
HAL Id: tel-01513391
https://theses.hal.science/tel-01513391

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Stream Analysis and its Application to Big
Data Processing

Nicolò Rivetti

To cite this version:
Nicolò Rivetti. Efficient Stream Analysis and its Application to Big Data Processing. Distributed,
Parallel, and Cluster Computing [cs.DC]. Université de Nantes; Sapienza Università di Roma (Italie),
2016. English. �NNT : �. �tel-01513391�

https://theses.hal.science/tel-01513391
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Nicoló RIVETTI
DI VAL CERVOMémoire présenté en vue de l’obtention du

grade de Docteur de l’Université de Nantes
Docteur de Sapienza University of Rome

sous le sceau de l’Université Bretagne Loire

École doctorale : Sciences et technologies de l’information, et mathématiques

Discipline : Informatique et applications, section CNU 27
Unité de recherche : Laboratoire d’informatique de Nantes-Atlantique (LINA)

Date de soutenance 30 septembre 2016

Efficient Stream Analysis and its Application to
Big Data Processing

JURY

Président : M. Roberto BALDONI, Professor, Sapienza University of Rome, Italy

Rapporteurs : M. Graham CORMODE, Professor, University of Warwick, United Kingdom
M. Maarten VAN STEEN, Professor, University of Twente, Netherlands

Examinateurs : M. Sofian MAABOUT, Maître de Conférences, Université de Bordeaux 1, France
Mme Clémence MAGNIEN, Directrice de Recherche, CNRS, Paris, France

Invité : M. Peter PIETZUCH, Associate Professor, Imperial College, London, United Kingdom

Directeurs de thèse : M. Achour MOSTÉFAOUI, Professeur, Université de Nantes, France
M. Leonardo QUERZONI, Assistant Professor, Sapienza University of Rome, Italy

Co-encadrant de thèse : M. Yann BUSNEL, Maître de Conférences, Crest / Ensai - Inria, Rennes, France

Contents

Contents 3

1 Introduction 5

2 Data Streaming 11

2.1 System Models . 12

2.1.1 Data Streaming Model . 12

2.1.2 Sliding Window Model . 12

2.1.3 Distributed Streaming Model and Functional Monitoring 13

2.1.4 Adversarial Model . 14

2.2 Building Blocks . 14

2.2.1 Sampling . 14

2.2.2 Approximation and Randomization 14

2.2.3 Random Projections and Sketches 15

2.2.4 Universal and Independent Hash Functions 15

3 Frequency Estimation 17

3.1 Related Work . 17

3.2 Frequency Estimation in the Sliding Window Model 19

3.2.1 Perfect Windowed Count-Min Algorithm 19

3.2.2 Simple Windowed Count-Min Algorithm 20

3.2.3 Proportional Windowed Count-Min Algorithm 21

3.2.4 Splitter Windowed Count-Min Algorithm 22

3.2.5 Distributed Windowed Count-Min Algorithm 26

3.2.6 Time-based windows . 27

3.3 Item Values Estimating . 27

3.3.1 Value Estimator Algorithm . 27

3.3.2 Theoretical Analysis . 29

4 Heavy Hitters 33

4.1 Related Work . 34

4.2 Space Saving Mean Case . 36

4.3 Distributed Heavy Hitters . 37

4.3.1 Distributed Heavy Hitters Estimator Algorithm 38

4.3.2 Theoretical Analysis . 40

4.4 Balanced Partitioning . 45

4.4.1 Balanced Partitioner Algorithm . 46

4.4.2 Theoretical Analysis . 49

3

4 CONTENTS

5 Network Monitoring 53
5.1 DDoS Detection . 53

5.1.1 Experimental Evaluation . 54
5.2 Estimating the frequency of IP addresses 59

5.2.1 Experimental Evaluation . 59

6 Optimizations in Stream Processing Systems 69
6.1 Related Work . 70
6.2 System Model . 72

7 Load Balancing Parallelized Operators in Stream Processing Systems 75
7.1 Load Balancing Stateful Parallelized Operators 75

7.1.1 Distribution-aware Key Grouping Algorithm 76
7.1.2 Experimental Evaluation . 77

7.2 Load Balancing Stateless Parallelized Operators 88
7.2.1 Online Shu�e Grouping Scheduler Algorithm 89
7.2.2 Theoretical Analysis . 93
7.2.3 Experimental Evaluation . 94

7.3 Parallelized load balancers . 104

8 Load Shedding in Stream Processing Systems 107
8.1 Load-Aware Load Shedding Algorithm . 108
8.2 Theoretical Analysis . 112
8.3 Experimental Evaluation . 113

9 Conclusion 125
9.1 Summary . 125
9.2 Perspectives . 127

References 129

List of Notations 137

List of Figures, Listings and Tables 141

List of Theorems and Problems 143

Chapter 1

Introduction

In 1968, 140 IT companies where solicited to build the ARPANET network. Most of
them regarded the project as outlandish and only 12 bid, while today there are 3.4
billions Internet users. The advent of Internet in the 90s, the commercial outbreak of
cloud computing in the 2000s and the growing use of connected mobile devices since 2009
pushed the telecommunication and IT world into a new stage of interconnectivity. This
phenomenon have given birth to new concepts, such as the Internet of Things (IoT) [14].

This bursting expansion also a�ected the available data, which has attained in 2009
the bewildering amount of roughly 50 petabytes, mostly user created. The trend has
not stopped since, the global internet population has increased from 2.1 billions in 2012
to 3.4 billions in 2016 [37]. For instance, each minute these users do [37] millions of
forecast requests on The Weather Channel [90] or millions of likes on Instagram, as well
as stream and upload thousands of hours of video through services such as Net�ix [74]
or YouTube [48]. This tendency is bound to grow with time, 90% of the worldwide data
has been created in the last 2 years and it is estimated that in 2018 we will generate 50
terabytes of data per second [92].

Researchers and practitioners understood that the massive amount of available data
entailed new opportunities as well as challenges. In particular, common data management
techniques where not tailored to match this features and, soon enough, the term Big
Data emerged to capture all of these characteristics. Big Data is (at minima) de�ned by
three Vs: large Volumes with high Variety and generated with extreme Velocity. This
required an evolution of several research �elds (e.g., networks, distributed systems and
databases) to accommodate these changes and develop new technologies, such as 5G,
self-* automation, fog computing and NOSql. On the other hand, it also prompted for
means to �lter out the noise, as well as to better analyse and extract relevant information
(e.g., machine learning, data mining, etc.).

Initially, the focus was on volume, i.e., on batch processing. In 2004, Dean and
Ghemawat [35] proposed to apply the map-reduce paradigm to batch processing, sprin-
ging the design of many frameworks (e.g., Hadoop [87]) and languages (e.g., Pig [88]).
These solutions provided, at least initially, a satisfactory answer to the need of processing
large, non-volatile, amount of data. At the same time, the huge diversity in the sources
producing data had increased the need for data integration techniques, such as schema
matching or entities resolution. It also boosted the interest in frameworks to better spe-
cify and share the information, such as the semantic web, as well as techniques to handle
uncertain information.

5

6 CHAPTER 1. INTRODUCTION

While the two mentioned aspects are still paramount, in this thesis we focus on the
third canonical dimension of Big Data: velocity. It is commonly acknowledged that
the results achieved through the new batch processing and data analysis techniques are
startling. However most data, and its analysis, has an intrinsic value that decreases over
time. In other words, it is critical to move from o�-line to on-line analysis. Only recently
researchers and practitioners started to address this concern.

The streaming approach has at its core that the whole dataset must not/cannot be
stored, taking into account that most likely the available memory is not enough. This
means that all data is modelled as a sequence of data items, i.e., a potentially in�nite
stream of tuples. Notice that most of the currently generated data (e.g., RFID tracking,
sensors readings, network tra�c, news feeds, etc.) does �t this model. In addition, also
datasets that may be processed through batch processing can be modelled as streams.
Nowadays stream analysis is used in, but not restricted to, many context where the
amount of data and/or the rate at which it is generated rules out other approaches (e.g.,
batch processing). As such we have seen the rebound of established computer science
�elds that entailed such requirements (e.g., data streaming) as well the rise of new �elds
(e.g., stream processing).

The data streaming model [72] provides randomized and/or approximated solutions
to compute speci�c functions over (distributed) stream(s) of items in worst case scenarios
(i.e., considering rather strong adversaries tampering with the streams), while striving
for small (i.e., sub-linear) resources usage (memory, cpu, network, etc.). The community
has also proposed many extensions to the data streaming model, capturing more general
scenarios. Among others, there are four classical and basic problems that have been
studied for decades in this �eld: basic counting [34], estimating the size of the stream
universe [16], the frequency estimation problem [27,30] and the (distributed) heavy hitters
problem [27,30]. Notice that these simple statistical aggregates enable many other (more
complex) analysis. As such, these algorithms have a large �eld of application, spanning
from databases to networks, that are closely related to Big Data.

The aim of this thesis is to design novel algorithms in the data streaming model, or
extend current solutions, to solve practical issues in Big Data applications. Considering
our target, we identi�ed some limitations that we wanted to address in two of the afore-
mentioned problems: the frequency estimation problem, i.e., providing an estimation of
the number of occurrences for each distinct data item in the stream, and the distributed
heavy hitters problem, i.e., detecting the items which frequencies are larger than a given
threshold.

Considering the former, in general previous solutions take into account the whole
stream (i.e., from inception). However in most application there is much more interest
on the recent past (e.g., last 24 hours). This requirement is captured by the sliding
window model [34] and we propose algorithms designed in such model improving with
respect to the state of the art. We also de�ne and provide a solution to the item value
estimation problem, i.e., a generalization of frequency estimation problem.

Current solutions for the distributed variant of the heavy hitters problem rely on
strong assumptions [66, 93, 96, 97]. In this thesis we design a novel algorithm solving
the distributed heavy hitters problem and lift these assumptions. We also look into a
problem that may not seem related, but whose e�cient solution requires the identi�cation
of heavy hitters: build a balanced partition of the stream universe considering weights.
As shown later, these algorithms can be successfully leveraged to solve major concerns
in Big Data applications.

7

Naturally, we started to apply our algorithms to network monitoring, one of the
classical �elds of application of data streaming. In particular we are able to monitor
computer networks and detect ongoing attacks leveraging our solutions for the distributed
heavy hitters problem and for the sliding window frequency estimation problem.

While network monitoring has, by de�nition, to handle large amount of data �ows, we
wanted to look into an application tightly coupled with Big Data. Stream processing [40]
is somehow the o�spring of the database and the complex event processing communities.
With respect to data streaming, it looks like a complementary and more practical �eld
providing e�cient and highly scalable frameworks (stream processing systems) to perform
soft real-time generic computation on streams, relying on cloud computing solution.
Surprisingly enough, while both data streaming and stream processing share a common
community (i.e., database), there are not many applications of data streaming to stream
processing. However, we believed that the duality between these two �elds is a strong
indicator that they can bene�t each other.

Among the plethora of possible optimizations in stream processing systems [56], in
this thesis we focus on load balancing and load shedding. Both are well known problems
that have been studied for decades in di�erent communities. Load balancing aims to
evenly spread the workload on the available resources, while load shedding goal is to
prevent the systems from being overwhelmed, dropping some of the input data. In other
words, the former strives to maximise the resources usage and the latter guarantees that
the resources are enough to handle the workload. In this thesis we apply two novel data
streaming algorithms to these two optimizations in stream processing systems.

Contributions Overview

We strongly believe that when designing a new algorithm, even if we are able to argue
its usefulness and provide good bounds on its quality and performance, it is still impor-
tant to validate the motivation and theoretical results with a real world application and
extensive experimental evaluation. As such, all of this thesis contributions contain both
aspects. Figure 1.1 summarizes the contributions.

Distributed heavy hitters � The current solutions to the detection of dis-
tributed heavy hitters are either non space e�cient [93], or rely on some strong as-
sumptions [66, 96, 97]. In this thesis we present Distributed Heavy Hitters Estimator
(DHHE) [9] 1, an algorithm designed to estimate the frequencies of distributed heavy
hitters on the �y with guaranteed error bounds, limited memory and processing require-
ments. In addition, DHHE does not rely on any assumption on the frequency distribution
of the distributed stream. The theoretical analysis of DHHE partially relies on the re-
sults presented in [8] 2. We use DHHE to detect distributed denial of service (DDoS), an
infamous problem in network security. The experimental evaluation shows the quality of
our algorithm and con�rms the theoretical analysis.

Balanced partitioning � In general, systems handling Big Data are distributed
and parallel, and a well known problem in this �elds is load balancing [98]. Conside-
ring streams, we formalise load balancing as building a balanced partition of the stream
universe considering weights, i.e., the balanced partitioning problem. In this thesis we

1A shorter version has been published at the 18ème Rencontres Francophones sur les Aspects Algo-
rithmiques des Télécommunications (Algotel 2016)

2This thesis does not cover this contribution.

8 CHAPTER 1. INTRODUCTION

Distributed Heavy Hitters

Distributed Heavy Hitters Estimator (DHHE)

Section 4.3

Distributed Denial of Service

Distributed Heavy Hitters Estimator (DHHE)

Section 5.1

SRDS 2015 [9]

Balanced Partitioning

Balanced Partitioner (BPART)

Section 4.4

Load Balance Stateful Operators in SPS

Distribution-aware Key Grouping (DKG)

Section 7.1

DEBS 2015 [82]

Load Balance Stateless Operators in SPS

Online Shu�e Grouping Scheduler (OSG)

Section 7.2

Load Shedding in SPS

Load-Aware Load Shedding (LAS)

Section 8.1

Item Value Estimation

Value Estimator (VALES)

Section 3.3

Sliding Window Frequency Estimation

Proportional WCM and Splitter WCM

Section 3.2

Estimating IP Addresses Frequencies

Proportional WCM and Splitter WCM

Section 5.2

NCA 2015 [80]

MW 2016 [79]

DEBS 2016 [81]

DATA STREAMING APPLICATIONS

Figure 1.1 � Contributions Diagram.

propose Balanced Partitioner (BPART) [82], an algorithm that closely approximates the
optimal partitioning, that strongly relies on the detection of heavy hitters. We leverage
BPART to design Distribution-aware Key Grouping (DKG) [82] 3, a load balancing al-
gorithm for stateful parallelized operators in stream processing systems. We prove that
BPART/DKG achieve close to optimal balancing and validate the analysis through an
experimental evaluation run on a simulator and on a prototype.

Item value estimation � Often an algorithm need to maintain some 〈key, value〉
map, for instance, to collect the results of some heavy computation, or to store some
information that is valuable in the future but will not be available there. In many ap-
plications, and even more taking into account Big Data, the possible number of distinct
keys in the map would be too large to �t in memory and a common solution is to intro-
duce a caching system. Considering a streaming setting, we propose a di�erent approach
which maintains an e�cient data structure that returns an approximation of the value.
We present Value Estimator (VALES) [79, 81], an algorithm solving this problem, that
we de�ne as the item value estimation problem (a generalization of the frequency estima-
tion problem). We leverage VALES to design two algorithms: Online Shu�e Grouping
Scheduler (OSG) [79], a load balancing algorithm for stateless parallelized operators in
stream processing systems, and Load-Aware Load Shedding (LAS) [81], a load shedding
algorithm for stream processing systems. These two algorithms are conceived taking into
account that the execution times of tasks in stream processing systems are non-uniform,
a common assumption leveraged in previous works.

Sliding window frequency estimation � As motivated previously, many appli-
cations (e.g., trading, network management, etc.) require the frequency distribution of
the stream in the recent past. Papapetrou et al. [76] provide, at the best of our know-

3A shorter version has been published at the 18ème Rencontres Francophones sur les Aspects Algo-
rithmiques des Télécommunications (Algotel 2016)

9

ledge, the only solution to the frequency estimation problem in the sliding window model.
However the space complexity of their solution is quadratic with respect to the accuracy
parameter. We propose two di�erent (on-line) algorithms that approximate the items
frequency in a sliding window: Proportional Windowed Count-Min and Splitter Windo-
wed Count-Min [80] 4, 5. In particular, these algorithm are extensions of the Count-Min

sketch [30], the data structure underlying DHHE, BPART and VALES. We apply these
algorithms to the estimation of IP address frequencies, and the resulting experimental
evaluation shows that our solutions provide better accuracy and memory usage than [76].

Layout

The thesis can be split in two parts: Chapters 2 to 4 present our data steaming contribu-
tions and their theoretical analysis, while Chapters 5 to 8 show the practical applications
and their experimental evaluations.

Chapter 2 introduces the data streaming model. It also formalizes the extensions of
the data streaming model that we consider, such as the distributed functional monitoring
model and the sliding window model, as well as provide the building blocks that we use
throughout this thesis. The next two chapters study the two aforementioned data strea-
ming problems. More in details, Chapter 3 deals with the frequency estimation problem,
with the design of the windowed extensions of the Count-Min, Proportional Windowed
Count-Min and Splitter Windowed Count-Min algorithms, and presents the Value Esti-
mator (VALES) algorithm. Similarly, Chapter 4 presents the Distributed Heavy Hitters
Estimator (DHHE) algorithm solving the distributed heavy hitters problem, as well as
the Balanced Partitioner (BPART) algorithm.

The following four chapters are the application of these algorithms to more concrete
and practical problems. Chapter 5 shows how DHHE can detect distributed denial of
service (DDoS) attacks, as well as how Proportional Windowed Count-Min and Splitter
Windowed Count-Min can track the frequencies of IP addresses in a network. Chapter 6
formalises the stream processing model. Then, Chapter 7 applies BPART and VALES to
load balance parallelized operators, either stateful or stateless, while Chapter 8 leverages
VALES to perform load shedding.

Finally, Chapter 9 concludes and provides perspectives.

4A shorter version has been published at the 18ème Rencontres Francophones sur les Aspects Algo-
rithmiques des Télécommunications (Algotel 2016)

5This contribution is the recipient of the best student paper award at NCA 2015

Chapter 2

Data Streaming

Data Streaming focuses on estimating metrics over streams, which is an important task
in data intensive applications. Many di�erent domains are concerned by such analyses
including machine learning, data mining, databases, information retrieval, and network
monitoring. In all these applications, it is necessary to quickly and precisely process a
huge amount of data.

This can be applied to any other data issued from distributed applications such as
social networks or sensor networks. Given our settings, the real time analysis of large
streams with small capacities in terms of storage and processing, analysing input data
relying on full space algorithms is not feasible. Two main approaches exist to monitor
massive data streams in real time: sampling and summaries. The �rst one consists in
regularly sampling the input streams so that only a limited amount of data items is locally
kept. This allows to exactly compute functions on these samples, which are expected to
be representative. However, the accuracy of this computation, with respect to the stream
in its entirety, fully depends on the volume of data that has been sampled and the location
of the sampled data. Worse, an adversary may easily take advantage of the sampling
policy to hide its attacks among packets that are not sampled, or to prevent �malicious�
packets to be correlated. On the other hand, the summary approach consists in scanning
on the �y each piece of data of the input stream, and keep locally only compact synopses
or sketches containing the most important information about data items. This approach
enables to derive some data streams statistics with guaranteed error bounds.

In general, the research done so far has focused on computing functions or statistical
measures with ε or (ε, δ)-approximations in poly-logarithmic space over the size and/or
the domain size of the stream. These include the computation of the number of distinct
data items in a given stream [16,42,62], the frequency moments [5,32], the most frequent
data items [30,69,70], and the entropy of the stream [25]. Computing information theo-
retic measures in the data stream model is challenging essentially because one needs to
process a huge amount of data sequentially, on the �y, and by using very little storage
with respect to the size of the stream. In addition, the analysis must be robust over
time to detect any sudden change in the observed streams (which may be an indicator of
some malicious behaviour). The most natural derivation of the data stream model is the
sliding window model [34], where we consider only the most recent data items. Another
relevant model is the distributed functional monitoring problem [32], which combines
features of the streaming model, communication complexity and distributed computing,
and thus deals with distributed streams.

11

12 CHAPTER 2. DATA STREAMING

2.1 System Models

In the data streaming community, several models have risen in order to match the sce-
narios where the data streaming approach could be applied. In this section, we discuss
and formalise the models that have drawn more attention from the community and that
are taken into account in this thesis.

2.1.1 Data Streaming Model

Back in 2005, Muthukrishan [72] published a really extensive overview and survey of the
data streaming model, that can be formalized as follows.

We consider a stream σ = 〈t1, . . . , tj , . . . , tm〉, where each item t is drawn from a
universe of size n. More in details, t denotes the value of the item in the set [n] =
{1, . . . , n}, while the subscript j denotes the position in the stream in the index sequence
[m] = {1, . . . ,m}. Then m is the size (or number of items) of the stream σ. Notice that
in general both n and m are large (i.e., network tra�c) and unknown.

The stream σ implicitly de�nes a frequency vector f = 〈f1, . . . , ft, . . . , fn〉 where ft
is the frequency of item t in the stream σ, i.e., the number of occurrences of item t in σ.
We can also de�ne the empirical probability distribution p = 〈p1, . . . , pt, . . . , pn〉, where
pt = ft/m is the empirical probability of occurrence of item t in the stream σ. Our aim
is to compute some function φ on σ. In this model we are allowed only to access the
sequence in its given order (no random access) and the function must be computed in
a single pass (on-line). The challenge is to achieve this computation in sub-linear space
and time with respect to m and n. In other words, the space and time complexities
should be at most o(min{m,n}) but the goal is O(log(m · n)). However, since reaching
the latter bound is quite hard (if not impossible), one deal in general with complexities 1

such as polylog(m,n).

2.1.2 Sliding Window Model

In many applications, there is a greater interest in considering only the �recently observed�
items than the whole semi-in�nite stream. This gives rise to the sliding window model
formalised by Datar, Gionis, Indyk and Motwani [34]: items arrive continuously and
expire after exactlyM steps. The relevant data is then the set of items that arrived in the
last M steps, i.e., the active window. A step can either be de�ned as a sample arrival,
then the active window would contain exactly M items and the window is said to be
count-based. Otherwise, the step is de�ned as a time tick, either logical or physical, and
the window is said to be time-based. More formally, let consider the count-based sliding
window and recall that by de�nition tj is the item arriving at step j. In other words, the
stream σ at step m is the sequence 〈t1, . . . , tm−M , tm−M+1, . . . , tm〉. Then, the desired
function φ has to be evaluated over the stream σ(M) = 〈tm−M+1, . . . , tm〉. Notice that
if M = m, the sliding window model boils down to the classical data streaming model.
Two related models may be named as well: the landmark window and jumping window
models. In the former, a step (landmark) is chosen and the function is evaluated on
the stream following the landmark. In the jumping window model, the sliding window
is split into sub-windows and moves forward only when the most recent sub-window is
full (i.e., it jumps forward). In general, solving a problem in the sliding window model

1In general we have that φ(x) is polylog(x) ⇔ ∃C > 0, φ(x) = O(logC x). By abusing the notation,

we de�ne polylog(m,n) as ∃C,C′ > 0 such that φ(m,n) = O(logC m+ logC
′
n)).

2.1. SYSTEM MODELS 13

is harder than in the classical data streaming model: using little memory (low space
complexity) implies some kind of data aggregation, the problem is then how to slide
the window removing the updates performed by the items that exited the window and
how to introduce new items. For instance, basic counting, i.e., count the number of 1
in the stream of bits, is a simple problem whose solution is a prerequisite for e�cient
maintenance of a variety of more complex statistical aggregates. While this problem
is trivial for the data streaming model, it becomes a challenge in the sliding windowed
model [34].

2.1.3 Distributed Streaming Model and Functional Monitoring

In large distributed systems, it is most likely critical to gather various aggregates over
data spread across a large number of nodes. This can be modelled by a set of nodes,
each observing a stream of items. These nodes collaborate to evaluate a given function
over the global distributed stream. For instance, current network management tools
analyze the input streams of a set of routers to detect malicious sources or to extract
user behaviors [7, 43].

The distributed streaming model has been formalised by Gibbons and Tirthapura [45].
Consider a set of nodes making observations and cooperating, through a coordinator, to
compute a function over the union of their observations. More formally, let I be a set
of s nodes S1, . . . , Si, . . . , Ss that do not communicate directly between them, but only
with a coordinator (i.e., a central node or base station). The communication channel
can be either one-way or bidirectional. The distributed stream σ is the union the sub-
streams σ1, . . . , σi, . . . , σs locally read by the s nodes, i.e., σ =

⋃s
i=1 σi, where σı ∪ σ

is a stream containing all the items of σı and σ in any order. The generic stream σi
is the input to the generic node Si. Then we have m =

∑s
i=1mi, where mi is the size

(or number of items) of the i-th sub-stream σi of the distributed stream σ. Each sub-
stream σi implicitly de�nes a frequency vector fi = 〈f1,i, . . . , ft,i, . . . , fn,i〉 where ft,i is
the frequency of item t in the sub-stream σi, i.e., the number of occurrences of item t in
the sub-stream σi. Then, we also have ft =

∑s
i=1 ft,i. We can also de�ne the empirical

probability distribution pi = 〈p1,i, . . . , pt,i, . . . , pn,i〉, where pt,i = ft,i/mi is the empirical
probability of occurrence of item t in the stream σi.

With respect to the classical data streaming model, we want to compute the function
φ(σ) = φ(σ1 ∪ . . . ∪ σs). This model introduces the additional challenge to minimise the
communication complexity (in bits), i.e., the amount of data exchanged between the s
nodes and the coordinator.

The distributed functional monitoring problem [32], has risen only in the 2000's and a
survey on this �eld is provided by Cormode [29] in 2011. With respect to the distributed
streaming model, functional monitoring requires a continuous evaluation of φ(σ) = φ(σ1∪
. . . ∪ σs) at each time instant j ∈ [m]. Cormode, Muthukrishnan and Yi [32], bounding
φ to be monotonic, distinguish two cases: threshold monitoring (i.e., raising an alert
if φ(σ) exceed a threshold Θ) and value monitoring (i.e., approximating φ(σ)). They
also show that value monitoring can be reduced with a factor O(1/ε logR) (where R is
the largest value reached by the monitored function) to threshold monitoring. However,
this reduction does not hold any more in a more general setting with non-monotonic
function (e.g., entropy). Notice that to minimize the communication complexity and
maximise the accuracy, the algorithms designed in this model tend to minimise the
communication when nothing relevant happens, while reacting as fast as possible in
response to outstanding occurrences or patterns.

14 CHAPTER 2. DATA STREAMING

2.1.4 Adversarial Model

In any of the aforementioned models we can add an adversary actively tampering with
the data stream. In general the adversary is omnipotent in the sense that it knows the
whole stream σ and it can observe, insert or re-order items in the data stream. Dropping
items is considered only in strongly adversarial models. The algorithms are of public
knowledge, i.e., security by obscurity is not considered, however the adversary can be
characterized with respect to its knowledge of the algorithm evolution:

• The oblivious adversary does not get to know the randomized results of the al-
gorithm (i.e., it has not access to the algorithm random values) nor the current
algorithm state;
• The adaptive online adversary knows all the past decisions of the algorithm (i.e.,
knows the current algorithm state), however it cannot predict its next randomized
move (i.e., it has not access to the algorithm random values);
• The adaptive o�ine adversary is the strongest, since it knows the past and future
actions of the algorithm (i.e., it has access to the algorithm random values).

Notice that for a deterministic algorithm, the three adversaries are equivalent. In
addition [17], while randomization helps against both the oblivious and adaptive on-
line algorithm, a deterministic algorithm fares as well as a randomized one against an
adaptive o�ine adversary. In this thesis we consider at most the oblivious adversary.

In general, a common technique to prove the resilience of the algorithm in the face
of the adversary is to provide the e�ort required to subvert the algorithm (i.e., to break
the accuracy guarantees). Notice that in the distributed models, the adversary may
also enact strategies to maximising the number of interactions and the amount of data
exchanged between the s nodes and the coordinator.

2.2 Building Blocks

In this section, we formalise some of the basic techniques and building blocks used in
this thesis.

2.2.1 Sampling

The sampling approach reads once all the items; however, only a few are kept for the
computation. As usual, the aim is for a poly-logarithmic storage size with respect to
size of the input stream. It is also current that some metadata are associated with the
retained items. There are several methods, both deterministic and randomized, to choose
which subset of items has to be kept [5, 70, 72].

2.2.2 Approximation and Randomization

To compute φ on σ in these models, research so far relies on ε or (ε, δ)-approximations.
An algorithm A that evaluates the stream σ in a single pass (on-line) is said to be an
(ε, δ)-additive-approximation of the function φ on a stream σ if, for any pre�x of size m
of the input stream σ, the output φ̂ of A is such that P{| φ̂ − φ |> εψ} ≤ δ, where ε,
δ > 0 are given as precision parameters and ψ is an arbitrary function (its parameter may
be n and/or m). Similarly, an algorithm A that evaluates the stream σ in a single pass
(on-line) is said to be an (ε, δ)-approximation of the function φ on a stream σ if, for any

2.2. BUILDING BLOCKS 15

pre�x of sizem of the input stream σ, the output φ̂ of A is such that P{| φ̂−φ |> εφ} ≤ δ,
where ε, δ > 0 are given as precision parameters.

Finally, if δ = 0, independently of the algorithm parametrisation, then A is determi-
nistic and we drop the δ from the approximation notation.

2.2.3 Random Projections and Sketches

Random projections produce a storage size reduction, leveraging pseudo-random vectors
and projections. We generate the pseudo-random vector using space-e�cient computa-
tion over limitedly independent random variables, as in [27,30].

A relevant class of projections are sketches. A data structure DS is a sketch if there
is a space-e�cient combining algorithm COMB such that, for every two streams σ1 and
σ2, we have COMB(DS(σ1), DS(σ2)) = DS(σ1 ∪σ2), where σ1 ∪σ2 is a stream containing
all the items of σ1 and σ2 in any order. In order to extend the sketch de�nition to the
sliding window model, we limit the reordering of the items in σ1 and σ2 to the last M
items (i.e., the active window).

2.2.4 Universal and Independent Hash Functions

A collection U of hash functions hı : [N]→ [N ′] is said to beK-independent if for everyK
distinct items x1, . . . , xK ∈ [N] and K (not necessarily distinct) hashes y1, . . . , yK ∈ [N ′],
Phı∈U{hı(x1) = y1 ∧ . . . ∧ hı(xK) = yK} ≤ 1/N ′K .

While these hash functions are powerful, they are very hard to construct, i.e., it
is di�cult to build a large set of K-independent hash functions. Let us introduce the
2-universal hash functions, which are a superset of the K-independent hash functions,
thus weaker. A collection H of hash functions hı : [N] → [N ′] is said to be 2-universal
if for every 2 distinct items x1, x2 ∈ [N], Phı∈H{hı(x1) = hı(x2)} ≤ 1/N ′, which is the
probability of collision obtained if the hash function assigns truly random values in [N ′]
to any x ∈ [N].

Thankfully, Carter and Wegman [24] proposed an e�cient algorithm to build large
families of hash functions approximating the 2-universal property. Then, algorithms
using 2-universal hash functions can be implemented in practice.

Chapter 3

Frequency Estimation

The previous chapter has formalised the data streaming models and the background that
is used throughout this thesis. In this chapter we �rst detail the frequency estimation
problem and its related work. In Section 3.2 we present our extensions of the Count-Min
algorithm in the sliding window model: Proportional Windowed Count-Min and Splitter
Windowed Count-Min. Section 3.3 formalises the item value estimation problem, i.e., a
generalisation of the frequency estimation problem, and shows the design of the Value
Estimator algorithm.

3.1 Related Work

Estimating the frequency moments is one of the �rst problem to be dealt with in a
streaming fashion, namely in the seminal paper from Alon, Matia and Szegdy [5]. As
mentioned earlier, a stream σ implicitly de�nes a frequency vector f = 〈f1, . . . , fn〉 where
ft is the frequency of item t in the stream σ. The ı-th frequency moment is de�ned as
Fı =

∑n
=1 f

ı
 =‖ f ‖ı. F0 is then the number of distinct items of the stream (assuming

that 00 = 0) and F1 is the length m of the stream. The frequency moments for Fı where
ı ≥ 2 indicate the skew of the data, which is a relevant information in many distributed
applications.

The frequency estimation problem is closely related, we do not want to provide a
single aggregate value to represent the whole stream, but a more detailed view.

Problem 3.1 (Frequency Estimation Problem). Given a stream σ = 〈t1, . . . , tm〉, provide
an estimate f̂t of ft for each item t ∈ [n].

In other words we want to build an approximation of the frequency distribution of
the stream. Estimating the frequency of any piece of information in large-scale distribu-
ted data streams became of utmost importance in the last decade (e.g., in the context
of network monitoring, Big Data, etc.). IP network management, among others, is a
paramount �eld in which the ability to estimate the stream frequency distribution in a
single pass (i.e., on-line) and quickly can bring huge bene�ts. For instance, we could
rapidly detect the presence of anomalies or intrusions identifying sudden changes in the
communication patterns.

Data streaming model� Considering the data streaming model, Charikar, Chen
and Farach-Colon [27] proposed the Count-Sketch algorithm in 2002. The underlying
data structure is a matrix F of size r×c, where r = dlog 1/δe and c = d3/ε2e. Each row is

17

18 CHAPTER 3. FREQUENCY ESTIMATION

Listing 3.1 � Count-Min Sketch Algorithm.

1: init (r, c) do
2: F[1 . . . r, 1 . . . c]← 0r,c
3: h1, . . . , hr : [n]→ [c] . r hash functions from a 2-universal family.
4: end init
5: function update(tj) . reads item tj from the stream σ
6: for ı = 1 to r do
7: F[ı, hı(t)]← F[ı, hı(t)] + 1
8: end for
9: end function
10: function getFreq(t) . returns f̂t
11: return min{F[ı, hı(t)] | 1 ≤ ı ≤ r}
12: end function

associated with two di�erent 2-universal hash functions hı∈[r] : [n]→ [c] and h′ı∈[r] : [n]→
{−1, 1}. For each item tj , it updates each row: ∀ı ∈ [r],F[ı, hı(t)] ← F[ı, hı(t)] + h′ı(t).

The algorithm returns, as ft estimation f̂t = medianı∈[r](h
′
ı(t)F[i, hı(t)]). The space

complexity of this algorithm is O(1
ε2

log 1
δ (logm + log n)). This estimate satis�es the

following accuracy bound: P[| f̂t − ft |≥ ε ‖ f−t ‖2] ≤ δ, where f−t represents the
frequency vector f without the scalar ft (i.e., |f−t| = n− 1).

In 2003, Cormode and Muthukrishnam [30] proposed the Count-Min sketch, which
is quite similar to the Count-Sketch. The bound on the estimation accuracy of the
Count-Min is weaker than the one provided by the Count-Sketch, in particular for ske-
wed distribution. On the other hand, the Count-Min shaves a 1/ε factor from the space
complexity and halves the hash functions. The Count-Min consists of a two dimensional
matrix F of size r× c, where r = dlog 1/δe and c = de/εe, where e is the euler's constant.
Each row is associated with a di�erent 2-universal hash function hı∈[r] : [n] → [c]. For
each item tj , it updates each row: ∀ı ∈ [r],F[ı, hı(t)]← F[ı, hı(t)] + 1. That is, the entry
value is the sum of the frequencies of all the items mapped to that entry. Since each row
has a di�erent collision pattern, upon request of f̂t we want to return the entry associa-
ted with t minimizing the collisions impact. In other words, the algorithm returns, as ft
estimation, the entry associated with t with the lowest value: f̂t = minı∈[r]{F[ı, hı(t)]}.
Listing 3.1 presents the global behavior of the Count-Min algorithm. The space complex-
ity of this algorithm is O(1ε log 1

δ (logm+ log n)) bits, while the update time complexity

is O(log 1/δ). Therefore, the following quality bounds hold: P[| f̂t−ft |≥ ε ‖ f−t ‖1] ≤ δ,
while ft ≤ f̂t is always true.

In [30], the author also provide a more general version of the Count-Min algorithm.
Considering the cash register model [72], each item tj in the stream carries a value
ωtj ≥ 0, i.e., the stream is a sequence of couples: σ = 〈(t1, ωt1), . . . , (tm, ωtm)〉. Then
we can extend the Count-Min algorithm (cf., Listing 3.2) adding to the matrix entries
associated with item t the value ωtj . The Count-Min sketch returns an estimation of∑

j∈[m] ωt′j1{t′=t} for all t ∈ [n]. If ωtj is �xed for each t (i.e., independent of j), then

the Count-Min returns the estimation ωtf̂t of ωtft for all t ∈ [n].

Sliding window model � Papapetrou et al. [76] proposed the only work that,
to the best of our knowledge, tackles the frequency estimation problem in the sliding

3.2. FREQUENCY ESTIMATION IN THE SLIDING WINDOW MODEL 19

Listing 3.2 � Generalized Count-Min Sketch Algorithm.

1: init (r, c) do
2: F[1 . . . r, 1 . . . c]← 0r,c
3: h1, . . . , hr : [n]→ [c] . r hash functions from a 2-universal family.
4: end init
5: function update(tj , ωtj) . reads item tj with value ωt from the stream σ
6: for ı = 1 to r do
7: F[ı, hı(t)]← F[ı, hı(t)] + ωtj
8: end for
9: end function
10: function getEstimation(t) . returns f̂t
11: return min{F[ı, hı(t)] | 1 ≤ ı ≤ r}
12: end function

window model. Their proposal, named ECM-Sketch, is based on the wave data structure
presented by Gibbons and Tirthapura [46], providing an (εwave)-approximation for the
basic counting problem in the sliding window model. A wave is made of dlog(εwaveM)e
levels and the ı-th level is made of 1/εwave + 1 positions of the most recent updates to
the wave whose position is divisible by 2ı. In addition, a wave stores the current length
of the stream and the number of updates performed so far. With some optimization to
get rid of redundant information and to reduce computation time, the space complexity
is O(1

εwave
log2(εwaveM)) bits, while both update and query time complexities are O(1).

Replacing each counter of the Count-Min matrix F with a wave, the authors [76] are
able to obtain an (εwave, ε, δ)-additive-approximation with the following quality bound:
P[| f̂t−ft |≥ (ε+εwave+ε εwave) ‖ f−t ‖1] ≤ δ. The space complexity of the ECM-Sketch is
O
(

1
ε εwave

log 1
δ

(
log2(εwaveM) + log n

))
, while the updated and query time complexities

are O(log 1/δ).

3.2 Frequency Estimation in the Sliding Window Model

In this section we propose our extensions to the sliding window model of the Count-Min
sketch [30] presented in Section 3.1. The problem we consider is the sliding window
variation of Problem 3.1:

Problem 3.2 (Frequency Estimation Problem in Sliding Window). Given a stream σ =
〈t1, . . . , tm〉, provide an estimate f̂t of ft for each item t ∈ [n] in the active window
σ(M) = 〈tm−M+1, . . . , tm〉, i.e., taking into account only the M most recent items.

We propose our approach in two steps: two �rst naive and straightforward algorithms
called Perfect WCM and Simple WCM, followed by two more sophisticated ones, called
Proportional WCM and Splitter WCM. In Section 5.2.1 we apply these algorithms to
the estimation of the frequencies on IP tra�c, comparing their respective performances
together with the only comparable solution [76].

3.2.1 Perfect Windowed Count-Min Algorithm

Perfect WCM provides the best accuracy by dropping the complexity space requirements,
it trivially stores the whole active window in a queue. When it reads item tj , it enqueues tj

20 CHAPTER 3. FREQUENCY ESTIMATION

Listing 3.3 � Perfect WCM Algorithm.

1: init (r, c, M) do
2: F[1 . . . r, 1 . . . c]← 0r,c
3: h1, . . . , hr : [n]→ [c] . r hash functions from a 2-universal family.
4: window an empty queue of items
5: end init
6: function update(tj) . reads item tj from the stream σ
7: for ı = 1 to r do
8: F[ı, hı(t)]← F[ı, hı(t)] + 1
9: end for
10: enqueue t in window
11: if | window |> M then
12: t′ ← dequeue from window
13: for ı = 1 to r do
14: F[ı, hı(t

′)]← F[ı, hı(t
′)]− 1

15: end for
16: end if
17: end function
18: function getFreq(t) . returns f̂t
19: return min{F[ı, hı(t)] | 1 ≤ ı ≤ r}
20: end function

and increases all the Count-Min matrix entries associated with t. Once the queue reaches
size M , it dequeues the expired item t′j′ and decreases all the entries associated with t′.
The frequency estimation is retrieved as in the classical Count-Min (cf., Listing 3.1).
Listing 3.3 presents the global behaviour of Perfect WCM.

