
HAL Id: tel-01514173
https://theses.hal.science/tel-01514173

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy consumption optimization of parallel
applications with Iterations using CPU frequency scaling

Ahmed Badri Muslim Fanfakh

To cite this version:
Ahmed Badri Muslim Fanfakh. Energy consumption optimization of parallel applications with It-
erations using CPU frequency scaling. Other [cs.OH]. Université de Franche-Comté, 2016. English.
�NNT : 2016BESA2021�. �tel-01514173�

https://theses.hal.science/tel-01514173
https://hal.archives-ouvertes.fr

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E F R A N C H E - C O M T É

Energy Consumption Optimization of Parallel
Applications with iterations using

CPU Frequency Scaling
By

Ahmed Badri Muslim FANFAKH
A Dissertation Submitted to the

University of Franche-Comté

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Computer Science

Dissertation Committee:

DR FABIENNE JÉZÉQUEL(HDR) University of Paris 6 Reviewer
PR JEAN-MARC PIERSON University of Toulouse 3 Reviewer
PR NABIL ABDENNADHER University of HES-SO, Switzerland Examiner
PR RAPHAËL COUTURIER University of Franche-Comté Supervisor
DR JEAN-CLAUDE CHARR University of Franche-Comté Co-supervisor

mpochard
Texte tapé à la machine
Thèse soutenue à Besançon le : 17 octobre 2016

mpochard
Texte tapé à la machine

mpochard
Texte tapé à la machine

mpochard
Texte tapé à la machine

mpochard
Texte tapé à la machine

mpochard
Texte tapé à la machine

ABSTRACT

Energy Consumption Optimization of Parallel Applications with
Iterations using CPU Frequency Scaling

Ahmed Badri Muslim FANFAKH
University of Franche-Comté, 2016

Supervisors: Raphaël Couturier and Jean-Claude Charr

In recent years, green computing has become an important topic in the supercomput-
ing research domain. However, the computing platforms are still consuming more and
more energy due to the increase in the number of nodes composing them. To minimize
the operating costs of these platforms many techniques have been used. Dynamic volt-
age and frequency scaling (DVFS) is one of them. It can be used to reduce the power
consumption of the CPU while computing, by lowering its frequency. However, lowering
the frequency of a CPU may increase the execution time of the application running on
that processor. Therefore, the frequency that gives the best trade-off between the en-
ergy consumption and the performance of an application must be selected. This thesis,
presents the algorithms developed to optimize the energy consumption and the perfor-
mance of synchronous and asynchronous message passing applications with iterations
running over clusters or grids. The energy consumption and performance models for
each type of parallel application predicts its execution time and energy consumption for
any selected frequency according to the characteristics of both the application and the
architecture executing this application.

The contribution of this thesis can be divided into three parts: Firstly, optimizing the trade-
off between the energy consumption and the performance of the message passing ap-
plications with synchronous iterations running over homogeneous clusters. Secondly,
adapting the energy and performance models to heterogeneous platforms where each
node can have different specifications such as computing power, energy consumption,
available frequency gears or network’s latency and bandwidth. The frequency scaling
algorithm was also modified to suit the heterogeneity of the platform. Thirdly, the models
and the frequency scaling algorithm were completely rethought to take into considera-
tions the asynchronism in the communication and computation. All these models and
algorithms were applied to message passing applications with iterations and evaluated
over either SimGrid simulator or Grid’5000 platform. The experiments showed that the

1

2 Abstract

proposed algorithms are efficient and outperform existing methods such as the energy
and delay product. They also introduce a small runtime overhead and work online with-
out any training or profiling.

KEY WORDS: Dynamic voltage and frequency scaling, Grid computing, Energy optimiza-
tion, parallel applications with iterations and online frequency scaling algorithm.

RÉSUMÉ

Optimisation de la consommation énergétique des applications
parallèles avec des itérations en réduisant la fréquence des

processeurs

Ahmed Badri Muslim Fanfakh
Université de Franche-Comté, 2016

Encadrants: Raphaël Couturier and Jean-Claude Charr

Au cours des dernières années, l’informatique “green” est devenue un sujet important
dans le calcul intensif. Cependant, les plates-formes informatiques continuent de con-
sommer de plus en plus d’énergie en raison de l’augmentation du nombre de noeuds qui
les composent. Afin de minimiser les coûts d’exploitation de ces plates-formes de nom-
breuses techniques ont été étudiées, parmi celles-ci, il y a le changement de la fréquence
dynamique des processeurs (DVFS en anglais). Il permet de réduire la consommation
d’énergie d’un CPU, en abaissant sa fréquence. Cependant, cela augmente le temps
d’exécution de l’application. Par conséquent, il faut trouver un seuil qui donne le meilleur
compromis entre la consommation d’énergie et la performance d’une application. Cette
thèse présente des algorithmes développés pour optimiser la consommation d’énergie
et les performances des applications parallèles avec des itérations synchrones et asyn-
chrones sur des clusters ou des grilles. Les modèles de consommation d’énergie et de
performance proposés pour chaque type d’application parallèle permettent de prédire
le temps d’exécution et la consommation d’énergie d’une application pour toutes les
fréquences disponibles.

La contribution de cette thèse peut être divisé en trois parties. Tout d’abord, il s’agit
d’optimiser le compromis entre la consommation d’énergie et les performances des
applications parallèles avec des itérations synchrones sur des clusters homogènes.
Deuxièmement, nous avons adapté les modèles de performance énergétique aux
plates-formes hétérogènes dans lesquelles chaque noeud peut avoir des spécifications
différentes telles que la puissance de calcul, la consommation d’énergie, différentes
fréquences de fonctionnement ou encore des latences et des bandes passantes réseaux
différentes. L’algorithme d’optimisation de la fréquence CPU a également été modifié en
fonction de l’hétérogénéité de la plate-forme. Troisièmement, les modèles et l’algorithme
d’optimisation de la fréquence CPU ont été complètement repensés pour prendre en

3

4 Résumé

considération les spécificités des algorithmes itératifs asynchrones. Tous ces modèles
et algorithmes ont été appliqués sur des applications parallèles utilisant la bibliothèque
MPI et ont été exécutés avec le simulateur Simgrid ou sur la plate-forme Grid’5000.
Les expériences ont montré que les algorithmes proposés sont plus efficaces que les
méthodes existantes. Ils n’introduisent qu’un faible surcoût et ne nécessitent pas de pro-
filage au préalable car ils sont exécutés au cours du déroulement de l’application.

MOTS-CLÉS: l’ajustement dynamique de la tension et de la fréquence d’un processeur,
Grille de calcul, l’optimisation de l’énergie des applications parallèles avec des itérations.

CONTENTS

Abstract 1

Résumé 3

Table of Contents 8

List of Figures 11

List of Tables 13

List of Algorithms 15

List of Abbreviations 15

List of Abbreviations 17

Dedication 19

Acknowledgements 21

Introduction 23

1. General Introduction . 23

2. Motivation of the Dissertation . 24

3. Main Contributions of this Dissertation . 24

4. Dissertation Outline . 25

I Scientific Background 27

1 Parallel Architectures and Iterative Applications 29

1.1 Introduction . 29

1.2 Parallel Computing Architectures . 30

1.2.1 Types of Parallel platforms . 33

1.2.2 Parallel programming Models . 38

5

6 CONTENTS

1.3 Iterative Methods . 40

1.3.1 Synchronous Parallel Iterative method 41

1.3.2 Asynchronous Parallel Iterative method 43

1.4 The energy consumption model of a parallel application 44

1.5 Conclusion . 47

II Contributions 49

2 Energy optimization of homogeneous platform 51

2.1 Introduction . 51

2.2 Related works . 52

2.2.1 Offline scaling factor selection methods 52

2.2.2 Online scaling factor selection methods 52

2.3 Execution time and energy consumption of parallel tasks running on a ho-
mogeneous platform . 53

2.3.1 Parallel tasks execution on a homogeneous platform 53

2.3.2 Energy consumption model for a homogeneous platform 54

2.4 Performance evaluation of MPI programs 55

2.5 Performance and energy reduction trade-off 55

2.6 Optimal scaling factor for performance and energy 57

2.7 Experimental results . 59

2.7.1 Performance prediction verification 59

2.7.2 The experimental results for the scaling algorithm 59

2.7.3 Results comparison . 62

2.8 The new energy model for a homogeneous cluster 63

2.9 The experimental results using the new energy model 65

2.10 Conclusion . 66

3 Energy Optimization of Heterogeneous Platforms 69

3.1 Introduction . 69

3.2 Related works . 70

3.3 The energy optimization of a heterogeneous cluster 71

3.3.1 The execution time of message passing distributed applications
with iterations on a heterogeneous local cluster 71

3.3.2 Energy model for heterogeneous local cluster 73

3.3.3 Optimization of both energy consumption and performance 73

CONTENTS 7

3.3.4 The scaling algorithm for heterogeneous cluster 75

3.3.5 The evaluation of the proposed algorithm 78

3.4 Experimental results over a heterogeneous local cluster 78

3.4.1 The experimental results of the scaling algorithm 79

3.4.2 The results for different power consumption scenarios 82

3.4.3 Comparison between the proposed scaling algorithm and the EDP
method . 85

3.5 The energy optimization of grid . 85

3.5.1 The energy and performance models of grid platform 85

3.5.2 The scaling factors selection algorithm for a grid architecture 87

3.6 Experimental results over the Grid5000 platform 90

3.6.1 The experimental results of the scaling algorithm on a Grid 92

3.6.2 The experimental results over multi-core clusters 97

3.6.3 Experiments with different static power scenarios 100

3.6.4 Comparison between the proposed frequencies selecting algorithm
and the EDP method . 103

3.7 Conclusion . 105

4 Energy Optimization of Asynchronous Applications 107

4.1 Introduction . 107

4.2 Related works . 108

4.3 The performance and the energy consumption measurement models 109

4.3.1 The execution time of iterative asynchronous message passing ap-
plications . 109

4.3.2 The energy model and trade-off optimization 111

4.4 The scaling algorithm of asynchronous applications 113

4.5 The iterative multi-splitting method . 115

4.6 The experimental results over SimGrid . 115

4.6.1 The energy consumption and the execution time of the multi-
splitting application . 116

4.6.2 The results of the scaling factor selection algorithm 118

4.6.3 Comparing the number of iterations executed by the different MS
versions . 122

4.6.4 Comparing different power scenarios 123

4.6.5 Comparing the HSA algorithm to the energy and delay product
method . 125

4.7 The Experimental Results over Grid’5000 128

8 CONTENTS

4.7.1 Comparing the HSA algorithm to the energy and delay product
method . 131

4.8 Conclusions . 132

III Conclusion and Perspectives 135

5 Conclusion and Perspectives 137

5.1 Conclusion . 137

5.2 Perspectives . 139

Publications 141

Bibliographie 149

LIST OF FIGURES

1.1 Bit-level parallelism . 30

1.2 Data-level parallelism . 31

1.3 Instruction-level parallelism by pipelines . 32

1.4 Thread-level parallelism . 32

1.5 Loop-level parallelism . 33

1.6 SISD machine architecture . 34

1.7 SIMD machine architecture . 34

1.8 MISD machine architecture . 35

1.9 MIMD machine architecture . 35

1.10 Multi-core processor architecture . 36

1.11 Local cluster architecture . 37

1.12 Grid architecture . 38

1.13 The classification of the parallel Programming Models 39

1.14 The SISC Model . 42

1.15 The SIAC Model . 42

1.16 The AIAC Model . 43

2.1 Parallel tasks execution on a homogeneous platform (a) imbalanced com-
munications and (b) imbalanced computations 54

2.2 The energy and performance relation (a) Converted relation and (b) Real
relation . 57

2.3 Comparing predicted to real execution time 60

2.4 Optimal scaling factors for the predicted energy and performance of NAS
benchmarks . 61

2.5 Comparing our method to Rauber and Rünger’s methods 62

2.6 Comparing the energy consumptions estimated using Rauber energy
model and our own . 66

3.1 Parallel tasks on a heterogeneous platform 72

3.2 The energy and performance relation in heterogeneous cluster 74

3.3 Selecting the initial frequencies in heterogeneous cluster 75

9

10 LIST OF FIGURES

3.4 NAS benchmarks running with a different number of nodes (a) the energy
saving and (b) the performance degradation 81

3.5 (a) Comparison the results of the three power scenarios and (b) Compari-
son the selected frequency scaling factors of MG benchmark class C run-
ning on 8 nodes . 84

3.6 Trade-off comparison for NAS benchmarks class C 84

3.7 Selecting the initial frequencies in the grid architecture 87

3.8 The energy and performance relation in grid 88

3.9 Grid5000’s sites distribution in France and Luxembourg 90

3.10 The selected two sites of Grid’5000 . 91

3.11 The power consumed by one core from the Taurus cluster 92

3.12 (a) energy consumption and (b) execution time of NAS Benchmarks over
different scenarios . 95

3.13 The energy reduction percentages while executing the NAS benchmarks
over different scenarios . 96

3.14 The performance degradation percentages of the NAS benchmarks over
different scenarios . 96

3.15 The trade-off distance percentages between the energy reduction and the
performance of the NAS benchmarks over different scenarios 97

3.16 The execution times of the NAS benchmarks running over the one core
and the multi-core scenarios . 98

3.17 The energy consumptions and execution times of the NAS benchmarks
over one core and multi-core per node architectures 98

3.18 The energy saving percentages of running NAS benchmarks over one core
and multi-core scenarios . 99

3.19 The performance degradation percentages of running NAS benchmarks
over one core and multi-core scenarios . 99

3.20 The trade-off distance percentages of running NAS benchmarks over one
core and multi-core scenarios . 100

3.21 The energy saving percentages for the nodes executing the NAS bench-
marks over the three power scenarios . 101

3.22 The performance degradation percentages for the NAS benchmarks over
the three power scenarios . 101

3.23 The trade-off distance percentages between the energy reduction and the
performance of the NAS benchmarks over the three power scenarios 102

3.24 Comparing the selected frequency scaling factors for the MG benchmark
over the three static power scenarios . 102

3.25 The energy reduction percentages induced by the Maxdist method and the
EDP method . 104

LIST OF FIGURES 11

3.26 The performance degradation percentages induced by the Maxdist method
and the EDP method . 104

3.27 The trade-off distance percentages between the energy consumption re-
duction and the performance for the Maxdist method and the EDP method . 105

4.1 A grid platform composed of heterogeneous clusters 110

4.2 Selecting the initial frequencies in a grid composed of four clusters 113

4.3 (a) energy consumption and (b) execution time of multi-splitting application
without applying the HSA algorithm . 117

4.4 (a) energy consumption and (b) execution time of different versions of the
multi-splitting application after applying the HSA algorithm 119

4.5 The energy saving percentages after applying the HSA algorithm to the
different versions and scenarios . 120

4.6 The results of the performance degradation 120

4.7 The results of the tradeoff distance . 121

4.8 The results of the three power scenarios: Synchronous application of the
HSA algorithm . 124

4.9 The results of the three power scenarios: Asynchronous application of the
HSA algorithm . 124

4.10 Comparison of the selected frequency scaling factors by the HSA algorithm
for the three power scenarios . 125

4.11 Synchronous application of the frequency scaling selection method on the
synchronous MS version . 126

4.12 Synchronous application of the frequency scaling selection method on the
asynchronous MS version . 126

4.13 Asynchronous application of the frequency scaling selection method on the
synchronous MS version . 127

4.14 Asynchronous application of the frequency scaling selection method on the
asynchronous MS version . 127

4.15 Comparison of the selected frequency scaling factors by the two algorithms
over the Grid 4*4 platform scenario . 128

4.16 Comparing the execution time . 130

4.17 Comparing the energy consumption . 130

4.18 Comparing the trade-off percentages of HSA and EDP methods over the
Grid’5000 . 132

LIST OF TABLES

2.1 Platform file parameters . 59

2.2 NAS Benchmarks description . 60

2.3 The scaling factors results . 62

2.4 Comparing results for the NAS class C . 63

2.5 The Results of NAS Parallel Benchmarks running on 16 nodes 65

3.1 Heterogeneous nodes characteristics . 78

3.2 Running NAS benchmarks on 8 and 9 nodes 79

3.3 Running NAS benchmarks on 16 nodes . 79

3.4 Running NAS benchmarks on 32 and 36 nodes 80

3.5 Running NAS benchmarks on 64 nodes . 80

3.6 Running NAS benchmarks on 128 and 144 nodes 80

3.7 The results of the 70%-30% power scenario 83

3.8 The results of the 90%-10% power scenario 83

3.9 Comparing the MaxDist algorithm to the EDP method 83

3.10 The characteristics of the CPUs in the selected clusters 92

3.11 The different grid scenarios . 93

3.12 The multi-core scenarios . 97

4.1 The characteristics of the four types of nodes 115

4.2 The different experiment scenarios . 116

4.3 The standard deviation of the numbers of iterations for different asyn-
chronous MS versions running over different grid platforms 122

4.4 CPUs characteristics of the selected clusters 129

4.5 The experimental results of HSA algorithm 131

4.6 The EDP algorithm results over the Grid’5000 132

13

LIST OF ALGORITHMS

1 The iterative sequential algorithm . 41
2 The synchronous parallel iterative algorithm 41
3 Scaling factor selection algorithm for a homogeneous cluster 58
4 DVFS algorithm of homogeneous cluster . 58
5 Scaling factors selection algorithm for heterogeneous cluster 76
6 DVFS algorithm of heterogeneous platform 77
7 Scaling factors selection algorithm for grid 89
8 Scaling factors selection algorithm of asynchronous applications over grid . 114

15

ABBREVIATIONS

AIAC Asynchronous Iterations and Asynchronous Communications

BLP Bit Level Parallelism

BT Block Tridiagonal

CG Conjugate Gradient

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DLP Data Level Parallelism

DVFS Dynamic Voltage and Frequency Scaling

EDP Energy and Delay Product

EP Embarrassingly Parallel

EPSA Energy and Performance Scaling Algorithm

FLOPS . . . Floating-point Operations Per Second

FT Fast Fourier Transform

GMRES . . General Minimum Residual

GPU Graphical Processing Unit

HSA Heterogeneous Scaling Algorithm

ILP Instruction Level Parallelism

LAN Local Area Network

LLP Loop Level Parallelism

LU Lower-Upper

MaxDist . . Maximum Distance

MG Multi-Grid

MIMD Multiple Instruction and Multiple Data

MISD Multiple Instruction and Single Data

MPI Message Passing Interface

MPICH . . . Message Passing Interface of Chameleon

17

18 abbreviations

MS Multi-Splitting

NAS Numerical Aeronautical Simulation

NASA National Aeronautics and Space Administrations

OPENCL . Open Computing Language

OPENMP . Open Multi-Processing

RENATER Réseau National de Télécommunications pour la Technologie,
l’Enseignement et la Recherche

SIAC Synchronous Iterations and Asynchronous Communications

SIMD Single Instruction and Multiple Data

SISC Synchronous Iterations and Synchronous Communications

SISD Single Instruction and Single Data

SP Scalar Pentadiagonal

TLP Thread Level Parallelism

WAN Wide Area Network

DEDICATION

I dedicate this dissertation to my beloved wife Dania, my children: Elias, Yasser and
Mehdi. My family, your unwavering support, encouragement, and constant love through-
out this Ph.D. study was incredible. My wife and children have supported me with prayers,
encouraging words that gave me strength to make this dream a reality. I am truly thankful
to my God for having you in my life. I love you. This dissertation has also been dedi-
cated to my parents. From an early age, they instilled in me a desire to learn, and made
sacrifices so as to I have access to a high- quality education. Without their support and
guidance, I would not be where I am today. Dear Mom and Dad, I can not thank you
enough for all the support and love you have given me. I know you would have been very
proud of me. Thank you so much for your love. I dedicate this work as well to my broth-
ers, sisters, and their families, whose support and encouragement helped me to follow
through and not give up. I would like to extend my dedication to my friends who supported
me.

19

ACKNOWLEDGEMENTS

The long journey of my Ph.D. study has finished. It is with great pleasure that I acknowl-
edge my debts to those who have greatly contributed to the success of this dissertation. It
was only through support and encouragement of many that I have been able to complete
this amazing journey.

Foremost, I would like to express my sincere gratitude to my supervisors:
Prof. Dr. Raphaël Couturier and Asst. Prof. Dr. Jean-Claude Charr for their continuous
support, encouragement, and advice they have provided throughout my Ph.D. study.
Their patience, motivation, enthusiasm, and immense knowledge taught me a lot. Their
tireless guidance has helped me immensely in researching and writing this dissertation.
I have been extremely lucky to have supervisors who cared so much about my work, and
who responded to my questions and queries so promptly.

Besides my supervisors, I would like to express my gratitude to Prof. Dr. Jean-Marc
Pierson and Assoc Prof. Dr. Fabienne Jézéquel (HDR) for accepting to review my dis-
sertation and for their insightful and appreciated comments. I would like to thank also
Prof. Dr. Nabil Abdennadher for accepting to participate in my dissertation committee.

I would like to gratefully acknowledge the University of Babylon, Iraq for financial sup-
port as well as I would also like to express my thanks to University of Franche-Comté for
the received support.

My appreciation and thanks go to the members of the team AND (Algorithmique
Numérique Distribuée) for the warm and friendly atmosphere in which they allowed me
to work. These include Jacques Bahi, Pierre-Cyrille Héam, Abdallah Makhoul, Jean-
François Couchot, Ahmed Mostefaoui, Yousra Ahmed Fadil, Pierre Saenger, Zeinab
Fawaz, Amor Lalama, Nesrine Khernane, Stéphane Domas, Mohammed Bakiri, Michel
Salomon, Karine Deschinkel, Christophe Guyeux, Mourad Hakem, David Laiymani,
Gilles Perrot, Fabrice Ambert, Christian Salim, Santiago Costarelli, Carol Habib, Hassan
Moustafa Harb and Ke Du. I would like to give a special thanks for Asst. Prof. Dr. Arnaud
Giersch who helped me understand the simulation over SimGrid simulator. I would like
also to thank my colleague, Dr. Ali Kadhum Idrees University of Babylon for his help. I
would like to express my thanks and my best wishes to Ingrid Couturier for all the received
assistance during my study.

Finally, I would like to thank all my friends and people who encouraged and supported
me along the way.

21

INTRODUCTION

1. GENERAL INTRODUCTION

The need and the demand for more computing power have been increasing since the birth
of the first computing unit and they are not expected to slow down in the coming years.
To meet these demands, at first the frequency of the CPU was regularly increased un-
til reaching the thermal limit. Then, researchers and supercomputers constructors have
been regularly increasing the number of computing cores and processors in supercom-
puters. Many parallel and distributed architectures, such as multi-core, clusters and grids,
were implemented in order to obtain more computing power. This approach consists in
using at the same time many computing nodes to solve a big problem that cannot be
solved on a single node. These two approaches are the most common up to now to
get more computing power, but they increase the energy consumption of the resulting
computing architecture. Indeed, the power consumed by a processor exponentially in-
creases when its frequency is increased and a platform consisting of N computing nodes
consumes as much as the sum of the power consumed by each computing node. As
an example, the Chinese supercomputer Tianhe-2 had the highest FLOPS in Novem-
ber 2015 according to the Top500 list [7]. However, it was also the most power hungry
platform with more than 3 million cores consuming around 17.8 megawatts. Moreover,
according to the U.S. annual energy outlook 2015 [8], the price of energy for 1 megawatt
per hour was approximately equal to $70. Therefore, the price of the energy consumed
by the Tianhe-2 platform is approximately more than $10 million each year. Moreover, the
platform generates a lot of heat and to prevent it from overheating a cooling infrastructure
[85] which consumes a lot of energy must be implemented. High CPU’s temperatures can
also drastically increase its energy consumption, see [86] for more details. An efficient
computing platform must offer the highest number of FLOPS per watt possible, such as
the Shoubu-ExaScaler from RIKEN which became the top of the Green500 list in Novem-
ber 2015 [6]. This heterogeneous platform executes more than 7 GFlops per watt while
only consuming 50.32 kilowatts.

For all these reasons energy reduction has become an important topic in the high per-
formance computing (HPC) field. To tackle this problem, many researchers use DVFS
(Dynamic Voltage and Frequency Scaling) operations which reduce dynamically the fre-
quency and voltage of cores and thus their energy consumption [69]. Indeed, modern
CPUs offer a set of acceptable frequencies which are usually called gears, and the user
or the operating system can modify the frequency of the processor according to its needs.
However, DVFS reduces the number of FLOPS executed by the processor which may
increase the execution time of the application running over that processor. Therefore
researchers try to reduce the frequency to the minimum when processors are idle (wait-
ing for data from other processors or communicating with other processors). Moreover,
depending on their objectives, they use heuristics to find the best frequency scaling fac-
tor during the computation. If they aim for performance they choose the best frequency

23

24 Introduction

scaling factor that reduces the consumed energy while affecting as little as possible the
performance. On the other hand, if they aim for energy reduction, the chosen frequency
scaling factor must produce the most energy efficient execution without considering the
degradation of the performance. Whereas, it is important to notice that lowering the fre-
quency to the minimum value does not always give the most energy efficient execution
due to energy leakage that increases the total energy consumption of the CPU when
the execution time increases. However, a more important question is how to select the
best frequency gears that minimize the total energy consumption and the maximize the
performance of a parallel application, running over a parallel platform, at the same time?

2. MOTIVATION OF THE DISSERTATION

The main objective of an HPC system such as clusters, grids and supercomputers is
to execute as fast as possible a given task over that system. Hence, using DVFS to
scale down the frequencies of the CPUs composing the system to reduce their energy
consumption, it can also significantly degrade the performance of the executed program,
especially if it is compute bound. A compute bound program contain a lot of computations
and a relatively small amount of communicators and Inputs/Outputs operations. The
execution time of the program is directly dependent on the computing powers of the CPUs
and their selected frequencies. Therefore, the chosen frequency scaling factor must give
the best possible trade-off between the energy reduction and the performance of the
parallel application.

On the other hand, the relation between energy consumption and the execution time of
parallel applications is complex and non-linear. It is very hard to optimize both the energy
consumption and the performance of parallel applications when scaling the frequency of
the processors executing them because one affects the other. In order to evaluate the
impact of scaling down the CPU’s frequency on its energy consumption and computing
power, mathematical models should be defined to predict them for different frequencies.

Furthermore, researchers use different optimization strategies to select the frequen-
cies of the CPUs. They might be executed during the execution of the application (online)
or during a pre-execution phase (offline). In our opinion a good approach should minimize
the energy consumption while preserving the performance at the same time. Finally, it
should also be applied to the application during its execution without requiring any training
or profiling and with minimal overhead.

3. MAIN CONTRIBUTIONS OF THIS DISSERTATION

The main objective of this work is to minimize the energy consumption of parallel applica-
tions with iterations running over clusters and grids while preserving their performance.
The main contributions of this work can be summarized as follows:

I) Energy consumption and performance models for synchronous and asynchronous
message passing applications with iterations were developed. These models take
into consideration both the computation and communications times of these appli-
cations in addition to their relation to the frequency scaling factors.

Introduction 25

II) The parallel applications with iterations were executed over different parallel ar-
chitectures such as: homogeneous local cluster, heterogeneous local cluster and
distributed clusters (grid platform). The main goal behind using these different plat-
forms is to study the effect of the heterogeneity in the computing powers of the
the commuting nodes and the heterogeneity in the communication networks which
connect these nodes on the energy consumption and the performance of parallel
applications with iterations.

III) Depending on the proposed energy consumption and the performance models, a
new objective function to optimize both the energy consumption and the perfor-
mance of the parallel applications with iterations at the same were defined. It com-
putes the maximum distance between the predicted energy consumption and the
predicted performance curves to define the best possible trade-off between them.

IV) New online frequency selecting algorithms for clusters and grids were developed.
They use the new objective function and select the frequency scaling factors that
simultaneously optimize both the energy consumption and performance. They have
a very small overhead when comparing them to other methods in the state of the
art and they work without training and profiling.

V) The proposed algorithms were applied to the NAS parallel benchmarks [57] and the
Multi-splitting method. These applications offer different computations to commu-
nications ratios and a good testbed to evaluate the proposed algorithm in different
scenarios.

VI) The proposed algorithms were evaluated over the SimGrid simulator [18] which of-
fers flexible and easy tools to built different types of parallel architectures. Further-
more, real experiments were conducted over Grid’5000 testbed [3] and compared
with the simulated ones. The experiments were conducted over different number of
nodes and different platform scenarios.

VII) All the proposed methods were compared with either Rauber and Rünger [66]
method or Spiliopoulos et al. [75] objective function. Both the simulation and real
experiments showed that the proposed methods give better energy to performance
trade-offs than the other methods.

4. DISSERTATION OUTLINE

The dissertation is organized as follows: chapter 1 presents different types of parallel ar-
chitectures and parallel applications with iterations. It also presents an energy consump-
tion model from the state of the art that can be used to measure the energy consumption
of these applications. Chapter 2 describes the proposed energy and performance opti-
mization method for synchronous applications with iterations running over homogeneous
clusters. Chapter 3 presents two algorithms for the energy and performance optimiza-
tion of synchronous applications with iterations running over heterogeneous clusters and
grids. In chapter 4 the energy and performance models and the optimization method are
adapted for asynchronous iterative applications running over grids. Finally, this disserta-
tion ends with a summary and some perspective works.

I
SCIENTIFIC BACKGROUND

27

1
PARALLEL ARCHITECTURES AND

ITERATIVE APPLICATIONS

1.1/ INTRODUCTION

Most of the software applications are structured as sequential programs. The structure of
the program code is a series of instructions that are executed successively one after the
other. For many years until a short time, with each new generation of microprocessors,
users of sequential applications expected that these applications should run faster over
them than over the previous ones. Nowadays, this idea is no longer valid since recent
releases of microprocessors have many computing units that are embedded in one chip
and programs are running only over one computing unit sequentially. Indeed, new appli-
cations have significantly improved their performance over new architectures in parallel
compared to traditional applications. To improve the performance of applications, they
should be parallelized and executed simultaneously over all available computing units.
Moreover, parallel applications should be optimized to the parallel hardwares that will ex-
ecute them. Therefore, parallel applications and parallel architectures are closely tied
together. For example, the energy consumption of one parallel system mainly depends
on both: (1) parallel applications and (2) parallel architectures. Indeed, an energy con-
sumption model or any measurement system depends on many specifications, some of
them are related to the parallel hardware features such as: (1) the frequency of processor,
(2) the power consumption of processor and (3) the communication model. Others rely
to the parallel application such as: (1) the computation time and (2) the communication
time of the application.

This work of this thesis is focused on studying the iterative parallel applications, where
different parallel architectures are used to execute them in parallel, while optimizing their
energy consumptions. In this context, this chapter gives a brief overview about parallel
hardware architectures and parallel iterative applications. Also, it discusses an energy
model proposed by other authors used to measure the energy consumption of these ap-
plications. The reminder of this chapter is organized as follows: section 1.2 describes
different types of parallelism and different types of parallel platforms. It also explains
some models of parallel programming. Section 1.3 discusses both types of parallel it-
erative methods, synchronous and asynchronous ones and comparing them. Section
1.4, presents a well accepted energy model from the state of the art that can be used to
measure the energy consumption of parallel iterative applications when the frequency of
processor is changed. Finally, section 1.5 summarizes this chapter.

29

30 CHAPTER 1. PARALLEL ARCHITECTURES AND ITERATIVE APPLICATIONS

1.2/ PARALLEL COMPUTING ARCHITECTURES

The process of executing the calculations simultaneously over many computing units is
called parallel computing. Its main principle refers to the ability of dividing a large prob-
lem into smaller sub-problems that can be solved at the same time [9]. Solving the sub-
problems of one main problem in parallel is carried out in parallel on multiple processors.
Indeed, a parallel architecture can be defined as a computing system that is composed
of many processing elements, which are connected via a network model and some tools
that are used to make the processing units work together [31]. In other words, the par-
allel computing architecture consists of software and hardware resources. Hardware re-
sources are: (1) the processing units, (2) the memory model and (3) the network system
that connects them. Software resources include (1) the specific operating system, (2)
the programming language and (3) the compile or the runtime libraries. Besides, parallel
computing may have different levels of parallelism that can be performed in a software or
a hardware level. Five types of parallelism levels have been defined as follows:

• Bit-level parallelism (BLP): The appearance of very-large-scale integration (VLSI)
in 1970s has been viewed as the first step towards parallel computing. It is used
to increase the number of bits in the word size which is processed by a processor
as illustrated in the figure 1.1. For many successive years, the number of bits have
been increased starting from 4 bit to 64 bit microprocessors. For example nowa-
days, the recent x86-64 architecture is the most common architecture. For a given
application, the biggest the word size is the lesser instructions to be executed by
the processor.

1

10101 01 Word 3

01100 10 Word 2

1101 10 Word 4

10100 11 Word 1

N bits

T
im

e

Figure 1.1: Bit-level parallelism

• Data-level parallelism (DLP): Data parallelism is the process of distributing data
vector between processors, where each one performs the same operations on its
data sub-vector. Therefore, many arithmetic operations can be performed on the
same data vector in a simultaneous manner. This type of parallelism can be used in
many programs, especially in the area of scientific computing. Usually, data-parallel
operations are only provided to arrays operations, for example, as shown in figure

1.2. PARALLEL COMPUTING ARCHITECTURES 31

1.2. Vector multiplication, image and signal processing can be considered as an
example of applications that use this type of parallelism.

