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Résumé

Mots clés : Théorie des jeux, théorie des jeux évolutionnaires, stratégie évolutivement
stable, dynamique de réplication, délais, bifurcation de Hopf, Hawk-Dove.

La théorie des jeux évolutionnaires est un outil qui permet d’étudier l’évolution des
stratégies dans une population composée d’un grand nombre d’agents qui interagissent
d’une façon continue et aléatoire. Dans cette théorie, il y a deux concepts essentiels
qui sont la stratégie évolutivement stable (ESS), et la dynamique de réplication. Une
stratégie évolutivement stable est une stratégie, qui, si adoptée par toute la population,
ne peut pas être envahie par une autre stratégie ”mutante” utilisée par une petite fraction
de la population [1]. Ce concept statique est un raffinement de l’équilibre de Nash, et
il ne peut pas renseigner, par exemple, sur la durée du temps nécessaire pour que l’ESS
élimine la stratégie mutante. La dynamique de réplication, originalement proposée par
Taylor and Jonker [2], est un modèle dynamique qui permet de prédire l’évolution de
la fraction de chaque stratégie dans la population en fonction du temps, en réponse aux
gains des stratégies et l’état de la population.

Dans cette thèse, nous proposons dans une première partie une extension de la dy-
namique de réplication classique en y introduisant des délais hétérogènes et aléatoires.
En effet, la plupart des phénomènes qui se produisent prennent un temps incertain avant
d’avoir des résultats. Nous étudions l’effet de la distribution des délais sur la stabilité
de l’ESS dans la dynamique de réplication et nous considérons les distributions uni-
forme, exponentielle, et Gamma (ou Erlang). Dans les cas des distributions uniforme
et Gamma, nous trouvons la valeur critique de la moyenne à laquelle la stabilité de
l’équilibre est perdue et des oscillations permanentes apparaissent. Dans le cas de la dis-
tribution exponentielle, nous montrons que la stabilité de l’équilibre ne peut être perdue,
et ce pour toute valeur de la moyenne de la distribution. Par ailleurs, nous montrons que
la distribution exponentielle peut affecter la stabilité de l’ESS quand une seule stratégie
subit un délai aléatoire issu de cette distribution. Nous étudions également le cas où les
délais sont discrets et nous trouvons une condition suffisante et indépendante des valeurs
des délais pour la stabilité de l’équilibre. Dans tous les cas, nous montrons que les délais
aléatoires sont moins risqués que les délais constants pour la stabilité de l’équilibre, vu
que la valeur moyenne critique des délais aléatoires est toujours supérieure de celle des
délais constants.
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En outre, nous considérons comme paramètre de bifurcation la moyenne de la dis-
tribution des délais et nous étudions les propriétés de la solution périodique qui ap-
parait à la bifurcation de Hopf, et ce en utilisant une méthode de perturbation non
linéaire. En effet, à la bifurcation de Hopf, une oscillation périodique stable appa-
rait dont l’amplitude est fonction de la moyenne de la distribution. Nous déterminons
analytiquement l’amplitude de l’oscillation au voisinage de la bifurcation de Hopf en
fonction du paramètre de bifurcation et de la matrice des jeux dans les cas des distribu-
tions de Dirac, uniforme, Gamma et discrète, et nous appuyons nos résultats avec des
simulations numériques.

Dans une deuxième partie, nous considérons une population hétérogène composée
de plusieurs communautés qui interagissent d’une manière non-uniforme. Pour chaque
communauté, nous définissons les matrices des jeux et les probabilités d’interaction
avec les autres communautés. Dans ce contexte, nous définissons trois ESS avec dif-
férents niveaux de stabilité contre les mutations: un ESS fort, un ESS faible et un ESS
intermédiaire. Nous définissons un ESS fort comme suit: si toute la population adopte
l’ESS, alors l’ESS ne peut pas être envahi par une petite fraction de mutants composée
d’agents de toutes les communautés. Pour l’ESS faible, chaque communauté ne peut
être envahie par une petite fraction de mutants de cette communauté (mutants locaux).
Par contre, une population qui adopte l’ESS intermédiaire ne peut être envahie par une
petite fraction de mutants en considérant une seule utilité qui est la somme des utilités de
toutes les communautés. Dans le cas de deux communautés, nous montrons qu’aucun
ESS fort ne peut exister, et nous trouvons les conditions d’existence des ESS faibles et
intermédiaires en fonction des probabilités d’interaction et des matrices des jeux. Par
ailleurs, nous étudions la dynamique de réplication et nous montrons que l’ESS intermé-
diaire est toujours asymptotiquement stable alors que la condition de la stabilité faible
de l’ESS ne garantit pas la stabilité asymptotique.

En outre, motivés par l’omniprésence des délais dans la plupart des phénomènes
réels, nous introduisons dans la dynamique de réplication deux types de délais: délais
spatiaux et délais stratégiques. Les délais spatiaux apparaissent dans les intéractions qui
impliquent deux agents de deux communautés différentes (interactions hétérogènes).
Nous montrons que ce type de délais n’affecte pas la stabilité de l’équilibre. Les
délais stratégiques sont associés aux stratégies et apparaissent dans tous les types
d’interactions. Dans ce cas, nous trouvons la valeur critique de ce délai à partir de
laquelle la stabilité de l’équilibre est perdue en faveur d’oscillations permanentes.

Finalement, nous appliquons les résultats obtenus sur le jeu de Hawk-Dove, qui
est une simple charactérisation des conflits sur une ressource rare, très étudiée dans la
théorie des jeux évolutionnaires, et qui permet de prédire le niveau d’agressivité dans la
population. Nous considérons une population composée de deux groupes d’agents avec
deux niveaux d’agressivité asymétriques. En fonction des probabilités des interactions
et des paramètres du jeu (coût de l’affrontement, valeur de la ressource), nous étudions
l’existence des différents types de ESS ainsi que la dynamique de réplication avec délais.
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Abstract

Keywords: Game theory, evolutionary game theory, evolutionarily stable strategy, repli-
cator dynamics, time delay, Hopf bifurcation, Hawk-Dove.

In this dissertation, we study evolutionary game theory which is a mathematical tool
used to model and predict the evolution of strategies in a population composed of a large
number of players. In this theory, there are two basic concepts which are the evolution-
arily stable strategy (ESS) and the replicator dynamics. The ESS is originally defined
as follows [1]: if all the population adopts the ESS, then no alternative strategy used by
a sufficiently small fraction of the population can invade the population.The ESS is a
static concept and a refinement of a Nash equilibrium. It does not allow us, for example,
to estimate the time required for the ESS to overcome the mutant strategy, neither to pre-
dict the asymptotic distribution of strategies in the population. The replicator dynamics,
originally introduced in [2], is a model of evolution of strategies according to which the
growth rate of a given strategy is proportional to how well this strategy performs relative
to the average payoff in the population.

In the first part of this work, we propose an extended version of the replicator dynam-
ics which takes into account heterogeneous random delays. Indeed, in many situations,
the presence of uncertain delays is ubiquitous. We first consider continuous delays and
we study the effect of the distribution of delays on the asymptotic stability of the mixed
equilibrium in the replicator dynamics. In the case of uniform and Gamma delay dis-
tributions, we find the critical mean delay at which a Hopf bifurcation is created and
the stability of the mixed equilibrium is lost. When the distribution of delays is expo-
nential, we prove that the stability of the equilibrium cannot be affected by the delays.
However, when only one strategy is delayed according to the exponential distribution,
the asymptotic stability of the ESS can be lost. In all the cases, we show that the critical
mean delay value is higher than that of constant delays, and thus random delays are less
threatening than constant delays. In addition, we consider discrete delays and one of
our results is that, when the instantaneous term is dominant, that is when the probability
of zero delay is sufficiently high, the stability of the ESS cannot be lost.

Furthermore, by taking as a bifurcation parameter the mean delay distribution, we
examine the properties of the bifurcating periodic solution created near the Hopf bi-
furcation using a nonlinear perturbation method. Indeed, near the Hopf bifurcation, a
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stable periodic oscillation appears whose amplitude depends on the value of the bifur-
cation parameter. We give a closed-form expression of the amplitude of the periodic
solution and we validate our results with numerical simulations.

In the second part, we consider an heterogeneous population composed of several
communities which interact in a nonuniform manner. Each community has its own set
of strategies, payoffs, and interaction probabilities. Indeed, individuals of a population
have many inherent differences that favor the appearance of groups or clusters. In this
scenario, we define three ESS with different levels of stability against mutations: strong,
weak, and intermediate ESS, and we examine their connection to each other. A strong
ESS is a strategy that, when adopted by all the population, cannot be invaded by a suf-
ficiently small fraction of mutants composed of agents from all the communities. In
contrast, a weak ESS is a strategy wherein each community resists invasion by a suffi-
ciently small fraction of mutants in that community (local mutants). In the intermediate
ESS, the population adopting the ESS cannot be invaded by a small fraction of mu-
tants when we consider the total fitness of the population rather than the fitness of each
community separately. In the case of two communities, we show that no strong ESS
can exist, but under some conditions on the payoffs and the interaction probabilities,
intermediate and weak ESS may exist. Further, we complete our static analysis by in-
troducing the replicator dynamics in the case of two interacting communities. We prove
that the intermediate ESS is asymptotically stable in the replicator dynamics whereas
the weak stability condition does not ensure the asymptotic stability in the replicator
dynamics.

Furthermore, we introduce two types of delays in the replicator dynamics: strategic
delay and spatial delay. The strategic delay is associated to the strategies used by the
players and can be defined as the time interval a strategy takes to have a consequence
on the fitness of the interacting players. It is more realistic to consider that a strategy
does not have an immediate effect but takes some time to produce results. As in a one
population scenario, we prove that there exists a critical value of the strategic delay at
which the stability of the mixed equilibrium is lost. The spatial delay depends on the
types of interactions and appears in heterogeneous interactions only, that is interactions
that involve players from different communities. Indeed, it comes from the latency
induced by the individual types when they interact. Interestingly, we show that spatial
delays do not affect the asymptotic stability of the equilibrium.

In the third part, we apply our results to the Hawk-Dove game which is a well
studied model in the theory of evolutionary games. In the one stage Hawk-Dove game,
two individuals compete for a scarce resource and have two possible strategies: an
aggressive behavior and a peaceful one. We consider a population composed of two
communities that have asymmetric fighting abilities and we analyze the existence of
different types of ESS in function of the interaction probabilities and the parameters of
the game (intra-community and inter-community fighting costs, resource value). We
also examine the stability of the replicator dynamics in this context.
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Introduction

Many complex systems exist where a large number of agents interact and make in-
terdependent choices. In economics, for example, the decision makers have to make
interdependent decisions and for each decision maker, the outcome of his action de-
pends also on the actions of his opponents. Furthermore, agents may form clusters or
groups, and exhibit special types of interactions such as the formation of coalitions or
cooperations. In social networks, users can form groups or communities sharing some
common features. The development of a framework that enables the analysis of a com-
petitive context is therefore necessary, and evolutionary game theory provides an analyt-
ical framework that allows to study such complex systems. Evolutionary game theory
has a wide range of applications in many areas such as social sciences [3, 4], computer
science, where some examples of applications can be found in multiple access proto-
cols [5, 6, 7, 8, 9, 10], multi-homing [11], resources competition in the Internet [12],
and wireless networks [13, 14].

In this thesis, we study evolutionary games in an extended framework. The contribu-
tion of this work can be classified into three parts: (i) stability and Hopf bifurcations in
the replicator dynamics with heterogeneous and random delays, (ii) evolutionary games
in interacting communities, and (iii) application to the Hawk-Dove game.

Evolutionary game theory is a mathematical tool used to model and study the evo-
lution of strategies in large populations. In this framework, agents of a large population
are continually involved in random and pairwise interactions. A strategy is character-
ized by (i) the proportion of the players using it in the population, and (ii) its fitness
which is a measure of its success and depends on the proportions of all other strategies
in the population. In this theory, there are two main concepts which are the evolutionar-
ily stable strategy (ESS) and the replicator dynamics. The ESS is a static concept and is
a refinement of the Nash equilibrium. It is originally defined as follows: if all the pop-
ulation adopts the ESS, then no alternative strategy used by a sufficiently small fraction
of the population can invade the population [1]. The replicator dynamics is a model that
enables the prediction of the time evolution of strategy frequencies in the population.
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Replicator Dynamics with Random Delays

In the first part of our work, we extend the classic replicator dynamics by introducing
heterogeneous random delays. In the evolutionary game literature, most of the works on
delayed evolutionary dynamics have considered only the case of a single deterministic
delay [15, 16, 17, 18, 19]. However, in many real-word applications, we observe that
time delays are heterogeneous, uncertain, and may arise under various forms. For exam-
ple, in social networks, the users react to delayed information and the delays experienced
by the users are not the same but rather heterogeneous. In economics, the investments
do not have an immediate result, but take some time to have consequences, which is
usually uncertain. Unlike Previous works on delayed replicator dynamics which con-
sidered a single fixed delay, we consider here random continuous delays and we study
the effect of the delay distribution on the stability of the interior equilibrium. In addi-
tion, we study the replicator dynamics subject to several discrete delays. We believe
that our work is the first attempt to examine the stability of the replicator dynamics with
random delays.

Our major result is that random delays have less threats than constant delays. In-
deed, the critical mean value of the random delay at which the stability is lost is higher
than that of a constant delay. The method we used to study the asymptotic stability
of the replicator dynamics with delays is based on the linearization of the replicator
dynamic around the equilibrium and analyzing the stability of the linearized system.
There is asymptotic stability of the linearized system if all the roots of the associated
characteristic equation have negative real parts. Usually, the characteristic equation has
an infinite number of complex roots, which makes the problem of analyzing the sign
of the roots a challenging one. A transition from stability to instability occurs when a
root passes through the imaginary axis and if, furthermore, the derivative of the root in
function of the delay at the critical delay is positive, then the asymptotic stability is def-
initely lost and cannot be regained again, otherwise, there would appear a phenomenon
of stability switches [20].

We considered different delay distributions in the replicator dynamics and we here
summarize the major contribution in this part, presented in Chapters 2 and 3:

• Under the exponential distribution, we show that the mixed ESS is asymptoti-
cally stable for any value of the distribution parameter. However, when only one
strategy is delayed with an exponential delay distribution, we prove that a Hopf
bifurcation may occur depending on the game payoffs. At the Hopf bifurcation,
the asymptotic stability is lost and the replicator dynamics exhibits a stable peri-
odic oscillation in the proportions of strategies in the population.

• For the uniform and Gamma (or Erlang) distributions, we derive conditions for
the asymptotic stability of the mixed ESS. We show that random delays require
more flexible stability conditions than constant delays. In addition, we illustrate
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the effects of the Gamma distribution parameter on the critical mean delay and
the frequency of oscillations near the Hopf bifurcation.

• In case of random discrete delays, we determine the critical mean delay and the
critical frequency of oscillations. Furthermore, we derive a delay-independent
stability condition for the asymptotic stability of the mixed ESS. We also show
that, when the instantaneous term is dominant, that is, when the probability of
zero delay is sufficiently high, then the asymptotic stability follows. Moreover, we
examine a special case of asymmetric delays, where only one strategy is delayed.

We validated our analysis through numerical simulations. Interestingly, our results
show that the consequences of delays depend not only on the values of delays, but also
on the distribution according to which the delays are drawn and the symmetry (or not)
across the strategies.

Furthermore, in Chapter 4, we continue our study of random delays and we examine
the properties of the periodic solution (or limit cycle) created at the Hopf bifurcation
using Poincaré-Lindstedt perturbation method. This method enables us to determine
whether the Hopf bifurcation is supercritical, in which case the bifurcating periodic so-
lution is stable, or subcritical, in which case the bifurcating periodic solution is unstable,
as well as the properties of the bifurcating solution. In our context, we prove the appear-
ance of a stable periodic oscillation near the Hopf bifurcation (supercritical bifurcation)
and we determine the amplitude of the periodic solution. Indeed, at the critical value
of the bifurcation parameter, a stable periodic oscillation with a small amplitude ap-
pears, and as the bifurcation parameter moves away from this value, the amplitude of
oscillation increases further. We determined analytically the growth rate of the ampli-
tude in function of the bifurcation parameter in the cases of Dirac, uniform, Gamma,
and discrete delay distributions. Our results are corroborated with numerical simula-
tions. To the best of our knowledge, our work is the first attempt to investigate the Hopf
bifurcation in the replicator dynamics with random delays.

Evolutionary Games in Interacting Communities

In the second part, we consider an heterogeneous population composed of communities
which interact in a nonuniform manner. Indeed, we observe that agents in a population
cannot be completely similar and there are usually cultural, religious, language, or other
inherent differences among them. Instead of considering a well-mixed population as in
the classical framework of evolutionary games, we explore games in which the popula-
tion is composed of several communities. Each community has its own set of strategies,
payoff matrix and resulting outcomes. Our work focuses on different types of individ-
uals, such that any pairwise interaction does not lead to the same fitness, depending on
the type of individuals that are competing, and not only the strategy used. In addition,
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each community may interact with any other community with different probabilities. To
the best of our knowledge, this is the first work that considers nonuniform interaction
feature among communities. In this scenario of nonuniform interactions, we introduce
new concepts of ESS, we examine their connections to each other, and we investigate
the impact of the interaction probabilities on their existence. More precisely, we define
the ESSs with different levels of stability as follows:

• Strong ESS: The stability condition guarantees that no alternative strategy can
invade the population. This condition states that all communities have an incen-
tive to remain at the ESS when a rare alternative strategy is used by mutants in all
the communities that form the population.

• Weak ESS: The stability condition guarantees the stability, for each community,
against a local fraction of mutants in a single community.

• Intermediate ESS: This equilibrium considers the global fitness of the whole
population instead of a single community. It guarantees that all the population
cannot earn a higher total payoff when deviating from the ESS.

As a remark, we note that an ESS can be fully mixed, in which case all strategies
are present in all the communities; partially mixed where at least one community uses a
mixed strategy and another uses a pure strategy; and fully pure where all communities
use pure strategies. We show that any fully mixed Nash equilibrium is not a strong ESS
wherein all communities using this equilibrium cannot be invaded by a small group from
all communities with a mutant strategy. But under some assumptions on the payoff and
interaction probabilities, this mixed equilibrium is an ESS when we consider the global
fitness of the population rather than the fitness of each community separately.

In this framework, we aim to connect the analysis of the stability in a static concept
and the steady state of the replicator dynamics. For the evolutionary dynamics, we
introduce the replicator dynamics under nonuniform interactions in communities. We
study the relationship between the steady state of the replicator dynamics and the ESSs
with different levels of stability. In particular, we show that the fully mixed intermediate
ESS is asymptotically stable in the replicator dynamics. In contrast, the condition of
weak stability does not ensure the stability condition of the replicator dynamics.

Furthermore, we study the effect of time delays on the stability of the replicator
dynamics in a population composed of communities. We distinguish and define two
types of delays:

• Strategic delay which is the delay associated with the strategies of the players.
We suppose that each action takes some fixed time interval to have a consequence
on the fitness of the interacting players. As in one population scenario [21, 16],
we show that for large strategic delays, the mixed intermediate ESS may become
an unstable state for the replicator dynamics where the profile of the population
fluctuates around the ESS.
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• Spatial delay which is associated to the communities of the competing players
and comes from the latency induced by the individual types when they interact. In
fact, we can assume that in some situations, the delay of a pairwise interaction be-
tween individuals from the same community can be lower than the delay observed
when individuals from different communities are interacting. It is more intuitive
that delays are more likely to occur in mixed interactions than in homogeneous
ones. For example, in a social network, individuals from the same community
will share faster some content/information as there is some kind of confidence
between them, whereas, a content coming from an individual from another com-
munity may yield to a careful behavior and then increases the outcome delay of
the interaction. Thus, delays are more likely to happen in mixed interactions en-
gaging agents from different communities than in homogeneous interactions that
involve similar individuals. We prove that the replicator dynamics converges to
the fully mixed intermediate ESS for any value of the spatial delay.

The two types of delays yield two different formulae of the expected utilities of strate-
gies, and then different consequences on the asymptotic stability of the mixed ESS are
intuitively expected.

Applications

In the third part, we apply our results to the Hawk-Dove game which is one of the most
studied examples in evolutionary games. The Hawk-Dove game is a model for deter-
mining the degree of aggressiveness in the population. In the one stage Hawk-Dove
game, two individuals compete for a rare resource and there are two possible actions or
behaviors: an aggressive one and a peaceful one. Depending on the value of the resource
and the fighting costs, this game can predict the proportion of aggressive agents in the
population. Our new model of heterogeneous population enables us to study the evo-
lution of aggressiveness within different species of animals having asymmetric fighting
abilities and interacting in a nonuniform manner. Considering a population composed
of two communities of hawks and doves that have an asymmetric level of aggressive-
ness, we study the existence of different types of ESS (strong, weak, intermediate, fully
mixed, partially mixed, fully pure) in function of the interaction probabilities and the
fighting costs (intra and inter-community fighting costs). In addition, we study this
game on random graphs.

Organization of the Document

The remaining of this thesis is structured as follows:
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• In Chapter 1, we present the main concepts of evolutionary game theory. In ad-
dition, we present some major related works that cover delayed evolutionary dy-
namics and spatial evolutionary games. We also present some interesting appli-
cations of the theory of evolutionary games in networking, language, control and
optimization problems.

• In Chapter 2, we study the replicator dynamics with random continuous delays
and we examine the asymptotic stability of the mixed equilibrium in a class of
anti-coordination games. In the cases of uniform and Gamma distributions of
delays, we find the critical value of the mean delay at which a Hopf bifurcation
occurs and the asymptotic stability is lost. We illustrate our results with numerical
examples.

• In Chapter 3, we study the replicator dynamics subject to random discrete delays.
We thoroughly examine the asymptotic stability of the mixed ESS in this scenario,
and we derive a delay-independent stability condition.

• In Chapter 4, we examine the properties of the periodic solution created at the
Hopf bifurcation using Lindstedt perturbation method. We validate our results
through numerical simulations.

• In Chapter 5, we consider an heterogeneous population composed of different
communities that are interacting in a nonuniform manner. In this context, we
define new ESS with different levels of stability against mutations. In the case of
two interacting communities, we thoroughly study the existence of different ESS
in function of the interaction probabilities and the game payoffs.

• In Chapter 6, we study the replicator dynamics in the context of two interacting
communities. We examine the relationship between the ESS and the stationary
points of the replicator dynamics. Furthermore, we examine the stability of the
replicator dynamics subject to strategic and spatial delays.

• In Chapter 7, we apply the theoretical results obtained in the two previous chapters
to the Hawk-Dove game. We examine the existence of the different types of the
ESS and the stability of the replicator dynamics in function of the interaction
probabilities and the parameters of the game (intra and inter-community fighting
costs, resource value).

• In Chapter 8, we summarize the major contributions of the thesis and present
some possible perspectives.
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Chapter 1. Introduction to Evolutionary Game Theory

The work presented in this dissertation is related to evolutionary game theory which
is an analytical framework that enables the study of complex systems composed of a
large number of agents. Therefore, we introduce in this chapter the main concepts of
evolutionary game theory. We also give an overview of the major relevant related works
to evolutionary game theory.

The present chapter is organized as follows:

• First, we present a general overview of game theory and then evolutionary game
theory: the original framework and the main concepts of evolutionarily stable
strategy and evolutionary dynamics;

• In Sections 1.3, 1.4, 1.5, and 1.6, we give an overview of deterministic, delayed,
stochastic and spatial evolutionary dynamics, respectively;

• In Section 1.7, we present some applications of evolutionary game theory such as
networking, control and optimization problems.

• In Section 1.8, we conclude the chapter.

1.1 Game Theory

Game Theory was developed in [22] as a mathematical approach to analyze situations in
which agents (decision makers) make interdependent and conflicting decisions. Game
theory has many applications in economics [23], social sciences, biology, and network-
ing as well [24, 13]. It is based on the following assumptions: (i) rationality of the
players: the players are considered to be rational and self-interested; (ii) the payoff of a
player depends not only on his strategy but also on the strategies or actions used by the
other players.

One of the main concepts in game theory is that of a Nash equilibrium. At the Nash
equilibrium, no player can improve his payoff by unilaterally deviating from his strategy,
that is, the strategy of each player is a best-response to the other players’ strategies.
However, one property of the Nash equilibrium is that it does not ensure the social
efficiency. To illustrate this limitation, we consider the prisoner’s dilemma game where
each player can choose either to cooperate or defect. If both players cooperate, then each
one gets a payoff R, if both defect then each one gets a payoff P, and if one cooperates
and the other defects then the cooperator gets a payoff S and the defector gets a payoff
T where T > R > P > S. The highest payoff is thus obtained by the defector when his
opponent chooses to cooperate. At the Nash equilibrium, both players choose to defect;
however, the social efficiency is obtained when both cooperate, but this profile is not a
Nash equilibrium.
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1.2. Evolutionary Game Theory

1.2 Evolutionary Game Theory

Evolutionary game theory originated in biology where it was introduced by [1] to model
competitions among species. In the original framework, a large number of individuals
with different phenotypes are continuously and randomly paired to meet and interact.
At each interaction, the engaged individuals obtain a payoff which is interpreted as an
increase in their Darwinian fitness. A phenotype corresponds to a pure strategy, and
the goal is to predict the relative abundance of each strategy in the population. In two-
strategy games, the outcome of a single interaction is described by the following matrix:

G =

(

A B

A a b
B c d

)

, (1.1)

where a (b) is the payoff obtained by a player using strategy A when it interacts with an
opponent using strategy A (B), c (d) is the payoff obtained by a player using strategy B
when interacting with an opponent using strategy A (B).

A mixed strategy is a probability distribution over the pure strategies (represented
as a row vector). If one individual chooses a mixed strategy p and interacts with an
individual who plays mixed strategy q, the expected fitness J of the first individual is
obtained through:

J(p,q) = pGq′.

We denote by s the population state, that is the fraction of the population using strategy
A, so 1− s is the fraction of the population using strategy B. Let UX denote the expected
payoff of strategy X which depends on the state of population s. Then we have:

UA = (1 0)G(s 1− s)′ = as+ b(1− s),

and
UB = (0 1)G(s 1− s)′ = cs+ d(1− s).

The average payoff in the population is denoted by Ūs and is given by:

Ūs = sUA +(1− s)UB.

In n-strategy games, we can similarly derive the expected payoffs of strategies from the
payoff matrix. The average payoff in the population is the sum of expected payoffs of
each strategy weighted by its fraction in the population.

Evolutionarily stable strategy (ESS): An ESS is a strategy, such that when adopted
by all the population, cannot be invaded by a small fraction of individuals using another
strategy, called mutants. In a multi-population setting, however, various ESS definitions
are proposed in the literature which differ in the level of stability. For example, an
ESS definition given by Cressman [25], referred to as a weak ESS or Cressman ESS,
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Chapter 1. Introduction to Evolutionary Game Theory

is a strategy where at least one sub-population sticks to the ESS when a small whole
fraction of mutants is introduced in the population. An alternative ESS definition with
a stronger stability condition is given by Taylor [26], in which the total payoff of the
non-mutants in all sub-populations is higher than mutants’ total payoff.

We consider an homogeneous population where the whole population adopts a
mixed strategy q, and we suppose that a fraction ε of mutants deviates to mixed strategy
p. Strategy q is an ESS if ∀p 6= q, there exists some εp > 0 such that ∀ε ∈ (0,εp):

J(p,ε p+(1− ε)q) < J(q,ε p+(1− ε)q).

In other words, this strict inequality says that an ESS defeats any small mutations (rel-
ative to ε) of the population profile. In that sense, the equilibrium concept of ESS is
said to be more robust than the Nash Equilibrium, because it is robust against the de-
viation of a fraction of players, and not only one. The following proposition allows to
characterize an ESS through its stability properties.
Proposition 1 ([27]). A mixed strategy q ∈ ∆(C ) is an ESS if and only if it satisfies the
following conditions:

• Nash Condition : J(p,q) ≤ J(q,q) ∀p,

• Stability Condition : J(p,q) = J(q,q)⇒ J(p, p) < J(q, p) ∀p 6= q.

An ESS can be viewed from two angles. The first one is through the mixed strategy
used by any individual into a global population. A second point of view, is to look
at the population profile considering that each individual plays pure strategy. As we
are interested in the dynamics of strategies inside a population, we prefer to consider
the ESS as a population profile. In this case, it is commonly called an evolutionarily
stable state but by abuse of definition concepts, it is also called ESS. In the case of
pairwise interactions where the outcome is defined as a matrix game, the existence and
uniqueness of ESS is well known and proved in [27]. Let δ1 = b− d, δ2 = c− a, and
δ = δ1 + δ2. If δ1 > 0 and δ2 > 0, or δ1 < 0 and δ2 < 0, then the game has a unique

mixed Nash equilibrium given by: s∗ =
δ1

δ1 + δ2
. If δ1 > 0 and δ2 > 0, then s∗ is a

unique mixed ESS.

Heterogeneous populations: In evolutionary game theory (EGT), the success of a
given strategy depends on the frequency of all strategies represented in the population,
and successful strategies spread over the population. Unfortunately, the theory devel-
oped in this field has mostly focused on the homogeneous population case in which a
given individual may equally likely interact with any other member of the population.
Then, the success of any individual depends on the frequency of all other strategies rep-
resented in the population. In many examples such as social networks, however, the
population is composed of several communities or groups that can be seen as clusters
[28, 29, 30]. Therefore, community strategies are influenced by interactions inside the
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1.3. Deterministic Evolutionary Dynamics

community and also with other communities. Besides, the interactions among individu-
als are inherently nonuniform, and individuals are more likely to meet and interact with
some agents than others because of spatial barriers, language or cultural differences
[31]. In biology, some animal species are strongly territorial [32], and territories vary in
quality [33]. Hence, an animal may fight against animals from different species and the
payoff depends on the species. For example, the probability that an animal being hurt
or killed is higher if it meets a larger animal than smaller animal.

