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Abstract

Taking into account uncertainties in structural mechanics is a real challenge and leads to intensive research activities. The aim is to increase the predictive capability of numerical models coupling computational mechanics and uncertainties. In this thesis, aleatory uncertainties are considered and uncertain inputs are defined by probabilistic laws. The outputs are statistical quantities: mean value, standard deviation and probability density functions of the structural responses.

The objective of this research is to develop a methodology based on the Certain Generalized Stresses Method (CGSM), for the static finite element analysis of plates and shells with variability. The basic assumption is that the generalized stresses do not depend on input parameters perturbations. The CGSM is a nonintrusive method that requires only one finite element analysis with some load cases to calculate the variability of mechanical quantities of interest. The statistical results are obtained by Monte Carlo simulations, using a semi-analytical formula. The uncertain input parameters are elasticity moduli, Poisson's ratios and thicknesses.

Uniform random parameters as well as random fields have been considered. The output parameters retained for the study are displacements and strains.

Several examples of membrane plates, bending plates, and homogeneous as well as multilayered shells, are treated. The results are compared with the direct Monte Carlo Simulation considered as a reference. Very satisfactory results are obtained for the mean value, standard deviation and probability densities of displacements and strains. The limitations of the methodology developed are also highlighted, in particular some discrepancies have been observed when random fields and very small correlation lengths are considered.

In summary the CGSM has several advantages. It allows an easy interfacing with standard finite element software, a large reduction of the high computational costs that characterize most of the existing approaches, and leads to accurate results. Consequently, application of the CGSM to real industrial examples is a promising perspective.

Résumé

La prise en compte des incertitudes en mécanique des structures constitue un challenge et mène à une importante activité de recherche. L'objectif est d'accroître la capacité prédictive des modèles numériques en couplant le calcul éléments finis et les incertitudes. Dans cette thèse, les incertitudes de type aléatoire sont considérées et les entrées incertaines sont définies par des lois statistiques. En sortie, les résultats sont des quantités statistiques : moyenne, écart-type et densité de probabilité des réponses de la structure.

L'objectif de cette recherche est de développer une méthodologie basée sur la méthode des efforts généralisés certains (CGSM) pour l'analyse statique par éléments finis des plaques et coques avec variabilité. L'hypothèse de base est que les efforts généralisés ne dépendent pas des perturbations des paramètres d'entrée.

La méthode CGSM est non intrusive et ne nécessite qu'une seule analyse par éléments finis avec un certain nombre de cas de charge pour calculer la variabilité des quantités d'intérêt. Les résultats statistiques sont obtenus par simulations de Monte Carlo, en utilisant une formule semi-analytique. Les paramètres d'entrée incertains sont les modules d'élasticité, les coefficients de Poisson et les épaisseurs.

Des variables aléatoires uniformes ainsi que des champs aléatoires sont considérés.

Les résultats observés sont les déplacements et les déformations.

Chapter 1 Introduction

Background

Improvement of the predictive capabilities of numerical models is currently a relevant challenge. Taking into account uncertainty and variability is one way to describe more closely the physical phenomena and so to increase the predictive capabilities of the numerical models. In an industrial context, several experimental studies have been performed and highlight uncertainty and variability phenomena, in particular in the vibration and acoustics domains. Some authors, namely Wood and Joachim [START_REF] Wood | Variability of interior noise levels in passenger cars[END_REF] and Kompella and Bernhard [START_REF] Kompella | Variation of structural acoustic characteristics of automotive vehicles[END_REF] published experimental results highlighting this phenomenom, in particular in the vibration and acoustic behavior of automotive systems. Indeed, the structural acoustic behaviour of complex built-up structures such as cars is known to be highly variable. Lionnet and Lardeur [START_REF] Lionnet | A hierarchical approach to the assessment of the variability of interior noise levels measured in passenger cars[END_REF] proposed a hierarchical approach to the assessment of the variability of interior noise levels measured in passenger cars.

Scigliano et al. [START_REF] Scigliano | Verification, validation and variability for the vibration study of a car windscreen modeled by finite elements[END_REF] and Arnoult et al. [START_REF] Arnoult | The modal stability procedure for dynamic and linear finite element analysis with variability[END_REF] studied the effect of the temperature changes on the windscreen vibration behaviour. The aim of these researches is to understand and then control the variability of industrial objects performances. In a mechanical system, there are a lot of potential sources of uncertainty and variability.

Indeed boundary conditions, loading, constitutive material laws, physical properties and geometry are generally nondeterministic.

The basic principle of computational mechanics is constructing mathematical and then numerical models describing the physical reality as well as possible in order to reproduce the experimental observations. Performance of numerical models continuously increases along with the advances of the technologies and the computational methods. However as stated by Sudret [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models[END_REF]:

…despite the increase in the accuracy of the representations and in the power of computers, models will never be able to catch comprehensively the complexity of the real world. Indeed, they always rely upon simplifying assumptions that are usually validated a posteriori by experimental evidence...

The complexity of computational mechanics is due to the inherent uncertainty in the system computational modeling. Figure 1-1 gives a classification of sources and types of uncertainty in mechanics. This figure also highlights the contribution domain of the thesis. We distinguish here between mechanical modeling uncertainty, numerical modeling uncertainty and parametric uncertainty.

Mechanical modeling uncertainty is due to the assumptions which lead to the mathematical model retained. It comprises namely the type of finite elements, constitutive laws including potential damage and rupture, boundary conditions and loading. Numerical modeling uncertainty is due to numerical choices. In particular the finite element mesh refinement level is a key point of this issue. In this thesis, we assumed that the mathematical model is correct, so the mechanical modeling uncertainty is not taken into account. However numerical modeling uncertainty is taken into account through the mesh issue. Parametric uncertainty comes from uncertainty of input parameters of the model: thicknesses, material properties... Parametric uncertainty is the main issue of this thesis. This problem can not be solved only by a classical deterministic calculation, but it needs a non deterministic approach. This process requires the identification of the input uncertainties in order to ensure results that are consistent with the physical reality. There are some constraints in the process of identification of the input uncertainties, such as the restrictions of budget, resources, knowledge and time [START_REF] Bae | Uncertainty quantification using evidence theory with a cost-effective algorithm[END_REF].

Uncertainty is classified in two types: aleatoric uncertainty and epistemic uncertainty. This issue is detailed and discussed in chapter 2. Recently, the interest for solving uncertain problems in computational mechanics has grown. The stochastic finite element method is a solution to resolve uncertain problems. The stochastic finite element method is an extension of the classical finite element method, described for example in Batoz and Dhatt [START_REF] Batoz | Modelisation des structures par elements finis[END_REF] and Katili [START_REF] Katili | Metode elemen hingga untuk pelat lentur[END_REF], where the deterministic finite element computation is combined with the non deterministic computation to solve uncertain problems. Until now intensive researches have been conducted to develop reliable, accurate and efficient stochastic finite element methods.

As already mentioned, taking into account uncertainty is useful to improve the predictive capability of numerical models. The impact of the benefits is a better understanding of real systems behaviors, enhanced confidence in system analysis results, improvement in a decision making situation, and robust system for possible uncertainties [START_REF] Bae | Uncertainty quantification using evidence theory with a cost-effective algorithm[END_REF]. Consequently taking into account uncertainty is one way to progress in the Verification and Validation process of finite element models. [START_REF] Helton | Quantification of margins and uncertainties: Conceptual and computational basis[END_REF][START_REF] Thacker | Concepts of model verification and validation[END_REF][START_REF] Roy | A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[END_REF][START_REF] Iaccarino | Introduction to uncertainty quantification in computational science[END_REF]. Indeed the major objective of this methodology is to increase the predictive capability of models. In particular validation which is the process of determining the degree to which a model is an accurate representation of the real world from the
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Type of uncertainty Sources of uncertainty perspective of the intended uses of the model, is clearly improved if uncertainty is considered. 

Problem statement

Objectives and scope of research

The global objective of this research is to develop a numerical method to account variability of material and physical properties for plate and shell structures in static analysis. The proposed method uses the Certain Generalized Stresses Method (CGSM). The CGSM was introduced by Lardeur et al. [START_REF] Lardeur | La méthode MEGC pour le calcul de dispersion du comportement statique des treillis[END_REF][START_REF] Lardeur | Application de la méthode MEGC aux treillis de barres hyperstatiques, Colloque national en calcul des structures[END_REF][START_REF] Lardeur | The Certain Generalized Stresses Method for the static finite element analysis of bar and beam trusses with variability[END_REF] for bar and beam structures. This method is based on the assumption that the generalized forces are independent of uncertain parameters. The CGSM applied to bar and beam structures has several advantages: it needs only one finite element analysis in the nominal configuration, and gives very accurate results.

The first goal of this research is to develope the CGSM formulation for plate and shell structures. The second goal is to form a stochastic finite element computation by combining Monte Carlo simulation with the CGSM. The method proposed is compatible with any standard finite element software.

Thesis outline

The structure of this thesis is organized as described hereafter. Finally, some directions for future research are outlined.

Chapter 2 Literature Review

First, review papers and books relative to our research issue are presented in this paragraph. The following papers give a review of research in stochastic finite element approaches : Schuëller [START_REF] Schuëller | A state-of-the-art report on computational stochastic mechanics[END_REF], Matthies et al. [START_REF] Matthies | Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements[END_REF], Sudret and Der Kiureghian [START_REF] Sudret | Stochastic finite element methods and reliability: A state of the art report[END_REF], Keese [START_REF] Keese | A review of recent developments in the numerical solution of stochastic partial differential equations (stochastic finite elements[END_REF], Stefanou [START_REF] Stefanou | The stochastic finite element method: Past, present and future[END_REF], Moens and Hanss [START_REF] Moens | Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances[END_REF], and Li and Chen [START_REF] Li | Wavelet-based numerical analysis: A review and classification[END_REF]. Some books and doctorate manuscripts also deal with uncertainty: stochastic methods in structural dynamics [START_REF] Schuëller | Stochastic methods in structural dynamics[END_REF][START_REF] Cho | Stochastic structural dynamics: Application of finite element methods[END_REF], probability methods [START_REF] Elishakoff | Probabilistic theory of structures[END_REF][START_REF] Papoulis | Probability, random variables and stochastic processes[END_REF][START_REF] Gatti | Probability theory and mathematical statistics for engineers[END_REF], general Stochastic Finite Element Method [START_REF] Field | Stochastic models: Theory and simulation[END_REF][START_REF] Schenk | Uncertainty assessment of large finite element systems[END_REF], Monte Carlo methods [START_REF] Hammersley | Monte Carlo Methods[END_REF][START_REF] Fishman | Monte Carlo: Concepts, algorithms, and applications[END_REF], spectral methods [START_REF] Ghanem | Stochastic finite elements method : A spectral Approach[END_REF][START_REF] Dongbin | Numerical methods for stochastic computations: A spectral method approach[END_REF], perturbation methods [START_REF] Shen | A two-step perturbation method in nonlinear analysis of beams, plates, and shells[END_REF], random fields [START_REF] Vanmarcke | Random fields: analysis and synthesis[END_REF][START_REF] Abrahamsen | A review Gaussian random fields and correlation functions[END_REF], uncertainty quantification and propagation [START_REF] Grigoriu | Stochastic systems: uncertainty quantification and propagation[END_REF][START_REF] Mulani | Uncertainty quantification in dynamic problems with large uncertainties[END_REF], and interval methods [START_REF] Moore | Methods and application of interval analysis[END_REF]. Papers relative to specific isues are presented in the next sections.

Input uncertainties

Different types of input uncertainties

Uncertainty may be due to inherent variability (irreducible uncertainty) or lack of knowledge (reducible uncertainty) [START_REF] Thacker | Concepts of model verification and validation[END_REF]. In mechanical problems, many types of input parameters may be uncertain: material properties (elasticity modulus, Poisson's ratio, yield stress), physical properties (thicknesses), geometry, loading, boundary conditions… The quality of uncertainty representation is a key point for the accuracy of the propagation of uncertainties that leads to the variability of outputs of interest.

Based on Oberkampf et al. [START_REF] Oberkampf | Error and uncertainty in modeling and simulation[END_REF][START_REF] Oberkampf | Challenge problems: uncertainty in system response given uncertain parameters[END_REF], uncertainty can be classified in two types, namely aleatoric uncertainty and epistemic uncertainty. Aleatoric uncertainty can be described as an inherent variation that is associated with the physical system or the environment. Random input and output variables are generally represented by statistical distributions, leading to a probabilistic approach. In this case, the probabilistic methods may be used if the experts can ensure the distribution. One distinguishes between discrete random variables and continuous random fields.

Stefanou [START_REF] Stefanou | The stochastic finite element method: Past, present and future[END_REF] distinguishes between three types of probabilistic methods: the Monte Carlo simulation, the perturbation stochastic finite element method, and the spectral stochastic finite element method. Epistemic uncertainty is caused by the lack of knowledge or information. Uncertain input and output parameters are defined by intervals. Moens and Hanss [START_REF] Moens | Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances[END_REF] or Mulani [START_REF] Mulani | Uncertainty quantification in dynamic problems with large uncertainties[END_REF] distinguish between several types of possibilistic methods, in particular interval analysis and fuzzy set theory. Other approaches which associate probabilistic and possibilistic concepts, for example the evidence theory [START_REF] Kompella | Variation of structural acoustic characteristics of automotive vehicles[END_REF], are developed.

The mathematical framework for propagation uncertainties is dependent on uncertainty characterization. Generally one distinguishes between three types of uncertainty characterization, namely: interval, probability distribution and membership function, as shown in Figure 2-1. The input uncertainties can be identified with data assimilation process [START_REF] Iaccarino | Introduction to uncertainty quantification in computational science[END_REF]. The data sources can come from results experimental observations, theoretical arguments, expert opinions. 

Probabilistic uncertainty quantification

In the probabilistic methods, the input variables X are defined by statistical laws. Several distribution laws exist: Gaussian or normal, uniform, lognormal, Weibull, etc. The distribution model selection depends on the characteristics of uncertainty model consideration [START_REF] Panayirci | Computational strategies for efficient stochastic finite element analysis of engineering structures[END_REF]. Log normal distribution may be used for properties to be modeled that are always positive [START_REF] Jones | Predicting surface vibration from underground railways through inhomogeneous soil[END_REF]. A lot of physical parameters are well modeled by Gaussian distributions. This is namely justified by the existence of the central limit theorem. Hills et al. [START_REF] Hills | Response statistics of stochastic built-up structures[END_REF] presented a statistical analysis of the response distribution of nominally identical automotive vehicles.

The distribution of acoustic transfer functions was shown to be a good fit to a Gaussian probability density function. The Gaussian distribution is probably the most commonly used model for random phenomena [START_REF] Field | Stochastic models: Theory and simulation[END_REF]. To prevent mathematical difficulties due to potential extreme values, truncated Gaussian laws are generally used.

A random field {𝐻(𝑥, 𝜃)} is a collection of random variables X where 𝑥 represents the spatial coordinates, 𝜃 represents a random process. Discretizing the random field {𝐻(𝑥, 𝜃)} consists in approximating it by {𝐻 ̂(𝑥, 𝜃)}, which is defined by means of a finite set of random variables (𝑋 1 , 𝑋 2 , 𝑋 3 , … , 𝑋 𝑛𝑋 ) [START_REF] Sudret | Comparison of finite element reliability methods[END_REF], grouped in a random vector {𝑋(𝜃)}:

{𝐻(𝑥, 𝜃)} {𝐻 ̂(𝑥, 𝜃)} = {𝑓(𝑥, {𝑋(𝜃)})} 2-1
In general, the discretization methods can be divided into two groups:

point discretization methods and average discretization methods. The objective of these methods mentioned below is to calculate the autocovariance matrix [𝐶𝑂𝑉]. In point discretization methods, {𝐻(𝑥, 𝜃)} is represented by a vector at some given points in the domain of discretization. According to Panayirci [START_REF] Panayirci | Computational strategies for efficient stochastic finite element analysis of engineering structures[END_REF], the accuracy and efficiency depend on the ratio between the correlation length and the size of the finite element used in the model, consequently the selection of the mesh is important. There are several point discretization methods: midpoint method (Der Kiureghian and Ke [START_REF] Der Kiureghian | The stochastic finite element method in structural reliability[END_REF]), shape function or interpolation method (Liu et al. [START_REF] Liu | Random field finite elements[END_REF][START_REF] Liu | Probabilistic finite elements for nonlinear structural dynamics[END_REF], integration point method (Brenner and Bucher [50]). In the midpoint method, the random field is discretized at the centroid of each element. This method is simple and applicable with any probability distribution. Many researchers used this method such as Lee and Mosalam [START_REF] Lee | Probabilistic fiber element modeling of reinforced concrete structures[END_REF], Charmpis et al. [START_REF] Charmpis | The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science[END_REF], Ching and Phoon [START_REF] Ching | Effect of element sizes in random field finite element simulations of soil shear strength[END_REF],

etc. In the shape function or interpolation method, the random field can be discretization discretized at selected points as a nodal coordinate. Compared to the midpoint method, the advantage is that the continuity of the random field is better respected.

In the integration point method, the random field is discretized at the integration points of the finite elements. Matthies et al. [START_REF] Matthies | Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements[END_REF] stated the advantage of this method is its applicability for short correlation lengths.

In average discretization methods, the random variables are weighted integrals of {𝐻(𝑥, 𝜃)} over a domain. Several methods are classified in the average discretization methods: optimal linear estimation method (OLE) (Li and Der Kiureghian [START_REF] Li | Optimal Discretization of Random Fields[END_REF]), local average method (Vanmarcke et al. [START_REF] Vanmarcke | Stochastic Finite Element Analysis of Simple Beams[END_REF][START_REF] Vanmarcke | Random fields and stochastic finite elements[END_REF]), weighted integral method (Deodatis [START_REF] Deodatis | Weighted Integral Method. I: Stochastic Stiffness Matrix[END_REF], and Deodatis and Shinozuka [START_REF] Deodatis | Weighted Integral Method. II: Response Variability and Reliability[END_REF]).

When one of these point discretization methods or averaged discretization methods has been exploited, the random field is generally represented by series discretization methods. These series involve random variables and deterministic spatial functions. The random field {𝐻(𝑥, 𝜃)} can be defined in the general form:

{𝐻(𝑥, 𝜃)} = {𝑚(𝑋)} + ∑ ℎ 𝑖 (𝑥){𝑋 𝑖 (𝜃)} 𝑛𝑋 𝑖=1
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where 𝑥 represents the spatial coordinates, {𝑚(𝑋)} is the mean of the random field, 𝜃 represents a random process, nX is the number of random variables, {𝑋 𝑖 (𝜃)} is a vector of random variables, and ℎ 𝑖 (𝑥) is a basis function.

Several series discretization methods exist: singular value decomposition (Gerbrands [59]), Karhunen-Loève expansion (Loève [START_REF] Loève | Probability theory II[END_REF], Ghanem and Spanos [START_REF] Ghanem | Stochastic finite elements method : A spectral Approach[END_REF]), spectral representation (Shinozuka and Deodatis [START_REF] Shinozuka | Simulation of stochastic processes by spectral representation[END_REF], Grigoriu [START_REF] Grigoriu | On the spectral representation method in simulation[END_REF]), and polynomial chaos expansion (Wiener [START_REF] Wiener | The homogeneous chaos[END_REF], Sakamoto and Ghanem [START_REF] Sakamoto | Polynomial Chaos Decomposition for the Simulation of Non-Gaussian Nonstationary Stochastic Processes[END_REF]). The singular value decomposition is described in more detail in section 3.8.2. The advantage of series discretization methods is they are able to reduce high dimensional and variable set of data points to a lower dimensional space [START_REF] Baker | Singular value decomposition tutorial[END_REF].

In the Karhunen-Loève expansion, the set of basis functions used ℎ 𝑖 (𝑥)

(equation 2-2) is: ℎ 𝑖 (𝑥) = √𝜆 𝑖 𝜅 𝑖 (𝑥) 2-3
where 𝜆 𝑖 and 𝜅 𝑖 are the eigenvalues and the eigenfunctions of the autocovariance matrix [𝐶𝑂𝑉]. Phoon et al. [START_REF] Phoon | Comparison between Karhunen-Loeve and wavelet expansions for simulation of Gaussian processes[END_REF] and Pranesh and Gosh [START_REF] Pranesh | Faster computation of the Karhunen-Loève expansion using its domain independence property[END_REF] proposed improvements to increase the efficiency of this method. Li et al. [START_REF] Li | Comparison between Karhunen-Loève expansion and translation-based simulation of non-Gaussian processes[END_REF] developed it for the simulation of non-Gaussian random fields.

The spectral representation method proposed by Grigoriu [START_REF] Grigoriu | On the spectral representation method in simulation[END_REF] expands the random field as a sum of trigonometric functions with random phase and amplitudes:

{𝐻 ̂(𝑥, 𝜃)} = ∑ 𝐴 𝑖 𝑐𝑜𝑠(𝜔 𝑖 {𝑥} + {𝑋 𝑖 (𝜃)}) 𝑛𝑋-1 𝑖=0
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where 𝐴 𝑖 = √2 𝑆(𝜔 𝑖 ) Δ𝜔, 𝜔 𝑖 = 𝑛 Δ𝜔, Δ𝜔 = 𝜔 𝑖 𝑛𝑋 and i = 0,1,2,..,nX-1.