782185 12 19126112 40 35

9018109 35 71520187 612 017

21141393 08 2011134 75 56

Input vector A

Input vector C

Input vector B

PU 0 PU 3PU 2PU 1

Results
All the processors doing

the same operations

Figure 1.2: Data-level parallelism

• Instruction-level parallelism (ILP): Generally, a sequential program is composed
of many instructions. These instructions can be executed in parallel at the same
time, if each one of them is independent from the others. In particular, the paral-
lelism can be achieved in instruction level by using a pipeline. It means the input
and output times of each instruction is overlapped by computations from other in-
structions. For example, if we have two instructions: I1 and I2, they are independent
if there is no control and no data dependency between them. In pipeline stages,
the execution of each instruction is divided into multiple steps. Then, they can be
overlapped with the steps of other instructions by a pipeline hardware unit. Fig-
ure 1.3 demonstrates four instructions, where each one has four steps denoted as:
(1) fetch, (2) decode, (3) execute and (4) write. Thus, they are implemented in
hardware units by pipeline.

• Thread-level parallelism (TLP): It is also known as task-level parallelism. Accord-
ing to Moore’s law [17], the number of transistors in a processor doubles each two
years to increase its performance. Cache and main memory sizes must also be
increased in order to avoid data bottlenecks. However, increasing the number of
transistors may generate some issues: (1) the first issue is related to drastically
increase in cache size, which leads to a large access time. (2) the second issue
is related to the huge increase in the number of the transistors per CPU, which
can increase significantly the heat dissipation. Thus, CPUs constructors couldn’t
increase the frequency of the processor anymore due to these reasons. Therefore,
they created multi-core processors. With multi-core processors, programmers sub-
divide their programs into multiple tasks which can be then executed in parallel over

32 CHAPTER 1. PARALLEL ARCHITECTURES AND ITERATIVE APPLICATIONS

F1 E1D1 W1

F2 E2D2 W2

F3 E3D3 W3

F3 E3D3 W3

Instruction 1

Instruction 4

Instruction 3

Instruction 2

Time
t1 t3 t4t2

Figure 1.3: Instruction-level parallelism by pipelines

them to improve the performance, see figure 1.4. Each processor can have individ-
ual threads or multiple threads dedicated to each task. A thread can be defined as
a part of the parallel program that shares processor resources with other threads.

Task 6

Task 5

Task 7

Task 0

Task 1

Task 2

Task 3

Task 4

Sequential
Program

Task 0

Task 7 Task 6 Task 5Task 4

Task 3Task 2Task 1

Thread 0
(core 0)

Thread 3
(core 4)

Thread 2
(core 3)

Thread 1
(core 1)

Parallel
Program

Figure 1.4: Thread-level parallelism

Therefore, the execution time of a sequential program that is composed of N tasks,
is the sum of the execution times of all tasks. Thus, it is expressed as follows:

S equential execution time =

N∑
i=1

Ti (1.1)

Whereas, if tasks are executed synchronously over multiple processing units in par-
allel, the execution time of the program is defined as the execution time of the task
that has maximum the execution time (the slowest task) as follows:

1.2. PARALLEL COMPUTING ARCHITECTURES 33

Parallel execution time = max
i=1,...,N

Ti (1.2)

• Loop-level parallelism (LLP): Many algorithms execute iteratively the same pro-
gram portion, computations, many times using different forms of loop statements.
At each iteration, the program needs to scan a large data structure such as an array
structure to perform the arithmetic calculations. Inside the loop structure, there are
many instructions that are dependent or independent. In a sequential loop execu-
tion, the i iteration must be executed after the completion of the (i − 1) iteration. If
each iteration is independent from the others, then all iterations’ instructions can
be distributed over many processors to be executed in parallel, for example, see
figure1.5. In the parallel programming languages, this type of loop is called the
parallel loop.

For (i=1; i<=N; i++)
 X[i] = X[i] + Y[i]

No dependency
 between the Iterations

X[1] = X[1] + Y[1] X[2] = X[2] + Y[2] X[3] = X[3] + Y[3]

X[4] = X[4] + Y[4] X[5] = X[5] + Y[5] X[6] = X[6] + Y[6]

X[7] = X[7] + Y[7] X[N] = X[N] + Y[N]

Instructions pool

Results

PU 0 PU 1 PU 2

Figure 1.5: Loop-level parallelism

The execution time of the parallel loop portion can be computed as the execution
time of a sequential loop portion has Niter iterations divided by the number of the
processing units Nprocessors as follows:

Parallel loop time =
S equential loop time

Nprocessors
=

∑Niter
i=1 Time o f iteri

Nprocessors
(1.3)

For more details about the levels of parallelism see [67, 61, 38, 62].

1.2.1/ TYPES OF PARALLEL PLATFORMS

The main goal behind using a parallel architecture is to solve a big problem faster. A
collection of processing elements must work together to compute the final solution of the
main problem. Many different architectures have been proposed and classified according

34 CHAPTER 1. PARALLEL ARCHITECTURES AND ITERATIVE APPLICATIONS

to parallelism in instruction and data streams. In 1966, Michel Flynn has proposed a
simple model to categorize all computers models that is still useful until now [33]. His
taxonomy is based on considering the data and the operations performed on this data to
classify the computing systems into four types as follows:

• Single instruction, single data (SISD) stream: A single processor that executes
a single instruction stream (i.e executing one data stream stored in an individual
memory model, see figure 1.6). The conventional sequential computer, according
to Von Neumann model [80], also called the Uniprocessors can be viewed as an
example of this type of architecture.

Data pool
(Memory)

PU
Instruction

pool
(Control Unit)

Figure 1.6: SISD machine architecture

• Single instruction, multiple data (SIMD) stream: All processors execute the
same instructions on different data. Each processor stores the data in its local
memory. Then, they communicate with each others typically via a simple commu-
nication model, see figure 1.7. Many scientific and engineering applications are
referred to this type of parallel scheme. Vector and array processors are well known
examples of this type. Examples about the applications executed over this architec-
ture: (1) graphics processing, (2) video compression and (3) medical image analysis
applications.

Data pool
(Memory)

Instruction
pool

(Control Unit)

PU

PU

PU

PU

Vector Unit

Figure 1.7: SIMD machine architecture

• Multiple instruction, single data (MISD) stream: Many operations from multiple
processing elements are executed over the same data stream. Each processing

1.2. PARALLEL COMPUTING ARCHITECTURES 35

element has its local memory to store the private program instructions. Then, these
instructions are applied to unique global memory data stream as in figure 1.8. While
the MISD machine is not commonly used, there are some interesting uses such as
the systolic arrays and dataflow machines.

Data pool
(Memory)

PU
Instruction

pool
(Control Unit)

PU

Figure 1.8: MISD machine architecture

• Multiple instruction, Multiple data (MIMD) stream: There are multiple process-
ing elements, each one has a separate instruction and local data memories. At any
time, different processing elements may be used to execute different instructions on
different data fragment, see figure 1.9. There are two types of MIMD machines: the
shared memory and the message passing MIMD machines. In the former, proces-
sors communicate via a shared memory model, while in the latter, each processor
has its own local memory and all processors communicate with each others via a
communication network model. The multi-core processors, local clusters and grid
systems are some examples for MIMD machine. Many applications have been de-
veloped based on this architecture such as computer-aided design, computer-aided
manufacturing, simulation, modeling, iterative applications and so on.

Data pool
(Memory)

Instruction
pool

(Control Unit)

PU PUPU PU

PU PUPU PU

PU PUPU PU

PU PUPU PU

Figure 1.9: MIMD machine architecture

For more details about this architectural taxonomy see [42, 76, 60, 27].

36 CHAPTER 1. PARALLEL ARCHITECTURES AND ITERATIVE APPLICATIONS

The work of this thesis is dedicated to MIMD machine’s architecture. Therefore, we
discuss in this chapter some of the commonly used parallel architectures that belong to
MIMD machines. As explained before, MIMD architectures can be classified into two
types, the shared memory and the distributed message passing ones. Furthermore,
these classifications are based on how MIMD processors access the memory model.
The shared MIMD machine communication topology can be bus-based, extended or hi-
erarchical type. Whereas, the distributed memory MIMD machine may have hypercube
or mesh interconnected networks. In the following some well known MIMD parallel com-
puting platforms are explained:

• Multi-core processors: The multi-core processor is a single chip component with
two or more processing units. These processing units are called cores, which are
connected to each other via a main memory model as in the figure 1.10. Each
individual core has its own cache memory to store data. Moreover, each core may
have one or more threads to execute a specific programming task as shown in the
thread-level parallelism. Historically, the multi-cores of the CPU began as two-core
processors, then the number of cores doubled with each semiconductor process
generation [46]. The graphic processing units (GPU) use extensively the multi-core
architecture, the NVIDIA GeForce TITAN Z has 5700 cores in the year of 2015 [2].
While, in the same year a general-purpose microprocessor (CPU) has a lot less
cores, for example the TILE-MX processor from Tilera has 100 cores [4]. For more
details about the multi-core processors see [64].

Core 1 Core 2 Core 3 Core 4

Cache
Memory

Cache
Memory

Cache
Memory

Cache
Memory

Shared Main Memory

Bus Interface

CPU Inter-Chip Components

Figure 1.10: Multi-core processor architecture

• Local Cluster: is a collection of independent computers that are connected to each
other via a high speed local area network (LAN) with low latency and big bandwidth.
Moreover, each node communicates with other nodes using messages. All the
nodes in the cluster must be controlled by one node called the master node, which
is a specific node used to handle the scheduling and the management of the other
nodes as shown in the figure 1.11. Usually, all the nodes are homogeneous, they
have the same specifications in term of computing power and memory. Also, all the
computing nodes in the cluster run the same operating system. See [84, 53] for
more information about the cluster and its applications.

1.2. PARALLEL COMPUTING ARCHITECTURES 37

CPU

Cache

Main
Memory

Node 4

CPU

Cache

Main
Memory

Node 0
(Master)

CPU

Cache

Main
Memory

Node 1

CPU

Cache

Main
Memory

Node 2

Local Area Network

CPU

Cache

Main
Memory

Node 3

CPU

Cache

Main
Memory

Node N

Figure 1.11: Local cluster architecture

• Grid (Distributed clusters): Grid is a collection of computing clusters from different
sites that are connected via a wide area network (WAN). In particular, different local
clusters compose the grid are geographically located far away from each others.
Usually, each cluster is composed of homogeneous nodes, which are different from
nodes of the other clusters located in different sites. These nodes can be differ-
ent in their hardware and software specifications (i.e their computing power, their
memory size, their operating system and their network: latency and bandwidth).
Figure 1.12 presents an example of a grid that is composed of three heterogeneous
clusters that are located in different sites and connected via a wide area network.
Furthermore, the grid can refer to an infrastructure that applies the integration and
the collaboration by using a collection of different computers, networks, database
servers and scientific devices, which belong to many companies and universities.
Therefore, wide heterogeneous computing resources are available to be used si-
multaneously by different users. Note that, the main bottleneck of the grid is the
high latency communications between the nodes from different sites. See [54] for
more information about the grid and its applications.

38 CHAPTER 1. PARALLEL ARCHITECTURES AND ITERATIVE APPLICATIONS

Switch

Site 1

Site 2

Site 3

Switch

SwitchWAN

Router

RouterRouter

Figure 1.12: Grid architecture

1.2.2/ PARALLEL PROGRAMMING MODELS

Many parallel programming languages and libraries have been developed to explore the
computing power of the parallel architectures. In this section, two types of parallel pro-
gramming languages are investigated: (1) shared and (2) distributed programming mod-
els. Moreover, each type is divided into two subcategories according to their supporting
level for the number of computing units from which the parallel platform is composed.
Figure 1.13 presents this classification hierarchy of the parallel programming models.

Many programming interfaces and libraries have been developed to compile and run
the parallel applications over the parallel architectures. In the following, some examples
for each type of the parallel programming models are discussed:

• Local cluster programming models

– MPI [39] is the Message Passing Interface and it is considered as a standard-
ization dedicated to message passing in a distributed memory environment.
The first version of MPI was designed by a group of researchers in 1991. It is
a specification and have been implemented in many programming languages
such as C, Fortran and Java. The MPI functions are not only limited to point to
point operations for sending and receiving messages, there are many others
collective operations such as gathering and reduction operations. While MPI is
not designed for grid, it is widely used as the communication interface for grid
applications [16]. In this work, MPI was used in programming our algorithms
and applications which are implemented in both Fortran and C programming
languages.

1.2. PARALLEL COMPUTING ARCHITECTURES 39

 Parallel computing
Programming

Models

Distributed Memory
Models

Shared Memory
Models

Local
Cluster

Grid

GPU

Muil-core
CPU CLIK

TBB

OPEN MP

PVM

BLACS

MPI

GLOBAS

LOGION

MPICH

OPEN CL

HLSL

CUDA

Figure 1.13: The classification of the parallel Programming Models

• Multi-core CPU programming models

– OpenMP [19] is a parallel programming tool dedicated to shared memory ar-
chitectures. The main goal of using this programming model is to provide a
standard and portable API (application programming interface) to write shared
memory parallel programs. It can be used with many programming languages
such as C, C++ and Fortran in order to support different types of shared mem-
ory platforms such as multi-core processors. OpenMP uses multi-threading,
which is a model in parallel programming that uses a master thread to control
a set of slave threads. Each thread can be executed in parallel by assigning
it to a processor. Moreover, OpenMP can be used with MPI to support hybrid

40 CHAPTER 1. PARALLEL ARCHITECTURES AND ITERATIVE APPLICATIONS

platforms which have shared and distributed memory models at the same time.

• GPU programming models

– CUDA [26] Modern graphical processing units (GPUs) have increased its chip-
level parallelism. Current NVIDIA GPUs consist of many-cores processors that
have thousands of cores. To make their GPUs a general purpose computing
processor in 2007 the NVIDIA has developed CUDA a parallel programming
language. A CUDA program has two parts: host and kernels. The host code is
sequentially executed over the CPU. While, the kernels are executed in parallel
over the GPUs.

– OpenCL[78] is for Open Computing Language. It is a parallel programming
language dedicated for heterogeneous platforms composed of CPUs and
GPUs. The first release of this language has initially been developed by Apple
in 2008. Functions that are executed over OpenCL devices are called kernels.
They are portable and can be executed on any computing hardware such as
CPU or GPU cores.

1.3/ ITERATIVE METHODS

In this work, we are interested in solving system of linear equations which are very com-
mon in the scientific field. A system of linear equations can be expressed as follows:

Ax = b (1.4)

Where A is a two dimensional matrix of size N × N, x is the unknown vector, and b is
a vector of constant, each of size N. There are two types of solution methods to solve
this linear system: the direct and the iterative methods. A direct method executes a
finite number of steps, depending on the size of the linear system and gives the exact
solution of the system. If the problem is very big, this method is expensive or its solution
is impossible in some cases. On the other hand, methods with iterations execute the
same block of instructions many times. The number of iterations can be predefined or the
application iterates until a criterion is satisfied. Iterative methods are methods with itera-
tions that start from an initial guess and improve successively the solution until reaching
an acceptable approximation of the exact solution. These methods are well adapted for
large systems and can be easily parallelized.

A sequential iterative algorithm is typically organized as a series of steps essentially
of the form:

X(k+1) ←− F(Xk) (1.5)

Where F is one or set of operations applied to the data vector Xk to produce the new
data vector X(k+1). The operation F is applied sequentially many times until satisfying the
convergence condition as in the algorithm 1.

The sequential iterative algorithm at each iteration computes the value of the relative
error, which is called the residual and denoted as R. This error value can be computed

1.3. ITERATIVE METHODS 41

Algorithm 1 The iterative sequential algorithm
1: Initialize the vector X0 randomly
2: for k := 1 to convergence do
3: X(k+1) = F(Xk)
4: end for

as the maximum difference between the data components of the vectors of the last two
successive iterations as follows:

R = max
i=1,...,N

∣∣∣∣X(k+1)
i − Xk

i

∣∣∣∣ (1.6)

Where N is the size of the vector X. Then, the iterative sequential algorithm stops iterating
if the maximum error between the last two successive solution vectors, as in 1.6, is less
than or equal to a threshold value. Otherwise, it replaces the new vector X(k+1) with the
old vector Xk and computes a new iteration.

1.3.1/ SYNCHRONOUS PARALLEL ITERATIVE METHOD

The sequential iterative algorithm 1 can be parallelized by executing it on many computing
units. To solve this algorithm on M computing units, first the elements of the problem
vector X must be subdivided into M sub-vectors, Xk = (Xk

1, . . . , X
k
M). Each sub-vector can

be solved independently on one computing unit as follows:

Xk+1
i = Fi(Xk

1, . . . , X
k
M) where i = 1, . . . ,M (1.7)

Where Xk
i is the sub-vector executed over the ith computing unit at the iteration k.

Algorithm 2 The synchronous parallel iterative algorithm
1: Initialize the sub-vectors (X0

1 , . . . , X
0
M)

2: for k := 1 step 1 to convergence do
3: parfor i := 1 to M do
4: X(k+1) = F(Xk)
5: end parfor
6: end for

The algorithm 2 represents the synchronous parallel iterative algorithm. Similarly to
the sequential iterative algorithm 2, this algorithm stops iterating when the convergence
condition is satisfied. We consider that the keyword parfor is used to make a for loop in
parallel.

This algorithm needs to satisfy a convergence condition which is called the global con-
vergence condition. In order to detect the global convergence overall computing units,
first we need to compute at each iteration the local residual. Then at the end of each
iteration, all the local residuals from M computing units must be reduced to one max-
imum value represented by the global residual. For example, in MPI this operation is
directly applied using a high level communication procedure called AllReduce. The goal
of this communication procedure is to apply the reduction operation on all local residuals
computed by the computing units.

42 CHAPTER 1. PARALLEL ARCHITECTURES AND ITERATIVE APPLICATIONS

Processors 1

Communication timeComputation time Idle time

Iteration KIteration 2Iteration1 Iteration 3

Time

Iteration K-1

Processors 2

Processors N

Figure 1.14: The SISC Model

In a synchronous parallel iterative algorithm, computing processors need to communi-
cate with each others to exchange data at each iteration if there is a dependency between
the parallel tasks. Algorithm 2 use synchronous iterations and synchronous communica-
tions denoted as SISC model. At each iteration, the computing processor waits until it
receives all the computed data at the previous iteration from other processors to perform
the next iteration. Figure 1.14, shows that using SISC model in a heterogeneous plat-
form may result in big periods of the idle times represented by the white dashed spaces
between two successive iterations. Indeed, this happens when the fast computing pro-
cessors wait for the slower ones to finish their iterations to be able to synchronously send
their data to them. Using this operation, faster processors waste a big amount of their
computing power and thus consume uselessly energy. The increase in the heterogeneity
in the computing powers between the processors may increase proportionally these idle
times. Accordingly, this algorithm can be effectively run over a local cluster, where a high
speed local network is used to reduce these idle times.

Processors 1

Communication timeComputation time Idle time

Iteration KIteration 2Iteration1 Iteration 3

Time

Iteration K-1

Processors 2

Processors N

Figure 1.15: The SIAC Model

Furthermore, the communications of the synchronous iterative algorithm can be re-
placed by asynchronous ones. The resulting algorithm is called Synchronous Iterations

1.3. ITERATIVE METHODS 43

with Asynchronous Communications and denoted as SIAC algorithm. The main princi-
ple of this algorithm is to use synchronize iterations while exchanging the data between
the computing units asynchronously. Moreover, each computing unit does not need to
wait for its neighbours to receive the data messages that it has sent, while it only waits
to receive data from them. This can be implemented with SISC algorithm that is pro-
grammed in MPI by replacing the synchronous send of the messages by asynchronous
ones, while keeping the synchronous receive. The only advantage of this technique is to
reduce the idle times between iterations by allowing the communications to overlap par-
tially with computations, see figure 1.15. The idle times are not totally eliminated because
the fast computing nodes must wait for slow ones to send their data messages. SISC and
SIAC algorithms are not tolerant to the loss of data messages. Consequently, if one node
crashes, all the other computing nodes are blocked.

1.3.2/ ASYNCHRONOUS PARALLEL ITERATIVE METHOD

The asynchronous iterations mean that all processors perform their iterations without con-
sidering the works of other processors. Each processor does not have to wait to receive
data messages from other processors and continues to compute the next iteration using
the last data received from neighbours. Therefore, there are no idle times at all between
the iterations as in Figure 1.16. This figure indicates that fast processors can perform
more iterations than the slower ones at the same time. The asynchronous iterative al-
gorithm that uses an asynchronous communications is called AIAC algorithm. Similarly
to the SISC algorithm, the AIAC algorithm subdivides the global vectors X into M sub-
vectors between the computing units. The main difference between the two algorithms is
that these M sub-vectors are not updated at each iteration in the AIAC algorithm because
both iterations and communications are asynchronous.

Processor 1

Processor 2

Processor N

Communication times = 0Computation time Idle times = 0

Iteration KIteration 2Iteration1 Iteration 3

Time

Iteration 4

Figure 1.16: The AIAC Model

The global convergence detection of the asynchronous parallel iterative is not trivial.
For more information about the convergence detection techniques of the asynchronous
iterative methods, refer to [32, 15, 35, 36] for more details.

The implementation of the AIAC method is not easy, but it gives many advantages over
the traditional synchronous iterative method:

44 CHAPTER 1. PARALLEL ARCHITECTURES AND ITERATIVE APPLICATIONS

• It prevents the existence of idle times, since each processor does not have to wait
to receive the data messages from its neighbours to compute the next iteration.

• Less sensitive for the heterogeneous communications and nodes’ computing pow-
ers. In heterogeneous platform, the fast nodes do not need to wait for the slow
ones, and they can perform more iterations compared to them. While in the tradi-
tional synchronous iterative methods, the fast computing nodes perform the same
number of iterations as the slow ones because they are blocked.

• The loss of data messages is totally tolerant because each computing unit is not
blocked waiting for the message. If the message is lost, the destination node does
not have to wait for this data message and it uses the last received data to perform
its iteration independently.

• In the grid architecture, the local clusters from different sites are connected via a
slow network with a high latency. The use of the AIAC model reduces the delay of
sending the data message over such slow network link and thus the performance
of the applications is not affected.

In addition to the difficulty of applying the asynchronous iterative model, it has some
disadvantages that can be summarized by these points:

• It is not compatible with all types of the iterative applications because some of these
applications need to receive data messages at each iteration or they would not
converge.

• An asynchronous iterative method requires more iterations compared to the syn-
chronous one to converge. The increase in the number of iterations may increase
proportionally the execution time of the application if it is being executed on a fast
homogeneous cluster.

• Since each node does not receive new data messages at each iteration, detect-
ing the global convergence is harder than for the synchronous model. Therefore,
in AIAC algorithm a process can perform many iterations without receiving any
data messages from its neighbours. The absence of receiving new data messages
makes the data component invariant at the computing units and thus it provides a
false local convergence. At the reception of the first data message, the local subsys-
tem will diverge after computing the next iteration. Therefore, special mechanisms
are required for detecting the global convergence of a parallel iterative algorithm
implemented according to the asynchronous iteration model.

In work of this thesis, we are interested in optimizing the energy consumption of par-
allel iterative methods running over clusters or grids.

1.4/ THE ENERGY CONSUMPTION MODEL OF A PARALLEL APPLI-
CATION

Many researchers [88, 66, 52, 69] divide the power consumed by a processor into two
power metrics: static power and dynamic power. The first one is consumed as long as the

1.4. THE ENERGY CONSUMPTION MODEL OF A PARALLEL APPLICATION 45

computing unit is on, the latter is only consumed during computation times. The dynamic
power Pdyn is related to the switching activity α, load capacitance CL, the supply voltage
V and operational frequency F, as shown in EQ (1.8).

Pdyn = α ·CL · V2 · F (1.8)

The static power Pstatic captures the leakage power as follows:

Pstatic = V · Ntrans · Kdesign · Ileak (1.9)

Where V is the supply voltage, Ntrans is the number of transistors, Kdesign is a design
dependent parameter and Ileak is a technology-dependent parameter.

The dynamic voltage and frequency scaling technique (DVFS) is a process that is
allowed in modern processors to reduce the dynamic power by scaling down the voltage
and frequency of the CPU. Its main objective is to reduce the overall energy consumption
of the CPU [47]. The operational frequency F depends linearly on the supply voltage V
as follows:

V = β · F (1.10)

Where β is some of constant. This equation is used to study the change of the dy-
namic voltage with respect to various frequency values in [66]. The reduction process of
the frequency can be expressed by the scaling factor S which is the ratio between the
maximum and the new frequency as in EQ (1.11).

S =
Fmax

Fnew
(1.11)

The value of the scaling factor S is greater than 1 when changing the frequency of the
CPU to any new frequency value (P-state) in the governor. The CPU governor is an
interface driver supplied by the operating system’s kernel to lower a core’s frequency [1].

Depending on the equation 1.11, the new frequency Fnew can be calculated as follows:

Fnew = S −1 · Fmax (1.12)

Replacing V in 1.8 as in 1.10 gives the following equation of the dynamic power con-
sumption as a function of the constant β instead of V:

Pdyn = α ·CL · (β · F)2 · F = α ·CL · β
2 · F3 (1.13)

Replacing Fnew in 1.13 as in 1.12 gives the following equation for dynamic power con-
sumption:

PdynNew = α ·CL · β
2 · F3

new = α ·CL · β
2 · F3

max · S
−3 = α ·CL · (β · Fmax)2 · Fmax · S −3

= α ·CL · V2 · Fmax · S −3 = Pdyn · S −3 (1.14)

Where PdynNew and Pdyn are the dynamic powers consumed with the new frequency
and the maximum frequency respectively.

46 CHAPTER 1. PARALLEL ARCHITECTURES AND ITERATIVE APPLICATIONS

According to (1.14) the dynamic power is reduced by a factor of S −3 when reducing the
frequency of a processor by a factor of S . The energy consumption is measured in Joule,
and can be calculated by multiplying the power consumption, measured in watts, by the
execution time of the program as follows:

Energy = Power · T (1.15)

According to the equation 1.15, the dynamic energy consumption of the program exe-
cuted in the time T over one processor is the dynamic power multiplied by the execution
time. Moreover, the frequency scaling factor S increases the execution time of the pro-
cessor linearly, then the new dynamic energy consumption can be computed as follows:

EdynNew = Pdyn · S −3 · (T · S) = S −2 · Pdyn · T (1.16)

According to [88, 66], the static power consumption Pstatic does not changed when the
frequency of the processor is scaled down. Therefore, the static energy consumption can
be computed as follows:

Estatic = S · Pstatic · T (1.17)

Therefore, the energy consumption of an individual task running over one processor is
the sum of both static and dynamic energies that can be computed as follows:

Eind = EdynNew + Estatic = S −2 · Pdyn · T + S · Pstatic · T (1.18)

The total energy consumption of N parallel task running on N processors is the sum-
mation of the individual energies consumed by all processors. This model is developed
and used by Rauber and Rünger [66]. The total energy consumed by the parallel tasks
running on a homogeneous platform is computed by sorting the execution time of the all
parallel tasks in a descending order, then using EQ (1.19).

E all tasks = Pdyn · S −2
1 ·

T1 +

N∑
i=2

T 3
i

T 2
1

 + Pstatic · T1 · S 1 · N (1.19)

Where N is the number of parallel tasks, Ti for i = 1, . . . ,N are the execution times of
the sorted tasks. Therefore, T1 is the time of the slowest task, and S 1 its scaling factor
which should be the highest because they are proportional to the time values Ti. Finally,
model 1.19 can be used to measure the energy consumed by any parallel application
such as the iterative parallel applications with respect to the new scaled frequency value.

There are two drawbacks in this energy model as follows:

• The message passing iterative program consists of communication and computa-
tion times. This energy model assumes that the dynamic power is consumed during
both these times. While the processor during the communication times remains idle
and only consumes the static power, for more details see [34].

• It is not well adapted to a heterogeneous architecture when there are different types
of processors, which consume different dynamic and static powers.

1.5. CONCLUSION 47

Therefore, one of the most important goals of this work is to develop a new energy
models that take into consideration the communication times in addition to the compu-
tation times in order to modelize and measure the energy consumptions of the parallel
iterative methods. These models must be suitable to homogeneous or heterogeneous
parallel architectures.

1.5/ CONCLUSION

In this chapter, three sections have been presented to describe the parallel hardware
architectures, the parallel iterative applications and the energy consumption model used
to measure the energy consumption of these applications. The different types of paral-
lelism levels that can be implemented in software and hardware techniques have been ex-
plained in the first section. Afterwards, different types of parallel architectures have been
discussed and classified according to the connection between the computation units and
the memory model. Both shared and distributed platforms as well as their depending par-
allel programming models have been categorized. In the second section, the two types
of parallel iterative methods: synchronous and asynchronous ones were presented. The
synchronous iterative methods are well adapted to local homogeneous clusters with a
high speed network link, while the asynchronous iterative methods are more suited to the
distributed heterogeneous clusters. Finally, in the third section, an energy consumption
model proposed in the state of the art to measure the energy consumption of parallel ap-
plications was explained. This model cannot be used for all types of parallel architectures.
Since, it assumes that the dynamic power is consumed during both of the communication
and computation times, while the processor involved remains idle during the communi-
cation times and only consumes the static power. Moreover, it is not well adapted to
heterogeneous architectures when there are different types of processors, that consume
different dynamic and static powers.

For these reasons, in the next chapters of this thesis new energy consumption models
are developed to efficiently predict the energy consumed by parallel iterative methods run-
ning on both homogeneous and heterogeneous architectures. Additionally, these energy
models are used in a method that optimizes both energy consumption and performance
of an iterative message passing application.

II
CONTRIBUTIONS

49

2
ENERGY OPTIMIZATION OF
HOMOGENEOUS PLATFORM

2.1/ INTRODUCTION

Dynamic Voltage and Frequency Scaling (DVFS) can be applied to modern CPUs. This
technique is usually used to reduce the energy consumed by a CPU while computing. In-
deed, power consumption by a processor is exponentially related to its frequency. Thus,
decreasing the frequency reduces the power consumed by the CPU. However, it can also
significantly affect the performance of the executed program if it is compute bound. The
performance degradation ratio can even be higher than the saved energy ratio. Therefore,
the chosen frequency scaling factor must give the best possible trade-off between energy
reduction and performance. This chapter presents an algorithm that predicts the energy
consumed with each frequency gear and selects the one that gives the best ratio between
energy consumption reduction and performance. Furthermore, the main objective of HPC
systems is to execute as fast as possible the application. Therefore, our algorithm selects
the scaling factor online with a very small overhead. The proposed algorithm takes into
account both the computation and communication times of the Message Passing Inter-
face (MPI) programs to choose the frequency scaling factor. This algorithm has the ability
to predict both energy consumption and execution time over all available scaling factors.
The prediction achieved depends on some computing time information, gathered at the
beginning of the runtime. We have applied this algorithm to the NAS parallel benchmarks
(NPB v3.3) developed by the NASA [57]. Our experiments are executed using the simu-
lator SimGrid/SMPI v3.10 [18] over an homogeneous distributed memory architecture.

This chapter is composed of two parts. In the first part, the proposed frequency scaling
selection algorithm uses the energy model of Rauber and Rünger [66] and is compared
to Rauber and Rünger’s method. The comparison results show that our algorithm gives
better energy-time trade-off. In the second part, a new energy model that takes into
account both the communication and computation times of the MPI programs running
over a homogeneous cluster is developed. It also shows the new results obtained using
the new energy model. The results are compared to the ones given by Rauber and
Rünger’s energy model.

This chapter is organized as follows: Section 2.3 explains the execution of parallel
tasks and the sources of slack times. It also presents an energy model for homogeneous
platforms from other researchers. Section 2.4 describes how the performance of MPI pro-
grams can be predicted. Section 2.5 presents the energy-performance objective function

51

52 CHAPTER 2. ENERGY OPTIMIZATION OF HOMOGENEOUS PLATFORM

that maximizes the reduction of energy consumption while minimizing the degradation
of the program’s performance. Section 2.6 details the algorithm that returns the scaling
factor that gives the best energy-performance trade-off for a parallel application with itera-
tions Section 2.7 verifies the accuracy of the performance prediction model and presents
the results of the proposed algorithm. It also shows the comparison results between our
method and other existing methods. Section 2.8 describes the new proposed energy
consumption model for homogeneous platforms. Section 2.9 presents the experimental
results of using the new energy model. Finally, section 2.10 summarizes this chapter.

2.2/ RELATED WORKS

In this section, some heuristics to compute the scaling factor are presented and classified
into two categories: offline and online methods.

2.2.1/ OFFLINE SCALING FACTOR SELECTION METHODS

The offline scaling factor selection methods are executed before the runtime of the pro-
gram. They return static scaling factor values to the processors participating in the ex-
ecution of the parallel program. On the one hand, the scaling factor values could be
computed based on information retrieved by analyzing the code of the program and the
computing system that will execute it. In [11], Azevedo et al. detect during compilation
the dependency points between tasks in a multi-task program. This information is then
used to lower the frequency of some processors in order to eliminate slack times. A
slack time is the period of time during which a processor that has already finished its
computation, has to wait for a set of processors to finish their computations and send
their results to the waiting processor in order to continue its task that is dependent on
the results of computations being executed on other processors. Freeh et al. showed
in [34] that the communication times of MPI programs do not change when the frequency
is scaled down. On the other hand, some offline scaling factor selection methods use the
information gathered from previous full or partial executions of the program. The whole
program or a part of it is usually executed over all the available frequency gears and the
execution time and the energy consumed with each frequency gear are measured. Then
a heuristic or an exact method uses the retrieved information to compute the values of
the scaling factor for the processors. In [83], Xie et al. use an exact exponential breadth-
first search algorithm to compute the scaling factor values that give the optimal energy
reduction while respecting a deadline for a sequential program. They also present a lin-
ear heuristic that approximates the optimal solution. In [71], Rountree et al. use a linear
programming algorithm, while in [25, 24], Cochran et al. use a multi-logistic regression
algorithm for the same goal. The main drawback of these methods is that they all require
executing the whole program or, a part of it, on all frequency gears for each new instance
of the same program.

