, and it is related to

the quality of the obtained optical flow, which varies remarkably from side motion to

forward motion, with the latter more noisy. Note that our assumption in assigning

pixels to clusters while involving optical flow is valid only when computing opti-

cal flow based assuming general smoothness constraint (which is the case with the

used method [Sun 2010b]), where each surface bounded with occlusion boundaries

converges to the same value of optical flow even if it is not parallel to image plane.

Otherwise, the slanted planes have to produce gradually increasing/decreasing flow

in theory. Another aspect here is the baseline distance between the two views used to

calculate the optical flow. Making ξ as a function of time delta between the two frames

as proposed in [Van den Bergh 2012b] does not give a good estimate for two reasons;

first, the magnitude of optical flow is related to the displacement direction and not

only displacement quantity. For instance, the magnitude of optical flow obtained from
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lateral motion is larger than such from forward motion with the same displacement.

Second, the velocity is not necessarily constant but it depends on the scenario. In the

used dataset we empirically set ξ= 2 for optical flow computed in lateral motion (e.g.

stereo), and ξ= 0.8 for optical flow computed in forward motion.

The parameter η controls the spatial compactness, which is responsible of superpixels

shape. Using large values encourage circular shape (Honeycomb like output), whereas

small values allow non regular extensions and less smooth edges. Indeed, the param-

eter η is application and dataset dependant. In the used dataset, we set η= 5 based

on analysing the colour variance per cluster, and also the variance of the number of

feature points per superpixel (this will be discussed further in Section 4.3). The smaller

variance means more equally distributed feature points, which is one of the quality

assess criteria we consider here. Finally, the weighting functionΨp is associated with

the spatial term. It is the responsible of involving the input density map to control

superpixels size locally. This weighting function is given by

Ψp = 1

(| j −k|)
k∑

i= j
p̃(si ), si ∈ s j sk (4.4)

which weights the distance with the mean density along the line segment between

the two points s j and sk . For example, the distances d1 and d2 shown in Figure

4.2 are weighted by the local density, as a result, d1 is more weighted than d2. This

encourages forming larger superpixels in areas with lower density. Note that this

weighting method and the density-aware initial clusters centres have to be jointly

performed to achieve the desired goal.

4.3 Experiments and Results

To evaluate the proposed superpixels method we use the KITTI dataset [Geiger 2012]

which contains outdoor scenes obtained using a mobile vehicle1. The dataset provides

depth data obtained using laser scanner (∼ 80m). This enables us to test our method

for the claimed advantages. We leave the application of 3D representation for the

experimental section in Chapter 5.

1We use the raw data sequences # 0001-0013, 0056, 0059, 0091-0106.
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Table 4.1: Analysis of feature points distribution over superpixels. In SLIC-UV-D, the
spatial compactness parameter η is set to 5.

NB. Superpixels SLIC Graph-Based LABUV-PW SLIC-UV-D

200
Mean 31.5
STD 26.4 36.7 32.2 17.3

400
Mean 15.7
STD 13.3 25.3 19.4 11.7

600
Mean 10.5
STD 10.6 19.4 16.5 7.3

800
Mean 7.8
STD 8.2 12.1 12.7 6.1

1000
Mean 6.3
STD 7.1 9.4 9.1 5.4

All
Mean 14.36
STD 13.12 20.58 17.98 9.56

The first assessment is to analyse the feature points distribution over superpixels. As

mentioned earlier, it is desirable to have balanced distribution of feature points so

that it is possible to perform 3D reconstruction of the scene while each planar patch

is fitted with a number of points close to the mean number of points for all patches.

Therefore, the criteria we use here to assess such property is the standard deviation

(STD) computed for a given superpixel segmentation and the overlaid feature points.

We perform this evaluation on several methods including; SLIC [Achanta 2012], Graph-

based2 [Felzenszwalb 2004], LABUV-PW [Nawaf 2014a] and SLIC-UV-D (which we refer

to the method proposed here). Table 4.1 shows the mean and the standard deviation

of the number of feature points per superpixel. The results are obtained at several

over-segmentation levels. We notice the large improvement for SLIC-UV-D compared

to SLIC. While the other gradient based methods LABUV-PW and graph-based have

remarkably large STDs values, which is unwanted for piecewise scene modelling. This

is expected due to the large variance of superpixels sizes in those methods. Note

that these results are obtained when the spatial compactness parameter η is set to

5. Using larger values for η causes the mean STD to become less (But not linearly

with increasing η). Whereas setting η to small values, the obtained superpixels are

less regular in shape and their boundaries are more rough. Also the computed STD

2The results obtained for graph-based and LABUV-PW methods are an approximation only since it
is not possible to control the number of superpixels
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goes larger. However, the no free lunch theorem applies also here. Indeed, there exists

a trade-off between geometry/boundaries respecting and larger values for spatial

compactness. This will be more detailed ahead.

For visual comparison, we highlight 3 pairs of adjacent superpixels obtained using

the proposed method, and the superpixels obtained using the original SLIC method

and the graph-based method as illustrated in the Figures 4.4, 4.5 and 4.6 respectively.

For each case we show the area of the obtained superpixel and also the number of

feature points contained inside. We can notice clearly that the original SLIC method

produces more regular superpixels with similar size. However, there is a large variance

in the number of feature points, unlike the proposed method where the variance of

the number of feature points is small. Finally the graph-based has no constraints on

the size so this explains the non-equal feature points distribution over superpixels.

Area (Pixels) 1666 620 2280 667 873 1072 

NB. Matches 18 20 16 22 24 21 

Figure 4.4: Example of superpixels obtained using the proposed SLIC-UV-D method.

The second assessment we perform here is to study the effect of the aforementioned

improvement on the reconstructed 3D scene geometry, i.e. respecting the boundaries.

Here we perform two studies. First, analysing the effect of the spatial compactness

parameter η on the boundaries quality. Second, we evaluate the boundaries quality in

comparison with other methods. For this purpose we perform the experiments we

carried out in Section 3.4 on the proposed method here. We evaluate the performance

of our method compared to the other methods mentioned in Section 3.4.

Now, we give a short reminder for the evaluation procedure, based on each superpixel

method, we produce multiple segmentations with variable numbers of superpixels
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Area (Pixels) 1213 1201 1102 901 1010 932 

NB. Matches 7 16 22 32 24 21 

Figure 4.5: Example of superpixels obtained using original SLIC method
[Achanta 2012].

Area (Pixels) 60900 707 1658 638 1668 360 

NB. Matches 435 8 33 18 32 4 

Scaled 
Superpixels 

Figure 4.6: Example of superpixels obtained using the graph-based method [Felzen-
szwalb 2004].

that covers a certain range (∼ 100−1200) for each test image. Each segmentation is

converted into 2D mesh according to the method shown in Section 3.3.5. Then, based

on the ground truth depth map, we obtain the 3D location of the mesh vertices, hence

it becomes a 3D mesh. Next, we calculate a relative depth error |Ẑ − Z |/Z between

the ground truth depth Z and the depth obtained from the 3D mesh Ẑ . Hence we

compute a detailed mean error versus the number of superpixels/vertices. Both

metrics represent how much a given superpixel method respects the 3D geometry of

the scene.

In the first study, we start by setting the spatial compactness parameter η= 1. Note
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that for smaller values we get very rough boundaries and non regular superpixels.

Next, we increase ηwith a shift of three. At each value we evaluate the error introduces

by the segmentation, and also we analyse the distribution of feature points using the

STD criteria as before. The obtained results are illustrated in the Figures 4.8a and

4.8b. The bottom curve (Which is close to SLIC-UV) is the best for respecting the

boundaries, however, it is the worst in terms of feature point distribution. We stop

increasing η as the boundaries quality became poor. To choose the best parameter

value we are empirically based on three aspects; the STD of the number of feature

points per superpixel, the delta size for the decreasing STD (we stop when it is small),

and finally the overall relative mean error which represent the boundaries quality. For

the given dataset we set η= 5 (the results shown in Table 4.1 and the Figures 4.8c and

4.8d (to be discussed later) are produced using this value). Note that the chosen value

have to be reset for new scene types/datasets.

Now, our second study is to compare the proposed method (at the chosen trade-off

parameters) with other methods as mentioned earlier. The obtained results for this

case are illustrated in Figures 4.8c and 4.8d. It is shown that the proposed method

performs slightly less than the original SLIC (and obviously than our gradient based

method LABUV-PW). However, we argue that with this drop down in boundaries

quality we have better feature points distribution. Figure 4.7 shows the overall mean

error for the all evaluated methods (with other methods explained in Chapter 3)

where the proposed method has around 1.2% more error than SLIC, and 1.7% more

compared to SLIC-UV. However, the gain in feature points distribution as a difference

in STD is 3.56 and 4.12 points respectively.

Concerning the computation time, our implementation runs on an Intel Xeon 3.20

GHz (up to 3.6 GHz) with 8 GB of RAM memory. Note that for any method that uses

dense optical flow (UV components), most of the processing time is allocated to the

optical flow computation (1 minute for a 0.46MP frame). Using other GPU-assisted

or accelerated optical flow methods results in noisy flow, specially at the boundaries.

This caused the performance of the segmentation algorithm to drop down since the

optical flow is involved in the distance measure. In the rest of the pipeline, for SLIC-

UV-D we use a modified SLIC implementation in C (vl_feat library [Vedaldi 2010]).For

KITTI dataset, the average computational time for around 1K superpixels is around
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Figure 4.7: Overall relative mean error. In SLIC-UV-D η= 5, the detailed feature points
STD is as given in Table 4.1

2.7 seconds for SLIC, against 3.1 seconds for the modified SLIC-UV-D (given that the

optical flow is precomputed). We refer to [Achanta 2012] for a timing comparison of

other colour based methods.

4.4 Discussion and Conclusion

We proposed a constrained superpixel segmentation method that can be very useful

for 3D representation and modelling where it allows controlling the size of the output

superpixels locally. In our proposition, the size is controlled based on feature points

density map so that the produced superpixels have roughly an equal number of

overlaid feature points. The generated superpixels have constrained shape and size

as being based on clustering that involves spatial distance. The size limitation allows

the method to be applied in any 3D modelling method that involves establishing

superpixels correspondence between views.

The proposed method is an extension of the Simple Local Iterative Clustering (SLIC).

We propose a new colour-spatio-temporal function that includes the optical flow to

produce a segmentation that respects the flow discontinuities. Also it takes into ac-

count the input density map which allows controlling the size of superpixels locally by

the mean of weighted distance function. As the produced superpixels are constrained

with size and location, the originally regular distributed seeds are not appropriate.

Therefore, clusters centres are initialized with non-regular seeds computed based on

the input density map so that they are more consistent with the distance measure that
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involves using such density map.

The experiments showed that our method achieved fair distribution of feature points

over the generated superpixels compared to other general-purpose state-of-the-art

algorithms. We used the standard deviation (STD) of the number of feature points per

superpixel. Also, including flow information gave better performance than using only

colour. However, the cost that we cannot avoid here is a small drop in boundaries

quality, with this latest represent a trade-off together with the mentioned STD criteria

minimization.

Note that instead of using the CIELAB colour space used in the distance measure,

an illumination invariant colour space such as hue-saturation-intensity (HSI)-based

algorithm could be applied accordingly to the used dataset. However, we did not

notice remarkable improvement while using the KITTI dataset.

