
HAL Id: tel-01514162
https://theses.hal.science/tel-01514162v1

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimisation du risque empirique avec des fonctions de
perte nonmodulaires

Jiaqian Yu

To cite this version:
Jiaqian Yu. Minimisation du risque empirique avec des fonctions de perte nonmodulaires. Autre.
Université Paris Saclay (COmUE), 2017. Français. �NNT : 2017SACLC012�. �tel-01514162�

https://theses.hal.science/tel-01514162v1
https://hal.archives-ouvertes.fr


NNT : 2017SACLC012

1

THÉSE DE DOCTORAT

DE L’UNIVERSITÉ PARIS-SACLAY

PRÉPARÉ À CENTRALESUPÉLEC

Ecole doctorale n◦580
Sciences et Technologies de l’Information et de la

Communication
Spécialité de doctorat : Traitement du Signal et des Images

par

JIAQIAN YU

Empirical risk minimization with non-modular loss functions

Thèse présentée et soutenue à Châtenay-Malabry, le 22 mars 2017.

Composition du Jury :

M. FRANCIS BACH Directeur de recherche (Président du Jury)
INRIA

M. NIKOS KOMODAKIS Associate professor (Rapporteur)
Ecole des Ponts ParisTech

M. STEFAN ROTH Professor (Rapporteur)
Technische Universität Darmstadt

Mme. FLORENCE D’ALCHÉ-BUC Professor (Examinateur)
Télécom ParisTech

M. NIKOS PARAGIOS Professor (Examinateur)
Université Paris-Saclay & Inria

M. MATTHEW B. BLASCHKO Professor (Directeur de thèse)
KU Leuven





Abstract

This thesis addresses the problem of learning with non-modular losses. In a prediction
problem where multiple outputs are predicted simultaneously, viewing the outcome as a
joint set prediction is essential so as to better incorporate real-world circumstances. In
empirical risk minimization, we aim at minimizing an empirical sum over losses incurred
on the finite sample with some loss function that penalizes on the prediction given the
ground truth. In this thesis, we propose tractable and efficient methods for dealing with
non-modular loss functions with correctness and scalability validated by empirical results.

First, we analyze the feasibility of using a structured output support vector machine
(SVM) with margin rescaling and a supermodular loss function. We present the hardness of
incorporating supermodular loss functions into the inference term when they have differ-
ent graphical structures. We then introduce an alternating direction method of multipliers
(ADMM) based decomposition method for loss augmented inference, that only depends
on two individual solvers for the loss function term and for the inference term as two in-
dependent subproblems. In this way, we gain computational efficiency and achieve more
flexibility in choosing our loss function of interest. We show that the novel supermodular
loss function can empirically achieve better performance on an image segmentation task.

Second, we show the necessity of using submodular loss functions in structured predic-
tion problems. A tight and computationally efficient surrogate function for learning with
submodular functions has not been previously developed. We show that margin rescal-
ing and slack rescaling in a structured output SVM lead to tight convex surrogates, if and
only if the underlying loss function is increasing in the number of incorrect predictions.
However, the gradient or cutting-plane computation for these functions is NP-hard for non-
supermodular loss functions. We propose instead a novel surrogate loss function for sub-
modular losses, the Lovász hinge, which leads to O(p log p) complexity with O(p) oracle
accesses to the loss function to compute a gradient or cutting-plane. We validate the cor-
rectness of the Lovász hinge on various prediction tasks including multilabel prediction
tasks on the Pascal VOC and the MS COCO datasets. We show that for submodular loss
functions, training with the Lovász hinge achieves lower empirical error value than margin
rescaling and slack rescaling, which is expected from a correctly defined convex surrogate.

Finally, based on the previous contributions, we are able to introduce a novel convex
surrogate operator for general non-modular loss functions, which provides for the first time
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a tractable solution for loss functions that are neither supermodular nor submodular. This
surrogate is based on a canonical submodular-supermodular decomposition. It takes the
sum of two convex surrogates that separately bound the supermodular component and the
submodular component using slack-rescaling and the Lovász hinge, respectively. It is further
proven that this surrogate is convex, piecewise linear, an extension of the loss function, and
for which subgradient computation is polynomial time. We further show that the Dice loss
which is defined based on the Sørensen-Dice difference function is neither supermodular
nor submodular. Empirical results are reported using the Sørensen-Dice loss and a set of
non-submodular loss functions demonstrating the improved performance, efficiency, and
scalability of the novel convex surrogate.
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1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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1.1 Context and Motivation

Machine learning builds on many fields including optimization and statistics. It addresses
many problems including artificial intelligence, computer vision, natural language process-
ing and so on. Structured prediction as one domain of machine learning focuses on the
study of the prediction problem while modeling real-world concepts as structured objects.
For example, in natural language processing, a sentence is represented as having chain
structures or tree structures [Collins and Duffy, 2001, 2002]; in image parsing problem, a
scene is described using visual grammars [Tu et al., 2005; Han and Zhu, 2009]; in graphical
model, graphs with directed or undirected edges are used to show the conditional probabil-
ity relation between connected elements, e.g. pixels in images.

1.1.1 Empirical Risk Minimization

In structured prediction problem, in particular in the scenario of supervised learning, it is
often the case that a series of training samples {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n are given
in order to learn a model, train the parameters e.g. a weight vector in the model, so as to ap-
ply this trained model to make prediction during test time given unseen features. Illustrated
in Figure 1.2 is a set of training samples in a image foreground-background segmentation
problem where xi are pixelwise features and yi are labels. In particular, in structured pre-
diction problems, we consider that yi is a structured objects, and the interdependencies

5
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(a) An illustration from
Collins and Duffy [2002]
to show a tree structure
of one sentence.

(b) Pixels in an image [Everingham et al., 2010] are represented by
nodes in a graph where edges are showing for conditional proba-
bilistic relation between linked nodes.

Figure 1.1: Examples of structured prediction problem in nature language processing and
images segmentation problem.

between the components of yi is taken into account.
In empirical risk minimization, we aim at minimizing an empirical sum over losses in-

curred on the finite sample with some loss function that penalizes on the prediction given
the groundtruth. A trivial example of the loss function is the Hamming loss, also called 0-1
loss, that counts the number of elements that are mispredicted. However, optimizing for a
prediction problem with 0-1 loss, which is relatively simple, is known to be NP-hard [Feld-
man et al., 2012]. In practice, an approximation that upper bounding the 0-1 loss is always
utilized, which is often convex in order to achieve computation feasibility and convenience.
We call this approximation a surrogate loss function. We will see some other commonly
used convex surrogate functions for binary classification problems in Chapter 2.

1.1.2 Submodularity

Submodularity is a property of a set function. A set function is a function whose input is
a set and whose output is a real number. A set function is submodular when the marginal
value added by including one extra element in the set is decreasing in the size of the input
set. The negative of a submodular function is a supermodular function. A function is mod-
ular if it is both submodular and supermodular. Finally, a function is called non-modular if
it is not modular. The set of non-modular functions includes the functions that are strictly
submodular or strictly supermodular, but also includes the functions that are neither sub-
modular nor supermodular. Figure 1.3 shows the Venn diagram of general functions from
the perspective of submodularity. We will formally introduce the definitions and notions in
Chapter 2.

Submodular functions first appeared in the context of combinatorial optimization with
the concept first introduced by Whitne and Tutte for matroids, by Choquet for the capac-
ity theory and by Ore for graphs [Tutte, 1966; Schrijver, 2002; White, 1986; Ore and Ore,
1962; Fujishige, 2005]. Submodular set functions have been frequently considered in the
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(a) A set of input images

(b) A set of output segmentations

Figure 1.2: Examples of training samples for an image segmentation problem where the
foreground objects are people. Images are taken from the Pascal VOC dataset [Everingham
et al., 2010]

context of machine learning problems. The submodularity of a problem is central to the fea-
sibility of its solution [Kolmogorov and Zabin, 2004; Kirillov et al., 2015]. The diminishing
returns property of submodular functions makes them suitable for many real world appli-
cations, such as active learning, document summarization, video summarization, feature
selection, sensor placement, distributed computing and many other domains [Wei et al.,
2015; Lin and Bilmes, 2011; Gygli et al., 2015; Krause et al., 2008; Chen et al., 2014].

In real-world circumstances, there are two contexts in which we study submodularity:

1. the way in which we describe structured objects, namely the statistical inference prob-
lem;

2. the way in which we evaluate one structured output prediction given the groundturth
output, namely the loss function.

In this thesis, we focus on the study of the loss functions that are utilized in a prediction sys-
tem. We will look at loss functions of interest for different applications from the perspective
of submodularity.

1.1.3 Loss Functions

Statistical learning has largely addressed problems in which a loss function decomposes
over individual training samples. However, there are many circumstances in which non-
decomposable, namely non-modular losses must be minimized. This can be the case for
example multiple output predictions are simultaneously made and are used to make one
single decision as a real-world outcome, e.g. predicting pixels so as to recognizing an object,
predicting one label among multiple labels of interest so as to recognizing a scenario, etc.
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submodular supermodular

General Functions

m
od

ul
ar

Figure 1.3: Set functions in general. The intersection of submodular functions and super-
modular functions, is the set of modular functions. In general, there are many functions
that are neither submodular nor supermodular.

Taking a high level view of one action of the prediction, the dependencies among the effect
of the output predictions should therefore be better incorporated through a non-modular
loss function.

If the relevant loss at test time is non-modular, it is essential to optimize the correct
loss during training time [Díez et al., 2015; Gao and Zhou, 2013]. Non-modular losses
have been (implicitly) considered in the context of structured prediction problems. Cheng
et al. [2010] uses a rank loss which is strictly supermodular; Petterson and Caetano [2011]
and Doppa et al. [2014] use a non-submodular loss based on F-score; Nowozin [2014] has
considered the intersection over union loss which is strictly submodular [Yu and Blaschko,
2015a]; Pletscher and Kohli [2012] applied an area/volume based label-count loss that
enforces high-order statistics which is strictly supermodular; Osokin and Kohli [2014] pro-
posed a layout-aware loss function that takes into account the topology/structure of the
object which is also strictly supermodular.

Tasks of interest In this thesis, we will mainly focus on three research questions:

1. Given a supermodular loss function of interest, is it tractable to incorporate it in to
existing surrogate functions such as margin rescaling in a structured output supporter
vector machine (SVM) [Taskar et al., 2004; Tsochantaridis et al., 2005]? Is the struc-
tured output SVM tractable to learn with any supermodular loss function?

2. In the case that a submodular loss function is preferred, can we develop a convex
surrogate function for submodular loss functions that is extension of the discrete loss
function? Is it always computationally feasible?

3. Can we develop a convex surrogate function for loss functions that are neither sub-
modular nor supermodular?
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Chapter 4:
Submodular

Chapter 3:
Supermodular

Chapter 5: General Functions

Figure 1.4: The structure of this thesis in a Venn diagram related to the submodularity of
the loss functions.

1.2 Contributions and Thesis Outline

Following the motivation and previous research questions of interest, this thesis is organized
as follows:

In Chapter 2, we introduce basic concepts and formal math notation from discrete opti-
mization, combinatorial optimization, statistical learning theory and computer vision prob-
lems, including the definition of set functions, submodularity, Markov Random Fields, em-
pirical risk minimization, structured output SVM, etc., which are necessary for the following
chapters.

In Chapter 3, we analyze the feasibility of using a structured output SVM with mar-
gin rescaling and a supermodular loss function. We present the hardness of incorporating
supermodular loss functions into the inference term when they have different graphical
structures. We then introduce an alternating direction method of multipliers based de-
composition method for loss augmented inference, which allows us to gain computational
efficiency, making new choices of loss functions practical for the first time. We validate the
proposed methods on an image segmentation task. We also release an open-source package
online which provides an alternative API for structured output SVM. The content of this
chapter is based on the following publication:

• Jiaqian Yu and Matthew B. Blaschko. Efficient learning for discriminative segmenta-
tion with supermodular losses. In Proceedings of the British Machine Vision Confer-
ence. BMVA Press, 2016.

In Chapter 4, we show the necessity of using submodular loss functions in structured
prediction problems. A tight and computationally efficient surrogate function for learning
with submodular functions has not been previously developed. In this chapter, we introduce
the notion of extension. We show necessary and sufficient conditions for margin rescaling
and slack rescaling in a structured output SVM to yield extension. We then propose a novel
convex surrogate loss function, the Lovász hinge, which makes learning with submodular
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loss functions tractable (polynomial time) for the first time. We validate the correctness of
the Lovász hinge on various prediction tasks by showing that training with the same loss
function as during test time yields the lowest empirical risk values. The content of this
chapter is based on the following publications:

• Jiaqian Yu and Matthew B. Blaschko. The Lovász hinge: A convex surrogate for sub-
modular losses. 2015. arXiv:1512.07797;

• Matthew B. Blaschko and Jiaqian Yu. Hardness results for structured learning and
inference with multiple correct outputs. In Constructive Machine Learning Workshop
at ICML, Lille, France, July 2015;

• Jiaqian Yu and Matthew B. Blaschko. Learning submodular losses with the lovász
hinge. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37, pages 1623–1631, 2015.

In Chapter 5, based on the contribution of the previous chapter, we are able to introduce
a novel convex surrogate operator for general non-modular loss functions, which provides
for the first time a tractable solution for loss functions that are neither supermodular nor
submodular. This surrogate is based on a canonical submodular-supermodular decompo-
sition. We validate the correctness and scalability of the proposed method on a face clas-
sification task in a video sequence. The content of this chapter is based on the following
publication:

• Jiaqian Yu and Matthew B. Blaschko. A convex surrogate operator for general non-
modular loss functions. International Conference on Artificial Intelligence and Statis-
tics, volume 51 of Journal of Machine Learning Research, pages 1032–1041, 2016.

In Chapter 6 we conclude the thesis, summarize our contributions, and discuss prospec-
tive future work. A diagram of the structure of the thesis is shown in Figure 1.4.
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Overview In this chapter, we introduce some basic concepts that are necessary for the
remainder of this thesis. First, we introduce the notion of set functions, submodularity
and properties of submodular functions. Second, we provide an overview of graph-cuts in
computer vision, submoudular potential, and Markov Random Fields (i.e. undirected graph-
ical models). Then, we present the principle of empirical risk minimization and surrogate
functions. Last, we will give a brief introduction to the structured output support vector
machine.

2.1 Submodular Functions

The material presented in this section is partially based on Lovász [1983]; Bach [2013];
Fujishige [2005]. Table 2.1 summarizes a list of notation introduced in this section.
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Notation Meaning
V = {1, 2, . . . , p} the base set

P(V ) the power set of V
R set of real numbers
∅ the empty set

R+,Z+ the non-negative of R,Z
f : P(V ) 7→ R a general set function

IA indicator vector of set A
|A| cardinality of A
P (f) submodular polyhedron
B(f) base polyhedron
s ∈ Rp a real-valued vector of length p
sj the jth element in s
s(A) the value

∑
j∈A s

j

Table 2.1: Table of notation in this section.

2.1.1 Definition of A Submodular Function

Let us first introduce the definition of a set function. We say a set function is a function whose
input is a set and whose output is a real number. Given a finite base set V = {1, · · · , p},
p = |V |, a set function f maps from the power set P(V ) of the base set V to the set of real
numbers R,

f : P(V ) 7→ R,

denoted f(A), ∀A ⊆ V . For notational convenience, we usually identify the power set P(V )

as 2V , then identify each element of the power set with a binary indicator vector:

IA := (1x)x∈A, such that 1x :=

{
1 if x ∈ A,
0 if x /∈ A.

Namely, a set A ⊆ V can be uniquely defined by the indicator vector 1A, and vice versa.
For example, the function that assigns to each set to its cardinality, i.e. the number

of members of the set, is a set function. In practice, there are many problems that can be
formulated by using set functions. Figure 2.1 shows an example of a set prediction problem,
the multi-label prediction problem. The ground truth of the problem can be formulated as a
base set that contains all labels of interest, while each pattern can be seen as a subset of this
base set. Any evaluation functions, score functions or loss functions that measure on the
quality of an output prediction can be seen as set functions. Depending on the context, we
may interpret the input set as the set of predictions, or the set of mispredictions. Without
loss of generality, for our mathematical analysis, we will assume that set function on the
empty set is zero:

f(∅) = 0.

Submodular set functions play an important role among these set functions, similar
to convex functions on vector spaces, for the reason that submodular functions can be
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V = {‘bottle’, ‘cat’, ‘chair’, ‘table’,
‘bike’, ‘person’, ‘sofa’, ‘dog’,

‘tv/monitor’, ‘pottedplant’}
A = {‘person’, ‘table’, ‘chair’}

Figure 2.1: An example on multi-label prediction problem as a set prediction problem.
The groundtruth of the problem can be formulated as a base set that contains all labels of
interest, while each pattern can be seen as a subset of this base set. Images are taken from
Pascal VOC dataset [Everingham et al., 2010]

minimized in polynomial time. Many functions that occur in practical problems turn out
to be submodular functions and we will see several examples in this chapter. Submodular
functions may be defined through several equivalent properties:

Definition 2.1 (Submodularity). A set function f : P(V ) 7→ R is submodular if for all
A,B ⊆ V , it holds

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (2.1.1)

Submodular function is also commonly know by its diminishing gains property, that we
introduce in the following theorem:

Theorem 2.1 (Submodularity (diminishing returns) [Fujishige, 2005]). A set function f :

P(V ) 7→ R is submodular if and only if for all B ⊆ A ⊂ V and x ∈ V \B, it holds

f(B ∪ {x})− f(B) ≥ f(A ∪ {x})− f(A). (2.1.2)

A function is supermodular if its negative is submodular, namely it satisfies one of the
following equivalent definitions

Definition 2.2 (Supermodularity). A set function f : P(V ) 7→ R is supermodular if for all
subsets A,B ⊆ V , if only of it holds

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B). (2.1.3)

Theorem 2.2. A set function f : P(V ) 7→ R is supermodular if for all B ⊆ A ⊂ V and
x ∈ V \B, it holds

f(B ∪ {x})− f(B) ≤ f(A ∪ {x})− f(A). (2.1.4)

A function is modular if it is both submodular and supermodular, namely the equalities in
the previous definitions hold. We call a function is non-modular if it is not modular. We note
that a non-modular function can be neither submodular nor supermodular. Furthermore,
a modular function can be written as a dot product between a binary indicator vector in
{0, 1}p encoding a subset of V and a coefficient vector in Rp which uniquely identifies the
modular function.
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Theorem 2.3. If a set function f : P(V ) 7→ R is modular, then it can be written as

f(A) =
∑
j∈A

aj (2.1.5)

for A ⊆ V , some coefficient vector a ∈ R|V | and the superscript j indicates the jth element in
the vector a.

Proof. By definition, ∀B ⊆ A ⊂ V and x ∈ V \B:

f(B ∪ {x})− f(B) = f(A ∪ {x})− f(A).

Set B = ∅, we have
f(A ∪ {x}) = f(A) + f({x}), ∀A ⊂ V.

This will give us that
f(A) =

∑
x∈A

f({x}), ∀A ⊆ V,

which is equivalent to have a vector a ∈ R|V | and ax := f({x}).

We sometimes say that a modular function is decomposable over the elements of the base
set. For example, Hamming loss function (also called the 0-1 loss function) is a modular
function with a coefficient vector of all ones and a subset defined by the entries that differ
between two sets, that to say counting the number of different elements between two sets.

Submodular functions have some nice closedness properties [Fujishige, 2005]:

Theorem 2.4. Given f1, . . . , fm submodular functions on V and λ1, . . . , λm ≥ 0, then the
function

g(A) =
∑

i∈{1,...,m}

λifi(A), ∀A ⊆ V

is submodular.

Theorem 2.5. If A ⊆ V , f(A) is submodular on V , and B ⊆ V

g(A) = f(A ∩B) (Restriction)

g(A) = f(A ∪B) (Conditioning)

g(A) = f(V \A) (Reflection)

are all submodular.

Necessary to the sequel of the thesis, we introduce also some notions of general proper-
ties of set functions.

Definition 2.3 (Increasing). A set function f : P(V ) 7→ R is increasing if for all subsets
A ⊂ V and elements x ∈ V \A, it holds that

f(A) ≤ f(A ∪ {x}). (2.1.6)



15 2.1. Submodular Functions

Definition 2.4 (Non-negativity). A set function f : P(V ) 7→ R is non-negative if f(A) ≥
0, ∀A ⊆ V .

Definition 2.5 (Symmetry). A set function f : P(V ) 7→ R is symmetric if f(A) = c(|A|) for
some function c : Z+ 7→ R. (Z is the set of integers and Z+ is the set of non-negative integers.)

The following are some examples of submodular functions which can be found in Bach
[2013, Chapter 6].

Theorem 2.6 (Cardinality-based set function). If f : P(V ) 7→ R and there exist a function
c : Z+ 7→ R such that f(A) = c(|A|), where | · | is the cardinality of A. Then f is submodular
if and only if c is concave.

Theorem 2.7 (Cut function). Given a weight vector d : V ×V 7→ R+, a cut function is defined
as

f(A) = d(A, V \A) =
∑

k∈V,j∈V \A

d(k, j), ∀A ⊆ V, (2.1.7)

where d(B,C) :=
∑

k∈B,j∈C d(k, j), ∀B,C ⊆ V . f is submodular.

Theorem 2.8 (Cover function). Given a non-negative set function f̃ : P(V ) 7→ R+, a cover
function is defined as

f(A) =
∑

B⊆V,B∩A 6=∅

f̃(B) =
∑
B⊆V

f̃(B) min{1, |A ∩B|}. (2.1.8)

f is submodular.

2.1.2 Submodular Function Analysis

The study of submodular functions is strongly linked with special convex polyhedra that
allows us to utilize the methods in convex analysis.

Definition 2.6 (Base polyhedra [Fujishige, 2005; Bach, 2013]). Given f : P(V ) 7→ R a
submodular function and f(∅) = 0. The submodular polyhedron P (f) and the base polyhedron
B(f) are defined as:

P (f) = {s ∈ Rp,∀A ⊆ V, s(A) ≤ f(A)} (2.1.9)

B(f) = {s ∈ Rp, s(V ) = f(V ),∀A ⊆ V, s(A) ≤ f(A)} (2.1.10)

= P (F ) ∩ {s(V ) = f(V )}. (2.1.11)

where s(A) =
∑

j∈A s
j and sj indicates the jth element of s.

We notice that these polyhedra are the intersection of the hyperplanes {s ∈ Rp, s(A) ≤
f(A)}. For a modular function f(A) =

∑
x∈A ax, a ∈ Rp, then P (f) = {s ∈ Rp,∀x ∈ V, sx ≤

ax} = s ≤ a which is an isomorph to the negative orthant. Figure 2.2 shows examples with
p = 2 and p = 3. The following theorem makes the strong convex duality holds, which will
be made use of in establishing the link between submodular analysis and convex analysis.
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Figure 2.2: Submodular polyhedron P (F ) and base polyhedron B(F ) for p = 2 (left) and
p = 3 (right), for a non-decreasing submodular function. Illustration from Bach [2013].

Theorem 2.9. Given f a submodular function with f(∅) = 0. If s ∈ P (f) then for all t ∈ Rp

such that t ≤ s (i.e. , ∀j ∈, tj ≤ sj), we have t ∈ P (f) and P (f) has non-empty interior.

We can extend a submodular function with discrete domain to a piecewise linear convex
function with continuous domain, which is called the Lovász extension [Lovász, 1983]. We
now introduce the definition of the Lovász extension of a general (not necessarily submod-
ular) function, which is sometimes called the Choquet integral [Choquet, 1953]:

Definition 2.7 (Lovász extension [Lovász, 1983]). Consider a set function f : P(V ) 7→ R
where |V | = p. The Lovász extension f̂ : [0, 1]p → R of f is defined as follows: ∀s ∈ [0, 1]p we
order its components in decreasing order as sπ1 ≥ sπ2 ≥ · · · ≥ sπp with a permutation π, then
f̂(s) is defined as:

f̂(s) =

p∑
j=1

sπj (f ({π1, · · · , πj})− f ({π1, · · · , πj−1})) . (2.1.12)

The Lovász extension is an extension of a set function defined on the vertices of the
hypercube {0, 1}p to the full hypercube [0, 1]p.

Theorem 2.10 (Lovász [1983]). A function f : P(V ) 7→ R is submodular if and only if the
Lovász extension f̂ of f is convex. Moreover, we have

f̂(s) = max
µ∈B(f)

sᵀµ. (2.1.13)

This theorem shows the close relationship between submodularity and convexity. We
plot empirically the surface of the Lovász extension for a submodular function f in the case
p = 2 in Figure 2.3, with f({∅}) = 0, f({1}) = 0.8, f({2}) = 0.6, f({1, 2}) = 0.4. We note
that the surface is convex.
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Figure 2.3: The surface of the Lovász extension for a submodular function in case p = 2:
f({∅}) = 0, f({1}) = 0.8, f({2}) = 0.6, f({1, 2}) = 0.4. The red dot represent the values of
the set function f on the vertex of the unitcube.