The polynomial chaos expansion was proposed by Wiener [START_REF] Wiener | The homogeneous chaos[END_REF] and Sakamoto and Ghanem [START_REF] Sakamoto | Polynomial Chaos Decomposition for the Simulation of Non-Gaussian Nonstationary Stochastic Processes[END_REF]. The advantage of this method is its ability to generate sample function of non-Gaussian distribution by using classical polynomial chaos decomposition [START_REF] Stefanou | The stochastic finite element method: Past, present and future[END_REF], with a random vector (equation 2-1):

{𝐻 ̂(𝑥, 𝜃)} = ∑ ℎ 𝑖 (𝑥) 𝜓 𝑖 {𝑋 𝑖 (𝜃)} 𝑝 𝑖=0
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where 𝜓 𝑖 {𝑋 𝑖 (𝜃)} is the chaos basis function and ℎ 𝑖 (𝑥) refers to deterministic coefficients. 

Propagation approaches and methods for stochastic

Figure 2-2 Global process for stochastic finite element problems

As mentioned in section 2.1.1, the uncertainty approaches can be classified into two major categories: probabilistic and possibilistic. For each type of approach, a large number of methods exist. In this section, the following methods: Monte Carlo simulation, perturbation, spectral finite element method, interval, fuzzy, CGSM, are presented.

Finite element computation

Error model : The main drawback of this method is that it requires a lot of trials, leading to an expensive computational cost. Schenk and Schuëller [START_REF] Schenk | Uncertainty assessment of large finite element systems[END_REF] state the estimation error of the Monte Carlo simulation is arround 𝑁 -1 2 .

Several techniques were developed to accelerate the convergence of the Monte Carlo simulation. The first type of approach leads to a reduction of the number of trials: latin squares (latin hypercube sampling, LHS) [START_REF] Olsson | Latin Hypercube Sampling for Stochastic Finite Element Analysis[END_REF][START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF], adaptive sampling [START_REF] Au | A new adaptive importance sampling scheme for reliability calculations[END_REF], subset simulation [START_REF] Wang | Efficient functional reliability estimation for a passive residual heat removal system with subset simulation based on importance sampling[END_REF][START_REF] Au | First excursion probabilities for linear systems by very efficient importance sampling[END_REF][START_REF] Ching | Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting[END_REF], line sampling [START_REF] Pradlwarter | Application of line sampling simulation method to reliability benchmark problems[END_REF] and Sobol method [START_REF] Martini | Développement et évaluation de l'hypothèse de stabilité modale pour la variabilité du comportement vibratoire des structures minces modélisées par éléments finis[END_REF][START_REF] Blatman | Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[END_REF]. The second type of approach leads to the reduction of the computational time for each trial, by using for example the spectral representation for uncertainty quantification [START_REF] Argyris | Stochastic finite element analysis of shells[END_REF][START_REF] Charmpis | Improving the computational efficiency in finite element analysis of shells with uncertain properties[END_REF][START_REF] Papadrakakis | Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation[END_REF][START_REF] Noh | Monte Carlo simulation-compatible stochastic field for application to expansion-based stochastic finite element method[END_REF] or by using Neumann expansion method [START_REF] Chakraborty | Stochastic finite element simulation of random structure on uncertain foundation under random loading[END_REF][START_REF] Da | New method for efficient Monte Carlo-Neumann solution of linear stochastic systems[END_REF][START_REF] Yamazaki | Neumann Expansion for Stochastic Finite Element Analysis[END_REF]. Another well-known approach consists in using design of experiments and surface response models. In this case, the trials are performed using the response surface model rather than the finite element model.

Perturbation method

The perturbation approach [START_REF] Shen | A two-step perturbation method in nonlinear analysis of beams, plates, and shells[END_REF][START_REF] Liu | Random field finite elements[END_REF][START_REF] Liu | Probabilistic finite elements for nonlinear structural dynamics[END_REF][START_REF] Cambou | Application of first-order uncertainty analysis in the finite element method in linear elasticity[END_REF][START_REF] Rahman | A perturbation method for stochastic meshless analysis in elastostatics[END_REF][START_REF] Elishakoff | Improved finite element method for stochastic problems[END_REF][START_REF] Falsone | A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters[END_REF][START_REF] Kamiński | Generalized perturbation-based stochastic finite element method in elastostatics[END_REF][START_REF] Chang | Finite element analysis of nonlinear shell structures with uncertain material property[END_REF][START_REF] Henriques | Efficient analysis of structural uncertainty using perturbation techniques[END_REF][START_REF] Xia | Transformed perturbation stochastic finite element method for static response analysis of stochastic structures[END_REF] is based on a Taylor series expansion of the response vector. The Taylor series expansion of the stiffness in the stochastic system can be expressed as:

[𝐾] = [𝐾 0 ] + ∑[𝐾 𝑖 ′ ] 𝑛𝑋 𝑖=1 𝑋 𝑖 + 1 2 ∑ ∑[𝐾 𝑖𝑗 ′′ ] 𝑛𝑋 𝑗=1 𝑛𝑋 𝑖=1 𝑋 𝑖 𝑋 𝑗 + ⋯ 2-10
where

[𝐾 𝑖 ′ ] = [𝜕𝐾] 𝜕𝑋 𝑖 | 𝑋=0 and [𝐾 𝑖 ′′ ] = [𝜕 2 𝐾] 𝜕𝑋 𝑖 𝜕𝑋 𝑗 | 𝑋=0 2-11
and {𝑋 𝑖 } = (𝑋 1 , 𝑋 2 , 𝑋 3 , … , 𝑋 𝑛𝑋 ) is a random vector containting the random variables.

Similiarly the loading and the response can be defined by:

{𝐹} = {𝐹 0 } + ∑{𝐹 𝑖 ′ } 𝑛𝑋 𝑖=1 𝑋 𝑖 + 1 2 ∑ ∑{𝐹 𝑖𝑗 ′′ } 𝑛𝑋 𝑗=1 𝑛𝑋 𝑖=1 𝑋 𝑖 𝑋 𝑗 + ⋯ 2-12 {𝑈} = {𝑈 0 } + ∑{𝑈 𝑖 ′ } 𝑛𝑋 𝑖=1 𝑋 𝑖 + 1 2 ∑ ∑{𝑈 𝑖𝑗 ′′ } 𝑛𝑋 𝑗=1 𝑛𝑋 𝑖=1 𝑋 𝑖 𝑋 𝑗 + ⋯ 2-13
If the loading is considered deterministic ({𝐹} = {𝐹 0 } and {𝐹 𝑖 ′ } = {𝐹 𝑖𝑗 ′′ } = 0) , the displacement is:

{𝑈 0 } = [𝐾 0 ] -1 {𝐹 0 } 2-14 {𝑈 𝑖 ′ } = [𝐾 0 ] -1 (-[𝐾 𝑖 ′ ]{𝑈 0 }) 2-15 {𝑈 𝑖𝑗 ′′ } = [𝐾 0 ] -1 (-[𝐾 𝑖 ′ ]{𝑈 𝑗 ′ } -[𝐾 𝑗 ′ ]{𝑈 𝑖 ′ } -[𝐾 𝑖𝑗 ′′ ]{𝑈 0 }) 2-16
The second order estimate of the mean of displacement is:

{𝑚(𝑈)} = {𝑈 0 } + 1 2 ∑ ∑{𝑈 𝑖𝑗 ′′ } 𝑛𝑋 𝑗=1 𝑛𝑋 𝑖=1 𝐶𝑜𝑣(𝑋 𝑖 , 𝑋 𝑗 ) 2-17
where 𝐶𝑜𝑣(𝑋 𝑖 , 𝑋 𝑗 ) is the covariance between 𝑋 𝑖 and 𝑋 𝑗 as defined in equation 3-22.

Initially the perturbation method was applicable for small variations (< 10%) of the input variables [START_REF] Sudret | Stochastic finite element methods and reliability: A state of the art report[END_REF]. The computational cost may be high for large problems due to the calculation of the partial derivatives [𝐾 𝑖 ′ ] and [𝐾 𝑖 ′′ ] [START_REF] Stefanou | The stochastic finite element method: Past, present and future[END_REF]. Some authors, for example Falsone and Impollonia [START_REF] Falsone | A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters[END_REF], proposed improvements of the perturbation method to overcome this drawback.

Spectral stochastic finite element method

The Spectral Stochastic Finite Element Method (SSFEM) was proposed by Ghanem and Spanos [START_REF] Ghanem | Stochastic finite elements method : A spectral Approach[END_REF][START_REF] Ghanem | Spectral Stochastic Finite-Element Formulation for Reliability Analysis[END_REF]. This method uses Karhunen-Loève expansion (see equations 2-2 and 2-3) to model the uncertain input parameters and polynomial chaos expansion to calculate the propagation of response. In the SSFEM, the stiffness matrix of an element is expressed as:

[𝐾] = ∑[𝐾 𝑖 ] ∞ 𝑖=0 𝑋 𝑖 (𝜃) 2-18
where [𝐾 0 ] is the nominal stiffness matrix, 𝜃 represents a random process, 𝑋 𝑖 are uncorrelated Gaussian random variables (except for 𝑖 = 0 indeed 𝑋 0 = 1), [𝐾 𝑖 ] are deterministic matrices defined as:

[𝐾 𝑖 ] = √𝜆 𝑖 (𝑥) ∫ 𝜅 𝑖 (𝑥) [𝐵] 𝑇 [𝐻 0 ] [𝐵] 𝑑Ω 𝑖 Ω 𝑖
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where [𝐵] is the strain-displacement matrix and [𝐻 0 ] is the mean value of the constitutive matrix. For 𝜆 𝑖 (𝑥) and 𝜅 𝑖 (𝑥) see equation 2-3. Using polynomial chaos expansion, the stochastic displacement vector 𝑈(𝜃) can be written as:

{𝑈(𝜃)} = ∑ {𝑈 𝑗 } ∞ 𝑗=0 𝜓 𝑗 (𝜃) 2-20
where {𝑈 𝑗 } is a set of nodal displacement coefficients and 𝜓 𝑗 (𝜃) are orthonormal polynomials that define the so-called series polynomial chaos. The finite element equilibrium for deterministic loading is given by:

(∑[𝐾 𝑖 ] ∞ 𝑖=0 𝑋 𝑖 (𝜃)) . (∑ {𝑈 𝑗 } ∞ 𝑗=0 𝜓 𝑗 (𝜃)) -{𝐹} = 0 2-21
For computational purpose, the series expansion in the equation 2-21 are truncated with a finite number of terms using KL+1 terms of Karhunen-Loève expansion for the stiffness matrix expansion and P terms of polynomial chaos expansion for the displacement vector expansion. The solution of equation 2-21 is obtained by minimizing the residual in a mean square sense [START_REF] Sudret | Stochastic finite element methods and reliability: A state of the art report[END_REF].

In its initial version, the SSFEM was limited and only applicable for a small number of degrees of freedom. There were several attempts to solve equation 2-21 more efficiently by using block diagonal-sparse for matrix [𝐾], Krylov-type iterative techniques to reduce matrix-vector products [START_REF] Ghanem | Numerical solution of spectral stochastic finite element systems[END_REF][START_REF] Pellissetti | Iterative solution of systems of linear equations arising in the context of stochastic finite elements[END_REF], and ad hoc iterative solution techniques [START_REF] Nouy | An extended stochastic finite element method for solving stochastic partial differential equations on random domains[END_REF][START_REF] Nouy | Generalized spectral decomposition method for solving stochastic finite element equations: Invariant subspace problem and dedicated algorithms[END_REF]. Several studies on the non-intrusive approach in the SSFEM have been proposed, such as Ghiocel and Ghanem [START_REF] Ghiocel | Stochastic finite element analysis of seismic soil-structure interaction[END_REF] who used projection method and Berveiller et al. [START_REF] Berveiller | Stochastic finite element: a non-intrusive approach by regression[END_REF] and Blatman and Sudret [START_REF] Blatman | Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[END_REF] who used regression method. The disadvantage of the SSFEM is the quality of the results depends on the dimension of polynomials.

Interval analysis

The interval analysis was initiated by Moore [START_REF] Moore | Methods and application of interval analysis[END_REF] in 1958. In the interval analysis, the uncertain variables are described by upper and lower bounds. The aim of the interval analysis is to find upper and lower bound of any of the response variables. There are essentially two approaches in the interval analysis [START_REF] Moens | Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances[END_REF], namely interval arithmetic approach and global optimisation approach.

Interval arithmetic approach is conducted by using interval arithmetic operations. For example, considering two intervals 𝑋1 = [𝑋1 𝑚𝑖𝑛 , 𝑋1 𝑚𝑎𝑥 ] and 𝑋2 = [𝑋2 𝑚𝑖𝑛 , 𝑋2 𝑚𝑎𝑥 ], the operations on 𝑋1 and 𝑋2 can be defined by [START_REF] Dessombz | Interval structural analysis of uncertain mechanical systems: static and dynamic cases[END_REF]: A well-known problem is that the interval arithmetic overestimates the response interval. As reported by Moens and Hanss [START_REF] Moens | Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances[END_REF], attempts have been made to limit this conservatism [START_REF] Koyliioglu | Interval algebra to deal with pattern loading and structural uncertainties[END_REF][START_REF] Mullen | Bounds of structural response for all possible loading combinations[END_REF][START_REF] Dessombz | Analysis of mechanical systems using interval computations applied to finite element methods[END_REF].

𝑋1 + 𝑋2 = [𝑋1 𝑚𝑖𝑛 + 𝑋2 𝑚𝑖𝑛 , 𝑋1 𝑚𝑎𝑥 + 𝑋2 𝑚𝑎𝑥 ] 𝑋1 -𝑋2 = [𝑋1 𝑚𝑖𝑛 -𝑋2 𝑚𝑎𝑥 ,
The global optimisation approach can also be used for the interval analysis.

Indeed, the objective of an interval analysis is to identify the lower and bigger bounds of an output quantity of interest, leading to minimization and maximization problems. Several studies contributed to this approach: Majumder and Rao [START_REF] Majumder | Interval-based optimization of aircraft wings under landing loads[END_REF],

Xu and Qiu [START_REF] Xu | Free vibration analysis and optimization of composite lattice truss core sandwich beams with interval parameters[END_REF], and Santoro et al. [START_REF] Santoro | Optimization and antioptimization solution of combined parameterized and improved interval analyses for structures with uncertainties[END_REF].

Fuzzy set theory

Zadeh [START_REF] Zadeh | Fuzzy sets[END_REF] initiated the development of the fuzzy set theory. Moens and

Vandepitte [START_REF] Moens | A survey of non-probabilistic uncertainty treatment in finite element analysis[END_REF] presented a review of the main methods developed in this domain.

A fuzzy set can be interpreted as an extension of a conventional interval. Where a classical set clearly distinguishes between members and non-members of the set, the fuzzy set introduces a degree of membership, represented by the membership function. This membership function describes the grade of membership to the fuzzy set for each element in the domain. The concept allows membership values comprised between zero and one. This enables the representation of a value that is only to a certain degree member of the set (𝛼). Examples of membership functions are given in Figure 23. A discretized approximation of the output membership functions can be obtained by repeating the 𝛼-cut procedure at a number of membership levels.

Consequently, a fuzzy numerical analysis can be replaced by a sequence of interval numerical analyses. Illustration of this procedure can be seen in Figure 234.

Figure 2-4 𝛼-cut procedure applied at three membership levels on a function with two inputs and two outputs [START_REF] Moens | Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances[END_REF] Several papers deal with recent advances in fuzzy finite element methods.

Sawyer and Rao [START_REF] Sawyer | Strength-based reliability and fracture assessment of fuzzy mechanical and structural systems[END_REF] studied the strength-based reliability of fuzzy structural and mechanical systems. Massa et al. [START_REF] Massa | A fuzzy procedure for the static design of imprecise structures[END_REF][START_REF] Massa | A complete method for efficient fuzzy modal analysis[END_REF] used optimisation technique and Taylor expansion to speed up the exact goal function. Farkas et al. [START_REF] Farkas | Fuzzy finite element analysis based on reanalysis technique[END_REF] studied reanalysisbased FEM with the purpose of reducing computational cost of the repeated deterministic FE solutions that arise in a fuzzy FE analysis.

The Certain Generalized Stresses Method

The CGSM was initiated by Lardeur et al. [START_REF] Lardeur | La méthode MEGC pour le calcul de dispersion du comportement statique des treillis[END_REF][START_REF] Lardeur | Application de la méthode MEGC aux treillis de barres hyperstatiques, Colloque national en calcul des structures[END_REF][START_REF] Lardeur | The Certain Generalized Stresses Method for the static finite element analysis of bar and beam trusses with variability[END_REF]. This method accelerates the mechanical computation in the stochastic finite element approach.

Up to now this method has essentially been developed in the context of a probabilistic approach. Applications have been conducted on bar and beam structures [START_REF] Lardeur | La méthode MEGC pour le calcul de dispersion du comportement statique des treillis[END_REF][START_REF] Lardeur | Application de la méthode MEGC aux treillis de barres hyperstatiques, Colloque national en calcul des structures[END_REF][START_REF] Lardeur | The Certain Generalized Stresses Method for the static finite element analysis of bar and beam trusses with variability[END_REF]. In this thesis the CGSM is developed and evaluated for membrane plates, bending plates and shells. For shells, single-layered as well as multilayered structures, made of isotropic materials, are considered.

Chapter 3 Methodological Aspects

Introduction

This chapter introduces the main methodological aspects which are necessary for the approaches based on the CGSM developed in this study; these methodological aspects are exploited in chapters 4, 5 and 6. First the principle of the CGSM is recalled. Then the first and second Castigliano's theorems are described. Namely, the second Castigliano's theorem is exploited for the CGSM.

Lardeur et al. [START_REF] Lardeur | La méthode MEGC pour le calcul de dispersion du comportement statique des treillis[END_REF][START_REF] Lardeur | Application de la méthode MEGC aux treillis de barres hyperstatiques, Colloque national en calcul des structures[END_REF][START_REF] Lardeur | The Certain Generalized Stresses Method for the static finite element analysis of bar and beam trusses with variability[END_REF] developed the CGSM formulations which uses the Castigliano's second theorem, for calculating the displacement variability in structures made of bars and beams. In this study we develop the CGSM formulations for more complex structures, namely membrane plates, bending plates, and homogeneous as well as heterogeneous shells. Some general comments are given about the nominal finite element analysis required in the CGSM. The relations between the generalized stresses and strains are also described, for the homogeneous as well as the heterogeneous case. The description of the different types of uncertain input parameters taken into account is given. In this study, material and physical parameters may be uncertain. Uncertainty modeling is also described. In particular, one distinguishes between random variables and random fields. Random fields require a specific treatment and the methodology used to describe random fields is detailed. The spatial discretization is also a key point of the finite element analysis with variability. Our approach about this issue is presented. Finally several error criteria are used to assess the CGSM. These criteria are described and justified.

Principle of the Certain Generalized Stresses Method

The flowchart of the CGSM is shown in Figure 3-1. The principal process described in this figure is valid for all types of thin-walled structures: bars, beams, plates and shells. The CGSM is based on the assumption that the generalized stresses are independent of the uncertain parameters. Thanks to this assumption, only one finite element run with some load cases, in the nominal configuration, is necessary to calculate the generalized stresses. It is then possible to calculate the internal strain energy of the system for all values of uncertain parameters without further finite element analysis. The displacement of a point of the structure is evaluated using Castigliano's theorem. A simplified expression of the displacement is then obtained. By using this expression, a Monte Carlo simulation is performed to calculate the mean value, standard deviation and distribution of the displacement.

For some types of structures, the mean value and the standard deviation can also be obtained analytically. The CGSM is a non intrusive method and it is compatible with the use of any standard finite element software. In this study, Abaqus [START_REF] Abaqus | Standard User's Manual[END_REF] has been used to treat the examples. In particular, the finite elements S3 and S4 of Abaqus have been used. Moreover, the finite element DKMQ [START_REF] Katili | A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part II: An extended DKQ element for thick-plate bending analysis[END_REF] has been implemented in Abaqus as a user's element.

Finally, the CGSM can be considered as a post-treatment of one standard finite element calculation. In this study, Abaqus is used for the nominal finite element analysis and Matlab [START_REF]MATLAB tutorials and learning resources[END_REF] is exploited for the post-treatment stage. To calculate the variability at n points, one finite element analysis with 2n load cases at most are needed. This finite element analysis is performed in the nominal configuration, so for the different load cases the stiffness matrix is always the same and consequently, this matrix has to be inverted only once. This is an advantage from the computational time point of view. The first partial derivative of the total internal energy (strain energy) in a structure with respect to any particular deflection component at a point is equal to the force applied at that point and in the direction corresponding to that deflection component.

𝐹 = 𝜕𝜋 𝑖𝑛𝑡 𝜕𝑈 3-1

This first theorem is applicable to linear or nonlinear elastic structures in which the temperature is constant and the supports are unyielding.

II. Castigliano's second theorem

The first partial derivative of the total internal energy in a structure with respect to the force applied at any point is equal to the deflection at the point of application of that force in the direction of its line of action.

𝑈 = 𝜕𝜋 𝑖𝑛𝑡 𝜕𝐹 3-2
The second theorem of Castigliano is applicable to linear elastic (Hookean material) structures with constant temperature and unyielding supports.