Note that this chapter is based on a part of the published article [Nawaf 2014b]
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Figure 4.8: Detailed Experimental results for respecting the 3D geometry (boundaries
quality). (a) and (b) show the effect of varying the spatial compactness parameter η
on the boundaries quality. For each η value we provide the error introduced by the
segmentation and also the STD of the number of feature points per superpixel. (c)
and (d) show a detailed comparison for the proposed method SLIC-UV-D with the
state-of-the-art methods LABUV-PW, SLIC and the Graph-based. In SLIC-UV-D, the
parameter η is set to 5, while the mean STD is 9.56, the details are as given in Table 4.1.
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5 Planar Structure Estimation From

Monocular Image Sequence
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In this chapter, we present a complete planar 3D reconstruction pipeline from monoc-

ular image sequence. We start with a brief introduction that summarizes the objective

and the related works. Then, we move to explain in details the proposed structure

estimation pipeline. First, we explain our sparse 3D reconstruction scheme using

several feature matching methods. We also provide an experimental study on the

quality of each feature matching method. Based on this study, we introduce the

weighting scheme which associates each matching method with a learned weight that

represents its desired impact within the planar fitting model. Second, we present a
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Chapter 5. Planar Structure Estimation From Monocular Image Sequence

frame-to-frame superpixel correspondence method. This method is essential in the

proposed pipeline as it is used to integrate the temporal information along the images

sequence. Third, we explain how we compute a boundary probability map based

on colour and flow information. The boundary information are used in the planar

fitting procedure to integrate the spatial depth information. Fourth, we introduce the

weighted structure fitting scheme which is based on total least square model. Finally,

we provide various experimental results for intermediate and final 3D models and we

discuss those results.

5.1 Introduction

Recovering the 3D structure from an image sequence is a main focus in computer vi-

sion. Several structure from motion (SFM) approaches have been proposed to recover

a 3D point cloud using sparse feature matching, triangulation and bundle adjustment

[Snavely 2006, Geiger 2011]. Towards better reconstruction, multi-view stereo (MVS)

[Pollefeys 2004] methods provide denser point cloud based on several redundant

and laterally shifted views. Now, several available tools provide (quasi-) dense 3D

models of an object of focus or building façades [Furukawa 2010, Vergauwen 2006].

Here, we emphasis on our interest in applications of mobile vehicle in urban envi-

ronment. Among the several image acquisition setups, such as panoramic images

[Mičušík 2010], omni-directional camera [Lhuillier 2013] and stereo rig [Cornelis 2008],

we target specifically building in-city 3D models from monocular image sequence. In

this particular case, several challenges arise at different stages of the 3D reconstruction

pipeline (We detailed these challenges in Chapter 1, here we give a brief reminder).

Mainly, lacking textured areas in urban scenes, which results in less feature points, and

consequentially, less 3D reconstructed points. Additionally, the continuous motion of

the vehicle prevents having redundant views of the scene with short feature points

lifetime. This makes the standard MVS difficult [Mičušík 2010], or results in non-dense

unrecognisable 3D models. Which is also due to the fact that most of MVS methods

[Furukawa 2010, Snavely 2006, Pollefeys 2004] rely on good feature matching methods

such as; SIFT [Lowe 2004], SURF [Bay 2006], and recently ORB [Rublee 2011]. These

methods have a disadvantage that they provide relatively small number of obtained

matches (which is not a problem when redundant views are available). In contrast,
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extending the number of matches by allowing more tolerant feature point’s quality

or using denser matching methods, such as in [Geiger 2011], affects the quality of

reconstruction and the relative motion estimation.

In this work, we provide a solution to increase the point cloud density by fusing 3D

reconstructed points obtained using several feature points matching methods without

letting numerous but less accurate points dominate fewer but more accurate ones

when performing the planar fitting of the 3D structure. Hence, we propose a method

that provides a complete scene reconstruction from monocular image sequence.

Similar to other works [Yamaguchi 2013], we take advantage of appearance similarity

in consecutive colour frames to assume spatial belonging to same object in the 3D

scene. Hence, the scene is represented by slanted-planes that are either connected

or occluded with their neighbourhood. These planes correspond to image patches

obtained using adaptive flow-based superpixel segmentation that respect the scene

discontinuities. By estimating the planes parameters, we obtain a fully dense scene

reconstruction that utilizes all pixels colour information in the image sequence. Our

main contribution is a closed-form plane parameters estimation scheme that involves

using 3D points obtained using several feature points matching techniques including

a noisy dense optical flow. We use a weighted total least squares model to handle the

uncertainty of each depth source. This uncertainty is due to several aspects, in our

work we take into account:

• The accuracy of the matching method used to reconstruct the point, which is

obtained using a learning based approach;

• The number of matches along the image sequence (lifetime) for a certain feature

point, which reflects the accuracy of the reconstructed 3D point;

• The baseline distance between two camera poses, since it is relative to the

accuracy of the reconstructed point according to stereo reconstruction funda-

mentals.

The aim of estimating those uncertainty measures is to perform a weighted fitting of

the slanted-planes structure using 3D reconstructed point cloud. This point cloud is
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Chapter 5. Planar Structure Estimation From Monocular Image Sequence

computed using the best combination of efficiency proved methods at different stages

of the SFM pipeline.

From another side, having chosen the piecewise scene representation, we adopt the

superpixel segmentation method proposed in Chapter 4 to take into account the

spatial distribution of feature points for more balanced plane fitting. As mentioned

earlier, the aim is to minimize the variance of the number of points used to fit each

plane in the 3D structure. Additionally, the usage of the dense optical flow restricts

the segmentation to respect both image and flow discontinuities.

One more point, during the planar fitting, we constraint softly the connectivity be-

tween superpixels based on occlusion probability map. This leads to propagate depth

information between neighbouring patches, which helps to complete missing depth

information by encouraging piecewise co-planarity and results in more realistic mod-

els. The occlusion probability map is computed based on the generalized boundary

probability method as proposed in Chapter 3, which is estimated using optical flow

and colour information.

5.2 Structure Estimation Pipeline

The reconstruction pipeline that we propose starts by applying a common SFM in

order to obtain a 3D point cloud using an efficient combination of several feature

matching methods. Then, the point cloud is used to fit the slanted-planes structure

which is established based on superpixel segmentation for each of the frames in the

sequence, and also the superpixels correspondences. The plane fitting involves using

point-wise learned weights, and also occlusion boundary information in order to

constraint depth transitions between neighbouring planes. Finally, the 3D model is

reconstructed by back-projecting the image texture to 3D space from all visible frames.

In the following we will provide the details of each of these steps. A simplified overview

of the reconstruction pipeline is provided in Figure 5.1.
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Figure 5.1: Proposed 3D structure estimation pipeline.
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Method
Avg. Nb.
points

First-order
geometric error

Depth
error

First-order geo-
metric error (BA)

Depth
error (BA)

SIFT 460 5e -5 1.47 47e -6 1.36
SURF 650 17e-5 1.87 16e-5 1.76
ORB 500 7e-5 1.51 65e-6 1.42
ORB 1000 29e-5 1.92 26e-5 1.82

LF/BM 3650 46e-5 2.02 42e-5 1.88
LK (Q = 0.01) 3490 284e-5 3.12 270e-5 2.95
LK (Q = 0.03) 1940 126e-5 2.98 118e-5 2.76

Dense Optical Flow 466K 1642e-5 4.77 1442e-5 4.15

Table 5.1: Comparison between some selected feature matching methods based on
KITTI dataset [Geiger 2012] (BA refers to the results after performing global Bundle
Adjustment).

5.2.1 Joint Feature Matching

Our approach is generic; it integrates several feature detection and matching tech-

niques. We are motivated by the experimental results indicated in Table 5.1, which

shows a comparison between some selected feature matching methods such as, SIFT

[Lowe 2004], SURF [Bay 2006], ORB (500 and 1000 feature points) [Rublee 2011],

Lucas-Kanade (LK (Q denotes feature quality)), low level features detection (blobs and

corners) with block matching (LF/BM) [Geiger 2011], and finally dense optical flow

[Sun 2010b]. These results have been obtained using the KITTI dataset [Geiger 2012]

(image size is 0.42 mega pixels).

In the experiments, two measures have been used to evaluate the feature matching

quality, which are : a) the mean first-order geometric error (Sampson distance); b) the

mean absolute depth error between the reconstructed 3D points and the ground

truth1. We use the provided pose estimation to compute the fundamental matrix

and perform the triangulation. For each of the given measures, results are shown

before and after running the global bundle adjustment. However, there is noticeable

correlation for both measures and hence any results of them can be used in the

learning procedure (explained later). Overall, there is a trade-off between the number

of matched features and their quality. For instance, SIFT provides around 460 matches

1Since the ground truth (laser scanner data) is very sparse, there is a low chance for a detected
feature point to coincide with an existing depth measure. For this reason, we use distance interpolation,
however, with constrained allowed maximum distance.
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per frame (1242×375 Pixels), with an average 5e −5 of geometric error, while the low

level features with block matching LF/BM method provides around 3650 matches,

and 284e −5 average geometric error.

After performing the 3D triangulation and obtaining the point cloud, the 3D points

obtained from SIFT matching are more accurate than such obtained from the low

level features matching. However, for the purpose of fitting the planar structure the

judgement on the methodology is not trivial. In other words, using less but more

accurate points for planar fitting against using more points with less accuracy. Here,

no decision about the accuracy can be made, nor in the case of mixing both points

together. However, inspired by the obtained statistics, in our method we take into

account the variable reliability of each matching method by the mean of a weight

associated to each 3D point that controls the impact of such point in our plane fitting

scheme. Obviously this weight depends on the used feature matching method. As it is

difficult to provide a theoretical methodology to calculate such weights, moreover, the

existence of many accuracy assessment measures that could be computed for each

matching methods (for instance, the two measures presented here), these measures

are not necessarily linearly correlated, therefore, we propose to use a learning based

approach to find these weights based on the given ground truth.

An obvious point which may arise here is the redundancy of feature points when

combining several matching methods; the same feature point (or same after rounding

to nearest pixel) is more likely to be detected by multiple feature detectors. In the

matching phase, the correspondence may be (not) the same. As a consequence, this

may create identical points in 3D when the match is the same, or several non identical

points where at most only one is correct. To cope with this problem, we follow an

empirical reasoning inspired from experiments as follows:

• Same redundant feature point and same 2 matched point. In this case, the

match has higher probability to be correct and accurate. Hence, we keep the

redundancy so that the reconstructed 3D points will have more impact in fitting

the planar structure.

• Same redundant feature point and different matches. Here, we differentiate

2Rounded to sub-pixel accuracy
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between several cases. If the matches are obtained using;

– Only global/brute force matching methods (e.g. SIFT, SURF, ORB), we

follow voting based solution to decide which match to keep. However, the

match is removed in case of equality.

– Only local matching methods (e.g. LF/BM, LK), the match obtained using

the method with higher accuracy (according to the learned weights which

will be explained in Section 5.4.1) is kept.

– Mixture of global and local matching method, here the match is removed

since no qualitative reasoning could be established.

5.3 Pose Estimation and 3D Reconstruction

To estimate a frame-to-frame camera relative pose, we use a common approach

[Hartley 2004] by estimating the fundamental matrix using SIFT matches and the

RANSAC procedure. Then, given the camera intrinsic parameters, we compute the

rotation and translation (up to scale). To find the translation scales, we propose a

solution which is specifically suitable to fixed and known camera setups, i.e. camera

pose with respect to ground plane, which it is the case in the KITTI dataset.

We find the ground plane by locating the feature points that belong to a predefined

region in the image (located at the middle bottom of the image), which are more

likely to belong to the ground plane for the given mobile vehicle configuration. This

region is learned based on analysing the depth variance of all 3D points obtained from

the laser scanner. The points that belong to ground plane show generally very small

depth variation, so the desired region can be selected by empirically thresholding the

obtained variance and then forming a closed region. Alternatively, road detection

techniques can be applied to detect the ground plane [Alvarez 2012]. Based on the 3D

reconstruction of the obtained feature points, we perform a robust plane fitting using

RANSAC procedure, the scene can be scaled accordingly to match the fixed camera

configuration.

Note that the obtained odometry using this approach is more accurate (with respect to

the provided Inertial Navigation System IMU data) than using the linear closed form
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Figure 5.2: Estimated trajectory using fixed configuration assumption and Monocular
visual odometry [Esteban 2010] compared to Inertial Navigation System (GPS/IMU)
data superimposed onto a Google Earth image of KITTI dataset sequences 0095.

1-point algorithm [Hartley 2004], or the monocular visual odometry [Esteban 2010].

However, both methods remain an alternative in the general case. Figure 5.2 shows

an example of obtained trajectory using the proposed method and the general visual

odometry method [Esteban 2010] compared to IMU ground truth.