2.2.2/ ONLINE SCALING FACTOR SELECTION METHODS

The online scaling factor selection methods are executed during the runtime of the pro-
gram. They are usually integrated into iterative programs where the same block of in-

2.3. EXECUTION TIME AND ENERGY CONSUMPTION OF PARALLEL TASKS RUNNING ON A HOMOGENEOUS PLATFORM53

structions is executed many times. During the first few iterations, a lot of information are
measured such as the execution time, the energy consumed using a multimeter, the slack
times, . . . Then a method will exploit these measurements to compute the scaling factor
values for each processor. This operation, measurements and computing new scaling
factors, can be repeated as much as needed if the iterations are not regular. Kimura,
Peraza, Yu-Liang et al. [45, 63, 22] used many heuristics to select the appropriate scaling
factor values to eliminate the slack times during runtime. However, as seen in [30, 74],
machine learning methods can take a lot of time to converge when the number of avail-
able gears is big. To reduce the impact of slack times, in [49], Lim et al. developed
an algorithm that detects the communication sections and changes the frequency during
these sections only. This approach might change the frequency of each processor many
times per iteration if an iteration contains more than one communication section. In [34],
Rauber and Rünger used an analytical model that can predict the consumed energy and
the execution time for every frequency gear after measuring the consumed energy and the
execution time with the highest frequency gear. These predictions may be used to choose
the optimal gear for each processor executing the parallel program to reduce energy con-
sumption. To maintain the performance of the parallel program , they set the processor
with the biggest load to the highest gear and then compute the scaling factor values for
the rest of the processors. Although this model was built for parallel architectures, it can
be adapted to distributed architectures by taking into account the communication times.
The primary contribution of this chapter is to present a new online scaling factor selection
method which has the following characteristics:

1. It is based on both Rauber and Rünger and the new energy model to predict the
energy consumption of the application with different frequency gears.

2. It selects the frequency scaling factor for simultaneously optimizing energy reduc-
tion and maintaining performance.

3. It is well adapted to distributed architectures because it takes into account the com-
munication time.

4. It is well adapted to distributed applications with imbalanced tasks.

5. It has a very small footprint when compared to other methods (e.g., [74]) and does
not require profiling or training as in [25, 24].

2.3/ EXECUTION TIME AND ENERGY CONSUMPTION OF PARALLEL

TASKS RUNNING ON A HOMOGENEOUS PLATFORM

2.3.1/ PARALLEL TASKS EXECUTION ON A HOMOGENEOUS PLATFORM

A homogeneous cluster consists in identical nodes in terms of hardware and software.
Each node has its own memory and at least one processor which can be a multi-core. The
nodes are connected via a high bandwidth network. Tasks executed on this model can be
either synchronous or asynchronous. In this chapter we consider the execution of syn-
chronous tasks on distributed homogeneous platform. These tasks can synchronously
exchange data via message passing.

54 CHAPTER 2. ENERGY OPTIMIZATION OF HOMOGENEOUS PLATFORM

Communication Time

Time

Barrier

Idle time

Barrier

Task 3

Task 2

Task 1

Task 4

Task N

Computation Time

Time

Barrier

Idle time

Barrier

Task 3

Task 2

Task 1

Task 4

Task N

(a) (b)

Figure 2.1: Parallel tasks execution on a homogeneous platform (a) imbalanced commu-
nications and (b) imbalanced computations

The execution time of a task consists in the computation time and the communication
time. Moreover, the synchronous communications between tasks can lead to slack times
while tasks wait at a synchronization barrier for other tasks to finish their tasks (see fig-
ure 2.1(a)). The imbalanced communications happen when nodes have to send/receive
different amounts of data or they communicate with different numbers of nodes. Other
sources of slack times are imbalanced computations. This happens when processing
different amounts of data on each processor (see figure 2.1(b)). In this case the fastest
tasks have to wait at the synchronization barrier for the slowest ones to continue their
computations. In both cases the overall execution time of the program is the execution
time of the slowest task as in EQ (2.1).

Program Time = max
i=1,2,...,N

Ti (2.1)

where Ti is the execution time of task i and all the tasks are executed concurrently on
different processors.

2.3.2/ ENERGY CONSUMPTION MODEL FOR A HOMOGENEOUS PLATFORM

The total energy for a parallel homogeneous platform, as presented by Rauber and
Rünger [66], can be written as a function of the scaling factor S , as in EQ 1.19. Moreover,
the scaling factor S 1 is the scaling factor which should be the highest because they are
proportional to the time values Ti. Therefore, the scaling factors of the others tasks S i are
computed as in EQ 2.2.

S i = S ·
T1

Ti
=

Fmax

Fnew
·

T1

Ti
, i = 1, 2, . . . ,N (2.2)

Rauber and Rünger’s scaling factor selection method uses the same energy model.

2.4. PERFORMANCE EVALUATION OF MPI PROGRAMS 55

In their method, the optimal scaling factor is computed by minimizing the derivation of
EQ (1.19) which produces EQ (2.3).

S opt =
3

√√√
2
N
·

Pdyn

Pstatic
·

1 +

N∑
i=2

T 3
i

T 3
1

 (2.3)

This model computes the frequency scaling factor which minimizes the energy con-
sumption of the parallel program.

2.4/ PERFORMANCE EVALUATION OF MPI PROGRAMS

The execution time of a parallel synchronous application with iteration is equal to the ex-
ecution time of its slowest task as in figure (2.1). If there is no communication in the
application and it is not data bounded, the execution time of this parallel application is
linearly proportional to the operational frequency. Any DVFS operation for energy reduc-
tion increases the execution time of the parallel program. Therefore, the scaling factor
S is linearly proportional to the execution time of the application. However, in most MPI
applications the processes exchange data. During these communications the processors
involved remain idle during a synchronous communication. For that reason, any change
in the frequency has no impact on the time of communication [34]. The communication
time for a task is the summation of periods of time that begin with an MPI call for sending
or receiving a message until the message is synchronously sent or received. To be able
to predict the execution time of MPI program, the communication time and the computa-
tion time for the slowest task must be measured before scaling. These times are used to
predict the execution time for any MPI program as a function of the new scaling factor as
in EQ (2.4).

Tnew = TMax Comp Old · S + TMin Comm Old (2.4)

In this chapter, this prediction method is used to select the best scaling factor for each
processor as presented in the next section.

2.5/ PERFORMANCE AND ENERGY REDUCTION TRADE-OFF

This section presents our method for choosing the scaling factor that gives the best trade-
off between energy reduction and performance. This method takes into account the ex-
ecution times for both computation and communication to compute the scaling factor.
Since the energy consumption and the performance are not measured using the same
metric, a normalized value of both measurements can be used to compare them. The
normalized energy is the ratio between the consumed energy with scaled frequency and
the consumed energy without scaled frequency:

ENorm =
EReduced

EOriginal
=

Pdyn · S −2
1 ·

(
T1 +

∑N
i=2

T 3
i

T 2
1

)
+ Pstatic · T1 · S 1 · N

Pdyn ·

(
T1 +

∑N
i=2

T 3
i

T 2
1

)
+ Pstatic · T1 · N

(2.5)

56 CHAPTER 2. ENERGY OPTIMIZATION OF HOMOGENEOUS PLATFORM

In the same way we can normalize the performance as follows:

TNorm =
TNew

TOld
=

TMax Comp Old · S + TMin Comm Old

TMax Comp Old + TMin Comm Old
(2.6)

The relation between the execution time and the consumed energy of a program is
nonlinear and complex. In consequences, the relation between the consumed energy
and the scaling factor is also nonlinear, for more details refer to [34]. The resulting nor-
malized energy consumption curve and execution time curve, for different scaling factors,
do not have the same direction see Figure 2.2(b). To tackle this problem and optimize
both terms, we inverse the equation of the normalized execution time which gives the
normalized performance and is computed as follows:

PNorm =
Told

Tnew
=

Tmax Comp Old + Tmin Comm Old

Tmax Comp Old · S + Tmin Comm Old
(2.7)

Then, we can model our objective function as finding the maximum distance between
the energy curve EQ 2.5 and the performance curve EQ 2.7 over all available scaling
factors. This represents the minimum energy consumption with minimum execution time
(better performance) at the same time, see Figure 2.2(a). Then our objective function has
the following form:

MaxDist = max
j=1,2,...,F

(

Maximize︷ ︸︸ ︷
Pnorm(S j)−

Minimize︷ ︸︸ ︷
Enorm(S j)) (2.8)

where F is the number of available frequencies. Then we can select the optimal scaling
factor that satisfies EQ 2.8. Our objective function can work with any energy model or
static power values stored in a data file. Moreover, this function works in optimal way
when the energy curve has a convex form over the available frequency scaling factors as
shown in [52, 66, 74].

2.6. OPTIMAL SCALING FACTOR FOR PERFORMANCE AND ENERGY 57

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 a

n
d

 p
e
rf

o
rm

a
n
c
e

Frequency scaling factors

Optimal scaling factor

 Normalized performance
Normalized energy

(a)

 0.5

 1

 1.5

 2

 2.5

 1 1.5 2 2.5 3N
o
rm

a
liz

e
d
 e

n
e
rg

y
 a

n
d
 e

x
e
c
u
ti
o
n
 t
im

e

Frequency scaling factors

Normalized execution time
Normalized energy

(b)

Figure 2.2: The energy and performance relation (a) Converted relation and (b) Real
relation

2.6/ OPTIMAL SCALING FACTOR FOR PERFORMANCE AND ENERGY

Algorithm 3 computes the optimal scaling factor according to the objective function de-
scribed above. The proposed algorithm works online during the execution time of the MPI
program. It selects the optimal scaling factor after gathering the computation and commu-
nication times from the program after one iteration. Then the program changes the new
frequencies of the CPUs according to the computed scaling factors. The experiments
conducted over a homogeneous cluster and described in Section 2.7, showed that this
algorithm has a small execution time. It takes on average 1.52 µs for 4 nodes and 6.65 µs
for 32 nodes. The algorithm complexity is O(F · N), where F is the number of available
frequencies and N is the number of computing nodes. The algorithm is called just once
during the execution of the program. The DVFS algorithm 4 shows where and when the
algorithm 3 is called in the MPI program.

After obtaining the optimal scaling factor, the program calculates the new frequency

58 CHAPTER 2. ENERGY OPTIMIZATION OF HOMOGENEOUS PLATFORM

Algorithm 3 Scaling factor selection algorithm for a homogeneous cluster
1: Initialize the variable Dist = 0
2: Set dynamic and static power values.
3: Set Pstates to the number of available frequencies.
4: Set the variable Fnew to max. frequency, Fnew = Fmax

5: Set the variable Fdi f f to the difference between two successive frequencies.
6: for j := 1 to Pstates do
7: Fnew = Fnew − Fdi f f

8: S =
Fmax
Fnew

9: S i = S · T1
Ti

=
Fmax
Fnew
·

T1
Ti

for i = 1, . . . ,N

10: ENorm =
Pdyn·S −2

1 ·

T1+
∑N

i=2
T3

i
T2

1

+Pstatic·T1·S 1·N

Pdyn·

T1+
∑N

i=2
T3

i
T2

1

+Pstatic·T1·N

11: PNorm =
Told
Tnew

12: if (PNorm − ENorm > Dist) then
13: S opt = S
14: Dist = PNorm − ENorm

15: end if
16: end for
17: Return S opt

Algorithm 4 DVFS algorithm of homogeneous cluster
1: for k := 1 to some iterations do
2: Computations section.
3: Communications section.
4: if (k = 1) then
5: Gather all times of computation and communication from each node.
6: Call algorithm 3 with these times.
7: Compute the new frequency from the returned optimal scaling factor.
8: Set the new frequency to the CPU.
9: end if

10: end for

Fi for each task proportionally to its execution time, Ti. By substitution of EQ (1.11) in
EQ (2.2), we can calculate the new frequency Fi as follows:

Fi =
Fmax · Ti

S opt · Tmax
(2.9)

According to this equation all the nodes may have the same frequency value if they have
balanced workloads, otherwise, they take different frequencies when having imbalanced
workloads. Thus, EQ (2.9) adapts the frequency of the CPU to the nodes’ workloads to
maintain the performance of the program.

2.7. EXPERIMENTAL RESULTS 59

Table 2.1: Platform file parameters
Max Min Backbone Backbone Link Link Sharing
Freq. Freq. Bandwidth Latency Bandwidth Latency Policy
2.5 800 2.25 GBps 0.5 µs 1 GBps 50 µs Full
GHz MHz Duplex

2.7/ EXPERIMENTAL RESULTS

Our experiments are executed on the simulator SimGrid/SMPI v3.10. We configure the
simulator to use a homogeneous cluster with one core per node. The detailed characteris-
tics of our platform file are shown in table (2.1). Each node in the cluster has 18 frequency
values from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
frequencies. The simulated network link is 1 GB Ethernet (TCP/IP). The backbone of the
cluster simulates a high performance switch.

2.7.1/ PERFORMANCE PREDICTION VERIFICATION

In this section, the precision of the proposed performance prediction method based on
EQ (2.4) is evaluated by applying it to the NAS benchmarks. The NAS programs are
executed with the class B option to compare the real execution time with the predicted
execution time. Each program runs offline with all available scaling factors on 8 or 9 nodes
(depending on the benchmark) to produce real execution time values. These scaling fac-
tors are computed by dividing the maximum frequency by the new one see EQ (1.11).
In our cluster there are 18 available frequency states for each processor. This leads to
18 run states for each program. Seven MPI programs of the NAS parallel benchmarks
were used: CG, MG, EP, FT, BT, LU and SP. Table 2.2 shows the description of these
seven benchmarks. Some of these benchmarks are considered MPI parallel applications
with synchronous iterations or iterative applications that repeat the same block of instruc-
tions until convergence. However, the proposed method can be applied to any application
that executes the same block of instructions many times and it is not limited to iterative
methods. Figure (2.3) presents plots of the real execution times compared to the sim-
ulated ones. The maximum normalized error between these two execution times varies
between 0.0073 to 0.031 depending on the executed benchmark. The smallest prediction
error was for CG and the worst one was for LU.

2.7.2/ THE EXPERIMENTAL RESULTS FOR THE SCALING ALGORITHM

The proposed algorithm was applied to seven MPI programs of the NAS benchmarks (EP,
CG, MG, FT, BT, LU and SP) which were run with three classes (A, B and C). For each
instance, the benchmarks were executed on a number of processors proportional to the
size of the class. Each class represents the problem size in ascending order from class
A to C. The classes A, B and C were executed on 4, 8 or 9 and 16 nodes respectively.
The energy consumption for all the NAS MPI programs was measured while assuming
that the dynamic power with the highest frequency is equal to 20 W and the static power
is equal to 4 W for all the experiments. These power values were also used by Rauber
and Rünger in [66]. The results showed that the algorithm selected different scaling

60 CHAPTER 2. ENERGY OPTIMIZATION OF HOMOGENEOUS PLATFORM

 1

 1.2

 1.4

 1.6

 1.8

 1 1.5 2 2.5 3 3.5

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Frequency scaling factors

CG Class B

Normalized predicted time
Normalized real time

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 1.5 2 2.5 3 3.5

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Frequency scaling factors

MG Class B Normalized predicted time
Normalized real time

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 1 1.5 2 2.5 3 3.5

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Frequency scaling factors

BT Class B
Normalized predicted time

Normalized real time

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 1 1.5 2 2.5 3 3.5

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Frequency scaling factors

LU Class B

Normalized predicted time
Normalized real time

Figure 2.3: Comparing predicted to real execution time

Table 2.2: NAS Benchmarks description
Benchmark Full Name Description

CG Conjugate Gradiant
It solves a system of linear equations by estimating
the smallest eigenvalue of a large sparse matrix

MG MultiGrid
It uses the multigrid method to approximate the solution
of a three-dimensional discrete Poisson equation

EP Embarrassingly Parallel
It applies the Marsaglia polar method to randomly
generates independent Gaussian variates

FT Fast Fourier Transform
It uses the fast Fourier transform to solve a
three-dimensional partial differential equation

BT Block Tridiagonal

They solve nonlinear partial differential equationsLU
Lower-Upper symmetric
Gauss-Seidel

SP Scalar Pentadiagonal

factors for each program depending on the communication features of the program as
in the plots (2.4). These plots illustrate that there are different distances between the
normalized energy and the normalized performance curves, because there are different
communication features for each benchmark. When there are little or no communications,
the performance curve is very close to the energy curve. Then the distance between the
two curves is very small. This leads to small energy savings. The opposite happens when
there are a lot of communication, the distance between the two curves is big. This leads
to more energy savings (e.g. CG and FT), see table (2.3). All the discovered frequency

2.7. EXPERIMENTAL RESULTS 61

scaling factors optimize both the energy and the performance simultaneously for all the
NAS benchmarks. In table (2.3), the optimal scaling factors results for each benchmark
running class C are presented. These scaling factors give the maximum energy saving
percentage and the minimum performance degradation percentage at the same time from
all available scaling factors.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 a

n
d
 p

e
rf

o
rm

a
n
c
e

Frequency scaling factors

Optimal scaling factor=1.04

EP Class C Normalized performance
Normalized energy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 1.5 2 2.5 3
N

o
rm

a
liz

e
d
 e

n
e
rg

y
 a

n
d
 p

e
rf

o
rm

a
n
c
e

Frequency scaling factors

Optimal scaling factor=1.56

CG Class C Normalized performance
Normalized energy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 a

n
d
 p

e
rf

o
rm

a
n
c
e

Frequency scaling factors

Optimal scaling factor=1.388

SP Class C Normalized performance
Normalized energy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 a

n
d
 p

e
rf

o
rm

a
n
c
e

Frequency scaling factors

Optimal scaling factor=1.47

LU Class C Normalized performance
Normalized energy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 a

n
d
 p

e
rf

o
rm

a
n
c
e

Frequency scaling factors

Optimal scaling factor=1.315

BT Class C Normalized performance
Normalized energy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 a

n
d
 p

e
rf

o
rm

a
n
c
e

Frequency scaling factors

Optimal scaling factor=1.47

FT Class C Normalized performance
Normalized energy

Figure 2.4: Optimal scaling factors for the predicted energy and performance of NAS
benchmarks

As shown in table (2.3), when the optimal scaling factor has a big value we can gain
more energy savings as in CG and FT benchmarks. The opposite happens when the
optimal scaling factor has a small value as in BT and EP benchmarks. Our algorithm
selects a big scaling factor value when the communication and other slacks times are
big. In EP there are no communication inside the iterations, which leads our algorithm to
select smaller scaling factors (inducing smaller energy savings).

62 CHAPTER 2. ENERGY OPTIMIZATION OF HOMOGENEOUS PLATFORM

Table 2.3: The scaling factors results
Program Optimal Energy Performance Energy-Perf.
Name Scaling Factor Saving % Degradation % Distance
CG 1.56 39.23 14.88 24.35
MG 1.47 34.97 21.70 13.27
EP 1.04 22.14 20.73 1.41
LU 1.38 35.83 22.49 13.34
BT 1.31 29.60 21.28 8.32
SP 1.38 33.48 21.36 12.12
FT 1.47 34.72 19.00 15.72

2.7.3/ RESULTS COMPARISON

In this section, we compare our scaling factor selection method with the Rauber and
Rünger’s method [66]. They had two scenarios, the first is to reduce energy to the opti-
mal level without considering the performance as in EQ (2.3). We refer to this scenario as
RE. The second scenario is similar to the first except setting the slower task to the max-
imum frequency (the scale S = 1) to keep the performance from degradation as mush
as possible. We refer to this scenario as RE−P and to our algorithm as EPSA (Energy
to Performance Scaling Algorithm). The comparison is made in table 2.4. This table
shows the results of our method and the Rauber and Rünger’s scenarios for all the NAS
benchmarks programs for class C.

−20

−10

 0

 10

 20

 30

EP CG MG BT LU SP FT

E
n

e
rg

y
 t

o
 p

e
rf

o
rm

a
n

c
e

 d
is

ta
n

c
e

Rauber E
Rauber E−P

EPSA

Figure 2.5: Comparing our method to Rauber and Rünger’s methods

As shown in the table 2.4, the (RE−P) method outperforms the (RE) method in terms
of performance and energy reduction. The (RE−P) method also gives better energy sav-
ings than our method. However, although our scaling factor is not optimal for energy
reduction, the results in these tables prove that our algorithm returns the best scaling
factor that satisfy our objective method: the largest distance between energy reduction
and performance degradation. Figure 2.5 illustrates even better the distance between the
energy reduction and performance degradation. The negative values mean that one of

2.8. THE NEW ENERGY MODEL FOR A HOMOGENEOUS CLUSTER 63

Table 2.4: Comparing results for the NAS class C
Method Program Factor Energy Performance Energy-Perf.
Name Name Value Saving % Degradation % Distance
EPS A CG 1.56 39.23 14.88 24.35
RE−P CG 2.15 45.36 25.89 19.47
RE CG 2.15 45.36 26.70 18.66
EPS A MG 1.47 34.97 21.69 13.27
RE−P MG 2.15 43.65 40.45 3.20
RE MG 2.15 43.64 41.38 2.26
EPS A EP 1.04 22.14 20.73 1.41
RE−P EP 1.92 39.40 56.33 -16.93
RE EP 1.92 38.10 56.35 -18.25
EPS A LU 1.38 35.83 22.49 13.34
RE−P LU 2.15 44.97 41.00 3.97
RE LU 2.15 44.97 41.80 3.17
EPS A BT 1.31 29.60 21.28 8.32
RE−P BT 2.13 45.60 49.84 -4.24
RE BT 2.13 44.90 55.16 -10.26
EPS A SP 1.38 33.48 21.35 12.12
RE−P SP 2.10 45.69 43.60 2.09
RE SP 2.10 45.75 44.10 1.65
EPS A FT 1.47 34.72 19.00 15.72
RE−P FT 2.04 39.40 37.10 2.30
RE FT 2.04 39.35 37.70 1.65

the two objectives (energy or performance) has been degraded more than the other. The
positive trade-offs with the highest values lead to maximum energy savings while keeping
the performance degradation as low as possible. Our algorithm always gives the highest
positive energy to performance trade-offs while the Rauber and Rünger’s method, (RE−P),
gives sometimes negative trade-offs such as for BT and EP.

2.8/ THE NEW ENERGY MODEL FOR A HOMOGENEOUS CLUSTER

As mentioned in chapter 1 section 1.3, the power consumed by a processor is divided
into two power metrics: the static and the dynamic power. The first power metric is
consumed as long as the computing unit is on, while the other one is consumed when
the processor is doing the computations. Consequentially, the energy consumed by an
individual processor to execute a given program can be computed as follows:

Eind = Pdyn · TComp + Pstatic · T (2.10)

where T is the execution time of the program, TComp is the computation time and
TComp ≤ T . TComp may be equal to T if there is no communication, no slack time and
no synchronization.

Applying a DVFS operation leads to a new frequency state which is represented by

64 CHAPTER 2. ENERGY OPTIMIZATION OF HOMOGENEOUS PLATFORM

the frequency scaling factor S , computed as in the equation 1.11. According to Rauber
and Rünger’s energy model 1.19, the dynamic energy is consumed during the overall
program’s execution time. This assumption is not precise because the CPU only con-
sumes the dynamic power during computation time. Moreover, the CPU involved remains
idle during the communication times and only consumes the static power, see [34]. We
have also conducted some experiments over a real homogeneous cluster where some
MPI programs of the NAS benchmarks were executed while varying the CPUs frequen-
cies at each execution. The results prove that changing the frequency does not effect
on the communication times of these programs. Therefore, the frequency scaling fac-
tor S can increase the computation times proportionally to its value, and does not effect
the communication times. This assumption consort with the used performance prediction
model 2.4. This model is evaluated and its prediction accuracy is showed in section 2.7.1.
Therefore, the new dynamic energy is the dynamic power multiplied by the new time of
computation and is given by the following equation:

EdNew = PdOld · S −3 · (Tcomp · S) = S −2 · PdOld · Tcomp (2.11)

The static power is related to the power leakage of the CPU and is consumed during
computation and even when idle. As in [66, 88], the static power of a processor is consid-
ered as constant during idle and computation periods, and for all its available frequencies.
The static energy is the static power multiplied by the execution time of the program. Ac-
cording to the execution time model in (2.4), the execution time of the program is the sum
of the computation and the communication times. The computation time is linearly related
to the frequency scaling factor, while this scaling factor does not affect the communication
time. Then, the static energy of a processor after scaling its frequency is computed as
follows:

Es = Pstatic · (Tcomp · S + Tcomm) (2.12)

In particular, in a homogeneous cluster all the computing nodes have the same specifi-
cation and thus their CPUs have similar frequencies gears. The execution time of the MPI
application is the execution time of the slowest task as shown in section 2.3.1. Therefore,
the frequency scaling factor S of the slowest task can be used to modelize the energy
consumption of the parallel application. The dynamic energy consumed by N parallel
tasks is the summation of all the dynamic energies of all tasks during the computation
time Tcompi of each task. The static energy of each task is the static power consumed
during the execution time of the slower task because all the tasks are synchronised and
have the same execution time. Therefore, the energy consumption model of N parallel
task executed synchronously over a homogeneous platforms can be represented as in
2.13.

Enew =

N∑
i=1

(S −2 · Pd · Tcompi) + (Ps · (TMax Comp Old · S + TMin Comm Old)) · N (2.13)

According to this model, the frequency scaling factor S reduces the energy consump-
tion of the homogeneous architecture by a factor of S −2 and increases the execution time
by a factor of S . This model can be used to predict the energy consumption of the mes-
sage passing applications with synchronous iterations after gathering the computation
and communication times of the first iteration. Furthermore, it can be used to measure

2.9. THE EXPERIMENTAL RESULTS USING THE NEW ENERGY MODEL 65

the energy consumption of the parallel application with iterations by multiplying the energy
consumed of all tasks in one iteration by the number of the iterations.

This model is used by the algorithm 3 to predict the energy consumption and to select
the optimal frequency scaling factor. The new frequency Fi can be computed as in 2.9
while using the new selected frequency scaling factor. In the next section, algorithm 3 is
re-evaluated while using this new energy model and the new results are presented.

2.9/ THE EXPERIMENTAL RESULTS USING THE NEW ENERGY

MODEL

This section presents the results of applying the frequency selection algorithm 3 using
the new proposed energy model 2.13 to NAS parallel benchmarks. The class C of the
benchmarks was executed on a homogeneous architecture composed of 16 nodes and
simulated by SimGrid. The same static and dynamic power values were used as in sec-
tion 2.7.2. Figure 2.6 presents the energy consumption of the NAS benchmarks class C
using the new energy model and the Rauber and Rünger’s model. The energy consump-
tions of both models are computed using similar parameters: frequency scaling factors,
dynamic and static powers values. As shown in this figure, the majority of the benchmarks
consumes less energy using the new model than when using the Rauber and Rünger’s
model. Two reasons explain these differences in the energy consumptions: the first one
is related to the dynamic power consumption, where the new energy model ensures that
this power metric is only consumed during the computation time, while the other model
assumes that the dynamic power is consumed during both computation and communica-
tion times and thus increasing the dynamic energy consumption. The second reason is
related to the execution time. In the new model only the computation times are increased
when the frequency of a processor is scaled down, while Rauber and Rünger’s model
indicates that both the computation and communication times are increased according to
the scaling factor and hence more static energy is consumed. Therefore, the MPI pro-
grams that have big communication times, have bigger energy consumption values using
Rauber and Rünger’s model when compared to the new model as for the CG, SP, LU and
FT benchmarks. Whereas, if the MPI programs have very small communication times,
their computed energy values have very small differences using both models such as for
the MG and BT benchmarks, or they are identical such as for the EP benchmark where
there is no communication and no idle times.

Method
Name

Rauber Energy Model Results New Energy Model Results
Scaling
Factors

Energy
Saving%

Performance
Degradation%

Scaling
Factors

Energy
Saving%

Performance
Degradation%

CG 1.56 39.23 14.88 1.47 30.20 13.56
MG 1.47 34.97 21.69 1.38 30.04 16.48
EP 1.04 22.14 20.73 1.04 22.14 20.73
LU 1.38 35.83 22.49 1.31 29.15 18.03
BT 1.31 29.60 21.53 1.31 28.75 21.55
SP 1.38 33.48 21.35 1.31 28.93 14.83
FT 1.47 34.72 19.00 1.38 29.94 17.43

Table 2.5: The Results of NAS Parallel Benchmarks running on 16 nodes

66 CHAPTER 2. ENERGY OPTIMIZATION OF HOMOGENEOUS PLATFORM

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

 25000

CG MG EP LU BT SP FT

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

J
]

NAS Parallel Benchmarks

Rauber energy model
New energy model

Figure 2.6: Comparing the energy consumptions estimated using Rauber energy model
and our own

Table 2.5 shows the energy saving and performance degradation percentages when
applying the frequency selecting algorithm using the new proposed energy model. It also
presents the new selected frequency scaling factors and compares them to the ones used
by the Rauber and Rünger’s model. It shows that the new selected frequency scaling
factors are smaller than those selected using the other model because the predicted en-
ergies by the new energy model are smaller. Consequently, less energy savings and per-
formance degradation percentages are produced according to these smaller frequency
scaling factors such as for the CG, MG, LU, SP and FT benchmarks. While in the BT and
EP benchmarks where there are very small or no communication times, similar scaling
factors are selected because the predicted energies by the two models are approximately
equivalent.

Therefore, the new proposed energy model is more accurate than Rauber and
Rünger’s energy model, because it takes into consideration both the communication and
idle times in addition to the computation times of message passing programs running over
homogeneous clusters. The scaling factor selection algorithm can work with any energy
model and it selects the scaling factor values according to the predicted energy values.

2.10/ CONCLUSION

In this chapter, a new online scaling factor selection method that optimizes simultaneously
the energy and performance of a distributed application running on a homogeneous clus-
ter have been presented . It uses the computation and communication times measured
at the first iteration to predict the energy consumption and the performance of the parallel
application at every available frequency. Then, it selects the scaling factor that gives the
best trade-off between energy reduction and performance which is the maximum distance
between the energy and the performance curves. To evaluate this method, we have ap-
plied it to the NAS benchmarks and it was compared to the Rauber and Rünger’s method

2.10. CONCLUSION 67

while being executed on the SimGrid simulator. The results showed that our method, out-
performs the Rauber and Rünger’s method in terms of energy-performance ratio. Finally,
this chapter presents a new energy consumption model for parallel applications with syn-
chronous iterations running on homogeneous clusters. This model takes into considera-
tion both the computation and communication times and their relation with the frequency
scaling factor. The results obtained using the new energy model have shown that differ-
ent frequency scaling factors were selected which gave new experimental results that are
more accurate and realistic.

3
ENERGY OPTIMIZATION OF

HETEROGENEOUS PLATFORMS

3.1/ INTRODUCTION

Computing platforms are consuming more and more energy due to the increasing number
of nodes composing them. In a heterogeneous computing platform composed of multiple
computing nodes, nodes may differ in the computing power from each others. Accord-
ingly, the fast nodes have to wait for the slow ones to finish their works. The resulting
waiting times are called idle times which are increased proportionally to the increase in
the heterogeneity between the computing nodes. This leads to a big waste in the comput-
ing power and thus the energy consumed by fast nodes. To minimize the operating costs
of these platforms many techniques have been used. Dynamic voltage and frequency
scaling (DVFS) is one of them. It reduces the frequency of a CPU to lower its energy con-
sumption. However, lowering the frequency of a CPU may increase the execution time
of an application running on that processor. Therefore, the frequency that gives the best
trade-off between the energy consumption and the performance of an application must
be selected.

In this chapter, two new online frequency selecting algorithms for heterogeneous lo-
cal clusters (heterogeneous CPUs) and grid platforms are presented. They select the
frequencies that try to give the best trade-off between energy saving and performance
degradation, for each node computing the synchronous message passing application
with iterations. These algorithms have a small overhead and work without training or
profiling. They use new energy models for message passing synchronous applications
with iterations running on both the heterogeneous local cluster and the grid platform. The
first proposed algorithm for a heterogeneous local cluster was evaluated on the SimGrid
simulator while running the class C of the NAS parallel benchmarks. The experiments
conducted over 8 heterogeneous nodes show that it reduces on average the energy con-
sumption by 29.8% while limiting the performance degradation to 3.8%. The second
proposed algorithm for a grid platform was evaluated on the Grid5000 testbed platform
while running the class D of the NAS parallel benchmarks. The experiments were run
on 16 nodes, distributed on three clusters, and show that the algorithm reduces on aver-
age the energy consumption by 30% while the performance is on average only degraded
by 3.2%. Finally, both algorithms were compared to the EDP method. The compari-
son results show that they outperform the latter in the energy reduction and performance
trade-off.