1.3 Deterministic Evolutionary Dynamics

1.3.1 Replicator Dynamics

The replicator dynamics is the most common evolutionary dynamics [2, 34, 27, 35, 36]
and it investigates the relative frequencies of strategies in a population (the fraction of
the population using a given strategy). In this dynamics, the growth rate of a strategy
is proportional to the difference between the expected payoff of that strategy and the
average payoff in the population. In biology, the replicator dynamics describes the time
evolution of the frequency of phenotypes across the population. In social sciences,
the replicator equation can be seen as an imitation process where each agent imitates
a randomly chosen player with a probability proportional to the difference in payoffs
between the strategies. Formally, the replicator dynamics is given by:

dsi(t)

dt
= si(t)(Ui(t)−Ū(si(t))), (1.2)

where si is the proportion of strategy i in the population, Ui is the expected payoff of
strategy i, and Ū = ∑

i

siUi is the average fitness in the population. In n-strategy games,

the replicator equation is an (n− 1) dimensional system ordinary differential equation
(ODE) since ∑

i

si = 1. The (n−1) dimensional replicator equation is equivalent to the

classical Lotka-Volterra equations of n species [27].

When there are two strategies, denoted by A and B, the replicator dynamics is given
by:

ds(t)

dt
= s(t)[UA(t)−Ū(s(t))],

= s(t)[1− s(t)][UA(t)−UB(t)],

where s(t) and 1 − s(t) are the proportions of strategies A and B in the population
at instant t, respectively. We note that the replicator dynamics belongs to a class of
noninnovative dynamics, which means that a strategy that is not currently present in the
population cannot reappear.
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Chapter 1. Introduction to Evolutionary Game Theory

1.3.2 Relation between ESS and Evolutionary Dynamics

The major question posed in the EGT literature is related to the stability of a steady
state which leads to a refinement of the Nash equilibrium. Much of work on evolution
has studied the relationship between the steady state of the replicator dynamics and
the ESS concept [2, 37, 38, 27, 39, 36]. Taylor and Jonker [2], established conditions
under which one may infer the existence of a stable state under the replicator dynamics
given an evolutionarily stable strategy. In [27] (pages 69-71), the authors proved that,
in matrix games (i) a Nash equilibrium of the (one stage) game is a rest point of the
replicator dynamics, (ii) if a strategy is evolutionarily stable then it is asymptotically
stable in the replicator dynamics, (iii) if a strategy is evolutionarily stable and it is fully
mixed, then it is globally asymptotically stable in the replicator dynamics. We should
point out that any asymptotically stable equilibrium is not necessarily evolutionarily
stable. Numerical examples with three strategy games which prove this claim are given
in [39, 27].

However, the results mentioned above can fail to be true in multi-populations, asym-
metric games [27], more than two strategies [40, 41], or spatial settings. In the last two
decades, there have been several attempts to relax the assumption derived by Taylor and
Jonker [2] in order to explore games in which agents only interact with their neighbors
on a lattice [42, 43, 44] or on a random graph [45, 46, 47, 48, 49]. These modifications
on the replicators dynamics lead to lose the connection between the stable equilibrium of
the replicator and ESS. Indeed, under some payoffs, stable states have no corresponding
analogue neither in the replicator dynamics nor in the analysis of ESS [42].

1.4 Delayed Evolutionary Dynamics

The majority of works in evolutionary dynamics have studied the replicator dynamics
without taking into account the delay effects, assuming that the interactions have an
immediate effect on the fitness of strategies. The expected payoff of a strategy is then
considered as a function of the frequency of strategies in the population at the current
moment. However, many examples in biology and economics show that the impact of
actions is not immediate and their effects only appear after some time interval. There-
fore, a more realistic model of the replicator dynamics would take into consideration
some time delays. Another interpretation of time delays can be given as follows: the
players continuously update their strategies according to their estimation of strategy
payoffs. The players cannot have an immediate information about payoffs and the delay
can correspond to the time transfer of the information (social delay) [18, 19, 50, 51].
Another biological interpretation of delays is given in [18] in which individuals born at
time t − τ may take part in contests when they become mature at time t or equivalently
they are born τ units of time after their parents played and received payoffs. In this bi-
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1.4. Delayed Evolutionary Dynamics

ological model, it is shown that the stability of the replicator dynamics is unaffected for
any value of τ . Note that the introduction of delays in the replicator equation yields a
delayed differential equation (DDE), which is more challenging to analyze since it is an
infinite dimensional system [52] (unlike an ODE which is a finite dimensional system).
Usually, the characteristic equation associated with a DDE is transcendental rather than
polynomial and admits an infinite number of complex roots.

1.4.1 Symmetric Delays

A previous work on delayed evolutionary dynamics is given in [16]. The authors inves-
tigated the effect of delays in two-strategy games which have a unique interior equilib-
rium, stable when there is no delay (anti-coordination games). The delay is assumed to
be fixed and symmetric across the strategies i.e. all strategies are subject to the same
delay value. The fitness of a given strategy at time t is written as a function of the pro-
portion of each strategy at time t − τ . More precisely, the fitness functions (or expected
payoffs) of strategies A and B are given by:

UA(t,τ) = as(t − τ)+ b(1− s(t − τ)), (1.3)

UB(t,τ) = cs(t − τ)+ d(1− s(t − τ)). (1.4)

Using linear analysis methods, the authors demonstrated the existence of a critical value
of delay τcr at which a Hopf bifurcation occurs, i.e. a change of stability of an equilib-
rium point due to change in parameters, and the stability of the interior equilibrium is
lost. For the values of τ larger than τcr, the population state oscillates around the equi-
librium. A similar result was proved by the authors in [18] in their social-type model.

In these previous works, the authors limited their analysis to two-strategy games
subject to symmetric delays across the strategies. Besides, they established only a linear
analysis and did not examine the stability of the Hopf bifurcation and the resulting limit
cycle’s amplitude and frequency (which requires a nonlinear analysis).

An analysis of the Hopf Bifurcation in two strategy games is given in [53]. The
limit cycle is a periodic oscillation created at the Hopf bifurcation. Taking the delay τ
as a bifurcation parameter, the authors examined the properties of the Hopf bifurcation
(supercritical or subcritical, amplitude, and period) using a method based on the normal
form theory and the center manifold theorem established in [54]. Another method for
determining the stability of the Hopf bifurcation and the resulting limit cycle for a class
of delay differential equations is given in [55]. The authors gave an explicit formula
for determining the amplitude of the limit cycle in function of all the coefficients of the
delay differential equation including nonlinear coefficients.

A similar nonlinear analysis is introduced in three strategy games (Rock-Paper-
Scissors games) in [56]. The Rock-Paper-Scissors (RPS) game has three strategies R1,

7



Chapter 1. Introduction to Evolutionary Game Theory

R2, and R3 where R1 is beaten by R2, which is beaten by R3, which is beaten by R1. The
payoffs of this game are given by the following matrix [27, 35] (the entry i j specifies
the payoff to strategy i when used against strategy j) :





0 −a2 b3

b1 0 −a3

−a1 b2 0



 ,

where ai,bi > 0. As a remark, we note that RPS games are characterized by the existence
of an interior Nash equilibrium which is asymptotically stable in the replicator dynamics
but is not an evolutionarily stable strategy [27].

In [56], the authors analyzed the stability of three-strategy replicator dynamics and
the existence of Hopf bifurcations. Since there are three strategies, the replicator equa-
tion reduces to a two dimensional system. Using nonlinear analysis methods, the authors
determined the amplitude and the frequency of the bifurcating limit cycle.

1.4.2 Asymmetric Delays

In the references [21, 15], the authors considered fixed asymmetric delays across the
different strategies, that is, each strategy has its own delay value, in a multiple access
game context. They studied the replicator dynamics and derived new stability conditions
in this context of asymmetric delays. The fitness functions of strategies A and B in this
scenario can be derived as follows:

UA(t,τ1) = as(t − τ1)+ b(1− s(t − τ1)), (1.5)

UB(t,τ2) = cs(t − τ2)+ d(1− s(t − τ2)), (1.6)

where τ1 and τ2 are the delays associated to strategy A and B respectively, s(t) and
1− s(t) are the proportions of the population using strategies A and B respectively at
time t. For instance, the authors derived the critical value of one delay under which the
mixed ESS is asymptotically stable for any value of the second delay. Furthermore, in
[21], the authors considered the Nyquist stability criterion to examine numerically the
stability of the nonlinear replicator dynamics (without resorting to the linearization).

1.4.3 Interaction-dependent Delays

A recent work on delayed replicator dynamics [17] considered a new delayed fitness
function where the delays depend on the type of interactions. The authors considered
two models: in the first model called full delay model, all interactions are assumed
to have a delay τ . The expected payoff of a given strategy is thus a function of the
delayed frequency of strategies, and all the terms in the fitness are delayed. In the second
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1.5. Stochastic Replicator Dynamics

model, called off-diagonal delay model, only mixed interactions are delayed, that is
interactions between individuals using different strategies. The fitness of a strategy is
then composed of delayed (opposite strategy) terms and non delayed (similar strategy)
terms. Then, the authors considered a stochastic combination of the two models: the
full delay model with a probability γ and the off-diagonal delay model with probability
1− γ . The resulting model can be interpreted as follows: interactions between the same
strategies (i.e. between opponents using the same strategies) may have a delay interval
τ with probability γ or may have an immediate effect with probability 1− γ; whereas
interactions between opposite strategies always induce a delay τ . Therefore, in two-
strategy games, the fitness functions (or expected utilities) of strategies A and B are
given by:

UA(t,τ) = a
(

γs(t)+ (1− γ)s(t − τ)
)

+ b(1− s(t − τ)), (1.7)

UB(t,τ) = cs(t − τ)+ d
(

γ(1− s(t))+ (1− γ)(1− s(t − τ))
)

. (1.8)

In this model, the authors established a complete analysis of the Hopf bifurcation
using Poincaré-Lindstedt’s method. In particular, the authors identified the region at
which a Hopf bifurcation may exist, in function of the payoffs and the parameters of the
model, and using the results in [55], they determined the amplitude of the limit cycle
generated at the Hopf bifurcation.

In [57], the authors studied the impact of fixed delays in N-Person Stag Hunt game
and showed that delays may lead to the disappearance of coexistence and a population
composed of defectors only. We notice that some other interesting related works on
delayed evolutionary games are proposed in [58, 59, 60, 61].

1.5 Stochastic Replicator Dynamics

A stochastic version of the replicator dynamics is proposed in [62] to model stochastic
effects. The authors considered that the change in the fitness of individuals in a pairwise
encounter is a random variable that is subject to random continuous perturbations. The
continuous perturbations are not fully considered in the classic evolutionary dynamics
and may have non negligible effects. The stochastic influences in natural selection may
be due to random mutations, errors and immigration. Approximating the sources of
perturbations by a Wiener process, the authors defined the time evolution of the relative
frequency of strategy i as follows:

dsi(t) = si(t)(Ui(t)−Ū(t))dt +σdW (t), (1.9)

where W (t) is a continuous, white noise process with mean zero and variance σ2. We
observe that a term capturing the stochastic effects is added to the classic version of
the replicator dynamics. Unlike the notion of an evolutionarily stable strategy which
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is characterized by the resistance to some rare and isolated mutation, the authors in-
troduced, furthermore, the notion of a stochastically stable equilibrium (SSE) which is
defined by its robustness to continuous and simultaneous random perturbations. The
SSE is clearly a refinement of the notion of an evolutionarily stable strategy. Formally,
the SSE is the limiting distribution to which solutions of equation (1.9) converge as the
noise vanishes (i.e. σ tends toward zero), and t → ∞. This notion of SSE has also the
advantage of addressing the issue of equilibrium selection: indeed, the authors showed
that some ESSs may be stochastically stable and others not; and in some cases none of
the ESSs is stochastically stable. The stochastically stable set minimizes some potential
function. In a single population and two-strategy games, the authors gave an explicit
formula to compute the stochastically stable set.

1.6 Spatial Evolutionary Dynamics

Continuous Space Setting

One of the limitations of standard evolutionary dynamics is that they do not take
into account the spatial effects. Indeed, the notion of space or population structure is
fully abstracted away in the original framework of evolutionary games, in which it is
assumed that every player may interact with any other player in the population with
equal probabilities and the outcome of an interaction depends solely on the strategies
used. In the literature, there are some extents to the replicator and logit dynamics to
include spatial effects. In continuous space settings, this has been traditionally done
by introducing into the standard evolutionary dynamics a diffusion term that captures
the continuous spatial variations, which yields a reaction-diffusion equation [63]. As an
example, in n strategy games and one dimensional space, the time evolution of strategy
i is given by:

∂ si(x, t)
∂ t

= si(x, t)
[

Ui(x, t)−Ū(x, t)
]

+D
∂ 2si(x, t)

∂ 2x
, (1.10)

where x stands for the spatial variable and D is a diffusion term that captures the dif-
fusion rate of strategies over space [63]. The approach used to study such systems is
based on partial differential equations. Spatial variations may have non-negligible ef-
fects as they may lead to the appearance of spatial patterns and they may address the
problem of equilibrium selection. In [64, 65], the authors demonstrated the appearance
of a traveling wave front solution that enables the selection of one ESS in a class of
games which have two pure ESSs (coordination games). A similar result is proved in
[63] in a density-dependent model of evolutionary dynamics. More recently, a different
approach for including the spatial variations in the evolutionary dynamics is proposed
in [66]. In this work, the authors introduced in the standard replicator dynamics a sym-
metric kernel that gives a positive weight to the payoff of interactions in function of the
spatial proximity between the competing agents.
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Figure 1.1: Appearance of a periodic spatial structure where a = 1, b = 5, c = 3.3, and
d = 3 (anti-coordination games), Figure inspired from [66].

The traditional assumption of uniform interactions is thus relaxed by putting more
weight into interactions between close neighbors whereas interactions between agents
whose relative distance is large are weakened. Their approach yields an integro-
differential equation with temporal and spatial variables that capture the effects of the
spatial distance in the outcome of interactions. In this context, the authors demonstrated
the existence of traveling front solutions in coordination games and the appearance of
periodic spatial structures in anti-coordination games (see the illustration in Fig. 1.1).
As a remark, we observe here that the nonuniform feature of the interactions among the
agents may also be explained by the different levels of confidence or trust between each
other which can be asymmetric.

Evolutionary Games On Static Graphs

Traditional assumptions in evolutionary games consisting of (i) an infinite popu-
lation and (ii) a well mixed population where an agent equally likely interacts with
any other opponent in the population, are also relaxed in several works that stud-
ied evolutionary dynamics on graphs or structured populations. These works include
[42, 67, 47, 68, 69, 29, 30], to name a few. In graphs, the interactions are localized and
an agent may interact with opponents in his local neighborhood only. In this frame-
work, the players are represented by the vertices of the graph and the edges of the graph
specifies who interacts with whom. A graph can be static when the edges are fixed,
or dynamic in which case links between nodes can be broken and new others can be
created [70, 68].

A pioneering work in [42] considered evolutionary dynamics on a regular graph, that
is a graph where all nodes have the same fixed number of neighbors. Specifically, the
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authors studied the Prisoner’s Dilemma game considering as a spatial structure a lattice
where each node has four neighbors. In this framework, the strategy update mechanism
is as follows: at each iteration or time step, each node gets involved in pairwise encoun-
ters with all its neighbors (four neighbors with periodic boundary conditions) and its
obtained payoffs in the encounters are summed up. Then, each node either switches to
the strategy of the neighbor who has the maximum total payoff or it keeps its strategy if
it has the highest score among its neighbors. The authors showed that, depending on the
initial configuration and the parameters of the game, this deterministic spatial version
of the Prisoner’s Dilemma may generate a variety of spatial patterns, and even a chaotic
spatial structure in which cooperators and defectors coexist in fluctuating proportions.
More interestingly, when the initial configuration is symmetric, the authors gave an ap-
proximation of the asymptotic frequency of cooperators and proved its consistency with
numerical simulations.

In [69], the authors studied update mechanisms for the evolutionary dynamics on
cycles, which are regular graphs where each node has two neighbors. Specifically, they
considered three different update rules which are Birth-Death (BD), Death-Birth (DB)
and Imitation (IM) rules. A player’s payoff is the sum of payoffs obtained in its pairwise
interactions with its two immediate neighbors. An update rule specifies the mechanism
according to which the strategies evolve in the graph. In the BD rule, an individual is
selected proportional to its fitness for reproduction and its offspring replaces a randomly
chosen neighbor. In the DB rule, a random individual is eliminated and replaced by a
neighbor chosen proportionally to its fitness. In the IM rule, a random individual is
chosen to revise its strategy and select a neighbor to imitate proportionally to fitness
(it is more likely to imitate neighbors with higher fitness). The simple structure of the
graph enables the exact computation of the probability for one strategy to dominate and
replace the other strategy (fixation probability) in two strategy coordination games. For
the Prisoner’s Dilemma game, the authors showed that for DB or IM rules, cooperators
can be favored over defectors while the BD rule always favors defectors. The authors
considered also an interesting case in which a player can interact with any other player
in the graph and not only players in his vicinity (global interactions) but can imitate
only an adjacent player (local updating). In [47], the authors considered the update
mechanisms described above in regular graphs with a fixed degree k.

Evolutionary Games On Dynamic Graphs

In [68], the authors studied coordination games (which admit two pure Nash equi-
libria) on dynamical graphs. In this work, the population is represented by a dynamic
graph with asymmetric weights that represent the level of trust a node has with each
neighbor. It is assumed that each node updates its level of trust with neighbors in func-
tion of payoffs it gets in encounters, and can even break the links with some vertices
and create new neighbors. For the strategy update algorithm, the authors used a myopic
best-response rule according to which a node switches to a strategy that maximizes its
fitness obtained through weighted interactions with all its neighbors. A node has only
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to know its strategy, the payoff matrix, its neighbors and their strategies. In the evolu-
tionary dynamics, the authors considered that at each time step a randomly chosen node
has the opportunity to revise its strategy according to some probability distribution and
switches to the action that maximizes its payoff given the profile of its neighbors. Then,
the active node can break the link with the neighbor that yields the lower payoff and
create a new link with another node. Furthermore, the active node updates the weights
with its neighbors. For coordination games, the authors showed that the dynamic graph
evolves towards the polarization of the two strategies in two separate homogeneous
clusters. Evolutionary games on dynamic graphs are also studied in [70].

1.7 Applications

1.7.1 Hawk-Dove Game

The Hawk-Dove game is a simple characterization of contests between two animals over
a resource such as a food item, a territory or a mating partner [71]. For both animals,
two kinds of behaviors are possible: an aggressive behavior that escalates and fights
for the resource and a peaceful behavior that does never fight. The animal which gets
the resource increases in biological fitness (or reproductive success). Depending on the
value of the resource and the cost of fighting, this game predicts whether the aggressive
behavior would dominate the population or whether hawks and doves would coexist at
evolutionarily stability and at which proportions. The evolutionarily stable strategy is
determined by analyzing a single interaction.

In evolutionary game literature, variants of the Hawk-Dove game exist. For exam-
ple, in [72] a dynamic version of the Hawk-Dove game is proposed. In this version, it
is assumed that each player (animal) has a state that corresponds to its level of energy
reserves. A strategy of a player specifies which action to take as a function of its state.
Assuming that an animal must minimize its probability of dying, the authors estab-
lished a new ESS according to which an animal plays a hawk if its energy reserves are
below some critical value, and plays dove otherwise. Furthermore, any single mutant
that adopts other strategy than the ESS would get a strictly lower fitness. In [73], the
author considered an heterogeneous population composed of two groups of hawks and
doves that have different fighting abilities and which are linked via migration. Assuming
that migration occurs at a much faster time scale than the game dynamics (Hawk-Dove
game), the author studied the dynamics of the full population. In function of the migra-
tion rates, fighting costs, and resource value, new stationary solutions can appear. The
classic hawk-dove game with asymmetric time delays associated with strategies (social
delay) is studied in [21]. Other interesting extended versions of the Hawk-Dove game
are proposed in [74, 75, 76, 77, 78, 79, 80].

A spatial version of the Hawk-Dove game is proposed in [81]. In this work, the
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interactions are localized, that is, each agent interacts with neighboring agents only,
and an agent changes his strategy if his neighbors are doing better than himself. The
considered graph is a two-dimensional square lattice with periodic boundary conditions.
The authors showed that the fraction of Hawks is lower in this spatial framework than
in the classic evolutionary game theory. Furthermore, the authors proved that the spatial
setting favors the success of other strategies, such as Retaliator and Bully, that do not
prosper in the classic setting.

Originated in biology, the Hawk-Dove game lends itself well to various networking
problems as well such as power control or medium access control. In [82, 83, 84], a
semi-dynamic version of the hawk-dove game applied to power control is introduced.
In this game, the aggressive behavior stands for transmitting at a high power level while
the peaceful behavior is associated to transmitting at a low power level. Each mobile
station (player) has a state that corresponds to its energy level. The action used by a
player determines its immediate fitness and its future state. Moreover, it is assumed
that a player can use only the same strategy during its lifetime. The goal of a player is
to maximize its overall amount of data sent during its lifetime. The authors identified
in this context a paradox in which the fraction of a population choosing the peaceful
behavior at the evolutionarily stability decreases as the initial energy state of players
increases. In [85], the authors applied the Hawk-Dove game to congestion control where
the aggressive behavior corresponds to using a high-speed TCP version to be used over
the Internet. Another application of the Hawk-Dove game in the medium access control
is considered in [86]. Finally, an extension of the Hawk-Dove in an economic context
is proposed in [87].

1.7.2 Control and Optimization Problems

The replicator equation has been used in control and optimization problems in large sys-
tems. For instance, in [88], the authors extended the classic framework of evolutionary
games in which the interactions are assumed to occur through pairwise encounters by
considering interactions that include a large and random number of players following a
Poisson process. Therefore, a framework that integrates evolutionary games and Pois-
son games [89] is developed in this work. The authors considered an epidemic problem
in a large population of heterogeneous players where each player has two possible ac-
tions: either to adopt or not a software protection. The utility of each action depends
on the fraction of players choosing to invest and of those choosing not to invest, the
protection cost, recovery cost, and the parameters of the Poisson process.

In this context, the authors demonstrated the existence of multiple Nash equilibria.
Moreover, the authors derived the replicator equation that models the behavior of the
population and predicts the proportions of the strategies in the long run. Interestingly,
according to the folk theorem in evolutionary games according to which a rest point of
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the replicator dynamics is a Nash equilibrium [90], the replicator equation determines
the equilibria without having to explicitly compute them. Based on this result and con-
sidering as a global function to optimize the global revenue of the controller (who fixes
the price of virus protection), the authors considered a two time scale dynamical system:
the game dynamics that occurs at a fast time scale and which determines the asymptotic
behavior of the population (fraction of the population using each strategy), and a gra-
dient descent algorithm according to which the controller updates the price of the virus
software in function of the profile of the population. The authors demonstrated that the
coupled dynamics converge to an optimal price for the controller.

An evolutionary game theoretic approach for the congestion control is proposed in
[91, 12, 92]. In [91], the authors used an evolutionary game theoretic approach to study
a congestion control problem in multimedia traffic. In this work, the authors considered
a framework where the applications (or equivalently the users) sharing a bottleneck link
must choose the rate at which they receive data. Each user behaves selfishly and aims to
maximize its quality of service (QoS) by choosing a specific action among a finite set of
possible actions (data rates). The authors considered a two-layer model where the upper
layer consists of an evolutionary game approach where the applications (or equivalently
users) have to decide (repeatedly) about the rate at which they receive data; and a lower
layer that captures the network performance and the QoS perceived by the users.

The authors studied both the Nash equilibria and the dynamic process according to
which the users update their data rates. To model the dynamic strategy adjustment pro-
cess, the authors used a version of the replicator equation coupled with a performance
model. More specifically, the authors defined a Markov chain wherein the state is the
number of users using every data rate. The transition from a given state to another state
is proportional to the difference in the utilities perceived by a user in the two states (as in
the two-strategy replicator dynamics). The authors proved the existence of a stationary
distribution and examined the relationship between the Nash equilibria and the steady
states of the dynamic model of strategy adjustment. We notice that in this work, all the
players are engaged in an interaction (group interactions) unlike the classic framework
where only two players get involved in an interaction (pairwise interactions). Moreover,
through numerical examples, the authors showed that the steady state (Nash equilib-
rium) may not be Pareto optimal and examined the effects of the buffer capacity, link
capacity, and the number of users on the system equilibrium.

.

1.7.3 Evolution of Language and Sociology

In [93], the authors proposed an evolutionary language game to study the evolution of
vocabulary defined as a specific association between signals and objects. In this frame-
work, the population is composed of individuals (animals) able to make a finite number
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of sounds to design a finite number of objects. In the proposed model, both individ-
uals involved in an interaction are considered as speakers and listeners. Using matrix
notation, the authors defined a language as the probabilities for each object to be asso-
ciated with a given sound for a speaker and also the probability for each sound to be
associated with an object for a listener. The payoff of an interaction between two indi-
viduals is defined as the sum of the probabilities for each one to convey information to
the other. A successful communication results in an increase in fitness (number of off-
springs) for the speaker. The authors studied and compared three processes for language
learning: (i) parental learning, in which children follow the language of their parents (ii)
role model learning in which case children imitate successful individuals (which have
the higher payoffs), (iii) random learning: where children imitate a randomly chosen
individual. Using computer simulations, the authors showed that parental and random
learning outperform random learning, because in the first two cases there is a higher
average asymptotic payoff and faster convergence to a common language.

In [94], the authors used an evolutionary game theoretic approach to study the evo-
lution of cultural traits in populations. The authors considered two types of cultural
traits: adaptive traits which promote survival and reproduction, and maladaptive traits
which reduce the fitness. Using adequate dynamics (differential equations), the authors
modeled the evolution of traits in function of the rate of invention of new cultural traits,
the rate of lossing traits, the rate of transforming an adaptive trait into a maladaptive
one.

1.8 Conclusion

In this introductive chapter, we presented the main concepts of evolutionary game theory
and a literature overview of the major related works that cover delayed and spatial evo-
lutionary dynamics. In particular, we detailed how different models of delayed fitness
functions have been studied in the literature. We also examined thoroughly existing re-
lated works to evolutionary games on graphs (discrete, continuous, static, and dynamic
graphs). In addition, we presented some interesting applications of this theory in the
fields of networking ( such as multiple access games and power control games), control
and optimization, and biology (evolution of language and Hawk-Dove game).

In the next chapter, we propose to study the replicator dynamics with heterogeneous
random delays in a single population.
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Evolutionary game theory provides an analytical framework for studying and mod-
eling the interactions among a large number of individuals. The individuals get involved
in random pairwise interactions over and over and at each interaction, an individual gets
a payoff that is a function of his strategy and others’ strategies. The payoff of a strategy
translates into a growth rate of the frequency of that strategy in the population. In evo-
lutionary game dynamics, it is assumed that the growth rate of a strategy is a function
of the current frequencies of strategies in the population; However, this assumption can
fail to be true in many situations. Indeed, most of phenomena occurring in real-world
complex systems take an uncertain time delay to have consequences. The objective of
this chapter is to introduce in the replicator dynamics heterogeneous and random delays
and to examine the effects of these delays on the convergence to the mixed ESS.

This chapter is structured as follows:

• In Section 2.1, we present motivations for our work and a brief literature
overview;

• In Section 2.2, we examine the stability of the replicator dynamics with continu-
ous delays. We consider uniform, exponential, and Gamma distributions;

• In Section 2.3, we study the replicator dynamics when only one strategy is de-
layed;

• Finally, in Section 2.4, we conclude the chapter.

2.1 Introduction

In the modeling of delays, it is usually assumed that the time delay is fixed [16, 19, 21],
but in reality, the time delay is heterogeneous and random. Indeed, most of phenom-
ena occurring in real-world complex systems, especially in the economics system, have
not an immediate effect but appear after some random delay. For example, economical
investments produce revenues only in the future and the time delay is uncertain. Time
delays have been incorporated into biological models to represent resource regeneration
times, maturation periods, feeding times, reaction times, etc. Hence, the presence of
random time delays in the payoff of individuals leads to a delayed replicator equations,
which may exhibit new evolutionary outcome. In examining social networks and engi-
neering systems we often face random delays. In the scenario of social networks, users
react to delayed information, and the delay is not the same for all users [51]. In large
populations, each user may experience a variable delay that depends on the conditions
in which the action is taken. Therefore, considering heterogeneous and random delays
would be more realistic. To the best of our knowledge, this work is the first attempt
to study the randomly delayed replicator dynamics. We aim to study thoroughly the
impact of the delay distribution on the stability of the mixed ESS.
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In evolutionary game literature, it is well known that time delays may cause the
appearance of a Hopf bifurcation and oscillation in solutions of replicator dynamics.
Many papers studied the stability of the Hopf bifurcation and bifurcation period solu-
tion [17, 56]. In [17], the authors analyzed the bifurcation and resulting limit cycle using
Lindstedt’s method when the fitness is fully delayed or when delay appears in interac-
tions between opposite strategies only. A stability analysis in three-strategy replicator
dynamics with delay has been studied in [56].

2.2 Replicator Dynamics with Continuous Random De-
lays

In this section, we introduce in the replicator dynamics continuous random delays.
When a player uses a strategy at time t, he would receive his payoff after a random
delay τ , it means at time t + τ . Then, its expected utility is determined only at that
instant, i.e. U(t + τ). Equivalently, the expected payoff of a strategy at the current time
is a function of the state of the population at some previous random time [95]. If the
delay is equal to τ , then the expected payoff of strategy A at time t is determined by:

UA(t,τ) = as(t − τ)+ b(1− s(t − τ)),

if t ≥ τ , it is 0 otherwise. Let p(τ) be the probability distribution of delays whose
support is [0,∞[. As we consider a large population, every player can experience a dif-
ferent positive delay. Thus, we consider the expected payoff of all the players choosing
strategy A by averaging the payoffs of all individuals and then all possible delays as:

UA(t) =
∫ ∞

0
p(τ)UA(t,τ)dτ .