The 3D reconstruction is then straight forward, based on all tracked matches we

apply the direct linear transformation (DLT) triangulation method followed by two-

stages of bundle adjustment, which involves minimizing a geometric error function

as described in [Hartley 2004]. We use the Levenberg-Marquardt based framework

proposed in [Lourakis 2009]. In the first stage, we perform combined structure and

motion bundle adjustment using only SIFT matched features. In the latter stage, we

do structure only bundle adjustment, where we fix the obtained relative motion from

the first stage, and we refine the structure using the matches of all methods. Note that

using two bundle adjustment stages provides more accurate results (both structure

and motion) due to the variable accuracy of matching methods as discussed before.

We remind that the dense optical flow is not considered at this step.
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5.3.1 Frame-to-Frame Superpixels Correspondence

Figure 5.3: Example of frame-to-frame superpixels correspondence.

The proposed method is based on fitting a planar structure using information from

several images. Maybe the closest solution to ours which we find in the literature is

the piecewise planar reconstruction from multi-view stereo [Bódis-Szomorú 2014]. In

this method, a planar structure fitting is performed based on superpixels and overlaid

SFM point cloud. One of the main differences we mention here compared to our

proposed solution is that the texture is taken from only one image, whereas in our

solution we use all texture information in image sequence. To make this feasible, it

is necessary to establish a frame-to-frame superpixels correspondence to be used in

the proposed planar structure fitting scheme. In other words, for a given superpixel

in one frame, to find the position of such superpixel in the next frame, and so forth

for next frames (if a match exists). This sequence of tracked superpixels (original

and the matches) are assumed to belong to the same surface in 3D. From another

side, the depth information assigned to each individual superpixel, more precisely,

the obtained SFM points which belongs to a certain superpixel vary from frame to

frame. And hence, a proper depth fusion for all tracked superpixels can improve the

reconstructed surface in 3D.

Now, we explain the procedure to find frame-to-frame superpixels correspondence.

Formally, given the superpixel segmentations of two consecutive frames, let us say f

and f ′, we search for a mapping H : S → S′, which assigns each superpixel, S ∈ f to a

superpixel, S′ ∈ f ′. For this aim, we use the matched feature points obtained using
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SIFT to estimate the spatial motion of a superpixel between the two frames by the

mean of local homography (as being a projection of planar patches). Having S, we use

the contained feature points {p ∈ S} to compute a homography HS ∈R3×3 using simple

DLT fitting as

p′ = HSp (5.1)

where p′ ∈ f ′ and (p,p′) is a matched pair. Then, the homography HS is used to map

the pixels of S to a new set of locations in f ′, denoted Ŝ′. In practice, the obtained Ŝ′ is

not necessarily continuous over its covered pixels, also, it may be not mapped inside

a single target superpixel. Hence, we chose S′ as the superpixel that has maximum

overlap and colour similarity with Ŝ′. Figure 5.4 illustrates the proposed procedure,

and Figure 5.3 shows two examples of some superpixel correspondences for two

consecutive frames. The left side figure shows the case where two superpixels are

mapped to one. We found experimentally in most of many-to-one mapping cases,

that the superpixels are coplanar. So it does not affect the reconstruction procedure.

The colour similarity constraint insures that if an error is made during this step, the

superpixel will not be assigned to another surface. This fact is demonstrated in the

obtained 3D models presented in Section 5.4.2.

Hs
Hs

Feature point 

Superpixel boundary 

Transformed boundary 

Most overlapping  superpixel 

Frame t’ 

Frame t 

Figure 5.4: Illustration of finding superpixels correspondence using local homogra-
phies.

5.3.2 Weighted Total Least Squares for Planar Structure Fitting
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Figure 5.5: Boundary probability computation.

Our goal is to produce a 3D model by fitting the planar patches (based on the ob-

tained superpixels) to the reconstructed feature points and optical flow. As mentioned

earlier, feature matching methods have various accuracies (as shown in Table 5.1).

All of the solutions we encountered in literature, for instance [Mičušík 2010, Bódis-

Szomorú 2014, Vogel 2013, Yamaguchi 2012, Yamaguchi 2013], treat 3D points equally

during the plane fitting procedure. This approach is unsuitable here given the ex-

perimental study and the conclusions we made in the previous section. Hence, we

propose to use the weighted least square where the error contribution of a data point

following certain model (here it is plane equation) is controlled via a weight associ-

ated to it. Therefore, by using the weighted least square for plane fitting we can treat

depth information obtained using each method based on some learned weight that

reflects its accuracy. For instance, this allows to fuse sparse but more accurate depth

information (e.g. obtained using SIFT) with a noisy dense depth obtained from optical

flow without having dominant impact of the dense depth.

This adopted weighting concept allows considering other aspects that affect a priori

the accuracy of a reconstructed point. Here we propose two more aspects;
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Algorithm 1 Planar Structure Fitting Pipeline
Input: Superpixel segmented n image frames, sparse SFM point cloud, learned
weights
Output: A set of planes parameters θ

1: for t = 1 to n −1 do
2: for all Si ∈ ft do
3: Calculate HS ∈R3×3 using Equation 5.1
4: Find Ŝ′

i by mapping Si according to HS

5: Search for a correspondence S′
i ∈ ft+1 using the algorithm explained in Sec-

tion 5.3.1
6: if Found(S′

i ) then
7: Keep a track of matched superpixel
8: else
9: Compute the centroid using Equation 5.6

10: Form the matrix as in Equation 5.5 {Using the 3D points whose projection
appears inside Si and also inside all of its previously tracked superpixels,
also by including the 3D points selected by the methodology in 5.3.3 }

11: Find θi by solving Equation 5.3 using SVD
12: end if
13: end for
14: end for

• We take into account the fact that the longer feature point’s lifetime, the more

accurate is the 3D reconstruction. This fact is valid if all feature point’s matches

along the sequence are taken into account. There are two reasons that support

this fact. First, the impact of erroneous match in one frame is decreased when

having more matches, and second, the overall baseline between the first and

last match is becoming larger, and hence the accuracy is larger based on stereo

vision fundamentals. Experimentally, based on SIFT points matches, the mean

depth error (in meters) of feature points that have 2,3 and 4 frames lifetime is

1.93, 1.52 and 1.24 respectively 3

• The accuracy of the reconstructed point as a function of the baseline distance,

which is the frame-to frame camera translation. Because larger translations

allows larger disparity limits, and hence higher accuracy. This point is taken

into account in our model as a frame-wise weight.

One may argue the significance of the above considered aspects when they are taken

3All results are provided with by fixing all other configurations
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into account together. For example, is the choice of the matching method has neg-

ligible effect against the feature point’s lifetime, or the distance to the camera. The

answer to this issue comes during the learning process. The weight change for a given

combination reflects the importance of distinguishing 3D reconstructed points based

on the used criteria. For instance, we tried to extend the weight by adding a term

related to the distance of the 3D point to the camera, this is based on the fact that the

accuracy of the reconstructed point is a function (without considering the blind zone)

of its distance to the camera. However, in practice no dominant effect of such criteria

is shown. i.e. learned weights do not changed noticeably. The reason may be due to

the fact that depth differences for 3D points involved in fitting a planar patch is small.

Therefore, we do not consider the point’s depth in the weighting scheme.

Now, after presenting the fundamental elements, we move to explain the structure

estimation procedure, which is as follows; a frame-to-frame superpixels correspon-

dences is applied and a tracking record is established for all frames according to the

procedure explained in Section 5.3.1. Again, for every frame ft , we estimate the plane

parameters which correspond to each superpixel Si ∈ ft that does not have corre-

spondences in frame ft+1. This means that we delay the planar patch fitting until the

last frame where this patch appears (in the next frame it will go out of the view). The

reason is that the patch is assumed to the closest to the camera (under the forward

motion assumption) so that the 3D points related to such patch are reconstructed

with the highest accuracy. Hence, the plane parameter estimation is based on the 3D

points (N denotes their number) whose projection appears inside Si (in frame ft ),

and also inside all superpixels in frames fu<t whose tracking ends with Si . Addition-

ally, we use a uniformly picked samples of the 3D points obtained using the dense

optical flow of ft . This later step does not show a significant change in the obtained

results. Actually, although it allows the reconstruction of the patches which do not

have enough sparsely matched 3D points, the noisy flow in some areas affects the

reconstruction quality. Weights learning does not provide a solution to this problem

because the accumulated overall improvement resultant from introducing the optical

flow dense depth prevents decreasing the weight associated to it. Empirically, we

found by visual assessment of small details of the obtained 3D models that decreasing

the learned weight by 20%−30% is a compromise for this issue. Let us note that the

learned weights for the optical flow are dependant on the sampling ratio. As a result,
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within a major range of the sampling ratio of the dense depth, the weights are being

modified accordingly, whereas the output 3D model quality remains mostly the same.

Now, we present formally the plane parameters estimation. Let us denote the plane

parameters as θ = [ñ> d ]> where ñ> is the normalized normal and d is the 3D eu-

clidean distance to the origin. According to this definition, the orthogonal distance

between a 3D point x and the plane is given as

D(x,θ) = xñ>+d (5.2)

we formalize the plane fitting problem as

j∑
t= j−k

w f (t )
N∑

i=1
wm,l .D(xi ,t ,θ)2 (5.3)

here, wm,l is the learned weight associated to a reconstructed point xi ,t = [x y z]

obtained using the feature matching method m based on l frames (point’s tracking

lifetime), and t is the largest frame index where the points projection appears (as-

suming increasing index with time). Note that each 3D point is used only once (not

to confuse with redundant 3D points). The difference j −k is the index of the last

frame that has at least one trackable superpixel until f j . The function w f (t ) provides

the frame-wise weighting. Analytically, this weight gives more bias to last frames for

two reasons; first, the chance to have wrong superpixel correspondence increases

for longer tracking. Second, as last frames are closer to the scene (forward motion

assumption), the 3D reconstruction is more accurate. Hence, to give less weight while

moving away from the scene, we formulate

w f (t ) = e−‖Tt‖/β (5.4)

here Tt is the relative motion translation of the frame ft with respect to f j , and β

is a parameter that controls the weight decreasing rate. For instance, setting β = 3

suppresses the impact of more than 3 frames away.

For simplification, by considering wn = w f (t)wm,l the weight associated to a data

point xn = [xn yn zn]. The solution to Equation 5.3 is achieved by computing the
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singular value that corresponds to the smallest eigenvalue, denoted σ, of a (N ×k)×3

matrix which takes the form



p
w1(x1 − x̄)

p
w1(y1 − ȳ)

p
w1(z1 − z̄)

...
...

...
...

...
...

p
wN×k (xN×k − x̄)

p
wN×k (yN×k − ȳ)

p
wN×k (zN×k − z̄)

 (5.5)

and the centroid of the points is given by

x̄ = [x̄ ȳ z̄] =
∑ j

t= j−k (w f (t )
∑N

i=1 wm,l xi ,t )∑ j
t= j−k (w f (t )

∑N
i=1 wm,l )

(5.6)

The entire 3D reconstruction procedure is presented as pseudo-code Algorithm 1. Let

us note that it is possible to encapsulate the plane fitting in RANSAC procedure, in

this case, the weighted sum-of-squares of residuals is given as

σ∑ j
t= j−k (w f (t )

∑N
i=1 wm,l )

(5.7)

However, due to the large number of points obtained using the dense optical flow

compared to the rest of points, RANSAC is not a good choice because there is higher

chance to select dense depth points due to their large number. Nevertheless, it is more

robust to be applied when the dense optical flow is not considered. In our method,

we experienced slightly better results when using the dense optical flow as mentioned

earlier.

5.3.3 Boundary Probability to Improve Connectivity

Integrating boundary information has a dramatical improvement over the recon-

structed 3D model. Indeed, the available accuracy of 3D reconstructed points does

not provide connected structure. Some patches remain floating in the scene, which

are not visually appealing. Figure 5.6 shows an example of an obtained 3D model

without integrating any boundary information. This shows the necessity for such
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Figure 5.6: Example of 3D model without integrating boundary information, most of
adjacent patches are not connected.

an update to the proposed method. Actually, all of piecewise based reconstruction

methods takes into account the connectivity with neighbouring patches into account.