In order to apply the Castigliano's theorem for calculating the displacement 𝑈 at a point P in a given direction, generalized stresses are decomposed into two contributions:

𝐹 𝑔𝑠 = 𝐹 𝑔𝑠 ′ + 𝐹𝐹 𝑔𝑠 ′′ 3-3
where F is the load applied at point P in the direction of interest; 𝐹 𝑔𝑠 are the generalized stresses; 𝐹 𝑔𝑠 ′ are the generalized stresses due to loads on the whole structure except at point P in the direction of interest; 𝐹 𝑔𝑠 ′′ are the generalized stresses due to a unit load applied at point P in the direction of interest.

Derivation of CGSM formulation for displacement

In this section the main steps of the derivation of the CGSM formulation for calculating the variability of displacements are given.

a. Writing the expression of the total strain energy which contains the nominal generalized stresses and all the uncertain parameters (material properties, thicknesses…): The CGSM also allows the calculation of the variability of strains. This issue is discussed in detail in chapter 4.

𝜋 𝑖𝑛𝑡 = 𝑓 1 (𝑁, 𝑀, 𝑇, 𝐸, 𝑣, ℎ ) 3 

Nominal finite element analysis

The CGSM only requires one nominal finite element analysis with several load cases for the calculation of the displacement variability. The detailed processes have been explained in the section 3.2. The CGSM needs the nominal generalized stresses. These generalized stresses may be obtained with any finite element software and are exported in a development software (ex: Matlab) for the treatment of variability. Moreover, any type of element (triangular or quadrilateral) is compatible with the CGSM. Finally the CGSM is a non-intrusive method.

Generalized constitutive laws

Relationship between generalized stresses and strains depends on the type of material. Homogeneous as well as heterogeneous materials are considered.

The relationship between the generalized stresses 〈𝑁 𝑀 𝑇〉 and strains 〈𝜀  𝛾〉 for a homogeneous and isotropic material is given hereafter.

a. Membrane: relationship between axial forces {𝑁} and in-plane strains {𝜀}:

{𝑁} = ℎ[𝐻]{𝜀} 3-7 { 𝑁 𝑥 𝑁 𝑦 𝑁 𝑥𝑦 } = 𝐸ℎ 1 -𝑣 2 [ 1 𝑣 0 𝑣 1 0 0 0 1 -𝑣 2 ] { 𝜀 𝑥 𝜀 𝑦 𝛾 𝑥𝑦 }
b. Bending: relationship between moments {𝑀} and curvatures {}:

{𝑀} = ℎ 3 12 [𝐻]{} { 𝑀 𝑥 𝑀 𝑦 𝑀 𝑥𝑦 } = 𝐸ℎ 3 12(1 -𝑣 2 ) [ 1 𝑣 0 𝑣 1 0 0 0 1 -𝑣 2 ] {  𝑥  𝑦  𝑥𝑦 } 3-8 c.
Transverse shear: relationship between transverse shear forces {𝑇} and out-ofplane shear strains {𝛾}:

{𝑇} = 𝑘 𝑠 [𝐻 𝑠 ]{𝛾} { 𝑇 𝑥 𝑇 𝑦 } = 𝑘 𝑠 𝐺 ℎ [ 1 0 0 1 ] { 𝛾 𝑥𝑧 𝛾 𝑦𝑧 } 3-9 𝐺 = 𝐸 2 (1 + 𝑣) 3-10
where [𝐻] is the plane stress elasticity matrix, [𝐻 𝑠 ] is the transverse shear elasticity matrix, ℎ is the thickness, 𝐸 is the elasticity modulus, 𝑣 is the Poisson's ratio, 𝐺 is the shear modulus, and 𝑘 𝑠 is the transverse shear correction factor.

As far as multilayered composite structures are concerned, several references give detailed information leading to the generalized constitutive laws.

These details are not given here, the reader can refer for example to the following books: Ashton and Whitney [START_REF] Ashton | Theory of laminated plates[END_REF], Nettles [START_REF] Nettles | Basics mechanics of laminated composite plates[END_REF], Reddy [START_REF] Reddy | Mechanics of laminated composite plates and shells[END_REF], Berthelot [START_REF] Berthelot | Matériaux composites: Comportement mécanique et analyse des structures[END_REF]. The relationship between the generalized stresses 〈𝑁 𝑀 𝑇〉 and strains 〈𝜀  𝛾〉 for a multilayered isotropic structure made of isotropic materials is: 

{

3-11

where: 

𝐴 𝑖𝑗 = ∑ 𝐻 𝑖𝑗 𝑘 (ℎ 𝑘 -ℎ 𝑘-1 ) 𝑛𝑘 𝑖=1 𝐵 𝑖𝑗 = 1 2 ∑ 𝐻 𝑖𝑗 𝑘 (ℎ 𝑘 2 -ℎ 𝑘-1 2 ) 𝑛𝑘 𝑖=1 𝐷 𝑖𝑗 = 1 3 ∑ 𝐻 𝑖𝑗 𝑘 (ℎ 𝑘 3 -ℎ 𝑘-1 3 ) 𝑛𝑘 𝑖=1 𝐹 𝑖𝑗 = 𝑘 𝑠 ∑ 𝐻𝑠 𝑖𝑗 𝑘 (ℎ 𝑘 -ℎ 𝑘-1 ) 𝑛𝑘 𝑖=1 3 

Uncertain input parameters

The uncertain input parameters are the material and physical properties.

The uncertain material properties are the elasticity modulus E and Poisson's ratio ; the uncertain physical property is the thickness h. These uncertain parameters can be quantified by using random variables or random fields.

Uncertainty modelling

Stochastic models are considered for material and physical properties as explained in the previous section. This thesis uses a probabilistic approach. The CGSM is compatible with any distribution law without any specific difficulty, in this study essentially truncated Gaussian laws are exploited. In this study the truncation meets the so-called ±3𝜎 rule. Indeed, as stated in section 2.1.2, the Gaussian distribution is the most commonly used model for random phenomena.

There are two models of uncertainty which are considered, namely random variables and random fields.

Gaussian random variables

Random variables are defined by a Cumulative Distribution Function (CDF), 𝐹(𝑥) :

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥), - ≤ 𝑥 ≤  3-13
or its Probability Density Function (PDF), 𝑓(𝑥):

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥) 𝑑𝑥  -
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with function 𝑓(𝑥) for Gaussian distribution:

𝑓(𝑥) = 1 √2𝜋 𝜎 𝑒𝑥𝑝 [- 1 2 ( 𝑥 -𝑚(𝑋) 𝜎 ) 2 ] , - ≤ 𝑥 ≤ 

3-15

The relation between 𝑓(𝑥) and the Cumulative Distribution Function (CDF) is:

𝑓(𝑥) = 𝑑𝐹(𝑥) 𝑑𝑥 3- 16 
with:

𝐹(𝑥) = 1 √2𝜋 𝜎 ∫ 𝑒𝑥𝑝 [- 1 2 ( 𝑥 -𝑚(𝑋) 𝜎 ) 2 ] 𝑑𝑥  -
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The first moment is the mean of 𝑋, defined by: 

𝑚(𝑋) = ∫ 𝑥 𝑓(𝑥) 𝑑𝑥  - 3 

Random fields

Random fields allow continous random variations of inputs with the multiple probabilistic variables (𝑋 1 , 𝑋 2 , 𝑋 3 , … , 𝑋 𝑛 ). The covariance of two variables 𝑋 𝑖 and 𝑋 𝑗 is defined by:

𝐶𝑜𝑣[𝑋 𝑖 , 𝑋 𝑗 ] = 𝑚 [(𝑋 𝑖 -𝑚(𝑋 𝑖 ))(𝑋 𝑗 -𝑚(𝑋 𝑗 ))]

3-22

The autocovariance matrix [𝐶𝑂𝑉] of nX random variables is:

[𝐶𝑂𝑉] = [ 𝑉𝑎𝑟[𝑋 1 ] 𝐶𝑜𝑣[𝑋 1 , 𝑋 2 ] 𝐶𝑜𝑣[𝑋 2 , 𝑋 1 ] 𝑉𝑎𝑟[𝑋 2 ] … 𝐶𝑜𝑣[𝑋 1 , 𝑋 𝑛𝑋 ] … 𝐶𝑜𝑣[𝑋 2 , 𝑋 𝑛𝑋 ] ⋮ ⋮ 𝐶𝑜𝑣[𝑋 𝑛𝑋 , 𝑋 1 ] 𝐶𝑜𝑣[𝑋 𝑛𝑋 , 𝑋 2 ] ⋱ ⋮ … 𝑉𝑎𝑟[𝑋 𝑛𝑋 ] ] 3-23
where [𝐶𝑂𝑉] is a positive definite and symmetric matrix.

The autocorrelation of the multiple probabilistic variables is obtained by normalizing the autocovariance by the respective standard deviation:

𝜌[𝑋 𝑖 , 𝑋 𝑗 ] = 𝐶𝑜𝑣[𝑋 𝑖 , 𝑋 𝑗 ] 𝜎(𝑋 𝑖 )𝜎(𝑋 𝑗 ) 3-24
or the autocovariance 𝐶𝑜𝑣[𝑋 𝑖 , 𝑋 𝑗 ] is defined by:

𝐶𝑜𝑣[𝑋 𝑖 , 𝑋 𝑗 ] = 𝜎(𝑋 𝑖 )𝜎(𝑋 𝑗 )𝜌[𝑋 𝑖 , 𝑋 𝑗 ] 3-25
Generally random fields are assumed to be homogeneous and isotropic. In this case, the mean and covariance of the field are constant over the whole domain and the autocorrelation function depends on the absolute distance between two positions.

Several types of correlation functions are used:

𝜌[𝑋 𝑖 , 𝑋 𝑗 ] = exp (- 𝜏  ) (exponential) 3-26 𝜌[𝑋 𝑖 , 𝑋 𝑗 ] = exp (- 𝜏 2  2 )
(square exponential)
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where 𝜏 = (|𝑥 𝑖 -𝑥 𝑗 |) is the absolute distance between two positions relative to 𝑋 𝑖 and 𝑋 𝑗 , and  is the correlation length, which may be written  = b𝐿, where b is a coefficient and L is a characteristic dimension of the structure.

Random fields can also be anisotropic, in this case the correlation function may be defined as follows:

𝜌[𝑋 𝑖 , 𝑋 𝑗 ] = exp [-( |𝜏 𝑥 |  𝑥 + |𝜏 𝑦 |  𝑦 )] (exponential) 3-28 𝜌[𝑋 𝑖 , 𝑋 𝑗 ] = (1 -𝜁)exp[-(𝜁)] (square exponential) 3-29 with 𝜁 = ( 𝜏 𝑥  𝑥 ) 2 + ( 𝜏 𝑦  𝑦 ) 2

3-30

where 𝜏 𝑥 and 𝜏 𝑦 represent the distances along the x and y axes,  𝑥 = 𝑏 1 𝐿 and  𝑦 = 𝑏 2 𝐿 are the correlation lengths associated with the x and y axes respectively.

Discretization method used is the midpoint method, and the random field is discretized at the centers of gravity of elements. This technique is widely used in applications primarily because of its simplicity. The main disadvantage of this method is that it requires one variable per element, leading to a large number of random variables when the mesh is fine.

Singular value decomposition is utilized to decompose the autocovariance matrix. Singular value decomposition is based on a theorem from linear algebra [START_REF] Baker | Singular value decomposition tutorial[END_REF]. The autocovariance matrix can be decomposed into the product of three matrices: an orthogonal matrix [𝑈], a diagonal matrix [𝑆] and the transpose of orthogonal matrix [𝑉]. The singular value decomposition equation is defined by: To decompose the autocovariance matrix the following equation is used:

[𝐶𝑂𝑉] = [𝑈][𝑆] 1 2[ 𝑉] 𝑇 3 
𝑑𝑐[𝐶𝑂𝑉] = [𝑈][𝑆] 1 2
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The random field 𝐻(𝑥, 𝜃) can be described by:

{𝐻 ̂(𝑥, 𝜃)} = {𝑚(𝑋)} + 𝑑𝑐[𝐶𝑂𝑉]{𝑋(𝜃)} 3-33
where 𝑥 represents the spatial coordinates, 𝜃 represents a random process, {𝑋(𝜃)} is a set of independent random variables to be determined, 𝑑𝑐[𝐶𝑂𝑉] is the decomposition of the autocovariance matrix.

In summary the process for calculating the random fields is defined by five steps as follows:

 calculation of the distance between the centers of gravity of all the elements 

Influence of the spatial discretization

Spatial discretization is an important issue in the finite element analysis of structures, particularly in presence of uncertainties. Using an optimal finite element mesh leads to an increase of the efficiency and to a reduction of the computational time. In an approach with variability, the objective is to find the optimal mesh for an accurate calculation of statistical quantities of the results observed (displacements, strains, stresses). In particular, the convergence conditions for the mean value or the standard deviation of these quantities must be met. Matthies et al. [START_REF] Matthies | Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements[END_REF] recommend the use of a uniform mesh for computing variability, in particular when input parameters are defined by random fields. A homogeneous mesh refinement is performed until achieving convergence conditions. The main disadvantage of this approach is that it leads to meshes with a large number of elements and so the mesh may be not optimal.

In this study, it is assumed that an optimal mesh for the nominal calculation is also convenient for the variability evaluation. Therefore, the strategy adopted here is finding the optimal mesh for the nominal configuration and then exploit it to calculate the variability. In the examples section, the relevance of this strategy is discussed. Two approaches have been tested. The first approach leads to a classical refinement study, with a more or less homogeneous mesh. The second one consists in using adaptive mesh techniques that can minimize the number of elements for a given precision. Adaptive mesh may involve a heterogeneous mesh and thus significant variations in the dimensions of the elements, especially in stress concentration areas. The adaptive mesh procedure available in the Abaqus software [START_REF] Abaqus | Standard User's Manual[END_REF] is applied. The error based on the strain energy density of each element indicator is selected. For some examples described in chapters 4, 5 and 6, adaptive meshing technique is used.

Error criteria

This section presents the error criteria (in %) that are used for the In equation 3-37, the error is expressed in relation to the strain energy of the element considered. This criteria measures the intrinsic error due to the CGSM assumption.

For the second criteria calculated in each element, the error on the strain energy is expressed in relation to a reference strain energy. This reference energy is calculated considering the strain energy throughout the structure (𝜋 𝑖𝑛𝑡 𝑇 𝑀𝐶𝑑 ), weighted by the element size. This error is written:

𝑒𝑟𝑟2 𝑒 (𝜋 𝑖𝑛𝑡 ) = 𝑚 | 𝜋 𝑖𝑛𝑡 𝑒 𝐶𝐺𝑆𝑀 -𝜋 𝑖𝑛𝑡 𝑒 𝑑𝑀𝐶 𝜋 𝑖𝑛𝑡 𝑇 𝑑𝑀𝐶 ( 𝐴 𝑒 𝐴 𝑇 ) | x 100 3-38
This criteria gives an indication of the contribution of each element to the error on the strain energy. It focuses on the areas where the strain energy density is high.

Error criteria due to the spatial discretization are also defined. As explained in section 3.9, the strategy adopted here is finding the optimal mesh for the nominal configuration and then exploit it to calculate the variability. The error associated with the nominal displacement at one specific point, for a given mesh, is defined as:

𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝑈) = ( 𝑈 𝑛𝑜𝑚 -𝑈 𝑟𝑒𝑓 𝑈 𝑟𝑒𝑓 ) x 100 3-39
When the optimal mesh has been identified for the nominal configuration, the next stage consists in checking whether this mesh is adapted to calculate the variability.

In this context, it is necessary to calculate the errors on the mean value and the standard deviation of displacement, due to the spatial discretization. The errors are defined as: 

Influence of input variability on the generalized stresses

In the general case, the generalized stresses depend more or less on random input parameters. In this section specific cases where the CGSM assumption is exact, are higlighted. In these cases, the generalized stresses are certain and do not depend on the value of the random parameters. Three types of parameters are considered: the thickness ℎ, the elasticity modulus 𝐸 and the Poisson's ratio 𝑣.

Random variables as well as random fields are considered. Results are shown in 

. Displacement variability

In this section, the CGSM is developed for the three-node triangles (T3)

and the four-node quadrilaterals (Q4), whatever the details of the formulation of these elements.

The objective here is to describe the calculation of the variability of displacement. First the strain energy is expressed as:

𝜋 𝑖𝑛𝑡 𝑚 = 1 2 ∫ 〈𝑒〉 [𝐻] 𝑉 {𝑒} 𝑑𝑉 = 1 2 ∫ ℎ〈𝑒〉 [𝐻] 𝐴 {𝑒} 𝑑𝐴 4-1
where 〈𝑒〉 = 〈𝑒 𝑥 𝑒 𝑦 𝑒 𝑥𝑦 〉 are the axial strains, 𝑉 is the volume of the structure (𝑑𝑉 = ℎ 𝑑𝐴), [𝐻] is the plane stress elasticity matrix for an isotropic material:

[𝐻] = 𝐸 1 -𝑣 2 [ 1 𝑣 0 𝑣 1 0 0 0 1 -𝑣 2 ] 4-2
where 𝐸 is the elasticity modulus, and 𝑣 is the Poisson's ratio.

The relationship between strains {𝑒} and axial forces {𝑁} is:

{𝑒} = 1 ℎ [𝐻] -1 {𝑁} 4-3
with 〈𝑁〉 = 〈𝑁 𝑥 𝑁 𝑦 𝑁 𝑥𝑦 〉.

Substituting equation 4-3 into equation 4-1 gives:

𝜋 𝑖𝑛𝑡 𝑚 = 1 2 ∫ 1 ℎ 〈𝑁〉[𝐻] -1 𝐴 {𝑁} 𝑑𝐴 4-4
or:

𝜋 𝑖𝑛𝑡 𝑚 = 1 2 ∫ 1 𝐸ℎ 〈𝑁 𝑥 𝑁 𝑦 𝑁 𝑥𝑦 〉 [ 1 -𝑣 0 -𝑣 1 0 0 0 2(1 + 𝑣) ] 𝐴 { 𝑁 𝑥 𝑁 𝑦 𝑁 𝑥𝑦 } 𝑑𝐴 4-5
Equation 4-5 can be simplified into:

𝜋 𝑖𝑛𝑡 𝑚 = 1 2 ∫ 1 𝐸ℎ (𝑁 𝑥 2 -2𝑣𝑁 𝑥 𝑁 𝑦 + 𝑁 𝑦 2 + 2(1 + 𝑣)𝑁 𝑥𝑦 2 ) 𝐴 𝑑𝐴 4-6
Considering that the domain is spatially discretized and the mesh contains n finite elements, equation 4-6 can be written as:

𝜋 𝑖𝑛𝑡 𝑚 = 1 2 ∑ ∫ 1 𝐸 𝑖 ℎ 𝑖 (𝑁 𝑥 𝑖 2 -2𝑣 𝑖 𝑁 𝑥 𝑖 𝑁 𝑦 𝑖 + 𝑁 𝑦 𝑖 2 + 2(1 + 𝑣 𝑖 )𝑁 𝑥𝑦 𝑖 2 ) 𝐴 𝑖 𝑑𝐴 𝑛 𝑖=1

4-7

where i is the element number; 𝑁 𝑥 𝑖 , 𝑁 𝑦 𝑖 and 𝑁 𝑥𝑦 𝑖 are the axial forces; 𝐴 𝑖 is the area;

𝐸 𝑖 is the elasticity modulus; ℎ 𝑖 is the thickness and 𝑣 𝑖 is the Poisson's ratio.

In order to apply the Castigliano's theorem for calculating the displacement 𝑈 at a point P in a given direction, the axial forces of each element are decomposed into two contributions: ) 𝑑𝐴

𝑁 𝑥 𝑖 = 𝑁 𝑥 𝑖 ′ +

4-9

Our objective is to consider simple interpolations of axial forces; these interpolations are independent of the initial formulation of the element. Indeed, it is assumed that the nominal finite element analysis is performed with a standard software and consequently, precise information about the formulation of the element is not available. For T3 and Q4 elements considered here, the axial forces are assumed to be constant over one element. Equation 4-9 becomes:

𝜋 𝑖𝑛𝑡 𝑚 = 1 2 ∑ 𝐴 𝑖 𝐸 𝑖 ℎ 𝑖 ((𝑁 𝑥 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 " ) 2 -2𝑣 𝑖 ( 𝑁 𝑥 𝑖 ′ 𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 ′ 𝑁 𝑦 𝑖 " +𝐹𝑁 𝑥 𝑖 " 𝑁 𝑦 𝑖 ′ +𝐹 2 𝑁 𝑥 𝑖 " 𝑁 𝑦 𝑖 " ) 𝑛 𝑖=1 + (𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑦 𝑖 " ) 2 + 2(1 + 𝑣 𝑖 ) (𝑁 𝑥𝑦 𝑖 ′ + 𝐹𝑁 𝑥𝑦 𝑖 " ) 2 )

4-10

To obtain the displacement at a point P in a given direction, the Castigliano's theorem is applied: )))

𝑈 𝑚 = 𝜕𝜋 𝑖𝑛𝑡 𝑚 𝜕𝐹 4 

4-13

The expression of 𝑈 𝑚 given in equation 4-13 is used for each trial of the CGSM+Monte Carlo simulation, to calculate the displacement variability at a point of a membrane plate. This expression of 𝑈 𝑚 is compatible with any distribution law for the Monte Carlo Simulation. As mentioned in section 3.8, in this study essentially truncated Gaussian laws are exploited.