In convex analysis, we have that the support function of a non-empty closed convex set
A ∈ Rp is given by

sup
µ∈A

sᵀµ, ∀s ∈ Rp,

which leads to a convex function of s. The link between the Lovász extension and submod-
ular polyhedra is through the so-called “greedy algorithm” : the Lovász extension is the
support function of the base polyhedron and may be computed in closed form.

Theorem 2.11 (Greedy algorithm [Lovász, 1983; Edmonds, 1971]). Given a submodular
function f such that f(∅) = 0, ∀s ∈ [0, 1]p we order its components in decreasing order with
a permutation π. We have P (f) the submodular polyhedron and B(f) the base polyhedron.
Denote µπj = f ({π1, · · · , πj}) − f ({π1, · · · , πj−1}), then µ is on the base polyhedron i.e.
µ ∈ B(f), and also

(i) if s ∈ Rp+, µ with the original order is a maximizer of maxµ∈B(f) s
ᵀµ, and

max
µ∈B(f)

sᵀµ = f̂(s);

(ii) µ is a maximizer of maxµ∈P (f) s
ᵀµ, and

max
µ∈P (f)

sᵀµ = f̂(s).

A proof with detailed analysis can be found in Bach [2013, Proposition 3.2 to 3.5]. That
is to say, to find a maximum of sᵀµ, which is the same procedure as computing a subgradient
of the Lovász extension, is precisely the following procedure:
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minimize convex extension
ellipsoid algorithm [Grötschel et al., 1988]

minimum norm point [Fujishige, 1980, 2005]
combinatorial algorithms

O(n4T + n5logM) [Iwata, 2003]
O(n6 + n5T ) [Orlin, 2009]

Table 2.2: A summary of submodular minimization methods.

(i) sort the p components of s, which is in O(p log p);

(ii) compute the value of sᵀµ which needs O(p) oracle accesses to the set function.

Moreover, we have that the minimum of the Lovász extension is the minimum of the set
function:

Theorem 2.12 (Lovász [1983]). For a submodular function f : P(V ) 7→ R and its Lovász
extension f̂ , we have

min
A∈V

f(A) = min
s∈{0,1}p

f̂(s) = min
s∈[0,1]p

f̂(s). (2.1.14)

This theorem shows that the Lovász extension as a convex relaxation is exact, which
implies that submodular minimization is polynomial time solvable [Grötschel et al., 1981;
Lovász, 1983; Schrijver, 2002]. Table 2.2 lists general submodular minimization algorithms.

Theorem 2.13. Given two submodular functions f1 and f2, then their maximum

fmax(A) = max{f1(A), f2(A)}, ∀A ⊆ V

is not submodular in general (see e.g. Section 1.2 [Krause and Golovin, 2014]).

Proof. We can take a simple counterexample. Take f1 and f2 both symmetric and can be
written as some concave functions with respect to the cardinality of the input set A. It is
then trivial to see that the maximum of two concave functions is in general not concave.
Thus by theorem 2.6, the maximum of f1 and f2 is in general not submodular. This coun-
terexample is illustrated in Figure 2.4.

Theorem 2.14. Given two submodular functions f1 and f2, then their minimum

fmin(A) = min{f1(A), f2(A)}, ∀A ⊆ V

is not submodular in general (see e.g. Section 1.2 [Krause and Golovin, 2014]).

Proof. We can come up a counterexample as follows: in the case of p = 2, we set:

f1({∅}) = 0, f1({1}) = 1, f1({2}) = 0, f1({1, 2}) = 0.8;

f2({∅}) = 0, f2({1}) = 0, f2({2}) = 1, f2({1, 2}) = 0.8.
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Figure 2.4: An example shows that the maximum of two concave functions is not concave
in general, thus the maximum of two submodular functions is not submodular in general.

Then both f1 and f2 are submodular. However, for fmin = min{f1, f2}:

fmin({∅}) = 0, fmin({1}) = 0, fmin({2}) = 0, fmin({1, 2}) = 0.8

is not submodular.

2.2 Maximum A Posteriori Inference and Submodularity

One of the most important applications of submodularity in machine learning and computer
vision is the Maximum A Posteriori (MAP) inference problem solved by graph cuts under
submodularity constraints. In this section we will introduce some basic concepts that will
be necessary to the following chapters in this thesis.

2.2.1 Markov Random Field

In the field of probability, Markov random fields (MRF) or undirected graphical models, are
tools for modeling data (often images), that relate graph theory and probability theory. We
denote G = (V, E) for the notation of a graph, with the set of vertices (also called nodes)
V = {1, 2, . . . , n}, e.g. (super)pixels in images, and the set of edges E where a typical edge
is (i, j) ∈ E , i, j ∈ V, which will be determined by the structure of the graph. Figure 2.5(a)
shows a 4-connected neighborhood and Figure 2.5(b) shows an 8-connected neighborhood
graph. All pairs of nodes that are connected form the edge set E . Following the notation in
[Koller et al., 2007], we denote Ni,E the set of neighbors of i in the graph G = (V, E).

An MRF is determined by
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(a) 4-connected neighbor-
hood graph

(b) 8-connected neighbor-
hood graph

Figure 2.5: Examples of different graph structures. Figure 2.5(a) shows a 4-connected
neighborhood graph and Figure 2.5(b) shows an 8-connected neighborhood graph.

1. a set of nodes V = {1, 2, . . . , n};

2. a set of random variables y = {y1, y2, . . . , yn} associated with each of the nodes;

3. a set of pairs of neighbors, i.e. the edge set E , that indicate the probabilistic connection
between the variables.

To be an MRF, the Markov property should be obeyed:

P (yi|xV |{i}) = P (yi|yj , j ∈ Ni,E). (2.2.1)

Theorem 2.15 (Hammersley Clifford Theorem [Clifford, 1990]). Any distribution P that
obeys the Markov property in Equation (2.2.1) if and only if P can be written in the Gibbs
distribution:

P (y) =
1

Z
exp

(∑
c∈C
−Ψc(y)

)
, (2.2.2)

where C is the set of maximal cliques of G, and Z is the partition function:

Z =
∑
y

exp

(∑
c∈C
−Ψc(y)

)
. (2.2.3)

The functions Ψ are defined so as to form an energy function E(y) =
∑

c∈C Ψc(x) . In
general, if we consider that these functions are parametrized by a vector w, we have

E(y, w) =
∑
c∈C

Ψc(y, w), (2.2.4)

P (y) =
1

Z(w)
exp (−E(y, w)) . (2.2.5)

In pairwise graphs, the energy function includes unary potentials that are decomposable
over the nodes of the graph, and the pairwise potentials that are decomposable over the
edges:

E(y, w) =
∑
i∈V

Ui(y
i, w)︸ ︷︷ ︸

unary potential

+
∑

(k,l)∈E

Pkl(y
k, yl, w)

︸ ︷︷ ︸
pairwise potential

. (2.2.6)
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Figure 2.6: An illustration of MRF with observed variable x and unobserved variable y in
a 4-connected graph structure. Illustration from Prince [2012].

2.2.2 Maximum A Posteriori

The maximum a posteriori (MAP) inference is one of the most common estimations of an
MRF in computer vision problems. Figure 2.6 shows an illustration of an MRF with observed
variables xi and unobserved variables yi. This is often the case in image segmentation
problem with xi the features and yi the groundtruth labels. Given an observed variable x,
we want to make our hypothesis on y := ĥ(x) such that

ĥ(x) := arg max
y
P (y|x) = arg max

y

P (x|y)P (y)

P (x)
= arg max

y
P (x|y)P (y) (2.2.7)

with a Markov prior on y, which gives us a P (y) and

P (x|y) ∝
∏
i

exp(−E(x, y, w)) (2.2.8)

are our unary probabilities (potentials). Then the MAP inference problem is equivalent to
an energy minimization problem with:

ĥ(x) = arg min
y

∑
i

Ui(x
i, yi, w) +

∑
(k,l)∈E

Pkl(x
k, xl, yk, yl, w), (2.2.9)

which for pairwise potential can be solved by a graph cut formulation (Figure 2.7)

2.2.3 Graph Cut and Submodular constraints

Under the context of MRF, let’s first consider the binary case, namely yi ∈ {0, 1}. The
unary potential U(yi, ·) in the energy function in Equation (2.2.6) is decomposable over
the nodes in the graph, thus is modular. The pairwise potential P (yk, yl, ·) is submodular
(Definition 2.1) if for every pair of variables ∀(k, l) ∈ E we have

Pkl(0, 0) + Pkl(1, 1) ≤ Pkl(1, 0) + Pkl(0, 1). (2.2.10)
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Figure 2.7: An illustration of graph-cut (max-flow min-cut) problem with node Source and
Sink. Illustration from Prince [2012].

More generally in the case of multilabels, i.e. yi ∈ {1, 2, · · · , N}, the submodularity con-
straint for every pair of variables ∀(k, l) ∈ E is

Pkl(α1, β1) + Pkl(α2, β2) ≤ Pkl(α1, β2) + Pkl(α2, β1), (2.2.11)

where α1 ≤ α2 and β1 ≤ β2.

Theorem 2.16 (Graph-cuts solvable [Kolmogorov and Zabin, 2004]). Given the energy min-
imization problem in Equation (2.2.9),i.e. the energy is a summation of unary potential and
pairwise potential, exact inference is solvable by graph-cuts (also called max-flow min-cut al-
gorithm) if the energy is submodular, namely obeys Equation (2.2.10) for binary problems and
Equation (2.2.11) for multilabel problems.

2.3 Empirical Risk Minimization

Empirical risk minimization is a statistical principle underline much of machine learning.

2.3.1 Empirical Risk

We are interested in the general problem of learning a function ĥ : X 7→ Y (often called
a hypothesis, or prediction function) that maps from the input space X to the output space
Y. In a supervised learning scenario, we are given a training set of labelled samples
{(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n. For instance, in a binary image segmentation task, ĥ
maps from one input color image to a binary mask that indicates the region of the fore-
ground object.

In order to quantify the performance of a hypothesis ĥ , we will consider learning with
a discrete loss function

∆ : Y × Y 7→ R+.
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y =
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=⇒ misprediction set = {2, 3, . . .} ⊂ V

Figure 2.8: The loss function is considered as a set function, with the input set equals to
the misprection set, which is a subset of the base set V (Equation (2.3.1)).

∆(y, ỹ) measures the mismatch between a ground truth y, and a predicted response that we
get ỹ = ĥ(x). We will assume that ∆(y, y) = 0, and ∆(y, ỹ) ≥ 0, ∀ỹ 6= y. In the meantime,
if Y has some structure that allows its element y to be represented as a subset of a base set
V s.t. |V | = p, ∆(y, ·) will be isomorphic to a set function ` : P(V ) 7→ R+ for which the
input set is the misprediction elements in the base set V (Figure 2.8)

∆(y, ỹ) = `({j|yj 6= ỹj}). (2.3.1)

We can now analyse loss functions as set function, and we can inherit properties of set
functions such as submodularirty or supermodularity.

The risk associated with the hypothesis ĥ is then defined as the expectation of the loss
function

R(ĥ) = E[∆(y, ĥ(x))] =

∫
X×Y

∆(y, ĥ(x)) dP (x, y). (2.3.2)

The goal is to minimize the risk R over a class of functions F . However, the joint proba-
bility distribution P (x, y) = P (y|x)P (x) is unknown and the only available information is
contained in the training set.

In empirical risk minimization, we approximate the risk by an empirical sum over losses
incurred on the finite sample, using e.g. an i.i.d. sampling assumption [Vapnik, 1995]:

R(ĥ) ≈︸︷︷︸
i.i.d.

R̂(ĥ) :=
1

n

n∑
i=1

∆(y∗i , ĥ(xi)) (2.3.3)

2.3.2 Surrogate Functions

As it is defined, the loss function ∆ may be in general over a non-convex domain and is
in general NP-hard to minimize directly. Central to the practical application of the empir-
ical risk minimization principle, one must approximate, or upper bound the discrete loss
function ∆ with a surrogate function, frequently a convex one for computational reasons.
Figure 2.9 shows some commonly used convex surrogates for binary classification problems
(Y = {−1,+1}), including the hinge loss, max(1−yh(x), 0), and the squared hinge loss (L2
loss), max(1 − yh(x), 0)2, used by the Support Vector Machine (SVM) [Cortes and Vapnik,
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Figure 2.9: Plots of the 0-1 loss and some common used surrogate functions including:
hinge loss, squared hinge loss, logistic regression loss, and exponential loss. The functions
are plotted as a function of the margin yh(x).

1995; Crammer and Singer, 2001]; the log-loss, log(1+exp(−yh(x)), used in logistic regres-
sion [Friedman et al., 2000]; the exponential loss, exp(−yh(x)), used in AdaBoost [Freund
and Schapire, 1995]. The functions are plotted as a function of the margin yh(x).

Convexity provides strong advantages regarding computational complexity. Bartlett
et al. [2006] have studied the consistency of these non-negative surrogate loss functions.
They provided a quantitative relationship between the risk assessed by using these surro-
gate functions and the risk accessed by using the 0-1 loss.

2.4 Structured Output SVM

In structured prediction problems, we consider the case where elements of Y are structured
objects such as sequences, strings, trees or graphs. The Structured Output SVM (SOSVM) is
a popular framework in the regularized risk minimization framework [Taskar et al., 2004;
Tsochantaridis et al., 2005] that aims at learning a parametrized function h : X × Y 7→ R
over input/output pairs from which a prediction can be derived by maximizing

ĥ(x) = arg max
y∈Y

h(x, y;w) (2.4.1)

over the response from a given input x. The SOSVM framework assumes h to be represented
by an inner product between an element of a reproducing kernel Hilbert space and some
combined feature representation of inputs and outputs φ(x, y)

h(x, y;w) = 〈w, φ(x, y)〉, (2.4.2)
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Algorithm 1 Cutting plane algorithm for solving the problem in Equation (2.4.3)
and (2.4.4) – Margin rescaling.

1: Input: (x1, y1), · · · , (xn, yn), C, ε
2: Si = ∅,∀i = 1, · · · , n
3: repeat
4: for i = 1, · · · , n do
5: ŷi = arg maxyH(yi, ỹ) = arg maxỹ ∆(yi, y) + 〈w, φ(xi, ỹ)〉 − 〈w, φ(xi, yi)〉 % most

violated constraint
6: ξi = max{0, H(yi, ŷi)}
7: if H(yi, ŷi) > ξi + ε then
8: Si := Si ∪ {ŷi}
9: w ← optimize Equation (2.4.3) with constraints defined by ∪iSi

10: end if
11: end for
12: until no Si has changed during an iteration
13: return (w, ξ)

but we will see in the sequel that we can relax this dependence on the class of functions (cf.
Chapter 4).

In order to train the weight vector w, the following formulations are proposed:

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi, (2.4.3)

s.t. ∀i,∀ỹ ∈ Y :〈w, φ(xi, yi)〉 − 〈w, φ(xi, ỹ)〉 ≥ ∆(yi, ỹ)− ξi (2.4.4)

or ∆(yi, ỹ) (〈w, φ(xi, yi)〉 − 〈w, φ(xi, ỹ)〉) ≥ ∆(y, ỹ)− ξi (2.4.5)

called margin-rescaling constraints and slack-rescaling constraints, respectively.

Cutting Plane Method A cutting plane algorithm [Joachims et al., 2009] is commonly
used to solve this optimization problem, applied to both margin-rescaling and slack rescal-
ing, as shown in Algorithm 1 and in Algorithm 2.

Loss Augmented Inference As shown in the algorithms, the bottleneck of the framework
is in the Line 5, where a maximization step needs to be solved. This a maximization on
a summation (or multiplication) of the loss function ∆ and the joint feature function with
respect to an output y . We call this step loss augmented inference:

arg max
ỹ∈Y

∆(yi, ỹ) + 〈w, φ(xi, ỹ)〉 − 〈w, φ(xi, yi)〉, (2.4.6)

arg max
ỹ∈Y

∆(yi, ỹ)(1 + 〈w, φ(xi, ỹ)〉 − 〈w, φ(xi, yi)), (2.4.7)

for margin rescaling and slack rescaling, respectively.
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Algorithm 2 Cutting plane algorithm for solving the problem in Equation (2.4.3)
and (2.4.5) – Slack rescaling.

1: Input: (x1, y1), · · · , (xn, yn), C, ε
2: Si = ∅,∀i = 1, · · · , n
3: repeat
4: for i = 1, · · · , n do
5: ŷi = arg maxyH(yi, y) = arg maxỹ ∆(yi, ỹ)(1 + 〈w, φ(xi, ỹ)〉 − 〈w, φ(xi, yi)) % most

violated constraint
6: ξi = max{0, H(yi, ŷi)}
7: if H(yi, ŷi) > ξi + ε then
8: Si := Si ∪ {ŷi}
9: w ← optimize Equation (2.4.3) with constraints defined by ∪iSi

10: end if
11: end for
12: until no Si has changed during an iteration
13: return (w, ξ)

In the case that ∆ is a modular loss function, and 〈w, φ(x, ỹ)〉 corresponds to a random
field model with submodular potentials, loss augmented inference can be solved by a graph-
cut procedure by modifying the unary potentials [Anguelov et al., 2005; Szummer et al.,
2008].
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Overview Several supermodular losses have been shown to improve the perceptual qual-
ity of image segmentation in a discriminative framework such as a structured output SVM.
These loss functions do not necessarily have the same structure as the segmentation in-
ference algorithm, and in general, we may have to resort to generic submodular mini-
mization algorithms for loss augmented inference. Although these come with polynomial
time guarantees, e.g. O(n4T + n5 logM) using the algorithm of Iwata (T being the time
for a single function evaluation, and M being a bound on the largest absolute value of
the function), or a pseudo-polynomial time guarantee for the Fujishige-Wolfe minimum
norm algorithm, they are not practical to apply to image scale data. Many supermod-
ular losses come with strong optimization guarantees, but are not readily incorporated
in a loss augmented graph cuts procedure. This motivates our strategy of employing an
ADMM decomposition for loss augmented inference. In doing so, we create a new API
for the structured output SVM that separates the MAP inference of the model from the
loss augmentation during training. In this way, we gain computational efficiency, mak-
ing new choices of loss functions practical for the first time, while simultaneously making
the inference algorithm employed during training closer to the test time procedure. We

27
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show improvement both in accuracy and computational performance on the Microsoft Re-
search Grabcut database and a brain structure segmentation task, empirically validating
the use of a supermodular loss during training, and the improved computational proper-
ties of the proposed ADMM approach over the Fujishige-Wolfe minimum norm point al-
gorithm. An open source implementation of the proposed learning framework is released
at https://github.com/yjq8812/efficientSegmentation. This work presented in this
chapter is base on the following paper:

• Jiaqian Yu and Matthew B. Blaschko. Efficient learning for discriminative segmenta-
tion with supermodular losses. In Proceedings of the British Machine Vision Confer-
ence. BMVA Press, 2016.

3.1 Related Work

Discriminative structured prediction is a valuable tool in computer vision that has been
applied to a wide range of application areas, and in particular object detection and segmen-
tation [Anguelov et al., 2005; Blaschko and Lampert, 2008; Nowozin and Lampert, 2011;
Osokin and Kohli, 2014; Pletscher and Kohli, 2012; Szummer et al., 2008]. It is frequently
applied using variants of the structured output support vector machine (SVM) [Taskar et al.,
2004; Tsochantaridis et al., 2005] in which a domain specific discrete loss function is upper
bounded by a piecewise linear surrogate. In the case of image segmentation, this discrete
loss function has frequently been taken to be the Hamming loss, which simply counts the
number of incorrect pixels (see e.g. [Anguelov et al., 2005; Szummer et al., 2008]). Follow-
ing the principle of empirical risk minimization, one might expect that minimization of the
desired loss at training time would lead to the best performing loss at test time. However,
it has recently been shown that in the finite sample regime, minimizing a different loss can
lead to better performance even when measured using Hamming loss [Osokin and Kohli,
2014]. In that work, a supermodular loss function was employed, and a custom graph cuts
solution was found to the loss augmented inference problem necessary for computation of
a subgradient or cutting plane of the learning objective [Joachims et al., 2009].

Several non-modular loss functions have been considered in the context of image seg-
mentation. Nowozin [2014] has considered the intersection over union loss in the context
of a Bayesian framework. This loss made popular by such benchmarks as the PASCAL VOC
segmentation challenge [Everingham et al., 2010] is non-modular (c.f. Chapter 4). Ran-
jbar et al. [2010] trained with a piecewise linear approximation (which is modular w.r.t
false negatives and false positives) for the intersection over union loss. Other supermodular
losses are proposed such as an area/volume based label-count loss that enforces high-order
statistics [Pletscher and Kohli, 2012], or a layout-aware loss function that takes into ac-
count the topology/structure of the object [Osokin and Kohli, 2014]. A message passing
based optimization scheme is proposed for optimizing several families of structured loss

https://github.com/yjq8812/efficientSegmentation
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functions [Tarlow et al., 2010; Tarlow and Zemel, 2012], which assumes the loss function
is constructed by a grammar for which the productions specify function composition [Tar-
low et al., 2010]. By contrast, we provide a generic framework for decomposing the loss
function from model inference that assumes a custom solver for the loss, but that does not
assume the loss belongs to a specific compositional grammar. We concern ourselves primar-
ily with supermodular loss functions in this work as they lead to provable polynomial time
loss augmented inference problems (an essential step in training structured output SVMs),
while non-supermodular loss functions lead to NP-hard optimization in general.

It is a time consuming process to develop custom loss-augmented solvers for different
combinations of loss functions and inference procedures. We show in this work that a
direct combination of two submodular graph cuts procedures may in fact lead to a non-
submodular minimization problem, and reparametrizations or novel graph constructions
may be necessary. Furthermore, if we attempt to solve a non-submodular minimization
problem approximately, this may lead to poor convergence of the learning procedure and
catastrophic failure of the learning algorithm has been observed in this case [Finley and
Joachims, 2008].

An alternative approach is to resort to generic submodular optimization algorithms, such
as that of Iwata [Iwata, 2003] which has complexity O(n4T + n5 logM), or Orlin [Orlin,
2009] with complexityO(n6+n5T ), where T is the time for a single function evaluation and
M is an upper bound on the absolute value of the function. Although these optimization
algorithms are polynomial, the exponent is sufficiently large as to render them infeasible
for images of even less than one megapixel. In practice, the Fujishige-Wolfe minimum
norm algorithm [Fujishige, 1980, 2005] is empirically faster despite having comparatively
limited theoretical guarantees [Chakrabarty et al., 2014]. However, we will show that even
this state of the art generic optimization strategy is infeasible for relatively small consumer
images.

Specific subclasses of submodular functions come with lower complexity optimization
algorithms, and we should be able to exploit these known classes in a general learning
framework. Examples include decomposable submodular functions [Stobbe and Krause,
2010; Nishihara et al., 2014], several notions of symmetry [Kolmogorov, 2012; Queyranne,
1998], and graph partition problems [Kolmogorov and Zabin, 2004; Charpiat, 2011]. A
problem with the current API for loss augmented inference is that it is assumed that the loss
function will decompose with a structure compatible to that of the inference problem. We
address the case that this assumption does not hold and that separate efficient optimization
procedures are available for the loss and for inference.

We propose to use Lagrangian splitting techniques to separate loss maximization from
the inference problem. Strategies such as dual decomposition have become popular in
Markov Random Fields (MRF) inference [Komodakis et al., 2007], while later develop-
ments such as the alternating direction method of multipliers (ADMM) [Bertsekas, 1999;
Boyd et al., 2011] have improved convergence guarantees. Other strategies involving a
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quadratic penalty term have also been proposed in the literature (although still with the
assumption that the loss decomposes as the inference) [Meshi et al., 2015]. We make use
of ADMM to separate these inference problems and apply them to a supermodular loss func-
tion that cannot be straightforwardly incorporated in a submodular graph partition prob-
lem for loss augmented inference. Instead we allow separate optimization strategies for the
loss maximization and inference procedures yielding substantially improved computational
performance, while making feasible the application of a wide range of supermodular loss
functions by changing a single line of code.

3.2 Loss Augmented Inference (LAI)

We discriminatively train a graph cuts based segmentation system using a structured output
SVM [Tsochantaridis et al., 2005]. We construct a supermodular loss function that is solv-
able with graph cuts, but that when incorporated in a joint loss-augmented inference leads
to non-submodular potentials which causes graph cuts based optimization to fail. We there-
fore use an ADMM based decomposition strategy to perform loss augmented inference. This
strategy consists of alternatingly optimizing the loss function and performing maximum a
posteriori (MAP) inference, with each process augmented by a quadratic term enforcing the
labeling determined by each to converge to the optimum of the sum.