The most popular way is to handle this relationship through a MRF/CRF. This is

seen in the following works [Mičušík 2010, Bódis-Szomorú 2014, Vogel 2013, Yam-

aguchi 2012, Yamaguchi 2013], where a potential function is responsible for penalizing

the dis-connectivity proportionally to an occlusion probability. The model is then

solved using optimization techniques, none of them is a closed-form. Hence, we

propose a solution that can be integrated into our weighted plane fitting model, while

remaining closed-form, efficient and faster to resolve compared to other probabilistic

models.

Realistic scenes are composed generally of connected structures and also have some

occlusions. The majority of the boundaries that are obtained from superpixel segmen-

tation are for connected structures (as it depends on colour information) and fewer

for occlusions. However, they do not necessarily reflect the real occlusion boundaries

(although there are much more falsely detected occlusion boundaries (false positives)

than falsely undetected ones (false negatives)).

Indeed, real occlusions can be better inferred using both colour and flow as spatially

uniform regions have continuous flow and homogeneous colour. In this work, we

employ the closed-form generalized boundary probability method [Leordeanu 2012]
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the same way we proposed in Section 3.3.4. The method combines low- and mid-level

image representations in a single eigenvalue problem, which is then solved over an

infinite set of putative boundary orientations. We compute a boundary probability

map using the following layers; L∗, a∗ and b∗ (CIELAB colour space) and the two

optical flow channels (u, v). The pipeline of computing the boundary probability is

illustrated in Figure 5.5.

We use the obtained boundary probability to add some constraints that encourage

connected structure in 3D as follows; For every two neighbouring superpixels, we

compute a soft value of occlusion probability, denoted Oi , by taking the mean bound-

ary probability for the pixels located on their common edge with two pixels of width.

Hence, we form a sparse lookup table that contains all Oi for all superpixel combina-

tions, so that for each two superpixels it returns a soft occlusion indicator. Next, for

each superpixel, we select the n closest sparse feature points to the common edge

(we exclude the dense depth), and we include their 3D reconstruction in fitting the

neighbouring superpixel. However, we impose a modified weight

w ′
m,l =αwm,l Oi (5.8)

whereαhandles the inter-superpixel impact so that large values encourage co-planarity

between neighbouring non-occluded superpixels. In our implementation we choose

empirically (n = 5,α = 5). Using small values for both parameters results in many

floating patches in the image, while using larger values leads to obliterate scene details

and produce less independent planes. Generally, larger values are recommended in

texture-less scenes.

5.4 Experiments and Results

5.4.1 Feature Matching Methods Selection

Learning the weights wm,l helps to identify good combinations of feature matching

methods. Using Equation 5.3 for this purpose can be in practice intractable. Instead,

we use a simplified formulation that does not consider the frame-wise weights. Hence,
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method \ lifetime 2 3 4 5 >5

SIFT 1 1.64 1.82 1.91 1.97
ORB (1000) 0.92 1.51 1.62 1.71 1.84

LF/BM 0.81 1.23 1.40 1.48 1.54
Dense depth (1/10) 0.14 - - - -

Table 5.2: Normalized learned weights associated to 3D points obtained using one
combination of feature matching methods and the number of frames the feature point
is tracked (point’s lifetime).

weights learning is achieved by minimizing the formula

N∑
i=1

wm,l .D(xi ,t ,θ)2 (5.9)

based on the given ground truth data and the reconstructed 3D points. We use the

Nelder-Mead simplex method [Lagarias 1998] which provided faster convergence than

gradient-decent approaches. Moreover, it does not require an analytic form of the

cost and can be easily applied (fminsearch in MATLAB).

As mentioned earlier, given that the laser scanner data is quite sparse, there is a low

chance for a detected feature point to coincide with an existing depth measure. For

this reason, we use distance interpolation within some limits.

For faster convergence, the weights are initialized with values inversely proportional to

the geometric error shown in Table 5.1. After testing several combinations of methods

(list in Table 5.1), our first observation is that the obtained weights are nearly inversely

correlated with the error induced by each method. Expectedly, reconstructed points

from more than two frames are more weighted, also, the weights for the points recon-

structed with 5 frames and more become steady. An important note here is that the

weight wm,l given to a certain method is not independent from the used combination.

i.e. One method can be more weighted than another in one combination while it can

be less weighted when included within another combination. This can be explained

by the variant redundancy that each method introduce to a given combination. As

a result, it is not possible to provide a method-weight general results. We leave this

point to be as a potential future work.

By analysing the obtained weights using several combinations, we can obviously
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Figure 5.7: Original frame from the sequence 95 and a Dense 3D model obtained using
the proposed method from several view points.
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Figure 5.8: Original frame from the sequence 93 and a Dense 3D model obtained using
the proposed method from several view points.

know the good combination of methods where the weights associated to all matching

methods are significant while producing relatively small error based on the formula

5.9. Based on this strategy, we choose SIFT, LF/BM, ORB and the dense optical flow

(sampled by 1/10) to be the best combination. Adding more points using other

methods does not worth the slight improvement (few additional non-overlapping

feature points). Table 5.2 shows the normalized weights obtained for this selection.

The results shows the variable weights associated to each feature matching method.

Also, for each method, the weight changes as a function of the number of the frames

the feature point is tracked (lifetime). An important point to mention here is that the

obtained learned weights depend on the number of feature points, which is related to

the nature of the used dataset.
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(a)

(b)

(c)

(d)

Figure 5.9: Comparison of 3D models created by different methods. Our proposed
method (a), Poisson surface reconstruction [Kazhdan 2006] using dense optical flow
and sparse points (b), surface reconstruction of sparse points using the greedy tri-
angulation method [Marton 2009] (c), and Delaunay triangulation based manifold
surface reconstruction [Lhuillier 2013] (d).
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(a) (b)

Figure 5.10: 3D models to show the significance of integrating the boundary informa-
tion, also show the robustness of the ground floor estimation. (a) boundary informa-
tion are used. (b) boundary information are not used, many adjacent patches are not
connected, some are floating.

5.4.2 3D Model Reconstruction

We tested our 3D reconstruction method on several sequences from KITTI dataset

[Geiger 2012]. After obtaining the plane parameters which correspond to superpix-

els, we project the texture of the image sequence to 3D in order to obtain a dense

reconstruction that makes use of all colour information included in the input images.

Because the provided laser scanner data is sparse and covers only the lower 30%

of the image, and due to the accumulated scale drift between frames, we did not

investigate the reconstruction accuracy of the resulting 3D models. However, as our

goal is to provide realistic scenes, we evaluate the quality of the results using a subjec-

tive measure of realism, which is commonly used in practice [Cornelis 2008, Lhuil-

lier 2013, Mičušík 2010].

Two examples 4 of obtained 3D model are shown in the Figures 5.7 and 5.8. The scenes

were chosen as they contain the common objects in urban environment (Building

4Sample result videos and images can be downloaded from http://perso.univ-st-
etienne.fr/nam07924/Elsevier-IVC-2014.zip
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façades, cars, trees). The 3D models are reconstructed using 12 frames, and it is

cropped at the blind distance of the last frame, where the scene objects start to

deform. We notice that the scene is well textured, in particular, the building façades

and main road structure. The lack of visual information behind the stationing cars is

due to the occlusion and missing scene information (the objects behind the cars are

not revealed in any frame). We mention that our method is generally not robust to

greenery as it violates the planar assumption.

We also provide comparisons between different methods using the same viewpoint.

Figure 5.9a shows examples of 3D model obtained using our method. To emphasis the

importance of some stages in our pipeline, mainly, the superpixels representation and

the feature points fusion scheme, we provide the 3D models using two approaches ;

first, by using dense optical flow and sparse point cloud. In this case, a smooth Poisson

surface reconstruction [Kazhdan 2006] is necessary to provide visually recognizable

models as illustrated in Figure 5.9b. The main problem with Poisson reconstruction is

the bad handling of manifold junctions by forcing curved shape. Also the reconstruc-

tion is unpredictable in case of lack of 3D points (see the prominent object at the left

side of the scene, which is due to the impact of noisy optical flow). Second, we use

the sparse point cloud obtained using the selected feature matching methods treated

equally. Also, to deal with the lack of depth estimate in many areas we perform surface

reconstruction using two approaches; the greedy triangulation method [Marton 2009]

which assumes locally smooth surfaces and performs incremental triangular mesh

decoupling. Also we investigate the manifold surface reconstruction based on Delau-

nay triangulation approach presented in [Lhuillier 2013]. The obtained 3D models

for both cases are shown in Figure 5.9c and 5.9d. It is slightly noticeable that the

reconstructed trees are more visually appealing. However, the obtained 3D models

still show to be remarkably less detailed than our approach.

Another essential step in our pipeline is integrating the occlusion boundary informa-

tion. Let us recall the 3D model we presented in Figure 5.6 and also the 3D model

in Figure 5.7. Both models are for the same scene, Figure 5.6 is the obtained model

without integrating the boundary information, whereas Figure 5.7 is after being in-

tegrated. The difference between both models is obvious. The first one suffers from

floating patches and dis-connected neighbouring patches, whereas this problem is
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solved in the second case. In general, this problem is due to the noisy 3D points as a

result of several factors during the 3D reconstruction phase. This problem becomes

larger when there is a lack of sparse feature points whereas the dense optical flow is

noisy as explained earlier.

Next, in Figure 5.10 we give a close-up views of a 3D model to show two points;

first, as another example supporting the latest point related to occlusion boundaries.

The model shown in 5.10a is produced without integrating the occlusion boundary

information. Floating patches can be spotted clearly on the top right and top left

corners as well as on the side of the vehicle. Second, to show the perfect quality of

reconstructed ground plane using the procedure explained in Section 5.3.

Regarding time complexity, our implementation (mixed MATLAB and C++) runs on

an Intel Xeon 3.GHz (up tp 3.6 GHz) with 8 GB of RAM memory. The dense optical

flow still occupies most of the computational time (1 minute for a 0.46MP frame).

Using other GPU-assisted or accelerated optical flow methods produced more noise,

which affects the output quality. The plane fitting model takes around 30 seconds

for 10 frames model, which is much faster than probabilistic models based methods

[Gallup 2010], where the complete model takes around 1.5-2.5 minutes in total.

5.5 Discussion and Conclusion

We presented an efficient monocular 3D reconstruction pipeline for urban scenes. The

extended flow, colour and feature density aware superpixel segmentation provides

a meaningful representation for the slanted-planes assumption. The weighted total

least square model allows fusing several feature matching methods while it prevents

larger number but lower accuracy matches to have dominant impact when used with

higher accuracy matches. Also, we propose a solution to handle the neighbouring

relationship between planar patches using the same total least squares model. The

obtained 3D models show the impact of the chosen scene representation and the

fusion model on the output quality.

As we have seen, using the boundary probability improves remarkably the recon-

structed structure. Using both colour and flow information to compute the boundary
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probability increase the chance of detecting occlusions in the scene (although it pro-

vides much more false positives than false negatives). The error made by this approach

causes to leave some connected structure without being constrained, whereas it does

not force unconnected structure, in reality, to be connected in the 3D model. Which

we think it is a better behaviour than the inverse case.

One of the problems that arises while fitting the planes using several frames is the

sensitivity to relative motion estimation, as this produces an increasing drift when

proceeding further away (shadowed plans of points). Another issue we could mention

in the current framework is the assumption of fixed weights for fusing reconstructed

points. Whereas the dense monocular optical flow suffers from unstable performance

even in the same sequence. This can be a future perspective issue.

In this work, we considered that the weights associated to reconstructed points are

learned, whereas learning the weights can be extended in several aspects. Mainly by

forming the weights as a combination of learned and non-learned variables. Given

that the learned weights depends on the number of feature points. An empirical

function that takes as input the number of feature points can compensate for the

weighting change due to the number of feature points, based on the fact, that the

weights generally tends to decrease with the increasing of the feature points obtained

by certain algorithm. In the same way, the number of frames used to reconstruct the

point can be also excluded from learning.