Strains variability

The CGSM also allows to calculate the strains variability. Two methods are proposed. In both cases the strains are calculated at the center of each element.

Method 1

The strains in an element are calculated using nominal axial forces, using equation 4-3:

{𝑒} = 1 ℎ [𝐻] -1 {𝑁 𝑜 } 4-14
This expression only requires the nominal axial forces in the element concerned.

Consequently only one finite element analysis in the nominal configuration is required. The equation 4-14 is applied for each trial of the Monte Carlo simulation.

The accuracy of this method is tested in section 4.2.2.4.

Method 2

The strains are calculated from the values of displacements at the nodes of the element concerned, according to the classical expression:

{𝑒} = [𝐵] {𝑈} 4-15
The matrix [𝐵] contains derivatives of the displacement shape functions. Simple linear or bilinear shape functions are chosen. This method also requires, for each trial, the calculation of {𝑈} which contains the displacements at three or four nodes for T3 or Q4 elements respectively. At each node, the membrane displacements components (u and v) are calculated with the CGSM. It is then necessary to run 1 finite element analysis with twelve or sixteen load cases at most in the nominal configuration, for T3 or Q4 elements respectively. Then the equation 4-15 is applied for each trial of the Monte Carlo simulation. The results obtained with this method are also given in section 4.2.2.4. 

Membrane plates examples

Finite element mesh

The global strategy applied here to identify an optimal mesh has been described in section 3.9. In this example, the elements S4 available in Abaqus [START_REF] Abaqus | Standard User's Manual[END_REF] are used.

Firstly a convergence analysis is performed with the CGSM formulation (equation 4-13), in the nominal configuration. The overall results obtained with the CGSM method are very satisfactory. We find that the error decreases when the correlation length increases. Indeed, from a theoretical point of view, when the elasticity modulus is constant over the whole plate, the CGSM assumption is verified exactly. Consequently this justifies small errors for large correlation lengths. 

 0.01L 0.1L L 10L 100L c.o.v.(E) (%) 5 

Influence of the mesh for variability calculation

Here we verify a posteriori whether the Q4_16x16 mesh is also correct for the calculation of the variability. This study is conducted with the CGSM. Table 4-4 compares the results obtained with this mesh and the reference mesh. For most cases considered, the errors are less than 2% for the mean and standard deviation of displacement.Only the case with a correlation length  = 0.01L leads to more significant errors and would justify a finer mesh. This is due to the fact that the variation of the elasticity modulus is very fast in this case. These results show that the strategy which consists in identifying the optimal mesh for the nominal case and use it for the calculation of the variability is valid, except when the correlation length is extremely small. However this extreme situation is not physically realistic and consequently this case has not been studied further. 

 0.01L 0.1L L 10L 100L c.o.v. (E) (%) 5 

Performance of the CGSM in computational time

Regarding the calculation time, for this example, the acceleration factor obtained by the CGSM method is about 400, compared to the direct Monte Carlo simulation.

Errors on the strain energy

In this paragraph the two error criteria 𝑒𝑟𝑟1 𝑒 (𝜋 𝑖𝑛𝑡 ) and 𝑒𝑟𝑟2 𝑒 (𝜋 𝑖𝑛𝑡 ), 

defined

Finite element mesh

The global strategy applied here to identify an optimal mesh has been described in section 3.9. Firstly, thanks to a convergence analysis performed with the CGSM formulation (equation 4-13) in the nominal configuration, an adequate mesh is obtained. Then this mesh is exploited to calculate the variability. Finally tests are performed a posteriori to ensure that this mesh is suitable for the calculation of the variability (section 4.2.2.5). Two meshing techniques are used for this example: mapped mesh and adaptive mesh. obtained by Rahman and Xu [START_REF] Rahman | A meshless method for computational stochastic mechanics[END_REF] are less accurate. As for the first example, these differences are certainly due to the mesh refinement level, indeed Rahman and Xu [START_REF] Rahman | A meshless method for computational stochastic mechanics[END_REF] used a relatively coarse mesh. 

Strains variability

This section deals with the variability of strains for the square plate with a circular hole under tension. Nominal configuration tests have shown that mesh 2 is sufficiently fine for an accurate calculation of strains, so this mesh is used. The yy component is calculated at point A and reference results are obtained with the direct Monte Carlo simulation. First tests are performed to compare method 1 and method 2 based on the CGSM (see section 4.1.2.1, equations 4-14 and 4-15). Table 45678shows that for errors on the mean value of strain yy at point A, methods 1 and 2 generate similar maximum errors, 1.1% and 1.2% respectively. But some differences appear for the standard deviation. The results of method 1 are satisfactory when the correlation length is greater than L. However, for correlation length smaller than L, the difference between the CGSM results and the reference ones is significant. Method 2 provides satisfactory results for all values of correlation length. So this method is selected for further study.

The CGSM results are now compared with those obtained by Rahman and Xu [START_REF] Rahman | A meshless method for computational stochastic mechanics[END_REF] and with a reference solution calculated with a direct Monte Carlo simulation. Method 2 (see section 4.1.2.2) is used and the correlation function formulation is type B with  = 0.5L. Table 4-9 shows the results obtained for the mean value and the standard deviation of strains. CGSM provides satisfactory results, leading to maximal errors less than 1% and 3% for the mean value and the standard deviation of strains respectively. Biggest errors are observed for the results of Rahman and Xu [START_REF] Rahman | A meshless method for computational stochastic mechanics[END_REF]. Again, these errors are certainly due to the coarse mesh used. 

Influence of the mesh for variability calculation

We now check that mesh 2 (adaptive mesh) is well suited also for the calculation of the variability. This study is conducted with the CGSM method.

Table 4-10 compares the results obtained with this mesh and the reference mesh.

For most cases considered, the errors are less than 2.5% for the mean and standard deviation of displacement. Only the case = 0.005L leads to more significant errors and justifies a finer mesh. This is due to the fact that in this case the variation of the modulus is extremely fast. 

Performance of the CGSM in computational time

In this example, for the computation of displacements variability, the acceleration factor obtained with the CGSM is about 600 compared to the direct Monte Carlo simulation. This acceleration factor is quite significant and is essentially due to the fact that the CGSM only requires one finite element analysis with some load cases. However, the acceleration factor can be increased further if the number of finite elements in the mesh or the number of trials used for the Monte Carlo simulation, are bigger.

Errors on the strain energy

In this paragraph the two error criteria 𝑒𝑟𝑟1 𝑒 (𝜋 𝑖𝑛𝑡 ) and 𝑒𝑟𝑟2 𝑒 (𝜋 𝑖𝑛𝑡 ), defined in section 4. criteria 𝑒𝑟𝑟1 𝑒 and 𝑒𝑟𝑟2 𝑒 respectively. In all cases, the maximal errors are located near the hole, in the stress concentration areas. For both criteria, when the correlation length is very large, errors are very small, while it is bigger for a small correlation length. This is because when the correlation length is large, the random variable is almost uniform on the studied area. However, if a perfectly uniform variable is considered, the CGSM assumption is exactly met. Therefore it makes sense to observe more significant errors for small correlation lengths. 

Chapter 5 Formulation and Applications of CGSM for Bending Plates

In this section, the CGSM is developed for three-node triangles (T3) and four-node quadrilaterals (Q4), whatever the formulation of these elements. A distinction is made between the thin plate case with bending effects, and the thick plate one with bending and transverse shear effects.

Formulation of the CGSM for bending plates

Formulation of the CGSM for thin plates

The objective is to describe the calculation of the variability of a displacement. The bending strain energy is:

𝜋 𝑖𝑛𝑡 𝑏 = 1 2 ∫ 𝑧 2 〈〉 [𝐻] 𝑉 {} 𝑑𝑉 = 1 2 ∫ ℎ 3 12 〈〉 [𝐻] 𝐴 {} 𝑑𝐴 5-1
where 〈〉 = 〈 𝑥  𝑦  𝑥𝑦 〉 are the bending strains, 𝑉 is the volume of the structure (𝑑𝑉 = ℎ 𝑑𝐴), [𝐻] is the plane stress elasticity matrix defined in equation 4-2 for an isotropic material.

The relationship between the bending strains 〈〉 and moments {𝑀} is:

{} = 12 ℎ 3 [𝐻] -1 {𝑀} 5-2
with 〈𝑀〉 = 〈𝑀 𝑥 𝑀 𝑦 𝑀 𝑥𝑦 〉.

Substituting equation 5-2 into equation 5-1 gives: 

𝜋 𝑖𝑛𝑡 𝑏 = 1 2 ∫ 12 ℎ 3 〈𝑀〉[𝐻] -

5-5

Considering that the domain is spatially discretized and the mesh contains n finite elements, equation 5-5 can be written as: ) 𝑑𝐴

𝜋 𝑖𝑛𝑡 𝑏 = 1 2 ∑ ∫

5-8

As for the membrane plates case, our objective is to consider simple interpolations of moments; these interpolations are independent of the initial formulation of the element. For T3 and Q4 elements considered here, the moments are assumed to be constant over one element. Equation 5-8 becomes: )

𝜋 𝑖𝑛𝑡 𝑏 =

5-9

To obtain the displacement at a point P in a given direction, the Castigliano's theorem is applied:

𝑈 𝑏 = 𝜋 𝑖𝑛𝑡 𝑏 𝜕𝐹

5-10

Finally, for the thin bending plate case, the displacement is: )))

𝑈 𝑏 = ∑

5-11

The expression of 𝑈 𝑓 given in equation 5-11 is used for each trial of the CGSM+Monte Carlo simulation, to calculate the displacement variability at a point of a bending plate.

Formulation of the CGSM for thick plates

The strain energy is:

𝜋 𝑖𝑛𝑡 = 𝜋 𝑖𝑛𝑡 𝑏 + 𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ

5-12

The description of 𝜋 𝑖𝑛𝑡 𝑏 is identical to that developed in section 5.1.1. The strain energy associated with the contribution of transverse shear is:

𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ = 1 2 ∫ 〈𝛾〉 [𝐻 𝑠 ] 𝑉 {𝛾} 𝑑𝑉 = 1 2 ∫ ℎ〈𝛾〉 [𝐻 𝑠 ] 𝐴 {𝛾} 𝑑𝐴 5-13
where 〈𝛾〉 = 〈𝛾 𝑥𝑧 𝛾 𝑦𝑧 〉 are the transverse shear strains, 𝑉 is the volume of the structure (𝑑𝑉 = ℎ 𝑑𝐴), [𝐻 𝑠 ] is the transverse shear elasticity matrix. For an isotropic material, this matrix is defined by:

[𝐻 𝑠 ] = 𝐺 𝑘 𝑠 [ 1 0 0 1 ] 5-14 𝐺 = 𝐸 2 (1 + 𝑣) 5-15
where 𝐺 is the shear modulus, 𝑘 𝑠 is the transverse shear correction factor, 𝐸 is the elasticity modulus, and 𝑣 is the Poisson's ratio.

The relationship between the transverse shear strains {𝛾} and transverse shear forces {𝑇} is:

{𝛾} = ℎ[𝐻 𝑠 ] -1 {𝑇}

5-16

with 〈𝑇〉 = 〈𝑇 𝑥 𝑇 𝑦 〉.

Reporting equation 5-16 into equation 5-13, one obtains:

𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ = 1 2 ∫ 1 ℎ 〈𝑇〉[𝐻 𝑠 ] -1 𝐴 {𝑇} 𝑑𝐴 5- 17 
or:

𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ = 1 2 ∫ 1 𝐺 𝑘 𝑠 ℎ 〈𝑇 𝑥 𝑇 𝑦 〉 [ 1 0 0 1 ] 𝐴 { 𝑇 𝑥 𝑇 𝑦 } 𝑑𝐴

5-18

Developing equation 5-18 gives:

𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ = 1 2 ∫ 2(1 + 𝑣) 𝐸 𝑘 𝑠 ℎ (𝑇 𝑥 2 + 𝑇 𝑦 2 ) 𝐴 𝑑𝐴

5-19

Considering that the domain is spatially discretized and the mesh contains n finite elements, equation 5-19 can be written as: 

𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ = 1 2 ∑ ∫ 2(

5-22

As for the membrane plate and the thin bending plate cases, our objective is to consider here simple interpolations of transverse shear forces; these interpolations are independent of the initial formulation of the element. For T3 and Q4 elements considered here, the transverse shear forces are assumed to be constant over one element. Equation 5-22 becomes: 

𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ = 1 2 ∑ 2(

5-23

To obtain the displacement at a point P in a given direction, the Castigliano's theorem is applied:

𝑈 = 𝑈 𝑏 + 𝑈 𝑡𝑠ℎ = 𝜕𝜋 𝑖𝑛𝑡 𝑏 𝜕𝐹 + 𝜕𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ 𝜕𝐹 5-24
𝑈 𝑏 is obtained by equation 5-11 and the displacement due to transverse shear effects 𝑈 𝑡𝑠ℎ is:

𝑈 𝑡𝑠ℎ = 𝜕𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ 𝜕𝐹

5-25

Taking into account equation 5-23 leads to the following expression of the displacement due to transverse shear effects: 

𝑈 𝑡𝑠ℎ = ∑ 2𝐴 𝑖 (

5-26

Finally, for the thick bending plate case, the displacement 𝑈 is: 

+ 2𝐴 𝑖 (

Presentation of the example

The first example is a square bending plate (Figure 5-1), simply supported and subjected to a uniformly distributed load q = 10 (data are provided in dimensionless form). This example has been treated by Noh [START_REF] Noh | Effect of multiple uncertain material properties on the response variability of in-plane and plate structures[END_REF]. As mentioned by Noh [START_REF] Noh | Effect of multiple uncertain material properties on the response variability of in-plane and plate structures[END_REF], the symmetry of the structure is disturbed by random fields but this asymmetry is limited because the coefficients of variation of the random parameters are small. Consequently, as suggested by

Noh [START_REF] Noh | Effect of multiple uncertain material properties on the response variability of in-plane and plate structures[END_REF] and in order to compare our results with this reference, only a quarter of the plate is discretized. 

Finite element mesh

The global strategy to identify an optimal mesh, described in section 3.9

and already exploited for membrane plates in section 4.2.1.2, is applied here again.

In this example, the DKMQ element proposed by Katili [START_REF] Katili | A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part II: An extended DKQ element for thick-plate bending analysis[END_REF] is used and all the results presented below have been obtained with this element. Some complementary tests have shown that similar results are obtained with the S4 element of Abaqus [START_REF] Abaqus | Standard User's Manual[END_REF]. Firstly a convergence analysis is performed with the standard deviation and coefficient of variation of displacement at point A are reported in Table 5-2. Errors are given in Table 5-3. The CGSM provides very accurate results for the whole correlation length range. Nevertheless the errors slightly increase when the correlation length is smaller than L.

In the second case, the random parameter is v and again several correlation lengths are considered. 

Influence of the mesh for variability computation

In section 5.2.1.2 the 24x24 mesh has been exploited. The objective of the tests presented in this section is to verify a posteriori whether this mesh is also correct for the calculation of variability. Again, this study is performed with the CGSM. In the first case, the random parameter is the elasticity modulus (c.o.v.(E) = 10%) and in the second case, the random parameter is the Poisson's ratio

(c.o.v.() = 10%
). The differences between the results obtained with the 24x24 mesh and the 48x48 mesh (reference mesh) on the mean value and standard deviation of displacement at point A, are shown in Tables 5-6 and 5-7. For both tests, the 24x24 mesh is satisfactory when the correlation length is greater than 0.1L.

When the correlation length is smaller than 0.1L, the 24x24 mesh leads to significant errors. As for both examples of chapter 4 (see sections 4.2.1.4 and 4.2.2.5), this is due to the fact that the variation of the random parameters is very fast in this case. Again, these results show that the strategy which consists in identifying the optimal mesh for the nominal case and use it for the calculation of the variability is valid, except when the correlation length is extremely small. 

Performance of the CGSM in computational time

As far as computational time is concerned, for this example, the acceleration factor obtained with the CGSM is about 400 compared to the direct Monte Carlo simulation.

Errors on the strain energy

As for the membrane plates, both error criteria 𝑒𝑟𝑟1 𝑒 and 𝑒𝑟𝑟2 𝑒 defined in equations 3-37 and 3-38 are observed. Figures 5-5 and 5-6 show the results obtained for 𝑒𝑟𝑟1 and 𝑒𝑟𝑟2 respectively, the elasticity modulus being the random parameter. As for the membrane plates, for both criteria, when the correlation length is very large, errors are quite small, while they are bigger for a small correlation length. For a given correlation length we also observe that the first criteria leads to slightly lower maximum errors than the second criteria. In conclusion, when the correlation length is small, the CGSM assumption can lead to significant local errors, but the errors on the mean and standard deviation of displacement remain small (see Tables 5-3 and5 

Influence of the mesh for variability computation

We now check that the 24x24 mesh is also well suited for the calculation of the variability. This study is conducted with the CGSM method. The differences between the results obtained with the 24x24 mesh and the 48x48 mesh (reference mesh) on the mean and standard deviation of displacement at point A, are shown in Table 5-11. The 24x24 mesh is satisfactory, except for the smallest value of correlation length: 0.005L. These results show again that the strategy which consists in identifying the optimal mesh for the nominal case and use it for the calculation of the variability is valid, except when the correlation length is extremely small.

  0.005L 0.05 L 0.1 L 0.2 L 2 L 𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝑚(𝑈))
0.3% 0.3% 0.3% 0.4% 0.2% 𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝜎(𝑈)) 122% 0.0% 0.0% 0.7% 0.0% 

Performance of the CGSM in computational time

As far as computational time is concerned, for this example, the acceleration factor obtained with the CGSM is about 400 compared to the direct Monte Carlo simulation.

Errors on the strain energy

Here we find the same trends previously observed for membrane plates examples (see sections 4.2.1.6 and 4.2.2.7), as well as the first bending plate example (see section 5.2.1.6). For both criteria, the errors are quite small when the correlation length is very large. However, when the correlation length is small, the CGSM assumption can lead to significant local errors, but the errors on the mean and standard deviation of displacement remain small (see Table 5 

Finite element mesh

As in previous examples, we first search for the optimal nominal mesh and then we verify that this mesh is adapted to calculate the variability. In this example, the DKMQ element proposed by Katili [START_REF] Katili | A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part II: An extended DKQ element for thick-plate bending analysis[END_REF] is used and all the results presented below have been obtained with this element. Tables 5-12 and 5-13 show the results of a convergence study of nominal displacement at point C performed with the CGSM formulation in the nominal configuration (equation 5-27). For this example the exact solution, considered as a reference, is available [START_REF] Katili | A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part II: An extended DKQ element for thick-plate bending analysis[END_REF]. The 192 finite elements mesh (Figure 5-13), leading to a maximal error of 0.5%, is satisfactory for the nominal calculation. Consequently this mesh is exploited to calculate the variability.

C are reported in Tables 5-14 and 5-16. Errors are given in Tables 5-15 and 5-17.

The CGSM provides very accurate results when the correlation length is bigger than L. Nevertheless the errors slightly increase when the correlation length is smaller than L. Anyway, even in the extreme case  = 0.01L, the errors remain acceptable.

The comparison between the results obtained for the thin plate and the thick plate,

show that the coefficients of variation are close, as shown in Tables 567891011121314 

Finite element mesh

As in previous examples, we first search for the optimal nominal mesh and then we verify that this mesh is adapted to calculate the variability. Table 5-18

shows the results of a convergence study of nominal displacement at point C performed with the CGSM formulation in the nominal configuration (equation 5-27). For this example the exact solution, considered as a reference, is available [START_REF] Katili | A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part II: An extended DKQ element for thick-plate bending analysis[END_REF]. The S3 triangular shell element of Abaqus is used. Table 5-18 shows that for this example a mesh with a uniform size is not efficient. Indeed the error is significant even for the very fine 128x128 mesh containing 16384 elements. The adaptive mesh with 1263 elements (Figure 5-18), leading to an error of 0.1%, is satisfactory for the nominal calculation. Consequently this mesh is exploited to calculate the variability. 

Variability of displacement

The CGSM results are compared to reference solutions obtained by direct Monte Carlo simulations. The random parameter is E and several correlation lengths are considered. For each correlation length, the mean value, standard deviation and coefficient of variation of displacement at point C are reported in 

. Formulation of the CGSM for shells

As in previous chapters, the CGSM is developed here for three-node triangles (T3) and four-node quadrilaterals (Q4), whatever the formulation of these elements. Two formulations are described, the first one for homogeneous isotropic shells, the second one for multilayered composite shells.

Formulation of the CGSM for homogeneous isotropic shells

The objective is to describe the calculation of the variability of displacement. The overall strain energy for isotropic shells is obtained by combining membrane, bending and transverse shear strain energies.