The expected payoff of strategy A is then given by:

UA(t) = a
∫ ∞

0
p(τ)s(t − τ)dτ + b[1−

∫ ∞

0
p(τ)s(t − τ)dτ ]. (2.1)

Similarly, the expected payoff of strategy B is:

UB(t) = c
∫ ∞

0
p(τ)s(t − τ)dτ + d[1−

∫ ∞

0
p(τ)s(t − τ)dτ ]. (2.2)

Then, considering expected delay, we can write the replicator dynamics as follows:

ṡ(t) = s(t)[1− s(t)]
[

UA(t)−UB(t)],

= s(t)[1− s(t)]
[

−δ

∫ ∞

0
p(τ)s(t − τ)dτ + δ1

]

, (2.3)

19



Chapter 2. Continuous Random Delays in Replicator Dynamics

where the dot denotes the differentiation with respect to time. In order to examine the
local stability of the ESS s∗, we can make a linearization of the replicator dynamics
around this equilibrium and observe the stability of the linearized equation. We sup-
pose there is a small perturbation around s∗ defined by x(t) = s(t)− s∗. The replicator
dynamics is then given by:

ẋ(t) = −δ (x(t)+ s∗)(1− x(t)− s∗)
∫ ∞

0
p(τ)x(t − τ)dτ . (2.4)

Keeping only linear terms in x in the previous equation, we get the linearized equation:

ẋ(t) = −δ s∗(1− s∗)
∫ ∞

0
p(τ)x(t − τ)dτ . (2.5)

The characteristic equation corresponding to the delay-differential equation (2.5) is
given by:

λ + δ s∗(1− s∗)
∫ ∞

0
p(τ)e−λτdτ = 0. (2.6)

From the theory of delay-differential equations, the mixed equilibrium is asymptotically
stable if and only if all roots of the characteristic equation (2.6) have negative real parts
[96, 20, 97]. In the next subsections, we study the cases of uniform, exponential, and
Gamma distributions.

2.2.1 Uniform Delay

In this case, p(τ) =
1

τmax
for 0 ≤ τ ≤ τmax, and 0 otherwise. The characteristic equation

reduces to:

λ +
D

τmax

∫ τmax

0
e−λτdτ = 0, (2.7)

where D = δ s∗(1− s∗). Note that λ = 0 is not a root of (2.7). The result about the
asymptotic stability of the mixed ESS is summarized in the following proposition.
Proposition 2. The mixed ESS is asymptotically stable in the replicator dynamics with

uniform distribution if and only if τmax < τcr, where τcr =
π2

2D
.

Proof. We suppose that τmax < τcr. If λ is a real root of (2.7), then it is clear that λ
cannot be positive. Let λ = u+ iv be a complex root of (2.7) with u > 0 and v > 0
(without loss of generality we assume that v > 0 since if u+ iv a solution of (2.7), then
u− iv is also a solution). We aim to find a contradiction and hence, we prove that no
root of (2.7) with a positive real part can exist. We have:

v =
D

vτmax

∫ τmaxv

0
e−α u

v sin(α)dα . (2.8)
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Let τmaxv = 2kπ + γ with k ≥ 0 and 0 ≤ γ < 2π . From (2.8), we get:

v2 =
D

τmax

∫ 2kπ+γ

0
e−α u

v sin(α)dα ≤ D(k+ 1)
τmax

∫ π

0
sin(α)dα =

2(k+ 1)D
τmax

.

Thus, we have v2 ≤ 2(k+ 1)D
τmax

. Since τmax < τcr, we get vτmax < (k + 1)
1
2 π . But,

vτmax = 2kπ+γ with 0≤ γ < 2π , which finally yields k = 0 and vτmax < π . On the other

hand, we have u = − D

τmaxv

∫ τmaxv

0
e−α u

v cos(α)dα . Let us study the sign of the right-

hand side of this equation. If τmaxv ≤ π

2
, then we obtain u < 0, this is a contradiction.

If τmaxv >
π

2
, then we have,

∫ τmaxv

0
e−α u

v cos(α)dα =
∫ π

2

0
e−α u

v cos(α)dα +
∫ τmaxv

π
2

e−α u
v cos(α)dα

≥ e−
πu
2v

∫ π
2

0
cos(α)dα + e−

πu
2v

∫ τmaxv

π
2

cos(α)dα > 0.

We obtain u < 0, which is a contradiction with the initial assumption of u > 0. This
proves the sufficient condition.

Furthermore, by implicit differentiation, we derive:

Re
[dλ (τmax)

dτmax

]

τmax=τcr

= Dv2
> 0.

Therefore, when τmax = τcr, the asymptotic stability is lost and cannot be regained.

We conclude that when τmax < τcr, the mixed ESS s∗ is asymptotically stable, oth-
erwise, the mixed ESS becomes unstable. In the case of a constant delay, the critical

delay, which we denote by τc0, is given by
π

2D
(see [16] for more details). Clearly, τc0

is smaller than τcr. Therefore, this random feature of delay makes the possible values of
delay for which the ESS is asymptotically stable larger. The mixed ESS is less sensitive
to the delay when it is random.

We make numerical simulations of the trajectories of solutions of (2.3) to compare
the impact of uniformly at random delays with constant delays. We fixed the game
parameters to a = 1, b = 5, c = 2, d = 3, then τcr = 7.4 time units. In Figure 2.1-left,
we considered a constant delay of τ = 2.4 time units, whereas in Figure 2.1-right, we
considered uniformly at random delays with a mean equal to 2.4 time units (τmax = 4.8
time units). In other words, we fixed the mean delay of the uniform distribution to the
same value of the constant delay. In case of constant delays, the replicator dynamics
exhibit oscillations around the ESS, and when the delays are random, the replicator
dynamics converge to the ESS. This confirms that random delays are less threatening
than constant delays.
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Figure 2.1: Numerical solutions of the replicator dynamics with constant delay (left) and
uniformly at random delays (right), where a = 1, b = 5, c = 2, d = 3, δ = 3, τcr = 7.4 time
units. Left, constant delay setting, τ = 2.4. Right, random delay setting, τmax = 4.8 time
units.

2.2.2 Exponential Delay

We consider an exponential distribution of delays with parameter β > 0, p(τ) = βe−βτ

whose support is [0,∞[. Under this distribution, the characteristic equation (2.6) be-
comes:

λ +βD
∫ ∞

0
e−(β+λ )τdτ = 0. (2.9)

We can establish the following proposition.
Proposition 3. The mixed ESS s∗ is asymptotically stable in the replicator dynamics for
any value of β of the exponential distribution.

Proof. We shall prove that all roots of (2.9) have negative real parts for any β > 0. Let α
be a real solution of (2.9), it is clear that α cannot be positive. Let λ = u+ iv a complex
solution of (2.9) with u > 0 and v > 0 (without loss of generality, we assume that v > 0,
since if u+ iv a solution of the characteristic equation, u− iv is also a solution). We aim
to prove that no root with a positive real part can exist. Separating real and imaginary
parts in (2.9), we get:

u+βD
∫ ∞

0
e−(β+u)τcos(vτ)dτ = 0, (2.10)

v−βD
∫ ∞

0
e−(β+u)τsin(τv)dτ = 0. (2.11)
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Figure 2.2: Convergence to the ESS for different values of β under the exponential distri-
bution. Left, β = 0.41. Right, β = 0.01.

Furthermore, we have:

∫ ∞

0
e−(β+u)τsin(τv)dτ =

1
v

∫ ∞

0
e−(β+u) z

v sin(z)dz

=
I

β + u
,

with I =
∫ ∞

0
e−(β+u) z

v cos(z)dz. Taking into account of the equations above, we can

write (2.10) and (2.11) as follows:

u+βD
I

v
= 0,

v−βD
I

β + u
= 0.

The two previous equations yield u =
−β

2
< 0. This result proves that the real parts of

the roots are always negative, which results in the asymptotic stability.

By virtue of Proposition 3, we conclude that the stability of the mixed ESS is un-
affected under the exponential distribution for any value of β . This can be explained
by the fact that small delays are much more likely to occur than larger delays. Thus,
large delays cannot have a destabilizing effect. We depict in Fig. 2.2 solutions of the
replicator dynamics for two different values of β . When β = 0.41, then the mean delay
of the exponential distribution is 2.4 and we observe convergence to the ESS, unlike the
case of a constant delay where we observed permanent oscillations in Fig. 2.1-Left. The
value of β affects only the convergence rate.
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Figure 2.3: Gamma distribution of delays for different values of k and β .

2.2.3 Gamma/ Erlang Distribution

We consider an Erlang distribution (or Gamma distribution) of delays with support [0,∞[
and parameters k ≥ 1 and β > 0. The probability distribution in this case is given by

p(τ;k,β ) =
β kτk−1e−βτ

(k−1)!
and the mean of this delay distribution is

k

β
.

To better illustrate the effects of the parameters k and β on the delay distribution,
we depict in Fig. 2.3 the Gamma distribution for some values of these two parameters.
We clearly see that, as the value of the parameter k increases, more weight is put on
the higher values of delays, that is larger values of delays are more probable and a
user is expected to experience a larger value of delays. Thus, the critical mean delay
is expected to decrease as the value of the parameter k grows. We propose to find a
closed-form expression of the critical mean delay at which the stability of the mixed
ESS is lost. The characteristic equation associated with this delay distribution is given
by:

λ +D
∫ ∞

0

β k

(k−1)!
τk−1e−(β+λ )τdτ = 0, (2.12)

which can be written as:

λ +D
β k

(k−1)!(β +λ )k

∫ ∞

0
zk−1e−zdz = 0.

Therefore, the characteristic equation reduces to:

λ +D
β k

(β +λ )k = 0, or λ (β +λ )k +Dβ k = 0.
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2.2. Replicator Dynamics with Continuous Random Delays

The zero solution of the linearized equation is asymptotically stable if Re(λ ) < 0, and
unstable if Re(λ ) > 0. A stability transition corresponds to the appearance of a pure
imaginary solution of the characteristic equation (Re(λ ) = 0) as β decreases. We aim
to find the value of β at which a root passes through the imaginary axis. Substituting λ
with iw0 (with w0 > 0) and β with βc in the previous equation we get:

iw0(βc + iw0)
k +Dβc

k = 0.

Equivalently, we have,

iw0(βc
2 +w2

0)
k
2 eikθ +Dβc

k = 0,

with cos(θ ) =
βc

(βc
2 +w2

0)
1
2

and sin(θ ) =
w0

(βc
2 +w2

0)
1
2

. Separating real and imaginary

parts in the previous equation, we derive:

cos(kθ ) = 0

Dβc
k −w0(βc

2 +w2
0)

k
2 sin(kθ ) = 0.

which yields:

kθ =
π

2
+ 2nπ , n ∈ N,

Dβc
k = w0(βc

2 +w2
0)

k
2 .

Since cos(θ ) =
βc

(βc
2 +w2

0)
1
2

, cos(
π

2k
+

2nπ

k
) =

βc

(βc
2 +w2

0)
1
2

and w2
0 =

βc
2 sin2( π

2k +
2nπ

k )

cos2( π
2k +

2nπ
k )

. As β decreases from infinity, the first pure imaginary root

appears when n = 0. From Eq. (2.13), we have:

D2βc
2k = v2(βc

2 +w2
0)

k.

Substituting w2
0 with βc

2 sin2( π
2k )

cos2( π
2k )

in the equation above and taking the square root of

both sides, we get:

βc = D
cosk+1( π

2k )

sin( π
2k )

. (2.13)

The critical mean delay is therefore given by:

k

βc
=

k

D

sin( π
2k )

cosk+1( π
2k )

. (2.14)

At this value of the mean delay, a pure imaginary root of the characteristic equation
exists. We can establish the following sufficient condition of stability when the delays
follow an Erlang distribution with parameter k ≥ 1.
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Proposition 4. The mixed ESS s∗ is asymptotically stable in the replicator dynamics if

and only if β > βc with βc = D
cosk+1( π

2k )

sin( π
2k )

.

Proof. Let β > βc. Let λ = u + iv be a solution of the characteristic equation with
u > 0. We suppose without loss of generality that v > 0 (since if u+ iv is a solution of
the characteristic equation, then u− iv is also a solution). We aim to find a contradiction
and to prove that no root with a positive real part can exist when β > βc. Substituting
λ with u+ iv and separating real and imaginary parts in the characteristic equation, we
get:

u+[(β + u)2 + v2]−
k
2 Dβ kcos(kθ ) = 0,

v− [(β + u)2 + v2]−
k
2 Dβ ksin(kθ ) = 0,

with cos(θ ) =
β + u

[(β + u)2 + v2]
1
2

and sin(θ ) =
v

[(β + u)2 + v2]
1
2

. The system above can

be written as follows:

u =
−Dβ kcos(kθ )

[(β + u)2 + v2]
k
2

,

v =
Dβ ksin(kθ )

[(β + u)2 + v2]
k
2

.

From the equations above, we get:

cos(kθ ) < 0 ⇒ π

2k
< θ ,

v2
< D2 β 2k

[(β + u)2 + v2]k
< D2 β 2k

[β 2 + v2]k
,

which yields cos(θ ) < cos(
π

2k
). In addition, we check that

β

[β 2 + v2]
1
2

<

β + u

[(β + u)2 + v2]
1
2

; and then we have
β

[β 2 + v2]
1
2

< cos(θ ) < cos(
π

2k
). From this in-

equality, we obtain:

β 2 sin2( π
2k )

cos2( π
2k )

< v2. (2.15)

On the other hand, we have v2
< D2 β 2k

[β 2 + v2]k
and

β 2k

[β 2 + v2]k
< cos2k(

π

2k
), which

yields:

v2
< D2cos2k(

π

2k
). (2.16)
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Using (2.15) and (2.16), we get β 2
< D2 cos2k+2( π

2k )

sin2( π
2k )

, which is in contradiction with the

initial assumption of β > βc. Therefore, there is no root with a positive real part when
β > βc, and the local asymptotic stability follows.

Now, let us prove the necessary condition. By differentiating Eq. (2.12) with respect
to β , we get :

Re
(dλ (β )

dβ

)

β=βc

< 0.

Therefore, as β decreases, the roots of characteristic equation cross the imaginary axis
only from the left to the right and once the stability is lost, it cannot be regained again.
The stability is persistently lost when β = βc.

When β = βc, the asymptotic stability of the mixed ESS is lost in favor of a periodic
oscillation with a frequency given by:

w0 = βc
sin( π

2k )

cos( π
2k )

. (2.17)

By substituting βc with its value given in (2.13), we can write w0 as follows:

w0 = Dcosk(
π

2k
). (2.18)

The critical mean delay is
k

βc
=

ksin( π
2k )

Dcosk+1( π
2k )

, which is larger than
π

2D
, the critical fixed

delay. Thus, the ESS is less sensitive to a random delay than a fixed delay. When k = 2,

βc =
D

2
, and the critical mean delay is given by

4
D

. When k = 1, βc = 0 and the ESS is

asymptotically stable for any value of β > 0. This confirms our result on the exponential
delay obtained in the previous section.

In this paragraph, we propose to illustrate the effect of the parameter k on the critical
mean delay and critical frequency of oscillations. In Fig. 2.4-left, we display the critical

mean delay
k

βc
given in (2.14) in function of k. We see that the critical mean delay

decreases dramatically as the parameter k increases, that is the instability becomes more
probable as k grows. This result could be intuitively expected while examining the shape
of the Gamma distribution depicted in Fig. 2.3. In fact, as the parameter k grows, the
higher values of delay get more probable, which affects the stability of the equilibrium.
Furthermore, we display in Fig. 2.4-right, the critical frequency of oscillations given
in (2.18), in function of the parameter k. We observe that, as k increases, the critical
frequency becomes larger and the potential of instability emphasizes. For instance,
when k = 2, w0 = 0.18 and this value increases to 0.29 when k = 5.
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Figure 2.4: Left, the critical mean value of delays in function of the parameter k under
the Gamma distribution. Right, the critical frequency of oscillations in function of the
parameter k under the Gamma distribution, where a = −0.5, b = 3, c = 0, and d = 1.5.

2.3 Replicator Dynamics with Asymmetric Delays

In this section, we study the replicator dynamics with one delayed strategy. Indeed,
there exist many scenarios in which this situation holds. In networking, in particular for
the multiple access game [21], the action of transmitting may be delayed, while keeping
silent would have no payoff and no delay. For the Hawk-Dove game, the aggressive
behavior may have a delayed payoff due to the fighting time, whereas the peaceful type
would not fight and no delay is incurred. The time delay may represent the time of
fighting and it is random since it depends on whether the opponent is aggressive or not.

In the following, we suppose that only strategy A incurs a random delay and strategy
B has no delay. In this case, the expected payoff of strategy A is given by:

UA(t) = a
∫ ∞

0
p(τ)s(t − τ)dτ + b[1−

∫ ∞

0
p(τ)s(t − τ)dτ ].

The expected payoff of strategy B remains unchanged and is given by:

UB(t) = cs(t)+ d(1− s(t)).

Following the same procedure in the previous sections, we write the linearized replicator
dynamics as follows:

ẋ(t) = D
[

(a−b)
∫ ∞

0
p(τ)x(t − τ)dτ +(d − c)x(t)

]

, (2.19)

with D = s∗(1− s∗). The characteristic equation corresponding to the equation above is
given by:

λ −D(a−b)
∫ ∞

0
p(τ)e−λτdτ −D(d − c) = 0. (2.20)
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2.3. Replicator Dynamics with Asymmetric Delays

Exponential Delay

We consider an exponential distribution and we suppose that p(τ) = βe−βτ with β > 0.
The characteristic equation can then be written as:

λ −Dβ (a−b)
1

λ +β
−D(d − c) = 0. (2.21)

Let λ ∗ = iw0 with w0 > 0 be a pure imaginary root of the characteristic equation. Sub-
stituting λ with λ ∗ in (2.21) and separating the real and imaginary parts, we get the
following system:

1+
Dβc(a−b)

β 2
c +w2

0

= 0,

Dβ 2
c (a−b)

β 2
c +w2

0

+D(d − c) = 0,

which yields,

−Dβc(a−b) = β 2
c +w2

0,

Dβ 2
c (a−b)

β 2
c +w2

0

= −D(d − c).

Finally, we get:

−Dβc(a−b) = β 2
c +w2

0, (2.22)

βc = D(d − c). (2.23)

Therefore, we conclude that as β decreases, at the value of βc = D(d − c), a stability
switch occurs. We can establish the following result:
Proposition 5. • Let b > a, the interior equilibrium s∗ is asymptotically stable if

and only if β > βc where βc = D(d − c). Furthermore, the critical frequency of
oscillations is given by:

w0 =
√

δDβc.

• Let a > b, the interior equilibrium is asymptotically stable for any β > 0.

Proof. • Let a− b < 0. We shall prove that if β > βc, then all roots of (2.21) have
negative real parts, and if β < βc, there exists a root with a positive real part. Let
λ = u+ iv be a root of (2.21) with v ≥ 0. Substituting λ with u+ iv in (2.21), we get:

u+ iv− Dβ (a−b)

u+β + iv
−D(d − c) = 0.
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Separating real and imaginary parts in the equation above, we get:

1+
Dβ (a−b)

(u+β )2 + v2 = 0,

u− Dβ (a−b)(u+β )

(u+β )2 + v2 −D(d − c) = 0.

We obtain,

(β + u)2 + v2 = −βD(a−b),

2u = −β +D(d − c).

Therefore, u < 0 if β > βc. And consequently, u > 0 if β < βc.
• Let a > b, then all roots of (2.21) are real, and c−d > 0 (since δ > 0). Let α be a real
root of (2.21), we have:

α2 +α [β −D(d − c)]+βDδ = 0.

The discriminant of the equation above is given by:

X = [β +D(d − c)]2 + 4βD(a−b) > 0.

Since δ > 0, and β −D(d−c)> 0, the roots of the characteristic equation are negative,
and the local asymptotic stability follows.

Remarkably, we observe that the exponential delay may affect the stability of the
mixed ESS. This scenario could not be observed when both strategies have the same
delay which follows the exponential distribution. Indeed, in this case, the asymme-
try property between the delays of the two strategies yields a new scenario and may
increase the possibility of the instability. It is worth mentioning that, considering asym-
metric delays across the strategies or only one delayed strategy rather than symmetric
delays, yields a delay differential equation with more terms, which is more challenging
to analyze. Therefore, we could find closed-form results in the case of exponential delay
only.

In order to better illustrate our results, we make numerical simulations, and we dis-
play the numerical solutions of the replicator dynamics in the scenario where only one
strategy is delayed and subject to exponential delay distribution. When the game pa-
rameters are fixed as follows: a = −1.5, b = 3, c = 0, d = 1.5, there exists a unique
mixed ESS given by s∗ = 0.5, the critical value of the parameter β predicted analyti-
cally in Proposition 5 is given by βc = 0.37, and the critical mean delay is equal to 2.7
time units (since b > a, a Hopf bifurcation exists, see Proposition 5). In Fig. 2.5-left,
we fixed the value of β to 0.6, and consequently the mean delay is 1.67 time units. In
this case, we observe that the replicator dynamics converges to the mixed ESS and no
oscillations appear. In contrast, in Fig. 2.5-right, we decreased the value of β to 0.2 and
the mean delay in this case is given by 5 time units. As a consequence of this value of
β , the replicator dynamics exhibits permanent oscillations around the mixed ESS. The
numerical simulations are in coherence with our analytical results.
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Figure 2.5: Numerical solutions of the replicator dynamics with one delayed strategy
(exponential distribution), where a = −0.5, b = 3, c = 0, d = 1.5, s∗ = 0.5. Left,
β = 0.6 > βc = 0.37. Right, β = 0.2 < βc .

2.4 Conclusion

In this chapter, we studied the asymptotic stability of the mixed ESS in presence of
heterogeneous and random continuous delays. Indeed, many scenarios exist where the
delays are not the same for all the users and are variable in function of the conditions
in which the actions are taken. For example, in social networks, users react to delayed
information and each user may have its own delay. Considering a large population
of players, we suppose that each player may experience a delay that can be seen as
an independent and identically distributed (i.i.d.) random variable drawn from some
probability distribution. By averaging over all the users in the population, we derived
the expected utilities of strategies and then the replicator dynamics.

To investigate the stability of the replicator dynamics with random continuous de-
lays, we resorted to a linearization of the replicator dynamics, analyzed the associated
characteristic equation, and derived closed-form results. We proved that when the dis-
tribution of delays is uniform, a large mean value of the delays results in the instability
of the mixed ESS and the appearance of permanent oscillations in the proportions of
strategies in the population. We found analytically the critical value of the mean de-
lay beyond which the stability is lost. Moreover, when the delays follow the Erlang (or
Gamma) distribution, we found analytically the critical value of the mean delay at which
the Hopf bifurcation occurs and the stability is persistently lost. We also determined the
period of oscillations of the bifurcating periodic solution. Interestingly, under the expo-
nential delay distribution, we proved that the mixed ESS remains asymptotically stable
for any value of the mean delay. In all the cases, the critical mean delay is larger than
the critical delay obtained when the delay is constant. We illustrated our results with
numerical examples.
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However, when there is only one delayed strategy, the results are not the same as
those obtained in case of symmetric delays. For the exponential delay distribution,
there may exist a Hopf bifurcation, a scenario which cannot be observed when both
strategies are delayed. Indeed, in this case, the asymmetry property between the delays
of the two strategies yields a new scenario and make the problem more challenging to
analyze. Technically, considering asymmetric delays across the strategies or only one
delayed strategy yields a delay differential equation with more terms, which makes the
analysis more complex.

In the next chapter, we propose to examine the stability of the replicator dynamics
in presence of random discrete delays.
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Chapter 3. Discrete Random Delays in Replicator Dynamics

In this chapter, we continue our study of the replicator dynamics in presence of
random delays. We propose to examine thoroughly the stability of the mixed equilib-
rium considering discrete distributions of delays. In fact, time delays are ubiquitous and
may arise under various forms. Taking account of discrete random delays is a novelty
since most of works related to evolutionary dynamics have considered deterministic de-
lays only. In order to derive analytical results in the context of stochastic delays, we
used techniques inspired from the theory of delay differential equations [20], as well
as results established in previous works. Our results are corroborated with numerical
simulations.

This chapter is structured as follows:

• In Section 3.1, we examine the stability of the replicator dynamics with one, two,
and several discrete random delays;

• In Section 3.2, we study the replicator dynamcis when only one strategy is de-
layed;

• Finally, we conclude the chapter in Section 3.3.

3.1 Replicator Dynamics with Discrete Random Delays

In this section, we consider symmetric and random discrete delays. We start by the
case of one delay, then we consider two delays, and finally we extend our study to the
multiple-delay case.

3.1.1 Replicator Dynamics with One Delay

We suppose in this section that a strategy, either A or B, would take a delay τ with
probability p or no delay with probability 1− p. When p is high (near one), then the
interactions are more likely to be delayed, whereas when p is low (near zero), then
most of interactions are not delayed. Therefore, we might expect that the critical delay
decreases as the probability of a delayed strategy or interaction grows. We propose to
investigate in this scenario the asymptotic stability of the mixed ESS. In this case, the
replicator dynamics is given by:

ds(t)

dt
= s(t)(1− s(t))

(

− pδ s(t − τ)− (1− p)δ s(t)+ b−d
)

. (3.1)

Let x(t) = s(t)− s∗. Substituting s with x in the equation (4.34), we get:

dx(t)

dt
= −(1− p)δγx(t)− pδγx(t − τ)− pδ (1−2s∗)x(t)x(t − τ)− (1− p)δ ×

(1−2s∗)x(t)2 + pδx(t − τ)x(t)2 +(1− p)δx(t)3, (3.2)
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Keeping only linear terms in x in the previous replicator dynamics equation, we get the
following linearized equation:

dx(t)

dt
= −(1− p)δγx(t)− pδγx(t − τ). (3.3)

The associated characteristic equation is given by:

λ + pδγexp(−λτ)+ (1− p)δγ = 0. (3.4)

The characteristic equation allows us to derive results about the local asymptotic sta-
bility of the mixed ESS. We summarize the stability properties in this scenario in the
following proposition.
Proposition 6. • If p≤ 0.5, then the mixed ESS is asymptotically stable in the repli-

cator dynamics for any value of τ ,

• If p > 0.5, then a Hopf bifurcation exists when τ = τcr where τcr =
acos(−1−p

p )

δγ
√

2p−1
,

at which the asymptotic stability of the mixed ESS is lost.

Proof. • Let λ = u+ iv, where v > 0 a root of (3.4). We suppose that u > 0 and we
aim to prove that p> 0.5. Substituting λ by u+ iv in equation (3.4) and separating
the real and imaginary parts, we derive:

u+(1− p)δγ = −pδγe−uτcos(vτ), (3.5)

v = pδγe−uτsin(vτ). (3.6)

which yields,

(

u+(1− p)δγ
)2
+ v2 = p2δ 2γ2e−2uτ . (3.7)

Since u > 0, we conclude the following inequalities,

(

u+(1− p)δγ
)2
+ v2 ≤ p2δ 2γ2, (3.8)

(

(1− p)δγ
)2 ≤

(

u+(1− p)δγ
)2
+ v2. (3.9)

Finally, we obtain,

(1− p) < p, (3.10)

and consequently,

p > 0.5. (3.11)

Therefore, we conclude that u < 0 for any p ≤ 0.5.
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• Let λ ∗ = iw0, where w0 > 0, be a pure imaginary root of the characteristic equa-
tion. From (3.4), we get:

iw0 + pγδexp(−iw0τcr)+ (1− p)γδ = 0, (3.12)

which yields,

cos(w0τcr) = −1− p

p
,

sin(w0τcr) =
w0

pγδ
.

Therefore, we obtain:

τcr =
acos(−1−p

p )

δγ
√

2p−1
, (3.13)

w0 = δγ
√

2p−1, (3.14)

where ′acos′ denotes the 0 to π branch of the inverse cosine function. Further-
more, we have,

Re
dλ (τ)

dτ |τ=τcr

=
w2

0

(1+(1− p)δγτcr)2 + τ2
crw

2
0

> 0,

which means that when τ is near τcr and τ > τcr, two roots gain positive parts as
τ passes through τcr. Therefore, when p ≥ 0.5, a Hopf bifurcation exists at τcr at
which the asymptotic stability of the mixed equilibrium is lost.

As a remark, we observe that when p = 1, the critical delay is given by τcr = π/2δγ
and this value coincides with the critical delay determined in the Dirac distribution case.

In Fig. 3.1, we plot the critical delay τcr and the frequency of oscillations at the
Hopf bifurcation w0, in function of p, the probability of a delayed strategy. The range
of p over which a Hopf bifurcation may exist is ]0.5,1]; when p is outside this range,
the mixed equilibrium is asymptotically stable for any value of τ . We observe that as p
increases, the critical delay decreases, and thus the potential of instability increases. For
instance, when p = 0.6, the critical delay value is given by 20.5 time units, whereas this
value decreases to 9.4 time units when p= 0.8. In addition, the frequency of oscillations
at the Hopf bifurcation grows as p increases, which emphasizes the instability property.
For example, when p = 0.6, w0 = 0.11, while w0 = 0.19 when p = 0.8.

Furthermore, it is interesting to compare the results derived in our scenario with
those obtained in the classical case of a single delay. Therefore, we displayed in Fig.
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Figure 3.1: Left, the critical delay τcr in function of p. Right, the frequency of oscillations
at the Hopf bifurcation w0, in function of p, where a = −0.5, b = 1, c = 0, and d = 0.5.

3.1 the critical delay (which we denote by τc0 and the frequency of oscillation (which
we denote by wc0) in the case of a single delay. We observe that τcr (as defined in
proposition 6) is always larger than τc0 and they coincide only when p = 1. Similarly,
w0 is always smaller than wc0 and they coincide when p = 1, in which case the two
scenarios are exactly the same.

