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UNIVERSITÉ PIERRE ET MARIE CURIE

Laboratoire d’Informatique de Paris 6

Design and Evaluation of Cloud Network Optimization

Algorithms

Author: Dallal BELABED

Defended on April 24, 2015, in front of the committee composed of:

Referees: Dr Guido MAIER (Politecnico di Milano, Italy).

Prof. Michele NOGUEIRA (Federal University of Paraná, Brazil).
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membres des autres équipes du LIP6, particulièrement, les membres de l’équipe

Complex Networks, merci au 15mn max.
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inconditionnel pour son amour fou, il faut l’être pour épouser une doctorante.

Ce travail est aussi le fruit de leur patience. Merci





IV



Abstract

The rapid development of software virtualization solutions have led to huge inno-

vation in Data Center Networks (DCN), with additional capabilities to perform

advanced network functions via software elements. Novel protocols designed in the

recent years allow for a large path diversity at the edge server level by means of

multipath forwarding protocols and virtual bridging functions. Moreover, increas-

ing features are given to DCN elements that become programmable so as to allow,

for instance, turning off and on virtual servers for energy consolidation, migrating

virtual machines on demand or automatically based on variation of system and net-

work states to improve performance, etc. In this scope, this dissertation addresses

a number of research questions.

The first research question to which we answer is at which extent and in which

situations performing multipath forwarding and virtual bridging in DCNs can be

beneficial when performing data center optimizations meeting traffic engineering

and energy efficiency goals. We formally formulate the problem of virtual machine

placement aware of server and network states, as well as aware of the capability

to perform multipath forwarding and virtual bridging. We propose a heuristic ap-

proach for its resolution. We give many insights, showing in particular that virtual

bridging brings high performance gains when traffic engineering is the primary goal,

and should be deactivated when energy efficiency becomes important. We also de-

termine that multipath forwarding brings relevant gains only when energy efficiency

is the primary goal and virtual bridging is not enabled.

In a second contribution our focus moves toward the analysis of the relationship

between novel flattened and modular DCN architectures and congestion control pro-

tocols. In fact, one of the major concerns in congestion control being the fairness

in the offered throughput, the impact of the additional path diversity, brought by

the novel DCN architectures and protocols, on the throughput of individual end-

points (servers) and aggregation points (edge switches) was an aspect not clearly

addressed in the literature. Our contribution consists in providing a novel com-
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prehensive mathematical programming formulation of the throughput optimization

problem based on the proportional fairness principle of the Transport Control Proto-

col (TCP), and in an extensive series of experiments conducted following the model.

We find how much and why the traffic allocation fairness is impacted by the type

of DCN architecture employed and by the adopted TCP variant.

Finally, in the third contribution we investigate a novel rising virtualization re-

source orchestration problem in Network Functions Virtualization (NFV) architec-

tures for carrier networks. We define the rising problem of optimally placing Virtual

Network Functions and chaining virtualized network functions in the delivery of car-

rier network services. We propose a mathematical programming formulation taking

into consideration both NFV and traffic engineering costs, and describe a math-

heuristic approach. We draw quantitatively and qualitatively many insights on the

design of NFV infrastructures across carrier network layers (access, aggregation,

core) also depending on the type of virtualized network function.
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Résumé en Langue Française

L’émergence rapide des solutions de virtualisation ont grandement participé au

développement et à l’amélioration des réseaux de centre de données, en tirant profit

de nouveaux concepts, comme l’utilisation des fonctions du réseau implémentée en

logiciel. Ces dernières années, de nouveaux protocoles permettant une grande di-

versité de chemins au niveau de la bordure du réseau ont été conçus, et de nouvelles

fonctionnalités telles que la virtualisation des commutateurs ont été introduites.

Ainsi, de plus en plus de programmabilité est développée pour les réseaux de cen-

tre de données et, plus génériquement, pour les réseaux d’opérateurs. Ceci, à titre

d’exemple, permet d’éteindre des serveurs virtuels pour économiser de l’énergie, en

migrant les machines virtuelles à la demande ou automatiquement en fonction de

l’état du réseau afin d’améliorer les performances. C’est dans cette optique que

notre thèse s’inscrit afin de proposer des méthodes de résolution de plusieurs prob-

lématiques d’optimisation des réseaux.

L’objet initial de notre quête se concentre sur l’impact de certaines de ces fonc-

tionnalités dans l’optimisation des centres de données, et plus précisement dans le

placement de machines virtuelles. Nous étudions dans quels cadres et dans quelles

situations la diversité des chemins et la virtualisation des bridges dans les réseaux

de centre de données sont-elles bénéfiques vis-à-vis des objectifs d’optimisation des

réseaux, comme par exemple en termes d’ingénierie de trafic et d’efficacité énergé-

tique. Pour répondre à ce type d’intérrogation, nous formulons le problème de

placement des machines virtuelles, en prenant en compte des contraintes liées à la

capacité des serveurs, mais aussi, des contraintes liées à l’état du réseau, ainsi que

celles introduites par l’utilisation du multi-chemin et de l’utilisation des commu-

tateurs virtuels, que nous résolvons en utilisant un algorithme héuristique. Nous

avons trouvé, à travers de multiples simulations, que l’utilisation de commutateurs

virtuels a un impact positif sur la performance, mais cela seulement quand des ob-

jectifs d’ingénierie du trafic sont adoptés dans l’optimisation, et doit être désactivée

quand le but est l’économie d’énergie. Concernant la diversité des chemins, elle
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apporte un gain mais seulement dans le cas où l’économie d’énergie est l’unique but

de l’optimisation et la commutation virtuelle est désactivée.