69

70 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

This chapter is organized as follows: Section 3.2 presents some related works from
other authors. Section 3.3 presents the performance and energy models of synchronous
message passing programs running over a heterogeneous local cluster. It also describes
the proposed frequency selecting algorithm then the precision of the proposed algorithm
is verified. Section 3.4 presents the simulation results of applying the algorithm on the
NAS parallel benchmarks class C and executing them on a heterogeneous local clus-
ter. It shows the results of running three different power scenarios and comparing them.
Moreover, it also shows the comparison results between the proposed method and an
existing method. Section 3.5 shows the energy and performance models in addition to
the frequencies selecting algorithm of synchronous message passing programs running
over a grid platform. Section 3.6 presents the results of applying the algorithm on the
NAS parallel benchmarks (class D) and executing them on the Grid’5000 testbed. The
algorithm is also evaluated over multi-core architectures and over three different power
scenarios. Moreover, Section 3.6, shows the comparison results between the proposed
method and the EDP method. Finally, in Section 3.7 the chapter ends with a summary.

3.2/ RELATED WORKS

The process of selecting the appropriate frequency for a processor to satisfy some ob-
jectives, while taking into account all the constraints, is not a trivial operation. Many
researchers used different strategies to tackle this problem. Some of them developed
online methods that compute the new frequency while executing the application, such
as [74, 75]. Others used offline methods that may need to run the application and profile
it before selecting the new frequency, such as [71, 40]. The methods could be heuristics,
exact or brute force methods that satisfy varied objectives such as energy reduction or
performance. They also could be adapted to the execution’s environment and the type of
the application such as sequential, parallel or distributed architecture, homogeneous or
heterogeneous platform, synchronous or asynchronous application, . . .

In this chapter, we are interested in reducing the energy consumption when running
a message passing synchronous applications with iterations over a heterogeneous plat-
form. Some works have already been done for such platforms which can be classified
into two types of heterogeneous platforms:

• the platform is composed of homogeneous GPUs and homogeneous CPUs.

• the platform is only composed of heterogeneous CPUs.

For the first type of platform, the computing intensive parallel tasks are executed on
the GPUs and the rest are executed on the CPUs. Luley et al. [50], proposed a hetero-
geneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main goal was
to maximize the energy efficiency of the platform during computation by maximizing the
number of FLOPS per watt generated. In [51], Kai Ma et al. developed a scheduling
algorithm that distributes workloads proportional to the computing power of the nodes
which could be a GPU or a CPU. All the tasks must be completed at the same time.
In [37], Rong et al. showed that a heterogeneous (GPUs and CPUs) cluster that enables
DVFS operations gave better energy and performance efficiency than other clusters only
composed of CPUs.

3.3. THE ENERGY OPTIMIZATION OF A HETEROGENEOUS CLUSTER 71

The work presented in this chapter concerns the second type of platform, with het-
erogeneous CPUs. Many methods were conceived to reduce the energy consumption
of this type of platform. Naveen et al. [55] developed a method that minimizes the value
of energy × delay2 (the delay is the sum of slack times that happen during synchronous
communications) by dynamically assigning new frequencies to the CPUs of the hetero-
geneous cluster. Lizhe et al. [81] proposed an algorithm that divides the executed tasks
into two types: the critical and non critical tasks. The algorithm scales down the frequency
of non critical tasks proportionally to their slack and communication times while limiting
the performance degradation percentage to less than 10%. In [43], they developed a
heterogeneous cluster composed of two types of Intel and AMD processors. They use a
gradient method to predict the impact of DVFS operations on performance. In [73] and
[48], the best frequencies for a specified heterogeneous cluster are selected offline using
on heuristic. Chen et al. [21] used a greedy dynamic programming approach to minimize
the power consumption of heterogeneous servers while respecting the given time con-
straint. This approach had considerable overhead. In contrast to the above described
works, the work of this chapter presents the following contributions:

1. two new energy and two performance models for message passing synchronous
applications with iterations running over a heterogeneous local cluster and a grid
platform. All the models take into account the communications and the slack times.
The models can predict the energy consumption and the execution time of the ap-
plication.

2. two new online frequencies selecting algorithms for a heterogeneous local cluster
and a grid platform. The algorithms have a very small overhead and do not need
any training or profiling. They use a new optimization function which simultaneously
maximizes the performance and minimizes the energy consumption of a message
passing synchronous application with iterations.

3.3/ THE ENERGY OPTIMIZATION OF PARALLEL APPLICATIONS

WITH ITERATIONS RUNNING OVER LOCAL HETEROGENEOUS

CLUSTERS

3.3.1/ THE EXECUTION TIME OF MESSAGE PASSING DISTRIBUTED APPLICA-
TIONS WITH ITERATIONS ON A HETEROGENEOUS LOCAL CLUSTER

In this section, we are interested in reducing the energy consumption of message pass-
ing distributed synchronous applications with iterations running over heterogeneous local
clusters. In this work, a heterogeneous local cluster is defined as a collection of heteroge-
neous computing nodes interconnected via a high speed homogeneous network. There-
fore, the nodes may have different characteristics such as computing power (FLOPS),
energy consumption, CPU’s frequency range, . . . but they all have the same network
bandwidth and latency.

The overall execution time of a distributed synchronous application with iterations over
a heterogeneous local cluster consists of the sum of the computation time and the com-
munication time for every iteration on a node. However, due to the heterogeneous com-
putation power of the computing nodes, slack times may occur when fast nodes have

72 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

Time

Communication time

Task 3

Task 2

Task 1

Task 4

Task N

Slack time=0

Computation time

BarrierBarrier

Slack time

Figure 3.1: Parallel tasks on a heterogeneous platform

to wait, during synchronous communications, for the slower nodes to finish their com-
putations (see Figure 3.1). Therefore, the overall execution time of the program is the
execution time of the slowest task which has the highest computation time and no slack
time.

Reducing the frequency of a processor by applying DVFS operation can be expressed
by the scaling factor S which is the ratio between the maximum frequency and the new
frequency of a CPU as in (1.11). The execution time of a compute bound sequential
program is linearly proportional to the frequency scaling factor S . On the other hand,
message passing distributed applications consist of two parts: computation and com-
munication. The execution time of the computation part is linearly proportional to the
frequency scaling factor S but the communication time is not affected by the scaling fac-
tor because the processors involved remain idle during the communications [34]. The
communication time for a task is the summation of periods of time that begin with an
MPI call for sending or receiving a message until the message is synchronously sent or
received.

Since in a heterogeneous cluster the nodes may have different characteristics, espe-
cially different frequency gears, when applying DVFS operations on these nodes, they
may get different scaling factors represented by a scaling vector: (S 1, S 2, . . . , S N) where
S i is the scaling factor of processor i. To be able to predict the execution time of message
passing synchronous applications with iterations running over a heterogeneous local clus-
ter, for different vectors of scaling factors, the communication time and the computation
time for all the tasks must be measured during the first iteration before applying any DVFS
operation. Then the execution time for one iteration of the application with any vector of
scaling factors can be predicted using (3.1).

TNew = max
i=1,2,...,N

(TcpOldi · S i) + min
i=1,2,...,N

(Tcmi
) (3.1)

where TcpOldi is the computation time of processor i during the first iteration. The model
computes the maximum computation time with scaling factor from each node added to the
communication time of the slowest node. It means only the communication time without

3.3. THE ENERGY OPTIMIZATION OF A HETEROGENEOUS CLUSTER 73

any slack time is taken into account. Therefore, the execution time of the application
with iterations is equal to the execution time of one iteration as in (3.1) multiplied by the
number of iterations of that application.

This prediction model is improved from the model that predicts the execution time of
message passing distributed applications for homogeneous architectures presented in
Chapter 2 Section 2.4. The execution time prediction model is used in the method that
optimizes both the energy consumption and the performance of parallel application with
iterations, which is presented in the following sections.

3.3.2/ ENERGY MODEL FOR HETEROGENEOUS LOCAL CLUSTER

In Chapter 2, the dynamic and the static energy consumption of a processor is computed
according to Equations 2.11 and 2.12 respectively. Then, the total energy consumption of
a processor is the sum of these two metrics. Therefore, the overall energy consumption
for the parallel tasks over a parallel cluster is the summation of the energies consumed
by all the processors.

In the considered heterogeneous platform, each processor i may have different dy-
namic and static powers, noted as Pdi

and Psi
respectively. Therefore, even if the dis-

tributed message passing application with iterations is load balanced, the computation
time of each CPU i noted Tcpi may be different and different frequency scaling factors
may be computed in order to decrease the overall energy consumption of the application
and reduce the slack times. The communication time of a processor i is noted as Tcmi
and could contain slack times when communicating with slower nodes, see Figure 3.1.
Therefore, all the nodes do not have equal communication times. While the dynamic
energy is computed according to the frequency scaling factor and the dynamic power of
each node as in (2.11), the static energy is computed as the sum of the execution time
of one iteration as in 3.1 multiplied by the static power of each processor. The over-
all energy consumption of a message passing distributed application executed over a
heterogeneous cluster during one iteration is the summation of the dynamic and static
energies for all the processors. It is computed as follows:

E =

N∑
i=1

(S −2
i · Pdi

· Tcpi) +

N∑
i=1

(Psi
· (max

i=1,2,...,N
(Tcpi · S i) + min

i=1,2,...,N
(Tcmi

))) (3.2)

Reducing the frequencies of the processors according to the vector of scaling factors
(S 1, S 2, . . . , S N) may degrade the performance of the application and thus, increase the
consumed static energy because the execution time is increased [44]. The overall energy
consumption for an application with iterations can be measured by measuring the energy
consumption for one iteration as in (3.2) multiplied by the number of iterations of that
application.

3.3.3/ OPTIMIZATION OF BOTH ENERGY CONSUMPTION AND PERFORMANCE

Using the lowest frequency for each processor does not necessarily give the most energy
efficient execution of an application. Indeed, even though the dynamic power is reduced
while scaling down the frequency of a processor, its computation power is proportion-
ally decreased. Hence, the execution time might be drastically increased and during that

74 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

 0.4

 0.6

 0.8

 1

 1.2

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 a

n
d

 p
e

rf
o

rm
a

n
c
e

Vectors of frequency scaling factors

Optimal vector of scaling factors

 Upper bound
Normalized performance

Normalize energy

Figure 3.2: The energy and performance relation in heterogeneous cluster

time, dynamic and static powers are being consumed. Therefore, it might cancel any
gains achieved by scaling down the frequency of all nodes to the minimum and the over-
all energy consumption of the application might not be the optimal one. It is not trivial to
select the appropriate frequency scaling factor for each processor while considering the
characteristics of each processor (computation power, range of frequencies, dynamic and
static powers) and the task it is executing (computation/communication ratio). In Chap-
ter 2, we proposed a method that selects the optimal frequency scaling factor for a ho-
mogeneous cluster executing a message passing synchronous application with iterations
while giving the best trade-off between the energy consumption and the performance for
such applications. In this section, this optimization method is improved while considering
a heterogeneous clusters.

As described before, the relation between the energy consumption and the execu-
tion time for an application is complex and nonlinear. Thus, to find the trade-off relation
between the energy consumption computed in Equation 3.2 and the performance with
Equation 3.1 for the message passing applications with iterations, first we need to nor-
malize both terms as follows:

ENorm =
EReduced

EOriginal
=

∑N
i=1 (S −2

i · Pdi
· Tcpi) +

∑N
i=1 (Psi

· TNew)∑N
i=1 (Pdi

· Tcpi) +
∑N

i=1 (Psi
· TOld)

(3.3)

PNorm =
TOld

TNew
=

maxi=1,2,...,N (Tcpi + Tcmi
)

maxi=1,2,...,N(Tcpi · S i) + mini=1,2,...,N(Tcmi
)

(3.4)

Then, the objective function can be modeled in order to find the maximum distance
between the energy curve (3.3) and the performance curve (3.4) over all available sets
of scaling factors for the processors of the heterogeneous cluster. This represents the
minimum energy consumption with minimum execution time (maximum performance) at

3.3. THE ENERGY OPTIMIZATION OF A HETEROGENEOUS CLUSTER 75

Node 1 Node 2 Node 3 Node 4
The initial
frequencies

3.4

3.13
3.00

3.26

2.60

2.86
2.73

2.46
2.33
2.20
2.07
1.93
1.80

1.53
1.67

2.5

2.3
2.2

2.4

1.9

2.1
2.0

1.8
1.7
1.6

2.66

2.39
2.26

2.52

1.86

2.13
1.99

1.72
1.59
1.46
1.33
1.19

2.9

2.7
2.6

2.8

2.3

2.5
2.4

2.2
2.1
2.0
1.9
1.8
1.7

1.3

1.5
1.4

1.6

1.2Scope of the
search space

Figure 3.3: Selecting the initial frequencies in heterogeneous cluster

the same time, see Figure 3.2. Then the objective function has the following form:

MaxDist = max
i=1,...N
j=1,...,Fi

(

Maximize︷ ︸︸ ︷
PNorm(S i j)−

Minimize︷ ︸︸ ︷
ENorm(S i j)) (3.5)

where N is the number of nodes and Fi is the number of available frequencies for the
node i. Then, the set of scaling factors that maximizes the objective function (3.5) should
be selected.

3.3.4/ THE SCALING FACTORS SELECTION ALGORITHM FOR HETEROGENEOUS
CLUSTER

In this section, Algorithm 5 is presented. It selects the frequency scaling factors vector
that gives the best trade-off between minimizing the energy consumption and maximizing
the performance of a message passing synchronous application with iterations executed
on a heterogeneous local cluster. It works online during the execution time of the mes-
sage passing program with iterations. It uses information gathered during the first iteration
such as the computation time and the communication time in one iteration for each node.
The algorithm is executed after the first iteration and returns a vector of optimal frequency
scaling factors that satisfies the objective function (3.5). The program applies DVFS oper-
ations to change the frequencies of the CPUs according to the computed scaling factors.
This algorithm is called just once during the execution of the program. Algorithm 6 shows
where and when the proposed scaling algorithm is called in the MPI program with itera-
tions.

The nodes in a heterogeneous cluster may have different computing powers. The
algorithm takes into account this problem and tries to reduce these slack times when
selecting the frequency scaling factors vector. At first, it selects initial frequency scaling
factors that increase the execution times of fast nodes and minimize the differences be-
tween the computation times of the fast nodes and the slow ones. The value of the initial

76 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

Algorithm 5 Scaling factors selection algorithm for heterogeneous cluster
Require:
Tcpi array of all computation times for all nodes during one iteration and with highest

frequency.
Tcmi

array of all communication times for all nodes during one iteration and with highest
frequency.

Fmaxi
array of the maximum frequencies for all nodes.

Pdi
array of the dynamic powers for all nodes.

Psi
array of the static powers for all nodes.

Fdiffi array of the differences between two successive frequencies for all nodes.
Ensure: S opt1, S opt2 . . . , S optN is a vector of optimal scaling factors

1: S cpi ←
maxi=1,2,...,N (Tcpi)

Tcpi

2: Fi ←
Fmax

i
S cpi

, i = 1, 2, · · · ,N
3: Round the computed initial frequencies Fi to the closest one available in each node.
4: if (not the first frequency) then
5: Fi ← Fi + Fdiffi, i = 1, . . . ,N.
6: end if
7: TOld ← maxi=1,...,N(Tcpi + Tcmi

)
8: EOriginal ←

∑N
i=1 (Pdi

· Tcpi + Psi
· TOld)

9: S opti ← 1, i = 1, . . . ,N.
10: Dist ← 0
11: while (all nodes not reach their minimum frequency) do
12: if (not the last freq. and not the slowest node) then
13: Fi ← Fi − Fdiffi, i = 1, . . . ,N.

14: S i ←
Fmax

i
Fi

, i = 1, . . . ,N.
15: end if
16: TNew ← maxi=1,2,...,N(TcpOldi · S i) + mini=1,2,...,N(Tcmi

)
17: EReduced ←

∑N
i=1 (S −2

i · Pdi
· Tcpi) +

∑N
i=1(Psi

· (maxi=1,2,...,N(Tcpi · S i) + mini=1,2,...,N(Tcmi
)))

18: PNorm ←
TOld
TNew

19: ENorm ←
EReduced
EOriginal

20: if (PNorm − ENorm > Dist) then
21: S opti ← S i, i = 1, . . . ,N.
22: Dist ← PNorm − ENorm

23: end if
24: end while
25: Return S opt1, S opt2, . . . , S optN

frequency scaling factor for each node is inversely proportional to its computation time
that was gathered from the first iteration. These initial frequency scaling factors are com-
puted as a ratio between the computation time of the slowest node and the computation
time of the node i as follows:

S cpi =
maxi=1,2,...,N(Tcpi)

Tcpi
(3.6)

Using the initial frequency scaling factors computed in (3.6), the algorithm computes the
initial frequencies for all nodes as a ratio between the maximum frequency of node i and

3.3. THE ENERGY OPTIMIZATION OF A HETEROGENEOUS CLUSTER 77

Algorithm 6 DVFS algorithm of heterogeneous platform
1: for k = 1 to some iterations do
2: Computations section.
3: Communications section.
4: if (k = 1) then
5: Gather all times of computation and communication from each node.
6: Call Algorithm 5.
7: Compute the new frequencies from the returned optimal scaling factors.
8: Set the new frequencies to nodes.
9: end if

10: end for

the computed scaling factor S cpi as follows:

Fi =
Fmaxi

S cpi
, i = 1, 2, . . . ,N (3.7)

If the computed initial frequency for a node is not available in the gears of that node, it is
replaced by the nearest available frequency. In Figure 3.3, the nodes are sorted by their
computing power in ascending order and the frequencies of the faster nodes are scaled
down according to the computed initial frequency scaling factors. The resulting new fre-
quencies are highlighted in Figure 3.3. This set of frequencies can be considered as a
higher bound for the search space of the optimal vector of frequencies because selecting
scaling factors higher than the higher bound will not improve the performance of the appli-
cation and it will increase its overall energy consumption. Therefore the algorithm that se-
lects the frequency scaling factors starts the search method from these initial frequencies
and takes a downward search direction toward lower frequencies. The algorithm iterates
on all remaining frequencies, from the higher bound until all nodes reach their minimum
frequencies, to compute their overall energy consumption and performance, and select
the optimal frequency scaling factors vector. At each iteration the algorithm determines
the slowest node according to Equation (3.1) and keeps its frequency unchanged, while it
lowers the frequency of all other nodes by one gear. The new overall energy consumption
and execution time are computed according to the new scaling factors. The optimal set
of frequency scaling factors is the set that gives the highest distance according to the
objective function (3.5).

Figure 3.2 illustrates the normalized performance and consumed energy for an appli-
cation running on a heterogeneous cluster while increasing the scaling factors. It can be
noticed that in a homogeneous cluster, as in the figure 2.2 (a), the search for the optimal
scaling factor should start from the maximum frequency because the performance and
the consumed energy decrease from the beginning of the plot. On the other hand, in the
heterogeneous cluster the performance is maintained at the beginning of the plot even if
the frequencies of the faster nodes decrease until the computing power of scaled down
nodes are lower than the slowest node. In other words, until they reach the higher bound.
It can also be noticed that the higher the difference between the faster nodes and the
slower nodes is, the bigger the maximum distance between the energy curve and the
performance curve is which results in bigger energy savings.

78 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

3.3.5/ THE EVALUATION OF THE PROPOSED ALGORITHM

The accuracy of the proposed algorithm mainly depends on the execution time prediction
model defined in (3.1) and the energy model computed by Equation (3.2). The energy
model is also significantly dependent on the execution time model because the static en-
ergy is linearly related to the execution time and the dynamic energy is related to the
computation time. So, all the works presented in this chapter are based on the execution
time model. To verify this model, the predicted execution time was compared to the real
execution time over SimGrid/SMPI simulator, v3.10 [18], for all the NAS parallel bench-
marks NPB v3.3 [57], running class B on 8 or 9 nodes. The comparison showed that
the proposed execution time model is very accurate, the maximum normalized difference
between the predicted execution time and the real execution time is equal to 0.03 for all
the NAS benchmarks.

Since the proposed algorithm is not an exact method, it does not test all the possible
solutions (vectors of scaling factors) in the search space. To prove its efficiency, it was
compared on small instances to a brute force search algorithm that tests all the possible
solutions. The brute force algorithm was applied to different NAS benchmarks classes
with different number of nodes. The solutions returned by the brute force algorithm and
the proposed algorithm were identical and the proposed algorithm was on average 10
times faster than the brute force algorithm. It has a small execution time: for a het-
erogeneous cluster composed of four different types of nodes having the characteristics
presented in Table 3.1, it takes on average 0.04 ms for 4 nodes and 0.15 ms on average
for 144 nodes to compute the best scaling factors vector. The algorithm complexity is
O(Fi · N), where Fi is the maximum number of available frequencies in the node i, and N
is the number of computing nodes. The algorithm needs from 12 to 20 iterations to select
the best vector of frequency scaling factors that gives the results of the next sections.

Table 3.1: Heterogeneous nodes characteristics
Node Simulated Max Min Diff. Dynamic Static
type GFLOPS Freq. Freq. Freq. power power

GHz GHz GHz
1 40 2.50 1.20 0.100 20 W 4 W
2 50 2.66 1.60 0.133 25 W 5 W
3 60 2.90 1.20 0.100 30 W 6 W
4 70 3.40 1.60 0.133 35 W 7 W

3.4/ EXPERIMENTAL RESULTS OVER A HETEROGENEOUS LOCAL

CLUSTER

To evaluate the efficiency and the overall energy consumption reduction of Algorithm 5,
it was applied to the NAS parallel benchmarks NPB v3.3 which is composed of syn-
chronous message passing applications. The experiments were executed on the simu-
lator SimGrid/SMPI which offers easy tools to create a heterogeneous local cluster and
run message passing applications over it. The heterogeneous cluster that was used in
the experiments, had one core per node because just one process was executed per
node. The heterogeneous cluster was composed of four types of nodes. Each type of

3.4. EXPERIMENTAL RESULTS OVER A HETEROGENEOUS LOCAL CLUSTER 79

nodes had different characteristics such as the maximum CPU frequency, the number of
available frequencies and the computational power, see Table 3.1. The characteristics of
these different types of nodes are inspired from the specifications of real Intel processors.
The heterogeneous cluster had up to 144 nodes and had nodes from the four types in
equal proportions, for example if a benchmark was executed on 8 nodes, 2 nodes from
each type were used. Since the constructors of CPUs do not specify the dynamic and
the static power of their CPUs, for each type of node they were chosen proportionally to
their computing powers (FLOPS). The dynamic power corresponds to 80% of the overall
power consumption while executing at the higher frequency and the remaining 20% is
the static power. The same assumption was made in Chapter 2 and [67]. Finally, These
nodes were connected via an Ethernet network with 1 Gbit/s bandwidth.

3.4.1/ THE EXPERIMENTAL RESULTS OF THE SCALING ALGORITHM

The proposed algorithm was applied to the seven parallel NAS benchmarks (EP, CG,
MG, FT, BT, LU and SP). The benchmarks were executed with class C while being run
on different number of nodes, ranging from 8 to 128 or 144 nodes depending on the
benchmark being executed. Indeed, the benchmarks CG, MG, LU, EP and FT had to be
executed on 1, 2, 4, 8, 16, 32, 64, or 128 nodes. The other benchmarks such as BT and
SP had to be executed on 1, 4, 9, 16, 36, 64, or 144 nodes.

Table 3.2: Running NAS benchmarks on 8 and 9 nodes
Program Execution Energy Energy Performance Distance

name time/s consumption/J saving% degradation%
CG 36.11 3263.49 31.25 7.12 24.13
MG 8.99 953.39 33.78 6.41 27.37
EP 40.39 5652.81 27.04 0.49 26.55
LU 218.79 36149.77 28.23 0.01 28.22
BT 166.89 23207.42 32.32 7.89 24.43
SP 104.73 18414.62 24.73 2.78 21.95
FT 51.10 4913.26 31.02 2.54 28.48

Table 3.3: Running NAS benchmarks on 16 nodes
Program Execution Energy Energy Performance Distance

name time/s consumption/J saving% degradation%
CG 31.74 4373.90 26.29 9.57 16.72
MG 5.71 1076.19 32.49 6.05 26.44
EP 20.11 5638.49 26.85 0.56 26.29
LU 144.13 42529.06 28.80 6.56 22.24
BT 97.29 22813.86 34.95 5.80 29.15
SP 66.49 20821.67 22.49 3.82 18.67
FT 37.01 5505.60 31.59 6.48 25.11

The overall energy consumption was computed for each instance according to the en-
ergy consumption model (3.2), with and without applying the algorithm. The execution

80 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

Table 3.4: Running NAS benchmarks on 32 and 36 nodes
Program Execution Energy Energy Performance Distance

name time/s consumption/J saving% degradation%
CG 32.35 6704.21 16.15 5.30 10.85
MG 4.30 1355.58 28.93 8.85 20.08
EP 9.96 5519.68 26.98 0.02 26.96
LU 99.93 67463.43 23.60 2.45 21.15
BT 48.61 23796.97 34.62 5.83 28.79
SP 46.01 27007.43 22.72 3.45 19.27
FT 28.06 7142.69 23.09 2.90 20.19

Table 3.5: Running NAS benchmarks on 64 nodes
Program Execution Energy Energy Performance Distance

name time/s consumption/J saving% degradation%
CG 46.65 17521.83 8.13 1.68 6.45
MG 3.27 1534.70 29.27 14.35 14.92
EP 5.05 5471.11 27.12 3.11 24.01
LU 73.92 101339.16 21.96 3.67 18.29
BT 39.99 27166.71 32.02 12.28 19.74
SP 52.00 49099.28 24.84 0.03 24.81
FT 25.97 10416.82 20.15 4.87 15.28

Table 3.6: Running NAS benchmarks on 128 and 144 nodes
Program Execution Energy Energy Performance Distance

name time/s consumption/J saving% degradation%
CG 56.92 41163.36 4.00 1.10 2.90
MG 3.55 2843.33 18.77 10.38 8.39
EP 2.67 5669.66 27.09 0.03 27.06
LU 51.23 144471.90 16.67 2.36 14.31
BT 37.96 44243.82 23.18 1.28 21.90
SP 64.53 115409.71 26.72 0.05 26.67
FT 25.51 18808.72 12.85 2.84 10.01

time was also measured for all these experiments. Then, the energy saving and per-
formance degradation percentages were computed for each instance. The results are
presented in Tables 3.2, 3.3, 3.4, 3.5 and 3.6. All these results are the average values
obtained from many experiments for energy savings and performance degradation. The
tables show the experimental results for running the NAS parallel benchmarks on differ-
ent numbers of nodes. The experiments show that the algorithm significantly reduces the
energy consumption (up to 34%) and tries to limit the performance degradation. They
also show that the energy saving percentage decreases when the number of comput-
ing nodes increases. This reduction is due to the increase of the communication times
compared to the execution times when the benchmarks are run over a higher number
of nodes. Indeed, the benchmarks with the same class, C, are executed on different
numbers of nodes, so the computation required for each iteration is divided by the num-
ber of computing nodes. On the other hand, more communications are required when

3.4. EXPERIMENTAL RESULTS OVER A HETEROGENEOUS LOCAL CLUSTER 81

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 16 32 48 64 80 96 112 128 144

E
n

e
rg

y
 s

a
v
in

g
 %

 Number of nodes

CG MG EP LU BT SP FT

(a)

 0

 5

 10

 15

 0 16 32 48 64 80 96 112 128 144

P
e

rf
o

rm
a

n
c
e

 d
e

g
ra

d
a

ti
o

n
 %

 Number of nodes

CG MG EP LU BT SP FT

(b)

Figure 3.4: NAS benchmarks running with a different number of nodes (a) the energy
saving and (b) the performance degradation

increasing the number of nodes so the static energy increases linearly according to the
communication time and the dynamic power is less relevant in the overall energy con-
sumption. Therefore, reducing the frequency with Algorithm 5 is less effective in reducing
the overall energy savings. It can also be noticed that for the benchmarks EP and SP
that contain little or no communications, the energy savings are not significantly affected
by the high number of nodes. No experiments were conducted using bigger classes than
D, because they require a lot of memory (more than 64 GB) when being executed by
the simulator on one machine. The maximum distance between the normalized energy
curve and the normalized performance for each instance is also shown in the result ta-
bles. It decreases in the same way as the energy saving percentage. The tables also
show that the performance degradation percentage is not significantly increased when
the number of computing nodes is increased because the computation times are small

82 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

when compared to the communication times.

Figure 3.4 (a) and (b) present the energy saving and performance degradation respec-
tively for all the benchmarks according to the number of used nodes. As shown in the first
plot, the energy saving percentages of the benchmarks MG, LU, BT and FT decrease
linearly when the number of nodes increase. While for the EP and SP benchmarks, the
energy saving percentage is not affected by the increase of the number of computing
nodes, because in these benchmarks there are little or no communications. Finally, the
energy saving of the CG benchmark significantly decreases when the number of nodes
increase because this benchmark has more communications than the others. The sec-
ond plot shows that the performance degradation percentages of most of the benchmarks
decrease when they run on a big number of nodes because they spend more time com-
municating than computing, thus, scaling down the frequencies of some nodes has less
effect on the performance.

3.4.2/ THE RESULTS FOR DIFFERENT POWER CONSUMPTION SCENARIOS

The results of the previous section were obtained while using processors that consume
during computation an overall power which is 80% composed of dynamic power and 20%
of static power. In this section, these ratios are changed and two new power scenarios
are considered in order to evaluate how the proposed algorithm adapts itself according to
the static and dynamic power values. The two new power scenarios are the following:

• 70% of dynamic power and 30% of static power

• 90% of dynamic power and 10% of static power

The NAS parallel benchmarks were executed again over processors that follow the
new power scenarios. The class C of each benchmark was run over 8 or 9 nodes and
the results are presented in Tables 3.7 and 3.8. These tables show that the energy sav-
ing percentage of the 70%-30% scenario is smaller for all benchmarks compared to the
energy saving of the 90%-10% scenario. Indeed, in the latter more dynamic power is con-
sumed when nodes are running on their maximum frequencies, thus, scaling down the
frequency of the nodes results in higher energy savings than in the 70%-30% scenario.
On the other hand, the performance degradation percentage is smaller in the 70%-30%
scenario compared to the 90%-10% scenario. This is due to the higher static power
percentage in the first scenario which makes it more relevant in the overall consumed
energy. Indeed, the static energy is related to the execution time and if the performance
is degraded the amount of consumed static energy directly increases. Therefore, the pro-
posed algorithm does not significantly scale down the frequencies of the nodes in order
to limit the increase of the execution time and thus limiting the effect of the consumed
static energy.

Both new power scenarios are compared to the old one in Figure 3.5 (a). It shows
the average of the performance degradation, the energy saving and the distances for
all the NAS benchmarks running class C on 8 or 9 nodes. The comparison shows that
the energy saving ratio is proportional to the dynamic power ratio: it is increased when
applying the 90%-10% scenario because at maximum frequency the dynamic energy
is the most relevant in the overall consumed energy and can be reduced by lowering
the frequency of some processors. On the other hand, the energy saving decreases

3.4. EXPERIMENTAL RESULTS OVER A HETEROGENEOUS LOCAL CLUSTER 83

Table 3.7: The results of the 70%-30% power scenario
Program Energy Energy Performance Distance

name consumption/J saving% degradation%
CG 4144.21 22.42 7.72 14.70
MG 1133.23 24.50 5.34 19.16
EP 6170.30 16.19 0.02 16.17
LU 39477.28 20.43 0.07 20.36
BT 26169.55 25.34 6.62 18.71
SP 19620.09 19.32 3.66 15.66
FT 6094.07 23.17 0.36 22.81

Table 3.8: The results of the 90%-10% power scenario
Program Energy Energy Performance Distance

name consumption/J saving% degradation%
CG 2812.38 36.36 6.80 29.56
MG 825.43 38.35 6.41 31.94
EP 5281.62 35.02 2.68 32.34
LU 31611.28 39.15 3.51 35.64
BT 21296.46 36.70 6.60 30.10
SP 15183.42 35.19 11.76 23.43
FT 3856.54 40.80 5.67 35.13

Table 3.9: Comparing the MaxDist algorithm to the EDP method
Program Energy saving % Perf. degradation % Distance

name EDP MaxDist EDP MaxDist EDP MaxDist
CG 27.58 31.25 5.82 7.12 21.76 24.13
MG 29.49 33.78 3.74 6.41 25.75 27.37
LU 19.55 28.33 0.00 0.01 19.55 28.22
EP 28.40 27.04 4.29 0.49 24.11 26.55
BT 27.68 32.32 6.45 7.87 21.23 24.43
SP 20.52 24.73 5.21 2.78 15.31 21.95
FT 27.03 31.02 2.75 2.54 24.28 28.48

when the 70%-30% scenario is used because the dynamic energy is less relevant in
the overall consumed energy and lowering the frequency does not return big energy
savings. Moreover, the average of the performance degradation is decreased when using
a higher ratio for the static power (e.g. 70%-30% scenario and 80%-20% scenario).
Since the proposed algorithm optimizes the energy consumption when using a higher
ratio for the dynamic power, the algorithm selects bigger frequency scaling factors that
results in more energy saving but degrade the performance, for example see Figure 3.5
(b). The opposite happens when using a higher ratio for the static power, the algorithm
proportionally selects smaller scaling values which results in less energy saving but also
less performance degradation.

