
HAL Id: tel-01514168
https://theses.hal.science/tel-01514168v1

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifying Modal Specifications of Workflow Nets : using
Constraint Solving and Reduction Methods

Hadrien Bride

To cite this version:
Hadrien Bride. Verifying Modal Specifications of Workflow Nets : using Constraint Solving and Re-
duction Methods. Web. Université de Franche-Comté, 2016. English. �NNT : 2016BESA2033�.
�tel-01514168�

https://theses.hal.science/tel-01514168v1
https://hal.archives-ouvertes.fr

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E F R A N C H E - C O M T É

THÈSE présentée par

Hadrien BRIDE
pour obtenir le

Grade de Docteur de
l’Université de Franche-Comté

Spécialité : Informatique

Verifying Modal Specifications of Workflow Nets
Using constraint solving and reduction methods

Soutenue publiquement le 24 Octobre 2016 devant le Jury composé de :

Didier Buchs Raporteur Professeur à l’Université de Genève, Suisse
Claude Jard Raporteur Professeur à l’Université de Nantes, France
Serge Haddad Examinateur Professeur à l’École normale supérieure de

Cachan, France
Catherine Dubois Examinateur Professeur à l’Ecole Nationale Supérieure

d’Informatique pour l’Industrie et l’Entreprise,
France

Olga Kouchnarenko Directeur de thèse Professeur à l’Université de Franche-Comté,
France

Fabien Peureux Co-encadrant de thèse Maı̂tre de conférence à l’Université de Franche-
Comté, France

N◦ 0 8 2

Contents

I Introduction and State of the Art 1

1 Introduction 3

1.1 Context and Motivations . 3

1.2 Research Questions . 6

1.3 Contributions to this Thesis . 6

1.4 Outline . 7

2 State of the Art 9

2.1 Preliminaries . 9

2.1.1 Notions of Set Theory and Graph Theory 9

2.1.2 Petri Nets . 11

2.1.2.1 Matrix Representation of Petri nets 14

2.1.3 Petri Nets Behavioural Properties . 15

2.1.4 Petri Nets Subclasses . 16

2.1.5 Petri Net Extensions . 18

2.1.5.1 Hierarchical Petri Nets / Refinement 18

2.1.5.2 Coloured Petri Nets . 19

2.1.5.3 Weighted Transitions Petri Nets 21

2.1.6 Workflow Nets . 21

2.1.7 Workflow Nets Equivalences . 23

2.1.8 Workflow Nets Soundness . 24

2.1.9 Stepwise Refinement of Worflow Nets 25

2.1.10 Modal Specification . 28

2.2 Analysis of Petri Nets . 28

2.2.1 Behavioural Approach . 29

2.2.2 Structural Approach . 30

2.2.2.1 State Equation . 30

2.2.2.2 Structural Invariants . 31

2.2.2.3 Siphons and Traps . 33

v

vi CONTENTS

2.2.2.4 Analysis of Workflow Nets 34

2.2.3 Reduction Approach . 35

2.2.3.1 Formalization . 35

2.2.3.2 Well-known reduction rules 36

2.3 Constraint Systems . 38

2.3.1 Definition . 38

2.3.2 Constraint Logic Programming (CSP) 39

2.3.3 Satisfiability Modulo Theories (SMT) 39

II Contributions 41

3 Verification of Modal specification 43

3.1 Over Ordinary Workflow Nets . 44

3.1.1 Extended Modal Specification . 44

3.1.2 Modelling Executions of Workflow Nets 46

3.1.3 Verifying Extended Modal Specifications 53

3.2 Over Abstract Workflow Nets . 55

3.2.1 Abstract Petri Nets . 55

3.2.2 Extended Abstract Modal Specification 59

3.2.3 Modelling Executions of Abstract Workflow Nets 61

3.2.4 Verifying Extended Abstract Modal Specifications 64

3.3 Synthesis . 65

4 Reduction methods 67

4.1 Φ∗: A workflow nets reduction kit . 68

4.2 Semi-Decision of Generalised Soundness . 77

4.3 Preprocessing Modal Specification Verification 79

4.3.1 Reduction based on hierarchical workflow nets 80

4.3.2 Reduction based on reduction rules . 82

4.4 Synthesis . 86

5 Experimental Evaluation 89

5.1 Study Cases . 90

5.1.1 Issue Tracking System . 90

5.1.2 Question and Answer Portal . 91

5.1.3 Tax Accounting Manager . 95

CONTENTS vii

5.2 Tool Chain Implementation . 98

5.2.1 Modal Specification Verifier . 98

5.2.2 Reduction Tool . 103

5.3 Study cases results . 104

5.4 Scalability . 108

5.4.1 Benchmark’s Generation Tool . 108

5.4.2 Experimental Evaluation of Modal Specification Verification 109

5.4.2.1 Objectives . 110

5.4.2.2 Experimental Protocol . 110

5.4.2.3 Results and Feedback from Experiments 111

5.4.3 Experimental Evaluation of Reduction Methods 117

5.4.3.1 Objectives . 118

5.4.3.2 Experimental Protocol . 118

5.4.3.3 Results and Feedback from Experiments 119

5.5 Synthesis . 123

III Conclusion and Future Work 125

6 Conclusion 127

6.1 Verification of Modal specifications . 127

6.2 Reduction methods . 128

6.3 Experimental Evaluation . 129

7 Future Work 131

7.1 Towards Parallelism . 131

7.2 Error-pattern . 132

7.3 Reconfiguration . 133

I
Introduction and State of the Art

1

1
Introduction

Contents
1.1 Context and Motivations . 3

1.2 Research Questions . 6

1.3 Contributions to this Thesis . 6

1.4 Outline . 7

1.1/ Context andMotivations

Our ability to attain fitness goals through complexly organized, situationally-tailored, instrumental
sequences of behaviours is one of the defining trait of our human nature [DeVore et al., 1987]. Hu-
man progress is essentially based on the improvement of the processes designed to attain fitness
goals (e.g., survive, reproduce). In modern times, the organisation of such processes into logi-
cally coherent systems, called rationalization, has led to major improvements. For example, the
rationalization of manufacturing processes has promoted the industrial revolution, an important
and beneficial mark of progress [Ashton et al., 1997]. In a broader context, the rationalization of
goal-oriented processes gave raise to the notion of workflows.

Intuitively, a workflow describes the set of possible runs of a particular process by specifying the
series of activities that are necessary to complete it. More precisely, the Workflow Management
Coalition [Coalition, 1996], a global organization of adopters, developers, consultants, analysts, as
well as university and research groups engaged in workflow-based development, defined workflow
as: The automation of a process, in whole or part, during which documents, information or tasks
are passed from one participant (i.e. a person or an automated process) to another for action (i.e.
activities), according to a set of procedural rules.

Nowadays workflows are extensively used by companies and organisations in order to improve
organizational efficiency, responsiveness and profitability by managing the tasks and steps of busi-
ness processes [Schäl, 1996, Lawrence, 1997, Fischer, 2003, Van Der Aalst et al., 2004].

To effectively use and manage workflows, companies rely more and more on workflow manage-
ment systems which provide an infrastructure for the set-up, execution and monitoring of a defined
sequence of tasks, arranged as a workflow. A great diversity of application domains exist today that
use workflow management systems on a daily basis in order to control their business processes.
These include office automation, healthcare, telecommunications, manufacturing and production,
finance and banking, just to name a few.

3

4 CHAPTER 1. INTRODUCTION

Workflows modelling is one of the most important steps in managing workflows. It aims at map-
ping out the different activities involved in processes so that they can be understood, evaluated, and
improved. On the one hand, well designed workflows allow business processes to become more
efficient, compliant, agile and visible by ensuring that every process step is explicitly defined and
optimized for maximum productivity. On the other hand, faulty workflows often result in financial
losses as well as in failure to provide services.

With the increasing use of workflows for modelling crucial business processes, the verification
of specifications, i.e. of desired properties of workflows, becomes mandatory to ensure that such
processes are properly designed and reach the expected level of trust and quality. For this reason,
in the last two decades, companies have been putting more stress on the analysis of their business
processes in order to maintain a competitive level while complying with a high quality of services.

Workflow analysis can be carried out by informal approaches such as workshops in which the
interested stakeholders can discuss and point to possible issues in the defined workflows. However,
the growing complexity of the modelled processes requires new advanced methods and dedicated
analysis tools to achieve automation, reliability as well as scalability of the workflow analysis and
verification steps.

Many workflow modelling languages have been proposed to model workflows (e.g.,
UML activity diagrams [Dumas et al., 2001], BPMN [White, 2004], Event-driven Process
Chains [Scheer et al., 2005]). Among them, workflow nets [van der Aalst, 1998], a particular class
of Petri nets [Petri, 1962], have become one of the standard ways to model and analyse workflows.
A workflow net is typically used as an abstraction of a workflow, notably modelling its control-
flow dimension. The success of modelling workflows as Petri nets can be explained by several
reasons. First, Petri nets are a graphical language, as a result they are intuitive and easy to learn.
Second, Petri nets are very expressive: they allow the modelling of complex workflows exhibiting
concurrencies, conflicts, as well as causal dependencies of activities (i.e tasks). Finally and most
importantly, Petri nets have a clear and precise formal definition of their semantics. This enables
their validation and verification within the framework of formal methods [Clarke et al., 1996], a
set of mathematically based languages, techniques, and tools for specifying and verifying such
systems.

While most workflow nets verification problems are known decidable [Esparza, 1998], their com-
plexity is often very high due to the large expressiveness provided by Petri nets. For instance,
the reachability problem (i.e. the problem of determining whether a given state is reachable), a
central problem to which many others reduce to, is known to be decidable. However, it requires
exponential space and therefore exponential time [Lipton, 1976].

To assist engineers in their specification and validation activities, modal specifica-
tions [Larsen, 1989] have been designed to allow loose specifications with restrictions on tran-
sitions of complex systems. Those specifications are notably used within refinement approaches
for workflows development, a top-down design approach to workflows modelling which consists
in iteratively (i.e. step by step) refining a model by adding further details until a sufficient level of
description is obtained. More precisely, in the context of workflow specification, modal specifica-
tions allow the definition of necessary or admissible behaviours to which the considered workflow
model must conform. Modal specifications are usually expressed over a single transition of the
considered system. As pointed out to us by workflow modellers of the study cases considered in
this thesis, this is quite limiting. The issue is that, in real-life, the expression of complex modal
behaviours involving several transitions and their causalities is needed. This thesis addresses this
issue and presents extended modal specifications – a modal logic expressing complex modal be-
haviour involving several transitions and dealing with their causalities.

1.1. CONTEXT AND MOTIVATIONS 5

The verification of behavioural properties, such as modal specifications, are usually performed
through model checking [Clarke et al., 1999]. Model checking is a verification technique that ex-
plores all possible system states in a brute-force manner. It aims at verifying the validity of a
desired behavioural property (the specification) via an exhaustive – explicit or symbolic – enumer-
ation of all the reachable states and transitions between them. The complexity of such an approach
can be worse than primitive recursive space due to the state explosion problem [Valmari, 1998].
This renders model checking and other techniques based on state space exploration intractable on
large instances of workflow nets.

On the one hand, verifying behavioural properties of workflows is a very complex task which re-
quires exponential computational resources with respect to the size of their modelling by workflow
nets. On the other hand, the size of companies workflows is growing at a very fast pace as compa-
nies become larger, more complex, and rely more and more on workflow management systems to
deal with an evermore precise and detailed range of business processes.

The main challenge faced during the development of verification approaches is therefore this
inerrant complexity with respect to the size of the considered workflow nets. Indeed, com-
plete and efficient verification tools for the general case are currently out of reach. How-
ever, to cope with this issue, different approaches have been considered. A first one con-
sists in considering less expressive subclasses of workflow nets for which efficient verification
procedures can be designed [Van der Aalst, 1997]. This method has been thoroughly investi-
gated [van der Aalst et al., 2011] and is based on compromises between expressiveness of the
workflow models and the complexity of their analysis. While large subclasses of workflow nets
with manageable analysis complexity have been identified (e.g., free-choice workflow nets), this
approach strongly limits the range of workflow behaviour that can be modelled. A second ap-
proach consists in designing verification heuristics. Such procedures (e.g., [Vanhatalo et al., 2007,
Wimmel et al., 2011]) aim to efficiently handle a large range of usual workflow nets by guiding the
explicit or implicit state space exploration. These procedures, which are not necessary complete,
have shown their efficiency in operational contexts [Vanhatalo et al., 2007, Wimmel et al., 2011,
Esparza et al., 2014, Esparza et al., 2015]. They are often based on the design of abstract models
approximating the considered workflow net behaviour. The construction of such abstract mod-
els relies primarily on powerful abstraction mechanisms. This thesis addresses the verification of
extended modal specifications in line with this second approach.

Recent advances in the development of constraint solving tools offer an unprecedented opportunity
for the efficient automation of analysis tasks [Prasad et al., 2005, Rybalchenko, 2010]. Existing
constraint solvers present a real opportunity to leverage these advances for solving hard program
analysis problems [Gulwani et al., 2008] such as the problems faced during workflow nets analy-
sis. Constraint-based algorithms are composed of two main steps. In a first step, the validity of a
property of interest is formulated as a constraint system (i.e. a set of constraints over a set of vari-
ables ranging over their domains) through an automated process, called constraint generation. In
a second step, this constraint system is solved to determine the validity of the considered property.
This second step is executed using a third party constraint solver. Such a separation of concerns
– constraint generation versus constraint solving – can liberate the designer of the verification
tool from the tedious task of creating a dedicated algorithm by beneficing from the maturity and
efficiency of existing constraint solvers.

On the basis of the above, this thesis presents contributions made to the verification of modal
specifications of workflow nets based on powerful abstractions and the use of constraint solving.
The research questions we will address are summarized in the next section.

6 CHAPTER 1. INTRODUCTION

1.2/ Research Questions

As previously introduced, this work is motivated by the challenges raised during the analysis
of workflow described by workflow nets. More precisely, it considers the following research
questions:

RQ1 How to effectively express modal behaviour of workflow nets involving several transitions
and their causalities?

In the context of workflow nets, modal specifications are usually expressed over a single
transition of the system under analysis. This is quite limiting as the expression of complex
modal behaviour involving several transitions and their causalities is needed in real-life.

RQ2 How to effectively verify the validity of such modal specifications by leveraging the efficiency
of existing mature constraint solvers?

The design of a constraint system based framework enabling the verification of modal spec-
ifications, which express complex modal behaviours involving several transitions and their
causalities, will benefit from the use of existing mature and efficient constraint solvers.

RQ3 Which abstraction mechanisms are appropriate and relevant with respect to verification of
such modal specifications?

As stated in the previous section, the verification of modal specifications is a hard verifica-
tion problem. Due to its inerrant complexity with respect to the size of the considered work-
flow nets, powerful abstractions preserving the validity of modal specifications are needed
to efficiently handle a large range of usual workflow nets.

1.3/ Contributions to this Thesis

This section briefly describes the contributions made to this thesis in order to address the research
questions introduced in the previous section.

To address RQ1, we first define a modal logic, over workflow nets, enabling the description of
modal behaviour involving several activities and their causalities [Bride et al., 2015]. This modal
logic stems from the observation that while basic modal specifications are useful, they usually
lack expressiveness for real-life applications, as only individual transitions are concerned with.
This modal logic is then further extended to handle workflow nets extensions (e.g., workflow nets
with data). To this end, additional constraints on the initial and final states as well as on the data
associated to transition firing are considered [Bride et al., 2015].

In a second step, to address RQ2, we describe a novel constraint-based framework for modelling
workflow nets executions. In this framework, several over-approximations of the correct execu-
tions of workflow nets are defined as constraint systems. We also define a constraint system whose
solution space under-approximates the set of correct executions of workflow nets. Solutions of
this latter constraint system are called segments. They model partial executions whose existence
is guaranteed through structural analysis. Furthermore, we show that the concatenation of such
segments can be used to model any correct executions of workflow nets. This constraint-based
framework is used to verify the validity of modal specifications expressed within the previously
defined modal logic by leveraging the efficiency of mature constraint solvers. These results have
been published in [Bride et al., 2014]. We then proceed to explicitly describe how our modal

1.4. OUTLINE 7

specification description and verification methodology can be applied to a more abstract notion of
workflow nets that we define. This abstract notion of workflow nets notably includes workflow nets
with data on which the proposed approach can be carried out as published in [Bride et al., 2015].

In a third step, to address RQ3, we portray reduction methods based on powerful abstraction mech-
anisms in order to reduce the size of analysed workflow nets while preserving the behavioural
properties of interest. To this end, we present workflows nets reduction rules strongly preserving
generalised soundness, an essential and necessary correctness property that must be satisfied by
workflow nets. The presented reduction rules extend existing reduction rules and therefore enable
a greater reduction of workflow nets. We show how they are used as powerful pre-processing steps
to the verification of generalised soundness as well as to the verification of modal specifications.

Finally, as a practical contribution to RQ2 and RQ3, these approaches have been implemented
and experimentations have been carried out in order to validate them. We introduce and discuss
convincing experimentations carried out over real-life industrial study cases in order to illustrate
the relevance and effectiveness of the proposed modal specification verification approach. Fur-
thermore, we present an empirical evaluation of effectiveness, efficiently and scalability of the
proposed modal specification verification approach over workflow nets of growing size and com-
plexity. This experimental work has been published in [Bride et al., 2016a, Bride et al., 2016b].
Finally, we also describe experimental results supporting the benefits provided by the presented
reduction methods to the verification of workflow net behavioural properties such as generalised
soundness and correctness with respect to modal specifications.

1.4/ Outline

This thesis dissertation is organised according to the following outline.

In Chapter 2, we provide a review of some mathematical notions and notations used throughout
this thesis. We also review some elements of the state of the art regarding Petri nets, workflow nets
and existing approaches for their analysis as well as constraint systems together with approaches
for their resolution.

In Chapter 3, we define extended modal specifications, a modal logic which extends usual modal
specifications by enabling the description of necessary or admissible behaviour involving several
activities and their causalities. We then, in a first step, define an innovative constraint system based
framework to model executions of workflow nets. This framework is then used to verify extended
modal specifications. In a second step, we define abstract workflow nets, an abstract notion of
workflow nets which notably provides a generalisation of Petri nets, and of coloured Petri nets.
The previously defined framework based on constraint systems is then applied to such an abstract
notion of workflow nets to provide an extended modal specification verification method to analyse
not only ordinary workflow nets but also coloured workflow nets and similar extensions.

In Chapter 4, powerful reduction methods preserving properties of interest such as generalised
soundness and correctness of a given extended modal specification are presented. We then portray
pre-processing steps based on these reduction techniques reducing workflow nets size, so that the
analysis of preserved properties can be carried out on smaller instances.

In Chapter 5, we present dedicated tools implementing the approaches defined in Chapters 3 and 4,
and we detail and discuss experimental results obtained over real-life industrial study cases and
benchmarks in order to assess their value.

Chapters 6 and 7 respectively draw general conclusions and gives directions for future work.

2
State of the Art

“Those who don’t know history are doomed to repeat it.”

— Edmund Burke

Contents
2.1 Preliminaries . 9

2.1.1 Notions of Set Theory and Graph Theory 9
2.1.2 Petri Nets . 11
2.1.3 Petri Nets Behavioural Properties . 15
2.1.4 Petri Nets Subclasses . 16
2.1.5 Petri Net Extensions . 18
2.1.6 Workflow Nets . 21
2.1.7 Workflow Nets Equivalences . 23
2.1.8 Workflow Nets Soundness . 24
2.1.9 Stepwise Refinement of Worflow Nets 25
2.1.10 Modal Specification . 28

2.2 Analysis of Petri Nets . 28
2.2.1 Behavioural Approach . 29
2.2.2 Structural Approach . 30
2.2.3 Reduction Approach . 35

2.3 Constraint Systems . 38
2.3.1 Definition . 38
2.3.2 Constraint Logic Programming (CSP) 39
2.3.3 Satisfiability Modulo Theories (SMT) 39

2.1/ Preliminaries

2.1.1/ Notions of Set Theory and Graph Theory

This section reviews basics notions/definitions about set theory and graph theory. For a thorough
description we refer the interested reader to [Jech, 2013, West et al., 2001].

Set Theory

Set theory is the branch of mathematical logic that studies sets (i.e. collections of objects)
commonly employed as a foundational system for mathematics, particularly in the form of Zer-
melo–Fraenkel set theory [Hayden et al., 1968] with the axiom of choice.

9

10 CHAPTER 2. STATE OF THE ART

Intuitively, a set is a collection of distinct objects. Throughout this manuscript, standard notation
for sets and operations are used.

The empty set is denoted by ∅, element inclusion (i.e. element membership) by ∈, set intersection
by ∩, set union by ∪, set difference by \, set inclusion by ⊆, and strict set inclusion by ⊂. We
denote the set of natural numbers by N, and the set of integers by Z.

The number of elements in a finite set A is called the cardinality, and is denoted by |A|.

The Cartesian product allows a new set to be created from existing sets.

Definition 1: Cartesian Product

The Cartesian product of two sets A and B, denoted A × B, is the set of ordered pairs
{(a, b) | a ∈ A, b ∈ B}.

Correspondences between two sets are defined by binary relations.

Definition 2: Binary Relation

A binary relation R over two sets A and B is a subset of A×B. The domain of R, denoted
Dom(R), is the set {a ∈ A | ∃ b ∈ B, (a, b) ∈ R}. The co-domain (also called the range) of
R, denoted Ran(R), is the set {b ∈ B | ∃ a ∈ A, (a, b) ∈ R}. The notation aRb signifies that
(a, b) ∈ R.

A binary relation f ⊆ A × B is called a partial function, denoted f : A 9 B if ∀ (a1, b1), (a2, b2) ∈
f , a1 = a2 ⇒ b1 = b2. The notation f (a) = b signifies that (a, b) ∈ f . A partial function f : A 9 B
is called a function, denoted by f : A→ B, if Dom(A) = A.

An enumerated collection of objects in which repetitions are allowed is called a sequence.

Definition 3: Sequence

A sequence S is an enumerated collection of objects from a set A in which repetitions
are allowed. It is defined as a function fS : D → A where D ⊆ N \ {0}. By convention,
for i ∈ D, the ith element of S is denoted S i = fS (i).

A binary operation � over a set A is a function � : A × A → A that combines two elements of
A (called operands) to produce another element of A. By convention, let a1, a2 ∈ A, we denote
�(a1, a2) by a1 � a2. The binary operation � is said to be an associative binary operation if and
only if ∀ a1, a2, a3 ∈ A, (a1 � a2) � a3 = a1 � (a2 � a3) and is said to be a commutative binary
operation if and only if ∀ a1, a2 ∈ A, a1 � a2 = a2 � a1.

A monoid is a set that has an identity element together with an associative binary operation.

Definition 4: Monoid

Let A be a set and � be a binary operation over A.
(A,�) is a monoid if and only if:

– � is an associative binary operation, and

– there exists 0A ∈ A, an identity element, such that ∀ a ∈ A, a � 0A = 0A � a = a.

A commutative monoid is a monoid whose associative binary operation is commutative.

For example, the natural numbers N form a commutative monoid under addition (identity element
zero), or multiplication (identity element one).

2.1. PRELIMINARIES 11

Any commutative monoid (A,�) is endowed with its algebraic preordering ≤A defined by ∀ a1, a2 ∈

A, a1 ≤A a2 ⇔ ∃ a3 ∈ A, a1 � a3 = a2.

Graph Theory

A set together with a binary relation over itself forms a directed graph.

Definition 5: Directed Graph

A directed graph G is a tuple 〈N, A〉 where N is a set of nodes and A ⊆ N × N is a set of
directed arcs.

A directed graph whose set of nodes can be divided into two disjoint sets such that directed arcs
do not relate two nodes of the same set, is called a bipartite directed graph.

Definition 6: Bipartite Directed Graph

A bipartite directed graph G is a directed graph 〈N1 ∪ N2, A〉 where N1 ∩ N2 = ∅ and
A ⊆ N1 × N2 ∪ N2 × N1.

A sequence of directed arcs which connect a sequence of nodes is called a path.

Definition 7: Path

Let G = 〈N, A〉 be a directed graph and n ∈ N.
A path σ : {1, .., n} → N of length n in G is a finite sequence of nodes such that ∀ i ∈
{1, .., n − 1}, (σ(i), σ(i + 1) ∈ A.

2.1.2/ Petri Nets

Petri nets, also known as place/transition nets, are a basic model of parallel and distributed sys-
tems proposed by Carl Adam Petri [Petri, 1962]. They allow modelling of discrete event systems
exhibiting behaviours such as concurrency, conflict, and causal dependency between events in a
readable graphical and/or a formal manner, and several important verification problems, like reach-
ability or soundness, are known to be decidable [Esparza, 1998]. They are widely used to model
concurrent processes in theoretical computer science. They are also used to describe chemical
reactions, manufacturing processes, supply chains, and so on.

A Petri net is a directed bipartite graph, in which the nodes represent transitions (i.e. events that
may occur, graphically depicted by bars) and places (i.e. conditions, graphically represented by
circles). A transition (i.e. an event) may have any numbers of input places and output places which
respectively represent the pre-condition and the post-condition of the considered transition.

Formally an ordinary Petri net is defined as follows.

Definition 8: Ordinary Petri net

An ordinary Petri net N is a tuple 〈P,T, F〉 where:

– P is a finite set of places,

– T is a finite set of transitions (P ∩ T = ∅),

– F ⊆ (P × T) ∪ (T × P) is a finite set of arcs, also called the flow relation of N.

12 CHAPTER 2. STATE OF THE ART

The nodes from which an arc runs to a node g are called the input nodes of g and are denoted by
•g. Likewise, the nodes to which arcs run from a node g are called the output nodes of g and are
denoted by g•. Formally, let g ∈ P ∪ T and G ⊆ P ∪ T we have:

g• = {g′|(g, g′) ∈ F}

G• = ∪g∈G g•

•g = {g′|(g′, g) ∈ F}
•G = ∪g∈G

•g

A marking of a Petri net, representing the number of tokens on each place, is a function M : P →
N. It evolves during its execution since transitions change the marking of a Petri net according to
the following firing rules. A transition t is enabled in a marking Ma if and only if ∀p ∈ •t,Ma(p) ≥
1. When an enabled transition t is fired, it consumes one token from each place of •t and produces
one token for each place of t•. Formally, the firing of a transition t, enabled in a marking Ma,
results in a new marking Mb defined as follows:

∀ p ∈ P, Mb(p) =

Ma(p) + 1, if p ∈ t• \ •t
Ma(p) − 1, if p ∈ •t \ t•

Ma(p), otherwise

(a) Transition t1 is enabled (b) Transition t1 has been fired

Figure 2.1: An ordinary Petri net in two states illustrating the firing of a transition

Example 1: Illustration of an ordinary Petri net

Figures 2.1(a) and 2.1(b) depict an ordinary Petri net modelling two chemical reactions.
The first chemical reaction, modelled by transition t1, is the reaction between carbon
(C) and dioxygen (O2) which produces carbon dioxide (CO2). The second chemical
reaction, modelled by transition t2, is the reaction between sodium hydroxide (NaOH)
and carbon dioxide (CO2) which produces sodium bicarbonate (NaHCO3). The marking
of figure 2.1(a) models a situation where one atom of carbon, one molecule of dioxygen,
and one molecule of sodium hydroxide are present. In this marking the transition t1
is enabled and firing it leads to the marking depicted by figure 2.1(b) which models a
situation where one molecule of carbon dioxide and one molecule of sodium hydroxide
are present, in this marking transition t2 is enabled.

For clarity, modelling efficiency and convenience, ordinary Petri nets can be generalised by asso-
ciating weight to arcs, leading to the notion of generalised Petri nets.

2.1. PRELIMINARIES 13

Definition 9: Generalised Petri net

A generalised Petri net N is a tuple 〈P,T, F,W〉 where:

– 〈P,T, F〉 is an ordinary Petri net, and

– W : F → N is a function that assigns a weight to each arc.

In the context of a generalised Petri net a transition t is enabled in a marking Ma if and only if
∀p ∈ •t,Ma(p) ≥ W(p, t). When an enabled transition t is fired, it consumes W(p, t) token(s) from
each place p of •t and produces W(t, p) token(s) for each place p of t•. Formally, the firing of a
transition t, enabled in a marking Ma, results in a new marking Mb defined as follows:

∀ p ∈ P, Mb(p) =

Ma(p) + W(t, p) −W(p, t), if p ∈ t• ∩ •t
Ma(p) + W(t, p), if p ∈ t• \ •t
Ma(p) −W(p, t), if p ∈ •t \ t•

Ma(p), otherwise

(a) Transition t1 is enabled (b) Transition t1 has been fired

Figure 2.2: An generalised Petri net in two states illustrating the firing of a transition

Example 2: Illustration of a generalised Petri net

Figures 2.2(a) and 2.2(b) depict a generalised Petri net which models the electrolysis of
water by the transition t1. The marking of figure 2.2(a) models a situation where two
molecules of water (H2O) are present. In this marking the transition t1 is enabled and
firing it leads to the marking depicted by figure 2.2(b), which models a situation where
one molecule of dioxigen (O2) is present and two molecules dihydrogen (H2) are present.

Note that generalised Petri nets and ordinary Petri nets have the same expressive power as a gener-
alised Petri net can always be transformed into an ordinary Petri net, however the resulting ordinary
Petri net is in general more complex than the generalised one.

Let N = 〈P,T, F〉 (resp. N = 〈P,T, F,W〉) be an ordinary Petri net (resp. a generalised Petri net).
The Petri net N is said to be pure (i.a. self-loop-free) if and only if ∀(x, y) ∈ (P×T)∪(T×P), (x, y) ∈
F ⇒ (y, x) < F.

Let x ∈ P ∪ T , we denote [x] the cluster of x defined as the smallest subset of P ∪ T such that
x ∈ [x], p ∈ [x] ∩ P⇒ p• ⊆ [x] and t ∈ [x] ∩ T ⇒ t• ⊆ [x]. The set of clusters of N is denoted as
C(N) = {[x] | x ∈ P ∪ T }.

Finally, it can be noted that Petri nets can also be viewed as vector addition systems [Leroux, 2011]
as well as special kind of 2 − automata [Burroni, 1993].

14 CHAPTER 2. STATE OF THE ART

2.1.2.1/ Matrix Representation of Petri nets

Ordinary as well as generalised Petri nets can be represented using their matrix form.

A matrix is a rectangular array of elements of a set. Let A be a set and n,m ∈ N, we denote
by A(n,m) the set of matrices of n rows and m columns of elements of the set A. Let a ∈ A(n,m),
i ∈ {1, .., n} and j ∈ {1, ..,m}, we denote by ai, j the element of a at the ith row and jth column.

Let N = 〈P,T, F〉 (resp. N = 〈P,T, F,W〉) be an ordinary (resp. a generalised) Petri net such that
P = {p1, .., p|P|} and T = {t1, .., t|T |}.

In matrix form, a marking M of N is represented by a matrix ~M ∈ N(|P|,1) such that:

∀i ∈ {1, .., |P|}, ~Mi,1 = M(pi)

A transition t is represented by a matrix ~t ∈ N(|T |,1) such that:

∀i ∈ {1, .., |T |}, ~ti,1 =

1, if t = ti
0, otherwise

The structure of N is represented by its pre-incidence matrixW− ∈ N(|P|,|T |) and its post-incidence
matrixW+ ∈ N(|P|,|T |) such that:

∀ i ∈ {1, .., |P|}, ∀ j ∈ {1, .., |T |}, W−
i, j =

1(resp. W(pi, t j)), if (pi, t j) ∈ F
0, otherwise

∀ i ∈ {1, .., |P|}, ∀ j ∈ {1, .., |T |}, W+
i, j =

1(resp. W(t j, pi)), if (t j, pi) ∈ F
0, otherwise

In this representation, a transition ~t is enabled in a marking ~Ma if and only if:

~Ma ≥ W
− ∗ ~t (2.1)

When an enabled transition ~t is fired in a marking ~Ma it leads to a new marking ~Mb such that:

~Mb = ~Ma −W
− ∗ ~t +W+ ∗ ~t (2.2)

Assuming N is pure, equation 2.2 can be written as:

~Mb = ~Ma +W∗ ~t (2.3)

whereW =W+ −W− is called the incidence matrix of N.

It follows that N can be fully described by the tuple 〈W−,W+〉. Likewise, if N is pure then it can
be fully described by the tuple 〈W〉.

Example 3: Illustration of the matricial representation of a Petri net

Consider the generalised Petri net of Example 2 page 13 depicted in Figure 2.2(a)
page 13. This generalised Petri net is composed of three places (H2O, O2 and H2) and a
transition (t1). It can be fully described by the tuple 〈W−,W+〉whereW− = [−2, 0, 0]>

andW+ = [0, 1, 2]>. Equivalently, as this generalised Petri net is pure, it can be fully
described by its incidence matrixW defined as: W = [−2, 1, 2]>. Let ~Ma = [2, 0, 0]>

be the matricial representation of the marking of Figure 2.2(a) and ~Mb = [0, 1, 2]> be
the matricial representation of the marking of Figure 2.2(b). We have ~Mb = ~Ma +W∗ ~t
where ~t = [1] is the matricial representation of transition t1.

2.1. PRELIMINARIES 15

2.1.3/ Petri Nets Behavioural Properties

This section presents Petri nets behavioural properties in which we are interested.

In the context of Petri nets, one of the most important analysis problem, on which most verification
problems are based, is called the reachability problem. The reachability problem is stated as
follows: Given a Petri net N and M0 an initial marking of N, can a given marking M of N be
obtained from the marking M0 after the firing of a sequence of transitions?

The conditions of a transition firing and its effects on the marking of a Petri net have been described
in Section 2.1.2. Let Ma and Mb be two markings and t a transition of a Petri net N, we denote
Ma

t
−→ Mb the fact that transition t is enabled in marking Ma, and firing it results in the marking

Mb. The marking Mb is denoted as directly reachable from Ma by transition t.

Let M1,M2, ..,Mn be markings and σ = t1, t2, .., tn−1 a sequence of transitions of a Petri net N,

we denote M1
σ
−→ Mn the fact that M1

t1
−→ M2

t2
−→ ..

tn−1
−−−→ Mn. The marking Mn is then said to be

reachable from M1 by the sequence of transitions σ. We denote RN(M) the set of markings of N
reachable from a marking M.

Definition 10: Reachability Problem

Given M a marking of a Petri net N whose initial marking is the marking M0, the reach-
ability problem is the problem of deciding whether M ∈ RN(M0).

Many relevant behavioural properties can be expressed and evaluated through the resolution of the
reachability problem, notably safety properties. It has been shown that the reachability problem
for Petri nets is decidable [Kosaraju, 1982, Leroux, 2011] but requires at least exponential space
(and therefore time) to be solved in the general case [Lipton, 1976].

Another behavioural property of interest is called the boundedness property. An ordinary Petri net
N = 〈P,T, F〉 (resp. a generalised Petri net N = 〈P,T, F,W〉) together with its initial marking M0
is said k-bounded (or simply bounded) if and only if the number of tokens in each place does not
exceed a finite number k for any markings reachable from M0.

Definition 11: Boundedness

Let N = 〈P,T, F〉 (resp. N = 〈P,T, F,W〉) be an ordinary Petri net (resp. a generalised
Petri net) whose initial marking is the marking M0. The Petri net N is bounded if and
only if ∃ k ∈ N, ∀ M ∈ RN(M0), ∀ p ∈ P, M(p) ≤ k.

The last behavioural property considered is called the liveness property. With respect to the firing
rule, a transition t is dead at marking M if it is not enabled in any marking M′ reachable from M.
A transition t is live if it is not dead in any marking reachable from the initial marking. A Petri net
is said live if each of these transition is live.

Definition 12: Liveness

Let N = 〈P,T, F〉 (resp. N = 〈P,T, F,W〉) be an ordinary Petri net (resp. a generalised
Petri net) whose initial marking is the marking M0. The Petri net N is live if and only if
∀ t ∈ T, ∀ M ∈ RN(M0), ∃ Ma,Mb ∈ R

N(M), Ma
t
−→ Mb.

16 CHAPTER 2. STATE OF THE ART

2.1.4/ Petri Nets Subclasses

The need of considering classes of Petri nets sufficiently powerful with respect to their expressive
capability has led to the definition of several subclasses of Petri nets. All such subclasses are
defined only on the basis of structural characteristics. The four main Petri net subclasses are, in
the order of growing expressiveness, defined as follow.

Definition 13: State Machine

Let N = 〈P,T, F〉 be an ordinary Petri net, N is a state machine (SM) if and only if:

∀t ∈ T, |•(t)| = |(•t)| = 1.

A state machine is an ordinary Petri net without concurrency, but with possible conflicts among
transitions. Figures 2.3(a) and 2.3(b) respectively illustrate a valid and an invalid state machine.

(a) A valid state machine (b) An invalid state machine

Figure 2.3: State machine

Definition 14: Marked Graph

Let N = 〈P,T, F〉 be an ordinary Petri net, N is a marked graph (MG) if and only if:

∀p ∈ P, |•(p)| = |(•p)| = 1.

A marked graph is an ordinary Petri net without conflict, but there can be concurrency. Fig-
ures 2.4(a) and 2.4(b) respectively illustrate a valid and an invalid marked graph.

(a) A valid marked graph (b) An invalid marked graph

Figure 2.4: Marked graph

2.1. PRELIMINARIES 17

Definition 15: Free Choice Net

Let N = 〈P,T, F〉 be an ordinary Petri net, N is a free choice net (FC) if and only if:

∀p ∈ P, (| p• |≤ 1) ∨ (•(p•) = {p}).

A free choice net is an ordinary Petri net where there can be both concurrency and conflict, but not
at the same time. Figures 2.5(a) and 2.5(b) respectively illustrate a valid and an invalid free choice
net.

(a) A valid free choice net (b) An invalid free choice net

Figure 2.5: Free choice net

Definition 16: Asymmetric Choice Net

Let N = 〈P,T, F〉 be an ordinary Petri net, N is an asymmetric choice net (AC) if and
only if:

∀p1, p2 ∈ P, p•1 ∩ p•2 = ∅ ⇒ (p•1 ⊆ p•2) ∨ (p•1 ⊇ p•2).

An asymmetric choice net is an ordinary Petri net where there can be both concurrency and con-
flict, but not symmetrically. Figures 2.6(a) and 2.6(b) respectively illustrate a valid and an invalid
asymmetric choice net.

(a) A valid asymmetric choice net (b) An invalid asymmetric choice net

Figure 2.6: Asymmetric choice net

For a better visual interpretation of the respective complexity of these subclasses, Figure 2.7 sum-
marises the inclusion relations among the presented Petri nets subclasses.

18 CHAPTER 2. STATE OF THE ART

Figure 2.7: Venn diagram of Petri nets subclasses

2.1.5/ Petri Net Extensions

While Petri nets allow the modelling of most of real-life processes their specification ability and
expressiveness can be improved. To this end, many extensions have been proposed. Some of them
are completely backwards-compatible (i.e. are equivalent to Petri nets) and focus on improving the
modelling capability of Petri nets while conserving the same expressiveness (e.g., Coloured Petri
nets [Jensen, 1987] with finite colour’s domains), whereas some others improve the expressive
power of Petri nets (e.g., timed Petri nets [Ramchandani, 1974] which associate time with the
firing of transitions).

The following sections present three Petri net extensions considered in this thesis: hierarchical
Petri nets, coloured Petri nets and weighted transitions Petri nets.

2.1.5.1/ Hierarchical Petri Nets / Refinement

Modelling large and intricate Petri nets can be a difficult task and requires powerful structur-
ing mechanisms [Dittrich, 1989]. Fortunately, similarly to modular programming, Petri nets
can be designed using other Petri nets as building blocks [Fehling, 1991, Marechal et al., 2013,
Marechal et al., 2015]. This modelling method enables modellers to substitute places and tran-
sitions by whole Petri nets (i.e. building blocks) while preserving properties of interest (e.g.,
liveness, boundedness).

To represent the models produced by such modelling method, hierarchical Petri net are used.
Formally, a hierarchical Petri net is recursively defined as follows.

2.1. PRELIMINARIES 19

Definition 17: Hierarchical Petri Nets

The setH of hierarchical Petri nets is recursively defined as H ∈ H ⇔ H = 〈Ph,Th, Fh〉

where:

– Ph ⊆ H is a finite set of places,

– Th ⊆ H is a finite set of transitions,

– Fh ⊆ (Ph × Th) ∪ (Th × Ph) is a set of arcs.

Hierarchical Petri nets are the support for an efficient modelling methodology called stepwise
refinement [Suzuki et al., 1983]. Through the definition of a precise semantics of hierarchical
Petri nets, stepwise refinement of Petri nets is a top-down approach to Petri nets development
which consists in iteratively (i.e. step by step) refining a Petri net by substituting transitions and
places by whole Petri nets until a sufficient level of detail is achieved. Each step of the refinement
process transforms an abstraction of the modelled process (i.e. a Petri net with several details
left-out) into a more precise abstraction of the modelled process. The inverse process of refining
is called abstraction.

Petri nets obtained through stepwise refinement can be viewed as Petri nets with multiple layers
of detail. In this way, stepwise refinement consists in explicitly giving a hierarchical abstraction
of the modelled Petri net.

Note that, in the context of stepwise refinement of Petri nets, the semantic of hierarchical Petri
nets is defined with respect to the construction of underlying Petri nets. Therefore, the use of
hierarchical Petri nets focuses on improving the modelling capability of Petri nets while conserving
the same expressiveness.

The main advantage of such a development is the possibility to derive properties of interest by
construction. By imposing a precise semantics of hierarchical Petri nets as well as conditions
on the building blocks used, each successive refinement can be proved to preserve properties of
interest, such as liveness and boundedness [Suzuki et al., 1983].

2.1.5.2/ Coloured Petri Nets

Coloured Petri nets [Jensen, 1987] are an extension of Petri nets where data are assigned to the
tokens and can be modified by transitions based on their contents. For data (also called colours) of
finite domains they are equivalent to Petri nets with respect to their expressiveness. However they
may have more succinct representations and may be more convenient for modelling.

Let Ξ be a non-empty set of data-types (also called colours), where each data-type is a set of
data-values. We denote L(V,W) the space of linear maps fromV toW, and O the zero map.

Definition 18: Coloured Petri net

A coloured Petri net (CPN) is a tuple 〈P,T,C,W〉 where:

– P is a finite set of places, T is a finite set of transitions, such that P ∩ T = ∅,

– C : P ∪ T → Ξ is the colour-function,

– W− : P × T → L(Ξ,Ξ) is the pre-incidence function,

– W+ : P × T → L(Ξ,Ξ) is the post-incidence function.

20 CHAPTER 2. STATE OF THE ART

A marking of a coloured Petri net is a function M defined on P, such that ∀ p ∈ P,M(p) ∈ C(p)→
N. Two markings Ma and Mb are in relation Ma ≥ Mb if and only if ∀p ∈ P,∀ c ∈ C(p),Ma(p)(c) ≥
Mb(p)(c).