Recall that we are given a training set of labeled images {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n.
In a binary segmentation problem we have

Y = {−1, 1}p

where +1 usually represents foreground pixels and −1 usually represents background pixel.
The structured output SVM is a discriminative learning framework that has been applied in
diverse computer vision applications [Anguelov et al., 2005; Blaschko and Lampert, 2008;
Nowozin and Lampert, 2011; Osokin and Kohli, 2014; Pletscher and Kohli, 2012; Szummer
et al., 2008]. It optimizes a regularized convex upper bound to a structured loss function,
∆ : Y × Y 7→ R+. ∆ measures the mismatch between a ground truth labelling, and a
hypothesized labeling. With ∆ provided as an input, the structured output SVM with margin
rescaling minimizes [Tsochantaridis et al., 2005]:

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi (3.2.1)

s.t. ∀i, ỹi ∈ Y, 〈w, φ(xi, yi)〉 − 〈w, φ(xi, ỹi)〉 ≥ ∆(yi, ỹi)− ξi. (3.2.2)

In the case of image segmentation, we may interpret 〈w, φ(x, y)〉 as a function that is mono-
tonic in the log probability of the joint configuration of observed and unobserved variables
(x, y) as determined by a CRF [Lafferty et al., 2001]. Under this interpretation, a standard
definition of φ is

φ(x, y) :=

( ∑p
j=1 φu(x, yj)∑

(k,l)∈E φp(x, y
k, yl)

)
(3.2.3)
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where φu determines a vector of features, a linear combination of which form the unary
potentials of the CRF, and φp determines the pairwise potentials over a model specific edge
set E . In this chapter, we have set φp(x, ·, ·) : {−1, 1}2 7→ {0, 1}3 to map to an indicator
vector of three cases: (i) yk = yl = −1, (ii) yk 6= yl, or (iii) yk = yl = +1, and have placed
hard constraints on the corresponding entries of w in the optimization of the structured
output SVM to ensure that the pairwise potentials in the corresponding energy minimization
problem remain submodular.

During training of the structured output SVM, we must perform loss augmented inference
in order to compute a subgradient or cutting plane of the loss function. In the case of margin
rescaling, this consists of computing

arg max
ỹ∈Y
〈w, φ(x, ỹ)〉+ ∆(y, ỹ). (3.2.4)

For simplicity, we will discard the subscript i in the sequel.
As shown in Section 2.3, we consider that Y is isomorphic to {−1, 1}p for some p, ∆(y, ·)

is isomorphic to a set function ` : P(V ) 7→ R+ where P(V ) is the power set of a base set
with |V | = p., for which the input set is the misprediction elements in the base set V

∆(y, ỹ) = `({j|yj 6= ỹj}) (3.2.5)

This allows us to discuss the properties of such loss functions ∆ in terms of the language
of set functions as occurs in real analysis [Kolmogorov and Fomin, 1975] and discrete opti-
mization [Schrijver, 2002]. In particular in this chapter, we are interested in ∆ correspond-
ing to a supermodular set function ` [Schrijver, 2002]: A supermodular function is a set
function ` : P(V ) 7→ R which satisfies:

∀A,B ⊆ V, A ⊆ B, v ∈ V \B,
`(A ∪ {v})− `(A) ≤ `(B ∪ {v})− `(B)

following Definition 2.2 in Chapter 2.
In order to achieve computational feasibility during test time on the inference problem,

we have guaranteed that maximization of 〈w, φ(xi, ỹi)〉 with respect to ỹ corresponds to a
submodular minimization problem. Therefore, a graph-cuts algorithm can be utilized to
solve the maximization problem which is equivalent to a energy minimization problem.

Modular loss functions, such as Hamming loss, can be incorporated into the unary po-
tentials in a graph cuts optimization framework for loss augmented inference. However, the
formulation of loss augmented inference with supermodular losses as a graph cuts problem
is not straightforward, despite previous work (in which a custom graph cuts formulation
was derived for a specific family of supermodular losses) that indicated a supermodular
loss can lead to improved segmentation quality [Osokin and Kohli, 2014].

While supermodular loss functions guarantee polynomial time solvability, they do not do
so with low order polynomial guarantees in general. In fact, minimization of general sub-
modular functions is O(n4T + n5 logM) (where T is the cost of function evaluation and M
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an upper bound on the absolute value of the function) using the algorithm of Iwata [Iwata,
2003]. In practice, general submodular minimization is often most efficiently solved us-
ing the Fujishige-Wolfe minimum norm algorithm [Fujishige, 1980], for which a pseudo-
polynomial time guarantee has only been recently proven [Chakrabarty et al., 2014]. We
have observed, however, that the Fujishige-Wolfe algorithm is infeasible to apply even in
the case of sub-megapixel images, and scales poorly for useful supermodular loss functions.
Consequently, we develop a general framework for decomposing loss augmented inference
based on ADMM. This framework solely relies on a loss function being able to be efficiently
optimized in isolation using a specialized solver specific to the loss function.

3.3 A Supermodular Loss Function for Binary Segmentation

3.3.1 A novel supermodular loss function

We propose a loss function that is itself optimizable with graph cuts. The loss simply counts
the number of incorrect pixels plus the number of pairs of neighboring pixels that both have
incorrect labels

∆(y, ỹ) =

p∑
j=1

[yj 6= ỹj ] +
∑

(k,l)∈E`

γ[yk 6= ỹk ∧ yl 6= ỹl] (3.3.1)

where [·] is Iverson bracket notation, E` is a loss specific edge set and γ is a positive weight.
We have used 8-connectivity for the loss function in the experiments (Figure 3.1(a)), re-
ferred to as “8-connected loss” in the sequel. We may identify this function with a set
function to which the argument is the set of mispredicted pixels.

Proposition 3.1. Maximization of the loss function in Equation (3.3.1) is isomorphic to a
supermodular function maximization problem.

Proof sketch. Equation (3.3.1) is isomorphic to a binary random field model for which label
is 1 iff a pixel has a different label from the ground truth. Under this isomorphism, neigh-
boring pixels that both have label 1 contribute a positive amount to the energy, while all
other configurations contribute zero. This corresponds to a supermodular function follow-
ing Definition 2.2.

This loss function emphasizes the importance of correctly predicting adjacent groups of
pixels, e.g. those present in thin structures more than one pixel wide. While the pairwise
potential in 〈w, φ(x, y)〉 has a tendency to reduce the perimeter of the segment, the loss
strongly encourages to correctly identify adjacent pixels. We will observe in the experimen-
tal results that the use of this loss function during training improves the test time prediction
accuracy, even when measuring in terms of Hamming loss.
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(a) An 8-connected neighborhood is
used in the construction of the loss
function.

E = −

inference pairwise potential︷ ︸︸ ︷(
w00 w01

w10 w11

)
−

(
0 γ
0 0

)
︸ ︷︷ ︸

loss pairwise potential
(b) Pairwise potential construction for an edge with yk = +1 and
yl = −1 following the loss function in Equation (3.3.1).

Figure 3.1: Non-submodularity of the joint loss augmented inference procedure using the
same mapping to a set function for inference and loss functions. The inference procedure
can be solved by graph cuts when the sum of the diagonal elements of E is less than the
sum of the off diagonal elements. While it is enforced during optimization that w00 +w11−
w01 − w10 ≥ 0, the presence of γ in the off diagonal, the exact position depending on the
value of y, removes the guarantee of a resulting submodular minimization problem.

3.3.2 Non-submodularity of the LAI

It may appear at first glance that the structure of this loss function is aligned with that of
the inference, and that we can therefore jointly optimize the loss augmented inference with
a single graph cuts procedure. Indeed, the loss function is isomorphic to a supermodular set
function, and the inference is isomorphic to a supermodular set function, both of which can
be solved by graph cuts. However, the isomorphisms are not the same. The loss function
maps to a set function by considering the set of pixels that are incorrectly labeled, while
the inference maps to a set function by considering the set of pixels that are labeled as
foreground.

We show in detail how the presence of γ in Equation (3.3.1) removes the submodularity
guarantee. Given the loss augmented inference in Equation (3.2.4) with the joint feature
function in Equation (3.2.3), as well as our supermodular loss in Equation (3.3.1), we can
expand Equation (3.2.4) as:

arg min
ỹ
−〈
(
wu
wp

)
,

( ∑p
j=1 φu(x, yj)∑

(k,l)∈E φp(x, y
k, yl)

)
〉 −∆(y, ỹ) (3.3.2)

Denote Eu the unary potential, Ep the pairwise potential for this loss augmented inference.
Here we try to write the problem as one graph cut problem. First we have the combined
unary potential:

Eu(yj) = −〈wu, φu(x, yj)〉 − [yj 6= ỹj ]. (3.3.3)
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Then we have the combined pairwise potential:

Ep(y
k, yl) = −

(
w00 w01

w10 w11

)
�
(

[yk = yl = −1] [ỹk = −1 ∧ ỹl = +1]
[yk = +1 ∧ yl = −1] [ỹk = ỹl = +1]

)
(3.3.4)

− γ ×
(

[(yk = yl = −1) ∧ (ỹk = ỹl = +1)] [(yk = −1 ∧ yl = +1) ∧ (ỹk = +1 ∧ ỹl = −1)]
[(yk = +1 ∧ yl = −1) ∧ (ỹk = −1 ∧ ỹl = +1)] [(yk = yl = +1) ∧ (ỹk = ỹl = −1)]

)
(3.3.5)

where � is the Hadamard product. In the second term of Ep(yk, yl), the existence of γ
removes the guarantee of the submodularity of this minimization problem: w00 + w11 ≥
w01−w10 is guaranteed, but we may arbitrarily add or subtract γ from either side of the in-
equality according to Equation (3.3.5), for different cases of the ground truth edge (yk, yl).
This is exactly due to the fact that the loss function maps to a set function by considering
the set of misperdicted pixels, while the inference maps to a set function by considering the
set of pixels that are labeled as foreground, which are two different mappings.

If we apply a single mapping, the potentials of the maximization problem are no longer
guaranteed to be supermodular (Figure 3.1). We therefore consider a Lagrangian based
splitting method to solve the loss augmented inference problem.

3.4 ADMM Algorithm for LAI

Several Lagrangian based decomposition frameworks have been proposed such as dual de-
composition and ADMM [Boyd et al., 2011], with the latter having improved convergence
guarantees. We have also observed a substantial improvement in performance using ADMM
over dual decomposition in our own experiments. Here we consider a splitting method to
optimize the minimization of the negative of Equation (3.2.4), which is equivalent to find-
ing the most violated constraint in cutting plane optimization:

arg min
ỹa,ỹb
−〈w, φ(x, ỹa)〉 −∆(y, ỹb) s.t. ỹa = ỹb. (3.4.1)

and we form the augmented Lagrangian as

L(ỹa, ỹb, λ) =− 〈w, φ(x, ỹa)〉 −∆(y, ỹb) + λT (ỹa − ỹb) +
ρ

2
‖ỹa − ỹb‖22 (3.4.2)

where ρ > 0. (3.4.2) can be optimized in an iterative fashion by Algorithm 3, in a scaled
form with u = 1

ρλ.
The saddle point of the Lagrangian will correspond to an optimal solution over a con-

vex domain, while we are optimizing w.r.t. binary variables. Strictly speaking, we may
therefore consider the linear programming (LP) relaxation of our loss augmented inference
problem, followed by a rounding post-processing step. We use a standard stopping crite-
rion as in [Boyd et al., 2011]: the primal and dual residuals must be small with an absolute
criterion εabs = 10−4 and a relative criterion εrel = 10−2. In practice, we have found that
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Algorithm 3 ADMM in scaled form for finding a saddle point of the Lagrangian in Equa-
tion (3.4.2)

1: Initialization u0 = 0
2: repeat
3: ỹt+1

a = arg minỹa −〈w, φ(x, ỹa)〉+ ρ
2(‖ỹa − ỹtb + ut‖22)

4: ỹt+1
b = arg minỹb −∆(y, ỹb) + ρ

2(‖ỹt+1
a − ỹb + ut‖22)

5: ut+1 = ut + (ỹt+1
a − ỹt+1

b )
6: t = t+ 1
7: until stopping criterion satisfied

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Example images from the dataset and the extracted features. 3.2(a) original
RGB space image; 3.2(b) groundtruth; 3.2(c) the user-labelled seeds; 3.2(d) the extended
seed region; 3.2(e) the distance features to foreground seed based on RGB space; 3.2(f)
the distance features to background seed based on RGB space; 3.2(g) the GMM appearance
model based on RGB space; 3.2(h) the distance features to foreground seed based on the
RGB-space GMM appearance.

discretizing the quadratic terms and incorporating them into the unary potentials of the re-
spective graph cuts problems is more computationally efficient, while yielding results that
are nearly identical with exact optimization with a primal-dual gap of 0.01%. We show in
the experimental results that this strategy yields results almost identical to those of an LP
relaxation, while being much faster in practice.

In general, we simply need task specific solvers for Line 3 and Line 4 of Algorithm 3.
These solvers need not use a single graph cut algorithm, and can therefore exploit any avail-
able structure even though it may not be present, or aligned, between the two subproblems.
Although we have used this framework for the specific supermodular loss function described
in the previous subsection, we note that this provides an API for the structured output SVM
framework alternate to that provided by SVMstruct [Tsochantaridis et al., 2005].
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Eval.
γ = 0.25 ∆(1e3) 0-1(1e3) IoU

Tr
ai

n. ∆ 6.3562± 1.065 3.3378± 0.5462 0.2111± 0.0152
0-1 7.8641± 1.0437 4.1548± 0.5378 0.2399± 0.0170

Eval.
γ = 0.5 ∆(1e3) 0-1(1e3) IoU

Tr
ai

n. ∆ 9.0483± 1.3457 3.2801± 0.4687 0.2079± 0.0155
0-1 11.582± 1.5495 4.1548± 0.5378 0.2399± 0.0170

Eval.
γ = 1.0 ∆(1e3) 0-1(1e3) IoU

Tr
ai

n. ∆ 14.908± 2.4102 3.4145± 0.4108 0.2084± 0.0160
0-1 19.019± 2.5613 4.1458± 0.5378 0.2399± 0.0170

Table 3.1: The cross comparison of average loss values (with standard error) using different
loss functions during training and during testing on Grabcut dataset . Training with the
same supermodular loss functions as used during testing yields the best results. Training
with supermodular losses even outperform the Hamming loss in terms of evaluating by
Hamming loss. A Wilcoxon sign rank test shows that training with ∆ gives significantly
better results in all cases (p ≤ 2× 10−3).

Eval.
γ = 0.5 ∆(1e3) 0-1(1e3) IoU

Tr
ai

n. ∆ 2.616± 0.612 1.297± 0.224 0.169± 0.018
0-1 2.885± 0.765 1.393± 0.279 0.173± 0.019

Table 3.2: The cross comparison of average loss values (with standard error) using differ-
ent loss functions during training and during testing on IBSR dataset. (cf. comments for
Table 3.1).

3.5 Experimental Results

In this section, we consider a foreground/background segmentation task. We compare
the prediction using our proposed supermodular loss function with the prediction using
Hamming loss. We show that: (i) our proposed splitting strategy is orders of magnitude
faster than the Fujishige-Wolfe minimum norm point algorithm; (ii) our strategy yields
results nearly identical to a LP-relaxation while being much faster in practice; and (iii)
training with the same supermodular loss as during test time yields better performance.
These results in combination demonstrate the correctness of our proposed strategy.

Datasets We use the dataset provided by [Gulshan et al., 2010; Blake et al., 2004] which
contains 151 images in total, including the color images in RGB space, the ground truth
foreground/background segmentation and the user-labelled seeds (see Figure 3.2(a), Fig-
ure 3.2(b), and Figure 3.2(c), respectively). As we are discriminatively training a class
specific segmentation system in our experiments, we focus on the images in which the fore-
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ground objects are people.

Feature Extraction Following the feature extraction in [Osokin and Kohli, 2014] we en-
large the user-labelled seed region (Figure 3.2(d)) and use them as the foreground and
background seeds only during the feature extraction stage. We compute in total 18 unary
features: 3 RGB color space channels, 3 CIELUV space channels, the likelihood from Gaus-
sian mixture models in RGB space and CIELUV space independently, and the distance trans-
form features as defined in [Gulshan et al., 2010] using the two color space channels, two
GMM models fitted to the enlarged foreground and background seeds independently, and
two Euclidean distances fitted to foreground and background seeds. Figure 3.2(e) to Fig-
ure 3.2(h) show examples of the extracted features. We use both the software provided
by [Gulshan et al., 2010] and our implementation for this feature extraction procedure.

IBSR Dataset We additionally utilise the Internet Brain Segmentation Repository (IBSR)
dataset [Rohlfing, 2012], which consists of T1-weighted MR images. Images and masks
have been linearly registered and cropped to 145 × 158 × 123. We choose one horizontal
slice within each volume and we follow the feature extraction procedure as in [Alchatzidis
et al., 2014].

Training and Testing We use the ADMM splitting strategy to solve the minimization prob-
lem in Equation (3.4.1). We use the GCMex - MATLAB wrapper for the Boykov-Kolmogorov
graph cuts algorithm [Fulkerson et al., 2009; Boykov and Kolmogorov, 2004; Boykov et al.,
2001; Kolmogorov and Zabin, 2004] to solve the optimization problems on lines 3 and 4
in Algorithm 3 i.e. for the inference part and for the loss part separately. Results computed
with different values of γ > 0 are shown in Table 3.1 and Table 3.2.

During the training stage, we use ρ = 0.1 for the ADMM step-size parameter. The
regularization parameter C in Equation (3.2.1) is chosen by cross-validation in the range
{10i| − 2 ≤ i ≤ 2}. We additionally train and test with Hamming loss as a comparison.

At test time, we have computed the unnormalized Hamming loss, the intersection over
union loss (IoU) , and our 8-connected loss for each training scenario. We have performed
several random train-test splits in order to compute error bars on the loss estimates. During
testing stage, we evaluate one prediction as the average loss value for all images in the test-
ing set. We compare different loss functions during training and during testing and measure
the empirical loss values. We repeated 5 time with random splitting sets for training and
testing to obtain an estimate of the average performance.

Computation Time We compare the time of one calculation of the loss augmented in-
ference by the ADMM algorithm and by the minimum norm point algorithm [Fujishige,
2005] (MinNorm). For MinNorm, we use the implementation provided in the SFO tool-
box [Krause, 2010]. Although it has been proven that in t iterations, the MinNorm returns
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an O(1/t)-approximate solution [Chakrabarty et al., 2014], the first step of this algorithm
is to find a point in the submodular polytope, which alone is computationally intractable
even for small 600 × 400 pixel images. Therefore, we measure the computation time on
downsampled images, showing empirically the growth in computation as a function of im-
age size. The running times are recorded on a machine with a 3.20GHz CPU. Similarly, a
dual-decomposition baseline took orders of magnitude longer computation than the ADMM
approach, following known convergence results [Boyd et al., 2011].

Results As shown in Table 3.1, training with the same supermodular loss as used for
testing has achieved the best performance. Training with the supermodular loss even out-
performs training with Hamming loss when measured by Hamming loss on the test set, with
a reduction in error of 17.2%. We have additionally tried training with a joint graph cuts
loss augmented inference using the pairwise potentials illustrated in Figure 3.1. However,
due to the non-submodular potentials, the graph cuts procedure does not correctly mini-
mize the energy resulting in incorrect cutting planes that causes optimization to fail after
a small number of iterations. The performance of this system was effectively random, and
we have chosen not to include these accuracy values in Table 3.1.

Qualitative segmentation results are shown in Figure 3.5 and followed by Figure 3.8,
Figure 3.9 and Figure 3.10. We show also a pixelwise comparison of the prediction using
8-connected loss and using Hamming loss in Figure 3.6 and Figure 3.7. The 8-connected
loss achieves better performance on the foreground/background boundary, as well as on
elongated structures of the foreground object, such as the head and legs, especially when
the appearance of the foreground is similar to the background.

We measure the computation time for 120 calculations of the loss augmented inference
by ADMM and MinNorm on different sized images. From Figure 3.3 we can see that ADMM
is always faster than the MinNorm by a substantial margin, and around 100 times faster
when the problem size reaches 103. Figure 3.4 shows that the computing time for both
ADMM and MinNorm vary linearly in log-log scale, while MinNorm has a substantially
higher slope, suggesting a worse big-O computational complexity. We note that theoretical
bounds on MinNorm are currently weak and the exact complexity is unknown [Chakrabarty
et al., 2014]. Although it is immediately clear from Figures 3.3 and 3.4 that ADMM is
substantially faster than the minimum norm point algorithm, we have performed Wilcoxon
sign rank tests that show this difference is significant with p < 10−20 in all settings.

We additionally ran a baseline comparing non-submodular loss augmented inference
with the QPBO approach [Rother et al., 2007]. We computed pairwise energies as in Fig-
ure 3.1(a). QPBO found loss augmented energies across the dataset of 1.1 × 106 ± 3 × 105

while ADMM found loss augmented energies of 3.7× 106 ± 8× 105, a substantial improve-
ment.
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Comparison to LP-relaxation We also compare ADMM to an LP relaxation procedure for
the loss augmented inference to determine the accuracy of our optimization in practice.
For the implementation of the LP relaxation, we use the UGM toolbox [Schmidt, 2012]. We
show in Table 3.3 the comparison between using ADMM and the LP relaxation. The first
column represents the energy achieved by the loss augmented inference (Equation (3.2.4)).
We observe that the (maximal) energy achieved by ADMM is almost the same as the LP
relaxation: a difference of 0.4%. Columns 2–4 show the computing time for one calculation
of the loss augmented inference on the downsampled images. Using a LP relaxation, the
computation time is orders of magnitude slower, growing as a function of the image size.
ADMM provides a more efficient strategy without loss of performance.

−E size = 600 size = 1200 size = 2400

ADMM 2.28± 0.58 0.035± 0.002 0.051± 0.002 0.864± 0.476

LP 2.29± 0.57 1.857± 0.128 3.946± 0.286 13.57± 1.359

Table 3.3: The comparison between ADMM and an LP relaxation for solving the loss
augmented inference. The 1st column shows the optimal energy values (103) (Equa-
tion (3.2.4)); columns 2–4 show the computation time (s) for one calculation on down-
sampled images of varying size.

Square Loss In order to validate the generality, we additionally utilize another supermod-
ular loss function as follows:

∆(y, ỹ) =

(∑p
j=1[y

j 6= ỹj ]

α

)2

(3.5.1)

where α > 0 is a scale factor to prevent the value to be too large in an image scale prob-
lem. We used α = 20 in our setting. This is a function on the misprediction set which only
depends on the size of the input set. As the square function is a convex function, ∆ is a
supermodular loss w.r.t. the misprediction set. Then maximizing the loss itself is a super-
modular maximization i.e. a submodular minimization problem, we use the SFO toolbox to
solve it.

We can see that training with the same supermodular loss while during test time yields
better performance, which validates the correctness of the ADMM splitting strategy with
another loss/inference combination.

Eval.
∆ 0-1

Tr
ai

n. ∆ 0.869± 0.049 8.056± 0.332
0-1 0.872± 0.057 8.000± 0.404

Table 3.4: The cross comparison of average loss values (with standard error) using the
supermodular loss and Hamming loss (labeled 0-1) during training and test time).
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3.6 Discussion

A somewhat surprising result in Table 3.1 is that training with the supermodular loss results
in better performance as measured by Hamming loss. This has been previously observed
with a different loss function by [Pletscher and Kohli, 2012; Osokin and Kohli, 2014], and
indicates that in the finite sample regime a supermodular likelihood can result in better
generalization performance. This holds, although the model space and regularizer were
identical in both training settings. We believe that further exploration of the properties of
supermodular loss functions is warranted in this regard.

Our results in terms of computation time give clear evidence for the superiority of
ADMM inference when a specialized optimization procedure is available for the loss func-
tion. As shown in Figures 3.3 and 3.4, the Fujishige-Wolfe minimum norm point algorithm
does not scale to typical consumer images (i.e. several megapixels), which indicates that
loss functions for which a specialized optimization procedure is not available are likely
infeasible for pixel level image segmentation without unprecedented improvements in gen-
eral submodular minimization. Figure 3.4 shows that the log-log slope of the runtime for
the min-norm point algorithm is higher than for ADMM, suggesting a worse computational
compexity, at least for the loss function considered here. One may wish to employ the result
that early termination of the min-norm point algorithm gives a guaranteed approximation
of the exact result, but even this is infeasible for images of the size considered here. In
addition, Table 3.3 suggests that ADMM provides a more efficient strategy without loss of
performance compared to using an LP-relaxation. Joint graph-cuts optimization for loss
augmented inference results in non-submodular pairwise potentials and graph-cuts fails to
correctly minimize the joint energy. As a result, a cutting plane optimization of the struc-
tured output SVM objective fails catastrophically, and the resulting accuracy is on par with
a random weight vector.