Ensuite, dans la deuxième partie de la thèse, nous adressons notre attention

vers une meilleure compréhension de l’impact de nouvelles architectures sur le con-

trôle de congestion, et vice versa. En effet, l’une des préoccupations majeures dans

le contrôle de congestion est l’équité dans le débit offert. L’impact du routage

multi-chemins introduit par les nouvelles architectures de centre de données, et par

les nouveaux protocoles, sur le débit des points terminaux (serveurs) et des points

d’agrégations (commutateurs), n’a pas été étudié dans l’état de l’art. C’est pourquoi

dans cette partie nous essayons de répondre à ces intérrogations. En outre, notre

contribution consiste à fournir une formulation mathématique du problème, en ap-

portant un modèle linéaire qui intègre à la fois le principe de l’équité proportionnelle

dans le protocole TCP (Transport Control Protocol) et aussi la possible de transmet-

tre le traffic via plusieurs chemins en parallèle. Nous avons effectué plusieurs séries

de tests dans différents scénarii et avec différentes architectures. Nous avons qualifié

comment l’équité proportionnelle de TCP est impactée par le type d’architecture

DCN employé et par la variante de TCP adoptée.

Enfin, dans la troisième partie de la thèse nous ménons une étude préliminaire

sur un nouveau paradigme dans les réseaux d’opérateur introduit par la possibil-

ité de virtualiser les fonctions de réseaux nommées “Virtual Network Functions

(VNF)”, au sein des réseaux d’opérateurs. Nous avons formulé le problème en un

modèle linéaire générique, incluant les nouvelles contraintes liées aux particularités

introduites par les VNFs, comme la variation de la latence de commutation en fonc-

tion du volume du trafic et du débit en fonction du type de VNF, en intégrant deux

objectifs d’optimisation, un suivant les besoins en termes d’ingénierie de trafic et de

minimisation du cout de virtualisation. Nous avons appliqué une approche dite de

‘math-heuristique ” de manière à trouver le meilleur itinéraire à travers le réseau e

le placement de VNFs pour servir au mieux les demandes des clients.
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Chapter 1
Introduction

In recent years, cloud computing has attracted major attention in computer net-

working and telecommunications due to the important gains and novel features it

can bring to both end users and network providers. The gains, the deployment of

cloud computing technologies can induce, can be of different nature. For example, it

can lower the capital expenditures in operating a network thanks to the reduction of

physical space needed to deploy network and service elements. Moreover, exploiting

the fact that servers are commonly not fully used all the time, it allows a better

share of the available physical resources among multiple virtual servers. Finally, it

can lower the operational expenditures by allowing remote, virtual and automated

management of large information systems networks running on the top of virtual

machines and virtual network controllers.

Cloud computing solutions cover a wide range of functionalities and advantages,

as reported in Figure 1.1. Costumers can be given remote access to their computing

and storage resources, and in some setting they can develop and run their own

network management platforms. Indeed, cloud computing supports the relocation

of entire computer infrastructures and applications from the customer premises and

devices to the cloud provider data center infrastructure. This evolution is readily in

accordance with the end-to-end principle in Internet working, which suggests that

service intelligence is left to edge network elements.

In so-called Infrastructure as a Service (IaaS) solutions, customers can get di-

rect access to a set of virtual machines, with a certain guarantee of isolation on

the traffic among them from other IaaS virtual networks. In IaaS offers, service-

level-agreements on network and service performance are typically exposed and

contractualized. A large set of choices is typically given on the Operating System

(OS), levels of system resources (e.g., live memory, processors, storage, etc), levels

of link resources (ingress and egress bandwidth, latency, etc), and the platforms

and applications supported. A set of functionalities limited to software platform,

1
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Figure 1.1: Survey results: which are the major cloud benefits. Source: RightScale

2014 state of the cloud report [2].

applications and OS variations are given to so-called Platform as a Service (PaaS)

and Software as a Service (SaaS) solutions. In this dissertation we focus on IaaS

solutions because they have a direct impact on data-center networking operations.

The emergence of network virtualization solutions offers several advantages to

organizations in terms of both operational and capital expenditures related to IaaS

operations in cloud networking [1]. The transition from physical independent net-

works to virtual delocalized networks operated in the cloud can be facilitated if,

besides security concerns, network performance and efficiency are at an acceptable

level and show desirable fairness properties.

In the following of this chapter, we will first give a general overview of what

is meant with system and network virtualization. Thereafter, we introduce major

issues in cloud networking and related advances in network programmability, i.e.,

Software Defined Networking (SDN) protocols and Network Function Virtualization

(NFV).