3.1.2 Replicator Dynamics with Two Delays

In this section, we extend our analysis to cover the case of two distinct delays. We
suppose that a strategy used by a player would take a delay τ1 with probability p1, a
delay τ2 with probability p2, or no delay (τ0 = 0) with probability p0 (p0 = 1− p1− p2).
Equivalently, this means that a player would receive a payoff after τ1 time units with
probability p1 or τ2 time units with probability p2, or immediately after using a strategy
with probability p0. Using the same notation as in the previous chapter, we can write
the expected payoff of strategy A as follows:

UA(t) = a[p0s(t)+ p1s(t − τ1)+ p2s(t − τ2)]+ b[1− p0s(t)− p1s(t − τ1)− p2s(t − τ2)].

Similarly,

UB(t) = c[p0s(t)+ p1s(t − τ1)+ p2s(t − τ2)]+ d[1− p0s(t)− p1s(t − τ1)− p2s(t − τ2)].

Indeed, we introduced in the utility the state or the profile of the population at some
previous instants weighted by the probabilities of delays. The replicator dynamics is
then given by:

ṡ(t) = s(t)(1− s(t))[−δ (p0s(t)+ p1s(t − τ1)+ p2s(t − τ2))+ δ1].
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Making a linearization of the equation above around s∗ we get:

ẋ(t) ≈−δ s∗(1− s∗)
[

p0x(t)+ p1x(t − τ1)+ p2x(t − τ2)
]

. (3.15)

Equation (3.15) was studied in [98, 99, 100, 101]. We use the following proposition in
[100] to conclude about the stability of the mixed ESS in the replicator dynamics.
Proposition 7. [100] Let ẋ(t) =−a0x(t)−a1x(t−h1)−a2x(t−h2), where h1 > 0 and
h2 > 0. If one of the following conditions holds:

• 0 < a0, |a1|+ |a2|< a0,

• 0 < a0 + a1 + a2, |a1|h1 + |a2|h2 <
a0 + a1 + a2

|a0|+ |a1|+ |a2|
,

• 0 < a0 + a1, |a1|h1 <
a0 + a1 −|a2|

|a0|+ |a1|+ |a2|
,

• 0 < a0 + a2, |a2|h2 <
a0 + a2 −|a1|

|a0|+ |a1|+ |a2|
.

Then the equation above is asymptotically (and exponentially) stable.

From this proposition, the next corollary follows by substituting the parameters ai,
i = 0, 1, 2 with those in the linearized replicator dynamics.
Corollary 1. If one of the following conditions holds:

(i) p1 + p2 < p0,

(ii) p1τ1 + p2τ2 <
1

δ s∗(1− s∗)
,

(iii) p1τ1 <
p0 + p1 − p2

δ s∗(1− s∗)
,

(iv) p2τ2 <
p0 + p2 − p1

δ s∗(1− s∗)
,

then s∗ is asymptotically stable in the replicator dynamics.

The condition of stability (i) is independent of the values of delays, τ1 and τ2 and is
equivalent to p0 > 0.5. This means that, when the probability of the non delayed term is
sufficiently high, the asymptotic stability of the ESS cannot be lost for any value of τ1

and τ2. This result is coherent with that obtained when the delays follow an exponential
distribution. Indeed, we proved that this distribution does not affect the stability of the
ESS which may be explained by the shape of the exponential distribution. The condition
(ii) gives an upper bound of the mean delay. The last two conditions give an upper bound
of the values of one delay for which the stability of the interior equilibrium is unaffected
for any value of the second delay.
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Figure 3.2: When τ1 is in the shaded region, then the mixed equilibrium is asymptotically
stable for any value of τ2, where a = 1, b = 5, c = 2, and d = 3. Left p2 = 0.1. Right
p2 = 0.3.

In order to better understand these results, we illustrate in Fig. 3.2, the region of
stability given in the condition (iii) in the corollary above. When τ1 is in the shaded re-
gion, the asymptotic stability cannot be lost for any value of τ2. This result is interesting
because it gives a sufficient stability condition on one parameter only τ1 (or τ2). Simi-
larly to our previous observations, the critical delay becomes smaller as the probability
of delays grows.

3.1.3 Replicator Dynamics with Several Delays

We consider that a strategy used by a player would take a delay τk with probability

pk, where k = 0, ..,q, τ0 = 0 and
q

∑
k=0

pk = 1. We are interested in finding a delay-

independent stability condition. Doing the same as in the previous sections, we can
write the linearized replicator dynamics as follows:

ẋ(t) = −δ s∗(1− s∗)
[

p0x(t)+
q

∑
k=1

pkx(t − τk)
]

.

Following [102], we derive the following necessary and sufficient delay-independent
stability condition for the asymptotic stability of the interior equilibrium (the proof in
[102], Theorem 3.2).

Proposition 8. [102] Let ẋ(t) = a0x(t)+
q

∑
k=1

bkx(t −hk) where a0 < 0. The zero solu-

tion is asymptotically stable independently of delays if and only if −a0 >

q

∑
k=1

|bk| or if
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Figure 3.3: Numerical solutions of the replicator dynamics with discrete random delays,
in both figures: a = 1, b = 5, c = 2, d = 3, τ0 = 0, τ1 = 4.4, τ2 = 5.2 time units. Left
p0 = 0.3, p1 = 0.2 and p2 = 0.5. Right p0 = 0.6, p1 = 0.2 and p2 = 0.2.

−a0 =
q

∑
k=1

|bk| but a0 +
q

∑
k=1

bk 6= 0.

The next corollay immediately follows.
Corollary 2. The mixed ESS is asymptotically stable in the replicator dynamics for any

τk, if and only if p0 ≥
1
2

.

In Figure 3.3, we depict the trajectories of solutions of the replicator equation for
τ1 = 4.4 and τ2 = 5.2 time units. In the left subfigure, we fixed p0 and p1 to 0.3 and 0.2
respectively; whereas in the right subfigure, we fixed p0 and p1 to 0.6 and 0.2 respec-
tively. The results observed here corroborate our previous results. Though the values
of delays are unchanged, the persistent oscillations observed in the left subfigure disap-
pear in the right subfigure because, in this case, the probability of τ = 0 is sufficiently
high, and the delay-independent stability condition in corollary 2 is satisfied. Thus, the
values of delays do not have a destabilizing consequence. We are also interested in the
case where there are several delays which are all positive (i.e. p0 = 0). We aim to look
whether the asymptotic stability can be preserved and for which conditions. We use the
following result [103]:

Proposition 9. Let ẋ(t) = −
q

∑
k=1

akx(t − τk), with τk > 0 for all k and
q

∑
k=1

ak > 0. If

q

∑
k=1

(
q

∑
i=k

ai)|τk − τk−1|<
∑

q
k=1 ak

∑
q
k=1 |ak|

,

where τ0 =
1

e∑
q
k=1 ak

. Then, the equation above is asymptotically (and exponentially)

stable.
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We conclude the following condition:
Corollary 3. If

q

∑
k=1

[
q

∑
i=k

pi]|τk − τk−1|<
1

δ s∗(1− s∗)
,

where τ0 =
1

δ s∗(1− s∗)e
. Then the interior equilibrium is asymptotically (and expo-

nentially) stable.

3.2 Replicator Dynamics with Asymmetric Delays

In this section, we consider the case where only one strategy is delayed. We suppose
that strategy A would have a delay τ with probability p or no delay with probability
1− p. The expected payoff to strategy A is then given by:

UA(s) = a((1− p)s(t)+ ps(t − τ))+ b
(

(1− p)(1− s(t))+ p(1− s(t − τ))
)

,

= (1− p)(a−b)s(t)+ p(a−b)s(t − τ)+ b.

The expected payoff to strategy B remains unchanged and is given by:

UB(t) = cs(t)+ d(1− s(t)).

The replicator dynamics is then given by:

ṡ(t) = s(t)(1− s(t))
(

s(t)((1− p)(a−b)− c+ d)+ p(a−b)s(t − τ)+ b−d
)

.

The linearized replicator dynamics around the interior stationary point is given by:

ẋ(t) = s∗(1− s∗)
(

((1− p)(a−b)− c+ d)x(t)+ p(a−b)x(t − τ)
)

. (3.16)

Let γ = s∗(1− s∗). We recall that s∗ =
b−d

b−d + c−a
, γ =

(b−d)(c−a)

(b−d + c−a)2 , and b > d,

and c > a. (Recall that we consider anti-coordination games). Following the same
procedure in the previous section, we derive the characteristic equation associated with
equation (3.16):

λ − γ((1− p)(a−b)− c+ d)− γ p(a−b)e−λτ = 0.

Let τ = τcr and λ = iw0. Separating real and imaginary parts in the characteristic
equation, we get the following system:

cos(w0τcr) = − p(a−b)− c+ d

p(a−b)
,

sin(w0τcr) = − w0

γ p(a−b)
.
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Squaring and summing up the two previous equations, we get:

w2
0 = γ2(b−d + c−a)

(

(1−2p)(a−b)− (c−d)
)

.

The critical frequency is real if and only if
(

(1−2p)(a−b)− (c−d)
)

> 0. In this case,
it is given by:

w0 = (b−d)(c−a)

√

(1−2p)(a−b)− c+ d

(b−d + c−a)3 . (3.17)

From 3.17, the critical delay is given by:

τcr =
1

γ

√

(b−d + c−a)
(

(1−2p)(a−b)− (c−d)
)

acos
(

− (1− p)(a−b)− c+ d

p(a−b)

)

.

Or equivalently,

τcr =
1

(b−d)(c−a)

√

(b−d + c−a)3

(1−2p)(a−b)− c+ d
acos

(

− (1− p)(a−b)− c+ d

p(a−b)

)

.

When p = 1, we have the deterministic case in which the strategy A has a fixed delay of
value τ . We have the following result on the stability of the mixed ESS.
Proposition 10. The mixed ESS s∗ is asymptotically stable in the repli-
cator dynamics with one delayed strategy if τ < τcr where τcr =

1
(b−d)(c−a)

√

(b−d + c−a)3

(1−2p)(a−b)− c+ d
acos

(

− (1− p)(a−b)− c+ d

p(a−b)

)

.

Proof. The characteristic equation is given by:

λ − γ((1− p)(a−b)− c+ d)− pγ(a−b)e−λτ = 0

Let λ = u+ iv a root of the characteristic equation with v > 0 (without loss of gener-
ality). We aim to prove that when u > 0, then τ > τcr. Separating real and imaginary
parts in the characteristic equation, we get:

u−A−Bexp(−uτ)cos(vτ) = 0, (3.18)

v+Bexp(−uτ)sin(vτ) = 0, (3.19)

where A = γ((1− p)(a− b)− c+ d) and B = pγ(a− b). From (3.18) and (3.19), we
derive:

cos2(vτ) >
A2

B2 ,

v2 ≤ B2 −A2,

which finally yields τ > τcr. Therefore, we conclude that when τ < τcr, the real parts
of the roots of the characteristic equation are negative and the local asymptotic stability
follows.
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Figure 3.4: Left, the shaded region of stability bounded by the critical delay τcr. Right, the
frequency of oscillations near the Hopf bifurcation, where a = 1, b = 5, c = 2, d = 3.

A first observation is that, even when only one strategy is delayed, the existence of
a Hopf bifurcation and the loss of stability are possible. This proposition allows us to
identify the region of stability of the mixed equilibrium in function of the probability p
and the game parameters. In Fig. 3.4-left, we display the region of stability of the mixed
ESS when only one strategy is delayed. This region is bounded by the critical delay
derived in Proposition 10. We observe that the critical delay decreases significantly as p
grows. Furthermore, we plot in Fig. 3.4-right the frequency of oscillations near the Hopf
bifurcation. We see that w0 increases in function of p, which means that the instability
property gets more stressed as p grows. For instance, when p = 0.5, w0 = 0.38, whereas
w0 increases to 0.7 when p equals 0.8.

3.3 Conclusions

In this chapter, we studied the stability of the interior equilibrium in the replicator dy-
namics in presence of several discrete delays. We introduced in the fitness functions
delayed profiles of the population.

Considering one discrete and random delay, we derived the critical delay value at
which the asymptotic stability of the ESS is lost. When there are two delays, we illus-
trated through a numerical example how the asymptotic stability of the mixed ESS can
be changed by keeping the values of delays unchanged and varying only the probabil-
ities of delays. In addition, we examined the case in which there are several discrete
delays and we derived a necessary and sufficient delay-independent stability condition.
We also studied the case where there is one delayed strategy and we derived the critical
value of delay in function of the probabilities of delays.
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In the next chapter, we propose to examine the stability and the properties of the
bifurcating limit cycle created at the Hopf bifurcation in the replicator dynamics with
random delays.
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In this chapter, we examine the behavior of the Hopf bifurcation in the two-strategy
replicator dynamics subject to heterogeneous and random delays. In evolutionary
games, we assume that a strategy would take an uncertain time interval to have a conse-
quence on the fitness. For the sufficiently small values of the mean delay, the replicator
dynamics converges to the mixed ESS. As the mean delay increases, a change in the sta-
bility of the equilibrium (Hopf bifurcation) may occur at which a stable periodic oscilla-
tion, the limit cycle, is created. We use the nonlinear Poincaré-Lindstedt’s perturbation
method to determine its amplitude. Our theoretical results are in a good agreement with
results obtained through numerical simulations.

This chapter is structured as follows:

• In Section 4.1, we examine the stability of the Hopf bifurcation in the replicator
dynamics, with Dirac, uniform, and Gamma distributions. We also consider a
case of discrete delays;

• In Section 4.2, we make numerical simulations to make comparison with our
theoretical results;

• Finally, we conclude the chapter in Section 4.3.

4.1 Hopf Bifurcations in the Replicator Dynamics

We consider a population composed of a large and finite number of players. Each player
would experience a delay that can be seen as an i.i.d. random variable drawn from some
probability distribution. Let p(τ) be the probability according to which the delays are

drawn with τ ∈ [0,∞[ and
∫ ∞

0
p(τ)dτ = 1; the support of p(τ) may be finite. Taking the

average over all the players in the population, we can write the utilities of the strategies
as follows:

UA(t) = a
∫ ∞

0
p(τ)s(t − τ)dτ + b

(

1−
∫ ∞

0
p(τ)s(t − τ)dτ

)

,

UB(t) = c
∫ ∞

0
p(τ)s(t − τ)dτ + d

(

1−
∫ ∞

0
p(τ)s(t − τ)dτ

)

.

Therefore, the replicator dynamics can be written as:

ds(t)

dt
= s(t)(1− s(t))

(

−δ

∫ ∞

0
p(τ)s(t − τ)dτ + b−d

)

. (4.1)

Let x(t) = s(t)− s∗. Substituting s with x in the previous equation, we get:

dx(t)

dt
= −δγ

∫ ∞

0
p(τ)x(t − τ)dτ −δ (1−2s∗)x(t)

∫ ∞

0
p(τ)x(t − τ)dτ +

δx2(t)
∫ ∞

0
p(τ)x(t − τ)dτ , (4.2)
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which is of the form,

dx(t)

dt
= A

∫ ∞

0
p(τ)x(t − τ)dτ +Bx(t)

∫ ∞

0
p(τ)x(t − τ)dτ +Cx2(t)

∫ ∞

0
p(τ)x(t − τ)dτ ,

(4.3)

where A = −δγ , B = −δ (1− 2s∗), C = δ , and γ = s∗(1− s∗). Near the Hopf bi-
furcation, the solution of the replicator dynamics equation (4.2) can be approximated
as:

x(t) = Amcos(w0t).

To examine the bifurcating solution, we define a small parameter ε and a new variable
u as follows:

x(t) = εu(t).

Furthermore, we stretch time by defining a new variable Ω as follows:

T = Ωt.

The equivalent replicator dynamics equation can then be written as:

Ω
du(T )

dT
= A

∫ ∞

0
p(τ)u(T −Ωτ)dτ + εBu(T )

∫ ∞

0
p(τ)u(T −Ωτ)dτ + ε2Cu2(T )×

∫ ∞

0
p(τ)u(T −Ωτ)dτ . (4.4)

In addition, we make a series expansion of Ω as follows:

Ω = w0 + ε2k2 +O(ε3).

Indeed, we omit the O(ε) term because it turns out to be a zero, (it will be multiplied
by a secular term, therefore it shoud be removed). We also make the following series
expansion:

u(T ) = u0(T )+ εu1(T )+ ε2u2(T )+O(ε3).

Finally, in equation (4.4), we expand out and collect terms of the same order in ε . By
setting the secular terms which yield a resonance effect to zero, we get the amplitude of
the limit cycle.

We aim to determine the properties of the Hopf bifurcation in the replicator dynam-
ics subject to random delays. In the remaining of this chapter, we consider the following
delay distributions: Dirac, uniform, and Gamma distributions. We also consider a case
of stochastic and discrete delays.
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4.1.1 Dirac Distribution

We suppose there is a single fixed delay of a value τ . The replicator dynamics in (4.1)
reduces to:

ds(t)

dt
= s(t)(1− s(t))

(

−δ s(t − τ)+ b−d
)

. (4.5)

Thus, equation (4.3) reduces to:

dx(t)

dt
= Ax(t − τ)+Bx(t)x(t − τ)+Cx(t − τ)x2(t). (4.6)

A Hopf bifurcation occurs when a pair of conjugate pure imaginary roots of the charac-
teristic equation crosses the imaginary axis, that is when:

τcr =
π

2δγ
, and w0 = δγ . (4.7)

These formulae will be used later in solving the DDE. By making a change of variable
as mentioned in the previous section, we can write the replicator dynamics equation
(4.4) as follows:

Ω
du(T )

dT
= Au(T −ΩT )+ εBu(T −Ωτ)+ ε2Cu2(T )u(T −Ωτ). (4.8)

In order to examine the behavior of the bifurcating periodic solution, we should take
into account of all the terms in the replicator dynamics equation, including nonlinear
terms. This is in opposite to the approach taken in the previous chapters, which consists
in making a linearization of the replicator dynamics around the equilibrium point. The
linearization approach allows us to determine the stability conditions of the equilibrium
point but is not sufficient to analyze the behavior of the periodic solution created near
the Hopf bifurcation. From the replicator dynamics equation (4.8), we can examine the
behavior of the bifurcating periodic solution. The following proposition summarizes the
properties of the bifurcating limit cycle.
Proposition 11. Let P =−20A3 and Q = 5CA2τcr −3B2Aτcr −B2, the amplitude of the
bifurcating limit cycle is given by:

Am =

√

P

Q
µ ,

where µ = τ − τcr. Furthermore, the Hopf bifurcation is supercritical.

Proof. Since we take as a bifurcation parameter τ , we make the following series expan-
sion around τcr:

τ = τcr + ε2µ̂ +O(ε3)

= τcr + µ +O(ε3).
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In addition, we have:

Ω = w0 + ε2k2 +O(ε3), (4.9)

We expand u(T −Ωτ) as follows :

u(T −Ωτ) = u(T − (w0 + ε2k2 + ..)(τcr + ε2µ̂))

= u(T −w0τcr − ε2(k2τcr +w0µ̂)+ ...)

= u(T −w0τcr)− ε2(k2τcr +w0µ̂)u′(T −w0τcr)+O(ε3). (4.10)

Substituting the series expansions above and collecting terms of similar order in ε in
equation (4.8), we get the following system of equations which we resolve recursively:

• w0
du0(T )

dT
−Au0(T −w0τcr) = 0 (4.11)

• w0
du1(T )

dT
−Au1(T −w0τcr) = Bu0(T )u0(T −w0τcr) (4.12)

• w0
du2(T )

dT
−Au2(T −w0τcr) = −k2

du0(T )

dT
−A(k2τcr +w0µ̂)u′0(T −w0τcr)+

Bu1(T )u0(T −w0τcr)+Bu0(T )u1(T −w0τcr)

+Cu0(T −w0τcr)u
2
0(T ). (4.13)

A solution of (4.11) is of the form:

u0(T ) = Âmcos(T ). (4.14)

We substitute (4.14) into (4.12) to get the following equation in u1:

w0
du1(T )

dT
−Au1(T −w0τcr) =

BÂ2
m

2
sin(2T ).

Let u1(T ) = m1sin(2T ) +m2cos(2T ) be a solution of the previous DDE. Solving the
previous equation for u1 yields:

m1 = Â2
m

B

10A
, and m2 = 2m1.

We used the relation w0 = δγ = −A. Finally, after using the relation cos(3x) =
4cos3(x)− 3cos(x) and sin(3x) = 3sin(x)− 4sin3(x), and setting the secular terms
(cos(T ) and sin(T ) terms that yield a resonance effect) to zero in equation (4.13), we
get the amplitude of the bifurcating periodic solution:

Â2
m =

−20A3µ̂

5CA2τcr −3B2Aτcr −B2 .

Multiplying both sides by ε2 in the equation above, we get:

A2
m =

−20A3µ

5CA2τcr −3B2Aτcr −B2 .

Since the Hopf bifurcation occurs when τ is near τcr and τ > τcr, then µ > 0 and the
bifurcation is supercritical.
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Our result is in coherence with the results in [55]. The result above means that the
amplitude of the bifurcating limit cycle is proportional to

√
τ − τcr.

4.1.2 Uniform Distribution

When the delays are i.i.d. random variables drawn from the uniform distribution, that is
when:

p(τ) =
1

τmax
for ∈ [0,τmax] and zero otherwise, (4.15)

the replicator dynamics can be written as:

ds(t)

dt
= s(t)(1− s(t))

(

−δ

∫ τmax

0

1
τmax

s(t − τ)dτ + b−d
)

. (4.16)

Let x(t) = s(t)− s∗. Substituting s with x in the previous equation, we get:

dx(t)

dt
= A

∫ τmax

0

1
τmax

x(t − τ)dτ +Bx(t)
∫ τmax

0

1
τmax

x(t − τ)dτ +

Cx2(t)
∫ τmax

0

1
τmax

x(t − τ)dτ , (4.17)

where A, B, and C are defined in the previous subsection. In Chapter 2, we proved that,
at the Hopf bifurcation, we have:

τcr =
π2

2D
, and w0 =

π

τcr
,

with D = γδ . As in the previous section, we define x = εu and T = Ωt. We obtain the
following equation,

Ω
du(T )

dT
= A

∫ τmax

0

1
τmax

u(T −Ωτ)dτ + εBu(T )
∫ τmax

0

1
τmax

u(T −Ωτ)dτ +

ε2Cu2(T )
∫ τmax

0

1
τmax

u(T −Ωτ)dτ . (4.18)

By expanding out the equation above, collecting terms of the same order in ε , and
removing the secular terms, we obtain the amplitude of the limit cycle. The properties
of the bifurcating limit cycle are brought out in the next proposition.
Proposition 12. Let P = 8A2 and Q = τcr(B

2−2CA). The amplitude of the bifurcating
limit cycle is given by:

Am =

√

P

Q
µ ,

where µ = τmax − τcr. Furthermore, the Hopf bifurcation is supercritical.
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Proof. Since we take as a bifurcation parameter τmax, we make the following series
expansion:

τmax = τcr + ε2µ̂ +O(ε3)

= τcr + µ +O(ε3).

Note that the O(ε) term is omitted because it will be multiplied by a secular term, and
then removed. We recall that

u(T −Ωτ) = u(T − (w0 + k2ε2 + ..)τ)

= u(T −w0τ)− k2ε2τu′(T −w0τ)+O(ε3).

In addition, we have,

∫ τmax

0
u(T −Ωτ)dτ =

∫ τcr

0
u(T −Ωτ)dτ +

∫ τcr+ε2µ

τcr

u(T −Ωτ)dτ

=
∫ τcr

0
u0(T −w0τ)dτ + ε

∫ τcr

0
u1(T −w0τ)dτ +

ε2
(

∫ τcr

0

(

u2(T −w0τ)− k2τu′0(T −w0τ)
)

dτ + µu0(T −w0τ)
)

+O(ε3).

Taking account of the series expansions above, we collect terms of the same order in ε
in (4.18), we get the following system of equations, which we resolve recursively:

• w0τcr
du0(T )

dT
−A

∫ τcr

0
u0(T −w0τ)dτ = 0 (4.19)

• w0τcr
du1(T )

dT
−A

∫ τcr

0
u1(T −w0τ)dτ = Bu0(T )

∫ τcr

0
u0(T −w0τ)dτ (4.20)

• w0τcr
du2(T )

dT
+(k2τcr +w0µ̂)

du0(T )

dT
= A

∫ τcr

0
u2(T −w0τ)dτ +(Aµ̂ +

Ak2τcr

w0
)

u0(T −w0τcr)+ (−Ak2

w0
+Bu1(T )+Cu2

0(T ))
∫ τcr

0
u0(T −w0τ)dτ . (4.21)

A solution of (4.19) is of the form,

u0(T ) = Âmcos(T ). (4.22)

Then, we have:
∫ τcr

0
u0(T −w0τ)dτ = Âm

∫ τcr

0
cos(T −w0τ)dτ

= 2
Âm

w0
sin(T ).
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Let u1(T ) = m1sin(2T )+m2cos(2T ) be a solution of (4.20). Then, we have,
∫ τcr

0
u1(T −w0τ)dτ = m1

∫ τcr

0
sin2(T −w0τ)dτ +m2

∫ τcr

0
cos2(T −w0τ)dτ

= 0.

The result above can be obtained by remembering that cos(w0τcr) = −1 and
sin(w0τcr) = 0. Therefore, equation (4.20) can be reduced to:

w0τcr
du1(T )

dT
=

Â2
mB

w0
sin(2T ).

Considering that u1(T ) = m1sin(2T )+m2cos(2T ), we get:

m1 = 0, and m2 = − BÂ2
m

2w2
0τcr

.

On the other hand, equation (4.21) can be written as:

w0τcr
du2(T )

dT
−A

∫ τcr

0
u2(T −w0τ)dτ = −(k2τcr +w0µ̂)

du0(T )

dT
+(Aµ̂ +

Ak2τcr

w0
)×

u0(T −w0τcr)+ (−Ak2

w0
+Bu1(T )+Cu2

0(T ))
∫ τcr

0
u0(T −w0τ)dτ , (4.23)

which yields,

w0τcr
du2(T )

dT
−A

∫ τcr

0
u2(T −w0τ)dτ = ÂmF1sin(T )+ ÂmF2cos(T )+F3sin(3T )+F4cos(3T ),

where,

F1 = (k2τcr + µ̂w0)−2
Ak2

w2
0

− Bm2

w0
+

CÂ2
m

2w0
, and F2 = −Aµ̂ −A

k2τcr

w0
.

By removing secular terms that yield a resonant effect, that is by setting F1 = 0 and
F2 = 0, we get:

Â2
m =

8A2µ̂

τcr(B2 −2CA)
.

Multiplying both sides by ε2 in the equation above, we get:

A2
m =

8A2µ

τcr(B2 −2CA)
.

Since µ > 0, then the bifurcating limit cycle is stable and the Hopf bifurcation is super-
critical.
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Figure 4.1: Stable limit cycle with the uniform distribution with τcr = 6.58 time units. Left
µ = 0.001, τmax = τcr +µ . Right µ = 0.03, τmax = τcr +µ , where a =−0.5, b = 3, c = 0,
and d = 1.5.

The amplitude of the bifurcating periodic solution is proportional to
√

τmax − τcr.
When the value of τmax is near and superior to τcr, the replicator dynamics exhibits
a stable periodic oscillation in the proportions of the strategies in the population. We
illustrate in Fig. 4.1, the stable limit cycle occurring near the Hopf bifurcation under the
uniform distribution. In the left-subfigure, we fixed µ to 0.001 time units whereas in the
right-subfigure, µ is fixed to 0.03 time units. We recall that µ = τmax − τcr. In the first
case, we observe that the stable limit cycle has a very small amplitude, and by increasing
τmax, we see in the second case a limit cycle with an amplitude of approximately 0.18.
The amplitude, indeed, increases signficantly as τmax moves away from τcr.

4.1.3 Gamma Distribution

We consider a Gamma distribution of delays with support [0,∞[ and parameters k ≥ 1
and β > 0. The probability distribution in this case is given by:

p(τ;k,β ) =
β kτk−1e−βτ

Γ(k)
,

where Γ(k) = (k− 1)! (Gamma function). The mean of the Gamma distribution is
k

β
.

In Chapter 2, we proved that a Hopf bifurcation occurs when,

βc = D
cosk+1( π

2k )

sin( π
2k )

, (4.24)

and the frequency of oscillations near the bifurcation point is given by:

w0 = Dcosk(
π

2k
). (4.25)
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As a remark, we observe that when k = 1, the Gamma distribution coincides with the
exponential distribution, and βc = 0. Therefore, there cannot exist a Hopf bifurcation in
this case. In the following, we suppose that k ≥ 2. Now, let us determine the properties
of the limit cycle in the neighborhood of the bifurcation. We define I as follows:

I =
∫ ∞

0

β k

Γ(k)
τk−1e−βτu(T −Ωτ)dτ . (4.26)

The equation (4.4) can then be written as,

Ω
du(T )

dT
= AI + εBu(T )I + ε2Cu2(T )I, (4.27)

where Ω = w0 + k2ε2 +O(ε3). The properties of the bifurcating limit cycles are given
in the following proposition.
Proposition 13. Let P and Q be as follows:

P = (k+ 1)
A

βc
(1+

w2
0

β 2
c
)−

k
2 − k

k+ 1
(1+

w2
0

β 2
c
)

1
2 − w0

βc
,

and

Q =
Bβc

2(k+ 1)A
(1+

w2
0

β 2
c
)

1
2 (F1

w0

βc
+F2)−B

w0

βc
(1+

w2
0

β 2
c
)−

k+1
2 (F2 +

F1

2
(

w0

βc
−1))

+
C

4
(1+

w2
0

β 2
c
)−

k
2 .

The amplitude of the bifurcating limit cycle is given by:

Am =

√

P

Q
µ , (4.28)

where µ = β −βc, F1, and F2 are defined in (4.32) and (4.33), respectively. Further-
more, the Hopf bifurcation is supercritical.