In this work, we have shown that a supermodular loss function achieves improved per-
formance both in qualitative and quantitative terms on a binary segmentation task. We
observe that a key advantage of the proposed supermodular loss over modular losses, e.g.
Hamming loss, is an improved ability to find elongated regions such as heads and legs, or
thin articulated structures in medical images .

Previous to our work, specialized inference procedures had to be developed for every
model/loss pair, a time consuming process. By contrast, we have proposed a Lagrangian
splitting technique based on ADMM to perform general loss augmented inference. We
demonstrate the feasibility of the ADMM algorithm for loss augmented inference on an
interactive foreground/background segmentation task, for which alternate strategies such
as the Fujishige-Wolfe minimum norm point algorithm are infeasible.

Our proposed ADMM algorithm provides a strategy to solve the loss augmented infer-
ence as two separate subproblems. This provides an alternate API for the structured output
SVM framework to that of SVMstruct [Tsochantaridis et al., 2005]. We envision that this
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can be of use in a wide range of application settings, and an open source general purpose
toolbox for this efficient segmentation framework with supermodular losses is available for
download from https://github.com/yjq8812/efficientSegmentation

https://github.com/yjq8812/efficientSegmentation
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Figure 3.3: The computing time for the loss augmented inference, on different problem
sizes. The red histograms stands for ADMM and the blue for MinNorm. As we can see, the
calculation by ADMM is always faster than by MinNorm, and there is no overlap between
the computing time by the two methods.
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Figure 3.4: The running time increase along with the problem size. Both algorithm increase
linearly in log scale while the ADMM has a time reduction from 10 times to 102 times along
with the increase of the problem size.
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(a) groundtruth (b) Hamming (c) 8-connected

(d) groundtruth (e) Hamming (f) 8-connected

(g) groundtruth (h) Hamming (i) 8-connected

Figure 3.5: The segmentation results of prediction by trained with Hamming loss (column
2 and 5) and our supermodular loss (column 4 and 6). The supermodular loss perform
better on foreground object boundary than Hamming loss does, as well as it achieves better
prediction on the elongated structure of the foreground object e.g. the heads and the legs.
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Figure 3.6: A pixelwise comparison, in the semantic segmentation task [Gulshan et al.,
2010], of the ground truth (denoted g in the legend), the prediction from training with
Hamming loss (denoted h), and the prediction when training with the proposed supermod-
ular loss (denoted s). We note that there are many regions in the set of images where
the supermodular loss learns to correctly predict the foreground when Hamming loss fails
(orange regions corresponding to g = +1, h = −1, and s = +1).
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Figure 3.7: A pixelwise comparison, in the structural brain segmentation task [Rohlfing,
2012], of the ground truth (denoted g in the legend), the prediction from training with
Hamming loss (denoted h), and the prediction when training with the proposed supermod-
ular loss (denoted s). We note that there are many regions in the set of images where
the supermodular loss learns to correctly predict the foreground when Hamming loss fails
(orange regions corresponding to g = +1, h = −1, and s = +1).
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(a) groundtruth (b) Hamming (c) 8-connected

(d) groundtruth (e) Hamming (f) 8-connected

(g) groundtruth (h) Hamming (i) 8-connected

Figure 3.8: The segmentation results (continued) of prediction by trained with Hamming
loss (column 2 and 5) and our supermodular loss (column 4 and 6). The supermodular
loss perform better on foreground object boundary than Hamming loss does, as well as it
achieves better prediction on the elongated structure of the foreground object e.g. the heads
and the legs.



Chapter 3. Efficient Learning with Supermodular Loss Functions 48

(a) groundtruth (b) Hamming (c) 8-connected

(d) groundtruth (e) Hamming (f) 8-connected

(g) groundtruth (h) Hamming (i) 8-connected

Figure 3.9: The segmentation results (continued) of prediction by trained with Hamming
loss (column 2 and 5) and our supermodular loss (column 4 and 6). The supermodular
loss perform better on foreground object boundary than Hamming loss does, as well as it
achieves better prediction on the elongated structure of the foreground object e.g. the heads
and the legs.
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(a) groundtruth (b) Hamming (c) 8-connected

(d) groundtruth (e) Hamming (f) 8-connected

(g) groundtruth (h) Hamming (i) 8-connected

Figure 3.10: The segmentation results (continued) of prediction by trained with Hamming
loss (column 2 and 5) and our supermodular loss (column 4 and 6). The supermodular
loss perform better on foreground object boundary than Hamming loss does, as well as it
achieves better prediction on the elongated structure of the foreground object e.g. the heads
and the legs.
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Overview Learning with non-modular losses is an important problem when sets of pre-
dictions are made simultaneously. The main tools for constructing convex surrogate loss
functions for set prediction are margin rescaling and slack rescaling. In this chapter, we
show that these strategies lead to tight convex surrogates if and only if the underlying loss
function is increasing in the number of incorrect predictions. However, gradient or cutting-
plane computation for these functions is NP-hard for non-supermodular loss functions. We
propose instead a novel surrogate loss function for submodular losses, the Lovász hinge,
which leads to O(p log p) complexity with O(p) oracle accesses to the loss function to com-
pute a gradient or cutting-plane. We prove that the Lovász hinge is convex and yields an
extension. As a result, we have developed the first tractable convex surrogates in the lit-
erature for submodular losses. We demonstrate the utility of this novel convex surrogate
through several set prediction tasks, including on the PASCAL VOC and Microsoft COCO
datasets.

The work presented in this chapter is based on:

• Jiaqian Yu and Matthew B. Blaschko. The Lovász hinge: A convex surrogate for sub-
modular losses. 2015. arXiv:1512.07797;

• Matthew B. Blaschko and Jiaqian Yu. Hardness results for structured learning and
inference with multiple correct outputs. In Constructive Machine Learning Workshop
at ICML, Lille, France, July 2015;

• Jiaqian Yu and Matthew B. Blaschko. Learning submodular losses with the lovász
hinge. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37, pages 1623–1631, 2015

4.1 Introduction

In this chapter, we aim to provide a theoretical and algorithmic foundation for a novel class
of learning algorithms that make feasible learning with submodular losses, an important
subclass of non-modular losses that is currently infeasible with existing algorithms.

Convex surrogate loss functions are central to the practical application of empirical risk
minimization. Straightforward principles have been developed for the design of convex sur-
rogates for binary classification and regression [Bartlett et al., 2006], and in the structured
output setting margin and slack rescaling are two principles for defining convex surrogates
for more general output spaces [Tsochantaridis et al., 2005]. Despite the apparent flexibil-
ity of margin and slack rescaling in their ability to bound arbitrary loss functions, there are
fundamental limitations to our ability to apply these methods in practice: (i) they provide
only loose upper bounds to certain loss functions (cf. Propositions 4.1 & 4.2), (ii) computing
a gradient or cutting plane is NP-hard for submodular loss functions, and (iii) consistency
results are lacking in general [McAllester, 2007; Tewari and Bartlett, 2007]. In practice,
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modular losses, such as Hamming loss, are often applied to maintain tractability, although
non-modular losses, such as the Jaccard loss have been applied in the structured prediction
setting [Blaschko and Lampert, 2008; Nowozin, 2014]. We show in this paper that the
Jaccard loss is in fact a submodular loss, and our proposed convex surrogate provides a
polynomial-time tight upper bound.

In this work, we introduce an alternate principle to construct convex surrogate loss func-
tions for submodular losses based on the Lovász extension of a set function. The Lovász ex-
tension of a submodular function is its convex closure, and has been used in other machine
learning contexts e.g. [Bach, 2010; Iyer and Bilmes, 2013]. We analyze the settings in which
margin and slack rescaling are tight convex surrogates by finding necessary and sufficient
conditions for the surrogate function to be an extension of a set function. Although margin
and slack rescaling generate extensions of some submodular set functions, their optimiza-
tion is NP-hard. We therefore propose a novel convex surrogate for submodular functions
based on the Lovász extension, which we call the Lovász hinge. In contrast to margin and
slack rescaling, the Lovász hinge provides a tight convex surrogate to all submodular loss
functions, and computation of a gradient or cutting plane can be achieved inO(p log p) time
with a linear number of oracle accesses to the loss function. We demonstrate empirically
fast convergence of a cutting plane optimization strategy applied to the Lovász hinge, and
show that optimization of a submodular loss results in lower average loss on the test set.

In Section 4.2 we introduce the notion of a submodular loss function in the context
of empirical risk minimization. The Structured Output SVM is one of the most popular
objectives for empirical risk minimization of interdependent outputs, and we demonstrate
its properties on non-modular loss functions in Section 4.3. In Section 4.4 we introduce the
Lovász hinge as well as properties involving the convexity and computational complexity.
We empirically demonstrate its performance first on a synthetic problem, then on image
classification and labeling tasks on Pascal VOC dataset and the Microsoft COCO dataset in
Section 4.7.

4.2 Submodular Loss Functions

As reminder, in empirical risk minimization, we approximate the risk, R of a prediction
function ĥ : X 7→ Y by an empirical sum over losses incurred on a finite sample, using e.g.
an i.i.d. sampling assumption [Vapnik, 1995]:

R̂(ĥ) :=
1

n

n∑
i=1

∆(yi, ĥ(xi)) (4.2.1)

Central to the practical application of the empirical risk minimization principle, one must
approximate, or upper bound the discrete loss function ∆ with a convex surrogate. We will
identify the creation of a convex surrogate for a specific loss function with an operator that
maps a function with a discrete domain to one with a continuous domain. In particular, we
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will study the case that the discrete domain is a set of p binary predictions. In this case we
denote

Y = {−1,+1}p (4.2.2)

∆ : {−1,+1}p × {−1,+1}p 7→ R+ (4.2.3)

B∆ : {−1,+1}p × Rp 7→ R (4.2.4)

where B is an operator that constructs the surrogate loss function from ∆, and we assume

ĥ(x) = sign(g(x)) (4.2.5)

where g : X 7→ Rp is a parametrized prediction function to be optimized by empirical risk
minimization. We always consider that ∆ is isomorphic to a set function on the mispredic-
tion set:

∆(y∗, ỹ) = `({j|yj 6= ỹj}).

In the sequel when we say ∆ is increasing we mean it is increasing w.r.t. the misprediciton
set {j|yj 6= ỹj}.

In particular in this chapter, we will focus on the function to be submodular, namely

∀A,B ⊆ V, A ⊆ B v ∈ V \B,
`(A ∪ {v})− `(A) ≥ `(B ∪ {v})− `(B)

by Definition 2.1.
Such functions are typically increasing, though it is possible to conceive of a sensible loss

function that may be non-increasing (e.g. when getting 50% recall is worse than making no
prediction at all, as in the identification of cancer tissue).

A key property is the relationship between B∆ and ∆. In particular, we are interested in
when a given surrogate strategy B∆ yields an extension of ∆ (cf. Definition 4.1). We make
this notion formal by identifying {−1,+1}p with a given p-dimensional unit hypercube of
Rp . We say that B∆(y, ·) is an extension of ∆(y, ·) if and only if the functions are equal
over the vertices of this unit hypercube. We focus on function extensions as they ensure a
tight relationship between the discrete loss and the convex surrogate.

With these notions, we now turn to an analysis of margin and slack rescaling, and
show necessary and sufficient conditions for these operators to yield an extension to the
underlying discrete loss function.

4.3 Existing Convex Surrogates

In this section, we analyze two existing convex surrogates namely margin rescaling and
slack rescaling. We determine necessary and sufficient conditions for margin and slack
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rescaling to yield an extension of the underlying set loss function, and address their short-
coming in the complexity of subgradient computation.

The Structured Output SVM (SOSVM) is a popular framework in the regularized risk
minimization framework [Taskar et al., 2004; Tsochantaridis et al., 2005] that aims at
learning a parametrized function h : X × Y 7→ R over input/output pairs from which a
prediction can be derived by maximizing

ĥ(x) = arg max
y∈Y

h(x, y;w) (4.3.1)

The SOSVM framework assumes h to be represented by an inner product between an ele-
ment of a reproducing kernel Hilbert space and some combined feature representation of
inputs and outputs φ(x, y),

h(x, y;w) = 〈w, φ(x, y)〉 (4.3.2)

although the notions of margin and slack rescaling may be applied to other function spaces,
including random forests [Criminisi and Shotton, 2013] and deep networks [Bengio, 2009].

A bounded loss function ∆ : Y × Y → R quantifies the loss associated with a prediction
ỹ while the true value is y, and is used to re-scale the constraints. As for reminder, followings
are with margin-rescaling constraints and slack-rescaling constraints:

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi, (4.3.3)

s.t. ∀i,∀ỹ ∈ Y : 〈w, φ(xi, yi)〉 − 〈w, φ(xi, ỹ)〉 ≥ ∆(yi, ỹ)− ξi (4.3.4)

or ∆(yi, ỹ) (〈w, φ(xi, yi)〉 − 〈w, φ(xi, ỹ)〉) ≥ ∆(y, ỹ)− ξi (4.3.5)

respectively. A cutting plane algorithm is commonly used to solve it and one version of the
approach with slack rescaling is shown in Algorithm 1 and in Algorithm 2 (cf. Chapter 2,
Section 2.4)

In the sequel, we will consider the case that each xi ∈ X is an ordered set of p elements,
and that yi ∈ Y is a binary vector in {−1,+1}p. We consider feature maps such that

〈w, φ(x, y)〉 =

p∑
j=1

〈wj , xj〉yj . (4.3.6)

Given this family of joint feature maps, we may identify the jth dimension of g (cf. Equa-
tion (4.2.5)) with

gj(x) := 〈wj , xj〉. (4.3.7)

Therefore arg maxy∈{−1;+1}p h(x, y;w) = sign(g(x)) and

h(x, y) := 〈g(x), y〉. (4.3.8)

While this section is developed with a linearly parametrized function, the resulting sur-
rogates in this work provide valid subgradients with respect to more general (non-linear)
functions. The treatment of optimization with respect to these more general function classes
is left to future work.
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Figure 4.1: Figure 4.1(a) shows the hinge loss as a function of gj(x)yj and Figure 4.1(b)
shows the transformed mapping as a function of 1− gj(x)yj

4.3.1 Extension

In order to analyse whether an operator B yields extensions of ∆, we construct a mapping
to a p-dimensional vector space using following definition:

Definition 4.1. A convex surrogate function B∆ is an extension if for all y ∈ Y,

B∆(y, g(x)) = ∆(y, sign(g(x))) (4.3.9)

on the vertices ([u]j ∈ {0, 1}) of the 0-1 unit cube under the mapping to Rp (cf. Figure 4.2):

j ={1, . . . , p}, [u]j = 1− gj(x)yj . (4.3.10)

This mapping is inspired by the hinge loss mapping, whereas it aims at putting the
point of zero-loss the at the origin and ∆ at the vertex of the unitcube(cf. Figure. 4.1). We
note that this definition is a natural generalization of the usual notion of convex surrogates
for binary prediction as tight upper bounds on the 0-1 step loss (cf. [Hastie et al., 2009,
Figure 10.4]).

In the sequel, we will use the notation for l : P(V ) 7→ R as in Equation (3.2.5). Note
that at the vertices, ∆(y, ·) has the following values:

`(∅) at 0p (4.3.11)

`(I) at {v|v ∈ {0, 1}p, vi = 1⇔ i ∈ I} (4.3.12)

We call (4.3.12) the value of ` at the vertex I.
We denote the operators for margin and slack rescaling that map the loss function to its

convex surrogates M and S, respectively. These operators have the same signature as B in
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Equation (4.2.4).

M∆(y, g(x)) := max
ỹ∈Y

∆(y, ỹ) + 〈g(x), ỹ〉 − 〈g(x), y〉 (4.3.13)

S∆(y, g(x)) := max
ỹ∈Y

∆(y, ỹ)
(
1 + 〈g(x), ỹ〉 − 〈g(x), y〉

)
(4.3.14)

respectively.

4.3.2 Slack Rescaling

Proposition 4.1. S∆(y, ·) is an extension of a set function ∆(y, ·) iff ∆(y, ·) is an increasing
function.

Proof. First we demonstrate the necessity.
Given S∆(y, ·) an extension of ∆(y, ·), we will study on whether ∆(y, ·) is an increasing

function. More explicitly, there are two cases to determine the values of S∆(y, ·).

First case when u = 0 (Equation (4.3.10)) ∆(y, g(x)) = `(∅) according to Equation (3.2.5).
Given S∆(y, g(x)) yields an extension, by Definition 4.1, S∆(y, g(x)) = ∆(y, sign(g(x))) at
the vertices as in Equation (4.3.11) and Equation (4.3.12). Note that it is trivial when u = 0

so the first case is always true for arbitrary (including increasing) `.

Second case when u ∈ Rp \ {0}, let I = {i|ui 6= 0}, then according to Equation (4.3.14),
S∆(y, g(x)) takes the value of the following equation:

max
I∈P(V )

`(I)
(
1−

∑
i∈I

gi(x)yi
)
. (4.3.15)

Considering the second case when S∆(y, g(x)) is equal to Equation (4.3.15), denote

I2 := arg max
I∈P(V )

`(I)
(
1−

∑
i∈I

gi(x)yi
)
. (4.3.16)

As S∆(y, g(x)) is an extension, S∆(y, g(x)) = ∆(y, sign(g(x))) at the vertex I2 which gives
us:

∀I1 ∈ P(V ) \ {∅}, `(I2) ≥ `(I1) (1− |(V \ I2) ∩ I1|) (4.3.17)

This leads to two cases,

1. if |(V \ I2) ∩ I1| = 0, namely (V \ I2) ∩ I1 = ∅, which implies I1 ⊆ I2, then from
Equation (4.3.17) we get `(I2) ≥ `(I1). This implies that ` is increasing i.e. ∆ are
increasing;

2. if |(V \ I2)∩ I1| ≥ 1, this means the rhs of Equation (4.3.17) is non-positive, then it is
redundant with `(I2) ≥ 0 which is always true.
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To conclude, given S∆(y, ·) is an extension of a set function ∆(y, ·), it is always the case
that ∆ is increasing.

To demonstrate the sufficiency, we need to show Equation (4.3.17) is always true if ` is
increasing.

First, if we have |(V \ I2) ∩ I1| = 0 which implies (V \ I2) ∩ I1 = ∅ then I1 ⊆ I2, thus
`(I2) ≥ `(I1) given ` is increasing.

Then if we have |(V \ I2) ∩ I1| ≥ 1, (4.3.17) always holds even for arbitrary `.
By conclusion, we have that S∆(y, g(x)) = ∆(y, sign(g(x))) at the vertices when Equa-

tion (4.3.12) holds. As for the case of Equation (4.3.11), it is trivial as u = 0. So S∆(y, ·)
yields a extension of ∆(y, ·) if ∆(y, ·) is increasing.

4.3.3 Margin Rescaling

It is a necessary, but not sufficient condition that ∆(y, ỹ) be increasing for margin rescaling
to yield an extension. However, we note that for all increasing ∆(y, ỹ) there exists a positive
scaling γ ∈ R such that margin rescaling yields an extension. This is an important result
for regularized risk minimization as we may simply rescale ∆ to guarantee that margin
rescaling yields an extension, and simultaneously scale the regularization parameter such
that the relative contribution of the regularizer and loss is unchanged at the vertices of the
unit cube.

Proposition 4.2. For all increasing set functions ` such that ∃y for which M∆(y, ·) is not an
extension of ∆(y, ·), we can always find a positive scale factor γ specific to ` such that margin
rescaling yields an extension. We denote Mγ∆ and γ∆ as the rescaled functions.

Proof. Similar to Proposition 4.1, we analyse two cases to determine the values of Mγ∆(y, g(x)):

1. if u = 0, Mγ∆(y, g(x)) = γ`(∅) where u is defined as in Equation (4.3.10). It is
typically the case that `(∅) = 0, but this is not a technical requirement.

2. if u 6= 0, let I = {i|ui 6= 0}, then Mγ∆(y, g(x)) takes the value of the following
equation:

max
I∈P(V )

γ`(I)−
∑
i∈I

gi(x)yi (4.3.18)

To satisfy Definition 4.1, we must find a γ > 0 such that Mγ∆(y, g(x)) = γ∆(y, sign(g(x)))

at the vertices. Note that it is trivial when u = 0 so the first case is true for arbitrary γ > 0.
For the second case as in Equation (4.3.18), let I2 = arg maxI∈P(V )

(
`(I)−∑i∈I g

i(x)yi
)
.

We have Mγ∆(y, g(x)) = ∆(y, sign(g(x))) at the vertices I2 according to the extension. The
scale factor should satisfy:

∀I1 ∈ P(V ) \ {∅}, γ
(
`(I2)− `(I1)

)
≥ −|(V \ I2) ∩ I1| (4.3.19)

which leads to the following cases:
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1. if |(V \I2)∩I1| = 0, we have (V \I2)∩I1 = ∅, which implies I1 ⊆ I2. Equation (4.3.19)
reduces to

γ
(
`(I2)− `(I1)

)
≥ 0 (4.3.20)

and ` is an increasing function so `(I1) ≤ `(I2) and Equation (4.3.20) is always true
as γ > 0.

2. if |(V \ I2) ∩ I1| 6= 0, we need to discuss the relationship between `(I1) and `(I2):

(a) if `(I2) = `(I1), then Equation (4.3.20) becomes 0 ≥ −|(V \ I2) ∩ I1|, for which
the rhs is negative so it is always true.

(b) if `(I2) > `(I1), then

γ ≥ −|(V \ I2) ∩ I1|
`(I2)− `(I1)

(4.3.21)

for which the rhs is negative so it is redundant with γ > 0 .

(c) if `(I2) < `(I1), then

γ ≤ −|(V \ I2) ∩ I1|
`(I2)− `(I1)

(4.3.22)

for which the rhs is strictly positive so it becomes an upper bound on γ .

In summary the scale factor γ should satisfy the following constraint for an increasing loss
function `:

∀I1, I2 ∈ P(V ) \ {∅}, 0 < γ ≤ −|(V \ I2) ∩ I1|
`(I2)− `(I1)

Finally, we note that the rightmost ratio is always strictly positive.

4.3.4 Complexity of Subgradient Computation

Although we have proven that slack and margin rescaling yield extensions to the underlying
discrete loss under fairly general conditions, their key shortcoming is in the complexity of
the computation of subgradients for submodular losses. The subgradient computation for
slack and margin rescaling requires the computation of

arg max
ỹ

∆(y, ỹ)(1 + h(x, ỹ)− h(x, y)) (4.3.23)

and
arg max

ỹ
∆(y, ỹ) + h(x, ỹ), (4.3.24)

respectively. The arg max in both of these functions corresponds to a non-submodular min-
imization for submodular loss functions. This computation is NP-hard, and such loss func-
tions are not feasible with these existing methods in practice. Furthermore, approximate
inference, e.g. based on [Nemhauser et al., 1978], leads to poor convergence when used to
train a structured output SVM resulting in a high error rate (cf. Section 4.7, Tables 4.1-4.4).
We therefore introduce the Lovász hinge as an alternative operator to construct feasible
convex surrogates for submodular losses.
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4.4 Lovász Hinge

We now develop our convex surrogate for submodular loss functions, which is based on
the Lovász extension. In the sequel, the notion of permutations is important. We denote a
permutation of p elements by π = (π1, π2, . . . , πp), where πi ∈ {1, 2, . . . p} and πi 6= πj , ∀i 6=
j. Furthermore, for a vector s ∈ Rp, we will be interested in the permutation π that sorts
the elements of s in decreasing order, i.e. sπ1 ≥ sπ2 ≥ · · · ≥ sπp . Without loss of generality,
we will index the base set of a set function ` by integer values, i.e. V = {1, 2, . . . , p}, so that
for a permutation π, `({π1, π2, . . . , πi}) is well defined.

4.4.1 Lovász Hinge

We propose our novel convex surrogate for submodular functions increasing and non-
increasing in Definition 4.2 and Definition 4.3, respectively.1

Definition 4.2 (Lovász hinge for submodular increasing functions). For ` submodular and
increasing, the Lovász hinge L is defined as the unique operator such that,

L∆(y∗, g(x)) := max
π

p∑
j=1

(sπj )+ (` ({π1, · · · , πj})− ` ({π1, · · · , πj−1})) (4.4.1)

where (·)+ = max(·, 0), π is a permutation,

sπj = 1− gπj (x)y∗πj , (4.4.2)

and gπj (x) is the πjth dimension of g(x) (cf. Equation (4.3.7)).