Let ~ denote the generalised matrix-multiplication where each product is replaced by a function
composition. With this notation, a transition defined by x(t) : C(t) → N (called a transition
binding) is enabled in a marking Ma if and only if Ma ≥ W−(t) ~ x(t). When x(t) is enabled, it
may fire. If x(t) fires, a new marking Mb = Ma + (W+ − W−)(t) ~ x(t) is reached. Similarly to
Petri nets, the marking Mb is then said to be directly reachable from Ma by transition x(t), written

Ma
x(t)
−−→ Mb, and the reachability relation is defined as the reflexive and transitive closure of the

direct reachability.

Figure 2.8: An example of coloured Petri net

Example 4: An example of coloured Petri net

Let C1 = {1, 2, 3} and C2 = {2, 4, 6} be two colors. The coloured Petri net depicted
by Figure 2.8 is composed of two places (p1 and p2) and a transition (t1) such that
C(p1) = C(t1) = C1 and C(p2) = C2. Transition t1 has for effect to consume tokens of
value x (1, 2 or 3) and produce token of value 2∗x (2, 4 or 6). Its pre-incidence function is
defined as W−(p1, t1) : C1 → C1 such that W−(p1, t1)([v1, v2, v3]) = [v1, v2, v3]. Its post-
incidence function is defined as W+(t1, p2) : C1 → C2 such that W+(t1, p2)([v1, v2, v3]) =

[v1, v2, v3]. Suppose an initial marking Ma such that Ma(p1) = [2, 0, 1] and Ma(p2) =

[0, 0, 0], a marking where place p1 contains two tokens of value 1 and one token of value
3, and place p2 contains no token. The transition instance (t, [1, 0, 1]) is enabled in Ma,
and firing it results in a marking Mb such that Ma(p1) = [1, 0, 0] and Ma(p2) = [1, 0, 1],
a marking where place p1 contains one token of value 1, and place p2 contains one token
of value 2 and one token of value 6.

Note that coloured Petri nets with finite colour domains and ordinary Petri nets have the same
expressiveness. Indeed coloured Petri net with finite colour domains can always be transformed
into an ordinary Petri net, however the resulting ordinary Petri net is in general more complex than
the coloured one.

While Petri nets capture the essential process flows, they often get very large and complex when
additional information is provided to refine the basic models. However, such refined models are
often required to specify desired behaviours. In this context, using coloured Petri nets allows
specifiers to incorporate data into tokens of the system model, e.g., characteristics to treated cases
in the context of workflows, which enables them to represent complex behaviour in a concise
manner.

2.1. PRELIMINARIES 21

2.1.5.3/ Weighted Transitions Petri Nets

Weighted transitions Petri nets are an extension of Petri nets. They associate weights with transi-
tions via a weight function. This enables performance analysis.

A weight function is defined within a framework where (C,+C) is a commutative monoid. We
denote OC the minimal element of C. Let N = 〈P,T, F〉 be an ordinary workflow net, a weight
function of N is a total function C : T → C assigning a weight to each transition.

Let Nw = 〈N,C〉 be the weighted transitions Petri net formed from the ordinary Petri net N by
associating a weight function C with it. The weight of a transition t is then given by C(t). Let Ma,
Mb be markings of N, and σ a transition sequence such that Ma

σ
−→ Mb, the weight associated with

the execution σ is given by the execution weigh function C defined by C(σ) =
∑

t∈T Ot(σ) ∗ C(t)
where Ot(σ) is the number of occurrences of t in σ

2.1.6/ Workflow Nets

Workflow nets (WF-nets) are special cases of Petri net introduced by W.M.P. van der
Aalst [van der Aalst, 1998]. They are used to model the control-flow dimension of a workflow.
They allow the modelling of complex workflows exhibiting concurrencies, conflicts, as well as
causal dependencies of activities (i.e tasks). The different activities are modelled by transitions,
while causal dependencies are modelled by places and arcs. For instance, the Petri nets depicted in
Figures 2.9(a), 2.9(b) and 2.9(c) are workflow nets respectively illustrating the structure of causal
dependency, conflict and concurrency of two distinct tasks. Let us notice that, in the context of
workflows, as places correspond to conditions, specifiers are used to considering ordinary Petri
nets [van der Aalst, 1998].

(a) Causal dependency of task1 and task2

(b) Conflict of task1 and task2 (c) Concurrency of task1 and task2

Figure 2.9: Illustration of causal dependency, conflict and concurrency in workflow nets

Formally a workflow net is defined as follows.

22 CHAPTER 2. STATE OF THE ART

Definition 19: Workflow net

An ordinary Petri net N = 〈P,T, F〉 is a Workflow net if and only if:

– N has two special places i and o, where •i = ∅ and o• = ∅, and

– for each node n ∈ (P ∪ T), there exists a path from i to o passing through n.

The places i and o respectively correspond to the beginning and termination of the processing of a
case. Let N = 〈P,T, F〉 be a workflow net and k ∈ N \ {0} be a number of cases. The beginning of
the processing of k cases corresponds to the initial marking Mi(k) such that:

∀ p ∈ P, Mi(k)(p) =

k, if p = i
0, otherwise

Analogously, the termination of the processing of k cases corresponds to the final marking Mo(k)
such that:

∀ p ∈ P, Mo(k)(p) =

k, if p = o
0, otherwise

A sequence of transitions σ is an (partial) execution of N if there exist Ma,Mb two markings of N
such that Ma

σ
−→ Mb. A correct execution of N is an execution σ such that Mi(k)

σ
−→ Mo(k). The

behaviour of N is defined as the set Σk of all its correct executions σ such that Mi(k)
σ
−→ Mo(k).

Given a transition t and an execution σ, the function Ot(σ) is the number of occurrences of t in σ.

Example 5: Workflow net example: On-demand order delivery

To illustrate the use cases of workflow nets, let us consider the business process asso-
ciated with an on-demand order delivery company such as a Pizza delivery company.
Textually this process is described as follows. The process starts when receiving a call
from a client. The client then proceeds to, in any order, state his order as well as some
personal information (e.g., name, address). Once a client stated his order, the order is
prepared then delivered. When presented with his order, a client can present one or sev-
eral promotional coupons before paying his order using either a credit card or by cash.
The process finishes upon receiving payment.
This process can be modelled by a workflow net as shown in Figure 2.10.

Figure 2.10: On-demand order delivery workflow net

2.1. PRELIMINARIES 23

2.1.7/ Workflow Nets Equivalences

Comparing the behaviour of workflow nets is a task which relies on the definition of equivalences.
Let N = 〈P,T, F〉 be a workflow net and k ∈ N \ {0} be a number of cases. We present two kinds of
equivalences. The first kind, called strong trace equivalence, compares workflow nets with respect
to all of their transitions.

The behaviour of N for the processing of k cases, denoted Σk, is defined as the set of all its correct
executions. Formally,

Σk = {σ | Mi(k)
σ
−→ Mo(k)}

The strong trace set of N, denoted Γ(N), is defined as:

Γ(N) = ∪k∈N\{0}Σk

Two workflow nets are said to be strong trace equivalent if and only if their strong trace sets are
equal. Formally,

Definition 20: Strong Trace Equivalence

Let N1 = 〈P1,T1, F1〉 and N2 = 〈P2,T2, F2〉 be two workflow nets.
N1 and N2 are strong trace equivalent if and only if Γ(N1) = Γ(N2).

(a) (b)

Figure 2.11: Two strong trace equivalent workflow nets

Example 6: Illustration of strong trace equivalence

The two workflow nets respectively depicted by Figures 2.11(a) and 2.11(b) are strong
trace equivalent. They have the same behaviour with respect to all of their transitions.

The second kind of equivalence, called weak trace equivalence, compares workflow nets with
respect to a given subset of their transitions.

Let S ⊆ T be the considered transition set. Transitions of S are said to be part of the visible
behaviour of N whereas transitions of T \ S are said to be part of the invisible behaviour of N. Let
Ma and Mb two markings of N. We denote Ma ⇒S Mb the fact that Ma = Mb or there exists a

sequence σ of transitions of T \ S such that Ma
σ
−→ Mb. We write Ma

t
=⇒S Mb if and only if there

exist M1,M2 two markings of N and t ∈ S such that Ma ⇒S M1
t
−→ M2 ⇒S Mb. For a sequence

σ = t1, .., tn of transitions of S , we write Ma
σ
=⇒S Mb if and only if there exist n − 1 markings of

N, denoted M1, ..,Mn−1, such that Ma
t1
=⇒S M1

t2
=⇒ ..

tn−1
===⇒ Mn−1

tn
=⇒S Mb.

24 CHAPTER 2. STATE OF THE ART

The behaviour of N for the processing of k cases with respect to the set of transitions S , denoted
ΣS

k , is defined as:

ΣS
k = {σ | Mi(k)

σ
=⇒S Mo(k)

The weak trace set of N with respect to the set of transitions S , denoted ΓS (N), is defined as:

ΓS (N) = ∪k∈N\{0}Σ
S
k

Two workflow nets are said to be weak trace equivalent with respect to a set of transitions if and
only if their weak trace sets with respect to this set of transitions are equal. Formally,

Definition 21: Weak Trace Equivalence

Let N1 = 〈P1,T1, F1〉 and N2 = 〈P2,T2, F2〉 be two workflow nets. Let S be a set of
considered transitions such that S ⊆ T1 and S ⊆ T2.
N1 and N1 are weak trace equivalent with respect to S if and only if ΓS (N1) = ΓS (N2).

(a) (b)

Figure 2.12: Two weak trace equivalent workflow nets with respect to {t2, t4}

Example 7: Illustration of weak trace equivalence

The two workflow nets respectively depicted by Figures 2.12(a) and 2.12(b) are weak
trace equivalent with respect to {t2, t4}. They have the same behaviour with respect to the
transitions t2 and t4.

2.1.8/ Workflow Nets Soundness

In the context of workflow nets, a well-established correctness feature that all workflows should
verify is called soundness [van der Aalst, 1998]. It states that beside structural properties given by
the definition of workflow nets, a sound workflow net describes a procedure that will terminate
eventually (option to complete), and that when it does there is a token in place o and all of the
other places are empty (proper completion). Additionally, a sound workflow net may not contain
dead transitions. This correctness criteria constitute an underlying property of workflow nets that
has to be verified in order to ensure correct executions.

2.1. PRELIMINARIES 25

Definition 22: Soundness [van der Aalst, 1998, van der Aalst et al., 2011]

Let N = 〈P,T, F〉 be a workflow net, N is sound if and only if:

– ∀M ∈ RN(Mi(1)),Mo(1) ∈ R
N(M) (option to complete),

– ∀M ∈ RN(Mi(1)), (M(o) > 0)⇒ (M = Mo(1)) (proper completion), and

– ∀t ∈ T,∃M,M′ ∈ RN(Mi(1)),M
t
−→ M′ (no dead transitions).

Note that if we assume fairness – transitions that are enabled infinitely often will fire eventu-
ally – then the first requirement implies that eventually the final making is reached. As argued
in [van der Aalst, 1998], the fairness assumption is reasonable in the context of workflow man-
agement. Indeed, all choices are made implicitly or explicitly by applications, humans or external
actors which should not introduce infinite loops.

To apply the notion of soundness to workflow nets handling multiple cases at once, the notion of
k-soundness introduced in [Barkaoui et al., 2007] (also known as structural soundness) extends the
classical soundness to the processing of k cases and is proved to be decidable [Ţiplea et al., 2005].

Definition 23: k-soundness [Barkaoui et al., 2007]

Let N = 〈P,T, F〉 be a workflow net, and k ∈ N. N is k-sound if and only if:

– ∀M ∈ RN(Mi(k)),Mo(k) ∈ R
N(M)

– ∀t ∈ T,∃M,M′ ∈ RN(Mi(k)),M
t
−→ M′

Furthermore, a workflow net is said generalised sound if it is k-sound for all k ∈ N. Generalised
soundness is also proved to be decidable [Van Hee et al., 2004].

Definition 24: Generalised Soundness [Barkaoui et al., 2007]

Let N = 〈P,T, F〉 be a workflow net, N is generalised sound if and only if:

∀k ∈ N, N is k-sound

2.1.9/ Stepwise Refinement ofWorflow Nets

In Section 2.1.5.1, we defined hierarchical Petri nets and their relation to stepwise refinement,
a powerful development method which consists in iteratively substituting places and transitions
of a Petri net by whole Petri nets (i.e. building blocks) while preserving properties of interest
(e.g., liveness, boundedness) until the desired level of detail is achieved. Such construction is
often native to workflow modelling standard. For instance, in BPMN [Allweyer, 2016], processes
can contain sub-processes which are themselves processes. This allows modellers to start with
a simple model of the considered process (i.e. a rough abstraction of the process) composed of
abstract activities. Such activities are then iteratively detailed by the processes which model them
until a sufficient level of detail is reached. Doing so enables modellers to get a general idea of
the process, recognize correlations, and identify where the weak points are early, concerns that are
essential to reliable and effective process modelling.

In the context of workflow nets, this leads to a simple and intuitive stepwise refinement method
based on the substitution of transitions and places by whole workflow nets which preserves gener-
alised soundness [Van Hee et al., 2003].

26 CHAPTER 2. STATE OF THE ART

A composed workflow net built using this method has special transitions/places that represent
several whole (composed or not) workflow nets. Such composed workflow nets can then be viewed
as hierarchical Petri nets, called hierarchical workflow nets and representing workflow nets with
multiple layers of detail.

Intuitively, a single task (i.e. a single transition) on a higher level can become a sequence of
subtasks (i.e. a sequence of transitions) involving choices and concurrencies. Likewise, a resource
(i.e. a token) meeting a condition (i.e. at some place) can require a sequence of subtasks (i.e. a
sequence of transitions) involving choices and concurrencies to be executed between the moment
they meet the condition and the moment they are available by other tasks.

Formally, a hierarchical workflow net is recursively defined as follow.

Definition 25: Hierarchical Workflow Nets

The set W of hierarchical workflow nets is recursively defined as W ∈ W ⇔ W =

〈Ph,Th, Fh〉 where:

– Ph ⊆ W is a finite set of places,

– Th ⊆ W is a finite set of transitions,

– Fh ⊆ (P × T) ∪ (T × P) is a finite set of arcs,

– the Petri net 〈Ph,Th, Fh〉 is a workflow net or Ph = Th = Fh = ∅

The semantics of a hierarchical workflow net W is defined with respect to its underlying Petri
net which assumes standard Petri nets semantics. Formally, let N1 = 〈P1,T1, F1〉 and N2 =

〈P2,T2, F2〉 be two workflow nets, there exist two basic refinement operations.

The first refinement operation is the place refinement of a place p ∈ P1 with a workflow net N2
which produces a new workflow net N = N1 ⊗p N2 built by replacing the place p by the workflow
net N2: p is removed from N1, the input transitions of p (i.e. •p) become the input transitions of
the initial place of N2 and the output transitions of p (i.e. p•) become the output transitions of the
final place of N2. This operation is illustrated by Figure 2.13.

Figure 2.13: Illustration of the place refinement of place p with a workflow net Nsub

The second refinement operation is the transition refinement of a transition t ∈ T1 with a workflow
net N2 which produces a new workflow net N = N1 ⊗t N2 built by replacing the transition t by the
workflow net N2: t is removed from N1, the initial place i2 ∈ N2 and the final place o2 ∈ N2 are
removed from N2, the input places of p (i.e. •p) become the input places of the output transition
of i2 (i.e. i•2) the initial place of N2, the output places of p (i.e. p•) become the output places of the
input transition of o2 (i.e. •o2) the final place of N2. This operation is illustrated by Figure 2.14.

2.1. PRELIMINARIES 27

Figure 2.14: Illustration of the transition refinement of transition t with a workflow net Nsub

It follows that the underlying w net of a hierarchical workflow net can recursively be constructed
as depicted by the function underlying of Algorithm 1.

Data: W = 〈Ph,Th, Fh〉 a hierarchical workflow net
Result: N = 〈P,T, F〉 the workflow net underlying W
Function underlying(W = 〈Ph,Th, Fh〉)

N = 〈Ph,Th, Fh〉;
forall the S = 〈Ps,Ts, Fs〉 ∈ Ph ∪ Th do

if Ps , ∅ then
N = N ⊗S underlying(S);

end
end
return N

Algorithm 1: Construction of the workflow net underlying a hierarchical workflow net

By analogy with spacial dimensions, the presented refinement operations – place refinement
and transition refinement – are called vertical refinement operations. This is because, given
W = 〈Ph,Th, Fh〉 a hierarchical workflow net, refinement operations, called horizontal refinement
operations, can modify its flow relation (i.e. Fh) or add/remove nodes without modifying any of its
nodes (i.e. the hierarchical workflow nets in the set Ph ∪ Th) and super-nodes (i.e. the hierarchical
workflow nets whose set of nodes contains W). In the context of Petri nets, horizontal refinement
operations are also called synthesis rules. Several synthesis rules are presented in Section 2.2.3.2
page 36, as well as in the contribution of this thesis in Section 4.1 page 68.

As previously said, a major advantage of stepwise refinement development method is its abil-
ity to preserve properties of interest. For example, the previously presented refinement opera-
tions – place refinement and transition refinement – are known to preserve generalised sound-
ness [Van Hee et al., 2003].

Formally, let N1 = 〈P1,T1, F1〉 and N2 = 〈P2,T2, F2〉 be two generalised sound workflow nets,
then ∀ n ∈ P1 ∪ T1,N1 ⊗n N2 is a generalised sound workflow net.

While hierarchical workflow nets do not add any expressiveness to workflow nets, they greatly
simplify the modelling work by allowing to model small parts of the whole process described as
(hierarchical) workflow nets that are then composed into a hierarchical workflow net. It also fosters
the re-usability of (hierarchical) workflow nets, a key notion which allows rapid development of
new hierarchical workflow nets based on a sound library of generic (hierarchical) workflow nets
developed previously.

Note that, in the context of stepwise refinement using place refinements and transition refinements,

28 CHAPTER 2. STATE OF THE ART

the hierarchical workflow nets are explicitly given by the modellers. In a broader context, hierar-
chical workflow nets can be automatically and efficiently constructed from workflow nets through
their decomposition [Vanhatalo et al., 2007, Polyvyanyy et al., 2011, Koehler et al., 2014].

2.1.10/ Modal Specification

To help engineers in their specification and validation activities, modal specifica-
tions [Larsen, 1989] have been designed to allow loose specifications of models under
development. Modal specifications impose restrictions on the possible refinements by indicating
whether activities are necessary or admissible. Those specifications are notably used within
refinement approaches for software development. Modalities allow underspecification of certain
activities which must be or may be present in later refinements. They provide a flexible tool for
workflow development as decisions can be delayed to later steps of the development life cycle,
when performing workflow refinements (Section 2.1.9).

In the framework of Petri nets, modal specifications allow specifiers to indicate that a transition
(i.e. an activity) is necessary or just admissible. This concept provides two kinds of transitions:
the must-transitions and the may-transitions [Elhog-Benzina et al., 2012]. More precisely, in the
context of workflow nets, a may-transition (resp. must-transition) is a transition fired by at least
one execution (resp. all the executions) of the process modelled by a workflow net.

Definition 26: Modal Workflow net

A modal workflow net M is a tuple 〈N,T�〉 where:

– N = 〈P,T, F〉 is a workflow net, and

– T� ⊂ T is a set of must-transitions.

The set of may-transitions is the set of transitions T of N.

Formally, let M = 〈〈P,T, F〉,T�〉 be a modal workflow net, we have:

t ∈ T ⇔ ∃ σ ∈ Σ1,Ot(σ) > 0, and t ∈ T� ⇔ ∀ σ ∈ Σ1,Ot(σ) > 0

Example 8: Illustration of a modal specification

For example, consider the on-demand order delivery workflow net described in Fig-
ure 2.10 page 22. Some activities of this workflow are necessary (e.g., Client States Or-
der, Deliver Order) whereas some activities of this workflow are admissible (e.g., Client
Presents Coupon). More precisely, an example of a modal specification of this workflow
is given by the definition of the set of must-transitions containing the following tran-
sitions: Receive Client Call, Client States Order, Client States Personal Informations,
Prepare Order, Deliver Order.

2.2/ Analysis of Petri Nets

Beside being a computational modelling suited to the descriptions of complex systems exhibiting
causal dependencies, conflicts and concurrencies, Petri nets rely on a strong theoretical and formal
background allowing modellers to draw important conclusions about the modelled systems without

2.2. ANALYSIS OF PETRI NETS 29

having to resort to the time and cost ineffective trial and error prototyping. Thereby modellers can
answer questions about what the modelled system behaviour is supposed to be under specific
operational conditions, what properties are inherent to the structure of the net, what to expect and
what not to expect from the system during operation.

When it comes to analysing Petri nets, there exist three major approaches:

– Behavioural approach - based on the construction of reachability (coverability) graphs,

– Structural approach - based on the matrix representation of Petri nets and algebraic tech-
niques as well as on topological features, and

– Reduction (abstraction) approach - based on transformations simplifying Petri nets (e.g.,
reducing the size of Petri nets)

On the one hand, the first approach essentially relies on the enumeration of all reachable markings.
It can by applied to arbitrary Petri nets but is limited to small instances of Petri nets due the
complexity arising from the state-space explosion. On the other hand, the two other approaches
are not as generic but have been shown to be very powerful over specific subclasses of Petri nets
or specific cases.

The following sections briefly describe these three approaches.

2.2.1/ Behavioural Approach

As previously said, the behavioural approach essentially relies on the enumeration of all markings
reachable from an initial state. The result of such an enumeration is stored in a labelled graph
where nodes represent markings, and each arc represents a transition firing which transforms a
marking into another.

Let N = 〈P,T, F〉 be an ordinary Petri net, and M0 : P → N be an initial marking of N. The
reachability graph RG(N,M0) of the ordinary Petri N with initial marking M0 is a rooted, directed
graph 〈V, E, v0〉 where:

– V = RN(M0) is the set of nodes (i.e. each marking of N reachable from the initial marking
MO is a node),

– v0 = M0 is the root node (i.e. the initial marking MO of N is the root node), and

– E = {〈M, t,M′〉 |M,M′ ∈ V, t ∈ T,M
t
−→ M′} is the set of arcs (i.e. the firing of transitions

between markings of N reachable from the initial marking MO).

Reachability graphs aim at representing the underlying semantics of Petri nets from which analysis
can be carried out on. However, such representation may be infinite whenever the considered Petri
net is unbounded.

To overcome this issue, one can represent the reachability graph by mean of abstraction. A well-
known abstract reachability graph is the coverability graph [Karp et al., 1969]. The main idea of
the coverability graph is to represent infinite parts of the reachability graph where some places
become unbounded in a finite number of nodes thus leading to finite over-approximation of the
reachability graph.

30 CHAPTER 2. STATE OF THE ART

While many properties can be checked using the coverability graph (e.g., boundedness, dead
transition) others may not in general be checked due to the the fact that it defines an over-
approximation (e.g., reachability, liveness).

In particular, the coverability graph can be used to decide whether a workflow net is sound as well
as modal specifications validity.

The reachability graphs and the coverability graphs of Petri nets (resp. workflow nets) provide
the basis of a verification technique called model checking. Model checking is a verification tech-
nique that explores all possible states of a system in a brute-force manner [Clarke et al., 1999].
It aims at verifying the validity of a desired behavioural property (the specification), usually ex-
pressed in temporal logic such as Linear Temporal Logic [Gabbay et al., 1980] or Computation
Tree Logic [Clarke et al., 1981], via an exhaustive explicit or symbolic enumeration of all of the
reachable states and transitions between them. If the property is found not to hold in all system
executions, a counterexample is produced, consisting of a trace of the model from a start state to
an error state in which the specification is violated, providing a very helpful approach for debug-
ging the system design. Examples of Petri nets model checkers include LoLA [Schmidt, 2000]
and TINA [Berthomieu* et al., 2004].

However, a main challenge of model checking is the state explosion problem [Valmari, 1998].
Indeed, the complexity of the algorithm constructing the reachability graph as well as the cover-
ability graph can be worse than primitive recursive space. This renders model checking intractable
on large instances of Petri nets (resp. workflow nets).

2.2.2/ Structural Approach

This section presents the structural approach used to analyse Petri nets. Structural analysis tech-
niques are mainly based on the static structure of a Petri net, and aim at deriving links between
the topological structure of a Petri net and its behaviours. They mainly revolve around algebraic
techniques applied to the matrix representation of Petri nets.

The following sections describe the main features linked to the structural analysis of Petri nets.

2.2.2.1/ State Equation

From the matrix representation of Petri nets (Section 2.1.2.1 page 14), one would like to give an
algebraic description of how the markings of Petri nets change (evolve).

Let N = 〈P,T, F〉 (resp. N = 〈P,T, F,W〉) be an ordinary (resp. a generalised) Petri net such that
P = {p1, .., p|P|} and T = {t1, .., t|T |}.

Assuming, without loss of generality, that N is pure, then N is fully described by its incidence
matrixW.

Let Ma,Mb be two markings of N and t a transition of N. By definition of the firing rule we have:

Ma
t
−→ Mb ⇔ ~Mb = ~Ma +W∗ ~t ≥ 0 (2.4)

The right hand side of the equivalence in equation 2.4 is a state equation: it relates an actual state
~Ma, to a next state ~Mb obtained after firing transition ~t.

Next, this equation is extended to consider transition sequences.

2.2. ANALYSIS OF PETRI NETS 31

Let σ be a transition sequence of N, in matrix form, σ is represented as a matrix ~σ ∈ N(|T |,1) such
that ∀i ∈ {1, .., |T |}, ~σi,1 = Oti(σ).

Building up on equation 2.4 by using the distributivity property of the multiplication operator (∗)
we obtain the state equation:

Ma
σ
−→ Mb ⇒ ~Mb = ~Ma +W∗ ~σ ≥ 0 (2.5)

Similarly to the right hand side of the equivalence in equation 2.4, the right hand side of the
equivalence in equation 2.5 is a state equation: it relates an actual state ~Ma, to a next state ~Mb

obtained after firing transition sequence ~σ.

Equation 2.5 is called the state equation of N, also known as the fundamental equation of N.
Intuitively, the state equation considers, based on the structure of N, the transition sequences such
that for each place of N the number of tokens produced added to the tokens present in the starting
marking of the place is equal to the number of tokens consumed added to the tokens present in the
reached marking of the place. Note that the order in which the transitions involved in the transition
sequences are fired is not considered by the state equation.

It provides a necessary condition to the existence of a transition sequence σ starting from marking
Ma and leading to marking Mb. However, it is important to note that it does not provide a sufficient
condition to the existence of a transition sequence σ starting from marking Ma and leading to
marking Mb. More precisely, a non-negative integer solution of the equation ~Mb = ~Ma +W ∗ ~σ

does not imply that a transition sequence σ such that Ma
σ
−→ Mb exists.

Solutions satisfying the state equation of N that do not correspond to valid executions of N are
called spurious solutions. The existence of spurious solutions is one of the main problems in the
utilization of algebraic linear techniques to analyse the behaviour of a Petri net.

Let us note that the state equation is the basis of a reachability analysis approach based on
the concept of counterexample guided abstraction refinement (CEGAR) [Clarke et al., 2000]. In
essence, [Wimmel et al., 2011] iteratively analyses spurious solutions of the state equation and add
constraints that exclude a solution found to be spurious but do not exclude any consistent solutions.

2.2.2.2/ Structural Invariants

This section describes the different structural invariants that arise from the study of the incidence
matrix of Petri nets. Structural invariants are structural features independent of the initial marking
of a Petri net from which behavioural properties can be inferred.

Let N = 〈P,T, F〉 (resp. N = 〈P,T, F,W〉) be an ordinary (resp. a generalised) Petri net such that
P = {p1, .., p|P|} and T = {t1, .., t|T |}. Assuming, without loss of generality, that N is pure, then
N is fully described by its incidence matrix W. There exist two main categories of invariants:
T-invariants and P-invariant.

32 CHAPTER 2. STATE OF THE ART

Definition 27: T-invariant

Let ~I ∈ Z(|T |,1) be a matrix such that ~I , ~0, ~I is a T-invariant of N if and only if:

W∗ ~I = ~0 (2.6)

A T-invariant ~I is called a T-semiflow if and only if:

∀i ∈ {1, .., |T |}, ~Ii,1 ≥ 0 (2.7)

The support of a T-invariant ~I, noted ||~I||, is defined as:

||~I|| = { ti | ~Ii,1 > 0 } (2.8)

Intuitively, a T-invariant of N indicates a possible loop in the net, i.e. a sequence of transitions
which does not change the marking of N.

Theorem 1: T-invariant Property

Let M0 be the initial marking of N, M be a marking of N and σ a transition sequence
such that M0

σ
−→ M. M = M0 if and only if ~σ is a T-invariant of N.

The Petri net N is said to be covered by T-invariants if and only if, for each transition t ∈ T , there
exists ~I, a T-invariant of N, such that t ∈ ||~I||. The boundedness and liveness of N can be inferred
from T-invariants as follows.

Theorem 2: T-invariants Covered Petri Net Property

If N is covered by T-invariants then N is bounded and live.

Definition 28: P-invariant

Let ~I ∈ Z(1,|P|) be a matrix such that ~I , ~0, ~I is a P-invariant of N if and only if:

~I ∗W = ~0 (2.9)

A P-invariant ~I is called a P-semiflow if and only if:

∀i ∈ {1, .., |P|}, ~t1,p ≥ 0 (2.10)

The support of a P-invariant ~I, noted ||~I||, is defined as:

||~I|| = { pi | ~I1,i > 0 } (2.11)

Intuitively, a P-invariant corresponds to a set of places whose weighted token count is a constant
for any reachable marking.

Theorem 3: P-invariant Property

Let M0 be the initial marking of N and M ∈ RN
M0

be a marking of N. If ~I is a P-invariant
of N then:

~I ∗ M0 = ~I ∗ M (2.12)

This way, P-invariants are notably used to prove mutual exclusion of places.

2.2. ANALYSIS OF PETRI NETS 33

The Petri net N is said to be covered by P-invariants if and only if, for each place p ∈ P, there exists
~I, a P-invariant of N, such that p ∈ ||~I||. The boundedness of N can be inferred from P-invariants
as follows.

Theorem 4: P-invariant Covered Petri Net Property

If N is covered by P-invariants then N is bounded.

Let us note that any linear combination of P-invariants (resp. T-invariants) is a P-invariant (resp.
T-invariant).

2.2.2.3/ Siphons and Traps

Siphons and traps are interesting features that can, as invariants, be used to infer behavioural
properties of a Petri net.

Let N = 〈P,T, F〉 (resp. N = 〈P,T, F,W〉) be an ordinary (resp. a generalised) Petri net.

Definition 29: Siphon

Let N ⊆ P such that N , ∅:

– N is a siphon if and only if •N ⊆ N•.

Intuitively, a siphon is a subset of places such that every input transition of a place is an output
transition of some other places.

Lemma 1: Siphon property[Murata, 1989]

An unmarked siphon cannot be marked.

Definition 30: Trap

Let N ⊆ P such that N , ∅:

– N is a trap if and only if N• ⊆ •N.

Intuitively, a trap is a subset of places such that every output transition of a place is an output
transition of some other places.

Lemma 2: Trap property[Murata, 1989]

A marked trap cannot be unmarked.

We note that in the case of ordinary Petri nets, the presence of P-semiflows is linked with the
presence of traps and siphons.

Lemma 3: P-Semiflow Siphon/Trap link property[Li et al., 2009]

Let N = 〈P,T, F〉 be an ordinary Petri net. A function ω : P → N is a P-semiflow of N
if and only if ||ω|| the support of ω (i.e. ||ω|| = {p ∈ P|ω(p) > 0}) is a trap and a siphon.

In the case of free-choice nets, there is a well-known relation between traps/siphons and liveness
based on the evaluation of the so called siphon-trap property.

34 CHAPTER 2. STATE OF THE ART

Definition 31: Siphon-Trap Property

Let N be a Petri net, N is said to satisfy the siphon-trap property (STP) if and only if:

– every siphon of N contains a marked trap.

Theorem 5: Free-Choice Nets liveness[Murata, 1989]

Let N be a free-choice Petri net. N is live if and only if N satisfies the siphon-trap
property.

In the case of arbitrary Petri nets, the Siphon-Trap property can be linked to behavioural property
as follows.

Theorem 6: Siphon-Trap conclusions[Murata, 1989]

Let N be a Petri net.

– If N is live then N satisfies the siphon-trap property.

– If N satisfies the siphon-trap property then N does not contain dead locks (i.e. all
reachable markings enable at least one transition).

2.2.2.4/ Analysis ofWorkflow Nets

In this section we focus on the structural analysis techniques used to verify the soundness (resp. k-
soundness, generalised soundness) property of workflow nets as presented in [Van der Aalst, 1997,
Barkaoui et al., 2007, Van Hee et al., 2004].

Given a workflow net N = 〈P,T, F〉, the goal is to structurally decide whether N is k-sound.

To this end, the k-closure of a workflow net N, noted N∗k , is defined as follows.

Definition 32: k-closure of a Workflow Net

Let N = 〈P,T, F〉 be a workflow net. The k-closure of N, noted N∗k is defined as a
generalised Petri net 〈P∗,T ∗, F∗,W∗〉 where:

– P∗ = P,

– T ∗ = T ∪ {t∗},

– F∗ = F ∪ {(o, t∗), (t∗, i)},

– ∀ f ∈ F,W∗(f) = 1, and

– W∗(o, t∗) = W∗(t∗, i) = k.

It is proved that the k-soundness property of a workflow net can be reduced to the liveness and
boundedness of the corresponding k-closure Petri net.

Theorem 7: k-soundness via k-closure [Barkaoui et al., 2007]

A workflow net N is k-sound if and only if its k-closure Petri net N∗k is live and bounded.

This allows structural analysis to be applied to the determination of the k-soundness property of a
workflow net.

2.2. ANALYSIS OF PETRI NETS 35

In the case of free-choice workflow nets, this leads to a polynomial time algorithm capable of
deciding k-soundness [Barkaoui et al., 2007] based on the following theorem.

Theorem 8: Free-choice k-soundness [Barkaoui et al., 2007]

Let N be a workflow net such that its k-closure Petri net N∗k is a free-choice Petri net.
The workflow net N is k-sound if and only if N∗k is covered by P-semiflows and satisfies
the siphon-trap property.

However, in the general case this analysis only defines sufficient conditions for k-soundness based
on the following theorem.

Theorem 9: Sufficient conditions for k-soundness [Van der Aalst, 1997]

Let N by a workflow net and N∗k its k-closure Petri net. If the rank of the incidence matrix
of N∗k is equal to the number of clusters of N∗k minus 1, and every proper siphon of N∗k
contains at least a token, then the workflow net is k-sound.

For some subclasses of workflow nets (e.g., free choice workflow nets), it has been shown that
classical soundness, i.e. (weak) 1-soundness, implies generalised soundness [Ping et al., 2004].
In the context of arbitrary workflow nets, generalised soundness has been proved decidable and
a decision procedure has been given in [Van Hee et al., 2004]. This procedure relies on the fact
that a workflow net N is generalized sound if and only if a certain batch workflow net N′ can
be derived from it, and N′ is generalized sound. The derivation is straightforward and only uses
structural analysis of the net. Further, verifying the generalized soundness of N′ is reduced to a
finite number of proper termination checks in N′. We also note that in [van Hee et al., 2006b] the
procedure described in [Van Hee et al., 2004] is improved by reducing the size of needed proper
termination checks.

2.2.3/ Reduction Approach

This section presents an approach based on successive application of Petri net transformation rules
preserving properties of interest (e.g., liveness, boundedness).

The main idea behind this approach is to iteratively apply a set of Petri net transformation rules
(called a kit), each one reducing the size of the analysed Petri net while preserving the subset of
properties to be analysed until the reduced Petri net is irreducible with respect to the considered set
of transformation rules (i.e. until a fixed point is reached). The obtained irreducible Petri nets can
be so simple that the properties under study can be trivially checked. Otherwise, further analysis
are required to conclude.

The main advantage of this method is its ability to reduce the size of Petri nets under analysis
while preserving a subset of their properties (e.g., liveness, boundedness). It follows that this
approach is mainly considered as a pre-processing step to standard analysis approaches such as
the one presented in Sections 2.2.1 page 29 and 2.2.2 page 30 enabling them to be carried out on
instances smaller than the original ones.

2.2.3.1/ Formalization

Formally, a Petri net transformation rule φ is defined as a binary relation over Petri nets. It is fully
described by the conditions of application under which it can be applied to a source Petri net, and
the construction algorithm that is applied to the source Petri net to form a target Petri net.

36 CHAPTER 2. STATE OF THE ART

Let N, Ñ be two Petri nets and φ a transformation rule, the fact that φ is applicable to N and that
applying φ to N results in Ñ, is denoted (N, Ñ) ∈ φ.

A Petri net transformation rule φ is called a Petri net reduction rule if for all (N, Ñ) ∈ φ, the number
of nodes (i.e. the number of places and transitions) of Ñ is strictly smaller than the number of
nodes of N. Conversely, a Petri net transformation rule φ is called a Petri net synthesis rule if for
all (N, Ñ) ∈ φ, the number of nodes of Ñ is strictly greater than the number of nodes of N.

Note that refinement operations such as place refinement and transition refinement (Section 2.1.9
page 25) are synthesis rules. Likewise, reduction rules are abstraction operations.

Let ψ be a Petri net property such as liveness or boundedness, we denote N |= ψ the fact that the
Petri net N satisfies ψ.

If for all Petri nets N and Ñ such that (N, Ñ) ∈ φ,N |= ψ ⇒ Ñ |= ψ, φ is said to preserve ψ. If the
reverse holds as well (i.e. Ñ |= ψ⇒ N |= ψ), then φ is said to strongly preserve ψ.

The relation over Petri nets induced by a set of Petri net transformation rules is called a kit. Let
Φ be the kit induced by n Petri net transformation rules φ1, .., φn, Φ defines a binary relation over
Petri nets such that (N, Ñ) ∈ Φ⇔ ∃i ∈ {1, .., n}, (N, Ñ) ∈ φi.

If a kit is induced by a set of Petri net reduction rules, it is called a reduction kit. Likewise, if a kit
is induced by a set of Petri net synthesis rules, it is called a synthesis kit.

We say that Φ (strongly) preserves ψ if and only if ∀i ∈ {1, .., n}, φi (strongly) preserves ψ.

Finally, Φ∗ denotes the transitive closure of Φ, where (N0,Nm) ∈ Φ∗ if and only if there exists a
sequence (φ1,N1), .., (φm,Nm) such that ∀ i ∈ {1, ..,m}, (Ni−1,Ni) ∈ φi.

Lemma 4: Kit Property Preservation

Let ψ be a Petri net property, Φ a kit, which strongly preserves ψ, and N, Ñ be two Petri
nets such that (N, Ñ) ∈ Φ∗, then one has:

– N |= ψ⇔ Ñ |= ψ

Suppose that Φ is a reduction kit, Φ is said to be a complete reduction kit with respect to the
property ψ if and only if there exists an atomic Petri net NAtomic (i.e. an irreducible Petri net) such
that NAtomic |= ψ and ∀ N |= ψ, (N,NAtomic) ∈ Φ∗. Conversely, suppose that Φ is a synthesis kit, Φ

is said to be a complete synthesis kit with respect to the property ψ if and only if there exists an
atomic Petri net NAtomic such that NAtomic |= ψ and ∀ N |= ψ, (NAtomic,N) ∈ Φ∗.

2.2.3.2/ Well-known reduction rules

This section presents an overview of well-known reductions rules preserving boundedness and
liveness, two properties closely related to the soundness of workflow nets (Section 2.2.2.4
page 34). Note that we restrict this section to rules whose conditions of applications are struc-
turally defined and that are applicable to workflow nets.

In [Murata, 1989], six reduction rules strongly preserving boundedness and liveness are given.
From those six rules only five are applicable to workflow nets. Figure 2.15 depicts these six
reduction rules: Every net fragment shown on the left can be reduced to the fragment on the right
while preserving boundedness and liveness.

Note that many tools implement these reduction rules as a pre-processing step to analysis. For
example, before the analysis of soundness, Woflan [Verbeek et al., 2000] – a Petri net based work-

2.2. ANALYSIS OF PETRI NETS 37

(a) Fusion of Series Places (b) Fusion of Series Transitions

(c) Fusion of Parallel Places

(d) Fusion of Parallel Transitions (e) Elimination of Self-loop Places

Figure 2.15: Reduction rules of [Murata, 1989]

flow diagnosis tool – can apply these five reduction rules in order to reduce the size of the analysed
workflow net.

In [Desel et al., 2005], three reduction rules preserving boundedness and liveness are presented
and proved to be complete over the subclass of free-choice Petri nets. The first rule, denoted φA is
depicted by Figure 2.16.

Figure 2.16: Reduction Rule φA of [Desel et al., 2005]

The second rule, denoted φS , states that a place p can be removed from a Petri net N = 〈W〉 with
at least two places if p is not an isolated place (i.e. •p ∪ p• , ∅), and p is linearly dependent of a
distinct set of places (i.e. there exists Λ ∈ N(1,|P|) such that Λ(1,p) = 0 and Λ ∗W =W(p,) where
W(p,) is the row ofW corresponding to place p).

The third rule, denoted φT , states that a transition t can be removed from a Petri net N = 〈W〉 with
at least two transitions if t is not an isolated transition (i.e. •t ∪ t• , ∅), and t is linearly dependent
of a distinct set of transitions (i.e. there exists Λ ∈ N(|T |,1) such that Λ(t,1) = 0 andW∗ Λ =W(,t)
whereW(,t) is the column ofW corresponding to transition t).

38 CHAPTER 2. STATE OF THE ART

As previously mentioned, this kit is a complete kit over the subclass of free-choice Petri Net with
respect to boundedness and liveness. Thus, any bounded and live free-choice Petri nets can be
reduced to an atomic Petri net defined as NAtomic = 〈{p}, {t}, {(p, t), (t, p)}〉. As a result, we can use
these rules on the k-closure of a free-choice workflow net to determine whether this free-choice
workflow net is k-sound.

Numerous other authors have investigated reduction rules for Petri nets [Berthelot, 1987,
Lee-Kwang et al., 1987], notably in the context of workflow nets [Voorhoeve et al., 1997,
Sadiq et al., 2000, Lin et al., 2002, Lohmann et al., 2009, Hichami et al., 2014]. Furthermore,
similar approaches have been applied to other languages such as EPCs [Kindler, 2004,
van Dongen et al., 2005, van Dongen et al., 2007] and BPMN [Goldman et al., 2012]. Finally let
us note that reduction rules have also been applied for the analysis of Petri net extensions such as
time Petri nets [Sloan et al., 1996] and coloured workflow nets [Esparza et al., 2016].

2.3/ Constraint Systems

This section defines the notion of constraint system and provides an overview of the resolution
techniques used to decide their satisfiability.

2.3.1/ Definition

Constraint systems model mathematical problems defined by a finite set of constraints (properties)
over a finite set of variables with values ranging over their respective domains.