Proof. Since we take as a bifurcation parameter β , we can make a series expansion of
β as follows:

β = βc + ε2µ̂ +O(ε3).

By remembering that (βc + ε2µ̂)k = β k
c + kβ k−1

c ε2µ̂ +O(ε3), and by making a series
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expansion in (4.26), we get,

I =
∫ ∞

0

(βc + ε2µ̂)
k

Γ(k)
τk−1e−(βc+ε2µ̂)τu(T −Ωτ)dτ

=
∫ ∞

0

(βc + ε2µ)
k

Γ(k)
τk−1e−βcτ(1− ε2µ̂τ)u(T −Ωτ)dτ

=
β k

c

Γ(k)

∫ ∞

0
τk−1e−βcτu0(T −w0τ)dτ + ε

β k
c

Γ(k)

∫ ∞

0
τk−1e−βcτu1(T −w0τ)dτ +

ε2

Γ(k)
×

∫ ∞

0
β k

c τk−1e−βcτ
(

u2(T −w0τ)− k2τu′0(T −w0τ)− µ̂τu0(T −w0τ)
)

dτ +

ε2kβ k−1
c µ̂

Γ(k)

∫ ∞

0
τk−1e−βcτu0(T −w0τ)dτ +O(ε3).

Then, taking account of the previous expansions, and collecting terms of similar order
in ε , we get the following equations which we resolve recursively:

• w0
du0(T )

dT
−A

β k
c

Γ(k)

∫ ∞

0
τk−1e−βcτu0(T −w0τ)dτ = 0 (4.29)

• w0
du1(T )

dT
−A

β k
c

Γ(k)

∫ ∞

0
τk−1e−βcτu1(T −w0τ)dτ = Bu0(T )

β k
c

Γ(k)

∫ ∞

0
τk−1e−βcτ ×

u0(T −w0τ)dτ ,

(4.30)

• w0
du2(T )

dT
−A

β k
c

Γ(k)

∫ ∞

0
τk−1e−βcτu2(T −w0τ)dτ = −k2

du0(T )

dT
−Ak2

β k
c

Γ(k)
∫ ∞

0
τke−βcτu′0(T −w0τ)dτ − Aβ k

c µ

Γ(k)

∫ ∞

0
τke−βcτu0(T −w0τ)dτ +

Bβ k
c

Γ(k)
u0(T )×

∫ ∞

0
τk−1e−βcτu1(T −w0τ)dτ +

Bβ k
c

Γ(k)
u1(T )

∫ ∞

0
τk−1e−βcτu0(T −w0τ)dτ +

Cβ k
c

Γ(k)
u2

0(t)
∫ ∞

0
τk−1e−βcτu0(T −w0τ)dτ +

kA

Γ(k)
β k−1

c µ̂

∫ ∞

0
τk−1e−βcτu0(T −w0τ)dτ .

(4.31)

Let u1 = m1sin(2T )+m2cos(2T ) be a solution of (4.30). Solving (4.30) in u1, we get:

m1 = F1Â2
m, and m2 = F2Â2

m,

where,

F1 = −
AB
2 (1+

w2
0

β 2
c
)−

k
2 (1+ 4

w2
0

β 2
c
)−

k
2 cos(kθ1)

4w2
0 +A2(1+ 4

w2
0

β 2
c
)−k + 4w0A(1+ 4

w2
0

β 2
c
)−

k
2 sin(kθ1)

, (4.32)
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and

F2 = −
B
2 (1+

w2
0

β 2
c
)−

k
2 (2w0 +A(1+ 4

w2
0

β 2
c
)−

k
2 sin(kθ1))

4w2
0 +A2(1+ 4

w2
0

β 2
c
)−k + 4w0A(1+ 4

w2
0

β 2
c
)−

k
2 sin(kθ1)

, (4.33)

θ1 = atan(
2w0

βc
), and ’atan’ denotes the 0 to

π

2
branch of the inverse tangente function.

On the other hand, equation (4.31) can be written as:

w0
du2(T )

dT
−A

β k
c

Γ(k)

∫ ∞

0
τk−1e−βcτu2(T −w0τ)dτ = Gsin(T )+Kcos(T )+Lsin(3T )

+Mcos(3T ),

where,

G = k2Âm −AÂmβ k
c (k+ 1)(β 2

c +w2
0)

− k+2
2 (k2w0 +βcµ̂)+

Cβ k
c Â3

m

4
(β 2

c +w2
0)

− k
2

+Âmβ k−1
c (β 2

c +w2
0)

− k+1
2 (−m2

2
Bβcw0 +

m1

2
Bβ 2

c + kAµ̂w0),

and

K = β k
c (β

2
c +w2

0)
− k+1

2 Âm(−k2βcA(k+ 1)(β 2
c +w2

0)
− 1

2 +

Aw0µ̂(k+ 1)(β 2
c +w2

0)
− 1

2 +
m2

2
Bβc +

m1

2
w0B+ kAµ̂).

Finally, by setting K = 0 and G = 0, we obtain the amplitude given in equation (4.28).

As in the previous sections, the amplitude of the bifurcating limit cycle is propor-
tional to

√

βc −β . Note that the bifurcation occurs when β is near βc and β < βc,
therefore the quotient P/Q should be negative. When β is near and below βc, then the
replicator dynamics exhibits a stable periodic oscillation in the proportion of strategies
in the population.

4.1.4 Discrete Delays

We suppose in this section that a strategy, either A or B, would take a delay τ with
probability p or no delay with probability 1− p. In this case, the replicator dynamics is
given by:

ds(t)

dt
= s(t)(1− s(t))

(

− pδ s(t − τ)− (1− p)δ s(t)+ b−d
)

.
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Let x(t) = s(t)− s∗. Substituting s with x in the equation (4.34), we get:

dx(t)

dt
= −(1− p)δγx(t)− pδγx(t − τ)− pδ (1−2s∗)x(t)x(t − τ)− (1− p)δ ×

(1−2s∗)x2(t)+ pδx(t − τ)x2(t)+ (1− p)δx3(t),

which is of the form:

dx(t)

dt
= a1x(t)+ b1x(t − τ)+ c1x(t)x(t − τ)+ d1x2(t)+ e1x(t − τ)x2(t)+ f1x3(t),

where a1 = −(1− p)δγ , b1 = −pδγ , c1 = −pδ (1− 2s∗), d1 = −(1− p)δ (1− 2s∗),
e1 = pδ , f1 = (1− p)δ . In the previous chapter, we proved that a Hopf bifurcation

occurs when p > 0.5 and τcr =
acos(−1−p

p )

δγ
√

2p−1
. The properties of the bifurcating limit

cycle are brought out in the next proposition.
Proposition 14. Let P and Q be defined as follows:

P = 4b3
1(b1 −a1)(a1 + b1)

2(−5b1 + 4a1),

and

Q = 5e1b6
1τcr + a1e1b5

1τcr −15a1 f1b5
1τcr −3c2

1b2
1τcr −7c1d1b5

1τcr −4d2
1b5

1τcr +

6a2
1e1b4

1τcr −3a2
1 f1b4

1τcr + 7c2
1a1b4

1τcr + 19c1d1a1b4
1τcr + 18d2

1a1b4
1τcr +

2a3
1e1b3

1τcr + 12a3
1 f1b3

1τcr −12c2
1a2

1b3
1τcr −26c1d1a2

1b3
1τcr −8d2

1a2
1b3

1τcr −
8a4

1e1b2
1τcr + 8c2

1a3
1b2

1τcr + 8c1d1a3
1b2

1τcr + 15 f1b5
1 −15a1e1b4

1 + 3a1 f1b4
1 −

c2
1b4

1 −9c1d1b4
1 −18d2

1b4
1 −3a2

1e1b3
1 −12a2

1 f1b3
1 + 11c2

1a1b3
1 + 33c1d1a1b3

1 +

12d2
1a1b3

1 + 12a3
1e1b2

1 −14c2
1a2

1b2
1 −18c1d1a2

1b2
1 + 4c2

1a3
1b1.

The amplitude of the bifurcating limit cycle is given by:

Am =

√

P

Q
µ ,

where µ = τ − τcr. Furthermore, the Hopf bifurcation is supercritical.

Proof. The proof follows by carrying out the same procedure as in the previous sections.

This proposition gives a closed-form expression of the amplitude of bifurcating pe-
riodic solution. Indeed, when τ is inferior to τcr, the mixed ESS is asymptotically stable.
But when τ is near and superior to τcr, a stable periodic oscillation appears whose am-
plitude is proportional to

√
τ − τcr.
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Figure 4.2: The amplitude of the bifurcating periodic solution near the Hopf bifurcation,
where a =−1.5, b = 3, c = 0, and d = 1.5. Top-left, Dirac distribution. Top-right, Uniform
distribution. Bottom-left, Gamma distribution with k = 3. Bottom-right, Discrete distribu-
tion with p = 0.6.
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4.2 Numerical Simulations

In this section, we propose to compare the properties of the bifurcating periodic so-
lution obtained with the perturbation method, with numerical results. We display in
Fig. 4.2 the amplitude of the bifurcating limit cycle given in propositions 11-14 and the
amplitude obtained numerically, for different delay distributions.

In all the cases, we observe that the amplitude predicted analytically and that ob-
tained numerically coincide for the values of τ (or β ) close to τcr (or βc). This can
be explained by the fact that near the critical delay, the approximation is good and as
the bifurcation parameter moves away from the critical value, the approximation be-
comes weaker and consequently the predicted amplitude does not coincide with the true
one. For example, for the uniform distribution case, the Hopf bifurcation occurs when
τmax = 6.57 time units, and the amplitude gradually increases as τmax gets further from
this critical value. The predicted amplitude and the amplitude obtained with numerical
simulations coincide for the values of τmax reasonably close to the critical value. In the
case of discrete delays, the critical delay is given by τcr = 6.86 time units, and for the
values of delays close to τcr the amplitude predicted analytically and the one obtained
numerically coincide but the difference between them increases gradually until reaching
0.1 when τmax equals 8.05 time units. For the Gamma distribution with k = 3, βc = 1.32
and the critical mean delay is given by 2.28 time units. The bifurcation occurs for the
values of β near and below βc (recall that the mean is k/β ), which explains the shape
of the amplitude growth. Furthermore, the highest growth rate of the periodic solution’s
amplitude is observed with the Gamma distribution, and the lowest rate is observed with
the uniform distribution.

4.3 Conclusion

In this paper, we considered the two-strategy replicator dynamics subject to uncertain
delays. Taking as a bifurcation parameter the mean delay, we proved that the asymptotic
stability of the mixed equilibrium may be lost at the Hopf bifurcation, in which case the
replicator dynamics exhibits a stable periodic oscillation (limit cycle) in the propor-
tion of strategies in the population. As the mean delay moves away from the critical
value, the amplitude of the limit cycle grows gradually. Using a nonlinear Lindstedt’s
perturbation method and considering different probabilities distributions of delays, we
approximated the bifurcating limit cycle and we determined analytically the growth rate
of the radius of the limit cycle. Furthermore, we compared with numerical simulations.
As a possible extension to this work, we plan to investigate the center manifold approach
which is more rigorous and more complicated than Lindstedt’s method.
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Chapter 5. Evolutionary Stability in Interacting Communities

In this chapter, we consider an heterogeneous population composed of several com-
munities, with each community having its own set of possible strategies and payoff func-
tions. Furthermore, we consider that the interactions between them are nonuniform. In
contrast to the classic framework, the pairwise interactions between individuals in this
work are stochastic and may occur with different probabilities. Moreover, the outcome
of an interaction depends not only on the strategies used but also on the types of inter-
acting individuals. The stochasticity or nonuniform feature of the interactions may be
due to the inherent differences between the communities that make one player prefer to
interact with an opponent from his own community, or due to the relative abundancy of
each community in the whole population. In this context, we define new evolutionarily
stable strategies with different levels of robustness against mutations, and we give ana-
lytical expressions of the ESSs in the two-community case in function of the interaction
probabilities and payoffs.

The present chapter is structured as follows:

• First, we give a formal description of our new model. We define strong, weak,
and intermediate ESS, and we analyze the relationship between them;

• Second, we study a two-community two-strategy case. We derive the conditions
of existence of different types of ESS (fully pure, partially mixed, fully mixed)
with different levels of stability (strong, weak, intermediate).

We start by a several community case, and then we study a two-community case
where we succeed to have explicit formulae of the different ESSs.

5.1 Motivation and Related Work

Motivated by the observation that a population cannot be fully homogeneous, we con-
sider here a framework of multiple communities. In fact, individuals are inherently dif-
ferent and have the tendency to form groups or clusters sharing some common features
such as language, culture, or religion. Furthermore, the interactions between individuals
are not uniform. For example, an individual would prefer to interact with a similar one.
Therefore, the classic assumption of a well-mixed population is here relaxed to enable
the understanding of the emergence of equilibria and the dynamics in heterogeneous
populations.

In [104], the authors introduced nonuniform interaction rates in the framework of
two-strategy games. In this work, the probability for any pair of players to meet and
interact depends on their strategies. The authors defined three rates or probabilities
r1, r2, and r3 that denote the probability of an encounter between two A strategies, A
and B strategies (mixed interaction), and two B strategies, respectively. In this model,
the fitness functions are nonlinear and new conditions of evolutionarily stability are
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consequently obtained. Moreover, this model exhibits new evolutionary outcomes that
do not exist in the classic case of uniform interactions. For example, for the Prisoner’s
Dilemma game, the authors demonstrated the appearance of a stable interior equilibrium
at which cooperators and defectors coexist under some conditions on the rates. This
scenario does not exist in the classic setting of evolutionary games. For the snowdrift
game, the proportion of cooperators at the equilibrium, in this new context, is increased
relative to the classic case, when the players are more likely to interact with opponents
of their kind (i.e. for the higher values of r1 and r3).

We notice that, in this work, the population is homogeneous and the probability of
interactions depends only on the strategies. In contrast, we consider here an hetero-
geneous population where the outcome of an interaction depends also on the types of
players.

The context of community or group was also considered in [105]. In this work,
the author considered a population composed of two communities and analyzed the
evolutionarily stable strategies and the replicator dynamics in this context. However,
it is assumed that the interactions are uniform, that is an individual is equally likely
to interact with an opponent from its community or from the other community. To the
best of our knowledge, the nonuniform interaction feature between communities has not
appeared in evolutionary game literature before our work.

In the next section, we present our model and we study the evolutionarily stable
strategies with different levels of stability against mutations.

5.2 Evolutionarily Stable Strategies

We consider a large population of players or individuals divided into N communities
and each community has its own set of strategies, payoff matrices, and interacting
probabilities [106, 107]. Random matching occurs through pairwise interactions and
may engage individuals from the same community or from different communities. Let
p = (p1, .., pN) where pi = (pi1, .., piN) be the vector describing the interaction proba-
bilities of community i with other communities. Here pi j denotes the probability that
an individual in community i involved in an interaction, interacts with an individual in
community j and ∑

j

pi j = 1 (Figure 5.1). We assume there are ni pure strategies for

each community i and a strategy of an individual is a probability distribution over the
pure strategies. We denote by Ai j = (ai j

kl)k=1..ni,l=1..n j the payoff matrix. If a player of
community i using pure strategy k interacts with a player of community j using pure
strategy l, its payoff is ai j

kl . Let s = (s1, ..,sN) be the population profile where si is the
column vector describing the distribution of pure strategies in community i (sik is the
frequency of the pure strategy k in community i). We denote by Ui(k,s, p) the expected
payoff of pure strategy k in community i, which depends on the frequency of strategies
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in community i and in the other communities. The payoff function Ui is given by:

Ui(k,s, p) =
N

∑
j=1

pi jekAi js j, (5.1)

where ek is a row vector corresponding to the k−th element of the canonical basis of
R

ni . The expected payoff of a player from community i using a mixed strategy z, when
the profile of the population is s, is given by:

Ūi(z,s, p) =
ni

∑
k=1

zkUi(k,s, p). (5.2)

Our model covers the many situations as:

• The probabilities of interactions may depend on the size of the communities. An
individual is more likely to meet and interact with an opponent from the larger
community.

• The probabilities of interactions depend on spatial aspects, in which case an indi-
vidual is more likely to interact with individuals in his neighborhood.

Figure 5.1: Left, spatial interactions between two communities. Right, interactions between
users of different social networks.

As a remark, we note that the probabilities of interactions may depend only on the
relative size of communities in the population. For example, if N1 and N2 are the number
of individuals in communities 1 and 2 respectively, then the probability for a player from
community 1 to meet and interact with an opponent, uniformly randomly picked from

the same community is p11 =
N1 −1

N1 +N2 −1
while the probability to interact with a player

from the other community is p12 =
N2

N1 +N2 −1
. Similarly, the probability for a player

64



5.2. Evolutionarily Stable Strategies

from community 2 to interact with a player from community 2 is p22 =
N2−1

N1 +N2 −1

and the probability to interact with a player from community 1 is p21 =
N1

N1 +N2 −1
.

In this context, we observe that p12 is not equal to p21.

More generally, let γ denote the interaction rate of an individual in both communities
(i.e. the number of interactions per unit of time). Then the total rate of inter-community
interactions, that is interactions between two individuals who are not in the same com-
munity, in community 1, is given by N1γ p12, where p12 is the probability of inter-
community interaction in community 1. And the total rate of inter-community interac-
tions in community 2 is given by N2γ p21. Since the total rates of inter-community inter-
actions in the two communities should be equal (each time a player from community 1

interacts with a player from community 2, the converse is true), we have p12 = p21
N2

N1
.

This gives us the relationship between the probabilities of inter-community interactions
in both communities. If N1 = N2, then the probabilities of inter-community interactions
are the same for both communities, otherwise, p12 and p21 are not equal. For instance, if
N1 >>N2, then p12 is very small and p21 is larger. In the following, we present different
ESS characterizations that differ in the stability level.

5.2.1 Strong ESS

A strong ESS is a strategy that, when adopted by the entire population, cannot be in-
vaded by a sufficiently small group composed from all communities and using an al-
ternative strategy. The incumbent players following the strong ESS, will get a strictly
higher expected payoff when playing against the population composed of incumbents
and mutants, than the mutants will get. The following definition can be stated:
Definition 1. A strategy s∗ is a strong ESS, if for all s 6= s∗, there exists an ε(s) > 0
such that for all i = 1, ..,N and ε ≤ ε(s),

Ūi(si,ε s+(1− ε)s∗, p) < Ūi(s
∗
i ,εs+(1− ε)s∗, p). (5.3)

This strong ESS must in fact have a uniform invasion barrier [35] or threshold where
any proportion of invaders using an alternative strategy is repelled. An alternative defi-
nition can be established as follows:
Definition 2. A strategy s∗ is a strong ESS if it meets two conditions for all i and for all
s 6= s∗,

• Ūi(si,s∗, p) ≤ Ūi(s
∗
i ,s∗, p), (5.4)

• if Ūi(si,s∗, p) = Ūi(s
∗
i ,s∗, p), then Ūi(si,s, p) < Ūi(s

∗
i ,s, p). (5.5)

Proposition 15. The Definitions 1 and 2 are equivalent.
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Proof. Let us first prove that definition 1 implies definition 2. Since the condition in
Definition 1 holds for any sufficiently small ε , as ε → 0, Ūi(si,εs + (1− ε)s∗, p) <
Ūi(s

∗
i ,εs + (1 − ε)s∗, p) for all i = 1, ..,N, implies Ūi(si,s∗, p) ≤ Ūi(s

∗
i ,s∗, p) for all

i = 1, ..,N. Therefore, the first condition in Definiton 2 is established. Now we sup-
pose there exists i such that Ūi(si,s∗, p) = Ūi(s

∗
i ,s∗, p). Since the expected utility is

linear in s, the condition Ūi(si,εs + (1 − ε)s∗, p) < Ūi(s
∗
i ,εs + (1 − ε)s∗, p) can be

written as εŪi(si,s, p)+ (1− ε)Ūi(si,s∗, p) < εŪi(s
∗
i ,s, p)+ (1− ε)Ūi(s

∗
i ,s∗, p). Since

Ūi(si,s∗, p) = Ūi(s
∗
i ,s∗, p), the last inequality can be written εŪi(si,s, p)< εŪi(s

∗
i ,s, p);

which yields Ūi(si,s, p) < Ūi(s
∗
i ,s, p) since ε > 0. Therefore, the second condition in

Definition 2 is established.

Let us now prove that definition 2 implies definition 1. We have for all i and for
any s 6= s∗, Ūi(si,s∗, p) ≤ Ūi(s

∗
i ,s∗, p). If for some i, this inequality is strict, then the

condition in Definition 1 is satisfied for ε = 0 and so for sufficiently small ε . If for
some i, Ūi(si,s∗, p) = Ūi(s

∗
i ,s∗, p), then the second condition in Definition 2 implies

Ūi(si,s, p)< Ūi(s
∗
i ,s, p). If we multiply this relation by ε and add (1− ε)Ūi(si,s∗, p) to

the left-hand side, and (1− ε)Ūi(s
∗
i ,s∗, p) to the right-hand side, we get the condition

in Definition 1.

A strong ESS yields a higher expected payoff than any alternative strategy when
played against itself (condition (5.4)). If there is a strategy that yields the same payoff
as the strong ESS when played against the ESS, then this strategy will yield a strictly
lower expected payoff when played against itself than the ESS, and cannot spread in the
population (condition (5.5)).

5.2.2 Weak ESS

In this subsection, we assume that mutants arise in one community and we introduce
an alternative ESS version with a weaker stability condition. A weak ESS is a strategy
that, when adopted by the entire population, then each community resists invasion by a
sufficiently small group of mutants using an alternative strategy in that community. The
definition of the weak ESS is given by:
Definition 3. A strategy s∗ is a weak ESS if for all s 6= s∗ and for all i = 1, ..,N, there
exists εi(s) > 0 such that for all εi ≤ εi(s),

Ūi(si, (εisi +(1− εi)s
∗
i ,s∗−i), p) < Ūi(s

∗
i , (εisi +(1− εi)s

∗
i ,s∗−i), p), (5.6)

where (εisi +(1− εi)s
∗
i ,s∗−i) is the profile of the population where the ith community is

composed of the fraction εi of mutants using an alternative strategy si and the fraction
1− εi of incumbent players using s∗i , and the remaining of the population follows the
ESS s∗−i.

An equivalent definition of the weak ESS can be stated as follows:
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Definition 4. A strategy s∗ is a weak ESS if, for all i and for all s 6= s∗,

• Ūi(si,s∗, p) ≤ Ūi(s
∗
i ,s∗, p), (5.7)

• if Ūi(si,s∗, p) = Ūi(s
∗
i ,s∗, p), then Ūi(si, (si,s∗−i), p) < Ūi(s

∗
i , (si,s∗−i), p), (5.8)

where Ūi(si,s∗, p) is the expected payoff of a mutant in community i using si, and
Ūi(s

∗
i ,s∗, p) is the expected payoff of an incumbent player in community i using s∗i

when the profile of the population is s∗.
Proposition 16. The definitions 3 and 4 are equivalent.

Proof. First, let us prove that definition 3 implies definition 4. If we take εi → 0 in def-
inition 3, we get: Ūi(si,s∗, p) ≤ Ūi(s

∗
i ,s∗, p) for all i, and so condition (5.7). Now,

to establish the condition (5.8) in definition 4, we suppose there exists i such that
Ūi(s

∗
i ,s∗, p) = Ūi(si,s∗, p), we need to prove that Ūi(si, (si,s∗−i), p)< Ūi(s

∗
i , (si,s∗−i), p).

We can write condition (5.6) as follows:

Ūi(si, (εis
∗
1 +(1− εi)s

∗
1, ..,εisi +(1− εi)s

∗
i , ..,εis

∗
N +(1− εi)s

∗
N), p)

< Ūi(s
∗
i , (εis

∗
1 +(1− εi)s

∗
1, ..,εisi +(1− εi)s

∗
i , ..,εis

∗
N +(1− εi)s

∗
N), p).

By exploring the linearity of Ūi, we get:

εiŪi(si, (s
∗
1, ..,si, ..,s

∗
N), p)+ (1− εi)Ūi(si,s∗, p) < εiŪi(s

∗
i , (s∗1, ..,si, ..,s

∗
N), p)+ (1− εi)Ūi(s

∗
i ,s∗, p).

Since we have εi > 0 and we suppose Ūi(s
∗
i ,s∗, p) = Ūi(si,s∗, p), the above inequality

yields:
Ūi(si, (si,s∗−i), p) < Ūi(s

∗
i , (si,s∗−i), p),

and so condition (5.8).
Now we prove that definition 4 implies definition 3. We have for all i and for all s 6= s∗,

Ūi(si,s∗, p) ≤ Ūi(s
∗
i ,s∗, p).

If this inequality is strict for all i, then condition (5.6) holds for εi = 0, and thus for
sufficiently small εi. If there exists i such that the comparison in (5.7) is an equality, then
we obtain Ūi(si, (si,s∗−i), p) < Ūi(s

∗
i , (si,s∗−i), p) (condition (5.8)). We multiply both

sides by εi, and by observing that Ūi(si,s∗, p) = Ūi(s
∗
i ,s∗, p), we add (1−εi)Ūi(si,s∗, p)

to the left side and (1− εi)Ūi(s
∗
i ,s∗, p) to the right side, we get condition (5.6).

This ESS definition is different from that of Cressman, referred to as Cressman ESS
in the literature [25, 105], which considers invasion of the communities by a fraction
of mutants from all communities. For a state to be a Cressman ESS, it is enough that
one community resist invasion from a mutant strategy. In our definition, we consider
invasion of a single community by a small local group of mutants. In Section 5.3, we
introduce a particular example with two communities and we show that a weak ESS
cannot be a Cressman ESS in this case.
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5.2.3 Intermediate ESS

In the intermediate ESS version [26, 35], we consider one fitness function which is
the sum of fitnesses over all the communities. An intermediate ESS is a strategy that,
when adopted by the entire population, then for any small group using a mutant strategy,
the total expected payoff (fitness) of the incumbent strategies in all the communities is
strictly higher than that of the mutant strategy. The formal definition of intermediate
ESS is given by:
Definition 5. A strategy s∗ is an intermediate ESS if for all s 6= s∗, there exists an
ε(s) > 0 such that for all ε ≤ ε(s),

N

∑
i=1

Ūi(si,εs+(1− ε)s∗, p) <
N

∑
i=1

Ūi(s
∗
i ,εs+(1− ε)s∗, p). (5.9)

Equivalently, we have the following definition:
Definition 6. A strategy s∗ is an intermediate ESS if for all s 6= s∗,

•
N

∑
i=1

Ūi(si,s∗, p) ≤
N

∑
i=1

Ūi(s
∗
i ,s∗, p), (5.10)

• if
N

∑
i=1

Ūi(si,s∗, p) =
N

∑
i=1

Ūi(s
∗
i ,s∗, p), then

N

∑
i=1

Ūi(si,s, p) <
N

∑
i=1

Ūi(s
∗
i ,s, p). (5.11)

The condition (5.10) defines the best-reply requirement according to which a mutant
strategy cannot yield a better total payoff than the ESS. When the comparison in this
condition is an equality, i.e. in case of an alternative best-reply, the condition (5.11)
guarantees that the population profile do not shift away from the ESS. It means that all
the population have a positive incentive to remain at the ESS when there is a mutant
strategy.
Proposition 17. The definitions 5 and 6 are equivalent.

Proof. The proof follows by carrying out exactly the same procedure as done in Propo-
sition 16.

5.2.4 Relationship between The ESSs

In this section, we discuss the relationship between different concepts of ESS introduced
earlier. We explain how these ESS concepts are overlapped one into another. Note
that every ESS from strong to weak stability is a Nash equilibrium. However, a strict
Nash equilibrium must be a strong ESS, and therefore the strict Nash equilibrium is an
intermediate and weak ESS. We note that the second condition of the ESS (stability)
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comes into play only in the case of alternative best replies. Hence with strict Nash
equilibrium, there is no alternative to play another strategy that gets the same payoff.

Now, let us discuss the relationship between different ESSs based on their stability
properties. The definition of the strong ESS makes it clear that strong ESS is an inter-
mediate and also a weak ESS. Indeed, if we suppose there is a small fraction of mutants
from all the communities using an alternative strategy, the strong ESS, when adopted
by all the population, would resist this invasion because incumbent players would get
a strictly higher expected payoff than mutants. The total expected payoff of the strong
ESS in all the communities would also be strictly higher than that of the mutant strategy,
and therefore the strong ESS is an intermediate ESS.

A similar argument explains why an intermediate ESS is also a weak ESS. In fact,
if we suppose there is a small fraction of mutants in a single community, an interme-
diate ESS would resist this invasion by definition and also a weak ESS; therefore an
intermediate ESS is a weak ESS. In the next section, we will show through the study
of two communities, that (i) an intermediate ESS is not always a strong ESS, and (ii) a
weak ESS is not always an intermediate ESS. We then have the following relationships
between the different concepts of ESS considering interacting communities:

Strong ESS ⇒ Intermediate ESS ⇒ Weak ESS.

We note that all these definitions are obviously identical when there is a single commu-
nity.

5.3 Two-community Two-strategy Model

For the sake of clarity, we consider only the case where there are two communities
which interact in a nonuniform manner. All results obtained with two communities are
still valid for more than two communities.

We consider two communities in which each individual from community i = 1,2
involved in an interaction, may interact with an individual from the same community
with probability pi or with an individual from the other community with probability
1 − pi. In addition, we consider that each community i has two strategies {Gi,Hi}.
Since there are two possible strategies in each community, the population profile can
be defined by s = (s1,s2) where si is the frequency of strategy Gi in community i (so
1− si is the frequency of strategy Hi). In fact, in the two-strategy setting, we have
s12 = 1− s11 and s22 = 1− s21 and the population state can then be completely defined
by the vector s = (s1,s2) where s1 and s2 are scalars. The pairwise interactions inside
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Table 5.1: Parameters of the model.