Definition 4.3 (Lovász hinge for submodular non-increasing functions). For ` submodular
and non-increasing, the Lovász hinge, L, is defined as the unique operator such that

L∆(y, g(x)) :=

max
π

p∑
j=1

sπj (` ({π1, · · · , πj})− ` ({π1, · · · , πj−1}))


+

(4.4.3)

with the same π, sπj , gπj (x) and (·)+ defined as in Definition 4.2.

Note that the Lovász hinge is itself an extension of the Lovász extension (defined over
the p-dimensional unit cube) to Rp. For ` being submodular increasing, we threshold each
negative component of s i.e. sπj = 1− gπj (x)yπj to zero. As ` being increasing, the compo-
nents ` ({π1, · · · , πj}) − ` ({π1, · · · , πj−1}) will always be non-negative. Then L∆(y, g(x))

in Defintion 4.2 is always non-negative. While in Definition 4.3, we don’t apply the thresh-
olding strategy on the components of s, but instead on the entire formulation.

We show in the following propositions that these two definitions yield surrogates that
are indeed convex and extensions of the corresponding loss functions.

1Source code is available for download at https://github.com/yjq8812/lovaszhinge.

https://github.com/yjq8812/lovaszhinge
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Proposition 4.3. For a submodular non-negative loss function `, the Lovász hinge as in Defi-
nition 4.3 is convex and yields an extension of ∆.

Proof. We first demonstrate the “convex” part. It is clear that taking a maximum over linear
functions is convex. The thresholding to non-negative values similarly maintains convexity.

We then demonstrate the “extension” part. From the definition of extension as in Equa-
tion (4.3.10) as well as the notation concerning the vertices of the unit cube as in Equa-
tion (4.3.12), for the values of s on the vertices I, we have explicitly

sj =

{
1, ∀j ∈ I
0, ∀j ∈ V \ I

(4.4.4)

As a result, the permutation π that sorts the components of s decreasing on the vertices is
actually

{π1, · · · , πk, πk+1, · · · , πp}, k = |I|.

with {π1, · · · , πk} a permutation of {j|j ∈ I} and {πk+1, · · · , πp} a permutation of {j|j ∈
V \ I}.

We then reformulate the inside part of rhs of Equation (4.4.3) as:

p∑
j=1

sπj (` ({π1, · · · , πj})− ` ({π1, · · · , πj−1}))

=

k∑
j=1

1× (` ({π1, · · · , πj})− ` ({π1, · · · , πj−1})) + 0

= ` ({π1, · · · , πk})
= `(I) (4.4.5)

Then for non-negative `, thresholding is redundant. As a consequence we have

L∆(y, g(x)) = (`(I))+ = ∆(y, g(x)) (4.4.6)

which validates that L∆(y, g(x)) yields an extension of ∆(y, g(x)).

Proposition 4.4. For a submodular increasing loss function ` , the Lovász hinge as in Defini-
tion 4.2 is convex and yields an extension of ∆.

Proof. We first demonstrate the “convex” part. When ` is increasing, µπj = ` ({π1, · · · , πj})−
` ({π1, · · · , πj−1}) will always be positive for all πj ∈ {1, 2, · · · , p}. So it’s obvious that
µπj ×max(0, sπj ) will always be convex with respect to sπj ∈ R for any given µπj ≥ 0. As
the convex function set is closed under the operation of addition, the Lovász hinge is convex
in Rp.

We note that on the vertex I, we have s ∈ {0, 1}p as in Equation (4.4.4), then the
positive threshold on the components of sj can be removed. With the same procedure as in
Equation (4.4.5), L∆(y, g(x)) yields an extension of ∆(y, g(x)).
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Although Definition 4.3 is convex and yields an extension for both increasing and non-
increasing losses, we rather apply Definition 4.2 for increasing loss functions. This will
ensure the Lovász hinge is an analogue to a standard hinge loss in the special case of a
symmetric modular loss. We formally state this as the following proposition:

Proposition 4.5. For a submodular increasing loss function `, the Lovász hinge as in Defini-
tion 4.2 thresholding negative sπj to zero, coincides with an SVM (i.e. additive hinge loss) in
the case of Hamming loss.

Proof. The hinge loss for a set of p training samples is defined to be

`hinge(y, g(x)) :=

p∑
i=1

(
1− g(xi)yi)

)
+
. (4.4.7)

Following the previous notation, we will interpret g(xi) = gi(x). For a modular loss, the
Lovász hinge in Equation (4.4.1) simplifies to

L∆(y, g(x)) = max
π

p∑
j=1

(sπj )+`({πj}) (4.4.8)

=

p∑
j=1

(
1− gj(x)yj

)
+
`({j}). (4.4.9)

For the Hamming loss `({j}) = 1, ∀j and L∆(y, g(x)) = `hinge(y, g(x)).

Lemma 4.1. The convex closure of a set function ` is the largest function `c : [0, 1]p 7→ R ∪
{+∞} such that (a) `c is convex and (b) for all A ⊆ V, lc(1A) ≤ l(A), where 1A is a binary
vector such that the ith element is one iff i ∈ A and zero otherwise. The Lovász extension of a
submodular function ` coincides with its convex closure [Bach, 2013; Choquet, 1953].

Proposition 4.6. The Lovász hinge has an equal or higher value than slack and margin rescal-
ing inside the unit cube.

Proof. By Lemma 4.1 it is clear that the Lovász hinge inside the unit cube is the maxi-
mal convex extension, and therefore slack and margin rescaling must have equal or lesser
values.

Corollary 4.1. Slack and margin rescaling may have additional inflection points inside the
unit cube that are not present in the Lovász hinge. This is a consequence of Proposition 4.6
and the fact that all three are piecewise linear extensions, and thus have identical values on the
vertices of the unit cube. One can also visualize this in Figure 4.2.

Another reason that we use a different threshold strategy on s for increasing or non-
increasing losses is that we cannot guarantee that the Lovász hinge is always convex if we
threshold each negative component sπj to zero for non-increasing losses.
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Proposition 4.7. For a submodular non-increasing loss function ` , the Lovász hinge is not
convex if we threshold each negative component sπj to zero as in Definition 4.2.

Proof. If ` is non-increasing, there exists at least one π and j such that

µπj := l ({π1, · · · , πj})− l ({π1, · · · , πj−1})

is strictly negative. The partial derivative of L∆(y, g(x)) w.r.t. sπj is

∂L∆(y, g(x))

∂sπj
=

{
0 if sπj < 0

µπj if sπj > 0.
(4.4.10)

As µπj < 0 by assumption, we have that the partial derivative at sπj < 0 is larger than the
partial derivative at sπj > 0, and the loss surface cannot therefore be convex.

Figure 4.6(a) and Figure 4.6(b) show an example of the loss surface when ` is non-
increasing. We can see that at the non-increasing element leads to a negative subgradient
at one side of a vertex, while on its other side the subgradient is zero due to the fact that
we still apply the thresholding strategy. Thus it leads to a non-convex surface.

4.4.2 Complexity of Subgradient omputation

We explicitly present the cutting plane algorithm for solving the max-margin problem as
in Equation (4.3.3) in Algorithm 4. The novelties are: (i) in Line 5 we calculate the upper
bound on the empirical loss by the Lovász hinge; (ii) in Line 6 we calculate the loss gradient
by the computation relating to the permutation π instead of to all possible outputs ỹ.

As the computation of a cutting plane or loss gradient is precisely the same procedure
as computing a value of the Lovász extension, we have the same computational complexity,
which is O(p log p) to sort the p coefficients, followed by O(p) oracle accesses to the loss
function [Lovász, 1983]. This is precisely an application of the greedy algorithm to optimize
a linear program over the submodular polytope as shown in Proposition 2.11. In our imple-
mentation, we have employed a one-slack cutting-plane optimization with `2 regularization
analogous to [Joachims et al., 2009]. We observe empirical convergence of the primal-dual
gap at a rate comparable to that of a structured output SVM (Figure 5.5).

4.4.3 Visualization of Convex Surrogates

For visualization of the loss surfaces, in this section we consider a simple binary classifica-
tion problem with two elements with non-modular loss functions :

X := Rd×2 Y := {−1,+1}2

Then with different values for `(∅), `({1}), `({2}) and `({1, 2}), we can have different
modularity or monotonicity properties of the function ` which then defines ∆. We illustrate
the Lovász hinge, slack and margin rescaling for the following cases:
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Algorithm 4 Cutting plane algorithm for solving the problem in Equation (4.3.3), with
Definition 4.3 – the Lovász hinge.

1: Input: (x1, y1), · · · , (xn, yn), C, ε
2: Si = ∅,∀i = 1, · · · , n
3: repeat
4: for i = 1, · · · , n do
5: H(yi, π) =

∑p
j=1 s

πj
i (l ({π1, · · · , πj})− l ({π1, · · · , πj−1})) ,

where sπj = 1− gπj (xi)yπji
6: π̂ = arg maxπH(yi, π)

% find the most violated constraint by sorting the p elements of s
7: ξi = max{0, H(yi, π̂)}
8: if H(yi, π̂) > ξi + ε then
9: Si := Si ∪ {π̂}

10: w ← optimize Equation (4.3.3) with constraints defined by ∪iSi
11: end if
12: end for
13: until no Si has changed during iteration
14: return (w, ξ)

(i) submodular increasing:

`(∅) = 0, l({1}) = l({2}) = 1, l({1, 2}) = 1.2

(ii) submodular non-increasing:

`(∅) = 0, l({1}) = l({2}) = 1, l({1, 2}) = 0.6

(iii) supermodular increasing:

`(∅) = 0, l({1}) = l({2}) = 1, l({1, 2}) = 2.6

In Figure 4.2 to Figure 4.5, the x axis represents the value of s1, the y axis represents
the value of s2 in Equation (4.4.2), and the z axis is the convex loss function given by
Equation (4.3.13), Equation (4.3.14), and Definition 4.2 and 4.3 for different loss functions.
We plot the values of ` as solid dots at the vertices of the hypercube.

We observe first that all surfaces are convex. For the Lovász hinge with a submodular
increasing function in Figure 4.2(a) and Figure 4.2(b), the thresholding strategy adds two
hyperplanes on the left and on the right, while convexity is maintained.

We observe in Figure 4.2 that all the solid dots corresponding to the discrete loss func-
tion values touch the surfaces of the Lovász hinge with both submodular increasing loss
function and non-increasing loss function, which empirically validates that the surrogates
are extensions of the discrete loss.
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Figure 4.2: The Lovász hinge surfaces with a submodular increasing loss and a submodular
non-increasing loss from different views; the x and y axes represent the value of s1i and s2i
in Equation (4.4.2); the z axis represents the value of the convex surrogate; the solid red
dots represent the values of ` at the vertices of the unit hypercube. The convex surrogate
strategies yield extensions of the discrete loss as the red dots touch the surfaces.
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Figure 4.3: Margin rescaling surfaces with a submodular increasing loss and a supermod-
ular increasing loss from different views. The convex surrogate strategies yield extensions
of the discrete loss as the red dots touch the surfaces.
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Figure 4.4: Slack rescaling surfaces with a submodular increasing loss and a supermodular
increasing loss from different views. The convex surrogate strategies yield extensions of the
discrete loss as the red dots touch the surfaces.
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Figure 4.5: Magin rescaling surfaces and slack rescaling surfaces with a submodular non-
increasing loss from different views. The convex surrogate strategies fail to yield extensions
of the discrete loss as the red dots are below the surfaces.
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Figure 4.6: Lovász hinge with submodular non-increasing ` while thresholding negative
components of s is still applied (cf. the caption of Figure 4.2 for the axes notation). Although
the red dots touch the surface, the surface is no longer convex due to the thresholding
strategy.

However, for slack rescaling and margin rescaling (while having a proper positive scale
factor γ), the dots coincide with the surfaces only for submodular increasing and super-
modular increasing ` (Figure 4.3 to Figure 4.4); margin rescaling and slack rescaling fail to
yield extensions of submodular non-increasing losses as in Figure 4.5, as the red dots are
below the surfaces.

Here we set ` as symmetric functions, while the extensions can be also validated for
asymmetric increasing set functions.

We additionally plot the Lovász hinge with a non-increasing function while the thresh-
olding strategy on s is still applied in Figure 4.6. Compared to Figure 4.2(c) and Fig-
ure 4.2(d), convexity is lost due to the thresholding strategy on negative components of
s.

4.5 Hardness Result for Learning Multiple Correct Results

Many domains of structured prediction contain multiple correct outputs. In computer vi-
sion, multiple correct object detections may be present in an image [Blaschko, 2011]. In
text summarization, multiple paragraphs may be considered equally good summaries of a
document [?]. In protein structure prediction, a molecule may have multiple possible con-
figurations [?]. In this work, we show that the presence of multiple correct outputs leads
to intractable computational problems in many common settings for which a single correct
output leads to tractable problems.

In this section, we show three main hardness results for structured prediction with mul-
tiple correct outputs: (i) regularized risk minimization with a supermodular loss function is
tractable with existing learning frameworks for a single correct output but NP-hard for mul-
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tiple correct outputs (Proposition 4.8), (ii) regularized risk minimization with a submodular
loss function is tractable with existing learning frameworks for a single correct output but
NP-hard for multiple correct outputs (Proposition 4.9), and (iii) test time inference that is
polynomial time solvable for a single correct output is NP-hard for multiple correct outputs
when a diversity penalty is included (Proposition 4.10). These results suggest the use of
alternative learning and approximate inference schemes when multiple correct outputs are
present during training and/or testing.

These results give substantial evidence that structured learning and inference with mul-
tiple correct outputs is fundamentally harder than when only a single output is considered
correct. This points to two potentially productive directions of inquiry: (i) the exploration
of tractable approximations to the NP-hard learning and inference problems, and (ii) the
derivation of novel convex surrogates and sufficient conditions for polynomial time learning
and inference that are applicable in practice to problems of interest.

4.5.1 Learning

In structured output learning, we assume that a task specific loss function is given that
measures the disagreement between a prediction and a ground truth element. We denote
a ground truth instance as y ∈ Y and the (incorrect) prediction ỹ. We will distinguish
between a loss function in which a single correct output is to be predicted, and a loss
function in which p multiple correct outputs Y ∈ Yp are possible:

∆single : Y × Y 7→ R (4.5.1)

∆multiple : Yp × Y 7→ R. (4.5.2)

Specifically, we will assume that when there are multiple outputs we will take

∆multiple(Y, ỹ) := min
y∈Y

∆single(y, ỹ) (4.5.3)

so that we require a prediction to be close to one of the ground truth outputs. We focus
on two feasible families of loss functions for ∆single for which convex surrogates have been
developed: supermodular loss functions and submodular loss functions.

4.5.2 Supermodular losses and the Structured Output SVM

We see in the the previous section that it is a necessary, but not sufficient condition that the
loss function ∆(y, ỹ) be increasing for margin rescaling to yield an extension. However, for
all increasing ∆(y, ỹ) there exists a positive scaling γ ∈ R such that margin rescaling yields
an extension. These results indicate that both slack and margin rescaling can be used to
construct tight convex surrogates to increasing loss functions.

In the event that we have multiple correct outputs, we construct the loss imputed to
the SOSVM by taking the minimum loss over all possible correct outputs. The resulting
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loss remains increasing, and therefore the resulting convex surrogate is tight, a positive
result from a statistical perspective. However, multiple correct outputs may mean that
computation of the subgradient of the convex surrogate is NP-hard. We show this making
use of the following lemma:

Proposition 4.8. Computation of a subgradient of the slack and margin rescaling convex
surrogates is NP-hard when there are multiple correct outputs.

Proof. Slack and margin rescaling are computationally feasible only when ∆ is supermod-
ular (Chapter 4.3). This is because subgradient computation requires solving

arg max
ỹ

∆(y, ỹ)(1 + 〈w, φ(x, ỹ)− φ(x, y)〉) (4.5.4)

and
arg max

ỹ
∆(y, ỹ) + 〈w, φ(x, ỹ)〉 (4.5.5)

for slack and margin rescaling, respectively. The minimum over supermodular functions
is the negative of the maximum over submodular functions, and submodular functions are
not closed under maximization (see Theorem 2.13 in Chapter 2). Finally we note that the
arg max in Equations (4.5.4) and (4.5.5) will therefore be taken over non-supermodular
functions, which is NP-hard in general.

Consequently, even if we have a tractable loss augmented inference problem for a single
correct output with a supermodular loss, the presence of multiple correct outputs will lead
to NP-hard loss augmented inference problems.

4.5.3 Submodular losses and the Lovász Hinge

We now turn to submodular loss functions. These result in NP-hard subgradient compu-
tation for SOSVMs, so Chapter 4.4 introduced an alternative convex surrogate based on
the Lovász extension of a submodular set function, called the Lovász hinge. This convex
surrogate generalizes hinge loss to multiple outputs when the loss function is submodu-
lar. Subgradient computation has a computational complexity of O(|y| log |y|), where |y|
is the size of a single instance y ∈ Y. We note that this convex surrogate (written as the
maximum over linear constraints) is only tight when ∆ remains submodular. Analogous to
Proposition 4.8, we now show that multiple correct outputs results in a loss function ∆ that
is not guaranteed to be submodular, even if the loss function for a single correct output is
submodular. We make use of the following result:

Proposition 4.9. Neither the Lovász hinge nor the structured output SVM provide a polyno-
mial time tight convex surrogate to a submodular loss function when there are multiple correct
outputs.
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Proof. Application of Equation (4.5.3) combined with the fact that submodularity is not
closed under minimization (see Theorem 2.14 in Chapter 2) indicates that ∆multiple is not
submodular in general, even if ∆single is. As ∆multiple is neither submodular nor supermod-
ular, neither the Lovász hinge nor the SOSVM yield polynomial time tight convex surro-
gates.

4.5.4 The Inference Problem

In the previous section, we have shown that learning with both submodular and super-
modular loss functions leads to NP-hard computation in order to compute subgradients of
existing convex surrogate loss functions when there are multiple correct outputs. In this
section, we further show a result due to Blaschko [2011] that test time inference becomes
NP-hard in the presence of multiple correct outputs when a diversity penalty is included in
the inference procedure.

Proposition 4.10. Let g(x, y) be a compatibility function for a structured prediction problem
(e.g. 〈w, φ(x, y)〉 from a SOSVM). The prediction of a set of p ≥ 2 outputs with a diversity
penalty is NP-hard in general:

arg max
Y ∈Yp

∑
y∈Y

g(x, y)−Ω(Y ) (4.5.6)

where
Ω(Y) =

∑
i 6=j

Ω(yi, yj) +
∑
c∈C

Ωc(yc), (4.5.7)

C is the set of higher order cliques in the penalty term (possibly C = ∅), and Ωc is supermodular
for all c ∈ C.

Proof. Section 3 of [Blaschko, 2011] shows that Equation (4.5.7) is supermodular for Ω ≥ 0.
Consequently, the optimization in Equation (4.5.6) corresponds with a non-submodular
minimization and is NP-hard.

4.6 Jaccard Loss

The Jaccard index score is a popular measure for comparing the similarity between two
sample sets, widely applied in diverse prediction problems such as structured output predic-
tion [Blaschko and Lampert, 2008], social network prediction [Liben-Nowell and Kleinberg,
2007] and image segmentation [Unnikrishnan et al., 2007]. It is used in the evaluation of
popular computer vision challenges, such as PASCAL VOC [Everingham et al., 2010] and
ImageNet [Russakovsky et al., 2014, Sec. 4.2]. In this section, we introduce the Jaccard
loss based on the Jaccard index score, and we prove that the Jaccard loss is a submodular
function with respect to the set of mispredicted elements.
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We will use Py, Pỹ ⊆ V to denote sets of positive predictions. We define the Jaccard loss
to be [Blaschko and Lampert, 2008]

∆J(y, ỹ) := 1− |Py ∩ Pỹ||Py ∪ Pỹ|
(4.6.1)

We now show that this is submodular under the isomorphism (y, ỹ) → A := {i|yi 6= ỹi},
∆J(y, ỹ) ∼= `(A). We will use the diminishing returns definition of submodularity as in
Definition 2.1. We will denote m := |Py| > 0, p := |Pỹ \ Py|, and n := |Py \ Pỹ|. With this
notation, we have that

∆J(y, ỹ) = 1− m− n
m+ p

(4.6.2)

For a fixed groundtruth y, we have for two sets of mispredictions A and B

if B ⊆ A, then nB ≤ nA, pB ≤ pA (4.6.3)

We first prove two lemmas about the submodularity of the loss function restricted to addi-
tional false positives or false negatives.

Lemma 4.2. ∆J restricted to marginal false negatives is submodular.

Proof. If i is an extra false negative,

∆J(A ∪ {i}) = ∆J(nA + 1, pA)

=
nA + pA + 1

m+ pA

= ∆J(A) +
1

m+ pA
(4.6.4)

Then we have

∆J(A ∪ {i})−∆J(A) =
1

m+ pA

≤ 1

m+ pB

= ∆J(B ∪ {i})−∆J(B) (4.6.5)

which complies with the definition of submodularity.

Lemma 4.3. ∆J restricted to marginal false positives is submodular.
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Proof. If i is an extra false positive, with the similar procedure as previous, we have

∆J(A ∪ {i}) = ∆J(nA, pA + 1)

=
nA + pA + 1

m+ pA + 1
(4.6.6)

∆J(A ∪ {i})−∆J(A) =
nA + pA + 1

m+ pA + 1
− nA + pA
m+ pA

=
|A| − nA

(m+ pA + 1)(m+ pA)

≤ |A| − nB
(m+ pB + 1)(m+ pB)

= ∆J(B ∪ {i})−∆J(B) (4.6.7)

which also complies with the definition of submodularity.

Proposition 4.11. ∆J is submodular.

Proof. Lemmas 4.2 and 4.3 cover mutually exclusive cases whose union covers all possible
marginal mistakes. As the diminishing returns property of submodularity (Equation (2.1.2))
holds in both cases, it also holds for the union.

4.7 Experimental Results

We validate the Lovász hinge on a number of different experimental settings. In Sec-
tion 4.7.1, we demonstrate a synthetic problem motivated by an early detection task. Next,
we show that the Lovász hinge can be employed to improve image classification measured
by the Jaccard loss on the PASCAL VOC dataset in Section 4.7.2. Multi-label prediction with
submodular losses is demonstrated on the PASCAL VOC dataset in Section 4.7.3, and on the
MS COCO dataset in Section 4.7.4. A summary of results is given in Section 4.7.5.

4.7.1 A Synthetic Problem

We designed a synthetic problem motivated by early detection in a sequence of observa-
tions. As shown in Figure 5.2, each star represents one sample in a bag and p = 15 samples
form one bag. In each bag, the samples are arranged in a chronological order, with sam-
ples appearing earlier drawn from a different distribution than later samples. The red and
magenta dots represent the early and late positive samples, respectively. The blue dots rep-
resent the negative samples. For the negative samples, there is no change in distribution
between early and late samples, while the distribution of positive samples changes with
time (e.g. as in the evolution of cancer from early to late stage).

We define the loss function as

∆1(y, ỹ) =

p∑
i=1

γilsub(Ii) (4.7.1)
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Figure 4.7: The disributions of samples for a synthetic binary classification problem moti-
vated by the problem of early detection in a temporal sequence. As in, e.g. disease evolution,
the distribution of early stage samples differs from that of late stage samples.

where Ii = {j|j ≤ i, ỹj 6= yj}. Let γi := e−i ∀i. By this formulation, we penalize early
mispredictions more than late mispredictions. This is a realistic setting in many situations
where, e.g. early detection of a disease leads to better patient outcomes. The loss lsub
measures the misprediction rate up to the current time while being limited by an upper
bound:

lsub(Ii) := min

(
|Ii|,

i

2

)
. (4.7.2)

As ∆ is a positively weighted sum of submodular losses, it is submodular. We additionally
train and test with the 0-1 loss, which is equivalent to an SVM and Hamming loss in the
Lovász hinge. We use different losses during training and during testing, then we measure
the empirical loss values of one prediction as the average loss value for all images shown in
Table. 4.1. We have trained on 1000 bags and tested on 5000 bags. M and S denote the use
of the submodular loss with margin and slack rescaling, respectively. As this optimization
is intractable, we have employed the approximate optimization procedure of [Nemhauser
et al., 1978].

As predicted by theory, training with the same loss function as used during testing yields
the best results. Slack and margin rescaling fail due to the necessity of approximate infer-
ence, which results in a poor discriminant function. By contrast, the Lovász hinge yields the
best performance on the submodular loss.