Formally, a constraint system is a tuple Ω =< X,D,C > where X is a set of variables {x1, . . . , xn},
D is a set of domains {d1, . . . , dn}, where di is the domain associated with the variable xi, and C is
a set of constraints {c1(X1), . . . , cm(Xm)}, where a constraint c j involves a subset X j of the variables
of X.

An interpretation (also called a model) of a constraint system Ω is an assignment to every vari-
able of a value from its domain. Formally, an interpretation is defined by a valuation function v
assigning to each variable xi of X a value from its domain di. An interpretation v satisfies (i.e. is
consistent with respect to) a constraint c(X) of C if the projection of v on X is in c(X).

An interpretation v of a constraint system Ω is said to satisfy the constraint system Ω (i.e. v is a
solution of Ω), noted Ω |= v, if and only if v is an interpretation such that all the constraints C
are satisfied. A constraint system Ω is said consistent or satisfiable if and only if there exists an
interpretation v satisfying (i.e. consistent with respect to) all the constraints C.

Constraint systems thus model NP-complete problems as search problems where the correspond-
ing search space is the Cartesian product space d1 × . . . × dn.

Determining the consistency/satisfiability of constraint systems has been the focus of a lot of re-
search work [Bordeaux et al., 2006, Biere et al., 2009, Oliveras, 2014].

In this thesis we restrict ourselves to the use of constraint systems over finite domains for which
recent advances in resolution methods provide an efficient resolution regarding satisfiability.

Two approaches can be distinguished to solve this problem, namely Logic Programming and
more specifically Constraint Logic Programming (CLP) over Finite Domains [Tsang, 1993]
and Satisfiability Modulo Theories (SMT) over the theory of non-linear integer arith-
metic [De Moura et al., 2011].

2.3. CONSTRAINT SYSTEMS 39

2.3.2/ Constraint Logic Programming (CSP)

Constraint satisfaction problems [Tsang, 1993] over finite domains are typically solved using a
form of search. The most used techniques are based on variants of backtracking, constraint prop-
agation, and local search.

A constraint system can be solved using generate-and-test paradigm (GT) that systematically gen-
erates each possible value assignment and then it tests whether it satisfies all the constraints. An
other search paradigm, considered more efficient, is the backtracking paradigm (BT) that is the
most commonly used algorithm. The backtracking paradigm is based on a recursive algorithm
maintaining a partial interpretation. It proceeds as follows, first, all variables are unassigned. At
each step, an unassigned variable is chosen, and all possible values are assigned to it in turn. For
each value, the consistency of the partial interpretation with respect to all constraints is checked. If
the partial interpretation is found consistent a recursive call is performed otherwise the algorithm
backtracks to the previous variable. Whenever a complete interpretation is found consistent the
algorithm can conclude that the constraint system is satisfiable.

The problem of most search algorithms based on backtracking is the occurrence of many back-
tracks to alternative choices, which degrades the efficiency of the system. Moreover, the efficiency
of backtracking algorithms depends considerably on the order in which variables and their values
are considered for instantiations. To cope with this issue various heuristics exist for dynamic or
static ordering of values and variables. Further, several variants of backtracking exist. For exam-
ple, backjumping [Dechter et al., 2002] allows saving part of the search by backtracking more than
one variable in some cases. Constraint learning [Bayardo et al., 1996] infers and saves new con-
straints that can be later used to avoid part of the search. Look-ahead [Frost et al., 1995] attempts
to foresee the effects of choosing a variable or a value, sometimes determining in advance whether
a partial interpretation is consistent.

The late detection of inconsistency is the main disadvantage of GT and BT paradigms. Therefore
constraint propagation techniques has been introduced to prune the search space. They are methods
that enforce a form of local consistency, which are conditions related to the consistency of a group
of variables and/or constraints turning a problem into one that is equivalent but is usually simpler
to solve. The most known and used forms of local consistency are arc consistency, hyper-arc
consistency, and path consistency [Kumar, 1992].

Well-known CSP solvers include Opturion CPX, OR-Tools, and SICStus Pro-
log [Carlsson et al., 1988].

Let us note that a lot of work has been done [Melzer et al., 1996, Desel, 1998, Schmidt, 2001,
Soliman, 2008, Bourdeaud’Huy et al., 2008, Kleine et al., 2010, Wimmel et al., 2011] in order to
model and to analyse the behaviour of Petri nets by using equational approaches that can be han-
dled by constraint logic programming.

2.3.3/ SatisfiabilityModulo Theories (SMT)

Constraint systems with variables over finite domains can be translated into first-order formulae
over the theory of non-linear integer arithmetic so that their satisfiability can efficiently be checked
using the satisfiability modulo theories approach [De Moura et al., 2011].

Satisfiability modulo theories consists of deciding the satisfiability of a first-order formula with
respect to a background theory. Two main approaches are distinguished, the eager approach and
the lazy approach.

40 CHAPTER 2. STATE OF THE ART

The eager approach is based upon the translation of SMT instances into equisatisfiable Boolean
SAT instances, so that off-the-shelf SAT solver can be used. The lazy approach, used by most
SMT solvers, is based on a DPLL search with theory-specific solvers[Nieuwenhuis et al., 2006],
called T -solvers, that handle conjunctions of predicates from a given theory T . In this approach
boolean reasoning is handled by a DPLL-based SAT solver which interacts with a T -solver. The T -
solver handles the theory T reasoning and check the feasibility of conjunctions of theory predicates
passed on to it from the DPLL-based SAT solver as it explores the boolean search space of the
formula.

Well-known SMT solvers include Z3 [De Moura et al., 2008] and CVC4 [Barrett et al., 2011].

In the context of Petri net analysis a lot of approaches using SMT resolution have been investi-
gated [Monakova et al., 2009, Esparza et al., 2014, Pólrola et al., 2014, Esparza et al., 2015].

In this first part, we provided a review of some mathematical notions and background notations
used throughout this thesis. We also reviewed some elements of the state of the art regarding Petri
nets, workflow nets and existing approaches for their analysis as well as constraint systems together
with approaches for their resolution. Based on these elements, the following part introduces the
contributions made to this thesis.

II
Contributions

41

3
Verification ofModal specification

“Being abstract is something profoundly different from being vague...
The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise.”

— Edsger Dijkstra

Contents
3.1 Over Ordinary Workflow Nets . 44

3.1.1 Extended Modal Specification . 44

3.1.2 Modelling Executions of Workflow Nets 46

3.1.3 Verifying Extended Modal Specifications 53

3.2 Over Abstract Workflow Nets . 55
3.2.1 Abstract Petri Nets . 55

3.2.2 Extended Abstract Modal Specification 59

3.2.3 Modelling Executions of Abstract Workflow Nets 61

3.2.4 Verifying Extended Abstract Modal Specifications 64

3.3 Synthesis . 65

To assist engineers in their specification and validation activities, modal specifica-
tions [Larsen, 1989] have been designed to allow loose specifications of models under develop-
ment (Section 2.1.10 page 28). This chapter presents an approach to the verification of modal
specifications.

The first section deals with ordinary workflow nets. It defines extended modal specifications, an
extension of modal specifications that enables the description of complex modal properties ex-
pressing requirements on several transitions and on their causalities. It then describes an original
modelling of workflow nets as constraint systems. The proposed modelling follows the well-
known schema of divide and conquer. The main idea is to decompose modelled executions in
segments defined over conflicts-free (i.e. marked graph) subnets, allowing the structural verifica-
tion of their correctness in order to guaranty that the modelled executions are correct. It concludes
by applying this modelling methodology to the verification of extended modal specification of
workflow nets.

The second section deals with the generalisation of the approach defined in the first section to han-
dle abstract Petri net, a suited abstract representation notably able to model ordinary, generalised
and coloured Petri nets. It begins with the formal definition of abstract workflow nets, defining the
largest model representation on which the modelling of executions presented in the first section can
be extended. It then generalises the concept of extended modal specifications over ordinary work-
flow nets to the realm of abstract workflow nets. Based on these definitions it follows by presenting
the constraint system used to model executions of abstract workflow nets as the composition of

43

44 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

segments verifiable structurally. Finally it exposes how abstract extended modal specifications can
be verified on the basis of the previously described executions modelling.

The constraint based modelling approach we define presents several advantages compared to ex-
plicit or symbolic state space based verification techniques described in Section 2.2.1 page 29:

– The search is quite focussed from the beginning as we traverse the solution space of the state
equation rather than the underlying semantic labelled transition systems of workflow nets;

– There is in most case no need to explicitly compute the ordering of all transitions composing
executions, instead only the ordering of segments composing executions is required;

– The method may perform well when verifying the conformity of workflow nets with respect
to necessary and inadmissible behaviours thanks to adequate use of over-approximations;

– The computation workload is shifted to existing mature and efficient constraint solving tools
(Section 2.3 page 38).

The third and final section concludes this chapter by summarising the contributions made to the
verification of modal specifications.

3.1/ Over OrdinaryWorkflow Nets

This section aims to present a verification method that enables the verification of modal specifi-
cations over ordinary workflow nets. It first defines extended modal specifications over ordinary
workflow nets, an extension of modal specifications required to express requirements on several
transitions and on their causalities. It then aims at defining a generic framework based on the
modelling of ordinary workflow nets executions through constraint systems (Section 2.3 page 38).
Finally, it presents how this generic framework is used to verify the (in)validity of extended modal
specifications over ordinary workflow nets.

3.1.1/ ExtendedModal Specification

Modal specifications of workflow nets (as presented in Section 2.1.10 page 28) allow specifiers to
indicate that a specific transition is necessary or just admissible.

While basic modal specifications are useful, they usually lack expressiveness for real-life applica-
tions, as only individual transitions are concerned with.

Example 9: Illustration of the limits of basic modal specifications

Consider the on-demand order delivery workflow net described in Section 2.1.6 page 21.
One would like to specify that a modal property of this workflow net is the fact that a
client must pay his order either using a credit card or by cash. However, as this require-
ment concerns behaviour involving two distinct transitions, it cannot be expressed using
basic modal specifications as presented in Section 2.1.10.

Therefore, we propose to extend modal specifications to express requirements on several transi-
tions and on their causalities.

3.1. OVER ORDINARY WORKFLOW NETS 45

To this end, the language S (N) of well-formed modal specification formulae associated to a work-
flow net N = 〈P,T, F〉 is defined as follows.

Definition 33: Well-formed Modal Specification Formulae

Let N = 〈P,T, F〉 be a workflow net where T = {t1, .., tn}. The language S (N) of well-
formed modal specification formulae associated to a workflow net N is defined by the
following grammar of axiom A:

A→ (A ∧ A) | (A ∨ A) | (¬A) | B
B→ t1 | .. | tn

The domain of a well-formed modal specification formula m, denoted Domain(m), is the set of
transitions appearing in the formula (i.e. the leafs of the abstract syntax tree of m).

These well-formed modal specification formulae allow specifiers to express modal properties
about workflow nets correct executions.

Let σ ∈ Σ1 be a correct execution of N and m a well-formed modal specification formula, we
denote σ |= m the fact that the modal property expressed by m is satisfied by the execution σ.
Formally, given t ∈ T and A1, A2 ∈ S (N), we have σ |= t ⇔ Ot(σ) > 0, σ |= (A1 ∧ A2) ⇔ σ |=

A1 ∧ σ |= A2, σ |= (A1 ∨ A2)⇔ σ |= A1 ∨ σ |= A2, and σ |= (¬A1)⇔ ¬(σ |= A1).

Similarly to the way a transition can be characterized as a may-transition or a must-transition, any
modal specification formula m ∈ S (N) can be interpreted as a may-formula or a must-formula.

On the one hand, a may-formula describes a modal property that has to be ensured by at least one
correct execution of the considered workflow net. On the other hand, a must-formula describes a
modal property that has to be ensured by all the correct executions of the considered workflow net.

Further, given a well-formed may-formula (resp. must-formula) m ∈ S (N), the workflow N satis-
fies m, written N |=may m (resp. N |=must m), when at least one (resp. all) correct execution(s) of N
satisfies (resp. satisfy) the modal property expressed by m.

Formally, given m ∈ S (N):

N |=may m⇔ ∃ σ ∈ Σ1, σ |= m, and

N |=must m⇔ ∀ σ ∈ Σ1, σ |= m.

Note that the set of may-formulae forms a subset of Computation Tree Logic (CTL) formulae inter-
preted over finite traces where only the possibly operator (i.e. along at least one path) is used. Like-
wise the set of must-formulae forms a subset of CTL formulae where only the inevitably operator
(i.e. along all paths) is used [Clarke et al., 1986, De Giacomo et al., 2013, Westergaard, 2011].

Example 10: Illustration of an extended modal specification formula

To illustrate the use of extended modal specification formula let N be the on-demand
order delivery workflow net considered in Example 9. The fact that a client must pay his
order either using a credit card or by cash can be specified by the following must-formula:
m = Client Pays By Cash ∨ Client Pays By Credit Card whose domain is Domain(m) =

{Client Pays By Cash,Client Pays By Credit Card}. It follows that, in order to be valid
with respect to this specification, N has to satisfy the must-formula m (i.e. N |=must m).
Note that, N does indeed satisfy the must-formula m.

The previous definitions of the syntax and semantic of may-formulae and must-formulae allow us
to define what we call an extended modal specification as follows.

46 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

Definition 34: Extended Modal Specifications

Let N = 〈P,T, F〉 be a workflow net. An extended modal specification of N is a tuple
〈amust, Amay〉 where:

– amust is a must-formula, and

– Amay is a set of may-formulae.

Note that, in this definition, only a single must-formula is needed while a set of may-formulae is
needed. This is due to the fact that given A1, A2 ∈ S (N), N |=must A1 ∧ N |=must A2 ⇔ N |=must

(A1 ∧ A2) whereas N |=may A1 ∧ N |=may A2 ; N |=may (A1 ∧ A2).

Given a workflow net N, we say that N satisfies (i.e. is conform to) an extended modal specification
〈amust, Amay〉, noted N |= 〈amust, Amay〉, if and only if:

N |=must amust, and

∀ amay ∈ Amay,N |=may amay.

We defined extended modal specifications over workflow nets, an extension of modal specifica-
tions that enables the description of complex modal properties expressing necessary or admissible
behaviour involving several transitions and their causalities. The next section describes constraint
systems which aim at modelling correct workflow net executions in order to enable the verification
of such extended modal specifications.

3.1.2/ Modelling Executions ofWorkflow Nets

This section exposes the modelling of correct executions of ordinary workflow nets through their
decomposition into segments verifiable structurally.

We begin by considering the well-known state equation, also known as the fundamental equation
(Section 2.2.2.1 page 30). The state equation has been used earlier for verification purposes. It
has been notably considered in the analysis of safety properties [Esparza et al., 2000] as well as
reachability [Schmidt, 2001, Wimmel et al., 2011].

Definition 35: State Equation Constraint System

Let N = 〈P,T, F〉 be a workflow net and Ma, Mb two markings of N, the state equation
constraint system S(N,Ma,Mb), associated with it, is:

– ∀p ∈ P, ν(p) =
∑

t∈p• ν(t) + Mb(p) =
∑

t∈•p ν(t) + Ma(p)

where ν : P ∪ T → N is a valuation function.

The solutions of the constraint system of Definition 35 are related to the execution of N as stated
by Theorem 10.

Theorem 10: Reachability Necessary Condition

Let N = 〈P,T, F〉 be a workflow net. If Ma
∗
−→ Mb then there exists a valuation satisfying

S(N,Ma,Mb).

3.1. OVER ORDINARY WORKFLOW NETS 47

Proof. Suppose Ma
∗
−→ Mb, by definition there exists σ = t1, t2, ..., tn such that Ma

t1
−→ M1

t2
−→

M2
t3
−→ ..

tn−1
−−−→ Mn−1

tn
−→ Mb.

Let ν : P ∪ T → N be defined as follows:

– ∀t ∈ T, ν(t) = Ot(σ)

– ∀p ∈ P, ν(p) =
∑

j∈{1,2,...,n−1}∪{a,b} M j(p)

As the workflow N is an ordinary Petri net, the sum of the tokens in all markings of a place is equal
to the sum of the occurrences of transitions producing (resp. consuming) a token at this place plus
the number of token(s) in marking Mb (resp. Ma).

Therefore ∀p ∈ P,
∑

j∈{1,2,...,n−1}∪{a,b} M j(p) =
∑

t∈p• Ot(σ) + Mb(p) =
∑

t∈•p Ot(σ) + Ma(p).

By definition of ν, it follows that ∀p ∈ P, ν(p) =
∑

t∈p• ν(t) + Mb(p) =
∑

t∈•p ν(t) + Ma(p).

Consequently, ν is a valuation satisfying S(N,Ma,Mb). �

More precisely, the constraint system S(N,Ma,Mb) models the fact that for each place p of N,
the number of token(s) entering p plus the number of token(s) in Ma(p) is equal to the number of
tokens leaving p plus the number of token(s) in Mb(p). Let ν be a valuation function satisfying
S(N,Ma,Mb), ν aims at modelling a transition sequence σ such that ∀t ∈ T,Ot(σ) = ν(t). How-
ever, there is no guarantee that there exists such σ corresponding to an execution of N reaching
the marking Mb from the marking Ma. Solutions of S(N,Ma,Mb) which do not correspond to an
execution of N are called spurious solutions. Indeed, spurious solutions can appear because the
order of transition firing is not taken into account in the modelled execution.

Figure 3.1: Workflow net (N1) used to illustrate a spurious solution of the state equation

Example 11: Illustration of a spurious solution of S

To illustrate a spurious solution of S let us consider the workflow N1 depicted by Fig-
ure 3.1. In this workflow, the transition t2 has to consume a token produced by t1 in
p1, likewise transition t1 has to consume a token produced by t2 in p2. As two transi-
tions cannot fire simultaneously from an initial marking Mi, transitions t1 and t2 are dead
transitions. It follows that there exists no correct execution of N1 (i.e. @ σ,Mi

σ
−→ Mo).

However, the following valuation ν1 such that ∀ n ∈ {i, p1, p2, o, t1, t2}, ν1(n) = 1 is a
valuation satisfying S(N1,Mi,Mo) that does not correspond to any correct execution of
N1 and is therefore a spurious solution.

Nevertheless, as stated by Theorem 10, if there is no valuation satisfying S(N,Ma,Mb) then the
marking Mb is not reachable from marking Ma. In this sense the constraint system S(N,Ma,Mb)
defines an over-approximation of all the executions of N reaching the marking Mb from the mark-
ing Mb.

48 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

In order to dismiss the spurious solutions of S, we propose to refine it. To do so, we consider the
modelled executions subnets structural features.

Let ν be a solution of the constraint system S(N,Ma,Mb), the subnet associated with it is an
ordinary Petri net such that only the places and transitions of N involved by the valuation ν are
considered. Note that we also remove the places which have a greater or equal number of tokens in
the marking Ma (resp. Mb) with respect to the number of tokens consumed from (resp. produced
in) those places.

Definition 36: State Equation Solution Subnet

Let N = 〈P,T, F〉 be a workflow net, Ma, Mb two markings of N, ν : P ∪ T → N a
satisfying valuation ofS(N,Ma,Mb),U+ : P 7→ N a function such that ∀p ∈ P, U+(p) =∑

t∈p• ν(t) andU− : P 7→ N a function such that ∀p ∈ P, U−(p) =
∑

t∈•p ν(t). We define
the subnet sN(ν) = 〈sP, sT, sF〉 as an ordinary Petri net where:

– sP = {p ∈ P | ν(p) > 0 ∧ (U+(p) > Ma(p) ∨U−(p) > Mb(p))}

– sT = {t ∈ T | ν(t) > 0}, and

– sF = {(a, b) ∈ F | a ∈ (sP ∪ sT) ∧ b ∈ (sP ∪ sT)}

Figure 3.2: Illustration of a state equation solution subnet (sN(ν1))

Example 12: Illustration of a subnet associated with a valuation of S

To illustrate this construction, Figure 3.2 depicts the subnet sN(ν1) associated to the
valuation ν1 satisfying S(N1,Mi,Mo) defined in Example 11.

By Lemma 1 page 33, we can infer that the subnet sN(ν) of a non spurious solution ν of
S(N,Ma,Mb) does not contain a trap nor a siphon. Indeed, as a marked trap cannot be unmarked
and places marked in the final marking Mb have been removed, sN(ν) cannot contain a trap. Like-
wise as an unmarked siphon cannot be marked and places of sN(ν) must have at least a token
consumed, sN(ν) cannot contain a siphon.

Example 13: Illustration of the refutation of a spurious valuation of S

This allows us to directly conclude that ν1, as defined in Example 11, is a spurious
solutions of S(N1,Mi,Mo) since sN(ν1) contains a trap {p1, p2}.

An interesting property of the subnet sN(ν) of any solution ν of S(N,Ma,Mb) relates the presence
of siphons to the presence of traps, and vice-versa, as stated by Theorem 11.

Theorem 11: Siphon/Trap Property of Subnet

Let N = 〈P,T, F〉 be a workflow net, Ma, Mb two markings of N, ν : P × T → N a
valuation satisfying S(N,Ma,Mb) and sN(ν) the subnet associated with ν.
If sPN(ν) contains a trap (resp. siphon) G then G is also a siphon (resp. trap).

3.1. OVER ORDINARY WORKFLOW NETS 49

Proof. (⇒) Let G ⊆ sP such that G , ∅, by definition of S(N,Ma,Mb) and ν we have
∑

p∈G ν(p) =∑
p∈G
∑

t∈p• ν(t) =
∑

p∈G
∑

t∈•p ν(t). It implies
∑

p∈G
∑

t∈p•∩G• ν(t) +
∑

p∈N
∑

t∈p•∩sT�G• ν(t)
=
∑

p∈N
∑

t∈•p∩G• ν(t) +
∑

p∈N
∑

t∈•p∩sT�G• ν(t) that can be simplified as
∑

p∈N
∑

t∈p• ν(t) =∑
p∈N
∑

t∈•p∩G• ν(t) +
∑

p∈N
∑

t∈•p∩sT�G• ν(t) because ∀p ∈ N.p• ∩ sT�G• = ∅. Let G be a trap
(i.e. G• ⊆ •G) such that G is not a siphon (i.e. •G * G•). Thus, one has

∑
p∈N
∑

t∈p• ν(t) =∑
p∈N
∑

t∈•p∩G• ν(t) implying
∑

p∈N
∑

t∈p• ν(t) =
∑

p∈N
∑

t∈p• ν(t) +
∑

p∈N
∑

t∈•p∩sT�G• ν(t). We fi-
nally have ∀p ∈ N.•p ∩ sT�G• = ∅ because ∀t ∈ sT.ν(t) > 0. This implies •G ⊆ G•, a
contradiction.
(⇐) The proof that if G is a siphon then G is a trap, is similar. �

Example 14: Illustration of the property stated by Theorem 11

This property is verified by sN(ν1), the valuation defined in Example 11, as the trap
{p1, p2} identified in Example 13 is also a siphon.

According to Theorem 11, one can decide the presence of siphons and traps in a subnet by deciding
about the presence of siphons only (or equivalently to the presence of traps only). Alternatively,
one can decide the presence of siphons and traps in a subnet by deciding about the presence of
P-semiflow (Lemma 3 page 33).

The presence of siphons in an ordinary Petri net can be decided by evaluating the satisfiability of
the following constraint system.

Theorem 12: Siphon Presence Constraint System

Let N = 〈P,T, F〉 be an ordinary Petri net and B(N) the constraint system defined as
follows:

– ∀p ∈ P,∀t ∈ •p.
∑

p′∈•t ξ(p′) ≥ ξ(p)

–
∑

p∈P ξ(p) > 0

where ξ : P→ {0, 1} is a valuation function.
N contains a siphon if and only if there is a valuation satisfying B(N).

Proof. (⇐) Let ξ be a valuation satisfying B, and G ⊆ P such that ξ(p) = 1 ⇔ p ∈ G. Then
∀p ∈ G,∀t ∈ •p,

∑
p′∈•t ξ(p′) ≥ 1, which implies •G ⊆ G•. Consequently, G is a siphon.

(⇒) Suppose that G is a siphon (i.e. •G ⊆ G•) then the valuation ξ(p) defined as ξ(p) = 1 if p ∈ G,
and 0 otherwise, satisfies B(N). �

Using the constraint system S together with the constraint system B leads to the definition of the
constraint system Q as follows.

Definition 37: State Equation + Absence of Siphon Constraint System

Let N = 〈P,T, F〉 be a workflow net and Ma, Mb two markings of N, the constraint
system Q(N,Ma,Mb), associated with it, is:

– S(N,Ma,Mb) |= ν

– @ ξ such that B(sN(ν)) |= ξ

where ν : P ∪ T → N is a valuation function.

50 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

While many of the spurious solutions of S(N,Ma,Mb) are discarded from the solutions of
Q(N,Ma,Mb), the latter constraint system still defines an over-approximation of the valid exe-
cution of N leading to Mb from Ma. This is due to the fact that the absence of traps and siphons
in the subnets of solutions of Q(N,Ma,Mb) is only a necessary but not a sufficient condition to the
existence of a valid execution of N leading to Mb from Ma.

Figure 3.3: Workflow net (N2) used to illustrate a spurious solution of Q

Example 15: Illustration of a spurious solution of Q

Consider the workflow N2 depicted in Figure 3.3.
The valuation ν2, where ∀ n ∈ {i, p2, o, t1, t2, t3, t4, t5, t6, t7}, ν2(n) = 1 and ∀ n ∈
{p1, p3, p4}, ν2(n) = 2, is a valuation satisfying Q(N2,Mi,Mo). However, the transi-
tion t2 of this workflow N2 is a dead transition from the initial marking Mi. Indeed, to
be enabled, the transition t2 requires the presence of two tokens (one in place p1 and one
in place p4), but the initial marking only has one token and the only transition creating
a token is t3 which requires a token to be produced by t2 in place p2. Therefore there
exists no execution σ such that Mi

σ
−→ Mo and Ot2(σ) > 0. It follows that ν2 is a spurious

solutions of Q(N2,Mi,Mo).

While defining an over-approximation might be useful for the verification of safety properties, in
our case, we want to be able to models any executions of a workflow net with enough precision in
order to verify extended modal specifications.

To further refine Q so that sufficient conditions can be defined structurally, additional constraints
are needed. We propose to consider solution ν of Q(N,Ma,Mb) such that sN(ν) is a marked graph
(Section 2.1.4). The resulting constraint system is denotedD.

Definition 38: State Equation + Absence of Siphon + MG Constraint System

Let N = 〈P,T, F〉 be a workflow net and Ma, Mb two markings of N, the constraint
systemD(N,Ma,Mb), associated with it, is:

– ∀p ∈ P,
∑

t∈•p ν(t) ≤ 1 ∧
∑

t∈p• ν(t) ≤ 1

– Q(N,Ma,Mb) |= ν

where ν : P ∪ T → N is a valuation function.

The solutions of the constraint system of Definition 38 are related to the execution of a workflow
net N as stated by Theorem 13.

3.1. OVER ORDINARY WORKFLOW NETS 51

Theorem 13: Path Existence

Let N = 〈P,T, F〉 be a workflow net and Ma, Mb two markings of N. If there exists
a valuation ν : P ∪ T → N such that D(N,Ma,Mb) |= ν then there exists a transition
sequence σ such that Ma

σ
−→ Mb and ν |= σ.

Proof. Suppose there exists a valuation ν : P∪ T → N such thatD(N,Ma,Mb) |= ν. By definition
of D(N,Ma,Mb), sN(ν) is a marked graph with no siphons nor traps. It follows from Theorem 5
that sN(ν) = 〈sP, sT, sF〉 is a live marked graph from any marking (in particular from an initial
marking M∅ such that ∀ p ∈ sP,M∅(p) = 0). Therefore, ∀ p ∈ sP there exists tpre ∈

•p, tpost ∈ p•

such that ν(tpre) > 0 ∧ ν(tpost) > 0 and ∀ σ such that M∅
σ
−→ M∅ is an execution of sN(ν) we have

Otpost (σ) = 1 ⇒ Otpre(σ) = 1. By induction, it follows that there exists σ such that M∅
σ
−→ M∅ an

execution of sN(ν) where ∀t ∈ T such that ν(t) > 0, we have Ot(σ) = 1. We conclude that there
exists σ such that Ma

σ
−→ Mb is an execution of N where ν |= σ. �

As stated by Theorem 13, any solution of D(N,Ma,Mb) models at least one valid execution of N
leading to Mb from Ma. Note the solutions of D are abstractions of the executions they model as
the ordering of the transitions they involve is not explicitly computed. However, as N might not
belong to the subclass of marked graph, not all valid executions of N leading to Mb from Ma can
be modelled by solutions ofD(N,Ma,Mb). In this sense, the solutions ofD(N,Ma,Mb) define an
under-approximation of the valid executions of N leading to Mb from Ma.

We call segment every execution modelled by the constraint system D. We now propose to de-
compose any execution of a workflow net into such segments. The resulting constraint system is
denotedU.

Definition 39: k-segment Execution Constraint System

Let N = 〈P,T, F〉 be a workflow net, Ma, Mb two markings of N, and k ∈ N a number of
segments, the constraint systemU(N,Ma,Mb, k), associated with it, is:

– ∃ M1, ν1,D(N,Ma,M1) |= ν1

– ∀ i ∈ {2, .., k − 1},∃ Mi, νi,D(N,Mi−1,Mi) |= νi

– ∃ νk,D(N,Mk−1,Mb) |= νk

– ∀ n ∈ P ∪ T, ν(n) =
∑

i∈{1,..,k} νi(n)

where ν : P ∪ T → N is a valuation function.

The solutions of the constraint system of Definition 39 are related to the execution of a workflow
net N as stated by Theorem 14.

Theorem 14: Path Existence

Let N = 〈P,T, F〉 be a workflow net and Ma, Mb two markings of N. There exists a
transition sequence σ such that Ma

σ
−→ Mb if and only if there exist k ∈ N a number of

segments and ν : P ∪ T → N a valuation function such that U(N,Ma,Mb, k) |= ν and
ν |= σ.

Proof. (⇒) Suppose there exists a transition sequence σ = t1, .., tk such that Ma
σ
−→ Mb.

52 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

By definition there exists M1, ..,Mk−1 such that Ma
t1
−→ M1..Mk−1

tk
−→ Mb. As the firing of a

single transition t can be modelled by a valuation νt : P ∪ T 7→ N satisfying S and the associated
subnet sN(νt) is a marked graph without siphon composed of only transition t, we can infer that
νt is also a valuation satisfying D. It follows that there exists ν1, .., νk such that D(N,Ma,M1) |=
ν1, .., (N,Mk−1,Mb) |= νk. Let ν : P ∪ T 7→ N be a valuation function such that ∀ n ∈ P, ν(n) =∑

i∈{1,..,k} νi(n). By definition ofU, we can conclude thatU(N,Ma,Mb, k) |= ν and ν |= σ.

(⇐) Follows from Theorem 13. �

By Theorem 14, every execution composed of at most k segments and leading to a marking Mb

from a marking Ma of a workflow net N can be modelled by the constraint systemU(N,Ma,Mb, k).

(a) First segment (ν f irst)

(b) Second segment (νsecond) (c) Third segment (νthird)

Figure 3.4: Illustration of an execution modelled by three segments

Example 16: Illustration of an execution modelled byU

Let us consider the on-demand order delivery workflow net N = 〈P,T, F〉 described
in Section 2.1.6 page 21. Figures 3.4(a), 3.4(b), and 3.4(c) depict three segments re-
spectively modelled by the valuations ν f irst, νsecond and νthird. The valuation ν where
∀ n ∈ P ∪ T, ν(n) = ν f irst(n) + νsecond(n) + νthird(n) is a solution of the constraint sys-
tem U(N,Mi,Mb, 3) and therefore a model of a correct execution of N. The places and
transitions present in each figure correspond to the places and transition which valuation
is equal to 1. The dashed elements are the elements not present in the subnet associated
with the considered valuations. This illustrates how workflow nets complete executions
can be broken down into pieces we call segments whose validity is guaranteed by the
structural analysis of their subnets.

3.1. OVER ORDINARY WORKFLOW NETS 53

We described how ordinary workflow nets correct execution can by modelled through the definition
of constraint systems. More precisely we showed how every execution could be modelled by
segments verifiable structurally. The next section describes how the previously defined modelling
can be used to verify extended modal specifications over ordinary workflow nets.

3.1.3/ Verifying ExtendedModal Specifications

Let us recall that modal specifications enable the description of complex modal properties express-
ing admissible or necessary behaviour involving several transitions and their causalities. Such ad-
missible and necessary behaviours are respectively defined by may-formulae and must-formulae.

Intuitively, a workflow net N is valid with respect to a may-formula m if and only if there exists a
correct execution σ of N such that the modal property expressed by m is satisfied by the execution
σ (i.e. N |=may m ⇔ ∃ σ ∈ Σ1, σ |= m). Likewise a workflow net N is valid with respect to a
must-formula m if and only if there does not exist a correct execution σ of N such that the modal
property expressed by ¬m is satisfied by the execution σ (i.e. N |=must m⇔ @ σ ∈ Σ1, σ |= (¬m)).

When determining whether or not a workflow net satisfies the modal properties of interest, we dis-
tinguish two decision problems. The first one, called the K-bounded validity of a modal formula,
only considers executions formed by K segments, at most. The second one, called the unbounded
validity of a modal formula, deals with executions formed by an arbitrary number of segments; it
generalises the first problem.

In our approach, verifying modal formulae as defined in Section 3.1.1 page 44 relies on their
expression by constraints.

Given N = 〈P,T, F〉 a workflow net and m ∈ S (N) a modal property, we build the associated
constraint system, noted C(N,m), by replacing every terminal symbol t ∈ T of m by ν(t) > 0,
where ν : P ∪ T 7→ N is a valuation function.

Example 17: Illustration of the expression by constraints of a modal formula

Let N be the on-demand order delivery workflow net described in Section 2.1.6
page 21. The modal property m which states the fact that a client pays his order ei-
ther using a credit card or by cash can be defined as m = Client Pays By Cash ∨
Client Pays By Credit Card. By replacing every terminal symbol t ∈ T of m by
ν(t) > 0, we obtain the following constraint system: C(N,m) = ν(Client Pays By Cash) >
0 ∨ ν(Client Pays By Credit Card) > 0 where ν : P ∪ T 7→ N is the valuation function.

Upon the expression of a modal property by a constraint system, we build a constraint system ex-
tending the constraint systemU(N,Mi,Mo, k) which models the correct execution of N composed
of at most k segments.

Definition 40: k-segment Modal Execution Constraint System

Let N = 〈P,T, F〉 be a workflow net, k ∈ N a number of segments, and m ∈ S (N) a
modal property, the associated constraint systemV(N, k,m) is defined as follow:

– U(N,Mi,Mo, k) |= ν

– C(N,m) |= ν

where ν : P ∪ T → N is a valuation function.

54 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

The solutions of the constraint system of Definition 40 are related to the execution of a workflow
net N as stated by Theorem 15.

Theorem 15: Path Existence

Let N = 〈P,T, F〉 be a workflow net and m ∈ S (N) a modal property.
There exists a transition sequence σ such that Mi

σ
−→ Mo and σ |= m if and only if there

exists k ∈ N and ν : P ∪ T → N a valuation function such that V(N, k,m) |= ν, and
ν |= σ.

Proof. Follows from Theorem 14. �

By Theorem 15, there exists a correct execution of N composed of at most k segments satisfying
a modal property m ∈ S (N) if and only if there exists a valuation satisfying the constraint system
V(N, k,m). It follows that we can determine the K-bounded validity of a modal property m, by
determining the satisfiability of V(N,K,m). Consequently let m be a may-formula (resp. a must-
formula), the workflow net N is said to be K-bounded valid with respect to m if and only if
∃ ν,V(N,K,m) |= ν (resp. @ ν,V(N,K,¬m) |= ν).

Theorem 16: K-bounded validity of EMS

Let N = 〈P,T, F〉 be a workflow net and 〈amust, Amay〉 be an extended modal specification
of N. The correct executions of N composed of at most k segments satisfy the extended
modal specification 〈amust, Amay〉, noted N |=k 〈amust, Amay〉, if and only if:

– @ ν,V(N,¬amust) |= ν, and

– ∀ amay ∈ Amay,∃ ν,V(N, k, amay) |= ν.

Proof. Follows from Theorem 15. �

By Theorem 16, the K-bounded validity of an extended modal specification can de determined
through the evaluation of the satisfiability of the corresponding constraint system.

We continue by demonstrating that for K sufficiently large, the K-bounded validity of an extended
modal specification is equivalent to its unbounded validity.

Theorem 17: Existence of Kmax

Let N = (P,T, F) be a workflow net, R̄must the set of all well-formed must-formulae not
satisfied by N, and Rmay the set of all well-formed may-formulae satisfied by N. There
exists Kmax such that:

– ∀ f ∈ R̄must,∃ ν, k ≤ Kmax,V(N, k,¬m) |= ν, and

– ∀ f ∈ Rmay,∃ ν, k ≤ Kmax,V(N, k,m) |= ν.

Proof. Sketch. The set of correct executions of a workflow net is possibly infinite. This is due
to the fact that T-invariants (i.e. sequence of transitions σ such that M

σ
−→ M) could be fired

indefinitely. However, when considering the verification of modal formulae, we are only interested
in the presence or absence of transitions in correct executions (i.e. the number of their firings does
not matter). Therefore considering the set of correct executions where T-invariants are allowed to

3.2. OVER ABSTRACT WORKFLOW NETS 55

fire at most once is enough to check the validity of modal formulae. This restricted set of correct
executions is finite. As a consequence, there exists Kmax such that every execution of this set can
be modelled by Kmax segments, at most. �

We presented an approach enabling the verification of (extended) modal specifications over ordi-
nary workflow nets through the modelling of their executions by constraint systems. In the next
section, this approach is generalised to the realm of abstract Petri nets, an abstract notion of Petri
nets including ordinary, generalised and coloured Petri nets.

3.2/ Over AbstractWorkflow Nets

The goal of this section is to generalise the verification method of modal specifications presented
in the previous section to the realm of abstract workflow nets, a suited abstract representation no-
tably able to model ordinary, generalised and coloured Petri nets. After formally defining abstract
workflow nets as well as their abstract extended modal specification, this section generalises the
modelling framework presented in the previous section to enable its use over abstract workflow
nets. It then describes how this modelling framework is used to verify the (in)validity of extended
modal specifications over abstract workflow nets.

3.2.1/ Abstract Petri Nets

This section introduces the notion of Abstract Petri nets (APN) which provides a generalisation
of Petri nets (Section 2.1.2 page 11), and of coloured Petri nets (Section 2.1.5.2 page 19). This
definition of abstract Petri nets is closely related to other more complex notions of abstract Petri
nets such as the definition of [Padberg, 1999]. It aims at defining the largest model in which the
modelling of execution we will present and upon which our verification method is based can be
applied. The definition of the structure and semantics of abstract Petri nets is analogous to the
definition of the structure and semantics of Petri nets (Section 2.1.2 page 11) and coloured Petri
nets (Section 2.1.5.2 page 19).

An abstract Petri net is defined within a framework where: (D,+D) is a commutative monoid with
its algebraic preordering ≤D. We denote OD the minimal element ofD and L(D,D) the space of
linear maps fromD toD.

Definition 41: Abstract Petri Net

An abstract Petri net AN is a tuple AN = 〈P,T,W−,W+〉 where:

– P is a finite set of places,

– T is a finite set of transitions,

– W− : P × T → L(D,D) is the pre-incidence function,

– W+ : T × P→ L(D,D) is the post-incidence function.

The state of an abstract Petri net is given by its marking, as proposed in the next definition.

56 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

Definition 42: Marking of an Abstract Petri Net

Let AN = 〈P,T,W−,W+〉 be an abstract Petri net. A marking of AN is a total function
M : P→ D.

Two markings Ma and Mb are in relation Ma ≤D Mb if and only if ∀p ∈ P,Ma(p) ≤D Mb(p).

Let gP ∈ P, gT ∈ T,GP ⊆ P and GT ⊆ T . We use the following notations:

– g•P = {t|W+(gP, t) , OD} and •gP = {t|W−(gP, t) , OD},

– g•T = {p|W+(p, gT) , OD} and •gT = {p|W−(p, gT) , OD},

– G•P = ∪g∈GP g•, and •GP = ∪g∈GP
•g,

– G•T = ∪g∈GT g•, and •GT = ∪g∈GT
•g.

The markings of an abstract Petri net evolve when transition instances are firing.

Definition 43: Transition Instance of an Abstract Petri Net

Let AN = 〈P,T,W−,W+〉 be an abstract Petri net. A transition instance of AN is a
couple (t, d), where t ∈ T and d ∈ D.

Let t ∈ T and d ∈ D, the transition instance (t, d) is enabled in a marking M if and only if:

∀p ∈ •t,W−(p, t)(d) ≤D M(p).

When (t, d) is enabled in marking Ma, it may fire. If (t, d) fires in marking Ma, a new marking Mb

is reached such that:

∀p ∈ P,Mb(p) = Ma(p) −DW−(p, t)(d) +DW
+(t, p)(d).

Mb is said to be directly reachable from Ma by the transition instance (t, d), written Ma
(t,d)
−−−→ Mb.

The reachability relation is the reflexive and transitive closure of the direct reachability relation.
Let σ = (t1, d1), .., (tn, dn) be a sequence of transition instances, we denote by Ma

σ
−→ Mb the fact

that the marking Mb is reachable from the marking Ma by the sequence of transition instances σ.

LetD′ be the Grothendieck group ofD (i.e. the most general commutative group that arises from
D by introducing additive inverses). Without loss of generality, let us suppose an abstract Petri net
with no self loop, i.e. ∀p, p• ∩ •p = ∅, where P = {p1, .., pn} and T = {t1, .., tm}. This abstract Petri
net can be represented by its corresponding incidence matrixW ∈ L(D,D′)(n,m) where:

Wi, j =W+(t j, pi) −D′W−(pi, t j).

Let M be a marking, it can be represented by a marking vectorM ∈ D(n,1) whereMi,1 = M(pi).
Likewise, let (t, d) be a transition instance, it can be represented by a transition instance vector
T ∈ D(m,1) where:

T j,1 =

d, if t j = t
OD, otherwise

3.2. OVER ABSTRACT WORKFLOW NETS 57

Let ~ denote the generalised matrix-multiplication where each product is replaced by a function

composition (i.e C = A ~ B⇔ Ci, j = Σ(Ai,k ◦ Bk, j)). For Ma
(t,d)
−−−→ Mb, we have:

Mb =Ma +W ~ T(t,d).

We denote T(t,d) the transition instance vector representing the transition instance (t, d), and σ |= T
the fact that T = T(t1,d1) +D .. +D T(tn,dn).

In the context of abstract Petri nets, we define abstract workflow nets, a generalisation of workflow
Petri nets (Section 2.1.6 page 21).