84 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

Performance Energy Distance
0

5

10

15

20

25

30

35

40
70%-30% scenario
80%-20% scenario
90%-10% scenario

T
h

e
av

er
ag

e

(a)

Selected frequency scaling factors for 8 nodes

70%-30%
Scenario

1.04 1.61 1.04 1.241.33 1.88 1.61 1.88

90%-10%
Scenario

1.08 1.61 1.04 1.331.42 2.03 1.61 1.88

80%-20%
Scenario

1.04 1.61 1.04 1.331.33 1.88 1.61 1.88

(b)

Figure 3.5: (a) Comparison the results of the three power scenarios and (b) Comparison
the selected frequency scaling factors of MG benchmark class C running on 8 nodes

CG MG LU EP BT SP FT

0

5

10

15

20

25

30
EDP

MaxDist

T
r
a

d
e
o
ff

 d
is

ta
n

c
e

Figure 3.6: Trade-off comparison for NAS benchmarks class C

3.5. THE ENERGY OPTIMIZATION OF GRID 85

3.4.3/ COMPARISON BETWEEN THE PROPOSED SCALING ALGORITHM AND THE
EDP METHOD

In this section, the scaling factors selection algorithm, called MaxDist, is compared to
[75], EDP method. They developed a green governor that regularly applies an online
frequency selecting algorithm to reduce the energy consumed by a multi-core architec-
ture without degrading much its performance. The algorithm selects the frequencies that
minimize the energy and delay product, EDP = energy × delay, using the predicted over-
all energy consumption and execution time delay for each frequency. To fairly compare
both algorithms, the same energy and execution time models, Equations (3.2) and (3.1),
were used for both algorithms to predict the energy consumption and the execution times.
Spiliopoulos et al. algorithm was adapted to start the search from the initial frequencies
computed using Equation (3.7). The resulting algorithm is an exhaustive search algorithm
that minimizes the EDP and has the initial frequencies values as an upper bound.

Both algorithms were applied to the parallel NAS benchmarks to compare their ef-
ficiency. Table 3.9 presents the execution times and the energy consumption for both
versions of the NAS benchmarks while running the class C of each benchmark over 8
or 9 heterogeneous nodes. The results show that our algorithm provides better energy
savings than Spiliopoulos et al. algorithm, on average it results in 29.76% energy sav-
ing while their algorithm saves just 25.75%. The average of performance degradation
percentage is approximately the same for both algorithms, about 4%.

For all benchmarks, our algorithm outperforms Spiliopoulos et al. algorithm in the
energy reduction to performance trade-off, see Figure 3.6, because it maximizes the
distance between the energy saving and the performance degradation values while giving
the same weight for both metrics.

3.5/ THE ENERGY OPTIMIZATION OF PARALLEL APPLICATIONS

WITH ITERATIONS RUNNING OVER GRIDS

3.5.1/ THE ENERGY AND PERFORMANCE MODELS OF GRID PLATFORM

In this section, we are interested in reducing the energy consumption of message passing
applications with synchronous iterations running over heterogeneous grid platforms. A
heterogeneous grid platform could be defined as a collection of heterogeneous computing
clusters interconnected via a long distance network which has a lower bandwidth and a
higher latency than the local networks of the clusters. Each computing cluster in the
grid is composed of homogeneous nodes that are connected together via a high speed
network. However, nodes from distinct clusters may have different characteristics such
as computing power (FLOPS), energy consumption, CPU’s frequency range, network
bandwidth and latency.

Since in a heterogeneous grid each cluster has different characteristics, when ap-
plying DVFS operations on the nodes of these clusters, they may get different scaling
factors represented by a scaling vector: (S 11, S 12, . . . , S NM) where S i j is the scaling factor
of processor j in cluster i. To be able to predict the execution time of message passing
applications with synchronous iterations running over a heterogeneous grid, for different
vectors of scaling factors, the communication time and the computation time for all the

86 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

tasks must be measured during the first iteration before applying any DVFS operation.
Then the execution time for one iteration of the application with any vector of scaling
factors can be predicted using Equation (3.8).

TNew = max
i=1,...N

j=1,...,Mi

(TcpOldi j · S i j) + min
j=1,...,Mi

(Tcmh j
) (3.8)

where N is the number of clusters in the grid, Mi is the number of nodes in cluster i, TcpOldi j
is the computation time of processor j in the cluster i and Tcmh j

is the communication time
of processor j in the cluster h during the first iteration. The execution time for one iteration
is equal to the sum of the maximum computation time for all nodes with the new scaling
factors and the slowest communication time without slack time during one iteration. The
latter is equal to the communication time of the slowest node in the slowest cluster h.
It means that only the communication time without any slack time is taken into account.
Therefore, the execution time of the parallel application with iterations is equal to the
execution time of one iteration as in Equation (3.8) multiplied by the number of iterations
of that application.

In the considered heterogeneous grid platform, each node j in cluster i may have dif-
ferent dynamic and static powers from the nodes of the other clusters, noted as Pdi j

and
Psi j

respectively. Therefore, even if the distributed message passing application with it-
erations is load balanced, the computation time of each CPU j in cluster i noted Tcpi j
may be different and different frequency scaling factors may be computed in order to de-
crease the overall energy consumption of the application and reduce slack times. The
communication time of a processor j in cluster i is noted as Tcmi j

and could contain slack
times when communicating with slower nodes, see Figure 3.1. Therefore, all nodes do
not have equal communication times. While the dynamic energy is computed accord-
ing to the frequency scaling factor and the dynamic power of each node as in Equation
(1.16), the static energy is computed as the sum of the execution time of one iteration
multiplied by the static power of each processor. The overall energy consumption of a
message passing distributed application executed over a heterogeneous grid platform
during one iteration is the summation of all dynamic and static energies for Mi processors
in N clusters. It is computed as follows:

E =

N∑
i=1

Mi∑
i=1

(S −2
i j · Pdi j

· Tcpi j) +

N∑
i=1

Mi∑
j=1

(Psi j
· (max

i=1,...N
j=1,...,Mi

(Tcpi j · S i j) + min
j=1,...Mi

(Tcmh j
))) (3.9)

To optimize both of the energy consumption model computed by 3.9 and the perfor-
mance model computed by 3.8, they must be normalized as in Equation 3.3 and Equation
3.4 respectively. While the original energy consumption is the consumed energy with the
maximum frequency for all the nodes computed as follows:

EOriginal =

N∑
i=1

Mi∑
j=1

(Pdi j
· Tcpi j) +

N∑
i=1

Mi∑
j=1

(Psi j
· TOld) (3.10)

By the same way, the old execution time with the maximum frequency for all the nodes
is computed as follows:

3.5. THE ENERGY OPTIMIZATION OF GRID 87

The initial
frequencies

Scope of the
search space

2.5

2.3
2.2

2.4

1.9

2.1
2.0

1.8
1.7
1.6

2.5

2.3
2.2

2.4

1.9

2.1
2.0

1.8
1.7
1.6

2.5

2.3
2.2

2.4

1.9

2.1
2.0

1.8
1.7
1.6

2.5

2.3
2.2

2.4

1.9

2.1
2.0

1.8
1.7
1.6

Cluster 1
Homogeneous nodes

Heterogeneous clusters

Cluster 2
Homogeneous nodes

2.3

2.1
2.2

2.2

1.8

2
1.9

1.7
1.6
1.4
1.3
1.2

2.32.3 2.3

2.1
2.2

2.2

1.8

2
1.9

1.7
1.6
1.4
1.3
1.2

2.32.3 2.3

2.1
2.2

2.2

1.8

2
1.9

1.7
1.6
1.4
1.3
1.2

2.32.3 2.3

2.1
2.2

2.2

1.8

2
1.9

1.7
1.6
1.4
1.3
1.2

2.32.3

Cluster 3
Homogeneous nodes

2.3

2.26
2.13

2.4

1.73

2
1.86

1.6
1.46
1.33
1.2

2.32.53 2.3

2.26
2.13

2.4

1.73

2
1.86

1.6
1.46
1.33
1.2

2.32.53 2.3

2.26
2.13

2.4

1.73

2
1.86

1.6
1.46
1.33
1.2

2.32.53 2.3

2.26
2.13

2.4

1.73

2
1.86

1.6
1.46
1.33
1.2

2.32.53

Figure 3.7: Selecting the initial frequencies in the grid architecture

TOld = max
i=1,...N

j=1,...,Mi

(Tcpi j) + min
j=1,...,Mi

(Tcmh j
) (3.11)

Therefore, the objective function can be modelled in order to find the maximum distance
between the normalized energy curve and the normalized performance curve over all
possible sets of scaling factors as follows:

MaxDist = max
i=1,...N

j=1,...,Mi
k=1,...,F j

(

Maximize︷ ︸︸ ︷
PNorm(S i jk)−

Minimize︷ ︸︸ ︷
ENorm(S i jk)) (3.12)

where N is the number of clusters, Mi is the number of nodes in each cluster and F j

is the number of available frequencies for the node j. Then, the optimal set of scaling
factors that satisfies (3.12) can be selected.

3.5.2/ THE SCALING FACTORS SELECTION ALGORITHM FOR A GRID ARCHITEC-
TURE

In this section, the scaling factors selection algorithm for a grid, Algorithm 7, is presented.
It selects the vector of frequency scaling factors that gives the best trade-off between min-
imizing the energy consumption and maximizing the performance of a message passing
application with synchronous iterations executed on a grid. It is similar to the frequency
selection algorithm for heterogeneous local clusters presented in Section 3.3.4.

The value of the initial frequency scaling factor for each node is inversely proportional
to its computation time that was gathered in the first iteration. The initial frequency scaling
factor for a node i is computed as a ratio between the computation time of the slowest

88 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

 0.4

 0.6

 0.8

 1

 1.2

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 a

n
d

 p
e

rf
o

rm
a

n
c
e

Vectors of frequency scaling factors

Optimal vector of scaling factors

 Upper bound

 Lower bound

 Max.
 distance

Normalized performance
Normalized energy

Figure 3.8: The energy and performance relation in grid

node and the computation time of the node i as follows:

S cpi j =

max
i=1,...N

j=1,...,Mi

(Tcpi j)

Tcpi j
(3.13)

Using the initial frequency scaling factors computed in (3.13), the algorithm computes the
initial frequencies for all nodes as a ratio between the maximum frequency of the node
and its computed scaling factor, as follows:

Fi j =
Fmaxi j

S cpi j
, i = 1, 2, . . . ,N, j = 1, . . . ,Mi (3.14)

Figure 3.7 shows the selected initial frequencies for a grid composed of three clusters.
In contrast to algorithm 5, algorithm 7 replaces the computed initial frequency for a node
by the nearest available frequency if not available in the gears of that node. The fre-
quency scaling algorithm of the grid stops its iteration if it reaches the lower bound, which
is the frequency that gives a negative distance between the energy and performance. A
negative distance means that the performance degradation ratio is higher than the en-
ergy saving ratio as in figure 3.8. In this situation, the algorithm must stop the downward
search because it has reached the lower bound and it is useless to test the lower fre-
quencies. Indeed, they will all give worse distances. Therefore, the algorithm iterates on
all the remaining frequencies, from the higher bound until all nodes reach their minimum
frequencies or their lower bounds, to compute the overall energy consumption and exe-
cution time. Then, it selects the vector of frequency scaling factors that give the maximum
distance (MaxDist). Algorithm 6 is also used to call the Algorithm 7 in the MPI program
executed over the grid platform.

3.5. THE ENERGY OPTIMIZATION OF GRID 89

Algorithm 7 Scaling factors selection algorithm for grid
Require:
N number of clusters in the grid.

Mi number of nodes in each cluster.
Tcpi j array of all computation times for all nodes during one iteration and with the highest

frequency.
Tcmi j

array of all communication times for all nodes during one iteration and with the
highest frequency.

Fmaxi j
array of the maximum frequencies for all nodes.

Pdi j
array of the dynamic powers for all nodes.

Psi j
array of the static powers for all nodes.

Fdiffi j array of the differences between two successive frequencies for all nodes.
Ensure: S opt11, S opt12 . . . , S optNMi

, a vector of scaling factors that gives the optimal trade-
off between energy consumption and execution time

1: S cpi j ←

max
i=1,...N

j=1,...,Mi

(Tcpi j)

Tcpi j

2: Fi j ←
Fmax

i j
S cpi

, i = 1, 2, · · · ,N, j = 1, 2, . . . ,Mi.

3: Round the computed initial frequencies Fi to the closest available frequency for each
node.

4: if (not the first frequency) then
5: Fi j ← Fi j + Fdiffi j, i = 1, . . . ,N, j = 1, . . . ,Mi.

6: end if
7: TOld ← max

i=1,...N
j=1,...,Mi

(Tcpi j) + min
j=1,...,Mi

(Tcmh j
)

8: EOriginal ←
∑N

i=1
∑Mi

j=1(Pdi j
· Tcpi j) +

∑N
i=1

∑Mi
j=1(Psi j

· TOld)
9: S opti j ← 1, i = 1, . . . ,N, j = 1, . . . ,Mi.

10: Dist ← 0
11: while (all nodes have not reached their minimum frequency or PNorm − ENorm < 0) do
12: if (not the last freq. and not the slowest node) then
13: Fi j ← Fi j − Fdiffi j, i = 1, . . . ,N, j = 1, . . . ,Mi.

14: S i j ←
Fmax

i j
Fi j

, i = 1, . . . ,N, j = 1, . . . ,Mi.

15: end if
16: TNew ← max

i=1,...N
j=1,...,Mi

(TcpOldi j · S i j) + min
j=1,...,Mi

(Tcmh j
)

17: EReduced ←
N∑

i=1

Mi∑
i=1

(S −2
i j · Pdi j

· Tcpi j) +
N∑

i=1

Mi∑
j=1

(Psi j
· (max

i=1,...N
j=1,...,Mi

(Tcpi j · S i j) + min
j=1,...,Mi

(Tcmh j
)))

18: PNorm ←
TOld
TNew

19: ENorm ←
EReduced
EOriginal

20: if (PNorm − ENorm > Dist) then
21: S opti j ← S i j, i = 1, . . . ,N, j = 1, . . . ,Mi

22: Dist ← PNorm − ENorm

23: end if
24: end while
25: Return S opt11, S opt12, . . . , S optNMi

90 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

3.6/ EXPERIMENTAL RESULTS OVER THE GRID5000 PLATFORM

In this section, real experiments were conducted over the Grid’5000 platform.
Grid’5000 [3] is a large-scale testbed that consists of ten sites distributed all over
metropolitan France and Luxembourg. These sites are: Grenoble, Lille, Luxembourg,
Lyon, Nancy, Reims, Rennes , Sophia, Toulouse and Bordeaux. Figure 3.9 shows the
geographical distribution of grid’5000 sites over France and Luxembourg. All the sites are
connected together via a special long distance network called RENATER, which is the
abbreviation of the French National Telecommunication Network for Technology. Each
site in the grid is composed of a few heterogeneous computing clusters and each cluster
contains many homogeneous nodes. In total, Grid’5000 has about one thousand hetero-
geneous nodes and eight thousand cores. In each site, the clusters and their nodes are
connected via high speed local area networks. Two types of local networks are used,
Ethernet or Infiniband networks, which have different characteristics in terms of band-
width and latency. Grid’5000 is dedicated for research experiments and users can book
nodes from different sites to conduct their experiments. It also gives the opportunity to
the users to deploy their customized operating system over the reserved nodes. Indeed,
many software tools are available for users in order to control and manage the reservation
and deployment processes remotely. For example, OAR [5] is a batch scheduler that is
used to manage the heterogeneous resources of the grid’5000.

Figure 3.9: Grid5000’s sites distribution in France and Luxembourg

Moreover, the Grid’5000 testbed provides at some sites a power measurement tool to
capture the power consumption for each node in those sites. The measured power is the
overall consumed power by all the components of a node at a given instant. For more
details refer to [68]. In order to correctly measure the CPU power of one core in a node j,

3.6. EXPERIMENTAL RESULTS OVER THE GRID5000 PLATFORM 91

Griffon Graphene

Graphite

 Nancy site

Sagittaire

Taurus

Hercule

 Lyon site

Orion

Figure 3.10: The selected two sites of Grid’5000

firstly, the power consumed by the node while being idle at instant y, noted as Pidle jy
, was

measured. Then, the power was measured while running a single thread benchmark with
no communication (no idle time) over the same node with its CPU scaled to the maximum
available frequency. The latter power measured at time x with maximum frequency for
one core of node j is noted Pmax jx

. The difference between the two measured power
consumptions represents the dynamic power consumption of that core with the maximum
frequency, see Figure 3.11.

The dynamic power Pd j
is computed as in Equation 3.15

Pd j
= max

x=β1,...β2
(Pmax jx

) − min
y=Θ1,...Θ2

(Pidle jy
) (3.15)

where Pd j
is the dynamic power consumption for one core of node j, {β1, β2} is the

time interval for the measured maximum power values, {Θ1,Θ2} is the time interval for the
measured idle power values. Therefore, the dynamic power of one core is computed as
the difference between the maximum measured value in maximum powers vector and the
minimum measured value in the idle powers vector.

On the other hand, the static power consumption by one core is a part of the measured
idle power consumption of the node. Since in Grid’5000 there is no way to measure
precisely the consumed static power and it was assumed, as in Sections 3.4 and 2.7, that
the static power represents a ratio of the dynamic power, the value of the static power is
assumed to be equal to 20% of the dynamic power consumption of the core.

In the experiments presented in the following sections, two sites of Grid’5000 were
used, Lyon and Nancy sites. These two sites have in total seven different clusters as
shown in Figure 3.10.

Four clusters from the two sites were selected in the experiments: one cluster from
Lyon’s site, Taurus, and three clusters from Nancy’s site, Graphene, Griffon and Graphite.
Each one of these clusters composed of homogeneous nodes, while nodes from differ-
ent clusters are heterogeneous in many aspects such as: computing power, power con-
sumption, available frequency ranges and local network features: the bandwidth and the
latency. Table 3.10 shows the detailed characteristics of these four clusters. Moreover,
the dynamic powers were computed using Equation 3.15 for all the nodes in the selected
clusters and are presented in Table 3.10.

92 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

0

20

40

60

80

100

120

140

160
Max power =131 WIdle power =96 W

Time [s]

 p
o

w
er

 c
o

n
su

m
p

ti
o

n
 [

 w
]

 t+5 t+3 t+2 t+1 t t+4

Figure 3.11: The power consumed by one core from the Taurus cluster

Table 3.10: The characteristics of the CPUs in the selected clusters
Max Min Diff.

Cluster CPU Freq. Freq. Freq. Cores Dynamic power
Name model GHz GHz GHz per CPU of one core

Intel
Taurus Xeon 2.3 1.2 0.1 6 35 W

E5-2630
Intel

Graphene Xeon 2.53 1.2 0.133 4 23 W
X3440
Intel

Griffon Xeon 2.5 2 0.5 4 46 W
L5420
Intel

Graphite Xeon 2 1.2 0.1 8 35 W
E5-2650

The energy model and the scaling factors selection algorithm were applied to the NAS
parallel benchmarks v3.3 [57] and evaluated over Grid’5000. The benchmark suite con-
tains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have dif-
ferent computations and communications ratios and strategies which make them good
testbed applications to evaluate the proposed algorithm and energy model. The bench-
marks have seven different classes, S, W, A, B, C, D and E, that represent the size of
the problem that the method solves. In the next sections, the class D was used for all the
benchmarks in all the experiments.

3.6.1/ THE EXPERIMENTAL RESULTS OF THE SCALING ALGORITHM ON A GRID

In this section, the results of applying the scaling factors selection algorithm to the NAS
parallel benchmarks are presented. As mentioned previously, the experiments were con-
ducted over two sites of Grid’5000, Lyon and Nancy sites. Two scenarios were considered

3.6. EXPERIMENTAL RESULTS OVER THE GRID5000 PLATFORM 93

while selecting the clusters from these two sites :

• In the first scenario, nodes from two sites and three heterogeneous clusters were
selected. The two sites are connected via a long distance network.

• In the second scenario nodes from three clusters located in one site, Nancy’s site,
were selected.

The main reason for using these two scenarios is to evaluate the influence of long
distance communications (higher latency) on the performance of the scaling factors se-
lection algorithm. Indeed, in the first scenario the computations to communications ratio
is very low due to the higher communication times which reduces the effect of the DVFS
operations.

The NAS parallel benchmarks are executed over 16 and 32 nodes for each scenario.
The number of participating computing nodes from each cluster is different because all
the selected clusters do not have the same available number of nodes and all benchmarks
do not require the same number of computing nodes. Table 3.11 shows the number of
nodes used from each cluster for each scenario.

Table 3.11: The different grid scenarios

Scenario name
The participating clusters

Cluster Site Nodes per cluster

Two sites / 16 nodes
Taurus Lyon 5

Graphene Nancy 5
Griffon Nancy 6

Two sites / 32 nodes
Taurus Lyon 10

Graphene Nancy 10
Griffon Nancy 12

One site / 16 nodes
Graphite Nancy 4

Graphene Nancy 6
Griffon Nancy 6

One site / 32 nodes
Graphite Nancy 4

Graphene Nancy 14
Griffon Nancy 14

The NAS parallel benchmarks are executed over these two platforms with different
number of nodes, as in Table 3.11. The overall energy consumption of all the benchmarks
solving the class D instance and using the proposed frequency selection algorithm is
measured using Equation 3.9.

The energy consumptions and the execution times for all the benchmarks are pre-
sented in Figures 3.12 (a) and (b) respectively. For the majority of the benchmarks, the
energy consumed while executing the NAS benchmarks over one site on 16 and 32 nodes
is lower than the energy consumed while using two sites. The long distance communica-
tions between the two distributed sites increase the idle times, which lead to more static
energy consumption.

The execution times of these benchmarks over one site with 16 and 32 nodes are also
lower than those of the two sites scenario. Moreover, most of the benchmarks running
over the one site scenario have their execution times approximately halved when the

94 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

number of computing nodes is doubled from 16 to 32 nodes (linear speed up according
to the number of the nodes).

However, the execution times and the energy consumptions of the EP and MG bench-
marks, which have no or small communications, are not significantly affected in both
scenarios, even when the number of nodes is doubled. On the other hand, the communi-
cation times of the rest of the benchmarks increase when using long distance communi-
cations between two sites or when increasing the number of computing nodes.

The energy saving percentage is computed as the ratio between the reduced energy
consumption, Equation 3.9, and the original energy consumption, Equation 3.10, for all
the benchmarks as in Figure 3.13. This figure shows that the energy saving percentages
of the one site scenario for 16 and 32 nodes are bigger than those of the two sites sce-
nario which is due to the higher computations to communications ratio in the first scenario
than in the second one. Moreover, the frequency selecting algorithm selects smaller fre-
quencies when the computation times are bigger than the communication times which
results in a lower energy consumption. Indeed, the dynamic consumed power is expo-
nentially related to the CPU’s frequency value. On the other hand, the increase in the
number of computing nodes can increase the communication times and thus produces
less energy saving depending on the benchmarks being executed. The results of the
benchmarks CG, MG, BT and FT show more energy saving percentage in the one site
scenario when executed over 16 nodes than on 32 nodes. LU and SP consume more
energy with 16 nodes than with 32 nodes on one site because their computations to com-
munications ratio is not affected by the increase of the number of local communications.

The energy saving percentage is reduced for all the benchmarks because of the long
distance communications in the two sites scenario, except for the EP benchmark which
has no communication. Therefore, the energy saving percentage of this benchmark is
dependent on the maximum difference between the computing powers of the hetero-
geneous computing nodes, for example in the one site scenario, the graphite cluster is
selected but in the two sites scenario this cluster is replaced with the Taurus cluster which
is more powerful. Therefore, the energy savings of the EP benchmark are bigger in the
two sites scenario due to the higher maximum difference between the computing powers
of the nodes.

In fact, high differences between the nodes’ computing powers make the proposed
frequencies selecting algorithm select smaller frequencies for the powerful nodes which
produces less energy consumption and thus more energy saving. The best energy saving
percentage was obtained in the one site scenario with 16 nodes, the energy consumption
was on average reduced up to 30%.

Figure 3.14 presents the performance degradation percentages for all the benchmarks
over the two scenarios. The performance degradation percentage for the benchmarks
running on two sites with 16 and 32 nodes is on average equal to 8.3% and 4.7% respec-
tively. For this scenario, the proposed scaling algorithm selects smaller frequencies for
the executions with 32 nodes without significantly degrading their performance because
the communication times are high with 32 nodes which results in smaller computations
to communications ratio. On the other hand, the performance degradation percentage
for the benchmarks running on one site with 16 and 32 nodes is on average equal to
3.2% and 10.6% respectively. In contrary to the two sites scenario, when the number
of computing nodes is increased in the one site scenario, the performance degradation

3.6. EXPERIMENTAL RESULTS OVER THE GRID5000 PLATFORM 95

 0

 300000

 600000

 900000

 1.2e+06

 1.5e+06

 1.8e+06

 2.1e+06

 2.4e+06

CG MG EP LU BT SP FT

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

J
]

NAS parallel benchmarks

One site / 16 nodes
One site / 32 nodes
Two sites / 16 nodes
Two sites / 32 nodes

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

CG MG EP LU BT SP FT

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

NAS parallel benchmarks

One site / 16 nodes
One site / 32 nodes
Two sites / 16 nodes
Two sites / 32 nodes

(b)

Figure 3.12: (a) energy consumption and (b) execution time of NAS Benchmarks over
different scenarios

percentage is increased. Therefore, doubling the number of computing nodes when the
communications occur in high speed network does not decrease the computations to
communication ratio.

The performance degradation percentage of the EP benchmark after applying the scal-
ing factors selection algorithm is the highest in comparison to the other benchmarks.
Indeed, in the EP benchmark, there are no communication and slack times and its per-
formance degradation percentage only depends on the frequencies values selected by
the algorithm for the computing nodes. The rest of the benchmarks showed different
performance degradation percentages which decrease when the communication times
increase and vice versa.

96 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

CG MG EP LU BT SP FT

E
n

e
rg

y
 s

a
v
in

g
 %

NAS parallel benchmarks

One site / 16 nodes
One site / 32 nodes
Two sites / 16 nodes
Two sites / 32 nodes

Figure 3.13: The energy reduction percentages while executing the NAS benchmarks
over different scenarios

 0

 5

 10

 15

 20

 25

 30

 35

CG MG EP LU BT SP FT

P
e

rf
o

rm
a

n
c
e

 d
e

g
ra

d
a

ti
o

n
 %

NAS parallel benchmarks

One site / 16 nodes
One site / 32 nodes
Two sites / 16 nodes
Two sites / 32 nodes

Figure 3.14: The performance degradation percentages of the NAS benchmarks over
different scenarios

Figure 3.15 presents the distance percentage between the energy saving and the per-
formance degradation for each benchmark over both scenarios. The trade-off distance
percentage can be computed as in Equation 3.12. The one site scenario with 16 nodes
gives the best energy and performance trade-off, on average it is equal to 26.8%. The one
site scenario using both 16 and 32 nodes had better energy and performance trade-off
comparing to the two sites scenario because the former has high speed local communi-
cations which increase the computations to communications ratio and the latter uses long
distance communications which decrease this ratio.

3.6. EXPERIMENTAL RESULTS OVER THE GRID5000 PLATFORM 97

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

CG MG EP LU BT SP FT

T
ra

d
e

o
ff

 d
is

ta
n

c
e

 %

NAS parallel benchmarks

One site / 16 nodes
One site / 32 nodes
Two sites / 16 nodes
Two sites / 32 nodes

Figure 3.15: The trade-off distance percentages between the energy reduction and the
performance of the NAS benchmarks over different scenarios

Finally, the best energy and performance trade-off depends on all of the following:
1) the computations to communications ratio when there are communications and slack
times, 2) the heterogeneity of the computing powers of the nodes and 3) the heterogeneity
of the consumed static and dynamic powers of the nodes.

3.6.2/ THE EXPERIMENTAL RESULTS OVER MULTI-CORE CLUSTERS

The clusters of Grid’5000 have different number of cores embedded in their nodes as
shown in Table 3.10. In this section, the proposed scaling algorithm is evaluated over
the Grid’5000 platform while using multi-core nodes selected according to the one site
scenario described in Section 3.6.1.

Table 3.12: The multi-core scenarios
Scenario name Cluster name Nodes per cluster Cores per node

One core per node
Graphite 4 1

Graphene 14 1
Griffon 14 1

Multi-core per node
Graphite 1 4

Graphene 4 3 or 4
Griffon 4 3 or 4

The one site scenario uses 32 cores from multi-core nodes instead of 32 distinct
nodes. For example if the participating number of cores from a certain cluster is equal
to 14, in the multi-core 4 nodes are selected and 3 or 4 cores from each node are used.
The platforms with one core per node and multi-core nodes are shown in Table 3.12.
The energy consumptions and execution times of running class D of the NAS parallel
benchmarks over these two different platforms are presented in Figures 3.17 and 3.16
respectively.

98 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

CG MG EP LU BT SP FT

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

NAS parallel benchmarks

One core per node scenario
Multicores per node scenario

Figure 3.16: The execution times of the NAS benchmarks running over the one core and
the multi-core scenarios

 0

 300000

 600000

 900000

 1.2e+06

 1.5e+06

 1.8e+06

 2.1e+06

 2.4e+06

CG MG EP LU BT SP FT

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

J
]

NAS parallel benchmarks

One core per node scenario
Multicores per node scenario

Figure 3.17: The energy consumptions and execution times of the NAS benchmarks over
one core and multi-core per node architectures

The execution times for most of the NAS benchmarks are higher over the multi-core
per node scenario than over the single core per node scenario. Indeed, the communica-
tion times are higher in the one site multi-core scenario than in the latter scenario because
all the cores of a node share the same node network link which can be saturated when
running communication bound applications. Moreover, the cores of a node share the
memory bus which can be also saturated and might become a bottleneck. Moreover, the
energy consumptions of the NAS benchmarks are lower over the one core scenario than
over the multi-core scenario because the first scenario had less execution time than the
latter which results in less static energy being consumed. The computations to commu-
nications ratios of the NAS benchmarks are higher over the one site one core scenario

3.6. EXPERIMENTAL RESULTS OVER THE GRID5000 PLATFORM 99

when compared to the ratio of the multi-core scenario. More energy reduction can be
gained when this ratio is big because it pushes the proposed scaling algorithm to select
smaller frequencies that decrease the dynamic power consumption. These experiments
also showed that the energy consumption and the execution times of the EP and MG
benchmarks do not change significantly over these two scenarios because there are no
or small communications. Contrary to EP and MG, the energy consumptions and the
execution times of the rest of the benchmarks vary according to the communication times
that are different from one scenario to the other.

 0

 5

 10

 15

 20

 25

 30

 35

 40

CG MG EP LU BT SP FT

E
n

e
rg

y
 s

a
v
in

g
 %

NAS parallel benchmarks

One core per node scenario
Multicores per node scenario

Figure 3.18: The energy saving percentages of running NAS benchmarks over one core
and multi-core scenarios

 0

 5

 10

 15

 20

 25

 30

CG MG EP LU BT SP FT

P
e

rf
o

rm
a

n
c
e

 d
e

g
ra

d
a

ti
o

n
 %

NAS parallel benchmarks

One core per node scenario
Multicores per node scenario

Figure 3.19: The performance degradation percentages of running NAS benchmarks over
one core and multi-core scenarios

The energy saving percentages of all the NAS benchmarks running over these two

100 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

 0

 5

 10

 15

 20

 25

 30

 35

 40

CG MG EP LU BT SP FT

T
ra

d
e

o
ff

 d
is

ta
n

c
e

 %

NAS parallel benchmarks

One core per node scenario
Multicores per node scenario

Figure 3.20: The trade-off distance percentages of running NAS benchmarks over one
core and multi-core scenarios

scenarios are presented in Figure 3.18. It shows that the energy saving percentages
in the one core and the multi-core scenarios are approximately equivalent, on average
they are equal to 25.9% and 25.1% respectively. The energy consumption is reduced
at the same rate in the two scenarios when compared to the energy consumption of the
executions without DVFS.

The performance degradation percentages of the NAS benchmarks are presented in
Figure 3.19. It shows that the performance degradation percentages are higher for the
NAS benchmarks executed over the one core per node scenario (on average equal to
10.6%) than over the multi-core scenario (on average equal to 7.5%). The performance
degradation percentages over the multi-core scenario are lower because the computa-
tions to communications ratios are smaller than the ratios of the other scenario.

The trade-off distances percentages of the NAS benchmarks over both scenarios are
presented in Figure 3.20. These trade-off distances between energy consumption re-
duction and performance are used to verify which scenario is the best in both terms at
the same time. The figure shows that the trade-off distance percentages are on average
bigger over the multi-core scenario (17.6%) than over the one core per node scenario
(15.3%).

3.6.3/ EXPERIMENTS WITH DIFFERENT STATIC POWER SCENARIOS

In Section 3.6, since it was not possible to measure the static power consumed by a CPU,
the static power was assumed to be equal to 20% of the measured dynamic power. This
power is consumed during the whole execution time, during computation and communi-
cation times. Therefore, when the DVFS operations are applied by the scaling algorithm
and the CPUs’ frequencies lowered, the execution time might increase and consequently
the consumed static energy will be increased too.