As we have seen, the main limitation of the proposed method is the poor reconstruc-

tion of the objects that violates the planar assumption (although they are not common

in urban scenes). A possible solution for this issue is two folds. First, by integrating

a robust recognition system to detect such objects to be treated differently. This is

already a used practice in Google Maps 3D maps, where the output 3D model is stored

as hybrid low/ high-level vectorized representation. Some examples of high level

representation are : finite set of tree shapes, greenery areas. Another example is the

method proposed in [Cornelis 2008] which replaces on street vehicles by a predefined

3D models. Second possible improvement, is to use the available prior knowledge

about the scene to form additional constraints. In our method we benefit from this

fixed configuration prior to estimate the ground plane, which makes the method more

robust. However, some other priors can be used such as the vertical alignment of
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façades, windows, etc.

To summarize, the major contributions and ideas that we proposed in this chapter are

the following:

• Using several feature matching methods together to increase the density of the

obtained 3D reconstructed point cloud. The learned weight associated to each

reconstructed 3D point represents its prior accuracy.

• The total weighted least square model estimates the plan parameters based on

a set of input points and the associated weights so that the impact that each

point has is proportional to its weight.

• We take into consideration the temporal dimension. When estimating the plane

parameters for a certain patch, we give more impact to the closest frame to the

scene as the accuracy is higher. This idea depends on the proposed frame-to-

frame superpixels correspondence method, and it is integrated within the same

weighted total least squares model.

• Occlusion boundaries information controls the depth propagation among neigh-

bouring planar patches. The proposed methodology encourages softly the

connectivity and co-planarity with neighbouring patches based on occlusion

boundary map. This is done using the same model which can be efficiently

solved through SVD.

• The proposed method provides dense 3D models that are more visually ap-

pealing than other comparable 3D reconstruction and surface reconstruction

methods. The obtained performance is due to the proposed reconstruction

pipeline, where all the aforementioned ideas play role, also the usage of the

superpixel generation method proposed in Chapter 4.

Note that this chapter is based on the published article [Nawaf 2014b].
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6 Conclusions and Future Directions

In this thesis we have described several innovative ideas and improvements to the

current state-of-the-art in the context of structure from motion using images. The

research presented in this context has focused on the specific application of improving

the 3D reconstruction from a monocular image sequence taken using a mobile vehicle

in urban environment, with a forward looking camera. We overcome the issues

produced by the lack of redundant views and the poorly textured regions by adopting

the piecewise planar 3D reconstruction. In which the planarity assumption allows

to provide a complete dense structure estimation using a set of sparse reconstructed

point cloud using SFM technique. In the presented research, we introduce several

improvements to the 3D structure estimation pipeline. In particular, the planar

piecewise scene representation and modelling.

6.1 Summary and Discussion

Our main contributions and ideas to improve the 3D structure estimation were made

at different stages of the pipeline, namely : the piecewise scene representation, sparse

3D reconstruction and the planar structure fitting. We provide in the following a brief

summary for each.

Piecewise scene representation : In this perspective, two superpixel segmentation

methods have been proposed for the scene representation. Both methods can be

used as an independent tool. Mainly, by the applications that adopt a piecewise
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representation of 3D scene. The first developed approach aims at creating 3D ge-

ometry respecting superpixel segmentation. The superpixel generation is based on

a generalized boundary probability estimation using colour and dense optical flow

information in a multi-layer gradient based model. Our contribution in introducing

the pixel-wise weighting to the flow channels represents a key advantage compared to

global weighting. Which provides a solution to the noisy flow at image boundaries,

and also takes into account the error of the computed optical flow as a non-linear

function of the disparity. This method produces non-constrained superpixels in terms

of size and shape.

Some applications imply a constrained size superpixels, such as the methods that

track superpixels over an image sequence. Hence, our second developed superpixels

method is based on the simple local iterative clustering approach where it produces

regular size superpixels. The method uses flow and colour information to provide

superpixels that respect the scene discontinuity. More importantly, we add a new input

that allows controlling the size of the obtained superpixels locally. This is achieved

by the mean of a new distance measure that takes into account this input density.

And also we initialize the clustering with input density adapted seeds instead of the

originally regular seeds. In our application for planar fitting, we use the density of the

sparse feature points for this input to produced more balanced superpixels for better

3D structure fitting. The obtained superpixels in this case are relatively regular and

limited by size, so this method is suitable to our 3D reconstruction pipeline which

requires establishing superpixels correspondence between consecutive frames in a

sequence.

Additionally, we proposed a new procedure to evaluate superpixel segmentation for

the goal of 3D scene modelling. This procedure provides a measure that shows if a

given superpixels segmentation respects the 3D geometry of a scene, which is achieved

by the mean of computing the error introduced when converting a dense depth map

to a triangular mesh based on superpixels. This allowed to evaluate and test both

proposed methods against the existing general-purpose state-of-the-art approaches.

Sparse 3D reconstruction : To increase the density of the reconstructed point cloud

that is used to perform the planar structure fitting, we proposed a new approach that

uses a combination of several matching methods and dense optical flow. In order to
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control the impact that each reconstructed point has in the planar fitting procedure,

we proposed to learn a weight by the mean of a dataset provided with ground truth.

This did not only help to assign weights to all reconstructed points, but also to select

the best combination of feature matching methods with minimum redundancy.

Planar structure fitting : The obtained point cloud is used to fit a piecewise planar

structure, which is based on the second proposed superpixel method. For planar

parameters estimation, we developed a weighted total least squares model that uses

the reconstructed points and the learned weights to fit a planar structure with the

help of superpixel segmentation of the input image sequence. Also, the model han-

dles the occlusion boundaries between neighbouring scene patches to encourage

connectivity and co-planarity to produce more realistic models. The validity of the

proposed methods has been substantiated by comprehensive experiments by con-

sidering several criteria and a large variety of combinations. The experiments have

been carried out mainly by using KITTI dataset which compromises a large number

of realistic real-world sequences so the obtained results became steady.

Independent from our presented research, we exploited fusing depth learned from sin-

gle image together with SFM to improve the structure estimation. Based on the depth

estimation method proposed in [Saxena 2009b], we extended the Markov Random

Field model to include new potential functions related to 3D reconstructed points

using SFM technique, and also constrained by the limited planar motion of the vehicle.

The obtained results are improved with respect to the depth computed using single

image.

6.2 Contributions

A summary of the main contributions of this thesis are the following:

• 3D geometry respecting superpixel method based on a generalized boundary

probability estimation using colour and flow information. The key advantage

is a pixel-wise weighting in the fusion process takes into account the variable

uncertainty of computed dense depth using optical flow.

• Superpixels evaluation method for the goal of 3D scene representation. This
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procedure provides a measure that shows if a given superpixel segmentation

respects the 3D geometry of a scene. This allows to evaluate and compare the

the existing general-purpose state-of-the-art superpixel generation method.

• An extended simple local iterative clustering (SLIC) superpixel segmentation

method to be adaptive to the sparse feature points density for more balanced

3D structure fitting. This is achieved through a new spatio-colour-temporal

distance measure.

• Improved piecewise planar structure estimation pipeline from monocular image

sequence. The point cloud density is increased by using a combination 3D

points obtained from several feature points matching techniques including a

noisy dense optical flow. A Weighted total least squares model is proposed to

handle the uncertainty of each depth point. This uncertainty is provided by the

mean of a learned weight.

• We exploit using depth learning from single image approach together with

SFM to improve the 3D structure estimation. Based on the depth estimation

method from single image presented in [Saxena 2009b], we extend the proposed

Markov Random Field model to include new potential functions related to 3D

reconstructed points using SFM technique, and also constrained by the limited

planar motion of the vehicle. The obtained results are improved with respect to

the depth computed using single image. However, the method proposed in the

previous point provides better outputs.

6.3 Future Perspectives

Despite the numerous advances made by the research presented in this thesis towards

structure estimation and piecewise scene representation, this area of research is by no

mean finished. Further advances could be made in several directions, we list some of

them in the following.

Applications of superpixels : We proposed an efficient superpixel generation method

that respects the 3D scene structure and we introduced the application of 3D meshing.

However, superpixel nowadays are used in many other applications such as object

92



6.3. Future Perspectives

recognition, tracking, 3D modelling. The current proposed methods in these domains

use mostly the graph-based [Felzenszwalb 2004] and SLIC [Achanta 2012] superpixels.

Based on the experimental study which show that our LABUV-PW provides better

representation of the scene. Our next short term perspective is to investigate applying

it to those applications.

Depth aware superpixel size : In clustering based superpixel methods such as SLIC,

superpixels size is regular in the 2D image due to the spatial location component in

the distance measure. In this way, the size of the back projection of these superpixels

to 3D objects is a function of the distance to the camera. When the depth is available

(for instance in RGB-D images, or when the depth is computed from optical flow), the

depth component D can play the same role as the density map we used to control

the superpixels size. Our goal will be to produce more superpixels at large distance

than close distance so the scene is divided into roughly equal patches in 3D. Whereas

other methods do so but only in 2D. The benefit of such application is that it provides

a uniform planar approximation of a scene. Moreover, in the context of finding su-

perpixels correspondence among an image sequence, having this property is realistic

as objects projection size changes with depth changes. Having the size of superpixel

constrained with its depth allows providing similar semantic segmentation over the

image sequence. We consider this idea as a future perspective to explore.

Parameters setting : A possible future direction to improve the clustering based

superpixel method arises from the encountered parameters that have to be set such

as η, ξ and wl . So far these parameters are fixed based on learning or empirically set.

However, some aspects can be further exploited, such as the accuracy of the dense

optical flow which can be quantified so the weight associated can be written as a

function. Same applies to the lighting conditions of the scene, so that the weight

associated to colour information can be set. This problem emerges as another future

work perspective.

Implementation : In the planar structure estimation method, although we have ob-

tained good 3D models by processing up to 30-40 frames 1, our structure estimation

method still cannot analyse longer video sequences at once, because of several chal-

lenges in the modelling, odometery, and the implementation. Because we keep all

1Frames in KITTI dataset are captured with 1 meter intervals
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colour information included within the image sequence, the point cloud size grow up

rapidly (∼ 15 mega points). Handling larger sizes (We use MESHLAB and Point Cloud

Library (PCL)) is difficult and computationally consuming. Whereas down-sampling

or converting to mesh leads to loose some details. We plan, as future research, to

continue trying to further improve the computational complexity of the proposed

pipeline, as well as a complete C++ single run implementation.

Dataset : As we have seen, in most of our work we use the KITTI for learning/testing

the proposed approaches. Although this dataset is becoming widely popular (maybe

because it is the best so far), it has been taken in one city with quite unique theme

which repeats so often (simple houses, stationing cars on both sides, trees). This

remains not up to modern big cities, which may not be the best scenario for testing,

neither to be the best motivating application. We would like to have access to other

datasets than KITTI to further test our methods.

Planar assumption : Perhaps the most important limitation of the developed ap-

proach for the structure estimation is the poor reconstruction of the objects that

violates the planar assumption. Various future improvements could be sought. One

is to divide the scene into planar and non planar regions based on object recogni-

tion or semantic segmentation system. A similar approach has been already seen

in stereo vision such as the solution proposed in [Gallup 2010]. Non-planar objects

tends generally to have more texture (e.g. trees) so the point cloud is supposed to

be denser. These objects can be better reconstructed using surface reconstruction

techniques rather than the piecewise representation. Our proposed framework can

be extended by adding a recognition system to spot the nature of different surfaces, so

an appropriate procedure can be applied then.
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Dans cette thèse, nous avons présenté plusieurs nouvelles idées et améliorations par

rapport à l’état de l’art afin de reconstruire la structure d’une scène 3D à partir de

l’information de mouvement et d’images 2D monoculaires. Notre étude a porté sur

la modélisation d’un environnement urbain perçu par une caméra embarquée dans

un véhicule qui se déplace le long d’une route. Notre objectif a été de surmonter

certains verrous, comme l’absence de texture ou le manque de redondance entre vues

consécutives, grâce à une approche de reconstruction 3D par morceaux en surfaces

planes. L’hypothèse de planéité permet d’obtenir, à partir d’un ensemble d’un nuage

de points reconstruits épars, une estimation de la structure dense. Pour obtenir

une reconstruction complète du nuage de points 3D nous avons utilisé la technique

d’estimation de la structure par le mouvement (en anglais Structure From Motion –

SFM). Dans cette thèse, nous avons introduits plusieurs améliorations dans la chaîne

de traitements qui conduit à l’estimation de la structure d’une scène 3D à partir

d’une modélisation et d’une représentation sous la forme de surfaces planes. Les

améliorations apportées concernent les processus de traitement ci-dessous décrits.