Definition 44: Abstract Workflow Net

Let AN = 〈P,T,W−,W+〉 be an abstract Petri net. The abstract Petri net AN is an
abstract workflow net if and only if:

– AN has two special places i and o where •i = ∅ and o• = ∅, and

– for each node n ∈ (P ∪ T) there exists a path from i to o passing through n.

We denoteMi the set of initial markings of an abstract workflow net where:

Mi ∈ Mi ⇔ Mi(i) > OD ∧ ∀ p ∈ P \ {i},Mi(p) = OD.

Likewise we denoteMo the set of final markings of an abstract workflow net where:

Mo ∈ Mo ⇔ Mo(o) > OD ∧ ∀p ∈ P \ {o},Mo(p) = OD.

A correct execution of an abstract workflow net is an execution Mi
σ
−→ Mo, where Mi ∈ Mi and

Mo ∈ Mo.

The behaviour of AN is defined as the set Σ of all its correct executions.

Next, we proceed to explicitly show that Petri nets (Section 2.1.2 page 11), and coloured Petri
Net nets (Section 2.1.5.2 page 19) are abstract Petri nets. Furthermore, we introduce weighted
transitions abstract workflow nets, an extension of abstract workflow nets, that associates weights
to transition instances in order to enable performance analysis.

Petri Nets as Abstract Petri Nets

A ordinary/generalised Petri net (Section 2.1.2 page 11) is an abstract Petri net defined within the
framework whereD is the set N of natural numbers, +D is the standard addition operation over N,
and ≤D is the standard less-than-or-equal relation over N.

Let N = 〈P,T, F,W〉 be a generalised Petri net, N is an abstract Petri net 〈aP, aT,W−,W+〉where:

– the set of place P and aP are the same (P = aP),

– the set of transition T and aT are the same (T = aT),

– the pre-incidence function is defined byW−(p, t)(x) = W(p, t) ∗ x if (p, t) ∈ (F ∩ (P × T)
andW−(p, t)(x) = O otherwise,

58 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

– the post-incidence function is defined byW+(t, p)(x) = W(t, p) ∗ x if (t, p) ∈ (F ∩ (T × P)
andW+(t, p)(x) = O otherwise,

– a transition instance (t, d) is seen as the transition t occurring d times.

Example 18: Illustration of a generalised Petri net as an abstract Petri net

Consider the generalised Petri net of Example 2 page 13 depicted in Figure 2.2(a)
page 13. This generalised Petri net is composed of three places (H2O, O2 and H2) and a
transition (t1). Its incidence matrix is defined as: [−2, 1, 2]>. The abstract Petri net corre-
sponding and equivalent to this generalised Petri net is composed of the same three places
and transition, and its incidence matrix is defined as: [x 7→ −2∗ x, x 7→ 1∗ x, x 7→ 2∗ x]>.

Coloured Petri Nets as Abstract Petri Nets

A coloured Petri net (Section 2.1.5.2 page 19) is an abstract Petri net defined within the framework
whereD is the set C1×..×Cu over the colours C1, ..,Cu of the coloured Petri net , +D is the element-
wise addition operation over u-uples, and ≤D is the element-wise less-than-or-equal relation over
u-uples. Let πCi be the projection of Ci from C1 × .. ×Cu and ΠCi be the projection of C1 × .. ×Cu

from Ci.

Let N = 〈(P,T,C,W)〉 be a coloured Petri net, N is an abstract Petri net 〈aP, aT,W−,W+〉 where:

– the set of place P and aP are the same (P = aP),

– the set of transition T and aT are the same (T = aT),

– the pre-incidence function is defined byW−(p, t) = ΠC(p) ◦W(t, p) ◦ πC(p),

– the post-incidence function is defined byW+(t, p) = ΠC(p) ◦W(t, p) ◦ πC(p),

– a transition instance (t, d) is then seen as the transition t associated with the binding πC(t)(d).

Example 19: Illustration of a coloured Petri net as an abstract Petri net

Consider the coloured Petri net of Example 4 page 20 depicted in Figure 2.8 page 20.
This coloured Petri net have two colors (C1 and C2) and is composed of two places
(p1, and p2) and a transition (t1) such that C(p1) = C(t1) = C1 and C(p2) = C2.
Its incidence matrix is defined as: [[v1, v2, v3] 7→ [−v1,−v2,−v3], [v1, v2, v3] 7→
[v1, v2, v3]]>. The abstract Petri net corresponding and equivalent to this coloured Petri
net is composed of the same three places and transition, and its incidence matrix is de-
fined as: [([v1, v2, v3], [0, 0, 0]) 7→ ([−v1,−v2,−v3], [0, 0, 0]), ([v1, v2, v3], [0, 0, 0]) 7→
([0, 0, 0], [v1, v2, v3])]>.

Weighted Transition AbstractWorkflow Nets

Analogously to weighted transition Petri nets (Section 2.1.5.3 page 21), weighted transitions ab-
stract workflow nets are an extension of abstract workflow nets. They associate weights to transi-
tion instances in order to be able to perform performance analysis.

3.2. OVER ABSTRACT WORKFLOW NETS 59

They rely upon the definition of a weight function defined within a framework where (C,+C) is a
commutative monoid. We denote OC the minimal element of C.

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net, a weight function of AN is a total function
C : T ×D → C assigning a weight to each transition instances.

Let ANw = 〈AN,C〉 be the weighted transition abstract workflow net formed from the abstract
workflow net AN associated with its weight function C.

The weight of a transition instance (t, d) is then given by C(t, d). Let Ma, Mb be marking of AN,

and T a transition instance sequence such that Ma
T
−→ Mb, the weight associated to execution T is

given by the execution weigh function C defined as C(T) =
∑

t∈T T (t) ∗C(t).

We defined abstract workflow nets and presented their relation to workflow nets, and coloured
workflow nets. The next section focuses on the definition of extended modal specifications over
abstract workflow nets.

3.2.2/ Extended AbstractModal Specification

This section introduces extended modal specification over abstract workflows net.

It generalises the concept of extended modal specifications over ordinary workflow nets to the
realm of abstract workflow nets. The main additions are that modal properties, beside consid-
ering constraints over the transitions involved in correct executions and their relations, consider
constraints on the initial markings, the final markings, as well as the transition instances.

To this end, the language S (AN) of well-formed modal specification formulae associated with an
abstract workflow net AN = 〈P,T,W−,W+〉 is defined as follows.

Let be e ∈ D(l,c) where l, c ∈ N, we denote F(e, l, c) the set of formulae defined by the following
grammar of axiom A, where i ∈ 1..l, j ∈ 1..c, and G is the axiom of the grammar of elements of
D:

– A→ (A ∧ A)|(A ∨ A)|(¬A)|B

– B→ C ≤D C

– C → D +D D

– D→ ei, j|G

Given m ∈ F(e, l, c), we denote e |= m the fact that e satisfies m, where ∧, ∨, ¬, and ≤D
assume standard semantics. Using this, a marking vector M can be constrained by a formula
m ∈ F(M, n, 1), and a transition vector T can be constrained by a formula m′ ∈ F(T ,m, 1).

Definition 45: Well-formed Abstract Modal Specification Formulae

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net. The language S (AN) of well-
formed modal specification formulae of AN is defined by the following grammar of
axiom A:

– A→ (A ∧ A)|(A ∨ A)|(¬A)|B

– B→ t[e] where t ∈ T and e ∈ F(d, 1, 1) with d a variable of domainD.

60 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

These well-formed abstract modal specification formulae allow specifiers to describe abstract
workflow nets behaviour based on the transition instances involved.

Formally, let m ∈ S (AN) be a well-formed abstract modal specification formula and T the tran-
sition instance vector of a correct execution of AN, we denote T |= m the fact that the behaviour
expressed by m is satisfied by the transition instance vector T . Formally, given t[e] where t ∈ T
and e ∈ F(d, 1, 1) with d is a variable of domain D, we have T |= t[e] ⇔ Ti,1 |= e[d/Ti,1] where
ti = t and e[d/Ti,1] is the formula e, where all occurrences of d are replaced by Ti,1. Further, given
A1, A2 ∈ S (AN), we haveT |= (A1∧A2)⇔ T |= A1∧T |= A2, T |= (A1∨A2)⇔ T |= A1∨T |= A2,
and T |= (¬A1)⇔ ¬(σ |= A1).

Next, we extend well-formed abstract modal specification formulae in order to consider constraints
on the initial markings as well as the final markings.

To this end, we define the set of well-formed extended abstract modal specification formulae as
follows.

Definition 46: Extended Abstract Modal Specification Formulae

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net. The set of well-formed extended
abstract modal specification formulae of AN, noted S e(AN), is defined by the set of tuple
〈cMi, cMo,m〉 where:

– cMi ∈ F(Mi,m, 1) are the constraints on the initial marking,

– cMo ∈ F(Mo,m, 1) are the constraints on the final marking,

– m ∈ S (AN) is the constraint on the transition instances and their relations defined
by a well-formed abstract modal specification formula.

These well-formed extended abstract modal specification formulae allow specifiers to express ab-
stract modal properties about abstract workflow nets correct executions.

Formally, let Mi ∈ Mi be an initial marking of AN, Mo ∈ Mo be a final marking of AN, σ be a
correct execution of AN such that Mi

σ
−→ Mo, and T be a transition instance vector such that σ |=

T , we say that a well-formed extended abstract modal specification formula m = 〈cMi, cMo,m〉 is
satisfied by the correct execution σ if and only if T |= m ∧ Mi |= cMi ∧ Mo |= cMo.

Every modal property expressed by a well-formed extended abstract modal specification formula
can be interpreted as a may-formula (resp. must-formula), describing a behaviour that has to be
ensured by at least one (resp. all) correct execution(s) of the specified abstract workflow net.

Formally, an abstract workflow AN satisfies a may-formula fmay = 〈cMi−may, cMo−may,mmay〉,
noted AN |=may fmay, if and only if ∃ σ ∈ Σ,Mi ∈ Mi,Mo ∈ Mo,Mi

σ
−→ Mo ∧ σ |=

T ∧ T |= mmay ∧ Mi |= cMi−may ∧ Mo |= cMo−may. Further, an abstract workflow AN satis-
fies a must-formula fmust = 〈cMi−must, cMo−must,mmust〉, noted AN |=must fmust, if and only if
∀ σ ∈ Σ,Mi ∈ Mi,Mo ∈ Mo,Mi

σ
−→ Mo ∧ σ |= T ∧ T |= mmay ∧ Mi |= cMi−may ∧ Mo |= cMo−may.

Analogously to the way extended modal specifications are defined for ordinary workflow nets, we
define abstract extended modal specifications for abstract workflow nets as follows.

3.2. OVER ABSTRACT WORKFLOW NETS 61

Definition 47: Abstract Extended Modal Specification

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net. An abstract extended modal
specification of AN is tuple 〈amust, Amay〉 where:

– amust is a must-formula, and

– Amay is a set of may-formulae.

Given an abstract workflow net AN, we say that AN satisfies (i.e. is conform to) an abstract
extended modal specification 〈amust, Amay〉, noted AN |= 〈amust, Amay〉, if and only if:

N |=must amust, and

∀ amay ∈ Amay,N |=may amay.

Note that in the case where AN is an abstract workflow nets extended with performance indicators
(i.e. AN is a weighted transition abstract workflow net, Section 3.2.1 page 58), abstract extended
modal specification can be further extended by considering constraints on the total weight of cor-
rect executions.

To this end, a may-formula fmay = 〈cMi−may, cMo−may,mmay〉 (resp. a must-formula fmust =

〈cMi−must, cMo−must,mmust〉 is extended by a constraint cC ∈ F(w,m, 1) where w is the execution
weight associated with the modelled executions.

It follows that a may-formula fmay (resp. a must-formula fmust) extended by considering a con-
straint cC on the total weights of correct executions is satisfied by a weighted transitions abstract
workflow net AN if and only if there exists a correct execution satisfying fmay (resp. all correct
executions satisfy fmust) such that its (resp. their) total weight satisfies cC.

3.2.3/ Modelling Executions of AbstractWorkflow Nets

This section aims at modelling correct executions of abstract Petri net (Section 3.2.1 page 55) by
a constraint system which is then solved to validate or invalidate some properties of interest. This
modelling is similar to the modelling previously proposed to model correct executions of ordinary
workflow nets.

We begin with the generalisation of the state equation to the domain of abstract workflow nets.

Theorem 18: State equation

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net. If a marking Mb is reachable
from Ma by the transition instances sequence σ = (t1, d1), .., (tn, dn) (i.e. Ma

σ
−→ Mb)

then: Mb =Ma +W ~ T where σ |= T .

Proof. By definition we haveMb =Ma+D(W~T(t1,d1))+D ..+D(W~T(tn,dn)) which is equivalent
toMb =Ma +DW ~ (T(t1,d1) +D .. +D T(tn,dn)) as ~ is distributive. �

We denote the constraint system of Theorem 18 by Sa(Ma,Mb). This constraint system defines
an over approximation of the executions reaching Mb from Ma. Indeed, analogously to S defined
over workflow nets, Sa does not consider the order in which transitions are fired, which leads to
spurious solutions.

62 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

We continue and refine solutions of Sa using structural features of their associated subnets com-
posed of places (except places only marked in the initial marking, and places only marked in the
final marking), transitions, and arcs involved in the solution of Sa.

As we are only interested in the structure of such subnets, it is sufficient to build them as ordinary
Petri nets, i.e. using arc weight less or equal to 1.

Definition 48: Subnet of a solution of Sa

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net, Ma,Mb be two markings of AN
and T be a solution of the constraint system Sa(Ma,Mb) of AN. Let E+ = W+ ~ T
and E− = W− ~ T . We define the subnet sAN(T) = 〈sP, sT, sF〉 an ordinary Petri net
where:

– sP = {p ∈ P | (OD <D E
+(p) ∧ Ma(p) <D E+(p)) ∨ (OD <D E

−(p) ∧ Mb(p) <D
E−(p))}

– sT = {t ∈ T | OD <D T (t)}

– sF = {(p, t) | p ∈ sP ∧ t ∈ sT)} ∪ {(t, p) | t ∈ sT ∧ p ∈ sP)}

We know from the previous section that if the subnet of a solution to Sa contains a siphon or a trap
then this solution is a spurious solution. We also know that the subnet of a solution to Sa contains
a siphon (resp. a trap) if and only if it is also a trap (resp. a siphon). Using these rules to refine Sa

eliminates a large number of its spurious solution.

Definition 49: State Equation + Absence of Siphon Constraint System

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net, and Ma,Mb be two markings of
AN, the constraint system Qa(AN,Ma,Mb) associated with it is:

– S(N,Ma,Mb) |= T

– @ ξ such that B(sAN(ν)) |= ξ

where T : T → D is a valuation function.

However, the set of solutions of Sa(Ma,Mb), whose subnets contain no siphon, equivalently no
trap or no P-semiflow (i.e. solutions of Qa(Ma,Mb)), still defines an over approximation of the
executions reaching Mb from Ma.

To further refine the solutions Qa, we need to restrict the structure of their subnets. We propose to
restrict them to the class of marked graphs (Section 2.1.4 page 16). This structural restriction is
sufficient to guarantee the existence of at least an execution for every solution.

Definition 50: State Equation + Absence of Siphon Constraint + MG System

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net, and Ma,Mb be two markings of
AN the constraint systemDa(AN,Ma,Mb), associated with it, is:

– Q(N,Ma,Mb) |= T

– sAN(T) = 〈sP, sT, sF〉 is a marked graph (i.e. ∀p ∈ sP, |• p |≤ 1∧ | p• |≤ 1)

where T : T → D is a valuation function.

3.2. OVER ABSTRACT WORKFLOW NETS 63

The solutions of the constraint system of Definition 50 are related to the execution of an abstract
workflow net AN as stated by Theorem 19.

Theorem 19: Abstract Path Existence

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net, and Ma,Mb be two markings
of AN. If there exists a valuation T : T → D such that Da(N,Ma,Mb) |= T then there
exists a transition instance sequence σ such that Ma

σ
−→ Mb and σ |= T .

Proof. Suppose there exists a valuation T : T → D such that Da(N,Ma,Mb) |= T . By definition
of Da(N,Ma,Mb) we have sN(T) is a marked graph with no siphons nor traps. It follows from
Theorem 5 page 34 that sN(T) is a live marked graph from any marking (in particular from an
initial marking M∅ such that ∀ p ∈ sP,M∅(p) = 0). Therefore ∀ p ∈ sP there exists tpre ∈

•p, tpost ∈

p• such that ∀ σ,M∅
σ
−→ M∅ is an execution of sN(T), we have Otpost (σ) = 1 ⇒ Otpre(σ) = 1. By

induction it follows that there exists σ such that M∅
σ
−→ M∅ an execution of sN(ν) where ∀t ∈ T

such that T (t) > OD we have Ot(σ) = 1. As data consistency is ensured by the state equation, it
follows that there exists σ∗, a transition instance sequence obtained by replacing every occurrence
of any transition t ∈ sT by its corresponding transition instance T (t), such that Ma

σ∗
−−→ Mb is an

execution of AN where σ∗ |= T . �

It follows that the set of solutions of Da(AN,Ma,Mb) defines an under approximation of the exe-
cutions of AN reaching Mb from Ma.

We call a segment any executions modelled by Da and proceed to model any executions as the
composition of segments.

Definition 51: k-segment Abstract Execution

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net, Ma,Mb be two markings of AN
and k ∈ N, the constraint systemUa(AN,Ma,Mb, k), associated with it, is:

– ∃ M1, ν1,Da(AN,Ma,M1) |= T1

– ∀ i ∈ {2, .., k − 1},∃ Mi,Ti,Da(N,Mi−1,Mi) |= Ti

– ∃ Tk,Da(N,Mk−1,Mb) |= Tk

– ∀ n ∈ T,T (n) =
∑

i∈{1,..,k} Ti(n)

where T : T → D is a valuation function.

The solutions of the constraint system of Definition 51 are related to the execution of an abstract
workflow net AN as stated by Theorem 20.

Theorem 20: Abstract Path Existence

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net, Ma,Mb be two markings of AN.
There exists a transition instance sequence σ such that Ma

σ
−→ Mb if and only if there

exist k ∈ N a number of segments and T : T → D a valuation function such that
Ua(N,Ma,Mb, k) |= T and σ |= T .

Proof. (⇒) Suppose there exists a transition instance sequence σ = t1, .., tk such that Ma
σ
−→ Mb.

64 CHAPTER 3. VERIFICATION OF MODAL SPECIFICATION

By definition there exists M1, ..,Mk−1 such that Ma
t1
−→ M1

t2
−→ ..

tk−1
−−−→ Mk−1

tk
−→ Mb. As the firing

of a single transition instance t can be modelled by a valuation Tt : T → D satisfying Sa and
the associated subnet sN(Tt) is a marked graph without siphons composed of only the transition
t, we can infer that Tt is also a valuation satisfying Da. It follows that there exist T1, ..,Tk such
thatD(N,Ma,M1) |= T1, .., (N,Mk−1,Mb) |= Tk. Let T : T → N be a valuation function such that
∀ p ∈ T, ν(p) =

∑
i∈{1,..,k} Ti(p). By definition ofUa, we can conclude thatUa(AN,Ma,Mb, k) |= T

and σ |= T .

(⇐) Follows from Theorem 19. �

The constraint system U enables the modelling of finite executions of abstract workflow nets by
considering their initial and final markings, and their sequences of transition instances.

This section presented a modelling framework which enables the modelling of abstract workflow
nets through the construction of constraint systems. The next section takes advantage of this
modelling to verify (extended) abstract modal specifications.

3.2.4/ Verifying Extended AbstractModal Specifications

Analogously to the previous section, this section describes how the modelling of correct execu-
tions of an abstract workflow net can be used to verify the validity of an abstract extended modal
specifications.

To this end, the following constraint system uses the constraint system Ua to model only correct
executions of AN composed of k ∈ N segments satisfying a given abstract modal property.

Definition 52: k-segment Abstract Execution

Let AN = 〈P,T,W−,W+〉 be an abstract workflow net, k ∈ N, and f = 〈cMi, cMo,m〉
be an abstract modal formula of AN, the constraint systemVa(AN, k, f) associated with
it is:

– Mi |= cMi

– Mo |= cMo

– Ua(AN,Mi,Mo, k) |= T

– T |= m

where (Mi,Mo,T) : (P→ D, P→ D,T → D) is a valuation function.

It follows that there exists a correct execution, composed of at most k ∈ N segments, of AN, an
abstract workflow net, such that it satisfies an abstract modal formula f if and only if the constraint
systemVa(AN, k, f) is satisfiable.

Let f = 〈cMi, cMo,m〉 be an abstract modal formula of an abstract workflow net AN. To verify the
K-bounded validity of f interpreted as a may-formula, it is sufficient to determine the existence of a
correct execution modelled by K segments with an initial marking satisfying cMi, a final marking
satisfying cMo and with the behaviour satisfying m. Therefore, a may-formula f is K-bounded
valid with respect to AN if and only ifVa(AN, k, f) is satisfiable.

Similarly, determining the K-bounded validity of f interpreted as a must-property, can be done
by determining the non-existence of a correct execution modelled by K segments with an ini-

3.3. SYNTHESIS 65

tial marking satisfying cMi, a final marking satisfying cMo where the behaviour of ¬(m) is
satisfied. Therefore, a must-formula f is K-bounded valid with respect to AN if and only if
Va(AN, k, 〈cMi, cMo,¬m〉) is not satisfiable.

Finally, in the case where AN is an abstract extended with performance indicators (i.e. AN is a
weighted transitions abstract Petri net, Section 2.1.5.3 page 21), we need to consider the constraint
cC given over the total execution weight. To this end, note that the total weight of an execution
modelled byUa(N,Ma,Mb, k) |= T is given by C(T) =

∑
t∈T T (t) ∗C(t). Therefore it is necessary

to add the following constraint toUa(N,Ma,Mb, k): C(T) |= cC.

3.3/ Synthesis

This chapter presented an approach to the verification of modal specifications.

It defined extended modal specifications, an extension of modal specifications that enables the
definition of modal behaviour involving several transitions.

An innovative modelling framework of workflow nets (resp. abstract workflow nets) executions
has also been defined. This modelling framework is based on the definition of several constraint
systems. More precisely, it defines constraint systems whose solution space over-approximate
the set of correct executions of workflow nets (resp. abstract workflow nets). Each of this
over-approximation is built by refining the previous one starting from a well-known approxima-
tion: the state equation. Further, it also defined a constraint system whose solution space under-
approximates the set of correct executions of workflow nets (resp. abstract workflow nets). This
latter constraint system is then used to define segments of execution (i.e. partial execution struc-
turally verifiable). It then proceeded to demonstrate that the concatenation of such segments could
be used to model any correct executions of workflow nets (resp. abstract workflow nets).

One of the advantages of this modelling is that the search is quite focussed from the beginning as
we traverse the solution space of the state equation and its refinements rather than the underlying
semantic labelled transition systems of workflow nets. Another advantage of such modelling is that
only the segments ordering is computed, the transitions ordering within segments is not. Therefore,
this modelling is adapted to the verification of properties where only the presence or absence of
transitions is considered (e.g., extended modal specifications).

Finally, it presented how such modelling framework is used to verify the (in)validity of extended
modal specifications over workflow nets (resp. abstract workflow nets). This verification approach,
based upon the previously presented modelling may perform well when verifying the conformity
of workflow nets with respect to valid must-formulae as well as invalid may-formulae, thanks to
adequate use of over-approximations. Furthermore, this extended modal specification verification
approach requires the use of constraint systems satisfiability checks which can be handled by third
party constraint solvers. This allows the proposed verification method to benefit from existing
mature and efficient constraint solvers.

In order to enhance verification approaches such as the one presented in this chapter, the following
chapter presents powerful reduction methods preserving properties of interest such as generalised
soundness and correctness of a given modal specification. It also presents how these reduction
methods can be employed as pre-processing steps to reduce workflow nets size in order to verify
the preserved properties on smaller instances.

4
Reduction methods

“All problems in computer science can be solved by another level of
indirection.”

— David Wheeler

Contents
4.1 Φ∗: A workflow nets reduction kit . 68

4.2 Semi-Decision of Generalised Soundness 77

4.3 Preprocessing Modal Specification Verification 79

4.3.1 Reduction based on hierarchical workflow nets 80

4.3.2 Reduction based on reduction rules 82

4.4 Synthesis . 86

The development of large and intricate workflow nets can be a difficult task which requires pow-
erful structuring mechanisms [Dittrich, 1989]. It also forces modellers to follow strict abstraction
patterns in order to produce quality workflow nets [van der Aalst et al., 2000]. To cope with these
development difficulties, stepwise refinement (Section 2.1.9 page 25) is often used to ensure reli-
ability and ease verification.

Verification of workflow nets is an a posteriori approach: given a workflow net, it checks whether
properties (e.g., generalised soundness, extended modal specification) hold. Although for work-
flow nets these properties are known to be decidable [Esparza, 1998, van der Aalst et al., 2011],
their verification is a very time consuming task due to its high complexity (EXPSPACE) with
respect to the size of the workflow net under analysis [Lipton, 1976].

Unfortunately, most often, the abstraction mechanisms, used by modellers of workflow nets, are
not explicitly given beside the clear advantages they bring to their analysis.

As seen in Section 2.2.3 page 35, reduction rules have the ability to reduce workflow nets size
while strongly preserving properties of interest. This allows the analysis of studied properties
to be performed on reduced workflow nets, in many cases, greatly decreasing its complexity by
alleviating state explosion of their state space, which undermines state exploration methods.

More generally, reduction rules are abstraction operations: they reduce the level of details of
workflow nets. They aim at capturing the abstraction mechanisms used by modellers of workflow
nets. It follows that the inversion of reduction rules (i.e. synthesis rules) are refinement operations.
Conceptually, this leads to an analysis paradigm where the analysis of workflow nets is substituted
by the analysis of their constructions.

The first section of this chapter presents reduction rules strongly preserving generalised soundness
over workflows nets, an essential and necessary correctness property that must be satisfied by
workflow nets.

67

68 CHAPTER 4. REDUCTION METHODS

Afterwards, the second section describes how these reduction rules can be used to efficiently semi-
decide generalised soundness.

The third section introduces pre-processing steps reducing workflow nets size so that the analysis
can be carried out on smaller instances. More specifically, it highlights how reduction methods
can be applied as pre-processing steps to the verification of extended modal specifications over
workflow nets.

Finally, the last section concludes this chapter.

4.1/ Φ∗: A workflow nets reduction kit

This section defines Φ∗, a kit of reduction rules over workflow nets that strongly preserve gener-
alised soundness (Definition 24 page 25).

In Section 2.2.2.4 page 34 we saw that the k-soundness of a workflow net is equivalent to the live-
ness and boundedness of its k-closure. Therefore, known reduction rules (Section 2.2.3.2 page 36)
which strongly preserve liveness and boundedness of Petri nets also strongly preserve generalised
soundness of workflow nets. Conversely, the reduction rules introduced in this section strongly
preserve liveness and boundedness.

The reduction kit defined in this section generalises and adapts previously known reduction rules
(Section 2.2.3.2 page 36) to the realm of workflow nets. They extend the range of workflow nets
reducible in such a way.

The presented reduction rules are applicable to arbitrary workflow nets and are not restricted to
subclasses. Further, their conditions of application are defined solely on the structure of the consid-
ered workflow nets. This allows their application to be performed statically in an efficient manner.
Also, note that each rule’s conditions of application describe an infinity of workflow patterns (i.e.
structural configurations) to which they can be applied.

In what follows, each workflow net reduction rule is defined by describing the conditions of appli-
cation under which it can be applied to a source workflow net N = 〈P,T, F〉, and the construction
algorithm which is applied to N to produce a target workflow net Ñ = 〈P̃, T̃ , F̃〉.

For clarity, every rule is illustrated by figures depicting two of the possible applications of this
rule. The first one only considers the plain element of the figure and corresponds to the minimal
pattern. The second one considers both the mandatory (plain) and the optional (dashed) elements,
and corresponds to a possible extended pattern. In this way, figures are not exhaustive but aim
to ease the understanding of the rules that are formally described by the related conditions of
application and the construction algorithms.

There are a total of six rules presented in the following subsections: one removing a place (R1),
two removing a transition (R2,R3), two removing a place and a transition (R4,R5), and finally one
removing a strongly connected component: (R6).

4.1. Φ∗: A WORKFLOW NETS REDUCTION KIT 69

R1: Remove Place

We define φRemoveP, a workflow net reduction rule, which strongly preserves generalised soundness
and consists in removing a place for which there exists a set of places with the same input tran-
sitions as well as the same output transitions. Places removed in such a way are called redundant
places as they do not modify the set of correct executions of a workflow net.

This rule generalises the Fusion of Parallel Places rule described in [Murata, 1989] and the Ab-
straction of Parallel Places rule described in [Hichami et al., 2014]. This rule can also be viewed
as an adaptation of the rule φS of [Desel et al., 2005] (i.e. one of the three reduction rules proved
to be complete with respect to the subclass of free-choice Petri nets) to the context of ordinary
workflow nets.

The inverse of this rule is the only synthesis rule able to add a single place to a workflow net while
preserving generalised soundness and is notably used to introduce concurrency. In the context of
Petri net, a self-loop place (i.e. a place p such that •p = p•) can be added without compromising
liveness and boundedness. However, this requires changing the initial marking which is not possi-
ble in the context of workflow nets. Nonetheless, a generalisation of this rule could be applied to
an extension of workflow nets modelling resources by marked places.

Figure 4.1 illustrates the reduction rule φRemoveP formally described as follows.

Conditions on N:

– ∃ p ∈ P \ {i, o}

– ∃ G = {g1, .., gn} ⊆ P \ {i, o, p}

– p• = G•

– •p = •G

– ∀i, j ∈ {1, .., n}, i , j ⇒ •gi ∩
•g j =

g•i ∩ g•j = ∅

Construction of Ñ:

– p• = {ot1, .., otn}

– outArc = {p} × p•

– •p = {it1, .., itm}

– inArc = •p × {p}

– P̃ = P \ {p}

– T̃ = T

– F̃ = F \ (inArc ∪ outArc)

Figure 4.1: Reduction rule φRemoveP (R1)

70 CHAPTER 4. REDUCTION METHODS

The soundness of φRemoveP, with respect to generalised soundness, is given by the following theo-
rem.

Theorem 21: Soundness of φRemoveP

φRemoveP is a workflow net reduction rule which strongly preserves generalised sound-
ness.

Proof. (Sketch). Let f : (P̃ → N) → (P → N) be a bijective function such that f (M)(g) = M(g)
for all g ∈ P̃ and f (M)(p) = M(g1) + .. + M(gn). By conditions on N, every transition that
produces (resp. consumes) a token in any of the places of G also produces (resp. consumes)
a token in p. Consequently, ∀k ∈ N one has: M ∈ RÑ(MÑ

i(k)),M
Ñ
o (k) ∈ RÑ(M) ⇔ f (M) ∈

RN(MN
i(k)),M

N
o (k) ∈ RN(f (M)), and transitions ot1, .., otn, it1, .., itm of N are not dead if and only if

transitions ot1, .., otn, it1, .., itm of Ñ are not dead. �

R2: Remove Transition

We define φRemoveT , a workflow net reduction rule, which strongly preserves generalised soundness
and consists in removing a transition for which there exists a set of transitions having the same
input and output places. Intuitively, the transitions removed by this rule are transitions which firing
can be simulated by the firing of a sets of other transitions.

This rule is an original rule generalising the Fusion of Parallel Transitions rule of [Murata, 1989]
and the Abstraction of Parallel Transitions rule of [Hichami et al., 2014]. This rule is an adaptation
of the rule φS of [Desel et al., 2005] to the realm of ordinary workflow nets with no restriction on
their subclasses. Indeed, outside the scope of free-choice workflow nets, additional constraints are
required to ensure that the removed transitions are live. To this end, the liveness of a transition to
be removed in such a way is inferred from the liveness of a source transition, a transition that, when
fired, enables the transition to be removed. Note that this requirement could be relaxed. Instead
of requiring the presence of a source transition, one could require the presence of a sequence of
transitions, where each successive transition is enabled by the firing of the previous ones, such that
the firing of this sequence of transitions enables the transition to be removed.

The inverse rule of this reduction rule is a synthesis rule able to add a single transition to an
arbitrary workflow net based on its structure while preserving generalised soundness and is used
to introduce choice.

The reduction rule φRemoveT is pictured in Figure 4.2 and formally described below.

Let D be a set of places, we define the function ϑ : D→ (P→ N) such that:

∀ d ∈ P, ϑ(D)(d) =

1, if d ∈ D
0, otherwise

Let f1, f2, f3 : P → N be three functions, we overload the operator +,− and = such that f3 =

f1 + (−) f2 ⇔ ∀p ∈ P, f3(p) = f1(p) + (−) f2(p). Function ϑ is used to compare inputs and outputs
of a set of transitions. Note here that this function does not consider self-loop transitions, a desired
property as self-loop transition can be added to places (see φRemoveS T reduction rule, introduced in
the next subsection).

4.1. Φ∗: A WORKFLOW NETS REDUCTION KIT 71

Conditions on N:

– ∃ t ∈ T

– ∃ G = {g1, .., gn} ⊆ T \ {t}

– ϑt = ϑ(t•) − ϑ(•t)

– ϑG = ϑ(g•1) + .. + ϑ(g•n) − ϑ(•g1) − .. − ϑ(•gn)

– ϑt = ϑG

– ∀i, j ∈ {1, .., n}, i , j⇒

(•gi ∩
•g j = g•i ∩ g•j = ∅)

– (∃ ts ∈ T \ ({t} ∪G),∀g ∈ G, •g ⊆ t•s)∨ (|G| = 1)

Construction of Ñ:

– t• = {op1, .., opn1}

– outArc = {t} × t•

– •t = {ip1, .., ipn2}

– inArc = •t × {t}

– P̃ = P

– T̃ = T \ {t}

– F̃ = F \ (inArc ∪ outArc)

Figure 4.2: Reduction rule φRemoveT (R2)

The soundness of φRemoveT , with respect to generalised soundness, is given by the following theo-
rem.

Theorem 22: Soundness of φRemoveT

φRemoveT is a workflow net reduction rule which strongly preserves generalised sound-
ness.

Proof. (Sketch). Let us suppose that ϑt = ϑG. By conditions on N, for all k in N, and ∀MN in
RN(MN

i(k)), transition t is enabled if and only if transitions g1, .., gn are also enabled. Moreover,
the firing of t must result in the same marking as the successive firing of transitions g1, .., gn in
any order. It follows that ∀k ∈ N,M ∈ RN(MN

i(k)),M
N
o (k) ∈ RN(M) ⇔ M ∈ RÑ(MÑ

i(k)),M
Ñ
o (k) ∈

RÑ(M). To conclude, suppose |G| = 1, then t is not dead in N if and only if g1 is not dead in Ñ.
Alternatively, suppose (∃ ts ∈ T \ ({t} ∪G),∀g ∈ G, •g ⊆ t•s), then t is not dead in N if and only if
ts is not dead in Ñ. �

72 CHAPTER 4. REDUCTION METHODS

R3: Remove Self-loop

We define φRemoveS T , a workflow net reduction rule, which strongly preserves generalised sound-
ness and consists in removing a transition whose input places are its output places.

This original rule generalises the Self-Loop Transition rule described in [Murata, 1989]. Similarly
to rule φRemoveT , the liveness of a transition removed by this rule also needs to be inferred from the
existence of a source transition (alternatively a source sequence of transitions).

Furthermore, the inverse of this reduction rule is a synthesis rule able to add a single transition
to an arbitrary workflow net based on its structure while preserving generalised soundness. It is
typically used to introduce choice and repetitive tasks.

Figure 4.3 illustrates φRemoveS T that is formally described below.

Conditions on N:

– ∃ t ∈ T

– t• = •t

– ∃ ts ∈ T \ {t},• t ⊆ t•s ∨
•t ⊆ •ts

Construction of Ñ:

– outArc = {t} × t•

– inArc = t• × {t}

– P̃ = P

– T̃ = T \ {t}

– F̃ = F \ (inArc ∪ outArc)

Figure 4.3: Reduction rule φRemoveS T (R3)

The soundness of φRemoveS T , with respect to generalised soundness, is given by the following
theorem.

Theorem 23: Soundness of φRemoveS T

φRemoveS T is a workflow net reduction rule which strongly preserves generalised sound-
ness.

Proof. (Sketch). By conditions imposed on N, we know that the firing of transition t does not
change the markings of N in which it is enabled. It follows that ∀k ∈ N,M ∈ RN(MN

i(k)),M
N
o (k) ∈

RN(M) ⇔ M ∈ RÑ(MÑ
i(k)),M

Ñ
o (k) ∈ RÑ(M). Notice that t is not dead in N if and only if ts is not

dead in Ñ. �

4.1. Φ∗: A WORKFLOW NETS REDUCTION KIT 73

R4: Remove Transition Place

We define φRemoveT P, a workflow net reduction rule, which strongly preserves generalised sound-
ness and consists in removing a place and its only input transition. Intuitively, this rule consists in
removing a place p and its only input transition t by merging transition t with the output transitions
of place p.

The φRemoveT P rule is displayed in Figure 4.4(a), 4.4(b) and formally described below.

Conditions on N:

– ∃ p ∈ P \ {i, o}

– •p = {t}

– t• , {p} ⇒
∀ ot ∈ p•, •ot = {p}
∧ t• ∩ ot• = ∅

– t• = {p} ⇒
∀ ot ∈ p•, •t ∩ •ot = ∅

∧ (∃ ot ∈ p•, •ot = {p}
∨ ∀ ip ∈ •t, ip• = {t})

Construction of Ñ:

– t• \ p = {op1, .., opn1}

– •t = {ip1, .., ipn2}

– p• = {ot1, .., otn3}

– outT = {t} × t• \ p

– inT = •t × {t}

– outP = {p} × p•

– inArc = •t × p•

– outArc = p• × t• \ p

– P̃ = P \ {p},

– T̃ = T \ {t}

– F̃ = (F ∪ inArc∪ outArc) \ ((t, p)∪ inT ∪ outT ∪ outP)

(a) t• = {p}

(b) t• , {p}

Figure 4.4: Reduction rule φRemoveT P (R4)

74 CHAPTER 4. REDUCTION METHODS

This rule generalises the Post-Fusion rule of [Berthelot, 1987, Sloan et al., 1996].

The inverse of this rule is a synthesis rule introducing a sequence of tasks (adding a task that
has to be accomplished before others) and able to factor common input/output places of a set of
transitions.

The soundness of φRemoveT P, with respect to generalised soundness, is given by the following
theorem.

Theorem 24: Soundness of φRemoveT P

φRemoveT P is a workflow net reduction rule which strongly preserves generalised sound-
ness.

Proof. (Sketch). In N the transitions ot1, .., otn3 have to consume a token in place p. All to-
kens consumed in place p have to be produced by transition t, which consumes a token in places
ip1, .., ipn2 and produces a token in places op1, .., opn1 and p. Thus, ot1, .., otn2 have to consume a
token in ip1, .., ipn2 and produce a token in op1, .., opn1 . Conversely, the same analysis holds on Ñ,
we conclude that N is generalised sound if and only if Ñ is generalised sound. �

R5: Remove Place Transition

We define φRemovePT , a workflow net reduction rule, which strongly preserves generalised sound-
ness and consists in removing a place and its only output transition. Intuitively this rule consist in
removing a place p and its only output transition t by merging transition t with the input transitions
of place p.

The φRemovePT rule is displayed in Figure 4.5(a), 4.5(b) and formally described below.

Conditions on N:

– ∃ p ∈ P \ {i, o}

– p• = {t}

– •t , {p} ⇒
∀ it ∈ •p, it• = {p}
∧ •t ∩ •it = ∅

∧ (•it)• = {it}

– •t = {p} ⇒
∀ it ∈ •p, t•∩it• = ∅

Construction of Ñ:

– t• = {op1, .., opn1}

– •t \ p = {ip1, .., ipn2}

– •p = {it1, .., itn3}

– outT = {t} × t•

– inT = •t \ p × {t}

– inP = •p × {p}

– inArc = •t \ p × •p

– outArc = •p × t•

– P̃ = P \ {p},

– T̃ = T \ {t}

– F̃ = (F ∪ inArc ∪ outArc) \ ((p, t) ∪ inT ∪ outT ∪ inP)

4.1. Φ∗: A WORKFLOW NETS REDUCTION KIT 75

(a) •t = {p}

(b) •t , {p}

Figure 4.5: Reduction rule φRemovePT (R5)

This rule generalises the Pre-Fusion rule of [Berthelot, 1987, Sloan et al., 1996] as well as the
reduction rule φA of [Desel et al., 2005].

The inverse of this rule is a synthesis rule introducing a sequence of tasks (adding a task that
have to be accomplished after others) and able to factor common input/output places of a set of
transitions.

The soundness of φRemovePT , with respect to generalised soundness, is given by the following
theorem.

Theorem 25: Soundness of φRemovePT

φRemovePT is a workflow net reduction rule which strongly preserves generalised sound-
ness.

Proof. (Sketch). In N the transitions it1, .., itn3 have to produce a token in place p. All tokens pro-
duced in place p have to be consumed by transition t, which consumes a token in places ip1, .., ipn2

and p, and produces a token in places op1, .., opn1 . Thus, it1, .., itn3 have to consume a token in
ip1, .., ipn2 and produce a token in op1, .., opn1 . Conversely, the same analysis holds on Ñ, we
conclude that N is generalised sound if and only if Ñ is generalised sound. �

R6: Remove Ring

We define φRemoveR, a workflow net reduction rule, which strongly preserves generalised sound-
ness, and consists in merging places among a ring. A ring is a set of places strongly connected by
transitions with a single input place and a single output place. The transitions forming the ring are
also removed. Intuitively, tokens among the places of a ring can freely move from a place of the
ring to an other, therefore they might as well be on the same place.

This rule is an original one, its inverse rule is a synthesis rule which transforms a place into a ring,
distributing its input and output transitions among the places of the introduced ring.

76 CHAPTER 4. REDUCTION METHODS

Figure 4.6 illustrates φRemoveR that is formally described below.

Conditions on N:

– ∃ {p1, .., pn} ⊆ P

– ∃ {t1, .., tm} ⊆ T

– ∀ i ∈ {1, ..,m}, |•ti| = |t•i | = 1

– ∀ i, j ∈ {1, .., n}, •pi ∩
•p j = p•i ∩ p•j = ∅

– ∀ i, j ∈ {1, ..,m}, ∃ σ : {1, .., k} →
{p1, .., pn} ∪ {t1, .., tm} a path of length k
such that σ(1) = pi ∧ σ(k) = p j ∧ ∀ x ∈
{1, .., k − 1}, (σ(x), σ(x + 1)) ∈ F

Construction of Ñ:

– ringArc = (({p1, .., pn} × {t1, .., tm}) ∪
({t1, .., tm} × {p1, .., pn})) ∩ F

– inT = •p1 ∪ .. ∪
•pn

– outT = p•1 ∪ .. ∪ p•n

– removedA = ((inT × {p1, .., pn}) ∪
({p1, .., pn} × outT)) ∩ F

– addA = (inT × p) ∪ (p × outT)

– P̃ = (P ∪ p) \ {p1, .., pn}

– T̃ = T \ {t1, .., tm}

– F̃ = (F ∪ addA) \ removedA

Figure 4.6: Reduction rule φRemoveR (R6)

The soundness of φRemoveR, with respect to generalised soundness, is given by the following theo-
rem.