Theorem 3.3 (Perfect WCM Accuracy). Perfect WCM is an (ε, δ)-additive-approxima-
tion of the frequency estimation problem in the count-based sliding window model where
P[| f̂t − ft |≥ ε(M − ft)] ≤ δ, and ft ≤ f̂t is always true.

Proof. Since the algorithm stores the whole previous window, it knows exactly which
item expires in the current step and can decrease the associated counters in the F matrix.
Then, Perfect WCM provides an estimation with the same error bounds of a Count-Min

executed on the last M items of the stream.

Theorem 3.4 (Perfect WCM Space and Time Complexities). Perfect WCM space com-
plexity is O(M log(n)) bits, while update and query time complexities are O(log 1/δ).

Proof. The algorithm stores M items, then the size of the F matrix is negligible and the
space complexity is O(M log(n)) bits. An update requires to enqueue and dequeue two
items and to manipulate an entry on each row. Thus, the update time complexity is
O(log 1/δ). A query requires to look up an entry for each row of the F matrix, then the
query time complexity is O(log 1/δ).

3.2.2 Simple Windowed Count-Min Algorithm

Simple WCM is as straightforward as possible and achieves optimal space complexity
with respect to the Count-Min. It behaves as the Count-Min, except that it resets the F

3.2. FREQUENCY ESTIMATION IN THE SLIDING WINDOW MODEL 21

Listing 3.4 � Simple WCM Algorithm.

1: init (r, c, M) do
2: F[1 . . . r, 1 . . . c]← 0r,c
3: h1, . . . , hr : [n]→ [c] . r hash functions from a 2-universal family.
4: m← 0
5: end init
6: function update(tj) . reads item tj from the stream σ
7: if m = 0 then
8: F[1 . . . r, 1 . . . c]← 0r,c
9: end if
10: for ı = 1 to r do
11: F[ı, hı(t)]← F[ı, hı(t)] + 1
12: end for
13: m← m′ + 1 mod M
14: end function
15: function getFreq(t) . returns f̂t
16: return min{F[ı, hı(t)] | 1 ≤ ı ≤ r}
17: end function

matrix each times it has read M items. Obviously Simple WCM provides a really rough
estimation since it simply drops all information about any previous window once a new
window starts. Listing 3.4 presents the global behavior of Simple WCM.

Theorem 3.5 (Simple WCM Space and Time Complexities). Simple WCM space com-
plexity is O

(
1
ε log 1

δ (logM + log n)
)
bits, while update and query time complexities are

O(log 1/δ).

Proof. The algorithm uses a counter of size O(logM) and a matrix of size r × c (r =
dlog 1/δe and c = de/εe) of counters of size O(logM). In addition, for each row it
stores a hash function. Then the space complexity is O(1ε log 1

δ (logM + log n)) bits. An
update requires to hash an item, then retrieve and increase an entry for each row, thus
the update time complexity is O(log 1/δ). We consider the cost of resetting the matrix
(O(1ε log 1/δ)) negligible since it is done only once per window. A query requires to hash
an item and retrieve an entry for each row: the query time complexity is O(log 1/δ).

3.2.3 Proportional Windowed Count-Min Algorithm

We now present the �rst extension algorithm, denoted Proportional WCM. The intuition
behind this algorithm is as follows. At the end of each window, it stores separately a
snapshotS of the Fmatrix, which represents what happened during the previous window.
Starting from the current F state, for each new item, it increments the associated entries
and decreases all the Fmatrix entries proportionally to the last snapshotS. This smooths
the impact of resetting the F matrix throughout the current window. Listing 3.5 presents
the global behavior of Proportional WCM.

More in details, after readingM items, Proportional WCM stores the current Fmatrix
in S and divides each entry by the window size: ∀ı,  ∈ [r] × [c], S[ı, ] ← F[ı, ]/M
(Listing 3.5, Lines 7 to 11). This snapshot represents the average step increment of
the F matrix during the previous window. When Proportional WCM reads item tj , it
increments the F entries associated with t (Listing 3.5, Lines 13 to 15) and subtracts

22 CHAPTER 3. FREQUENCY ESTIMATION

Listing 3.5 � Proportional WCM Algorithm.

1: init (r, c, M) do
2: F[1 . . . r, 1 . . . c],S[1 . . . r, 1 . . . c]← 0r,c
3: h1, . . . , hr : [n]→ [c] . r hash functions from a 2-universal family
4: m← 0
5: end init
6: function update(tj) . reads item tj from the stream σ
7: if m = 0 then
8: for ı = 1 to r and  = 1 to c do
9: S[ı, ]← F[ı, ]/M
10: end for
11: end if
12: for ı = 1 to r and  = 1 to c do
13: if hı(t) =  then
14: F[ı, ]← F[ı, ] + 1
15: end if
16: F[ı, ]← F[ı, ]−S[ı, ]
17: end for
18: m← m+ 1 mod M
19: end function
20: function getFreq(t) . returns f̂t
21: return round {min{F[ı, hı(t)] | 1 ≤ ı ≤ r}}
22: end function

S from F: ∀ı,  ∈ [r] × [c], F[ı, ] ← F[ı, ] − S[ı, ] (Listing 3.5, Line 16). Finally, the
frequency estimation is retrieved as in the Count-Min algorithm.

Theorem 3.6 (Proportional WCM Space and Time Complexities). Proportional WCM
space complexity is O(1ε log 1

δ (logM + log n)) bits. Update and query time complexities
are O(1ε log 1/δ) and O(log 1/δ).

Proof. The algorithm stores a F and a snapshot S matrix, as well as a counter of size
O(logM). Then the space complexity is O(1ε log 1

δ (logM + log n)) bits. An update
require to look up all the entries of both the F and S, thus the update time complexity
is O(1ε log 1/δ). A query requires to hash an item and retrieve an entry for each row: the
query time complexity is O(log 1/δ).

3.2.4 Splitter Windowed Count-Min Algorithm

Proportional WCM removes the average frequency distribution of the previous window
from the current window. Consequently, Proportional WCM does not capture sudden
changes in the stream distribution. To cope with this �aw, one could track these critical
changes through multiple snapshots. However, each row of the F matrix is associated
with a speci�c 2-universal hash function, thus changes in the stream distribution do not
a�ect equally each rows.

Therefore, Splitter WCM proposes a �ner grained approach analysing the update
rate of each entry in the F matrix. To record changes in the entry update rate, we add a
(�fo) queue of sub-cells to each entry. When Splitter WCM detects a relevant variation

3.2. FREQUENCY ESTIMATION IN THE SLIDING WINDOW MODEL 23

lastinit

) m = 101

1 77 20

...

count.

F[1]

F[2]

F[i]
...

0 21 21 59

21 38 42 0

38 21 21 21

� = h0, 1, 2, 3, . . . , 0, 1, 2, 3, 0, 0, . . . , 0i
⇥21 ⇥17

}}c = 4; N = 100; � = 0.4; � = 1.5

lastinit

81 93 10

count. lastinit

100 101 8

count.

lastinit

4 80 20

count. lastinit

84 84 1

count.

Figure 3.6 � State of the F matrix after reading a pre�x of m = 101 items of σ.

in the entry update rate, it creates and enqueues a new sub-cell. This new sub-cell then
tracks the current update rate, while the former one stores the previous rate.

Each sub-cell has a frequency counter and 2 timestamps: init, that stores the (logical)
time where the sub-cell started to be active, and last, that tracks the time of the last
update. After a short bootstrap, any entry contains at least two sub-cells: the current
one that depicts what happened in the very recent history, and a predecessor representing
what happened in the past. Listing 3.7 presents the global behaviour of Splitter WCM.
Figure 3.6 shows the state of the F matrix after reading a pre�x of m = 101 items of the
stream σ, sketched on the top.

Splitter WCM spawns additional sub-cells to capture distribution changes. The deci-
sion whether to create a new sub-cell is tuned by two parameters: γ and β, and an error
function, error (cf., Listing 3.8). Informally, the function error evaluates the poten-
tial amount of information lost by merging two consecutive sub-cells, while β represents
the amount of a�ordable information loss. Performing this check at each item arrival
may lead to erratic behaviours. To avoid this, we introduced γ ∈]0, 1], that sets the
minimal length ratio of a sub-cell before taking this sub-cell into account in the decision
process.

In more details, when Splitter WCM reads item tj , it has to phase out the expired
data from each sub-cell. Then, for each entry of F, it retrieves the oldest sub-cell in the
queue, denoted head (Line 9). If head was active preciselyM steps ago (Line 10), then it
computes the rate at which head has been incremented while it was active (Line 11). This
value is subtracted from the entry counter v (Line 12) and from head counter (Line 13).
Having retracted what happened M steps ago, head moves forward increasing its init
timestamp (Line 14). Finally, head is removed if it has expired (Lines 15 and 16).

The next part handles the update of the entries associated with item tj . For each of
them (Line 19), Splitter WCM increases the entry counter v (Line 20) and retrieves the
current sub-cell, denoted bottom (Line 21). (a) If bottom does not exist, it creates and
enqueues a new sub-cell (Line 23). (b) If bottom has not reached the minimal size to be
evaluated (Line 24), bottom is updated (Line 25). (c) If not, Splitter WCM retrieves the

24 CHAPTER 3. FREQUENCY ESTIMATION

Listing 3.7 � Splitter Windowed Count-Min Algorithm.

1: init (r, c, M, γ, β) do
2: F[1 . . . r][1 . . . c]← 〈empty sub-cells queue, 0〉r,c
3: h1, . . . , hr : [n]→ [c] . r hash functions from a 2-universal family.
4: m← 0
5: end init
6: function update(tj) . reads item tj from the stream σ
7: for ı = 1 to r and  = 1 to c do
8: 〈queue, v〉 ← F[ı, ]
9: head← head of queue
10: if ∃head ∧ head.init = m−M then
11: v′ ← head.counter/(head.last− head.init+ 1)
12: v ← v − v′
13: head.counter.← head.counter.− v′
14: head.init← head.init+ 1
15: if head.init > head.last then
16: removes head from queue
17: end if
18: end if
19: if hı(t) =  then
20: v ← v + 1
21: bottom← bottom of queue
22: if 6 ∃bottom then
23: Creates and enqueues a new sub-cell
24: else if bottom.counter < γM/c then
25: Updates sub-cell bottom
26: else
27: pred← predecessor of bottom in queue
28: if ∃pred ∧ error(pred, bottom) ≤ β then
29: Merges bottom into pred and renews bottom
30: else
31: Creates and enqueues a new sub-cell
32: end if
33: end if
34: end if
35: F[ı, ]← 〈queue, v〉
36: end for
37: m← m+ 1
38: end function
39: function getFreq(t) . returns f̂t
40: return round{min{F[ı][hı(t)].v | 1 ≤ ı ≤ r}}
41: end function

3.2. FREQUENCY ESTIMATION IN THE SLIDING WINDOW MODEL 25

Listing 3.8 � Splitter Windowed Count-Min error function.

1: function error(pred, bottom) . Evaluates the amount of information loss
2: freqpred ← pred.count/(bottom.init− pred.init)
3: freqbottom ← bottom.count/(bottom.init− bottom.init+ 1)
4: if freqbottom > freqpred then

5: return freqbottom
freqpred

6: else
7: return

freqpred
freqbottom

8: end if
9: end function

predecessor of bottom: pred (Line 27). (c.i) If pred exists and the amount of information
lost by merging is lower than the threshold β (Line 28), Splitter WCM merges bottom
into pred and renews bottom (Line 29). (c.ii) Otherwise it creates and enqueues a new
sub-cell (Line 31), i.e., it splits the entry.

Lemma 3.7 (Splitter WCM Number of Splits Upper Bound). Given 0 < γ ≤ 1, the
maximum number of splits π (number of sub-cells spawned to track distribution changes)
is O(1

εγ log 1
δ).

Proof. A sub-cell is not involved in the decision process of merging or splitting while its
counter is lower than γM

c = εγM . So, no row can own more than 1
εγ splits. Thus, the

maximum numbers of splits is π = O(1
εγ log 1

δ).

Theorem 3.8 (Splitter WCM Space and Time Complexities). Splitter WCM space com-
plexity is O(1

γε log 1
δ (logM + log n)) bits, while update and query time complexities are

O(log 1/δ).

Proof. Each entry of the F matrix is composed of a counter and a queue of sub-cells made
of two timestamps and a counter, all of size O(logM) bits 1. Without any split and consi-
dering that all entries have bootstrapped, the initial space complexity isO(1ε log 1

δ (logM+
log n)) bits. Each split costs two timestamps and a counter (size of a sub-cell). Let π be
the number of splits, we have O(1ε log 1

δ (logM + log n) + π logM) bits. Lemma 3.7 esta-
blishes the following space complexity bound: O(1ε log 1

δ (logM + log n) + 1
εγ log 1

δ logM)
bits.

Each update requires to access each of the F matrix entries in order to move the
sliding window forward. However, we can achieve the same result by performing this
phase-out operation (from Line 10 to Line 18) only on the F matrix entries that are
accessed by the update and query procedures 2. Given this optimization, update and
query require to lookup one entry by row of the F matrix. Then, the query and update
time complexities are O(log 1/δ).

Notice that the space complexity can be reduced by removing the entry counter
v. However, the query time would increase since this counter must be reconstructed
summing all the sub-cell counters.

1For the sake of clarity, timestamps are of size O(logm) bits in the pseudo-code while counters of size
O(logM) bits are su�cient.

2For the sake of clarity, the pseudo-code does not implement this optimization.

26 CHAPTER 3. FREQUENCY ESTIMATION

Table 3.9 � Complexities comparison.

Algorithm Space (bits) Update time Query time

Count-Min [30] O(1ε log 1
δ (logm+ log n)) O(log 1

δ) O(log 1
δ)

Perfect WCM O(M) O(log 1
δ) O(log 1

δ)

Simple WCM O(1ε log 1
δ (logM + log n)) O(log 1

δ) O(log 1
δ)

Proportional WCM O(1ε log 1
δ (logM + log n)) O(1ε log 1

δ) O(log 1
δ)

Splitter WCM O(1
γε log 1

δ (logM + log n)) O(log 1
δ) O(log 1

δ)

ECM-Sketch [76] O
(

1
ε εwave

log 1
δ

(
log2 εwaveM + log n

))
O(log 1

δ) O(log 1
δ)

One can argue that sub-cell creations and destructions cause memory allocations and
disposals. However, we believe that it is possible to avoid wild memory usage leveraging
the sub-cell creation patterns, either through a smart memory allocator or a memory
aware data structure.

Finally, Table 3.9 summarizes the space, update and query complexities of the pre-
sented algorithms, Count-Min and ECM-Sketch.

3.2.5 Distributed Windowed Count-Min Algorithm

The F matrix is a linear-sketch data structure (cf., Section 2.2.3), which is a suitable
property in a distributed context. Each node can run locally the algorithm on its own
stream σi (i ∈ [s]). To obtain the global matrix the coordinator has to sum 3 all the all
the Fi matrices (i ∈ [s]), F =

⊕
i∈[s] Fi. The coordinator would then able to provide the

frequency estimation for each item on the global distributed stream σ = σ1 ∪ . . . ∪ σs.
Taking inspiration from [33], we can de�ne the Distributed Windowed Count-Min

(DWCM) algorithm, which sends the Fmatrix to the coordinator each εM items. DWCM
can be applied to the four aforementioned algorithms, resulting in a distributed frequency
(ε, δ)-additive-approximation in the sliding windowed functional monitoring model.

Theorem 3.9 (DWCM Communication Complexity). DWCM communication complex-
ity is O(s

ε2
log 1

δ logM) bits per window.

Proof. In each window and for each node Si (i ∈ [s]), DWCM sends the F matrix at
most M

εM = 1/ε times. Thus the communication complexity is O(s
ε2

log 1
δ logM) bits per

window.

Theorem 3.10 (DWCM Approximation). DWCM introduces an additive error of at
most sεM , i.e, the skew between any entry (ı, ) of the global F matrix at the coordinator
and the sum of the entries (ı, ) of the Fi matrices (i ∈ [s]) on nodes is at most sεM .

Proof. Similarly to [33], the coordinator misses for each node Si (i ∈ [s]) at most the last
εM increments. Then, the entries of the global F at the coordinator cannot fall behind
by more than sεM increments with respect to the current sum of the s local matrices
Fi. Thus DWCM introduces at most an additive error of sεM .

3The
⊕

operator sums the matrices entry by entry.

3.3. ITEM VALUES ESTIMATING 27

3.2.6 Time-based windows

We have presented the algorithms assuming count-based sliding windows, however all of
them can be easily extended to time-based sliding windows. Recall that in time-based
sliding windows the steps de�ning the size of the window are time ticks instead of item
arrivals.

In each algorithm it is possible to split the update code into the subroutine increasing
the F matrix and the subroutine phasing out expired data (i.e., decreasing the F matrix).
Let denote the former as updateSample and the latter as updateTick. The algorithm
runs the updateSample subroutine at each item arrival, and the updateTick subrou-
tine at each time tick. Note that time-stamps have to be updated using the current time
tick count.

This modi�cation a�ects the complexities of the algorithms, since M is no longer the
number of items, but the number of time ticks. Thus, depending if the number of item
arrivals per time tick is greater or lower than 1, the complexities improve or worsen

3.3 Item Values Estimating

In this section we introduce a generalization of the frequency estimation problem, i.e.,
the item value estimation problem, as well as our solution Value Estimator (VALES).

In many streaming applications, such as centrality computation [50] in social net-
works, we want to known the value of a function ψ(t) for each identi�er t read from
the stream. Since storing the value of ψ for each distinct item could not be feasible for
memory constraints, then ψ(t) is computed again and again, each time t shows up. If
the function ψ is steady (or steady for long enough time frames), computing it more
than once is a waste of computational resources. To reduce the amount of re-calculation
of ψ, a typical approach is to store 4 the most frequent couples (t, ψ(t)) in a caching
system [38,60,68], i.e., a data structure with a small memory footprint.

Problem statement � The solution we propose takes a di�erent angle: design
a sketch returning an approximation ψ̂(tj) of ψ(tj) for all items t ∈ [n], i.e., not only
the ones retained by the caching eviction policy. Let ψ : [n] → N+ be an unknown and
steady function, in other words its value can be di�erent for each tuple t but does not
change over time (i.e., independent from j), then we can set ψ(tj) = ωt.

Problem 3.11 (Item Value Estimation). Given a stream σ = 〈(t1, ωt1), · · · , (tm, ωtm)〉
where ωt ∈ N+ is the value carried by item tj (i.e., ωt is independent from j), provide
an estimate ω̂t of the value ωt for all items t ∈ [n].

Notice that, setting ωt = 1, ∀t ∈ [n] reduces the item value estimation problem to
frequency estimation. In addition, all the algorithms solving the frequency estimation
problem presented previously also solve the item value estimation problem restricted to
ωt = C,∀t ∈ [n], where C ∈ N+ is a known constant.

3.3.1 Value Estimator Algorithm

This section describes the details of the Value Estimator (VALES) algorithm, while
Section 3.3.2 presents its theoretical analysis.

4there are several cache eviction or admission policies.

28 CHAPTER 3. FREQUENCY ESTIMATION

Listing 3.10 � VALES Algorithm.

1: init (r, c) do
2: F, W← 0r,c
3: h1, . . . , hr : [n]→ [c] . r hash functions from a 2-universal family.
4: end init
5: function update(t, ωt)
6: for ı = 1 to r do
7: F[ı, hı(t)]← F[ı, hı(t)] + 1
8: W[ı, hı(t)]←W[ı, hı(t)] + ωt
9: end for
10: end function
11: function getEstimation(t) . returns ω̂t
12: ı← arg minı∈[r]{F[ı, hı(t)]}
13: return W[ı, hı(t)]/F[ı, hı(t)]
14: end function

VALES (cf., Listing 3.10) maintains two matrices the �rst one, denoted as F, tracks
the tuple frequencies f̂t; the second one, denoted as W, tracks the tuples cumulated
carried values ωt× f̂t. Both matrices share the same size r×c, where r = log 1

δ and c = e
ε ,

and hash functions. The latter is the generalized version of the Count-Min presented in
Section 3.1, where the entries associated with tuple t are increased with the value of ωt.
VALES updates (Lines 5�10) both matrices for each couple (tj , ωt) read from the stream.
Ideally, we would like that

∃ı,F[ı, hı(t)] = ft and W[ı, hı(t)] = ωtft

Then, we would be able to return the exact value of ωt = W[ı, hı(t)]/F[ı, hı(t)]. However,
as for the Count-Min, since ε� [n], several items collide in the same entry. To minimize
the impact of these collisions on the estimation of ωt, VALES (i) retrieve from F the
coordinates (ı,  = hı(t)) of the entry associated with t with the smallest value (Line 12);
then (ii) it returns the ratio ω̂t = W[ı, hı(t)]/F[ı, hı(t)] (Line 13).

Theorem 3.12 (VALES Time complexity). For each tuple read from the input stream
and for each query, the time complexity of VALES is O(log 1/δ).

Proof. By Listing 3.10, for each item read from the input stream, the algorithm incre-
ments an entry per row of both the F and W matrices. Since each has log 1/δ rows, the
resulting update time complexity is O(log 1/δ). Similarly, each query requires to read an
entry per row of both the F and W matrices. Since each has log 1/δ rows, the resulting
query time complexity is O(log 1/δ).

Theorem 3.13 (VALES Space Complexity). The space complexity of VALES is O(1ε log 1
δ

(logm+ log n)) bits.

Proof. VALES stores two matrices of size log(1δ)× e
ε of counters of size logm. In addition,

it also stores a hash function with a domain of size n. Then the space complexity of
VALES is O

(
1
ε log 1

δ (logm+ log n)
)
bits.

3.3. ITEM VALUES ESTIMATING 29

3.3.2 Theoretical Analysis

VALES uses two matrices, F and W, to estimate value ωt of each tuple t of σ. Let
start considering a single row ı ∈ [r] of the two matrices and denote with Ct and with
Vt the values of the entries associated to item t in this row, i.e., Ct = F[ı, hı(t)] and
Vt = W[ı, hı(t)]. From the Count-Min algorithm, and for any t ∈ [n], we have for a given
2-universal hash function h,

Ct =
n∑

u=1

fu1{h(u)=h(t)} = ft +
n∑

u=1,u6=t
fu1{h(u)=h(t)}.

and

Vt = ftωt +

n∑

u=1,u6=t
fuωu1{h(u)=h(t)},

Let us denote by minω and maxω the respectively minimum and maximum values of
ωt,∀t ∈ σ. We have trivially

Vt
Ct
≤
ft maxω +

∑n
u=1,u6=t fu maxω 1{h(u)=h(t)}

ft +
∑n

u=1,u6=t fu1{h(u)=h(t)}
,

and thus

minω ≤
Vt
Ct
≤ maxω.

This �rst bound guarantees that, at least, the estimation ω̂t returned by VALES be-
long to the interval of [minω,maxω].

For any ı = 0, . . . , n − 1, we denote by Uı(t) the set whose elements are the subsets
of [n] \ {t} whose size is equal to ı, that is

Uı(t) = {J ⊆ [n] \ {t} | |J | = ı}.

We have U0(t) = {∅}.
For any t ∈ [n], ı = 0, . . . , n − 1 and J ∈ Uı(t), we introduce the event B(t, ı, J)

de�ned by

B(t, ı, J) = {h(u) = h(t), ∀u ∈ J and h(u) 6= h(t),∀u ∈ [n] \ (J ∪ {t})}
From the independence of the h(u), we have

P[B(t, ı, J)] =

(
1

c

)ı(
1− 1

c

)n−1−ı
.

Let us consider the ratio Vt/Ct. For any ı = 0, . . . , n, we de�ne

Rı(t) =

{
ftwt +

∑
u∈J fuwu

ft +
∑

u∈J fu
, J ∈ Uı(t)

}
.

We have R0(t) = {wt}. We introduce the set R(t) de�ned by

R(t) =

n−1⋃

ı=0

Rı(t).

Thus with probability 1, we have Vt/Ct ∈ R(t).

30 CHAPTER 3. FREQUENCY ESTIMATION

Theorem 3.14 (VALES Expected Value). Let Ct and Vt be the values of the entries
associated with item t in row ı, i.e., Ct = F[ı, hı(t)] and Vt = W[ı, hı(t)], then

E[Vt/Ct] =

∑n
u=1wu − wt
n− 1

− c(
∑n

u=1wu − nwt)
n(n− 1)

(
1−

(
1− 1

c

)n)
.

Proof. Let x ∈ R(t). We have

P[Vt/Ct = x] =
n−1∑

ı=0

∑

J∈Uı(t)

P[Vt/Ct = x | B(t, ı, J)]P[B(t, ı, J)]

=
n−1∑

ı=0

(
1

c

)ı(
1− 1

c

)n−1−ı∑

J∈Uı(t)

P[Vt/Ct = x | B(t, ı, J)]

=
n−1∑

ı=0

(
1

c

)ı(
1− 1

c

)n−1−ı ∑

J∈Uı(t)

1{x=X(t,J)}.

where X(t, J) is the fraction:

X(t, J) =
ftwt +

∑
u∈J fuwu

ft +
∑

u∈J fu
.

Note that we have
∑

x∈R(t) 1{x=X(t,J)} = 1, thus

E[Vt/Ct] =
n−1∑

ı=0

(
1

c

)ı(
1− 1

c

)n−1−ı ∑

J∈Uı(t)

∑

x∈R(t)

x 1{x=X(t,J)}

=
n−1∑

ı=0

(
1

c

)ı(
1− 1

c

)n−1−ı ∑

J∈Uı(t)

ftwt +
∑

u∈J fuwu

ft +
∑

u∈J fu
.

Applying the Markov's inequality to Theorem 3.14, we have that VALES returns an
(ε, δ)-additive-approximation of ωt.

Finally, let us assume that all the ft are equal, that is for each t, we have ft = m/n.
Simulations (cf., Sections 7.2.3 and 8.3) tend to show that the worst cases scenario of
input streams are exhibited when all the items show the same number of occurrences in
the input stream. We get

P[Vt/Ct = x] =

n−1∑

ı=0

(
1

c

)ı(
1− 1

c

)n−1−ı ∑

J∈Uı(t)

1{x=(wt+
∑
u∈J wu)/(ı+1)}.

Notice that this result does not depend on m.

3.3. ITEM VALUES ESTIMATING 31

Chapter Summary

This chapter discussed the frequency estimation problem and presented two
algorithms, Proportional WCM and Splitter WCM, solving the frequency
estimation problem in the sliding window. It has also presented the value
estimation problem, which generalises the frequency estimation problem, and
our proposed solution VALES.

The next chapter deals with a tightly related problem, the heavy hitters
problem.

Chapter 4

Heavy Hitters

In this chapter we look at the heavy hitters problem. After discussing the related work,
in Section 4.2 we provide a mean case analysis for the Space Saving, a well known
algorithm that deterministically solves this problem. Section 4.3 introduces Distribu-
ted Heavy Hitters Estimator, an (ε, δ)-approximation for the distributed heavy hitters
problem in a more general model than the one considered in previous works. Finally,
Section 4.4 de�nes the balanced partition problem, i.e., build a partition K of the streams
item universe [n] with exactly k parts, where the parts are balanced. Section 4.4 also pre-
sents the Balanced Partitioner algorithm that, reusing the results shown in Section 4.2,
builds a (1 + θ)-optimal balanced k-partition.

Real-time analysis of network tra�c [39] is one among the application �elds of data
stream techniques. A speci�c problem that has claimed a lot of attention in the commu-
nity focuses on the tracking of frequent packets and/or IP addresses in the tra�c �owing
through a router. For instance, this information can be used for accounting, performance
tuning or detecting malicious behaviour. The abstraction that is used in general to cap-
ture, among others, the notion of frequent packets and/or IP addresses is heavy hitters.

An item t of a stream is called heavy hitter if the empirical probability pt with which
item t appears in the stream satis�es pt ≥ θ for some given threshold 0 < θ ≤ 1. In other
words, a heavy hitter is an item t which frequency ft satis�es ft ≥ θm. In the following
we call sparse items the items of the stream that are not heavy hitters. We denote with
HH ⊆ [n] and SI ⊆ [n] the set of heavy hitters and of sparse items. There are many
di�erent de�nitions and related problems to heavy hitters, such as approximate counts
and the θ-frequent problem. However, there are two main de�nitions for the heavy hitters
problem: simply identifying the heavy hitters, or also provide an estimation of the their
frequencies. Obviously, the second is a harder de�nition of the problem, and is the one
that we consider in this thesis.

Notice that there is a tight relation between the heavy hitters and the frequency
estimation problems since one can be reduced to the other, but with some limitations.
Knowing the frequency of all the items let you also identify the items satisfying the
heavy hitters problem. On the other hand, one could argue that the heavy hitters are
the most representative elements of the stream. Thus, a possible solution to the frequency
estimation problem would be to return the estimated frequencies for the heavy hitters
and 0 for the sparse items.

Moreover, the heavy hitters problem can be reduced to the top-k (i.e., �nding the k
most frequent items) problem. Given the heavy hitters threshold θ, once can compute

33

34 CHAPTER 4. HEAVY HITTERS

the maximum number of possible heavy hitters in the stream (i.e., when the distribution
is uniform). Thus, setting k = d1/θe, an algorithm solving the top-k problem (and pro-
viding their frequency estimation) also solve the heavy hitters problem. Notice that the
converse does not hold: without any additional information on the stream distribution,
one cannot derive the correct value of θ given the value of k. Finally, one can reduce the
top-k problem to the frequency estimation problem.

4.1 Related Work

Data streaming model � Misra and Gries [70] provide an elegant deterministic
sampling algorithm for this problem. The MG algorithm keeps a associative array MG of
〈item, counter〉 pairs. For each item t, if the associated counter exists in MG, then
it is increased. Otherwise, if there is room, a new pair is added to MG. When |
MG |≥ d1εe − 1, where ε ≤ θ for each new item (i.e., not yet in MG), all counters
are decreased. If a counter reaches 0, the pair is removed from MG. At all times there
are no more than d1εe − 1 pairs in MG, and using a slightly clever data structure, we
achieve a O(1ε (logm+ log n) space complexity and O(1) for time complexity. The heavy
hitters are the items contained in MG, and their under-estimation is the value of the
associated counter which satis�es the following quality bounds: ft − εm ≤ f̂t ≤ ft for
any 0 < ε ≤ θ ≤ 1.

Sticky Sampling and Lossy Counting are two well known algorithms proposed by
Manku and Motwani [67]. However their space complexities, respectively O(1ε log 1

θδ
(log n+logm)) bits and O(1ε log εm (log n+logm)) bits have been superseded by another
counter-based solution: the Space Saving algorithm presented by Metwally et al. [69].
Space Saving has two parameters: θ and ε, such that 0 < ε < θ ≤ 1. Similarly to MG [70],
it maintains an associative array SS of 〈item, counter, error〉 triples which maximum
size is set to d1/εe. The heavy hitters are all items in SS where counter − error ≥ θm
(cf., Listing 4.1), and their frequency estimation is the value of counter. The over-
estimation made by the algorithm on the estimated frequency f̂t of heavy hitter t veri�es
ft + εm ≥ f̂t ≥ ft for any 0 < ε < θ ≤ 1.

Windowed model� Golab et al. [47] propose a deterministic algorithm providing
the heavy hitters with sliding windows with a space complexity of O(n log 1/ε + Mε/θ
(log 1/ε + logM)) bits. The following year, Arasu and Gurmeet Singh [12] provide a
solution for ε-approximate frequency counts (similar to heavy hitters) with jumping win-
dows. They use a data structure CM,ε, called sliding window sketch, made of dlog 4

εe
levels each made of contiguous blocks (i.e., sub-windows). The higher level has a single
block, and, going down, the number of block doubles at each level. Each block uses
the Misra-Gries [70] algorithm to track frequent items. Blocks are said to be active if
all its sample belong to the current window. The estimation provided by higher-level
blocks is more accurate than the estimation from lower-level blocks. The estimation
over the active window is the sum of the estimations from the non-overlapping active
blocks, starting from the highest level. The sliding window sketch has a space complex-
ity of O(1ε log2 1

ε) bits. They also apply the sliding window sketch to ε-approximating
quantiles and provide a randomized version of both sliding window algorithms. Homen
and Carvaldo [58], building on top of their previous contribution [57], extend the Space
Saving [69] algorithm to the sliding window mode. The basic principle is to enrich the
entries of the SS data structure with histograms tracking the counts in sub-windows of

4.1. RELATED WORK 35

Listing 4.1 � Space Saving algorithm.

1: init (θ, ε) do

2: SS: an associative array of 〈item, counter, error〉 triples
3: min← 0
4: m← 0
5: end init

6: function update(tj) . reads item tj from the stream σ
7: m = m+ 1
8: if 〈t, counter, error〉 ∈ SS then

9: SS ← SS ∪ 〈t, counter + 1, error〉
10: else if |SS| < 1

ε then

11: SS ← SS ∪ 〈t, 1, 0〉
12: else

13: let 〈v, counter, error〉 ∈ SS be such that counter = min
14: SS ← SS \ {〈v, counter, error〉}
15: SS ← SS ∪ 〈t, counter + 1, counter〉
16: end if

17: min← smallest value of counter in SS
18: end function

19: function getHeavyHitters() . returns detected heavy hitters as a list of 〈t, f̂t〉
20: for all 〈t, counter, error〉 ∈ SS do

21: if counter − error ≥ bθmc then
22: ret← ret ∪ 〈t, counter〉
23: end if

24: end for

25: return ret
26: end function

�xed sizes.

Distributed model � The detection of heavy hitters originating from multiple
streams (i.e., distributed heavy hitters problem) has �rst been studied by Manjhi et
al. [66]. In their paper, the authors propose a solution for detecting recent distributed
heavy hitters by relying on a multi-level structure where each node must guarantee a
degree of precision that depends on its level in the hierarchical structure. This structure
helps to minimise the communication between nodes and the central coordinator. On
the other hand, they make the assumption that distributed heavy hitters are locally
detectable at each node. In [96], the authors do not assume any more that nodes can
locally detect distributed heavy hitters, however they suppose that there exists a gap
between sparse items frequencies and heavy hitters ones. That is, items that appear at
least θm times from the inception of the stream are heavy hitters, while there are no
items whose frequency belongs to an interval (aθm, θm), with 0 < a < 1. Based on this
assumption, the authors can accurately detect the presence of distributed heavy hitters,
however they do not provide their frequency estimation. In [97], the authors propose a
solution that identi�es items whose aggregated frequency over the distributed streams
exceeds some given threshold, irrespective of the size of the input streams. Thus, their
motivation is to detect heavy hitters only during a �xed time interval (note that the same
de�nition has been adopted by [96]). The authors in [97] suppose that each node locally
knows the exact frequency of all the items it will receive, prior to the algorithm execution.
This model is commonly called the �distributed bag model�. Finally, Yi and Zhang

36 CHAPTER 4. HEAVY HITTERS

in [93] propose a solution in the spirit of the distributed functional monitoring model to
minimise the communication cost between the nodes and the coordinator. However each
node maintains at any time the exact frequency of each received item in its stream, i.e.,
their solution is not space e�cient.

4.2 Space Saving Mean Case

In the data streaming �eld, most of the research assumes that the input stream is ma-
nipulated by an adversary. Such worst case scenario rarely occurs in many real-world
applications and do not capture the notion of average case analysis [51]. This is in parti-
cular the case for the Space Saving algorithm [69] where the accuracy bounds provided
by the authors are for a worst case scenario. In order to provided a more �tting ana-
lysis for applications where we want to use the Space Saving algorithm in a non worst
case scenario, we derive in Theorem 4.1 the expected error made by the Space Saving

algorithm.

Theorem 4.1 (Space Saving Mean Error).
For any 0 < ε < θ, the expected error made by Space Saving algorithm to estimate the
frequency of any heavy hitter t is bounded by 1− ε, that is,

0 ≤ E[f̂t]− ft ≤ 1− ε,

where f̂t represents the estimated frequency of item t.

Proof. We denote by p = (p1, . . . , pn) the probability distribution of the occurrence of
the items 1, . . . , n in the input stream. For j = 1, . . . ,m, we denote by Yj the value of the
item at position j in the stream. These random variables are supposed to be independent
and identically distributed with probability distribution p. We thus have P[Yj = t] = pt
and ft = mpt. Items in the stream are successively selected at each discrete time j ≥ 1,
and are inserted in the Space Saving bu�er (if not already present) according to the
Space Saving algorithm (cf., Listing 4.1). In the following SS(j) denote the content of
Space Saving at discrete time j. We necessarily have |HH| ≤ 1/θ < 1/ε (where HH is
the set of heavy hitters). It has been proven in [69] that at time m all the items t ∈ HH
are present in SS(m). It follows that for every t ∈ HH there exists a random time
Zt ≤ m such that item t is inserted for the last time in SS at time Zt (i.e., item t was
not present in the Space Saving bu�er at time Zt − 1 and thus replaces another item),
and is never removed from SS afterwards. More precisely, we have

Zt = inf{j ≥ 1 | t ∈ SS(a) for every a = j, . . . ,m}.

For every t ∈ SS(j), we denote by Vt(j) the counter value of item t at discrete time j.
For every t ∈ HH, by de�nition of Zt item t is not in the bu�er at time Zt − 1, thus we
have,

Vt(Zt) = min{Vv(Zt − 1), v ∈ SS(Zt − 1)}+ 1,

and again by de�nition of Zt, we have, for every j = Zt + 1, . . . ,m,

Vt(j) = Vt(j − 1) + 1{Yj=t}.

Putting together these results, we get

Vt(m) = min{Vv(Zt − 1), v ∈ SS(Zt − 1)}+ 1 +Nt(Zt + 1,m),

4.3. DISTRIBUTED HEAVY HITTERS 37

where Nt(a, a
′) =

∑a′

j=a 1{Yj=t} is the number of occurrences of item t in the stream bet-
ween discrete instants a and a′. It is easy to see that Nt(a, a

′) has a binomial distribution
with parameters a′ − a+ 1 and pt. This relation can also be written as

0 ≤ Vt(m)−Nt(1,m) = min{Vv(Zt − 1), v ∈ SS(Zt − 1)}+ 1−Nt(1, Zt).

Note that this also implies that Nt(1, Zt) ≤ min{Vv(Zt − 1), v ∈ SS(Zt − 1)}+ 1.
Since for every j ≥ 1, we have min{Vt(j), t ∈ SS(j)} ≤ εj, we obtain, taking the

expectations,
0 ≤ E{Vt(m)} −mpt ≤ E[Zt − 1]ε+ 1− E[Zt]pt.

This leads to
0 ≤ E[Vt(m)]−mpt ≤ 1− ε+ E[Zt](ε− pt).

By the Space Saving algorithm, Vt(m) represents the estimated frequency of any heavy
hitter t of the input stream, since ε− pt ≤ 0 we �nally get

0 ≤ E[Vt(m)]−mpt ≤ 1− ε.

This analysis assumes sampling with replacement. The same analysis applies to
sampling without replacement (hypergeometric distribution) because this distribution
and the binomial distribution have the same mean.

Using the Markov inequality and the fact that pt ≥ ε, we get for all ε > 0,

P

[
Vt(m)−mpt

mpt
≥ ε
]
≤ 1/ε− 1

mpt
≤ 1− ε

ε2m
.

Note that the last relation shows in particular that the relative error
Vt(m)−mpt

mpt
con-

verges in probability (and thus in law) to 0 when m tends to ∞, i.e., for all ε > 0, we
have

lim
m−→∞

P

[
Vt(m)−mpt

mpt
≥ ε
]

= 0.