1.1 Server Virtualization

The actual Internet architecture is facing a standoff. In the nineties, the explosion

of Internet Protocol (IP)-based networks was essentially driven by the fact that

the connection-less packet-switching nature of IP networks introduced a much more

scalable and flexible environment to operate networks and to develop added-value

services such as video-over-IP, voice-over-IP and web services. Similarly, with the

emergence of cloud computing, actually the legacy IP-centric Internet architecture
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Figure 1.2: Survey results: growth of software virtualization in the Internet. Source:

Wikbon survey (August 2013) [3].

appears as not sufficiently flexible to readily support the cloud computing virtual-

ization principle.

Before presenting what virtualization technically means, let us show how it has

evolved recently in terms of deployment. Figure 1.2 depicts the result of a recent

survey [3] showing that the ratio of virtualized servers (i.e., servers running on the

top of a physical virtualization server) worldwide has grown by 15% in only 18

months time from 2013 to 2015, while the global number of servers (virtualized

or not) grew by 14%. Figure 1.3 from another survey shows that this trend is

underpinned by the fact that organizations and companies move to virtualization

solutions in order to reduce capital and operational expenditures: 40% of data center

(DC) cloud companies believe that server virtualization has the greatest impact in

the reduction of DC costs.

Finally, Figure 1.4 shows the result of another survey dating back to 2012: 64.9%

of organizations, that did an early deployment of network virtualization solutions,

still had challenges to address in application throughput and end-user experience;

11.7% were facing serious network complexity challenges and only 23.4% were fully

satisfied. In the mean time, during the period this thesis work spanned from 2011

to 2015, huge innovation happened in this sector.

1.1.1 Virtualization: historical facts

One can set 1964 as the year of beginning of the virtualization adventure. In that

year IBM began investing R&D effort in developing the ‘Control Program’ CP-40 [6],
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Figure 1.3: Survey results: which technology will have the greatest impact on re-

ducing data center costs Source: SYS-CON Media [4].

that was the parent of IBM’s virtual machine solution family, and the precursor

of the CP-67 for the OS IBM System/360 Model 67, a 32-bit Central Processing

Unit (CPU) with virtual memory hardware announced by IBM on August 1965.

Essentially, the CP-40 can run multiple OS clients, in particularly the Cambridge

Monitor System (CMS), where CMS is a simple interactive single-user operating

system. These primitive virtualization solutions were therefore strongly relying on

hardware support. Afterwards, the adventure of virtualization continues for almost

two decades. The aim of virtualization at that time was to reduce the cost of the

mainframe by efficiently using very expensive computing resources.

In the 1980s, the cost of computers began to decrease following the emergence

of personal computers. In practice, the former virtualization solutions disappeared

until late 1990s. In fact, at that period workstations and servers started to be more

powerful, as captured by Moore’s law.

In the beginning of the new century, novel virtualization then appeared, having

as main difference with respect with 80’s solutions that their virtualization control

program has a much lower dependence on the hardware (in some cases, no depen-

dence at all). Even though the technology and use cases have evolved, the core

meaning of virtualization remains the same: enabling a computing environment to

run multiple independent operating systems at the same time. Nowadays, the Con-

trol Program that allows physical machines to run Virtual Machines (VM) is called

‘hypervisor’ or ‘Virtual Machine Monitor (VMM)’. VMM consists of an abstraction

software layer that divides the host (physical machine) into VMs with different OSs,

which share the hardware resources offered by the host.
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Figure 1.4: Survey results: how your data-center virtualization solution is complete.

Source: Extreme Networks [5].

Figure 1.5: A non virtualized equipment.

1.1.2 Hypervisor or Virtual Machine Monitor Architecture

Figure 1.5 depicts the way applications access to physical interfaces via the OS.

The hardware layer includes the physical resources and interfaces such as CPU,

memory, storage and Network Interface Card (NIC). The operating system leaves

to the kernel space the direct access to interfaces, and to the userland (or user space)

the interface with the application code running.

With recent software-driven virtualization solutions, we can distinguish two hy-

pervisor architecture modes: the hosted type and the native or bare metal mode.

Hosted Mode

The hosted mode consists of adding a software application on top of the host’s OS

layer to act as hypervisor. In each virtual machine, a guest OS can be installed

and run any application. Figure 1.6 shows an example of the hosted mode. The
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Figure 1.6: The hosted virtualization mode.

Figure 1.7: The native virtualization mode.

peculiarity is therefore that the hypervisor software is run as an application and is

not run at the OS kernel level.

The hosted mode therefore targets end users and not industrial-grade virtualiza-

tion servers. A well-known example of a hosted hypervisor is Oracle VM VirtualBox.

Others include VMWare Workstation, Microsoft Virtual PC, and Parallels.

Native Mode

In the native virtualization mode, the hypervisor runs at the kernel level of the

physical machine OS. Examples of a native mode hypervisors are: Xen, Microsoft

Hyper-V server, VMWare server (ESX/NSX).