Parameter Value
L1 a1 −b1 − c1 + d1

L2 a2 −b2 − c2 + d2

L12 a12 −b12 − c12 + d12

L21 a21 −b21 − c21 + d21

K1 p1(b1 −d1)+ (1− p1)(b12 −d12)
K2 p2(b2 −d2)+ (1− p2)(b21 −d21)
∆ p1 p2L1L2 − (1− p1)(1− p2)L12L21

∆1 4p1 p2L1L2 −
(

(1− p1)L12 +(1− p2)L21
)2

the communities are described by the matrices A and D:

A =

(

G1 H1

G1 a1 b1

H1 c1 d1

)

, D =

(

G2 H2

G2 a2 b2

H2 c2 d2

)

.

The interactions between individuals from different communities are described by the
following matrices:

B =

(

G2 H2

G1 a12 b12

H1 c12 d12

)

, C =

(

G1 H1

G2 a21 b21

H2 c21 d21

)

.

The expected utility (fitness function) of a strategy depends on the distribution of strate-
gies in both communities and the interaction probabilities. Using Eq. (5.1) and (5.2),
we derive the utilities of strategies G1 and H1 in community 1 as follows:

U1(G1,s, p) = p1(s1a1 +(1− s1)b1)+ (1− p1)(s2a12 +(1− s2)b12),

U1(H1,s, p) = p1(s1c1 +(1− s1)d1)+ (1− p1)(s2c12 +(1− s2)d12).

Similarly, the utility of an individual in community 2 using G2 (resp. H2) is given by:

U2(G2,s, p) = p2(s2a2 +(1− s2)b2)+ (1− p2)(s1a21 +(1− s1)b21),

U2(H2,s, p) = p2(s2c2 +(1− s2)d2)+ (1− p2)(s1c21 +(1− s1)d21).

In addition, the expected utility of any individual from community i is given by:

Ūi(si,s, p) = siUi(Gi,s, p)+ (1− si)Ui(Hi,s, p).

In addition, we define in Table 5.1 the parameters which will be used to analyze the
model. The parameters L1, L2, L12, and L21 depend on the payoffs. The parameters K1,
K2, ∆, and ∆1 depend on the payoffs and the interaction probabilities.
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Figure 5.2: The shaded region corresponds to fully mixed ESS, the circles correspond to
fully pure ESS, and the edges of the shaded region correspond to partially mixed ESS.

5.3.1 Dominant Strategies

First, we should point out as a remark that in this model, there are three types of ESS:
fully mixed, partially mixed, and fully pure. An ESS can be fully mixed, in which
case, all strategies are represented in all the communities, fully pure, where in each
community all the agents use the same pure strategy, or partially-mixed, where at least
one community follows a fully mixed ESS and one other community uses a fully pure
ESS. We illustrate in Fig. 5.2 these types. An ESS is also characterized by its level
of stability and can be strong, weak or intermediate. Therefore, we have nine different
types ESSs.

In evolutionary games framework [108], the players get repeatedly involved in ran-
dom pairwise interactions and at each interaction they get a payoff depending on the
strategies used. Successful strategies increase in frequency in the population while less
successful get less abundant. A dominant strategy will eventually thrive and displace all
dominated strategies. From the model above, the strategy G1 dominates the strategy H1

in Community 1 if and only if U1(G1,s, p) ≥ U1(H1,s, p) for all s = (s1,s2) ∈ [0,1]2;
then, if and only if:

p1s1L1 +(1− p1)s2L12 +K1 ≥ 0, ∀(s1,s2) ∈ [0,1]2. (5.12)

Similarly, the strategy G2 dominates the strategy H2 in community 2 if and only if:

p2s2L2 +(1− p2)s1L21 +K2 ≥ 0, ∀(s1,s2) ∈ [0,1]2. (5.13)

We have the same kind of inequality for determining if Hi dominates Gi, i = 1,2. There-
fore, we can establish the following proposition.
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Proposition 18. • The strategy G1 dominates the strategy H1 if and only if:

0 ≤ K1, 0 ≤ p1L1 +K1, 0 ≤ (1− p1)L12 +K1, and 0 ≤ p1L1 +(1− p1)L12 +K1.

• The strategy H1 dominates the strategy G1 if and only if:

K1 ≤ 0, p1L1 +K1 ≤ 0, (1− p1)L12 +K1 ≤ 0, and p1L1 +(1− p1)L12 +K1 ≤ 0.

• The strategy G2 dominates the strategy H2 if and only if:

0 ≤ K2, 0 ≤ p2L2 +K2, 0 ≤ (1− p2)L21 +K2 and 0 ≤ p2L2 +(1− p2)L21 +K2.

• The strategy H2 dominates the strategy G2 if and only if:

K2 ≤ 0, p2L2 +K2 ≤ 0, (1− p2)L21 +K2 ≤ 0and p2L2 +(1− p2)L21 +K2 ≤ 0.

Proof. • The strategy G1 dominates the strategy H1 if and only if ∀s = (s1,s2) ∈
[0,1]2, U1(G1,s, p) ≥ U1(H1,s, p) then as stated before, if and only if p1s1L1 +
(1− p1)s2L12 +K1 ≥ 0, which is K1 ≥ 0, p1L1 +K1 ≥ 0, (1− p1)L12 +K1 ≥ 0
and p1L1 + (1− p1)L12 + K1 ≥ 0. The same procedure for determining if the
strategy G2 dominates the strategy H2 in the second community.

• In the same way, strategy H1 dominates the strategy G1 if and only if K1 ≤ 0,
p1L1 +K1 ≤ 0, (1− p1)L12 +K1 ≤ 0 and p1L1 +(1− p1)L12 +K1 ≤ 0.

In addition, we have the following result on pure ESSs.
Proposition 19. If strategies X1 ∈ {G1, H1} and X2 ∈ {G2, H2} are strictly dominant in
community 1 and 2, respectively, then (X1,X2) is a strong ESS.

Proof. Let us prove that if G1 and G2 are strictly dominant in community 1 and 2 re-
spectively, then s∗ = (1,1) is a strong ESS. In this case we have the following:

U1(G1,s∗, p) >U1(H1,s∗, p),

U2(G2,s∗, p) >U2(H2,s∗, p).

The first condition in Definition 2 is a strict inequality, therefore s∗ is a strong ESS.
Similarly, we prove that all pure strictly dominant strategies are strong ESSs.
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5.3.2 Fully Pure ESS

We study in this subsection the conditions of existence of fully pure ESSs under different
levels of stability in the case of two interacting communities. An ESS s∗ = (s1,s2) is
fully pure if, in all the communities, only one strategy is used, i.e. si ∈ {0,1} for i = 1,2.
The results are given in the next proposition.
Proposition 20. • s∗ = (1,1) is a fully pure weak ESS if p1L1+(1− p1)L12+K1 >

0 or if (p1L1+(1− p1)L12+K1 = 0 and L1 < 0) and also if p2L2+(1− p2)L21+
K2 > 0 or if (p2L2 +(1− p2)L21 +K2 = 0 and L2 < 0).

• s∗ = (1,1) is an intermediate ESS if it is a weak ESS and if p1L1 +(1− p1)L12 +
K1 > 0, p2L2+(1− p2)L21+K2 > 0, or if (p1L1+(1− p1)L12+K1 = 0, p2L2+
(1− p2)L21 +K2 = 0, and ∆1 > 0).

• s∗ = (1,1) is a strong ESS if it is an intermediate ESS and also if p1L1 + (1−
p1)L12 +K1 > 0 or p2L2 +(1− p2)L21 +K2 > 0.

• s∗ = (0,1) is a weak ESS if (1− p1)L12 +K1 < 0 or ((1− p1)L12 +K1 = 0 and
L1 < 0); and also if p2L2 +K2 > 0 or (p2L2 +K2 = 0 and L2 < 0).

• s∗ = (0,1) is an intermediate ESS if it is a weak ESS and if (1− p1)L12+K1 < 0,
p2L2 +K2 > 0, or ((1− p1)L12 +K1 = 0, p2L2 +K2 = 0 and ∆1 > 0).

• s∗ = (0,1) is a strong ESS if it is an intermediate ESS and if (1− p1)L12+K1 < 0
or p2L2 +K2 > 0.

• s∗ = (1,0) is a weak ESS if p1L1 +K1 > 0 or if (p1L1 +K1 = 0 and L1 < 0) and
also if (1− p2)L21 +K2 < 0 or ((1− p2)L21 +K2 = 0 and L2 < 0).

• s∗ = (1,0) is an intermediate ESS if it is a weak ESS and if p1L1 +K1 > 0, (1−
p2)L21 +K2 < 0, or (p1L1 +K1 = 0, (1− p2)L21 +K2 = 0, and ∆1 > 0).

• s∗ = (1,0) is a strong ESS if it is an intermediate ESS and if p1L1 +K1 > 0 or
(1− p2)L21 +K2 < 0.

• s∗ = (0,0) is a weak ESS if K1 < 0 or (K1 = 0 and L1 < 0) and also if K2 < 0 or
(K2 = 0 and L2 < 0).

• s∗ = (0,0) is an intermediate ESS if it is a weak ESS and if K1 < 0, K2 < 0, or
(K1 = 0, K2 = 0, and ∆1 > 0).

• s∗ = (0,0) is a strong ESS if it is an intermediate ESS and if K1 < 0 or K2 < 0.
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Proof. • s∗ = (1,1) is a weak ESS if,

•Ū1(s1, (1,1), p) ≤U1(G1, (1,1), p), and,

• if Ū1(s1, (1,1), p) =U1(G1, (1,1), p) then Ū1(s1, (s1,1), p) <U1(G1, (s1,1), p),

•Ū2(s2, (1,1), p) ≤ Ū2(G2, (1,1), p), and,

• if Ū2(s2, (1,1), p) = Ū2(G2, (1,1), p), then Ū2(s2, (1,s2), p) < Ū2(G2, (1,s2), p).

The conditions above yield, for the first community p1L1 +(1− p1)L12 +K1 > 0
or ( p1L1+(1− p1)L12+K1 = 0 and L1 < 0 ); and for the second community we
have p2L2 +(1− p2)L21 +K2 > 0 or (p2L2 +(1− p2)L21 +K2 = 0 and L2 < 0).

Furthermore, s∗ is an intermediate ESS if Ū1(s1,s∗, p) + Ū2(s2,s∗, p) ≤
U1(G1,s∗, p) +U2(G2,s∗, p), and if there exists an s for which this condition is
an equality, then Ū1(s1,s, p)+Ū2(s2,s, p) <U1(G1,s, p)+U2(G2,s, p).

These conditions yield: p1L1 +(1− p1)L12 +K1 > 0 or ( p1L1 +(1− p1)L12 +
K1 = 0 and L1 < 0) and p2L2 +(1− p2)L21 +K2 > 0 or (p2L2 +(1− p2)L21 +
K2 = 0 and L2 < 0) or (p1L1+(1− p1)L12+K1 = 0, p2L2+(1− p2)L21+K2 = 0,
L1 < 0, L2 < 0, and ∆1 > 0). Therefore, s∗ is an intermediate ESS if it is a weak
ESS and if either (p1L1 +(1− p1)L12 +K1 > 0 or p2L2 +(1− p2)L21 +K2 > 0),
or (p1L1 +(1− p1)L12 +K1 = 0 and p2L2 +(1− p2)L21 +K2 = 0, and ∆1 > 0).

Finally, s∗ is a strong ESS if for all s 6= s∗,

• Ū1(s1,s∗, p) <U1(G1,s∗, p), and,

• Ū2(s2,s∗, p) <U2(G2,s∗, p),

or if,

• Ū1(s1,s∗, p) =U1(G1,s∗, p) and, Ū1(s1, (s1,1), p) <U1(G1, (s1,1), p),

• Ū2(s2,s∗, p) <U2(G2,s∗, p),

or if,

•U1(s1,s∗, p) < U1(G1,s∗, p), and,

•U2(s2,s∗, p) = U2(G2,s∗, p) and Ū2(s2, (1,s2), p) < Ū2(G2, (1,s2), p),

or if,

•U1(s1,s∗, p) =U1(G1,s∗, p),U2(s2,s∗, p) =U2(G2,s∗, p) and,

• Ū2(s2, (s1,s2), p) < Ū2(G2, (s1,s2), p) and Ū2(s2, (s1,s2), p) < Ū2(G2, (s1,s2), p).

The conditions above yield p1L1+(1− p1)L12+K1 > 0 or ( p1L1+(1− p1)L12+
K1 = 0 and L1 < 0) and p2L2 +(1− p2)L21 +K2 > 0 or (p2L2 +(1− p2)L21 +
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K2 = 0 and L2 < 0). Therefore s∗ is strong ESS if it is an intermediate ESS and if
either p1L1 +(1− p1)L12 +K1 > 0 or p2L2 +(1− p2)L21 +K2 > 0.

We can follow the same procedure for determining the conditions of existence of all
fully pure ESSs.

The analytical results in this proposition corroborate the relationship between the
ESSs explained earlier. Indeed, we clearly observe that a strong ESS is an intermediate
ESS which is also a weak ESS.

5.3.3 Fully Mixed Nash Equilibrium and ESS

In this subsection, we characterize the existence of mixed ESSs under different stability
conditions. We study the case of fully mixed ESSs and the case of partially mixed ESSs.
At the fully mixed ESS, all strategies in both communities coexist, that is 0 < s∗i < 1 for
i = 1,2. The following proposition summarizes results on the existence of fully mixed
ESSs.
Proposition 21. Let s∗ = (s∗1,s∗2) with

s∗1 =
(1− p1)L12K2 − p2L2K1

∆
, and s∗2 =

(1− p2)L21K1 − p1L1K2

∆
.

We have the following results on s∗:

• s∗ is a unique fully mixed Nash equilibrium, i.e. 0 < s∗1 < 1 and 0 < s∗2 < 1, if

– 0 < ∆, 0 < (1 − p1)L12K2 − p2L2K1, (1 − p1)L12K2 − p2L2K1 < ∆, 0 <

(1− p2)L21K1 − p1L1K2, and (1− p2)L21K1 − p1L1K2 < ∆, or

– ∆ < 0 , (1− p1)L12K2 − p2L2K1 < 0, ∆ < (1− p1)L12K2 − p2L2K1, 0 <

(1− p2)L21K1 − p1L1K2 < 0, and ∆ < (1− p2)L21K1 − p1L1K2.

• s∗ cannot be a strong ESS.

• s∗ is a weak ESS if L1 < 0 and L2 < 0.

• s∗ is an intermediate ESS if L1 < 0, L2 < 0 and ∆1 > 0.

Proof. • There exists a mixed Nash equilibrium strategy s∗ = (s∗1,s∗2), when users
from any community are indifferent from playing strategy Gi or Hi, i.e. all (pure)
strategies are equally fit. At the equilibrium, we have the following system of
equations:

{

U1(G1,s∗, p) = U1(H1,s∗, p),
U2(G2,s∗, p) = U2(H2,s∗, p).
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Thus, we obtain the following system:

{

p1s∗1L1 +(1− p1)s
∗
2L12 +K1 = 0, (a)

p2s∗2L2 +(1− p2)s
∗
1L21 +K2 = 0, (b)

where L1 = a1 − b1 − c1 + d1, L12 = a12 − b12 − c12 + d12, L2 = a2 − b2 − c2 +
d2, L21 = a21 − b21 − c21 + d21, K1 = p1(b1 − d1) + (1− p1)(b12 − d12), K2 =
p2(b2 − d2)+ (1− p2)(b21 − d21). The solution of this system is given by s∗ =

(s∗1,s∗2), with s∗1 =
(1− p1)L12K2 − p2L2K1

∆
and s∗2 =

(1− p2)L21K1 − p1L1K2

∆
;

where ∆ = p1 p2L1L2 − (1− p1)(1− p2)L12L21. Clearly, 0 < s∗i < 1, i = 1,2, if:

• 0 < ∆, 0 < (1 − p1)L12K2 − p2L2K1, (1 − p1)L12K2 − p2L2K1 < ∆, 0 <

(1− p2)L21K1 − p1L1K2, and (1− p2)L21K1 − p1L1K2 < ∆, or,

• ∆ < 0 , (1− p1)L12K2 − p2L2K1 < 0, ∆ < (1− p1)L12K2 − p2L2K1, 0 <

(1− p2)L21K1 − p1L1K2 < 0, and ∆ < (1− p2)L21K1 − p1L1K2.

• Let us check for which conditions s∗ = (s∗1,s∗2), if exists, is a strong ESS. Assume
there is a small proportion of "mutants" that uses another strategy s = (s1,s2).
Using the definition of the expected utility, we obtain:

Ū1(s
∗
1,s∗, p)−Ū1(s1,s∗, p) = (s∗1 − s1)(p1s∗1L1 +(1− p1)s

∗
2L12 +K1) = 0.

Following the same procedure for community 2, we obtain,

Ū2(s
∗
2,s∗, p)−Ū2(s2,s∗, p) = 0.

From (5.5), s∗ is a strong ESS if Ūi(s
∗
i ,s, p)−Ūi(si,s, p) > 0 for i = 1,2. But,

Ū1(s
∗
1,s, p)−Ū1(s1,s, p) = (s∗1 − s1)

(

p1s1L1 +(1− p1)s2L12 +K1
)

,
Ū2(s

∗
2,s, p)−Ū2(s2,s, p) = (s∗2 − s2)

(

p2s2L2 +(1− p2)s1L21 +K2
)

.

We define fi, i=1,2 as follows:

{

f1(s1,s2) = (s∗1 − s1)
(

p1s1L1 +(1− p1)s2L12 +K1
)

,
f2(s1,s2) = (s∗2 − s2)

(

p2s2L2 +(1− p2)s1L21 +K2
)

.

We have ∇ f1
T =

[

2p1L1(s
∗
1− s1)+ (1− p1)L12(s

∗
2− s2), (1− p1)L12(s

∗
1− s1)

]

.

Hence, ∂ 2 f1

∂ s1
2

∂ 2 f1

∂ s2
2 -

∂ 2 f1

∂ s1∂ s2

∂ 2 f1

∂ s2∂ s1
=−(1− p1)

2L2
12 < 0 at s∗ (if p1 6= 1). Consequently, s∗ is a

saddle point. Since f1(s
∗) = 0, f1 changes the sign around s∗. Therefore, the first

community cannot resist invasions by mutants. Following the same procedure
with f2, we find that (s∗1,s∗2) is a saddle point. Therefore, the condition of stability
(5.5) does not hold and consequently, s∗ is not a strong ESS.
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• Now, let us study for which condition s∗ = (s∗1,s∗2) is a weak ESS. s∗ = (s∗1,s∗2)
is a weak ESS if Ū1(s

∗
1, (s1,s∗2), p) > Ū1(s1, (s1,s∗2), p) and, Ū2(s

∗
2, (s∗1,s2), p) >

Ū2(s2, (s∗1,s2), p). But,

Ū1(s
∗
1, (s1,s∗2), p)−Ū1(s1, (s1,s∗2), p) = −p1L1(s

∗
1 − s1)

2.

which is strictly positive if L1 < 0. Following the same procedure with the second
population, we get:

Ū2(s
∗
2, (s∗1,s2), p)−Ū2(s2, (s∗1,s2), p) = −p2L2(s

∗
2 − s2)

2,

which is strictly positive when L2 < 0. Therefore, if L1 < 0 and L2 < 0, then s∗ is
a weak ESS.

• Finally, s∗ is an intermediate ESS if Ū1(s1,s, p) + Ū2(s2,s, p) < Ū1(s
∗
1,s, p) +

Ū2(s
∗
2,s, p).

Let g(s1,s2) = Ū1(s
∗
1,s, p)+Ū2(s

∗
2,s, p)−Ū1(s1,s, p)−Ū2(s2,s, p), we have:

g(s1,s2) = (s∗1 − s1)(p1s1L1 +(1− p1)s2L12 +K1)+ (s∗2 − s2)(p2s2L2 +

(1− p2)s1L21 +K2).

The Hessian matrix of g is given by:

H (g) =

(

−2p1L1 −(1− p1)L12 − (1− p2)L21

−(1− p1)L12 − (1− p2)L21 −2p2L2

)

.

The determinant of H (g) is ∆1 = 4p1 p2L1L2 −
(

(1− p1)L12 + (1− p2)L21
)2

.
Hence, g is strictly positive for all s1 6= s∗1, s2 6= s∗2, if L1 < 0, L2 < 0 and ∆1 > 0.

Proposition 21 establishes that any fully mixed strong ESS does not exist. Indeed,
the stability condition (5.5) in Definition 2 cannot be satisfied for a fully mixed equi-
librium. In contrast, the fully mixed equilibrium can be an intermediate or a weak ESS
under some conditions on the payoffs and the interaction probabilities. We also note
that for a weak ESS to be an intermediate ESS, it is required that the condition ∆1 > 0
be satisfied. This condition cannot be always satisfied. As an example, we consider the
following payoffs:

A =

(

−1 8
0 4

)

,D =

(

−1 8
0 4

)

,B =

(

0.5 8

0
16
3

)

,C =

( −3 8

0
8
3

)

.

When p1 = 0.9 and p2 = 0.35, there exists a unique fully mixed equilibrium given by
s∗1 = 0.85 and s∗2 = 0.14. The conditions L1 < 0 and L2 < 0 are satisfied, therefore
s∗ = (s∗1,s∗2) is a weak ESS. However, ∆1 is strictly negative and consequently s∗ is
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not an intermediate ESS. When p1 = 0.75 and p2 = 0.6, then for the same values of
payoffs we have s∗ = (0.9,0.51) and ∆1 > 0. Therefore, s∗ is a weak and intermediate
ESS. In addition, s∗ cannot be a Cressman ESS because neither community would resist
invasion from a small fraction of mutants composed of all the communities.

In this paragraph, we examine two limit cases where (i) p1 = p2 = 1, and (ii)
p1 = p2 = 0. When p1 = p2 = 1, the two communities are completely independent,

s∗1 = −b1 −d1

L1
, s∗2 = −b2 −d2

L2
, and ∆1 = 4L1L2. We find the classical case of a

single community: if L1 < 0 and L2 < 0, then s∗ = (s∗1,s∗2) is an evolutionarily sta-
ble strategy. When p1 = p2 = 0, the evolutionary game is completely asymmetric,

s∗1 = −b21 −d21

L21
, s∗2 = −b12 −d12

L12
, and ∆1 = −(L12 +L21)

2 which is strictly negative.

Therefore, s∗ = (s∗1,s∗2) is neither an intermediate nor a weak ESS. In [90, 27], the au-
thors show that no mixed evolutionarily stable strategy can exist in asymmetric games.
In [27], the authors introduced the notion of Nash-Pareto pairs in asymmetric games,
which is an equilibrium characterized by the concept of Pareto optimality: it is not pos-
sible for players from both communities to simultaneously profit from a deviation from
the equilibrium. The mixed equilibrium s∗ is a Nash-Pareto pair if L12L21 < 0 [27].

5.3.4 Partially Mixed ESS

We study in this section the existence of partially mixed ESS, that is, an ESS which is
pure in one community and mixed in the other. More precisely, a partially mixed ESS
s∗ = (s∗1,s∗2) is characterized by s∗1 = 0 or s∗1 = 1 and 0 < s∗2 < 1 (or the inverse). In the
next proposition, we derive the conditions of existence of partially mixed ESSs.

Proposition 22. • s∗ = (1,s∗2) where s∗2 = −(1− p2)L21 +K2

p2L2
is a weak ESS if

p1L1 +(1− p1)L12s∗2 +K1 > 0 and L2 < 0; or if p1L1 +(1− p1)L12s∗2 +K1 = 0,
L1 < 0, and L2 < 0.

• s∗ = (1,s∗2) is an intermediate ESS if it is weak and either p1L1+(1− p1)L12s∗2+
K1 > 0 or ∆1 > 0.

• s∗ = (1,s∗2) is a strong ESS if it is an intermediate ESS and if p1L1 + (1 −
p1)L12s∗2 +K1 > 0.

• s∗ = (0,s∗2) where s∗2 = − K2

p2L2
is a weak ESS if (1− p1)s

∗
2L12 + K1 < 0 and

L2 < 0, or if (1− p1)s
∗
2L12 +K1 = 0, L1 < 0, and L2 < 0.

• s∗ = (0,s∗2) s∗ is an intermediate ESS if it is a weak ESS and either (1 −
p1)s

∗
2L12 +K1 < 0 or ∆1 > 0.
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• s∗ = (0,s∗2) is a strong ESS if it is an intermediate ESS and if (1− p1)s
∗
2L12+K1 <

0.

• s∗ = (s∗1,1) where s∗1 = −(1− p1)L12 +K1

p1L1
is a weak ESS if p2L2 + (1 −

p2)L21s∗1 + K2 > 0 and L1 < 0; or if p2L2 + (1 − p2)L21s∗1 + K2 = 0, L1 < 0
and L2 < 0.

• s∗ = (s∗1,1) is an intermediate ESS if it is a weak ESS and either p2L2 + (1−
p2)L21s∗1 +K2 > 0 or ∆1 > 0.

• s∗= (s∗1,1) is a strong ESS if it is an intermediate ESS and p2L2+(1− p2)L21s∗1+
K2 > 0.

• s∗ = (s∗1,0) with s∗1 =− K1

p1L1
is a weak ESS if (1− p2)L21s∗1+K2 < 0 and L1 < 0

or if (1− p2)L21s∗1 +K2 = 0, L1 < 0 and L2 < 0.

• s∗ = (s∗1,0) is an intermediate ESS if it is a weak ESS and either (1− p2)L21s∗1 +
K2 < 0 or ∆1 > 0.

• s∗= (s∗1,0) is a strong ESS if it is an intermediate ESS and (1− p2)L21s∗1+K2 < 0.

Proof. • s∗ = (1,s∗2) where s∗2 = −(1− p2)L21 +K2

p2L2
is a weak ESS if either:

• Ū1(s1,s∗, p) < U1(G1,s∗, p) ; Ū2(s2,s∗, p) = Ū2(s
∗
2,s∗, p), and

Ū2(s2, (1,s2), p) < Ū2(s
∗
2, (1,s2), p) for all s 6= s∗ (since the equilibrium is

mixed in the second community); or,
• if Ū1(s1,s∗, p) = U1(G1,s∗, p) and Ū1(s1, (s1,s∗2), p) < U1(G1, (s1,s∗2), p) and
Ū2(s2,s∗, p) = Ū2(s

∗
2,s∗, p), and Ū2(s2, (1,s2), p) < Ū2(s

∗
2, (1,s2), p).

The first set of conditions yields p1L1 +(1− p1)L12s∗2 +K1 > 0 and L2 < 0.
The second set of conditions yields p1L1 +(1− p1)L12s∗2 +K1 = 0, L1 < 0, and
L2 < 0.

• s∗ = (1,s∗2) where s∗2 = −(1− p2)L21 +K2

p2L2
is an intermediate ESS if:

• Ū1(s1, (1,s∗2), p)+Ū1(s2,1,s∗2), p) ≤U1(G1, (1,s∗2), p)+Ū2(s
∗
2, (1,s∗2), p) .

• If there exists s for which the above condition is an equality, then Ū1(s1,s, p)+
Ū2(s2,s, p) < Ū1(s

∗
1,s, p)+Ū2(s

∗
2,s, p).

We conclude that the conditions of existence of the intermediate ESS are either
L2 < 0 and p1L1 + (1− p1)L12s∗2 +K1 > 0, or p1L1 + (1− p1)L12s∗2 +K1 = 0,
L1 < 0, L2 < 0 and ∆1 > 0. Therefore, s∗ is an intermediate ESS if it is a weak
ESS and either p1L1 +(1− p1)L12s∗2 +K1 > 0 or ∆1 > 0.
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Table 5.2: Types of ESSs.

Stability levels
Strong Intermediate Weak

Fully Pure Proposition 20 Proposition 20 Proposition 20
Partially Mixed Proposition 22 Proposition 22 Proposition 22

Fully Mixed Never Proposition 21 Proposition 21

• Finally, s∗ = (1,s∗2) is a partially-mixed strong ESS if,

Ū1(s1, (1,s∗2), p) < Ū1(G1, (1,s∗2), p),

Ū2(s2, (1,s∗2), p) = Ū2(s
∗
2, (1,s∗2), p) and Ū2(s2, (1,s2), p) < Ū2(s

∗
2, (1,s2), p).

Or if,

Ū1(s1, (1,s∗2), p) = Ū1(G1, (1,s2∗), p) and Ū1(s1, (s1,s2), p) <U1(G1, (s1,s2), p),

Ū2(s2, (s1,s2), p) < Ū2(s
∗
2, (s1,s2), p).

The first set of conditions yield p1L1 +(1− p1)L12s∗2 +K1 > 0 and L2 < 0. The
second set of conditions cannot be satisfied (saddle point). We conclude that s∗ is
a strong ESS if its an intermediate ESS and if p1L1 +(1− p1)L12s∗2 +K1 > 0. In
the same way, we can examine the existence of other partially-mixed ESS.

We summarize in Table 5.2 the different ESSs defined in our model and the propo-
sitions wherein defined.

5.4 Conclusion

In this chapter, we considered an heterogeneous population composed of communities
which interact in a nonuniform manner. We believe that our work is the first to con-
sider nonuniform interactions between communities. In this scenario, we established a
complete static analysis. In particular, we defined three ESSs with different levels of
stability against mutations and we examined their connection to each other: strong ESS
which resists invasion from any sufficiently small fraction of mutants composed of all
the communities, a weak ESS, where each community resists invasion from any suffi-
ciently small and local group of mutants, and intermediate ESS which resists invasion
from any sufficiently small group of mutants composed of agents from all the communi-
ties, when we consider as a fitness function the sum of utilities over all the communities
(a single fitness is considered). We proved that a strong ESS is an intermediate ESS,
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which is also a weak ESS, and the converse is not true. We gave counterexamples that
corroborate this claim.

In the case of two communities, we succeeded to have closed-form results and we
derived the conditions of existence of the ESSs in function of the interaction proba-
bilities and the payoffs. We showed that no fully mixed strong ESS can exist and we
derived the conditions of existence of all other types of ESS.