𝜋 𝑖𝑛𝑡 = 𝜋 𝑖𝑛𝑡 𝑚 + 𝜋 𝑖𝑛𝑡 𝑏 + 𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ

6-1

These contributions to the strain energy can be written as:

membrane 𝜋 𝑖𝑛𝑡 𝑚 = 1 2 ∫ 〈𝑒〉 [𝐻] 𝑉 {𝑒} 𝑑𝑉 = 1 2 ∫ 〈𝑒〉 [𝐻] 𝐴 {𝑒} 𝑑𝐴 bending 𝜋 𝑖𝑛𝑡 𝑏 = 1 2 ∫ 𝑧 2 〈〉 [𝐻] 𝑉 {} 𝑑𝑉 = 1 2 ∫ ℎ 3 12 〈〉 [𝐻] 𝐴 {} 𝑑𝐴 6-2 transverse shear 𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ = 1 2 ∫ 〈𝛾〉 [𝐻 𝑠 ] 𝑉 {𝛾} 𝑑𝑉 = 1 2 ∫ ℎ〈𝛾〉 [𝐻 𝑠 ] 𝐴 {𝛾} 𝑑𝐴
In order to apply the Castigliano's theorem for calculating the displacement )) 𝑑𝐴

𝑈

6-7

As for the membrane plate and the bending plate cases, our objective is to consider simple interpolations of generalized stresses; these interpolations are independent of the initial formulation of the element. For T3 and Q4 elements considered here, all the generalized stresses are assumed to be constant over one element. Equation 6-7 becomes: 

𝜋 𝑖𝑛𝑡 =

6-8

To obtain the displacement at a point P in a given direction, the Castigliano's theorem is applied:

𝑈 = 𝜋 𝑖𝑛𝑡 𝜕𝐹 6-9
Finally, for the homogeneous isotropic shells case, the displacement is:

6-10

The expression of U given in equation 6-10 is used for each trial of the 

Formulation of the CGSM for multilayered shells

The objective is to describe the calculation of the variability of displacement. The strain energy for multilayered composite shells can be written as: Finally the strain energy can be written:

𝜋 𝑖𝑛𝑡 = 1 2 ∫ 〈𝑒 
𝜋 𝑖𝑛𝑡 = 1 2 ∫ 〈𝑁〉 [𝐴𝐼] 𝐴 {𝑁} 𝑑𝐴 + ∫ 〈𝑀〉 [𝐵𝐼] 𝐴 {𝑁} 𝑑𝐴 + 1 2 ∫ 〈𝑀〉 [𝐷𝐼] 𝐴 {𝑀} 𝑑𝐴 + 1 2 ∫ 〈𝑇〉 [𝐹𝐼] 𝐴 {𝑇} 𝑑𝐴

6-19

Considering that the domain is spatially discretized and the mesh contains n finite elements, equation 6-19 gives:

𝜋 𝑖𝑛𝑡 = 1 2 ∑ ∫ (〈𝑁〉[𝐴𝐼]{𝑁} + 2〈𝑁〉[𝐵𝐼]{𝑀} + 〈𝑀〉[𝐷𝐼]{𝑀} 𝐴 𝑛 𝑖=1 + 〈𝑇〉[𝐹𝐼]{𝑇}) 𝑑𝐴

6-20

In order to apply the Castigliano's theorem for calculating the displacement 𝑈 of a point P in a given direction, the generalized stresses in each element are decomposed into two contributions, as described in equations 6-6. By exploiting equation 6-6, equation 6-20 becomes:

6-21

As for the case of the homogeneous isotropic shells, our objective is to consider simple interpolations of generalized stresses; these interpolations are independent of the initial formulation of the element. For T3 and Q4 elements considered here, the generalized stresses are assumed to be constant over one element. The values calculated at the center of each element are considered. 

6-33

The expression of 𝑈 summarized in equation 6-25 and detailed in Papadrakakis results [START_REF] Stefanou | Stochastic finite element analysis of shells with combined random material and geometric properties[END_REF] and the CGSM or direct Monte Carlo ones. This is perhaps due to the fact that Stefanou used a quite coarse mesh. Indeed we have verified that this type of mesh is not fine enough to observe a good convergence of displacements. We observe that the adaptive mesh and the mapped mesh lead to similar results, except when the correlation length is very small (0.004L). The results of both meshes are discussed in section 6.2.1.4. Monte Carlo simulation. However, due to larger errors when the thickness is the random parameter, more significant differences appear in this case. Again, for the same reasons as described in the previous sections, the distributions are not exactly Gaussian.

Windscreen

Presentation of the example

The windscreen is a sandwich structure, as shown in Figure 6-7. It is subjected to pressure loading with magnitude 1.9 kPa. The windscreen is assumed clamped along its whole periphery. The sandwich structure consists of 5 layers of material (as shown in Figure 678):

 the exterior layers 1 and 5 are made of glass.

 the intermediate layers 2 and 4 are made of a polymer PVB (Polyvinyl butyl).

 the layer 3 is made of an acoustic polymer. 

Finite element mesh

As in previous examples, we first search for the optimal nominal mesh and then we verify that this mesh is adapted to calculate the variability. Table 6-9 shows the results of a convergence study of nominal displacement at point A performed with the CGSM formulation in the nominal configuration (equation 6-25). The reference solution is given by a very fine mesh (13200 elements). Mesh II with 744 elements, leading to an error of 0.14%, is satisfactory for the nominal calculation.

Consequently this mesh is exploited to calculate the variability. We will check a posteriori whether this mesh is also well suited for the calculation of the variability. 

Displacement variability

The CGSM results are compared to a reference solution obtained by direct Monte Carlo simulation. Three cases are treated: the uncertain parameters are the elasticity modulus, the thickness and both these parameters for cases 1, 2 and 3 respectively (see These results highlight that for this example, the CGSM assumption, that is to say the generalized stresses are certain, is quite valid. The CGSM is particularly precise in this example because for one given layer, the perturbation is uniformly distributed over the whole structure. Consequently, the perturbed generalized stresses are quite certain. 

Synthesis of the performances of the CGSM in computational time

The tests are performed for two examples: the Scordelis-Lo shell roof (see section 6.1) and the winscreen (see section 6.2). Several numbers of trials and several meshes are considered. In the first example, input variability is described by random fields. In the second example, only random variables are considered.

For the Scordelis-Lo shell roof example, results are presented in Figures the mesh refinement level. This is a very hopeful characteristic. For a number of trials equal to 10000, the acceleration factor is comprised between 330 and 413, depending on the mesh refinement level. In summary, for this example, the acceleration factors are always bigger than 148 and this performance is satisfactory.

Anyway, the CGSM is slowed here by the presence of random fields. To increase further the efficiency of the CGSM in computational time, one perspective of this research is to improve the approach to calculate and manage random fields. 6-14 shows that the acceleration factor increases with the number of trials and with the mesh refinement level. This hopeful characteristic of CGSM is clearly highlighted in this example described by random input variables but without any random field. For a number of trials classically considered and equal to 10000, the acceleration factor is comprised between 1129 and 1473, depending on the mesh refinement level. This result reveals the high efficiency of the CGSM in computational time, for an industrial application. analysis. An extension of the CGSM to possibilistic approach to take into account epistemic uncertainties is also desirable. The development of error indicators would also be a useful perspective in order to assess the quality of the results obtained.

The choice of the optimal finite element mesh is also an important issue. In this study, relevant results have been obtained using an adaptive meshing technique based on deterministic analyses. The best approach would certainly be an adaptive procedure which takes into account potential random fields, leading to a stochastic adaptive meshing procedure. Finally, to improve further the precision of the results by keeping the main advantages of the methodology developed, alternative assumptions leading to variants of the CGSM could be tested. 
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 11 Figure 1-1 Classification of sources and types of uncertainty in mechanics -contribution domain of the thesis

  Non deterministic finite element analysis leads to the following difficulties: a. It is generally expensive in terms of computational time, in particular for industrial examples with a large number of degrees of freedom and a large number of uncertain parameters. b. The results are not always accurate, in particular when the input variability level is large. c. Numerous non deterministic methods are not compatible with standard finite element software. d. Consequently, up to now, the application of stochastic methods to industrial examples is limited. In particular, the development of variability for industrial applications involving plate and shell structures is a real challenge.

Chapter 2

 2 presents the literature review of stochastic finite element (SFE) methods. It gives an overview of the quantification and discretization of uncertainty, classification of SFE methods, and the advantages and disadvantages of the existing SFE methods. Chapter 3 presents methodological aspects in relation with the CGSM. It contains the principle of the CGSM and introduces the necessary mathematical tools. It describes the global process for the CGSM formulation of displacement, for uncertainty modeling. Error criteria to assess the CGSM assumption are proposed. Finally, the specific cases when the CGSM assumption is exactly verified, are identified. Chapter 4 presents the formulation and applications of CGSM for membrane plates, chapter 5 for bending plates and chapter 6 for shells. All of these chapters begin with the description of the formulation of CGSM to calculate variability of displacements and strains. Then examples are treated. The results are compared with those given by the direct Monte Carlo Simulation considered as a reference. Chapter 7 summarizes the contributions and conclusions of this research.
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 21 Figure 2-1 Different types of uncertainty characterization[START_REF] Iaccarino | Introduction to uncertainty quantification in computational science[END_REF] 
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 221 Probabilistic and possibilistic approachesIn section 2.1.1, as shown in Figure2-1, three types of uncertainty characterization have been distinguished. The propagation approaches are generally classified in two main types: probabilistic and possibilistic, the interval and the fuzzy approaches being considered as possibilistic ones. To compute the uncertainty ouput or response requires two processes: the uncertainty quantification and the propagation ones. Moreover one distinguishes between intrusive and non-intrusive methods. Non intrusive methods are compatible with the use of standard finite element software (ex: Nastran, Abaqus …). Intrusive methods lead to the development of specific stochastic finite element software. Model errors, including the system modeling and numerical errors, have also to be considered. This global process is described in Figure 2-2.
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 23 Figure 2-3 Triangular and Gaussian fuzzy membership functions[START_REF] Moens | Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances[END_REF] 
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 3133 Figure 3-1 Principle of the CGSM method for calculating variability
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 456 . Decomposing generalized stresses into two contributions, the total strain energy formulation becomes: 𝜋 𝑖𝑛𝑡 = 𝑓 2 (𝑁′, 𝑀′, 𝑇′, 𝑁", 𝑀", 𝑇", 𝐹, 𝐸, 𝑣, ℎ )3-From equations 3-2 and 3-5, one obtains an explicit and simplified expression of the displacement: 𝑈 = 𝑓 3 (𝑁′, 𝑀′, 𝑇′, 𝑁", 𝑀", 𝑇", 𝐹, 𝐸, 𝑣, ℎ ) 3-. A fast Monte Carlo Simulation is performed by exploiting equation 3-6.

- 12 where

 12 [𝐴], [𝐵], [𝐷], and [𝐹] are respectively the generalized membrane stiffnesses, membrane-bending coupling stiffnesses, bending stiffnesses and transverse shear stiffnesses; 𝑛𝑘 is the number of layers; [𝐻 𝑘 ] is the plane stress elasticity stiffnesses for layer k; [𝐻𝑠 𝑘 ] is the transverse shear elasticity stiffnesses for layer k; 𝐸 𝑘 is the elasticity modulus for layer k; ℎ 𝑘 is the z-coordinate of bottom of layer k; and 𝑘 𝑠 is the transverse shear correction factor.
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 1832 Figure 3-2 Probability density function (PDF) and cumulative distribution function (CDF) of Gaussian distribution

- 31 where

 31 [𝑈] 𝑇 [𝑈] = [𝐼]; [𝑉] 𝑇 [𝑉] = [𝐼]; the columns of [𝑈] and [𝑉] are orthonormal eigenvectors of [𝐶𝑂𝑉][𝐶𝑂𝑉] 𝑇 and [𝐶𝑂𝑉] 𝑇 [𝐶𝑂𝑉]; [𝑆] is a diagonal matrix containing the square roots of eigenvalues from [𝑈] or [𝑉] in descending order.

𝜏

  or 𝜏 𝑖 and 𝜏 𝑗 ,  calculation of the terms 𝜌[𝑋 𝑖 , 𝑋 𝑗 ] of the autocorrelation matrix (equations 3-26, 3-27, 3-28, 3-29, and 3-30),  calculation of the terms 𝐶𝑜𝑣[𝑋 𝑖 , 𝑋 𝑗 ] of the autocovariance matrix [𝐶𝑂𝑉] (equation 3-25),  calculation of the autocovariance decomposition matrix by using singular value decomposition (equation 3-32),  calculation of the random field {𝐻 ̂(𝑥, 𝜃)} (equation 3-33).

  examples. The errors due to the spatial discretization and those related to the CGSM assumption are distinguished. On the one hand, three global criteria and two local criteria are defined for the errors due to the variability calculation, on the other hand three criteria are defined for the error due to the spatial discretization. The three global error criteria associated to variability concern the mean value, standard deviation and coefficient of variation. The CGSM results are compared with the direct Monte Carlo ones. These criteria are evaluated for a given mesh. They are defined as: 𝑒𝑟𝑟(𝑚(𝑈)) = ( 𝑚 𝐶𝐺𝑆𝑀 (𝑈) -𝑚 𝑑𝑀𝐶 (𝑈) 𝑚 𝑑𝑀𝐶 (𝑈) ) x 100 3-34 𝑒𝑟𝑟(𝜎(𝑈)) = ( 𝜎 𝐶𝐺𝑆𝑀 (𝑈) -𝜎 𝑑𝑀𝐶 (𝑈) 𝜎 𝑑𝑀𝐶 (𝑈) ) x 100 3-35 𝑒𝑟𝑟(𝑐. 𝑜. 𝑣. (𝑈)) = ( 𝑐. 𝑜. 𝑣. 𝐶𝐺𝑆𝑀 (𝑈) -𝑐. 𝑜. 𝑣. 𝑑𝑀𝐶 (𝑈) 𝑐. 𝑜. 𝑣. 𝑑𝑀𝐶 (𝑈) ) x 100 3-36 To further analyze the quality of the results obtained by the CGSM measured with the global error criteria defined in equations 3-34; 3-35; and 3-36, two local error criteria are proposed. These criteria are based on the strain energy and calculated on each finite element. The strain energy results calculated with the CGSM and the direct Monte Carlo simulations are compared. Two variants are proposed. The first criteria evaluates the relative error due to the CGSM assumption: 𝑒𝑟𝑟1 𝑒 (𝜋 𝑖𝑛𝑡 ) = 𝑚 |

  𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝑚(𝑈)) = ( 𝑚(𝑈) 𝑛𝑜𝑚 -𝑚(𝑈) 𝑟𝑒𝑓 𝑚(𝑈) 𝑟𝑒𝑓 ) x 100 3-40 𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝜎(𝑈)) = ( 𝜎(𝑈) 𝑛𝑜𝑚 -𝜎(𝑈) 𝑟𝑒𝑓 𝜎(𝑈) 𝑟𝑒𝑓 ) x 100 3-41
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 2142 Figure 4-2 Square plate under tension
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 43 Figure 4-3 shows the distribution of the displacement at point C, 𝑈 0 being the nominal displacement. For both levels of variability 5% and 15% with the correlation length  = L, the CGSM method provides results very close to those obtained by the direct Monte Carlo simulation results.
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 43 Figure 4-3 Square plate under tension (E random, c.o.v.(E) = 5% and 15%, = L) -probability density of the displacement at point C
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 4445422146  show the results for the error criteria 𝑒𝑟𝑟1 𝑒 (𝜋 𝑖𝑛𝑡 ) and 𝑒𝑟𝑟2 𝑒 (𝜋 𝑖𝑛𝑡 ) respectively. First we observe that for both criteria, when the length of correlation is large, local errors are very small, vice versa the errors are more significant for a small correlation length. Indeed when the correlation length is large, the random variable is almost uniform over the whole studied area. As already stated, if we consider a perfectly uniform variable over the whole studied area, the CGSM assumption is verified exactly. So it is logical to observe small errors for large correlation lengths and bigger errors for small correlation lengths. For a given correlation length, we also observe that the first criteria leads to slightly lower maximum errors compared to the second criteria. The maximum errors are also located in different zones.These two criteria are complementary. The observation of these resultsshows that significant local errors due to the CGSM assumption lead to small errors on the mean and standard deviation of displacement (see Tables 4-2 and 4-3).
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 46 Figure 4-6 Square plate with a circular hole under tension
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 447 Figure 4-7 shows meshes 1 and 2 obtained with these two approaches. These meshes are sufficient to provide the nominal displacement at points of interestA, B, C, D and E, with an error 𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝑈 ) defined in equation 3-39 less than 0.5% compared to a reference value. This reference solution is obtained with a very fine mapped mesh presented in Figure4-7. The adaptive meshing technique is interesting because it allows a significant reduction of the number of nodes, compared to the mapped meshing technique. In the next section, mesh 2 is used for the calculation of the variability.
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 847 Figure 4-8 shows the probability density function of the displacement at point A. The distribution obtained with the CGSM is very close to the reference distribution obtained with the direct Monte Carlo simulation. Due to the nonlinear relation between the displacement and the random parameters from the one hand and the significant variability level from the other hand, the distribution is not exactly Gaussian.
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 48 Figure 4-8 Square plate with a circular hole under tension (E random, c.o.v.(E) = 10%), type B with = 0.5L) -distribution of the displacement at point A
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 216 equations 3-37 and 3-38) and based on the strain energy, are observed. The objective is to analyze in detail the local errors on each element due to the CGSM assumption. Figures 4-10 and 4-11 show the results for the error
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 49410 Figure 4-9 Square plate with a circular hole under tension (E random, c.o.v.(E) = 10%, type B with = 0.5 L) -error criteria 𝑒𝑟𝑟1 𝑒

  ))) characteristics are as follows: L = 10 and h = 1, so the plate is rather thick. The random parameters are the elasticity modulus E and the Poisson's ratio v, represented by isotropic random fields. The mean values of these parameters are m(E) = 10.29 x 10 3 and m() = 0.2. The coefficients of variation c.o.v.(E) and c.o.v.() are equal to 10%. An isotropic exponential correlation function defined in equation 3-29 and several correlation lengths  = 0.001L to 100L are considered. The direct Monte Carlo simulations and the CGSM + Monte Carlo simulations are made with 10,000 runs. The variability of the vertical displacement of the central point A is calculated.

Figure 5 - 1

 51 Figure 5-1 Simply supported square bending plate under uniformly distributed load

Figure 5 - 3

 53 Figure5-3 shows the evolution of the coefficient of variation of displacement at point A, when the correlation length varies. The variability of the displacement increases non-linearly with the correlation length. For small correlation lengths, the variability level is very low. This is due to a compensation phenomenon. It is also observed that the variability of displacement is much higher in the case where the elasticity modulus is random with respect to the one where the uncertain parameter is the Poisson's ratio. CGSM provides results very close to those obtained by the direct Monte Carlo simulation. The CGSM results are also similar with those presented by Noh[START_REF] Noh | Effect of multiple uncertain material properties on the response variability of in-plane and plate structures[END_REF].
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 53554 Figure 5-3 Simply supported square bending plate under uniformly distributed load (E and v random, c.o.v.(E) = 10%, c.o.v.() = 10%) -variability of displacement at point A

Figure 5 - 5 Figure 5 - 6 5 . 2 . 2 . 1 .

 55565221 Figure 5-5 Simply supported square bending plate under uniformly distributed load (E random, c.o.v.(E) = 10%) -error criteria 𝑒𝑟𝑟1 𝑒

Figure 5 - 8

 58 Figure5-8 shows the evolution of the coefficient of variation of displacement at point A. The variability of the displacement increases non-linearly with the correlation length. As in the previous example, when the correlation length is smaller than 0.1L, the variability of the displacement is very small. This is again due to a compensation phenomenon. The CGSM provides results very close to those obtained by the direct Monte Carlo simulation. Our results are also consistent with those presented by Argyris et al.[START_REF] Argyris | Stochastic finite element analysis of shells[END_REF]. However some discrepancy is observed when the correlation length is very small (=0.005L). This point is commented and justified in section 5.2.2.4.
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 585 Figure 5-8 Simply supported square bending plate under concentrated load (E random, c.o.v.(E) = 10%) -variability of displacement at point A

Figure 5 - 9

 59 Figure 5-9 Simply supported square bending plate under concentrated load (E random, c.o.v.(E) = 10%, = L) -distribution of the displacement at point A

Figure 5 - 10 Figure 5 - 11 5 . 2 . 3 . Simply supported circular plate under uniform load 5 . 2 . 3 . 1 .

 5105115235231 Figure 5-10 Simply supported square bending plate under concentrated load (E random, c.o.v.(E) = 10%) -error criteria 𝑒𝑟𝑟1 𝑒

Figure 5 - 12

 512 Figure 5-12 Simply supported circular plate under uniform load in the z direction

2 Figure 5 -

 25 Figure 5-14 shows the evolution of the coefficient of variation of displacement at point C. The variability of the displacement increases non-linearlywith the correlation length. As in the previous example, when the correlation length is smaller than 0. 1L, the variability of the displacement is very small. This is again due to a compensation phenomenon.
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 514 Figure 5-14 Simply supported circular plate under uniform load (E random, c.o.v.(E) = 10%) -evolution of the variability level of displacement at point C versus the correlation length

Figure 5 - 15 50 Figure 5 - 16 2 5. 2 . 4 . Morley's plate under uniform load 5 . 2 . 4 . 1 .