4.3 Distributed Heavy Hitters

Identifying distributed heavy hitters has applications in several areas. In a Content De-
livery Network (CDN) [66] with several nodes (e.g., Akamai [4]), the caching policy can
be improved knowing the frequently accessed contents. Considering system monitoring,
detecting that some Dynamically Linked Libraries (DLL) [97] are being modi�ed on a
large number of hosts through the organisation may help tracking down an unknown
malware.

Problem Statement � The distributed heavy problem has �rst been formalised
by Estan and Varghese [39], and then adapted to di�erent contexts. Here we extend
this problem to the general distributed functional monitoring model [31]. Informally,
the distributed heavy hitters problem lies, for the coordinator, in quickly identifying any
item t whose aggregated number of occurrences over the union of the distributed streams
approximately exceeds some given fraction of the total size of all the streams since their
inception. Such an item t is called a distributed heavy hitter.

38 CHAPTER 4. HEAVY HITTERS

Problem 4.2 (Distributed Heavy Hitters). For any given threshold θ ∈ (0, 1], ap-
proximation parameter ε ∈ [0, 1], probability of failure δ ≤ 1/2, and distributed stream
σ = σ1 ∪ . . . ∪ σs the distributed heavy hitters problem consists for the coordinator in

• outputting item t if ft ≥ θm, and
• never outputting item t if ft < (1− ε)θm.

with ft =
∑s

i=1 ft,i and m =
∑s

i=1mi, where mi and ft,i are respectively the size of
sub-stream σi and the frequency of item t in σi.

4.3.1 Distributed Heavy Hitters Estimator Algorithm

We now propose the Distributed Heavy Hitters Estimator algorithm (DHHE) that solves
the distributed heavy hitters problem without making any assumption on the probability
of occurrence of items in σ.

With respect to previous work (cf., Section 4.1), we do not assume that the distributed
heavy hitters are locally detectable. Furthermore, our solution provides an estimation of
the heavy hitters frequencies and is space e�cient.

DHHE requires the knowledge of the probability pt,i, i.e., the empirical probability
of occurrence of item t in the sub-stream σi, for all items t ∈ [n] and for each sub-stream
σi∈[s]. However this information is in general unknown. To overcome this problem,
DHHE runs at each node Si∈[s] an instance of the Count-Min algorithm, which provides

an estimation f̂t of the frequency ft of each item t in the local stream σi. Given this
estimation, we are then able to compute an estimation p̂t,i = f̂t/mi of pt,i.

The Count-Min algorithm strongly relies on 2-universal hash functions, to guarantee
an (ε, δ)-approximation of item frequencies. If all the s nodes use the same set of hash
functions in H, one may argue that the adversary could launch a dictionary attack to
easily tamper with these estimations. In our solution, each of the s nodes locally and
independently chooses at random its hash functions from H. We show in Section 4.3.2
that this does not prevent the coordinator from (ε, δ)-approximating the detection of
distributed heavy hitters.

The pseudo-code of the algorithms run by each of the s nodes and by the coordinator
are respectively provided in Listing 4.2, 4.4 and 4.5. The algorithm works as follows.
Each node Si ∈ I reads on the �y and sequentially its input stream σi. For each received
item tj , node Si updates its Count-Min instance CountMin, and maintains the current
size mi of its input stream, which is the number of items received so far in σi. If p̂t,i ≥ θ
then t is a potential candidate for being a heavy hitter and thus Si keeps track of item
t if not already done (cf., Lines 14�35 of Listing 4.2). This is achieved by maintaining
g bu�ers G1,i, . . . ,Gg,i, where g = blog2 sc + 1 (cf., Figure 4.3) on each node Si. The
interval [θ, 1] is split into g sub-intervals in a geometric way. Each bu�er Gκ,i, whose
size is denoted by νκ, only contains items t whose estimated probability p̂t,i matches the
κ-th interval. That is, bu�er Gκ,i, with 1 ≤ κ ≤ g − 1, contains items t whose estimated
probability p̂t,i veri�es θ + (1− θ)/2κ < p̂t,i ≤ θ + (1− θ)/2κ−1, and Gg contains items t
whose estimated probability p̂t,i satis�es θ ≤ p̂t,i ≤ θ+ (1− θ)/2g−1. The size νκ of each
of bu�er Gκ,i, with 1 ≤ κ ≤ g, is set to dnκ × ρe, where nκ is the maximum number of
items that could �t the κ-th bu�er, and 0 < ρ ≤ 1. Since Gκ,i, for 1 ≤ κ ≤ g−1, contains
items whose estimated probability p̂t,i veri�es θ + (1 − θ)/2κ < p̂t,i ≤ θ + (1 − θ)/2κ−1,
we set nκ to b1/(θ + (1− θ)/2κ)c and ng = b1/θc. Note that for ρ = 1, that is for all κ,
νκ = nκ, if some bu�er say Gκ,i is �lled with νκ items then it means that all the items
t in the stream are uniformly distributed with p̂t,i = θ + (1 − θ)/2κ (and p̂t,i = θ for
κ = g), and thus none of the other bu�ers can receive any single item. In practice ρ is

4.3. DISTRIBUTED HEAVY HITTERS 39

Listing 4.2 � DHHE algorithm at any node Si ∈ I.

1: init (θ, ρ, g, r, c) do
2: for all κ ∈ {1, g − 1} do
3: Gκ,i ← ∅; νκ ← dρ b1/(θ + (1− θ)/2κ)ce; τκ ← (not-active, 0)
4: end for
5: Gg ← ∅; νg ← dρ b1/θce; τg ← (not-active, 0)
6: mi ← 0; Freqi ← ∅; Ji ← ∅
7: CountMin← Count-Min with parameters r and c.
8: end init
9: function update(tj) . reads item tj from the stream σ
10: CountMin.update(t)
11: f̂t ← CountMin.getFreq(t)
12: mi ← mi + 1
13: p̂t,i ← f̂t/mi

14: if p̂t,i ≥ θ then
15: if p̂t,i ≤ θ + (1− θ)/2g−1 then
16: κ← g
17: else
18: κ← min{a ∈ {1, g − 1} | θ + (1− θ)/2a < p̂t,i}
19: end if
20: if t 6∈ Gκ,i then
21: if Gκ,i = ∅ then
22: τκ ← (active, 0)
23: end if
24: Gκ,i ← Gκ,i ∪ {t}
25: if |Gκ,i| = νκ then
26: for all t ∈ Gκ,i do
27: Freqi ← Freqi ∪ {〈t, f̂t〉}
28: end for
29: send message 〈warn,mi, F reqi〉 to coordinator
30: Gκ,i ← ∅
31: Freqi ← ∅
32: τκ ← 〈not-active, 0〉
33: end if
34: end if
35: end if
36: for all active timer τκ, k ∈ {1, g} do
37: τκ ← (active, τκ + 1)
38: if τκ > Hb1/θc/θ and Gκ,i 6= ∅ then
39: for all t ∈ Gκ,i do
40: Freqi ← Freqi ∪ {〈t, f̂t〉}
41: end for
42: send message 〈warn,mi, F reqi〉 to coordinator
43: Gκ,i ← ∅
44: Freqi ← ∅
45: τκ ← 〈not-active, 0〉
46: end if
47: end for
48: end function

40 CHAPTER 4. HEAVY HITTERS

n2 = 3, ⌫2 = 2

n3 = 6, ⌫3 = 3

n4 = 10, ⌫4 = 5

n5 = 25, ⌫5 = 13

G1,i

G2,i

G3,i

G4,i

G5,i

n1 = 1, ⌫1 = 1

Figure 4.3 � Data structure on node Si ∈ I, with θ = 0.04, ρ = 0.5 and s = 20.

set to a value less than or equal to 1/2. When some bu�er Gκ,i is full (i.e, Gκ,i contains
νκ items), node Si sends all the items of Gκ,i, together with their frequency counts and
the stream size mi to the coordinator (cf., Lines 25�32 of Listing 4.2), and empties Gκ,i.
Upon receipt of such a bu�er, the coordinator queries the other s − 1 nodes to get the
frequency of each of the items sent by node Si, if any (cf., Lines 6�11 of Listing 4.5).

Combining all these pieces of information, the coordinator checks whether any of
these items is a distributed heavy hitter or not (cf., Lines 14�18 of Listing 4.5).

Finally, since the distribution of the items in σi is unknown, one cannot guarantee that
νκ distinct items with a probability that matches Gκ,i exist in the stream σi. Actually,
even no item can appear in the stream with those probabilities. Thus to guarantee that
all the potential heavy hitters in Gκ,i are at some point sent to the coordinator, a timer
τκ is set upon receipt of the �rst item in Gκ,i, and is incremented each time node Si reads
an item from the input stream σi. Timeout τκ of Gκ,i is set to Hb1/θc/θ, where Hı is the
ı-th harmonic number de�ned by H0 = 0 and Hı = 1+1/2+ · · ·+1/ı. Lemma 4.3 shows
the derivation of this timeout. Each time the coordinator detects a distributed heavy
hitter t, it informs all the s nodes that t is such (this amounts to returning GI in Line 20
of Listing 4.5 to both the application and the s nodes). Nodes locally enqueue t (in FIFO
order) in a speci�c bu�er, denoted by Ji, whose size is equal to dρ/θe. Hence, when a
node Si detects that t is a potential heavy hitter, if t belongs to Ji node Si does not
notify the coordinator. Note that as the oldest detected heavy hitters are progressively
dequeued, then Ji contains at any time the last dρ/θe heavy hitters. The rationale of this
feedback is to prevent nodes from repeatedly informing the coordinator about already
detected distributed heavy hitters.

4.3.2 Theoretical Analysis

In this section we provide an upper bound of the number of bits communicated between
the s nodes and the coordinator (cf., Theorem 4.4), and show that DHHE is an (ε, δ)-
approximation of the distributed heavy hitters problem, for any ε ∈ (0, 1) and probability
of failure δ ≤ 1/2, i.e., solves Problem 4.2.

For the sake of clarity, we �rst perform the analysis on FKDHHE , which is the Full
Knowledge version of DHHE, i.e., FKDHHE knows the exact frequencies ft of each item
t, and thus also the exact probabilities of occurrence pt. Next we show that DHHE, which
instead relies on the estimation provided by the Count-Min, is an (ε, δ)-approximation
of FKDHHE .

4.3. DISTRIBUTED HEAVY HITTERS 41

Listing 4.4 � DHHE algorithm at any node Si ∈ I (contd.)

49: upon receive 〈request, ID〉 from coordinator do
50: for all t ∈ ID do
51: Freqi ← Freqi ∪ {〈t, CountMin.getFreq(t)〉}
52: if ∃κ ∈ [g], t ∈ Gκ,i then
53: Gκ,i ← Gκ,i \ {t}
54: end if
55: end for
56: send message 〈reply,mi, F reqi〉 to C
57: end upon
58: upon receive 〈detection,GI〉 from coordinator do
59: enqueue GI in Ji
60: end upon

Listing 4.5 � DHHE algorithm at the coordinator.

1: upon receive 〈warning,mi, F reqi〉 from node Si do
2: m← mi

3: GI ← Freqi
4: ID ← identi�ers in Freqi
5: for all S ∈ I \ {Si} do
6: send message 〈request, ID〉 to Si
7: end for
8: for all received message 〈reply,m, F req〉 from S do
9: m← m+m

10: for all 〈v, f̂v,〉 ∈ Freq ∧ 〈v, f̂v〉 ∈ GI do

11: GI ← GI ∪ {〈v, f̂v + f̂v,〉}
12: end for
13: end for
14: for all (v, f̂v) ∈ GI do
15: if f̂v < θm then
16: GI ← GI \ {〈v, f̂v〉}
17: end if
18: end for
19: if GI 6= ∅ then
20: return GI
21: send message 〈detection,GI〉 to each Sı ∈ S
22: end if
23: end upon

42 CHAPTER 4. HEAVY HITTERS

FKDHHE Communication Complexity

To Maximise the communication between the s nodes and the coordinator the adversary
has to manipulate the s input streams so that the time needed to locally �ll the bu�ers
is minimised, and thus the frequency at which nodes communicate with the coordinator
is maximised. Theorem 4.4 shows that this is achieved if, for all Si ∈ I, all the heavy
hitters appear with the same probability in σs.

Communication between the s nodes and coordinator is triggered each time a bu�er
becomes full or upon timeout. Indeed, we have to determine the number of items, in
expectation, that must be received at any node Si ∈ I to locally �ll bu�er Gκ, 1 ≤ κ ≤ g.
To analyse the communication cost, we study a generalisation of the coupon collector
problem [10,11,41]. The number Ta,n(p) is the number of items that have to be read from
a stream with a probability distribution p in order to collect a di�erent items belonging
to [n].

In the following, we denote by Ua,n all the sub-sets of items of [n] whose size is exactly
equal to a, that is Ua,n = {V ⊆ [n] | |V | = a}. Note that we have U0,n = {∅}. For every
V ∈ Ua,n, we de�ne PV =

∑
t∈V pt, with P∅ = 0.

For each κ = 1, . . . , g − 1, we denote with Vκ the set of all the items t in σi whose
probability of occurrence pt,i veri�es θ + (1 − θ)/2κ < pt,i ≤ θ + (1 − θ)/2κ−1, i.e., the
items that can be stored in Gκ. We can than de�ne vk = |Vκ| and we have vk ≤ nk (recall
from Section 4.3.1, that nκ represents the maximal number of items whose probability of
occurrence is equal to the lower bound of the range, that is nκ = b1/(θ + (1− θ)/2κ)c).
For κ = g, we denote by Vg the set of all the items t in σi whose probability of occurrence
pt,i veri�es θ < pt,i ≤ θ + (1 − θ)/2g−1. We set vg = |Vg|, and we have vg ≤ ng with
ng = b1/θc. We also de�ne pκ,i = (pi)t∈Vκ . Hence, Ua,vκ = {V ⊆ Vκ | |V | = a}, and for
every V ∈ Ua,vκ , PV =

∑
t∈V pt,i.

Then, for each node Si ∈ I, the expected number of items that need to be recei-
ved from a stream σi with a probability distribution pi to �ll bu�er Γκ is given by
E[Tνκ,Vκ(pi)].

Timer Dimensioning � The lenght of the timer τκ∈[g] is constrained by two
opposite needs. A short timer yields a better detection latency but sends the bu�er more
often. On the other end, a long timer reduces the communication but may delay the
detection of a distributed heavy hitter. The basic idea is to set a length that matches
the expected time to �ll the bu�er, independently of the frequency distribution. In [9]
we prove the following lemma:

Lemma 4.3 (Coupon Collector Expected Value). Let For every n ≥ 1, a = 1, . . . , n,
and 0 < θ ≤ pt for t ∈ [n], we have

E[Ta,n(p)] ≤ Hb1/θc/θ

Thus in accordance with Lemma 4.3, we set for every κ = 1, . . . , g, τκ = Hb1/θc/θ.

Theorem 4.4 (FKDHHE Communication Cost Upper Bound). The FKDHHE exchanges
in average no more than

2ms(logm+ log n)

g∑

κ=1

νκ∑τ−1
ı=0 P[Tνκ,nκ(uκ) > ı]

bits. (4.1)

where uκ is the uniform distribution with n items, i.e., ∀t ∈ Vκ, ut,κ = 1/νκ

4.3. DISTRIBUTED HEAVY HITTERS 43

Proof. From Listings 4.2, 4.4 and 4.5, node Si ∈ I triggers a transmission with the
coordinator each time one of its bu�ers is full or upon timeout. Thus, assuming that Si
maintains a single bu�er Gκ,i, then for mi large, the expected number of times node Si
sends the content of Gκ,i to the coordinator, denoted Cκ,i, veri�es

Cκ,i ≤
mi

E[min(Tνκ,vκ(pκ,i)), τ]
=

mi∑τ−1
ı=0 P[Tνκ,vκ(pκ,i) > ı]

,

where P[Tνκ,vκ(pκ,i) > a] =

νκ−1∑

ı=0

(−1)νκ−1−ı
(
vκ − ı− 1

vκ − νκ

) ∑

V ∈Sı,vκ

(p0 + PV)a.

It has been observed (Theorem 3 in [10]) that for vectors pκ,i = (pt,i)t∈Vκ and with 1

p0,κ = 1− PVκ and 0 < θ ≤ pt,i,

P[Tνκ,vκ(uκ) > a] ≤ P[Tνκ,vκ(pκ,i) > a].

Thus, we have

Cκ,i ≤
mi∑τ−1

ı=0 P[Tνκ,vκ(pκ,i) > ı]
≤ mi∑τ−1

ı=0 P[Tνκ,nκ(uκ) > ı]
.

Finally, we need to determine the number of bits sent each time bu�er Gκ,i is full or upon
timeout. From Listing 4.2, the sending of message warning requires logmi + νκ(log n+
logmi) bits to be transmitted to the coordinator (where logmi represents the number of
bits needed to code item frequencies, and log n the one needed to code item identi�ers).
By Listing 4.5, this triggers a round trip communication between the coordinator and
the remaining s− 1 nodes to collect the frequencies of all potential heavy hitters of Gκ,i
(Line 56 of Listing 4.4 and Line 6 of 4.5). This generates respectively s− 1 messages of
νκ log n bits from the coordinator and a message of logmi′ +νκ(logmi′ + log n) bits from
each node Si′ ∈ I 6= Si, where mi′ is the size of σi′ . As the sum of all the local streams
is equal to m, the number of bits sent because Gκ,i is full is less than 2sνκ(logm+ log n).
Thus, the fact that Cκ,i must be computed for all the bu�ers at every node Si ∈ I, allows
us to complete the proof of the lemma.

Note that when θ → 0, which is the case in the distributed heavy hitters problem, we
have τ →∞, and the denominator in Relation 4.1 tends to nκ(Hnκ −Hnκ−νκ) [8].

FKDHHE Correctness

We investigate whether malicious nodes can prevent the detection of a heavy hitter. This
amounts to showing that, for any given threshold θ ∈ (0, 1] and approximation parameter
ε ∈ (0, 1], the adversary cannot (by �nely distributing the occurrences of item t among
the s streams) compel the coordinator to return any items t such that ft < (1 − ε)θm
and cannot prevent the coordinator from returning all items t such that ft ≥ θm. We
now prove that the FKDHHE algorithm guarantee such properties.

1Notice that PVκ may be smaller than 1 and then pκ,i is not a probability distribution. To overcome
this issue we introduce the item 0 with probability of occurrence p0,κ. Item 0 can be drawn but does
not count towards the number of distinct items collected

44 CHAPTER 4. HEAVY HITTERS

Theorem 4.5 (FKDHHE Correctness). The FKDHHE algorithm deterministically and
exactly solves the distributed heavy hitters problem (i.e, δ = 0 and ε = 0).

Proof. The proof consists in showing that the algorithm does not output any items t
such that ft < θm (i.e., no false positive) and returns all items t such that ft ≥ θm (i.e.,
no false negative).

Let us �rst focus on false positives. Suppose by contradiction that the coordinator
returns at time j some item t such that ft < θm. Then, by Listing 4.5, this means
that the coordinator has received from some node Si ∈ I a message warning for which
t ∈ Freqi. By Listing 4.2, this can only happens if node Si has identi�ed t as a potential
heavy hitter, that is, pt,i ≥ θ (see Line 14 of Listing 4.2). Now, upon receipt of Freqi, the
coordinator collects from the other s−1 nodes the frequency of each item t′ ∈ Freqi, and
in particular t frequency, as well as the current size of their input stream (cf., Lines 6�11
of Listing 4.5). By Lines 15 and 16, the coordinator removes from GI all the items whose
frequency is less than θm, and in particular item t. Thus the coordinator cannot return
t at time j.

A false negative means that the coordinator does not return a true global heavy
hitter. Suppose that there exists t such that ft ≥ θm and t is not returned. Thus there
exists at least one stream σi such that pt,i ≥ θ. By Lines 15�24 of Listing 4.2, t is inserted
in the bu�er Gκ that matches its occurrence probability pt,i (if not already present). By
Lines 29 and 42, t is sent to the coordinator after at most Hb1/θc/θ reading. By applying
an argument similar to the above case, we get a contradiction with the assumption of
the case.

To summarize, Theorem 4.5 has shown that FKDHHE accurately tracks distributed
heavy hitters, even if they are hidden in distributed streams. In addition, we have
provided with Theorem 4.4 an upper bound on the communication cost between the s
nodes and the coordinator. This bound is reached when each bu�er is fed with items
that all occur with the same probability.

DHHE Approximation

The following lemma shows that using the Count-Min algorithm to estimate p̂t,i = f̂t/m,
DHHE is a (ε, δ)-approximation of FKDHHE , for any ε ∈ (0, 1) and probability of failure
δ ≤ 1/2. This is achieved by sharpening the bounds obtained in [30] and by relying on
Theorem 4.5. In [8] we prove the following lemma:

Lemma 4.6 (Re�ned Count-Min Accuracy Bounds). For a stream σ, for any ε ∈ (0, 1)
and probability of failure δ ≤ 1/2, the Count-Min algorithm with r = dlog(1/δ)e rows and
c = d2(1− θ)/εθe columns guarantees that

∀t ∈ σ,




P
[
f̂t − ft ≥ εft

]
≤ δ if pt ≥ θ

P
[
f̂t − f ≥ ε (m− f)

]
≤ δ otherwise.

Theorem 4.7 (DHHE Approximation). The DHHE algorithm uses O((log n + logm)
log(1/δ) (1/θ − 1)/ε+ (log s log n)/θ) bits of space on each node to (ε, δ)-approximate
tracking of distributed heavy hitters in arbitrarily distributed input streams.

4.4. BALANCED PARTITIONING 45

Proof. By Lemma 4.6 applied to any stream σi of length mi, with Si ∈ I, the Count-Min
algorithm returns an (ε, δ)-approximation of ft,i for all t ∈ σi. Thus, using ((1/εθ)
log(1/δ) (log n+logms)) bits of space, DHHE (ε, δ)-approximates the tracking of poten-
tial distributed heavy hitters at each node Si. We now demonstrate that the coordinator
correctly (ε, δ)-approximates the frequency of each item that has been locally detected
as potential distributed heavy hitter at any node Si. We have,

P


∑

Si∈I
f̂t,i − ft ≥ ε(m− ft)


 = P


∑

Si∈I

(
f̂t,i − ft,i

)
≥ ε(m− ft)




= P


∑

Si∈I
min
u∈[r]

X
(u)
t,i ≥ ε(m− ft)


 ,

where X
(u)
t,i denote the random variable that measures, given u ∈ [r], the excess of

a counter F[u][hu,i(t)] on a speci�c node Si. We clearly have minu∈[r]
∑

Si∈I X
(u)
t,i ≥∑

Si∈I minu∈{1,...,r}X
(u)
t,i . Then, by the mutual independence of the r estimators, and

since E[X
(u)
t,i] ≤ mi−ft,i

r [30], we have

P


∑

Si∈I
f̂t,i − ft ≥ ε(m− ft)




≤
r∏

u=1

P


∑

Si∈I
X

(u)
t,i < ε(m− ft)


 ≤

r∏

u=1

E
[∑

Si∈I X
(u)
t,i

]

ε(m− ft)

=
r∏

u=1

∑
Si∈I (ms − ft,i)
cε(m− ft)

=
r∏

u=1

m− ft
cε(m− ft)

≤ 1

2r
≤ δ.

Similarly, by applying the same argument as above and the one of Lemma 4.6, we get

that P
{∑

Si∈I f̂t,i − ft ≥ εft
}
≤ δ if ft ≥ θm in the global stream σ. Hence, DHHE

(ε, δ)-approximate FKDHHE . By Theorem 4.5, FKDHHE implements the detection of
distributed heavy hitters while being robust to any biased distributed input streams,
which completes the second part of the proof. Finally, by Lemma 4.6, on each node,
O((log n + logmi) log(1/δ)(1/θ − 1)/ε) bits of space are required to (ε, δ)-approximate
item frequencies. Moreover, the space required to locally track potential heavy hitters is
the sum of the size used by each bu�er Gκ,i, that is

∑g
κ=1 νκ log n bits. By construction

νκ ≤ 1/θ. Thus, an upper bound of the total space used is equal to O(1θ log s log n).

4.4 Balanced Partitioning

Load balancing is a problem that arises in many �elds, such as scheduling tasks on multi-
processors, �ow routing in software de�ned networks (SDN), or the partitioning of large
graphs being loaded in a distributed graph-based computation framework [28]. In general
the problem can be described as follows: let [n] be the universe of items t ∈ [n], build a
partition K of k parts, each containing roughly the same number of items. This problem
can trivially be solved through hash functions (e.g., consistent hashing [63] or 2-universal

46 CHAPTER 4. HEAVY HITTERS

hash functions), which can build a fast, deterministic and compact mapping from [n] to
[k].

Instead, if we take into account that each item may have a weight ωt (non negative
integer), then the balancing should be performed with respect to the cumulated weight of
the items in a part. Notice that hash functions are usually designed to uniformly spread
values from their domain to their codomain; if ωt values have a skewed distribution, the
mapping induced by the hash function may not be balanced.

A solution could lie in de�ning an explicit one-to-one mapping between [n] and [k]
that could take into account the skewed value distribution and thus uniformly spread the
weight; this solution is considered impractical as it requires to have precise knowledge
on the input value distribution (usually not known a priori) and imposes a memory
footprint that is proportional to the number of possible values in the input domain to
store the mapping (commonly a huge number if you consider, as an example, the domains
of length-constrained strings or �oating-point numbers).

In this section we propose to translate this problem in the data streaming model, and
tackle it with its techniques.

Problem Statement� We consider a single node S (i.e., s = 1) receiving an input
stream σ = 〈t1, · · · , tm〉 with tj ∈ [n]. Let K be a partition of the item universe [n], i.e.,
∅ /∈ K, ⋃p∈[k]Op = [n] and Op, Op′ ∈ K =⇒ Op∩Op′ = ∅. We can de�ne the weight Wp

of each part Op ∈ K as the sum of the cumulated weights of the items belonging to the
part, i.e., Wp =

∑
t∈Op ωtft. However, the weight ωt an item can be modelled as if, for

each occurrence of item t, the item would appear ωt times and not just once. In other
words, we can rede�ne the frequency of item t in the stream as ft = ωt × f ′t (where f ′t is
the original frequency in the stream).

Thus, we can rede�ne the weightWp of each part Op ∈ K as the sum of the frequencies
of the items belonging to the part, i.e., Wp =

∑
t∈Op ft. Ideally, to be balanced, the

weights of the parts must satisfy the following equation:

∀Op, Op′ ∈ K,Wp = Wp′ . (4.2)

However, whether Equation 4.2 can be satis�ed or not depends on frequency vector f
(e.g., if m mod k 6= 0). Then, to embrace all possible con�gurations, we de�ne the
following problem:

Problem 4.8 (Balanced Partitioning). Given a stream σ = 〈t1, · · · , tm〉 with tj ∈ [n],
build a partition K of [n] with exactly k parts (|K| = k) such that the weights Wp∈[k] =∑

t∈Op ft of the parts Op ∈ K minimize maxp∈[k]Wp.

Notice that, in all con�gurations where Equation 4.2 can be satis�ed, minimizing
maxp∈[k]Wp or Equation 4.2 is equivalent.

4.4.1 Balanced Partitioner Algorithm

In this section we present our solution, Balanced Partitioner (BPART), consisting of a
two-phase algorithm: (i) in the learn phase the algorithm becomes aware of the stream
distribution; (ii) in the following build phase, it constructs a global mapping function
taking into account the previously gathered knowledge of the stream.

4.4. BALANCED PARTITIONING 47

countertuple

Space Saving

vh

h(t)

counter

LEARN BUILD

S
C
H
E
D
U
L
E
R

<SI,HH>

µ × k

⎡1/ε⎤
<tuple,counter>

<bucket,counter>

tuples

data
source

S
B

C

DA E

Figure 4.6 � BPART architecture and working phases.

Greedy Multi Processor Scheduling (GMPS) � A classical problem
in the load balancing literature is to schedule independent tasks on identical machines
minimizing the makespan, i.e., the multiprocessor scheduling problem. We adapt this
problem to our setting: we have (i) a set of jobs B and (ii) a set of instances K. Each
job b ∈ B has an processing time w(b), and each instance Op ∈ K has an total processing
time Wp. The total processing time of instance Op is equal to the sum of the processing
times of the jobs assigned by the scheduling to instance Op. The goal is to associate each
job b ∈ B to an instance Op ∈ K, minimizing the maximum total processing time on
the instances: maxp=1,...,kWp. To solve e�ciently this problem, known to be NP-hard,
a classic solution is the Least Processing Time First (LPTF) approximation algorithm.
The algorithm (referred as GMPS algorithm in the following) assigns the job b ∈ B with
the largest processing time w(b) to the instance Op ∈ K with the lowest load Wp, then
removes b from B and repeats until B is empty. It is proven [49] that this algorithm
provides a (43 − 1

3k)-approximation of the optimal mapping.

As previously mentioned, the challenge in building the partitiong K is mainly due to
the skewness in the input stream distribution (and/or in the values of the weights ωt).
For instance, let u and v be the stream heavy hitters, most likely the partition should
assign them to di�erent parts. In addition, if fu > m/k, the partition should isolate u
in a part. However, a randomly chosen hash function will almost certainly assign other
(sparse) items with u. Even worse, the hash function may end up putting u and v in the
same part.

To cope with these issues, BPART becomes aware of the stream distribution through a
learning phase. It is then able to build a partition that avoids pathological con�gurations
and that achieves close to optimal balancing. Listing 4.7 show the pseudo code for both
phases. BPART (Figure 4.6.A) chooses a hash function h : [n]→ [kµ] randomly from a 2-
universal hash functions family, where µ is a user de�ned parameter (Line 2). Increasing
the co-domain size reduces the collision probability, thus enhances the odds of getting
a good assignment. Having more buckets (elements of h co-domain) than parts, we can
assign buckets to parts minimizing the unbalancing. More in details, BPART feeds to

48 CHAPTER 4. HEAVY HITTERS

Listing 4.7 � BPART Algorithm.

1: init (θ, ε, k, µ) do
2: h : [n]→ [kµ] : a randomly chosen 2-universal hash functions.
3: vh array of size µ× k.
4: SpaceSaving ← Space Saving algorithm instance with parameters ε and θ.
5: HH associative array mapping heavy hitters to parts.
6: SI associative array mapping h buckets to parts.
7: end init
8: function learn(t : item)
9: vh[h(t)]← vh[h(t)] + 1
10: SpaceSaving.update(t)
11: end function
12: function build()
13: SS ← SpaceSaving.getHeavyHitters()
14: for all 〈v, f̂v〉 ∈ SS do
15: vh[h(v)]← vh[h(v)]− f̂v
16: end for
17: 〈 SI, HH 〉 ← GMPS(vh, SS)
18: end function
19: function getPartition(t : item)
20: if t ∈ HH then
21: return HH [t]
22: else
23: return SI

[
h(t)

]

24: end if
25: end function

the previously presented GMPS algorithm the buckets of h as the set of jobs B and the
number of parts/instances k, i.e., |K| = k. The �execution time� of bucket/job b fed to
the GMPS algorithm is the sum of the frequencies of the item belonging to the bucket,
i.e., w(b) =

∑
t∈[n] ft1h(t)=b

The frequencies of h's buckets are computed in the learning phase as follows. BPART
keeps an array vh of size kµ (Line 3). When receiving item t, BPART increments the
entry associated through h with t (Line 9, Figure 4.6.B). In other words vh represents
how h maps the stream σ items to its own buckets.

While this mechanism improves the balancing, it still does not deterministically gua-
rantee that heavy hitters are correctly handled. If the buckets have in average the same
load, the GMPS algorithm should be able to produce a good mapping. To approximate
this ideal con�guration we have to remove all the heavy hitters. As such, BPART uses
the Space Saving algorithm (Line 4) to detect heavy hitters and manage them ad-hoc.
To match the required detection and estimation precisions, the Space Saving algorithm
monitors 1/ε distinct keys, where ε < θ. Recall that θ is the relative frequency of heavy
hitters and is a user de�ned parameter. In the learning phase, BPART updates the Space
Saving algorithm instance with the values of t (Line 10, Figure 4.6 point C). At the end
of the learning phase, the Space Saving algorithm stores the most frequent values of t
and their estimated frequencies. Then (Figure 4.6.D), BPART removes the frequency
count of each heavy hitter from vh (Line 15). Finally (Figure 4.6.E), it feeds to the

4.4. BALANCED PARTITIONING 49

GMPS algorithm the vh array and the heavy hitters from the Space Saving algorithm,
with the frequencies of both, as the set of jobs B. The GMPS algorithm returns an
approximation of the optimal mapping from h buckets and detected heavy hitters to
instances (Line 17).

Theorem 4.9 (BPART Time Complexity).
BPART time complexity is O(log 1/ε) per update in the learning phase, O((kµ + 1/ε)
log(kµ+1/ε)) to build the global mapping function, and O(1) to return the part associated
with an item.

Proof. By Listing 4.7, the learning phase performs a hash of an integer value, incre-
ments an array entry and updates the Space Saving. Leveraging the implementation
proposed in [69] with a hash table and a min-heap, both of size O(1/ε), the worst case
Space Saving update time complexity is O(log 1/ε). Notice however that the mean time
complexity is O(1).

By Listing 4.7, building the global mapping requires (i) to build the sorted set of
jobs B with the heavy hitters in Space Saving and the buckets of h, (ii) run the GMPS
algorithm on B and (iii) populate the HH and SI data structures. Implementing B as a
binary search tree, the �rst phase can be achieved in O ((kµ+ 1/ε) log (kµ+ 1/ε)) steps.
Implementing the set K as a max-heap, GMPS runs in O ((kµ+ 1/θ) log k). Finally, the
construction of both HH and SI requires O (kµ+ 1/θ) steps.

By Listing 4.7, implementing HH as a hash table and SI as an array, the part
retrieval time complexity is O(1)

Theorem 4.10 (BPART Space Complexity).
BPART space complexity is O ((kµ+ 1/ε) logm+ log n) bits in the learning phase and
to build the partition K. To store the partition K, BPART requires O ((kµ+ 1/θ) log n)
bits.

Proof. By Listing 4.7, the learning phase stores a 2-universal hash function h using
O(log n + log(kµ)) bits, an array of O(kµ logm) bits and, through the Space Saving

instance, a hash table and a min-heap both of O(1/ε logm) bits. Building the partition K
adds a binary search tree and a heap of O ((kµ+ 1/ε) logm) bits. Finally, the partition K
(Listing 4.7) is made of the 2-universal hash function h, the hash tableHH ofO(1/θ log n)
bits and the array SI of O(kµ log k) bits.

4.4.2 Theoretical Analysis

In this section we analyse the quality of the balancing of the partitioning built by BPART,
considering that the data set follows a Zip�an distribution (a frequent case in many
application scenarios [18, 64]) as well as that the order of the items in the stream is
random (i.e., no adversary).

We characterize the mean error made by our algorithm with respect to the optimal
mapping according to the percentage of imbalance metric [77], which is de�ned as follows:

λ(W) =

(
maxp∈[k] (Wp)

W
− 1

)
× 100 (4.3)

where Wp is the weight on part Op, W is the mean weight over all k parts and W is the
vector of size k of the parts weights.

50 CHAPTER 4. HEAVY HITTERS

Theorem 4.11 (BPART Approximation). BPART provides an (1+θ)-optimal mapping
for key grouping using O(kµ logm + log n) bits of memory in the learning phase and
O(kµ log n) bits of memory to store the global mapping function, where µ ≥ 1/θ ≥ k

Proof. The accuracy of the estimated frequency of heavy hitters is given by Theorem 4.1.
We now estimate the mean value of each counter in vh, after having removed from these
counters the weights of the heavy hitters (cf., Line 15 of Listing 4.7). The value of every
counter vh[ı], 1 ≤ ı ≤ µk, is equal to the sum of the exact frequencies of all the received
items t such that h(t) = ı, that is, the sum of the frequencies of all the tuples that share
the same hashed value. We denote by Xi the random variable that measures the value
of vh[ı]. We have

Xı =

n∑

t=1

ft1{h(t)=ı} −
∑

t∈HH
f̂t1{h(t)=ı},

where, as de�ned above, f̂t represents the frequency of heavy hitter t ∈ HH as estimated
by the Space Saving algorithm.

By the 2-universality property of the family from which hash function h is drawn, we
have P[h(v) = h(u)] ≤ 1/(kµ). Thus, by linearity of the expectation,

E[Xı] =

n∑

t=1

E
[
ft1{h(t)=ı}

]
−
∑

t∈HH
E
[
f̂t1{h(t)=ı}

]
≤
m−∑t∈HHE

[
f̂t

]

kµ
.

Let mSI denote the sum of the frequencies of all sparse items. From Theorem 4.1,
we get

E[Xı] ≤
m−∑t∈HH ft

kµ
≤ mSI

kµ
.

By de�nition µ ≥ 1/ε and ε ≤ θ, thus kµ ≥ 1/θ, that is in average, there is at most
one heavy hitter in each counter of vh. Thus, once the frequency of heavy hitters has
been removed from the counters, the mean error of each counter is upper bounded by
0 and lower bounded by 1 − ε (from Theorem 4.1). We now estimate the percentage
of imbalance λ (Relation 4.3) of the mapping provided by BPART with respect to the
optimal one. Let WBPART denote the weight vector induced by the mapping provided
by BPART and WOPT denote the optimal one. The error Y introduced by BPART is
given by

Y = λ(WBPART)− λ(WOPT) =
maxp∈[k]W

BPART
p −maxp∈[k]W

OPT
p

W
.

The analysis of the expected value of Y is split into three cases. Recall that any item
whose probability of occurrence is greater than or equal to θ is a heavy hitter, and
conservatively, we set θ ≤ 1/k.

Case 1 ∃t ∈ HH such that ft > W = m/k. Let v denote the item with the largest
frequency. We have λ(WOPT) = fvk/m since the optimal solution cannot do
better than scheduling item v alone to a single part. We also have λ(WBPART) =
fvk/m since from above f̂v ε-approximates fj with probability close to 1 (by
construction, ε � 1/m), and thus GMPS also isolates item v to a single part.
Thus the error Y introduced by BPART in Case 1 is null.

4.4. BALANCED PARTITIONING 51

Case 2 ∀t ∈ HH, we have θm ≤ ft ≤ W . By construction of GMPS (that maps
each tuple into the less loaded part in the decreasing frequency order), and by
the fact that the value of each counter of vh is equal to mSI/(kµ), we have
that arg maxp∈[k]W

BPART
p corresponds to the last part chosen by GMPS. This

statement can be trivially proven by contradiction (if the last mapping does not
correspond to the �nal largest loaded one, it must exist another part that has
been chosen previously by GMPS without being the smallest loaded one). Let
W′ be the load vector before this last mapping. We have in average

k∑

p=1

W ′p =
k∑

p=1

WBPART
p − mSI

kµ
.

Thus, one can easily check that minp∈[k]W
′
p cannot exceed (mSI−mSI/(kµ))/k =

(kµ− 1)mSI/k
2µ, leading to

max
p∈[k]

WBPART
p −W =

(
min
p∈[k]

W ′p +
mSI

kµ

)
− m

k
≤ (µ+ 1)mSI

kµ
(4.4)

Moreover, by assumption, the distribution of the items in the stream follows a
Zip�an distribution with an unknown parameter α. This means that, for any
t ∈ [n], pt = 1/(tαHn,α) where Hn,α is the n-th generalized harmonic number,
that is Hn,α =

∑n
t=1 1/tα (we assume without loss of generality that items are

ranked according to their decreasing probability). We have

mSI = m−
∑

t∈HH
ft = m

(
1−

H|HH|,α

Hn,α

)
. (4.5)

Recall that |HH| = |{t ∈ [n] | pt ≥ θ}|. Thus, we get
1

(|HH|+ 1)αHn,α
< θ that is |HH| > (θHn,α)−1/α − 1.

From Relations 4.4 and 4.5 we have

max
p∈[k]

WBPART
p −W ≤

(µ+ 1)
(
Hn,α −H|HH|,α

)
m

kµHn,α
≤ (µ+ 1)m

kµ
.

Given the fact that maxp∈[k]W
OPT
p ≥W = m/k by de�nition, the expected error

introduced by BPART is given by

E[Y2] ≤
maxp∈[k]W

BPART
p −W
W

≤ µ+ 1

µ
.