(i) Processus de représentation d’une scène 3D par morceaux (en anglais Piece-

wise scene representation). Afin de modéliser, représenter, une scène 3D en sur-

faces planes, deux méthodes de regroupement de pixels similaires (en anglais

superpixel segmentation) ont été proposées. La première méthode est basée

sur l’estimation de la probabilité des discontinuités locales aux frontières des

régions calculées à partir du gradient (en anglais gradient-based boundary prob-

ability estimation). Elle s’appuie sur une représentation multi-échelle pondérée

qui fusionne les informations de couleur et de mouvement. L’idée d’introduire

une pondération locale par morceaux à l’information de mouvement constitue
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un avantage comparé à une pondération globale. Cela permet, non seulement

d’obtenir une solution pour réduire l’influence du bruit dû au mouvement aux

frontières des régions calculées, mais également de compenser les erreurs liés

au calcul du flot optique grâce à l’introduction d’une pondération non linéaire

fonction de la disparité. Cette méthode permet de générer des superpixels non

contraints en termes de taille et de forme. Dans certaines applications, telles

que le suivi de certains superpixels dans une séquence vidéo, il est nécessaire de

contraindre la taille des superpixels. Nous avons donc développé une seconde

méthode de segmentation en superpixels qui cette fois-ci est basée sur une

technique simple, itérative, de regroupement local qui génère des superpixels de

taille régulière. Cette méthode utilise d’une part les informations de mouvement

et de couleur afin de générer des superpixels qui respectent les discontinuités

locales, et d’autre part utilise une nouvelle mesure de densité qui prend en

compte la densité des points au sein du nuage de points 3D. Cette méthode,

basée sur le principe de l’algorithme SLIC (en anglais Simple Linear Iterative

Clustering), a comme principal atout d’intégrer l’information de mouvement à

la méthode de regroupements considérée, ce qui la différentie des aux autres

techniques de l’état de l’art.

Nous avons également proposé une nouvelle technique d’évaluation de la qual-

ité d’une segmentation en superpixels dédiée à la modélisation d’une scène 3D.

Cette technique mesure si la segmentation obtenue respecte la géométrie 3D de

la scène. Cette mesure évalue l’erreur d’estimation de la carte de profondeur

quand celle-ci est générée par maillage triangulaire dense à partir des superpix-

els. Nous avons ainsi pu évaluer la qualité des deux méthodes de segmentation

en superpixels proposées et les comparer par rapport aux autres méthodes de

l’état de l’art.

(ii) Processus de reconstruction 3D éparse (en anglais Sparse 3D reconstruction).

Afin d’augmenter la densité du nuage de points reconstruit, utilisé pour mod-

éliser la structure de la scène sous forme de surfaces planes, nous avons proposé

une nouvelle approche qui combine plusieurs méthodes d’appariement de de-

scripteurs image (e.g. SIFT and SURF) et le flot optique dense. Afin de contrôler

l’impact que peut avoir chaque point reconstruit sur le processus de modéli-

sation d’une scène 3D en surfaces planes, nous avons proposé d’estimer par
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apprentissage, le poids que l’on va associer à chaque point à reconstruire, à

partir d’une base de données pour lesquelles on connait la vérité terrain. Ceci

nous permet non seulement d’assigner un poids à chaque point à reconstru-

ire, mais également de sélectionner la meilleure combinaison de méthodes

d’appariement de descripteurs avec une redondance minimale.

(iii) Processus de modélisation de la structure d’une scène par des surfaces planes

(en anglais Planar structure fitting). L’objectif ici est d’utiliser le nuage de

points obtenu afin de modéliser par morceaux la structure d’une scène 3D

sous forme de surfaces planes, lesquelles sont calculées à partir de la seconde

méthode de segmentation en superpixels ci-avant mentionnée. Afin d’estimer

les paramètres qui caractérisent ces surfaces planes, nous avons appliqué un

processus des moindres carrés pondérés aux données reconstruites pondérées

par les poids calculés par apprentissage, qui en complément de la segmentation

par morceaux de la séquence d’images, permet une meilleure reconstruction de

la structure de la scène sous la forme de surfaces planes. Nous avons également

proposé un processus de gestion des discontinuités locales aux frontières de

régions voisines dues à des occlusions (en anglais occlusion boundaries) qui

favorise la coplanarité et la connectivité des régions connexes. L’objectif étant

d’obtenir une reconstruction 3D plus fidèle à la réalité de la scène.

L’ensemble des modèles proposés permet de générer une reconstruction 3D

dense représentative à la réalité de la scène. La pertinence des modèles proposés

a été étudiée et comparée à l’état de l’art. Plusieurs combinaisons de méthodes

d’appariement de descripteurs et plusieurs critères d’étude ont été analysés.

Plusieurs expérimentations ont été réalisées afin de démontrer, d’étayer, la

validité de notre approche. Ces expérimentations ont été menées en utilisant la

base KITTI, dont l’une des particularités est de disposer d’un grand nombre de

séquences urbaines acquises dans des conditions réelles et pour lesquelles on

dispose d’une vérité terrain.

Indépendamment des travaux de recherche ci-dessus mentionnés, nous avons égale-

ment cherché à fusionner l’information de profondeur estimée à partir d’une im-

age monoculaire avec les informations extraites par la SFM, et ce afin d’améliorer

l’estimation de la structure d’une scène 3D. Pour cela, nous avons introduit une
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nouvelle méthode d’estimation de la profondeur qui, contrairement à la méthode

proposée par Saxena en 2009, prend à la fois en compte l’information extraite par

la SFM et la contrainte selon laquelle dans l’application visée un véhicule ne peut

avoir qu’un mouvement plan. Cette méthode est basée sur l’utilisation les champs de

Markov. Les résultats expérimentaux obtenus ont permis de quantifier l’amélioration

apportée par la méthode proposée.

A la fin de chaque chapitre de cette thèse, nous avons récapitulé l’ensemble de nos

contributions, mis en perspectives, discuté, les principaux atouts de nos propositions

et éventuels inconvénients, puis dressé quelques perspectives.

Pour finir, nous proposons plusieurs pistes de recherche afin : - soit d’améliorer la per-

formance des algorithmes développés (e.g. les temps de traitement et les ressources

mémoires nécessaires); - soit d’améliorer la prise en compte de l’information de pro-

fondeur (e.g. afin de contraindre la taille d’un superpixel en fonction de sa profondeur)

; - soit d’aller plus loin dans la prise en compte, la combinaison, d’information sup-

plémentaires (e.g. afin de prendre en compte les surfaces non planes ou texturées ou

afin d’améliorer la paramètrisation des pondérations utilisées); - soit d’étendre les

méthodes proposées à d’autres domaines d’application ou d’autres bases de vidéos,

ou d’autres champs d’investigation (e.g. object recognition, tracking, 3D modelling).

98



A List of Publications

1. Nawaf, Mohamad Motasem and Trémeau, Alain . "Monocular 3D Structure Esti-

mation for Urban Scenes". Submitted to Elsevier Image and Vision Computing

(Under review since 06/2014).

2. Nawaf, Mohamad Motasem and Trémeau, Alain . "Monocular 3D Structure Esti-

mation for Urban Scenes". IEEE International Conference on Image Processing

(ICIP), 2014.

3. Nawaf, Mohamad Motasem and Md Abul, Hasnat and Sidibé, Désiré and Trémeau,

Alain . "Color and Flow Based Superpixels for 3D Geometry Respecting Mesh-

ing." IEEE Winter Conference on Applications of Computer Vision (WACV),

2014.

4. Nawaf, Mohamad Motasem, and Trémeau, Alain. "Fusion of Dense Spatial

Features and Sparse Temporal Features for Three-Dimensional Structure Esti-

mation in Urban Scenes." IET Computer Vision 7.5 : 302-310, 2013.

5. Nawaf, Mohamad Motasem, and Trémeau, Alain. "Joint Spatio-Temporal Depth

Features Fusion Framework for 3D Structure Estimation in Urban Environ-

ment." European Conference on Computer Vision (ECCV) 2012. Workshops

and Demonstrations. 526-535. 2012.

99





B Spatio-Temporal Depth Fusion for

Monocular 3D Reconstruction

Contents

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2 Spatio-Temporal Depth Fusion Framework . . . . . . . . . . . . . . . 104

B.2.1 Image Representation . . . . . . . . . . . . . . . . . . . . . . 104

B.2.2 Spatial Depth Features . . . . . . . . . . . . . . . . . . . . . . 105

B.2.3 Temporal Depth Features . . . . . . . . . . . . . . . . . . . . 106

B.2.4 Occlusion Boundaries Estimation . . . . . . . . . . . . . . . 108

B.2.5 Markov Random Field for Depth Fusion . . . . . . . . . . . 109

B.2.6 Parameters Learning and Inference . . . . . . . . . . . . . . 113

B.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 117

In this chapter we present a novel approach to improve 3D structure estimation from

an image stream in urban scenes. The work presented here is independent from

what we have already presented in other chapters. However, this work, which is

complementary to the research presented in this thesis, was proposed earlier and

published in [Nawaf 2012, Nawaf 2013]. Here, we also consider the particular setup

where the camera is installed on a forward moving vehicle. Our idea is to introduce

the monocular depth cues that exist in a single image, and add time constraints to

improve the 3D structure estimation with respect to structure from motion traditional

techniques. As in our previous work, the scene is also modelled as a set of small planar
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m(x,y)

M(X,Y,Z)

Figure B.1: Acquiring geometry: Camera installed on a moving vehicle with Z axis
coincides with forward motion direction.

patches obtained using over-segmentation, and the goal is to estimate the 3D position-

ing of these planes. We propose a fusion scheme that employs Markov Random Field

(MRF) model to integrate spatial and temporal depth features. Depth from spatial fea-

tures is obtained by learning a set of global and local image features. Temporal depth

is obtained via sparse optical flow based structure from motion approach. That allows

decreasing the estimation ambiguity by forcing some constraints on camera motion.

The proposed MRF model is then solved using convex optimization techniques. The

experiments show that the joint spatio-temporal method overcomes the performance

of the depth estimation from single image. Also, it provides a dense depth estimation

which is an advantage over SFM.

B.1 Introduction

Estimating the 3D structure of a scene from 2D image stream is one of the most

popular problems within computer vision. It is referred to as structure from motion

(SFM). SFM has been applied in several applications [Aanæs 2003] such as robot

navigation, obstacle avoidance, entertainments, driver assistance, reverse engineering

and modelling, etc.

In this work, we focus on the problem of estimating the 3D structure from a video

taken by a camera installed on a moving vehicle in urban environments. This setup

leads possibly to create 3D maps of our world. However, the dominant forward motion

of the camera from one side, and the texture-less scenes that are present generally

in urban environment produce an erroneous depth recovery. The forward camera

motion could result degenerated configurations for a naturally ill-posed problem,
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or mathematically, a large number of local minima during the minimization of the

re-projection error [Vedaldi 2007]. That results in inaccurate camera relative motion

estimation. Moreover, the limited lifetime of tracked feature points prevents using

general optimization methods such as in traditional SFM. Additionally, forward mo-

tion restricts features matching due to non-homogeneous scale changes of image

objects, especially those aligned parallel to camera movement.

Here, we suggest to benefit from the monocular cues (e.g. spatial depth information)

to improve depth estimation. We believe that such spatial depth information is

complementary to temporal information. For instance, given a blue patch located at

the top of an image, a SFM technique will probably fail to compute the depth due to

the difficult matching problem from one side, and being in the blind zone of the vision

system in the other side, while the monocular depth estimation method (supervised

learning) will assign it the largest defined depth value as it will be considered as a sky

with high probability.