 515505162245241 Figure 5-15 Simply supported circular plate under uniform load (E random, c.o.v.(E) = 10%, = L) -distribution of the displacement at point C for thin plate with R/h = 50

Figure 5 - 17

 517 Figure 5-17 Simply supported Morley's plate under uniform load in the z direction

Figure 5 - 18

 518 Figure 5-18 Simply supported Morley's plate under uniform loadthe adaptive mesh (1263 S3 shell elements of Abaqus)

Figure 5 -

 5 Figure 5-19 shows the evolution of the coefficient of variation of displacement at point C. The variability of the displacement increases non-linearlywith the correlation length. As in the previous example, when the correlation length is smaller than 0.01L, the variability of the displacement is very small. This is again due to a compensation phenomenon.

Figure 5 - 19 Figure 5 -

 5195 Figure 5-19 Simply supported Morley's plate under uniform load (E random, c.o.v.(E) = 10%) -variability of displacement at point C

Figure 5 - 20

 520 Figure 5-20 Simply supported Morley's plate under uniform load (E random, c.o.v.(E) = 10%, = L) -distribution of the displacement at point C

equations 6 - 1 .

 61 26 to 6-33 is used for each trial of the Monte Carlo simulation, to calculate the displacement variability of a point of a multilayered composite shell. Presentation of the example The homogeneous and isotropic Scordelis-Lo shell roof example has been treated by Stefanou and Papadrakakis [124]. It is assumed that the two longitudinal edges are free and the two circular edges are supported by rigid diaphragms. Along the rigid diaphragms it is assumed that the displacements in direction x, y, and z are zero. The roof is subjected to gravity loading with magnitude 4 kPa. The geometric characteristics are: L = 15.2 m, R = 7.6 m, 𝜃 = 40 𝑜 . The Poisson's ratio  is deterministic and its value is 0.3. The random parameters are the elasticity modulus E and the thickness h, represented by isotropic random fields. The mean values of these parameters are m(E) = 2.1x10 7 kN/m 2 and m(h) = 0.76 m. The coefficients of variation c.o.v.(E) and c.o.v.(h) are equal to 10%. An isotropic exponential correlation function defined in equation 3-29 and several correlation lengths  = 0.004L to 8.55L are considered. The direct Monte Carlo simulations and the CGSM + Monte Carlo simulations are made with 10,000 runs. The vertical displacement variability of point C, located at the middle of the longitudinal edge, is calculated.
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 626364 Figure 6-2 Scordelis-Lo shell roof under gravity loading -the 60x84 mesh (5185 nodes and 5040 elements)

Figure 6 -

 6 Figure6-5 shows the evolution of the coefficient of variation of displacement at point C, when the correlation length varies. The variability of the displacement increases non-linearly with the correlation length. For small correlation lengths, the variability level is very low. This is due to a compensation phenomenon. This figure clearly highlights that the displacement variability level is significantly higher when the random parameter is the thickness, compared to the situation where the random parameter is the elasticity modulus. Figure 6-5 shows the CGSM, direct Monte Carlo, and Stefanou and Papadrakakis [124] results are globally consistent. However, a slight gap exists between the Stefanou and
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 656 Figure 6-5 Scordelis-Lo shell roof under gravity loading (E or h random, c.o.v.(E) = 10%, c.o.v.(h) = 10%) -variability of displacement at point C

Figure 6 - 7

 67 Figure 6-7 Car windscreen under pressure loading

Figure 6 - 8

 68 Figure 6-8 Car windscreen under pressure loading -stacking sequence

Figure 6 - 9

 69 Figure 6-9 Car windscreen under pressure loading -Mesh I: 192 elements (a), Mesh II: 744 elements (b), Mesh III: 13200 elements (c)

Figure 6 - 10

 610 Figure 6-10 Car windscreen under pressure loading -distribution of displacement at point A

Figure 6 - 11

 611 Figure 6-11 Car windscreen under pressure loading (case 4: E and h uncertain, for glass c.o.v.(Ei) = c.o.v.(hi) = 10%) -distribution of displacement at point A

12 and 13

 13 and in Two tests are performed to highlight the influence of random fields. First the acceleration factor (acceleration factor 1) between the direct Monte Carlo simulations and the CGSM is calculated taking into account the total computational time. Then the acceleration factor (acceleration factor 2) is calculated again by removing the computational time due to the autocovariance decomposition. This autocovariance decomposition is specific of random fields, it is performed only once but is very time consuming.

Figure 6 -

 6 Figure 6-12 shows the results for acceleration factor 1. It increases with the number of trials and decreases with the mesh refinement level. For a number of trials classically considered and equal to 10000, the acceleration factor is comprised between 148 and 251, depending on the mesh refinement level.Figure 6-13 shows
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 616 Figure 6-12 Scordelis-Lo shell roof under gravity loading -acceleration factor 1

Figure 6 - 14

 614 Figure 6-14 Car windscreen under pressure loading -acceleration factor of CGSM
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 112122232431414434445464748494515253545556575859555555505255556163646566668696661626 Figure 1-1 Classification of sources and types of uncertainty in mechanics -contribution domain of the thesis
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.2.2. Monte Carlo simulation

  

	The Monte Carlo simulation was first proposed by Metropolis and Ulam
	[69]. The Monte Carlo simulation (MCS) has several advantages: it is the most
	robust method, it is simple to implement and it is adaptable to any discipline. Due
	to its robustness and simplicity, MCS is often used in the literature as a reference
	method in order to check the accuracy of other approaches. It is based on random
	sampling, where the laws of statistics are exploited to derive information on the
	variability of the response. The statistical outputs are obtained by generating
	samples of the random input parameters 𝑋 𝑖 that meet the statistical distribution
	retained, and using deterministic computation for each trial.
	The Monte Carlo simulation leads to the evaluation of the output
	distribution. It allows the identification of the classical statistical quantities of
	interest: the mean 𝑚(𝑌), the variance 𝑉𝑎𝑟(𝑌), the standard deviation 𝜎(𝑌), and
	then the coefficient of variation 𝑐. 𝑜. 𝑣. (𝑌) . If N is the number of trials, these
	quantities can be calculated as follows:		
	𝑚(𝑌) =	1 𝑁	𝑁 𝑖=1 ∑ 𝑌 𝑖		2-6
	𝑉𝑎𝑟(𝑌) =	1 𝑁 -1	𝑁 𝑖=1 ∑(𝑌 𝑖 -𝑚(𝑌 𝑖 ))	2	2-7
	𝜎(𝑌) = √𝑉𝑎𝑟[𝑌]		2-8
	𝑐. 𝑜. 𝑣. (𝑌) =	𝜎(𝑌) 𝑚(𝑌)		2-9

Table 3 -

 3 1. 

		Statically determined structure	1 uniform random variable	nX variables uniform random	Random field
		thickness h,				thickness h,	thickness h,
		elasticity modulus E,	thickness h	elasticity modulus E	Poisson's ratio 	elasticity modulus E,	elasticity modulus E,
		Poisson's				Poisson's	Poisson's
		ratio 				ratio 	ratio 
	Membrane plate	certain	certain	certain	uncertain	uncertain	uncertain
	Bending plate	certain	uncertain	certain	uncertain	uncertain	uncertain
	Single-layered shell	certain	uncertain	certain	uncertain	uncertain	uncertain
	Multi-layered shell	certain	uncertain uncertain uncertain	uncertain	uncertain
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 31 Influence of input variability on the generalized stresses

Chapter 4 Formulation and Applications of CGSM for Membrane Plates 4.1. Formulation of the CGSM for membrane plates 4.1.1

  

Table 4

 4 

	The maximum error accepted for nominal displacement is 0.5%. The reference is
	given by a very fine mesh Q4_64x64 (4096 nodes and 4225 elements). The optimal
	mesh for the nominal calculation is Q4_16x16 (256 nodes and 289 elements).
	Consequently this mesh is exploited to calculate the variability. Tests are performed
	a posteriori to ensure that this mesh is suitable for the calculation of the variability
	(see section 4.2.1.3 ).

-1 shows the results of a convergence study of nominal displacements at 3 nodes C, D and E highlighted in Figure 4-2.
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 41 Square plate under tension study of convergence of displacements in

	the nominal configuration
	4.2.1.3. Displacement variability

The CGSM results are compared with those obtained by Rahman and Rao

[START_REF] Rahman | A perturbation method for stochastic meshless analysis in elastostatics[END_REF] 

and with a reference solution obtained by direct Monte Carlo simulation. For the correlation function equation 3-28 is used, with 𝑏 1 = 1, 𝑏 2 = 2, and the correlation length  = L. The variability level is defined by c.o.v.(E) = 12%. Table

4

-2 shows CGSM provides highly accurate results for the mean and the variance.

The maximum errors are worth 0.2% and 1.3% for the mean and variance of the displacement respectively. The results obtained by Rahman and Rao

[START_REF] Rahman | A perturbation method for stochastic meshless analysis in elastostatics[END_REF] 

lead to significant errors. This discrepancy is certainly due to the fact that they used a too coarse mesh.

Table 4 -

 4 The correlation length varies now between  = 0.01L and 100L, and two levels of variability: c.o.v.(E) = 5% or 15%, are considered. Table4-3 shows the maximum errors on the mean and standard deviation of displacement at point C.

2 Square plate under tension (E random, c.o.v.(E) = 12%, = L)variability of displacement

Table 4 -

 4 

4 Square plate under tension (E random, c.o.v.(E) = 5% and 15%)errors on the statistical results of the displacement at point C, for the mesh Q4_16x16 compared to the reference mesh Q4_64x64

Table 4 -5 Square

 4 = 5% and 15%. Table4-7 shows the maximum errors on the mean and standard deviation of displacement at point A. All results obtained with the CGSM are very satisfactory. The maximum errors are always less than 1% and 5% for the mean value and the standard deviation of the displacement respectively.

		Rahman and Xu [122]	CGSM	direct Monte Carlo
		Results	Error (%)	Results	Error (%)	Reference
	A x 𝑚(𝑈)	-9.76E-01	4.3	-1.017E+00	0.2	-1.019E+00
	𝜎(𝑈)	1.18E-01	7.3	1.283E-01	0.8	1.273E-01
	B x 𝑚(𝑈)	-6.20E+00	0.1	-6.216E+00	0.3	-6.196E+00
	𝜎(𝑈)	4.97E-01	0.3	4.985E-01	0.0	4.983E-01
	C y 𝑚(𝑈)	2.97E+00	2.2	3.042E+00	0.1	3.038E+00
	𝜎(𝑈)	2.66E-01	6.4	2.843E-01	0.0	2.843E-01
	D y 𝑚(𝑈)	2.04E+01	0.1	2.047E+01	0.3	2.042E+01
	𝜎(𝑈)	1.45E+00	0.4	1.457E+00	0.1	1.456E+00
	E x 𝑚(𝑈)	-5.85E+00	1.5	-5.953E+00	0.3	-5.938E+00
	𝜎(𝑈)	6.07-01	2.8	6.267E-01	0.3	6.245E-01
	y 𝑚(𝑈)	1.99E+01	1.1	2.015E+01	0.2	2.012E+01
	𝜎(𝑈)	1.48E+00	2.3	1.520E+00	0.4	1.514E+00

plate with a circular hole under tension (E random, c.o.v.(E) = 10%, type A with  = 0.5L, = 0.5L) -variability of displacement at several points The correlation length varies now, from = 0.005L to 50L (type B), for two variability levels c.o.v.(E)

Table 4 -

 4 

		0.005L	0.05L	0.5L	5L	50L
	c.o.v.(E) (%)					

6 Square plate with a circular hole under tension (E random, c.o.v.(E) = 10%, type B with  = 0.5L) -variability of displacement at several points

Table 4 -

 4 

			Rahman and Xu [122]	CGSM	direct Monte Carlo
			Results	Error (%)	Results	Error (%)	Reference
	A	m(yy)	2.95E+00	6.5	2.782E+00	0.4	2.771E+00
		(yy)	2.58E-01	4.0	2.707E-01	0.7	2.689E-01
	B	m(yy)	9.98E-01	0.3	1.006E+00	0.4	1.001E+00
		(yy)	8.62E-02	0.9	8.930E-02	2.6	8.702E-02
	C	m(xx)	-7.18E-01	11	-7.994E-01	1.0	-8.077E-01
		(xx)	9.16E-02	12	1.032E-01	0.7	1.039E-01
	D	m(yy)	9.90E-01	1.5	1.005E+00	0.1	1.005E+00
		(yy)	8.78E-02	8.9	9.742E-02	1.0	9.645E-02
	E	m(yy)	9.79E-01	3.1	1.010E+00	0.1	1.011E+00
		(yy)	8.79E-02	14	1.002E-01	1.6	1.018E-01

8 Square plate with a circular hole under tension (E random, c.o.v.(E) = 5% and 15%, type B) -errors on the statistical results of strain yy at point A
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9 Square plate with a circular hole under tension (E random, c.o.v.(E) = 10%, type B with  = 0.5 L) -variability of strains at points A, B, C, D and E

Table 4 -

 4 10 Square plate with a circular hole under tension (E random, c.o.

v.(E) = 10%, type B)  errors on the statistical results of the displacement at point C, for mesh 2 compared to the reference mesh

  𝑇 𝑥 𝑖 and 𝑇 𝑦 𝑖 are the transverse shear forces; 𝐴 𝑖 is the area; 𝐸 𝑖 is the elasticity modulus; 𝑘 𝑠 is the transverse shear correction factor; ℎ 𝑖 is the thickness and 𝑣 𝑖 is the Poisson's ratio.

				𝑛 𝑖=1	𝐴 𝑖	1 + 𝑣 𝑖 ) 𝐸 𝑖 𝑘 𝑠 ℎ 𝑖	(𝑇 𝑥 𝑖	2 + 𝑇 𝑦 𝑖	2 )	𝑑𝐴	5-20
	where i is the element number; In order to apply the Castigliano's theorem for calculating the displacement
	𝑈 of a point P in a given direction, the shear forces of each element are decomposed
	into two contributions:				
					𝑇 𝑥 𝑖 = 𝑇 𝑥 𝑖 ′ + 𝐹𝑇 𝑥 𝑖 "
					𝑇 𝑦 𝑖	= 𝑇 𝑦 𝑖 ′ + 𝐹𝑇 𝑦 𝑖	
	Substituting equation 5-21 into equation 5-20 gives:
	𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ =	1 2	∑ ∫ 𝑛 𝐴 𝑖 𝑖=1	2(1 + 𝑣 𝑖 ) 𝐸 𝑖 𝑘 𝑠 ℎ 𝑖	((𝑇 𝑥 𝑖 ′ + 𝐹𝑇 𝑥 𝑖 " )	2 + (𝑇 𝑦 𝑖 ′ + 𝐹𝑇 𝑦 𝑖 " ) 2	)	𝑑𝐴

"

5-21

where i is the element number; F is the load applied at point P in the direction of interest (F is a force or a moment if the variability of a displacement or a rotation must be assessed respectively), 𝑇 𝑥 𝑖 and 𝑇 𝑦 𝑖 are the shear forces, 𝑇 𝑥 𝑖 ′ and 𝑇 𝑦 𝑖 ′ are the shear forces due to loads on the whole structure except at point P in the direction of interest, 𝑇 𝑥 𝑖 " and 𝑇 𝑦 𝑖 " are the shear forces due to a unitary load applied at point P in the direction of interest.

. Bending plates examples 5.2.1. Square bending plate under uniformly distributed load

  

	1 + 𝑣 𝑖 ) 𝐸 𝑖 𝑘 𝑠 ℎ 𝑖	(𝑇 𝑥 𝑖 " (𝑇 𝑥 𝑖 ′ + 𝐹𝑇 𝑥 𝑖 " ) + 𝑇 𝑦 𝑖 " (𝑇 𝑦 𝑖 ′ + 𝐹𝑇 𝑦 𝑖 " ))	5-27
	5.2		

Table 5 -

 5 [START_REF] Scigliano | Verification, validation and variability for the vibration study of a car windscreen modeled by finite elements[END_REF] shows the mean value, standard deviation and coefficient of variation of displacement obtained by the CGSM and the Monte Carlo simulations. Errors, reported in Table5-5, are always very small.

	 	0.01L		L		10 L		100 L	
		CGSM	dMC	CGSM	dMC	CGSM	dMC	CGSM	dMC
	m(U)	7.738	7.726	7.739	7.748	7.751	7.778	7.734	7.764
	σ(U)	4.280E-02 4.180E-02 5.896E-01 5.860E-01 7.712E-01 7.732E-01 7.989E-01 8.018E-01
	c.o.v.(U) (%)	0.55	0.54	7.62	7.56	9.95	9.94	10.33	10.33

Table 5 -

 5 

	 	0.01L	L	10 L	100 L
	Error on m(U) (%)	0.2	0.1	0.3	0.4
	Error on σ(U) (%)	2.4	0.6	0.3	0.4
	Error on c.o.v.(U) (%)	2.2	0.7	0.1	0.0

2 Simply supported square bending plate under uniformly distributed load (E random, c.o.v.(E) = 10%) -variability of displacement at point A

Table 5 -

 5 

	 	0.01L		L		10 L		100 L	
		CGSM	dMC	CGSM	dMC	CGSM	dMC	CGSM	dMC
	m(U)	7.659	7.687	7.658	7.685	7.658	7.684	7.659	7.686
	σ(U)	8.902E-03 8.901E-03 7.600E-02 7.590E-02 7.280E-02 7.230E-02 7.100E-02 7.090E-02
	c.o.v.(U) (%)	0.16	0.16	0.99	0.99	0.95	0.94	0.93	0.92

3 Simply supported square bending plate under uniformly distributed load (random, c.o.v.(E) = 10%) -errors on the statistical results of displacement at point A

Table 5 -

 5 

	4 Simply supported square bending plate under uniformly distributed
	load (v random, c.o.v.(v) = 10%) -variability of displacement at point A

Table 5 - 5

 55 Simply supported square bending plate under uniformly distributed

Table 5 -6 Simply

 5 

	 	0.01L	0.1L	L	10 L	100 L
	𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝑚(𝑈)) (%)	0.5	0.5	0.5	0.5	0.2
	𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝜎(𝑈)) (%)	66	1.6	0.7	0.2	0.0
	 	0.01L	0.1L	L	10 L	100 L
	𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝑚(𝑈)) (%)	0.6	0.6	0.6	0.6	0.6
	𝑒𝑟𝑟 𝑚𝑒𝑠ℎ (𝜎(𝑈)) (%)	65	3.8	0.9	0.8	0.0
	Table 5-7 Simply supported square bending plate under uniformly distributed
	load (random, c.o.v.() = 10%) -error on the mean value and the standard
	deviation of displacement at point A for the 24x24 mesh	

supported square bending plate under uniformly distributed load (E random, c.o.v.(E) = 10%) -error on the mean value and the standard deviation of displacement at point A for the 24x24 mesh

Table 5 -

 5 9. Errors are given in Table5-10. The CGSM provides very accurate results for the whole correlation length range.

		0.005L	0.05 L	0.1 L		0.2 L		2 L	
		CGSM dMC CGSM dMC CGSM dMC CGSM dMC CGSM dMC
	m(U)	0.3941 0.393 0.394 0.394 0.394 0.394 0.394 0.394 0.395 0.396
	σ(U)	0.002 0.002 0.002 0.002 0.006 0.006 0.015 0.015 0.039 0.039
	c.o.v.(U) (%)	0.5	0.5	0.6	0.6	1.5	1.5	3.8	3.8	9.9	9.9

Table 5 -

 5 

	9 Simply supported square bending plate under concentrated load
	(E random, c.o.v.(E) = 10%) -variability of displacements at point A
	 	0.005L	0.05 L	0.1 L	0.2 L	2 L
	Error on m(U) ) (%)	0.1	0.1	0.0	0.1	0.4
	Error on σ(U) ) (%)	0.0	0.0	1.7	0.7	0.5
	Error on c.o.v.(U) (%)	0.1	0.1	1.7	0.7	0.2

Table 5 -

 5 

10 Simply supported square bending plate under concentrated load (E random, c.

Table 5 -

 5 

11 Simply supported square bending plate under concentrated load (E random, c.o.v.(E) = 10%) -error on the mean value and the standard deviation of displacement at point A for the 24x24 mesh

Table 5 -

 5 

	 	0.01L	0.1 L	L	10 L	100 L
	Error on m(U) (%)	1.1	1.0	0.7	0.6	0.6
	Error on σ(U) (%)	7.8	5.1	0.7	0.7	0.6
	Error on c.o.v.(U) (%)	6.7	4.0	0.3	0.1	0.0

14 Simply supported circular plate under uniform load (E random, c.o.v.(E) = 10%) -variability of displacements at point C for thin plate with R/h = 50

Table 5 -

 5 15 Simply supported circular plate under uniform load (E random, c.o.v.(E) = 10%) -errors on the statistical results of displacement at point C for thin plate with R/h = 50

	 	0.01L	0.1 L	L	10 L	100 L
		CGSM dMC CGSM dMC CGSM dMC CGSM dMC CGSM dMC
	m(U)	3.286 3.278 3.286 3.281 3.287 3.287 3.283 3.291 3.285 3.294
	σ(U) (x10 -2 ) 2.767 2.613 7.795 7.551 25.69 25.55 32.22 32.27 33.39 33.47
	c.o.v.(U) (%)	0.84	0.80	2.37	2.30	7.82	7.77 9.81	9.81 10.16 10.16

Table 5 -

 5 [START_REF] Lardeur | The Certain Generalized Stresses Method for the static finite element analysis of bar and beam trusses with variability[END_REF] Simply supported circular plate under uniform load (E random,

	c.o.v.(E) = 10%) -variability of displacements at point C for thick plate
	with R/h = 2

Table 5 -

 5 [START_REF] Schuëller | A state-of-the-art report on computational stochastic mechanics[END_REF] Simply supported circular plate under uniform load (E random,

Table 5 -

 5 18 Simply supported Morley's plate under uniform load

convergence study of displacement at node C in nominal configuration

Table 5 -

 5 [START_REF] Sudret | Stochastic finite element methods and reliability: A state of the art report[END_REF]. Errors are given in Table5-20. The CGSM provides very accurate results for the whole correlation length range. Nevertheless the errors slightly increase when the correlation length is smaller than L.