Case 3 ∀t in the input stream of length m, we have ft < θm. In that case, there
are no heavy hitters, and thus mSI = m. This case is handled similarly as Case
2 by considering that the largest potential item has a frequency equal to θm− 1.
Thus minp∈[k]W

′
p cannot exceed (m− (m/kµ+ θm− 1)/k = (k(mµ+ θmµ−µ)−

m)/(k2µ), leading to

max
p∈[k]

WBPART
p −W =

(
min
p∈[k]

W ′p +
m

kµ
+ θm− 1

)
− m

k
≤ (θµk + 1)m

kµ
.

52 CHAPTER 4. HEAVY HITTERS

By applying the same argument as Case 2, the expected error introduced by
BPART is given by

E[Y3] ≤
maxp∈[k]W

BPART
p −W
W

≤ 1 + µkθ

µ
.

Combining the three cases, we deduce an upper bound of the expected error introdu-
ced by BPART, which is given by

E[Y] ≤ max{E[Y1],E[Y2],E[Y3]} ≤ max{0, 1 + µ

µ
,
1 + µkθ

µ
}.

By assumption, we have kθ ≤ 1 and 1/µ ≤ θ. Thus

E[Y] ≤ 1 + θ (4.6)

Chapter Summary

This chapter discussed the heavy hitters problem and presented the DHHE
algorithm, solving the distributed heavy hitters problem without any assump-
tions on the stream frequency distribution. It has also presented a mean case
analysis for the Space Saving algorithm. Building on this results, it shown
how BPART builds a partition K of the streams item universe [n] with ex-
actly k parts (i.e., |K| = k) and where the weight Wp of the parts Op ∈ K
(p ∈ [k]) are balanced.

The following chapters show the application to practical issues and experi-
mental evaluation of the algorithms presented so far, starting with network
monitoring.

Chapter 5

Network Monitoring

Network monitoring analyses computer networks to provide statistics on the tra�c �o-
wing through it. This data can be used to improve the network itself, identify troubles
such as down services, track user behaviours or detect attacks. By its own nature, net-
works are a primary �eld of application for data streaming.

In this section we apply three of the previously presented algorithms to network
monitoring. More in details, in Section 5.1 we use Distributed Heavy Hitters Estimator
(DHHE, cf., Section 4.3) to track down a particular class of Distributed Denial of Service
(DDoS) attacks. Then, in Section 5.2, we investigate the performance of Proportional
WCM and Splitter WCM (cf., Section 3.2) to track the frequency distribution of IP
tra�c.

5.1 DDoS Detection

A Denial of Service (DoS) attack tries to take down an Internet resource (e.g., e-commerce
websites) by �ooding this resource with more requests than it is capable of handling. A
Distributed Denial of Service (DDoS) attack is a DoS attack triggered by many machines
that have been infected by a malicious software, increasing the number of sources and
thus also the attack strength. A common approach to detect and to mitigate DDoS
attacks is to monitor network tra�c through routers and to look for highly frequent
signatures that might suggest ongoing attacks. However, a recent strategy followed by
the attackers is to hide their massive �ows of requests distributing them in a multitude
of routes, so that locally, the malicious sub-�ows do not appear highly frequent, while
globally they represent a signi�cant percentage θ of the network tra�c [66]. The term
�global iceberg� has been introduced to describe such an attack as only a very small
part of the latter can be observed from each single router [96]. A natural solution to
track and detect global icebergs is to rely on multiple routers that locally scan their
network tra�c, and regularly provide monitoring information to a server in charge of
collecting and aggregating all the monitored information. To be applicable, two issues
must be solved. First, routers must be capable of monitoring a very large number of
�ows to discover the presence of potential global icebergs and this must be done on the
�y to have some chance to detect icebergs soon enough. Secondly, the frequency of the
communications between routers and the server must be low enough to prevent the server
from being overloaded by iterative exchanges with all the routers; however reducing the

53

54 CHAPTER 5. NETWORK MONITORING

frequency of these exchanges must not jeopardise the detection latency of global icebergs
and must not introduce false negatives (that is, the non-detection of global icebergs).

Notice that these requirements �t the distributed functional monitoring model (cf.,
Section 2.1.3), while the detection of DDoS/global icebergs maps to the distributed heavy
hitters problem (cf., Section 4.3) with the additional requirement of being timely, i.e.,
minimize the time between the appearance of an iceberg in the stream and its detection.
Given the steady state setting (i.e., the stream distribution does not change over time)
this boils down to detect the distributed heavy hitters reading the least amount of items.
Then, we can apply the DHHE algorithm presented in Section 4.3.1 to detect DDoS/glo-
bal icebergs.

Implementation details� The pseudo code presented in Listings 4.2, 4.4 and 4.5
imply that for each warning message sent by any of the s nodes, the coordinator has
to initiate a request/reply protocol with the remaining s − 1 nodes. This is obviously
a bottleneck and the coordinator can easily fall behind. To circumvent this issue and
improve, at least in practice, the network usage of DHHE, the prototype introduces a
batching mechanism. More in details, while a request/reply round-trip is ongoing, all
the warning messages received in the while by the coordinator are stored. Once the
current request/reply round-trip has ended, all the Freqi bu�ers carried by the waiting
warning messages are coalesced into a single ID set and a single request/reply round-trip
is triggered towards all the s nodes.

5.1.1 Experimental Evaluation

Setup � All these experiments have been achieved on a testbed of s = 20 single-
board computers (Raspberry Pi Model B) and two servers connected through a Gigabit
Ethernet network. Single-board computers are small computers with limited memory
and storage capacities (100 Mbps, 250MB RAM and 700MHz CPU). Each Raspberry Pi
hosts a node, one of the two servers hosts the coordinator, while the other one generates
all the s streams. Real routers (as for example, Cisco or Juniper type M or T, 10 Gbps
throughput, from 768MB to 4GB of memory, Pentium CPU 1GHz) would de�nitively
handle the code run by the small Raspberries with a much larger input rate.

Several values of θ have been considered, namely, θ ∈ [0.005; 0.1], with logarithmic
steps, as well as di�erent values of ρ, i.e., ρ ∈ [0.005; 1.0]. For clarity reasons we show
only the results of the experiments with the two extremum values of ρ, i.e, ρ = 0.005
(each bu�er Gκ,i contains a single item, which amounts for the nodes to directly send
each potential global iceberg to the coordinator), and ρ = 1 (all the bu�er Gκ,i have their
maximal size nκ, cf., Section 4.3.1). In the following both cases are respectively referred
to as no bu�er and with bu�ers.

The probability of failure δ and the error ε of DHHE have been respectively set to
δ = 0.1 and ε = 0.1. The space complexity bounds (cf., Lemma 4.6) yield a memory
usage of at most 7.5% for each node with respect to the naive solution (i.e., maintain
a counter for each received distinct item). Furthermore, we show that using as little as
1.43% of the space of the naive algorithm is su�cient (see 1 Table 5.1). This is achieved
by reducing the number of columns c in the Count-Min sketch from c = d2(1−θ)/(0.1θ)e
(cf., Lemma 4.6) to c = de/θe.

1For simplicity reason, we present memory usage with classical 32-bit coding. This is an overestima-
tion of the requirement as only logn and/or logm are su�cient.

5.1. DDOS DETECTION 55

Table 5.1 � Memory usage with bu�ers, and counters of 32 bytes.

θ Count-Min
∑5

κ=1 |Gκ,i| |Ji| Space Memory Gain

0.1 3.48 kB 0.77 kB 0.32 kB 98.57%

0.005 69.59 kB 7.20 kB 6.40 kB 74.00%

We have fed the single-board computers with both real-world datasets and with synt-
hetic traces. This allows to capture phenomenons that may be di�cult to obtain from
real-world traces, and thus allows to check the robustness of DHHE.

Synthetic traces � Synthetic streams have been generated using Zip�an distri-
butions with α ∈ {0.5, 1.0, 2.0, 3.0}, denoted respectively by Zipf-0.5, Zipf-1, Zipf-2, and
Zipf-3. Each stream is made of mi = 100, 000 items (i.e., the global stream is made
of m = 2, 000, 000 items) picking them from an universe [n] whose size is equal to
n = 10, 000. Each node receives around 4, 000 items per second. Each run has been
executed a hundred times, and we provide the mean over the repeated runs.

Real dataset� We have retrieved from the CAIDA repository [19,20] a real world
trace registered during a DDoS attack. We refer to this dataset as caida trace. This
trace contains most of the IP packet header, however we consider only the destination
IP addresses, i.e., the stream items are the destination IP addresses. The total raw
data size over the 20 nodes is m = 2 × 108. There are in total n = 825, 695 unique
destination addresses in this dataset (i.e., distinct items). This represents a 15-minute
trace of tra�c, monitored on OC192 Internet backbone links. Note that this dataset is
de�nitely larger than the synthetic ones, drastically increasing the number of collisions in
the Count-Min. This dataset has been split into 20 streams, each one sent to a di�erent
node of our testbed.

Metrics � The following metrics are evaluated:

• Precision, true positives
true positives + false positives

, and recall, true positives
true positives + false negatives

;
• The number of false positives;
• The frequency estimation of global icebergs;
• The communication cost measured as the ratio between the number of bits/-
messages exchanged by DHHE and the size in bits/messages of the global input
stream;
• The detection latency measured as the ratio between the number of items read
by the nodes before the coordinator has detected all global icebergs and the size
of the global input stream.

In the subsequent plots, the points are linked together by lines to improve the reada-
bility.

Simulations Results

Precision and recall � Figure 5.3 shows the precision and recall of our solution.
The precision is the number of generated global icebergs divided by the number of gene-
rated global icebergs and of DHHE false positives. The recall is the number of generated
global icebergs divided by the number of generated global icebergs and of DHHE false

56 CHAPTER 5. NETWORK MONITORING

Table 5.2 � Frequency gaps between global icebergs and sparse item.

θ Zipf-0.5 Zipf-1 Zipf-2 Zipf-3

0.1 N/A 5.1× 10−2 8.4× 10−2 7.3× 10−2

0.005 1.5× 10−3 2.4× 10−4 8.0× 10−4 2.8× 10−3

 0

 0.2

 0.4

 0.6

 0.8

 1

Zipf-0.5 Zipf-1 Zipf-2 Zipf-3
 0

 0.2

 0.4

 0.6

 0.8

 1

pr
ec

is
io

n

re
ca

ll

distributions

Precision Recall

Figure 5.3 � Precision and recall as a function of the input distributions for θ = 0.005.

negatives. The main result is that recall is always equal to 1 whatever the input streams
features. This is a very important property of our solution as it shows that all the global
icebergs are perfectly detected (there are no false negatives), even if global icebergs are
well hidden in all the distributed streams (i.e., θ = 0.005). Now, this �gure shows that
precision is also very high when input streams follow Zip�an distributions with α ≥ 1
while for α = 0.5 it decreases. This is easily explained by the fact that with slightly
skewed distributions (case with α ≤ 0.5), there are very few global icebergs (one or two),
and the gap between those global icebergs and the most frequent sparse items (the ones
with a relative frequency close but less than θ) is very small. Table 5.2 shows the fre-
quency gap between the least frequent global iceberg and the most frequent sparse item
with θ ∈ {0.005, 0.1}. Thus even a small over-approximation of Count-Min can wrongly
tag them as global icebergs. In addition, detecting two items as global icebergs when
there is a single one drops the precision to 0.5. Notice that both the precision and the
recall are independent from the size of the local bu�ers Gκ,i.

 0

 5

 10

 15

 20

 25

0.005 0.05 0.01 0.1

nu
m

be
r

of
 g

lo
ba

l i
ce

be
rg

 it
em

s

threshold θ

generated Zipf-0.5
generated Zipf-1
generated Zipf-2
generated Zipf-3

detected Zipf-0.5
detected Zipf-1
detected Zipf-2
detected Zipf-3

Figure 5.4 � Number of detected and generated global icebergs as a function of θ.

5.1. DDOS DETECTION 57

0.5e6

1.0e6

1.5e6

2.0e6

2.5e6

0.005 0.05 0.01 0.1

gl
ob

al
 ic

eb
er

gs
 c

um
ul

at
ed

 fr
eq

ue
nc

y

threshold θ

generated Zipf-0.5
generated Zipf-1
generated Zipf-2
generated Zipf-3

estimated Zipf-0.5
estimated Zipf-1
estimated Zipf-2
estimated Zipf-3

Figure 5.5 � Total global icebergs frequency (estimated and generated) as a function of
θ.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0.005 0.05 0.01 0.1

co
m

m
un

ic
at

io
n

ra
tio

 (
bi

ts
)

threshold θ

no buffer Zipf-0.5
no buffer Zipf-1
no buffer Zipf-2
no buffer Zipf-3

with buffer Zipf-0.5
with buffer Zipf-1
with buffer Zipf-2
with buffer Zipf-3

Figure 5.6 � Communication ratio in bits as a function of θ.

Figure 5.4 shows more details on the precision of DHHE by showing the number of
global icebergs that should be detected (referred to as generated) and the number of
items that have been e�ectively detected as global icebergs by DHHE (referred to as de-
tected) as a function of θ. By construction of the Count-Min algorithm, item frequencies
are over-estimated, thus the di�erence between the number of detected and e�ectively
generated global icebergs corresponds to the number of false positives. Notice that the
number of false positives may slightly increase with the size of the system due to the
over-approximation of the sketch algorithm at each node. However, the absence of false
negatives is guaranteed. For θ = 0.005, Figure 5.4 shows the results presented in Fi-
gure 5.3. When θ increases, the precision of our solution drastically augments whatever
the form of the input distributions.

Frequency estimation � Figure 5.5 compares the total number of occurrences
of all the global icebergs as estimated by DHHE with the total number of occurrences
e�ectively generated. The overestimation of frequent items (i.e., those whose relative
frequency exceeds θ) is negligible as expected by Lemma 4.6.

58 CHAPTER 5. NETWORK MONITORING

 0

 0.005

 0.01

 0.015

 0.02

0.005 0.05 0.01 0.1

co
m

m
un

ic
at

io
n

ra
tio

 (
m

es
sa

ge
s)

threshold θ

no buffer Zipf-0.5
no buffer Zipf-1
no buffer Zipf-2
no buffer Zipf-3

with buffer Zipf-0.5
with buffer Zipf-1
with buffer Zipf-2
with buffer Zipf-3

Figure 5.7 � Communication ratio in messages as a function of θ.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

0.005 0.05 0.01 0.1

tim
e

to
 d

et
ec

t r
at

io

threshold θ

no buffer Zipf-1
no buffer Zipf-2
no buffer Zipf-3

with buffer Zipf-1
with buffer Zipf-2
with buffer Zipf-3

Figure 5.8 � Time to detect ratio as a function of θ.

Communication cost � Figure 5.6 shows the ratio between the number of bits
exchanged by DHHE and the number of bits received in the input streams as a function
of θ. The primary remark is the negligible communication overhead induced by the algo-
rithm to accurately detect global icebergs: in the worst case strictly less than 8.5% of the
size of all the distributed streams is exchanged by the nodes and the coordinator. This
holds even for slightly skewed distributions, which by Theorem 4.4 are the distributions
that lead to the communication upper bound. Notice the impact of bu�ers Gκ,i on the
communication overhead for these slightly skewed distributions, for small values of θ.
Notice that in terms of messages (cf., Figure 5.7), the ratio is even lower (1.2%) since
each message exchanged with the coordinator may carry multiple items.

Detection latency � Figure 5.8 shows the latency of our solution to detect global
icebergs. The detection latency is the ratio between the number of items read by DHHE
to detect all the global icebergs and the size of the streamm. Remarkably enough, DHHE
needs to read (in the worst case) less than 3% of the global stream to detect all the global
icebergs (when the streams are randomly ordered). We can also see the impact of bu�ers
Gκ,i on the detection latency: setting the size of the Gκ,i bu�er to the maximum increases
the detection latency by a factor 4 while it decreases the communication overhead by a

5.2. ESTIMATING THE FREQUENCY OF IP ADDRESSES 59

factor 2 (see Zipf-1 with θ = 0.005 in Figure 5.6). There must exist some optimal value
of ρ that should minimise the detection latency and communication overhead. The study
of this optimum is an open question.

DDoS dataset� Table 5.9 summarizes the results with the caida trace dataset.
The DDoS target is the unique global iceberg, with a probability of occurrence equals
to 0.15 (θ = 0.1), as any other items occur with a probability lower than 5 × 10−3.
As illustrated in Table 5.9, the DDoS target is correctly detected (no false positives or
negatives). The bits communication ratio (considering only the destination address as
payload) is at most equal to 3.6 × 10−4. These results are mainly due to the large gap
between probabilities of occurrence of the unique global iceberg and the other items,
which occurs in classical DDoS attack.

Table 5.9 � Results with the DDoS trace (caida trace) (θ = 0.1).

Stream Size (m) 2× 108

Distinct Items (n) 825, 695

Global Icebergs 1

Detected Global Icebergs 1

False Positives 0

False Negatives 0

Global Iceberg Frequency 3.2× 106

Estimated Global Iceberg Frequency 3.4× 106

Communication Ratio (bits) without bu�er 3.6× 10−4

Communication Ratio (bits) with bu�ers 3.2× 10−4

5.2 Estimating the frequency of IP addresses

Network tra�c does not deal only with the detection of malicious behaviour. Knowing
the frequency distribution of the tra�c �owing through a network can help the network
engineers in many other maintenance tasks. In this section we apply the windowed
versions of the Count-Min algorithm presented in Section 3.2 to this problem and compare
their performances

5.2.1 Experimental Evaluation

This section provides the performance evaluation of our algorithms. We have conducted
a series of experiments on di�erent types of streams and parameter settings.

Setup � We consider 5 di�erent algorithms:

• The Simple WCM algorithm, also referred as Simple, we consider it as a lower
bounds for all the algorithms performances;
• The Perfect WCM algorithm, also referred as Perfect, we consider it as an upper
bound for all the algorithms performances;
• The Proportional WCM algorithm, also referred as Proportional, our �rst and
simpler solution;

60 CHAPTER 5. NETWORK MONITORING

• The Splitter WCM algorithm, also referred as Splitter, our second and more com-
plex solution;
• The ECM-Sketch algorithm, the wave based algorithm proposed by Papapetrou et
al. [76].

The wave-based [46] version of ECM-Sketch that we have implemented replaces each
counter of the F matrix with a wave data structure. Each wave is a set of lists, the
number and the size of such lists is set by the parameter εwave. Then, setting εwave = ε,
the wave-based ECM-Sketch space complexity is O

(
1/ε2 log(1/δ)

(
log2 εM + log n

))
bits.

The Count-Min uses two parameters: δ that sets the number of rows r, and ε, which
tunes the number of columns c. In all simulations, we have set ε = 0.1, meaning c =
d e0.1e = 28 columns. Most of the time, the Count-Min matrix has several rows. However,
analysing results using multiple rows requires taking into account the interaction between
the hash functions. If not speci�ed, for the sake of clarity, we present the results for a
single row (δ = 0.5).

Moreover, recall that Splitter WCM has two additional parameters: β and γ. We
provide the results for β = 1.5 and γ = 0.05. Given these parameters, we have an upper
bound of at most π = 560 spawned sub-cells (cf. Lemma 3.7). With the parameters
stated so far and the provided memory usage upper bounds, ECM-Sketch uses at least
twice the memory required by Splitter WCM. Notice however that the upper bound of
π̄ = 560 spawned sub-cells is never reached in any test. According to our experiments,
ECM-Sketch uses at least 4.5 times the memory required by Splitter WCM in this evalu-
ation.

To verify the robustness of our algorithms, we have fed them with synthetic traces
and real-world datasets. The latter give a representation of some existing monitoring
applications, while synthetic traces allow to capture phenomena that may be di�cult to
obtain otherwise.

Synthetic traces � We evaluate the performance by generating families of synt-
hetic streams, following four distributions: Uniform, Normal, Zipf-1 and Zipf-2 (i.e.,
Zip�an distributions with α = 1.0 and α = 2.0). In order to simulate changes in the
frequency distribution over time, our stream generator shifts the distribution right by 2r
positions each period with a size of 10, 000 items. If not speci�ed otherwise, the window
size is M = 50, 000 and synthetic streams are of length m = 3M (i.e. m = 150, 000)
with n = 1, 000 distinct items. Note that we restrict the stream to 3 windows since the
behavior of the algorithms in the following windows does not change, as each algorithm
relies only on the latest past window. We skip the �rst window where all algorithms are
trivially perfect. Each run has been executed a hundred times, and we provide the mean
over the repeated runs.

Real dataset � We use the caida trace [19, 20] dataset, i.e., the same of the
previous experimental evaluation (cf., Section 5.1.1), restricted to the �rst 400, 000 items
(i.e., when the DDoS attack begins). The stream is composed by n = 4.9× 104 distinct
items. The item representing the DDoS target has an empirical probability equal to 0.09,
while the second most frequent item has an empirical probability of 0.004.

5.2. ESTIMATING THE FREQUENCY OF IP ADDRESSES 61

1

10

100

1e3

1e4

50k 100k
200k

400k
50k 100k

200k
400k

50k 100k
200k

400k

Normal Zipf-1 Zipf-2

er
ro

r

window size M

distributions

Simple Proportional Splitter ECM-Sketch

(a) Average estimation error

Normal

Zipf-1
Zipf-2

 0

 50

 100

 150

 200

nu
m

be
r

of
 s

p
lit

s
π

distributions

50K
100K

200K
400K

(b) Average splits number

Figure 5.10 � Results for di�erent window sizes M .

Metrics � The evaluation metrics we provide, when applicable, are:

• The mean absolute error of the frequency estimation of all n items returned by
the algorithms with respect to Perfect WCM, that is

1

n


∑

t∈[n]

∣∣∣f̂ TestedAlgorithm
t − f̂ Perfect WCM

t

∣∣∣


 ,

we refer to this metric as error ;
• The exact number of splits π, i.e., the additional space used by Splitter WCM
with respect to the vanilla Count-Min due to the merge and split mechanisms;
• The frequency estimation.

Simulations Results

Window sizes � Figure 5.10a presents the estimation error of the Simple WCM,
Proportional WCM, Splitter WCM and ECM-Sketch algorithms considering the Normal,
Zipf-1 and Zipf-2 distributions, with M = 50, 000 (and a fortiori m = 150, 000), M =
100, 000 (withm = 300, 000),M = 200, 000 (withm = 600, 000) andM = 400, 000 (with
m = 1, 200, 000). Note that the y-axis (error) is in logarithmic scale and error values are
averaged over the whole stream. Simple WCM is always the worst (with an error equals
to 3, 395 in average), followed by Proportional WCM (451 in average), ECM-Sketch (262
in average) and Splitter WCM (57 in average). In average, Splitter WCM error is 4 times
smaller than ECM-Sketch, with 4 times less memory requirement. The error estimation of
Simple WCM, Proportional WCM, ECM-Sketch and Splitter WCM increases in average
respectively with a factor 2.0, 1.1, 1.9 and 1.7 for each 2-fold increase of M .

Figure 5.10b gives the number of splits spawned by Splitter WCM in average to keep
up with the distribution changes. The number of splits grows in average with a factor
1.7 for each each 2-fold increase of M . In fact, as γ is �xed, the minimal size of each
sub-cell grows with M , and so does the error.

62 CHAPTER 5. NETWORK MONITORING

1

10

100

1e3

1k 4k 16k 64k 1k 4k 16k 64k 1k 4k 16k 64k

Normal Zipf-1 Zipf-2
er

ro
r

period

distributions

Simple Proportional Splitter ECM-Sketch

(a) Average estimation error

Normal

Zipf-1
Zipf-2

 0

 50

 100

 150

 200

nu
m

be
r

of
 s

p
lit

s
π

distributions

1K
4K

16K
64K

(b) Average splits number

Figure 5.11 � Results for di�erent periods sizes.

Periods� Recall that the distribution is shifted after each period. Figure 5.11 shows
the estimation error and the number of splits with di�erent period sizes: {1, 000; 4, 000;
16, 000; 64, 000}. Again, Splitter WCM (20 at most) is always better than ECM-Sketch

(26 at best) achieving roughly a 4 fold improvement. Simple WCM is always the worst
(more than 900), followed by Proportional WCM (roughly 140 in average). In more de-
tails, Proportional WCM grows from 1, 000 to 16, 000 items, because slower shifts cast
the error on less items, resulting in a larger mean absolute error. However, for 64, 000
we have less than a shift per window, meaning that some windows have a non-changing
distribution and Proportional WCM is almost perfect. In general Splitter WCM esti-
mation error is not heavily a�ected by decreasing the period size since it keeps up by
spawning more sub-cells. For a size of 64, 000 items we have at most 7 splits, while for a
size of 1, 000 items we have in average 166 splits. Each 4-fold decrease in the period size
increases the number of splits by 3.4× in average.

Rows� The Count-Min algorithm uses a hash-function for each row mapping items
to entries. Using multiple rows produces di�erent collisions patterns, decreasing the pro-
bability of failure, and thus increasing the overall accuracy. Figure 5.12 presents the
estimation error and splits for r = 1 (i.e., δ = 0.5), r = 2 (δ = 0.25), r = 4 (δ = 0.0625)
and r = 8 rows (δ = 0.004). Increasing the number of rows do enhance the accuracy of
the algorithms. However, the ordering among the algorithms does not change: Simple
WCM, Proportional WCM, ECM-Sketch and Splitter WCM achieve respectively 331; 126;
11 and 4 in average. For each distribution shift, 4r items change their occurrence proba-
bility, then (without collisions) 4r2 entries may change their update rate, i.e., there can
be 4r2 potential splits per shift. Thankfully, experiments illustrate that the number of
splits growth is not quadratic: in average it increases by 2.4× for each 4-fold increase of r.

Time series � Figure 5.13 presents the estimation error evolution as the stream
unfolds. The stream distribution changes each 60, 000 items in the following order: Uni-
form, Normal, Uniform, Zipf-1, Uniform, Zipf-2, Uniform. In addition the period is set
to 15, 000 items. The streams is of length m = 400, 000. Note that, in order to avoid

5.2. ESTIMATING THE FREQUENCY OF IP ADDRESSES 63

0.1

1

10

100

1e3

1 2 4 8 1 2 4 8 1 2 4 8

Normal Zipf-1 Zipf-2

er
ro

r

number of rows r

distributions

Simple Proportional Splitter ECM-Sketch

(a) Average estimation error

Normal

Zipf-1
Zipf-2

 0

 100

 200

 300

 400

 500

 600

nu
m

be
r

of
 s

p
lit

s
π

distributions

1
2
4
8

(b) Average splits number

Figure 5.12 � Results for di�erent number of rows r.

1

10

100

1e3

1e4

50000 100000 150000 200000 250000 300000 350000 400000

Normal Uniform Zipf-1 Uniform Zipf-2 Uniform

er
ro

r

number of items m

distributions

Simple Proportional Splitter ECM-Sketch

Figure 5.13 � Estimation error with the time series.

side e�ect, the distribution shift and swap periods are not synchronised with the window
size (M = 50, 000).

Splitter WCM error does not exceed 23 (and is equal to 13 in average). ECM-Sketch
maximum error is 65 (29 in average), as Proportional WCM goes up to 740 (207 in
average) and Simple WCM reaches 1, 877 (1, 035 in average). Since at the beginning
of each window Simple WCM resets its Count-Min matrix, there is a periodic behavior:
the error burst when a window starts and shrinks towards the end. In the 1-st window
period (0 to 50, 000) and in the 6-th windows (250, 000 to 300, 000) the distribution does
not change over time (shifting Uniform has no e�ect). This means that Splitter WCM
does not capture more information than Proportional WCM, thus they provide the same
estimations in the 2-nd and the 7-th windows (respectively between 50, 000 and 100, 000
samples then between 300, 000 and 350, 000 samples).

Figure 5.14 presents the value of f1 and its estimations over time. The di�erences
among the algorithms shown in the �gure would not be visible if we also plotted the results
for Simple WCM, for sake of clarity we decided to omit it. The plain line represents the

64 CHAPTER 5. NETWORK MONITORING

 0

 2000

 4000

 6000

 8000

 10000

 12000

50000 100000 150000 200000 250000 300000 350000 400000

Normal Uniform Zipf-1 Uniform Zipf-2 Uniform
fr

eq
ue

nc
y

number of items m

distributions

Exact f1 Perfect Proportional Splitter ECM-Sketch

Figure 5.14 � Frquency estimation of item 1 with the time series.

 0

 10

 20

 30

 40

 50

 60

 70

50000 100000 150000 200000 250000 300000 350000 400000

Normal Uniform Zipf-1 Uniform Zipf-2 Uniform

nu
m

be
r

of
 s

pl
its

 π

number of items m

distributions

Splits π

Figure 5.15 � Number splits π with the time series.

exact value of f1 according to time, which also re�ects the distribution changes. The
plots for Perfect WCM, Splitter WCM and ECM-Sketch are overlapping (exes, circles
and squares). Except for the error introduced by the Count-Min approximation, they all
follow the f1 shape precisely. However, even that is not clearly visible on Figure 5.14,
notice that ECM-Sketch has always a slightly larger error than Splitter WCM. On the
other hand, we can observe that item 1 probability of occurrence changes signi�cantly
in the following intervals: [60k, 75k], [180k, 195k] and [300k, 315k]. Proportional WCM
fails to follow the f1 trend in the windows following those intervals, namely the 3-rd, 5-th
and 8-th, since it is unable to correctly assess the previous window distribution.

Finally, Figure 5.15 presents the number of splits π according to time. There are in
average 33 and at most 63 splits (while the theoretical upper bound π is 560 according to
Lemma 3.7). Interestingly enough, splits decrease when the distribution does not change
(in the Uniform intervals for instance). That means that, as expected, some sub-cells
expire and no new sub-cells are created. In other words, Splitter WCM correctly detects
that no changes occur. Conversely, when a distribution shifts or swaps, there is a steep
growth, i.e., the change is detected. This pattern is clearly visible in the 2-nd window.

5.2. ESTIMATING THE FREQUENCY OF IP ADDRESSES 65

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1.0 1.5 2.0 2.5

er
ro

r

tollerance threshold β

Normal
Zipf-1
Zipf-2

(a) Average estimation error

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1.0 1.5 2.0 2.5

nu
m

be
r

of
 s

pl
its

 π

tollerance threshold β

Normal
Zipf-1
Zipf-2

(b) Average number of splits

Figure 5.16 � Performance comparison with γ = 0.05.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.005 0.05 0.5 0.01 0.1

er
ro

r

size threshold γ

Normal
Zipf-1
Zipf-2

(a) Average estimation error

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.005 0.05 0.5 0.01 0.1

nu
m

be
r

of
 s

pl
its

 π

size threshold γ

Normal
Zipf-1
Zipf-2

upper bound

(b) Average number of splits

Figure 5.17 � Performance comparison with β = 1.5.

Splitter parameters � Figure 5.16 presents the estimation error and the number
of splits with several values of β ∈ {0.9, 2.5} and a �xed γ = 0.05. As expected, the
estimation error grows with β. Zipf-1 goes from 18 (β = 0.9) to 4, 944 (β = 2.5), while
the other distributions in average go from 110 (β = 0.9) to 684 (β = 2.5). Conversely,
increasing β decreases the number of splits. Since Error cannot return a value lower
than 1.0, going from 1.0 to 0.9 has almost no e�ect with at most 454 splits, which
represents roughly 19% less than the theoretical upper bound. From β = 1.0 to 1.3, the
average falls down to 51, reaching 20 at β = 2.5. There is an obvious trade-o� around
β = 1.5 that should represents a nice parameter choice for a given user.

Figure 5.17 presents the estimation error and the number of splits according to the
parameter γ ∈ {0.005, 0.5}, with a �xed β = 1.5. Note that the x-axis (γ) is logarithmic.
As for β, the estimation error increases with γ: the average starts at 4 (with γ = 0.005),
reaches 610 at γ = 0.1 and grows up at 12, 198 (for γ = 0.5). Conversely, increasing γ
decreases the number of splits: the average starts at 1, 659 (γ = 0.005), reaches 77 at
γ = 0.02 and ends up at 14 (γ = 0.5). In order to illustrate the accuracy of our splitting

66 CHAPTER 5. NETWORK MONITORING

1

10

100

1e3

1e4

50000 100000 150000 200000 250000 300000 350000 400000

er
ro

r

number of items m

Simple Proportional Splitter ECM-Sketch

Figure 5.18 � Estimation error with the DDoS trace (caida trace)

heuristic, 5.17b shows also the theoretical upper bound π. There seems to be a sweet
spot around γ = 0.05.

To summarize, the trend in all the last four plots (and the results for di�erent values
of r and period sizes) hints to the existence of some optimal value of β and γ that should
minimise the error and the splits. This optimal value seems to either be independent
from the stream distribution or computed based on the recent behavior of the algorithm
and some constraints provided by the user. Seeking for a extensive analysis of this opti-
mum represents a challenging open question.

DDoS dataset � As illustrated in the global iceberg problem (cf., Section 5.1),
tracking locally the most frequent items in distributed data streams is not su�cient to
detect Distributed Denial of Service (DDoS). As such, one should be able to estimate
the frequency of any item. Figure 5.18 presents the estimation error evolution over time
for the caida trace dataset. In order to avoid drowning the estimation error in the
high number of items, we have restricted the computation to the most frequent 7500
items, which cover 75% of the stream 2. Figure 5.18 illustrates some trends similar to
the previous test, however the estimation provided by Proportional WCM, ECM-Sketch
and Splitter WCM are quite close since the stream changes much less over time. Simple
WCM does not make less error than 178 (that is 1, 002 in average), while Proportional
WCM, ECM-Sketch and Splitter WCM do not exceed respectively 73 (34 in average), 53
(33 in average) and 25 (16 in average). On the other hand, for Splitter WCM, there are
at most 154 splits with an average of 105 splits.

2The remaining items have a frequency proportion lower than 2× 10−5.

5.2. ESTIMATING THE FREQUENCY OF IP ADDRESSES 67

Chapter Summary

In this chapter, DHHE, Proportional WCM and Splitter WCM, have been
successfully applied to practical problems, i.e., detecting Distributed Denial
of Service (DDoS) attacks and tracking the frequency distribution of IP traf-
�c. The experimental evaluation has con�rmed the theoretical claims on
DHHE (cf., Section 4.3). It has also shown the quality of both Proportional
WCM and Splitter WCM (Section 3.2), and in particular how the latter out-
performs state of the art solutions.

The next chapter introduces the stream processing model. In the following
we apply VALES and BPART to design three algorithms optimizing stream
processing systems.

Chapter 6

Optimizations in Stream Processing

Systems

Stream processing systems [40] (SPS) are today gaining momentum as a tool to perform
analytics on continuous data streams. These applications have become ubiquitous due to
increased automation in telecommunications, health-care, transportation, retail, science,
security, emergency response, and �nance. As a result, various research communities
have independently developed programming models for streaming.

A stream processing application is commonly modelled as a direct acyclic graph where
data operators, represented by nodes, are interconnected by streams of tuples containing
data to be analysed, the directed edges. Each stream is a conceptually in�nite sequence of
data items (similarly as in data streaming) and each operator conceptually has its own
thread of control. Since operators run concurrently, stream graphs inherently expose
parallelism. A common way to achieve scalability is to parallelize each data operator
using multiple instances, each of which handles a subset of the tuples conveyed by the
operator's ingoing stream.

Notice that stream processing systems (SPS) are not restrained to the academic
world; their ability to produce analysis results with sub-second latencies, coupled with
their scalability, also makes them the preferred choice for many big data companies.
Typical use cases include �nancial trading and monitoring of manufacturing equipment
or logistics data. These scenarios require a high throughput and a low end to end latency
from the system, despite possible �uctuations in the workload.

In the last decade, a large number of di�erent academic prototypes as well as commer-
cial products have been built to ful�ll these requirements. In general, stream processing
systems (SPS) can be divided into three generations [55]:

First generation stream processing systems have been built as stand-alone pro-
totypes or as extensions of existing database engines. They were developed with
a speci�c use case in mind and are very limited regarding the supported opera-
tor types as well as available functionalities. Representatives of this generation
include Telegraph [26] and Aurora [2].

Second generation systems extended the ideas of data stream processing with ad-
vanced features such as fault tolerance, adaptive query processing, as well as an
enhanced operator expressiveness. Important examples of this class are Borea-
lis [1] and System S [59].

Third generation system design is strongly driven by the trend towards cloud com-
puting, which requires the data stream processing engines to be highly scalable

69

70 CHAPTER 6. OPTIMIZATIONS IN STREAM PROCESSING SYSTEMS

and robust towards faults. Well-known systems of this generation include Apache
S4 [75], Apache Spark [94] and Apache Storm [89].

The communities that have focused the most on streaming optimizations are digital
signal processing, operating systems and networks, complex event processing and data-
bases. In their survey, Hirzel et al. [56] propose a catalogue encompassing 11 stream
processing optimizations developed by these communities. In this thesis we focus on two
of these optimizations, namely load balancing and load shedding.

6.1 Related Work

Load balancing in distributed computing is a well known problem that has been extensi-
vely studied since the 80s [21, 98]. It has received new attention in the last decade with
the introduction of peer-to-peer systems. Distributed stream processing systems have
been designed, since the beginning, by taking into account the fact that load balancing is
a critical issue to attain the best performance. In their survey, Hirzel et al. [56] identify
two ways to perform load balancing in stream processing systems: either when placing
the operators on the available machines [22, 23] or when assigning load to parallized
operator instances.

Scalability is usually attained at the deployment phase where each data operator can
be parallelized using multiple instances, each of which handles a subset of the tuples
conveyed by the operator's ingoing stream. Balancing the load among the instances of a
parallel operator is important as it yields to better resource utilization and thus larger
throughputs and reduced tuple processing latencies. How tuples pertaining to a single
stream are partitioned among the set of parallel instances of a target operator strongly
depends on the application logic implemented by the operator itself. The strategy used to
route tuples in a stream toward available instances of the receiving operator is embodied
in a so-called grouping function. Two main approaches are commonly adopted: either
the assignment is based on the speci�c value of data contained in the tuple (key or �eld
grouping), or tuples are randomly assigned to instances (random or shu�e grouping).

As load balancing strives to fully use the available resources, an orthogonal problem
is to provide the system with enough resources to run with good performances. Correctly
provisioning computing resources for SPS however is far from being a trivial task. Sy-
stem designers need to take into account several factors: the computational complexity
of the operators, the overhead induced by the framework, and the characteristics of the
input streams. This latter aspect is often the most critical, as input data streams may
unpredictably change over time both in rate and in content. Over-provisioning the SPS
is not economically sensible, thus system designers are today moving towards approaches
based on elastic scalability [55, 83], where an underlying infrastructure is able to tune
at runtime the available resources in response to changes in the workload characteris-
tics. This represents a desirable solution when coupled with on-demand provisioning
o�ered by many cloud platforms, but still comes at a cost (in terms of overhead and time
for scale-up/down) and is limited to mid- to long-term �uctuations in the input load.
Load shedding is an orthogonal technique designed to handle short-term �uctuations as
well as to prevent the failure of the systems in the face of excessive resource requirements.

Load balancing parallelized operators � When the target operator is stateful,
its state must be maintained continuously synchronized among its instances, with possi-
bly severe performance degradation at runtime; a well-known workaround to this problem

6.1. RELATED WORK 71

consists in partitioning the operator state and let each instance work on the subset of
the input stream containing all and only the tuples a�ecting its state partition. In this
case key grouping is the preferred choice as the stream partitioning can be performed to
correctly assign all and only the tuples containing speci�c data values to a same operator
instance, greatly simplifying the work of developing parallelizable stateful operators.

The downside of using key grouping is that it may induce noticeable imbalances
in the load experienced by the target operator whenever the data value distribution
is skewed, a common case for many application scenarios. This is usually true with
key grouping implementations based on hash functions: part of the data contained in
each tuple is hashed and the result is mapped, for example using modulo, to a target
instance. However, hash functions are usually designed to uniformly spread values from
their domain to available instances in their co-domain; if di�erent values appear with
skewed frequency distribution in the input stream, instances receiving tuples containing
the most frequent values will incur the largest load.