Similar to other works [Saxena 2009b, Liu 2010], we consider that the urban world is

made up of small planar patches, and the relationship between each two patches is

either connected, planar or occluded. Based upon these considerations, the goal is

to estimate the plane parameters where each patch lies. These patches are obtained

from the image using over-segmentation method [Felzenszwalb 2004] or what is

called superpixels segmentation. In order to fuse both temporal and monocular depth

information, and also to handle the interactive relationship between superpixels, we

propose to use a MRF model similar to the one used in [Saxena 2009b]. However,

we extend the model by adding new terms to include temporal depth information

computed using a modified SFM technique. Moreover we benefit from the limited

Degrees of Freedom (DoF) of camera motion (which is such of the vehicle) to improve

relative motion estimation, and in return, the depth estimation.

Spatial depth information is obtained using an improved version of the method

proposed in [Saxena 2009b], which estimates the depth from a single image. The

method employs a MRF model that is composed of two terms; one integrates a broad

set of local and global features, while the other handles the neighbouring relationship

between superpixels based on occlusion boundaries. In our method, we compute

occlusion boundaries from motion [Humayun 2011] to obtain more reliable results
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than using a single image as in the aforementioned method. Therefore, it is expected

to have better reconstruction, even before integrating the temporal depth information.

To perform SFM, which represents temporal depth information, we use optical flow

based technique that allows forcing some constraints on camera motion (which has

limited DoF). Moreover, it is proved to have better depth estimation for small baseline

distances and forward camera motion [Forsyth 2002]. Here, we compute a sparse

optical flow using an improved method of Lucas-Kanade with multi-resolution and

sub-pixel accuracy. Based on the famous optical flow equation [Ma 2004], we obtain

the depth for a set of points in the image. Hence we can add some constraints on the

position of scene patches to whom these points belong.

The remaining of this chapter is organized as follows. In Section B.2, we introduce the

MRF model that integrates SFM with the monocular depth estimation, and we explain

its potential functions, parameters learning and inference. Section B.3 presents our

experiments and the results of evaluating our method. And finally, in Section B.4 we

conclude our work and we discuss the advantages of the proposed method.

B.2 Spatio-Temporal Depth Fusion Framework

In this section, we first introduce some notations. Then we explain how we compute

spatial and temporal depth features. After that, we discuss how to estimate occlusion

boundaries, which play an important role in the proposed model. Next, we introduce

the proposed framework as an MRF model that incorporates several terms related to

spatial and temporal depth features. Finally we show how we estimate the parameters

from a given dataset and perform the inference for a new input.

B.2.1 Image Representation

As mentioned earlier, we assume that the urban world is composed of planar patches,

and the obtained superpixels are their one-to-many 2D projection. This assumption

represents a good estimate if the number of computed superpixels is large enough.

We obtain the superpixels from an image by using the over-segmentation algorithm

[Felzenszwalb 2004], which is based on graph-cuts. The pixels are represented as
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nodes and the edges are computed as the similarity between nodes. Then, superpixels

are obtained by applying the minimum spanning tree algorithm. At this step, there

are two parameters that controls the superpixel formation, which have to be defined.

First, the standard deviation σ of a preprocessing smoothing Gaussian. Although this

parameter aims at de-noising the image, it also prevents forming small superpixels

caused by sharp patterns or noise. Therefore, it is preferable to set this variable to large

values here for more efficient learning and also to have a larger number of overlaid

SFM points. In our experiments we set σ= 1.6. The other parameter k controls the

size of the formed superpixels. So it controls (approximately) the number of obtained

superpixels. Due to the limited laser data resolution available as a ground truth for

spatial depth learning (which is 55×305 in Make3D dataset [Saxena 2007]), the number

of superpixels has to be limited so that there is enough depth information available

to each superpixel, so it depends on image resolution. Here, we use k = 1000 for

Make3D dataset, k = 1500 for our own acquired dataset and k = 700 for KITTI dataset

[Geiger 2012].

Formally, we represent the image as a set of superpixels St = {S t
1,S t

2, ...,S t
n}, where

S t
i defines superpixel i at time (frame) t . We define αt

i ∈ R3 the plane parameters

associated to S t
i such that for a given point x ∈R3 on the plane satisfies αt

i x = 1. Our

aim is to find the plane parameters for all superpixels in the image stream. Figure B.3b

shows an example of an original image and the corresponding superpixels.

B.2.2 Spatial Depth Features

Spatial features for supervised depth estimation have not achieved much success

compared to other computer vision domains such as object recognition and classifi-

cation. Although the problem of monocular vision had been well studied in human

vision (even before computers appear) and many monocular depth cues that hu-

man uses have been identified, however, it was not possible to obtain explicit depth

representative measurements such as in stereo vision. Recently, there were several

attempts to infer image 3D structure using spatial features and supervised learning

[Saxena 2009b, Liu 2010, Sturgess 2009]. In our method, we proceed in similar way, in

order to capture texture information, the input image is filtered with a set of texture

energies and gradient detectors (∼ 20 filters) [Saxena 2009a]. Then by using superpixel
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T

Figure B.2: Illustration for how to compute the error in depth between the estimated
value and the depth for a given αi .

segmentation image as a mask, we compute the filter response for each superpixel by

summing its pixels in the filtered image. We refer the reader to [Saxena 2009a] for more

details. In order to capture general information, the aforementioned step is repeated

for multiple scales of the image. Also, to add contextual information, e.g. texture

variations, each superpixel feature vector includes the features of its neighbouring

superpixels. Additionally, the formed feature vector includes colour, location, and

shape features as they provide representative depth source for fixed camera configura-

tion and urban environment. For instance, recognizing the sky and the ground. These

features are computed as shown in table 1 in [Hoiem 2005]. We denote Xt
i the feature

vector for superpixel S t
i .

B.2.3 Temporal Depth Features

In this subsection, we first describe some mathematical foundations and camera

model. Then we explain how to perform sparse depth estimation which will be

integrated in the probabilistic model given in subsection B.2.5.

We use a monocular camera mounted on a moving vehicle. We assume that the Z axis

of the camera coincides with the forward motion of the vehicle as shown in Figure B.1.

Based on pin-hole camera model and camera coordinate system, a given 3D point

M(X ,Y , Z ) is projected onto the 2D image as m(x, y) by a perspective projection:

[
x

y

]
= f

Z

[
X

Y

]
(B.1)
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When the vehicle moves, which is also equivalent to fixed camera and moving world,

the relationship between the velocity of a 3D point [Ẋ Ẏ Ż ]T and the velocity of its 2D

projection [ẋ ẏ]T is given as the time derivative of equation B.1. Then, based on the

well-known optical flow equation

Ṁ =−T−Ω×M (B.2)

and assuming a rigid scene, the 3D velocity is decomposed into translational T and

rotationalΩ velocities [Ma 2004]. Hence we obtain equation B.3 which is the essence

of most optical flow based SFM methods.

[
ẋ

ẏ

]
= 1

Z

[
− f 0 x

0 − f y

]
.


Tx

Ty

Tz

+
[

x y/ f − f − (x2/ f ) −y

f + (y2/ f ) −x y/ f x

]
Ωx

Ωy

Ωz

 (B.3)

Based on this equation, we proceed in computing a sparse depth. We estimate the

relative camera motion between two adjacent frames by first performing SIFT feature

points matching [Lowe 2004]. Next we estimate the fundamental matrix using RANSAC

[Raguram 2008]. Then, given camera intrinsic parameters, we can obtain the Essential

matrix that encodes the rotation and translation (which is up to scale) between the

two scenes. This represents also the relative camera motion parameters [TΩ]. To

reveal the scale ambiguity we employ the re-projection based method proposed in

[Esteban 2010]. We track feature points over frames, then by using a shifting 3 frames

window we compute a frame to frame translation scale by projecting the trackable

points on a reference frame after introducing a scale factor between two frames. The

scale factor is then computed by minimizing a least square set of equations using

Singular Value Decomposition (SVD). Hence we compute a correct frame to frame

scale for the sequence of images. However, having first frame scale set to [I|0], we

have an overall unknown scale. In our case, given that we are dealing with fixed

configuration we could set this scale using metric measures.

The left hand side of equation B.3 is basically the optical flow computed between two

frames. In our implementation it is obtained using the well-known Lucas-Kanade with

multi resolution and sub-pixel accuracy. Moreover, we benefit from the estimated

Fundamental matrix to reject outliers in the optical flow. At this point, we could
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compute an approximate depth for the selected feature points. Specifically, we set a

threshold for the difference between x and y disparities. In case of large difference

(which means the pixel is close to image axes but far from the centre) we compute the

depth using only the larger component. We think this is an advantage over traditional

3D triangulation method where both x and y are treated equally. However, this ad-

ditional step is applied only when we spot dominant forward motion, in which our

assumption is only true.

Besides, given the specific camera setup as shown in Figure B.1, the motion of the

camera is not totally free in the 3D space (motion of a vehicle). Therefore, we could

add some constraints that express the feasible relative camera motion between two

frames. For instance, limitation in Ty andΩz velocities. However, due to the absence

of essential physical quantities, precise constraints on camera (or vehicle) motion

could not be established theoretically. Instead, we evaluate experimentally possible

camera motion estimated from a set of video sequences acquired in different scenar-

ios. As a result, we can establish some roles to spot outliers in the newly computed

values for relative camera motion [TΩ]. This way we improve the relative camera

motion estimation in our case as we regularly have degenerated configurations (due

to small baseline variations and dominant forward motion as mentioned earlier).

B.2.4 Occlusion Boundaries Estimation

When the camera translates, close objects move faster than far objects, and hence

this causes to change the visibility of some objects in the scene. Although this phe-

nomenon is considered as a problem in computer vision, it provides an important

source of information about 3D scene structure. In our approach, we benefit from mo-

tion to infer occlusion boundaries. We use the method proposed in [Humayun 2011]

to generate a soft occlusion boundary map from two consecutive image frames. The

method is based on supervised training of an occlusion detector thanks to a set of

visual features selected by a Random Forest (RF) based model. Since occlusion bound-

aries lie close to surfaces edges, we use the classifier output as an indicator to the

relationship between two superpixels if they are connected or occluded. Hence we

add a penalty term in our MRF that forces the connectivity between superpixels. This

term is inversely-proportional to the obtained occlusion indicator. Figure B.3c shows
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(a) (b)

(c) (d)

Figure B.3: (a) Original image. (b) Superpixels segmentation. (c) Occlusion surfaces.
(d) Estimated occlusion boundary map (colour coded from green (strong boundary)
to red (weak boundary)).

occlusion surfaces where pixels follow common motion, while Figure B.3d shows the

estimated occlusion boundary map.

B.2.5 Markov Random Field for Depth Fusion

Markov Random Field (MRF) is becoming increasingly popular for modelling 3D

world structure due to its flexibility in terms of adding appearance constraints and

contextual information. In our problem, we formulate the depth fusion as an MRF

model that incorporates certain constraints with variable weights so that they are

jointly respected. Furthermore, we preserve the convexity of our problem such as in

[Saxena 2009b] to allow solving it through a linear program rather than probabilistic

approaches for less computational time.

We have seen earlier how to obtain temporal depth information, monocular depth

features and occlusion boundaries. Figure B.4 shows a simplified process flow for the

proposed framework. This flow is implemented within one MRF model, which we
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Figure B.4: Graphical representation of our MRF; for a given input of image sequence,
occlusion boundaries and sparse SFM are estimated from two frames t and t+1, while
monocular depth features are extracted from the current frame t , the MRF model
integrate this information in order to produce a joint result of 3D structure estimation

formulate to includes all of aforementioned information as:

E(αt |Xt,O,D̂,αt−1;θ) = ∑
i
ψi (αt

i )︸ ︷︷ ︸
spatial depth

term

+∑
i j
ψi j (αt

i ,αt
j )︸ ︷︷ ︸

connectivity

term

+∑
i k
φi k (αt

i , d̂ i
k )︸ ︷︷ ︸

temporal

depth term

+∑
i
φi (αt

i ,αt−1
i )︸ ︷︷ ︸

time

consistency

term
(B.4)

where the superscripts t and t −1 refer to current and previous frames. X is the set of

superpixels feature vectors. O is a map of occlusion boundaries computed from the

frames t and t −1. The estimated sparse depth is D̂, while d̂ i
k is the estimated depth

value for pixel k in superpixel i . αi is superpixel i plane’s parameters and α is the set

of parameters for all superpixels. θ are the learned monocular depth parameters. We

now proceed to describe each term in this model (In the first three terms we will drop

down the superscript of frame indicator t for simplicity as they are in the same frame).