Theorem 26: Soundness of φRemoveR

φRemoveR is a workflow net reduction rule which strongly preserves generalised sound-
ness.

Proof. (Sketch). By conditions imposed on N, tokens among the places p1, .., pn of a ring can
freely move from a place of the ring to an other by firing a sequence of transitions formed with
transitions t1, .., tm. It follows that each token produced (resp. consumed) by an input (resp. output)
transition of a place in the ring will eventually be (resp. has been), after (resp. before) the firing of a
possibly empty sequence of transitions formed with transitions t1, .., tm, consumed (resp. produced)
by any output (resp. input) transitions of a place of the ring. Likewise, in Ñ each token produced
(resp. consumed) by an input (resp. output) transition of p will be (resp. has been) consumed
(resp. produced) by an output (resp. input) transition of p. It follows that N is generalised sound
if and only if Ñ is generalised sound. �

4.2. SEMI-DECISION OF GENERALISED SOUNDNESS 77

In this section we defined six reduction rules which together constitute a generic gener-
alised soundness preserving reduction kit. These rules generalise the rules previously pre-
sented in the literature [Berthelot, 1987, Murata, 1989, Sloan et al., 1996, Voorhoeve et al., 1997,
Sadiq et al., 2000, Lin et al., 2002, Desel et al., 2005, Hichami et al., 2014] thereby extending the
range of workflow nets reducible in such a way.

The next sections present two applications of this reduction kit: a generalised semi-decision pro-
cedure and a pre-processing step towards the verification of (extended) modal specifications.

4.2/ Semi-Decision of Generalised Soundness

This section proposes an algorithm based on the workflow nets reduction kit Φ∗ described in the
previous section, for semi-deciding the generalised soundness of workflow nets.

Our approach is based on Lemma 4 page 36. This lemma allows us to infer the validity of a
property of a workflow net from its transformed instance as long as the transformation rules applied
to obtain it strongly preserve this property.

The reduction kit Φ∗ strongly preserves generalised soundness. Let N and Ñ be two workflow nets
such that (N, Ñ) ∈ Φ∗ then the workflow N is generalised sound if and only if the workflow net Ñ
is generalised sound.

Furthermore, it is trivial that the workflow net NAtomic = 〈{i, o}, {t}, {(i, t), (t, o)}〉 (i.e. a workflow
net composed of a single transition whose input place is the initial place and output place is the
final place) is generalised sound.

It follows that if (N,NAtomic) ∈ Φ∗ then the workflow net N is generalised sound. Unfortunately,
the reduction kit Φ∗ is not complete with respect to generalized soundness over ordinary work-
flow nets. This leads to the design of an algorithm to semi-decide whether a workflow net N is
generalised sound.

This algorithm proceeds by iteratively trying to apply any of the reduction rules of Φ∗ to the input
the workflow net N until a fix-point is reached (none of the reduction rules can be applied). If the
workflow net produced by these reductions equals NAtomic, one can conclude that N is generalised
sound. Otherwise, one cannot directly conclude about generalised soundness, but the reduced
workflow net is saved to be further analysed using classical techniques such as model-checking.

This procedure is described by Algorithm 2 which is based on: (i) the set of workflow net reduction
rules Φ = {R1, ..,R6}, (ii) an auxiliary function size(N), which returns the number of nodes of a
workflow net N at each iteration step, (iii) a function TryApplyRule(φ,N), which returns either Ñ
if the rule φ can be applied to N to produce Ñ, or N otherwise, and (iv) save(N), a function that
saves N.

Theorem 27: Termination of Algorithm 2

The procedure described by Algorithm 2 terminates.

Proof. (Sketch). Every rule applied by Algorithm 2 strictly reduces the number of nodes of N.
None of the applied rules can produce a workflow net with less than one node. Thus it always
terminates when no workflow net reduction rules can be applied, and either provides an atomic
sound net or saves the reduced workflow net. �

78 CHAPTER 4. REDUCTION METHODS

Data: N = 〈P,T, F〉
Result: Generalised soundness of N
int sizeN = 0;
do

sizeN = size(N);
forall the φ ∈ Φ do

int subsizeN = 0;
do

subsizeN = size(N);
N = TryApplyRule(φ,N);

while size(N) < subsizeN;
end

while size(N) < sizeN;
if N = NAtomic then

return true;
else

save(N);
return unknown;

end

Algorithm 2: Generalised soundness semi-decision algorithm

Theorem 28: Soundness of Algorithm 2

The procedure described by Algorithm 2 is sound.

Proof. (Sketch). The set of workflow net reduction rules strongly preserves generalised soundness.
By Theorem 4 page 36, the procedure described by Algorithm 2 is sound. �

The application of this algorithm is illustrated by Figure 4.7. This figure depicts the sequence of
workflow nets obtained by applying the reduction rules indicated by the labels of the large arrows
linking them. The large arrows labelled Ri

∗ indicate that the transformation Ri is sequentially
applied many times to the source workflow net to produce the target one. The nodes coloured in red
are the nodes of the source workflow net that are deleted by the reduction rule(s) applied to produce
the target one. Whenever the applied rule is R1 (resp. R2) the places (resp. transitions) which are
equivalent to the deleted node(s) are coloured in green. The last workflow net obtained is the
atomic workflow net. Therefore, we can conclude that each workflow net depicted by Figure 4.7
is generalised sound.

We described how the workflow nets reduction kit described in Section 4.1 page 68 can be used to
semi-decide the generalised soundness of workflow nets. Moreover, it is important to note that, in
the case where this procedure cannot conclude, all was not done in vein as the produced workflow
net size is most likely reduced. Furthermore, useful error diagnostics are given in the form of
an irreducible graph. This makes the presented procedure a valuable pre-processing step towards
further workflow net soundness analysis.

The following section reuses this concept and defines restrictions on the workflow nets reduction
kit described in Section 4.1 page 68. These restrictions enable them to preserve the (in)validity of
(extended) modal specifications in order to be used as a pre-processing set towards their verifica-
tion.

4.3. PREPROCESSING MODAL SPECIFICATION VERIFICATION 79

Figure 4.7: Illustration of the application of Algorithm 2

4.3/ PreprocessingModal Specification Verification

In Section 3.1.3 page 53 we presented a verification method to verify the (in)validity of extended
modal specifications (Section 3.1.1 page 44) through the evaluation of the satisfiability of con-
straint systems. This method principally relies on the definition of over-approximations (e.g., the
state equation) which are then refined through the composition of under-approximations. How-
ever, the used over-approximations are quite complex. For example, the existence of a solution to
the state equation (Section 2.2.2.1 page 30) of a workflow net is an NP-complete problem. This
has the effect of making this method intractable for large workflow nets.

Nonetheless, in Section 2.1.9 page 25, a vertical abstraction mechanism is defined through two ver-
tical abstraction operations: Place refinement and Transition refinement. This abstraction mecha-
nism leads to the definition of hierarchical workflow nets representing workflow nets with multi-
ple layers of detail. When the analysed workflow net is developed by stepwise refinement using
Place refinement and Transition refinement, this hierarchical workflow net is explicitly given by
the modellers. In a broader context, hierarchical workflow nets can be automatically and efficiently
constructed (e.g., by detecting strongly connected components) from workflow nets through their
decomposition [Polyvyanyy et al., 2011, Vanhatalo et al., 2007, Koehler et al., 2014].

The presented extended modal specification verification method, as most analysis tools, is not able
to directly deal with hierarchical workflow nets. Instead, it takes as input the underlying workflow
nets of hierarchical workflow nets. However, not all levels of detail of a hierarchical workflow net
are required in order to infer the (in)validity of a given extended modal specification. It follows
that the construction of a dedicated underlying workflow net, which preserves the (in)validity of
a given extended modal specification, constitutes a vertical abstraction mechanism able to reduce
the size of the workflow net under analysis.

80 CHAPTER 4. REDUCTION METHODS

Furthermore, in Section 4.1 page 68, a reduction kit able to abstract workflow nets in order to
reduce their size while preserving generalised soundness is presented. It allows an horizontal
abstraction of workflow nets at an higher level. This reduction kit is particularly well-adapted
to the reduction of workflow nets designed through refinement, a development approach which
notably uses modal specifications.

It follows that adapting the reductions rules used by this reduction kit in order to preserve the
(in)validity of a given extended modal specification constitutes an horizontal abstraction mecha-
nism able to reduce the size of the workflow net under analysis.

Such abstraction mechanisms, used as pre-processing steps of the verification of a given extended
modal specification, enlarge the range of workflow nets that can be analysed. Indeed, due to the
exponential nature of the verification method with respect to the size of the workflow net under
analysis, any reduction of the size of the workflow net under analysis should significantly improve
the efficiency of the verification method.

Conceptually, this kind of approaches can be seen as a slicing approach [Rabbi et al., 2013] since
they aim at performing abstraction guided by a specific specification formula (equivalently a set
of specification formulae). Indeed, slicing is a technique to syntactically reduce a model in such
a way that at best the reduced model contains only those parts that may influence the property the
model is analysed for [Rakow, 2008], which is the intent of the proposed reduction methods.

The remaining of this section is divided into two sub-sections presenting reduction methods pre-
serving the (in)validity of a given extended modal specification. The first sub-section presents a
reduction procedure based on the hierarchical representation of a workflow net. The second one
details a reduction method based on the reduction rules presented in Section 4.1 page 68.

4.3.1/ Reduction based on hierarchical workflow nets

This section presents a reduction method preserving the (in)validity of a given extended modal
specification based on the hierarchical representation of workflow nets.

We begin by defining subTransitions, an utility function described in Algorithm 3, which takes
as input a hierarchical workflow net node (i.e. a hierarchical workflow net) and returns the set of
transitions of its underlying workflow net.

Data: W = 〈Ph,Th, Fh〉 a hierarchical workflow net
Result: T a set of transitions
Function subTransitions(W = 〈Ph,Th, Fh〉)

T = Th;
forall the S = 〈Ps,Ts, Fs〉 ∈ Ph ∪ Th do

if Ts , ∅ then
T = T ∪ Ts ∪ subTransitions(S);

end
end
return T

Algorithm 3: Definition of the utility function subTransitions

We now define underlyingr, a function described in Algorithm 4. This function takes as inputs a
hierarchical workflow net and an extended modal specification formula, and returns the underlying
workflow net of the input hierarchical workflow net restricted to the layers of detail relevant to the
input extended modal specification formula. Differently from the function underlying, described

4.3. PREPROCESSING MODAL SPECIFICATION VERIFICATION 81

in Algorithm 1 page 27, the function underlyingr does not recursively expand every node of the
input hierarchical workflow net, instead it only chooses to expand nodes for which the set produced
by subTransitions contains a transition in the domain of the input extended modal specification
formula.

Data: W = 〈Ph,Th, Fh〉 a hierarchical workflow net
m an extended modal specification formula

Result: N = 〈P,T, F〉 the workflow net underlying W restricted to the layers
of detail relevant to n

Function underlyingr(W = 〈Ph,Th, Fh〉,m)
N = 〈Ph,Th, Fh〉;
forall the S = 〈Ps,Ts, Fs〉 ∈ Ph ∪ Th do

if Ts , ∅ ∧ (subTransitions(S) ∩ Domain(m)) , ∅ then
N = N ⊗S underlyingr(S);

end
end
return N

Algorithm 4: Definition of the function underlyingr

Let W = 〈Ph,Th, Fh〉 be a hierarchical workflow net, and m a given extended modal specification
formula.

The extended modal specification formula m, interpreted as either a may-formula or a must-
formula, is said to be (in)valid over the hierarchical workflow net W if and only if it is (in)valid
over the underlying(W) workflow net.

The reduction procedure based on the function underlyingr is said to be sound with respect to
(in)validity of m if and only if underlying(W) |=must m ⇔ underlyingr(W,m) |=must m, and
underlying(W) |=may m⇔ underlyingr(W,m) |=may m.

In order for the reduction procedure based on the function underlyingr to be sound with respect to
(in)validity of m, the following assumptions are required:

∀ t ∈ Domain(m), subTransitions(t) ∩ Domain(m) = ∅, and

Wis generalised sound

The first assumption concerns the given modal specification formula m: it ensures that transitions
in Domain(m) are not deleted by refinement during the construction of the underlying workflow
net. The second assumption concerns the hierarchical workflow net W: it guarantees that the
abstracted layers of detail always produce valid (sub)executions.

Theorem 29: Soundness of underlyingr

Let W = 〈Ph,Th, Fh〉 be a generalised sound hierarchical workflow net, and m a given
extended modal specification formula such that ∀t ∈ Domain(m), subTransitions(t) ∩
Domain(m) = ∅.
The reduction procedure based on the function underlyingr is sound with respect
to (in)validity of m: underlying(W) |=must m ⇔ underlyingr(W,m) |=must m, and
underlying(W) |=may m⇔ underlyingr(W,m) |=may m.

82 CHAPTER 4. REDUCTION METHODS

Proof. (Sketch). We proceed by showing that the workflow nets underlying(W) = 〈Pu,Tu, Fu〉

and underlyingr(W,m) = 〈Pr,Tr, Fr〉 are weak trace equivalent with respect to the transitions set
Domain(m).

Note that, assuming W does not refine the transition of Domain(m), Domain(m) ⊆ Tu and
Domain(m) ⊆ Tr by definitions.

Further, transition t ∈ Tr \ Tu is an abstract transition which always corresponds to correct exe-
cutions of underlying(t) as W is generalised sound. Likewise, place p ∈ Pr \ Pu is an abstract
place and transition t ∈ p• corresponds to correct executions composed of correct executions of
underlying(p) followed by t.

It follows that, underlying(W) and underlyingr(W,m) are weak trace equivalent with re-
spect to the transitions set Domain(m). We can conclude that underlying(W) |=must m ⇔

underlyingr(W,m) |=must m, and underlying(W) |=may m⇔ underlyingr(W,m) |=may m. �

Theorem 29 allows us to conclude that, in order to verify a modal specification formula m inter-
preted as either a may-formula or a must-formula over a generalised sound hierarchical workflow
net W, it is sufficient to consider the workflow net underlyingr(W,m) rather than the workflow
net underlying(W). As the workflow net underlyingr(W,m) can be considerably smaller than the
workflow net underlying(W), this reduction approach constitutes a valuable pre-processing step
towards the verification of m interpreted ether as a may-formula or a must-formula.

4.3.2/ Reduction based on reduction rules

This section presents a reduction method preserving the (in)validity of a given extended modal
specification based on the reduction rules presented in Section 4.1 page 68.

More precisely, it presents restrictions imposed on the reduction rules presented in Section 4.1
page 68. Given an extended modal specification formula m, these restricted reduction rules pre-
serve the (in)validity of the extended modal specification formula m interpreted as either a may-
formula or a must-formula.

In what follows, the six workflow net reduction rules presented in Section 4.1 page 68 are reviewed.
The restrictions added to the conditions of application, under which it can be applied to a source
workflow net N = 〈P,T, F〉 to produce a target workflow net Ñ = 〈P̃, T̃ , F̃〉, are specified with
regard to a given extended modal specification formula m.

R1: Remove Place

We define φRemoveP(m) a reduction rule strictly equivalent to the reduction φRemoveP defined
page 69. No further restriction to conditions of application of this rule is required in order to
enable it to strongly preserve the (in)validity of the extended modal specification formula m. In-
deed, places removed by this reduction rule are redundant places that do not change the executions
set of a workflow net.

Theorem 30: Soundness of φRemoveP(m)

φRemoveP(m) is a workflow net reduction rule which strongly preserves the (in)validity
of the extended modal specification formula m interpreted as either a may-formula or a
must-formula.

4.3. PREPROCESSING MODAL SPECIFICATION VERIFICATION 83

Proof. (Sketch). We proceed by showing that the workflow nets N and Ñ are trace equivalent.

Let f : (P̃ → N) → (P → N) be a bijective function such that f (M)(g) = M(g) for all g ∈ P̃ and
f (M)(p) = M(g1) + .. + M(gn).

Let l ∈ N and σ = t1, .., tl be a transition sequence of size l.

By conditions on N, every transition that produces (resp. consumes) a token in any of the places
of G also produces (resp. consumes) a token in p.

It follows that there exists a sequence M1, ..,Ml+1 of l + 1 markings of Ñ such that M1
t1
−→ M2

t2
−→

..
tl
−→ Ml+1 is an execution of Ñ if and only if f (M1)

t1
−→ f (M2)

t2
−→ ..

tl
−→ f (Ml+1) is an execution of

N.

Therefore, the workflow nets N and Ñ are trace equivalent. We can then conclude that N |=must

m⇔ Ñ |=must m, and N |=may m⇔ Ñ |=may m. �

R2: Remove Transition

We define φRemoveT (m) a reduction rule which further constrains the conditions of application of
the φRemoveT reduction rule defined page 70.

In order to ensure that φRemoveT (m) strongly preserves the (in)validity of the extended modal spec-
ification formula m, interpreted as either a may-formula or a must-formula, one has to make sure
that the removed transition is not part of the domain of m (i.e. t < Domain(m)). Further, one also
has to ensure that {g1, .., gn} ∩ Domain(m) = ∅ to guarantee that alternative behaviours including
transition of the domain of m are not lost by the application of such a transformation rule.

To this end, the following constraint is added to the conditions of application of the φRemoveT

reduction rule:
t < Domain(m) ∧ {g1, .., gn} ∩ Domain(m) = ∅

Theorem 31: Soundness of φRemoveT (m)

φRemoveT (m) is a workflow net reduction rule which strongly preserves the (in)validity
of the extended modal specification formula m interpreted as either a may-formula or a
must-formula.

Proof. (Sketch). We proceed to show that the workflow nets N and Ñ are weak trace equivalent
with respect to the transitions set Domain(m). By condition imposed on N, the firing of transition
t is equivalent to the successive firings of the transitions sequence g1, .., gn. It follows that the
occurrences of t in the executions of N can be replaced by the transitions sequence g1, .., gn to
form executions of Ñ. Further, any execution of Ñ is an execution of N. As t < Domain(m) and
{g1, .., gn} ∩Domain(m) = ∅, we can conclude that N and Ñ are weak trace equivalent with respect
to the transitions set Domain(m). It follows that N |=must m ⇔ Ñ |=must m, and N |=may m ⇔
Ñ |=may m. �

84 CHAPTER 4. REDUCTION METHODS

R3: Remove Self-loop

We define φRemoveS T (m) a reduction rule which further constrains the conditions of application of
the φRemoveS T reduction rule defined page 72.

In order to ensure that φRemoveS T (m) strongly preserves the (in)validity of the extended modal
specification formula m, interpreted as either a may-formula or a must-formula, one has to make
sure that the removed transition is not part of the domain of m (i.e. t < Domain(m)).

To this end, the following constraint is added to the conditions of application of the φRemoveS T

reduction rule:
t < Domain(m)

Theorem 32: Soundness of φRemoveS T (m)

φRemoveS T (m) is a workflow net reduction rule which strongly preserves the (in)validity
of the extended modal specification formula m interpreted as either a may-formula or a
must-formula.

Proof. (Sketch). We proceed by showing that the workflow nets N and Ñ are weak trace equivalent
with respect to the transitions set Domain(m).

By condition imposed on N, firing transition t does not change the marking in which it is fired.
Therefore any execution of Ñ is also an execution of N. Further, any execution of N where every
occurrence of t is removed is an execution of Ñ. As t < Domain(m) we can conclude that N and Ñ
are weak trace equivalent with respect to the transitions set Domain(m).

It follows that N |=must m⇔ Ñ |=must m, and N |=may m⇔ Ñ |=may m. �

R4: Remove Transition Place

We define φRemoveT P(m) a reduction rule which further constrains the conditions of application of
the φRemoveT P reduction rule defined page 73.

In order to ensure that φRemoveT P(m) strongly preserves the (in)validity of the extended modal
specification formula m, interpreted as either a may-formula or a must-formula, one has to ensure
that the removed transition is not part of the domain of m (i.e. t < Domain(m)).

To this end, the following constraint is added to the conditions of application of the φRemoveT P

reduction rule:
t < Domain(m)

Theorem 33: Soundness of φRemoveT P(m)

φRemoveT P(m) is a workflow net reduction rule which strongly preserves the (in)validity
of the extended modal specification formula m interpreted as either a may-formula or a
must-formula.

4.3. PREPROCESSING MODAL SPECIFICATION VERIFICATION 85

Proof. (Sketch). As before, we show that the workflow nets N and Ñ are weak trace equivalent
with respect to the transitions set Domain(m).

By construction of Ñ, ∀ i ∈ {1, .., n3}, the firing of oti in Ñ is equivalent to the firing of t, oti in N.

Therefore any execution of Ñ where, for every i ∈ {1, .., n3}, every occurrence of oti is replaced
by the transitions sequence t, oti, is an execution of N. Further, any execution of N where every
occurrence of t is removed is an execution of Ñ. As t < Domain(m), we can conclude that N and
Ñ are weak trace equivalent with respect to the transitions set Domain(m).

It follows that N |=must m⇔ Ñ |=must m, and N |=may m⇔ Ñ |=may m. �

R5: Remove Place Transition

We define φRemovePT a reduction rule which further constrains the conditions of application of the
φRemovePT reduction rule defined page 74.

Similarly to the constraint added to φRemoveT P to define φRemoveT P(m), to ensure that φRemovePT (m)
strongly preserves the (in)validity of the extended modal specification formula m, interpreted as
either a may-formula or a must-formula, one has to make sure that the removed transition is not
part of the domain of m (i.e. t < Domain(m)).

To this end, the following constraint is added to the conditions of application of the φRemovePT

reduction rule:
t < Domain(m)

Theorem 34: Soundness of φRemovePT (m)

φRemovePT (m) is a workflow net reduction rule which strongly preserves the (in)validity
of the extended modal specification formula m interpreted as either a may-formula or a
must-formula.

Proof. (Sketch). Similarly to previous proofs, we show that the workflow nets N and Ñ are weak
trace equivalent with respect to the transitions set Domain(m).

By construction of Ñ, ∀ i ∈ {1, .., n3}, the firing of iti in Ñ is equivalent to the firing of iti, t in N.

Therefore any execution of Ñ where, for every i ∈ {1, .., n3}, every occurrence of iti is replaced
by the transitions sequence iti, t, is an execution of N. Further, any execution of N where every
occurrence of t is removed is an execution of Ñ. As t < Domain(m), we can conclude that N and
Ñ are weak trace equivalent with respect to the transitions set Domain(m).

It follows that N |=must m⇔ Ñ |=must m, and N |=may m⇔ Ñ |=may m. �

R6: Remove Ring

It remains to define φRemoveR(m), a reduction rule which further constrains the conditions of appli-
cation of the φRemoveR reduction rule defined page 75.

In order to ensure that φRemoveR(m) strongly preserves the (in)validity of the extended modal spec-
ification formula m, interpreted as either a may-formula or a must-formula, one has to make sure
that none of the removed transitions (i.e. the transitions of the ring) is part of the domain of m (i.e.
{t1, .., tm} ∩ Domain(m) = ∅).

86 CHAPTER 4. REDUCTION METHODS

To this end, the following constraint is added to the conditions of application of the φRemovePT

reduction rule:
{t1, .., tm} ∩ Domain(m) = ∅

Theorem 35: Soundness of φRemoveR(m)

φRemoveR(m) is a workflow net reduction rule which strongly preserves the (in)validity
of the extended modal specification formula m interpreted as either a may-formula or a
must-formula.

Proof. (Sketch). As previously, we proceed by showing that the workflow nets N and Ñ are weak
trace equivalent with respect to the transitions set Domain(m).

By condition imposed on N, every execution of N where occurrences of the transitions t1, .., tm
are removed is also an execution of Ñ. Further, every execution of Ñ where occurrences of
a transition t ∈ outT are replaced by the transition sequence seq, t, where seq is a sequence
of transitions involving transitions of the ring such that it enables t, is an execution of N. As
{t1, .., tm} ∩ Domain(m) = ∅, we can conclude that N and Ñ are weak trace equivalent with respect
to the transitions set Domain(m).

It follows that N |=must m⇔ Ñ |=must m, and N |=may m⇔ Ñ |=may m. �

For any given extended modal specification formula m, the six presented rules thus defines together
a reduction kit, called Φ∗(m), which strongly preserves the (in)validity of the extended modal
specification formula m interpreted as either a may-formula or a must-formula. Indeed, given N
and Ñ two workflow nets such that (N, Ñ) ∈ Φ∗(m), we know that N |=must m ⇔ Ñ |=must m, and
N |=may m⇔ Ñ |=may m.

We can conclude that, given an extended modal specification formula m, the reduction kit Φ∗(m)
defined in this section can be used as a pre-processing step toward the verification of the extended
modal specification formula m interpreted as either a may-formula or a must-formula. Indeed,
beside reducing the size of the workflow net to be analysed, this pre-processing step provides
useful diagnostic information in the form of an irreducible graph.

Furthermore, note that the reduction rules of Φ∗(m) preserve weak trace equivalence with respect
to the transitions set Domain(m). They are therefore also candidate to a pre-processing step toward
the verification of other behavioural properties (e.g., LTL on traces [Westergaard, 2011], CTL on
traces) expressed over Domain(m).

4.4/ Synthesis

This chapter presented reduction methods – abstraction methods – that have the ability to reduce
the size of workflow nets while strongly preserving properties of interest.

It first presented six reduction rules generalising existing reduction rules defined by pre-
vious work [Berthelot, 1987, Murata, 1989, Sloan et al., 1996, Voorhoeve et al., 1997,
Sadiq et al., 2000, Lin et al., 2002, Desel et al., 2005, Hichami et al., 2014]. It is proven that
these reduction rules strongly preserve generalised soundness over workflows nets, an essential
and necessary correctness property that must be satisfied by workflow nets.

Based on the definition of these reduction rules, a generalised soundness semi-decision is then
described. It notably showed that, despite not being complete, this procedure, whenever unable to

4.4. SYNTHESIS 87

conclude, can be used as a pre-processing step toward verification of generalised soundness. In-
deed, by reducing the size of the analysed workflow nets, this procedure can enhance conventional
generalised soundness verification methods.

Finally, two reduction methods preserving the (in)validity of a given extended modal specification
formula interpreted as either a may-formula or a must-formula are described. The first of these
method – based on the hierarchical representation of workflow nets – aims at abstracting unneces-
sary layers of detail. The second method is based on the six reduction rules previously presented.
Both reduction methods were proved to be sound. Thanks to the potential size reduction they pro-
vide, these reduction methods constitute pre-processing steps for extended modal specifications
verification approaches (e.g., the one presented in Section 3.1.3 page 53).

Now that the theoretical contributions of this thesis have been described, the following chapter
presents the tools that have been implemented as well as experimentations that have been carried
out over industrial workflow nets in order to validate the approaches introduced in this chapter and
the previous one.

5
Experimental Evaluation

“The proper method for inquiring after the properties of things is to
deduce them from experiments.”

— Isaac Newton

Contents
5.1 Study Cases . 90

5.1.1 Issue Tracking System . 90

5.1.2 Question and Answer Portal . 91

5.1.3 Tax Accounting Manager . 95

5.2 Tool Chain Implementation . 98

5.2.1 Modal Specification Verifier . 98

5.2.2 Reduction Tool . 103

5.3 Study cases results . 104

5.4 Scalability . 108

5.4.1 Benchmark’s Generation Tool . 108

5.4.2 Experimental Evaluation of Modal Specification Verification 109

5.4.3 Experimental Evaluation of Reduction Methods 117

5.5 Synthesis . 123

This chapter describes experimental results obtained in order to assess the value of the contribu-
tions presented previously as well as the tools developed to support the proposed approach. The
first section introduces study cases (i.e. real-life examples) which highlight and motivate the use
of workflow nets and extended modal specifications. The second section describes the dedicated
tool chain implemented to carry out the verification of extended modal specifications according to
the approach presented in Section 3.1.3 page 53 as well as the reduction procedures of workflow
nets presented in Sections 4.2 page 77 and 4.3 page 79. The third section exposes and discusses
experimental results obtained over the study cases presented in the first section. The fourth section
has for objective to demonstrate the scalability of the proposed approaches over workflow nets
of growing size and complexity. It first describes a workflow nets benchmarks generation tool
able to produce large benchmarks of workflow nets of growing size and complexity together with
their (in)valid extended modal specifications. It then proceeds to expose and discuss experimental
results obtained over such benchmarks before providing an experimental evaluation of the effec-
tiveness and scalability of the reduction methods proposed in Sections 4.2 page 77 and 4.3 page 79.
Finally, as a conclusion, major results are summarised.

89

90 CHAPTER 5. EXPERIMENTAL EVALUATION

5.1/ Study Cases

This section presents the three study cases considered during this thesis to validate and evaluate
the extended modal specification verification approach described in Chapter 3 page 43. These
three study cases are real-life examples of industrial workflows obtained through collaboration
with industrial actors.

5.1.1/ Issue Tracking System

The first study case concerns a proprietary issue tracking system used to manage bugs and issues
requested by the customers of a tool provider company1.

General Description

This issue tracking system enables the provider to create, update and drop tickets reporting on
customer’s issues, and thus provides knowledge base containing problem definition, information
about customer’s environment, improvements and solutions to common problems, request status,
request priority, and other relevant data needed to efficiently manage all the company projects. It
must also be compliant with respect to several rules ensuring that business processes are suitable
as well as streamlined, and implement best practices to increase management effectiveness.

Modelling

Figure 5.1 depicts an excerpt of the corresponding business process—specified from textual re-
quirements by a business analyst team of the company—modelled using a Petri net workflow.
Note that this workflow was first designed using the BPMN Standard [White, 2004] and has been
transformed into a hierarchical workflow net following [Raedts et al., 2007]’s approach.

Figure 5.1: Excerpt of issue tracking system workflow net

1For confidentiality reasons, some details about this case-study are not given.

5.1. STUDY CASES 91

The main process, in the top left model, is defined by two possible distinct scenarii (SubA and
SubB), which are described by two other workflow nets. In the figure, big rectangles (as for SubA
and SubB) define other workflow nets. Some of them are not presented here: this example is indeed
deliberately simplified and abstracted to allow its small and easily understandable presentation; its
complete and fully detailed workflow net is composed of 165 places and 204 transitions.

Requirements

This industrial business workflow is directly driven by the need to verify some behavioural prop-
erties possibly at the early stage of development life cycle, before going to implementation.

For this business process, the goal is to verify, at the specification or design stage of the devel-
opment, some required behavioural properties, derived from textual requirements and business
analyst expertise. Such properties are presented in Table 5.1 and denoted pi for later references.

Property
p1 During a session, either the scenario SubA or the scenario SubB (and not both of them)

must be executed
p2 When the scenario SubB is considered then the user must login
p3 Once a critical situation request is pending, it can either be updated, validated and dis-

patched, or closed
p4 Once a critical situation is created, it can be updated and closed
p5 At any time, a service request can be upgraded to a critical situation request
p6 A logged user must logout to exit the current session

Table 5.1: Issue tracking system requirements

To ensure the specified business process model verifies this kind of business rules, there is a need
to express and assess them using modal specifications. It should be noted that usual modal speci-
fication are relevant to express properties on single transition by specifying that a transition shall
be a (necessary) must-transition or a (admissible) may-transition. However, they do not allow to
express requirements on several transitions. For instance, expressing the property p1 using usual
modal specification allows us to specify that transitions of SubA and SubB shall be may-transitions.
Nevertheless, such formula does not ensure that SubA or SubB has to occur in an exclusive man-
ner, and specifying some transitions as must-transition cannot tackle this imprecision. This kind
of properties highlights the expressive limitation of usual modal specifications and has motivated
the definition of extended modal specifications as introduced in Section 3.1.1 page 44. Indeed,
by expressing behavioural properties over several transitions and their causalities, extended modal
specifications are able to effectively describe such properties.

5.1.2/ Question and Answer Portal

The second study case concerns a business process workflow of a Question and Answer portal,
which is a part of a proprietary issue tracking system considered in Section 5.1.1.

92 CHAPTER 5. EXPERIMENTAL EVALUATION

General Description

This Question and Answer portal allows company’s customers to ask questions that are then an-
swered by the company’s sellers. To use the system, new users (e.g., new employee, new client)
have to be registered. Three types of users can log-in: clients, sellers and administrators. The
clients can ask questions. These questions are then answered by sellers. Once the answer to a
question has been validated by the client who asked it, the administrator archives the question. An
execution of the workflow is complete once all users have been logged-out and unregistered.

Modelling

We present one of the several refinements of the workflow modelled by a coloured workflow
net. For clarity, this coloured workflow net is described by several coloured sub-workflow nets
(Figures 5.2, 5.3(a), 5.3(b), 5.3(c), and 5.3(d)). In these figures, places with the same name denote
the same entities: for instance, place HomeQA in Figure 5.2 and Figure 5.3(a) denotes the same
place.

In this refinement, the following three colours are considered:

– U = {u1, .., ut}, a set of t user names representing the different users of the system;

– R = {client, seller, admin}, a set of roles, which are assigned to users;

– Q = {unanswered, answered, validated}, a set of question statuses.

Figure 5.2: Login and navigation coloured sub-workflow net

Table 5.2 shows the colours associated with places of the Question and Answer coloured workflow
net, and Tab. 5.3 shows the colours, inputs, outputs and guards (u, u1, u2 ∈ U, r ∈ R, q ∈ Q).

Colours Places
U i, o
U × R P0,Home,HomeQA,HomeS R
U × R × Q × U DisplayQ,DisplayA, P1, P3
Q × U Questions

Table 5.2: Colours of Question and Answer coloured workflow net’s places

5.1. STUDY CASES 93

(a) Create Question (b) Answer Question

(c) (Un)Valid Answer (d) Archive Question

Figure 5.3: sub-CWF-nets of the Question and Answer CWF-net

Transition Colours Inputs Outputs Guard

Register U × R u (u, r) True
UnRegister U × R (u, r) u True
Login, Logout U × R (u, r) (u, r) True
HomeToQA U × R (u, r) (u, r) True
QAtoHome U × R (u, r) (u, r) True
HomeToS R U × R (u, r) (u, r) True
S RtoHome U × R (u, r) (u, r) True
CreateQ U × R (u, r) (u, r,′ unanswered′, u) r =′ client′

EditQ U × R × Q × U (u1, r, q, u2) (u1, r, q, u2) True
CommitQ U × R × Q × U (u1, r, q, u2) (u1, r) and (q, u2) True
S electQ U × R × Q × U (u1, r) and (q, u2) (u, r, q, u) True
CreateA U × R × Q × U (u1, r, q, u2) (u1, r,′ answered′, u2) r =′ seller′ ∧ q =′ unanswered′

EditA U × R × Q × U (u1, r, q, u2) (u1, r, q, u2) True
CommitA U × R × Q × U (u1, r, q, u2) (u1, r) and (q, u2) True
ViewA U × R × Q × U (u1, r, q, u2) (u1, r, q, u2) u1 = u2 ∧ q =′ answered′

AcceptA U × R × Q × U (u1, r, q, u2) (u1, r) and (′validated′, u2) True
Re f useA U × R × Q × U (u1, r, q, u2) (u1, r) and (′unanswered′, u2) True
ArchiveQA U × R × Q × U (u1, r, q, u2) (u1, r) r =′ admin′ ∧ q =′ validated′

BackToHome U × R × Q × U (u1, r, q, u2) (u1, r) and (q, u2) True

Table 5.3: Colours, inputs, outputs, and guards of Question and Answer coloured workflow net’s
transitions

An execution of the Question and Answer coloured workflow net begins with at least three users
(one client, one seller, and one administrator) and is complete once all users have been logged-out
and unregistered.

94 CHAPTER 5. EXPERIMENTAL EVALUATION

Example 20: Example of an execution of the Question and Answer coloured work-
flow net

To illustrate how this coloured workflow net works, let us consider the following execu-
tion with u1, u2 and u3 as initial marking: each user is registered, then he/she logs in and
navigates to the QA’s Home (Figure 5.2):

– Register(u1, client), Login(u1, client), HomeToQA(u1, client)

– Register(u2, seller), Login(u2, seller), HomeToQA(u2, seller)

– Register(u3, admin), Login(u3, admin), HomeToQA(u3, admin)

The client creates a new question (Figure 5.3(a)):

– CreateQ(u1, client), CommitQ(u1, client, unanswered, u1)

The seller selects the question and the answer (Figure 5.3(b)):

– S electQ(u2, seller, unanswered, u1), CreateA(u2, seller, unanswered, u1)

– CommitA(u2, seller, answered, u1)

The client selects the question, reads the answer and validates (Figure 5.3(c)):

– S electQ(u1, client, answered, u1), ViewA(u1, client, answered, u1)

– AcceptA(u1, client, answered, u1)

The administrator selects the question and archives it (Figure 5.3(d)):

– S electQ(u3, admin, validated, u1),ArchiveQA(u3, admin, validated, u1)

The users navigate to Home and then log-out and are unregistered (Figure 5.2):

– QAtoHome(u1, client), Logout(u1, client) UnRegister(u1, client)

– QAtoHome(u3, seller), Logout(u3, seller) UnRegister(u2, seller)

– QAtoHome(u3, admin), Logout(u3, admin) UnRegister(u3, admin)

Requirements

Regarding this business process, the goal is to verify, at the specification or design stage of the de-
velopment, some required behavioural properties derived from textual requirements and business
analyst expertise.

The considered behavioural properties, denoted pi for later references are presented in Table 5.4.

Let us, one more time, emphasize that these properties could not be expressed by usual modal
specifications as they involve several transitions as well as constraint over data and the initial
states. This is why they have also motivated the definition of extended modal specifications as
introduced in Section 3.2.2 page 59.

5.1. STUDY CASES 95

Property
p7 All users must register
p8 An admin may view an answer
p9 A client may create a question and refuse the answer
p10 When a client asks a question it must be answered and archived
p11 A client must not answer a question
p12 There may be an user who asks a question while another does not
p13 If there is less than three users, no question is asked
p14 If a question is asked then the system must have registered a client, a seller and an

administrator

Table 5.4: Question and Answer portal requirements

5.1.3/ Tax AccountingManager

The third study case deals with a system to manage tax accounting. It is inspired by a real-life
system that provides dependable, automated, efficient and integrated services to more than 400 tax
municipalities and more than 3000 users.

Description

This tax accounting manager is huge and handles a vast amount of tax processes which can be, at
the early stage of development life cycle, described by workflows in order to specify and to verify
some behavioural properties of the payout process before going to implementation.

The payout process handles credit claims (i.e. notes issued when the tax department owes money
to a taxpayer). It is composed of three sub-processes, namely, the approval process, the payout
form generation process, and the payout process.

It proceeds as follows. Firstly, a credit claim must be approved. Its approbation may need two
levels of approval, which can be either manual or automatic depending on the properties of the
claim. Secondly, a suggested payout form is generated. It may then be corrected by a tax processor
and, if corrected, it must be verified again. Once approved the payout form is sent to the bank
which responds with a receipt. The receipt is then handled by a tax processor. Although this payout
process is only a small portion of the whole system, its workflow is a representative example as it
illustrates a real-life process of high importance.

Modelling

Figure 5.4 presents one of the first refinements of this payout process modelled as a coloured
workflow Petri net composed of 10 places and 16 transitions.

The approval process workflow must be refined to specify the property that any credit claim must
be approved before being treated. To this end, two colors are defined:

– C1 = {lvl0, lvl1, lvl2, lvl12, approved}, a set of levels required to approve a claim

– C2 = C1 × C1, a set of 2-uple whose first element represents the level required to approve
the claim, and whose second element represents the actual level of the claim approval

96 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.4: Payout Process of the Tax Accounting Manager study case

The colour C2 is assigned to places i, P1, P2 and P3, as well as to transitions requestApproval1/2,
ManualApproval1/2, AutomaticApproval1/2 and suggestPayoutForm. A form is suggested if and
only if the credit claim has been approved at the required level(s) as described in Tab. 5.5.

Transition Instance Pre Post
requestApproval1 lvl1 (lvl1, lvl0) (lvl1, lvl0)

lvl12 (lvl12, lvl0) (lvl12, lvl0)
requestApproval2 lvl2 (lvl2, lvl0) (lvl2, lvl0)

lvl12 (lvl12, lvl1) (lvl12, lvl1)
(Manual/Automatic)Approval1 lvl1 (lvl1, lvl0) (lvl1, approved)
ManualApproval1 lvl12 (lvl12, lvl0) (lvl12, lvl1)
(Manual/Automatic)Approval2 lvl2 (lvl2, lvl0) (lvl2, approved)

lvl12 (lvl12, lvl1) (lvl12, approved)
suggestPayoutForm lvlx (lvlx, approved) (lvlx, approved)

Table 5.5: Function associated with transitions of the Payout Process (Figure 5.4)

Moreover, some properties of interest for this system require performance measures of the mean
cost of executions. To this end, weights representing the mean cost of the activities are associated
with transitions to constitute a weighted transitions Petri net (Section 2.1.5.3 page 21). This defines
a price weight function, that assigns to any transition instance an amount of units needed to perform
it. It is a weight function defined in the framework where C is the set of integers, and C is the
summation of elements of a set. The total weight cost of a correct execution represents the total
amount of units needed to perform it. In this study case context, the units in question are unit
of money which represents the cost of the considered activity. The total weight of an execution
represents the amount of money needed to perform it. Table 5.6 gives the mean cost in tenth of a
Euro associated with transitions of the payout process. We suppose this mean cost uniform for all
instances of the same transition.

We observe that automated treatments have a low mean cost while other activities, like manual
approval and correction, have a significantly higher mean cost.

5.1. STUDY CASES 97

Transition Weight Transition Weight
requestApproval1 10 requestApproval2 10
AutomaticApproval1 10 AutomaticApproval2 10
ManualApproval1 400 ManualApproval2 500
suggestPayoutForm 10 approvePayoutForm 120
correctPayoutForm 100 veri f yPayoutForm 80
sendPayoutForm 50 getBankReceipt 10
handleRe jectedPayment 80 handleRe jectedPayment 60
handleAcceptedPayment 30

Table 5.6: Mean costs associated with transitions of the Payout Process

Requirements

This payout process is a component of a larger process, which requires valid activities with respect
to a specification. Notably, under certain conditions, some activities may be admissible, while
some shall be necessary.

Regarding this business process, the goal is to verify, at the specification or design stage of the
development, some required behavioural properties, derived from textual requirements and analyst
expertise. Denoted pi for later references, the properties presented in Table 5.7 are considered.