The native mode offers higher efficiency, and presented many technical difficul-

ties at first implementations. In fact, the most widely used processors at that time

were the x86, which were not compatible with native virtualization techniques.
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In 1974, Popek and Glodberg [7] have introduced the conditions to be fullled

by the OS to be completely virtualized. They propose principles they estimated

should be fulfilled by virtualization systems. Those principles were around fairness

in resource sharing among VMs (even access to resources to VMs) and application

execution efficiency (possibility to give to VMs direct access to some physical re-

sources without passing though the hypervisor). For that purpose, they classified

the processor instructions to three categories:

• Privileged instructions: a processor ‘op-code’ (assembler instructions), which

can only be executed in supervisor mode and requires a trap when used un-

der another mode. These instructions are independent of the virtualization

process.

• Sensitive instructions: instructions directly impacting the ‘virtualizability’ of

particular machines. They are defined in two types:

– Control sensitive: these instructions englobe all the instructions that at-

tempt to modify the resource configuration, as mapping the virtual mem-

ory on the physical memory or configuring the global registry without

passing by the subroutine trap.

– Behavior sensitive: these instructions depend on the current machine’s

mode.

In 2005/2006, both Intel and AMD, with the Intel Virtualization Technology

(IVT) and AMD-V solutions have introduced new instruction capabilities at the

CPU level as extensions to the x86 architecture, which include enabling the complete

virtualization features.

1.2 The Dawn of Cloud Networking

Executing servers as virtual machines has a direct impact on network operations.

The first tangible impact is the fact that virtual machines also need to be ad-

dressed from an IP and Ethernet network perspective, transparently with respect

to the physical server, by means of its virtual network interfaces. Moreover, when

IaaS networks need to be operated, traffic from and between VMs of a same IaaS

needs to be isolated from other virtual networks and uniquely identified at the data

plane level. Furthermore, the virtualization servers expose novel traffic patterns

in data-center network to support novel operations such as VM migration, storage

synchronization, VM redundancy, etc.

Traditionally, data center network architectures were relying on a rather simple

tree-like layer-2 Ethernet fabric, using the Spanning Tree Protocol (STP) [9], which
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Figure 1.8: Traditional data center vs cloud data center in terms of installed com-

puting workload. Source: Cisco global cloud index, 2013-2018 [8].

for hierarchical tree-like topologies can be considered as sufficiently meeting the con-

nectivity requirement. With virtualization, the emergence of IaaS virtual networks

with many VMs located at many distinct edge servers creates a huge amount of hor-

izontal traffic among edge servers, especially if VM migrations happen across the

servers. As later explained in the next chapter, novel data-center network topologies

have been defined and deployed to meet these new requirements.

In order to qualify the impact of virtualization on data-center network architec-

ture and operations, Figure 1.8 shows the estimated growth of computing workloads

of data centers from 2013 to 2018. While for traditional DCs the growth is esti-

mated as rather stable (slightly decreasing), for cloud DCs (based on virtualization

servers) the growth is expected to nearly triple. This increase of interest in cloud

networking by integrating cloud computing solutions into data-center networks, is

certainly supported by economic motivations. The Figure 1.9 reports the result

of a market research [10], showing that virtualization alone can bring up to 36%

in capital expenditures, and that it can further unplug additional optimizations in

energy reduction.

In this context, technically, many cloud networking protocols have been de-

veloped these last years in order to face novel cloud network requirements. The

requirements as well as the various major cloud network overlay protocol solutions

are presented later in the next chapter in section 2.1.2. Briefly, most of them rely

on forms of encapsulation of packets and data frames in order to guarantee isola-

tion, virtual network identification, separate addressing and localization functions,

support multipath communications, etc.
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Figure 1.9: Cost benefits of virtualization. Source: tradeoff tool - TT9 Rev 0

‘virtualization energy cost calculator’, APC by Schneider Electric [10].

Cloud network overlay protocols can be seen as the medium term answer to the

management of cloud networking issues. Recently, an increasing interest is devoted

to software-defined-network (SDN) solutions, alternative and also complementary

at some extent, which often do not imply changes to the data-plane as for cloud

network overlay protocols.

Another recent evolution in cloud networking is also the emergence of advanced

techniques to virtualize not only user-accessed servers, but also network functions

such as routing, firewalling, cyphering, and other functions that are typically imple-

mented via physical nodes. This recent trend is referred to as Network Functions

Virtualization (NFV), which can also be supported by SDN solutions, as described

in the following.

1.2.1 Software Defined Networking

Historically, routing protocols running in operational networks work in a ‘push’

mode, i.e., when a packet arrives at a routing equipment, the equipment simply

applies the routing or forwarding rules already given in a pre-set routing table.

The routing table is typically built by means of a distributed signaling mechanism

disseminating routing information following a distance-vector procedure (such as

with the Border Gateway Protocol [11]) or a link-state procedure (such as with the

Open Shortest Path First protocol [12]), or a mix of these procedures, to distribute

useful information needed to determine a path to reach any known destination. In
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order to avoid too high signaling and too large routing table, the routing table

semantic (i.e., based on which information the destination and the next hop or

shortest path are determined) is limited to a single layer (for instance, to only IP

or to only Ethernet addressing information).