	 	0.01L	0.1 L	L		10 L	100 L
		CGSM dMC CGSM dMC CGSM dMC CGSM dMC CGSM dMC
	m(U)	0.4126 0.4092 0.413 0.411 0.413 0.412 0.413 0.413 0.413 0.413
	σ(U) (x10 -2 ) 0.2526 0.2441 1.438 1.409 3.608 3.591 4.158 4.156 4.225 4.226
	c.o.v.(U) (%) 0.61	0.60	3.48	3.43	0.87	0.87	10.08 10.08 10.24 10.24

Table 5 -

 5 19 Simply supported Morley's plate under uniform load (E random,

	c.o.v.(E) = 10%) -variability of displacement at point C	
	 	0.01L	0.1 L	L	10 L	100 L
	Error on m(U) (%)	0.8	0.6	0.1	0.6	0.0
	Error on σ(U) (%)	3.5	2.0	0.5	0.7	0.0
	Error on c.o.v.(U) (%)	2.6	1.4	0.4	0.1	0.0

Table 5 -

 5 20 Simply supported Morley's plate under uniform load (E random,

c.o.v.(E) = 10%) -errors on the statistical results of displacement at point C

  at a point P in a given direction, the forces in each element are decomposed into where i is the element number; F is the load applied at point P in the direction of interest (F is a force or a moment if the variability of a displacement or a rotation must be assessed respectively); the subscripts 𝑥 𝑖 , 𝑦 𝑖 are the local directions; 𝑁 ′ , 𝑀 ′ , 𝑇 ′ are the generalized stresses due to loads on the whole structure except at point P in the direction of interest; 𝑁 " , 𝑀 " , 𝑇 " are the generalized stresses due to a unitary load applied at point P in the direction of interest.

	two contributions:			
	for the axial forces			𝑁 𝑥 𝑖 = 𝑁 𝑥 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 "
							𝑁 𝑦 𝑖	= 𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑦 𝑖 "
							𝑁 𝑥𝑦 𝑖	= 𝑁 𝑥𝑦 𝑖 ′ + 𝐹𝑁 𝑥𝑦 𝑖 "
	for the moments				𝑀 𝑥 𝑖 = 𝑀 𝑥 𝑖 ′ + 𝐹𝑀 𝑥 𝑖 " 𝑀 𝑦 𝑖 = 𝑀 𝑦 𝑖 ′ + 𝐹𝑀 𝑦 𝑖 "	6-6
							𝑀 𝑥𝑦 𝑖	= 𝑀 𝑥𝑦 𝑖 ′ + 𝐹𝑀 𝑥𝑦 𝑖 "
	for the transverse shear forces 𝑇 𝑥 𝑖 = 𝑇 𝑥 𝑖 ′ + 𝐹𝑇 𝑥 𝑖 "
							𝑇 𝑦 𝑖	= 𝑇 𝑦 𝑖 ′ + 𝐹𝑇 𝑦 𝑖 "
		Substituting equation 6-6 into equation 6-5 gives:
	𝜋 𝑖𝑛𝑡 =	1 2	∑ ∫ ( 𝑛 𝐴 𝑖 𝑖=1	1 𝐸 𝑖 ℎ 𝑖	((𝑁 𝑥 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 " )	2
			-2𝑣 𝑖 (𝑁 𝑥 𝑖 ′ 𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 ′ 𝑁 𝑦 𝑖 " + 𝐹𝑁 𝑥 𝑖 " 𝑁 𝑦 𝑖 ′ + 𝐹 2 𝑁 𝑥 𝑖 " 𝑁 𝑦 𝑖 " ) + (𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑦 𝑖 " ) 2 + 2(1 + 𝑣 𝑖 ) (𝑁 𝑥𝑦 𝑖 ′ + 𝐹𝑁 𝑥𝑦 𝑖 " ) 2 )
			+	12 𝐸 𝑖 ℎ 𝑖	3 ((𝑀 𝑥 𝑖 ′ + 𝐹𝑀 𝑥 𝑖 " )	2
			-2𝑣 𝑖 (𝑀 𝑥 𝑖 ′ 𝑀 𝑦 𝑖 ′ + 𝐹𝑀 𝑥 𝑖 ′ 𝑀 𝑦 𝑖 " + 𝐹𝑀 𝑥 𝑖 " 𝑀 𝑦 𝑖 ′ + 𝐹 2 𝑀 𝑥 𝑖 " 𝑀 𝑦 𝑖 " ) + (𝑀 𝑦 𝑖 ′ + 𝐹𝑀 𝑦 𝑖 " ) 2 + 2(1 + 𝑣 𝑖 ) (𝑀 𝑥𝑦 𝑖 ′ + 𝐹𝑀 𝑥𝑦 𝑖 " ) 2 )
			+	2(1 + 𝑣 𝑖 ) 𝐸 𝑖 𝑘 𝑠 ℎ 𝑖	((𝑇 𝑥 𝑖 ′ + 𝐹𝑇 𝑥 𝑖 " )	2 + (𝑇 𝑦 𝑖 ′ + 𝐹𝑇 𝑦 𝑖 " ) 2

  〈𝑒 𝑥 𝑒 𝑦 𝑒 𝑥𝑦 〉 the in-plane strains, 〈 〉 = 〈 𝑥  𝑦  𝑥𝑦 〉 the curvatures; 〈𝛾 〉 = 〈𝛾 𝑥𝑧 𝛾 𝑦𝑧 〉 the out-of-plane shear strains; A, B, D and F the generalized membrane stiffness matrix, membrane-bending coupling stiffness matrix, bending stiffness matrix and transverse shear stiffness matrix respectively.where 〈𝑁 𝑥 𝑁 𝑦 𝑁 𝑥𝑦 〉 are the axial forces, 〈𝑀 𝑥 𝑀 𝑦 𝑀 𝑥𝑦 〉 are the bending moments, 〈𝑇 𝑥 𝑇 𝑦 〉 are the shear forces.

	The strain energy may be decomposed into several contributions:
	membrane					𝜋 𝑖𝑛𝑡 𝑚 =	1 2	𝐴 ∫ 〈𝑁〉 [𝐴𝐼]	{𝑁} 𝑑𝐴	6-15
	membrane-bending coupling 𝐴 bending	𝛾〉 [ 𝑏 = ∫ 〈𝑀〉 [𝐵𝐼] 𝑒 𝜋 𝑖𝑛𝑡 𝐴 𝐴 𝐵 0 𝐵 𝐷 0 0 0 𝐹 ] {  𝛾 } 𝑑𝐴 {𝑁} 𝑑𝐴 𝜋 𝑖𝑛𝑡 𝑚𝑏 = 1 𝐴 2 ∫ 〈𝑀〉 [𝐷𝐼] {𝑀} 𝑑𝐴	6-16 6-11 6-17
	with 〈𝑒 〉 = As introduced in chapter 3 (see equation 3-11), the relationship between transverse shear 𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ = 1 𝐴 2 ∫ 〈𝑇〉 [𝐹𝐼] {𝑇} 𝑑𝐴 6-18
	the strains and the generalized stresses is:		
	{  𝑥𝑦 𝑒 𝑥 𝑒 𝑦 𝑒 𝑥𝑦  𝑥  𝑦 𝛾 𝑦𝑧 } 𝛾 𝑥𝑧	=	[ 𝐴 11 𝐴 12 𝐴 13 0 0 0 0 0 0 𝐵 31 𝐵 32 𝐵 33 𝐴 12 𝐴 22 𝐴 23 𝐴 13 𝐴 23 𝐴 33 𝐵 11 𝐵 12 𝐵 13 𝐵 21 𝐵 22 𝐵 23	0 0 𝐷 13 𝐷 23 𝐷 33 0 0 0 0 𝐵 11 𝐵 21 𝐵 31 𝐵 12 𝐵 22 𝐵 32 𝐵 13 𝐵 23 𝐵 33 𝐷 11 𝐷 12 𝐷 13 𝐷 12 𝐷 22 𝐷 23	𝐹 11 𝐹 12 𝐹 12 𝐹 22 ] 0 0 0 0 0 0 0 0 0 0 0 0	-1	{ 𝑀 𝑥𝑦 𝑇 𝑦 } 𝑇 𝑥 𝑁 𝑥 𝑁 𝑦 𝑁 𝑥𝑦 𝑀 𝑥 𝑀 𝑦	6-12
	Equation 6-12 can be written in the following synthetic form:
				𝑒			𝐴𝐼 𝐵𝐼 0		𝑁
			{  𝛾	} = [	0 𝐵𝐼 𝐷𝐼 0 0 𝐹𝐼	] {	𝑇 𝑀	}	6-13
	Reporting equation 6-13 into equation 6-11, one obtains:
			𝜋 𝑖𝑛𝑡 =	1 2	𝐴 ∫ 〈𝑁 𝑀 𝑇〉 [	𝐴𝐼 𝐵𝐼 0 0 0 𝐹𝐼 𝐵𝐼 𝐷𝐼 0	]	{	𝑁 𝑇 𝑀	} 𝑑𝐴	6-14

  where 𝑈 𝑚 is the displacement due to the axial forces, 𝑈 𝑚𝑏 is the displacement due to coupling between the membrane and bending effects, 𝑈 𝑏 is the displacement due to the bending moments, and 𝑈 𝑡𝑠ℎ is the displacement due to the transverse shear forces.Equation 6-22 is used to calculate the different terms of the displacement U expressed in equation 6-24. Displacement due to the axial forces is:

	1 2 + 2 ∑ ∫ 𝐴 𝑛 𝑖=1 { 𝑁 𝑥 𝑖 ( ′ + 𝐹𝑁 𝑥 𝑖 { 𝑁 𝑥 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 " 𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑦 𝑖 " 𝑁 𝑥𝑦 𝑖 ′ + 𝐹𝑁 𝑥𝑦 𝑖 " } 𝑇 " 𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑦 𝑖 " 𝑁 𝑥𝑦 𝑖 ′ + 𝐹𝑁 𝑥𝑦 𝑖 " } 𝑇 [ 𝐵𝐼 12 𝐵𝐼 22 𝐵𝐼 32 [ 𝐴𝐼 11 𝐴𝐼 12 𝐴𝐼 13 𝐴𝐼 12 𝐴𝐼 22 𝐴𝐼 23 𝐴𝐼 13 𝐴𝐼 23 𝐴𝐼 33 𝐵𝐼 13 𝐵𝐼 23 𝐵𝐼 33 ] { 𝑀 𝑦 𝑖 ] ′ + 𝐹𝑀 𝑦 𝑖 { 𝑁 𝑥 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 " 𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑦 𝑖 " 𝑁 𝑥𝑦 𝑖 ′ + 𝐹𝑁 𝑥𝑦 𝑖 " } 𝑀 𝑥𝑦 𝑖 ′ + 𝐹𝑀 𝑥𝑦 𝑖 + { 𝑀 𝑥 𝑖 ′ + 𝐹𝑀 𝑥 𝑖 " 𝑀 𝑦 𝑖 ′ + 𝐹𝑀 𝑦 𝑖 " 𝑀 𝑥𝑦 𝑖 ′ + 𝐹𝑀 𝑥𝑦 𝑖 " } 𝑇 [ 𝐷𝐼 11 𝐷𝐼 12 𝐷𝐼 13 𝐷𝐼 12 𝐷𝐼 22 𝐷𝐼 23 𝐷𝐼 13 𝐷𝐼 23 𝐷𝐼 33 ] { 𝑀 𝑥 𝑖 ′ + 𝐹𝑀 𝑥 𝑖 " 𝑀 𝑦 𝑖 𝑀 𝑥𝑦 𝑖 ′ + 𝐹𝑀 𝑥𝑦 𝑖 U = 𝑈 𝑚 + 𝑈 𝑚𝑏 + 𝑈 𝑏 + 𝑈 𝑡𝑠ℎ 6-25 𝑀𝑁 𝑖 5 = 𝑁 𝑥𝑦𝑖 ′ 𝑀 𝑥𝑖 " + 𝑁 𝑥𝑦𝑖 " 𝑀 𝑥𝑖 ′ + 2𝐹𝑁 𝑥𝑦𝑖 " 𝑀 𝑥𝑖 " 6-29 " } 𝑀𝑁 𝑖 4 = 𝑁 𝑦𝑖 ′ 𝑀 𝑥𝑖 " + 𝑁 𝑦𝑖 " 𝑀 𝑥𝑖 ′ + 2𝐹𝑁 𝑦𝑖 " 𝑀 𝑥𝑖 " ′ + 𝐹𝑀 𝑦 𝑖 " 𝑈 = 𝜋 𝑖𝑛𝑡 𝑚 𝜕𝐹 + 𝜋 𝑖𝑛𝑡 𝑚𝑏 𝜕𝐹 + 𝜋 𝑖𝑛𝑡 𝑏 𝜕𝐹 + 𝜋 𝑖𝑛𝑡 𝑡𝑠ℎ 𝜕𝐹 𝑀𝑁 𝑖 3 = 𝑁 𝑥𝑦𝑖 ′ 𝑀 𝑥𝑦𝑖 " + 𝑁 𝑥𝑦𝑖 " 𝑀 𝑥𝑦𝑖 ′ + 2𝐹𝑁 𝑥𝑦𝑖 " 𝑀 𝑥𝑦𝑖 " 6-24 𝑀𝑁 𝑖 2 = 𝑁 𝑦𝑖 ′ 𝑀 𝑦𝑖 " + 𝑁 𝑦𝑖 " 𝑀 𝑦𝑖 ′ + 2𝐹𝑁 𝑦𝑖 " 𝑀 𝑦𝑖 " " } 𝑀𝑁 𝑖 1 = 𝑁 𝑥𝑖 ′ 𝑀 𝑥𝑖 " + 𝑁 𝑥𝑖 " 𝑀 𝑥𝑖 ′ + 2𝐹𝑁 𝑥𝑖 " 𝑀 𝑥𝑖 " The displacement contains the following distributions: or " 𝐵𝐼 11 𝐵𝐼 21 𝐵𝐼 31 𝑀 𝑥 𝑖 ′ + 𝐹𝑀 𝑥 𝑖 " 𝜋 𝑖𝑛𝑡 = To obtain the displacement at a point P in a given direction, the Castigliano's theorem is applied: 𝑈 = 𝜋 𝑖𝑛𝑡 where 𝜕𝐹 6-23 𝑈 𝑚𝑏 = ∑ 𝐴 𝑖 ( 𝐵𝐼 11 𝑀𝑁 𝑖 1 + 𝐵𝐼 22 𝑀𝑁 𝑖 2 + 𝐵𝐼 33 𝑀𝑁 𝑖 3 +𝐵𝐼 12 𝑀𝑁 𝑖 4 + 𝐵𝐼 13 𝑀𝑁 𝑖 5 + 𝐵𝐼 23 𝑀𝑁 𝑖 𝑛 𝑆 𝑖 1 = 2𝑇 𝑥 𝑖 " (𝑇 𝑥 𝑖 " ) ′ + 𝐹𝑇 𝑥 𝑖 6 +𝐵𝐼 21 𝑀𝑁 𝑖 7 + 𝐵𝐼 31 𝑀𝑁 𝑖 9 ) 𝑖 6-28 𝑆 𝑖 2 = 2𝑇 𝑦 𝑖 " (𝑇 𝑦 𝑖 ′ + 𝐹𝑇 𝑦 𝑖 " ) 8 + 𝐵𝐼 32 𝑀𝑁 𝑖 𝑆 𝑖 3 = 𝑇 𝑥𝑖 ′ 𝑇 𝑦𝑖 " + 𝑇 𝑦𝑖 ′ 𝑇 𝑥𝑖 " + 2𝐹𝑇 𝑥𝑖 " 𝑇 𝑦𝑖 "
	+ { 𝑇 𝑦 𝑖 𝑇 𝑥 𝑖 ′ + 𝐹𝑇 𝑥 𝑖 " ′ + 𝐹𝑇 𝑦 𝑖 " } 𝑀𝑁 𝑖 6 = 𝑁 𝑥𝑦𝑖 ′ 𝑀 𝑦𝑖 " + 𝑁 𝑥𝑦𝑖 𝑇 [ 𝐹𝐼 11 𝐹𝐼 12 𝐹𝐼 12 𝐹𝐼 22 " 𝑀 𝑦𝑖 ′ + 2𝐹𝑁 𝑥𝑦𝑖 ] { 𝑇 𝑥 𝑖 " 𝑀 𝑦𝑖 " ′ + 𝐹𝑇 𝑥 𝑖 " 𝑇 𝑦 𝑖 " } 𝑀𝑁 𝑖 7 = 𝑁 𝑥𝑖 ′ 𝑀 𝑦𝑖 " + 𝑁 𝑥𝑖 " 𝑀 𝑦𝑖 ′ + 2𝐹𝑁 𝑥𝑖 " 𝑀 𝑦𝑖 " ′ + 𝐹𝑇 𝑦 𝑖 𝑀𝑁 𝑖 8 = 𝑁 𝑥𝑖 ′ 𝑀 𝑥𝑦𝑖 " + 𝑁 𝑥𝑖 " 𝑀 𝑥𝑦𝑖 ′ + 2𝐹𝑁 𝑥𝑖 " 𝑀 𝑥𝑦𝑖 "	)	𝑑𝐴
	𝑀𝑁 𝑖 9 = 𝑁 𝑦𝑖 ′ 𝑀 𝑥𝑦𝑖 " + 𝑁 𝑦𝑖 " 𝑀 𝑥𝑦𝑖 ′	+ 2𝐹𝑁 𝑦𝑖 " 𝑀 𝑥𝑦𝑖 "	
	Displacement due to the bending moments is:	
	Equation 6-21 becomes: 𝑈 𝑚 = ∑ 𝐴 𝑖 2 𝑖 𝑛 𝑈 𝑏 = ∑ 𝐴 𝑖 2 ( ( +2(𝐴𝐼 12 𝑁 𝑖 𝐴𝐼 11 𝑁 𝑖 1 + 𝐴𝐼 22 𝑁 𝑖 2 + 𝐴𝐼 33 𝑁 𝑖 3 4 + 𝐴𝐼 13 𝑁 𝑖 5 + 𝐴𝐼 23 𝑁 𝑖 6 ) 𝐷𝐼 11 𝑀 𝑖 1 + 𝐷𝐼 22 𝑀 𝑖 3 𝑛 2 + 𝐷𝐼 33 𝑀 𝑖 +2(𝐷𝐼 12 𝑀 𝑖 4 + 𝐷𝐼 13 𝑀 𝑖 5 + 𝐷𝐼 23 𝑀 𝑖 𝑖 6 ) ) )	6-26 6-30
	𝜋 𝑖𝑛𝑡 = ∑ where 𝑛 where: 𝑀 𝑖 𝐴 𝑖 2 1 = 2𝑀 𝑥𝑖 ( { 𝑁 𝑥 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 " 𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑦 𝑖 " 𝑁 𝑥𝑦 𝑖 ′ + 𝐹𝑁 𝑥𝑦 𝑖 " } 𝑇 " (𝑀 𝑥𝑖 ′ + 𝐹𝑀 𝑥𝑖 " ) [ 𝑖=1 𝑁 𝑖 1 = 2𝑁 𝑥𝑖 " (𝑁 𝑥𝑖 ′ + 𝐹𝑁 𝑥𝑖 " ) 𝑀 𝑖 2 = 2𝑀 𝑦𝑖 " (𝑀 𝑦𝑖 ′ + 𝐹𝑀 𝑦𝑖 " ) + 2 { 𝑁 𝑥 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 " 𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑦 𝑖 " 𝑁 𝑥𝑦 𝑖 ′ + 𝐹𝑁 𝑥𝑦 𝑖 " } 𝑇 [ 𝐵𝐼 11 𝐵𝐼 21 𝐵𝐼 31 𝐴𝐼 11 𝐴𝐼 12 𝐴𝐼 13 𝐴𝐼 12 𝐴𝐼 22 𝐴𝐼 23 𝐴𝐼 13 𝐴𝐼 23 𝐴𝐼 33 𝐵𝐼 12 𝐵𝐼 22 𝐵𝐼 32 𝐵𝐼 13 𝐵𝐼 23 𝐵𝐼 33 ] { 𝑀 𝑥𝑦 𝑖 ] { 𝑁 𝑥𝑦 𝑖 𝑁 𝑥 𝑖 ′ + 𝐹𝑁 𝑥 𝑖 " 𝑁 𝑦 𝑖 " ′ + 𝐹𝑁 𝑦 𝑖 ′ + 𝐹𝑁 𝑥𝑦 𝑖 " } 𝑀 𝑥 𝑖 ′ + 𝐹𝑀 𝑥 𝑖 " 𝑀 𝑦 𝑖 ′ + 𝐹𝑀 𝑦 𝑖 " ′ + 𝐹𝑀 𝑥𝑦 𝑖 " } + { 𝑀 𝑥 𝑖 ′ + 𝐹𝑀 𝑥 𝑖 " 𝑀 𝑦 𝑖 ′ + 𝐹𝑀 𝑦 𝑖 " 𝑀 𝑥𝑦 𝑖 ′ + 𝐹𝑀 𝑥𝑦 𝑖 " } 𝑇 [ 𝐷𝐼 11 𝐷𝐼 12 𝐷𝐼 13 𝐷𝐼 12 𝐷𝐼 22 𝐷𝐼 23 ] 𝑀 𝑥 𝑖 " 𝑁 𝑖 2 = 2𝑁 𝑦𝑖 " (𝑁 𝑦𝑖 ′ + 𝐹𝑁 𝑦𝑖 " ) 𝑁 𝑖 3 = 2𝑁 𝑥𝑦𝑖 " (𝑁 𝑥𝑦𝑖 ′ + 𝐹𝑁 𝑥𝑦𝑖 𝑀 𝑖 3 = 2𝑀 𝑥𝑦𝑖 " (𝑀 𝑥𝑦𝑖 ′ " ) + 𝐹𝑀 𝑥𝑦𝑖 𝑀 𝑖 4 = 𝑀 𝑥𝑖 ′ 𝑀 𝑦𝑖 " + 𝑀 𝑦𝑖 ′ 𝑀 𝑥𝑖 " + 2𝐹𝑀 𝑥𝑖 " 𝑀 𝑦𝑖 " " ) 𝑁 𝑖 4 = 𝑁 𝑥𝑖 ′ 𝑁 𝑦𝑖 " + 𝑁 𝑦𝑖 ′ 𝑁 𝑥𝑖 " + 2𝐹𝑁 𝑥𝑖 " 𝑀 𝑖 5 = 𝑀 𝑥𝑖 ′ 𝑀 𝑥𝑦𝑖 " + 𝑀 𝑥𝑦𝑖 ′ 𝑀 𝑥𝑖 " + 2𝐹𝑀 𝑥𝑖 " 𝑀 𝑥𝑦𝑖 " " 𝑁 𝑦𝑖 𝑁 𝑖 5 = 𝑁 𝑥𝑖 ′ 𝑁 𝑥𝑦𝑖 " + 𝑁 𝑥𝑦𝑖 ′ 𝑁 𝑥𝑖 " + 2𝐹𝑁 𝑥𝑖 " 𝑀 𝑖 6 = 𝑀 𝑦𝑖 ′ 𝑀 𝑥𝑦𝑖 " + 𝑀 𝑥𝑦𝑖 ′ 𝑀 𝑦𝑖 " + 2𝐹𝑀 𝑦𝑖 " " 𝑀 𝑥𝑦𝑖 " 𝑁 𝑥𝑦𝑖 ′ + 𝐹𝑀 𝑥 𝑖 𝑀 𝑦 𝑖 " 𝑁 𝑖 6 = 𝑁 𝑦𝑖 ′ 𝑁 𝑥𝑦𝑖 " + 𝑁 𝑥𝑦𝑖 ′ 𝑁 𝑦𝑖 " + 2𝐹𝑁 𝑦𝑖 " 𝑁 𝑥𝑦𝑖 " Displacement due to the transverse shear forces is: ′ + 𝐹𝑀 𝑦 𝑖 𝐷𝐼 13 𝐷𝐼 23 𝐷𝐼 33 { 𝑀 𝑥𝑦 𝑖 ′ + 𝐹𝑀 𝑥𝑦 𝑖 " } + { 𝑇 𝑥 𝑖 ′ + 𝐹𝑇 𝑥 𝑖 " 𝑇 𝑦 𝑖 ′ + 𝐹𝑇 𝑦 𝑖 " } 𝑇 [ 𝐹𝐼 11 𝐹𝐼 12 𝐹𝐼 12 𝐹𝐼 22 ] { 𝑇 𝑥 𝑖 " Displacement due to coupling between the membrane and bending effects is: 𝑈 𝑡𝑠ℎ = ∑ 𝑛 𝐴 𝑖 (𝐹𝐼 11 𝑆 𝑖 1 + 𝐹𝐼 22 𝑆 𝑖 2 + 2𝐹𝐼 12 𝑆 𝑖 3 ) 2 𝑖 ′ + 𝐹𝑇 𝑥 𝑖 𝑇 𝑦 𝑖 ′ + 𝐹𝑇 𝑦 𝑖 " } where	6-22 6-31 6-27 6-32
			)