In the next chapter, we propose to extend our analysis by considering the replicator
dynamics in the context of interacting communities.
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Chapter 6. Replicator Dynamics in Interacting Communities

In this chapter, we extend the classic replicator dynamics to the context of interacting
groups or communities. Furthermore, we introduce two types of delays: spatial delays
associated to the types of interactions and arise only in interactions between individuals
from different communities, strategic delays associated to strategies, and spatial strate-
gic delays which are a combination of the two types of delays. Spatial delays appear in
mixed interactions only, that is interactions that involve individuals from different com-
munities. For example, in a social network, individuals from the same community will
share faster some content as there is some kind of confidence between them, whereas,
a content coming from an individual from another community may yield to a careful
behavior and then increases the outcome delay of the interaction. Strategic delay is the
time interval between the moment that an individual uses a strategy and the moment
it feels the impact of its strategy. In this work, we aim to study the effects of these
delays on the stability of the replicator dynamics. We will show that the two different
types of delays yield different expected utilities and consequences on the stability of the
replicator dynamics.

The present chapter is structured as follows:

• First, in Section 6.1, we study the replicator dynamics without delays and we ex-
amine the connection between the ESSs and the stationary points of the replicator
dynamics.

• In Section 6.2, we examine the stability of the replicator dynamics subject to
strategic delays.

• In Section 6.3, we investigate the stability of the replicator dynamics in presence
of spatial delays.

• Finally, we study in Section 6.4 the stability of the replicator dynamics when both
types of delays are present.

6.1 Replicator Dynamics without Delay

In this section, we introduce the replicator dynamics which describe the evolution of
the various strategies in the communities. In this dynamics, the proportion of a given
strategy in a community grows at a rate equal to the difference between the expected
payoff of that strategy and the average payoff in the considered community.

Let si(t) denote the proportion of agents using strategy Gi (the first strategy) in com-
munity i and 1− si(t) denotes the proportion of strategy Hi. The scalar si(t) determines
the profile or state of community i. The evolution of the state of the full population is
then governed by a system of two ordinary differential equations (ODE) whose variables
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6.1. Replicator Dynamics without Delay

are the scalars s1 and s2. The replicator dynamics writes, for i = 1,2:

ṡi(t) = si(t)
[

Ui(Gi,s(t), p)−Ūi(si(t),s(t), p)
]

,

= si(t)(1− si(t))
[

Ui(Gi,s(t), p)−Ui(Hi,s(t), p)],

where s(t) = (s1(t),s2(t)), which yields the following pair of nonlinear ordinary dif-
ferential equations:

ṡ1(t) = s1(t)(1− s1(t))
[

p1s1(t)L1 +(1− p1)s2(t)L12 +K1
]

,

ṡ2(t) = s2(t)(1− s2(t))
[

p2s2(t)L2 +(1− p2)s1(t)L21 +K2
]

. (6.1)

Note that s1 and s2 vary in the interval [0,1] and the domain of study is [0,1]× [0,1].
In the system (6.1), there are nine stationary points at which both ṡ1 = 0 and ṡ2 =

0 simultaneously, which are: (0,0), (1,1), (0,1), (1,0), (0,− K2

p2L2
), (− K1

p1L1
,0),

(1,−(1− p2)L21 +K2

p2L2
), (−(1− p1)L12 +K1

p1L1
,1), and the interior point s∗ defined in

Proposition 21. Recall that the strict Nash equilibrium is locally asymptotically stable
in the replicator dynamics and the stationary points are Nash equilibria. The asymptotic
stability of corner and border stationary points are given in the Appendix. The dynamic
property of s∗ is brought out in the next proposition.
Proposition 23. The interior stationary point s∗ is asymptotically stable in the replica-
tor dynamics if L1 < 0, L2 < 0, and ∆ > 0.

• s∗ is unstable if ∆ = p1 p2L1L2 − (1− p1)(1− p2)L12L21 < 0.

Proof. In order to examine the stability of the interior stationary point, we make a lin-
earization of the system (6.1) around s∗ and observe how the linearized system be-
haves. We introduce a small perturbation around s∗ defined by x1(t) = s1(t)− s∗1 and
x2(t) = s2(t)− s∗2. The replicator dynamics is then given by:

ẋ1(t) = (x1(t)+ s∗1)(1− x1(t)− s∗1)
(

p1x1(t)L1 +(1− p1)x2(t)L12
)

,
ẋ2(t) = (x2(t)+ s∗2)(1− x2(t)− s∗2)

(

p2x2(t)L2 +(1− p2)x1(t)L21
)

.

Keeping only linear terms in x1 and x2, we obtain a linearized system of the form ẋ(t) =
Ax(t) where xt = (x1,x2),

A =

(

γ1 p1L1 γ1(1− p1)L12

γ2(1− p2)L21 γ2 p2L2

)

,

γ1 = s∗1(1− s∗1), and γ2 = s∗2(1− s∗2). The linearized system is asymptotically stable
if all the eigenvalues of A have negative real parts. The eigenvalues of A are the roots
of the characteristic polynomial XA = λ 2 − tr(A)λ + det(A), with tr(A) = γ1 p1L1 +
γ2 p2L2 and det(A) = γ1γ2(p1 p2L1L2 − (1− p1)(1− p2)L12L21). We check that if ∆ =
p1 p2L1L2 − (1− p1)(1− p2)L12L21 > 0, L1 < 0 and L2 < 0, then the two eigenvalues
of A have negative real parts and the stability follows.
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Table 6.1: The fully mixed ESSs.

ESS type Conditions of existence Asymptotic stability in the RD
Strong ESS does not exist cannot be defined
Weak ESS L1 < 0 and L2 < 0 asymptotically stable if ∆ > 0

and unstable otherwise
Intermediate ESS L1 < 0, L2 < 0, and ∆1 > 0 asymptotically stable

The next corollary about the asymptotic stability of the fully mixed intermediate
ESS follows.
Corollary 4. The fully mixed intermediate ESS is locally asymptotically stable in the
replicator dynamics.

Proof. We aim to prove that the mixed intermediate ESS is asymptotically stable in
the replicator dynamics. By virtue of Proposition 21, the interior equilibrium s∗ is an
intermediate ESS if L1 < 0, L2 < 0 and ∆1 > 0. In addition, from Proposition 23,
s∗ is asymptotically stable if L1 < 0, L2 < 0, and ∆ > 0. We can then prove that,
if ∆1 = 4p1 p2L1L2 − ((1− p1)L12 + (1− p2)L21)

2
> 0, then ∆ = p1 p2L1L2 − (1−

p1)(1− p2)L12L21 > 0 (or equivalently 4∆ > 0). We have:

4p1 p2L1L2 − ((1− p1)L12 +(1− p2)L21)
2 −4

(

p1 p2L1L2 − (1− p1)(1− p2)L12L21
)

=

−((1− p1)L12 − (1− p2)L21)
2
< 0.

The proof follows.

This result confirms that the ESS with the intermediate level of stability is asymp-
totically stable in the replicator dynamics. In contrast, for the weak ESS to be asymp-
totically stable, it is required that the condition ∆ > 0, which depends on the payoff
matrices and the interaction probabilities, be satisfied. We can summarize results about
the fully mixed ESSs and their asymptotic stability in the replicator dynamics in Table
6.1.
Remark 1. We consider the numerical example in Section 5.3.3. For p1 = 0.9 and
p2 = 0.35, there exists a unique fully mixed equilibrium given by s∗ = (0.85,0.14) and
it is not an intermediate ESS because we have ∆1 < 0 (Proposition 21). However,
s∗ is asymptotically stable in the replicator dynamics (conditions in Theorem 23 are
satisfied). Therefore, an asymptotically stable point in the replicator dynamics is not
necessarily an intermediate ESS.

We display in Fig. 6.1 a numerical solution of the replicator dynamics, where the
interaction probabilities are fixed to p1 = 0.4, p2 = 0.6, and the payoffs are set to a1 =
−1.25, b1 = 1.5, c1 = 0, d1 = 0.75, a2 = −1.25, b2 = 1.5, c2 = 0, d2 = 0.75, a12 =
−0.25, b12 = 1.5, c12 = 0, d12 = 1.05, a21 = −1.75, b21 = 1.5, c21 = 0, d21 = 0.45.
In this configuration, the fully mixed intermediate ESS exists and is given by s∗ =
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6.1. Replicator Dynamics without Delay
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Figure 6.1: Convergence of the replicator dynamics to the fully mixed intermediate ESS
(s∗1,s∗2), where a1 = −1.25, b1 = 1.5, c1 = 0, d1 = 0.75, a2 = −1.25, b2 = 1.5, c2 = 0,
d2 = 0.75, a12 = −0.25, b12 = 1.5, c12 = 0, d12 = 1.05, a21 = −1.75, b21 = 1.5, c21 = 0,
d21 = 0.45, s∗1 = 0.65, s∗2 = 0.12.

(0.65,0.12), that is, at the intermediate evolutionarily stability, almost 65% of the first
community uses the first strategy and 35% uses the second strategy, and for the second
community, 12% uses the first strategy and 88% uses the second strategy. The initial
population profile is arbitrarily chosen and is fixed to s = (0.2,0.6). As predicted in
Corollary 4, the replicator dynamics converges to s∗.

In the next proposition, we study the asymptotic stability of partially mixed ESSs.
Proposition 24. The partially-mixed strong ESSs are asymptotically stable in the repli-
cator dynamics.

Proof. Let us prove that the partially mixed strong ESS s∗ = (1,s∗2) with s∗2 =

−(1− p2)L21 +K2

p2L2
is asymptotically stable. From the section above, The Jacobian

matrix obtained by linearisation of the replicator dynamics around s∗ is given by:

A =

(

−p1L1 − (1− p1)s
∗
2L12 −K1 0

γ2(1− p2)L21 γ2 p2L2

)

,

with γ2 = s∗2(1− s∗2). The eigenvalues of the triangular Jacobian matrix are the diagonal
terms. Therefore, s∗ is asymptotically stable if p1L1 + (1 − p1)s

∗
2L12 + K1 > 0 and

L2 < 0. By virtue of Proposition 22, the strong ESS s∗ is asymptotically stable.
Similarly, we can prove this result for all other partially mixed and fully pure strong
ESSs.

This proposition establishes that all partially-mixed strong ESSs are asymptotically
stable in the replicator dynamics. In the next section, we examine the stability of the
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fully mixed intermediate ESS in the replicator dynamics with delays.

6.2 Replicator Dynamics with Strategic Delay

In this section, we examine the impact of time delays of strategies on the dynamics. An
action taken today will have some effect after some time [6]. We assume the strategies
take a delay τst . An equivalent interpretation of delays is as follows: the players re-
peatedly revise their strategies and imitate the strategies with higher payoffs. However,
the agents have a delayed estimate of payoffs. Therefore, the utility of a given strategy
in community i at instant t is a function of the delayed profile of the full population,
i.e. s(t − τst) = (s1(t − τst),s2(t − τst)). The delayed replicator dynamics for the first
community is then given by:

ṡ1(t) = s1(t)(1− s1(t))
[

U1(G1,s(t − τst), p)−U1(H1,s(t − τst), p)
]

.

Then, we get:

ṡ1(t) = s1(t)(1− s1(t))
[

p1L1s1(t − τst)+ (1− p1)L12s2(t − τst)+K1
]

.

Doing the same with the second community, we get:

ṡ2(t) = s2(t)(1− s2(t))
[

p2L2s2(t − τst)+ (1− p2)L21s1(t − τst)+K2
]

.

As a remark, we note that at the equilibrium of the delayed replicator dynamics, the sta-
tionary solutions satisfy ṡ1(t) = 0, ṡ2(t) = 0, s∗1(t) = s∗1(t −τst) and s∗2(t) = s∗2(t −τst).
Indeed at the equilibrium, the values of s1 and s2 do not change in time, and therefore
the delayed and nondelayed solutions are equal. We conclude that the solutions of the
delayed replicator dynamics coincide with the solutions of the non-delayed replicator
dynamics.

To examine the local stability of the fully mixed equilibrium, we introduce a small
perturbation around s∗ defined by x1(t) = s1(t)− s∗1 and x2(t) = s2(t)− s∗2. We then
make a linearization of the two previous equations around the interior equilibrium point
s∗ = (s∗1,s∗2) and we study the linearized system. We get the following system:

ẋ1(t) = γ1
(

p1L1x1(t − τst)+ (1− p1)L12x2(t − τst)
)

,

ẋ2(t) = γ2
(

p2L2x2(t − τst)+ (1− p2)L21x1(t − τst)
)

,

with γ1 = s∗1(1− s∗1) and γ2 = s∗2(1− s∗2). Taking the Laplace transform of the system
above, we obtain the following characteristic equation:

λ 2 −λ
[

p1γ1L1 + p2γ2L2
]

e−λτst + γ1γ2
[

p1 p2L1L2 − (1− p1)(1− p2)L12L21
]

e−2λτst = 0.

(6.2)
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6.3. Replicator Dynamics with Spatial Delay

The zero solution is asymptotically stable if all roots of (6.2) have negative real parts
[96]. Eq. (6.2) is typical for a linear system of two equations of the form ẋ(t) =
Ax(t − τst) which was studied by the authors in [109, 110]. Based on their results, we
establish the following proposition on the asymptotic stability of the intermediate ESS
in presence of symmetric strategic delays.
Proposition 25. The fully mixed intermediate ESS is asymptotically stable in

the delayed replicator dynamics if τst < τ̄st = min(
π

2|λ+|
,

π

2|λ−|
), with λ± =

p1γ1L1 + p2γ2L2 ±
√

D

2
, and D =

[

p1γ1L1 + p2γ2L2
]2 − 4γ1γ2

[

p1 p2L1L2 − (1 −
p1)(1− p2)L12L21

]

.

Proof. We showed in the proof of Theorem 23, that the eigenvalues of A, which are
solutions of λ 2 − tr(A)λ + det(A) = 0 have negative real parts when ∆ = p1 p2L1L2 −
(1− p1)(1− p2)L12L21 > 0, L1 < 0 and L2 < 0; and the mixed intermediate ESS is
asymptotically stable when τst = 0 (Corollary 4). For the remaining of the proof that
gives the bound on τst for which the stability is unaffected, the reader should refer to
[109], pp.82, Theorem 3.4.

When there is a single population, we check that τ̄st given in the theorem above
coincides with the critical value of delay given in [16, 86].

At the critical delay τ̄st , a transition from stability to instability occurs in the replica-

tor dynamics and a periodic oscillation is created with a frequency given by w =
π

2τ̄st
.

The frequency of oscillations is determined from the characteristic equation, and it
equals the imaginary part of the pure imaginary root of (6.2). We clearly observe that
τ̄st and w are functions of the payoffs and the interaction probabilities.

Proposition 25 gives an upper bound on strategic delays for which the intermediate
ESS remains asymptotically stable in the population. Beyond this delay bound, the
stability is lost and persistent oscillations around the ESS occur. In Fig. 6.2, we illustrate
the consequences that strategic delays may have on the convergence to the equilibrium.
We fixed the value of the strategic delay to 4.2 time units, and the critical delay value is
given by 3.5 time units. The replicator dynamics exhibit permanent oscillations around
the equilibrium in both communities. The strategic delay exceeds the critical value, and
consequently the asymptotic stability is lost.

6.3 Replicator Dynamics with Spatial Delay

In this section, we assume that the delays are not associated with the strategy used by an
individual but rather with the types of the interacting players. Spatial delays, which we
denote by τsp, arise when two individuals from different communities get involved in an
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Figure 6.2: Oscillations around the fully mixed intermediate ESS (s∗1,s∗2) in presence of
strategic delays, where a1 = −1.25, b1 = 1.5, c1 = 0, d1 = 0.75, a2 = −1.25, b2 = 1.5,
c2 = 0, d2 = 0.75, a12 = −0.25, b12 = 1.5, c12 = 0, d12 = 1.05, a21 = −1.75, b21 = 1.5,
c21 = 0, d21 = 0.45, s∗1 = 0.65, s∗2 = 0.12, τ̄st = 3.5 time units.

interaction. In fact, in many real-world applications, we observe that similar individuals
have precise and up-to-date information about each other, whereas individuals from
different communities are more likely to have delayed information about each other.
Thus, delays would appear in mixed interactions.

In this model, the expected utility of a strategy in community i at time t depends
on the current profile of community i, i.e. (si(t), (1− si(t)), and on the delayed profile
of the other community i.e. (s−i(t − τsp),1− s−i(t − τsp)). Therefore, we propose the
following delayed fitness functions:

U1(G1,s, p) = p1(s1(t)a1 +(1− s1(t))b1)+ (1− p1)(s2(t − τsp)a12 +(1− s2(t − τsp))b12),

U1(H1,s, p) = p1(s1(t)c1 +(1− s1(t))d1)+ (1− p1)(s2(t − τsp)c12 +(1− s2(t − τsp))d12).

Similarly, for the second community, we have:

U2(G2,s, p) = p2(s2(t)a2 +(1− s2(t))b2)+ (1− p2)(s1(t − τsp)a21 +(1− s1(t − τsp))b21),

U2(H2,s, p) = p2(s2(t)c2 +(1− s2(t))d2)+ (1− p2)(s1(t − τsp)c21 +(1− s1(t − τsp))d21).

Consequently, the replicator dynamics with spatial delays is given by:

ṡ1(t) = s1(t)(1− s1(t))
[

U1(G1, (s1(t),s2(t − τsp)), p)−U1(H1, (s1(t),s2(t − τsp)), p)
]

,

ṡ2(t) = s2(t)(1− s2(t))
[

U2(G2, (s1(t − τsp),s2(t)), p)−U2(H2, (s1(t − τsp),s2(t)), p)
]

,

which yields,

ṡ1(t) = s1(t)(1− s1(t))
[

p1L1s1(t)+ (1− p1)L12s2(t − τsp)+K1
]

, (6.3)

ṡ2(t) = s2(t)(1− s2(t))
[

p2L2s2(t)+ (1− p2)L21s1(t − τsp)+K2
]

. (6.4)
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Following the same procedure as in the previous sections, we get the following charac-
teristic equation:

λ 2 − (p1γ1L1 + p2γ2L2)λ + γ1γ2 p1 p2L1L2 − γ1γ2(1− p1)(1− p2)L12L21e−2λτsp = 0.

Or equivalently,

λ 2 +αλ +β + δe−λτ = 0, (6.5)

where τ = 2τsp, α =−(p1γ1L1+ p2γ2L2), β = γ1γ2 p1 p2L1L2, δ =−γ1γ2(1− p1)(1−
p2)L12L21. Now, we summarize the stability property of the mixed ESS for the delayed
replicator dynamics in the following theorem which is based on the results of the authors
in [111] related to the location of the roots of the characteristic equation (6.5).
Proposition 26. The fully mixed intermediate ESS is asymptotically stable in the repli-
cator dynamics with spatial delays for any τsp ≥ 0.

Proof. The proof of this theorem is based on that given by Freedman and Kuang [111]
(Theorem 4.1, page 202), related to the location of roots of the characteristic equation
(6.5), and stated as follows:

• If β 2
< δ 2, ⇒ if s∗ is unstable for τ = 0 then it is unstable for any τ ≥ 0; and if s∗

is stable at τ = 0, then it remains stable for τ inferior than some τs ≥ 0. But, if s∗

is stable at τ = 0, then ∆ = p1 p2L1L2 − (1− p1)(1− p2)L12L21 > 0 ⇒ β 2
> δ 2.

Therefore, this case is excluded.

• If β 2
> δ 2, 2β −α2

> 0, and
(

2β −α2)2
> 4(β 2 −δ 2), then the stability of the

stationary point can change a finite number of times at most as τ is increased, and
eventually it becomes unstable. But,

2β −α2 = 2γ1γ2 p1 p2L1L2 − (p1γ1L1 + p2γ2L2)
2

= −p2
1γ2

1 L2
1 − p2

2γ2
2 L2

2 < 0.

Therefore, this case is excluded in our model.

• Otherwise, (this is the only case when s∗ is stable at τ = 0), the stability of the
stationary point s∗ does not change for any τ ≥ 0. ⇒ s∗ is asymptotically stable
for any τ ≥ 0.

Remarkably, spatial delays do not affect the stability of the mixed ESS. Indeed, for
any value of the delay τsp, the frequency of strategies in the population converges to the
mixed intermediate ESS after some possible damped oscillations. In Fig. 6.3, we plot
the trajectories of solutions of the replicator dynamics with the spatial delay fixed to 6
time units. As predicted analytically, the population profile converges to the mixed ESS.
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Figure 6.3: Convergence to the fully mixed intermediate ESS (s∗1,s∗2) in presence of spatial
delays, where a1 = −1.25, b1 = 1.5, c1 = 0, d1 = 0.75, a2 = −1.25, b2 = 1.5, c2 = 0,
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6.4 Replicator Dynamics with Spatial Strategic Delays

In this section, we study the stability of the replicator dynamics with both strategic and
spatial delays. In particular, we aim to study whether the spatial delay has a stabilizing
effect on the replicator dynamics with strategic delay. We define the delays as follows:

• τst is the strategic delay, that is the delay associated with the strategies,

• τsp is the spatial delay associated with the inter-community interactions.

The expected payoffs of strategies G1 and H1 in community 1 then write:

U1(G1, (s1(t − τst),s2(t − τst − τsp)), p) = p1
[

s1(t − τst)a1 +(1− s1(t − τst))b1
]

+

(1− p1)
[

s2(t − τst − τsp)a12 +(1− s2(t − τst − τsp))b12
]

.

And,

U1(H1, (s1(t − τst),s2(t − τst − τsp)), p) = p1
[

s1(t − τst)c1 +(1− s1(t − τst))d1
]

+

(1− p1)
[

s2(t − τst − τsp)c12 +(1− s2(t − τst − τsp))d12
]

.

Hence, the equation governing the evolution of the proportion of players using strategy
G1 in the first community is given by:

ṡ1(t) = s1(t)(1− s1(t))
[

p1L1s1(t − τst)+ (1− p1)L12s2(t − τst − τsp)+K1
]

.

Doing the same with the second community, we obtain:

ṡ2(t) = s2(t)(1− s2(t))
[

p2L2s2(t − τst)+ (1− p2)L21s1(t − τst − τsp)+K2
]

.
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6.5. Conclusion

Following the same procedure in the previous sections, we get the following character-
istic equation with mixed delays:

λ 2 −λ [p1γ1L1 + p2γ2L2]e
−τstλ + p1 p2γ1γ2L1L2e−2τstλ − (1− p1)(1− p2)γ1 ×

γ2L12L21e−2(τst+τsp)λ = 0. (6.6)

When τsp = 0, we find the characteristic equation (6.2) obtained when there is only a
strategic delay. Eq. (6.6) can be solved numerically.

Eq. (6.6) can be simplified by making the assumption of small time delays. By
substituting the exponential term with a Taylor series expansion and keeping only lin-
ear terms in τst and τsp in the equation above, we obtain the following second order
equation:

(1+Aτst)λ
2 +λ (−A−2Bτst + 2C(τst + τsp))+B−C = 0,

where A = p1γ1L1 + p2γ2L2, B = p1 p2γ1γ2L1L2, and C = (1− p1)(1− p2)γ1γ2L12L21.
We can establish the following proposition:

Proposition 27. If τst <− 1
p1γ1L1 + p2γ2L2

and ∆τst −Cτsp <− p1γ1L1 + p2γ2L2

2
, then

the fully mixed intermediate ESS is asymptotically stable.

Proof. The fully mixed intermediate ESS is asymptotically stable if all the roots of the
characteristic equation have negative real parts. Since we have a second order equa-
tion, then the roots have negative real parts if their product is positive and their sum is

negative, that is if (i)
B−C

1+Aτst
=

∆

1+Aτst
> 0 and (ii)

A+ 2Bτst −2C(τst + τsp)

1+Aτst
<

0. By virtue of Corollary 4, we have ∆ > 0 and then condition (i) yields τst <

− 1
p1γ1L1 + p2γ2L2

; and condition (ii) yields ∆τst −Cτsp <− p1γ1L1 + p2γ2L2

2
.

6.5 Conclusion

In this chapter, we extended the replicator dynamics to the context of two interacting
communities. We examined the connection between the ESSs and the stationary points
of the replicator dynamics and we proved that the mixed intermediate ESS is always
asymptotically stable. In contrast, the weak ESS cannot be always asymptotically stable
in the replicator dynamics, depending on the payoffs and the interaction probabilities.

Furthermore, we introduced two types of delays in the replicator dynamics: strategic
delays and spatial delays. Strategic delays appear in all types of interactions and can
be defined as the time interval a strategy takes to have a consequence on the fitness.
Spatial delays appear in mixed interactions only, that is interactions between agents
from different communities, and are caused by the heterogeneity of interactions. We
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showed that spatial delays do not affect the stability of the fully mixed ESS whereas
strategic delays may have destabilizing consequences.

In Chapter 7, we propose to illustrate these results with numerical examples inspired
from the Hawk-Dove game.
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Chapter 7. Applications

In this chapter, we propose to apply the theoretical results previously obtained to the
Hawk-Dove game. We notice that the Hawk-Dove game played between two groups
of different levels of aggressiveness has been studied in [112] as well. However, the
authors limited their analysis to the dynamical aspects of the game, that is the replica-
tor dynamics. They did not examine the evolutionarily stable strategy. Moreover, they
did not consider the nonuniform feature of interactions, neither considered the conse-
quences of delays. In contrast, we propose here a complete static and dynamic analysis
of the game.

This chapter is structured as follows:

• In Section 7.1, we study the classic Hawk-Dove game with random delays;

• In Section 7.2, we study the Hawk-Dove game in two communities with asym-
metric levels of aggressiveness;

• In Section 7.3, we study the Hawk-Dove game on graphs;

• In Section 7.4, we conclude the chapter.

7.1 Hawk-Dove Game in a Single Population

7.1.1 Game Model

In the classical Hawk-Dove game [108, 71], two individuals compete for a scarce re-
source. A player may use a Hawk strategy (H) or a Dove strategy (D). The strategy H
stands for an aggressive behavior that fights for the resource while the strategy D rep-
resents a peaceful behavior which never fights. The matrix that gives the outcome for
such competition is given as follows:





H D

H
V −C

2
V

D 0
V

2



,

where C > 0 and V > 0. V represents the value of the resource for which the players
compete and C represents the cost incurred by a hawk when fighting for the resource
against a hawk. The coefficients of the payoff matrix can be interpreted as follows: If

two doves meet, they share equally the resource and each one obtains as a payoff
V

2
. If

two hawks meet, they fight until one of them gets injured and the other takes the whole
resource. When a hawk and a dove meet, the dove withdraws and the hawk takes the
whole resource. If C <V , then the strategy H is dominant and the entire population will
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7.1. Hawk-Dove Game in a Single Population

adopt the aggressive behavior. If C >V , there exists a mixed ESS given by (
V

C
,1−V

C
),

at which both behaviors coexist. Indeed, in this case the strategy H cannot be dominant
since the cost of fighting is higher than the resource value. When a fully mixed ESS
exists, the population can be:

• Polymorphic, in which case a proportion of the population equal to
V

C
uses the

Hawk strategy and the proportion 1− V

C
uses the Dove strategy;

• Monomorphic in which case each individual uses a Hawk strategy with probabil-

ity
V

C
and a Dove strategy with probability 1− V

C
.

7.1.2 Replicator Dynamics with Random Delays

In this subsection, we apply some of the results obtained in Chapters 2 and 3 to the
Hawk-Dove game. This part covers the replicator dynamics with random delays.

• Uniform delay distribution: When the delays are uniformly at random dis-
tributed in the interval [0,τmax], we proved in Chapter 2, that the stability of the mixed

ESS is lost at the critical value of τmax given by
π2

2D
where D = δ s∗(1 − s∗). In

the Hawk-Dove game, this critical value is given by π2 C

V (C−V )
, and so the criti-

cal value of the mean delay is π2 C

2V (C−V )
, and the critical frequency is given by

w0 =
V (C−V )

πC
. It is worth mentioning that, in the case of a fixed delay, the critical

value of the delay is π
C

V (C−V )
and the frequency of oscillations at the Hopf bifurca-

tion is given by
V (C−V )

2C
.

Let ρ =
C

V
, which can be interpreted as the cost per unit of benefit [17]. The

critical mean value of delay, τm can therefore be written in function of ρ as τ̄max =

π2 ρ

2V (ρ −1)
, and the frequency of oscillations is given by w0 =

V (ρ −1)
πρ

. We depict

in the left subfigure of Fig. 7.1, the normalized critical value of the mean delay of the
uniform distribution in function of ρ . We observe that the mean value of delays for
which the stability of the mixed ESS is lost is larger than that in case of fixed delays.
Therefore, random delays decrease the potential of instability. We also note that as the

quotient
C

V
increases, the critical mean delay decreases. In addition, we depict in the
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Figure 7.1: Left, normalized critical value of the mean delay τmV in the uniform delay
case. Right, normalized frequency of oscillations w0/V in the uniform delay case.
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Figure 7.2: V = 3, C = 6. Left, the mean delay= 1.5 < τm = 3.25 time units. Right, the
mean delay = 3.5 > τm = 3.25 time units (uniform delay).

right subfigure of Fig. 7.1, the normalized frequency of oscillations at the Hopf bifur-
cation. We clearly observe that the frequency of oscillations increases in function of ρ ,
which emphasizes the instability property. Also, the frequency of oscillations in the ran-
dom delay case is clearly higher than that in the constant delay case. For example, when
ρ = 4, the critical frequency of oscillations is equal to 0.24 in the uniform distribution
case whereas this value increases to 0.38 in the constant delay case.

We illustrate in Fig. 7.2 the effects of increasing the mean delay on the convergence
to the ESS. In the the left subfigure, we considered a mean delay value smaller than the
critical mean delay; whereas in the right subfigure, the mean delay is larger than the
critical mean delay and persistent oscillations consequently appear.