The push mode underlying legacy routing and switching protocols has been

criticized in the last decade because not flexible enough, as opposed to alternative

protocols working under a ‘pull’ mode that, instead, suggests to avoid the dynamic

synchronization of routing information by allowing a node to query a logically cen-

tralized control-plane only when needed, i.e., only when the next hop for a given

packet or frame is not known based on local information. In this way, the control-

plane is able to take routing decision based on the specific routing request, opening

the path to much powerful traffic engineering and policing options.

The idea of separating the network control plane from the data plane firstly

appeared in operational networks such as Universal Mobile Telecommunications

System (UMTS) networks and IP Multimedia Subsystem (IMS) networks in the be-

ginning of the 21st century. In both cases, a clear separation between switching and

routing decision functions, between data-plane and control-plane, were implemented

to better meet quality of service requirements of voice and multimedia services for

the landline or mobile phones.

In the last years, a protocol named OpenFlow [13] was defined as a pull routing

and switching architecture such that the switching rule which is given back to the

requester node can contains a very rich semantic. A switching rule can be defined as

a function of multiple layer 2, 3 and 4 protocol header fields, and even further pro-

tocol layers in custom variations. In 2011, an organization named Open Networking

Foundation (ONF) [14] was created in order to promote OpenFlow, referring to it as

the main candidate to implement the so-called Software Defined Networking (SDN)

principle (i.e., pull cross-layer routing and switching with a logically centralized

control-plane), and also tackling the design of advanced controllers independent of

OpenFlow.
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More precisely, following ONF norms, a SDN architecture shall be:

• Directly programmable: network control is directly programmable because

decoupled from forwarding functions.

• Agile: abstracting control from forwarding let administrators dynamically ad-

just network-wide traffic distribution to meet changing needs.

• Centrally managed: network intelligence is (logically) centralized in software-

based SDN controllers that maintain a global view of their network domain,

which appears to applications and policy engines as a single, logical switch.

• Programmatically configured: SDN lets network managers configure, manage,

secure, and optimize network resources very quickly via dynamic, automated

SDN programs, which they can write themselves because the programs do not

depend on proprietary software.

• Open standards and vendor-neutral solutions: when implemented through

open standards, SDN simplifies network design and operation because in-

structions are provided by SDN controllers instead of multiple vendor-specific

devices and protocols.

Beside OpenFlow, other protocols for the switch-to-controller interface exist.

Proprietary protocols and controllers exist from vendors, that typically support

both OpenFlow and open source controllers, and the proprietary protocols and

controllers. These same vendor products typically are also exposing cloud net-

work overlay protocol interfaces, such as those described in chapter 2.1.2. Finally,

open source data-center management platforms such as OpenStack tend to integrate

many features that can be found in a SDN controller.

The general feeling in the research community about OpenFlow is that it is very

attractive in terms of additional functionalities and in particular the multi-layer

switching features, but it fails in being sufficiently scalable (especially for inter-

domain scopes) and reliable. On the other hand, it seems to be a broad consensus

on the fact that the SDN principles, and in particular the separation from the data-

plane and the control-plane and their programmability by means of open software

node elements, should lead to novel advanced and scalable SDN protocols. Ac-

tive research is ongoing to capture these requirements (scalability, reliability and

programmability). Such evolution is in particular driven by novel interesting ca-

pabilities offered by cloud computing, such as the possibility to virtualize not only

end-servers access by end-users but also network functions accessed for network and

cloud provider needs.
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1.2.2 Network Functions Virtualization

To gain or to avoid losing market shares, telecommunication providers need to in-

troduce regularly new services, but the deployment of new features is often complex

and slow. Actually, the dependence towards equipment lifecycle impacts the ar-

chitecture evolution, and results in its lack of flexibility. The dream of agility may

become true by the use of well-defined and practiced concepts in the IT domain, such

as server virtualization and cloud computing. Network nodes thus become appli-

cations served by common hardware infrastructure distributed across data centers.

Such disruptive trend promises CAPEX (low cost hardware) and OPEX (shared in-

frastructure, software upgrade, etc.) savings. In addition, this new flexibility allows

a Telco to improve the added value of its network by offering new services such as

the opening of its virtualized infrastructure in a mobile virtual network operator

fashion. Scalability is another benefit of this technological tandem: depending on

the load, the VM provisioning (creation or suppression) allows to optimize the re-

source usage, and to face the demand while guaranteeing QoS levels, e.g., as stated

in a service level agreement.

The network programmability, virtualization and ‘cloudification’ phenomena

have been accelerated since the publication in 2012 of a common white paper [15]

written by a group of network operators under the ETSI umbrella, calling for ‘net-

work functions virtualization’ (NFV). NFV aims at leveraging standard IT Virtu-

alization technology to consolidate network appliances (switching, DPI, firewall,

cache, load balancer, cipher etc.) onto industry standard high-volume servers,

switches and storage, which could be located in datacenters, network nodes or

end-user premises (see Figure 1.10). By implementing such network functions in

software, NFV thus enables the deployment of virtualized network applications on

shared infrastructure. Furthermore, it brings new ways to implement resilience,

service assurance, test and diagnosis and security surveillance, new methods for in-

terlinking virtualized services and functions, but it also transforms the way network

operators architect and operate their networks. NFV, highly complementary but

not dependent on SDN, is applicable to a wide variety of networking functions in

both fixed and mobile networks.