In the last few years there has been new interest on improving load balancing with key
grouping [44, 73]. Based on the intuition that the skew in the load distribution among
parallelized key grouped operators is due to the skew in the key value distribution,
Gedik [44] proposes to use the Lossy-Counting algorithm to keep track of the heavy
hitters that are then explicitly mapped to target sub-streams. On the other hand, sparse
items are mapped using a consistent hash function. Nasir et al. [73] target the same
problem and propose to apply the power of two choices approach to provide better
load balancing. Their solution, namely Partial Key Grouping (PKG), provides increased
performance by mapping each key to two distinct sub-streams and forwarding each tuple
to the less loaded of the two sub-streams associated with the tuple itself; this is roughly
equivalent to working on a modi�ed input stream where each value is split into two keys,
each with half the original load. However, the algorithm proposed in [73] cannot be
applied in general, but it is limited to operators that allow a reduce phase to reconcile
the split state for each key.

On the other hand, for stateless operators, i.e., data operators whose output is only
function of the current tuple in input, the parallelization is straightforward. The grouping
function is free to assign the next tuple in the input stream to any available instance
of the receiving operator (contrarily to statefull operators, where tuple assignment is
constrained). Such grouping functions are often called shu�e grouping and represent
a fundamental element of a large number of stream processing applications. Shu�e
grouping implementations are designed to balance as much as possible the load on the
receiving operator instances as this increases the system e�ciency in available resource
usage. Notable implementations [89] leverage a simple Round-Robin scheduling strategy
guaranteeing that each operator instance will receive the same number of input tuples.
This approach is e�ective as long as the time taken by each operator instance to process
a single tuple (tuple execution time) is the same for all tuples. In this case, all parallel
instances of the same operator will experience over time, on average, the same load.

Considering shu�e grouping, Sharaf et al. [84] propose a comprehensive solution to
schedule multiple continuous queries minimizing the response time. Arapaci et al. [13]
as well as Amini et al. [6], among other contributions, provide solutions to maximize the
system e�ciency when the execution times of the operator instances are non-uniform,
either because the hardware is heterogeneous or due to the fact that each instance carries
out di�erent computations.

72 CHAPTER 6. OPTIMIZATIONS IN STREAM PROCESSING SYSTEMS

Load Shedding � Bursty input load represents a problem for SPS as it may
create unpredictable bottlenecks within the system that lead to an increase in queuing
latencies, pushing the system in a state where it cannot deliver the expected quality
of service (typically expressed in terms of tuple completion time). Load shedding is
generally considered a practical approach to handle bursty tra�c. It consists in dropping
a subset of incoming tuples as soon as a bottleneck is detected in the system. As such,
load shedding is a solution that can live in conjunction with resource shaping techniques
(e.g., elastic scaling), rather than being an alternative.

Aurora [2] is the �rst stream processing system where shedding has been proposed
as a technique to deal with bursty input tra�c. Aurora employs two di�erent kinds of
shedding, the �rst and better detailed being to drop random tuple at speci�c places in
the application topology. A large number of works have proposed solutions aimed at
reducing the impact of load shedding on the quality of the system output. These solu-
tions falls under the name of semantic load shedding, as drop policies are linked to the
signi�cance of each tuple with respect to the computation results. Tatbul et al. �rst
introduced in [85] the idea of semantic load shedding. Het et al. in [54] specialized the
problem to the case of complex event processing. Babcock et al. in [15] provided an
approach tailored to aggregation queries. Finally, Tatbul et al. in [86] ported the con-
cept of semantic load shedding in the realm of SPS. All these works have the same goal,
i.e., to reduce the impact of load shedding on the semantics of the queries deployed in
the stream processing system, while avoiding overloads. A di�erent approach has been
proposed in [78], with a system that build summaries of dropped tuples to later produce
approximate evaluations of queries. The idea is that such approximate results may pro-
vide users with useful information about the contribution of dropped tuples. A classical
control theory approach based on a closed control loop with feedback has been considered
in [61, 91, 95]. In all these works the focus is on the design of the loop controller, while
data is shed using a simple random selection strategy. In all these cases the goal is to
reactively feed the stream processing engine system with a bounded tuple rate, without
proactively considering how much load these tuples will generate.

At the best of our knowledge, there is no prior work directly addressing neither load
balancing with key/shu�e grouping nor load shedding on non-uniform operator instances
considering that the tuples execution time depends on content of the tuple themselves.
In general, previous solutions rely either on an a priori known cost model of the tuples
or on the assumption that all the tuple have the same execution time.

6.2 System Model

We consider a distributed stream processing system (SPS) deployed on a cluster where
several computing nodes exchange data through messages sent over a network. The SPS
executes a stream processing application represented by a topology : a directed acyclic
graph interconnecting operators, represented by nodes, with data-streams, represented
by edges. Each topology contains at least a source, i.e., an operator connected only
through outbound data-streams, and a sink, i.e., an operator connected only through
inbound data-streams.

Data injected by the source is encapsulated in units called tuples and each stream is a
sequence of tuples. Without loss of generality, here we assume that each tuple is a �nite
set of key/value pairs that can be customized to represent complex data structures. To

6.2. SYSTEM MODEL 73

simplify the discussion, in the rest of this work we deal with streams of unary tuples with
a single non negative integer value. Thus tuples in a data-stream can be represented as
items in a stream σ = 〈t1, . . . , tj , . . . tm〉.

Let consider two operators, S and O, connected through a directed edge from S
to O, i.e., a stream σS→O. Both operators can be parallelized, creating s independent
instances S1, . . . , Ss ∈ I of S and k independent instances O1, . . . , Ok ∈ K of O, as well
as by partitioning the stream σS→O into s×k sub-streams σS1→O1 , . . . , σSs→Ok . In other
words, each operator Si (i ∈ [s]) has k outbound sub-streams σSi→O1 , . . . , σSi→Ok and
each operator Op (p ∈ [k]) has s inbound sub-streams σS1→Op , . . . , σSs→Op . We denote
the union of the outbound sub-stream of operator instance Si with σSi = ∪kp=1σSi→Op .
Similarly, we denote the union of the inbound sub-streams of operator instance Op with
σOp = ∪si=1σSi→Op .

Each operator instance has a FIFO input queue where tuples are bu�ered while the
instance is busy processing previous tuples.

We de�ne as wp(tj) the execution time of tuple tj on the operator instance Op, i.e.,
the amount of time needed by the operator instance Op to perform the computation on
tuple tj (queuing time excluded). We can then de�ne the average execution time W as:

W =
W

m
=

k∑

p=1

∑

tj∈σOp

wp(tj)

m

where W is the total execution time.
We de�ne as q(tj) the queuing time of tuple tj , i.e., the amount of time tuple tj spends

in the bu�ering queue of an instance of operator O. Notice that this value depends on
the position (i.e., the subscript j) of tuple tj and not on its value t. We can then de�ne
the average queueing time Q as:

Q =
Q

m
=

k∑

p=1

∑

tj∈σOp

q(tj)

m

where Q is the total queuing time.
We de�ne as `(tj) the completion time of tuple tj , i.e., the time elapsed for tuple tj

from being injected in the stream σ by the operator S until the end of its execution by
operator O. Notice that this value depends on both the position (i.e., the subscript j)
of tuple tj and on its value t. We can then de�ne the average queueing time L as:

L =
L

m
=

k∑

p=1

∑

tj∈σOp

`(tj)

m

where L(m) is the total completion time.

With some abuse of terms, in the rest of this chapter we use as synonyms the sub-
streams and the parallel instances of the target operator to which such sub-streams are
inbound.

74 CHAPTER 6. OPTIMIZATIONS IN STREAM PROCESSING SYSTEMS

Chapter Summary

This chapter had introduced the stream processing model and discussed load
balancing and load shedding related work.

The next chapter applies BPART and VALES to load balance key- and shu�e-
grouped parallelized operators in stream processing systems.

Chapter 7

Load Balancing Parallelized

Operators in Stream Processing

Systems

As mentioned in the previous chapter, depending on the type of operators, stateful or sta-
teless, two di�erent grouping policies can be applied: key or shu�e grouping. Section 7.1
presents Distribution-aware Key Grouping (DKG), a direct application of BPART (cf.,
Section 4.4) to load balance stateful parallelized operators. Section 7.2.1 shows Online
Shu�e Grouping Scheduler (OSG), built on top of VALES (cf., Section 3.3), to load
balance stateless parallelized operators. For both algorithms we provide an experimental
evaluation using a simulator and a prototype.

7.1 Load Balancing Stateful Parallelized Operators

When the k instances of operator O are stateful, the grouping applied to the tuple in
σS→O must keep the operator state consistent. The standard solution is key grouping,
i.e., de�ne a key x for each tuple tj ∈ σS→O, and then partition the stream σS→O
assigning all the tuples with the same key x to the same operator instance Op. The key
is in general de�ned through a user de�ned function key(tj) returning the value of the
key for tuple tj . For the sake of clarity, and without loss of generality, in the following we
consider that the value t of the tuples is the value of the key, i.e., key(tj) = tj . In other
words, given a key t, key grouping places all tuples of the stream σS→O containing the
same value t in the same sub-stream σS→Op . The problem we target is how to perform
the partitioning such that all sub-streams σS→Op are load balanced, i.e., all sub-streams
contain, on average, the same number of tuples per time unit.

In general, the SPSs implementation of key grouping is based on an hash function
h, the index of the target sub-stream for a tuple tj is given by h(tj) mod k. This
solution is simple and highly scalable as the de�nition of h is the only information that
needs to be known by the operator that partitions the stream. On the other hand, it
can produce skewed load on the parallel instances of the target operator O, especially
when the grouping key is characterized by a skewed value distribution (like a Zip�an
distribution), a frequent case in many application scenarios [18, 64]. A second possible
option is to use an explicit mapping between the possible values of the grouping key
and the set of k available sub-streams; if the distribution of values is known a-priori,

75

76 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

countertuple

Space Saving

vh

h(t)

counter

LEARN BUILD DEPLOY

S
C
H
E
D
U
L
E
R

<SI,HH>

µ × k

⎡1/ε⎤

key grouping
based on
<SI,HH>

O0

O1

Ok -1

<tuple,counter>

<bucket,counter>

tuples tuples

data
source

S S
B

C

DA

F

E

BPART

Figure 7.1 � DKG architecture and working phases.

it is theoretically possible to build an explicit mapping that produces the optimal load
balancing on the target operator; however, this approach is rarely considered as (i) the
key value distribution is in general unknown, and (ii) the map would easily grow to
unmanageable sizes, even for typical value domains (e.g., strings).

Problem Statement We assume that the values of the grouping key key(tj) = tj
are characterized by a Zip�an distribution with unknown moments (i.e., the value for
parameter α is not known) and that each sequence of tuples extracted from σS→O has
the same statistical characteristics of the whole stream (i.e., no adversary in the model).
Finally, we assume that the execution time per tuple is uniform (i.e., wp(tj) = C) and
that the execution time induced by managing a sub-stream on each operator instance Op
is proportional to the number of tuples per time unit transported by that sub-stream,
i.e., Wp = C × mp, where C is an unknown constant. Then, the problem we want to
solve is the following:

Problem 7.1 (Load Balance Key Grouped Operators). Build a partition of the stream
σS→O in k sub-streams σS→Op (p ∈ [k]), minimizing the sizes mp∈[k] of the sub-streams
and such that ∀t ∈ [n], t ∈ σOp ∧ t ∈ σOp′ =⇒ p = p′.

Notice that this problem can be easily reduced to Problem 4.8. If the cost is superli-
near (e.g., quadratic) then our solution still works, however results from the theoretical
and experimental analysis provided in the following section may not hold anymore. Fi-
nally, if the cost for sub-stream is constant, then the problem becomes trivial.

7.1.1 Distribution-aware Key Grouping Algorithm

In this section, we propose a new key grouping technique called Distribution-aware Key
Grouping (DKG) targeted toward applications working on input streams characterized
by a skewed value distribution. DKG (cf., Listing 7.2) is a straightforward application
of the Balanced Partitioner (BPART) algorithm presented in Section 4.4: on operator
S (cf., Figure 7.1), DKG instantiate BPART to (i) learn the distribution of the output
stream σS→O, (ii) build a close to optimal mapping and (iii) use this mapping to route
the tuples of σS→O to the parallel instances of O.

Brie�y recalling the solution principles, DKG monitors the incoming stream to iden-
tify the heavy hitters and estimate their frequency (cf., Figure 7.1.C), and thus the load

7.1. LOAD BALANCING STATEFUL PARALLELIZED OPERATORS 77

Listing 7.2 � DKG algorithm.

1: init (θ, ε, k, µ) do
2: bpart← BPART algorithm instance with parameters θ, ε, k and µ.
3: end init
4: function learn(tj)
5: bpart.learn(t)
6: end function
7: function build
8: bpart.build()
9: end function
10: function getInstance(tj)
11: return bpart.getPart(t)
12: end function

they will impose on their target instance. At the same time it maps the sparse items,
with a standard hash function (cf., Figure 7.1.A), to a �xed set of buckets and tracks
their frequency with a vector (cf., Figure 7.1.B). After this initial training phase, whose
length can be tuned, DKG removes the frequencies of the heavy hitters from the frequen-
cies of the buckets of sparse items (cf., Figure 7.1.D). The �nal mapping is obtained by
running a greedy multiprocessor scheduling algorithm (cf., Figure 7.1.E) that takes as
input the heavy hitters with their estimated frequencies and the buckets with their sizes
and outputs a one-to-one mapping of these elements to the available target instances.
The �nal result is a mapping that is �ne-grained for heavy hitters, that must be carefully
placed on the available target instances to avoid imbalance, and coarse-grained for the
sparse items whose impact on load is signi�cant only when they are considered in large
batches. At the deployment phase (cf., Figure 7.1.F), DKG can leverage this mapping
to route the tuples of σS→O to the parallel instances of O.

7.1.2 Experimental Evaluation

In this section we �rst evaluate DKG through a simulator. Then we look at the per-
formances of a prototype implementing DKG as a custom grouping function in Apache
Storm.

Setup � To compare the performance of DKG, we considered four algorithms:

• Full-Knowledge DKG (FKDKG) is a variant of DKG with complete a priori infor-
mation on the distribution of the stream portion used as validation set and with
θ = 0. From this point of view we consider FKDKG as an upper bound for DKG
performance.
• Single Instance Allocation (SIA) is an algorithm that statically allocates all the
tuples on a single instance, thus producing the worst possible balancing. From
this point of view we consider SIA as a lower bound for DKG performance.
• Universal provides a base line with respect to a family of hash functions known
to sport nice properties. It returns h(t), where h : [n] → [k] is chosen at random
from a family of 2-universal hash functions.
• Apache Storm Key Grouping (ASKG) is the standard key grouping implementa-
tion in Apache Storm.

78 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

For the implementation of DKG, h̄ was built using the same parameters of h, except
for the co-domain size. To comply with the Space Saving requirements (i.e., θ > ε), in
all tests we set ε = θ/2. In general θ and µ are set to arbitrary values, in other words
the bound 1/k ≥ θ > 1/µ stated in Section 4.4.2 does not hold. In all tests we assume a
linear cost for managing incoming tuples on operators. We also performed partial tests
considering a quadratic cost; their results con�rm the general �ndings discussed in this
section, with di�erent absolute values for the measured metrics.

Synthetic traces � In our tests we considered generated streams of integer values
(items) representing the values of the tuples. The streams are made of 100, 000 tuples
containing a value chosen among n = 10, 000 distinct items. Taking from the machine
learning �eld's methodology each stream was divided in two parts: a �rst part of m =
80, 000 tuples was used as training set in the learning phase, while the last 20, 000 tuples of
the stream (validation set) where used to perform the evaluation. Synthetic streams have
been generated using Zip�an distributions with di�erent values of α, Normal distributions
with di�erent values of mean and variance, as well as the Uniform distribution. For the
sake of brevity, we omit the results for the Normal and Uniform distributions as they
did not show any unexpected behaviour. As such, we restrict the results showed in the
following to the Zip�an distributions with α ∈ {1.0, 2.0, 3.0}, denoted respectively as
Zipf-1, Zipf-2 and Zipf-3.

In order to have multiple di�erent streams for each run, we generate randomly 10, 000
n-permutations of the set {1, . . . , 100 × n}. In other words we built 10, 000 injective
random mappings of the distribution's universe {1, . . . , n} into a universe 100 times
larger. As such, the 10, 000 distinct streams (i) do not share the same tuple values, (ii)
the probability distribution of an item is not related to the natural ordering of the item
values and (iii) there are random gaps in the natural ordering of the item values.

This dataset generation procedure was used to average the performance of hash functi-
ons employed in the tested algorithms and to avoid that a casual match between the tuple
values from the stream and the used hash function always deliver very good or very bad
performance that would drive the results in an undesirable manner (as this match cannot
be forecasted or forced by the developer). In most of the plots presented in the following,
the worst performance �gures among all the runs are reported as well.

Real dataset � As a real dataset we considered data provided by the DEBS 2013
Grand Challenge [36]. The dataset contains a sequence of readings from sensors attached
to football players in a match, whose values represent positions on the play �eld. We
refer to this data set as debs trace.

Metrics � To characterize the unevenness of the operator instances loads, we take
into account two well known [77] load balance metrics:

• The standard deviation SD, measuring if the load of the instances tends to be
closer (small values of SD) or farther (large values of SD) from the mean. It's the
average number of tuples that each instance handles in excess or de�ciency with
respect to the mean.
• The percentage of imbalance λ, measuring the performance lost due to imbalanced
load or, dually, the performance that could be reclaimed by perfectly balancing
the load. λ has been already de�ned in Equation 4.3.

In addition, we also consider:

7.1. LOAD BALANCING STATEFUL PARALLELIZED OPERATORS 79

Table 7.3 � Linear regression coe�cients for the plots in Figure 7.4.

Algorithm a b

FKDKG 60.7 −100

Universal Mean 60.7 −60.7

Universal Worst Case 87.3 −73.0

DKG Mean 60.7 −100

DKG Worst Case 62 −100

SIA 100 −100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f i
m

ba
la

nc
e
λ

number of instances k

FKDKG

Universal Mean
Universal Worst Case

DKG Mean
DKG Worst Case

SIA

Figure 7.4 � Imbalance λ as a function of k with Zipf-2.

• The cpu load measured in Hz.
• The throughput measured in tuples processed per second.

Simulation Results

Notice that in most of the subsequent plots, points representing measured values have
been linked by lines. This has been done with the sole purpose of improving readability:
the lines do not represent actual measured values.

Imbalance λ with respect to the number of instances k� Figure 7.4 shows the
imbalance as a function of k for DKG, Universal, FKDKG and SIA, with Zipf-2 (θ = 0.1
and µ = 2). For both DKG and Universal, two curves are shown that report the mean and
the worst case values respectively; while the mean curves report the average performance
for each of the two algorithms, the worst case curves report the worst performance we
observed among all the runs.

Looking at SIA's curve we get a better grasp of the meaning of λ, with k = 10, SIA
sports 900% of imbalance: this means that it �wastes� 900% of the power provided by a
single resource (i.e., 9 instances are not used) which is exactly what SIA's implementation
does. With Zipf-2, the empirical probability of the most frequent item is 0.60, as such
it is not possible to achieve 0% imbalance with more than 1 instance (k > 1). This ob-
servation, with the de�nition of imbalance (cf., Relation 4.3), justi�es the monotonically
increasing behavior of all curves.

80 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 2 3 4 5 6 7 8 9 10

st
an

da
rd

 d
ev

ia
tio

n
S

D

number of instances k

FKDKG

Universal Mean
DKG Mean

SIA
Universal Worst Case

DKG Worst Case

Figure 7.5 � Standard deviation SD as a function of k with Zipf-2.

 0

 2000

 4000

 6000

 8000

 10000

2000 4000 6000 8000 9600

fr
eq

ue
nc

y

standard deviation SD

Universal with k=2
Universal with k=5

DKG with k=2
DKG with k=5

Figure 7.6 � Standard deviation SD distribution for Zipf-2.

The take away message from this �gure is that in the mean case of DKG matches
FKDKG, and that its worst case is still pretty close. This means that DKG is not suscep-
tible to unlucky choices made by the hash functions. Furthermore, there is a noteworthy
gap between DKG and Universal mean values, while Universal worst case is closer to SIA
than to FKDKG. In other words DKG provides in any case a close to optimal balancing,
whereas using a vanilla hash function can even approach the worst possible balancing
in unlucky cases. Table 7.3 shows the values of the linear regression coe�cients of the
plotted results: Universal worst case has indeed a value of a closer to SIA than FKDKG

while DKG worst case has a value of a close to FKDKG; besides, Universal mean has not
the same b of FKDKG, while DKG mean matches FKDKG. Notice that the results shown
for DKG mean fall into the �rst case of the proof of Theorem 4.11 (cf., Section 4.4.2),
validating the claim that, with θ ≤ 1

k and with at least one heavy hitter with a frequency
larger than L, DKG is optimal. We also run tests for a uniform distribution or Zip�an
with α < 1; however, in these settings our solution still provides better balancing than
Universal. While the absolute gain is less sizeable, it proves that it is safe (and in general
worthwhile) to deploy our solution with any degree of skewness, in particular given the
little memory and computational overhead (cf., Section 4.4.1).

7.1. LOAD BALANCING STATEFUL PARALLELIZED OPERATORS 81

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f i
m

ba
la

nc
e
λ

co-domain factor µ

Mean Zipf-1
Worst Case Zipf-1

Mean Zipf-2
Worst Case Zipf-2

Mean Zipf-3
Worst Case Zipf-3

Figure 7.7 � DKG imbalance as a function of µ.

Standard deviation SD with respect to k � Figure 7.5 shows the standard
deviation for the same con�guration of Figure 7.4. The main di�erence with respect
to Figure 7.4 is in the trend of the plots. SD is normalized by k and represents the
average number of unbalanced items per instance. As such, SD for SIA decreases with
increasing values of k, as the number of unbalanced items is �xed. On the other hand,
SD for FKDKG grows from k = 2 to k = 4, and then decreases. This means that the
number of unbalanced items grows more than k for k < 4 (i.e., k = 4 is a more di�cult
con�guration for load balancing than k = 2), and grows less than k for k ≥ 4. However,
SD for SIA decreases faster than for FKDKG, thus increasing k shrinks the gap between
SIA and FKDKG, as well as reducing DKG's gain.

Figure 7.6 shows the distribution of SD values achieved by DKG and Universal for
k ∈ {2, 5} in the same runs of Figure 7.5. Each bar represents how many times a SD
value has been measured among the 10, 000 runs. Values are rounded to the nearest
multiple of 200. We can clearly see that Universal does no better than the worst result
from DKG. In addition, DKG boasts an extremely small variance, i.e., the values are
concentrated in a small interval of SD for both values of k. Conversely, Universal has a
large variance, for instance it spans from 2800 to 9600 items for k = 2.

Impact of µ � Figure 7.7 shows DKG mean and worst case imbalance λ as a
function of µ for Zipf-1, Zipf-2 and Zipf-3 (θ = 1.0 and k = 2). Notice that with θ = 1.0,
this plot isolates the e�ect of µ.

Increasing µ from 1 to 2 signi�cantly decreases the mean imbalance, while for larger
values of µ the gain is less evident. Instead, the worst case imbalance is only slightly
a�ected by µ. A larger co-domain size allows h̄ to spread the items more evenly on more
buckets and gives more freedom to the GMPS algorithm. Thus, increasing µ reduces
the chances to incur in pathological con�gurations, but cannot fully rule them out. This
mechanism grants DKG the ability, as stated previously, to provide better balancing than
Universal even with non skewed distributions.

Impact of θ � Figure 7.8 shows DKG mean and worst case imbalance λ as a
function of θ for Zipf-1, Zipf-2 and Zipf-3 (µ = 1.0 and k = 2). Notice that with µ = 1.0,
this plot isolates the e�ect of θ.

Once θ reaches the empirical probability of the most frequent heavy hitter in the
stream (0.8 for Zipf-3, 0.6 for Zipf-2 and 0.1 for Zipf-1), both the mean and worst case

82 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pe
rc

en
ta

ge
 o

f i
m

ba
la

nc
e
λ

heavy hitter threshold θ

Mean Zipf-1
Worst Case Zipf-1

Mean Zipf-2
Worst Case Zipf-2

Mean Zipf-3
Worst Case Zipf-3

Figure 7.8 � DKG imbalance as a function of θ.

values drop. Further decrements of θ do not improve signi�cantly the performance. For
Zipf-3 and Zipf-2, the values of both the mean and worst case are very close, proving that
the mechanism used to separately handle the heavy hitters is able to rule out pathological
con�gurations. Conversely, most of the unbalancing for Zipf-1 comes from a bad mapping
induced by h̄ on the sparse items. In other words, with µ = 1.0 the GMPS algorithm
does not have enough freedom to improve the sparse item mapping.

We do not show FKDKG in Figure 7.8, however notice that for both Zipf-3 and Zipf-2
with θ = 0.8 and θ = 0.6 respectively, DKG mean imbalance is equal to FKDKG im-
balance. With Zipf-3 and Zipf-2, the theoretical analysis (cf., Section 4.4.2) guarantees
optimality with 1/µ < θ ≤ 1/k = 0.5. In other words the user can either leverage the
theoretical results to be on the safe side with any value of α, or, given some a priori
knowledge on the stream (i.e., a lower bound on the value of α), use di�erent values of
θ, ε and µ to reduce resources usage.

θ and µ trade-o� � The heat-maps in Figure 7.9 show DKG mean and worst case
standard deviations SD as a function of both θ and µ for Zipf-1, Zipf-2 and Zipf-3 (k = 5).
Notice that the heat-maps for di�erent distributions do not share the color-scale. In all
�gures darker is better.

Figures 7.9a and 7.9b con�rm that, as for imbalance, with non- or lightly-skewed
distributions, µ drives the performance, while θ has a negligible impact. Figure 7.9c,
7.9d, 7.9c and 7.9d con�rm that, for skewed distributions, as soon as θ matches the
empirical probability of the most frequent heavy hitters, there is not much to gain by
further increasing µ or decreasing θ.

Comparison with respect to [44] � Gedik proposed a solution that is close to
our from several perspectives. However, di�erently from our solution, sparse items are
mapped using a consistent hash function, while we map them in buckets that are later
scheduled, depending on their load, to sub-streams.

Figure 7.10 shows the imbalance λ as a function of α of both the mean and worst
cases for DKG and DKG WOSIM. The latter is a modi�ed version of DKG where sparse
items are mapped to sub-streams directly using the h function whose co-domain has been
set to k. In other words the scheduling algorithm does not take into account the mapping
of sparse items, which is the main di�erence with respect to the solution proposed by

7.1. LOAD BALANCING STATEFUL PARALLELIZED OPERATORS 83

0.1 0.5 1.0

θ

 1

 2

 3

 4

 5

µ

 200

 600

 1000

 1400

 1800

(a) Mean Zipf-1

0.1 0.5 1.0

θ

 1

 2

 3

 4

 5

µ

 200

 600

 1000

 1400

 1800

(b) Max Zipf-1

0.1 0.5 1.0

θ

 1

 2

 3

 4

 5

µ

 4500

 5000

 5500

 6000

 6500

(c) Mean Zipf-2

0.1 0.5 1.0

θ

 1

 2

 3

 4

 5

µ

 4500

 5000

 5500

 6000

 6500

(d) Max Zipf-2

0.1 0.5 1.0

θ

 1

 2

 3

 4

 5

µ

 6400

 6750

 7100

 7450

 7800

(e) Mean Zipf-3

0.1 0.5 1.0

θ

 1

 2

 3

 4

 5

µ

 6400

 6750

 7100

 7450

 7800

(f) Max Zipf-3

Figure 7.9 � DKG standard deviation SD as a function of both θ and µ for Zipf-1, Zipf-2
and Zipf-3.

84 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.1 0.5 1 1.5 2 2.5 3

pe
rc

en
ta

ge
 o

f i
m

ba
la

nc
e
λ

zipf exponent α

DKG Mean
DKG Worst Case

DKG WOSIM Mean
DKG WOSIM Worst Case

Figure 7.10 � Comparing DKG and [44]: imbalance λ as a function of α.

 0

 100

 200

 300

 400

 500

 600

 700

 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f i
m

ba
la

nc
e
λ

number of instances k

DKG Mean
DKG Worst Case

PKG Mean
PKG Worst Case
DKG PKG Mean

DKG PKG Worst Case

Figure 7.11 � Comparing DKG and PKG [73]: imbalance λ as a function of k.

Gedik [44]. As the curves show, DKG always outperforms the WOSIM version for all
tested values of α. One further important di�erence between this work and [44] is that
the latter proposes a set of heuristics for key mapping that take into account the cost of
operator migration, making its solution tailored to systems that must adapt at runtime
to changing workload distributions.

Comparison with respect to [73] � Nasir et al. applied the power of two
choices approach to key grouping, achieving impressive load balancing. Di�erently from
our solution, PKG [73] cannot be applied in general, but it is limited to operators that
allow a reduce phase to reconcile the split state for each key. Interestingly, our solution
can work in conjunction with the one proposed in [73] to provide even better performance.

Figure 7.11 shows both the mean and worst case imbalance λ as a function of k for
DKG, PKG, and DKG PKG. The latter is a modi�ed version of DKG where we plug into it
the PKG logic. Each heavy hitter is fed to the scheduling algorithm as two distinct items
with half its original frequency. As such, the GMPS algorithm provides two di�erent
mappings for each heavy hitter. When hashing a heavy hitter, DKG PKG returns the less
loaded instance between the two associated with the heavy hitter. Notice that sparse
items are still associated with a single instance. PKG is the implementation provided

7.1. LOAD BALANCING STATEFUL PARALLELIZED OPERATORS 85

by the authors of [73]. The curves show that combining both solutions it is possible
to obtain even better performance. Interestingly, both DKG and DKG PKG worst case
performance are better than PKG worst case performance, stressing again how our solution
is able to provide stable performance irrespective of exogenous factors.

Prototype Results

To evaluate the impact of DKG on real applications we implemented it 1 as a custom
grouping function within the Apache Storm [89] framework. More in details, DKG imple-
ments the CustomStreamGrouping interface o�ered by the Storm API, de�ning two
methods: prepare() and chooseTasks(t). The former is a setup method, while the
latter returns the replica(s) identi�er(s) associated with tuple t. In DKG, the class con-
structor and the prepare() method implement the init() pseudo-code (cf., Listing 7.2).
In particular they take θ, ε, µ, k, the size of the learning set m, and the function key as
parameters. key is a user de�ned function that returns a positive integer value repre-
senting the grouping key(s) value(s) of tuple t. In all our tests we set θ = 0.1, ε = 0.05
and µ = 2, a set of sensible values that proved to be meaningful in our testbed. The
chooseTasks(t) method implements the rest of the pseudo-code (cf., Listing 7.2): it
(i) uses the �rst m tuples to learn (learn(t)), then (ii), once it has read m tuples, stops
learning and builds (build()) the global mapping function and (iii), �nally, returns
getInstance(t) for any following tuple t.

The use case for our tests is a partial implementation of the third query from the
DEBS 2013 Grand Challenge [36]: splitting a play �eld in four grids, each with a di�erent
granularity. The goal is to compute how long each of the monitored players is in each
grid cell, taking into account four di�erent time windows.

The test topology is made of a source (spout in Storm jargon) and an operator (bolt)
with k instances (tasks). To avoid I/O to be a bottleneck for our tests, the source store
the whole sensors reading data �le in memory. For each reading, it emits 4 tuples (one
for each granularity level) towards the operator instances. The grouping key is the tuple
cell identi�er (i.e., row, column and granularity level). We take into account the second
half of the match, which is made up of roughly 2.5 × 107 readings, generating close to
108 tuples. The training set is the �rst half of the trace, while the renaming half is the
validation set.

We deployed the topology on a server with a 8-cores Intel Xeon CPUs with Hy-
perThreading clocked at at 2.00GHz and with 32GB of RAM. The source thread (spout's
task) and the k operator instances threads (bolts' tasks) are spawned each on a di�erent
JVM instance. We performed tests for k ∈ {1, . . . , 10} with both the default key grou-
ping implementation (ASKG) and the DKG prototype.

Imbalance λ with respect to the number of instances k � Figure 7.12 shows
the imbalance as a function of k for FKDKG, Universal/ASKG and DKG with the debs
trace. For Universal/ASKG and DKG we show both the simulated results and the
outcome from the prototype (i.e., the imbalance of the number of tuples received by the
operator instances). We can notice that, for both DKG and Universal/ASKG, results
from the tested topology closely match those provided by the simulations. DKG sticks
very close to FKDKG for all k, and, except for k ∈ {7, 9}, largely outperforms Univer-

1The implementation's code is available at the following repository: http://github.com/rivetti/

dkg_storm

http://github.com/
rivetti/dkg_storm
rivetti/dkg_storm

86 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

 0

 100

 200

 300

 400

 500

 600

 700

 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f i
m

ba
la

ce
 λ

number of instances k

FKDKG Simulation
Universal Simulation

ASKG Topology
DKG Simulation

DKG Topology

Figure 7.12 � Imbalance λ for the debs trace as a function of k.

sal/ASKG. Furthermore, we can clearly see the hardly predictable behavior faced when
using a vanilla hash function. For k ∈ {2, . . . , 5}, FKDKG achieves 0% imbalance. Ho-
wever the most frequent item of the source outgoing stream has an empirical probability
of roughly 1/5. It is then impossible to achieve 0% imbalance for k ≥ 6 and FKDKG, as
well as DKG, imbalance grows with k.

Cpu usage and throughput � Figure 7.13a shows the cpu usage (Hz) over time
(300 seconds of execution) for DKG and ASKG with the debs trace in the test topology
with k = 4 instances. The cpu usage was measured as the average number of hertz
consumed by each instance every 10 seconds. Plotted values are the mean, maximum
and minimum cpu usage on the 4 instances.

The mean cpu usage for DKG is close to the maximum cpu usage for ASKG, while
the mean cpu usage for ASKG is much smaller. This was expected as there is a large
resource under-utilisation with ASKG. Figure 7.13b shows the cpu usage's distribution
for the same time-slice. In other words the data point x-axis value represents how many
times an instance has reached this cpu usage (Hz). Notice that the values are rounded to
the nearest multiple of 5×107. This plot con�rms that the cpu usage for DKG's replicas
is concentrated between 2 × 109 and 2.5 × 109 Hz, i.e., all instances are well balanced
with DKG. On the other hand ASKG does hit this interval, but most of the data points
are close to 5 × 108 Hz. The key grouping provided by DKG loads evenly all available
instances. Conversely, with ASKG some instance (in particular 3) are underused, leaving
most of the load on fewer instances (in particular 1).

This improvement in resource usage translates directly into a larger throughput and
reduced execution time, as clearly shown by Figure 7.14; in particular, in our experiments,
DKG delivered 2× the throughput of ASKG for k ∈ {4, 5, 6, 8, 10}.

7.1. LOAD BALANCING STATEFUL PARALLELIZED OPERATORS 87

 5x108

 1x109

 1.5x109

 2x109

 2.5x109

0 50 100 150 200 250 300

C
pu

 u
sa

ge
 (

H
z)

time (s)

ASKG DKG

(a) Timeline

0 10 20 30

 5x108

 1x109

 1.5x109

 2x109

 2.5x109

frequency

(b) Distribution

Figure 7.13 � Cpu usage (Hz) for 300s of execution.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 3 4 5 6 7 8 9 10

th
ro

ug
hp

ut
 (

tu
pl

es
 /

s)

number of instances k

ASKG
DKG

Figure 7.14 � Throughput (tuples/s) for the debs trace as a function of k.

88 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

7.2 Load Balancing Stateless Parallelized Operators

Load balancing shu�e grouped operators is in general considered a trivial problem that
can be solved through simple policies such as Round-Robin. However, this relies on the
assumption that all the tuples have the same execution time, which does not hold for
many practical use cases. The tuple execution time, in fact, may depend on the tuple
content itself. This is often the case whenever the receiving operator implements a logic
with branches where only a subset of the incoming tuples travels through each single
branch. If the computation associated with each branch generates di�erent loads, then
the execution time changes from tuple to tuple. As a practical example consider an
operator that works on a stream of input tweets and that enriches them with historical
data extracted from a database, where this historical data is added only to tweets that
contain speci�c hashtags: only tuples that get enriched require an access to the database,
an operation that typically introduces non negligible latencies at execution time. In this
case shu�e grouping implemented with Round-Robin may produce imbalance between
the operator instances, and this typically causes an increase in the time needed for a tuple
to be completely processed by the application (tuple completion time) as some tuple may
end-up being queued on some overloaded operator instances, while other instances are
available for immediate processing.

On the basis of the previous observation the tuple scheduling strategies for shu�e
grouping must be re-thought: tuples must be scheduled with the aim of balancing the
overall processing time on operators in order to reduce the average tuple execution time.
However, tuple processing times are not known in the scheduling phase.

Problem Statement The execution time wp(t) is modelled as an unknown function 2

of the content of tuple t and that may be di�erent for each operator instance (i.e., we do
not assume that the operator instances are uniform). We simplify the model assuming
that wp(t) depends on a single �xed and known attribute value of t. The probability
distribution of such attribute values, as well as wp are unknown and may change over
time. However, we assume that subsequent changes are interleaved by a large enough
time frame such that an algorithm may have a reasonable amount of time to adapt.
Abusing the notation, we may omit in wp the operator instance identi�er subscript.

The general goal we target in this work is to minimize the average tuple completion
time L. Such metric is fundamentally driven by three factors: (i) tuple execution times
at operator instances, (ii) network latencies and (iii) queuing delays. More in detail, we
aim at reducing queuing delays at parallel operator instances that receive input tuples
through shu�e grouping.

Problem 7.2 (Load Balance Shu�e Grouped Operators). Build a schedule of all the
tuples of the stream σS→O to k sub-streams σS→Op (p ∈ [k]), minimizing the average
tuple completion time L = 1

m

∑
tj∈σS→O `(tj).

Typical implementation of shu�e grouping are based on Round-Robin scheduling.
However, this tuple to sub-streams assignment strategy may introduce additional queuing
delays when the execution time of input tuples is not similar. For instance, let a0, b1, a2
be a stream with an inter tuple arrival delay of 1s, where a and b are tuples with the
respective execution time: w(a) = w(a) = 10s and w(b) = 1s. Scheduling this stream
with Round-Robin on k = 2 operator instances would assign a0 and a2 to instance O1

2In the experimental evaluation we relax the model by taking into account the execution time variance

7.2. LOAD BALANCING STATELESS PARALLELIZED OPERATORS 89

and b1 to instance O2, with a cumulated completion time equal to `(a0) + `(b1) + `(a2) =
29s, where `(a0) = 10s, `(b1) = 1s and `(a2) = (8 + 10)s, and L = 9.66s. Note the
wasted queuing delay of 8s for tuple a2. A better schedule would be to assign a0 to
instance 1, while b1 and a2 to instance 2, giving a cumulated completion time equals to
10 + 1 + 10 = 21s (i.e., no queuing delay), and L = 7s.

7.2.1 Online Shu�e Grouping Scheduler Algorithm

Online Shu�e Grouping Scheduler is a shu�e grouping implementation based on a sim-
ple, yet e�ective idea: if we assume to know the execution time wp(t) of each tuple t
on any of the operator instances, we can schedule the execution of incoming tuples on
such instances with the aim of minimizing the average per tuple completion time at the
operator instances. Still, the value of wp(t) is generally unknown. A common solution
to this problem is to build a cost model for the tuple execution time and then use it
to proactively schedule incoming load. However building an accurate cost model usu-
ally requires a large amount of a priori knowledge on the system. Furthermore, once a
model has been built, it can be hard to handle changes in the system or input stream
characteristics at runtime.

To overcome all these issues, OSG takes decisions based on the estimation Ŵp of the
total execution time assigned to instance Op, that is Wp =

∑
t∈σOp

wp(t). In order to do

so, OSG computes an estimation ŵp(t) of the execution time wp(t) of each tuple t on each
operator instance Op. Then, OSG can also compute the sum of the estimated execution

times of the tuples assigned to an instance Op, i.e., Ŵp =
∑

t∈σOp
ŵp(t), which in turn

is the estimation of Wp. A greedy scheduling algorithm is then fed with estimations for
all the available operator instances.