• Exponential delay distribution: In the case of exponential delay distribution, we
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proved that the stability of the ESS cannot be lost, for any value of the mean delay, that
is no Hopf bifurcation can occur in this model.

• Erlang/Gamma delay distribution: When the delays follow an Erlang or Gamma
distribution, there exists a critical value of the mean delay at which the stability of the

mixed ESS is lost. The critical value of the mean delay is given by
k

βc
=

k

D

sin( π
2k )

cosk+1( π
2k )

and the critical frequency of oscillations satisfies w0 = Dcosk(
π

2k
). Therefore, for the

Hawk-Dove game, the critical mean value is given by:

k

βc
=

2kC

V (C−V )

sin π
2k

cosk+1
(

π
2k

) , (7.1)

which can be further written in function of ρ =
C

V
as follows:

k

βc
=

2kρ

V (ρ −1)

sin π
2k

cosk+1
(

π
2k

) . (7.2)

In addition, the critical frequency of oscillations is given by:

w0 = V
ρ −1

2ρ
cosk(

π

2k
). (7.3)

We depict in Fig. 7.3 the critical mean delay (left) and the critical frequency of
oscillations (right) in function of the parameter ρ and for different values of k (parameter
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of the Gamma distribution). As we can clearly see, the critical mean delay decreases
as ρ grows, which means that the probability of instability increases as ρ gets higher.
We recall that the asymptotic stability of the mixed ESS is lost when the value of the
mean delay exceeds the critical mean delay value. Also, increasing the value of the
parameter k results in the decrease of the critical mean delay, making the instability
more probable. We could expect this result intuitively while examining the shape of the
Gamma distribution. Finally, the critical mean delay is higher than that in the constant
delay case. For instance, when ρ = 3, the critical mean delay value is 12 time units
whereas this value reduces to 4.7 time units in the constant delay case.

• One delayed strategy: We consider here that there is only one delayed strategy
that would take a delay τ with probability p or no delay with probability 1− p. This
scenario was thoroughly studied in Chapter 3. The critical delay is given by:

τcr =
2

V (C−V )

√

( C3

V − (1−2p)(C+V )

)

acos
(V − p(V +C)

p(V +C)

)

.

The critical frequency is given by:

w0 =
V (C−V )

2

√

1
C3 (V − (1−2p)(C+V )).

Let ρ =
C

V
, we can write the normalized critical delay and frequency of oscillations near

the Hopf bifurcation as:

τcrV =
2

ρ −1

√

ρ3

1− (1−2p)(1+ρ)
acos

(1− (1− p)(ρ + 1)
p(ρ + 1)

)

,

and,

w0

V
=

ρ −1
2ρ

√

1− (1−2p)(ρ + 1)
ρ

.

In order to better understand these results, we depict in Fig. 7.4 the critical value of de-
lay and the critical frequency of oscillations for two different values of p (0.5 and 0.3).
First, we observe that even in the case in which only one strategy is delayed, a Hopf bi-
furcation may occur and the asymptotic stability of the ESS can be lost. Furthermore, as
the probability of the delay grows, (recall that p is the probability of a delayed strategy),
the normalized critical delay decreases and thus the probability of the loss of stability
increases. For example, when ρ = 1.15 and p = 0.3, the normalized critical delay is
given by 39 time units and this value reduces to 26 time units when p = 0.5 . Also, the
critical frequency of oscillations increases as ρ grows.
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in function of ρ (in the case one strategy is delayed).

7.2 Hawk-Dove Game in Interacting Communities

In this section, we apply our model defined in Chapter 5 to the Hawk-Dove game played
in an heterogeneous population composed of two communities of hawks and doves with
different levels of aggressiveness and which interact in a nonuniform fashion. Let:

• p1 (resp. p2) be the probability that an individual from Community 1 (resp. 2),
involved in an interaction, competes with an individual from the same community;

• 1− p1 (resp. 1− p2) be the probability that an individual from Community 1
(resp. 2) competes with an inter-community opponent.

Furthermore, the interactions inside the communities 1 and 2 are described by the
matrices A and D:







H1 D1

H1
V −C

2
V

D1 0
V

2






,







H2 D2

H2
V −C

2
V

D2 0
V

2






.

The inter-community interactions are described by the following matrices:

(

H2 D2

H1
V −CSW

2
V

D1 0 αV

)

,

(

H1 D1

H2
V −CWS

2
V

D2 0 (1−α)V

)

.

We introduce the parameters CSW , CWS and α into the payoff matrices to incorporate
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Table 7.1: Parameters of the model of Hawk-Dove game.

Parameter Value
L1 −0.5C
L2 −0.5C
L12 −0.5CSW +V (α −0.5)
L21 −0.5CWS −V (α −0.5)
K1 0.5p1V +(1−α)(1− p1)V
K2 0.5p2V +α(1− p2)V
∆ p1 p20.25C2 − (1− p1)(1− p2)(−0.5CSW +V (α −0.5))(−0.5CWS −V (α −0.5))

∆1 p1 p2C2 −
(

(1− p1)(−0.5CSW +V (α −0.5))+ (1− p2)(−0.5CWS −V (α −0.5))
)2

the disparity in the levels of aggressiveness of the two communities. These parameters
can be defined as follows:

• C is the fighting cost incurred by a hawk when fighting against a hawk from the
same community;

• CSW is the fighting cost incurred by a hawk from the more aggressive community
when fighting against a hawk from the other community;

• CWS is the fighting cost incurred by a hawk from the less aggressive community
when fighting against a hawk from the other community;

• α is the resource part that takes a dove from the more aggressive community when
competing with a dove from the other community.

The parameters satisfy: 0 < CSW < C < CWS, and 0.5 ≤ α < 1. When two hawks
from different communities compete for a resource, they do not incur the same cost as
when fighting against an intra-community hawk. Also, when two doves from different
communities meet, they share the resource unevenly. In particular, with these param-
eters, the first community is more aggressive than the second community: hawks in
community 1 provoke more injuries than hawks in the other community, and doves in
community 1 take more resource than those in community 2. When CSW = CWS and
α = 0.5, the two communities have the same degree of aggressiveness.

In Table 7.1, we write the parameters of the model in function of the resource value,
the fighting costs, and the probabilities of interactions.

In the following, we aim to illustrate with numerical examples (i) the effect of the
interaction probabilities and the game parameters on the existence of ESSs; and (ii) the
impact of these parameters and delays on the convergence to the fully mixed intermedi-
ate ESS in the replicator dynamics.
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Figure 7.5: Regions of ESSs in the interaction probabilities plane (p1, p2) for the param-
eter values C = 6, CSW = 5, CWS = 9, α = 0.7. The plus signs (+) represent fully mixed
intermediate ESS, the squares (�) represent fully mixed weak ESSs, the circles (•) represent
partially-mixed strong ESS, and the diamonds (⋄) represent fully-pure strong ESS.
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Figure 7.6: Regions of ESSs in the plane (p1, α) for the parameter values C = 6, CSW = 5,
CWS = 9, and V = 4. The plus signs (+) represent fully mixed intermediate ESS, the squares
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ESS.

7.2.1 ESSs in the Hawk-Dove Game

In Figure 7.5, we plot the region of ESSs in function of the interaction probabilities p1

and p2 for the parameter values C = 6, CSW = 5, CWS = 9, α = 0.7 and for two different
values of the resource: V = 2 in the left subfigure and V = 4 in the right subfigure. We
observe that in both subfigures, the fully-mixed intermediate ESS exists for the higher
values of p1 and p2; that is when the intra-community interactions are more probable
than inter-community interactions in both communities. This region allows all strategies
in both communities to co-exist. For the lower values of p1 and p2, we observe in both
subfigures, the existence of fully-pure strong ESS. The area between these two regions
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Figure 7.7: Replicator Dynamics with strategic delays τ̄st = 2.4 time units, C = 6, CSW = 5,
CWS = 9, α = 0.7, V = 4, p1 = 0.7, p2 = 0.6.

is characterized by the existence of partially-mixed strong ESS, that is, an ESS which
is pure in one community and mixed in the other. We also note the existence of fully-
mixed weak ESS in a small region in both figures.

Furthermore, we plot in Fig. 7.6 the region of ESSs in function of p1 and α for two
values of p2: p2 = 0.2 in the left subfigure and p2 = 0.6 in the right subfigure. When
p2 = 0.2, we note that any fully-mixed intermediate ESS does not exist.We observe that
fully-mixed weak ESSs exist for a small range of higher values of p1 and α . The fully-
pure and partially-mixed strong ESS exist for a large range of values of p1 and α . In
the right subfigure, when p2 = 0.6, we note the appearance of fully-mixed intermediate
ESSs for the higher values of p1.

7.2.2 Replicator Dynamics in the Hawk-Dove Game with Commu-
nities

In this subsection, we study the effects of delays and the game parameters on the conver-
gence of the replicator dynamics to the fuly-mixed intermediate ESS. For the parameter
values C = 6, CSW = 5, CWS = 9, α = 0.7, V = 4, p1 = 0.7, p2 = 0.6, we conclude from
the right subfigure in Fig. 7.6, there exists a fully mixed intermediate ESS which is given
by s∗ = (0.73,0.42). Furthermore, s∗ is asymptotically stable in the replicator dynam-
ics (Corollary 4). We plot in Figure 7.7, the evolution of the proportion of hawks in
both communities over time according to the replicator dynamics with strategic delays
where the initial (arbitrary) population profile is given by (0.6,0.2). Each strategy has
a delay of τst . We observe in the left subfigure the convergence to the ESS for τst = 1.6
time units after some damped oscillations, whereas we observe permanent oscillations
around the ESS in the right subfigure for τst = 2.5 time units. From Proposition 25, the
maximum value of the strategic delay for which the fully mixed intermediate ESS is
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Figure 7.8: Replicator Dynamics with purely spatial delays (left) and spatial-strategic de-
lays (right). C = 6, CSW = 5, CWS = 9, α = 0.7, V = 4, p1 = 0.7, p2 = 0.6.

asymptotically stable is τ̄st = 2.4 time units. Therefore, the asymptotic stability of the
ESS is lost for τst = 2.5 time units.

Furthermore, we study the effect of spatial delays on the convergence to the ESS in
the replicator dynamics. Spatial delays appear in inter-community interactions only. In
left subfigure of Fig. 7.8, we observe a convergence to the intermediate ESS. Indeed,
from Proposition 26, the replicator dynamics converges to the fully-mixed intermediate
ESS for any value of τsp. When both delays exist, spatial delay (τsp = 1.4 time units)
and strategic delay (τst = 2.5), we observe in the right subfigure of Fig. 7.8 persistent
oscillations.

In addition, we study the effect of the resource value on the convergence to the ESS.
For a fixed strategic delay value of τst = 2.2 time units, we observe in Fig. 7.9 oscilla-
tions around the fully mixed intermediate ESS when V = 3. For the same value of the
strategic delay and when V = 4, we observe the convergence to the ESS (Fig. 7.7). We
note that increasing the resource value had a stabilizing effect. Furthermore, we illus-
trate in Fig.7.10 the effect of the intra-community fighting cost C on the convergence
to the fully mixed ESS in the replicator dynamics. In the left subfigure, for C = 6, we
observe the convergence to the mixed ESS whereas in the right subfigure, for C = 8, we
note persistent oscillations around the ESS and the loss of stability. Therefore, increas-
ing the intra-community fighting cost has a destabilizing effect.

7.3 Interacting Communities on Random Graphs

In this section, we are interested in studying the evolutionary games on random graphs.
The application of evolutionary game theory in graphs or structured populations was
considered in many works [47, 68, 69, 29, 30]. For example, in [69], the authors studied
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Figure 7.9: Effect of the resource value on the convergence to the ESS for the same strategic
delay value τst = 2.2 time units. C = 6, CSW = 5, CWS = 9, α = 0.7, p1 = 0.7, p2 = 0.6.
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Figure 7.10: Effect of the intra-community fighting cost on the convergence to the ESS for
the same strategic delay value τst = 2.2 time units. V = 4, CSW = 5, CWS = 10, α = 0.7,
p1 = 0.7, p2 = 0.6.

evolutionary games in cycles considering three different update mechanisms for the
evolutionary dynamics.

We consider a population, which is represented by an undirected graph G = (V ,E)
where V is the set of vertices representing the agents or individuals and E is the set of
edges representing the pairwise interactions. A neighbor of an individual i in V is any
other agent j such that there exists an edge i j in E. Moreover, we consider a complete
graph where any individual may interact with any other individual. The payoff of a
player is the sum of payoffs obtained when it interacts with all immediate neighbors
[47, 69]. We consider the following probabilistic imitation update rule [41, 47]:

• At each iteration or time step a player i is randomly chosen to revise its strategy;

• The selected player will randomly choose a neighbor j from its community;
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• If the payoff of player j is higher than that of player i, then player i will switch to
player j’s strategy with a probability proportional to the difference between the
payoffs of the two strategies; Otherwise, player i will keep its strategy.

Note that this update rule is different from the imitation rule in [47] as we consider here
a non-homogeneous population composed of two-communities; and the outcome of an
interaction depends not only on the strategies used but also on the types of players. Note
also that an individual may interact with any other individual including inter-community
opponents but for the imitation process, an individual may imitate only an opponent
from the same community.

We make simulations to study the evolution of behavior of the population using the
imitation update rule. We considered a population composed of N1 = 1000 individu-
als from Community 1 and N2 = 4000 individuals from Community 2. Moreover, we
considered a Hawk-Dove game with the values of parameters (defined in the previous
section) given by V = 1.3, C = 4, CSW = 2, CWS = 6, α = 0.8. We plot in Fig. 7.11
(top left subfigure), the evolution of the population state using the imitation update rule,
with an (arbitrary) initial state of the population given by (0.3,0.4). As we can clearly
see, the population state converges to the mixed ESS given by s∗ = (0.2,0.6).

Furthermore, we introduced discrete delays: In Fig. 7.11 (top right subfigure), we
considered a strategic delay of 14 time slots: the payoff of a player with the strategic
delay depends on the actions of its opponents taken at some previous time (14 time
slots). We observe oscillations around the equilibrium. In Fig. 7.11 (bottom), we
considered a spatial delay fixed to 21 time slots: the payoff of player obtained when
it interacts with an inter-community opponent depends on the action of the latter taken
some time slots before. We note a convergence to the mixed ESS.

7.4 Conclusion

In this chapter, we applied our results to the Hawk-Dove game. First, we studied the
replicator dynamics with heterogeneous and random delays in this context. We depicted
the variation of the mean critical delay values in the cases of uniform and Gamma dis-
tribution, in function of the cost per unit of benefit. We also examined a case of discrete
delays in which only one strategy is delayed. Furthermore, we studied the case in which
the population is heterogeneous and composed of two communities of hawks and doves
with asymmetric levels of aggressiveness. We illustrated in this context the regions of
different types of ESS in function of the intraction probabilities and the parameters of
the game. We also illustrated the effects of different types of delays (strategic and spa-
tial delays), and the game parameters on the convergence to the fully mixed ESS in the
replicator dynamics. At the end of this chapter, we gave an illustration of evolutionary
games on graphs. Particularly, we illustrated the convergence to the fully mixed ESS
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Figure 7.11: Evolution of the population state with the imitation update rule.

considering the imitation update rule on graphs.
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Chapter 8. Conclusions and Perspectives

8.1 Summary of Contributions

In this dissertation, we studied evolutionary games in an extended framework where we
considered (i) the consequences of heterogeneous random delays on the stability of the
replicator dynamics, (ii) a complete static and dynamic analysis of an heterogeneous
population composed of communities that are interacting in a nonuniform manner, and
(iii) an application to the Hawk-Dove Game.

8.1.1 Replicator Dynamics with Random Delays

In Chapter 2, we extended the classic replicator dynamics by introducing random delays.
Indeed, in many real-world applications, the presence of uncertain delays is ubiquitous.
We examined the effects of the distribution of delays on the stability of the mixed evo-
lutionarily stable strategy. We proved that, for the exponential distribution, the stability
of the mixed ESS is unaffected; whereas for the uniform and Gamma distribution we
derived the critical value of the mean delay at which a Hopf bifurcation occurs. We
demonstrated that, in all the cases, the critical mean delay value is higher than that in
the case of constant delays.

In addition, in Chapter 3, we considered discrete stochastic delays and we proved
that when the instantaneous term is dominant, that is when the probability of nondelayed
interactions is sufficiently high, the stability of the mixed ESS is unaffected. In the case
of two delays, we illustrated how the consequence on the stability of the mixed ESS can
be changed by keeping the values of delays unchanged and varying only the probabilities
of delays. When only one strategy is delayed, we established the critical delay value at
which a Hopf bifurcation occurs and the stability of the ESS is lost.

Near the Hopf bifurcation, the replicator dynamics exhibits a stable periodic oscil-
lation in the proportions of strategies in the population. In Chapter 4, we examined the
properties of the bifurcating limit cycle in the replicator dynamics with random delays.
Considering Dirac, uniform, Gamma, and discrete delay distributions, we approximated
the stable bifurcating limit cycle, and we derived analytically the radius of the limit cy-
cle in function of the value of the bifurcation parameter (the mean delay). Furthermore,
we validated our theoretical results with numerical simulations.

8.1.2 Evolutionary Games in Interacting Communities

In Chapter 5, we studied an heterogeneous population composed of groups or commu-
nities that are interacting in a nonuniform manner. We defined for each community, its
payoffs and interaction probabilities with other communities. In this context, the out-
come of a pairwise interaction is a function not only of the strategies used, as in the
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classical setting of evolutionary games, but also of the types (or communities) of the
interacting players. We derived accordingly the utility functions for each group and we
established a complete static analysis in this framework by considering three types of
ESS with different levels of stability against mutations: strong ESS which resists inva-
sion from a sufficiently small group composed of all the communities in the population,
weak ESS, in which case each group resists invasion from a sufficiently small local
group of mutants, and intermediate ESS in which case the fitness of the full population
cannot be higher for any sufficiently small group composed of all the mutants. Indeed,
for the intermediate ESS, we consider a single fitness of the full population, that is the
sum of the fitness over all the communities, instead of the fitness of each group sepa-
rately. We examined the relationship between the ESS and we proved that a strong ESS
is an intermediate ESS which is a weak ESS, and the inverse cannot be always true. We
gave a counterexample that corroborates our claim.

In the case of two communities, we succeeded to have closed form formulae of
the ESS. Remarkably, we proved that any fully mixed equilibrium cannot be a strong
ESS but can be intermediate or weak ESS under some conditions on the payoffs and
interaction probabilities.

In Chapter 6, we introduced a dynamic analysis in this framework of heterogeneous
population. In particular, we derived the replicator dynamics to model the time evolution
of strategies in each group in function of the payoffs and the probabilities of interactions.
We examined the relationship between the ESS and the rest points of the replicator dy-
namics, and we proved that in the case of two communities, the fully mixed intermediate
ESS is asymptotically stable whereas the weak stability condition of the ESS does not
ensure the asymptotic stability under the replicator dynamics.

Furthermore, we introduced two types of delays in the replicator dynamics: spatial
delays and strategic delays. We proved that the spatial delay does not affect the stability
of the fully mixed ESS in the replicator dynamics, whereas the strategic delay may result
in permanent oscillations around the equilibrium.

8.1.3 Applications

In Chapter 7, we applied the results obtained in the previous chapters to the Hawk-Dove
Game. We considered a population composed of two communities of hawks and doves
with asymmetric fighting abilities and which interact in a nonuniform manner. In this
context, we identified the regions of ESS in function of the game parameters and the
interaction probabilities. We also examined the stability of the replicator dynamics in
function of delays and the game parameters. In addition, we studied the Hawk-Dove
game on random graphs.
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8.2 Perspectives

We propose in this section possible extensions to the work done in this thesis. These
extensions can be categorized in three parts, which are novel delay modeling, extension
of the community framework, and an application to economics. Each part is detailed
below.

8.2.1 Novel Delay Modeling

The work related to delays presented in this dissertation focuses on the destabilizing
effects of delays, that is the possible appearance of fluctuations or bifurcating solutions
around the equilibrium. However, time delays may have a stabilizing effect. As a
perspective, we propose to investigate the stabilizing effects of delays in a class of games
that admit an unstable interior equilibrium (coordination games) such as the Stag-Hunt
Game.

Another perspective is to consider state-dependent delays: that is delays that depend
on the state of the population (distribution of strategies in the population). For example,
in congestion networks, where each agent has to choose which link to follow, the delay
experienced by a user may depend on the number of users using the same link as himself.

Another related point is to consider time-varying delays. Indeed, in many situations,
the delay cannot be constant but might depend on the time at which the action is taken
by the players. Thus, the time interval after which the consequence of an action is
observed can be modeled as a function of time. This is expected to yield novel results
compared to the case of constant delays. However, it is more challenging to analyze the
replicator dynamics with time variable delays since the classic approach of analyzing
the corresponding characteristic equation cannot be used in this scenario [20].

Furthermore, it is possible to consider asymmetric delays across the strategies. This
scenario is more realistic than that of symmetric delays. Most of the work done related to
asymmetric delays have considered one delayed strategy and little is investigated when
both the strategies have distinct and nonzero delays. It is possible to investigate further
results in this context. Moreover, it would be interesting to analyze the Hopf bifurca-
tion in evolutionary dynamics by taking one delay as a bifurcation parameter. Another
interesting perspective is to consider asymmetric and interaction-dependent delays: in
this scenario there is an asymmetry across the interaction types, that is interactions be-
tween agents using the same strategy would take a delay value, whereas interactions
involving agents using different strategies would take another delay value. In addition,
by taking one delay as a bifurcation parameter, it is possible to examine the Hopf bifur-
cation and make a comparison with results obtained when delays are asymmetric and
strategy-dependent.
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8.2.2 Extension of The Community Framework

When considering heterogeneous populations composed of communities, it is important
to take account of special relations that may emerge among the communities. Indeed,
the complex relationships entertained between the agents might change dramatically
the evolutionary outcome. For instance, agents from the same community may exhibit
altruistic behaviors towards each other, and consequently a novel equilibrium definition
is suitable in this context, see for example the notion of equilibrium proposed in [113].
The appearance of coalition or cooperation between the communities is also expected.

Moreover, the communities can be linked with migration that may change the evo-
lutionary outcome. As an extension to the work related to the interactions between
groups or communities, it is interesting to introduce into the evolutionary dynamics the
possible migration between the groups. Hence, the growth rate of a given strategy in a
community may also depend on the rate at which agents or players in other groups mi-
grate to the considered community. The replicator dynamics can be extended to allow
the modeling of this phenomenon.

8.2.3 Economic Applications

Thanks to novel technology development, we are witnessing the appearance of a new
phenomenon in economics, which is the ‘uberization’ phenomenon, a form of the shar-
ing economy. This phenomenon has arisen in industrial sectors such as transportation,
through the transportation network company ‘Uber’ or through ’Blablacar’, hotel reser-
vations and housing, through the company ‘Airbnb’, bringing new entrants to these sec-
tors. In wireless industry, the uberization of wireless networks is also expected. Such
phenomenon results in the emergence of novel types of actors and the modification of
the value chain. For telecommunication operators, the main revenue is due to retail
services (network access). Moreover, the operators are facing important investments
in infrastructures for the bandwidth increase in the network access (such as 4G, 5G,
and optical fiber). However, faced to the network uberization, the competition among
the operators, and the regulation effects, their contribution to the value chain might be
significantly reduced. Consequently, they have to revise their contribution to the value
chain and review their business models. In particular, it becomes necessary for the op-
erators to think about a possible collaboration with new actors. In this context, game
theory and evolutionary game theory allow the modeling of the competition framework
between the actors and identify, for each actor of this competitive context, the best-reply
to this phenomenon.
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Appendix A : Stability of Corner and
Border Stationary Points

9.1 Nondelayed Replicator Dynamics

In our model, there exist four corner equilibrium points, four border equilibrium points
and a unique interior equilibrium. In order to study the stability of a stationary point s∗,
we make a linearization of the replicator dynamics around this point and we study the
Jacobian matrix. If all the eigenvalues of the Jacobian matrix have negative real parts
then the asymptotic stability follows. For the equilibrium point (0,0), we obtain the
following linear system: ẋ(t) = Ax(t) where,

A =

(

K1 0
0 K2

)

.

The eigenvalues of A (Jacobian matrix) are K1 and K2. Thus, the origin is asymptotically
stable if K1 < 0 and K2 < 0, and unstable if K1 > and K2 > 0. Doing the same for the
all the stationary points, we obtain the following result:

• The stationary point (0,0) is stable if K1 < 0 and K2 < 0; and unstable if K1 > 0
or K2 > 0;

• The stationary point (1,1) is asymptotically stable if p1L1+(1− p1)L12+K1 > 0
and p2L2 + (1− p2)L21 +K2 > 0; and unstable if p1L1 + (1− p1)L12 +K1 < 0
or p2L2 +(1− p2)L21 +K2 < 0;

The Jacobian matrix is given by:

(

−(p1L1 +(1− p1)L12 +K1) 0
0 −(p2L2 +(1− p2)L21 +K2)

)

.

• The stationary point (0,1) is asymptotically stable if (1− p1)L12 +K1 < 0 and
−(p2L2 +K2) < 0; and unstable if (1− p1)L12 +K1 > 0 or −(p2L2 +K2) > 0;

123



Chapter 9. Appendices

The Jacobian matrix is given by:
(

(1− p1)L12 +K1 0
0 −(p2L2 +K2)

)

.

• The stationary point (1,0) is asymptotically stable if p1L1 + K1 > 0 and (1−
p2)L21 +K2 < 0, and unstable if p1L1 +K1 < 0 and (1− p2)L21 +K2 > 0;

The Jacobian matrix is given by:
(

−(p1L1 +K1) 0
0 (1− p2)L21 +K2

)

.

• The stationary point (0,s∗2) where s∗2 = − K2

p2L2
is asymptotically stable if (1−

p1)L12s∗2 +K1 < 0 and L2 < 0. Indeed, the Jacobian matrix obtained by making a
linearisation around this equilibrium point is given by:

(

(1− p1)L12s∗2 +K1 0
γ2(1− p2)L21 γ2 p2L2

)

.

The eigenvalues of this triangular matrix are the diagonal terms, that is (1 −
p1)L12s∗2 +K1 and γ2 p2L2. The result follows.

• The stationary point (s∗1,0) where s∗1 = − K1

p1L1
is asymptotically stable if (1−

p2)L21s∗1 +K2 < 0 and L1 < 0. The Jacobian matrix is given by:
(

γ1 p1L1 γ1(1− p1)L12

0 (1− p2)L21s∗1 +K2

)

.

• The stationary point (1,s∗2) where s∗2 =−(1− p2)L21 +K2

p2L2
is asymptotically sta-

ble if −(p1L1 +(1− p1)L12s∗2 +K1) < 0 and L2 < 0;

The Jacobian matrix is given by:
(

−(p1L1 +(1− p1)L12s∗2 +K1) 0
γ2(1− p2)L21 γ2 p2L2

)

.

• The stationary point (s∗1,1) where s∗1 =−(1− p1)L12 +K1

p1L1
is asymptotically sta-

ble if L1 < 0 and −(p2L2 +(1− p2)L21s∗1 +K2) < 0.

The Jacobian matrix is given by:
(

γ1 p1L1 γ1(1− p1)L12

0 −(p2L2 +(1− p2)L21s∗1 +K2)

)

.
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9.2 Delayed Replicator Dynamics

In this section, we complete our analysis of delayed replicator dynamics. We study the
stability of corner and border stationary ESS in the presence of spatial delays.

9.2.1 Spatial Delays

We recall that the replicator dynamics with spatial delays is given by:

ṡ1(t) = s1(t)(1− s1(t))
[

p1L1s1(t)+ (1− p1)L12s2(t − τsp)+K1
]

, (9.1)

ṡ2(t) = s2(t)(1− s2(t))
[

p2L2s2(t)+ (1− p2)L21s1(t − τsp)+K2
]

. (9.2)

The linearization around (0,0) gives the following linear system:

ṡ(t) = As(t), (9.3)

We observe that the linearized replicator equations do not depend on τsp. Therefore, the
spatial delay does not affect the stability of the fully pure ESS.

Similarly, we can prove this result for partially mixed ESSs. Let us consider

s∗ = (0,s∗2) where s∗2 = − K2

p2L2
. The linearization around this equilibrium yields the

following system:

ṡ(t) = As(t)+Bs(t − τsp), (9.4)

where,

A =

(

(1− p1)L12s∗2 +K1 0
0 γ2 p2L2

)

.

and

B =

(

0 0
γ2(1− p2)L21 0

)

.

The characteristic equation is given by:

λ 2 −λ
(

γ2 p2L2 +(1− p1)L12s∗2 +K1

)

+ γ2 p2L2((1− p1)L12s∗2 +K1) = 0

The characteristic equation does not depend on τsp. Therefore, the spatial delay does
not affect the stability of the partially mixed ESS.
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Figure 9.1: Oscillations in the proportion of strategies in the second group in presence of
strategic delays.

9.2.2 Strategic Delays

The replicator dynamics with strategic delays is given by:

ṡ1(t) = s1(t)(1− s1(t))
[

p1L1s1(t − τst)+ (1− p1)L12s2(t − τst)+K1
]

, (9.5)

ṡ2(t) = s2(t)(1− s2(t))
[

p2L2s2(t − τst)+ (1− p2)L21s1(t − τst)+K2
]

. (9.6)

The linearization of the delayed replicator dynamics around s∗ = (0,0) yields to the
following linear system ẋ(t) = Ax(t) where,

A =

(

K1 0
0 K2

)

.

In the characteristic equation associated to the linearized system, the delay τst disap-
pears. Therefore, the fully pure ESS s∗ = (0,0) is asymptotically stable for any τst .
Similarly, we can prove the (local) asymptotic stability of all other fully pure ESSs for
any delay τst .

However, for the partially-mixed ESS, the stability can be lost; this is illustrated in
Fig. 9.1, where we observe permanent oscillations in the proportion of strategies in the
second community.
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