In [15], the ETSI defends nine fundamental functional elements and design pri-

orities for NFV systems:

• Network Functions Virtualization Infrastructure as a Service: a specific IaaS

service infrastructure.

• Virtual Network Function as a Service (VNFaaS).

• Virtual Network Platform as a Service (VNPaaS).
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Figure 1.10: Specificities of NFV computing requirements with respect to typical

cloud services.

• Virtual Network Function Forwarding Graphs.

• Virtualization of mobile core network elements such as IMS.

• Virtualization of cellular base stations.

• Virtualization of fixed access and home environment network nodes.

• Virtualization of Content Delivery Network (CDN) elements (vCDN).

There is a gap between what NFV asks in terms of network flexibility and what

is available with legacy protocol. For this reason, SDN solutions are expected to

be strongly interrelated with NFV systems, so that NFV can become viable only

if adequate support is offered by a SDN architecture. NFV could therefore be the

killing application to guide the deployment of SDN in telecommunication provider

networks. In a hybrid SDN/NFV environment, represented in Figure 1.11, the con-

troller/orchestrator performs the advanced tasks (from complex routing decisions to

orchestration of NFV resources). In order to overcome security, vulnerability, and

availability shortcomings due to the centralization, self-diagnosis and self-healing

properties are very important for NFV/SDN environments, since the automated

and intelligent fault management that these tools provide can reduce the impact

of malfunctions at a lower cost and much more efficiently. Self-healing systems

are commonly agreed to be the candidate solutions for enabling intelligence and

automation on the current fault management processes. Self-healing systems are

composed of three blocks: detection, recovery and diagnosis [16]. The detection

block is in charge of discovering fault events while the recovery block aims at re-

pairing the network after a failure. The recovery is possible thanks to the diagnosis
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block that relates the observed symptoms of the network to the real cause of the

malfunction. Its accuracy is hence critical as it determines the recovery strategy to

be carried.

Given the vulnerability of the control plane in SDN, the automatic detection of

any anomaly on the control plane allows for a rapid recovery and thus prevents (or

mitigates) any impact on subsequent forwarding problem on the data plane. How-

ever, problems in the control plane affect the underlying switches, to the point that,

if no alternative forwarding mechanism is provided (i.e. hybrid switches count on

Ethernet forwarding except the OpenFlow-enabled ones if not expressly configured),

they do not know how to forward the incoming packets and become completely in-

operative.

At present, there is a limited literature on the design of NFV systems. Some

practical work concerns the virtualization of routing functions in residential net-

works [17] and CPE (Customer Premises Equipment) [18] for diverse access tech-

nologies (like ADSL, DOCSIS, and L2ONT). The lack of guidelines or examples of

fault management mechanisms and solutions in NFV is a noticeable fact. Most of

the recovery and diagnosis solutions for SDN are OpenFlow centric, ignoring legacy

equipment. Hence, several fault-tolerance mechanisms [19], [20], [21] propose so-

lutions for OpenFlow-based equipment and do not seem to be extensible to other

technologies. In addition, there is an increasing trend in the use of programming

languages over the northbound interface, such as Lithium [22], Frenetic [16] and

FatTire [23], all of them based on OpenFlow. These languages enable a transparent

management and modification of the OpenFlow flows through high-level policies.

For example, Lithium is an event-based language that applies different high-level

policies to the incoming packets when certain events occur (i.e., a load balancing

application for redirecting incoming packets with a non-authenticated IP source).

Replication techniques, very similar to re-incarnation [24], are popular for coping

with problems on the controller, performing a hot-swapping (i.e., a transition to a

back-up controller in the presence of a fault on the primary one).
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Figure 1.11: Coordination between NFV and SDN systems.

Structure of the dissertation

In this first chapter, we gave a general introduction on the broad context of this

thesis, describing the increasing softwarization and cloudification of data center

and provider networks. We described the general trends in networking, namely

cloud networking and software defined networking protocols and network function

virtualization systems.

In Chapter 2, we provide a more specific and technical state of the art on the

technologies either directly covered in our contributions or indirectly related to

them, in terms of functional support or desired network property.

In Chapter 3, we present the first contribution of this dissertation. We formal-

ize the problem of placement of virtual machines in a data center network, fully

integrating virtualization solutions as well as advanced cloud networking and SDN

protocols. We describe a repeated matching heuristic and we propose to solve the

problem for large instances. Then, we report the results of a detailed simulation

analysis, focusing on how virtual machine placement is influenced by optimization

goals and the presence of multipath forwarding and virtual switching features.

As there is major attention today devoted to the adoption of multipath forward-

ing protocols and of data-center topologies able to offer a large amount of paths to

such protocols, an open question is whether this additional path diversity comes

at the expense of traffic fairness desirable properties for data center networking.