The aim of this section is to evaluate the scaling algorithm while assuming different

3.6. EXPERIMENTAL RESULTS OVER THE GRID5000 PLATFORM 101

values of static powers. In addition to the previously used percentage of static power,
two new static power ratios, 10% and 30% of the measured dynamic power of the core,
are used in this section. The experiments have been executed with these two new static
power scenarios over the one site one core per node scenario. In these experiments,
the class D of the NAS parallel benchmarks were executed over the Nancy site. 16
computing nodes from the three clusters, Graphite, Graphene and Griffon, were used in
this experiment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

CG MG EP LU BT SP FT

E
n

e
rg

y
 s

a
v
in

g
 %

NAS parallel benchmarks

10% static power
20% static power
30% static power

Figure 3.21: The energy saving percentages for the nodes executing the NAS bench-
marks over the three power scenarios

 0

 3

 6

 9

 12

 15

CG MG EP LU BT SP FT

P
e

rf
o

rm
a

n
c
e

 d
e

g
ra

d
a

ti
o

n
 %

NAS parallel benchmarks

10% static power
20% static power
30% static power

Figure 3.22: The performance degradation percentages for the NAS benchmarks over
the three power scenarios

The energy saving percentages of the NAS benchmarks with the three static power
scenarios are presented in Figure 3.21. This figure shows that the 10% of static power

102 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

 0

 5

 10

 15

 20

 25

 30

 35

 40

CG MG EP LU BT SP FT

T
ra

d
e

o
ff

 d
is

ta
n

c
e

 %

NAS parallel benchmarks

10% static power
20% static power
30% static power

Figure 3.23: The trade-off distance percentages between the energy reduction and the
performance of the NAS benchmarks over the three power scenarios

Selected frequency scaling factors

30%Pstatic
scenario

10%Pstatic
scenario

20%Pstatic
scenario

1 1 1 11 1 1.99 1.99 1.99 1.99 1.66 1.661.99 1.99 1.66 1.66

1.25 1.25 1.25 1.251.25 1.25 1.99 1.99 1.99 1.99 1.66 1.661.99 1.99 1.66 1.66

1.25 1.25 1.25 1.251.25 1.25 2.49 2.49 2.49 2.49 1.66 1.662.49 2.49 1.66 1.66

Figure 3.24: Comparing the selected frequency scaling factors for the MG benchmark
over the three static power scenarios

scenario gives the biggest energy saving percentages in comparison to the 20% and 30%
static power scenarios. The small value of the static power consumption makes the pro-
posed scaling algorithm select smaller frequencies for the CPUs. These smaller frequen-
cies reduce the dynamic energy consumption more than increasing the consumed static
energy which gives less overall energy consumption. The energy saving percentages
of the 30% static power scenario is the smallest between the other scenarios, because
the scaling algorithm selects bigger frequencies for the CPUs which increases the en-
ergy consumption. Figure 3.24 demonstrates that the proposed scaling algorithm selects
the best frequency scaling factors according to the static power consumption ratio being
used.

The performance degradation percentages are presented in Figure 3.22. The 30%
static power scenario had less performance degradation percentage because the scal-
ing algorithm had selected big frequencies for the CPUs. While, the inverse happens in
the 10% and 20% scenarios because the scaling algorithm had selected CPUs’ frequen-
cies smaller than those of the 30% scenario. The trade-off distance percentage for the

3.6. EXPERIMENTAL RESULTS OVER THE GRID5000 PLATFORM 103

NAS benchmarks with these three static power scenarios are presented in Figure 3.23. It
shows that the best trade-off distance percentage is obtained with the 10% static power
scenario and this percentage is decreased for the other two scenarios because the scal-
ing algorithm had selected different frequencies according to the static power values.

In the EP benchmark, the energy saving, performance degradation and trade-off dis-
tance percentages for these static power scenarios are not significantly different because
there is no communication in this benchmark. Therefore, the static power is only con-
sumed during computation and the proposed scaling algorithm selects similar frequen-
cies for the three scenarios. On the other hand, for the rest of the benchmarks, the scaling
algorithm selects the values of the frequencies according to the communication times of
each benchmark because the static energy consumption increases proportionally to the
communication times.

3.6.4/ COMPARISON BETWEEN THE PROPOSED FREQUENCIES SELECTING AL-
GORITHM AND THE EDP METHOD

Finding the frequencies that give the best trade-off between the energy consumption and
the performance for a parallel application is not a trivial task. Many algorithms have been
proposed to tackle this problem. In this section, the proposed frequencies selecting algo-
rithm is compared to a method that uses the well known energy and delay product objec-
tive function, EDP = energy× delay, that has been used by many researchers [72, 20, 56].
This objective function was also used by Spiliopoulos et al. algorithm [75] where they se-
lect the frequencies that minimize the EDP product and apply them with DVFS operations
to the multi-core architecture. Their online algorithm predicts the energy consumption
and execution time of a processor before using the EDP method.

To fairly compare the proposed frequencies scaling algorithm to Spiliopoulos et al.
algorithm, called Maxdist and EDP respectively, both algorithms use the same energy
model, Equation 3.9 and execution time model, Equation 3.8, to predict the energy con-
sumption and the execution time for each computing node. Moreover, both algorithms
start the search space from the upper bound computed as in Equation 3.7. Finally, the
resulting EDP algorithm is an exhaustive search algorithm that tests all the possible fre-
quencies, starting from the initial frequencies (upper bound), and selects the vector of
frequencies that minimize the EDP product. Both algorithms were applied to the class D
of the NAS benchmarks running over 16 nodes. The participating computing nodes are
distributed according to the two scenarios described in Section 3.6.1. The experimental
results, the energy saving, performance degradation and trade-off distance percentages,
are presented in Figures 3.25, 3.26 and 3.27 respectively.

As shown in these figures, the proposed frequencies selection algorithm, Maxdist, out-
performs the EDP algorithm in terms of energy consumption reduction and performance
for all of the benchmarks executed over the two scenarios. The proposed algorithm gives
better results than the EDP method because it maximizes the energy saving and the per-
formance at the same time. Moreover, the proposed scaling algorithm gives the same
weight for these two metrics. Whereas, the EDP algorithm gives sometimes negative
trade-off values for some benchmarks in the two sites scenarios. These negative trade-
off values mean that the performance degradation percentage is higher than the energy
saving percentage. The high positive values of the trade-off distance percentage mean
that the energy saving percentage is much higher than the performance degradation per-

104 CHAPTER 3. ENERGY OPTIMIZATION OF HETEROGENEOUS PLATFORMS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

CG MG EP LU BT SP FT

E
n

e
rg

y
 s

a
v
in

g
 %

NAS parallel benchmarks

EDP/ one site
Maxdist/ one site

EDP/ two sites
Maxdist/ two sites

Figure 3.25: The energy reduction percentages induced by the Maxdist method and the
EDP method

 0

 5

 10

 15

 20

 25

 30

 35

CG MG EP LU BT SP FT

P
e

rf
o

rm
a

n
c
e

 d
e

g
ra

d
a

ti
o

n
 %

NAS parallel benchmarks

EDP/ one site
Maxdist/ one site

EDP/ two sites
Maxdist/ two sites

Figure 3.26: The performance degradation percentages induced by the Maxdist method
and the EDP method

centage. The complexity of both algorithms, Maxdist and EDP, are of order O(N · Mi · F j)
and O(N · Mi · F2

j) respectively, where N is the number of the clusters, Mi is the num-
ber of nodes and F j is the maximum number of available frequencies of node j. When
Maxdist is applied to a benchmark that is being executed over 32 nodes distributed be-
tween Nancy and Lyon sites, it takes on average 0.01 ms to compute the best frequencies
while the EDP method is on average ten times slower over the same architecture.

3.7. CONCLUSION 105

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

 40

CG MG EP LU BT SP FT

T
ra

d
e

o
ff

 d
is

ta
n

c
e

 %

NAS parallel benchmarks

EDP/ one site
Maxdist/ one site

EDP/ two sites
Maxdist/ two sites

Figure 3.27: The trade-off distance percentages between the energy consumption reduc-
tion and the performance for the Maxdist method and the EDP method

3.7/ CONCLUSION

In this chapter, two new online frequency scaling factors selecting algorithms have been
presented. They select the best possible vectors of frequency scaling factors that give
the maximum distance (optimal trade-off) between the predicted energy and the pre-
dicted performance curves for a heterogeneous cluster and grid. Both algorithms use a
new energy models for measuring and predicting the energy consumption of message
passing applications with iterations running over a heterogeneous local cluster and a grid
platform. Firstly, the proposed scaling factors selection algorithm for a heterogeneous
local cluster is applied to the class C of the NAS parallel benchmarks and simulated by
SimGrid. The results of the simulations showed that the algorithm on average reduces
by 29.8% the energy consumption of the NAS benchmarks executed over 8 nodes while
limiting the degradation of the performance by 3.8%. The algorithm also selects different
scaling factors according to the percentage of the computing and communication times,
and according to the values of the static and dynamic powers of the CPUs. Secondly,
the proposed scaling factors selection algorithm for a grid is applied to the class D of the
NAS parallel benchmarks and executed over the Grid5000 testbed platform. The exper-
iments executed on 16 nodes distributed over three clusters, showed that the algorithm
on average reduces by 30% the energy consumption of all the NAS benchmarks while on
average only degrading by 3.2% their performance. The algorithm was also evaluated in
different scenarios that vary in the distribution of the computing nodes between different
clusters’ sites or use multi-core per node architecture or consume different static power
values. The algorithm selects different vectors of frequencies according to the computa-
tions and communication times ratios, and the values of the static and measured dynamic
powers of the CPUs. Thus, the simulation and the real results are comparable in term of
energy saving and performance degradation percentages. Finally, both algorithms were
compared to a method that uses the well known energy and delay product as an objec-
tive function. The comparison results showed that the proposed algorithms outperform
the latter by selecting vectors of frequencies that give a better trade-off results.

4
ENERGY OPTIMIZATION OF

ASYNCHRONOUS APPLICATIONS

4.1/ INTRODUCTION

A grid is composed of heterogeneous clusters: CPUs from distinct clusters might have dif-
ferent computing power, energy consumption or frequency range. Running synchronous
parallel applications on grids results in long slack times where the fast nodes have to wait
for the slower ones to finish their computations before synchronously exchanging data
with them. Therefore, it is widely accepted that asynchronous parallel methods are more
suitable than synchronous ones for such architectures because there is no slack time
and the asynchronous communications are overlapped by computations. However, they
usually execute more iterations than the synchronous ones and thus consume more en-
ergy. In order to make the asynchronous method a good alternative to the synchronous
one, it should not be just competitive in performance but also in energy consumption. To
reduce the energy consumption of a CPU executing the asynchronous iterative method,
the Dynamic voltage and frequency scaling (DVFS) technique can be used. Modern op-
erating systems automatically adjust the frequency of the processor according to their
needs using DVFS operations. However, the user can scale down the frequency of the
CPU using the on-demand governor [82]. It lowers the frequency of a CPU to reduce
its energy consumption, but it also decreases its computing power and thus it might in-
crease the execution time of an application running on that processor. Therefore, the
frequency that gives the best trade-off between energy consumption and performance
must be selected. For parallel asynchronous methods running over a grid, a different
frequency might be selected for each CPU in the grid depending on its characteristics. In
chapters 2 and 3, three frequency selecting algorithms were proposed to reduce the en-
ergy consumption of synchronous message passing applications with iterations running
over homogeneous or heterogeneous platforms. In this chapter, a new frequency select-
ing algorithm for asynchronous iterative message passing applications running over grids
is presented. An adaptation for hybrid methods, with synchronous and asynchronous
communications, is also proposed. The algorithm and its adaptation select the vector of
frequencies which simultaneously offers a maximum energy reduction and minimum per-
formance degradation ratio. The algorithm has a very small overhead and works online
without needing any training nor any profiling.

This chapter is organized as follows: Section 4.2 presents some related works from
other authors. Models for predicting the performance and the energy consumption of

107

108 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

both synchronous and asynchronous iterative message passing programs executed over
grids are explained in Section 4.3. It also presents the objective function that maximizes
the reduction of energy consumption while minimizing the degradation of the program’s
performance, used to select the frequencies. Section 4.4 details the proposed frequency
selecting algorithm. Section 4.5 presents the iterative multi-splitting application which is
a hybrid method and was used as a benchmark to evaluate the efficiency of the proposed
algorithm. Section 4.6 presents the simulation results of applying the algorithm on the
multi-splitting application and executing it on different grid scenarios. It also shows the
results of running three different power scenarios and comparing them. Moreover, in the
last subsection, the proposed algorithm is compared to the energy and delay product
(EDP) method. Section 4.7 presents the results of real experiments executed over the
Grid’5000 platform and compared to the EDP method. Finally, the chapter ends with a
summary.

4.2/ RELATED WORKS

A message passing application is in general composed of two types of sections, which are
the computations and the communications sections. The communications can be done
synchronously or asynchronously. In a synchronous message passing application, when
a process synchronously sends a message to another node, it is blocked until the latter
receives the message. During that time, there is no computation on both nodes and that
period is called slack time. On the contrary, in an asynchronous message passing appli-
cation, the asynchronous communications are overlapped by computations, thus, there
is no slack time. Many techniques have been used to reduce the energy consumption
of message passing applications, such as scheduling, heuristics and DVFS. For exam-
ple, different scheduling techniques, to switch off the idle nodes to save their energy
consumption, were presented in [77, 28, 59] and [29]. In [23] and [14], an heuristic to
manage the workloads between the computing resources of the cluster and reduce their
energy, was published. However, the dynamic voltage and frequency scaling (DVFS) is
the most popular technique to reduce the energy consumption of computing processors.

As shown in the related works of chapter 2, most of the works in this field targeted the
synchronous message passing applications because they are more common than the
asynchronous ones and easier to work on. Some researchers tried to reduce slack times
in synchronous applications running over homogeneous clusters. These slack times can
happen on such architectures if the distributed workloads over the computing nodes are
imbalanced. Other works focused on reducing the energy consumption of synchronous
applications running over heterogeneous architectures such as heterogeneous clusters
or grids. When executing synchronous message passing applications on these architec-
tures, slack times are generated when fast nodes have to communicate with slower ones.
Indeed, the fast nodes have to wait for the slower ones to finish their computations to be
able to communicate with them. In this case, some energy was saved as in the work of
chapter 3 and its related works by reducing the frequencies of the fast nodes with DVFS
operations while minimizing the slack times.

Whereas, no work has been conducted to optimize the energy consumption of asyn-
chronous message passing applications. Some works use asynchronous communica-
tions when applying DVFS operations on synchronous applications. For example, Hsu
et al. [41] proposed an online adaptive algorithm that divides the synchronous message

4.3. THE PERFORMANCE AND THE ENERGY CONSUMPTION MEASUREMENT MODELS109

passing application into several time periods and selects the suitable frequency for each
one. The algorithm asynchronously applies the new computed frequencies to overlap
the multiple DVFS switching times with computation. Similarly to this work, Zhu et al.
[87] studied the difference between applying synchronously or asynchronously the fre-
quency changing algorithm during the execution time of the program. The results of the
proposed asynchronous scheduler were more energy efficient than synchronous one. In
[79], Vishnu et al. presented an energy efficient asynchronous agent that reduces the
slack times in a parallel program to reduce the energy consumption. They used asyn-
chronous communications in the proposed algorithm, which calls the DVFS algorithm
many times during the execution time of the program. The three previous presented
works were applied on applications running over homogeneous platforms.

In [10], the energy consumption of an asynchronous iterative linear solver running over
a heterogeneous platform, is evaluated. The results showed that the asynchronous ver-
sion of the application had less execution time than the synchronous one. Therefore,
according to their energy model the asynchronous method consumes less energy. How-
ever, in their model they do not consider that during synchronous communications only
static power which is significantly lower than dynamic power, is consumed.

This chapter presents the following contributions:

1. new model to predict the energy consumption and the execution time of asyn-
chronous iterative message passing applications running over a grid platform.

2. a new online algorithm that selects a vector of frequencies which gives the best
trade-off between energy consumption and performance for asynchronous iterative
message passing applications running over a grid platform. The algorithm has a
very small overhead and does not need any training or profiling. The new algorithm
can be applied synchronously and asynchronously on an iterative message passing
application.

4.3/ THE PERFORMANCE AND THE ENERGY CONSUMPTION MEA-
SUREMENT MODELS

4.3.1/ THE EXECUTION TIME OF ITERATIVE ASYNCHRONOUS MESSAGE PASSING
APPLICATIONS

In this chapter, we are interested in running asynchronous iterative message passing
distributed applications over a grid while reducing the energy consumption of the CPUs
during the execution. Figure 4.1 is an example of a grid with four different clusters. Inside
each cluster, all the nodes are homogeneous, have the same specifications, but are dif-
ferent from the nodes of the other clusters. To reduce the energy consumption of these
applications while running on a grid, the heterogeneity of the clusters’ nodes, such as
nodes’ computing powers (FLOPS), energy consumptions and CPU’s frequency ranges,
must be taken into account. To reduce the complexity of the experiments and focus on
the heterogeneity of the nodes, the local networks of all the clusters are assumed to be
identical, with the same latency and bandwidth. The networks connecting the clusters
are also assumed to be homogeneous but they are slower than the local networks.

110 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

High speed local network

Long distance external netwok

Heterogenous computing nodes

Cluster 1 Cluster 2

Cluster 3Cluster 4

Figure 4.1: A grid platform composed of heterogeneous clusters

An iterative application consists of a block of instructions that is repeatedly executed
until convergence. A distributed iterative application with interdependent tasks requires,
at each iteration, exchanging data between nodes to compute the distributed tasks. The
communications between the nodes can be done synchronously or asynchronously. In
the synchronous model, each node has to wait to receive data from all its neighbours to
compute its iteration, see figures 1.14 and 1.15. Since the tasks are synchronized, all
the nodes execute the same number of iterations. Then, The overall execution time of an
iterative synchronous message passing application with balanced tasks, running on the
grid described above, is equal to the execution time of the slowest node in the slowest
cluster running a task as presented in 3.1.

Whereas, in the asynchronous model, the fast nodes do not have to wait for the slower
nodes to finish their computations to exchange data, see Figure 1.16. Therefore, there are
no idle times between successive iterations, the node executes the computations with the
last received data from its neighbours and the communications are overlapped by com-
putations. Since there are no synchronizations between nodes, all nodes do not have the
same number of iterations. The difference in the number of executed iterations between
the nodes depends on the heterogeneity of the computing powers of the nodes. The
execution time of an asynchronous iterative message passing application is not equal to
the execution time of the slowest node like in the synchronous mode because each node
executes a different number of iterations. Moreover, the overall execution time is directly
dependent on the method used to detect the global convergence of the asynchronous
iterative application. The global convergence detection method might be synchronous or
asynchronous and centralized or distributed.

In a grid, the nodes in each cluster have different characteristics, especially different
frequency gears. Therefore, when applying DVFS operations on these nodes, they may
get different scaling factors represented by a scaling vector: (S 11, S 12, . . . , S NMi) where S i j

is the scaling factor of processor j in the cluster i. To be able to predict the execution time
of asynchronous iterative message passing applications running over a grid, for different
vectors of scaling factors, the communication times and the computation times for all the
tasks must be measured during the first iteration before applying any DVFS operation.

4.3. THE PERFORMANCE AND THE ENERGY CONSUMPTION MEASUREMENT MODELS111

Then, the execution time of one iteration of an asynchronous iterative message passing
application, running on a grid after applying a vector of scaling factors, is equal to the
execution time of the synchronous application but without its communication times. The
communication times are overlapped by computations and the execution time can be
evaluated for all the application as the average of the execution time of all the parallel
tasks. This is presented in Equation 4.1.

TNew =

∑N
i=1

∑Mi
j=1(TcpOldi j · S i j)

N · Mi
(4.1)

In this work, a hybrid (synchronous/asynchronous) message passing application [65]
is being used. It is composed of two loops:

1. In the inner loop, at each iteration, the nodes in a cluster synchronously exchange
data between them. There is no communication between nodes from different clus-
ters.

2. In the outer loop, at each iteration, the nodes from different clusters asynchronously
exchange their data between them because the network interconnecting the clus-
ters has a high latency.

Therefore, the execution time of one outer iteration of such a hybrid application can
be evaluated by computing the average of the execution time of the slowest node in each
cluster. The overall execution time of the asynchronous iterative applications can be
evaluated as follows:

TNew =

∑N
i=1(max j=1,...,Mi(TcpOldi j · S i j) + min j=1,...,Mi(Ltcmi j

))

N
(4.2)

In Equation (4.2), the communication times Ltcmi j
are only the communications be-

tween the local nodes because the communications between the clusters are asyn-
chronous and overlapped by computations.

4.3.2/ THE ENERGY MODEL AND TRADE-OFF OPTIMIZATION

The energy consumption of an asynchronous application running over a heterogeneous
grid is the summation of the dynamic and static power of each node multiplied by the
computation time of that node as in Equation (4.3). The computation time of each node
is equal to the overall execution time of the node because the asynchronous communica-
tions are overlapped by computations.

E =

N∑
i=1

Mi∑
j=1

(S −2
i j · Tcpi j · (Pdi j

+ Psi j
)) (4.3)

It is common for distributed algorithms running over grids to have asynchronous ex-
ternal communications between clusters and synchronous ones between the nodes of
the same cluster. In this hybrid communication scheme, the dynamic energy consump-
tion can be computed in the same way as for the synchronous application with Equation

112 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

(2.11). However, since the nodes of different clusters are not synchronized and do not
have the same execution time as in the synchronous application, the static energy con-
sumption is different between them. The cluster execution time is equal to the execution
time of the slowest task in that cluster. The energy consumption of the asynchronous
iterative message passing application running on a heterogeneous grid platform during
one iteration can be computed as follows:

E =

N∑
i=1

Mi∑
j=1

(S −2
i j · Pdi j

· Tcpi j) +

N∑
i=1

Mi∑
j=1

(Psi j
· (max

j=1,...,Mi
(Tcpi j · S i j) + min

j=1,...,Mi
(Ltcmi j

))) (4.4)

Where Ltcmi j
is the local communication time of the cluster i of node j. Reducing the

frequencies of the processors according to the vector of scaling factors (S 11, S 12, . . . , S NMi)
may degrade the performance of the application and thus, increase the static energy
consumed because the execution time is increased [44]. The overall energy consumption
for the asynchronous application can be computed by multiplying the energy consumption
from one iteration of each cluster by the number of the iterations of that cluster, Niteri

, as
in Equation (4.5).

E =

N∑
i=1

(
Mi∑
j=1

(S −2
i j · Pdi j

· Tcpi j)) · Niteri
+

N∑
i=1

(
Mi∑
j=1

(Psi j
·

(max
j=1,...,Mi

(Tcpi j · S i j) + min
j=1,...,Mi

(Ltcmi j
)))) · Niteri

(4.5)

In order to optimize the energy consumption and the performance of the asynchronous
iterative applications at the same time, the maximum distance between the two metrics
can be computed as in the previous chapters. However, both the energy model and
performance must be normalized as in the Equations 3.3 and 3.4 respectively. Hence,
TNew should be computed as in Equation 4.2 and TOld computed as follows:

TOld =

∑N
i=1(max j=1,...,Mi(TcpOldi j) + min j=1,...,Mi(Ltcmi j

))

N
(4.6)

The original energy consumption of asynchronous applications, EOriginal is computed
as in (4.7).

Eoriginal =

N∑
i=1

Mi∑
j=1

(Pdi j
· TcpOldi j) +

N∑
i=1

Mi∑
j=1

(Psi j
· (max

j=1,...,Mi
(TcpOldi j) + min

j=1,...,Mi
(Ltcmi j

))) (4.7)

Then, the objective function can be modeled as the maximum distance between the
normalized energy curve and the normalized performance curve over all available sets of
scaling factors and is computed as in the objective function 3.12.

4.4. THE SCALING ALGORITHM OF ASYNCHRONOUS APPLICATIONS 113

The initial
frequencies

Scope of the
search space

2.5

2.3
2.2

2.4

1.9

2.1
2.0

1.8
1.7
1.6

2.5

2.3
2.2

2.4

1.9

2.1
2.0

1.8
1.7
1.6

2.5

2.3
2.2

2.4

1.9

2.1
2.0

1.8
1.7
1.6

2.5

2.3
2.2

2.4

1.9

2.1
2.0

1.8
1.7
1.6

Cluster 1

Homogeneous nodes
2.66

2.39
2.26

2.52

1.86

2.13
1.99

1.72
1.59
1.46
1.33
1.19

Cluster 2

Homogeneous nodes

2.66

2.39
2.26

2.52

1.86

2.13
1.99

1.72
1.59
1.46
1.33
1.19

2.66

2.39
2.26

2.52

1.86

2.13
1.99

1.72
1.59
1.46
1.33
1.19

2.66

2.39
2.26

2.52

1.86

2.13
1.99

1.72
1.59
1.46
1.33
1.19

3.4

3.13
3.00

3.26

2.60

2.86
2.73

2.46
2.33
2.20
2.07
1.93
1.80

1.53
1.67

Cluster 4

Homogeneous nodes

3.4

3.13
3.00

3.26

2.60

2.86
2.73

2.46
2.33
2.20
2.07
1.93
1.80

1.53
1.67

3.4

3.13
3.00

3.26

2.60

2.86
2.73

2.46
2.33
2.20
2.07
1.93
1.80

1.53
1.67

3.4

3.13
3.00

3.26

2.60

2.86
2.73

2.46
2.33
2.20
2.07
1.93
1.80

1.53
1.67

2.9

2.7
2.6

2.8

2.3

2.5
2.4

2.2
2.1
2.0
1.9
1.8
1.7

1.3

1.5
1.4

1.6

1.2

Cluster 3
Homogeneous nodes

2.9

2.7
2.6

2.8

2.3

2.5
2.4

2.2
2.1
2.0
1.9
1.8
1.7

1.3

1.5
1.4

1.6

1.2

2.9

2.7
2.6

2.8

2.3

2.5
2.4

2.2
2.1
2.0
1.9
1.8
1.7

1.3

1.5
1.4

1.6

1.2

2.9

2.7
2.6

2.8

2.3

2.5
2.4

2.2
2.1
2.0
1.9
1.8
1.7

1.3

1.5
1.4

1.6

1.2

Heterogeneous clusters

Figure 4.2: Selecting the initial frequencies in a grid composed of four clusters

4.4/ THE SCALING FACTORS SELECTION ALGORITHM OF ASYN-
CHRONOUS APPLICATIONS OVER GRID

The frequency selection algorithm (8) works online during the first iteration of asyn-
chronous iterative message passing program running over a grid. The algorithm selects
the set of frequency scaling factors S opt11, S opt12, . . . , S optNMi

which maximizes the dis-
tance, the tradeoff function (3.12), between the predicted normalized energy consump-
tion and the normalized performance of the program. The algorithm is called just once in
the iterative program and it uses information gathered from the first iteration to approxi-
mate the vector of frequency scaling factors that gives the best tradeoff. According to the
returned vector of scaling factors, the DVFS algorithm (6) computes the new frequency
for each node in the grid. It also shows where and when the proposed scaling algorithm
is called in the iterative message passing program.

In contrast to the scaling factors selection algorithm of synchronous applications run-
ning on the grid (algorithm 7), this algorithm computed the initial frequencies depending
on the Equations 3.13 and 3.14. Figure 4.2 shows the selected initial frequencies of the
grid composed of four different types of clusters that are presented in the Figure 4.1. The
only difference between the two algorithms is the energy and performance models that
are used. Furthermore, this algorithm scales down all frequencies of nodes at each itera-
tion, while other algorithm don’t scaled down the frequency of the slowest node. However,
the performance of asynchronous application does not depend on the performance of the
slower nodes, while it depends on the performance of all nodes.

114 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

Algorithm 8 Scaling factors selection algorithm of asynchronous applications over grid
Require:
N number of clusters in the grid.
M number of nodes in each cluster.

Tcpi j array of all computation times for all nodes during one iteration and with the highest
frequency.

Tcmi j
array of all communication times for all nodes during one iteration and with the

highest frequency.
Fmaxi j

array of the maximum frequencies for all nodes.
Pdi j

array of the dynamic powers for all nodes.
Psi j

array of the static powers for all nodes.
Fdiffi j array of the differences between two successive frequencies for all nodes.
Ensure: S opt11, S opt12 . . . , S optNMi

, a vector of scaling factors that gives the optimal tradeoff
between energy consumption and execution time

1: S cpi j ←
maxi=1,2,...,N (max j=1,2,...,Mi (Tcpi j))

Tcpi j

2: Fi j ←
Fmax

i j
S cpi

, i = 1, 2, · · · ,N, j = 1, 2, . . . ,Mi.

3: Round the computed initial frequencies Fi to the closest available frequency for each
node.

4: if (not the first frequency) then
5: Fi j ← Fi j + Fdiffi j, i = 1, . . . ,N, j = 1, . . . ,Mi.

6: end if

7: TOld ←

∑N
i=1(max

j=1,...,Mi
(TcpOldi j)+ min

j=1,...,Mi
(Ltcm

i j
))

N

8: EOriginal ←
N∑

i=1

Mi∑
j=1

(Pdi j
· TcpOldi j) +

N∑
i=1

Mi∑
j=1

(Psi j
· (max

j=1,...,Mi
(TcpOldi j) + min

j=1,...,Mi
(Ltcmi j

)))

9: S opti j ← 1, i = 1, . . . ,N, j = 1, . . . ,Mi.

10: Dist ← 0
11: while (all nodes have not reached their minimum frequency or PNorm − ENorm < 0) do
12: if (not the last frequency) then
13: Fi j ← Fi j − Fdiffi j, i = 1, . . . ,N, j = 1, . . . ,Mi.

14: S i j ←
Fmax

i j
Fi j

, i = 1, . . . ,N, j = 1, . . . ,Mi.

15: end if

16: TNew ←

N∑
i=1

(max
j=1,...,Mi

(TcpOldi j·S i j)+ min
j=1,...,Mi

(Ltcm
i j

))

N

17: EReduced ←
N∑

i=1

Mi∑
j=1

(S −2
i j · Pdi j

· Tcpi j) +
N∑

i=1

Mi∑
j=1

(Psi j
· (max

j=1,...,Mi
(Tcpi j · S i j) + min

j=1,...,Mi
(Ltcmi j

)))

18: PNorm ←
TOld
TNew

19: ENorm ←
EReduced
EOriginal

20: if (PNorm − ENorm > Dist) then
21: S opti j ← S i j, i = 1, . . . ,N, j = 1, . . . ,Mi.

22: Dist ← PNorm − ENorm

23: end if
24: end while
25: Return S opt11, S opt12, . . . , S optNMi

4.5. THE ITERATIVE MULTI-SPLITTING METHOD 115

Table 4.1: The characteristics of the four types of nodes
node Simulated Max Min Diff. Dynamic Static
type GFLOPS Freq. Freq. Freq. power power

of one node GHz GHz GHz
A 40 2.50 1.20 0.100 20 W 4 W
B 50 2.66 1.60 0.133 25 W 5 W
C 60 2.90 1.20 0.100 30 W 6 W
D 70 3.40 1.60 0.133 35 W 7 W

4.5/ THE ITERATIVE MULTI-SPLITTING METHOD

Multi-splitting algorithms have been initially studied to solve linear systems of equations
in parallel [58]. Thereafter, they were used to design non linear iterative algorithms and
asynchronous iterative algorithms [12]. The principle of multi-splitting algorithms lies in
splitting the system of equations, then solving each sub-system using a direct or an iter-
ative method and then combining the results in order to build a global solution. Since a
multi-splitting method is iterative, it requires executing several iterations in order to reach
global convergence.

In this chapter, we have used an asynchronous iterative multisplitting method to solve
a 3D Poisson problem as described in [65]. The problem is divided into small 3D sub-
problems and each one is solved by a parallel GMRES method. For more information
about multi-splitting algorithms, interested readers are invited to consult the previous ref-
erences.

4.6/ THE EXPERIMENTAL RESULTS OVER SIMGRID

In this section, the heterogeneous scaling algorithm (HSA), Algorithm (8), is applied to
the parallel iterative multi-splitting method. The performance of this algorithm is evalu-
ated by executing the iterative multi-splitting method on the Simgrid/SMPI simulator v3.10
[18]. This simulator offers flexible tools to create a grid architecture and run the itera-
tive application over it. The grid used in these experiments has four different types of
nodes. Two types of nodes have different computing powers, frequency ranges, static
and dynamic powers. Table 4.1 presents the characteristics of the four types of nodes.
The specifications of the simulated nodes are similar to real Intel processors. Many grid
configurations have been used in the experiments where the number of clusters and the
number of nodes per cluster are equal to 4 or 8. For the grids composed of 8 clusters,
two clusters of each type of nodes were used. The number of nodes per cluster is the
same for all the clusters in a given grid.

The CPUs’ constructors do not specify the amount of static and dynamic powers their
CPUs consume. The maximum power consumption for each node’s CPU was chosen to
be proportional to its computing power (FLOPS). The dynamic power was assumed to
represent 80 % of the overall power consumption and the rest (20 %) is the static power.
Similar assumptions were made in last two chapters and [66]. The clusters of the grid
are connected via a long distance Ethernet network with 1 Gbit/s bandwidth, while inside
each cluster the nodes are connected via a high-speed 10 Gbit/s bandwidth local Ethernet

116 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

Table 4.2: The different experiment scenarios
Platform Clusters Number of nodes Vector Total number of
scenario number in cluster size nodes in grid

Grid.4*4.400 4 4 4003 16
Grid.4*8.400 4 8 4003 32
Grid.8*4.400 8 4 4003 32
Grid.8*8.400 8 8 4003 64
Grid.4*4.500 4 4 5003 16
Grid.4*8.500 4 8 5003 32
Grid.8*4.500 8 4 5003 32
Grid.8*8.500 8 8 5003 64

network. The local networks have ten times less latency than the network connecting the
clusters.

4.6.1/ THE ENERGY CONSUMPTION AND THE EXECUTION TIME OF THE MULTI-
SPLITTING APPLICATION

The multi-splitting (MS) method solves a three dimensional problem of size N = Nx ·Ny ·Nz.
The problem is divided into equal sub-problems which are distributed to the computing
nodes of the grid and then solved. The experiments were conducted on problems of size
N = 4003 or N = 5003 that require more than 12 and 24 Gigabyte of memory, respec-
tively. Table 4.2 presents the different experiment scenarios with different numbers of
clusters, nodes per cluster and problem sizes. A name, consisting in the values of these
parameters was given to each scenario.