4.7.2 PASCAL VOC Image Classification

We consider an image classification task on the Pascal VOC dataset [Everingham et al.,
2010]. This challenging dataset contains around 10,000 images of 20 classes including
animals, handmade and natural objects such as person, bird, aeroplane, etc. In the training
set, which contains 5,011 images of different categories, the number of positive samples
varies largely, we evaluate the prediction on the entire training/testing set with the Jaccard
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Test
∆1 0-1

Tr
ai

n

L 0.100± 0.001 7.42± 0.01
0-1 0.166± 0.001 2.87± 0.02
S 0.144± 0.001 7.69± 0.01
M 0.154± 0.001 3.01± 0.01

Table 4.1: For the synthetic problem, the cross comparison of average loss values (with stan-
dard error) using different convex surrogates for the submodular loss in Equation (4.7.1)
during training, 0-1 loss for comparison, and testing with different losses.

aeroplane bicycle bird boat bottle
Test time ∆J 0-1 ∆J 0-1 ∆J 0-1 ∆J 0-1 ∆J 0-1

Tr
ai

n L 0.310 0.014 0.436 0.025 0.371 0.025 0.416 0.017 0.761 0.062
0-1 0.310 0.014 0.466 0.027 0.399 0.025 0.483 0.020 0.917 0.045

bus car cat chair cow
Test time ∆J 0-1 ∆J 0-1 ∆J 0-1 ∆J 0-1 ∆J 0-1

Tr
ai

n L 0.539 0.026 0.399 0.076 0.426 0.035 0.687 0.121 0.640 0.027
0-1 0.661 0.025 0.397 0.068 0.469 0.034 0.744 0.090 0.892 0.023

diningtable dog horse motorbike person
Test time ∆J 0-1 ∆J 0-1 ∆J 0-1 ∆J 0-1 ∆J 0-1

Tr
ai

n L 0.664 0.055 0.475 0.054 0.405 0.029 0.439 0.025 0.347 0.180
0-1 0.695 0.043 0.564 0.050 0.451 0.032 0.493 0.027 0.325 0.151

pottedplant sheep sofa train tvmonitor
Test time ∆J 0-1 ∆J 0-1 ∆J 0-1 ∆J 0-1 ∆J 0-1

Tr
ai

n L 0.747 0.058 0.580 0.017 0.710 0.062 0.306 0.018 0.588 0.042
0-1 0.846 0.043 0.611 0.016 0.730 0.062 0.325 0.018 0.690 0.036

Table 4.2: For the VOC image classification task, the cross comparison of average loss values
using the Jaccard loss as well as 0-1 loss during training and during testing for the 20
categories.

loss as in Equation (4.6.1).
We use Overfeat [Sermanet et al., 2014] to extract image features following the proce-

dure described in [Razavian et al., 2014]. Overfeat has been trained for the image classifi-
cation task on ImageNet ILSVRC 2013, and has achieved good performance on a range of
image classification problems.

We compare learning with the Jaccard loss with the Lovász hinge with learning an SVM
(labeled 0-1 in the results tables). The empirical error values using different loss function
during test time are shown in Table 4.2.

We can see from the table that almost for all the categories, training with Jaccard loss
using Lovász hinge yields lower empirical error values compared to training an Hamming
loss, when the Jaccard loss is used at test time. This result is as expected by the empirical
risk minimization principle, which empirically validates the correctness of Lovász hinge.
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(a) (b) (c)

Figure 4.8: Example images from the PASCAL VOC dataset. Figure 4.8(a) and Figure 4.8(b)
contain three categories: people, table and chair. Figure 4.8(c) contains table and chair.

4.7.3 PASCAL VOC Multilabel Prediction

We consider next a multi-label prediction task on the Pascal VOC dataset [Everingham et al.,
2010], in which multiple labels need to be predicted simultaneously and for which a sub-
modular loss over labels is to be minimized. Figure 4.8 shows example images from the
dataset, including three categories i.e. people, tables and chairs. If a subsequent prediction
task focuses on detecting “people sitting around a table”, the initial multilabel prediction
should emphasize that all labels must be correct within a given image. This contrasts with
a traditional multi-label prediction task in which a loss function decomposes over the indi-
vidual predictions. The misprediction of a single label, e.g. person, will preclude the chance
to predict correctly the combination of all three labels. This corresponds exactly to the
property of diminishing returns of a submodular function.

While using classic modular losses such as 0-1 loss, the classifier is trained to minimize
the sum of incorrect predictions, so the complex interaction between label mispredictions is
not considered. In this work, we use a new submodular loss function and apply the Lovász
hinge to enable efficient convex risk minimization. In his experiment, we choose the most
common combination of three categories: person, chairs and dining table. Objects labeled
as difficult for object classification are not used in our experiments.

For the experiments, we repeatedly sample sets of images containing one, two, and
three categories. The training/validation set and testing set have the same distribution.
For a single iteration, we sample 480 images for the training/validation set including 30
images with all labels, and 150 images each for sets containing zero, one, or two of the
target labels. More than 5,000 images from the entire dataset are sampled at least once as
we repeat the experiments with random samplings to compute statistical significance. In
this task, we first define the submodular loss function as follows:

∆2(y, ỹ) := min

(
lmax,

〈
β,

1− y � ỹ
2

〉)
(4.7.3)

where � is the Hadamard product, lmax is the maximal risk value, β > 0 is a coefficient
vector of size p that accounts for the relative importance of each category label. lmax < ‖β‖1
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Test
∆2 0-1

Tr
ai

n
L 0.4371± 0.0045 0.9329± 0.0097

0-1 0.5091± 0.0023 0.8320± 0.0074
S 0.4927± 0.0067 0.8731± 0.0073
M 0.4437± 0.0034 1.0010± 0.0080

Test
∆3 0-1

Tr
ai

n

L 0.9447± 0.0069 0.8786± 0.0077
0-1 0.9877± 0.0044 0.8173± 0.0061
S 0.9784± 0.0052 0.8337± 0.0054
M 0.9718± 0.0041 0.9425± 0.0054

Table 4.3: For the VOC multilabel prediction task, the cross comparison of average loss
values (with standard error) using submodular loss as in Equation (4.7.3) and Equa-
tion (4.7.4), as well as 0-1 loss during training and during testing.

ensures the function is strictly submodular. This function is an analogue to the submodular
increasing function in Sec. 4.4.3. In this VOC experiments, we order the category labels as
person, dining table and chair. We set lmax = 1.3 and β = [1 0.5 0.2].

We have additionally carried out experiments with another submodular loss function:

∆3(y, ỹ) := 1− exp (−|I|) +

〈
β,

1− y � ỹ
2

〉
(4.7.4)

where I = {j|ỹj 6= yj} is the set of mispredicted labels. The first part, 1 − exp (−|I|), is
a concave function depending only on the size of I, as a consequence it is a submodular
function; the second part is a modular function that penalizes labels proportionate to the
coefficient vector β as above. The results with this submodular loss are shown in Table 4.3.
We additionally train and test with the 0-1 loss, which is equivalent to an SVM.

We compare different losses employed during training and during testing. M and S

denote the use of the submodular loss with margin and slack rescaling, respectively. The
empirical results with this submodular loss are shown in Table 4.3.

4.7.4 MS COCO Multilabel Prediction

In this section, we consider the multi-label prediction task on Microsoft COCO dataset. On
detecting a dinner scene, the initial multi-label prediction should emphasize that all labels
must be correct within a given image, while MS COCO provides more relating categories
e.g. people, dinning tables, forks or cups. Submodular loss functions coincides with the fact
that misprediction of a single label, e.g. person, will preclude the chance to predict correctly
the combination of all labels. Figure 4.9 shows example images from the Microsoft COCO
dataset [Lin et al., 2014].
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(a) (b) (c)

Figure 4.9: Examples from the Microsoft COCO dataset. Figure 4.9(a) contains all the
categories of interest (cf. Section 4.7); Figure 4.9(b) contains dining table, fork and cup;
Figure 4.9(c) is not a dining scene but contains people.

The Microsoft COCO dataset [Lin et al., 2014] is an image recognition, segmentation,
and captioning dataset. It contains more than 70 categories, more than 300,000 images
and around 5 captions per image. We have used frequent itemset mining [Uno et al., 2004]
to determine the most common combination of categories in an image. For sets of size 6,
these are: person, cup, fork, knife, chair and dining table.

For the experiments, we repeatedly sample sets of images containing k (k = 0, 1, 2, · · · , 6)
categories. The training/validation set and testing set have the same distribution. For a sin-
gle iteration, we sample 1050 images for the training/validation set including 150 images
each for sets containing k (k = 0, 1, 2, · · · , 6) of the target labels. More than 12,000 images
from the entire dataset are sampled at least once as we repeat the experiments to compute
statistical significance.

In this task, we first use a submodular loss function as follows:

∆4(y, ỹ) := 1− exp (−α|I|) (4.7.5)

where I = {j|yj 6= ỹj} is the set of mispredicted labels. 1− exp (−|I|), is a concave function
depending only on the size of I, as a consequence it is a submodular function, α is a positive
coefficient that effect the increasing rate of the concave function thus the submodularity of
the set function. In the experiment we set α = 1 (cf. Table 4.4).

We have also carried out experiments with the submodular loss function used in VOC
experiments:

∆5(y, ỹ) := 1− exp (−|I|) +

〈
β,

1− y � ỹ
2

〉
(4.7.6)

where we set β = [1 0.8 0.7 0.6 0.5 0.4]T according to the size of the object that we order
the category labels as person, dining table, chair, cup, fork and knife (cf. Table 4.4).

cluster-label loss In addition, we use another submodular loss, which is a concave over
modular function, as follows,

∆6(y, ỹ) :=
√
m(I) (4.7.7)
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where m is a modular function for which the values on each element is defined as

m({j}) =
∑
A∈F

[j ∈ A]. (4.7.8)

where the F is the set of frequent itemsets that has been pre-calculated among training
samples. This loss gives a higher penalty for mispredicting clustered labels that frequently
co-occur in the training set (cf. Table 4.4). While the diminishing returns property of sub-
modularity yields the correct cluster semantics: if we already have a large set of mispred-
ctions, the joint prediction is already poor and an additional misprediction has a lower
marginal cost.

We compare different losses employed during training and during testing. We also train
and test with the 0-1 loss, which is equivalent to an SVM. M and S denote the use of the
submodular loss with margin and slack rescaling, respectively. As this optimization is NP-
hard, we have employed the simple application of the greedy approach as is common in
(non-monotone) submodular maximization (e.g. [Krause and Golovin, 2014]).

We repeated each experiment 10 times with random sampling in order to obtain an
estimate of the average performance. Table 4.4 shows the cross comparison of average
loss values (with standard error) using different loss functions during training and during
testing for the COCO dataset.

4.7.5 Empirical Results

From the empirical results in Table 4.1, Table 4.2, Table 4.3 and Table 4.4, we can see
that training with the same submodular loss functions as used during testing yields the
best results. Slack and margin rescaling fail due to the necessity of approximate inference,
which results in a poor discriminant function. By contrast, the Lovász hinge yields the best
performance when the submodular loss is used to evaluate the test predictions. We do not
expect that optimizing the submodular loss should give the best performance when the 0-1
loss is used to evaluate the test predictions. Indeed in this case, the Lovász hinge trained
on 0-1 loss corresponds with the best performing system.

Figure 4.10(a) and Figure 4.10(b) show for the two submodular functions the primal-
dual gap as a function of the number of cutting-plane iterations using the Lovász hinge
with submodular loss, as well as for a SVM (labeled 0-1), and margin and slack rescaling
(labeled M and S). This demonstrates that the empirical convergence of the Lovász hinge
is at a rate comparable to an SVM, and is feasible to optimize in practice for real-world
problems.

4.8 Discussion

In this work, we have introduced a novel convex surrogate loss function, the Lovász hinge,
which makes tractable for the first time learning with submodular loss functions. In contrast
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Test
∆4 0-1

Tr
ai

n

L 0.5567± 0.0057 1.4295± 0.0194
0-1 0.5729± 0.0060 1.3924± 0.0195
S 0.5875± 0.0065 1.4940± 0.0233
M 0.5820± 0.0063 1.4802± 0.0233

Test
∆5 0-1

Tr
ai

n

L 1.3767± 0.0143 1.3003± 0.0176
0-1 1.3813± 0.0135 1.2975± 0.0152
S 1.4711± 0.0153 1.3832± 0.0156
M 1.4811± 0.0117 1.4016± 0.0136

Test
∆6 0-1

Tr
ai

n

L 0.6141± 0.0048 1.2504± 0.0106
0-1 0.6224± 0.0048 1.2461± 0.0115
S 0.6700± 0.0051 1.3789± 0.0150
M 0.6723± 0.0051 1.3787± 0.0123

Table 4.4: For the MS COCO prediction task, the comparison of average loss values (with
standard error) using the submodular losses as in Equation (4.7.5), Equation (4.7.6) and
Equation (4.7.7), as well as 0-1 loss during training and during testing.

to margin and slack rescaling, computation of the gradient or cutting plane can be achieved
in O(p log p) time. Margin and slack rescaling are NP-hard to optimize in this case, and
furthermore deviate from the convex closure of the loss function (4.1).

We have proven necessary and sufficient conditions for margin and slack rescaling to
yield tight convex surrogates to a discrete loss function. These conditions are that the
discrete loss be a (properly scaled) increasing function. However, it may be of interest to
consider non-increasing functions in some domains. The Lovász hinge can be applied also
to non-increasing functions.

We have demonstrated the correctness and utility of the Lovász hinge on different tasks.
We have shown that training by minimization of the Lovász hinge applied to multiple sub-
modular loss functions, including the popular Jaccard loss, results in a lower empirical test
error than existing methods, as one would expect from a correctly defined convex surrogate.
As predicted by the theory, optimizing the submodular loss with the Lovász hinge yields the
best performance when evaluating performance using the same loss. Similarly optimizing
Hamming loss during training yields the best performance with respect to Hamming loss at
test time. Slack and margin rescaling both fail in practice as approximate inference does
not yield a good approximation of the discriminant function. The causes of this have been
studied in a different context in [Finley and Joachims, 2008], but are effectively due to (i)
repeated approximate inference compounding errors, and (ii) erroneous early termination
due to underestimation of the primal objective. We empirically observe that the Lovász
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Figure 4.10: The primal-dual gap as a function of the number of cutting-plane iterations
using the Lovász hinge with submodular loss, a SVM (labeled 0-1), and margin and slack
rescaling with greedy inference (labeled M and S). Figure 4.10(a) for the experiment using
Equation (4.7.5) and Figure 4.10(b) for Equation (4.7.6). This demonstrates that empirical
convergence of the Lovász hinge is at a rate comparable to an SVM, and is feasible to
optimize in practice for real-world problems.

hinge delivers much better performance by contrast, and makes no approximations in the
subgradient computation. Exact inference should yield a good predictor for slack and mar-
gin rescaling, but sub-exponential optimization only exists if P=NP. Therefore, the Lovász
hinge is the only polynomial time option in the literature for learning with such losses.

The introduction of this novel strategy for constructing convex surrogate loss functions
for submodular losses points to many interesting areas for future research. Among them
are then definition and characterization of useful loss functions in specific application areas.
It is known that an arbitrary set function can be written as the difference of two submod-
ular functions, which leads to the question of optimizing such functions by bounding the
submodular and supermodular components by different convex surrogates. Furthermore,
theoretical convergence results for a cutting plane optimization strategy are of interest. A
result of this kind may imply a convergence result for cutting plane minimization of sub-
modular functions, which is of general interest and a known open problem in submodular
optimization [Fujishige, 2005; Schrijver, 2002].
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Overview In this chapter, a novel generic convex surrogate for general non-modular loss
functions is introduced, which provides for the first time a tractable solution for loss func-
tions that are neither supermodular nor submodular. This convex surrogate is based on a
submodular-supermodular decomposition for which the existence and uniqueness is proven
in this chapter. It takes the sum of two convex surrogates that separately bound the super-
modular component and the submodular component using slack-rescaling and the Lovász
hinge, respectively. It is further proven that this surrogate is convex, piecewise linear, an ex-
tension of the loss function, and the subgradient computation is polynomial time. Empirical
results are reported on a non-submodular loss based on the Sørensen-Dice difference func-
tion, and a real-world face track dataset with tens of thousands of frames, demonstrating
the improved performance, efficiency, and scalability of the novel convex surrogate.

The work presented in this chapter is based on the following paper:

83
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• Jiaqian Yu and Matthew B. Blaschko. A convex surrogate operator for general non-
modular loss functions. International Conference on Artificial Intelligence and Statis-
tics, volume 51 of Journal of Machine Learning Research, pages 1032–1041, 2016

5.1 Introduction

Alternatives to the Hamming loss are frequently employed in the discriminative learning
literature: [Cheng et al., 2010] uses a rank loss which is supermodular; [Petterson and
Caetano, 2011] uses a non-submodular loss based on F-score; [Doppa et al., 2014] uses
modular losses e.g. Hamming loss and F1 loss which is non-submodular; and losses that
are nonmodular are common in a wide range of problems, including Jaccard index based
losses [Blaschko and Lampert, 2008; Everingham et al., 2010; Nowozin, 2014], or more
general submodular-supermodular objectives [Narasimhan and Bilmes, 2005].

We have demonstrated in previous chapters polynomial time convex surrogates for su-
permodular losses [Tsochantaridis et al., 2005] and submodular losses [Yu and Blaschko,
2015b], but not for more general non-modular losses. We may perform approximate infer-
ence in polynomial time via a greedy optimization procedure to compute a subgradient or
cutting plane of a convex surrogate for a general increasing function, but this leads to poor
performance of the training procedure in practice [Finley and Joachims, 2008; Joachims
et al., 2009]. A decomposition-based method for a general set function has been proposed
in the literature [Iyer and Bilmes, 2012], showing that under certain conditions a decom-
position into a submodular plus a supermodular function can be efficiently found. Other
relevant work includes the hardness results on submodular Hamming optimization and its
approximation algorithms [Gillenwater et al., 2015].

In this chapter, we propose a novel convex surrogate for general non-modular loss func-
tions, which is solvable for the first time for non-supermodular and non-submodular loss
functions. In Section 5.2, we define a decomposition for a general non-modular loss func-
tion into supermodular and submodular components (Section 5.3), propose a novel convex
surrogate operator based on this decomposition (Section 5.4), and demonstrate that it is
convex, piecewise linear, an extension of the loss function, and for which subgradient com-
putation is polynomial time (Section 5.4.2). In Section 5.5, we introduce the Sørensen-Dice
loss, which is neither submodular nor supermodular. In Section 5.6 we demonstrate the
feasibility, efficiency and scalability of our convex surrogate with the Sørensen-Dice loss on
a synthetic problem, and a range of non-modular losses on a real-world face-track dataset
comprising tens of thousands of video frames.

5.2 A Submodular-Supermodular Decomposition

In this section, we will study on a submodular-supermodular decomposition for general set
functions. As in previous chapter, we always consider that the loss function as a set function
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∆(y, ỹ) = `({i|yi 6= ỹi}).

Definition 5.1. A set function ` is non-negative if `(A)− `(∅) ≥ 0, ∀A ⊆ V .

We denote the set of all set functions as F . We consider ` is non-negative, which we
will denote ` ∈ F+. We denote the set of all submodular functions as S, and the set of all
supermodular functions as G.

To recall, we say that a set function ` is symmetric if `(A) = c(|A|) for some function
c : Z∗ 7→ R; a symmetric set function ` is submodular if and only if c is concave [Bach,
2013, Proposition 6.1]; a set function ` : P(V ) 7→ R is increasing if and only if for all
subsets A ⊂ V and elements x ∈ V \A, `(A) ≤ `(A ∪ {x}).

We note that the set of increasing supermodular functions is identical to G+. We will
propose a convex surrogate operator for a general non-negative loss function, based on the
fact that set functions can always be expressed as the sum of a submodular function and a
supermodular function:

Proposition 5.1. For all set functions `, there always exists a decomposition into the sum of a
submodular function f ∈ S and a supermodular function g ∈ G:

` = f + g (5.2.1)

A proof of this proposition is given in [Narasimhan and Bilmes, 2005, Lemma 4].

Proposition 5.2. For an arbitrary decomposition ` = f + g where g is not increasing, there
exists a modular function mg s.t.

` = (f −mg) + (g +mg) (5.2.2)

with f̃ := f −mg ∈ S, and g̃ := g +mg ∈ G+ is increasing.

Proof. Any modular function can be written as

mg(A) =
∑
j∈A

wj (5.2.3)

for some coefficient vector w ∈ R|V | (see Theorem 2.3 in Chapter 2). For each j ∈ V , we
may set

wj = −min
A⊆V

g(A ∪ {j})− g(A). (5.2.4)

The resulting modular function will ensure that g + mg is increasing (cf. Definition 2.3 in
Chapter 2 Section 2.1).

This proof indicates that a decomposition ` = f + g is not-unique due to a modular
factor. We subsequently demonstrate that decompositions can vary by more than a modular
factor:
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Proposition 5.3 (Non-uniqueness of decomposition up to modular transformations.). For
any set function, there exist multiple decompositions into submodular and supermodular com-
ponents such that these components differ by more than a modular factor:

∃f1, f2 ∈ S, g1, g2 ∈ G, such that,

(` = f1 + g1 = f2 + g2) ∧ (g1 +mg1 6= g2 +mg2) (5.2.5)

where ∧ denotes “logical and,”mg1 andmg2 are constructed as in Equations (5.2.3) and (5.2.4).

Proof. Let m be a submodular function that is not modular. For a given decomposition
` = f1 + g1, we may construct f2 := f1 +m and g2 := g1 −m. As m is not modular, there is
no modular m1 such that g1 −m1 = g1 −m = g2.

5.3 A Canonical Decomposition

We will show in this section the unique decomposition for a general non-negative loss start-
ing from any arbitrary submodular-supermodular decomposition, which allows us to define
a convex surrogate operator based on such a canonical decomposition.

In this section, we define an operator D such that g∗ := D` ∈ G+ is unique and f∗ := `−
D` ∈ S is then unique. We have demonstrated in the previous section that we may consider
there to be two sources of non-uniqueness in the decomposition ` = f + g: a modular
component and a non-modular component related to the curvature of g (respectively f).
We define D such that these two sources of non-uniqueness are resolved using a canonical
decomposition ` = f∗ + g∗.

Definition 5.2. We define an operator D : F 7→ G+ as

D` = arg min
g∈G+

∑
A⊆V

g(A), s.t. `− g ∈ S. (5.3.1)

We note that minimizing the values of g will simultaneously remove the non-uniqueness
due both to the modular non-uniqueness described in Proposition 5.2, as well as the non-
modular non-uniqueness described in Proposition 5.3. We formally prove this in Proposi-
tion 5.4.

Proposition 5.4. Dl is unique for all ` ∈ F that have a finite base set V .

Proof. We note that the arg min in Equation (5.3.1) is equivalent to a linear program: g is
uniquely determined by a vector in R2|V |−1 the coefficients of which correspond to g(A) for
all A ∈ P(V ) \ ∅, and we wish to minimize the sum of the entries subject to a set of linear
constraints enforcing supermodularity of g, non-negativity of g, and submodularity of `− g.

From [Mangasarian, 1979, Theorem 2], an LP of the form

min
x∈Rd

rTx (5.3.2)

s.t. Cx ≥ q (5.3.3)
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has a unique solution if there is no y ∈ Rd simultaneously satisfying

CJy ≥ 0, rT y ≤ 0, y 6= 0 (5.3.4)

where J = {i|Cix∗ = qi} is the active set of constraints at an optimum x∗. We note that as r
is a vector of all ones (cf. Equation (5.3.1)), rT y ≤ 0 constrains y to lie in the non-positive
orthant. However, as the linear program is minimizing the sum of x subject to lower bounds
on each entry of x (e.g. positivity constraints), we know that CJy ≥ 0 will bound y to lie in
the non-negative orthant. This means, at most, these constraints overlap at y = 0, but this
is expressly forbidden by the last condition in Equation (5.3.4).

Although Equation (5.3.1) is a linear programming problem, we do not consider this
definition to be constructive in general as the size of the problem is exponential in |V | (see
[Iyer and Bilmes, 2012]). However, it may be possible to verify that a given decomposition
satisfies this definition for some loss functions of interest. Furthermore, for some classes of
set functions, the LP has lower complexity, e.g. for symmetric set functions the resulting LP
is of linear size, and loss functions that depend only on the number of false positives and
false negatives (such as the Sørensen-Dice loss discussed in Section 5.5) result in a LP of
quadratic size.