To implement this approach, each operator instance builds a sketch (i.e., a memory
e�cient data structure) that tracks the execution time of the tuples it processes. When
a change in the stream or instance(s) characteristics a�ects the tuples execution times
on some instances, the concerned instance(s) forward an updated sketch to the scheduler
which will then be able to (again) correctly estimate the tuples execution times. This
solution does not require any a priori knowledge on the stream composition or the
system, and is designed to continuously adapt to changes in the input distribution or on
the instances load characteristics. In addition, this solution is proactive, namely its goal
is to avoid unbalance through scheduling, rather than detecting the unbalance and then
attempting to correct it. A reactive solution can hardly be applied to this problem, in
fact it would schedule input tuples on the basis of a previous, possibly stale, load state
of the operator instances. In addition, reactive scheduling typically imposes a periodic
overhead even if the load distribution imposed by input tuples does not change over time.

Greedy Online Multi Processor Scheduling (GOMPS) A classical pro-
blem in the load balancing literature is to schedule independent tasks on identical ma-
chines minimizing the makespan, i.e., the Multiprocessor Scheduling problem. We adapt
this problem to our setting, i.e., to schedule online independent tuples on non-uniform
operator instances in order to minimize the average per tuple completion time L. Online
scheduling means that the scheduler does not know in advance the sequence of tasks it
has to schedule. The GOMPS algorithm assigns the currently submitted tuples to the
less loaded available operator instance. In Section 7.2.2 we prove that this algorithm
closely approximates an optimal omniscient scheduling algorithm, that is an algorithm

90 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

c
1 2 3 4

r
2

1

F2

c
1 2 3 4

W2

〈F2,W2〉

O2

〈F1,W1〉

O1

OSG

Ŵ1, Ŵ2

〈F1,W1〉

〈F2,W2〉

S

〈tj〉 | 〈
tj, Ŵ

1〉

〈F2,W2〉

〈∆2〉

A

B

C

D

E

Figure 7.15 � OSG design with r = 2 (δ = 0.25), c = 4 (ε = 0.70) and k = 2.

that knows in advance all the tuples it will receive. Notice that this is a variant of the
join-shortest-queue (JSQ) policy [52,71], where we measure the queue length as the time
needed to execute all the bu�ered tuples, instead of the number of bu�ered tuples.

OSG design

The sketch used by OSG to estimate the tuple execution time is a straightforward exten-
sion of VALES (cf., Section 3.3.1). Each operator instance Op maintains two matrices
(Figure 7.15.A): the �rst one, denoted by FOp , tracks the tuple frequencies ft,Op ; the
second, denoted by WOp , tracks the tuples cumulated execution times wOp(t) × ft,Op .
Both matrices have the same size r × c, where r = log 1

δ and c = e
ε , and hash functions.

The operator instance updates them (Listing 7.16) after each tuple execution.

The operator instances are modelled as a �nite state machine (Figure 7.17) with
two states: START and STABILIZING. The START state lasts until instance Op
has executed MOSG tuples, where MOSG is a user de�ned window size parameter. The
transition to the STABILIZING state (Figure 7.17.A) triggers the creation of a new
snapshot Sp. A snapshot is a matrix of size r × c where ∀ı ∈ [r],  ∈ [c] : Sp[ı, ] =
Wp[ı, ]/Fp[ı, ]. We say that the Fp and Wp matrices are stable when the relative error
ηp between the previous snapshot and the current one is smaller than η, that is if

ηp =

∑r
ı=1

∑c
j=1

∣∣∣Sp[ı, ]− Wp[ı,]
Fp[ı,])

∣∣∣
∑r

ı=1

∑c
=1Sp[ı, ]

≤ η (7.1)

is satis�ed. Then, each time instance Op has executed M
OSG tuples, it checks whether

Equation 7.1 is satis�ed. (i) If not, then Sp is updated (Figure 7.17.B). (ii) Otherwise
the operator instance sends the Fp and Wp matrices to the scheduler (Figure 7.15.B),
resets them and moves back to the START state (Figure 7.17.C).

7.2. LOAD BALANCING STATELESS PARALLELIZED OPERATORS 91

Listing 7.16 � OSG algorithm on operator instance Op.

1: init (r, c) do

2: Fp, Wp ← 0r,c
3: r hash functions h1, . . . , hr : [n]→ [c] from a 2-universal family.
4: end init

5: function Update(tj , w(tj))
6: for ı = 1 to r do

7: Fp[ı, hı(t)]← Fp[ı, hı(t)] + 1
8: Wp[ı, hı(t)]←Wp[ı, hı(t)] + w(tj)
9: end for

10: end function

start stabilizing

execute MOSG tuples
create snapshot Sp

execute MOSG tuples ∧ relative error ηp ≤ η
send Fp and Wp to scheduler and reset them

execute MOSG tuples ∧
relative error ηp > η
update snapshot SpA

B

C

Figure 7.17 � OSG operator instance �nite state machine.

There is a delay between any change in the stream or operator instances characteris-
tics and when the scheduler receives the updated Fp and Wp matrices from the a�ected
operator instance(s). This introduces a skew in the cumulated execution times estimated
by the scheduler. In order to compensate for this skew, we introduce a synchronization
mechanism that springs whenever the scheduler receives a new pair of matrices from any
operator instance. Notice also that there is an initial transient phase in which the sche-
duler has not yet received any information from operator instances. This means that in
this �rst phase it has no information on the tuples execution times and is forced to use
the Round-Robin policy. This mechanism is thus also needed to initialize the estimated
cumulated execution times when the Round-Robin phase ends.

The scheduler (Figure 7.15.C) maintains the estimated cumulated execution time a

scalar vector Ŵp for each instance (p ∈ [k]), and the set of pairs of matrices {〈Fp,Wp〉},
initially empty. It is modelled as a �nite state machine (Figure 7.19) with four states:
Round Robin, Send All, Wait All and Run.

The Round Robin state is the initial state in which scheduling is performed with
the Round-Robin policy. In this state, the scheduler collects the Fp and Wp matrices
sent by the operator instances (Figure 7.19.A). After receiving the two matrices from
each instance (Figure 7.19.B), the scheduler is able to estimate the execution time for
each submitted tuple and moves into the Send All state. When in Send All state,
the scheduler sends the synchronization requests towards the k instances. To reduce
overhead, requests are piggy backed (Figure 7.15.D) with outgoing tuples applying the
Round-Robin policy for the next k tuples: the i-th tuple is assigned to operator instance
i mod k. On the other hand, the estimated cumulated execution Ŵp is updated with

the tuple estimated execution time using the Update Ŵ function (Listing 7.18). When

92 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

Listing 7.18 � OSG scheduler on operator S.

1: init do(r, c, k)

2: A set of k counters Ŵp

3: A set of 〈Fp,Wp} matrices pairs
4: h1, . . . , hr : [n]→ [c], the same r hash functions of the operator instances
5: end init
6: function Submit(tj)

7: return arg minOp∈[k]{Ŵp}
8: end function
9: function UpdateŴ (tj , operator : Op)
10: ı← arg minı∈[r]{Fp[ı, hı(t)]}
11: Ŵp ← Ŵp + (Wp[ı, hı(t)]/Fp[ı, hı(t)])
12: end function

Round
Robin

Wait
All

Send
All

Run

receive new Fp and Wp

add to {〈Fp,Wp〉} set

received Fp and Wp

from each
operator instance

synhcronization requests
sent to each operator instance

received reply

received all replies

resynchronize all Ŵp

receive udpated
Fp and Wp

update local Fp and Wp

A

B

C

D

E

F

Figure 7.19 � OSG scheduler �nite state machine.

all the requests have been sent (Figure 7.19.C), the scheduler moves into the Wait
All state. This state collects the synchronization replies from the operator instances
(Figure 7.19.D). Operator instance Op reply (Figure 7.15.E) contains the di�erence ∆p

between the instance cumulated execution time Wp and the scheduler estimation Ŵp.

In the Wait All state, scheduling is performed as in the Run state, using both
the Submit and the Update Ŵ functions (Listing 7.18). When all the replies for
the current epoch have been collected, synchronization is performed and the scheduler
moves in the Run state (Figure 7.19.E). In the Run state, the scheduler assigns the input
tuple applying the Greedy Online Multi Processor Scheduling algorithm, i.e.,
assigns the tuple to the operator instance with the least estimated cumulated execution
time (Submit function, Listing 7.18). Then it increments the target instance estimated

cumulated execution time with the estimated tuple execution time (Update Ŵ function,
Listing 7.18). Finally, in any state except Round Robin, receiving an updated pair of
matrices Fp and Wp moves the scheduler into the Send All state (Figure 7.19.F).

7.2. LOAD BALANCING STATELESS PARALLELIZED OPERATORS 93

Theorem 7.3 (OSG Time Complexity).
For each tuple read from the input stream, the time complexity of OSG for each instance
is O(log(1/δ)). For each tuple submitted to the scheduler, OSG time complexity is O(k+
log(1/δ)).

Proof. By Listing 7.16, for each tuple read from the input stream, the algorithm incre-
ments an entry per row of both the Fp and Wp matrices. Since each has log(1/δ) rows,
the resulting update time complexity is O(log(1/δ)). By Listing 7.18, for each submitted

tuple, the scheduler has to retrieve the index with the smallest value in the vector Ŵ
of size k, and to retrieve the estimated execution time for the submitted tuple. This
operation requires to read entry per row of both the Fp and Wp matrices. Since each has
log(1/δ) rows, the resulting update time complexity is O(k + log(1/δ)).

Theorem 7.4 (OSG Space Complexity).
The space complexity of OSG for the operator instances is O

(
1
ε log 1

δ (logm+ log n)
)
,

while the space complexity for the scheduler is O
(
k
ε log 1

δ (logm+ log n)
)
.

Proof. Each operator instance stores two matrices, each one requiring 1
ε log(1/δ) logm

bits. In addition, it also stores a hash function whose domain size is n. Then the space
complexity of OSG on each operator instance is O

(
1
ε log 1

δ (logm+ log n)
)
. The scheduler

stores the same matrices, one for each instance, as well as k counters. Then the space
complexity of OSG on the scheduler is O

(
k
ε log 1

δ (logm+ log n)
)
.

Theorem 7.5 (OSG Communication Complexity). The communication complexity of
OSG is of O(m

MOSG) messages and O
(

m
MOSG

1
ε log 1

δ logm
)
bits.

Proof. After executing M tuples, an operator instance may send the Fp,Wp matri-
ces to the scheduler. This generates a communication cost of O(m

MOSG) messages and

O
(

m
MOSG

1
ε log 1

δ logm
)
bits. When the scheduler receives these matrices, the synchroni-

zation mechanism springs and triggers a round trip communication (half of which is piggy
backed by the tuples) with each instance. This introduces an additional communication
cost of O(m

MOSG) messages and O(m
MOSG logm) bits.

7.2.2 Theoretical Analysis

We �rst analyse FKOSG, a variant of OSG where we assume that the processing time
wp(t) is known for each tuple t. We suppose that tuples cannot be preempted, that is
tuples must be processed in an uninterrupted fashion on the operator instance it has been
scheduled on. Finally, given our system model, the problem of minimizing the average
completion time L can be reduced to the following problem (in terms of makespan):

Problem 7.6 (Minimum Makespan). Given k identical operator instances, and a se-
quence of tuples σ = 〈t1, . . . , tm〉 that arrive online from the input stream. Find an
online scheduling algorithm that minimizes the makespan of the schedule produced by the
online algorithm when fed with σ.

Let OPT be the schedule algorithm that minimizes the makespan over all possible
sequences σ, and COPT denote the makespan of the schedule produced by the OPT
algorithm fed by sequence σ. Notice that �nding COPT is an NP-hard problem. We
show that GOMPS builds a schedule that is within some factor of the lower bound of
the quality of the optimal scheduling algorithm OPT. Let us denote by WGOMPS the
makespan of the schedule produced by the greedy algorithm fed with σ.

94 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

Theorem 7.7 (GOMPSApproximation). For any σ, we have CGOMPS ≤ (2−1/k)COPT .

Proof. Let Op be the instance on which the last tuple t is executed. By construction of
the algorithm, when tuple t starts its execution on instance Op, all the other instances
are busy, otherwise t would have been executed on another instance. Thus when tuple t
starts its execution on instance Op, each of the k instances must have been allocated a
load at least equivalent to (

∑m
j=1w(t′j)− w(t))/k. Thus we have,

CGOMPS − w(t) ≤
∑m

j=1w(t′j)− w(t)

k

CGOMPS ≤
∑m

j=1w(t′j)

k
+ w(t)(1− 1

k
) (7.2)

Now, it is easy to see that

COPT ≥
∑m

j=1w(t′j)

k
, (7.3)

otherwise the total load processed by all the operator instances in the schedule produced
by the OPT algorithm would be strictly less than

∑m
j=1w(t′j), leading to a contradiction.

We also trivially have
COPT ≥ max

j
w(t′j). (7.4)

Thus combining relations (7.2), (7.3), and (7.4), we have

CGOMPS ≤ COPT + COPT

(
1− 1

k

)

=

(
2− 1

k

)
COPT (7.5)

that concludes the proof.

This lower bound is tight, that is, there are sequences of tuples for which theGOMPS
algorithm produces a schedule whose completion time is exactly equal to (2− 1/k) times
the completion time of the optimal scheduling algorithm [53].

Consider the example of k(k − 1) tuples with all the same processing time equal to
w(t) = a/k and one tuple with a processing time equal to w(t′) = a. Suppose that the
k(k − 1) tuples are scheduled �rst and then the longest one. Then the greedy algorithm
exhibits a makespan equal to a(k− 1)/k+ a = a(2− 1/k) while the OPT scheduling has
a makespan equal to a.

OSG feeds GOMPS with the estimated execution times ŵp(t) provided by VALES,
then OSG (ε, δ)-approximates FKOSG.

7.2.3 Experimental Evaluation

In this section we evaluate the performance obtained by using OSG to perform shu�e
grouping. We �rst describe the general setting used to run the tests and then discuss
the results obtained through simulations and with a prototype of OSG targeting Apache
Storm.

Setup � We present the results for 4 algorithms:
• The Round-Robin algorithm is the implementation of the classical Round-Robin
policy. We consider Round-Robin as the base-line in the simulations.

7.2. LOAD BALANCING STATELESS PARALLELIZED OPERATORS 95

• The ASSG algorithm is the standard Apache Storm shu�e grouping implemen-
tation. We consider ASSG as the base-line in the use-cases.
• The OSG algorithm is our solution.
• The FKOSG algorithm, is a variant of OSG where the estimation is exact, i.e.,
the scheduling algorithm is fed with the exact execution times for each tuple. We
consider FKOSG as an upper bound bounds of OSG performance.

OSG parameters are the operator window size MOSG, the tolerance parameter η, and
the parameters of the matrices F and W: ε and δ. These are respectively set to
MOSG = 1, 024, η, ε = 0.05 (i.e., c = 54 columns) and δ = 0.1 (i.e., r = 4 rows).

Synthetic traces � For synthetic datasets we generate streams of integer values
(items) representing the values of the tuple attribute driving the execution time when
processed on an operator instance. We consider streams of m = 100, 000 tuples, each
containing a value chosen among n = 4, 096 distinct items. Synthetic streams have
been generated using the Uniform distribution and Zip�an distributions with di�erent
values of α ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, denoted respectively as Zipf-0.5, Zipf-1.0, Zipf-
1.5, Zipf-2.0, Zipf-2.5, and Zipf-3.0. We de�ne nw as the number of distinct execution
time values that the tuples can have. These nw values are selected at constant distance in
the interval [minw,maxw]. We have also run tests generating the execution time values in
the interval [minw,maxw] with geometric steps without noticing unpredictable di�erences
with respect to the results reported in this section.

Unless otherwise speci�ed, the frequency distribution is Zipf-1.0 and the stream pa-
rameters are set to nw = 64, minw = 1 ms and maxw = 64 ms, this means that the
execution times are picked in the set {1, 2, · · · , 64}. If not stated otherwise, the ope-
rator instances are uniform (i.e., a tuple has the same execution time on any instance)
and there are k = 5 instances. Let W be the average execution time of the stream
tuples, then the stream maximum theoretical input throughput sustainable by the setup
is equal to k/W . When fed with an input throughput smaller than k/W the system is
over-provisioned (i.e., possible underutilization of computing resources). Conversely, an
input throughput larger than k/W results in an undersized system. We refer to the ratio
between the maximum theoretical input throughput and the actual input throughput as
the percentage of over-provisioning that, unless otherwise stated, was set to 100%.

In order to generate 100 di�erent streams, we randomize the association between the
nw execution time values and the n distinct items: for each of the nw execution time
values we pick uniformly at random n/nw di�erent values in [n] associated to that exe-
cution time value. This means that the 100 di�erent streams we use in our tests do not
share the same association between execution time and item as well as the association
between frequency and execution time (thus each stream has also a di�erent average exe-
cution time W). We have also build these associations using other distributions, namely
geometric and binomial, without noticing unpredictable di�erences with respect to the
results reported in this section. Finally, we have run each stream using 50 di�erent seeds
for the hash function generation, yielding a total of 5, 000 executions.

Real datasets � For the two use case we provide in this experimental evaluation,
we use two di�erent datasets: mention and reach. The former (mention) is a dataset
containing a stream of preprocessed tweets related to Italian politicians crawled during
the 2014 European elections. Among other information, the tweets are enriched with a
�eld mention containing the entities (i.e., Twitter users) mentioned in the tweet. We

96 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

consider the �rst 500, 000 tweets, mentioning roughly n = 35, 000 distinct entities and
where the most frequent entity (�Beppe Grillo�) has an empirical probability of occur-
rence equal to 0.065.
The second dataset (reach) is generated using the LDBC Social Network Benchmark [65].
Using the default parameters of this benchmark, we obtained a followers graph of 9, 960
nodes and 183, 005 edges (the maximum out degree was 734) as well as a stream of
2, 114, 269 tweets where the most frequent author has an empirical probability of occur-
rence equal to 0.0038.

Metrics � The evaluation metrics we provide, when applicable, are:

• the average per tuple completion time L
alg

(simply average completion time in
the following), where alg is the algorithm used for scheduling.

• the average per tuple completion time speed up ΛalgL (simply speed up in the
following) achieved by OSG or FKOSG with respect to Round-Robin.
• the throughput of the system expressed as tuples processed per second.

Recall that `alg(tj) is the completion time of the j-th tuple of the stream when using the
scheduling algorithm alg. To take into account any overhead introduced by the tested
algorithm, we rede�ne the completion time `alg(tj) as the time it takes from the injection
of the j-th tuple at the source until it has been processed by the operator. Then we can

de�ne the average completion time L
alg

and speed up ΛalgL as follows:

L
alg

=

∑m
j=1 `

alg(tj)

m
and ΛalgL =

∑m
j=1 `

Round-Robin(tj)∑m
t=1 `

alg(tj)

Whenever applicable we provide the maximum, mean and minimum �gures over the
5, 000 executions.

Simulation Results

Here we report the results obtained by simulating the behavior of the considered algo-
rithm on an ad-hoc multi-threaded simulator. The simulator streams the input dataset
through the scheduler that enqueues it on the available target instances. Each target in-
stance dequeues as soon as possible the �rst element in its queue and simulates processing
through busy-waiting for the corresponding execution time. With this implementation
the simulated processing times are characterized by only a slight variance mainly due
to the precision in estimating the busy-waiting time, which depends on the operating
system clock precision and scheduling.

Frequency probability distribution� Figure 7.20 shows the average completion

time L
alg

for OSG, Round-Robin and FKOSG with di�erent frequency probability distri-
butions. Increasing the skewness of the distribution reduces the number of distinct tuples
that, with high probability, will be fed for scheduling, thus simplifying the scheduling
process. This is why all algorithms perform better with highly skewed distributions. On
the other hand, uniform or lightly skewed (i.e., Zipf-0.5) distributions seem to be worst
cases, in particular for OSG and Round-Robin. With all distributions the Full Kno-
wledge algorithm outperforms OSG which, in turn, always provide better performance
than Round-Robin. However, for uniform or lightly skewed distributions (i.e., Zipf-0.5),
the gain introduced by OSG is limited (in average 4%). Starting with Zipf-1.0 the gain

7.2. LOAD BALANCING STATELESS PARALLELIZED OPERATORS 97

 0

 10

 20

 30

 40

 50

uniform zipf-0.5 zipf-1 zipf-1.5 zipf-2 zipf-2.5 zipf-3

av
er

ag
e

co
m

pl
et

io
n

tim
e

(m
s)

frequency distributions

FKOSG OSG Round-Robin

Figure 7.20 � Average per tuple completion time Lalg with di�erent frequency probability
distributions.

 0

 1000

 2000

 3000

 4000

 5000

uniform zipf-0.5 zipf-1 zipf-1.5 zipf-2 zipf-2.5 zipf-3

th
ro

ug
hp

ut

frequency distributions

FKOSG OSG Round-Robin

Figure 7.21 � Throughput with di�erent frequency probability distributions.

is much more sizeable (20%) and with Zipf-1.5 we have that the maximum average com-
pletion time of OSG is almost smaller than the minimum average completion time of
Round-Robin. Finally, with Zipf-2, OSG matches the performance of FKOSG. This be-
havior for OSG stems from the ability of its sketch data structures (VALES, see Section
3.3) to capture more useful information for skewed input distributions.

Figure 7.21 shows the throughput for the same con�gurations. Clearly, all the algo-
rithm achieve the same throughput. Each scheduling achieves di�erent average comple-

tion times L
alg

since they a�ect the queuing time experienced by the tuples. However
the throughput results shows that for all three algorithm the total load imposed on each
operator instance is balanced. Since this is a quite consistent behavior for all simulation,
we omitted the remaining throughput plots.

Input throughput � Figure 7.22 shows the speed up ΛOSGL as a function of the
percentage of over-provisioning. When the system is strongly undersized (95% to 98%),
queuing delays increase sharply, reducing the advantages o�ered by OSG. Conversely,
when the system is oversized (109% to 115%), queuing delays tend to 0, which in turns
also reduces the improvement brought by our algorithm. However, in a correctly sized

98 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

95 100 105 110 115

co
m

pl
et

io
n

tim
e

sp
ee

du
p

percentage of overprovisioning

OSG

Figure 7.22 � Speed up ΛOSGL as a function of the percentage of over-provisioning.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4

co
m

pl
et

io
n

tim
e

sp
ee

du
p

maximum execution time value maxw (ms)

OSG

Figure 7.23 � Speed up ΛOSGL as a function of the maximum execution time value maxw.

system (i.e., from 100% to 108%), our algorithm introduces a noticeable speed up ΛOSGL ,
in average at least 1.14 with a peak of 1.29 at 105%. Finally, even when the system
is largely oversized (115%), we still provide an average speed up of 1.06. We omitted
FKOSG to improve the readability of the plot. The general trend is the same of OSG,
achieving the same speed up when the system is undersized. When the systems is over-
sized, FKOSG hits a peak of 3.6 at 101% and provides a speed up of 1.57 at 115%. In all
con�gurations, all algorithm achieve roughly the same output throughput. In particular
it is maximum when the system is undersized (95% to 99%), and decreases accordingly
with the percentage of over-provisioning when the system is oversized (100% to 115%).

Maximum execution time value maxw � Figure 7.23 shows the speed up ΛOSGL

as a function of the maximum execution time maxw. With maxw = 0.1ms, all the tu-
ples have the same execution time w(t) = 0.1ms, thus all algorithm achieve the same
result. Increasing the value of maxw increments the gap between the 64 possible exe-
cution times, allowing more room to improve the scheduling, then OSG speed up ΛOSGL

grows for maxw ≥ 0.2. However notice that OSG seems to hit an asymptote at 1.25 for
maxw ≥ 102.4. We omitted FKOSG to improve the readability of the plot. The general
trend is the same of OSG, however starting with maxw ≥ 0.4 FKOSG achieves a larger

7.2. LOAD BALANCING STATELESS PARALLELIZED OPERATORS 99

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128 256 512 1024

av
er

ag
e

co
m

pl
et

io
n

tim
e

(m
s)

number of execution time values nw

FKOSG OSG Round-Robin

Figure 7.24 � Average per tuple completion time L
alg

as a function of the number of
execution time values nw.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

co
m

pl
et

io
n

tim
e

sp
ee

du
p

number of operator instances k

OSG

Figure 7.25 � Speed up ΛOSGL as a function of the number of operator instances k.

speed up and hits an asymptote at 3.4 for maxw ≥ 102.4.

Number of execution time values nw � Figure 7.24 shows the average com-

pletion time L
alg

for OSG, Round-Robin and FKOSG as a function of the number of
execution time values nw. We can notice that for growing values of nw both the average
completion time values and variance decrease, with only slight changes for nw ≥ 16.
Recall that nw is the number of completion time values in the interval [minw,maxw] that
we assign to the n distinct attribute values. For instance, with nw = 2, all the tuples
have a completion time equal to either 0.1 or 6.4 ms. Then, assigning either of the two
values to the most frequent item strongly a�ects the average completion time. Increasing
nw reduces the impact that each single execution time has on the average completion
time, leading to more stable results. The gain between the maximum, mean and max-
imum average completion times of OSG and Round-Robin (in average 19%) is mostly
una�ected by the value of nw.

Number of operator instances k � Figure 7.25 shows the speed up ΛOSGL as
a function of the number of parallel operator instances k. From k = 2 to k = 5 the

100 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

0.001 0.005 0.010 0.050 0.100 0.500 1.0

co
m

pl
et

io
n

tim
e

sp
ee

du
p

precision parameter ε

OSG

Figure 7.26 � Speed up ΛOSGL as a function of the precision parameter ε (i.e., number of
columns c = e/ε).

speed up ΛOSGL grows, starting with an average value of 1.14 and reaching an average
peak of 1.23. Then the speed up ΛOSGL decreases to 1.09 (k = 12) and reaches what
seems to be an asymptote at 1.06 (k = 20). In other words, for moderate values of k
(i.e., k ≤ 12), OSG introduces a sizeable improvement in the average completion latency
with respect to Round-Robin. On the other hand, for large value of k (i.e., k > 12),
the impact of OSG is mitigated. As the number of available instances increases, Round-
Robin is able to better balance the load, thus limiting OSG e�ectiveness. We omitted
FKOSG to improve the readability of the plot. The general trend is the same of OSG,
hitting a peak of 4.0 at k = 11 and the decreasing toward an asymptote at 2.7 for k = 20.

Precision parameter ε � Figure 7.26 shows the speed up ΛOSGL as a function of
the precision parameter ε value that controls the number of columns in the F and W
matrices. With smaller values of ε, OSG is more precise but also uses more memory,
i.e., for ε = 1.0 there is a single entry per row, while for ε = 0.001 there are 2781 entries
per row. As expected, decreasing ε improves OSG performance: in average a 10 time
decrease in ε (thus a 10 time increase in memory) results in a 25% increase in the speed
up. Large values of ε do not provide good performance; however, starting with ε ≤ 0.09
the minimum average completion time speed up is always larger than 1.

Time Series � Figure 7.27 shows the completion time as the stream unfolds (the
x axis is the number of tuples read from the stream) for both OSG and Round-Robin
for a single execution. Each point on the plot is the maximum, mean and minimum
completion time over the previous 2, 000 tuples. The plot for Round-Robin has been
arti�cially shifted by 1, 000 tuples to improve readability. In this test the stream is of
size m = 150, 000 split into two periods: the tuple execution times for operator instances
1, 2, 3, 4 and 5 are multiplied by 1.05, 1.025, 1.0, 0.975 and 0.95 respectively for the
�rst 75, 000 tuples, and for the remaining 75, 000 tuples by 0.90, 0.95, 1.0, 1.05 and 1.10
respectively. This setup mimics an abrupt change in the load characteristic of target
operator instances (possibly due to exogenous factors).

With the prototype we could not achieve the same measurement precision as with
the simulator. Then, to be able to compare the simulator and prototype time series, we
increased by a factor of 10 the execution times.

7.2. LOAD BALANCING STATELESS PARALLELIZED OPERATORS 101

 0

 2000

 4000

 6000

 8000

 10000

 10000
 20000

 30000

co
m

pl
et

io
n

tim
e

(m
s)

OSG Round-Robin

 70000
 80000

 90000

number of tuples m

Figure 7.27 � Simulator per tuple completion time time-series.

In the leftmost part of the plot, we can see OSG and Round-Robin provide the
same exact results up to m = 10, 690, where OSG starts to diverge by decreasing the
completion time as well as the completion time variance. This behaviour is the result of
OSG moving into the Run state at m = 10, 690. After this point it starts to schedule
using the F and W matrices and the GOMPS algorithm, improving its performance with
respect to Round-Robin, also reducing the completion time variance.

At m = 75, 000 we inject the load characteristic change described above. Immedi-
ately OSG performance degrades as the content of F and W matrices is outdated. At
m = 84, 912 the scheduler receives the updated F and W matrices and recovers. This
demonstrates OSG ability to adapt at runtime with respect to changes in the load dis-
tributions.

Prototype Results

To evaluate the impact of OSG on real applications we implemented it as a custom grou-
ping function within the Apache Storm [89] framework. We have deployed our cluster on
Microsoft Azure cloud service, using a Standard Tier A4 VM (4 cores and 7 GB of RAM)
for each worker node, each with a single available slot. This choice helped us ruling out
from tests possible side-e�ects caused by co-sharing of CPU cores among processes that
are not part of the Storm framework. The prototype was �rst tested with the synthetic
dataset and application, as for the previous simulations, and then on two realistic stream
processing applications.

Time Series � In this �rst test the topology was made of a source (spout) and
operators (bolts) S and O. The source generates (reads) the synthetic (real) input stream.
Bolt S uses either OSG or the Apache Storm standard shu�e grouping implementation
(ASSG) to route the tuples toward the k instances (tasks) of bolt O.

Figure 7.28 provides results for the prototype with the same settings of the test whose
results were reported in Figure 7.27. We can notice the same general behavior both in
the simulator and in the prototype. In the right part of the plot OSG diverges from
ASSG at m = 20, 978 and decreases the completion time as well as the completion time
variance. On the right part of the plot, after m = 75, 000 OSG performance degrade due
to the change in the load distributions. Finally, at m = 82, 311 the scheduler receives the

102 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

 0

 2000

 4000

 6000

 8000

 10000

 10000
 20000

 30000

co
m

pl
et

io
n

tim
e

(m
s)

OSG ASSG

 70000
 80000

 90000

number of tuples m

Figure 7.28 � Prototype per tuple completion time time-series.

 0

 20

 40

 60

 80

 100

2 3 4 5 6 7 8 9 10

av
er

ag
e

co
m

pl
et

io
n

tim
e

(m
s)

number of operator instances k

OSG ASSG

Figure 7.29 � Prototype average per tuple completion time L
alg

as a function of the
number of operators k in use-case mentions.

updated F and W matrices and starts to recover. Notice also that 1, 600 tuples timed
out (and where not recovered as the topology was con�gured disabling Storm fault tole-
rance mechanisms) during the execution with ASSG. This clearly shows how the shu�e
grouping scheduling policy can have a large impact on the system performances.

Use-case mentions � In this test we run a simple application using the mention
dataset as input: for each tweet of the stream we want to extract the mentions it contains
and accordingly decorate the outgoing tuple with additional information on them. In
particular, for each mention carried by a tweet the bolt performs a sets of queries (based
on the mention itself) on an external database. The larger is the number of mentions
contained in the tweet, the more processing time it takes for the bolt to complete the
queries and decorate the outgoing tuple. The mention execution times belong to the
interval [0.1, 23] ms, each mention adds in average 1 ms to the processing time to execute
the corresponding query. The number of mentions is only limited by the number of
users registered on Twitter and summed up to a total of 35, 000 unique identities in the
mention dataset. Globally, the tuple execution times belong to the interval [1.8, 36] ms,
while the average per tuple execution time is 7 ms.

7.2. LOAD BALANCING STATELESS PARALLELIZED OPERATORS 103

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 3 4 5 6 7 8 9 10

av
er

ag
e

co
m

pl
et

io
n

tim
e

(m
s)

number of operator instances k

OSG ASSG

Figure 7.30 � Prototype average per tuple completion time L
alg

as a function of the
number of operators k in use-case reach.

Figure 7.29 shows the mean, maximum and minimum average completion time Lalg

for both OSG and ASSG as a function of the number of instances k over 10 executions.
For all values of k, OSG provides lower or equal average completion times than ASSG,
with a mean, minimum and maximum speed up ΛOSGL of 1.27, 1.0 and 2.16. For k = 5
and k = 6, we can notice an unanticipated behavior of ASSG: adding one more instance
increases the completion times. On the other hand, OSG average completion time always
decreases with growing values of k. Notice also that, to provide this improvement, OSG
exchanged only a few hundred additional messages against a stream of size m = 500, 000.

Use-case reach � In this test we want to compute the reach of twitted terms
using the reach dataset as input. The reach of a term is the total number of estimated
unique Twitter users to which were delivered tweets about the search term. Usually, this
metric is calculated through a periodic batch process using the followers graph, where
edges are enriched with re-tweet probabilities. We propose instead to compute this value
in a streaming fashion, for each tweet, restricting the computation to a depth of 3 in
the followers graph of 9, 960 nodes. Globally, the tuple execution times belong to the
interval [0.01, 70] ms, the most frequent tuple execution time is in average 65 ms, while
the average per tuple execution time is 20 ms.

Figure 7.30 shows the mean, maximum and minimum average completion time L
alg

for both OSG and ASSG as a function of the number of instances k over 10 executions.
Except for the unanticipated spike of ASSG for k = 5, the completion latency decreases
as k increases. For all k, OSG has a smaller mean average completion latency than
ASSG. In addition, for most values of k, the maximum average completion latency of
OSG is smaller or equal to the minimum average completion latency of ASSG. Finally,
the average speed up ΛOSGL of OSG with respect to ASSG is at least 1.05, at most 3.4 and
in average 1.5. To achieve these results, OSG exchanges only a few thousand additional
messages, against a stream size of m = 2, 114, 269.

104 CHAPTER 7. LOAD BALANCING PARALLELIZED OPERATORS

7.3 Parallelized load balancers

For the sake of clarity, so far we have considered a topology with a single operator S. To
handle stages where operator S is itself parallelized with s instances S1, . . . , Ss, we have
to extends our algorithm as follows:

Distribution-aware Key Grouping Each instance of S should run a modi�ed ver-
sion of DKG and collaborate to build the global mapping. More in details, the Space

Saving instance should be replaced by an algorithm solving the distributed heavy hitters
(e.g., DHHE presented in Section 4.3) in the s sub-streams σSi (i ∈ [s]). We also need
to introduce a coordinator that, at the end of the learning phase, retrieves the frequency
estimation of the distributed heavy hitters and of the buckets of sparse items. The coor-
dinator is then able to build a close to optimal mapping through the GMPS algorithm,
as in the non-parallelized version.

Online Shu�e Grouping Scheduler Parallelizing OSG is less straightforward: de-
cisions are taken continuously and on-line, thus the decision process cannot be moved
on a coordinator as for DKG. The solution we propose is to run independent instances
of OSG on each of the s instances of operator S, i.e., as Round-Robin is parallelized.
Ideally, since each instance of OSG strives to spread evenly its outbound load, the over-
all load induced on each instance of operator O should be even. Alas, it is easy to see
that in the worst case GOMPS (and thus OSG) performance degrades linearly with the
parallelization degree. Indeed, in absence of any additional communication between the
parallel schedulers, each of them cannot do better than providing a schedule in isolation
with respect to the other schedulers. On the other hand, the same degradation applies
to Round-Robin scheduling, consequently our approach still provides better results and
can handle a moderate parallelization degree.

Notice that both load balancing solutions work on a hop-by-hop basis. Under the
realistic assumption that there is no cross stage dependency among tasks with respect to
scheduling, we can apply DKG and OSG on any key-grouped and, respectively, shu�e
grouped stage. Through these two algorithms, we can then load balance any sequence of
key- and shu�e-grouped stage of the topology.

7.3. PARALLELIZED LOAD BALANCERS 105

Chapter Summary

This chapter has introduced the design of DKG, based on BPART (cf.,
Section 4.4), and of OSG, based on VALES (cf., Section 3.3). Both DKG
and OSG have been extensively tested with both simulation and a running
prototype, con�rming the theoretical analysis of the algorithms. In particu-
lar, both yielded a sizeable improvement with respect to previous solutions
in load balancing key- and shu�e-grouped parallelized operators in stream
processing systems. Finally, this chapter also introduced the notion of non-
uniform tuple execution time.

The next chapter presents the design of a load shedding algorithm based on
VALES. Similarly to OSG, this algorithm exploit the non-uniformity of the
tuple execution time.

Chapter 8

Load Shedding in Stream Processing

Systems

In this chapter we tackle the load shedding problem taking into account that, as argued
previously (cf., Section 7.2), the execution time of the tuple may not be uniform for
many practical use cases. Existing load shedding solutions either randomly drop tuples
when bottlenecks are detected or apply a pre-de�ned model of the application and its
input that allows them to deterministically take the best shedding decision. Load-Aware
Load Shedding (LAS) is a novel solution for load shedding in SPS that gets rid of the
aforementioned assumptions and provides e�cient shedding aimed at matching given
queuing time targets, while dropping as few tuples as possible. To reach this goal LAS
leverages the VALES algorithm (cf., Section 3.3) to build and maintain, at runtime, a
cost model that is then exploited to take decisions on when load must be shed. LAS
has been designed as a �exible solution that can be applied on a per-operator basis, thus
allowing developers to target speci�c critical stream paths in their applications.

In most previous work (cf., Section 6.1), the solution takes into account a priority
model to decide which tuples can be dropped. However, we believe that the keeping
the system performances stable and minimising the error in the topology output are
orthogonal problems.

Problem Statement With respect to the system model presented in Section 6.2, we
introduce the set of dropped tuples D ⊆ [m] in a stream of length m, i.e., dropped tuples
are thus represented in D by their indices in [m] of the stream σ. Moreover, let d ≤ m
be the number of dropped tuples in a stream of length m, i.e., d = |D|. We also set the
queuing time for dropped tuple to 0, i.e., ∀j ∈ D, q(tj) = 0. Then we can de�ne the
average queuing time as: Q(ı) = 1

ı−d
∑

j∈[ı]\D q(tj) for all ı ∈ [m].

The goal of the load shedder is to maintain at any point in the stream the average
queuing time smaller than a given threshold Q

max
by dropping as few tuples as possible.

The quality of the shedder can be evaluated both by comparing the resulting Q against
Q

max
and by measuring the number of dropped tuples d. More formally, the load shedding

problem can be de�ned as follows.

Problem 8.1 (Load Shedding). Given a data stream σ = 〈t1, . . . , tm〉, �nd the smallest
set D such that

∀ı ∈ [m], Q(ı) =
1

ı− d
∑

j∈[ı]\D

q(tj) ≤ Qmax
.

107

108 CHAPTER 8. LOAD SHEDDING IN STREAM PROCESSING SYSTEMS

c
1 2 3 4

r
2

1

F

c
1 2 3 4

W

〈F,W〉

O

LAS

Ŵ

〈F,W〉

S
〈tj〉 | 〈tj , Ŵ 〉

〈F,W〉

〈∆〉 A

B

C

D

E

Figure 8.1 � LAS design with r = 2 (δ = 0.25), c = 4 (ε = 0.70).

start stabilizing

execute MLAS tuples
create snapshot S

execute MLAS tuples ∧ relative error η ≤ η
send F and W to scheduler and reset them

execute MLAS tuples ∧
relative error η > η
update snapshot SA

B

C

Figure 8.2 � LAS operator �nite state machine.

8.1 Load-Aware Load Shedding Algorithm

Similarly to OSG (cf., Section 7.2.1), Load-Aware Load Shedding (LAS) is based on a
simple, yet e�ective, idea: if we assume to know the execution time w(t) of each tuple
t on the operator, then we can foresee the queuing time for each tuple of the operator
input stream and then drop all tuples that will cause the queuing time threshold Q

max

to be violated. However, the value of w(t) is generally unknown.