Property
p15 credits claims must be approved
p16 a payout form may be corrected
p17 if a payout form is corrected, it must be verified
p18 a payout form may be corrected three times
p19 getting a receipt from the bank is necessary
p20 any claim that requires two levels of approval requires a manual approval level 1
p21 the treatment of a credit claim may have a mean cost of less than 30 Euros
p22 When restricting to three the number of corrections of a payout form, the cost of a credits

claims treatment must not exceed a mean cost of 200 Euros

Table 5.7: Payout Process requirements

We can see that those properties all express either admissible or necessary behaviours. To
ensure that the specified business process model verifies this kind of business rules, there is a
need to express and assess them using modal specifications. In the context of Petri net based
workflow modelling, usual modal specifications are relevant to express properties on a single
transition, i.e an activity, by specifying that a transition shall be a (necessary) must-transition
or a (admissible) may-transition. However, they do not allow neither expressing requirements
on several transitions, nor the requirements conditioned by characteristics on the treated cases,
nor the requirements containing performance indicators of the process executions. For instance,
the property p17 involves distinct activities, its definition within usual modal specification over a
single transition is not possible. We can also see that the property p20 has a condition on the credit
claims characteristics, whereas the properties p21 to p22 have restrictions on cost performance
characteristics of the process executions.

98 CHAPTER 5. EXPERIMENTAL EVALUATION

However, like the properties of the previous study case covering the Question and Answer portal,
these properties can be expressed by the extended modal specifications framework presented in
Section 3.2.2 page 59. Moreover, they have motivated its definition over workflows described as
coloured workflow nets extended by quantitative performance specification.

5.2/ Tool Chain Implementation

This section describes the tool chain developed to experimentally validate this thesis proposals,
and notably illustrates its use on the three study cases presented in the previous section.

The first part of this section presents an extended modal specification verifier implementation
based on the modelling approach described in Chapter 3 page 43. The second part presents an
implementation of a reduction tool preserving generalised soundness of workflow nets based on
the reduction rules described in Section 4.1 page 68. This reduction tool also enables the user to
preserve the (in)validity of a given modal specification interpreted as a must-formula or a may-
formula following the approach described in Section 4.3 page 79.

5.2.1/ Modal Specification Verifier

The approach proposed in Chapter 3 page 43 has been fully automated, allowing practitioners, at
any stage of the workflow design and validation, to verify modal properties using an integrated
tool chain.

Figure 5.5 depicts the global architecture of the modal verification tool chain, which enables to
verify modal specifications using either CLP or SMT resolution methods.

Figure 5.5: Modal specification verification tool chain

First, a workflow net and an extended modal specification formula are given as inputs to the ver-
ification software (1). Both models conform to an ad-hoc standard, i.e. a dedicated meta-model,
so that all information needed by the verification tool is provided. Note that this implementation
also supports input workflow nets model formatted by the PNML standard [Hillah et al., 2010] –
a generic Petri nets XML format – allowing the use of workflow nets exported from a third party
software (e.g., Yasper [van Hee et al., 2006a], PIPE [Bonet et al., 2007]).

We have also developed a graphical coloured workflow nets editor created within the Sirius frame-
work2, which is an EMF-based open source project to create customized graphical modelling
workbench by leveraging Eclipse Modelling technologies. Basically, it provides a generic work-
bench for model-based architecture engineering that could be easily tailored to fit the specific
needs of a given Domain Specific Language, e.g., coloured workflow nets in our context. Hence

2http://projects.eclipse.org/projects/modeling.sirius

http://projects.eclipse.org/projects/modeling.sirius

5.2. TOOL CHAIN IMPLEMENTATION 99

the developed coloured workflow nets editor allows producing an XML file, corresponding to the
designed coloured workflow net models, that can be used as input file of the tool chain.

Afterwards, the two code generators use the information provided by the input workflow and the
input modal specification (1) to generate the code corresponding to the constraint system defined
in Section 3.1.3 page 53. Such codes are expressed in the input format of the targeted constraint
solver (2): SMT-Lib for Z3 [De Moura et al., 2008] version 4.4.0, an SMT solver, and SICStus
Prolog [Carlsson et al., 2012] version 4.3.2, a CLP solver (that includes a CLP(FD) library).

Both solvers were selected for their proven efficiency: Z3 finished first during the 2014 SMT-
COMP challenge [Barrett et al., 2005] for solving non-linear arithmetic problems and SICStus
obtained the third place during the 2014 MiniZinc challenge [Stuckey et al., 2014].

Next, to verify a may-formula (resp. a must-formula) m, the tool first checks if there exists a
solution of the over-approximation, given by the constraint system Q(N,Mi,Mo) (Definition 37
page 49), such that the modelled execution satisfies (resp. does not satisfy) m. If such an execution
exists, it then tries to find an execution of the under-approximation, given by the constraint system
V(N, k,m) (resp. V(N,K, 6 m)) of the Definition 40 page 53.

The function checking the validity of a must-formula is given by Algorithm 5. In this algorithm,
S AT (CS) is defined as the boolean function returning the satisfiability of the constraint system
CS and GET MODEL(CS) is a function returning a valuation function satisfying the constraint
system CS . This algorithm returns the K-bounded validity of a given modal formula m. To cope
with the complexity raised by Kmax, K can be fixed to a manageable value. Nevertheless, when
fixing K to Kmax (or greater than Kmax), the algorithm enables to decide the unbounded validity of
the must-formula m. The results introduced in Chapter 3 ensure its soundness and completeness.

Finally, once the verification algorithm has been applied through queries to the related solver with
the generated code to determine the validity of the modal specification (3), a report is produced
(4). This report states the verdict about the validity of the modal specifications as well as the
verification time.

Let us point out that, using SICStus, no particular labelling heuristic was found to signifi-
cantly improve results. Therefore all the experiments have been conducted with the default ones
([leftmost, step, up]). However, using Z3, since the SMT tactic improved all results, this strat-
egy has been systematically used.

The two following subsections respectively illustrate the code generation process (2) and discuss
the issue of representing infinite domains.

On Code Generation

To illustrate the code generation process within this tool chain, let us consider the ordinary work-
flow net N = (P,T, F) depicted in Figure 5.6.

Figures 5.7 and 5.8 illustrate the encoding used to model the constraints seen in Chapter 3 respec-
tively for the SMT-Lib and Prolog language.

Let n ∈ P ∪ T , we use the following conventions: An stands for Ma(n), Bn for Mb(n), Pn for ν(n)
when n is a place, Tn stands for ν(n) when n is a transition, and Xn stands for ξ(n), M1n, M2n and
M3n stand for M1(n), M2(n) and M3(n). For example, Tt2 and M2p1 respectively denote ν(t2) and
M2(p1).

The initialMarking and finalMarking predicates are used to respectively constrain the initial and

100 CHAPTER 5. EXPERIMENTAL EVALUATION

Data: N - a WF-net, m - a must-formula, K a positive integer
Result: TRUE - PN |=must m, FALS E - PN 2must m
if S AT (Q(N,Mi,Mo) ∧ C(N,¬m)) then

v = GET MODEL(Q(N,Mi,Mo) ∧ C(N,¬m));
k = max({v(n)|n ∈ T });
if k == 1 then

return FALS E;
else

while k ≤ K do
if S AT (V(N, k,¬m)) then

return FALS E;
else

k = k + 1;
end

end
end

else
return TRUE;

end

Algorithm 5: Algorithm checking the validity of a must-formula

Figure 5.6: An example of workflow net

final marking of a modelled execution. The predicate formula defines the constraint imposed by
the extended modal specification formula considered: t1 ∧ t2. The state equation constraint sys-
tem defined by Definition 35 page 46 is modelled by the stateEquation predicate. The subnet of
a state equation valuation (Definition 36 page 48) is constructed through the use of the predicate
subnetInit. The predicate siphon models the constraint system of Definition 12 page 49 and is
used to determine the presence of a siphon in a workflow net. Based on a solution of the sta-
teEquationpredicate, the noShiphon predicate ensures the absence of siphon within the subnet of
the considered state equation valuation. It follows that together the stateEquation and noShiphon
predicates define a predicate segment corresponding to the constraint system modelling segment
of executions of the considered workflow net as defined by Definition 37 page 49.

5.2. TOOL CHAIN IMPLEMENTATION 101

1 ; Variables declaration here

2 (de f ine − fun i n i t i a l M a r k i n g ((Ai In t) (Ao In t) (Ap1 In t)) Bool (and (= Ai 1) (= Ao 0) (= Ap1 0)))
3 (de f ine − fun f i na lMark ing ((Bi In t) (Bo In t) (Bp1 In t)) Bool (and (= Bi 0) (= Bo 1) (= Bp1 0)))
4 (de f ine − fun s tateEquat ion (
5 (Ai In t) (Ao In t) (Ap1 In t) (Bi In t) (Bo In t) (Bp1 In t) (Pi In t) (Po In t) (Pp1 In t) (Tt1 In t) (Tt2 In t) (Tt3 In t)) Bool
6 (and
7 (>= Ai 0) (>= Ao 0) (>= Ap1 0) (>= Bi 0) (>= Bo 0) (>= Bp1 0)
8 (>= Pi 0) (>= Po 0) (>= Pp1 0) (>= Tt1 0) (>= Tt2 0) (>= Tt3 0)
9 (= Pi Ai) (= Pi (+ Bi Tt1))

10 (= Po (+ Ao Tt3)) (= Po Bo)
11 (= Pp1 (+ Ap1 Tt1 Tt2)) (= Pp1 (+ Bp1 Tt2 Tt3))))
12 (de f ine − fun formula ((Tt1 In t) (Tt2 In t)) Bool (and (> Tt1 0) (> Tt2 0)))
13 (de f ine − fun noSiphon (
14 (Ai In t) (Ao In t) (Ap1 In t) (Bi In t) (Bo In t) (Bp1 In t) (Pi In t) (Po In t) (Pp1 In t) (Tt1 In t) (Tt2 In t) (Tt3 In t)) Bool
15 (not (e x i s t s ((Xi In t) (Xo In t) (Xp1 In t))
16 (and
17 (> (+ Xi Xo Xp1) 0)
18 (>= Xi 0) (<= Xi 1) (>= Xo 0) (<= Xo 1) (>= Xp1 0) (<= Xp1 1)
19 (=> (or (> Ai 0) (> Bi 0) (= Pi 0)) (= Xi 0))
20 (=> (or (> Ao 0) (> Bo 0) (= Po 0)) (= Xo 0))
21 (=> (or (> Ap1 0) (> Bp1 0) (= Pp1 0)) (= Xp1 0))
22 (=> (> Tt1 0) (>= (+ Xi) Xp1)) (=> (> Tt2 0) (>= (+ Xp1) Xp1)) (=> (> Tt3 0) (>= (+ Xp1) Xo))))))
23 (de f ine − fun segment (
24 (Ai In t) (Ao In t) (Ap1 In t) (Bi In t) (Bo In t) (Bp1 In t) (Pi In t) (Po In t) (Pp1 In t) (Tt1 In t) (Tt2 In t) (Tt3 In t)) Bool
25 (and
26 (s ta teEquat ion Ai Ao Ap1 Bi Bo Bp1 Pi Po Pp1 Tt1 Tt2 Tt3)
27 (noSiphon Ai Ao Ap1 Bi Bo Bp1 Pi Po Pp1 Tt1 Tt2 Tt3)))

Figure 5.7: SMT-Lib representation of a segment of workflow

1 i n i t i a l M a r k i n g ([1 , 0 , 0]) .
2 f i na lMark ing ([0 , 1 , 0]) .
3 s tateEquat ion ([Ai , Ao , Ap1] , [Bi , Bo , Bp1] , [Pi , Po , Pp1] , [Tt1 , Tt2 , Tt3]) : −
4 domain ([Ai , Ao , Ap1 , Bi , Bo , Bp1 , Pi , Po , Pp1 , Tt1 , Tt2 , Tt3] , 0 , 10) ,
5 Pi #= Ai , Pi #= Bi + Tt1 ,
6 Po #= Ao + Tt3 , Po #= Bo ,
7 Pp1 #= Ap1 + Tt1 + Tt2 , Pp1 #= Bp1 + Tt2 + Tt3 .
8 formula ([Tt1 , Tt2]) : − Tt1 #> 0 , Tt2 #> 0 .
9 s u b n e t I n i t ([Ai , Ao , Ap1] , [Bi , Bo , Bp1] , [Pi , Po , Pp1] , [Xi , Xo , Xp1]) : −

10 domain ([Xi , Xo , Xp1] , 0 , 1) ,
11 (Ai #> 0 #\/ Bi #> 0 #\/ Pi #= 0) #=> Xi #= 0 ,
12 (Ao #> 0 #\/ Bo #> 0 #\/ Po #= 0) #=> Xo #= 0 ,
13 (Ap1 #> 0 #\/ Bp1 #> 0 #\/ Pp1 #= 0) #=> Xp1 #= 0 .
14 s iphon ([Tt1 , Tt2 , Tt3] , [Xi , Xo , Xp1]) : −
15 Xi + Xo + Xp1 #> 0 ,
16 Tt1 #> 0 #=> Xi #>= Xp1 , Tt2 #> 0 #=> Xp1 #>= Xp1 , Tt3 #> 0 #=> Xp1 #>= Xo ,
17 l a b e l i n g ([l e f tmost , step , up] , [Xi , Xo , Xp1]) .
18 noSiphon ([Ai , Ao , Ap1] , [Bi , Bo , Bp1] , [Pi , Po , Pp1] , [Tt1 , Tt2 , Tt3]) : −
19 s u b n e t I n i t ([Ai , Ao , Ap1] , [Bi , Bo , Bp1] , [Pi , Po , Pp1] , [Xi , Xo , Xp1]) ,
20 l a b e l i n g ([l e f tmost , step , up] , [Tt1 , Tt2 , Tt3]) ,
21 \+ s iphon ([Tt1 , Tt2 , Tt3] , [Xi , Xo , Xp1]) .
22 segment ([Ai , Ao , Ap1] , [Bi , Bo , Bp1] , [Pi , Po , Pp1] , [Tt1 , Tt2 , Tt3]) : −
23 s tateEquat ion ([Ai , Ao , Ap1] , [Bi , Bo , Bp1] , [Pi , Po , Pp1] , [Tt1 , Tt2 , Tt3]) ,
24 noSiphon ([Ai , Ao , Ap1] , [Bi , Bo , Bp1] , [Pi , Po , Pp1] , [Tt1 , Tt2 , Tt3]) .

Figure 5.8: Prolog representation of a segment of workflow

As illustration, the two input queries given in Figure 5.9 allow to determine, using respectively Z3
and SICStus, whether there exists a correct execution of the workflow given in Figure 5.6 made
of three segments such that both t1 and t2 are fired. Note here that these inputs correspond to
constraint systems modelling executions composed of at most three segments according to Defini-
tion 40 page 53.

Z3 input:

(a s s e r t (i n i t i a l M a r k i n g M1i M1o M1p1))
(a s s e r t (f ina lMark ing M3i M3o M3p1))
(a s s e r t (formula (+ T1t1 T2t1 T3t1) (+ T1t2 T2t2 T3t2)))
(a s s e r t (segment M1i M1o M1p1 M2i M2o M2p1 P1i P1o P1p1 T1t1 T1t2 T1t3))
(a s s e r t (segment M2i M2o M2p1 M3i M3o M3p1 P2i P2o P2p1 T2t1 T2t2 T2t3))
(a s s e r t (segment M3i M3o M3p1 M4i M4o M4p1 P3i P3o P3p1 T3t1 T3t2 T3t3))
(check−sat −us ing smt)
(get −model)

SICStus input:

i n i t i a l M a r k i n g ([M1i , M1o , M1p1]) ,
f i na lMark ing ([M4i , M4o , M4p1]) ,
segment ([M1i , M1o , M1p1] , [M2i , M2o , M2p1] , [P1i , P1o , P1p1] , [T1t1 , T1t2 , T1t3]) ,
segment ([M2i , M2o , M2p1] , [M3i , M3o , M3p1] , [P2i , P2o , P2p1] , [T2t1 , T2t2 , T2t3]) ,
segment ([M3i , M3o , M3p1] , [M4i , M4o , M4p1] , [P3i , P3o , P3p1] , [T3t1 , T3t2 , T3t3]) ,
S1 #= T1t1 + T1t2 , S2 #= T2t1 + T2t2 , formula ([S1 , S2]) .

Figure 5.9: Input queries using respectively Z3 and SICStus

102 CHAPTER 5. EXPERIMENTAL EVALUATION

Both solvers give the following interpretation for the three segments:
1 M1i = 1 , M1o = 0 , M1p1 = 0 , M2i = 0 , M2o = 0 , M2p1 = 1 , M3i = 0 , M3o = 0 , M3p1 = 1 , M4i = 0 , M4o = 1 , M4p1 = 0 ,
2 P1i = 1 , P1o = 0 , P1p1 = 1 , P2i = 0 , P2o = 0 , P2p1 = 2 , P3i = 0 , P3o = 1 , P3p1 = 1 ,
3 T1t1 = 1 , T1t2 = 0 , T1t3 = 0 , T2t1 = 0 , T2t2 = 1 , T2t3 = 0 , 3 t1 = 0 , T3t2 = 0 , T3t3 = 1

These segments are given in Figure 5.10, starting (resp. ending) in the initial (resp. final) marking
where only the input place i (resp. output place o) is marked.

Figure 5.10: The three execution’s segments proposed by both solvers

On Infinite Domain Representation

Let us note that modellers often use, in the context of coloured workflow nets development, infinite
colours (e.g., strings, integers) to represent data (e.g., usernames of a system, identifiers of files),
even if these data are usually not directly manipulated by the control flow. However, coloured
workflow nets with infinite colours cannot be directly handled due to the nature of the constraint
solvers over finite domains.

Fortunately, abstraction techniques help to tackle the problem entailed by this restriction
and can therefore cope with infinite colours. Among well-known abstraction techniques,
[Namjoshi et al., 2000] proposes an algorithm to construct a finite state abstract program from
a given, possibly infinite, state program (e.g., a coloured workflow net) by means of a syntactic
program transformation starting with an initial set of predicates from a specification (e.g., modal
specification). This method is shown to be sound (the abstract program is always guaranteed to
simulate the original one) and complete (the algorithm can produce a finite simulation-equivalent,
resp. bisimulation-equivalent, abstract program if the concrete program has a finite abstraction
with respect to simulation, resp. bisimulation, equivalence). On the one hand, in the case of a
bisimulation-equivalent abstract program, the abstracted modal specification can be verified us-
ing our method, and the (in)validity of the modal specification can be directly inferred. On the
other hand, for simulation-equivalent abstract program, only the validity of a may-formula and the
invalidity of a must-formula can be inferred.

To handle infinite colours, another approach is to consider only a finite number of data of an
infinite colour according to control-flow selection criteria (e.g., decision or condition cover-
age) [Vilkomir et al., 2001]. However, this approach is not complete, it only provides a certain
level of confidence in the validity or the invalidity of modal specifications depending on the ap-
plied selection criterion.

5.2. TOOL CHAIN IMPLEMENTATION 103

5.2.2/ Reduction Tool

This section presents an implementation of a reduction tool preserving generalised soundness of
workflow nets based on the reduction rules described in Section 4.1 page 68 . It notably imple-
ments the procedure described by Algorithm 2 of Section 4.2 and has also the ability to reduce
workflow nets while preserving the (in)validity of a given modal specification interpreted as a
must-formula or a may-formula by following the approach described in Section 4.3 page 79.

This tool, called Hadara-AdSimul-Red, is part of a dedicated open source workflow nets analysis
tool suite, called Hadara-AdSimul. It has been developed during this thesis to conduct experimen-
tal work. This tool (including examples and source code) is available on Github3.

Figure 5.11 depicts the global architecture of this tool.

Reduced
Workflow net

4

Workflow net
Reducer

3

Workflow net

2

Modal
specification

formula
1

Figure 5.11: Workflow nets reduction tool

This tool takes as input a workflow net (2), saved as an XML file and conform to
an ad-hoc and proprietary standard – a dedicated meta-model – or to the PNML stan-
dard [Hillah et al., 2010] – a generic Petri nets XML format – so that third party editor can be
used (e.g., Yasper [van Hee et al., 2006a], PIPE [Bonet et al., 2007]). It also, possibly, takes as
input a modal specification formula (1) conform to an ad-hoc and proprietary XML standard.

The workflow net reducer (3) then tries to apply any of the six reduction rules presented in Sec-
tion 4.1 page 68 to the input workflow net until a fix-point (i.e. none of the reduction rules can be
applied) is reached. If an input modal specification formula has been provided, it instead applies
the six restricted reduction rules given in Section 4.3 page 79.

Once the computation is completed, whenever the generalised soundness verification is incon-
clusive (i.e. the input workflow net could not be completely reduced) or when an input modal
specification formula has been provided, this tool produces a reduced workflow net (4) which can
then be further analysed. Finally, this tool provides a result report containing the status of the
verification of the generalised soundness and metrics about the execution time and the number of
times the rules have been applied.

In order to ease and foster its use, this tool features a web interface available online4.

Figure 5.12 shows, as an example, the web interface output of the execution of Hadara-AdSimul-
Red when applied to an industrial workflow net in order to determine its generalised soundness.
Information and graphic representations of the original and reduced workflow nets can respectively
be seen at the left and right of a central frame displaying the required reduction time, the status of
the generalised soundness verification as well as the reduction factor obtained.

3https://github.com/LoW12/Hadara-AdSimul
4http://www.adsimul.com/

https://github.com/LoW12/Hadara-AdSimul
http://www.adsimul.com/

104 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.12: Example of the output of the execution of Hadara-AdSimul-Red

The following two sections present experimental results obtained by using the tools introduced
in this section and the previous. The first one exposes and discusses results obtained over the
study cases presented in Section 5.1. The second section presents and discusses, in a first step,
an experimental evaluation of the scalability of the proposed extended modal specifications and
supporting tool chain over generated benchmarks. In a second step, it introduces an experimental
evaluation of the effectiveness and scalability of the reduction approaches implemented by the tool
described in this section.

5.3/ Study cases results

For each study case the modal specifications of interest presented in Section 5.1 have been verified
using the dedicated modal specification verification tool presented in Section 5.2. The obtained
results are presented in this section. Additionally, this section is concluded by a synthesis of the
lessons learnt from these results.

Issue Tracking System

We consider the issue tracking system used to manage bugs and issues requested by the customers
of a tool provider company. In Section 5.1.1, this study case is presented and six required be-
havioural properties, denoted p1, .., p6, are introduced in Table 5.1 page 91. These behavioural
properties have been expressed using extended modal specifications (Section 3.1.1 page 44).

Table 5.8 shows the modal specification formulae associated with each behavioural property as

5.3. STUDY CASES RESULTS 105

well as the experimental results obtained on this industrial example. The modal may-formula
(resp. must-formula) m associated with each property is specified, and the result of the com-
putation is given by its final result as well as the internal evaluation of the over-approximation
ϕ = Q(N,Mi,Mo)∧C(N,m) (resp. ϕ = Q(N,Mi,Mo)∧C(N,¬m)), the constraint system defined in
Definition 37 page 49. The input K and the corresponding computed value of φ(K) = V(N,K,m)
(resp. φ(K) = V(N,K,¬m)), the constraint system defined in Definition 40 page 53, are also stated
when the algorithm cannot conclude without this bound. The properties p1 to p6 are representa-

Formula ϕ K φ(K) Result

p1 ITS |=must (S ubA ∧ ¬S ubA) ∨ (S ubB ∧ ¬S ubA) TRUE - - TRUE
p2 ITS |=must S R S electData⇒ Login TRUE - - TRUE
p3 ITS |=must S R CreateCRITS IT ⇒ (VandD ∨ U pdate ∨Closure) TRUE - - TRUE
p4 ITS |=may S R CreateCRITS IT ⇒ (U pdate ∧Closure) FALSE - - FALSE

p5 ITS |=may S R U pgradeToCRITS IT TRUE
1 FALSE FALSE
6 TRUE TRUE

p6 ITS |=must Login⇒ Logout FALSE 1 FALSE FALSE

Table 5.8: Issue Tracking System: Experimentation results

tive of the kind of properties that have to be verified by engineers when they design the business
process to be implemented. Moreover, these properties are sufficiently clear without a complete
description of the workflow and enable to show all possible outcomes of our approach.

We observe that on the one hand, when verifying must-formulae that are satisfied by the considered
workflow net (see p1, p2 and p3), or may-formulae that are not satisfied by the workflow net (see
p4), the over-approximation proposed in Definition 37 is usually sufficient to conclude. On the
other hand, when verifying may-formulae that are satisfied by the workflow net (see p5), or must-
formulae that are not satisfied by the workflow net (see p6), the decomposition into K segments is
needed. We empirically demonstrate that this decomposition is very effective since values of Kmax

are usually moderate (Kmax = 6 in the case of p5, less than 10 with all the experimentations on this
case-study). We can also notice the definitive invalidity of p6 (a user can exit the current session
without logout), which enabled to highlight an ambiguity in the textual requirements.

On the basis of the experiments performed on this study case and related results, we can conclude
that the proposed method is feasible and effective. Furthermore, regarding efficiency, it should be
noted that the developed tool is able to conclude about the (in)validity of the studied properties in
a very short time (less than a second).

Question and Answer Portal

We now consider the business process workflow of a Question and Answer portal. In Section 5.1.2
page 91, this study case is presented and eight required behavioural properties, denoted p7, .., p14,
are introduced in Table 5.4 page 95. These behavioural properties have been expressed using
abstract extended modal specifications (Section 3.2.2 page 59) considering both initial states and
transition instances.

Table 5.9 shows the abstract modal formula associated with each behavioural property as well as
the experimental results obtained on this industrial example. The modal may-formula (resp. must-
formula) m associated with each property is specified, and the result of the computation is given
by its final result as well as the internal evaluation of the over-approximation ϕ = Qa(N,Mi,Mo)∧
C(N,m) (resp. ϕ = Qa(N,Mi,Mo) ∧ C(N,¬m)). The input K and the corresponding computed
value of φ(K) = Va(N,K,m) (resp. φ(K) = Va(N,K,¬m)) are also stated when it makes sense,
i.e. when the algorithm cannot conclude without this bound.

106 CHAPTER 5. EXPERIMENTAL EVALUATION

Formula ϕ K φ(K) Result

p7 QA |=must 〈true, true,Register[u = u1] ∧ .. ∧ Register[u = ut]〉 TRUE - - TRUE
p8 QA |=may 〈true, true,ViewA[r = admin]〉 FALSE - - FALSE

p9
QA |=may 〈true, true,CreateQ[r = client, u = ux] TRUE

5 FALSE -
∧Re f useA[r = client, u1 = ux]〉 7 TRUE TRUE

p10
QA |=must 〈true, true,CommitQ[u2 = ux]⇒ CommitA[u2 = ux] TRUE - - TRUE
∧ArchiveQA[u2 = ux]〉

p11 QA |=must 〈true, true,¬CreateA[r = client]〉 TRUE - - TRUE
p12 QA |=may 〈nbUsers > 3, true,CreateQ[u = ux] ∧ ¬CreateQ[u = uy]〉 TRUE 12 TRUE TRUE
p13 QA |=must 〈nbUsers < 3, true,¬CreateQ[true]〉 TRUE - - TRUE

p14
QA |=must 〈true, true,CreateQ[true]⇒ (Register[r = client]

TRUE - - TRUE
∧Register[r = seller] ∧ Register[r = admin]〉

Table 5.9: Question and Answer Portal: Experimentation results

Since the properties have initially been defined by the business analysts involved in the project, we
assume that they are representative of properties that should be verified by engineers when they
design and implement such business processes. Furthermore, the obtained verification results have
been shared and discussed with them.

As for the previous study case, on the one hand, we observe that when verifying must-formulae that
are satisfied by the coloured workflow net (e.g., p7, p10), or may-formulae that are not satisfied by
the coloured workflow net (e.g., p8), the over-approximation is usually sufficient to conclude. On
the other hand, when verifying may-formulae that are satisfied by the coloured workflow net (e.g.,
p9), or must-formulae that are not satisfied by the coloured workflow net, the decomposition into
K segments is needed. We empirically show that this decomposition is very effective since values
of Kmax are usually moderate (Kmax = 12 for p6, less than 30 on all the experiments conducted on
this case study).

Thanks to the experiments conducted on this study case, we can conclude that the proposed method
is effective and efficient over coloured workflow nets, and can therefore gain benefits within busi-
ness process design and verification. Notably, regarding efficiency, these experiments have high-
lighted once more that the approach is able to conclude about the (in)validity of the studied prop-
erties in a very short time (less than 5 seconds using SICStus Prolog).

Tax AccountingManager

We consider the business process workflow of a Tax Accounting Manager. In Section 5.1.3
page 95, this study case is presented and eight required behavioural properties, denoted p15, .., p22,
are introduced in Table 5.7. These behavioural properties have been expressed using abstract ex-
tended modal specifications (Section 3.2.2 page 59) considering both initial states and transition
instances together with performance indicators, a new feature.

Table 5.10 shows the abstract modal formula associated with each behavioural property as well as
the experimental results obtained on this industrial example. The modal may-formula (resp. must-
formula) m associated with each property is specified, and the result of the computation is given
by its final result as well as the internal evaluation of the over-approximation ϕ = Qa(N,Mi,Mo)∧
C(N,m) (resp. ϕ = Qa(N,Mi,Mo) ∧ C(N,¬m)). The input K and the corresponding computed
value of φ(K) = Va(N,K,m) (resp. φ(K) = Va(N,K,¬m)) are also stated when it makes sense,
i.e. when the algorithm cannot conclude without this bound. We note here that property p22, which
expresses necessities, is transformed into a may-formula with the negation of the weight constraint
imposed on it. It follows that the result of the validity of this property is the negation of the validity
of the may-formula.

5.3. STUDY CASES RESULTS 107

Formula ϕ K φ(K) Result

p15

T AM |=must 〈true, true, AutomaticApproval1[d > 0]
TRUE - - TRUE∨AutomaticApproval2[d > 0] ∨ ManualApproval1[d > 0]

∨ManualApproval1[d > 0]〉
p16 T AM |=may 〈true, true, correctPayoutForm[d > 0]〉 TRUE 4 TRUE TRUE

p17
T AM |=must 〈true, true, correctPayoutForm[d > 0]

TRUE - - TRUE
⇒ veri f yPayoutForm[d > 0]〉

p18 T AM |=may 〈true, true, correctPayoutForm[d = 3]〉 TRUE 7 TRUE TRUE
p19 T AM |=must 〈true, true, getBankReceipt[d > 0]〉 TRUE - - TRUE
p20 T AM |=must 〈Mi(i) > (lvl12, lvl0), true,ManualApproval1[d > 0]〉 TRUE - - TRUE
p21 T AM |=may 〈true, true,−〉|C < 300 TRUE 4 TRUE TRUE
p22 T AM |=may 〈true, true, correctPayoutForm[d < 4]〉|C > 20000 FALSE - - FALSE

Table 5.10: Tax Accounting Manager: Experimentation results

In a similar way to the precedent study cases, we have experimentally demonstrated that verify-
ing must-formulae that are satisfied by the coloured workflow net, or may-formulae that are not
satisfied by the coloured workflow net, does not usually require segment decomposition. The veri-
fication is therefore very efficient as only the over-approximation is required. On the contrary, ver-
ifying may-formulae that are satisfied by the coloured workflow net (e.g., p16), or must-formulae
that are not satisfied by the coloured workflow net, does require the decomposition into K seg-
ments. Nevertheless, we have empirically shown that this decomposition is also effective and very
efficient in the context of coloured workflow nets extended with weight functions since values of
K are also moderate (less than 10), and efficiently handled by the constraint solver (solved in less
than 5 seconds using SICStus Prolog).

Synthesis

The results gathered over these three study cases allow us to conclude that the presented extended
modal specification verification over workflows described as workflow nets possibly extended by
data and performance indicators is effective and efficient.

They notably highlight the appropriate use of over-approximations for verifying must-formulae
that are satisfied by the workflow net, or may-formulae that are not satisfied by the workflow net.

Using constraint systems satisfiability to check the validity of extended modal specifications en-
ables the usage of efficient constraint solvers to support the verification of workflow nets against
extended modal specifications. Moreover, we showed that this method is still valuable when ex-
tending modal specifications with data and/or weights.

Indeed, thanks to the experiments conducted using the dedicated tool chain relying on powerful
solvers, we can conclude that the proposed method is suitable and helpful, and can therefore gain
benefits within business process design and verification. Furthermore, these experiments permitted
to demonstrate that the developed tooling is able to conclude about the (in)validity of the studied
properties in a very short time.

The promising results obtained over real-life industrial case studies prompted a more broader eval-
uation to precisely measure the efficiency of this approach over large scale models. To reach this
goal, the next section aims at providing an in-depth evaluation in order to assess the scalability of
the proposed modal specification verification method over large benchmarks composed of work-
flow nets of growing size and complexity.

108 CHAPTER 5. EXPERIMENTAL EVALUATION

5.4/ Scalability

In a first step, this section presents and discusses an empirical evaluation of the scalability of
the verification of extended modal specifications over workflow nets according to the verification
approach defined in Chapter 3 page 43. To this end, a workflow nets generation tool, able to
produce workflow nets of growing size and complexity together with (in)valid extended modal
specifications, is first introduced. On the basis of such generated workflow nets, an experimental
evaluation aiming at assessing the scalability of the verification approach based on such generated
benchmarks is then defined. The obtained results are presented and discussed.

In a second step, this section introduces and discusses an experimental evaluation of the effec-
tiveness and scalability of the workflow nets reduction approaches defined in Section 4.2 page 77
and 4.3 page 79.

5.4.1/ Benchmark’s Generation Tool

In this section we introduce three tools forming a tool chain able to produce large benchmarks of
workflow nets together with their (in)valid extended modal specifications.

The first tool, called Hadara-AdSimul-Formula-Gen, produces random extended modal formu-
lae. The second tool, called Hadara-AdSimul-Formula-To-WF, produces workflow nets (in)valid
with respect to given modal formulae. The third tool, called Hadara-AdSimul-Expander, produces
larger and more complex workflow nets from given workflow nets while preserving the (in)validity
of the modal formulae associated with them. All three tools are part of Hadara-AdSimul, a dedi-
cated open source tool suite previously introduced in Section 5.2.2 page 103.

Figure 5.13 depicts the global architecture of the tool chain able to produce large benchmarks
of workflow nets together with their (in)valid modal specifications. The elements in the middle
line of the figure represent the thee tools above-mentioned, while the elements above and below
represent data files.

Expanded
Workflow net

8

Workflow net
Expander

7

Formula Generator

2

Formula

3

Formula
to Workflow net

4

Workflow net

5

Formula
Specification

1

Figure 5.13: Architecture of the generation toolchain

The entry point of the tool chain is an XML file that contains the specifications of the formula to
be generated (1): its intended size as well as the probability at which the operator and, or, and
not will be used by the Formula Generator (2) to produce a Formula (3) verifying these given
specifications. According to these specifications, the Formula Generator (2), starting from a single
literal, recursively and randomly (according to the given probability) replaces an existing literal by
either its negation, or its conjunction/disjunction with a newly introduced literal. Once the desired
formula’s size is reached, the produced formula is then saved in an XML file (3).

The next step consists in producing an XML file describing a workflow net (5) satisfying (resp.
not satisfying) the modal formula (resp. the negation of the modal formula) of the input formula
interpreted as a must-formula. This computation is performed using the Formula to Workflow

5.4. SCALABILITY 109

net tool (4) that maps each operator of the input formula to its corresponding workflow net struc-
ture (Section 2.1.6). Finally, the produced workflow net (5) is expanded using the Workflow
Expander tool (7). This expansion is achieved by successively applying synthesis rules (inverse
of the reduction rules presented in Section 4.1 page 68) which add transitions and/or places while
preserving the validity of the modal specification associated. Note that this workflow nets gen-
eration approach is similar to the one proposed in [Van Hee et al., 2010]. However the synthesis
rules used by our workflow nets generation approach are generalisation of the synthesis rules used
in [Van Hee et al., 2010]. Therefore they are able to generate workflow nets exhibiting a broader
range of behaviours. The result is an expanded workflow net saved as an XML file (8) satisfying
or not the modal formula of the produced formula (3) interpreted as a may-formula or a must-
formula. The produced formula (3) and the produced expanded workflow net (8) together form an
instance of a benchmark.

Example 21: Example of workflow net generation

To illustrate this process we consider the following example. A must-formula of size 5 is
generated using the Formula Generator (2): t0∧t1∧(t2∨t3∨t4). The Formula to Workflow
net tool (4) is then used to produce a workflow net, depicted in Figure 5.14, satisfying
this must-formula. This workflow is then extended to the desired size of 50 nodes using
the Expander tool (7) while preserving the validity of the considered must-formula. The
obtained workflow is depicted in Figure 5.15.

Figure 5.14: A workflow net satisfying the must-formula t0 ∧ t1 ∧ (t2 ∨ t3 ∨ t4)

Figure 5.15: The extended workflow obtained from the workflow of Figure 5.14

In this way, the presented tool chain is able to produce large benchmarks of workflow nets together
with their (in)valid modal specifications. In the next section, an experimental protocol using this
tool chain is designed to experimentally evaluate the scalability of the extended modal specification
verification approach presented in Chapter 3 page 43.

5.4.2/ Experimental Evaluation ofModal Specification Verification

In this section, we present an experimental evaluation of the verification of extended modal speci-
fications over workflow nets according to the approach presented in Chapter 3 page 43.

110 CHAPTER 5. EXPERIMENTAL EVALUATION

To this end, we first detail the objectives of the proposed experimental evaluation. Second, we de-
fine the experimental protocol. Finally, the experimental results obtained according to the defined
experimental protocol are presented and discussed.

5.4.2.1/ Objectives

The primary objectives of this experimental evaluation are to experimentally assess the effective-
ness, efficiency and scalability of the proposed extended modal specification verification method
over workflow nets of growing size and complexity.

In the context of this experimentation, the proposed method is said to be effective over a given
instance – a workflow net together with its extended modal specification – if and only if it is able
to assign a verdict about the (in)validity of the given modal specification in an admissible time.
If the proposed method is effective over a given modal specification, its efficiency is its ability to
return such a verdict in the least amount of time and memory. It follows that the proposed method
is scalable if it is effective and efficient over workflow nets of growing size and complexity.

The secondary objective of this experimental evaluation is to compare the relative efficiency of
the proposed method when employing two different constraint resolution approaches: Constraint
Logic Programming and Satisfiability Modulo Theories (Section 2.3 page 38).

5.4.2.2/ Experimental Protocol

On the basis of the previously introduced objectives, the following experimental protocol have
been designed.

Regarding effectiveness assessment, an admissible time is arbitrary fixed to a reasonable value
of 10 minutes (i.e. the time-out of constraint solver queries if fixed to 10 minutes). To evaluate
the effectiveness of the proposed method, this protocol thus consists in gathering, the proposed
verification approach ability to assign a verdict to the instances of the considered data set in an
admissible time of 10 minutes. If a verdict is assigned, the required time is also gathered in order
to evaluate the proposed verification approach efficiency.

Furthermore, in order to compare the relative efficiency of the proposed method when employing
two different constraint resolution approaches (CLP vs SMT), each instance of the considered data
set has to be evaluated once using a CLP constraint solver and once using a SMT solver.

To make conclusion and feedback relevant and credible, and to be able to evaluate the scalability
of the extended modal specification verification approach, these experimental results has to be
calculated from a broad range of modal specifications and workflow nets. Indeed, the type of modal
specifications shall be taken into account because, to conclude about their validity, the verification
method may require the computation of the over-approximation of the workflow nets executions or
a full decomposition into segments. The proposed experimental protocol thus considers workflow
nets of realistic size by evaluating workflow nets of size up to 500 nodes. Moreover, not only the
size of the workflow nets is considered but also their complexity by evaluating workflow nets of
classes with a growing expressiveness (state machines, marked graphs, free-choice workflow nets
and ordinary Petri nets). Additionally, the size of the modal formula to be verified is also important
since a larger formula may constrain further the system to be solved. Figure 5.16 summarises the
parameters considered and their values taken into account.

5.4. SCALABILITY 111

– Class of the workflow nets:

– State machines

– Marked graphs

– Free-choice nets

– Ordinary Petri nets

– Size of the workflow nets:

– 50 ∗ i where i ∈ {1, .., 10}

– Type of modal specification:

– Valid may-formula

– Invalid may-formula

– Valid must-formula

– Invalid must-formula

– Size of the modal formula:

– 5 and 15 literals

Figure 5.16: Workflow nets generation parameters and their values

For each combination of the listed parameters values, a corresponding modal formula and a work-
flow net have been randomly generated thanks to the tool chain described in Section 5.4.1. This
produced 320 instances of growing size and complexity. Repeating this generation process three
time led to the data set considered by this experimental protocol. A total of 960 workflow nets and
modal specifications are thus considered in this protocol.

5.4.2.3/ Results and Feedback from Experiments

This section presents the experimental results obtained using the dedicated tools described in Sec-
tions 5.2.1 by applying the experimental protocol introduced in the previous section. Let us remind
that this tool rely on two constraint solvers: Z3 [De Moura et al., 2008] version 4.4.0, an SMT
solver, and SICStus Prolog [Carlsson et al., 2012] version 4.3.2, a CLP solver. For each instances
of the data set the results have been gathered using both solvers and all the executions have been
computed on a computer featuring an Intel(R) Xeon(R) CPU X5650 @ 2.67GHz.

The obtained results are discussed by distinguishing two different categories of modal specifica-
tions: one for may-valid and must-invalid specifications, and one for may-invalid and must-valid
specifications. Indeed, using the verification algorithm given in Section 5.2.1, most may-valid
and must-invalid modal specifications can be verified by using only an over-approximation of
correct executions of the workflow. This over-approximation is less complex than the under-
approximation that must very often be computed to verify may-invalid and must-valid modal
specifications.

We also categorise the results according to the different classes of workflow nets considered in our
experimental protocol. The average execution’s times given below has been calculated without
considering time-outs. Finally, for clarity, time-outs and singularities have been withdrawn from
some plots. The interested reader can however study the complete data sets and results given at
https://dx.doi.org/10.6084/m9.figshare.2067156.v3.

Tables 5.11, 5.12, 5.13 and 5.14 summarize the average verification times, number of time-outs as
well as the overall appreciation of the results obtained over the studied workflow net classes. The
emoticons of the overall appreciation are interpreted as follows:

– → Reasonable time, no time-out,
– → Reasonable time, # time-outs < 50%,
– → # time-outs > 50%

Figures 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23 and 5.24 depict the plots displaying the verification
times respectively spent by SICStus and Z3 for each class of workflow nets and types of modal
specifications.