6.2.1.3. Displacement variability

  The CGSM results are compared to reference solutions obtained by direct Monte Carlo simulations. In the first case, the random parameter is E and several correlation lengths are considered. For each correlation length, the mean value, standard deviation and coefficient of variation of displacement at point C are reported in Table6-2. Errors are given inTable 6-3. The CGSM provides very accurate results for the whole correlation length range. Nevertheless the errors slightly increase when the correlation length is smaller than L.

		0.004L	0.17L		8.55 L
		CGSM	dMC	CGSM	dMC	CGSM	dMC
	m(U)	4.638E-2 4.621E-2 4.639E-2 4.621E-2 4.639E-2 4.643E-2
	σ(U)	1.185E-4 1.156E-4 2.029E-3 1.992E-3 4.749E-3 4.753E-3
	c.o.v.(U) (%)	0.26	0.25	0.44	0.43	10.23	10.23

Table 6 -

 6 

	 	0.004L	0.17L	8.55 L
	Error on m(U) (%)	0.4	0.4	0.1
	Error on σ(U) (%)	2.5	1.8	0.1
	Error on c.o.v.(U) (%)	2.2	1.4	0.0

2 Scordelis-Lo shell roof under gravity loading (E random, c.o.v.(E) = 10%) -variability of displacement at point C

Table 6 -3 Scordelis

 6 In the second case, the random parameter is h and again several correlation lengths are considered. Table6-4 shows the mean value, standard deviation and coefficient of variation of displacement obtained by the CGSM and the Monte Carlo simulations. Errors, reported in Table6-5, increase for small values of the correlation length. However, in all cases they remain acceptable. We observe that considering the thickness h as a random parameter leads to larger errors, compared to the situation where the elasticity modulus E is random. This demonstrates that the CGSM assumption is less valid when the random parameter is the thickness.

	 	0.004L	0.17L	8.55 L
		CGSM	dMC	CGSM	dMC	CGSM	dMC
	m(U)	4.754E-2 4.629E-2 4.757E-2 4.632E-2 4.756E-2 4.721E-2
	σ(U)	1.585E-4	1.424E-4	4.769E-3	4.359E-3	9.934E-3	9.513E-3
	c.o.v.(U) (%)	0.33	0.31	10.02	0.94	20.09	20.14

-Lo shell roof under gravity loading (E random, c.o.v.(E) = 10%) -errors on the statistical results of displacement at point C

Table 6 -

 6 

	4 Scordelis-Lo shell roof under gravity loading (h random, c.o.v.(h) =
	10%) -variability of displacement at point C
	 	0.004L	0.17L	8.55 L
	Error on m(U) (%)	2.7	2.7	0.7
	Error on σ(U) (%)	11	9.4	4.4
	Error on c.o.v.(U) (%)	8.4	6.5	3.6

Table 6 -

 6 

5 Scordelis-Lo shell roof under gravity loading (h random, c.o.v.(h) = 10%) -errors on the statistical results of displacement at point C

Table 6 -

 6 

8 Car windscreen under pressure loading  material properties, physical properties and variability levels

Table 6 - 9

 69 Car windscreen under pressure loading  convergence study of

		displacement at node C in nominal configuration	
	a.	b.	c.

Table 6

 6 

	are both the elasticity modulus and the thickness. Cases 1, 2, 3, 4 lead to 5, 5, 10
	and 10 independent random parameters respectively. For each test, the mean value,
	standard deviation and coefficient of variation of displacements at point A are
	reported in Tables 6-10, 6-11 and 6-12. The CGSM provides very accurate results
	in all cases.

-8). The fourth case is treated with changing of variability levels of the glass layers (c.o.v.(Ei) and c.o.v.(hi) are 10%), the uncertain parameters

Table 6 -

 6 

	13 Car windscreen under pressure loading (case 4: E and h uncertain, for
	glass c.o.v.(Ei) = c.o.v.(hi) = 10%) -variability of displacement at point A

Table 6 -

 6 [START_REF] Lardeur | La méthode MEGC pour le calcul de dispersion du comportement statique des treillis[END_REF] Scordelis-Lo shell roof under gravity loading -comparison of computational time between CGSM and direct Monte Carlo simulation For the windscreen example, results are presented in 

Table 6 -

 6 15. Figure 

Table 6 -

 6 [START_REF] Lardeur | Application de la méthode MEGC aux treillis de barres hyperstatiques, Colloque national en calcul des structures[END_REF] Car windscreen under pressure loading -comparison of computational time between CGSM and direct Monte Carlo simulation the representation of random fields, alternatives to the midpoint methods shoud be used. The CGSM can be extended to composite structures made of anisotropic materials. A method inspired by CGSM can also be developed for non linear

Table 4 -

 4 10 Square plate with a circular hole under tension (E random, c.o.v.(E) = 10%, type B)  errors on the statistical results of the displacement at point C, for mesh 2 compared to the reference mesh

Table 5 -

 5 1 Simply supported square bending plate under uniformly distributed load  convergence study of displacement at node A in nominal configuration Table 5-2 Simply supported square bending plate under uniformly distributed load (E random, c.o.v.(E) = 10%) -variability of displacement at point A

Table 5 -

 5 3 Simply supported square bending plate under uniformly distributed load (E random, c.o.v.(E) = 10%) -errors on the statistical results of displacement at point A

Table 5 -

 5 4 Simply supported square bending plate under uniformly distributed load ( random, c.o.v.() = 10%) -variability of displacement at point A

Table 5 -

 5 5 Simply supported square bending plate under uniformly distributed load ( random, c.o.v.() = 10%) -errors on the statistical results of displacement at point A

Table 5 -

 5 [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models[END_REF] Simply supported square bending plate under uniformly distributed load (E random, c.o.v.(E) = 10%) -error on the mean value and the standard deviation of displacement at point A for the 24x24 mesh

Table 5 -

 5 [START_REF] Bae | Uncertainty quantification using evidence theory with a cost-effective algorithm[END_REF] Simply supported square bending plate under uniformly distributed load (random, c.o.v.() = 10%) -error on the mean value and the standard deviation of displacement at point A for the 24x24 mesh

Table 5 -

 5 8 Simply supported square bending plate under concentrated load  convergence study of displacement at point A in nominal configuration

Table 5

 5 

	-9	Simply supported square bending plate under concentrated
		load (E random, c.o.v.(E) = 10%) -variability of
		displacements at point A

Table 5 -

 5 10 Simply supported square bending plate under concentrated load (E random, c.o.v.(E) = 10%) -errors on the statistical results of displacement at point A

Table 5 -

 5 [START_REF] Thacker | Concepts of model verification and validation[END_REF] Simply supported square bending plate under concentrated load (E random, c.o.v.(E) = 10%) -error on the mean value and the standard deviation of displacement at point A for the 24x24 mesh

Table 5 -

 5 12 Simply supported circular plate under uniform load  convergence study of displacement at point C in nominal configuration for thin plate with R/h = 50

Table 5 -

 5 [START_REF] Iaccarino | Introduction to uncertainty quantification in computational science[END_REF] Simply supported circular plate under uniform load convergence study of displacement at point C in nominal configuration for thick plate with R/h = 2

Table 5 -

 5 14 Simply supported circular plate under uniform load (E random, c.o.v.(E) = 10%) -variability of displacements at point C for thin plate with R/h = 50

Table 5 -

 5 15 Simply supported circular plate under uniform load (E random, c.o.v.(E) = 10%) -errors on the statistical results of displacement at point C for thin plate with R/h = 50

Table 5 -

 5 16 Simply supported circular plate under uniform load (E random, c.o.v.(E) = 10%) -variability of displacements at point C for thick plate with R/h = 2

Table 5 -

 5 17 Simply supported circular plate under uniform load (E random, c.o.v.(E) = 10%) -errors on the statistical results of displacement at point C for thick plate with R/h = 2

Table 5 -

 5 18 Simply supported Morley's plate under uniform load convergence study of displacement at node C in nominal configuration

Table 5 -

 5 19 Simply supported Morley's plate under uniform load (E random, c.o.v.(E) = 10%) -variability of displacement at point C

Table 5 -

 5 20 Simply supported Morley's plate under uniform load (E random, c.o.v.(E) = 10%) -errors on the statistical results of displacement at point C

Table 6 -

 6 1 Scordelis-Lo shell roof under gravity load  convergence study of displacement at node C in nominal configuration Table 6-2 Scordelis-Lo shell roof under gravity loading (E random, c.o.v.(E) = 10%) -variability of displacement at point C

Table 6 -

 6 3 Scordelis-Lo shell roof under gravity loading (E random, c.o.v.(E) = 10%) -errors on the statistical results of displacement at point C

Table 6 -

 6 4 Scordelis-Lo shell roof under gravity loading (h random, c.o.v.(h) = 10%) -variability of displacement at point C

Table 6 -

 6 5 Scordelis-Lo shell roof under gravity loading (h random, c.o.v.(h) = 10%) -errors on the statistical results of displacement at point C

Table 6 -

 6 6 Scordelis-Lo shell roof under gravity loading (E random, c.o.v.(E) = 10%) -mesh errors on the statistical results of displacement at point C

Table 6 -

 6 7 Scordelis-Lo shell roof under gravity loading (h random, c.o.v.(h) = 10%) -mesh errors on the statistical results of displacement at point C

	Table 6-8	Car windscreen under pressure loading -material properties,
		physical properties and variability levels

Table 6 -

 6 [START_REF] Katili | Metode elemen hingga untuk pelat lentur[END_REF] Car windscreen under pressure loading -convergence study of displacement at node C in nominal configuration

Table 6 -

 6 [START_REF] Helton | Quantification of margins and uncertainties: Conceptual and computational basis[END_REF] Car windscreen under pressure loading (case 1: E random)variability of displacement at point A

Table 6 -

 6 [START_REF] Thacker | Concepts of model verification and validation[END_REF] Car windscreen under pressure loading (case 2: h random)variability of displacement at point A

Table 6 -

 6 [START_REF] Roy | A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[END_REF] Car windscreen under pressure loading (case 3: E and h random) -variability displacement at point A

Table 6 -

 6 13 Car windscreen under pressure loading (case 4: E and h uncertain, for glass c.o.v. (Ei) = c.o.v. (hi) = 10%) -variability of displacement at point A

Table 6 -

 6 [START_REF] Lardeur | La méthode MEGC pour le calcul de dispersion du comportement statique des treillis[END_REF] Scordelis-Lo shell roof under gravity loading -comparison of computational time between CGSM and Monte Carlo direct

Table 6 -

 6 [START_REF] Lardeur | Application de la méthode MEGC aux treillis de barres hyperstatiques, Colloque national en calcul des structures[END_REF] Car windscreen under pressure loading -comparison of computational time between CGSM and direct Monte Carlo simulation 120

Plusieurs exemples de plaques en membrane, de plaques en flexion, de coques homogènes ou multicouche, ont été traités. Les résultats sont comparés avec des simulations de Monte Carlo directes. Des résultats très satisfaisants sont obtenus pour la moyenne, l'écart-type et la densité de probabilité des déplacements et des déformations. Les limitations de la méthodologie développée sont aussi mises en évidence, en particulier des écarts ont été observés lorsque des champs aléatoires avec de très petites longueurs de corrélation sont considérés.En résumé, la méthode CGSM présente plusieurs avantages. Elle permet un interfaçage facile avec un logiciel éléments finis standard, une diminution très importante des temps de calcul élevés qui caractérisent la plupart des approches existantes et elle fournit des résultats précis. Par conséquent, l'application de la méthode CGSM à des exemples industriels constitue une perspective prometteuse.
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For a given correlation length one can also observe that the first criteria leads to significantly lower maximum errors than the second criteria. Indeed, compared to the first criteria, the second one amplifies the errors in high strain energy areas, in this case near the hole, (see Figure 456789). In conclusion, when the correlation length is small, the CGSM assumption can lead to significant local errors, but the errors on the mean and standard deviation of displacement remain small (see Tables 45and 4-6).

CGSM formulation in the nominal configuration (equation 5-27). Table 5-1 shows the results of a convergence study of nominal displacements at point A. The reference is given by a very fine mesh (48x48). The 24x24 mesh (Figure 5-2), leading to an error of 0.6%, is considered as satisfactory for the nominal calculation.

Consequently this mesh is exploited to calculate the variability. We will check a posteriori whether this mesh is also well suited for the calculation of the variability (section 5.2.1.4). 

Displacement variability

The CGSM results are compared to reference solutions obtained by direct Monte Carlo simulations. In the first case, the random parameter is E and several correlation lengths are considered. For each correlation length, the mean value, 

Finite element mesh

As in previous examples, we first search for the optimal nominal mesh and then we verify that this mesh is adapted to calculate the variability. In this example, the DKMQ element proposed by Katili [START_REF] Katili | A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part II: An extended DKQ element for thick-plate bending analysis[END_REF] is used and all the results presented below have been obtained with this element. given by a very fine mesh (48x48). The 24x24 mesh, leading to an error of 0.3%, is satisfactory for the nominal calculation. Consequently this mesh is exploited to calculate the variability. We will check a posteriori whether this mesh is also well suited for the calculation of the variability. 

Variability of displacement

The CGSM results are compared to reference solutions obtained by direct Monte Carlo simulations, for the thin plate and the thick one. The random parameter is E and several correlation lengths are considered. For each correlation length, the mean value, standard deviation and coefficient of variation of displacement at point

The relations between generalized strains and generalized stresses are:

Considering equations 6-2 and 6-3, equation 6-1 becomes: Considering that the domain is spatially discretized and the mesh contains n finite elements, taking into account equations 4-7, 5-6, and 5-20 into equation 6-4, gives: 

Finite element mesh

As in previous examples, we first search for the optimal nominal mesh and then we verify that this mesh is adapted to calculate the variability. Table 6-1 shows the results of a convergence study of the nominal displacement at point C performed with the CGSM formulation in the nominal configuration (equation 6-10). The reference solution is given by a very fine mesh (80x112). An adaptive mesh, shown in Figure 6-3, leading to a good precision for the nominal case, is also proposed. This mesh is selected for the variability calculation. The adaptive mesh is obtained by using the Abaqus software [START_REF] Abaqus | Standard User's Manual[END_REF]. The adaptive mesh procedure, based on the minimization of the error on the strain energy, leads to a refined mesh in the areas with high strain energy density, as can be seen in Figure 6 

Influence of the mesh for variability computation

This section deals with the influence of the mesh on the calculation of the displacement variability. The study is conducted with the CGSM method. In this test, adaptive mesh and mapped mesh (see Figures 6-2 and 6-3) are compared with the reference mesh (80x112). The objective of the tests presented in this section is to verify a posteriori whether the adaptive mesh, which is optimal for the nominal configuration, is also correct for the calculation of variability. In the first case, the random parameter is the elasticity modulus (c.o.v.(E) = 10%) and in the second case, the random parameter is the thickness (c.o.v.(h) = 10%). The errors obtained with adaptive mesh and 60x84 mapped mesh on the mean value and standard deviation of displacement at point C, are shown in Tables 6-6 and 6-7.

For both tests, the 60x84 mapped mesh is satisfactory when the correlation length is greater than 0.004L. The adaptive mesh leads to bigger errors when the correlation length is small and it is satisfactory only for correlation lengths bigger than L. Indeed, the mesh selected must be able to correctly model the random field. This is not a problem when the correlation is large, however it may be a real constraint for small correlation lengths. Matthies et al. [START_REF] Matthies | Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements[END_REF] suggest to use a uniform mesh over the whole structure studied. We think that it is not absolutely necessary to meet this rule, however all the elements must be small enough for a good representation of the random field. This is not in contradiction with the development of adaptive meshing. The best approach is certainly an adaptive procedure which takes into account random fields, leading to a stochastic adaptive meshing approach. The errors due to a non uniform mesh could also be reduced by using another approach for the representation of random fields. Indeed, the midpoint method is disadvantageous from this point of view. Several examples of membrane plates, bending plates, and homogeneous as well as multilayered shells, have been treated. The results have been compared

with the direct Monte Carlo simulation. Very satisfactory results have been obtained for the mean value, standard deviation and probability density of displacements and strains. The limitations of the methodology developed have also been highlighted. In particular, when uncertainty is defined by random fields, some drawbacks have been observed for short correlation lengths, due to the selected midpoint method. From a computational time point of view, the CGSM is very efficient compared to the direct Monte Carlo simulation. In particular, for the windscreen which is an industrial example, the acceleration factor is more than 1000. This represents a large reduction of the high computational costs that characterize most of the existing approaches. Moreover, the larger the size of the problem, the bigger the acceleration factor. Anyway, the performance in computational time is not as good if random fields are considered.

Several prospects in this work can be considered. The performance of the CGSM in presence of random fields has to be further improved. In particular, for 
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