LAS overcomes these issues by building and maintaining at run-time a cost model for
tuple execution times. It takes shedding decision based on the estimation Ŵ of the total
execution time of the operator W =

∑
j∈[m]\D w(tj). In order to do so, LAS computes

an estimation ŵ(tj) of the execution time w(t) of each tuple tj . Then, it computes
the sum of the estimated execution times of the tuples assigned to the operator, i.e.,
Ŵ =

∑
j∈[m]\D ŵ(tj). At the arrival of the j-th tuple, subtracting from Ŵ the (physical)

time elapsed from the emission of the �rst tuple provides us with an estimation q̂(j) of
the queuing time q(j) for the current tuple.

To enable this approach, LAS estimates the tuple execution time extending VALES
(cf., Section 3.3.1) as shown in Section 7.2.1).

The operator maintains two matrices (Figure 8.1.A): the �rst one, denoted as F,
tracks the tuple frequencies ft, the second one, denoted asW, tracks the tuples cumulated
execution times w(t)× ft. Both matrices share the same size r × c, where r = log 1

δ and
c = e

ε , and hash functions.

8.1. LOAD-AWARE LOAD SHEDDING ALGORITHM 109

Listing 8.3 � LAS algorithm on operator O

1: init (r, c, MLAS) do
2: F, W, S← 0r,c
3: r hash functions h1, . . . , hr : [n]→ [c] from a 2-universal family.
4: m← 0
5: state← Start

6: end init
7: function update(tj , w(tj), request : Ŵ)
8: m← m+ 1
9: if Ŵ not null then
10: ∆←W − Ŵ
11: send 〈∆〉 to S
12: end if
13: if state = Start ∧m mod MLAS = 0 then . Figure 8.2.A
14: update S
15: state← Stabilizing

16: else if state = Stabilizing ∧m mod MLAS = 0 then
17: if η ≤ η (Eq. 8.1) then . Figure 8.2.C
18: send 〈F,W〉 to S
19: state← Start

20: reset F and W to 0r,c
21: else . Figure 8.2.B
22: update S
23: end if
24: end if
25: for ı = 1 to r do
26: F[ı, hı(t)]← F[ı, hı(t)] + 1
27: W[ı, hı(t)]←W[ı, hı(t)] + w(tj)
28: end for
29: end function

The operator is modeled as a �nite state machine (Figure 8.2) with two states:
START and STABILIZING. The START state lasts as long as the operator has execu-
ted MLAS tuples, where MLAS is a user de�ned window size parameter. The transition
to the STABILIZING state (Figure 8.2.A) triggers the creation of a new snapshot S.
A snapshot is a matrix of size r × c where ∀ı ∈ [r],  ∈ [c] : S[ı, ] = W[ı, ]/F[ı, ] (Lis-
ting 8.3, Lines 13�16). We say that the F and W matrices are stable when the relative
error η between the previous snapshot and the current one is smaller than a con�gurable
parameter η, i.e.,

η =

∑
∀ı,|S[ı, ]− W[ı,]

F[ı,]) |∑
∀ı,S[ı, ]

≤ η (8.1)

is satis�ed. Then, each time the operator has executed MLAS tuples (Listing 8.3,
Lines 16�24), it checks whether Equation 8.1 is satis�ed. (i) In the negative case S is
updated (Figure 8.2.B). (ii) In the positive case the operator sends the F andW matrices
to the load shedder (Figure 8.1.B), resets their content and moves back to the START
state (Figure 8.2.C).

110 CHAPTER 8. LOAD SHEDDING IN STREAM PROCESSING SYSTEMS

Send RUNNOP

received F and W
update local F and W

synhcronization request
sent

received reply

resynchronize Ŵ

received F and W
update local F and W

A

B

C

D

Figure 8.4 � LAS shedder �nite state machine.

There is a delay between any change in w(t) and when the load shedder receives
the updated F and W matrices. This introduces a skew in the cumulated execution
time estimated by the load shedder. In order to compensate this skew, we introduce a
synchronization mechanism that springs whenever the load shedder receives a new pair
of matrices from the operator.

The load shedder (Figure 8.1.C) maintains the estimated cumulated execution time

of the operator Ŵ and a pairs of initially empty matrices 〈F,W〉. The loadshedder is
modeled as a �nite state machine (Figure 8.4) with three states: NOP, SEND and RUN.
The load shedder executes the code reported in Listing 8.5. In particular, every time a
new tuple t arrives at the load shedder, the function shed is executed. The load shedder
starts in the NOP state where no action is performed (Listing 8.5, Lines 15�17). Here we
assume that in this initial phase, i.e., when the topology has just been deployed, no load
shedding is required. When the load shedder receives the �rst pair 〈F,W〉 of matrices
(Figure 8.4.A), it moves into the SEND state and updates its local pair of matrices
(Listing 8.5, Lines 7�10). While being in the SEND state, the load shedder sends to

O the current cumulated execution time estimation Ŵ (Figure 8.1.D) piggy backing it
with the �rst tuple t that is not dropped (Listing 8.5, Lines 24�27) and moves in the
RUN state (Figure 8.4.B). This information is used to synchronize the load shedder
with operator O and remove the skew between O's cumulated execution time W and the
estimation Ŵ at the load shedder. Operator O replies to this request (Figure 8.1.E) with

the di�erence ∆ = W − Ŵ (Listing 8.3, Lines 9�12). When the load shedder receives

the synchronization reply (Figure 8.4.C) it updates its estimation Ŵ + ∆ (Listing 8.5,
Lines 11�13).

In the RUN state, the load shedder computes, for each tuple t, the estimated queuing
time q̂(i) as the di�erence between the operator estimated execution time Ŵ and the time
elapsed from the emission of the �rst tuple (Listing 8.5, Line 18). It then veri�es if the
estimated queuing time for t satis�es the Check method (Listing 8.5, Lines 19�21).

This method encapsulates the logic to decide if a desired condition on queuing la-
tencies is violated or not. As stated in Problem 8.1, we aim at maintaining the average
queuing time below a threshold Q

max
. Then, Check tries to add q̂ to the current average

queuing time (Listing 8.5, Lines 31). If the result is larger than Q
max

(i), it simply re-
turns true; otherwise (ii), it updates its local value for the average queuing time and
returns false (Listing 8.5, Lines 34�36). Note that di�erent goals, based on the queuing
time, can be de�ned and encapsulated within Check, e.g., maintain the �nal average
queuing time below Q

max
, or maintain the average queuing time calculated on a sliding

window below Q
max

.

8.1. LOAD-AWARE LOAD SHEDDING ALGORITHM 111

Listing 8.5 � LAS shedder on operator S

1: init (r, c, Q
max

) do

2: Ŵ ← 0
3: 〈F,W〉 ← 〈0r,c, 0r,c〉
4: h1, . . . , hr : [n]→ [c], the same r hash functions of the operator instances
5: state← NOP

6: end init

7: upon 〈F′,W′〉 do . Figure 8.4.A and 8.4.D
8: state← Send

9: 〈F,W〉 ← 〈F′,W′〉
10: end upon

11: upon receive 〈∆〉 from operator do . Figure 8.4.C

12: Ŵ ← Ŵ + ∆
13: end upon

14: function shed(tj)
15: if state = NOP then

16: return false
17: end if

18: ˆq(tj)← Ŵ− elapsed time from �rst tuple

19: if Check(ˆq(tj)) then
20: return true
21: end if

22: ı← arg minı∈[r]{F[ı, hı(t)]}
23: Ŵ ← Ŵ + (W[ı, hı(t)]/F[ı, hı(t)])× (1 + ε)
24: if state = Send then . Figure 8.4.B
25: piggy back Ŵ to operator on t
26: state← Run

27: end if

28: return false
29: end function

30: function Check(q̂)

31: if Q̂+q̂
m > Q

max
then

32: return true
33: end if

34: Q̂← Q̂+ q̂
35: m← m+ 1
36: return false
37: end function

If Check(q̂) returns true, (i) the load shedder returns true as well, i.e., tuple t

must be dropped. Otherwise (ii), the operator estimated execution time Ŵ is updated
with the estimated tuple execution time ŵ(t), increased by a factor 1 + ε to mitigate
potential under-estimations (Listing 8.5, Lines 22�23), and the load shedder returns
false (Listing 8.5, Line 28), i.e., the tuple must not be dropped. The correction factor
derives from the fact that ŵ(t) is a (ε, δ)-approximation of w(t) as shown in Section 3.3.2.
Finally, if the load shedder receives a new pair 〈F,W〉 of matrices (Figure 8.4.D), it again
update its local pair of matrices and move to the SEND state (Listing 8.5, Lines 7�10).

Theorem 8.2 (LAS Time Complexity).
For each tuple read from the input stream, the time complexity of LAS for the operator
and the load shedder is O(log 1/δ).

112 CHAPTER 8. LOAD SHEDDING IN STREAM PROCESSING SYSTEMS

Proof. By Listing 8.3, for each tuple read from the input stream, the algorithm increments
an entry per row of both the F andW matrices. Since each has log 1/δ rows, the resulting
update time complexity is O(log 1/δ). By Listing 8.5, for each submitted tuple, the
scheduler has to retrieve the estimated execution time for the submitted tuple. This
operation requires to read entry per row of both the F and W matrices. Since each has
log 1/δ rows, the resulting query time complexity is O(log 1/δ).

Theorem 8.3 (LAS Space Complexity).
The space complexity of LAS for the operator and load shedder is O

(
1
ε log 1

δ (logm+ log n)
)

bits.

Proof. The operator stores two matrices of size log(1δ) × e
ε of counters of size logm.

In addition, it also stores a hash function with a domain of size n. Then the space
complexity of LAS on the operator is O

(
1
ε log 1

δ (logm+ log n)
)
bits. The load shedder

stores the same matrices, as well as a scalar. Then the space complexity of LAS on the
load shedder is also O

(
1
ε log 1

δ (logm+ log n)
)
bits.

Theorem 8.4 (LAS Communication Complexity). The communication complexity of
LAS is of O

(
m
M

)
messages and O

(
m

MLAS
1
ε log 1

δ (logm+ log n)
)
bits.

Proof. After executingMLAS tuples, the operator may send the F and W matrices to the
load shedder. This generates a communication cost of O

(
m

MLAS
1
ε log 1

δ (logm+ log n)
)

bits via O
(

m
MLAS

)
messages. When the load shedder receives these matrices, the synchro-

nization mechanism springs triggering a round trip communication (half of which is piggy
backed by the tuples) with the operator. The communication cost of the synchronization
mechanism is O

(
m

MLAS

)
messages and O

(
m

MLAS logm
)
bits.

Parallel load shedders For the sake of clarity, so far we have considered a topology
with a single operator S. To handle stages where operator S is itself parallelized with s
instances S1, . . . , Ss, we have to extends LAS as follows.

Similarly to OSG, LAS takes decisions continuously and on-line, thus the decision
process cannot be moved on a coordinator. However, while OSG handles the whole
outbound sub-stream σSi , LAS works on a single sub-stream σSi→Op . Then LAS can
easily be parallelized running s× k isolated instances, each handling a single sub-stream
from instance Si to instance Op.

8.2 Theoretical Analysis

This section provides the analysis of the quality of the shedding performed by LAS,
studying the correctness and optimality of the shedding algorithm. We assume that the
execution time of each tuple w(t) is known.

We �rst analyse FKLAS , a variant of LAS where we assume that the processing time
wp(t) is known for each tuple t. We suppose that tuples cannot be preempted, that is
they must be processed in an uninterrupted fashion on the available operator instance.
Finally, given our system model, we consider the problem of minimizing d, the number of
dropped tuples, while guaranteeing that the average queuing latency Q is upper-bounded
by Q

max
, ∀tj ∈ σ. The solution must work on-line, thus the decision of enqueueing or

dropping a tuple has to be made based only on the tuples received so far in the stream.
Let OPT be the online algorithm that provides the optimal solution to Problem 8.1.

We denote with DOPT (respectively dOPT) the set of dropped tuple indices (respectively

8.3. EXPERIMENTAL EVALUATION 113

the number of dropped tuples) produced by the OPT algorithm fed by stream σ. We
also denote with dFKLAS the number of dropped tuples produced by FKLAS when fed
with the same stream σ.

Theorem 8.5 (FKLAS Correctness and Optimality). For any σ, we have dFKLAS = dOPT
and ∀tj ∈ σ,QFKLAS

(j) ≤ Qmax
.

Proof. Given a stream σ, consider the sets of indices of tuples dropped by respectively
OPT and FKLAS , namely DOPT and DFKLAS . Below, we prove by contradiction that
dFKLAS = dOPT .

Assume that dFKLAS > dOPT . Without loss of generality, we denote ı1, . . . , ıdFKLAS
the ordered indices in DFKLAS , and 1, . . . , dOPT the ordered indices in DOPT . Let us
de�ne a as the largest natural integer such that ∀x ≤ a, ıx = x (i.e., ı1 = 1, . . . , ıa = a).
Thus, we have ıa+1 6= a+1.

• Assume that ıa+1 < a+1. Then, according to Listing 8.5, the ıa+1-th tuple of
σ has been dropped by FKLAS as the method Check returned true. Thus, as
ıa+1 /∈ DOPT , the OPT run has enqueued this tuple violating the constraint Q

max
.

But this is in contradiction with the de�nition of OPT.
• Assume now that ıa+1 > a+1. The fact that FKLAS does not drop the a+1 tuple
means that Check returns false, thus that tuple does not violate the constraint
on Q

max
. However, as OPT is optimal, it may drop some tuples for which Check

returns false, to drop less tuples overall. Therefore, if it drops the a+1 tuple, it
means that OPT knows the future evolution of the stream and takes a decision
on this knowledge. But, by assumption, OPT is an on-line algorithm, and the
contradiction follows.

Then, we have that ıa+1 = a+1. By induction, we iterate this reasoning for all the
remaining indices from a+ 1 to dOPT . We then obtain that DOPT ⊆ DFKLAS .

As by assumption dOPT < dFKLAS , we have that ∃j ∈ DFKLAS \ DOPT such that tj
has been dropped by FKLAS . This means that, with the same tuple index pre�x shared
by OPT and FKLAS , the method Check returned true when evaluated on tj , and OPT
would violate the condition on Q

max
by enqueuing it. That leads to a contradiction.

Then, DFKLAS \ DOPT = ∅, and dOPT = dFKLAS .
Furthermore, by construction, FKLAS never enqueues a tuple that violates the con-

dition on Q
max

because Check would return true. Consequently, ∀tj ∈ σ,QFKLAS
(j) ≤

Q
max

.

LAS computes Q with the estimated execution times ŵ(t) provided by VALES, then
LAS (ε, δ)-approximates FKLAS .

8.3 Experimental Evaluation

In this section we evaluate the performance obtained by using LAS to perform load shed-
ding. We �rst describe the general setting used to run the tests and then discuss the
results obtained through simulations and with a prototype integrated in Apache Storm.

114 CHAPTER 8. LOAD SHEDDING IN STREAM PROCESSING SYSTEMS

Setup � We compare LAS performance against three other algorithms:

• The Base Line algorithm takes as input the percentage of under-provisioning and
drops at random an equivalent fraction of tuples from the stream;
• The Straw-Man algorithm uses the same shedding strategy of LAS, however it
uses the average execution time W as the estimated execution time ŵ(t) for each
tuple t;
• The FKLAS algorithm uses the same shedding strategy of LAS, however it feeds
it with the exact execution time w(t) for each tuple t.

The LAS operator window size parameter MLAS , the tolerance parameter µ and
the number of rows of the F and W matrices δ are respectively set to MLAS = 1, 024,
µ = 0.05 and δ = 0.1 (i.e., r = 4 rows). By default, the LAS precision parameter (i.e.,,
the number of columns of the F and W matrices) is set to ε = 0.05 (i.e., c = 54 columns),
however in one test we evaluate LAS performance using several values: ε ∈ [0.001, 1.0].

We considered two types of constraints de�ned on the queuing latency:

• ABS(q) requires that the queuing latency for each tuple is at most q ms: ∀j ∈
[m] \ D, q(tj) ≤ q;
• AVG(Qmax

) requires that the total average queuing latency does not exceeds
Q

max
ms: ∀j ∈ [m] \ D, Q(j) ≤ Qmax

.

While not being a realistic requirement, the straightforwardness of the ABS(Q
max

) con-
straint allowed us to grasp a better insight of the algorithms mechanisms. However,
in this section we only show results for the AVG(6.4) constraint as is it a much more
sensible requirement with respect to a real setting.

Synthetic traces � Similarly to the evaluation of OSG (cf., Section 7.2.3), synt-
hetic datasets are built as streams of integer values (items) representing the values of the
tuple attribute driving the execution time when processed on the operator. We consider
streams of m = 32, 768 tuples, each containing a value chosen among n = 4, 096 distinct
items. Streams have been generated using the Uniform and Zip�an distributions with dif-
ferent values of α ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, denoted respectively as Zipf-0.5, Zipf-1.0,
Zipf-1.5, Zipf-2.0, Zipf-2.5, and Zipf-3.0. We de�ne nw as the number of distinct execution
time values that the tuples can have. These nw values are selected at constant distance
in the interval [minw,maxw]. We run experiments with nw ∈ {1, 2, · · · , 64}, however, for
sake of concision, we only report results for nw = 64, and with maxw ∈ {0.1, 0.2, . . . ,
51.2} ms. Tests performed with di�erent values for nw did not show unexpected devi-
ations from what is reported in this section. Unless otherwise speci�ed, the frequency
distribution is Zipf-1.0 and the stream parameters are set to nw = 64, minw = 0.1 ms
and maxw = 6.4 ms; this means that the nw = 64 execution times are picked in the set
{0.1, 0.2, · · · , 6.4} ms.

Let W be the average execution time of the stream tuples, then the stream max-
imum theoretical input throughput sustainable by the setup is equal to 1/W . When
fed with an input throughput smaller than 1/W , the system is over-provisioned (i.e.,
possible underutilization of computing resources). Conversely, an input throughput lar-
ger than 1/W results in an under-provisioned system. We refer to the ratio between
the maximum theoretical input throughput and the actual input throughput as the per-
centage of under-provisioning that, unless otherwise stated, is set to 25%. In order to
generate 100 di�erent streams, we randomize the association between the nw execution
time values and the n distinct items: for each of the nw execution time values we pick
uniformly at random n/nw di�erent values in [n] associated to that execution time va-

8.3. EXPERIMENTAL EVALUATION 115

lue. This means that the 100 di�erent streams we use in our tests do not share the
same association between execution time and item as well as the association between fre-
quency and execution time (thus each stream has also a di�erent average execution time
W). Each of these permutations has been run with 50 di�erent seeds to randomize the
stream ordering and the generation of the hash functions used by LAS. This means that
each single experiment reports the mean outcome of 5, 000 independent runs. Whene-
ver applicable we provide the maximum, mean and minimum �gures over the 5, 000 runs.

Real dataset � We used the mention dataset (cf., Section 7.2.3). It contains
a stream of preprocessed tweets related to the 2014 European elections. Among other
information, the tweets are enriched with a �eld mention listing the entities mentioned
in the tweet. These entities can be easily classi�ed into politicians, media and others.
We consider the �rst 500, 000 tweets, mentioning roughly n = 35, 000 distinct entities
and where the most frequent entity has an empirical probability equal to 0.065.

Metrics � The evaluation metrics we provide, when applicable, are:

• the dropped ratio D = d/m;
• the ratio of tuples dropped by algorithm alg with respect to Base Line Λd =

(dalg−dBase Line)/dBase Line, in the following we refer this metric as shedding speed
up;
• the average queuing latency Q =

∑
j∈[m]\D q(tj)/(m− d);

• the average completion latency L , i.e., the average time it takes for a tuple from
the moment it is injected by the source in the topology, till the moment operator
O concludes its processing.

Simulation Results

In this section we analyze, through a simulator built ad-hoc for this study, the sensitivity
of LAS while varying several characteristics of the input load. The simulator faithfully
reproduces the execution of LAS and the other algorithms, and mimics the execution of
each tuple t on O doing busy waiting for w(t) ms.

Input Throughput � Figure 8.6 shows the average queuing time Q (top) and
dropped ratio D (bottom) as a function of the percentage of under-provisioning ranging
from 90% to -10% (i.e., the system is 10% overprovisioned with respect to the average
input throughput). As expected, in this latter case all algorithms perform at the same le-
vel as load shedding is super�uous. In all the other cases both Base Line and Straw-Man
do not shed enough load and induce a huge amount of exceeding queuing time. On the
other hand, LAS average queuing time is quite close to the required value of Q

max
= 6.4

ms, even if this threshold is violated in some of the tests. Finally, FKLAS always abide
to the constraint and is even able to produce a much lower average queuing time while
dropping no more tuples that the competing solutions. Comparing the two plots we can
clearly see that the resulting average queuing time is strongly linked to which tuples are
dropped. In particular, Base Line and Straw-Man shed the same amount of tuples, LAS
slightly more and FKLAS is in the middle. This result shows dropping tuples on the basis
of the load they impose allows to design more e�ective load shedding strategies.

116 CHAPTER 8. LOAD SHEDDING IN STREAM PROCESSING SYSTEMS

 0.1

 1

 10

 100

 1000

90 80 70 60 50 40 30 20 10 0 -10

av
er

ag
e

qu
eu

in
g

tim
e

 (
m

s)

percentage of underprovisioning

FKLAS LAS Straw-Man Base Line

(a) Average queuing time Q

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

90 80 70 60 50 40 30 20 10 0 -10

dr
op

pe
d

ra
tio

 D

percentage of underprovisioning

FKLAS LAS Straw-Man Base Line

(b) Dropped ratio D

Figure 8.6 � LAS performance varying the amount of underprovisioning.

Threshold Q
max

� Figure 8.7 shows the average queuing time Q (top) and shedding
speed up Λd (bottom) as a function of the Q

max
threshold. Notice that with Q

max
= 0, we

do not allow any queuing, while with Q
max

= 6.4 we allow at least a queuing time equal
to the maximum execution time maxw. In other words, we believe that with Q

max
< 6.4

the constraint is strongly conservative, thus representing a di�cult scenario for any load
shedding solution. Since Base Line does not take into account the time constraint Q

max

it always drops the same amount of tuples and achieves a constant average queueing
time. For this reason Figure 8.7b reports the shedding speed up Λd achieved by FKLAS ,
LAS and Straw-Man with respect to Base Line. The horizontal segments in Figure 8.7a
represent the distinct values for Q

max
. As the graph shows FKLAS always perfectly ap-

proaches the queuing time threshold, but for Q
max

= 12.8 where it is slightly smaller.
Straw-Man performs reasonably well when the threshold is very small, but this is a con-
sequence of the fact that it drops a large number of tuples when compared with Base
Line as can be seen by Figure 8.7b. However, as Q

max
becomes larger (i.e., Q

max ≥ 0.8)
Straw-Man average queuing time quickly grows and approaches the one from Base Line
as it starts to drop the same amount of tuples. LAS, in the same setting performs largely
better, with the average queuing time that for large values of Q

max
approaches the one

provided by FKLAS . While delivering these performance LAS drops a slightly larger
amount of tuples with respect to FKLAS , to account for the approximation in calculating
tuple execution times.

8.3. EXPERIMENTAL EVALUATION 117

 0.1

 1

 10

 100

 1000

0 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

av
er

ag
e

qu
eu

in
g

tim
e

(m
s)

threshold (ms)

FKLAS LAS Straw-Man Base Line

(a) Average queuing time Q

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

sh
ed

di
ng

 s
pe

ed
 u

p

threshold (ms)

FKLAS LAS Straw-Man

(b) Shedding speed up Λd

Figure 8.7 � LAS performance varying the threshold Q
max

.

 0.1

 1

 10

 100

 1000

 10000

0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

av
er

ag
e

qu
eu

in
g

tim
e

(m
s)

maximum execution time value maxw (ms)

FKLAS LAS Straw-Man Base Line

(a) Average queuing time Q

-0.2

-0.1

 0

 0.1

 0.2

 0.3

0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

sh
ed

di
ng

 s
pe

ed
 u

p

maximum execution time value maxw (ms)

FKLAS LAS Straw-Man

(b) Shedding speed up Λd

Figure 8.8 � LAS performance varying the maximum execution time value maxw.

118 CHAPTER 8. LOAD SHEDDING IN STREAM PROCESSING SYSTEMS

 0.1

 1

 10

 100

 1000

 10000

uniform zipf-0.5 zipf-1.0 zipf-1.5 zipf-2.0 zipf-2.5 zipf-3.0

av
er

ag
e

qu
eu

in
g

tim
e

(m
s)

frequency distribution

FKLAS LAS Straw Man Base Line

(a) Average queuing time Q

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

uniform zipf-0.5 zipf-1.0 zipf-1.5 zipf-2.0 zipf-2.5 zipf-3.0

sh
ed

di
ng

 s
pe

ed
 u

p

frequency distribution

FKLAS LAS Straw Man

(b) Shedding speed up Λd

Figure 8.9 � LAS performance varying the frequency probability distributions.

Maximum execution time value maxw � Figure 8.8 shows the average queuing
time Q (top) and shedding speed up Λd (bottom) as a function of the maximum execu-
tion time value maxw. Notice that in this test we varied the value for Q

max
setting it

equal to maxw. Accordingly, Figure 8.8a shows horizontal lines that mark the di�erent
thresholds Q

max
. As the two graphs show, the behavior for LAS is rather consistent while

varying maxw; this means that LAS can be employed in widely di�erent settings where
the load imposed by tuples in the operator is not easily predictable. The price paid for
this �exibility is in the shedding speed up that, as shown in Figure 8.8b is always positive.

Frequency probability distributions � Figure 8.9 shows the average queuing
time Q (top) and shedding speed up Λd (bottom) as a function of the input frequency
distribution. As Figure 8.9a shows, Straw-Man and Base Line perform invariably bad
with any distribution. The span between the best and worst performance per run incre-
ases as we move from a uniform distribution to more skewed distributions, as the latter
may present extreme cases where tuple latencies match their frequencies in a way that
is particularly favorable or unfavorable for these two solutions. Conversely, LAS perfor-
mance improve the more the frequency distribution is skewed. This result stems from
the fact that the sketch data structures used to trace tuple execution times perform at
their best on strongly skewed distribution, rather than on uniform ones. This result is
con�rmed by looking at the shedding speed up (Figure 8.9b) that decreases, on average,
as the value of α for the distribution increases.

8.3. EXPERIMENTAL EVALUATION 119

 0.1

 1

 10

 100

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

0.
00

9

0.
00

8

0.
00

7

0.
00

6

0.
00

5

0.
00

4

0.
00

3

0.
00

2

0.
00

1

av
er

ag
e

qu
eu

in
g

tim
e

(m
s)

precision parameter ε

LAS

(a) Average queuing time Q

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

0.
00

9

0.
00

8

0.
00

7

0.
00

6

0.
00

5

0.
00

4

0.
00

3

0.
00

2

0.
00

1

dr
op

pe
d

ra
tio

 D

precision parameter ε

LAS

(b) Dropped ratio D

Figure 8.10 � LAS performance varying the precision parameter ε.

Precision parameter ε � Figure 8.10 shows the average queuing time Q (top)
and dropped ratio D (bottom) as a function of the precision parameter ε. This parame-
ter controls the trade-o� between the precision and the space complexity of the sketches
maintained by LAS. As a consequence, it has an impact on LAS performance. In particu-
lar, for large values of ε (left side of the graph), the sketch data structures are extremely
small, thus the estimation ŵ(t) is extremely unreliable. The corrective factor 1 + ε (cf.,
Listing 8.5, Line 23) in this case is so large that it pushes LAS to largely overestimate the
execution time of each tuple. As a consequence, LAS drops a large number of tuples while
delivering average queuing latencies that are close to 0. By decreasing the value of ε (i.e.,
ε ≤ 0.1), sketches become larger and their estimation more reliable. In this con�guration
LAS performs at its best delivering average queuing latencies that are always below or
equal to the threshold Q

max
= 6.4 while dropping a smaller number of tuples. The dotted

lines in both graphs represent the performance of FKLAS and are provided as a reference.

Time Series � Figure 8.11 shows the average queuing time Q (top) and dropped
ratioD (bottom) as the stream unfolds (x-axis). Both metrics are computed on a jumping
window of 4, 000 tuples, i.e., each dot represent the mean queuing time Q or the dropped
ratio D computed on the previous 4, 000 tuples. Notice that the points for Straw-Man,
LAS and FKLAS related to a same value of the x-axis are arti�cially shifted to improve
readability. In this test we set Q

max
= 64 ms. The input stream is made of 140, 000

tuples and is divided in phases, from a A through G, each lasting 20, 000 tuples. At the

120 CHAPTER 8. LOAD SHEDDING IN STREAM PROCESSING SYSTEMS

 1

 10

 100

 1000

 10000

 100000

 1x106

20000

40000

60000

80000

100000

120000

140000

A B C D E F G
av

er
ag

e
qu

eu
in

g
tim

e
(m

s)

number of tuples m

FKLAS LAS Straw-Man

(a) Average queuing time Q

 0

 0.2

 0.4

 0.6

 0.8

 1

20000

40000

60000

80000

100000

120000

140000

A B C D E F G

dr
op

pe
d

ra
tio

 D

number of tuples m

FKLAS LAS Straw-Man

(b) Dropped ratio D

Figure 8.11 � Simulator time-series.

beginning of each phase we inject an abrupt change in the input stream throughput and
distribution, as well as in w(t) as follows:

phase A the input throughput is set in accordance with the provisioning (i.e., 0%
underprovisioning);

phase B the input throughput is increased to induce 50% of underprovisioning;

phase C same as phase A;

phase D we swap the most frequent tuple 0 with a less frequent tuple t such that
w(t) = maxw, inducing an abrupt change in the tuple values frequency distribu-
tion and in the average execution time W ;

phase E the input throughput is reduced to induce 50% of overprovisionig;

phase F the input throughput is increased back to 0% underprovisioning and we
also double the execution time w(t) for each tuple, simulating a change in the
operator resource availability;

phase G same as phase A.

As the graphs show, during phase A the queuing latencies of LAS and Straw-Man
diverge: while LAS quickly approaches the performance provided by FKLAS , Straw-Man
average queuing latencies quickly grow. In the same timespan, both FKLAS and LAS

8.3. EXPERIMENTAL EVALUATION 121

drop slightly more tuples than Straw-Man. All the three solutions correctly manage
phase B: their average queuing latencies see slight changes, while, correctly, they start
to drop larger amounts of tuples to compensate for the increased input throughput.
The transition to phase C brings the system back in the initial con�guration, while in
phase D the change in the tuple frequency distribution is managed very di�erently by
each solution: both FKLAS and LAS compensate this change by starting to drop more
tuples, but still maintaining the average queuing time close to the desired threshold
Q

max
. Conversely, Straw-Man can't handle such change, and its performance incur a

strong deterioration as it drops still the same amount of tuples. In phase E the system is
strongly overprovisioned, and, as it was expected, all three solution perform equally well
as no tuple needs to be dropped. The transition to phase F is extremely abrupt as the
input throughput is brought back to the equivalent of 0% of underprovisioning, but the
cost to handle each tuple on the operator is doubled. At the beginning of this phase both
Straw-Man and LAS perform bad, with queuing latencies that are largely above Q

max
.

However, while the phase unfolds LAS quickly updates its data structures and converges
toward the given threshold, while Straw-Man diverges as tuples continue to be enqueued
on the operator worsening the bottleneck e�ect. Bringing back the tuple execution times
to the initial values in phase G has little e�ect on LAS, while the bottleneck created by
Straw-Man cannot be recovered as it continues to drop an insu�cient number of tuples.

Prototype Results

To evaluate the impact of LAS on real applications we implemented it as a bolt within
the Apache Storm [89] framework. We have deployed our cluster on Microsoft Azure
cloud service, using a Standard Tier A4 VM (4 cores and 7 GB of RAM) for each worker
node, each with a single available slot. The test topology is made of a source (spout) and
two operators (bolts) LS and O. The source generates (reads) the synthetic (real) input
stream and emits the tuples consumed by bolt LS. Bolt LS uses either Straw-Man, LAS
or FKLAS to perform the load shedding on its outbound data stream consumed by bolt
O. Finally operator O implements the logic.

Time Series � In this test we ran the simulator using the same synthetic load
used for the time series discussed in the previous section. The goal of this test is to show
how our simulated tests capture the main characteristic of a real run. Notice, however,
that plots in Figure 8.12 report the average completion time per tuple instead of the
queuing time. This is due to the di�culties in correctly measuring queuing latencies
in Storm. Furthermore, the completion time is, from a practical point of view, a more
signi�cant metric as it can be directly perceived on the output. From this standpoint the
results, depicted in Figure 8.12, report the same qualitative behavior already discussed
with Figure 8.11. Two main di�erences are worth to be discussed: �rstly, the behaviors
exposed by the shedding solution in response to phase transitions in the input load are
in general shifted in time (with respect to the same e�ects reported in Figure 8.11) as
a consequence of the general overhead induced by the software stack. Secondly, several
data points for Straw-Man are missing in phases E and G. This is a consequence of failed
tuples that start to appear as soon as the number of enqueued tuples is too large to be
managed by Storm. While this may appear as a sort of �implicit� load shedding imposed
by Storm, we decided not to consider these tuples in the metric calculation as they have
not been dropped as a consequence of a decision taken by the Straw-Man load shedder.

122 CHAPTER 8. LOAD SHEDDING IN STREAM PROCESSING SYSTEMS

 1

 10

 100

 1000

 10000

 100000

 1x106

20000

40000

60000

80000

100000

120000

140000

A B C D E F G
av

er
ag

e
co

m
pl

et
io

n
tim

e
(m

s)

number of tuples m

Full Knowledge LAS Straw-Man

(a) Average completion time L

 0

 0.2

 0.4

 0.6

 0.8

 1

20000

40000

60000

80000

100000

120000

140000

A B C D E F G

dr
op

pe
d

ra
tio

 D

number of tuples m

Full Knowledge LAS Straw-Man

(b) Dropped ratio D

Figure 8.12 � Prototype time-series.

Simple Application with Real Dataset � In this test we pretended to run a
simple application on a real dataset: for each tweet of the twitter dataset (mention),
we want to gather some statistics and decorate the outgoing tuples with some additional
information. However the statistics and additional informations di�er depending on the
class the entities mentioned in each tweet belong. We assumed that this leads to a long
execution time for media (e.g., possibly caused by an access to an external DB to gather
historical data), an average execution time for politicians and a fast execution time for
others (e.g., possibly because these tweets are not decorated). We modeled execution
times with 25 ms, 5 ms and 1 millisecond of busy waiting respectively. Each of the 500, 000
tweets may contain more than one mention, leading to nw = 110 di�erent execution time
values from minw = 1 millisecond to maxw = 152 ms, among which the most frequent
(36% of the stream) execution time is 1 millisecond. The average execution time W is
equal to 9.7 millisecond, the threshold Q

max
is set to 32 ms and the under-provisioning

is set to 0%.

Figure 8.13 reports the average completion time (top) and dropped ratio Λd (bottom)
as the stream unfolds. As the plots show, LAS provides completion latencies that are
extremely close to FKLAS , dropping a similar amount of tuples. Conversely, Straw-Man
completion latencies are at least one order of magnitude larger. This is a consequence of

8.3. EXPERIMENTAL EVALUATION 123

 1

 10

 100

 1000

 10000

 100000

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

av
er

ag
e

co
m

pl
et

io
n

tim
e

(m
s)

number of tuples m

Full Knowledge LAS Straw-Man

(a) Average completion time L

 0

 0.05

 0.1

 0.15

 0.2

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

dr
op

pe
d

ra
tio

 D

number of tuples m

Full Knowledge LAS Straw-Man

(b) Dropped ratio D

Figure 8.13 � Prototype mention use-case.

the fact that in the given setting Straw-Man does not drop tuples, while FKLAS and LAS
drop on average a steady amount of tuples ranging from 5% to 10% of the stream. These
results con�rm the e�ectiveness of LAS in keeping a close control on queuing latencies
(and thus provide more predictable performance) at the cost of dropping a fraction of
the input load.

Chapter Summary

This chapter has shown the design of LAS, based on VALES (cf., Section 3.3),
a load shedding algorithm taking into account that the execution time of tu-
ples is non-uniform. The load shedding quality has been assessed through
experimental evaluation run with both a simulator and a prototype targeting
Apache Storm.

The next chapter concludes this thesis.

Chapter 9

Conclusion

This chapter �rst summarizes the contributions covered in this thesis 1 and then provides
some perspectives.

9.1 Summary

The aim of this thesis is to solve practical issues related to Big Data leveraging the data
streaming model. The focus has been placed on two classical problems that have many
applications and have been extensively studied in this model: the frequency estimation
problem and the heavy hitters problem. This thesis lifts some of the limitations in the
current solutions and shows how they can be handy in tackling major issues in Big Data
applications.

Section 4.3 presents Distributed Heavy Hitters Estimator (DHHE), an algorithm that
deterministically detects heavy hitters �nely spread in massive and physically distributed
data streams, in a more challenging model than the one considered in previous works.
Moreover, DHHE also (ε, δ)-approximate the size of each heavy hitter. Recently, Agarwal
et al. [3], have shown that MG [70] and Space Saving [69] are mergeable summaries, which
possibly entails new and more e�cient solutions to solve the distributed heavy hitters
problem.

Section 5.1 applies DHHE to the detection of Distributed Denial of Service (DDoS).
A thorough experimental evaluation, run on a cluster of single-board computers, illustra-
tes the enjoyable properties of our solution in terms of precision, recall, communication
overhead and detection latency.

In Section 4.4 we design Balanced Partitioner (BPART), a novel algorithm to build
a partition K of the streams item universe [n] with exactly k parts (i.e., |K| = k) and
where the weight Wp of the parts Op ∈ K (p ∈ [k]) are balanced. We prove that BPART
is able to build a (1 + θ)-optimal balanced k-partition when applied on skewed input
streams characterized by a Zip�an distribution, i.e., the items weights have a Zip�an
distribution of unknown exponent α.

Section 7.1.1 applies BPART to design Distribution-aware Key Grouping (DKG), a
novel key grouping solution to load balance parallelized stateful operators in stream pro-
cessing systems. Through both a simulator and a prototype targeting Apache Storm, we

1The summary does not follow the order in which the contributions have been presented.

125

126 CHAPTER 9. CONCLUSION

performed an experimental evaluation showing that DKG outperforms standard approa-
ches to key grouping (i.e., modulo and universal hash functions) and how this positively
impacts a real stream processing applications.

Section 3.3 shows the design of Value Estimator (VALES), a sketch data structure
providing an (ε, δ)-approximation of the value ωt carried by tuples.

The �rst application of VALES is the Online Shu�e Grouping Scheduler (OSG)
algorithm (Section 7.2.1), a novel shu�e grouping algorithm to load balance parallelized
stateless operators in stream processing systems. OSG aims at reducing the average
tuple completion time by scheduling tuples on operator instances on the basis of their
estimated execution time. OSG makes use of VALES to keep track of tuples execution
time on the operator instances in a compact and scalable way. This information is then
fed to a greedy scheduling algorithm to assign incoming load. We �rst prove that FKOSG

algorithm is a (2 − 1/k)-approximation of the optimal o�-line scheduler, and then that
OSG (ε, δ)-approximates FKOSG. Furthermore, we extensively tested OSG performance
through both a simulator and with a prototype implementation integrated within the
Apache Storm framework. The results showed how OSG provides important speedups
in tuple completion time when the workload is characterized by skewed distributions.
Further research is needed to explore how much the load model a�ect performance. For
instance, it would be interesting to include other metrics in the load model, e.g., network
latencies, to check how much these may improve the overall performance.

The second application of VALES is the Load-Aware Load Shedding (LAS) algorithm
(Section 8.1), a novel solution for load shedding in stream processing systems. LAS ex-
ploits the di�erences in the tuples execution time to smartly drop tuples and avoid the
appearance of performance bottlenecks. As OSG, LAS leverages VALES to e�ciently
collect at runtime information on the operator load characteristics and then use this in-
formation to implement a load shedding policy aimed at maintaining the average queuing
time below a given threshold. Through a theoretical analysis, we proved that LAS is an
(ε, δ)-approximation of the optimal algorithm FKLAS . Furthermore, we extensively tes-
ted LAS both in a simulated setting and with a prototype implementation integrated
within Apache Storm. Our tests con�rm that by taking into account the speci�c load
imposed by each tuple, LAS can provide performance that closely approach a given tar-
get, while dropping a limited number of tuples.