This section focuses on the execution time and the energy consumed by the MS ap-
plication while running over the grid platform without using DVFS operations. The energy
consumption of the synchronous and asynchronous MS was measured using the energy
Equations 3.9 and 4.4 respectively. Figures 4.3 (a) and (b) show the energy consump-
tion and the execution time, respectively, of the multi-splitting application running over a
heterogeneous grid with different numbers of clusters and nodes per cluster. The syn-
chronous and the asynchronous versions of the MS application were executed over each
scenario in Table 4.2. As shown in Figure 4.3 (a), the asynchronous MS consumes more
energy than the synchronous one. Indeed, the asynchronous application overlaps the
asynchronous communications with computations and thus it executes more iterations
than the synchronous one and has no slack times. More computations result in more dy-
namic energy consumption by the CPU in the asynchronous MS and since the dynamic
power is chosen to be four times higher than the static power, the asynchronous MS
method consumes more overall energy than the synchronous one. However, the execu-
tion times of the experiments, presented in Figure 4.3 (b), show that the execution times
of the asynchronous MS are smaller than the execution times of the synchronous one.
Indeed, in the asynchronous application the fast nodes do not have to wait for the slower
ones to exchange data. So there are no slack times and more iterations are executed by
fast nodes which accelerates the convergence to the final solution.

The synchronous and asynchronous MS scale well. The execution times of both meth-
ods decrease linearly with the increase of the number of computing nodes in the grid,

4.6. THE EXPERIMENTAL RESULTS OVER SIMGRID 117

 0

 16000

 32000

 48000

 64000

 80000

 96000

 112000

 128000

 144000

 160000

G
rid

.4
*4

.4
00

G
rid

.4
*8

.4
00

G
rid

.8
*4

.4
00

G
rid

.8
*8

.4
00

G
rid

.4
*4

.5
00

G
rid

.4
*8

.5
00

G
rid

.8
*4

.5
00

G
rid

.8
*8

.5
00

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

Platform scenarios

Synchronous MS	
Asynchronous MS

(a)

 0

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

G
rid

.4
*4

.4
00

G
rid

.4
*8

.4
00

G
rid

.8
*4

.4
00

G
rid

.8
*8

.4
00

G
rid

.4
*4

.5
00

G
rid

.4
*8

.5
00

G
rid

.8
*4

.5
00

G
rid

.8
*8

.5
00

E
x
e
c
u
ti
o
n
 t
im

e
 [
S

]

Platform scenarios

Synchronous MS
Asynchronous MS

(b)

Figure 4.3: (a) energy consumption and (b) execution time of multi-splitting application
without applying the HSA algorithm

whereas the energy consumption is approximately the same when the number of com-
puting nodes increases. Therefore, the energy consumption of this application is not
directly related to the number of computing nodes.

118 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

4.6.2/ THE RESULTS OF THE SCALING FACTOR SELECTION ALGORITHM

The scaling factor selection algorithm 8 was applied to both synchronous and asyn-
chronous MS applications which were executed over the 8 possible scenarios presented
in table 4.2. The DVFS algorithm 4 needs to send and receive some information be-
fore calling the scaling factor selection algorithm algorithm 8. The communications of the
DVFS algorithm can be applied synchronously or asynchronously which results in four
different versions of the application: synchronous or asynchronous MS with synchronous
or asynchronous DVFS communications. Figures 4.4 (a) and (b) present the energy con-
sumption and the execution time for the four different versions of the application running
on all the scenarios in Table 4.2.

Figure 4.4 (a) shows that the energy consumption of all four versions of the method,
running over the 8 grid scenarios described in Table 4.2, are not affected by the increase
in the number of computing nodes. MS without applying DVFS operations had the same
behaviour. On the other hand, Figure 4.4 (b) shows that the execution time of the MS
application with DVFS operations decreases in inverse proportion to the number of nodes.
Moreover, it can be noticed that the asynchronous MS with synchronous DVFS consumes
less energy when compared to the other versions of the method. Two reasons explain
this energy consumption reduction:

1. The asynchronous MS with synchronous DVFS version uses synchronous DVFS
communications which allow it to apply the new computed frequencies at the begin-
ning of the second iteration. Thus, reducing the consumption of dynamic energy by
the application from the second iteration until the end of the application. Whereas in
asynchronous DVFS versions where the DVFS communications are asynchronous,
the new frequencies cannot be computed at the end of the first iteration and conse-
quently cannot be applied at the beginning of the second iteration. Indeed, since the
performance information gathered during the first iteration is not sent synchronously
at the end of the first iteration, fast nodes might execute many iterations before re-
ceiving the performance information, computing the new frequencies based on this
information and applying the new computed frequencies. Therefore, many iterations
might be computed by CPUs running on their highest frequency and consuming
more dynamic energy than scaled down processors.

2. As shown in Figure 4.3 (b), the execution time of the asynchronous MS version
is lower than the execution time of the synchronous MS version because there is
no idle time in the asynchronous version and the communications are overlapped
by computations. Since the consumption of static energy is proportional to the
execution time, the asynchronous MS version consumes less static energy than the
synchronous version.

The energy saving percentage is the ratio between the reduced energy consumption
after applying the HSA algorithm and the original energy consumption of synchronous MS
without DVFS. Whereas, the performance degradation percentage is the ratio between
the original execution time of the synchronous MS without DVFS and the new execution
time after applying the HSA algorithm. Therefore, in this section, the synchronous MS
method without DVFS serves as a reference for comparison with the other methods for
the following terms: energy saving, performance degradation and the distance between
the two previous terms.

4.6. THE EXPERIMENTAL RESULTS OVER SIMGRID 119

 0

 16000

 32000

 48000

 64000

 80000

 96000

 112000

 128000

 144000

 160000

G
rid

.4
*4

.4
00

G
rid

.4
*8

.4
00

G
rid

.8
*4

.4
00

G
rid

.8
*8

.4
00

G
rid

.4
*4

.5
00

G
rid

.4
*8

.5
00

G
rid

.8
*4

.5
00

G
rid

.8
*8

.5
00

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

Platform scenarios

Sync MS with Sync DVFS
Sync MS with Async DVFS
Async MS with Sync DVFS

Async MS with Async DVFS

(a)

 0

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

G
rid

.4
*4

.4
00

G
rid

.4
*8

.4
00

G
rid

.8
*4

.4
00

G
rid

.8
*8

.4
00

G
rid

.4
*4

.5
00

G
rid

.4
*8

.5
00

G
rid

.8
*4

.5
00

G
rid

.8
*8

.5
00

E
x
e
c
u
ti
o
n
 t
im

e
 [
S

]

Platform scenarios

Sync MS with Sync DVFS
Sync MS with Async DVFS
Async MS with Sync DVFS

Async MS with Async DVFS

(b)

Figure 4.4: (a) energy consumption and (b) execution time of different versions of the
multi-splitting application after applying the HSA algorithm

In Figure 4.5, the energy saving is computed for the four versions of the MS method
which are the synchronous or asynchronous MS that apply synchronously or asyn-
chronously the HSA algorithm. The fifth version is the asynchronous MS without any
DVFS operations. Figure 4.5 shows that some versions have positive or negative energy
saving percentages which means that the corresponding version respectively consumes
less or more energy than the reference method. As in Figure 4.4 (a) and for the same

120 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

G
rid

.4
*4

.4
00

G
rid

.4
*8

.4
00

G
rid

.8
*4

.4
00

G
rid

.8
*8

.4
00

G
rid

.4
*4

.5
00

G
rid

.4
*8

.5
00

G
rid

.8
*4

.5
00

G
rid

.8
*8

.5
00

E
n
e
rg

y
 S

a
v
in

g
 %

Platform scenarios

Sync MS with Sync DVFS
Async MS without DVFS

Async MS with Sync DVFS
Async MS with Async DVFS
Sync MS with Async DVFS

Figure 4.5: The energy saving percentages after applying the HSA algorithm to the dif-
ferent versions and scenarios

reasons presented above, the asynchronous MS with synchronous DVFS version gives
the best energy saving percentage when compared to the other versions.

−25

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

G
rid

.4
*4

.4
00

G
rid

.4
*8

.4
00

G
rid

.8
*4

.4
00

G
rid

.8
*8

.4
00

G
rid

.4
*4

.5
00

G
rid

.4
*8

.5
00

G
rid

.8
*4

.5
00

G
rid

.8
*8

.5
00

P
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 %

Platform scenarios

Sync MS with Sync DVFS
Async MS without DVFS

Async MS with Sync DVFS
Async MS with Async DVFS
Sync MS with Async DVFS

Figure 4.6: The results of the performance degradation

Figure 4.6 shows that some versions have negative performance degradation percent-
ages which means that the new execution time of a given version of the application is less

4.6. THE EXPERIMENTAL RESULTS OVER SIMGRID 121

−5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

G
rid

.4
*4

.4
00

G
rid

.4
*8

.4
00

G
rid

.8
*4

.4
00

G
rid

.8
*8

.4
00

G
rid

.4
*4

.5
00

G
rid

.4
*8

.5
00

G
rid

.8
*4

.5
00

G
rid

.8
*8

.5
00

D
is

ta
n
c
e
 %

Platform scenarios

Sync MS with Sync DVFS
Async MS without DVFS

Async MS with Sync DVFS
Async MS with Async DVFS
Sync MS with Async DVFS

Figure 4.7: The results of the tradeoff distance

than the execution time of the synchronous MS without DVFS. Therefore, the version with
the smallest negative performance degradation percentage has actually the best speed
up when compared to the other versions. The version that gives the best execution time is
the asynchronous MS without DVFS which on average outperforms the synchronous MS
without DVFS version by 16.9%. While the worst case is the synchronous MS with syn-
chronous DVFS where the performance is on average degraded by 2.9% when compared
to the reference method.

The energy consumption and performance trade-off between these five versions is
presented in Figure 4.7. These distance values are computed as the differences between
the energy saving and the performance degradation percentages as in the optimization
function (3.12). Thus, the best MS version is the one that has the maximum distance
between the energy saving and performance degradation. The distance can be negative
if the energy saving percentage is less than the performance degradation percentage.
The asynchronous MS applying synchronously the HSA algorithm gives the best dis-
tance which is on average equal to 27.72%. This version saves on average up to 22% of
energy and on average speeds up the application by 5.72%. This overall improvement is
due to combining asynchronous computing and the synchronous application of the HSA
algorithm.

The two platform scenarios, Grid 4*8 and Grid 8*4, use the same number of computing
nodes but give different trade-off results. The versions applying the HSA algorithm and
running over the Grid 4*8 platform, give higher distance percentages than those running
on the Grid 8*4 platform. In the Grid 8*4 platform scenario more clusters are used than
in the Grid 4*8 platform and thus the global system is divided into 8 small subsystems in-
stead of 4. Indeed, each subsystem is assigned to a cluster and synchronously solved by
the nodes of that cluster. Dividing the global system into smaller subsystems, increases
the number of outer iterations required for the global convergence of the system because

122 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

for the multi-splitting system the more the system is decomposed the higher the spectral
radius is. For example, the asynchronous MS, applying synchronously the HSA algo-
rithm, requires on average 135 outer iterations when running over the Grid 4*8 platform
and 148 outer iterations when running over the Grid 8*4 platform. The increase in the
number of executed iterations over the Grid 8*4 platform justifies the increase in energy
consumption by applications running over that platform.

4.6.3/ COMPARING THE NUMBER OF ITERATIONS EXECUTED BY THE DIFFERENT
MS VERSIONS

The heterogeneity in the computing power of the nodes in the grid has a direct effect on
the number of iterations executed by the nodes of each cluster when running an asyn-
chronous iterative message passing method. The fast nodes execute more iterations than
the slower ones because the iterations are not synchronized. On the other hand, in the
synchronous versions, all the nodes in all the clusters have the same number of iterations
and have to wait for the slowest node to finish its iteration before starting the next iteration
because the iterations are synchronized.

When the fast nodes asynchronously execute more iterations than the slower ones,
they consume more energy without significantly improving the global convergence of the
system. Reducing the frequency of the fast nodes will decrease the number of iterations
executed by them. If all the nodes, the fast and the slow ones, execute close numbers of
iterations, the asynchronous application will consume less energy and its performance will
not be significantly affected. Therefore, applying the HSA algorithm over asynchronous
applications is very promising. In this section, the number of iterations executed by the
asynchronous MS method, while solving a 3D problem of size 4003 with and without
applying the HSA algorithm, is evaluated. In Table 4.3, the standard deviation of the
number of iterations executed by the asynchronous application over all the grid platform
scenarios, is presented.

Table 4.3: The standard deviation of the numbers of iterations for different asynchronous
MS versions running over different grid platforms

Grid
platform

Standard deviation
Asyn. MS without
HSA

Asyn. MS with
Asyn. HSA

Asyn. MS with
Syn. HSA

Grid.4*4.400 60.43 13.86 1.12
Grid.4*8.400 58.06 27.43 1.22
Grid.8*4.400 50.97 20.76 1.15
Grid.8*8.400 52.46 48.40 2.38

A small standard deviation value means that there is a very small difference between
the numbers of iterations executed by the nodes which means fast nodes did not uselessly
execute more iterations than the slower ones and the application does not waste a lot of
energy. As shown in Table 4.3, the asynchronous MS that applies synchronously the HSA
algorithm has the best standard deviation value when compared to the other versions.
Two reasons explain the advantage of this method:

1. The applied HSA algorithm selects new frequencies that reduce the computation
power of the fast nodes while maintaining the computation power of the slower

4.6. THE EXPERIMENTAL RESULTS OVER SIMGRID 123

nodes. Therefore, it tries to balance as much as possible the computation powers
of the heterogeneous nodes.

2. Applying synchronously the HSA algorithm scales down the frequencies of the
CPUs at the end of the first iteration of the application. Therefore the computa-
tion power of all the nodes is balanced as much as possible since the beginning
of the application. On the other hand, applying asynchronously the HSA algorithm
onto the asynchronous MS application only changes the frequencies of the nodes
after executing many iterations. Therefore, before the frequencies are scaled down,
the fast nodes have enough time to execute many more iterations than the slower
ones and consequently increase the overall energy consumption of the application.

Finally, the asynchronous MS version that does not apply the HSA algorithm gives the
worst standard deviation values because there is a big difference between the numbers
of iterations executed by the heterogeneous nodes. Therefore, this version consumes
more energy than the other versions and thus saves less energy as shown in Figure 4.4
(a).

4.6.4/ COMPARING DIFFERENT POWER SCENARIOS

In the previous sections, all the results were obtained by assuming that the dynamic and
the static powers are respectively equal to 80% and 20% of the total power consumed by
a CPU during computation at its highest frequency. The goal of this section is to evaluate
the proposed frequency scaling factors selection algorithm when these two power ratios
are changed. Two new power scenarios are proposed in this section:

1. The dynamic and the static power are respectively equal to 90% and 10% of the
total power consumed by a CPU during computation at its highest frequency.

2. The dynamic and the static power are respectively equal to 70% and 30% of the
total power consumed by a CPU during computation at its highest frequency.

The asynchronous MS method solving a 3D problem of size 4003 was executed over
two platform scenarios, the Grid 4*4 and Grid 8*4. Two versions of the asynchronous
MS method, with synchronous or asynchronous application of the HSA algorithm, were
evaluated on each platform scenario. The energy saving, performance degradation and
distance percentages for both versions over both platform scenarios and with the three
power scenarios are presented in Figures 4.8 and 4.9.

The displayed results are the average of the percentages obtained from multiple runs.
Both figures show that the 90 %-10 % power scenario gives the biggest energy saving
percentages. The high dynamic power ratio pushes the HSA algorithm to select bigger
scaling factors which decreases exponentially the dynamic energy consumption. Fig-
ure 4.10 shows that the HSA algorithm selects in the 90 %-10 % power scenario higher
frequency scaling factors than in the other power scenarios for the same application.
Moreover, the 90 %-10 % power scenario has the smallest static power consumption per
CPU which reduces the effect of the performance degradation, due to scaling down the
frequencies of the CPUs, on the total energy consumption of the application. Finally, the
90 %-10 % power scenario gives higher distance percentages than the other two sce-
narios which means the difference between the energy reduction and the performance

124 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

Perf. degra. Energy saving Distance

T
h

e
 a

v
e

ra
g

e
 %

90%−10% Scenario
80%−20% Scenario
70%−30% Scenario

Figure 4.8: The results of the three power scenarios: Synchronous application of the HSA
algorithm

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

Perf. degra. Energy saving Distance

T
h

e
 a

v
e

ra
g

e
 %

90%−10% Scenario
80%−20% Scenario
70%−30% Scenario

Figure 4.9: The results of the three power scenarios: Asynchronous application of the
HSA algorithm

degradation percentages is the highest for this scenario. From these observations, it can
be concluded that in a platform with CPUs that consume low static power and high dy-
namic power, a lot of energy consumption can be reduced by applying the HSA algorithm
but the performance degradation might be significant.

The energy saving percentages are the smallest with the 70 %-30 % power scenario.
The high static power consumption in this scenario force the HSA algorithm to select
small scaling factors in order not to significantly decrease the performance of the appli-
cation. Indeed, scaling down more the frequency of the CPUs will significantly increase
the total execution time and consequently increase the static energy consumption which

4.6. THE EXPERIMENTAL RESULTS OVER SIMGRID 125

Selected frequency scaling factors for Grid 4-4

70%-30%
Scenario

90%-10%
Scenario

80%-20%
Scenario

1 1 1.25 1.251 1 1.25 1.25 1.45 1.45 1.75 1.751.45 1.45 1.75 1.75

1 1 1.25 1.251 1 1.25 1.25 1.52 1.52 1.75 1.751.52 1.52 1.75 1.75

1.04 1.04 1.33 1.331.04 1.04 1.33 1.33 1.61 1.61 1.88 1.881.61 1.61 1.88 1.88

Figure 4.10: Comparison of the selected frequency scaling factors by the HSA algorithm
for the three power scenarios

will outweigh the reduction of dynamic energy consumption. Finally, since the dynamic
power consumption ratio is relatively small in this power scenario less dynamic energy
reduction can be gained in lowering the frequencies of the CPUs than in the other power
scenarios. On the other hand, the 70 %-30 % power scenario’s main advantage is that its
performance suffers the least from the application of the HSA algorithm. From these ob-
servations, it can be concluded that in a high static power model just a small percentage
of energy can be saved by applying the HSA algorithm.

The asynchronous application of the HSA algorithm on average improves the per-
formance of the application more than the synchronous application of the HSA algo-
rithm. This difference can be explained by the fact that applying the HSA algorithm
synchronously scales down the frequencies of the CPUs after the first iteration, while
applying the HSA algorithm asynchronously scales them down after many iterations, de-
pending on the heterogeneity of the platform. However, for the same reasons as above,
the synchronous application of the HSA algorithm reduces the energy consumption more
than the asynchronous one even though, the method applying the first has a bigger exe-
cution time than the one applying the latter.

4.6.5/ COMPARING THE HSA ALGORITHM TO THE ENERGY AND DELAY PROD-
UCT METHOD

Many methods have been proposed to optimize the trade-off between the energy con-
sumption and the performance of message passing applications. A well known opti-
mization model used to solve this problem is the energy and delay product, EDP =

energy × delay. In [13, 24, 63], the researchers used equal weights for the energy and
delay factors. However, others added some weights to the factors in order to direct the
optimization towards more energy saving or less performance degradation. For example,
in [55] they used the product EDP = energy×delay2 which favour performance over energy
consumption reduction.

In this work, the proposed scaling factors selection algorithm optimizes both the energy
consumption and the performance at the same time and gives the same weight to both
factors as in Equation 3.12. In this section, to evaluate the performance of the HSA
algorithm, it is compared to the algorithm proposed by Spiliopoulos et al. [75]. The
latter is an online method that selects for each processor the frequency that minimizes

126 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

−10

 0

 10

 20

 30

 40

EDP HSA

T
h

e
 a

v
e

ra
g

e
 %

Performance deg.
Energy saving
Distance

Figure 4.11: Synchronous application of the frequency scaling selection method on the
synchronous MS version

the energy and delay product in order to reduce the energy consumption of a parallel
application running over a homogeneous multi-cores platform. It gives the same weight
to both metrics and predicts both the energy consumption and the execution time for each
frequency gear as in the HSA algorithm.

−10

 0

 10

 20

 30

 40

EDP HSA

T
h

e
 a

v
e

ra
g

e
 %

Performance deg.
Energy saving
Distance

Figure 4.12: Synchronous application of the frequency scaling selection method on the
asynchronous MS version

To fairly compare the HSA algorithm with the algorithm of Spiliopoulos et al., the same
energy models, Equation (3.9) or (4.4), and execution time models, Equation (3.8) or
(4.2), are used to predict the energy consumptions and the execution times. The EDP
objective function can be equal to zero when the predicted delay is equal to zero. More-

4.6. THE EXPERIMENTAL RESULTS OVER SIMGRID 127

 0

 5

 10

 15

 20

EDP HSA

T
h

e
 a

v
e

ra
g

e
 %

Performance deg.
Energy saving
Distance

Figure 4.13: Asynchronous application of the frequency scaling selection method on the
synchronous MS version

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

EDP HSA

T
h

e
 a

v
e

ra
g

e
 %

Performance deg.
Energy saving
Distance

Figure 4.14: Asynchronous application of the frequency scaling selection method on the
asynchronous MS version

over, this product is equal to zero before applying any DVFS operation. To eliminate the
zero values, the EDP function must take the following form:

EDP = ENorm × (1 + DNorm) (4.8)

where ENorm is the normalized energy consumption which is computed as in Equation
(2.5) and DNorm is the normalized delay of the execution time which is computed as fol-
lows:

DNorm = 1 − PNorm = 1 − (
Told

Tnew
) (4.9)

Where PNorm is computed as in Equation (2.6). Furthermore, the EDP algorithm starts

128 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

the search process from the initial frequencies that are computed as in Equation (3.7).
It stops the search process when it reaches the minimum available frequency for each
processor. The EDP algorithm was applied to the synchronous and asynchronous MS
algorithm solving a 3D problem of size 4003. Two platform scenarios, Grid 4*4 and Grid
4*8, were chosen for this experiment. The EDP method was applied synchronously and
asynchronously to the MS application as for the HSA algorithm. The comparison results
of the EDP and HSA algorithms are presented in the Figures 4.11, 4.14,4.13 and 4.14.
Each of these figures presents the energy saving, performance degradation and distance
percentages for one version of the MS algorithm. The results shown in these figures are
also the average of the results obtained from running each version of the MS method
over the two platform scenarios described above. All the figures show that the proposed

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

S
c
a
lin

g
 f
a
c
to

r
v
a
lu

e

Frequency scaling factors

EDP asyn ms
HSA asyn ms
EDP syn ms
HSA syn ms

Figure 4.15: Comparison of the selected frequency scaling factors by the two algorithms
over the Grid 4*4 platform scenario

HSA algorithm outperforms the EDP algorithm in terms of energy saving and performance
degradation. EDP gave for some scenarios negative trade-off values which mean that the
performance degradation percentages are higher than the energy saving percentages,
while the HSA algorithm gives positive trade-off values over all scenarios. The frequency
scaling factors selected by the EDP are most of the time higher than those selected by the
HSA algorithm as shown in Figure 4.15. The results confirm that higher frequency scaling
factors do not always give more energy saving, especially when the overall execution time
is drastically increased. Therefore, the HSA method that computes the maximum distance
between the energy saving and the performance degradation is an effective method to
optimize these two metrics at the same time.

4.7/ THE EXPERIMENTAL RESULTS OVER GRID’5000

The performance of algorithm (8) was evaluated by executing the iterative multi-splitting
method on the Grid’5000 textbed [3]. This testbed is a large-scale platform that consists
of ten sites distributed all over metropolitan France and Luxembourg. Moreover, some

4.7. THE EXPERIMENTAL RESULTS OVER GRID’5000 129

sites are equipped with power measurement tools that capture the power consumption for
each node on those sites. Same method for computing the dynamic power consumption
described in section 3.6 is used. Table 4.4 presents the characteristics of the selected
clusters which are located on four different sites.

Table 4.4: CPUs characteristics of the selected clusters
Cluster CPU Max Freq. Min Freq. Diff. Freq. Site Dynamic power
Name model GHz GHz GHz of one core
Taurus Intel 2.3 1.2 0.1 Lyon 35 W

E5-2630
Graphene Intel 2.53 1.2 0.133 Nancy 23 W

X3440
Parapide Inte 2.93 1.6 0.133 Rennes 23 W

X5570
StRemi AMD 1.7 0.8 0.2 Reims 6 W

6164 HE

The dynamic power of each core with maximum frequency is computed as the differ-
ence between the measured power of the core, only when it is computing at maximum
frequency, and the measured power of that core when it is idle as in 3.15. The CPUs’
constructors do not specify the amount of static power their CPUs consume. Therefore,
the static power consumption is assumed to be equal to 20 % of the dynamic power con-
sumption. The experiments were conducted on problems of size N = 4003 and N = 5003

over 4 distributed clusters described in Table 4.4. Each cluster is composed of 8 homo-
geneous nodes.

Algorithm 8 was applied synchronously and asynchronously to both synchronous and
asynchronous MS applications. Figures 4.16 and 4.17 show the energy consumption
and the execution time of the multi-splitting application with and without the application of
the HSA algorithm respectively. The asynchronous MS consumes more energy than the
synchronous one. Also, it can be noticed that both the asynchronous and synchronous
MS with synchronous application of the HSA algorithm consume less energy than the
other versions of the application. Synchronously applying the HSA algorithm allows them
to scale down the CPUs’ frequencies at the beginning of the second iteration. Thus,
the consumption of dynamic energy by the application is reduced from the second itera-
tion until the end of the application. On the contrary, with the asynchronous application
of the HSA algorithm, the new frequencies cannot be computed at the end of the first
iteration and consequently cannot be applied at the beginning of the second iteration.
Indeed, since the performance information gathered during the first iteration is not sent
synchronously at the end of the first iteration, fast nodes might execute many iterations
before receiving the performance information, computing the new frequencies based on
this information and applying the new computed frequencies. Therefore, many iterations
might be computed by CPUs running on their highest frequency and consuming more
dynamic energy than the scaled down processors. Moreover, the execution time of the
asynchronous MS version is lower than the execution time of the synchronous MS version
because there is no idle time in the asynchronous version and the communications are
overlapped by computations. Since the consumption of static energy is proportional to
the execution time, the asynchronous MS version consumes less static energy than the
synchronous version.

130 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

Syn.M
S.no.D

VFS

Asyn.M
S.no.D

VFS

Asyn.M
S.Syn.D

VFS

Syn.M
S.Syn.D

VFS

Syn.M
S.Asyn.D

VFS

Asyn.M
S.Asyn.D

VFS

E
x
e
c
u
ti
o
n
 t
im

e
 [
S

]

Size 400
Size 500

Figure 4.16: Comparing the execution time

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

Syn.M
S.no.D

VFS

Asyn.M
S.no.D

VFS

Asyn.M
S.Syn.D

VFS

Syn.M
S.Syn.D

VFS

Syn.M
S.Asyn.D

VFS

Asyn.M
S.Asyn.D

VFS

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

Size 400
Size 500

Figure 4.17: Comparing the energy consumption

Table 4.5 shows that there are positive and negative performance degradation per-
centages. A negative value means that the new execution time of a given version of
the application is less than the execution time of the synchronous MS without DVFS.
Therefore, the version with the smallest negative performance degradation percentage
has actually the best speed up when compared to the other versions. The energy con-
sumption and performance trade-offs between these four versions can be computed as
in the optimization Function (3.12). The asynchronous MS applying synchronously the

4.7. THE EXPERIMENTAL RESULTS OVER GRID’5000 131

Size Method
Energy
saving %

Perf.
degra.% Distance

400

Sync MS with Sync DVFS 23.16 4.12 19.04
Sync MS with Async DVFS 18.36 2.59 15.77
Async MS with Sync DVFS 26.93 -21.48 48.41
Async MS with Async DVFS 14.9 -26.41 41.31

500

Sync MS with Sync DVFS 24.57 3.15 21.42
Sync MS with Async DVFS 19.97 0.60 19.37
Async MS with Sync DVFS 20.69 -10.95 31.64
Async MS with Async DVFS 9.06 -18.22 27.28

Table 4.5: The experimental results of HSA algorithm

HSA algorithm gives the best distance which is equal to 48.41%. This version saves up to
26.93% of energy and even reduces the execution time of the application by 21.48%. This
overall improvement is due to combining asynchronous computing and the synchronous
application of the HSA algorithm.

Finally, this section shows that the obtained results over Grid’5000 are comparable
to the simulation results of Section 4.6.2, the asynchronous MS applying synchronously
the HSA algorithm is the best version in both of sections. Moreover, the results over
Grid’5000 are better than simulation results because the computing clusters used in the
Grid’5000 experiments are more heterogeneous in term of the computing power and
network characteristics than the simulated platform with SimGrid. For example, the nodes
in StRemi cluster have lower computing powers compared to the other used three clusters
of Grid’5000 platform. As a result, the increase in the heterogeneity between the clusters’
computing nodes increases the idle times which forces the proposed algorithm to select
a big scaling factors and thus saving more energy.

4.7.1/ COMPARING THE HSA ALGORITHM TO THE ENERGY AND DELAY PROD-
UCT METHOD

The EDP algorithm, described in Section 4.6.5, was applied synchronously and asyn-
chronously to both the synchronous and asynchronous MS application of size N = 4003.
The experiments were conducted over 4 distributed clusters, described in Table 4.4, and
8 homogeneous nodes were used from each cluster. Table 4.6 presents the results of
energy saving, performance degradation and distance percentages when applying the
EDP method on four different MS versions. Figure 4.18 compares the distance percent-
ages, computed as the difference between energy saving and performance degradation
percentages, of the EDP and HSA algorithms. This comparison shows that the proposed
HSA algorithm gives better energy reduction and performance trade-off than the EDP
method. EDP gives better results when evaluated over Grid’5000 than over the simulator
because the nodes used from Grid’5000 are more heterogeneous than those simulated
with SimGrid.

132 CHAPTER 4. ENERGY OPTIMIZATION OF ASYNCHRONOUS APPLICATIONS

Table 4.6: The EDP algorithm results over the Grid’5000
Method name Energy saving % Perf. degra.% Distance %
Sync MS with Sync DVFS 21.83 12.78 9.05
Sync MS with Async DVFS 18.26 7.68 10.58
Async MS with Sync DVFS 24.95 -12.24 37.19
Async MS with Async DVFS 10.32 -17.04 27.36

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Sync MS with

Sync DVFS

Sync MS with

Async DVFS

Async MS with

Sync DVFS

Async MS with

 Async DVFS

D
is

ta
n

c
e

 %

EDP
HSA

Figure 4.18: Comparing the trade-off percentages of HSA and EDP methods over the
Grid’5000

4.8/ CONCLUSIONS

This chapter presents a new online frequency selection algorithm for asynchronous it-
erative applications running over a grid. It selects the best vector of frequencies that
maximizes the distance between the predicted energy consumption and the predicted
execution time. The algorithm uses new energy and performance models to predict the
energy consumption and the execution time of asynchronous or hybrid message passing
iterative applications running over grids. The proposed algorithm was evaluated twice
over the SimGrid simulator and Grid’5000 testbed while running a multi-splitting (MS)
application that solves 3D problems. The experiments were executed over different grid
scenarios composed of different numbers of clusters and different numbers of nodes
per cluster. The HSA algorithm was applied synchronously and asynchronously on a
synchronous and an asynchronous version of the MS application. Both the simulation
and real experiment results show that applying synchronous HSA algorithm on an asyn-
chronous MS application gives the best trade-off between energy consumption reduction
and performance compared to other scenarios. In the simulation results, this scenario
saves on average the energy consumption by 22% and reduces the execution time of
the application by 5.72%. This version optimizes both of the dynamic energy consump-
tion by applying synchronously the HSA algorithm at the end of the first iteration and the
static energy consumption by using asynchronous communications between nodes from

4.8. CONCLUSIONS 133

different clusters which are overlapped by computations. The HSA algorithm was also
evaluated over three power scenarios. As expected, the algorithm selects different vec-
tors of frequencies for each power scenario. The highest energy consumption reduction
was achieved in the power scenario with the highest dynamic power and the lowest per-
formance degradation was obtained in the power scenario with the highest static power.
The proposed algorithm was compared to another method that uses the well known en-
ergy and delay product as an objective function. The comparison results showed that the
proposed algorithm outperforms the latter by selecting a vector of frequencies that gives
a better trade-off between the energy consumption reduction and the performance.

The experiments conducted over Grid’5000 showed that applying the synchronous
HSA algorithm on an asynchronous MS application gives the best results. It saves the
energy consumption by 26.93% and reduces the execution time of the application by
21.48%. The experiments executed over Grid’5000 give better results than those simu-
lated with SimGrid because the nodes used in Grid’5000 were more heterogeneous than
the ones simulated by SimGrid.

III
CONCLUSION AND PERSPECTIVES

135

5
CONCLUSION AND PERSPECTIVES

5.1/ CONCLUSION

In this dissertation, we have proposed a method to optimize both the energy consumption
and the performance at the same time of synchronous and asynchronous applications
with iterations running over cluster and grid platforms. Dynamic voltage and frequency
scaling (DVFS) technique was used to lower the frequency of the processor to reduce
its energy consumption while computing. Reducing the frequency of the processor de-
creases its computing power which might increase the execution time. In this work, differ-
ent energy consumption and performance models were developed to predict the energy
consumption and performance of parallel applications with iterations. Depending on these
models, an objective function was defined as the best trade-off relation between the en-
ergy consumption and the performance of the parallel application. This objective function
was used in the frequency selecting algorithms which optimize at the same time both the
energy consumption and the performance of the parallel application with iterations.