We investigated this research question in Chapter 4, which describes our second

contribution. We formulate the traffic fairness problem based on TCP proportion-

ally fairness and integrating different multipath modes. We give then relevant and

counterintuitive insights on possible data-center fabric design choices.
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Chapter 5 describes our third and last contribution. We adopted a medium/long-

term vision where the data-center network facility exits from its legacy environment

and expands into the carrier network to support NFV systems. We define the

virtual network function chain routing problem in a carrier network as the problem

of finding the best route in a carrier network where customer demands have to pass

through a number of NFV nodes inside the telecommunication access, aggregation

and core network, taking into consideration the unique constraints set by NFV.

Our simulation results show at which extent this scope is viable and interesting for

network carriers.

Chapter 6 concludes the dissertation and contains perspectives for further work.

Appendix I describes in detail some additional blocks for the heuristic de-

scribed in Chapter 3.



Chapter 2
Related Work

We synthetically provide in this section a brief overview about data center fabrics

and optimization algorithms. We start by briefly describing recently proposed data

center network topologies as well as legacy and recent switching protocols. Then,

we synthetically describe the state of the art on virtual network embedding and

consolidation algorithms, as well as traffic engineering and fairness protocols and

models.

2.1 Data Center Fabrics

The expressions ‘data center fabric’ or ‘cloud fabric’ derive from a jargon typically

used in storage area networks. Since the dawn of cloud networking, it is increasingly

used to refer to a comprehensive architecture including specific type of network

elements, specific topologies, specific standard or proprietary protocols, etc. In the

following, we describe topologies that have been proposed and partially deployed in

industrial environments in the last decade. We then provide a brief state of the art

on data center switching architecture and cloud network overlay protocols.

2.1.1 Topologies

The common legacy DC topology is the 3-tier topology [25]. It has three layers:

access, aggregation and core layers. At the access layer, servers or server units (also

called ‘blades’) are attached to the network, via access switches; at the aggregation

layer, access switches connect to aggregation switches; at the core layer, each aggre-

gation switch is connected to multiple core switches. Such an architecture typically

relies on legacy Spanning Tree Protocol (STP) switching [9]. STP is the control-

plane protocol actually installing switching rules; while simple and fast, it leads to

underutilize the network resources because of port blocking to avoid loops. Even if

17



18 CHAPTER 2. RELATED WORK

Figure 2.1: 3-layer topology.

Figure 2.2: Fat-tree topology with 4 pods.

traffic engineering extensions such as Multiple STP, root bridge priority and port

cost optimization methods exist, major problems still persist, namely in terms of

convergence time upon failures, routing, and physical topology changes.

Such problems are even more important with less hierarchical and more horizon-

tal alternative topologies proposed in recent years to offer high bandwidth and path

availability to edge traffic among virtualization servers. Authors in [26] proposed

a special instance of a Clos topology called “fat-tree” to interconnect commodity

Ethernet switches as k−ary fat-tree. As depicted in Figure 2.2, all switches are

identical and are organized on two layers: the core layer and the pod layer. Gener-

ally, at the pod layer there are k pods, each one containing two layers of k2 switches:

edge switches and aggregation switches. Each k-port switch in the lower layer (edge

layer) is directly connected to k
2 hosts. Each of the remaining k

2 ports is connected

to k
2 of the k ports in the aggregation layer. Concerning the core layer, there are

(k2 )2 k-port core switches. Each core switch has one port connected to each of the k

pods. The ith port of any core switch is connected to the ith pod so that consecutive

ports in the aggregation layer of each pod switch are connected to the core switches

on (k2 ) strides. Figure 2.2 shows a fat-tree example for k = 4. The authors have
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Figure 2.3: BCube1 with n=4.

introduced a two-level concept route lookups for a multipath routing inspired by

OSPF and ECMP. In this protocol, the flows to the hosts connected to the same

lower-layer switch are forwarded, and the flows to the others destination are routed.

Another proposed topology that captures major attention is BCube [27], a re-

cursive modular architecture. As depicted in Figure 2.3, BCube has server devices

with multiple ports (typically no more than four). Multiple layers of cheap COTS

switches are used to connect those servers. A BCube0 is composed of n servers

connected to an n-port switch. A BCube1 is constructed from n BCube0s and n n-

port switches. More generally, a BCubek (k ≥ 1) is constructed from n BCubek−1s

and nk n-port switches. For example, in a BCubek with n n-port switches, there

are k + 1 levels of switches. Each server has k + 1 ports numbered from level-0 to

level-k. Hence, BCubek has N = nk+1 servers. Each level has nk n-port switches.

The construction of a BCubek is as follows. One numbers the n BCubek−1s from 0

to n− 1 and the servers in each BCubek−1 from 0 to nk− 1. Then one connects the

level-k port of the ith server (i ∈ [0, nk − 1]) in the jth BCubek−1 (j ∈ [0, n− 1]) to

the jth port of the ith level-k switch. It is worth noting that BCube requires virtual

bridging in the containers to operate. Fig. 2.3 shows an example of a BCube1, with

n = 4. Regarding to the routing protocols the authors have introduced a single

path routing protocol where the longest shortest path is equal to k + 1. They also

introduced a multipath routing protocol where only the parallel paths are valid.