We finally note that from Equation (3.2.5), for every ∆(y, ·) we may consider its equiv-
alence to a set function ` = g∗ + f∗, and denote the resulting decomposition of

∆(y, ·) = ∆G(y, ·) + ∆S(y, ·) (5.3.5)

into its supermodular and submodular components, respectively.1

5.4 A Convex Surrogate Operator BD

5.4.1 Definition of BD

In our analysis of convex surrogates for non-modular loss functions, we will employ several
results for the Structured Output SVM [Tsochantaridis et al., 2005], which assumes that
a structured prediction is made by taking an inner product of a feature representation of
inputs and outputs: sign(h(x)) = arg maxy 〈w, φ(x, y)〉. In the sequel, we consider a feature
function such that 〈w, φ(x, y)〉 =

∑p
j=1〈wj , xj〉yj . Each wj is then a vector of length d, and

w ∈ Rd·p. Therefore p individual prediction functions parametrized by wj are simultane-
ously optimized, although we may also consider cases in which we constrain wj = wi ∀i, j.
More generally, we may consider h : X 7→ Rp, which may have non-linearities, e.g. deep
neural networks.

From previous sections, we have defined a unique decomposition ` = g∗ + f∗, we will
use this decomposition to construct a surrogate B∆ that is convex, piecewise linear, an

1Note that ∆S and ∆G are due to Equation (3.2.5) for f∗ and g∗ which explicitly depend on D. For simplicity
of notation, we will use ∆G instead of ∆DG , ∆S instead of ∆DS
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extension of ∆, and for which subgradient computation is polynomial time. We construct
a surrogate B by taking the sum of two convex surrogates applied to ∆G and ∆S inde-
pendently. These surrogates are slack-rescaling [Tsochantaridis et al., 2005] applied to ∆G

and the Lovász hinge [Yu and Blaschko, 2015b] applied to ∆S , following the notion from
Chapter 4:

S∆G(y, h(x)) := max
ỹ∈Y

∆(y, ỹ) (1 + 〈h(x), ỹ〉 − 〈h(x), y〉) , (5.4.1)

L∆S(y, h(x)) :=

max
π

p∑
j=1

sπj (` ({π1, · · · , πj})− ` ({π1, · · · , πj−1}))


+

, (5.4.2)

where (·)+ = max(·, 0), π is a permutation,

sπj = 1− hπj (x)yπj , (5.4.3)

and hπj (x) is the πjth dimension of h(x).

Definition 5.3 (General non-modular convex surrogate). For an arbitrary non-negative loss
function ∆, we define

BD∆ := L∆S + S∆G (5.4.4)

where ∆S and ∆G are as in Equation (5.3.5), and D is the decomposition of ` defined by
Definition 5.2.

We use a cutting plane algorithm to solve the max-margin problem as shown in Algo-
rithm 5. This is a variant of the classical cutting plane algorithm used in the structured
output SVM. At Line 5 and Line 5, instead of finding one single cutting plane by margin
rescaling constraints or slack rescaling constraints (c.f. Chapter 2, Algorithm 1 and Algo-
rithm 2), we propose the strategy that finding two cutting planes, i.e. finding the most
violated constraints by slack rescaling and Lovász hinge with the decomposed supermodu-
lar function and the submodular function, respectively. Then we sum up these two cutting
planes so as to form the expected cutting plane for the original regularized optimization
problem.

5.4.2 Properties of BD

In the remainder of this section, we show that BD has many desirable properties. Specif-
ically, we show that BD is closer to the convex closure of the loss function than slack
rescaling and that it generalizes the Lovász hinge (Theorems 5.1 and 5.2). Furthermore,
we formally show that BD∆ is convex (Theorem 5.3), an extenstion of ∆ for a general class
of loss functions (Theorem 5.4), and polynomial time computable (Theorem 5.5).

Lemma 5.1. If ` ∈ G, then f∗ := `−D` ∈ S ∩ G i.e. modular.
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Algorithm 5 Cutting plane algorithm
1: Input: (x1, y1), · · · , (xn, yn), C, ε
2: Si = ∅,∀i = 1, · · · , n
3: repeat
4: for i = 1, · · · , n do
5: ŷL = arg maxỹHL(yi) = arg maxỹ L∆S
6: ŷS = arg maxỹHS(yi) = arg maxỹ S∆G
7: H(ŷ) = HL(ŷL) +HS(ŷS)
8: ξi = max{0, H(yi)}
9: if H(ŷ) > ξi + ε then

10: Si := Si ∪ {yi}
11: w ← optimize Equation (4.3.3) with constraints defined by ∪iSi
12: end if
13: end for
14: until no Si has changed during an iteration
15: return (w, ξ)

Proof. First we set ` = gm + fm where fm is modular and fm({j}) = `({j}). Then for any
subset S ⊆ V we have

fm(S) =
∑
j∈S

`({j}) (5.4.5)

gm(S) = `(S)−
∑
j∈S

`({j}) (5.4.6)

∑
S⊆V

gm(S) =
∑
S⊆V

`(S)−
∑
j∈S

`({j})

 . (5.4.7)

The sum in Equation (5.4.7) is precisely the sum that should be minimized in Equation (5.3.1).
We now show that this sum cannot be minimized further while allowing fm to be non-
modular. If there exists any g s.t. f := ` − g is submodular but not modular, by definition
there exists at least one subset Ss ⊆ V and one j ∈ Ss such that

f(Ss \ {j}) + f({j}) > f(Ss) + f(∅). (5.4.8)

Then by subtracting each time one element from the subset Ss, we have

f(Ss) < f(Ss \ {j}) + f({j})
≤ f(Ss \ ({j} ∪ {k})) + f({k}) + f({j})
≤ · · · ≤

∑
j∈Ss

f({j})), ∀k ∈ Ss \ ({j} (5.4.9)

which implies
g(Ss) > l(Ss)−

∑
j∈Ss

`({j}) (5.4.10)
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By taking the sum of the inequalities as in Equation (5.4.10) for all subsets S, we have that

∑
S⊆V

g(S) >
∑
S⊆V

`(S)−
∑
j∈S

`({j})

 =
∑
S⊆V

gm(S)

which means
∑

S⊆V g(S) >
∑

S⊆V gm(S) for any g. By Definition 5.2, g∗ = gm = D`, thus
f∗ := `−D` = fm is modular.

Lemma 5.2. For a loss function ∆ such that ∆S is increasing, we have

S∆G = S(∆−∆S) = S∆− S∆S . (5.4.11)

Proof. By Equation (5.4.1), for every single cutting plane determined by some ỹ, we have

S (∆(y, ỹ)−∆S(y, ỹ))

= (∆(y, ỹ)−∆S(y, ỹ)) (1 + 〈h(x), ỹ〉 − 〈h(x), y〉)
= ∆(y, ỹ) (1 + 〈h(x), ỹ〉 − 〈h(x), y〉)−∆S(y, ỹ) (1 + 〈h(x), ỹ〉 − 〈h(x), y〉)
= S∆(y, ỹ)− S∆S(y, ỹ). (5.4.12)

As this property holds for all cutting planes, it also holds for the supporting hyperplanes
that define the convex surrogate and S(∆−∆S) = S∆− S∆S .

For reminder, we use the definition of an extension as defined in Chapter 4:

Definition 5.4. A convex surrogate function B∆(y, ·) is an extension when

B∆(y, ·) = ∆(y, ·) (5.4.13)

on the vertices of the 0-1 unit cube under the mapping to Rp: i = {1, . . . , p}, [u]i = 1 −
hπi(x)yπi

Theorem 5.1. If ` ∈ G+, then BD∆ ≥ S∆ over the unit cube given in Definition 5.4, and
therefore BD is closer to the convex closure of ∆ than S.

Proof. By the definition of the Lovász hinge L [Yu and Blaschko, 2015b], we know that for
any modular function ∆S we have L∆S ≥ S∆S over the unit cube. As a result of Lemma 5.1
and Lemma 5.2,we have

BD∆ = S∆G + L∆S = S(∆−∆S) + L∆S

≥ S∆− S∆S + S∆S = S∆.

Theorem 5.2. If ` ∈ S, then BD∆ = L∆
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Proof. For ` ∈ S, we construct g∗ = 0, and f∗ = ` is submodular. By Definition 5.2, g∗(V )

is minimum, so g∗ = D`. Then BD∆ = L∆ + S0 = L∆

Theorem 5.3. BD∆ is convex for arbitrary ∆.

Proof. By Definition 5.2, BD∆ is the sum of the two convex surrogates, which is a convex
surrogate.

Theorem 5.4. BD∆ is an extension of ∆ if and only if ∆S is non-negative.

Proof. From [Yu and Blaschko, 2015b, Proposition 1], S∆ is an extension for any super-
modular increasing ∆; L∆ is an extension if and only if ∆ is submodular and non-negative
as in this case, L coincides with the Lovász extenstion [Lovász, 1983]. By construction
from Definition 5.2 we have ∆G and ∆S for g ∈ G+ and f ∈ S, respectively. Thus Equa-
tion (5.4.13) holds for both S∆G and L∆S if ∆S is non-negative. Then BD∆ taking the
sum of the two extensions, Equation (5.4.13) also holds for every vertex of the unit cube as
∆ = ∆G + ∆S , which means BD is also an extension of ∆ .

Theorem 5.5. The subgradient computation of BD∆ is polynomial time given polynomial
time oracle access to f∗ and g∗.

Proof. Given f∗ and g∗ we know that the subgradient computation of L∆S and S∆G are
each polynomial time. Thus taking the sum of the two is also polynomial time.

5.5 Sørensen-Dice loss

The Sørensen-Dice criterion [Dice, 1945; Sørensen, 1948] is a popular criterion for evalu-
ating diverse prediction problems such as image segmentation [Sabuncu et al., 2010] and
language processing [Rychlỳ, 2008]. In this section, we introduce the Sørensen-Dice loss
based on the Sørensen-Dice coefficient. We prove that the Sørensen-Dice loss is neither
supermodular nor submodular, and we will show in the experimental results section that
our novel convex surrogate can yield improved performance on this measure.

Definition 5.5 (Sørensen-Dice Loss). Denote Py ⊆ V the set of positive labels, e.g. foreground
pixels, the Sørensen-Dice loss on given a groundtruth y and a predicted output ỹ is defined as

∆D(y, ỹ) = 1− 2|Py ∩ Pỹ|
|Py|+ |Pỹ|

. (5.5.1)

Proposition 5.5. ∆D(y, ỹ) is neither submodular nor supermoduler under the isomorphism
(y, ỹ)→ A := {i|yi 6= ỹi}, ∆J(y, ỹ) ∼= `(A).

We will use the diminishing returns definition of submodularity in Definition 2.1 to first
prove the following lemma:
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Figure 5.1: Plots of Equation (5.5.4) (red) and Equation (5.5.5) (blue) as a function of nA.
As these two plots cross, neither function bounds the other.

Lemma 5.3. ∆D restricted to false negatives is neither submodular nor supermoduler.

Proof. With the notation m := |Py| > 0, p := |Pỹ \ Py|, and n := |Py \ Pỹ|, we have that

∆D(y, ỹ) = 1− 2m− 2n

2m− n+ p
=

n+ p

2m− n+ p
(5.5.2)

For a given groundtruth y i.e. m, we have if B ⊆ A, then nB ≤ nA, and pB ≤ pA.
Considering i is an extra false negative, we calculate the marginal gain on A and B

respectively:

∆D(A ∪ {i})−∆D(A)

=
nA + 1 + pA

2m− nA − 1 + pA
− nA + pA

2m− nA + pA
(5.5.3)

=
2m+ 2pA

(2m− nA + pA − 1)(2m− nA + pA)
(5.5.4)

∆D(B ∪ {i})−∆D(B)

=
2m+ 2pB

(2m− nB + pB − 1)(2m− nB + pB)
. (5.5.5)

Numerically, we have following counter examples which prove that ∆D restricted to false
negatives is neither submodular nor supermodular. We set m = 10, nA = [1 : 8], nB =

nA − 1 ≤ nA, pA = 8, pB = 5 ≤ pA, and we plot the values of Equation (5.5.4) and
Equation (5.5.5) as a function of nA. We can see from Figure 5.1 that there exists a cross
point between these two plots, which indicates that submodularity (Definition 2.1) does
not hold for ∆D or its negative.

Lemma 5.3 implies Proposition 5.5 as the restriction of a submodular function is itself
submodular.
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Figure 5.2: The data for the synthetic problem. The negative samples are drawn from a
mixture of Gaussians.

5.6 Experimental Results

We demonstrate the correctness and feasibility of the proposed convex surrogate on experi-
ments using Dice loss, as well as on a face classification problem from video sequences with
a family of non-modular losses.

5.6.1 Dice Loss

We test the proposed surrogate on a binary set prediction problem. Two classes of 2-
dimensional data are generated by different Gaussian mixtures as shown in Fig 5.2. We
use the BD during training time with the non-modular loss ∆D to construct a convex surro-
gate. We compare it to slack rescaling S with an approximate optimization procedure based
on greedy maximization. We additionally train an SVM (denoted 0-1 in the results table)
for comparison. During test time, we evaluate with ∆D and with Hamming loss to calculate
the empirical error values as shown in Table 5.1.

We can see from the result that training ∆D with BD yields the best result while using
∆D during test time. BD performs better than S in both cases due to the failure of the ap-
proximate maximization procedure necessary to maintain computational feasibility [Krause
and Golovin, 2014].

5.6.2 Face Classification in Video Sequences

We also evaluate the proposed convex surrogate operator on a real-world face track dataset [Ev-
eringham et al., 2006, 2009; Sivic et al., 2009]. The frames of the dataset are from the TV
series “Buffy the Vampire Slayer”. This dataset contains 1437 tracks and 27504 frames in
total.
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Test
p = 6 ∆D 0-1

BD 0.1121± 0.0040 0.6027± 0.0125
0-1 0.1497± 0.0046 0.5370± 0.0114
S 0.3183± 0.0148 0.7313± 0.0209

Table 5.1: For the synthetic data experiment, the cross comparison of average loss values
(with standard error) using different surrogate operations during training, and different
evaluation functions during test time. ∆D is the Dice loss as in Equation (5.5.1).

loss functions
∆1 ∆2 ∆3 (∆S negative) ∆4 (∆S negative)

BD 0.194± 0.006 0.238± 0.008 0.148± 0.005 0.108± 0.004
0-1 0.228± 0.007 0.284± 0.004 0.144± 0.004 0.107± 0.003
S 0.398± 0.015 0.243± 0.005 0.143± 0.006 0.106± 0.003

Table 5.2: For the face classification task, the cross comparison of average loss values (with
standard error) using different surrogate operator and losses as in Equation (5.6.1) to Equa-
tion (5.6.4) during training, respectively. For the cases that the submodular component is
non-negative, i.e. using ∆1 and ∆2, the lowest empirical error is achieved when using BD.

(a) (b) (c)

Figure 5.3: Examples of the face track images. Figure 5.3(a) shows the “Buffy” role thus a
positive-labelled image and Figure 5.3(b) shows a negative-labelled image. An automated
pipeline described in Everingham et al. [2006, 2009]; Sivic et al. [2009] was used for
feature extraction (Figure 5.3(c)).
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Figure 5.4: The plot of the four loss functions used in our experiments as in Equa-
tions (5.6.1) to (5.6.4). The x axis is the number of mispredictions for each track (we show
here the loss functions corresponding to track length equal to 10 as an example), and the
y axis is the value of loss function. The original losses are drawn in red; the supermodular
components are drawn in green, and the submodular components in blue.

We focus on a binary classification task to recognize the leading role: “Buffy” is positive-
labelled, “not Buffy” is negative-labelled. Example images are shown in Figure 5.3. Each
track is represented as a bag of frames, for which the size of the tracks varies from 1 frame
to more than 100 frames, and each image is represented as a Fisher Vector Face descriptor
of dimension 1937.
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Loss functions We have used different non-supermodular and non-submodular loss func-
tions in our experiments as shown in Equations (5.6.1) to (5.6.4):

∆1(y, ỹ) = min

(
|I|, |y|

3
, |I| − |y|

3

)
(5.6.1)

∆2(y, ỹ) = min

(
|I|, |y|

4
, |I| − |y|

4
, α

)
(5.6.2)

∆3(y, ỹ) = min

(
max

(
0, |I| − |y|

3

)
,
|y|
3

)
(5.6.3)

∆4(y, ỹ) = min

(
max

(
0, |I| − |y|

3

)
, α

)
(5.6.4)

|y| gives the length of each sequence, I = {i|yi 6= ỹi} gives the set of incorrect prediction
elements; α is a parameter that allows us to define the value of `(V ). Due to the fact that
the size of the tracks varies widely, we further normalize the loss function with respect to
the track size. We use α = 2 for ∆2 and α = 0.5 for ∆4 in the experiments.

As we can see explicitly in Figure 5.4, no ∆ is supermodular or submodular (plotted
in red, with legends `). ∆1, ∆2 and ∆3 are increasing loss functions, while ∆4 is non-
increasing. For ∆1 and ∆2, we notice that the values of the set functions on a single element
are non-zero i.e. `1({j}) > 0, `2({j}) > 0, ∀j ∈ V ; while for the loss ∆3 and ∆4 these values
are zero i.e. `3({j}) = `4({j}) = 0, ∀j ∈ V .

These non-modular functions are motivated by the fact that in a sequence of frames,
the roles that appear in the scene should maintain certain continuity, thus the penalization
on the misprediction doesn’t need to be linear with respective to the size of misprediction,
which is equivalent to have different submodularity of the loss function that is to be mini-
mized.

Figure 5.4 shows the corresponding decomposition of each loss into the supermodular
componendts (plotted in green, with legends g) and submodular components (plotted in
blue, with legends f) as specified in Definition 5.2. We denote each loss function as `k =

fk + gk, for k = {1, 2, 3, 4}.
By construction, all supermodular gk, for k = {1, 2, 3, 4}, are non-negative increasing.

For the submodular component, f1 is non-negative increasing, f2 is non-negative and non-
increasing, while f3 and f4 are both non-positive decreasing.

We compare different convex surrogates during training for these non-modular func-
tions. And we additionally train on the Hamming loss (labelled 0-1) as a comparison. As
training non-supermodular loss with slack rescaling is NP-hard, we have employed the sim-
ple application of the greedy approach as in Krause and Golovin [2014].

Empirical results For each experiment, we use 30% of the dataset for training, 30% for
validation and the rest for testing. We retrain on the training/validation set and finally
test on the testing dataset. 10-fold-cross-validation has been carried out and we obtain an
average performance and standard error as shown in Table 5.2.
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Figure 5.5: The primal-dual gap as a function of the number of cutting-plane iterations
using different convex surrogates for the four non-modular functions in Equations (5.6.1)
to (5.6.4). The primal-dual gap from BD is drawn in red; the gap from S is drawn in green
and gap from Hamming loss (labelled 0-1, and equivalent to a SVM) in blue. Our convex
surrogate operator BD can achieve a comparable convergence rate to an SVM, demonstrat-
ing that optimization is very fast in practice and the method scales well to large datasets.
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p = 10 p = 50 p = 100

BD 0.002± 0.000 0.018± 0.003 0.060± 0.008

S 0.002± 0.000 0.016± 0.002 0.057± 0.002

Table 5.3: The comparison of the computation time (s) for one loss augmented inference.

From Table 5.2 we can see that when the submodular component of the decomposition
is non-negative, i.e. in the case of using ∆1 and ∆2, the lowest empirical error is achieved
by using our convex surrogate operator BD.

Figure 5.5 shows the primal-dual gap as a function of the cutting plane iterations for
each experiment using different loss functions and different convex surrogate operators
(more than one training procedure are plotted). We can see that in all cases, the con-
vergence of BD is at a rate comparable to an SVM, supporting the wide applicability and
scalability of the convex surrogate. We have also compared the expected time of one loss
augmented inference. Table 5.3 shows the comparison using ∆1 with BD and S. As the
cost per iteration is comparable to slack-rescaling, and the number of iterations to conver-
gence is also comparable, there is consequently no computational disadvantage to using the
proposed framework, while the statistical gains are significant.

5.7 Discussion

The experiments have demonstrated that the proposed convex surrogate is efficient, scal-
able, and reduces test time error for a range of loss functions, including the Sørensen-Dice
loss, which is a popular evaluation metric in many problem domains. We see that slack
rescaling with greedy inference can lead to poor performance for non-supermodular losses.
This is especially apparent for the results of training with ∆1, in which the test-time loss
was approximately double that of the proposed method. Similarly, ignoring the loss function
and simply training with 0-1 loss can lead to comparatively poor performance, e.g. ∆1 and
∆2. This clearly demonstrates the strengths of the proposed method for non-modular loss
functions for which a decomposition with a non-negative submodular component is possi-
ble (∆1 and ∆2, but not ∆3 or ∆4). The characterization and study of this family of loss
functions is a promising avenue for future research, with implications likely to extend be-
yond empirical risk minimization with non-modular losses as considered in this paper. The
primal-dual convergence results empirically demonstrate that the loss function is feasible
to apply in practice, even on a dataset consisting of tens of thousands of video frames. The
convex surrogate is directly amenable to other optimization techniques, such as stochastic
gradient descent [Bottou and Bousquet, 2008], or Frank-Wolfe approaches [Lacoste-Julien
et al., 2013], as well as alternate function classes including neural networks.

In this work, we have introduced a novel convex surrogate for general non-modular
loss functions. We have defined a decomposition for an arbitrary loss function into a su-
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permodular non-negative function and a submodular function. We have proved both the
existence and the uniqueness of this decomposition. Based on this decomposition, we have
proposed a novel convex surrogate operator taking the sum of two convex surrogates that
separately bound the supermodular component and the submodular component using slack-
rescaling and the Lovász hinge, respectively. We have demonstrated that our new operator
is a tighter approximation to the convex closure of the loss function than slack rescaling,
that it generalizes the Lovász hinge, and is convex, piecewise linear, an extension of the
loss function, and for which subgradient computation is polynomial time. Open-source
code of `2 regularized risk minimization with this operator is available for download from
https://github.com/yjq8812/aistats2016.

https://github.com/yjq8812/aistats2016
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Chapter 6

Conclusion
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6.1 Contributions

This thesis studies the interface between discrete optimization, combinatorial optimization
and continuous optimization, in particular using statistical learning theory for structured
prediction problems. Non-modularity is one of the fundamental analysis tools in structured
prediction. Viewing the outcome as a joint set prediction is then essential so as to better
incorporate real-world circumstances.

In this thesis, we proposed tractable and efficient methods for dealing with supermod-
ular loss functions, submodular loss functions as well as in general non-modular loss func-
tions, with correctness and scalability validated by empirical results. A list of non-modular
loss functions that have been derived in this thesis is shown in Table 6.1. The structure of
the contributions of this thesis is shown in Figure 6.1.

Supermodular loss functions First, in Chapter 3, we proposed a novel supermodular loss
functions that penalizes more on the neighboring pixels that are both mispredicted. We ap-
plied a 8-connected graph structure for which the isomorphism to a supermodular function
is not the same as from the inference term. More generally, the structure of the loss function
is not necessary the same as the inference term, thus it will be non-trivial to solve the loss
augmented inference problem. In this work, we proposed an ADMM-based framework to
solve the loss augmented inference problem that only depends on two individual solvers for
the loss function term and for the inference term as two independent subproblems. In this
way, we can achieve more flexibility in choosing our loss function of interest. For an image
segmentation task, we showed that the novel supermodular loss function can empirically

101
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Loss Functions Non-modularity Chapter

8-connected loss:

supermodular Chapter 3∆(y, ỹ) =

p∑
j=1

[yj 6= ỹj ] +
∑

(k,l)∈E`

γ[yk 6= ỹk ∧ yl 6= ỹl];

Square loss:

∆(y, ỹ) =
(∑p

j=1[y
j 6= ỹj ]

)2
;

∆(y, ỹ) =
∑p

i=1 e
−i min

(∑i
j=1[y

j 6= ỹj ], i
2

)
;

submodular Chapter 4

∆(y, ỹ) = min
(
lmax,

〈
β, 1−y�ỹ2

〉)
, lmax < ‖β‖1 ;

∆(y, ỹ) = 1− exp
(
−α∑i

j=1[y
j 6= ỹj ]

)
;

∆(y, ỹ) = 1− exp
(
−∑i

j=1[y
j 6= ỹj ]

)
+
〈
β, 1−y�ỹ2

〉
;

Jaccard loss:

∆J(y, ỹ) = 1− |Py∩Pỹ |
|Py∪Pỹ | ;

cluster-label loss:

∆(y, ỹ) =
√
m ({j|yj 6= ỹj}),m({j}) =

∑
A∈F [j ∈ A];

∆(y, ỹ) = min(
∑p

j=1[y
j 6= ỹj ], |y|/3,∑p

j=1[y
j 6= ỹj ]| − |y|/3);

∆(y, ỹ) = min(
∑p

j=1[y
j 6= ỹj ], |y|/4,∑p

j=1[y
j 6= ỹj ]− |y|/4, α) ;

∆(y, ỹ) = min(max(0,
∑p

j=1[y
j 6= ỹj ]− |y|/3), |y|/3); neither submodular

Chapter 5
∆(y, ỹ) = min(max(0,

∑p
j=1[y

j 6= ỹj ]− |y|/3), α); nor supermodular

Dice loss:

∆D(y, ỹ) = 1− 2|Py∩Pỹ |
|Py |+|Pỹ | ;

Table 6.1: A summary of loss functions that appeared in this thesis, on given a groundtruth
y and a predicted output ỹ, α, β, γ and lmax are real-valued parameters, F is the set of
frequent itemsets.
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Chapter 4
Submodular losses:

Lovász hinge

Chapter 3
Supermodular losses:

ADMM framework for LAI

Chapter 5
General losses:

Submodular-supermodular decomposition

Figure 6.1: The structure of the contribution of this thesis in a Venn diagram related to the
submodularity of the loss functions.

achieve better performance on the boundary of the objects, finding elongated structures
such as legs and heads, which we have validated on a binary segmentation task.