The first part of this dissertation, chapter 1, presented different types of parallelism lev-
els which have been classified according to the used hardware and software techniques.
Different parallel architectures have also been described and classified according to the
used memory model: shared and distributed memory. The two types of parallel appli-
cations with iterations: synchronous and asynchronous ones have been discussed and
compared to each others. Synchronous distributed applications are well adapted to local
homogeneous clusters with a high speed network link, while the asynchronous ones are
more suited to grids. At the end of this chapter, an energy consumption model proposed
in the literature to estimate the energy consumption of parallel applications was explained.
This model does not take into account the communication time of the parallel application
being executed. Also, it is not well adapted to a heterogeneous architecture where each
type of processor might have a different power consumption value.

In the second part of the dissertation, a new energy and performance models for syn-
chronous and asynchronous message passing applications with iterations running over
clusters and grid, were presented. To simultaneously optimize the energy and perfor-
mance of these applications, the trade-off relation has been defined as the maximum dis-
tance between the predicted energy and performance curves. This objective function is
used by the frequency selecting algorithm to select the available frequency scaling factors
that give the optimal energy consumption to performance trade-off. We have proposed
four different frequency scaling algorithms, each one of them is adapted to a different exe-
cution context, such as synchronous or asynchronous communications, homogeneous or

137

138 CHAPTER 5. CONCLUSION AND PERSPECTIVES

heterogeneous nodes, and local or distributed architectures. They used the computation
and communication times measured at the first iteration of the parallel application with
iterations to predict the energy consumption and the performance of the parallel applica-
tion at every available frequency. All these algorithms work online and introduce a very
small runtime overhead. They also do not require any profiling or training.

In chapter 2, a new online scaling factor selection method that optimizes simultane-
ously the energy and performance of a distributed synchronous application with iterations
running on a homogeneous cluster has been proposed. This algorithm was applied to
the NAS benchmarks of the class C and executed over the SimGrid simulator. Firstly,
Rauber and Rünger’s energy model was used in the proposed algorithm to select the
best frequency gear. The proposed algorithm was compared to the Rauber and Rünger’s
optimization method. The results of the comparison showed that the proposed algorithm
gives better energy to performance trade-off ratios compared to their methods while using
the same energy model. Secondly, a new energy consumption model was developed to
take into consideration both the computation and communication times and their relation
with the frequency scaling factor. The new energy model was used by the proposed al-
gorithm. The new simulation results demonstrated that the new model is more accurate
and realistic than the previous one.

In chapter 3, two new online frequency scaling factors selecting algorithms adapted
for synchronous application with iterations running over a heterogeneous cluster and a
grid were presented. Each algorithm uses new energy and performance models which
take into account the characteristics of the parallel platform being used. Firstly, the pro-
posed scaling factors selection algorithm for a heterogeneous local cluster was applied
to the NAS parallel benchmarks and evaluated over SimGrid. The results of the experi-
ments showed that the algorithm on average reduces by 29.8% the energy consumption
of the class C of the NAS benchmarks executed over 8 nodes while limiting the degra-
dation of the performance to 3.8%. Different frequency scaling factors were selected by
the algorithm according to the ratio between the computation and communication times
when different number of nodes were used, and when different static and dynamic CPU
powers have been used. Secondly, the proposed scaling factors selection algorithm for
a grid was applied to the NAS parallel benchmarks and the class D of these bench-
marks was executed over the Grid5000 testbed platform. The experiments conducted
over 16 nodes distributed over three clusters, showed that the algorithm on average re-
duces by 30% the energy consumption for all the NAS benchmarks while on average
only degrading by 3.2% their performance. The algorithm was also evaluated in different
scenarios that vary in the distribution of the computing nodes between different clusters’
sites or use multi-cores per node architectures or consume different static power values.
The algorithm selects different vectors of frequencies according to the computations and
communication times ratios, and the values of the static and measured dynamic powers
of the CPUs. Both of the proposed algorithms were compared to another method that
uses the well known energy and delay product as an objective function. The comparison
results showed that the proposed algorithms outperform the latter by selecting vectors
of frequencies that give a better trade-off between energy consumption reduction and
performance.

In chapter 4, a new online frequency selection algorithm were adapted for asyn-
chronous iterative applications running over a grid was presented. The algorithm uses
new energy and performance models to predict the energy consumption and the exe-
cution time of asynchronous or hybrid message passing iterative applications running

5.2. PERSPECTIVES 139

over a grid. The proposed algorithm was evaluated twice over the SimGrid simulator and
Grid’5000 testbed while running a multi-splitting (MS) application that solves 3D problems.
The experiments were executed over different grid scenarios composed of different num-
bers of clusters and different numbers of nodes per cluster. The proposed algorithm was
applied synchronously and asynchronously on synchronous and asynchronous versions
of the MS iterative application. Both the simulations and real experiments results showed
that applying synchronously the frequency selecting algorithm on an asynchronous MS
application gives the best tradeoff between energy consumption reduction and perfor-
mance when compared to the other scenarios. In the simulation results, this scenario
reduces on average the energy consumption by 22% and decreases the execution time
of the application by 5.72%. This version optimizes both of the dynamic energy consump-
tion by applying synchronously the HSA algorithm at the end of the first iteration of the
iterative application and the static energy consumption by using asynchronous commu-
nications between nodes from different clusters which are overlapped by computations.
The proposed algorithm was also evaluated over three power scenarios which selects dif-
ferent vectors of frequencies proportionally to the dynamic and static powers values. More
energy reduction was achieved when the ratio of the dynamic power was increased and
vice versa. Whereas, the performance degradation percentages were decreased when
the static power ratio was increased. In the Grid’5000 experiments, this scenario reduces
the energy consumption by 26.93% and decreases the execution time of the applica-
tion by 21.48%. The experiments executed over Grid’5000 give better results than those
simulated with SimGrid because the nodes used in Grid’5000 were more heterogeneous
than the ones simulated by SimGrid. In both of the Simulations and real experiments,
the proposed algorithm was compared to a method that uses the well known energy and
delay product as an objective function. The comparison results showed that the proposed
algorithm outperforms the latter by selecting a vector of frequencies that gives a better
trade-off between the energy consumption reduction and the performance.

5.2/ PERSPECTIVES

In the near future, we will adapt the proposed algorithms to take into consideration the
variability between some iterations. For example, each proposed algorithm can be ex-
ecuted twice: after the first iteration the frequencies are scaled down according to the
execution times measured in the first iteration, then after a fixed number of iterations,
the frequencies are adjusted according to the execution times measured during the fixed
number of iterations. If the computing power of the system is constantly changing, it
would be interesting to implement a mechanism that detects this change and adjusts the
frequencies according to the variability of the system. Also, it would be interesting to
evaluate the scalability of the proposed algorithms by running them on large platforms
composed of many thousands of cores. The scalability of the algorithms can be improved
by distributing them in a hierarchical manner where a leader is chosen for each clus-
ter or a group of nodes to compute their scaled frequencies and by using asynchronous
messages to exchange the the data measured at the first iteration.

The proposed algorithms should be applied to other message passing methods with
iterations in order to see how they adapt to the characteristics of these methods. Also, it
would be interesting to explore if a relation can be found between the numbers of asyn-
chronous iterations required to global convergence and the applied frequencies to the

140 CHAPTER 5. CONCLUSION AND PERSPECTIVES

nodes. The number of iterations required by each node for global convergence is not
known in advance and the change in CPUs frequencies changes the number of iterations
required by each node for global convergence.

Furthermore, the proposed algorithms for heterogeneous platforms, in chapters 3 and
4, should be applied to heterogeneous platforms composed of CPUs and GPUs. Indeed,
most of the works in the green computing field showed that these mixed platforms of
GPUs and CPUs are more energy efficient than those composed of only CPUS.

Finally, it would be interesting to verify the accuracy of the results returned by the
energy models by comparing them to the values given by instruments that measure the
energy consumptions of CPUs during the execution time, as in [70].

PUBLICATIONS

JOURNAL ARTICLES

[1] Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. Optimiz-
ing the energy consumption of message passing applications with iterations exe-
cuted over grids. Journal of Computational Science, 2016.

[2] Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. Energy
Consumption Reduction for Asynchronous Message Passing Applications. Journal
of Supercomputing, 2016, (Accepted with minor revisions)

CONFERENCE ARTICLES

[1] Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Dynamic
Frequency Scaling for Energy Consumption Reduction in Synchronous Distributed
Applications. ISPA 2014: The 12th IEEE International Symposium on Parallel and
Distributed Processing with Applications, pp. 225-230. IEEE Computer Society,
Milan, Italy (2014).

[2] Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Energy
Consumption Reduction with DVFS for Message Passing Iterative Applications on
Heterogeneous Architectures. The 16th IEEE International Workshop on Parallel
and Distributed Scientific and Engineering Computing. pp. 922-931. IEEE Com-
puter Society, INDIA (2015).

[3] Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier, Arnaud Giersch. CPUs
Energy Consumption Reduction for Asynchronous Parallel Methods Running over
Grids. The 19th IEEE International Conference on Computational Science and En-
gineering. IEEE Computer Society, Paris (2016).

141

BIBLIOGRAPHY

[1] CPU frequency scaling. [online], https://wiki.archlinux.org.

[2] Geforce graphics processors GTX series. [online], http://www.nvidia.com.

[3] Grid’5000, [online], http://www.grid5000.fr.

[4] Mellanox technologies completes acquisition of ezchip. [online],
http://www.tilera.com.

[5] Oar, [online], http://www.oar.imag.fr.

[6] The Green500 List of Heterogeneous Supercomputing Systems.

[7] TOP500 Supercomputers Sites.

[8] U.S. Energy Information Administration, Annual Energy Outlook 2015.

[9] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin-Cummings Pub-
lishing Co., Inc., Redwood City, CA, USA, 1989.

[10] Hartwig Anzt. Asynchronous and Multiprecision Linear Solvers. PhD thesis, Karl-
sruher Institut für Technologie, Bade-Wurtemberg,Germany, 2012.

[11] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, and A. Nicolau.
Profile-based dynamic voltage scheduling using program checkpoints. In Proceed-
ings of the Conference on Design, Automation and Test in Europe, pages 168–175,
Washington, DC, USA, 2002. IEEE Computer Society.

[12] Jacques Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier. Parallel Iterative
Algorithms: from sequential to grid computing, volume 1 of Numerical Analysis and
Scientific Computating. Chapman and Hall/CRC, 2007.

[13] A. Baldassin, J.P.L. de Carvalho, L.A.G. Garcia, and R. Azevedo. Energy-
performance tradeoffs in software transactional memory. In Computer Architecture
and High Performance Computing (SBAC-PAD), 2012 IEEE 24th International Sym-
posium on, pages 147–154, Oct 2012.

[14] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation of
virtual machines in cloud data centers. Concurrency and Computation:Practice and
Experience, 24(13):1397–1420, September 2012.

[15] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and distributed computation :
numerical methods. Prentice-Hall International, Englewood Cliffs N.J, 1989. Includes
index.

143

144 BIBLIOGRAPHY

[16] Aurelien Bouteiller, Thomas Hérault, Géraud Krawezik, Pierre Lemarinier, and
Franck Cappello. Mpich-v project: A multiprotocol automatic fault-tolerant mpi. IJH-
PCA, 20(3):319–333, 2006.

[17] D.C. Brock and G.E. Moore. Understanding Moore’s Law: Four Decades of Innova-
tion. Chemical Heritage Foundation, 2006.

[18] Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: a generic frame-
work for large-scale distributed experiments. In Proceedings of the Tenth Interna-
tional Conference on Computer Modeling and Simulation, UKSIM ’08, pages 126–
131, Washington, DC, USA, 2008. IEEE Computer Society.

[19] Rohit Chandra, Leonardo Dagun, and Dave Kohr ... [et al.]. Parallel programming in
OpenMP. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[20] Jian Chen and L.K. John. Energy-aware application scheduling on a heterogeneous
multi-core system. In Workload Characterization, 2008. IISWC 2008. IEEE Interna-
tional Symposium on, pages 5–13, Sept 2008.

[21] Jian-Jia Chen, Kai Huang, and Lothar Thiele. Dynamic frequency scaling schemes
for heterogeneous clusters under quality of service requirements. Journal of Infor-
mation Science and Engineering, 28(6):1073–1090, 2012.

[22] Yu-Liang Chou, Shaoshan Liu, Eui-Young Chung, and Jean-Luc Gaudiot. An energy
and performance efficient DVFS scheme for irregular parallel divide-and-conquer
algorithms on the Intel SCC. IEEE Computer Architecture Letters, 99:1, 2013.

[23] A. Cocana-Fernandez, L. Sanchez, and J. Ranilla. A software tool to efficiently
manage the energy consumption of hpc clusters. In Fuzzy Systems (FUZZ-IEEE),
2015 IEEE International Conference on, pages 1–8, Aug 2015.

[24] Ryan Cochran, Can Hankendi, Ayse Coskun, and Sherief Reda. Identifying the
optimal energy-efficient operating points of parallel workloads. In Proceedings of the
International Conference on Computer-Aided Design, ICCAD ’11, pages 608–615,
NJ, USA, 2011. IEEE Press.

[25] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. Pack & cap:
Adaptive DVFS and thread packing under power caps. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 175–185,
NY, USA, 2011. ACM.

[26] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition,
2013.

[27] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Parallel Computer Archi-
tecture: A Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 1997.

[28] G. Da Costa, J.-P. Gelas, Y. Georgiou, L. Lefevre, A.-C. Orgerie, J. Pierson,
O. Richard, and K. Sharma. The green-net framework: Energy efficiency in large
scale distributed systems. In Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1–8, May 2009.

BIBLIOGRAPHY 145

[29] Georges Da Costa, Marcos Dias de Assunção, Jean-Patrick Gelas, Yiannis Geor-
giou, Laurent Lefèvre, Anne-Cécile Orgerie, Jean-Marc Pierson, Olivier Richard,
and Amal Sayah. Multi-facet approach to reduce energy consumption in clouds and
grids: The green-net framework. In Proceedings of the 1st International Conference
on Energy-Efficient Computing and Networking, pages 95–104, New York, NY, USA,
2010. ACM.

[30] G. Dhiman and T.S. Rosing. Dynamic voltage frequency scaling for multi-tasking
systems using online learning. In Low Power Electronics and Design (ISLPED),
2007 ACM/IEEE International Symposium on, pages 207–212, Aug 2007.

[31] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced Computer Architecture and
Parallel Processing (Wiley Series on Parallel and Distributed Computing). Wiley-
Interscience, 2005.

[32] M.N. El Tarazi. Some convergence results for asynchronous algorithms. Numerische
Mathematik, 39:325–340, 1982.

[33] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Trans-
actions on Computers, C-21(9):948–960, September 1972.

[34] Vincent W. Freeh, Feng Pan, Nandini Kappiah, David K. Lowenthal, and Rob
Springer. Exploring the energy-time tradeoff in MPI programs on a power-scalable
cluster. In Proceedings of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS’05) - Papers - Volume 01, Washington, DC, USA, 2005.
IEEE Computer Society.

[35] Andreas Frommer and Daniel B. Szyld. Asynchronous iterations with flexible commu-
nication for linear systems. Calculateurs Parallèles Réseaux et Systèmes Répartis,
10:421–429, 1998.

[36] Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. Journal of
Computational and Applied Mathematics, 123(1–2):201 – 216, 2000. Numerical
Analysis 2000. Vol. III: Linear Algebra.

[37] Rong Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Ziliang Zong. Effects of
dynamic voltage and frequency scaling on a k20 gpu. In Parallel Processing (ICPP),
2013 42nd International Conference on, pages 826–833, 2013.

[38] Fayez Gebali. Algorithms and Parallel Computing. Wiley Publishing, 1st edition,
2011.

[39] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Pro-
gramming with the Message-passing Interface. MIT Press, Cambridge, MA, USA,
1999.

[40] Amina Guermouche, Nicolas Triquenaux, Benoı̂t Pradelle, and William Jalby. Min-
imizing energy consumption of MPI programs in realistic environment. Computing
Research Repository, 2015.

[41] C.-H. Hsu and Wu chun Feng. A power-aware run-time system for high-performance
computing. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Con-
ference, pages 1–9, Nov 2005.

146 BIBLIOGRAPHY

[42] Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programma-
bility. McGraw-Hill Higher Education, 1st edition, 1992.

[43] Kaustubh R. Joshi, Matti A. Hiltunen, Richard D. Schlichting, and William H. Sanders.
Blackbox prediction of the impact of DVFS on end-to-end performance of multitier
systems. ACM SIGMETRICS Performance Evaluation Review, 37(4):59–63, 2010.

[44] Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge, Krisztián Flautner, Jie S.
Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykrishnan Narayanan. Leakage
current: Moore’s law meets static power. Computer, 36(12):68–75, December 2003.

[45] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi. Emprical study on reducing
energy of parallel programs using slack reclamation by DVFS in a power-scalable
high performance cluster. In IEEE Cluster Computing, 2006, pages 1–10, Sept 2006.

[46] David Kirk and Wen-mei Hwu. Programming massively parallel processors hands-on
with CUDA. Morgan Kaufmann Publishers, 1st edition, 2010.

[47] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency scaling: The
laws of diminishing returns. In Proceedings of the 2010 Workshop on Power Aware
Computing and Systems (HotPower’10), Vancouver, Canada, October 2010.

[48] D. Li and J. Wu. Minimizing energy consumption for frame-based tasks on hetero-
geneous multiprocessor platforms. Parallel and Distributed Systems, IEEE Transac-
tions on, 2014.

[49] Min Yeol Lim, Vincent W. Freeh, and David K. Lowenthal. Adaptive, transparent
frequency and voltage scaling of communication phases in MPI programs. In Pro-
ceedings of the 2006 ACM/IEEE Conference on Supercomputing, New York, NY,
USA, 2006. ACM.

[50] Ryan Luley, Courtney Usmail, and Mark Barnell. Energy efficiency evaluation and
benchmarking of AFRL’s condor high performance computer. Technical report, DTIC
Document, 2011.

[51] Kai Ma, Xue Li, Wei Chen, Chi Zhang, and Xiaorui Wang. Greengpu: A holistic
approach to energy efficiency in gpu-cpu heterogeneous architectures. In Parallel
Processing (ICPP), 2012 41st International Conference on, pages 48–57, Septem-
ber 2012.

[52] Konrad Malkowski. Co-adapting scientific applications and architectures toward
energy-efficient high performance computing. PhD thesis, The Pennsylvania State
University, USA, 2009.

[53] Rajkumar Buyya Mark Baker, Amy Apon and Hai Jin. Cluster computing and appli-
cations, 2000.

[54] Daniel Minoli. A Networking Approach to Grid Computing. Wiley-Interscience, 2004.

[55] Naveen Muralimanohar, Karthik Ramani, and Rajeev Balasubramonian. Power effi-
cient resource scaling in partitioned architectures through dynamic heterogeneity. In
In Proceedings of ISPASS, 2006.

BIBLIOGRAPHY 147

[56] Rahul Nagpal and Y.N. Srikant. Exploring energy-performance trade-offs for hetero-
geneous interconnect clustered vliw processors. In Yves Robert, Manish Parashar,
Ramamurthy Badrinath, and ViktorK. Prasanna, editors, High Performance Comput-
ing - HiPC 2006, volume 4297, pages 497–508. Springer Berlin Heidelberg, 2006.

[57] NASA Advanced Supercomputing Division. NAS parallel benchmarks, March 2012.

[58] Dianne P. O’Leary and Robert E. White. Multi-splittings of matrices and parallel
solution of linear systems. SIAM Journal on Algebraic Discrete Methods, 6(4):630–
640, 1985.

[59] A.-C. Orgerie, L. Lefevre, and J.-P. Gelas. Save watts in your grid: Green strategies
for energy-aware framework in large scale distributed systems. In Parallel and Dis-
tributed Systems, 2008. ICPADS ’08. 14th IEEE International Conference on, pages
171–178, Dec 2008.

[60] David Padua. Encyclopedia of Parallel Computing. Springer Publishing Company,
Incorporated, 2011.

[61] David A. Patterson and John L. Hennessy. In Praise of Computer Architecture: A
Quantitative Approach Fourth Edition. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2007.

[62] David A. Patterson and John L. Hennessy. Computer Organization and Design,
Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in
Computer Architecture and Design). Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 4th edition, 2012.

[63] J. Peraza, A. Tiwari, M. Laurenzano, Carrington L., and Snavely. PMaC’s green
queue: a framework for selecting energy optimal DVFS configurations in large scale
MPI applications. Concurrency and Computation: Practice and Experience, pages
1–20, 2012.

[64] G. Prinslow. Overview of performance measurement and analytical modeling tech-
niques for multi-core processors, 2011.

[65] C.E. Ramamonjisoa, L. Ziane Khodja, D. Laiymani, A. Giersch, and R. Couturier.
Simulation of asynchronous iterative algorithms using simgrid. In High Perfor-
mance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst
(HPCC,CSS,ICESS), 2014 IEEE Intl Conf on, pages 890–895, Aug 2014.

[66] Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the en-
ergy consumption of independent tasks. In Proceedings of the Winter Simulation
Conference, WSC ’12, pages 245:1–245:13. Winter Simulation Conference, 2012.

[67] Thomas Rauber and Gudula Rünger. Parallel programming : for multicore and clus-
ter systems. Springer-Verlag, Berlin, 2010.

[68] Thomas Rauber, Gudula Rünger, Michael Schwind, Haibin Xu, and Simon Melzner.
Energy measurement, modeling, and prediction for processors with frequency scal-
ing. The Journal of Supercomputing, 70(3):1451–1476, 2014.

148 BIBLIOGRAPHY

[69] Nikzad Babaii Rizvandi, Javid Taheri, and Albert Y. Zomaya. Some observations
on optimal frequency selection in DVFS-based energy consumption minimization. J.
Parallel Distrib. Comput., 71(8):1154–1164, August 2011.

[70] Gustavo Rostirolla, Rodrigo Da Rosa Righi, Vinicius Facco Rodrigues, Pedro Velho,
and Edson Luiz Padoin. Greenhpc: a novel framework to measure energy consump-
tion on hpc applications. In 2015 Sustainable Internet and ICT for Sustainability,
SustainIT 2015, Madrid, Spain, April 14-15, 2015, pages 1–8. IEEE, 2015.

[71] B. Rountree, D.K. Lowenthal, S. Funk, Vincent W. Freeh, B.R. De Supinski, and
M. Schulz. Bounding energy consumption in large-scale MPI programs. In Proceed-
ings of the 2007 ACM/IEEE Conference on Supercomputing, pages 1–9, November
2007.

[72] Vijayalakshmi Saravanan, Alagan Anpalagan, and Isaac Woungang. An energy-
delay product study on chip multi-processors for variable stage pipelining. Human-
centric Computing and Information Sciences, 5(1), 2015.

[73] D. Shelepov and A. Fedorova. Scheduling on heterogeneous multicore processors
using architectural signatures. In Workshop on the Interaction between Operating
Systems and Computer Architecture, in conjunction with ISCA, 2008.

[74] Hao Shen, Jun Lu, and Qinru Qiu. Learning based DVFS for simultaneous temper-
ature, performance and energy management. In ISQED, pages 747–754, 2012.

[75] V. Spiliopoulos, S. Kaxiras, and G. Keramidas. Green governors: A framework for
continuously adaptive dvfs. In International Green Computing Conference and Work-
shops (IGCC), pages 1–8, July 2011.

[76] William Stallings. Computer Organization and Architecture (4th Ed.): Designing for
Performance. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[77] Cheikhou Thiam, Georges Da Costa, and Jean-Marc Pierson. Energy aware clouds
scheduling using anti-load balancing algorithm : EACAB. In 3rd International Con-
ference on Smart Grids and Green IT Systems (SMARTGREENS 2014), pages pp.
82–89, Barcelona, Spain, April 2014.

[78] Ryoji Tsuchiyama, Takashi Nakamura, Takuro Iizuka, Akihiro Asahara, Satoshi Miki,
Satoru Tagawa, and Satoru Tagawa. The OpenCL Programming Book. Fixstars
Corporation, 1st edition, 2010.

[79] Abhinav Vishnu, Shuaiwen Song, Andres Marquez, Kevin Barker, Darren Kerbyson,
Kirk Cameron, and Pavan Balaji. Designing energy efficient communication runtime
systems: a view from pgas models. The Journal of Supercomputing, 63(3):691–709,
2013.

[80] John von Neumann. First draft of a report on the edvac. IEEE Ann. Hist. Comput.,
15(4):27–75, October 1993.

[81] Lizhe Wang, Samee U. Khan, Dan Chen, Joanna Kołodziej, Rajiv Ranjan, Cheng
zhong Xu, and Albert Zomaya. Energy-aware parallel task scheduling in a cluster.
Future Generation Computer Systems, 29(7):1661 – 1670, 2013.

BIBLIOGRAPHY 149

[82] Che Wun Chiou Wen-Yew Liang, Po-Ting Lai. An energy conservation dvfs algorithm
for the android operating system. The Journal of Convergence, 1(1):93–100, 2010.

[83] Fen Xie, M. Martonosi, and S. Malik. Bounds on power savings using runtime dy-
namic voltage scaling: an exact algorithm and a linear-time heuristic approximation.
In Proceedings of the 2005 International Symposium on Low Power Electronics and
Design, pages 287–292, Aug 2005.

[84] Chee Shin Yeo, Rajkumar Buyya, Hossein Pourreza, M. Rasit Eskicioglu, Peter Gra-
ham, and Frank Sommers. Cluster computing: High-performance, high-availability,
and high-throughput processing on a network of computers. In Albert Y. Zomaya,
editor, Handbook of Nature-Inspired and Innovative Computing, pages 521–551.
Springer, 2006.

[85] M. Zapater, O. Tuncer, J.L. Ayala, J.M. Moya, K. Vaidyanathan, K. Gross, and A.K.
Coskun. Leakage-aware cooling management for improving server energy efficiency.
Parallel and Distributed Systems, IEEE Transactions on, 26(10):2764–2777, Oct
2015.

[86] Marina Zapater, Jose L. Ayala, José M. Moya, Kalyan Vaidyanathan, Kenny Gross,
and Ayse K. Coskun. Leakage and temperature aware server control for improving
energy efficiency in data centers. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 266–269, San Jose, CA, USA, 2013.

[87] Yifan Zhu and Frank Mueller. Exploiting synchronous and asynchronous DVS for
feedback EDF scheduling on an embedded platform. ACM Transactions on Embed-
ded Computing, 7(1), 2007.

[88] Jianli Zhuo and Chaitali Chakrabarti. Energy-efficient dynamic task scheduling algo-
rithms for dvs systems. ACM Trans. Embed. Comput. Syst., 7(2):17:1–17:25, Jan-
uary 2008.

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Abstract:

This thesis, presents the algorithms developed to optimize the energy consumption and the
performance of synchronous and asynchronous message passing applications with iterations running
over clusters or grids. The energy consumption and performance models for each type of parallel
application predicts its execution time and energy consumption for any selected frequency according
to the characteristics of both the application and the architecture executing this application.
The contribution of this thesis can be divided into three parts: Firstly, optimizing the trade-off
between the energy consumption and the performance of the message passing applications with
synchronous iterations running over homogeneous clusters. Secondly, adapting the energy and
performance models to heterogeneous platforms where each node can have different specifications
such as computing power, energy consumption, available frequency gears or network’s latency and
bandwidth. The frequency scaling algorithm was also modified to suit the heterogeneity of the
platform. Thirdly, the models and the frequency scaling algorithm were completely rethought to take
into considerations the asynchronism in the communication and computation. All these models and
algorithms were applied to message passing applications with iterations and evaluated over either
SimGrid simulator or Grid’5000 platform. The experiments showed that the proposed algorithms are
efficient and outperform existing methods such as the energy and delay product. They also introduce
a small runtime overhead and work online without any training or profiling.

Keywords: Dynamic voltage and frequency scaling, Grid computing, Energy optimization, parallel applica-
tions with iterations and online frequency scaling algorithm.

Résumé :

Cette thèse présente des algorithmes développés pour optimiser la consommation d’énergie et les
performances des applications parallèles avec des itérations synchrones et asynchrones sur des
clusters ou des grilles. Les modèles de consommation d’énergie et de performance proposés pour
chaque type d’application parallèle permettent de prédire le temps d’exécution et la consommation
d’énergie d’une application pour toutes les fréquences disponibles. La contribution de cette
thèse peut être divisé en trois parties. Tout d’abord, il s’agit d’optimiser le compromis entre
la consommation d’énergie et les performances des applications parallèles avec des itérations
synchrones sur des clusters homogènes. Deuxièmement, nous avons adapté les modèles de
performance énergétique aux plates-formes hétérogènes dans lesquelles chaque noeud peut
avoir des spécifications différentes telles que la puissance de calcul, la consommation d’énergie,
différentes fréquences de fonctionnement ou encore des latences et des bandes passantes réseaux
différentes. L’algorithme d’optimisation de la fréquence CPU a également été modifié en fonction
de l’hétérogénéité de la plate-forme. Troisièmement, les modèles et l’algorithme d’optimisation de
la fréquence CPU ont été complètement repensés pour prendre en considération les spécificités
des algorithmes itératifs asynchrones. Tous ces modèles et algorithmes ont été appliqués sur des
applications parallèles utilisant la bibliothèque MPI et ont été exécutés avec le simulateur Simgrid ou
sur la plate-forme Grid’5000. Les expériences ont montré que les algorithmes proposés sont plus
efficaces que les méthodes existantes. Ils n’introduisent qu’un faible surcoût et ne nécessitent pas
de profilage au préalable car ils sont exécutés au cours du déroulement de l’application.

Mots-clés : l’ajustement dynamique de la tension et de la fréquence d’un processeur, Grille de calcul, Opti-
misation de l’énergie, applications parallèles avec des itérations et en ligne algorithme fréquence
ajustement.

	Abstract
	Résumé
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	List of Abbreviations
	Dedication
	Acknowledgements
	Introduction
	1. General Introduction
	2. Motivation of the Dissertation
	3. Main Contributions of this Dissertation
	4. Dissertation Outline

	I Scientific Background
	1 Parallel Architectures and Iterative Applications
	1.1 Introduction
	1.2 Parallel Computing Architectures
	1.2.1 Types of Parallel platforms
	1.2.2 Parallel programming Models

	1.3 Iterative Methods
	1.3.1 Synchronous Parallel Iterative method
	1.3.2 Asynchronous Parallel Iterative method

	1.4 The energy consumption model of a parallel application
	1.5 Conclusion

	II Contributions
	2 Energy optimization of homogeneous platform
	2.1 Introduction
	2.2 Related works
	2.2.1 Offline scaling factor selection methods
	2.2.2 Online scaling factor selection methods

	2.3 Execution time and energy consumption of parallel tasks running on a homogeneous platform
	2.3.1 Parallel tasks execution on a homogeneous platform
	2.3.2 Energy consumption model for a homogeneous platform

	2.4 Performance evaluation of MPI programs
	2.5 Performance and energy reduction trade-off
	2.6 Optimal scaling factor for performance and energy
	2.7 Experimental results
	2.7.1 Performance prediction verification
	2.7.2 The experimental results for the scaling algorithm
	2.7.3 Results comparison

	2.8 The new energy model for a homogeneous cluster
	2.9 The experimental results using the new energy model
	2.10 Conclusion

	3 Energy Optimization of Heterogeneous Platforms
	3.1 Introduction
	3.2 Related works
	3.3 The energy optimization of a heterogeneous cluster
	3.3.1 The execution time of message passing distributed applications with iterations on a heterogeneous local cluster
	3.3.2 Energy model for heterogeneous local cluster
	3.3.3 Optimization of both energy consumption and performance
	3.3.4 The scaling algorithm for heterogeneous cluster
	3.3.5 The evaluation of the proposed algorithm

	3.4 Experimental results over a heterogeneous local cluster
	3.4.1 The experimental results of the scaling algorithm
	3.4.2 The results for different power consumption scenarios
	3.4.3 Comparison between the proposed scaling algorithm and the EDP method

	3.5 The energy optimization of grid
	3.5.1 The energy and performance models of grid platform
	3.5.2 The scaling factors selection algorithm for a grid architecture

	3.6 Experimental results over the Grid5000 platform
	3.6.1 The experimental results of the scaling algorithm on a Grid
	3.6.2 The experimental results over multi-core clusters
	3.6.3 Experiments with different static power scenarios
	3.6.4 Comparison between the proposed frequencies selecting algorithm and the EDP method

	3.7 Conclusion

	4 Energy Optimization of Asynchronous Applications
	4.1 Introduction
	4.2 Related works
	4.3 The performance and the energy consumption measurement models
	4.3.1 The execution time of iterative asynchronous message passing applications
	4.3.2 The energy model and trade-off optimization

	4.4 The scaling algorithm of asynchronous applications
	4.5 The iterative multi-splitting method
	4.6 The experimental results over SimGrid
	4.6.1 The energy consumption and the execution time of the multi-splitting application
	4.6.2 The results of the scaling factor selection algorithm
	4.6.3 Comparing the number of iterations executed by the different MS versions
	4.6.4 Comparing different power scenarios
	4.6.5 Comparing the HSA algorithm to the energy and delay product method

	4.7 The Experimental Results over Grid'5000
	4.7.1 Comparing the HSA algorithm to the energy and delay product method

	4.8 Conclusions

	III Conclusion and Perspectives
	5 Conclusion and Perspectives
	5.1 Conclusion
	5.2 Perspectives

	Publications
	Bibliographie