The next subsections comment on these obtained results and indicate the most important feedback
for each class of workflow nets with regards to the intended objectives of the experimentations, as
given in Section 5.4.2.1.

https://dx.doi.org/10.6084/m9.figshare.2067156.v3

112 CHAPTER 5. EXPERIMENTAL EVALUATION

Type Solver Avg. t.(ms) #time-outs Overall

May-Valid
Z3 346 0

SICStus 621 28

Must-Invalid
Z3 319 0

SICStus 788 31

May-Invalid
Z3 79 0

SICStus 77413 52

Must-Valid
Z3 79 0

SICStus 10194 51

Table 5.11: Metrics over state-machine workflow nets

Type Solver Avg. t.(ms) #time-outs Overall

May-Valid
Z3 630 0

SICStus 776 0

Must-Invalid
Z3 641 0

SICStus 758 0

May-Invalid
Z3 112 0

SICStus 424 0

Must-Valid
Z3 104 0

SICStus 407 0

Table 5.12: Metrics over marked-graph workflow nets

Type Solver Avg. t.(ms) #time-outs Overall

May-Valid
Z3 379 0

SICStus 787 16

Must-Invalid
Z3 413 0

SICStus 898 14

May-Invalid
Z3 91 0

SICStus 40459 38

Must-Valid
Z3 89 0

SICStus 50566 37

Table 5.13: Metrics over free-choice workflow nets

Type Solver Avg. t.(ms) #time-outs Overall

May-Valid
Z3 1258 22

SICStus 9010 33

Must-Invalid
Z3 713 17

SICStus 12258 37

May-Invalid
Z3 108 0

SICStus 9489 33

Must-Valid
Z3 106 0

SICStus 5949 37

Table 5.14: Metrics over ordinary workflow nets

5.4. SCALABILITY 113

Observation from State-MachineWorkflow Nets Verification

May-Valid and Must-Invalid specifications.

Both solvers were able to conclude in a comparable and reasonable time. On average, Z3 execu-
tion’s times was 332ms whereas SICStus execution’s times was 704ms. However, despite good
results for both solvers, it should be noted that 49.2% (59/120) of SICStus executions did not finish
within 10 minutes, while Z3 did not suffer from any time-outs.

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

250

500

750

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

May−Valid−SM

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

250

500

750

1000

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

Must−Invalid−SM

Figure 5.17: State-machine - may-valid and must-invalid modal specifications

Must-valid and May-Invalid specifications.

Both solvers were able to conclude in a reasonable time. On average, Z3 execution’s times was
79ms whereas SICStus execution’s times was 43803ms. These results clearly show that Z3 per-
forms better than SICStus on this type of modal specifications. Moreover, it should be noted that
85.8% (103/120) of SICStus executions did not finish within 10 minutes, whereas Z3 did not suffer
from any time-outs. Indeed, SICStus was not able to conclude about workflow nets of size greater
than 250.

●

●

●

●

●

●

●

0

500

1000

1500

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

Must−Valid−SM

●

●

●

●

●

●

0

250

500

750

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

May−Invalid−SM

Figure 5.18: State-machine - must-valid and may-invalid modal specifications

Synthesis. Over the class of State-Machines we observe that proposed verification method is
effective and efficient using Z3. However, we also observe that when using SICStus the approach
is less effective. Indeed, we can observe that SICStus is clearly overwhelmed due to the high
number of choice points arising from the structure of state-machine workflow nets of size greater
than 100 nodes.

114 CHAPTER 5. EXPERIMENTAL EVALUATION

Observation fromMarked-GraphWorkflow Nets Verification

May-Valid and Must-Invalid specifications.

Both solvers were able to conclude in a reasonable and comparable time. On average, Z3 execu-
tion’s times was 635ms whereas SICStus execution’s times was 767ms. It should also be pointed
out that for large sized Marked-Graph workflow nets (greater than 400 nodes) SICStus performs
slightly better than Z3.

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

400

800

1200

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

May−Valid−MG

● ● ●

●

●

● ●

●
●

●

●
●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●
●

●

●

● ●

●
●

●

●

●

●

● ●
●

●
●

●
● ●

0

500

1000

1500

2000

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

Must−Invalid−MG

Figure 5.19: Marked-graph - may-valid and must-invalid modal specifications

Must-valid and May-Invalid specifications.

Both solvers were able to conclude in a reasonable and fairly comparable time. On average, Z3
execution’s times was 108ms whereas SICStus execution’s times was 415ms. Besides, it should
be noted that, for this type of modal specifications, Z3 performs slightly better than SICStus.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●●
●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●
● ●●

●

●
●

●

0

200

400

600

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

Must−Valid−MG

● ●
●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●●

●
● ●

●
●

●

●

●

● ● ●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

● ●

●

●

100

200

300

400

500

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

May−Invalid−MG

Figure 5.20: Marked-graph - must-valid and may-invalid modal specifications

Synthesis. Over the class of Marked-Graph, we observe the proposed verification approach is
effective and efficient using ether SICStus or Z3. We also point out that SICStus performs slightly
better when verifying May-Valid and Must-Invalid specifications while Z3 performs slightly better
when verifying Must-valid and May-Invalid specifications. A further investigation has shown that,
in general, Z3 is more effective than SICStus for the computation of the over-approximation used
by the verification method, while SICStus is more effective than Z3 for the computation of the
segments needed to conclude whenever the over-approximation is not sufficient.

5.4. SCALABILITY 115

Observation from Free-ChoiceWorkflow Nets Verification

May-Valid and Must-Invalid specifications.

Both solvers were able to conclude in a reasonable and comparable time. On average, Z3 execu-
tion’s times was 396ms whereas SICStus execution’s times was 842ms. Beyond these conclusive
results for both solvers, it is important to underline that 25% (30/120) of SICStus executions did
not finish within 10 minutes, whereas Z3 did not suffer from any time-outs.

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

300

600

900

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

May−Valid−FC

●

●

●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

250

500

750

1000

1250

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

Must−Invalid−FC

Figure 5.21: Free-choice - may-valid and must-invalid modal specifications

Must-valid and May-Invalid specifications.

Over this type of modal specifications, Z3 clearly performs better than SICStus. On average, Z3
execution’s times was 90ms, while SICStus execution’s times was 45512ms. We also note that
62.5% (75/120) of SICStus executions did not finish within 10 minutes, whereas Z3 did not suffer
from any time-outs. After investigation, these results stem from the fact that the verification of such
modal specifications mostly relies on the results of an over-approximation for which Z3 performs
far better off.

● ● ●

● ●

● ● ● ●

●

●●

●

●

●
●● ●● ● ● ● ●0e+00

2e+05

4e+05

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

Must−Valid−FC

● ● ●● ●●

●

● ●

●

● ●

●

●

●

●● ● ● ● ●

●

●0e+00

2e+05

4e+05

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

May−Invalid−FC

Figure 5.22: Free-choice - must-valid and may-invalid modal specifications

Synthesis. Over the class of Free-Choice workflow nets, we can observe that, using Z3, the
proposed verification method is effective and efficient. We also note that the proposed approach
is less effective when using SICStus. We thus conclude from these obtained results that the SMT
approach seems to be more suited for the verification of modal specifications over Free-Choice
workflow nets.

116 CHAPTER 5. EXPERIMENTAL EVALUATION

Observation from OrdinaryWorkflow Nets Verification

May-valid and Must-Invalid specifications.

Both solvers were able to conclude in a reasonable and comparable time. On average, Z3 execu-
tion’s times was 985ms whereas SICStus execution’s times was 10634ms. Besides these results,
it should be underlined that 58.3% (70/120) of SICStus executions and that 32.5% (39/120) of Z3
executions did not finish within 10 minutes. However, for each instance, at least one resolution
method was indeed able to assign a verdict within 10 minutes.

●

● ●

●

●
●

●

●
● ●

●

●

●

● ●●

●
●

●

●

●

●

●

●
●

0

2000

4000

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

May−Valid−Ordinary

●

●

● ●

●

●

●

●

●
● ●●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

0

1000

2000

3000

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

Must−Invalid−Ordinary

Figure 5.23: Ordinary workflow nets - may-valid and must-invalid modal specifications

Must-valid and May-Invalid specifications.

On average, Z3 execution’s times was 107ms whereas SICStus execution’s times was 7717ms.
Despite these good results for both solvers, it is important to note that 58.3% (70/120) of SICStus
executions did not finish within 10 minutes, whereas Z3 did not suffer from any time-outs. As for
the previous classes, Z3 indeed performs better than SICStus to compute the over-approximation
constraints, which were often sufficient to conclude.

●
●

●

●

●●
●●

● ●

●

●

● ●●

●

●

●

●
●

●

0

1000

2000

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

Must−Valid−Ordinary

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

0

250

500

750

100 200 300 400 500
Size(nodes)

t(
m

s)

● Sicstus Z3

May−Invalid−Ordinary

Figure 5.24: Ordinary workflow nets - must-valid and may-invalid modal specifications

Synthesis. Over the class of ordinary workflow nets, we can observe that the proposed verification
method is effective and efficient. We also observe that Z3 performs better than SICStus, especially
when verifying Must-valid and May-Invalid specifications. We can thus conclude from these re-
sults that the SMT approach seems to be more suited for the modal specifications verification over
ordinary workflow nets. Moreover, further investigations have pointed out that the limits of the
proposed method are reached when considering workflow nets of size greater than 500 nodes.

5.4. SCALABILITY 117

The next section summarizes the lessons learned and the benefits noticed from these experiments
according to the initial objectives.

Lessons Learned from Experience

Effectiveness and Efficiency. The developed implementation of the method presented in sec-
tion 5.2.1 and the underlying constraint solvers (i.e. Z3 and SICStus) have been shown to be
effective and efficient for the intended verification computation. Indeed, the tool chain was always
able to conclude about the validity of modal specification over workflow nets of growing size and
complexity within the allowed time of 10 minutes (for each constraint system to solve, at least
one resolution method was indeed able to assign a verdict, and furthermore within only few sec-
onds in almost all cases). Furthermore, we have observed that memory usage does not seem to
be a limiting factor over instances of the considered sizes. Indeed, for the biggest workflow net
instance considered, the memory usage for SICStus and Z3 was less than 350MB. finally, we note
that, as expected, this extended modal specification method performs efficiently when verifying
the conformity of workflow nets with respect to necessary and inadmissible behaviours thanks to
adequate use of over-approximations.

Scalability. On the basis of the results, we can confidently state that the verification method
proposed in Chapter 3 is scalable over workflow nets of size up to 500 nodes. Indeed, our experi-
mental results have shown that the proposed verification method has the ability to assign a verdict
about the (in)validity of a given modal specification over such workflow nets of growing size and
complexity. They also have shown that such verdict is obtained within the admissible time of 10
minutes.

SMT vs CLP. According to these experiments, we can infer that the SMT approach (computed
using Z3) generally performs significantly better than the CLP one (computed using SICStus).
However, they also highlight that the CLP approach is especially effective and efficient when
verifying modal specifications over marked-graph workflow nets. Indeed, we observed that the
CLP approach is less efficient than the SMT approach when the number of choice points increases
as shown by the results over State-Machine workflow nets. It stems from the labelling done after
constraints propagation by CLP solvers which means that an exponential number of backtracking
steps may occur with respect to the number of pending choice points.

5.4.3/ Experimental Evaluation of ReductionMethods

In Section 4.3 page 79 two reduction methods, one based on the hierarchical representation of
workflow nets and one based on reductions rules, are presented as pre-processing steps towards
the verification of extended modal specifications (Section 3.1.1 page 44). These reduction methods
aim at reducing the size of the analysed workflow nets in order to reduce the complexity of the
intended analysis.

This section presents experimental results supporting the benefits provided by these reduction
methods to the workflow net verification of behavioural properties such as generalised soundness
and correctness with respect to extended modal specifications.

To this end, we first present the objectives of the proposed experimental evaluation. Second,
we define the experimental protocol. Finally, the experimental results obtained according to the
defined experimental protocol are presented and discussed.

118 CHAPTER 5. EXPERIMENTAL EVALUATION

5.4.3.1/ Objectives

The objectives of this experimental evaluation are to experimentally assess the effectiveness, effi-
ciency and scalability of the proposed reduction methods.

In the context of this experimentation, the effectiveness of the proposed reduction methods is
measured with respect to their ability to reduce the size (number of places and transitions) of
the considered workflow nets. Indeed, given a workflow net of size OriginalS ize, the effective-
ness of the proposed reduction methods is given by the ratio ReducedS ize/OriginalS ize, where
ReducedS ize is the size of the workflow net obtained after reduction. Furthermore, the efficiency
of the proposed methods is evaluated with respect to the time they required to reduce the consid-
ered workflow nets. It follows that the proposed methods are scalable over a considered set of
workflow nets of growing size if they are able to effectively and efficiently reduce them.

5.4.3.2/ Experimental Protocol

On the basis of the previously introduced objectives, the following experimental protocol has been
designed.

In a first step, this experimental protocol considers the hierarchical workflow net modelling of
the issue tracking system presented in Section 5.1.1 page 90. This modelling is expressed by an
underlying workflow net composed of 165 places and 204 transitions (369 nodes). For this work-
flow net, the experimental protocol consists in applying the proposed reduction methods in order
to determine its generalised soundness. Additionally, in order to evaluate the effectiveness and
efficiency of the proposed reductions methods when preserving the (in)validity of extended modal
specification, it also consists in applying the proposed reduction methods as a pre-precessing step
towards the verification of the extended modal specifications listed in Table 5.1 page 91.

In a second step, in order to assess more broadly the effectiveness and efficiency of the
reduction procedure based on reduction rules introduced in Section 4.2, this experimental
protocol consider the benchmark suite of 1976 industrial workflow nets previously studied
in [Mendling et al., 2006, van Dongen et al., 2007, Mendling et al., 2008, Fahland et al., 2009]
and more recently [Esparza et al., 2016, Favre et al., 2016] where others reduction procedure also
based on reduction rules have been applied. This benchmark suite is composed of two main bench-
marks. The first one, denoted IBM-bpm, is a collection of 1386 free choice workflow nets that have
been derived from industrial business process models provided by IBM R©. These 1386 models are
organized into five libraries (A, B1, B2, B3, and C). They have been translated into Petri nets
from IBM Web-Sphere Business Modeler5’s language (i.e. a language similar to UML activity
diagrams [Dumas et al., 2001]) according to [Fahland, 2008]. The resulting Petri nets often have
multiple sink places and have therefore been completed according to [Kiepuszewski et al., 2003]
in order to obtain workflow nets. We notably point out that four of the largest workflow nets
of this data set are included in the benchmark used by the 2016 Edition of the Model Check-
ing Contest [Kordon et al., 2016]. More information about this data set can be found in the
reference paper [Fahland et al., 2009]. The second one, denoted SAP-ref, is a collection of 590
workflow nets that have been derived from SAP R©’s ERP Software6 reference models. These
590 industrial workflows have been translated into workflow nets from their original EPCs mod-
els [Lohmann et al., 2009].More information about this data set can be found in the reference
papers [Mendling et al., 2006, van Dongen et al., 2007, Mendling et al., 2008].

In a third step, in order to further demonstrate the efficiency and scalability of the proposed re-
duction method based on reduction rules, two different and complementary sets of workflow nets

5www.ibm.com/software/products/en/modeler-basic
6http://go.sap.com/product/enterprise-management/erp.html

5.4. SCALABILITY 119

generated using the tool chain presented in Section 5.4.1 are considered. The first set (gen1) is
composed of 48 generalised sound workflow nets with size ranging from 371 nodes (165 tran-
sitions) to 17815 nodes (9233 transitions). The second set (gen2) is composed of 59 generalised
sound workflow nets with size ranging from 1836 nodes (1000 transitions) to 147640 nodes (75782
transitions). Note that, since the synthesis rules used to build these workflow nets are the inverse
of the reduction rules that are used to reduce them, these workflow nets are completely reducible.
Therefore the following results are not dedicated to evaluate the effectiveness of the procedure but
the efficiency with which it can be applied to workflow nets of growing size.

5.4.3.3/ Results and Feedback from Experiments

This section presents the experimental results obtained using the dedicated reduction tool de-
scribed in Sections 5.2.2 by applying the experimental protocol introduced in the previous section.
All experimental results have been obtained on a computer featuring an Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz. Note that only a single core has been used by the implemented tools.

In a first set, regarding the issue tracking system presented in Section 5.1.1 page 90, its under-
lying workflow net has been completely reduced to the atomic workflow net in 43 ms. This
enabled analysts to conclude that this workflow net is generalised sound in such a short time.
Furthermore, let us consider the set of requirements to be verified over this modelling given in Ta-
ble 5.1 page 91. For these requirements, expressed by extended modal specifications in Table 5.8
page 105, Figure 5.4.3.3 presents data about the reduced workflow nets obtained after applica-
tions of the reduction methods while preserving the (in)validity of extended modal specification
formulae interpreted as may-formula or must-formula.

#Property time(ms) |P| |T | r − f actor Reduced workflow net

p1 & p2 1284 2 2 98.9%

p2 1228 3 3 98.3%

p3 & p4 1203 3 5 97.8%

p6 1093 3 4 98.1%

Table 5.15: Reduction Results over the Issue Tracking System

120 CHAPTER 5. EXPERIMENTAL EVALUATION

For every property (#Property), the processing time, the number of places (|P|) and the number
of transitions (|T |) of the obtained workflow net as well as its graphical representation are given.
This table also reports, for every property, the reduction factor (r − f actor) obtained. This reduc-
tion factor expresses, in percentage, the size reduction with respect to the original workflow net
accomplished by the reduction methods used.

These results show that the presented reduction methods are effective and can greatly reduce the
size of workflow nets analysed with respect to a given extended modal specification. Indeed, for the
considered extended modal specifications, an average reduction factor of 98.3% has been achieved.
The obtained reduced nets are very simple (i.e. are composed of only a few transitions and places).
Note that these results are not surprising given the fact that the considered workflow net can be
completely reduced to prove its generalised soundness. Furthermore, the needed processing time
is reasonably low (i.e. about 40 ms per formula). It follows that these reduction methods are
effective and efficient over this study case and can greatly enhance its analysis.

In a second step, let us consider the experimental results obtained over the 1976 industrial work-
flow nets of the data sets IBM-bpm and SAP-ref. Figures 5.25 and 5.26 respectively present the
reduction factors and the sizes of workflow nets of the IBM-bpm and SAP-ref benchmarks.

0 100 200 300 400 500

60
70

80
90

10
0

Size(nodes)

r−
fa

ct
or

(%
)

Figure 5.25: Reduction factors of workflow nets of IBM-bpm

100 200 300 400 500

50
60

70
80

90

Size(nodes)

r−
fa

ct
or

(%
)

Figure 5.26: Reduction factors of workflow nets of SAP-ref

5.4. SCALABILITY 121

The complete data-sets as well as the obtained experimental results are accessible at https://dx.doi.
org/10.6084/m9.figshare.3573756.v5. Table 5.4.3.3 summarizes the results of our experiments for
the IBM-bpm and SAP-ref benchmarks.

Benchmark Status #workflow nets
#Nodes r-factor(%) time(ms)

avg. max. avg. max. avg. max.

IBM-bpm(libA)
Sound 152 61.4 193 93.5 98.4 3.2 44

unknown 130 99.7 277 86.8 95.1 9.6 51

IBM-bpm(libB1)
Sound 107 38.6 228 86.7 98.7 3.8 67

unknown 181 98.6 360 82 95.8 7.1 54

IBM-bpm(libB2)
Sound 161 38.9 334 85 99.1 7.3 380

unknown 202 110.3 404 83 95.8 8.5 60

IBM-bpm(libB3)
Sound 207 47.5 252 87.8 98.8 3.9 56

unknown 214 125.7 454 85.2 96 8.7 72

IBM-bpm(libC)
Sound 15 127 548 94.4 99.5 7.1 46

unknown 17 135.6 480 84.7 94.9 5.1 28

IBM-bpm(all) Sound 642 49 548 88.4 99.5 4.6 380
unknown 744 110.6 480 84.1 96 8.3 72

SAP-ref Sound 0 – – – – – –
unknown 590 97.7 512 73 95 9.9 967

Table 5.16: Results for the IBM-bpm and SAP-ref benchmarks

We have analysed 1976 industrial workflow nets and determined that 642 of them are gener-
alised sound (i.e. have been completely reduced). In addition, on average each workflow has
been reduced by a factor of 82.2%. These experimental results highlight the effectiveness of the
proposed reduction procedure. More precisely, with regards to the 1386 free choice workflow
nets of IBM-bpm, 642 of them were identified as generalised sound. This results (i.e. the de-
tected soundness) are in agreement with the results obtained during previous experiments apply-
ing different analysis techniques to the same data [van Dongen et al., 2007, Favre et al., 2016].
We note that all 642 sound workflow nets have been identified through structural reduction
by our approach whereas only 464 of them have been identified through structural reduc-
tion by Woflan [Verbeek et al., 2000]. We also note that the reduction method introduced
in [Esparza et al., 2016] have found only 470 of these sound workflow nets. Furthermore, let
us point out that workflow nets of this data set have been on average reduced to 13.9% of their
original size (i.e. reduced by a factor of 86.1%). This underlines the greater effectiveness of our
method compared with the reduction method of [Esparza et al., 2016] where workflow nets of the
same data set have only been reduced to about 23% of their original size (i.e. reduced by a factor
of about 77%).

To further emphasize the effectiveness of our reduction method let us focus on the results obtained
for workflow nets of IBM-bpm that are included in the benchmark used by the 2016 Edition of the
Model Checking Contest [Kordon et al., 2016]. For every considered workflow net, Table 5.4.3.3
gives the number of places (|P|) and the number of transitions (|T |) of the original and reduced
workflow nets. It also states the obtained reduction factor (r − f actor) as well as the processing
time needed to compute it.

These workflow nets, which have been reduced by a factors ranging from 88% to 99.4%, clearly
illustrate the benefit of our reduction procedure and its ability to significantly reduce the size of
free choice workflow nets regardless of their soundness.

https://dx.doi.org/10.6084/m9.figshare.3573756.v5
https://dx.doi.org/10.6084/m9.figshare.3573756.v5

122 CHAPTER 5. EXPERIMENTAL EVALUATION

Workflow name |P| |T | r − f actor t(ms)
IBMB2S565S3960 (original) 274 180

88.3% 53
IBMB2S565S3960 (reduced) 28 25

IBM5964 (original) 264 140
90.0% 29

IBM5964 (reduced) 19 17
IBM319 (original) 254 179

91.6% 22
IBM319 (reduced) 19 17
IBM703 (original) 263 285

99.4% 42
IBM703 (reduced) 2 1

Table 5.17: Reduction results over the workflow nets of the Model Checking Contest

Regarding the 590 workflow nets of SAP-ref, only three of them are free choice workflow nets.
None of those 590 workflow nets has been found to be generalised sound by our method. However,
workflow nets of this data set have been on average reduced to 27% of their original size (i.e.
reduced by a factor of 73%). These results further highlight the effectiveness of our reduction
over arbitrary workflow nets. Indeed, once more this results show that our reduction method
ability exceed the one of [Esparza et al., 2016] where workflow nets of the same data set have
been reduced to about 35% of their original size (i.e. reduced by a factor of about 65%).

The results of our experiments for the IBM-bpm and SAP-ref benchmarks have also illustrated the
efficiency of the proposed reduction method. Indeed, workflow nets of these benchmarks whose
sizes are ranging from 9 to 548 nodes have been reduced on average in about 8 ms. Such a short
analysis time means that this procedure could be automatically applied by integrated development
environment to provide feedback as well as useful diagnostic information regarding the generalised
soundness of in-development workflow nets.

In a third step, regarding that data-sets gen1 and gen2. Figures 5.27 and 5.28 present the time,
given by the y-axis in seconds or minutes, needed to completely reduce the considered workflow
nets whose size (i.e. the number of nodes) is given by the x-axis. The experimental results depicted
in Figure 5.27 have deliberately been limited by a verification time bounded to 180 seconds, unlike
the results depicted in Figure 5.28 that have been computed without time upper bound.

0 5000 10000 15000

0
10

20
30

Size(nodes)

t(
se

c)

Figure 5.27: Reduction time of workflow nets of the gen1

5.5. SYNTHESIS 123

0 50000 100000 150000

0
20

40
60

80

Size(nodes)

t(
m

in
)

Figure 5.28: Reduction time of workflow nets of the gen2

These results allow us to empirically conclude that the proposed reduction procedure can effi-
ciently be applied over large workflow nets (up to 147640 nodes) despite the fact that the applica-
tion of rules R1 (defined page 69) and R2 (defined page 70) is exponential w.r.t. the size of the set
(•n)• of the considered place/transition n.

They have also highlighted that the implementation of the proposed method is able to conclude
about the generalised soundness of workflow nets of size up to 17815 nodes within the fixed time-
scale of 180 seconds. In comparison, the approach proposed by Woflan in [Verbeek et al., 2001]
is not able to conclude about the 1-soundness of any of these generated workflow nets in the fixed
timescale of 180 seconds. Furthermore, the SPIN model-checker is only able to conclude within
180 seconds about the 1-soundness of workflow nets, from our first set of generated workflow nets,
of size up to 731 nodes, using the approach proposed in [Yamaguchi et al., 2009]. However, this is
not so surprising since both compared approaches rely on state-space exploration and suffer from
the state explosion of large-size workflow nets, contrary to the proposed method.

Moreover, as shown in Figure 5.28, the experiments have empirically demonstrated the huge
scalability of the proposed method and its implementation within the tool Hadara-AdSimul-
Red. This tool is indeed able to conclude in less than 90 minutes about the generalised
soundness of workflow nets of size at least up to 147640 nodes. This size is clearly far be-
yond what is realistically produced and manageable by workflows modellers in real-life condi-
tions. Needless to say that their analysis is out of reach of other state exploration approaches
(e.g., [Verbeek et al., 2001], [Yamaguchi et al., 2009]).

According to all presented experimental results, it follows that the reduction methods presented in
Sections 4.2 page 77 and 4.3 page 79 constitute effective, efficient, scalable and therefore relevant
pre-processing steps toward the analysis of behavioural properties such as generalised soundness
and correctness with respect to extended modal specifications.

5.5/ Synthesis

This chapter presented convincing experimental results supporting the value of the contributions
made to this thesis.

124 CHAPTER 5. EXPERIMENTAL EVALUATION

It first presented three study cases (i.e. real-life examples) which highlighted and motivated the use
of workflow nets and extended modal specifications. It also described dedicated tool chains im-
plemented to carry out the verification of extended modal specifications according to the approach
presented in Section 3.1.3 page 53 as well as the reduction methods of workflow nets presented in
Sections 4.2 page 77 and 4.3 page 79.

It then reported experimental results obtained during the analysis of the three study cases using
the dedicated modal specification verification tools previously introduced. From these results we
concluded that extended modal specifications are adapted to the description of modal behaviour
involving several transitions as well as their causalities expressed over workflows modelled as
workflow nets but also as coloured workflow nets. Furthermore, the verification of such extended
modal specifications was shown to be possible and efficient (less than a few seconds per extended
modal formula) over these real-life examples.

This chapter also exposed experimental results regarding the scalability of the proposed ap-
proaches over workflow nets of growing size and complexity. To this end, it presented a genera-
tion tool able to generate large benchmarks of workflow nets together with their (in)valid extended
modal specifications. Based on this generation tool, an experimental protocol and the results it
produced were described. These results enabled us to confidently state that the extended modal
specification verification method proposed in Section 3.1.3 page 53 is scalable in terms of modal
specification and workflow net complexity, as well as regarding their size (up to 500 nodes, at
least). It also enabled to conclude that the developed implementation of this verification method
and the underlying constraint solvers (i.e. Z3 and SICStus) are effective and efficient for the in-
tended verification computation. More precisely, it showed that it was always able to conclude
about the (in)validity of modal specification over workflow nets of growing size and complexity
within the allowed time of 10 minutes, and furthermore within only few seconds in almost all
cases.

Finally, this chapter also presented experimental results concerning the reduction methods de-
scribed in Sections 4.2 page 77 and 4.3 page 79. Through one of the considered study cases as
well as workflow nets issued from a benchmark suite of 1976 industrial workflow nets previously
studied in [van Dongen et al., 2007, Fahland et al., 2009, Favre et al., 2016, Esparza et al., 2016],
it demonstrated the size reductions benefits they provide. More precisely, it showed that the ver-
ification of extended modal specifications can be carried out over workflow nets whose size is
significantly reduced (up to 98.9% smaller than the original workflow nets). Likewise, it also il-
lustrated the effectiveness of such a reduction method to the verification of generalised soundness
by providing, for the considered workflow nets, an average size reduction of 82.2%. At last, the
efficiency of the developed reduction tool has been demonstrated. It was shown that despite the
exponential complexity of some of the reduction rules used, the developed reduction tool was able
to reduce workflow nets of size up to 17,815 nodes (resp. 147,640 nodes) in less that 180 seconds
(resp. 90 minutes). These observations supported the fact that the reduction methods presented
in Sections 4.2 page 77 and 4.3 page 79 constitute relevant, efficient, and scalable pre-processing
steps toward the analysis of behavioural properties such as generalised soundness and correctness
with respect to extended modal specifications.

III
Conclusion and FutureWork

125

6
Conclusion

Contents
6.1 Verification of Modal specifications . 127
6.2 Reduction methods . 128
6.3 Experimental Evaluation . 129

Nowadays workflow management has become a key factor in the success of companies and orga-
nizations around the world. Indeed, workflows, when properly designed, can significantly improve
organizational efficiency, responsiveness and profitability by managing the tasks and steps of busi-
ness processes.

Due to the central role of workflows for day to day operations and long term focus of companies
and organizations, the verification of specifications, i.e. of desired properties of workflows, has
become mandatory to ensure that such processes are properly designed and reach the expected
level of trust and quality.

Within this context, this thesis presented contributions made to the verification of modal specifi-
cations of workflow nets based on powerful abstractions and the use of constraint solving.

More precisely, this thesis has addressed the three following research questions:

RQ1 How to effectively express modal behaviour of workflow nets involving several transitions
and their causalities?

RQ2 How to effectively verify the validity of such modal specifications by leveraging the efficiency
of existing mature constraint solvers?

RQ3 Which abstraction mechanisms are appropriate and relevant with respect to verification of
such modal specifications?

The rest of this section briefly summarises the theoretical and practical contributions made to this
thesis. Following the organisation of this manuscript, the presentation of these contributions is
divided into three subsections.

6.1/ Verification ofModal specifications

To guide engineers in their specification and validation activities, modal specifications have been
previously designed to allow specifications of modal behaviour (i.e. admissible or necessary be-
haviour) of complex systems.

127

128 CHAPTER 6. CONCLUSION

Modal specifications of workflow nets are usually expressed over a single transition of the system
under analysis. This is quite limiting as the expression of complex modal behaviour involving
several transitions and their causalities is needed in real-life. To address this issue and RQ1, the
research question prompted by it, we defined extended modal specifications, an extension of modal
specification that enables the definition of modal behaviour involving several transitions as well
as their causalities. Such extended modal specifications have then been further extended to handle
workflow nets extensions (e.g., workflow nets with data). To this end, additional constraints on the
initial and final states as well as on the data associated to transition firing have been designed and
taken into account.

Verifying behavioural properties of workflows such as extended modal specifications is a very
complex task which requires exponential computational resources with respect to the size of their
modelling by workflow nets. To cope with this complexity, efficient tools are required. Existing
mature and efficient constraint solvers offer an unprecedented support to such verification problem.

In order to benefit from it and address RQ2, a novel constraint-based framework for modelling
workflow nets executions has been developed. This modelling framework is based on the definition
of several constraint systems either over-approximating or under-approximating the set of correct
executions of workflow nets. More precisely, each of these approximations is built by refining
the previous one starting from a well-know over-approximation: the state equation. This led to
the definition of a constraint system whose solution space under-approximates the set of correct
executions of workflow nets. This latter constraint system is used to define segments of execution
(i.e. partial execution structurally verifiable). It has been then demonstrated that the concatenation
of such segments can be used to model any correct executions of workflow nets.

Furthermore, through the definition of abstract workflow nets – a suited abstract representation
notably able to model ordinary, generalised and coloured Petri nets – this framework has been
shown to be applicable to workflow nets with data and quantitative performance specification.

Its use for verifying the (in)validity of extended modal specifications of workflow nets (resp. ab-
stract workflow nets) have been presented. Using such a constraint-based modelling for verifying
the (in)validity of extended modal specifications of workflow nets (resp. abstract workflow nets)
exhibits several advantages. The first advantage of this modelling is that the search is quite fo-
cussed from the beginning as we traverse the solution space of the state equation and its refine-
ments rather than the underlying semantic labelled transition systems of workflow nets. Another
advantage of such modelling is that only the segments ordering is computed, the transitions order-
ing within segments is not. It follows that this modelling is particularly well-adapted to the verifi-
cation of extended modal specification as only the presence or absence of transitions is considered.
Moreover, this extended modal specification verification approach requires the use of constraint
systems satisfiability checks which can be handled by third party constraint solvers. This allows
the proposed verification method to benefit from existing mature and efficient constraint solvers.

6.2/ Reduction methods

The development of large and intricate workflow nets can be a difficult task which requires pow-
erful structuring mechanisms. Unfortunately, most often, the abstraction mechanisms, used by
modellers of workflow nets, is not explicitly given beside the clear advantages they bring to their
analysis. To cope with this issue and address RQ3, reduction methods – abstraction methods –
that have the ability to reduce the size of workflow nets while strongly preserving properties of
interest such as generalised soundness and the (in)validity of a given extended modal specification
have been presented. More precisely, six reduction rules preserving generalised soundness and

6.3. EXPERIMENTAL EVALUATION 129

generalising existing reduction rules have been defined.

Based on the definition of these reduction rules, a generalised soundness semi-decision have been
described. We have notably shown that, despite not being complete, this procedure, whenever
unable to conclude, can be used as a pre-processing step toward verification of generalised sound-
ness. Indeed, by reducing the size of the analysed workflow nets, this procedure can enhance
conventional generalised soundness verification methods. Furthermore, whenever inconclusive,
this procedure produces diagnostic information in the form of a simplified and irreducible work-
flow net.

In addition, two reduction methods preserving the (in)validity of a given extended modal specifi-
cation has been introduced. The first of these methods – based on the hierarchical representation
of workflow nets – aims at abstracting unnecessary layers of detail. The second method is based
on the six reduction rules previously presented and further refines them in order to preserve the
(in)validity of a given extended modal specification. Both reduction methods were proved to be
sound. Thanks to the potential size reduction they provide, these reduction methods have been
proposed as pre-processing steps for extended modal specifications verification approaches such
as the constraint-based approach previously described.

6.3/ Experimental Evaluation

As a practical contribution to RQ2 and RQ3, the new formal approaches described in this thesis
have been implemented and extensive experimentations have been carried out in order to validate
them.

The results of convincing experimentations carried out over real-life industrial study cases have
been introduced and discussed. These results highlight the need and relevance of extended modal
specifications to express modal behaviour involving several transitions as well as their causalities.
They also illustrate the effectiveness of the proposed modal specification verification approach
over workflow nets extended with data and quantitative performance specification.

Furthermore, an empirical evaluation of the effectiveness, efficiency and scalability of the proposed
modal specification verification approach over workflow nets of growing size and complexity has
been presented. These results show that the extended modal specification verification method
proposed in this thesis is effective and scalable in terms of modal specification and workflow net
complexity, as well as regarding their size (up to 500 nodes, at least). They also show that the
developed implementation of this verification method and the underlying constraint solvers are
very efficient for the intended verification computation. More precisely, they point out that the
proposed verification approach is able to conclude about the (in)validity of modal specification
over workflow nets of growing size and complexity within the allowed time of 10 minutes, and
furthermore within only few seconds in almost all cases.

Finally, experimental results demonstrating the benefits provided by the presented reduction meth-
ods to the verification of workflow net behavioural properties such as generalised soundness and
correctness with respect to modal specifications have been introduced. We have considered one of
the study cases as well as workflow nets issued from a benchmark suite of 1976 industrial work-
flow nets previously studied in [van Dongen et al., 2007, Fahland et al., 2009, Favre et al., 2016,
Esparza et al., 2016]. We have shown that the verification of extended modal specifications can
be carried out over workflow nets whose size is significantly reduced (up to 98.9% smaller than
the original workflow nets). Likewise, we have also illustrated the effectiveness of such a reduc-
tion method to the verification of generalised soundness. Indeed, experimental results for 1976

130 CHAPTER 6. CONCLUSION

workflow nets derived from industrial business processes show that the nets are reduced to about
17.8% of their original size (i.e. reduced by a factor of 82.2%). At last, the efficiency of the devel-
oped reduction tool has been demonstrated. It was shown that despite the exponential complexity
of some of the reduction rules used, the developed reduction tool was able to reduce workflow
nets of size up to 17,815 nodes (resp. 147,640 nodes) in less that 180 seconds (resp. 90 min-
utes). Based on these observations we concluded that the presented reduction methods constitute
effective, efficient, and scalable pre-processing steps toward the analysis of behavioural properties
such as generalised soundness and correctness of workflow nets with respect to extended modal
specifications.

7
FutureWork

Contents
7.1 Towards Parallelism . 131

7.2 Error-pattern . 132

7.3 Reconfiguration . 133

This section presents three future work directions prompted by the research work and results of
this thesis. We first discuss the adaptations that would enable the application of the presented
approaches to benefit from parallel computing. Afterwards, we present an extension of the pro-
posed generalised soundness semi-decision procedure which introduces the identification of error-
patterns during the reduction process in order to provide insight about the invalidity of workflow
nets with respect to generalised soundness. Finally, we propose a reconfiguration framework which
enables the definition of workflow net reconfigurations preserving behavioural properties such as
generalised soundness and validity with respect to extended modal specifications.

7.1/ Towards Parallelism

Parallel computing is a type of computation in which many calculations are carried out simulta-
neously [Almasi et al., 1988]. Large problems can often be divided into smaller ones, which can
then be solved independently at the same time.

Within parallel computing, there exist two main paradigms: shared and distributed memory pro-
gramming [Kumar et al., 1994]. On the one hand, in shared memory programming, all tasks access
the same memory and therefore the same data (e.g., POSIX Threads [Butenhof, 1997]). On the
other hand, in distributed memory programming, all memory is local and data sharing is achieved
by explicitly transporting data through communication (e.g., MPI [Gropp et al., 1999]).

With regards to the proposed extended modal specification verification approach based on con-
straint systems, note that the computation workload of the implemented tool is shifted to mature
and efficient but sequential solvers. Due to the increasing demand for high performance con-
straint solving algorithms in the industry, parallel constraint solvers constitute an active research
area [Singer, 2006, Hamadi et al., 2013, Hyvärinen et al., 2016]. In a future work, parallel con-
straint solvers could substitute the sequential solvers used in the considered implementation in
order to further improve its efficiency.

With regards to the proposed reduction methods, note that, given a workflow net, several reduc-
tion rules may be simultaneously applied to distinct nodes. This means that the application of
the presented reduction procedures based on reduction rules could in the future be implemented
within a shared memory environment (e.g., actual multi-core computer). Such an implementation

131

132 CHAPTER 7. FUTURE WORK

would be very similar to the one we implemented with the difference that it would require syn-
chronisation such as a mutual exclusion mechanism to avoid concurrent modification of the same
nodes. Due to the large number of reduction rules applicable to distinct nodes observed over the
industrial workflow nets considered in this thesis, we conjecture that such a shared memory paral-
lel implementation of the proposed reduction procedures would significantly improve their overall
efficiency. Furthermore, note that, given a hierarchical workflow net, each of its nodes can be
reduced independently. It follows that each of these nodes can simultaneously be reduced in a dis-
tributed memory environment (e.g., cluster, grid). Depending on the number of hierarchical levels
of detail, such a distributed implementation of the proposed reduction methods could also signif-
icantly improve their overall efficiency. Finally, note that those shared and distributed approach
to the reduction of workflow nets are not mutually exclusive and could be combined in a mixed
environment with both shared and distributed memory ability (e.g., accelerators: Intel R© Xeon Phi
cluster).

7.2/ Error-pattern

We designed and presented reduction rules of workflow nets notably preserving generalised sound-
ness. The idea behind this concept is to study the construction of workflow nets. If a workflow net
is generalised sound, chances are that it has been modelled using strict abstraction mechanisms
either implicitly or explicitly in the case of refinement development. It follows that by identifying
sound abstraction mechanisms used by modellers we may be able to prove the considered property.
In the context of generalised soundness this has led to the design of the presented reduction rules
as well as their dual synthesis rules corresponding to sound abstraction mechanisms with respect
to generalised soundness. These reduction rules, as it has been presented, when iteratively applied,
form a semi-decision procedure for generalised soundness. Indeed, as these reduction rules are not
complete, no negative results can be inferred.

A natural alternative to this approach consists in identifying workflow patterns contradicting the
generalised soundness property. Such patterns are called error-patterns and correspond to defects.
Recently, they have notably been used in order to provide diagnostic information for control-flow
analysis of free-choice workflow nets [Favre et al., 2016]. We propose to apply a similar concept to
the analysis of arbitrary workflow nets with respect to the generalised soundness property. Indeed,
if a workflow net is not generalised sound, chances are that at some point in its construction an
error-pattern has been introduced. Let us for example consider the following theorem.

Theorem 36: Example of error-pattern

Let N = 〈P,T, F〉 be a workflow net. If there exists a transition t ∈ T such that •t ,
t• ∧ (•t \ t• = ∅ ∨ t• \ •t = ∅) then N is not generalised sound.

Proof. We proceed to demonstrate this theorem by contradiction. Assume that N is a generalised
sound workflow net. Suppose there exists a transition t ∈ T such that •t , t• ∧ •t \ t• = ∅. We have
•t ⊆ t• and by assumption there exists a marking M ∈ M ∈ RN(Mi(1)) such that t is enabled. It
follows that in marking M, the transition t can be fired infinitely many times. This would produce
an infinite number of tokens in places of t• \ •t. The 1-closure of N would not be bounded and this
would therefore contradict the assumption. Now, suppose there exists a transition t ∈ T such that
•t , t• ∧ t• \ •t = ∅. We have t• ⊆ •t and therefore the firing of t does not produce any new tokens.
By assumption, there exist σ1, σ2 two executions of N, and M,M′ two markings of N such that
Mi(1)

σ1
−−→ M

t
−→ M′

σ1
−−→ Mo(1). It follows that the concatenation of executions σ1 and σ2 leads to a

7.3. RECONFIGURATION 133

marking M f such that ∀ p ∈ •t \ t•, M f (p) = 1 and M f (o) = 1. Therefore we have M f ∈ R
N(Mi(1))

and this contradicts the assumption. �

This theorem defines infinitely many error-patterns. Figures 7.1(a) and 7.1(b) illustrate some of
them.

(a) (b)

Figure 7.1: Illustration of error-patterns

Our experimental results have pointed out that error-patterns such as the ones described by The-
orem 36 often appear during the reduction process. Indeed, we have observed that while many
defects are initially hidden by the complexity of the considered workflow net, the reduction pro-
cess tends to reduce their expressions to identifiable error-patterns. It follows that the search of
error-patterns during the reduction process could provide insight with regards to the invalidity
of workflow nets with respect to generalised soundness. The synergy of these two complemen-
tary approaches would result in an algorithm semi-deciding both the validity and the invalidity of
workflow nets with respect to generalised soundness and should greatly enhance reduction based
analysis abilities.

7.3/ Reconfiguration

In order to succeed long into the future, a business needs to be flexible and constantly evolves with
respect to its industry. Therefore the workflows supporting the business processes also have to
evolve in order to be up to date.