With respect to the frequency estimation problem, in Section 3.2 we have presen-
ted two (ε, δ)-additive-approximations in the sliding windowed: Proportional Windo-
wed Count-Min and Splitter Windowed Count-Min. They have a space complexity of
respectively O(1ε log 1

δ (logM + log n)) and O(1
γε log 1

δ (logM + log n)) bits, while their

update and query time complexities are both O(log 1
δ). In Section 5.2, we have applied

these algorithms to the estimation of IP address frequencies in a network. The resulting
performance evaluation measures their respective e�ciency and also compares them to
the only similar related work [76]. In particular, Splitter WCM reaches better estimation
with respect to the state of the art proposal and uses 4 times less memory.

9.2. PERSPECTIVES 127

9.2 Perspectives

The contributions of this thesis de�nitely show that the data streaming model allows not
only to design algorithms with sound theoretical roots, but that these algorithms can
also have a strong impact on existing Big Data practical applications.

Sliding window model In Section 5.2 we have motivated the need to design data stre-
aming algorithms in the sliding window model, since in many applications it is preferable
to take decisions on what has occurred recently, not on what has happened ages ago. In
particular, through the sliding window model, we can seamlessly capture changes in the
stream or system characteristics. However, for simplicity, in all our other contributions,
we have either assumed a steady state scenario (i.e., VALES, DHHE, BPART and DKG)
or used jumping windows (i.e., OSG and LAS).

Considering DHHE, a naive solution would be to deploy several instances in sequence,
as in a jumping window. However, considering the targeted application, i.e., detecting
distributed denial of service, an adversary could leverage this pattern to avoid being
detected. A more re�ned solution is to extend DHHE to the sliding window model. Based
on the results presented in Section 5.2, this may be as straightforward as swapping the
Count-Min instances used at each node with either the Proportional WCM or Splitter
WCM (depending on the context).

The same reasoning can be applied to VALES, thus moving both OSG and LAS from
jumping windows to sliding windows. Considering BPART, the migration is slightly more
complex as we need to replace two data structures: the Space Saving and the vector
tracking the frequencies of the sparse items vh. Notice that the vector vh is nothing more
than a single row of a Count-Min, thus it can be replaced with one its sliding window
extensions. Similarly, the Space Saving instance can be replaced by its sliding window
version [58] (cf., Section 4.1). Notice however that the sliding window version of BPART
cannot be applied to DKG without taking into account that changing the partitioning
incurs in a migration cost. This means that to extends DKG to the sliding window model,
one must also introduce a mechanism to decide whether the new balancing is worth with
respect to the migration cost.

Finally, while for some applications a sliding window is clearly the better choice, in
some scenario this may not the true. For instance, if the application does not consider
adversaries, e.g., as in stream processing systems (DKG, OSG and LAS), a jumping
window may fare as well as a sliding window, while being easier to handle.

Non uniform tuple execution time Considering stream processing systems, in Secti-
ons 7.2.1 and 8.1 we showed that, taking into account that the execution time of the
tuples depends on the content of the tuples themselves yields sizeable improvements in
load balancing shu�e grouped operators and load shedding. This notion can be directly
applied to load balance key grouped operators (cf., Section 7.1). More in details, mo-
ving the BPART data structures of the parallelized version of DKG (cf., Section 7.3)
from the instances of operator S to the instances of operator O, would allow to track
the cumulated execution time for both heavy hitters and buckets of sparse items on all
instances Op ∈ K. Then, the mapping produced by BPART/DKG would balance the
sum of the cumulated execution times of the tuples assigned to an instance, minimizing
maxp∈[k]Wp, with Wp =

∑
tj∈σOp

wp(tj).

128 CHAPTER 9. CONCLUSION

We believe that among the other 9 optimizations listed by Hirzel et al. [56], some
(e.g., batching and placement) would bene�t from applying a similar reasoning.

Distributed and decentralized data streaming model An issue that we did not
handle in this thesis is the decentralization of the distributed data streaming model.
While a distributed but centralized algorithm makes sense in many scenarios, there are
at least as many applications where we cannot a�ord a single point of failure, i.e., the
coordinator. A trivial solution is to instantiate a coordinator at each node, however this
implicitly introduces in the communication complexity a linear factor in to the number
of nodes in the system. So far, to the best of our knowledge, there are no e�cient and
fully decentralized algorithms, i.e., with a communication complexity sub-linear in the
size of the system. This is a challenging open question that can have several applications,
starting with IoT and fog computing.

As such, an interesting research direction is the design of windowed and decentralized
algorithms to solve the classical problems studied in the data streaming community. An
even more interesting contribution would be an universal construction to decentralize
e�ciently some speci�c classes of data streaming data structures, such as sketches.

Sketches and sampling In Chapter 2 we introduce the two main approaches used
to monitor massive data streams in real time: sampling and summaries (e.g., sketches).
Both have some weaknesses and strengths, in general sampling provides more accurate
results, but may be more memory consuming and can be easily subverted by an adversary.
Conversely, summaries may have weaker accuracy bounds (especially considering the
worst case) but are resilient to adversaries and have a small memory footprint. As it has
often yielded great results in many computer science �elds, also in this case combining
both techniques may help achieving the mutual strengths while not incurring in the
respective weaknesses.

Data streaming, machine learning and data mining As mentioned in the intro-
duction, Big Data has also sprung a lot of research in machine learning, data mining, as
well as in modelling and querying uncertain information. On the other hand, data stre-
aming provides an e�cient and compact way to capture speci�c properties of streaming
data. We believe that data streaming techniques may be leveraged in order to guide the
information retrieval algorithms, reduce the dimensions and/or amount of data that has
to be analysed, as well as to �lter out the noise from the input data. It may also be
interesting to devise techniques to seamlessly query full data or data stored in synopses.

References

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang, W. Lindner,
A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The Design
of the Borealis Stream Processing Engine. In Proceedings of the 2nd Conference on
Innovative Data Systems Research, CIDR, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A New Model and Architecture for Data
Stream Management. The VLDB Journal, 12(2):120�139, 2003.

[3] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi. Mergeable
Summaries. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS, 2012.

[4] Akamai Technologies Inc. http://www.akamai.com/.

[5] N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of Approximating the
Frequency Moments. In Proceedings of the 28th ACM Symposium on Theory of
Computing, STOC, 1996.

[6] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adaptive Control of
Extreme-scale Stream Processing Systems. In Proceedings of the 26th IEEE Inter-
national Conference on Distributed Computing Systems, ICDCS, 2006.

[7] E. Anceaume and Y. Busnel. A Distributed Information Divergence Estimation over
Data Streams. IEEE Transactions on Parallel and Distributed Systems, 25(2):478�
487, 2014.

[8] E. Anceaume, Y. Busnel, and N. Rivetti. Estimating the Frequency of Data Items
in Massive Distributed Streams. In Proceedings of the 4th IEEE Symposium on
Network Cloud Computing and Applications, NCCA, 2015.

[9] E. Anceaume, Y. Busnel, N. Rivetti, and B. Sericola. Identifying Global Icebergs in
Distributed Streams. In Proceedings of the 34th International Symposium on Reliable
Distributed Systems, SRDS, 2015.

[10] E. Anceaume, Y. Busnel, E. Schulte-Geers, and B. Sericola. Optimization results
for a generalized coupon collector problem. Journal of Applied Probability, 53(2),
2016.

[11] E. Anceaume, Y. Busnel, and B. Sericola. New results on a generalized coupon
collector problem using Markov chains. Journal of Applied Probability, 52(2), 2015.

[12] A. Arasu and G. S. Manku. Approximate Counts and Quantiles over Sliding Win-
dows. In Proceedings of the 23rd ACM Symposium on Principles of Database Sys-
tems, PODS, 2004.

129

http://www.akamai.com/

130 REFERENCES

[13] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M. Hellerstein,
D. Patterson, and K. Yelick. Cluster I/O with River: Making the Fast Case Com-
mon. In Proceedings of the 6th Workshop on Input/Output in Parallel and Distributed
Systems, IOPADS, 1999.

[14] K. Ashton. That �Internet of Things� Thing. In the real world, things matter more
than ideas. RFID Journal, http://www.rfidjournal.com/articles/view?4986,
2009.

[15] B. Babcock, M. Datar, and R. Motwani. Load Shedding for Aggregation Queries
over Data Streams. In Proceedings of the 20th International Conference on Data
Engineering, ICDE, 2004.

[16] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Coun-
ting Distinct Elements in a Data Stream. In Proceedings of the 6th International
Workshop on Randomization and Approximation Techniques, RANDOM, 2002.

[17] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the Power
of Randomization in Online Algorithms. In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, STOC, 1990.

[18] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like
distributions: Evidence and implications. In Proceedings of the 18th Annual Joint
Conference of the IEEE Computer and Communications Societies, INFOCOM, 1999.

[19] CAIDA UCSD. �Anonymized Internet Traces 2008� Dataset. http://www.caida.

org/data/passive/passive_2008_dataset.xml, 2008.

[20] CAIDA UCSD. �DDoS Attack 2007� Dataset. http://www.caida.org/data/

passive/ddos-20070804_dataset.xml, 2010.

[21] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu. The State of the Art in
Locally Distributed Web-server Systems. ACM Computing Surveys, 34(2):263�311,
2002.

[22] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli. Optimal Operator Placement
for Distributed Stream Processing Applications. In Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, DEBS, 2016.

[23] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M. Stonebra-
ker. Operator Scheduling in a Data Stream Manager. In Proceedings of the 29th
International Conference on Very Large Data Bases, VLDB, 2003.

[24] J. L. Carter and M. N. Wegman. Universal Classes of Hash Functions. Journal of
Computer and System Sciences, 18:143�154, 1979.

[25] A. Chakrabarti, G. Cormode, and A. McGregor. A Near-optimal Algorithm for
Computing the Entropy of a Stream. In Proceedings of the 18th ACM-SIAM Sym-
posium on Discrete Algorithms, SODA, 2007.

[26] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. Telegrap-
hCQ: Continuous Data�ow Processing. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, SIGMOD, 2003.

[27] M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in Data Stre-
ams. In Proceedings of the 29th International Colloquium on Automata, Languages
and Programming, ICALP, 2002.

http://www.rfidjournal.com/articles/view?4986
http://www.caida.org/data/passive/passive_2008_dataset.xml
http://www.caida.org/data/passive/passive_2008_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml

REFERENCES 131

[28] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra: Di�erentiated Graph Com-
putation and Partitioning on Skewed Graphs. In Proceedings of the 10th European
Conference on Computer Systems, EuroSys, 2015.

[29] G. Cormode. Continuous Distributed Monitoring: A Short Survey. In Proceedings
of the 1st International Workshop on Algorithms and Models for Distributed Event
Processing, AlMoDEP '11, 2011.

[30] G. Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The
Count-min Sketch and Its Applications. Journal of Algorithms, 55(1):58�75, 2005.

[31] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional
monitoring. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, 2008.

[32] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for Distributed Functional
Monitoring. ACM Transactions on Algorithms, 7(2):21:1�21:20, 2011.

[33] G. Cormode and K. Yi. Tracking Distributed Aggregates over Time-based Sliding
Windows. In Proceedings of the 24th International Conference on Scienti�c and
Statistical Database Management, SSDBM, 2012.

[34] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining Stream Statistics over
Sliding Windows. SIAM Journal on Computing, 31(6):1794�1813, 2002.

[35] J. Dean and S. Ghemawat. MapReduce: Simpli�ed Data Processing on Large Clus-
ters. Communications of the ACM, 51(1):107�113, 2008.

[36] DEBS 2013. Grand Challenge. http://www.orgs.ttu.edu/debs2013/index.php?
goto=cfchallengedetails.

[37] DOMO. Data Never Sleeps 4.0. https://www.domo.com/, 2016.

[38] G. Einziger and R. Friedman. TinyLFU: A Highly E�cient Cache Admission Po-
licy. In Proceedings of the 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP, 2014.

[39] C. Estan and G. Varghese. New Directions in Tra�c Measurement and Accounting:
Focusing on the Elephants, Ignoring the Mice. ACM Transactions on Computer
Systems, 21(3):270�313, 2003.

[40] O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Co.,
2010.

[41] P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon collectors, ca-
ching algorithms and self-organizing search. Discrete Applied Mathematics, 39:207�
229, 1992.

[42] P. Flajolet and G. N. Martin. Probabilistic Counting Algorithms for Data Base
Applications. Journal of Computer and System Sciences, 31(2):182�209, 1985.

[43] S. Ganguly, M. Garafalakis, R. Rastogi, and K. Sabnani. Streaming Algorithms for
Robust, Real-Time Detection of DDoS Attacks. In Proceedings of the 27th Interna-
tional Conference on Distributed Computing Systems, ICDCS, 2007.

[44] B. Gedik. Partitioning Functions for Stateful Data Parallelism in Stream Processing.
The VLDB Journal, 23(4):517�539, 2014.

[45] P. B. Gibbons and S. Tirthapura. Estimating Simple Functions on the Union of
Data Streams. In Proceedings of the 13th ACM Symposium on Parallel Algorithms
and Architectures, SPAA, 2001.

http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
https://www.domo.com/

132 REFERENCES

[46] P. B. Gibbons and S. Tirthapura. Distributed Streams Algorithms for Sliding Win-
dows. Theory of Computing Systems, 37(3):457�478, 2004.

[47] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Identifying
Frequent Items in Sliding Windows over On-line Packet Streams. In Proceedings of
the 3rd ACM SIGCOMM Conference on Internet Measurement, IMC, 2003.

[48] Google Inc. YouTube. https://www.youtube.com/.

[49] R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on
Applied Mathematics, 17(2):416�429, 1969.

[50] O. Green, R. McColl, and D. A. Bader. A Fast Algorithm for Streaming Betweenness
Centrality. In 10th International Conference on Privacy, Security, Risk and Trust,
and 4th International Conference on Social Computing, SocialCom-PASSAT, 2012.

[51] S. Guha and A. McGregor. Quantile Estimation in Random-Order Streams. SIAM
Journal on Computing, 38(5), 2009.

[52] V. Gupta, M. Harchol-balter, K. Sigman, and W. Whitt. Analysis of join-
theshortest-queue routing for web server farms. In Proceedings of the 25th IFIP
WG 7.3 International Symposium on Computer Modeling, Measurement and Evalu-
ation, PERFORMANCE, 2007.

[53] D. Gus�eld. Bound the naive Multiple Machine Scheduling with Release Times
Deadlines. Journal of Algorithms, 5(1):1�6, 1984.

[54] Y. He, S. Barman, and J. F. Naughton. On Load Shedding in Complex Event
Processing. In Proceedings of the 17th International Conference on Database Theory,
ICDT, 2014.

[55] T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak. Cloud-based Data Stream Pro-
cessing. In Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems, DEBS, 2014.

[56] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A Catalog of Stream
Processing Optimizations. ACM Computing Surveys, 46(4):41�34, 2014.

[57] N. Homem and J. P. Carvalho. Finding top-k elements in data streams. Information
Sciences, 180(24):4958 � 4974, 2010.

[58] N. Homem and J. P. Carvalho. Finding top-k elements in a time-sliding window.
Evolving Systems, 2(1):51�70, 2011.

[59] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venkatramani.
Design, Implementation, and Evaluation of the Linear Road Benchmark on the
Stream Processing Core. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, SIGMOD, 2006.

[60] S. Jiang and X. Zhang. LIRS: An E�cient Low Inter-reference Recency Set Replace-
ment Policy to Improve Bu�er Cache Performance. In Proceedings of the 2002 ACM
SIGMETRICS International Conference on Measurement and Modeling of Compu-
ter Systems, SIGMETRICS, 2002.

[61] E. Kalyvianaki, T. Charalambous, M. Fiscato, and P. Pietzuch. Overload Manage-
ment in Data Stream Processing Systems with Latency Guarantees. In Proceedings
of the 7th IEEE International Workshop on Feedback Computing, Feedback Compu-
ting, 2012.

[62] D. M. Kane, J. Nelson, and D. P. Woodru�. An Optimal Algorithm for the Distinct
Elements Problem. In Proceedings of the 19th ACM Symposium on Principles of
Database Systems, PODS, 2010.

https://www.youtube.com/

REFERENCES 133

[63] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consis-
tent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot
Spots on the World Wide Web. In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, STOC, 1997.

[64] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the Bursty Evolution of
Blogspace. World Wide Web, 8(2):159�178, 2005.

[65] Linked Data Benchmark Council. Social Network Benchmark. http://ldbcouncil.
org/benchmarks/snb.

[66] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (Recently)
Frequent Items in Distributed Data Streams. In Proceedings of the 21st International
Conference on Data Engineering, ICDE, 2005.

[67] G. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. In
Proceedings of the 28th International Conference on Very Large Data Bases, VLDB,
2002.

[68] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low Overhead Replacement
Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Techno-
logies, FAST, 2003.

[69] A. Metwally, D. Agrawal, and A. El Abbadi. E�cient Computation of Frequent
and Top-k Elements in Data Streams. In Proceedings of the 10th International
Conference on Database Theory, ICDT, 2005.

[70] J. Misra and D. Gries. Finding Repeated Elements. Science of Computer Program-
ming, 2:143�152, 1982.

[71] A. Mukhopadhyay and R. Mazumdar. Analysis of Randomized Join-The-Shortest-
Queue (JSQ) Schemes in Large Heterogeneous Processor Sharing Systems. IEEE
Transactions on Control of Network Systems, PP(99):1�1, 2015.

[72] S. Muthukrishnan. Data streams: algorithms and applications. Now Publishers Inc,
2005.

[73] M. A. U. Nasir, G. D. F. Morales, D. G. Soriano, N. Kourtellis, and M. Sera�ni.
The Power of Both Choices: Practical Load Balancing for Distributed Stream Pro-
cessing Engines. In Proceedings of the 31st IEEE International Conference on Data
Engineering, ICDE, 2015.

[74] Net�ix. https://www.netflix.com/.

[75] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed Stream Compu-
ting Platform. In Proceedings of the 2010 IEEE International Conference on Data
Mining Workshops, ICDMW, 2010.

[76] O. Papapetrou, M. N. Garofalakis, and A. Deligiannakis. Sketch-based Querying of
Distributed Sliding-Window Data Streams. Proceedings of the VLDB Endowment,
5(10):992�1003, 2012.

[77] O. Pearce, T. Gamblin, B. R. de Supinski, M. Schulz, and N. M. Amato. Quantifying
the E�ectiveness of Load Balance Algorithms. In Proceedings of the 26th ACM
International Conference on Supercomputing, ICS, 2012.

[78] F. Reiss and J. M. Hellerstein. Data Triage: An Adaptive Architecture for Load
Dhedding in TelegraphCQ. In Proceedings of the 21st International Conference on
Data Engineering, ICDE, 2005.

http://ldbcouncil.org/benchmarks/snb
http://ldbcouncil.org/benchmarks/snb
https://www.netflix.com/

134 REFERENCES

[79] N. Rivetti, E. Anceaume, Y. Busnel, L. Querzoni, and B. Sericola. Proactive On-
line Scheduling for Shu�e Grouping in Distributed Stream Processing Systems. In
Proceedings of the 17th ACM/IFIP/USENIX International Middleware Conference,
Middleware, 2016.

[80] N. Rivetti, Y. Busnel, and A. Mostefaoui. E�ciently Summarizing Distributed
Data Streams over Sliding Windows. In Proceedings of the 14th IEEE International
Symposium on Network Computing and Applications, NCA, 2015.

[81] N. Rivetti, Y. Busnel, and L. Querzoni. Load-aware Shedding in Stream Processing
Systems. In Proceedings of the 10th ACM International Conference on Distributed
Event-Based Systems, DEBS, 2016.

[82] N. Rivetti, L. Querzoni, E. Anceaume, Y. Busnel, and B. Sericola. E�cient Key
Grouping for Near-Optimal Load Balancing in Stream Processing Systems. In Pro-
ceedings of the 9th ACM International Conference on Distributed Event-Based Sys-
tems, DEBS, 2015.

[83] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K. L. Wu. Elastic Scaling of Data
Parallel Operators in Stream Processing. In Proceedings of the IEEE International
Symposium on Parallel Distributed Processing, IPDPS, 2009.

[84] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Algorithms and Me-
trics for Processing Multiple Heterogeneous Continuous Queries. ACM Transactions
on Database Systems, 33(1):5:1�5:44, 2008.

[85] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load Shed-
ding in a Data Stream Manager. In Proceedings of the 29th International Conference
on Very Large Data Bases, VLDB, 2003.

[86] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying Fit: E�cient Load Shedding
Techniques for Distributed Stream Processing. In Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases, VLDB, 2007.

[87] The Apache Software Foundation. Apache Hadoop. http://hadoop.apache.org/.

[88] The Apache Software Foundation. Apache Pig. http://pig.apache.org/.

[89] The Apache Software Foundation. Apache Storm. http://storm.apache.org.

[90] The Weather Channel. https://weather.com/.

[91] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load Shedding in Stream Databases:
a Control-based Approach. In Proceedings of the 32nd International Conference on
Very Large Data Bases, VLDB, 2006.

[92] Voucher Cloud. Every Day Big Data Statistics � 2.5 Quintillion Bytes of Data
Created Daily. http://www.vcloudnews.com/, 2016.

[93] K. Yi and Q. Zhang. Optimal Tracking of Distributed Heavy Hitters and Quantiles.
Algorithmica, 65:206�223, 2013.

[94] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-tolerant Ab-
straction for In-memory Cluster Computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, NSDI, 2012.

[95] L. Zhang and Y. Guan. Variance Estimation over Sliding Windows. In Proceedings
of the 26h ACM Symposium on Principles of Database Systems, PODS, 2007.

http://hadoop.apache.org/
http://pig.apache.org/
http://storm.apache.org
https://weather.com/
http://www.vcloudnews.com/

REFERENCES 135

[96] Q. Zhao, A. Lall, M. Ogihara, and J. Xu. Global iceberg detection over Distribu-
ted Streams. In Proceedings of the 26th IEEE International Conference on Data
Engineering, ICDE, 2010.

[97] Q. Zhao, M. Ogihara, H. Wang, and J. Xu. Finding Global Icebergs over Distributed
Data Sets. In Proceedings of the 25th ACM SIGACT- SIGMOD-SIGART Symposium
on Principles of Database Systems, PODS, 2006.

[98] S. Zhou. Performance Studies of Dynamic Load Balancing in Distributed Systems.
PhD thesis, UC Berkeley, 1987.

List of Notations

Roman lower case letters

b jobs p. 47

c number of columns of the F, Fp, W and Wp matrices p. 17, 18, 28, 90, 108

d number of tuples dropped by a load shedding algorithm p. 107

e euler's constant p. 18

f frequency vector of stream σ p. 12

ft frequency of item t in σ p. 12

f−t frequency vector of stream σ without the scalar ft p. 18

fi frequency vector of sub-stream σi p. 13

ft,i frequency of item t in sub-stream σi p. 13

g number of Gκ bu�ers p. 38

h hash function p. 15

h BPART sparse items hash function p. 47

i generic Si node or instance index p. 13, 73

j index in [m] of the stream σ p. 12

k number of partitions of [n] or operator O instances p. 46, 73

`(tj) completion time of tuple tj p. 73

m size or length of the stream σ p. 12

[m] index sequence {1, . . . ,m} of the stream σ p. 12

mi size or length of the sub-stream σi p. 13

maxω maximum ωt value p. 29

maxw maximum tuple execution time p. 95, 114

minω minimum ωt value p. 29

minw minimum tuple execution time p. 95, 114

n number of distinct items in the stream σ p. 12

[n] universe {1, . . . , n} of the stream σ p. 12

nκ maximum size of Gκ p. 38

nw number of tuple execution time values p. 95, 114

p generic Op partition or operator instance index p. 46, 73

p empirical probability distribution of the stream σ p. 12

pt empirical probability of item t in the stream σ p. 12

pi empirical probability distribution of the sub-stream σi p. 13

pt,i empirical probability of item t in the sub-stream σi p. 13

p̂t,i estimated probability of item t in the sub-stream σi p. 38

137

138 LIST OF NOTATIONS

q(tj) queuing time of tuple tj p. 73

q̂(tj) estimated queuing time of tuple tj p. 108

r number of rows of the F, Fp, W and Wp matrices p. 17, 18, 28, 90, 108

s number of Si ∈ I nodes or operator instances p. 13, 73

t generic item or tuple value in [n] of the stream σ p. 12, 73

vh BPART sparse items frequency vector p. 48

wp(tj) execution time of tuple tj on operator instance Op p. 73

ŵp(tj) estimated execution time of tuple tj on instance Op p. 89, 108

Roman upper case letters

D dropped ratio d/m p. 115

Fı ı-th frequency moment p. 17

Hı ı-th harmonic function p. 40

L total completion latency p. 73

L ttoal average completion latency p. 73

M window size p. 12

MOSG OSG window size parameter p. 90

MLAS LAS window size parameter p. 109

O operator p. 73

Op part or operator instance p. 46, 73

Q total queuing time p. 73

Q total average queuing time p. 73, 107

Q
max

LAS average queuing time threshold parameter p. 107

S node or operator p. 13, 73

Si i-th node or operator instance in I p. 13, 73

Ta,n coupon collector value p. 42

W total execution time p. 73

W parts weights vector p. 49

Ŵ estimated total execution time p. 108

Wp weight or execution time on partition or operator Op p. 46, 89

Ŵp estimated total execution time on operator Op p. 89

W total average weight or execution time p. 49, 73

Roman calligraphic letters

B set of jobs p. 47

D set of dropped tuples p. 107

F Count-Sketch, Count-Min, VALES and LAS p. 17, 18, 28, 108

frequency matrix

Fp OSG frequency matrix on operator Op p. 90

Gκ,i κ-th DHHE bu�er on node Si p. 38

H set of 2-universal hash function p. 15

LIST OF NOTATIONS 139

HH set of heavy hitters p. 33

I set of s nodes or instances Si p. 13, 73

Ji DHHE detected heavy hitter bu�er on node Si p. 40

K set of partitions or instances Op p. 46, 73

S Proportional WCM, OSG and LAS snapshot matrix p. 21, 90, 109

SI set of sparse items p. 33

W VALES and LAS value matrix p. 28, 108

Wp OSG value matrix on operator Op p. 90

Greek lower case letters

α Zipf distribution exponent p. 51

β Splitter WCM tolerance threshold parameter p. 23

γ Splitter WCM sub-cell size threshold parameter p. 23

δ (ε, δ)-approximation error probability parameter p. 14

ε (ε, δ)-approximation precision parameter p. 14

η LAS relative distance p. 109

ηp OSG relative distance p. 90

η OSG/LAS relative distance threshold p. 90, 109

θ heavy hitter threshold p. 33

κ DHHE generic Gκ bu�er index p. 38

λ percentage of imbalance p. 49

µ DKG co-domain multiplier parameter p. 47

νκ DHHE Gκ size threshold p. 38

π Splitter WCM number of splits p. 25

π Splitter WCM number of splits upper bound p. 25

ρ DHHE Gκ bu�er size parameter p. 38

σ stream p. 12

σi i-th sub-stream of σ p. 13

σ(M) active window in σ of size M p. 12

σS→O stream from operator S to O p. 73

σSi→Op sub-stream from operator instance Si to Op p. 73

σSi outbound sub-stream of operator instance Si p. 73

σOp inbound sub-stream of operator instance Op p. 73

τκ DHHE Gκ bu�er timer p. 38

ωtj value carried by or weight of tuple tj p. 18,46

Greek upper case letters

∆p OSG operator feedback p. 92

∆ LAS operator feedback p. 110

ΛL completion latency speedup p. 96

Λd shedding speedup p. 115

List of Figures, Listings and Tables

1.1 Figure: Contributions Diagram. 8

3.1 Listing: Count-Min Sketch Algorithm. 18
3.2 Listing: Generalized Count-Min Sketch Algorithm. 19
3.3 Listing: Perfect WCM Algorithm. 20
3.4 Listing: Simple WCM Algorithm. 21
3.5 Listing: Proportional WCM Algorithm. 22
3.6 Figure: Splitter WCM data structure. 23
3.7 Listing: Splitter Windowed Count-Min Algorithm. 24
3.8 Listing: Splitter Windowed Count-Min error function. 25
3.9 Table: Complexities comparison. 26
3.10 Listing: VALES Algorithm. 28

4.1 Listing: Space Saving algorithm. 35
4.2 Listing: DHHE algorithm at any node Si ∈ I. 39
4.3 Figure: DHHE data structure on node Si ∈ I. 40
4.4 Listing: DHHE algorithm at any node Si ∈ I (contd.) 41
4.5 Listing: DHHE algorithm at the coordinator. 41
4.6 Figure: BPART architecture and working phases. 47
4.7 Listing: BPART Algorithm. 48

5.1 Table: Memory usage with bu�ers, and counters of 32 bytes. 55
5.2 Table: Frequency gaps between global icebergs and sparse item. 56
5.3 Figure: Precision and recall as a function of the input distributions. 56
5.4 Figure: Detected and generated global icebergs as a function of θ. 56
5.5 Figure: Frequency estimation as a function of θ. 57
5.6 Figure: Communication ratio in bits as a function of θ. 57
5.7 Figure: Communication ratio in messages as a function of θ. 58
5.8 Figure: Time to detect ratio as a function of θ. 58
5.9 Table: Results with the DDoS trace (caida trace). 59
5.10 Figure: Results for di�erent window sizes M 61
5.11 Figure: Results for di�erent periods sizes. 62
5.12 Figure: Results for di�erent number of rows r. 63
5.13 Figure: Estimation error with the time series. 63
5.14 Figure: Frequency estimation of item 1 with the time series. 64
5.15 Figure: Number splits π with the time series. 64
5.16 Figure: Performance comparison with γ = 0.05. 65
5.17 Figure: Performance comparison with β = 1.5. 65
5.18 Figure: Estimation error with the DDoS trace (caida trace) 66

141

142 LIST OF FIGURES, LISTINGS AND TABLES

7.1 Figure: DKG architecture and working phases. 76
7.2 Listing: DKG algorithm. 77
7.3 Table: Linear regression coe�cients for the plots in Figure 7.4. 79
7.4 Figure: Imbalance λ as a function of k with Zipf-2. 79
7.5 Figure: Standard deviation SD as a function of k with Zipf-2. 80
7.6 Figure: Standard deviation SD distribution for Zipf-2. 80
7.7 Figure: DKG imbalance as a function of µ. 81
7.8 Figure: DKG imbalance as a function of θ. 82
7.9 Figure: DKG standard deviation SD as a function of both θ and µ. 83
7.10 Figure: Comparing DKG and [44]: imbalance λ as a function of α. 84
7.11 Figure: Comparing DKG and PKG [73]: imbalance λ as a function of k. . . 84
7.12 Figure: Imbalance λ for the debs trace as a function of k. 86
7.13 Figure: Cpu usage (Hz) for 300s of execution. 87
7.14 Figure: Throughput (tuples/s) for the debs trace as a function of k. . . 87
7.15 Figure: OSG design. 90
7.16 Listing: OSG algorithm on operator instance Op. 91
7.17 Figure: OSG operator instance �nite state machine. 91
7.18 Listing: OSG scheduler on operator S. 92
7.19 Figure: OSG scheduler �nite state machine. 92
7.20 Figure: Average completion time with di�erent probability distributions. . 97
7.21 Figure: Throughput with di�erent probability distributions. 97
7.22 Figure: Speed up ΛOSGL as a function of the percentage of over-provisioning. 98
7.23 Figure: Speed up ΛOSGL as a function of the maximum execution time maxw. 98

7.24 Figure: Average completion time L
alg

as a function of the number of
execution time nw. 99

7.25 Figure: Speed up ΛOSGL as a function of the number of operator instances k. 99
7.26 Figure: Speed up ΛOSGL as a function of the precision parameter ε. 100
7.27 Figure: Simulator per tuple completion time time-series. 101
7.28 Figure: Prototype per tuple completion time time-series. 102

7.29 Figure: Use-case mentions prototype completion time L
alg

as a function
of k. 102

7.30 Figure: Use-case reach prototype completion time L
alg

as a function of k. 103

8.1 Figure: LAS design. 108
8.2 Figure: LAS operator �nite state machine. 108
8.3 Listing: LAS algorithm on operator O . 109
8.4 Figure: LAS shedder �nite state machine. 110
8.5 Listing: LAS shedder on operator S . 111
8.6 Figure: LAS performance varying the amount of underprovisioning. 116
8.7 Figure: LAS performance varying the threshold Q

max
. 117

8.8 Figure: LAS performance varying the maximum execution time maxw. . . 117
8.9 Figure: LAS performance varying the frequency probability distributions. 118
8.10 Figure: LAS performance varying the precision parameter ε. 119
8.11 Figure: Simulator time-series. 120
8.12 Figure: Prototype time-series. 122
8.13 Figure: Prototype mention use-case. 123

List of Theorems and Problems

3.1 Problem Frequency Estimation Problem 17
3.2 Problem Frequency Estimation Problem in Sliding Window 19
3.3 Theorem Perfect WCM Accuracy . 20
3.4 Theorem Perfect WCM Space and Time Complexities 20
3.5 Theorem Simple WCM Space and Time Complexities 21
3.6 Theorem Proportional WCM Space and Time Complexities 22
3.7 Lemma Splitter WCM Number of Splits Upper Bound 25
3.8 Theorem Splitter WCM Space and Time Complexities 25
3.9 Theorem DWCM Communication Complexity 26
3.10 Theorem DWCM Approximation . 26
3.11 Problem Item Value Estimation . 27
3.12 Theorem VALES Time complexity . 28
3.13 Theorem VALES Space Complexity . 28
3.14 Theorem VALES Expected Value . 30

4.1 Theorem Space Saving Mean Error . 36
4.2 Problem Distributed Heavy Hitters . 38
4.3 Lemma Coupon Collector Expected Value 42
4.4 Theorem FKDHHE Communication Cost Upper Bound 42
4.5 Theorem FKDHHE Correctness . 44
4.6 Lemma Re�ned Count-Min Accuracy Bounds 44
4.7 Theorem DHHE Approximation . 44
4.8 Problem Balanced Partitioning . 46
4.9 Theorem BPART Time Complexity . 49
4.10 Theorem BPART Space Complexity . 49
4.11 Theorem BPART Approximation . 50

7.1 Problem Load Balance Key Grouped Operators 76
7.2 Problem Load Balance Shu�e Grouped Operators 88
7.3 Theorem OSG Time Complexity . 92
7.4 Theorem OSG Space Complexity . 93
7.5 Theorem OSG Communication Complexity 93
7.6 Problem Minimum Makespan . 93
7.7 Theorem GOMPS Approximation . 94

8.1 Problem Load Shedding . 107
8.2 Theorem LAS Time Complexity . 111
8.3 Theorem LAS Space Complexity . 112
8.4 Theorem LAS Communication Complexity 112
8.5 Theorem FKLAS Correctness and Optimality 113

143

Thèse de Doctorat

Nicoló RIVETTI
DI VAL CERVO

Analyse efficace de flux de données et applications au traitement des grandes
masses de données

Efficient Stream Analysis and its Application to Big Data Processing

Résumé
L’analyse de flux de données est utilisée dans
beaucoup de contexte où la masse des données et/ou
le débit auquel elles sont générées, excluent d’autres
approches (par exemple le traitement par lots). Le
modèle flux fourni des solutions aléatoires et/ou
fondées sur des approximations pour calculer des
fonctions d’intérêt sur des flux (repartis) de n-uplets,
en considérant le pire cas, et en essayant de
minimiser l’utilisation des ressources. En particulier,
nous nous intéressons à deux problèmes classiques :
l’estimation de fréquence et les poids lourds.
Un champ d’application moins courant est le
traitement de flux qui est d’une certaine façon un
champ complémentaire aux modèle flux. Celui-ci
fournis des systèmes pour effectuer des calculs
génériques sur les flux en temps réel souple, qui
passent à l’échèle. Cette dualité nous permet
d’appliquer des solutions du modèle flux pour
optimiser des systèmes de traitement de flux.
Dans cette thèse, nous proposons un nouvel
algorithme pour la détection d’éléments surabondants
dans des flux repartis, ainsi que deux extensions d’un
algorithme classique pour l’estimation des fréquences
des items. Nous nous intéressons également à deux
problèmes : construire un partitionnement équitable
de l’univers des n-uplets par rapport à leurs poids et
l’estimation des valeurs de ces n-uplets. Nous
utilisons ces algorithmes pour équilibrer et/ou délester
la charge dans les systèmes de traitement de flux.

Abstract
Nowadays stream analysis is used in many context
where the amount of data and/or the rate at which it is
generated rules out other approaches (e.g., batch
processing). The data streaming model provides
randomized and/or approximated solutions to compute
specific functions over (distributed) stream(s) of
data-items in worst case scenarios, while striving for
small resources usage. In particular, we look into two
classical and related data streaming problems:
frequency estimation and (distributed) heavy hitters.
A less common field of application is stream
processing which is somehow complementary and
more practical, providing efficient and highly scalable
frameworks to perform soft real-time generic
computation on streams, relying on cloud computing.
This duality allows us to apply data streaming
solutions to optimize stream processing systems.
In this thesis, we provide a novel algorithm to track
heavy hitters in distributed streams and two
extensions of a well-known algorithm to estimate the
frequencies of data items. We also tackle two related
problems and their solution: provide even partitioning
of the item universe based on their weights and
provide an estimation of the values carried by the
items of the stream. We then apply these results to
both network monitoring and stream processing. In
particular, we leverage these solutions to perform load
shedding as well as to load balance parallelized
operators in stream processing systems.

Mots clés
Modèle Flux, Approximation et Processus Aléatoire,
Eléments Surabondants, Estimation de Fréquences,
Sureté de Fonctionnement des Réseaux, Traitement
de Flux en Temps Réel, Equilibrage de Charge,
Délestage de charge.

Key Words
Data Streaming, Randomized Approximation, Heavy
Hitter, Frequency Estimation, Network Dependability,
Stream Processing, Load Balancing, Load Shedding

L’UNIVERSITÉ NANTES ANGERS LE MANS

	Contents
	Introduction
	Data Streaming
	System Models
	Data Streaming Model
	Sliding Window Model
	Distributed Streaming Model and Functional Monitoring
	Adversarial Model

	Building Blocks
	Sampling
	Approximation and Randomization
	Random Projections and Sketches
	Universal and Independent Hash Functions

	Frequency Estimation
	Related Work
	Frequency Estimation in the Sliding Window Model
	Perfect Windowed Count-Min Algorithm
	Simple Windowed Count-Min Algorithm
	Proportional Windowed Count-Min Algorithm
	Splitter Windowed Count-Min Algorithm
	Distributed Windowed Count-Min Algorithm
	Time-based windows

	Item Values Estimating
	Value Estimator Algorithm
	Theoretical Analysis

	Heavy Hitters
	Related Work
	Space Saving Mean Case
	Distributed Heavy Hitters
	Distributed Heavy Hitters Estimator Algorithm
	Theoretical Analysis

	Balanced Partitioning
	Balanced Partitioner Algorithm
	Theoretical Analysis

	Network Monitoring
	DDoS Detection
	Experimental Evaluation

	Estimating the frequency of IP addresses
	Experimental Evaluation

	Optimizations in Stream Processing Systems
	Related Work
	System Model

	Load Balancing Parallelized Operators in Stream Processing Systems
	Load Balancing Stateful Parallelized Operators
	Distribution-aware Key Grouping Algorithm
	Experimental Evaluation

	Load Balancing Stateless Parallelized Operators
	Online Shuffle Grouping Scheduler Algorithm
	Theoretical Analysis
	Experimental Evaluation

	Parallelized load balancers

	Load Shedding in Stream Processing Systems
	Load-Aware Load Shedding Algorithm
	Theoretical Analysis
	Experimental Evaluation

	Conclusion
	Summary
	Perspectives

	References
	List of Notations
	List of Figures, Listings and Tables