Spatial Depth Term

This term is responsible for penalizing the difference between the computed plane

parameters and the ones estimated from spatial depth features (based on the learned

parameters θ). It is given by the accumulated error for all pixels in the superpixel. See
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[Saxena 2009a] P36-37 for details. For simplification, let’s define a function δ(d i
k , d̂ i

k )

that represents one point fractional depth error between an estimated value d̂ i
j and

actual value d i
j given plane parameters αi . This potential function is given as

ψi (αi ) =β1
∑

j
νi

kδ(d i
k , d̂ i

k ) (B.5)

where νi
k is a learned parameter that indicates the reliability of a feature vector Xi

k in

estimating the depth for a given point p i
k , see [Saxena 2009b] for more details. β1 is a

weighting constant.

Connectivity Prior

This term is based on the map of occlusion boundaries O explained earlier. For each

two adjacent superpixels, we compute an occlusion boundary indicator by summing

up all pixels located at the common border in the estimated map. The obtained

occlusion indicators are normalized so that they are in the range [0..1]. We refer oi j

to the indicator between superpixels i and j . The potential function is computed for

each two neighbouring superpixels by choosing two adjacent pixels from each. The

function penalizes the difference in distance between each of them to the camera. We

have

ψi j (αi ,α j ) =β2 oi j

2∑
k=l=1

δ(d i
k ,d j

l ) (B.6)

where β2 is a weighting constant. This potential function forces neighbouring su-

perpixels to be connected only if they are not occluded with the help of occlusion

indicator oi j . In comparison with the original method [Saxena 2009b], we drop down

the co-planarity constraint as we believe that the included temporal information and

estimating occlusion boundaries indicator for motion provide an important source

of depth information about plane orientation. Therefore, we do not mislead the

estimation procedure with such approximation.

Temporal Depth Term

This term enforces some constraints that are established from the set of points where

the depth is known. It is evident that with three non-collinear points we can obtain
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(a) (b)

(c) (d)

Figure B.5: (a) Depth estimation from single image. (b) Depth estimation using SFM
technique. (c) The estimated depth using the combined method. (d) The triangula-
tions associated with the depth estimation shown in (c).

plane parameters αi . However, to consider less or more number of points, we formu-

late this potential function to penalize the error between the estimated depth d̂ i
k for a

point p i
k ∈ Si , and the computed depth given plane parameters αi . Figure B.2 shows

how this error is computed. Hence we have

φi k (αi , d̂ i
k ) =β3|d̂ i

k −1/αi
>r i

k | (B.7)

where r i
k is a unit vector that points from camera centre to the point p i

k . And β3 is

a weighting constant. We compute absolute depth error rather than fractional error

since SFM is more confident than spatial depth estimation.

Time Consistency Term

In case of more than two frames, the quality of the 3D structure estimation varies

from one frame to another, and it depends highly on the relative camera motion

components (larger Tx and Ty translational motions results in better 3D structure
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estimation). Therefore we add some penalty in order to guide depth estimation at

time t given the estimation at time t −1. This smooths the overall estimated structure

variations in time. Hence, for each superpixel S t−1
i we find its correspondence S t

i

based on the motion parameters and the size of common area. Additionally, we

consider some visual features such as colour and texture. Eventually some superpixels

will not have correspondence due to changing the field of view. We select the point p i
k

at the centre of the S t−1
i and we form a ray from camera centre to this point. This ray

intersects with superpixel S t
i at point p i

k
′
. The formulated potential function penalizes

the distance across the ray between the two points

φi (αt
i ,αt−1

i ) =β4δ(d i
k
′
, d̂ i

k ) (B.8)

here β4 is a smoothness term. We intend to only use one point to leave some freedom

in plane orientation and for better 3D reconstruction refinement.

B.2.6 Parameters Learning and Inference

In our MRF formulation we preserve the convexity as all terms are linear or L1 norm,

which is solved using linear programming. To learn the parameters, we first proceed

with the first two terms of equation B.4. We assume unity value for the parameters

β1 and β2. The two parameters θ and ν are learned individually [Saxena 2009a] using

the Make3D dataset wich comes with ground-truth. For the rest of the parameters, β1

and β2 defines how the method is spatially oriented, while large β3 turns the method

into conventional SFM. β4 allows previous estimation to influence the current one.

Hence the weighting constants β1..4 depends on the context, although they could be

learned through cross-validation.

B.3 Experiments and Results

It exists few datasets and benchmarks to evaluate 3D reconstruction methods from

image sequences [Meister 2012, Geiger 2012, Pandey 2011]. In our experimental

evaluation, we use the “KITTI vision benchmark suite” [Geiger 2012] which comprises
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Error ratio STD

SIE/SFM 1.82 0.43
SFM/Combined 2.24 0.21
SIE/Combined 2.81 0.38

Table B.1: Experimental results of spatial (SIE), temporal (SFM) and combined meth-
ods

various sets of image sequences taken from a moving vehicle as in the assumed setup1.

This is mainly due to its higher image and laser scanner resolution. Also, it has more

diverse scenes taken in many scenarios.

As our aim is mainly to evaluate the proposed fusion scheme, we perform a 3D recon-

struction on the given dataset using the three methods; 3D structure estimation from

single image (SIE), the optical flow based structure from motion (SFM) explained in

section B.2.3, and finally the proposed combined method. Thanks to the provided

laser scanner data we could compute the error for each case as direct differences

between the estimation and the ground truth. To be turned into representative mea-

sures, we computed the ratio between the error for each of the two baseline and the

combined methods, here we convert the sparse SFM to dense by using weighted

average to compute the depth for an intermediate point (unlike the results shown in

Table B.2 where we consider sparse SFM). Table B.1 shows the error ratios between

these methods averaged over the used image sequences, this way we can evaluate the

performance of the combined method with respect to spatial or temporal component.

The table also shows the standard deviation associated with each ratio which gives

an idea about the stability of the results for different scenarios. From these results we

could conclude that both spatial and temporal depth estimations are partially com-

plementary as the combined method has better performance than each individual

method. Figure B.5 shows an example of the results obtained using each method, the

triangulations shown in B.5d helps to compute dense depth estimation.

From another side, we evaluate the error distribution for each of the three methods as

a function of depth. Table B.2 shows the relative error | d̂
d −1| between the estimated

1Raw data section, sequences # 0001-0013, 0048, 0056, 0059, 0091-0106

114



B.3. Experiments and Results

depth d̂ and the laser scanner2 measure d . In case of dense depth we only compute

the error for the points where laser scanner data is available. While in case of sparse

depth, we look for the nearest neighbouring point within small distance, if no such

point exists, the estimated point is not considered in the computation. The second

column in Table B.2 is for the results of SFM points, while the third column is only for

the points used to compute the fundamental matrix (FM) (100-150 points in average).

As expected, the sparse SFM points tend to be more accurate for close distances, while

the large error for distances larger than 50(m) ensures the fact that SFM is blind for

large distances. The depth estimation from single image shows similar depth error for

all depth ranges. While the combined method gains an improvement over SIE over

all ranges. Another remark that we notice here is the improvement in the combined

method with the large depth range with respect to SFM (sparse case) which is ∼ 12%.

In total, although the error in SFM is slightly smaller than the combined method, as a

return the combined method provides a dense depth estimation.

Depth range (meters) 0-10 10-20 20-30 30-40 40-50 50-80 All

E
rr

o
r

%

SIE (dense) 23.52 29.05 29.44 23.21 22.02 24.74 26.41
SFM (sparse) 11.82 9.06 14.92 18.81 23.69 40.69 16.65
SFM (sparse, FM) 5.10 4.82 8.64 8.87 13.48 30.15 9.14
Combined (dense) 14.94 16.86 17.88 22.22 21.97 28.37 18.65

Table B.2: Relative error distribution as a function of depth.

We found it interesting to study the effect of the number of matching points in SFM on

the final relative error of the combined method. Figure B.6 shows the results obtained

for 180 matching frames. Each couple of matching frames is associated with one

point that relates the number of matching points (a) or the number of inliers used

to compute the Fundamental matrix using RANSAC (b) against the relative error in

the combined method. It is clear that in both figures there is an improvement in the

results when we have more matching points since being more reliable depth source.

We also evaluate the robustness of the trajectory estimation and compare its accuracy

to the ground truth that is provided by an Inertial Navigation System (GPS/IMU).

Figure B.7 shows two examples (sequences 0009 and 0095) of the computed trajec-

tory and the provided ground truth superimposed onto a Google Earth maps. The

2We set the maximum distance to 80 meters which is the limit of the used LIDAR
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Figure B.6: Estimated depth relative error | d̂
d −1| versus (left) Number of matching fea-

ture points (frame to frame) (right) Number of inliers feature points used to compute
the Fundamental matrix using RANSAC.
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Figure B.7: Estimated trajectory (dashed red) and ground truth (blue) obtained from
Inertial Navigation System (GPS/IMU) superimposed onto a Google Earth image of
KITTI dataset sequences 0009 (left) and 0095 (right)

estimated trajectories gave an average translation error of 6.8% and rotation error

0.0187 [deg \m]. Compared to non-constrained trajectory estimation we had an over-

all average improvement of translation error by 0.9% and rotation error by 3%. As

expected, this improvement mainly applies to y direction (vertical), while it is equal

for rotations.

Our implementation requires 85 seconds to perform the 3D estimation for 3 frames

on a multi-core Linux PC (Intel I7, 8 GB Ram). Most of this time is allocated for the

intensive spatial features extraction, while the feature points extraction and matching

runs in parallel. For longer sequences the time increases linearly since our method

performs local refinement.
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B.4 Discussion and Conclusion

We have presented a novel framework to perform 3D structure estimation from an

image sequence, which combines both spatial and temporal depth information to

provide more reliable reconstruction. Temporal depth features are obtained using a

sparse optical flow based structure from motion technique. The spatial depth features

are obtained through a broad global and local feature extraction phase that tries to

capture monocular depth cues. Both depth features are fused by the mean of an MRF

model to be solved jointly. The experiments show that the joint method overcomes

the performance of the estimation from single image. Also, it provides a dense depth

estimation which is an advantage over SFM. By analysing the depth estimation rela-

tive error with respect to depth range we conclude that both used depth features are

complementary to each other. Monocular depth features are independent from depth

range, and SFM is blind for large distances. We also conclude that the joint method

provides better performance than computing dense depth map using sparse SFM

without taking colour consistency into account.

Although it is not our primary objective, trajectory estimation proved to be robust

and accurate after introducing the constraints which are adapted to vehicle motion.

Based on the results published in KITTI visual odometry benchmark [Geiger 2012],

the proposed framework provides odometry estimation that is close to stereo based

visual odometry methods.

The main limitation of the proposed approach is due to the possible failure of the

monocular depth features. We encountered poor performance in estimating the depth

in some cases such as: uncommon shape/colour/texture, lightning conditions, which

affects the overall performance. This is the main reason that we went in a different

direction by proposing the method in Chapter 5 which is more robust, reliable and

provides better outputs, moreover, easier to solve. However, the domain of depth

estimation is still promising and new methods are being proposed to improve the

current state-of-the-art. We think that to have better results for depth estimation from

single images, is to go from general to specific, i.e. some geometrical constraints have

to be made on the scene to benefit from the prior we have about urban environment.
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To summarize, the major contribution that we proposed in this chapter is we improve

3D structure estimation by fusing SFM sparse output with monocular depth estima-

tion learned from single image, so we obtain a dense 3D estimation. We extend the

Markov Random Field model proposed in [Saxena 2009b] by integrating two potential

functions that includes sparse SFM output. Moreover, the model is adapted to a

looking forward camera installed on a mobile vehicle. We use the fixed configuration

to estimate more accurate visual odometery.

Note that this chapter is based on the published articles [Nawaf 2012, Nawaf 2013]
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