In the context of workflow nets, such evolutions of the workflows are modelled through reconfigu-
rations. There exist two types of reconfigurations: static and dynamic. Static reconfigurations are
traditional updates. Following requests of users or technical imperatives, new versions of work-
flow nets are developed based on the actual versions before being deployed. Such reconfigurations
often take time and might not be sufficiently responsive. To cope with this, dynamic reconfigu-
rations can be used. Based on some pre-conditions (e.g., overload, failure of a task), predefined
reconfigurations can be applied dynamically during execution.

A major aspect of reconfigurations is the fact that they must preserve behavioural properties of in-
terest. For example, reconfigurations of workflow nets should at least preserve generalised sound-
ness. Further, they should also preserve one or more extended modal specifications.

In Section 4.3 page 79, six reduction rules strongly preserving generalised soundness as well as the
(in)validity of a given extended modal specification formula interpreted as either a may-formula
or a must-formula have been introduced. Note that the inverse of these reduction rules are six
synthesis rules, which also preserve generalised soundness as well as the (in)validity of a given
extended modal specification formula interpreted as either a may-formula or a must-formula.

134 CHAPTER 7. FUTURE WORK

We propose to model the changes made to workflow nets by reconfigurations as a sequences of
synthesis and reduction rules such as the ones defined in this thesis. Doing so would have the
advantage to guarantee the validity of behavioural properties without having resort to the in-
depth analysis of the behavioural properties of interest. A sequence of synthesis and reduction
rules would model a reconfiguration which preserves not only generalised soundness but also the
(in)validity of a given extended modal specification formula interpreted as either a may-formula
or a must-formula if necessary.

Note that, in the case of static reconfigurations, the execution of the workflows might be halted
to perform reconfigurations. Further, dynamic reconfigurations might not be instantaneous and
require a significant downtime. Another advantage of the proposed reconfiguration approach is
that it models reconfigurations as sequences of atomic workflow transformations (i.e. synthesis
and reduction rules) which can be sequentially applied. Therefore, modifications of the workflow
nets are local and fast which should decrease the overall impact of reconfigurations and ensures
quality of services.

Bibliography

[Allweyer, 2016] Allweyer, T. (2016). BPMN 2.0: introduction to the standard for business
process modeling. BoD–Books on Demand.

[Almasi et al., 1988] Almasi, G. S., et Gottlieb, A. (1988). Highly parallel computing.

[Ashton et al., 1997] Ashton, T. S., et others (1997). The industrial revolution 1760-1830. OUP
Catalogue.

[Barkaoui et al., 2007] Barkaoui, K., Ben Ayed, R., et Sbai, Z. (2007). Workflow soundness
verification based on structure theory of Petri nets. Journal of Computing and Information
Sciences, 5(1):51–61.

[Barrett et al., 2011] Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanović, D., King,
T., Reynolds, A., et Tinelli, C. (2011). Cvc4. In Computer aided verification, pages 171–177.
Springer.

[Barrett et al., 2005] Barrett, C., De Moura, L., et Stump, A. (2005). Smt-comp: Satisfiability
modulo theories competition. In International Conference on Computer Aided Verification,
pages 20–23. Springer.

[Bayardo et al., 1996] Bayardo, R. J., et Miranker, D. P. (1996). A complexity analysis of space-
bounded learning algorithms for the constraint satisfaction problem. In Proceedings Of
The National Conference On Artificial Intelligence, pages 298–304. Citeseer.

[Berthelot, 1987] Berthelot, G. (1987). Transformations and decompositions of nets. In Petri
Nets: Central models and their properties, pages 359–376. Springer.

[Berthomieu* et al., 2004] Berthomieu*, B., Ribet, P.-O., et Vernadat, F. (2004). The tool tina–
construction of abstract state spaces for petri nets and time petri nets. International Journal
of Production Research, 42(14):2741–2756.

[Biere et al., 2009] Biere, A., Heule, M., et van Maaren, H. (2009). Handbook of satisfiability,
volume 185. ios press.

[Bonet et al., 2007] Bonet, P., Lladó, C. M., Puijaner, R., et Knottenbelt, W. J. (2007). PIPE v2.5:
A Petri net tool for performance modelling. In Proc. of the 23rd Latin American Conference
on Informatics (CLEI’07), San Jose, Costa Rica.

[Bordeaux et al., 2006] Bordeaux, L., Hamadi, Y., et Zhang, L. (2006). Propositional satisfiabil-
ity and constraint programming: A comparative survey. ACM Computing Surveys (CSUR),
38(4):12.

[Bourdeaud’Huy et al., 2008] Bourdeaud’Huy, T., Yim, P., et Hanafi, S. (2008). Incremental in-
teger linear programming models for Petri nets reachability problems. INTECH Open
Access Publisher.

135

136 BIBLIOGRAPHY

[Bride et al., 2014] Bride, H., Kouchnarenko, O., et Peureux, F. (2014). Verifying modal work-
flow specifications using constraint solving. In Int. Conf. on Integrated Formal Methods
(IFM’14), volume 8739 of LNCS, pages 171–186, Bertinoro, Italy. Springer.

[Bride et al., 2015] Bride, H., Kouchnarenko, O., et Peureux, F. (2015). Constraint solving for
verifying modal specifications of workflow nets with data. In Proceedings of 10th Interna-
tional Ershov Informatics Conference - Perspectives of System Informatics (PSI’15), volume
9609 of LNCS, pages 75–90, Kazan, Russia. Springer.

[Bride et al., 2016a] Bride, H., Kouchnarenko, O., Peureux, F., et Voiron, G. (2016a). Compara-
ison des approches SMT et CSP appliquées à la vérification de réseaux workflows. In
Actes des 15èmes journées sur les Approches Formelles dans l’Assistance au Développement
de Logiciels (AFADL’16), pages 11–12, Besançon, France.

[Bride et al., 2016b] Bride, H., Kouchnarenko, O., Peureux, F., et Voiron, G. (2016b). Workflow
nets verification: SMT or CLP? In Proceedings of the 21st International Workshop on For-
mal Methods for Industrial Critical Systems and Automated Verification of Critical Systems
(FMICS-AVoCS’16), volume 9933 of LNCS, pages 1–17, Pisa, Italy. Springer.

[Burroni, 1993] Burroni, A. (1993). Higher-dimensional word problems with applications to
equational logic. Theoretical computer science, 115(1):43–62.

[Butenhof, 1997] Butenhof, D. R. (1997). Programming with POSIX threads. Addison-Wesley
Professional.

[Carlsson et al., 2012] Carlsson, M., et others (2012). SICStus Prolog user’s manual (Release
4.2.3). Swedish Institute of Computer Science, Kista, Sweden.

[Carlsson et al., 1988] Carlsson, M., Widen, J., Andersson, J., Andersson, S., Boortz, K., Nilsson,
H., et Sjöland, T. (1988). SICStus Prolog user’s manual, volume 3. Swedish Institute of
Computer Science Kista, Sweden.

[Clarke et al., 2000] Clarke, E., Grumberg, O., Jha, S., Lu, Y., et Veith, H. (2000).
Counterexample-guided abstraction refinement. In Computer aided verification, pages 154–
169. Springer.

[Clarke et al., 1981] Clarke, E. M., et Emerson, E. A. (1981). Design and synthesis of synchro-
nization skeletons using branching time temporal logic. Springer.

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., et Sistla, A. P. (1986). Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems (TOPLAS), 8(2):244–263.

[Clarke et al., 1999] Clarke, E. M., Grumberg, O., et Peled, D. (1999). Model checking. MIT
press.

[Clarke et al., 1996] Clarke, E. M., et Wing, J. M. (1996). Formal methods: State of the art and
future directions. ACM Computing Surveys (CSUR), 28(4):626–643.

[Coalition, 1996] Coalition, W. M. (1996). Terminology & glossary. WFMC Document
WFMCTC-1011, Workflow Management Coalition, Avenue Marcel Thiry, 204:1200.

BIBLIOGRAPHY 137

[De Giacomo et al., 2013] De Giacomo, G., et Vardi, M. Y. (2013). Linear temporal logic and
linear dynamic logic on finite traces. In IJCAI’13 Proceedings of the Twenty-Third interna-
tional joint conference on Artificial Intelligence, pages 854–860. Association for Computing
Machinery.

[De Moura et al., 2008] De Moura, L., et Bjørner, N. (2008). Z3: An efficient smt solver. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer.

[De Moura et al., 2011] De Moura, L., et Bjørner, N. (2011). Satisfiability modulo theories: in-
troduction and applications. Communications of the ACM, 54(9):69–77.

[Dechter et al., 2002] Dechter, R., et Frost, D. (2002). Backjump-based backtracking for con-
straint satisfaction problems. Artificial Intelligence, 136(2):147–188.

[Desel, 1998] Desel, J. (1998). Basic linear algebraic techniques for place/transition nets. In
Lectures on Petri Nets I: Basic Models, volume 1491 of LNCS, pages 257–308. Springer.

[Desel et al., 2005] Desel, J., et Esparza, J. (2005). Free choice Petri nets, volume 40. Cambridge
university press.

[DeVore et al., 1987] DeVore, I., et Tooby, J. (1987). The reconstruction of hominid behavioral
evolution through strategic modeling. The Evolution of Human Behavior: Primate Models,
edited by WG Kinzey, pages 183–237.

[Dittrich, 1989] Dittrich, G. (1989). Specification with nets. In Computer Aided Systems The-
ory—EUROCAST’89, pages 111–124. Springer.

[Dumas et al., 2001] Dumas, M., et Ter Hofstede, A. H. (2001). Uml activity diagrams as a work-
flow specification language. In International Conference on the Unified Modeling Language,
pages 76–90. Springer.

[Elhog-Benzina et al., 2012] Elhog-Benzina, D., Haddad, S., et Hennicker, R. (2012). Refinement
and asynchronous composition of modal petri nets. In Transactions on Petri Nets and Other
Models of Concurrency V, volume 6900 of LNCS, pages 96–120. Springer.

[Esparza, 1998] Esparza, J. (1998). Decidability and complexity of Petri net problems — an
introduction. In Lectures on Petri Nets I: Basic Models, volume 1491 of LNCS, pages 374–428.
Springer.

[Esparza et al., 2016] Esparza, J., et Hoffmann, P. (2016). Reduction rules for colored workflow
nets. In International Conference on Fundamental Approaches to Software Engineering, pages
342–358. Springer.

[Esparza et al., 2014] Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., et Niksic, F.
(2014). An smt-based approach to coverability analysis. In International Conference on
Computer Aided Verification, pages 603–619. Springer.

[Esparza et al., 2000] Esparza, J., et Melzer, S. (2000). Verification of safety properties us-
ing integer programming: Beyond the state equation. Formal Methods in System Design,
16(2):159–189.

[Esparza et al., 2015] Esparza, J., et Meyer, P. J. (2015). An smt-based approach to fair termi-
nation analysis. In Proceedings of the 15th Conference on Formal Methods in Computer-Aided
Design, pages 49–56. FMCAD Inc.

138 BIBLIOGRAPHY

[Fahland, 2008] Fahland, D. (2008). Translating uml2 activity diagrams to petri nets.

[Fahland et al., 2009] Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H.,
et Wolf, K. (2009). Instantaneous soundness checking of industrial business process mod-
els. In International Conference on Business Process Management, pages 278–293. Springer.

[Favre et al., 2016] Favre, C., Völzer, H., et Müller, P. (2016). Diagnostic information for
control-flow analysis of workflow graphs (aka free-choice workflow nets). In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 463–
479. Springer.

[Fehling, 1991] Fehling, R. (1991). A concept of hierarchical petri nets with building blocks.
In Advances in Petri Nets 1993, pages 148–168. Springer.

[Fischer, 2003] Fischer, L. (2003). Workflow handbook 2003. Future Strategies Inc.

[Frost et al., 1995] Frost, D., Dechter, R., et others (1995). Look-ahead value ordering for con-
straint satisfaction problems. In IJCAI (1), pages 572–578. Citeseer.

[Gabbay et al., 1980] Gabbay, D., Pnueli, A., Shelah, S., et Stavi, J. (1980). On the temporal
analysis of fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 163–173. ACM.

[Goldman et al., 2012] Goldman, A., et Ngoko, Y. (2012). On graph reduction for qos prediction
of very large web service compositions. In Services Computing (SCC), 2012 IEEE Ninth
International Conference on, pages 258–265. IEEE.

[Gropp et al., 1999] Gropp, W., Lusk, E., et Skjellum, A. (1999). Using MPI: portable parallel
programming with the message-passing interface, volume 1. MIT press.

[Gulwani et al., 2008] Gulwani, S., Srivastava, S., et Venkatesan, R. (2008). Program analysis as
constraint solving. ACM SIGPLAN Notices, 43(6):281–292.

[Hamadi et al., 2013] Hamadi, Y., et Wintersteiger, C. (2013). Seven challenges in parallel sat
solving. AI Magazine, 34(2):99.

[Hayden et al., 1968] Hayden, S., Zermelo, E., Fraenkel, A. A., et Kennison, J. F. (1968).
Zermelo-Fraenkel set theory. CE Merrill.

[Hichami et al., 2014] Hichami, O. E., Al Achhab, M., Berrada, I., Oucheikh, R., et El Mohajir,
B. E. (2014). An approach of optimisation and formal verification of workflow petri nets.
Journal of Theoretical & Applied Information Technology, 61(3).

[Hillah et al., 2010] Hillah, L.-M., Kordon, F., Petrucci, L., et Trèves, N. (2010). Pnml frame-
work: An extendable reference implementation of the petri net markup language. In
Applications and Theory of Petri Nets, pages 318–327. Springer.

[Hyvärinen et al., 2016] Hyvärinen, A. E., Marescotti, M., Alt, L., et Sharygina, N. (2016).
Opensmt2: An smt solver for multi-core and cloud computing. In International Confer-
ence on Theory and Applications of Satisfiability Testing, pages 547–553. Springer.

[Jech, 2013] Jech, T. (2013). Set theory. Springer Science & Business Media.

[Jensen, 1987] Jensen, K. (1987). Coloured Petri nets. In Petri Nets: Central Models and Their
Properties, volume 254 of LNCS, pages 248–299. Springer.

BIBLIOGRAPHY 139

[Karp et al., 1969] Karp, R. M., et Miller, R. E. (1969). Parallel program schemata. Journal of
Computer and system Sciences, 3:147–195.

[Kiepuszewski et al., 2003] Kiepuszewski, B., ter Hofstede, A. H., et van der Aalst, W. M. (2003).
Fundamentals of control flow in workflows. Acta Informatica, 39(3):143–209.

[Kindler, 2004] Kindler, E. (2004). On the semantics of epcs: A framework for resolving the
vicious circle. In International Conference on Business Process Management, pages 82–97.
Springer.

[Kleine et al., 2010] Kleine, M., et Göthel, T. (2010). Specification, verification and implemen-
tation of business processes using CSP. In TASE, pages 145–154. IEEE Computer Society.

[Koehler et al., 2014] Koehler, J., Moser, S. D., Vanhatalo, J. H., et Voelzer, H. (2014). System
and method for hierarchically decomposing process model. US Patent 8,786,602.

[Kordon et al., 2016] Kordon, F., Garavel, H., Hillah, L. M., Hulin-Hubard, F., Chiardo, G.,
Hamez, A., Jezequel, L., Miner, A., Meijer, J., Paviot-Adet, E., Racordon, D., Rodriguez, C.,
Rohr, C., Srba, J., Thierry-Mieg, Y., Tri.nh, G., et Wolf, K. (2016). Models of the 2016 Edition
of the Model Checking Contest. http://mcc.lip6.fr/models.php.

[Kosaraju, 1982] Kosaraju, S. R. (1982). Decidability of reachability in vector addition systems
(preliminary version). In Proceedings of the fourteenth annual ACM symposium on Theory of
computing, pages 267–281. ACM.

[Kumar, 1992] Kumar, V. (1992). Algorithms for constraint-satisfaction problems: A survey.
AI magazine, 13(1):32.

[Kumar et al., 1994] Kumar, V., Grama, A., Gupta, A., et Karypis, G. (1994). Introduction to
parallel computing: design and analysis of algorithms, volume 400. Benjamin/Cummings
Redwood City, CA.

[Larsen, 1989] Larsen, K. G. (1989). Modal Specifications. In Proc. of the Int. Workshop on
Automatic Verification Methods for Finite State Systems, volume 407 of LNCS, pages 232–246,
Grenoble, France. Springer-Verlag.

[Lawrence, 1997] Lawrence, P. (1997). Workflow handbook 1997. John Wiley & Sons, Inc.

[Lee-Kwang et al., 1987] Lee-Kwang, H., Favrel, J., et Baptiste, P. (1987). Generalized petri net
reduction method. IEEE transactions on systems, man, and cybernetics, 17(2):297–303.

[Leroux, 2011] Leroux, J. (2011). Vector addition system reachability problem: a short self-
contained proof. In Language and Automata Theory and Applications, pages 41–64. Springer.

[Li et al., 2009] Li, Z. W., et Zhou, M. C. (2009). Deadlock Resolution in Automated Manufac-
turing Systems: A Novel Petri Net Approach. Springer Publishing Company, Incorporated,
1st edition. ISBN 184882243X.

[Lin et al., 2002] Lin, H., Zhao, Z., Li, H., et Chen, Z. (2002). A novel graph reduction algorithm
to identify structural conflicts. In System Sciences, 2002. HICSS. Proceedings of the 35th
Annual Hawaii International Conference on, pages 10–pp. IEEE.

[Lipton, 1976] Lipton, R. (1976). The reachability problem requires exponential space. Re-
search report (Yale University. Department of Computer Science). Department of Computer
Science, Yale University.

140 BIBLIOGRAPHY

[Lohmann et al., 2009] Lohmann, N., Verbeek, E., et Dijkman, R. (2009). Petri net transfor-
mations for business processes–a survey. In Transactions on petri nets and other models of
concurrency II, pages 46–63. Springer.

[Marechal et al., 2013] Marechal, A., et Buchs, D. (2013). Unifying the semantics of modular
extensions of petri nets. In International Conference on Applications and Theory of Petri Nets
and Concurrency, pages 349–368. Springer.

[Marechal et al., 2015] Marechal, A., et Buchs, D. (2015). Generalizing the compositions of
petri nets modules. Fundamenta Informaticae, 137(1):87–116.

[Melzer et al., 1996] Melzer, S., et Esparza, J. (1996). Checking system properties via inte-
ger programming. In Proc. of the 6th Eur. Symp. on Programming Languages and Systems
(ESOP’96), volume 1058 of LNCS, pages 250–264, Linköping, Sweden. Springer.

[Mendling et al., 2006] Mendling, J., Moser, M., Neumann, G., Verbeek, H., Van Dongen, B. F.,
et van der Aalst, W. M. (2006). Faulty epcs in the sap reference model. In International
Conference on Business Process Management, pages 451–457. Springer.

[Mendling et al., 2008] Mendling, J., Verbeek, H., van Dongen, B. F., van der Aalst, W. M., et
Neumann, G. (2008). Detection and prediction of errors in epcs of the sap reference model.
Data & Knowledge Engineering, 64(1):312–329.

[Monakova et al., 2009] Monakova, G., Kopp, O., Leymann, F., Moser, S., et Schäfers, K. (2009).
Verifying business rules using an SMT solver for BPEL processes. In BPSC, volume 147 of
LNI, pages 81–94. GI.

[Murata, 1989] Murata, T. (1989). Petri nets: Properties, analysis and applications. Proc. of
the IEEE, 77(4):541–580.

[Namjoshi et al., 2000] Namjoshi, K. S., et Kurshan, R. P. (2000). Syntactic program trans-
formations for automatic abstraction. In 12th Int. Conf. on Computer Aided Verification
(CAV’00), volume 1855 of LNCS, pages 435–449, Chicago, IL, USA. Springer.

[Nieuwenhuis et al., 2006] Nieuwenhuis, R., Oliveras, A., et Tinelli, C. (2006). Solving sat and
sat modulo theories: From an abstract davis–putnam–logemann–loveland procedure to
dpll (t). Journal of the ACM (JACM), 53(6):937–977.

[Oliveras, 2014] Oliveras, A. (2014). Survey of satisfiability modulo theories (smt). In Banff

International Research Station for Mathematical Innovation and Discovery (BIRS) Workshop
Lecture Videos. Banff International Research Station for Mathematical Innovation and Discov-
ery.

[Padberg, 1999] Padberg, J. (1999). Abstract petri nets as a uniform approach to high-level
petri nets. In Fiadeiro, J., editor, Recent Trends in Algebraic Development Techniques, volume
1589 of Lecture Notes in Computer Science, pages 241–260. Springer Berlin Heidelberg.

[Petri, 1962] Petri, C. A. (1962). Kommunikation mit Automaten. PhD thesis, Darmstadt Uni-
versity of Technology, Germany.

[Ping et al., 2004] Ping, L., Hao, H., et Jian, L. (2004). On 1-soundness and soundness of work-
flow nets. In Proceedings of the Third Workshop on Modelling of Objects, Components, and
Agents Aarhus, Denmark, pages 21–36.

BIBLIOGRAPHY 141

[Pólrola et al., 2014] Pólrola, A., Cybula, P., et Meski, A. (2014). Smt-based reachability check-
ing for bounded time Petri nets. Fundam. Inform., 135(4):467–482.

[Polyvyanyy et al., 2011] Polyvyanyy, A., Weidlich, M., et Weske, M. (2011). Connectivity of
workflow nets: the foundations of stepwise verification. Acta informatica, 48(4):213–242.

[Prasad et al., 2005] Prasad, M. R., Biere, A., et Gupta, A. (2005). A survey of recent advances
in sat-based formal verification. International Journal on Software Tools for Technology
Transfer, 7(2):156–173.

[Rabbi et al., 2013] Rabbi, F., Wang, H., MacCaull, W., et Rutle, A. (2013). A model slicing
method for workflow verification. Electronic Notes in Theoretical Computer Science, 295:79–
93.

[Raedts et al., 2007] Raedts, I., Petkovic, M., Usenko, Y. S., van der Werf, J. M. E., Groote, J. F., et
Somers, L. J. (2007). Transformation of bpmn models for behaviour analysis. In MSVVEIS,
pages 126–137.

[Rakow, 2008] Rakow, A. (2008). Slicing petri nets with an application to workflow verifi-
cation. In International Conference on Current Trends in Theory and Practice of Computer
Science, pages 436–447. Springer.

[Ramchandani, 1974] Ramchandani, C. (1974). Analysis of asynchronous concurrent systems
by timed petri nets.

[Rybalchenko, 2010] Rybalchenko, A. (2010). Constraint solving for program verification:
Theory and practice by example. In International Conference on Computer Aided Verifi-
cation, pages 57–71. Springer.

[Sadiq et al., 2000] Sadiq, W., et Orlowska, M. E. (2000). Analyzing process models using graph
reduction techniques. Information systems, 25(2):117–134.

[Schäl, 1996] Schäl, T. (1996). Workflow management for process organisations, volume 1096
of. Lecture Notes in Computer Science.

[Scheer et al., 2005] Scheer, A.-W., Thomas, O., et Adam, O. (2005). Process modeling using
event-driven process chains. Process-Aware Information Systems, pages 119–146.

[Schmidt, 2000] Schmidt, K. (2000). Lola a low level analyser. In International Conference on
Application and Theory of Petri Nets, pages 465–474. Springer.

[Schmidt, 2001] Schmidt, K. (2001). Narrowing petri net state spaces using the state equation.
Fundamenta Informaticae, 47(3-4):325–335.

[Singer, 2006] Singer, D. (2006). Parallel resolution of the satisfiability problem: A survey.
Parallel combinatorial optimization, pages 123–148.

[Sloan et al., 1996] Sloan, R. H., et Buy, U. (1996). Reduction rules for time petri nets. Acta
Informatica, 33(7):687–706.

[Soliman, 2008] Soliman, S. (2008). Finding minimal P/T-invariants as a CSP. In Proc. of the
4th Workshop on Constraint Based Methods for Bioinformatics (WCB’08).

[Stuckey et al., 2014] Stuckey, P. J., Feydy, T., Schutt, A., Tack, G., et Fischer, J. (2014). The
minizinc challenge 2008–2013. AI Magazine, 35(2):55–60.

142 BIBLIOGRAPHY

[Suzuki et al., 1983] Suzuki, I., et Murata, T. (1983). A method for stepwise refinement and
abstraction of petri nets. Journal of computer and system sciences, 27(1):51–76.

[Ţiplea et al., 2005] Ţiplea, F. L., et Marinescu, D. C. (2005). Structural soundness of workflow
nets is decidable. Information Processing Letters, 96(2):54–58.

[Tsang, 1993] Tsang, E. (1993). Foundation of constraint satisfaction. Academic Press.

[Valmari, 1998] Valmari, A. (1998). The state explosion problem. In Lectures on Petri nets I:
Basic models, pages 429–528. Springer.

[Van Der Aalst et al., 2004] Van Der Aalst, W., et Van Hee, K. M. (2004). Workflow manage-
ment: models, methods, and systems. MIT press.

[Van der Aalst, 1997] Van der Aalst, W. M. (1997). Verification of workflow nets. In Application
and Theory of Petri Nets 1997, pages 407–426. Springer.

[van der Aalst, 1998] van der Aalst, W. M. (1998). The Application of Petri Nets to Workflow
Management. Journal of Circuits, Systems, and Computers, 8(1):21–66.

[van der Aalst et al., 2000] van der Aalst, W. M., Barros, A. P., ter Hofstede, A. H., et Kie-
puszewski, B. (2000). Advanced workflow patterns. In International Conference on Co-
operative Information Systems, pages 18–29. Springer.

[van der Aalst et al., 2011] van der Aalst, W. M., van Hee, K. M., ter Hofstede, A. H., Sidorova,
N., Verbeek, H., Voorhoeve, M., et Wynn, M. T. (2011). Soundness of workflow nets: classi-
fication, decidability, and analysis. Journal of Formal Aspects of Computing, 23(3):333–363.

[van Dongen et al., 2007] van Dongen, B. F., Jansen-Vullers, M. H., Verbeek, H., et van der Aalst,
W. M. (2007). Verification of the sap reference models using epc reduction, state-space
analysis, and invariants. Computers in Industry, 58(6):578–601.

[van Dongen et al., 2005] van Dongen, B. F., Van der Aalst, W. M., et Verbeek, H. M. (2005).
Verification of epcs: Using reduction rules and petri nets. In International Conference on
Advanced Information Systems Engineering, pages 372–386. Springer.

[van Hee et al., 2006a] van Hee, K., et others (2006a). Yasper: a tool for workflow modeling
and analysis. In Proc. of the 6th Int. Conf. on Application of Concurrency to System Design
(ACSD’06), pages 279–282, Turku, Finland. IEEE CS.

[van Hee et al., 2006b] van Hee, K., Oanea, O., Sidorova, N., et Voorhoeve, M. (2006b). Verifying
generalized soundness of workflow nets. In International Andrei Ershov Memorial Confer-
ence on Perspectives of System Informatics, pages 235–247. Springer.

[Van Hee et al., 2003] Van Hee, K., Sidorova, N., et Voorhoeve, M. (2003). Soundness and sep-
arability of workflow nets in the stepwise refinement approach. In ICATPN, volume 2679,
pages 337–356. Springer.

[Van Hee et al., 2004] Van Hee, K., Sidorova, N., et Voorhoeve, M. (2004). Generalised sound-
ness of workflow nets is decidable. Springer.

[Van Hee et al., 2010] Van Hee, K. M., et Liu, Z. (2010). Generating benchmarks by random
stepwise refinement of petri nets. In ACSD/Petri Nets Workshops, pages 403–417. Citeseer.

BIBLIOGRAPHY 143

[Vanhatalo et al., 2007] Vanhatalo, J., Völzer, H., et Leymann, F. (2007). Faster and more fo-
cused control-flow analysis for business process models through sese decomposition. In
International Conference on Service-Oriented Computing, pages 43–55. Springer.

[Verbeek et al., 2000] Verbeek, E., et Van Der Aalst, W. M. (2000). Woflan 2.0 a petri-net-based
workflow diagnosis tool. In International Conference on Application and Theory of Petri Nets,
pages 475–484. Springer.

[Verbeek et al., 2001] Verbeek, H. M., Basten, T., et van der Aalst, W. M. (2001). Diagnosing
workflow processes using Woflan. The computer journal, 44(4):246–279.

[Vilkomir et al., 2001] Vilkomir, S., et Bowen, J. (2001). Formalization of software testing cri-
teria using the Z notation. In 25th Int. Conf. on Computer Software and Applications (COMP-
SAC’01), pages 351–356, Chicago, IL, USA. IEEE CSP.

[Voorhoeve et al., 1997] Voorhoeve, M., et Van der Aalst, W. (1997). Ad-hoc workflow: prob-
lems and solutions. In Database and Expert Systems Applications, 1997. Proceedings., Eighth
International Workshop on, pages 36–40. IEEE.

[West et al., 2001] West, D. B., et others (2001). Introduction to graph theory, volume 2. Pren-
tice hall Upper Saddle River.

[Westergaard, 2011] Westergaard, M. (2011). Better algorithms for analyzing and enacting
declarative workflow languages using ltl. In International Conference on Business Process
Management, pages 83–98. Springer.

[White, 2004] White, S. A. (2004). Introduction to bpmn. IBM Cooperation, 2(0):0.

[Wimmel et al., 2011] Wimmel, H., et Wolf, K. (2011). Applying cegar to the petri net state
equation. In Tools and Algorithms for the Construction and Analysis of Systems, pages 224–
238. Springer.

[Yamaguchi et al., 2009] Yamaguchi, M., Yamaguchi, S., et Tanaka, M. (2009). A model checking
method of soundness for workflow nets. IEICE transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 92(11):2723–2731.

List of Figures

2.1 An ordinary Petri net in two states illustrating the firing of a transition 12

2.2 An generalised Petri net in two states illustrating the firing of a transition 13

2.3 State machine . 16

2.4 Marked graph . 16

2.5 Free choice net . 17

2.6 Asymmetric choice net . 17

2.7 Venn diagram of Petri nets subclasses . 18

2.8 An example of coloured Petri net . 20

2.9 Illustration of causal dependency, conflict and concurrency in workflow nets . . . 21

2.10 On-demand order delivery workflow net . 22

2.11 Two strong trace equivalent workflow nets . 23

2.12 Two weak trace equivalent workflow nets with respect to {t2, t4} 24

2.13 Illustration of the place refinement of place p with a workflow net Nsub 26

2.14 Illustration of the transition refinement of transition t with a workflow net Nsub . . 27

2.15 Reduction rules of [Murata, 1989] . 37

2.16 Reduction Rule φA of [Desel et al., 2005] . 37

3.1 Workflow net (N1) used to illustrate a spurious solution of the state equation . . . 47

3.2 Illustration of a state equation solution subnet (sN(ν1)) 48

3.3 Workflow net (N2) used to illustrate a spurious solution of Q 50

3.4 Illustration of an execution modelled by three segments 52

4.1 Reduction rule φRemoveP (R1) . 69

4.2 Reduction rule φRemoveT (R2) . 71

4.3 Reduction rule φRemoveS T (R3) . 72

4.4 Reduction rule φRemoveT P (R4) . 73

4.5 Reduction rule φRemovePT (R5) . 75

4.6 Reduction rule φRemoveR (R6) . 76

4.7 Illustration of the application of Algorithm 2 . 79

145

146 LIST OF FIGURES

5.1 Excerpt of issue tracking system workflow net 90

5.2 Login and navigation coloured sub-workflow net 92

5.3 sub-CWF-nets of the Question and Answer CWF-net 93

5.4 Payout Process of the Tax Accounting Manager study case 96

5.5 Modal specification verification tool chain . 98

5.6 An example of workflow net . 100

5.7 SMT-Lib representation of a segment of workflow 101

5.8 Prolog representation of a segment of workflow 101

5.9 Input queries using respectively Z3 and SICStus 101

5.10 The three execution’s segments proposed by both solvers 102

5.11 Workflow nets reduction tool . 103

5.12 Example of the output of the execution of Hadara-AdSimul-Red 104

5.13 Architecture of the generation toolchain . 108

5.14 A workflow net satisfying the must-formula t0 ∧ t1 ∧ (t2 ∨ t3 ∨ t4) 109

5.15 The extended workflow obtained from the workflow of Figure 5.14 109

5.16 Workflow nets generation parameters and their values 111

5.17 State-machine - may-valid and must-invalid modal specifications 113

5.18 State-machine - must-valid and may-invalid modal specifications 113

5.19 Marked-graph - may-valid and must-invalid modal specifications 114

5.20 Marked-graph - must-valid and may-invalid modal specifications 114

5.21 Free-choice - may-valid and must-invalid modal specifications 115

5.22 Free-choice - must-valid and may-invalid modal specifications 115

5.23 Ordinary workflow nets - may-valid and must-invalid modal specifications 116

5.24 Ordinary workflow nets - must-valid and may-invalid modal specifications 116

5.25 Reduction factors of workflow nets of IBM-bpm 120

5.26 Reduction factors of workflow nets of SAP-ref 120

5.27 Reduction time of workflow nets of the gen1 . 122

5.28 Reduction time of workflow nets of the gen2 . 123

7.1 Illustration of error-patterns . 133

List of Tables

5.1 Issue tracking system requirements . 91

5.2 Colours of Question and Answer coloured workflow net’s places 92

5.3 Colours, inputs, outputs, and guards of Question and Answer coloured workflow
net’s transitions . 93

5.4 Question and Answer portal requirements . 95

5.5 Function associated with transitions of the Payout Process (Figure 5.4) 96

5.6 Mean costs associated with transitions of the Payout Process 97

5.7 Payout Process requirements . 97

5.8 Issue Tracking System: Experimentation results 105

5.9 Question and Answer Portal: Experimentation results 106

5.10 Tax Accounting Manager: Experimentation results 107

5.11 Metrics over state-machine workflow nets . 112

5.12 Metrics over marked-graph workflow nets . 112

5.13 Metrics over free-choice workflow nets . 112

5.14 Metrics over ordinary workflow nets . 112

5.15 Reduction Results over the Issue Tracking System 119

5.16 Results for the IBM-bpm and SAP-ref benchmarks 121

5.17 Reduction results over the workflow nets of the Model Checking Contest 122

147

List of Definitions

1 Definition: Cartesian Product . 10

2 Definition: Binary Relation . 10

3 Definition: Sequence . 10

4 Definition: Monoid . 10

5 Definition: Directed Graph . 11

6 Definition: Bipartite Directed Graph . 11

7 Definition: Path . 11

8 Definition: Ordinary Petri net . 11

9 Definition: Generalised Petri net . 13

10 Definition: Reachability Problem . 15

11 Definition: Boundedness . 15

12 Definition: Liveness . 15

13 Definition: State Machine . 16

14 Definition: Marked Graph . 16

15 Definition: Free Choice Net . 17

16 Definition: Asymmetric Choice Net . 17

17 Definition: Hierarchical Petri Nets . 19

18 Definition: Coloured Petri net . 19

19 Definition: Workflow net . 22

20 Definition: Strong Trace Equivalence . 23

21 Definition: Weak Trace Equivalence . 24

22 Definition: Soundness [van der Aalst, 1998, van der Aalst et al., 2011] 25

23 Definition: k-soundness [Barkaoui et al., 2007] 25

24 Definition: Generalised Soundness [Barkaoui et al., 2007] 25

25 Definition: Hierarchical Workflow Nets . 26

26 Definition: Modal Workflow net . 28

27 Definition: T-invariant . 32

28 Definition: P-invariant . 32

29 Definition: Siphon . 33

149

150 LIST OF DEFINITIONS

30 Definition: Trap . 33

31 Definition: Siphon-Trap Property . 34

32 Definition: k-closure of a Workflow Net . 34

33 Definition: Well-formed Modal Specification Formulae 45

34 Definition: Extended Modal Specifications . 46

35 Definition: State Equation Constraint System 46

36 Definition: State Equation Solution Subnet . 48

37 Definition: State Equation + Absence of Siphon Constraint System 49

38 Definition: State Equation + Absence of Siphon + MG Constraint System 50

39 Definition: k-segment Execution Constraint System 51

40 Definition: k-segment Modal Execution Constraint System 53

41 Definition: Abstract Petri Net . 55

42 Definition: Marking of an Abstract Petri Net . 56

43 Definition: Transition Instance of an Abstract Petri Net 56

44 Definition: Abstract Workflow Net . 57

45 Definition: Well-formed Abstract Modal Specification Formulae 59

46 Definition: Extended Abstract Modal Specification Formulae 60

47 Definition: Abstract Extended Modal Specification 61

48 Definition: Subnet of a solution of Sa . 62

49 Definition: State Equation + Absence of Siphon Constraint System 62

50 Definition: State Equation + Absence of Siphon Constraint + MG System 62

51 Definition: k-segment Abstract Execution . 63

52 Definition: k-segment Abstract Execution . 64

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Abstract:

Nowadays workflows are extensively used by companies and organisations in order to improve organizational
efficiency, responsiveness and profitability by managing the tasks and steps of business processes. The
verification of specifications has become mandatory to ensure that such processes are properly designed
and reach the expected level of trust and quality. In this context, this thesis addresses the verification of
modal specifications – necessary or admissible behaviour involving several activities and their causalities –
of workflow nets – a Petri nets class suited for the description of workflows.
In particular, it defines an innovative constraint system based framework to model executions of ordinary as well
as coloured workflow nets, and verify modal specifications. Further, it presents powerful reduction methods
preserving properties of interest such as generalised soundness and correctness of a given modal specification.
Such reduction methods are then portrayed as pre-processing steps reducing workflow nets size, so that the
verification of preserved properties can be carried out on smaller instances.
Finally, as a practical contribution, this thesis introduces the tools that have been implemented as well as
experimentations that have been carried out over industrial workflow nets in order to validate the approaches
proposed in this thesis. The convincing experimental results highlight the effectiveness, efficiency and
scalability of the modal specification verification method and reduction methods introduced in this thesis.

Keywords: Verification, Modal specification, Workflow net/Petri net, Constraint solving, Reduction

Résumé :

De nos jours, les workflows sont largement utilisés par les entreprises et les organisations en vue d’améliorer
l’efficacité organisationnelle, la réactivité et la rentabilité en gérant les tâches et les étapes de processus
opérationnels. La vérification des spécifications est devenue obligatoire afin d’assurer que ces processus sont
correctement conçus et atteignent le niveau de confiance et de qualité attendu.
Dans ce contexte, cette thèse porte sur la vérification de spécifications modales – comportements nécessaires
ou recevables impliquant plusieurs activités et leurs causalités – de workflows nets – une classe de réseaux de
Petri adaptés à la description de workflows.
En particulier, cette thèse définit un cadre novateur permettant de modéliser les exécutions de workflow nets,
avec ou sans données, et de vérifier des spécifications modales à l’aide de systèmes de contraintes. Elle
présente également deux méthodes de réduction préservant la ’generalised soundness’ et la validité d’une
spécification modale donnée. Ces méthodes de réduction sont ensuite présentées comme des étapes de pré-
traitement réduisant la taille des workflow nets, de sorte que la vérification des propriétés conservées puisse
être effectuée sur de plus petites instances. Enfin, cette thèse présente les outils qui ont été mis en oeuvre
ainsi que des expérimentations qui ont été menées sur un grand nombre de workflows industriels afin de
valider les approches proposées dans cette thèse. Ces résultats expérimentaux convaincants mettent en évidence
l’efficacité, l’efficience et le passage à l’échelle de la méthode vérification de spécification modales ainsi que
des méthodes de réduction introduites dans cette thèse.

Mots-clés : Vérification, Spécifications Modales, Réseaux Workflows, Solveurs de Contraintes, Réduction

	I Introduction and State of the Art
	1 Introduction
	1.1 Context and Motivations
	1.2 Research Questions
	1.3 Contributions to this Thesis
	1.4 Outline

	2 State of the Art
	2.1 Preliminaries
	2.1.1 Notions of Set Theory and Graph Theory
	2.1.2 Petri Nets
	2.1.2.1 Matrix Representation of Petri nets

	2.1.3 Petri Nets Behavioural Properties
	2.1.4 Petri Nets Subclasses
	2.1.5 Petri Net Extensions
	2.1.5.1 Hierarchical Petri Nets / Refinement
	2.1.5.2 Coloured Petri Nets
	2.1.5.3 Weighted Transitions Petri Nets

	2.1.6 Workflow Nets
	2.1.7 Workflow Nets Equivalences
	2.1.8 Workflow Nets Soundness
	2.1.9 Stepwise Refinement of Worflow Nets
	2.1.10 Modal Specification

	2.2 Analysis of Petri Nets
	2.2.1 Behavioural Approach
	2.2.2 Structural Approach
	2.2.2.1 State Equation
	2.2.2.2 Structural Invariants
	2.2.2.3 Siphons and Traps
	2.2.2.4 Analysis of Workflow Nets

	2.2.3 Reduction Approach
	2.2.3.1 Formalization
	2.2.3.2 Well-known reduction rules

	2.3 Constraint Systems
	2.3.1 Definition
	2.3.2 Constraint Logic Programming (CSP)
	2.3.3 Satisfiability Modulo Theories (SMT)

	II Contributions
	3 Verification of Modal specification
	3.1 Over Ordinary Workflow Nets
	3.1.1 Extended Modal Specification
	3.1.2 Modelling Executions of Workflow Nets
	3.1.3 Verifying Extended Modal Specifications

	3.2 Over Abstract Workflow Nets
	3.2.1 Abstract Petri Nets
	3.2.2 Extended Abstract Modal Specification
	3.2.3 Modelling Executions of Abstract Workflow Nets
	3.2.4 Verifying Extended Abstract Modal Specifications

	3.3 Synthesis

	4 Reduction methods
	4.1 *: A workflow nets reduction kit
	4.2 Semi-Decision of Generalised Soundness
	4.3 Preprocessing Modal Specification Verification
	4.3.1 Reduction based on hierarchical workflow nets
	4.3.2 Reduction based on reduction rules

	4.4 Synthesis

	5 Experimental Evaluation
	5.1 Study Cases
	5.1.1 Issue Tracking System
	5.1.2 Question and Answer Portal
	5.1.3 Tax Accounting Manager

	5.2 Tool Chain Implementation
	5.2.1 Modal Specification Verifier
	5.2.2 Reduction Tool

	5.3 Study cases results
	5.4 Scalability
	5.4.1 Benchmark's Generation Tool
	5.4.2 Experimental Evaluation of Modal Specification Verification
	5.4.2.1 Objectives
	5.4.2.2 Experimental Protocol
	5.4.2.3 Results and Feedback from Experiments

	5.4.3 Experimental Evaluation of Reduction Methods
	5.4.3.1 Objectives
	5.4.3.2 Experimental Protocol
	5.4.3.3 Results and Feedback from Experiments

	5.5 Synthesis

	III Conclusion and Future Work
	6 Conclusion
	6.1 Verification of Modal specifications
	6.2 Reduction methods
	6.3 Experimental Evaluation

	7 Future Work
	7.1 Towards Parallelism
	7.2 Error-pattern
	7.3 Reconfiguration