Submodular loss functions Second, in Chapter 4, we proposed a novel convex surro-
gate loss function, the Lovász hinge, which provides for the first time in the literature a
polynomial-time feasible solution for training with submodular loss functions. The compu-
tation of the gradient or cutting plane can be achieved in O(p log p) time. We showed that
the Jaccord loss which is based on the intersection over union score, a popular evaluation
criterion in computer vision tasks, is a submodular function with respect to the set of mis-
predictions. We have proven the correctness and feasibility of the Lovász hinge in learning
different submodular loss functions, including Jaccard loss, a cluster-label loss and others,
on various tasks, including multilabel prediction tasks on the Pascal VOC and the MS COCO
datasets. We showed that for submodular loss functions, training with the Lovász hinge
achieves lower empirical error value than margin rescaling and slack rescaling, which is
expected from a correctly defined convex surrogate.

General non-modular loss functions Third, in Chapter 5, based on the developments in
the previous chapters, we further extended our work to deal with general non-modular loss
functions. Given a loss function that is neither submodular nor supermodular, we proposed
to decompose this function into an unique pair of a submodular function plus a supermod-
ular function, under the constraint that the supermodular function has minimum values.
We have proven formally the existence and uniqueness of this constrained decomposition.
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Based on this, we are able to introduce a novel surrogate function, that uses slack rescaling
on the supermodular function, and the Lovász hinge on the submodular function. We are
unaware of previous methods in the literature that provide a convex surrogate to such a
wide range of non-modular loss functions. In addition, we have proven that the Dice loss,
which is defined based on the Dice score, a popular evaluation criterion in computer vi-
sion especially in medical imaging tasks, is neither supermodular nor submodular. We have
demonstrated that our new operator is a tighter approximation to the convex closure of the
loss function than slack rescaling, that it generalizes the Lovász hinge, and is convex, piece-
wise linear, an extension of the loss function, and its subgradient computation is polynomial
time.

6.2 Publication list

A complete list of publications is as follows:

Top international conferences

• Jiaqian Yu and Matthew B. Blaschko. Efficient learning for discriminative segmenta-
tion with supermodular losses. In Proceedings of the British Machine Vision Conference.
BMVA Press, 2016c

• Jiaqian Yu and Matthew B. Blaschko. A convex surrogate operator for general non-
modular loss functions. In Arthur Gretton and Christian Robert, editors, International
Conference on Artificial Intelligence and Statistics, volume 51 of Journal of Machine
Learning Research: W&CP, pages 1032–1041, 2016a

• Jiaqian Yu and Matthew B. Blaschko. Learning submodular losses with the Lovász
hinge. In Proceedings of the 32nd International Conference on Machine Learning, vol-
ume 37, pages 1623–1631, 2015b

Under submission

• Jiaqian Yu and Matthew B. Blaschko. An efficient decomposition framework for dis-
criminative segmentation with supermodular losses. 2017. arXiv:1702.03690

• Jiaqian Yu and Matthew B. Blaschko. The Lovász hinge: A convex surrogate for sub-
modular losses. 2015a. arXiv:1512.07797

National conferences and Workshops

• Jiaqian Yu and Matthew B. Blaschko. Efficient learning for discriminative segmen-
tation with supermodular losses. In Women in Machine Learning Workshop (WiML),
Barcelona, Spain, 2016d
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• Jiaqian Yu and Matthew B. Blaschko. A convex surrogate operator for general non-
modular loss functions. In Benelearn, Kortrijk, Belgium, 2016b

• Matthew B. Blaschko and Jiaqian Yu. Hardness results for structured learning and
inference with multiple correct outputs. In Constructive Machine Learning Workshop
at ICML, Lille, France, July 2015

• Jiaqian Yu and Matthew B. Blaschko. Lovász hinge for learning submodular losses.
In NIPS Workshop on Representation and Learning Methods for Complex Outputs, Mon-
treal, Canada, December 2014
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Appendix A

Résumé

Cette thèse aborde le problème de l’apprentissage avec des fonctions de perte non-modulaires.
Pour les problèmes de prédiction, où plusieurs sorties sont prédites simultanément, les in-
terdépendances dans la perte entre les prédictions peuvent être exprimées comme étant
des fonctions de perte non séparable. L’affichage du résultat comme un ensemble commun
de prédiction est alors essentiel afin de mieux incorporer les circonstances du monde réel.
Dans la minimisation du risque empirique, nous visons à réduire au minimum une somme
empirique sur les pertes encourues sur l’échantillon fini avec une certaine perte fonction qui
pénalise sur la prévision compte tenu de la réalité du terrain. Dans cette thèse, nous pro-
posons des méthodes analytiques et algorithmiquement efficaces pour traiter les fonctions
de perte supermodulaires, submodulaires ainsi que des fonctions de perte non modulaires
des fonctions de perte en général. L’exactitude et l’évolutivité sont validées par des résultats
empiriques.

D’abord, nous analysons la faisabilité de l’utilisation d’une sortie structurée des ma-
chines à vecteurs de support (SVM) avec redimensionnement de marge et des fonctions
de perte supermodulaires. Nous présentons la dureté de l’intégration de fonctions de perte
dans le terme supermodular inférence lorsqu’ils ont des structures graphiques différents.
Nous avons ensuite introduit une méthode de décomposition pour la perte d’inférence aug-
mentée. Le principe est basé sur la méthode d’orientation alternée des multiplicateurs, qui
ne dépend que de deux solveurs individuels pour la fonction de perte et pour l’infèrence
comme deux sous-problémes indèpendants. De cette façon, nous acquérons une méthode
algorithmiquement plus efficace permettant d’obtenir plus de flexibilité dans le choix de nos
fonctions de perte d’intérêts.

Deuxièmement, nous démontrons la nécessité d’utiliser des fonctions de perte submod-
ulaires en problèmes de la prédiction structurés. L’apprentissage avec fonctions submodu-
laires n’a pas été suffisamment développé. Nous avons prouvé que le redimensionnement
de la marge et le redimensionnement de mou dans mènent à des substituts, convexe si
et seulement si la fonction de perte augmentation en fonction du nombre de prédictions
incorrectes. Cependant, le calcul du gradient ou la méthode des plans sécants pour ces
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fonctions non-supermodulaire est NP-difficile. En conséquence, nous proposons une nou-
velle fonction de substitution pour ces pertes submodulaires, la Lovász hinge, qui conduit
à une compléxité en O(p log p) avec O(p) oracle pour la fonction de perte pour calculer un
gradient ou méthode de coupe. Nous valider l’exactitude de la Lovász hinge sur diverses
tàches. Nous montrons que pour les fonctions de perte submodulaires, la formation avec
le Lovász hinge réalise une erreur empirique inférieure à la valeur du redimensionnement
de la marge et du redimensionnement de mou. Ce résultat est conforme dû au fait que le
convexe est définit correctement comme substitut.

Enfin, sur la base des contributions précédentes, nous introduisons un nouvel opérateur
de fonction de substitution convexe pour des fonctions de perte non-modulaires, qui fournit
pour la première fois une solution facile pour les pertes qui ne sont ni supermodulaires
ni submodulaires. Cet opérateur est basé sur une décomposition canonique submodulaire-
supermodulaire. De plus, il est prouvé que cet opérateur est linéaire par morceaux, convexe,
une extension de la fonction de perte, et pour lesquels le calcul du subgradient est en temps
polynomial. Nous prouvons aussi que la perte de Dice, qui est définie en fonction de l’indice
de Sørensen-Dice, n’est ni supermodular ni submodular. Les résultats empiriques utilisant la
perte de la Sørensen-Dice et un ensemble de fonctions de perte non-modulaires démontrent
l’amélioration de la performance, l’efficacité algorithmiquement et l’évolutivité du nouveau
substitut convexe.



Bibliography

Stavros Alchatzidis, Aristeidis Sotiras, and Nikos Paragios. Discrete multi atlas segmentation
using agreement constraints. In BMVC, 2014.

Dragomir Anguelov, Ben Taskar, Vassil Chatalbashev, Daphne Koller, Dinkar Gupta, Geremy
Heitz, and Andrew Ng. Discriminative learning of Markov random fields for segmentation
of 3D scan data. In CVPR, volume 2, pages 169–176, 2005.

Francis Bach. Structured sparsity-inducing norms through submodular functions. In Ad-
vances in Neural Information Processing Systems, pages 118–126, 2010.

Francis Bach. Learning with submodular functions: A convex optimization perspective.
Foundations and Trends in Machine Learning, 6(2-3):145–373, 2013. ISSN 1935-8237.
doi: 10.1561/2200000039.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

Yoshua Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., 2(1):1–127,
January 2009. ISSN 1935-8237. doi: 10.1561/2200000006.

Dimitri P. Bertsekas. Nonlinear Programming. Athena, 1999.

Andrew Blake, Carsten Rother, Matthew Brown, Patrick Perez, and Philip Torr. Interactive
image segmentation using an adaptive GMMRF model. In ECCV, pages 428–441, 2004.

Matthew B. Blaschko. Branch and bound strategies for non-maximal suppression in object
detection. In Yuri Boykov, Fredrik Kahl, Victor Lempitsky, and Frank R. Schmidt, editors,
Energy Minimization Methods in Computer Vision and Pattern Recognition, volume 6819 of
Lecture Notes in Computer Science, pages 385–398. Springer, 2011.

Matthew B. Blaschko and Christoph H. Lampert. Learning to localize objects with structured
output regression. In David Forsyth, Philip Torr, and Andrew Zisserman, editors, European
Conference on Computer Vision, volume 5302 of Lecture Notes in Computer Science, pages
2–15. 2008.

109



Bibliography 110

Matthew B. Blaschko and Jiaqian Yu. Hardness results for structured learning and inference
with multiple correct outputs. In Constructive Machine Learning Workshop at ICML, Lille,
France, July 2015.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J. C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems, volume 20, pages 161–168. 2008.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. T-PAMI, 26(9):1124–1137, 2004.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Efficient approximate energy minimization via
graph cuts. T-PAMI, 20(12):1222–1239, 2001.

Deeparnab Chakrabarty, Prateek Jain, and Pravesh Kothari. Provable submodular minimiza-
tion using Wolfe’s algorithm. In NIPS, 2014.

Guillaume Charpiat. Exhaustive family of energies minimizable exactly by a graph cut. In
CVPR, 2011.

Yuxin Chen, Hiroaki Shioi, Cesar Fuentes Montesinos, Lian Pin Koh, Serge Wich, and An-
dreas Krause. Active detection via adaptive submodularity. In ICML, pages 55–63, 2014.

Weiwei Cheng, Eyke Hüllermeier, and Krzysztof J. Dembczynski. Bayes optimal multilabel
classification via probabilistic classifier chains. In Proceedings of the International Confer-
ence on Machine Learning, pages 279–286, 2010.

Gustave Choquet. Theory of capacities. In Annales de l’institut Fourier, volume 5, pages
131–295. Institut Fourier, 1953.

Peter Clifford. Markov random fields in statistics. Disorder in physical systems: A volume in
honour of John M. Hammersley, pages 19–32, 1990.

Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Advances in
neural information processing systems, pages 625–632, 2001.

Michael Collins and Nigel Duffy. New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In Proceedings of the 40th annual
meeting on association for computational linguistics, pages 263–270. Association for Com-
putational Linguistics, 2002.



111 Bibliography

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of machine learning research, 2(Dec):265–292, 2001.

Antonio Criminisi and Jamie Shotton. Decision forests for computer vision and medical image
analysis. Springer Science & Business Media, 2013.

Lee R Dice. Measures of the amount of ecologic association between species. Ecology, 26
(3):297–302, July 1945.

Jorge Díez, Oscar Luaces, Juan José del Coz, and Antonio Bahamonde. Optimizing different
loss functions in multilabel classifications. Progress in Artificial Intelligence, 3(2):107–118,
2015. ISSN 2192-6360. doi: 10.1007/s13748-014-0060-7.

Janardhan Rao Doppa, Jun Yu, Chao Ma, Alan Fern, and Prasad Tadepalli. HC-search for
multi-label prediction: An empirical study. In Proceedings of AAAI Conference on Artificial
Intelligence, 2014.

Jack Edmonds. Matroids and the greedy algorithm. Mathematical programming, 1(1):127–
136, 1971.

Mark Everingham, Josef Sivic, and Andrew Zisserman. “Hello! My name is... Buffy” –
automatic naming of characters in TV video. In Proceedings of the British Machine Vision
Conference, 2006.

Mark Everingham, Josef Sivic, and Andrew Zisserman. Taking the bite out of automatic
naming of characters in TV video. Image and Vision Computing, 27(5), 2009.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisser-
man. The Pascal visual object classes (VOC) challenge. International Journal of Computer
Vision, 88(2):303–338, 2010. ISSN 0920-5691. doi: 10.1007/s11263-009-0275-4. URL
http://dx.doi.org/10.1007/s11263-009-0275-4.

Vitaly Feldman, Venkatesan Guruswami, Prasad Raghavendra, and Yi Wu. Agnostic learning
of monomials by halfspaces is hard. SIAM Journal on Computing, 41(6):1558–1590,
2012.

Thomas Finley and Thorsten Joachims. Training structural SVMs when exact inference is
intractable. In Proceedings of the 25th International Conference on Machine Learning, pages
304–311, 2008.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning
and an application to boosting. In European conference on computational learning theory,
pages 23–37. Springer, 1995.

http://dx.doi.org/10.1007/s11263-009-0275-4


Bibliography 112

Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The annals
of statistics, 28(2):337–407, 2000.

Satoru Fujishige. Lexicographically optimal base of a polymatroid with respect to a weight
vector. Mathematics of Operations Research, 5(2):186–196, 1980.

Satoru Fujishige. Submodular functions and optimization, volume 58. Elsevier, 2005.

B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and object localization with
superpixel neighborhoods. In ICCV, 2009.

Wei Gao and Zhi-Hua Zhou. On the consistency of multi-label learning. Artificial Intelligence,
199:22–44, 2013. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/j.artint.2013.03.
001.

Jennifer Gillenwater, Rishabh Iyer, Bethany Lusch, Rahul Kidambi, and Jeff Bilmes. Sub-
modular Hamming metrics. In Neural Information Processing Society (NIPS), Montreal,
Canada, December 2015.

Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combi-
natorial optimization. Springer, 1988. URL http://eudml.org/doc/204222.

Varun Gulshan, Carsten Rother, Antonio Criminisi, Andrew Blake, and Andrew Zisserman.
Geodesic star convexity for interactive image segmentation. In CVPR, pages 3129–3136,
2010.

Michael Gygli, Helmut Grabner, and Luc Van Gool. Video summarization by learning sub-
modular mixtures of objectives. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3090–3098, 2015.

Feng Han and Song-Chun Zhu. Bottom-up/top-down image parsing with attribute grammar.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1):59–73, 2009.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:
Data mining, inference and prediction. Springer, 2 edition, 2009.

Satoru Iwata. A faster scaling algorithm for minimizing submodular functions. SIAM Journal
on Computing, 32(4):833–840, 2003.

Rishabh Iyer and Jeff Bilmes. Algorithms for approximate minimization of the difference
between submodular functions, with applications. In Uncertainty in Artificial Intelligence
(UAI), 2012.

http://eudml.org/doc/204222


113 Bibliography

Rishabh Iyer and Jeff Bilmes. The Lovász-Bregman divergence and connections to rank
aggregation, clustering, and web ranking: Extended version. Uncertainity in Artificial
Intelligence, 2013.

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of struc-
tural SVMs. Machine Learning, 77(1):27–59, 2009.

Alexander Kirillov, Dmitrij Schlesinger, Dmitry Vetrov, Carsten Rother, and Bogdan Savchyn-
skyy. M-best-diverse labelings for submodular energies and beyond. In Proceedings of the
28th International Conference on Neural Information Processing Systems, pages 613–621,
Cambridge, MA, USA, 2015. MIT Press.

Daphne Koller, Nir Friedman, Lise Getoor, and Ben Taskar. Graphical models in a nutshell.
In L. Getoor and B. Taskar, editors, Introduction to Statistical Relational Learning. MIT
Press, 2007.

A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover, 1975.

Vladimir Kolmogorov. Minimizing a sum of submodular functions. Discrete Applied Mathe-
matics, 160(15):2246–2258, 2012.

Vladimir Kolmogorov and Ramin Zabin. What energy functions can be minimized via graph
cuts? IEEE transactions on pattern analysis and machine intelligence, 26(2):147–159,
2004.

Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. MRF optimization via dual decom-
position: Message-passing revisited. In ICCV, 2007.

Andreas Krause. SFO: A toolbox for submodular function optimization. JMLR, 11:1141–
1144, 2010.

Andreas Krause and Daniel Golovin. Submodular function maximization. In Lucas Bor-
deaux, Youssef Hamadi, and Pushmeet Kohli, editors, Tractability: Practical Approaches to
Hard Problems. Cambridge University Press, 2014.

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in gaus-
sian processes: Theory, efficient algorithms and empirical studies. Journal of Machine
Learning Research, 9(Feb):235–284, 2008.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate
Frank-Wolfe optimization for structural SVMs. In Sanjoy Dasgupta and David McAllester,
editors, Proceedings of the 30th International Conference on Machine Learning, volume 28,
pages 53–61, 2013.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.



Bibliography 114

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
Journal of the American society for information science and technology, 58(7):1019–1031,
2007.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 510–520. Association for Computational
Linguistics, 2011.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR,
abs/1405.0312, 2014.

László Lovász. Submodular functions and convexity. In Mathematical Programming The
State of the Art, pages 235–257. Springer, 1983.

O. L. Mangasarian. Uniqueness of solution in linear programming. Linear Algebra and its
Applications, 25(0):151–162, 1979. ISSN 0024-3795. doi: http://dx.doi.org/10.1016/
0024-3795(79)90014-4. URL http://www.sciencedirect.com/science/article/pii/
0024379579900144.

David McAllester. Generalization bounds and consistency for structured labeling. In Pre-
dicting Structured Data. MIT Press, 2007.

Ofer Meshi, Nathan Srebro, and Tamir Hazan. Efficient training of structured svms via soft
constraints. In AISTATS, pages 699–707, 2015.

Mukund Narasimhan and Jeff Bilmes. A submodular-supermodular procedure with appli-
cations to discriminative structure learning. In Uncertainty in Artificial Intelligence (UAI),
2005.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approxi-
mations for maximizing submodular set functions–I. Mathematical Programming, 14(1):
265–294, 1978.

Robert Nishihara, Stefanie Jegelka, and Michael I. Jordan. On the convergence rate of
decomposable submodular function minimization. In NIPS, pages 640–648, 2014.

Sebastian Nowozin. Optimal decisions from probabilistic models: The intersection-over-
union case. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2014.

Sebastian Nowozin and Christoph H. Lampert. Structured learning and prediction in com-
puter vision. Foundations and Trends in Computer Graphics and Vision, 6(3–4):185–365,
2011.

http://www.sciencedirect.com/science/article/pii/0024379579900144
http://www.sciencedirect.com/science/article/pii/0024379579900144


115 Bibliography

Oystein Ore and Yystein Ore. Theory of graphs, volume 38. American Mathematical Society
Providence, 1962.

James B. Orlin. A faster strongly polynomial time algorithm for submodular function mini-
mization. Mathematical Programming, 118(2):237–251, 2009.

Anton Osokin and Pushmeet Kohli. Perceptually inspired layout-aware losses for image
segmentation. In ECCV, 2014.

James Petterson and Tibério S. Caetano. Submodular multi-label learning. In Advances in
Neural Information Processing Systems, pages 1512–1520, 2011.

Patrick Pletscher and Pushmeet Kohli. Learning low-order models for enforcing high-order
statistics. In AISTATS, 2012.

Simon JD Prince. Computer vision: models, learning, and inference. Cambridge University
Press, 2012.

Maurice Queyranne. Minimizing symmetric submodular functions. Mathematical Program-
ming, 82(1-2):3–12, 1998.

Mani Ranjbar, Greg Mori, and Yang Wang. Optimizing complex loss functions in structured
prediction. Computer Vision–ECCV 2010, pages 580–593, 2010.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN fea-
tures off-the-shelf: An astounding baseline for recognition. In IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 512–519, 2014.

Torsten Rohlfing. Image similarity and tissue overlaps as surrogates for image registration
accuracy: widely used but unreliable. IEEE Transactions on Medical Imaging, 31(2):153–
163, 2012.

Carsten Rother, Vladimir Kolmogorov, Victor Lempitsky, and Martin Szummer. Optimizing
binary MRFs via extended roof duality. In CVPR, 2007.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-
Fei Li. ImageNet large scale visual recognition challenge. CoRR, abs/1409.0575, 2014.
URL http://arxiv.org/abs/1409.0575.
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Titre : Minimisation du risque empirique avec des fonctions de perte non-
modulaires

Mots clefs : Prédiction structurée, Fonction de perte, Submodular, Supermodular, La fonction de perte
de substitution.

Résumé : Cette thèse aborde le problème de
l’apprentissage avec des fonctions de perte non-
modulaires. Pour les problèmes de prédiction, où
plusieurs sorties sont prédites simultanément, l’af-
fichage du résultat comme un ensemble commun
de prédiction est essentiel afin de mieux incorpo-
rer les circonstances du monde réel. Dans la mi-
nimisation du risque empirique, nous visons à ré-
duire au minimum une somme empirique sur les
pertes encourues sur l’échantillon fini avec une
certaine perte fonction qui pénalise sur la prévi-
sion compte tenu de la réalité du terrain. Dans
cette thèse, nous proposons des méthodes analy-
tiques et algorithmiquement efficaces pour traiter
les fonctions de perte non-modulaires. L’exactitude
et l’évolutivité sont validées par des résultats em-
piriques. D’abord, nous avons introduit une mé-

thode pour les fonctions de perte supermodulaires,
qui est basé sur la méthode d’orientation alternée
des multiplicateurs, qui ne dépend que de deux
problémes individuels pour la fonction de perte
et pour l’infèrence. Deuxièmement, nous propo-
sons une nouvelle fonction de substitution pour les
fonctions de perte submodulaires, la Lovász hinge,
qui conduit à une compléxité en O(p log p) avec
O(p) oracle pour la fonction de perte pour calcu-
ler un gradient ou méthode de coupe. Enfin, nous
introduisons un opérateur de fonction de substi-
tution convexe pour des fonctions de perte non-
modulaire, qui fournit pour la première fois une
solution facile pour les pertes qui ne sont ni su-
permodular ni submodular. Cet opérateur est basé
sur une décomposition canonique submodulaire-
supermodulaire.

Title : Empirical risk minimization with non-modular loss functions

Keywords : Structured Prediction, Loss Function, Submodular, Supermodular, Surrogate Loss Function

Abstract : This thesis addresses the problem
of learning with non-modular losses. In a predic-
tion problem where multiple outputs are predic-
ted simultaneously, viewing the outcome as a joint
set prediction is essential so as to better incor-
porate real-world circumstances. In empirical risk
minimization, we aim at minimizing an empiri-
cal sum over losses incurred on the finite sample
with some loss function that penalizes on the pre-
diction given the ground truth. In this thesis, we
propose tractable and efficient methods for dea-
ling with non-modular loss functions with correct-
ness and scalability validated by empirical results.
First, we present the hardness of incorporating su-
permodular loss functions into the inference term
when they have different graphical structures. We

then introduce an alternating direction method
of multipliers (ADMM) based decomposition me-
thod for loss augmented inference, that only de-
pends on two individual solvers for the loss func-
tion term and for the inference term as two inde-
pendent subproblems. Second, we propose a novel
surrogate loss function for submodular losses, the
Lovász hinge, which leads to O(p log p) complexity
with O(p) oracle accesses to the loss function to
compute a subgradient or cutting-plane. Finally,
we introduce a novel convex surrogate operator
for general non-modular loss functions, which pro-
vides for the first time a tractable solution for loss
functions that are neither supermodular nor sub-
modular. This surrogate is based on a canonical
submodular-supermodular decomposition.
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