The authors mean by parallel paths two paths where all the nodes are disjoint,

which mean no common server or switch. Thus, as an example we can have only

two paths with BCube1. .

Similarly to BCube, DCell [28] has servers equipped with many interfaces and

COTS switches. A DCell server is connected to several other servers and a switch.

A high-level DCell is constructed from low-level DCells. The connection between

DCells can make use of virtual bridging. A DCellk (k ≥ 0) is used to denote a level-k

DCell. DCell0 is the building block to construct larger DCells. It has n servers and

a switch (n = 4 for DCell0 in Figure 2.4). All servers in DCell0 are connected to
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Figure 2.4: DCell1 with n=4.

the switch. In DCell1, each DCell0 is connected to all the other DCell0s with one

link; the Figure 2.4 shows a DCell1 example. DCell1 has n+ 1 = 5 DCell0s. DCell

connects the 5 DCell0s as follows. It assigns each server a 2-tuple [a1, a0], where

a1 and a0 are the level-1 and level-0 IDs, respectively. Thus a1 and a0 take values

from [0, 5) and [0, 4), respectively. Then two servers with 2-tuples [i, j− 1] and [j, i]

are connected with a link for every i and every j > i. Each server has two links in

DCell1. One connects to its switch, and the other to a server in another DCell0.

In DCell1, each DCell0 is fully connected with every other virtual node to form a

complete graph. Moreover, since each DCell0 has n inter-DCell0 links, a DCell1 can

only have n + 1 DCell0s. A DCellk is constructed in the same way to the above

DCell1 construction in a recursive procedure [28] that is more complex than the

BCube one.

Regarding to the routing protocols the authors have introduced the DCellRout-

ing protocol for a single path routing protocol based on the recursive structure of

the DCell. However, they have introduced a theorem that DCell server can utilize

its multiple links to achieve high throughput using services such as Google FIle

System.

2.1.2 Ethernet Switching

Ethernet switching protocols were originally designed for enterprise Local Area Net-

works (LANs). The standard solution was based on the 3F concept: upon reception
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Figure 2.5: Spanning Tree Protocol.

of an Ethernet frame, an Ethernet bridge either Filter it, or Forward it, Flood it. If

the Media Access Control (MAC) destination of the incoming frame is beyond the

port where the frame comes from, the switch does not forward the frame, dropping

it (i.e., ‘filtering’ it). If the destination is beyond another port, after looking at its

MAC table it will then forward it to the appropriate segment. If the destination

address is not in the MAC table at all, it will then be flooded on all of its ports

except the port it was received on.

A major issue appearing with 3F forwarding is the creation of forwarding loops

in case of multiple paths between Ethernet bridges. In this is context the Spanning

Tree Protocol (STP) [9], IEEE 802.1D, was specified and implemented. STP avoids

loops by deactivating ports so that the enabled ports form a tree spanning all the

nodes of the network, as represented in the example of Figure 2.5. At a given node,

the ports that are active on the spanning tree are those that are along the shortest

path toward the root node, the root node being manually set or automatically

discovered by arbitrary rules (highest priority or lowest MAC address).

Enhancements to IEEE 802.1D

While STP has the advantage of being simple to understand and implement, it has

major shortcomings in terms of performance. The performance requirements typi-

cally required in common LAN environments are not stringent, and link capacity is

largely sufficient. However, in data center network environments it is more challeng-

ing due to the very high density of servers, the low latency required, and the high

bit rates of connections and links. In such situations, STP is offers low reliability,

scalability and traffic engineering features.
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(a) Basic frame. (b) 802.1Q frame.

Figure 2.6: Basic and IEEE 802.1Q frame formats.

In terms of reliability, by default STP convergence upon topology changes such

as due to failures may take many dozen of seconds and even minutes for medium-

size networks, depending on signaling cycles and the network topology diameter.

In 1998, Rapid Spanning Tree Protocol (RSTP), IEEE 802.1w [29], was presented

to decrease the convergence time upon failure, by introducing the notion of backup

and alternative ports associated to the root port and designated ports.

The first attempt to add traffic management features in Ethernet switching

was the introduction of Virtual Local Area Network (VLAN) switching in IEEE

802.1Q [30]. The Ethernet data-plane is altered with a VLAN tag (also called

Client tag, C-TAG, see Figure 2.6), based on which independent switching MAC

tables are used at each Ethernet bridge. The VLAN binding can be based on ports,

MAC address, and even layer 3 and 4 information for advanced switches. With

IEEE 802.1Q also the possibility to add switching priorities has been introduced.

Even with VLAN switching, traffic engineering (i.e., how to explicitly route traf-

fic where resources and capacity are available) is limited only to STP root election

control. Moreover, in terms of scalability, Ethernet switching has important limita-

tions when conceiving its extension to metropolitan area network domains. These

shortcomings have been addressed by further modifying the data-plane format and

some control-plane features as described hereafter.

Ethernet Carrier Grade

With the standardization and commercialization of Gbps-order Ethernet links and

switches in early 2000s’, the industrial sector did show interest in the potential

extension of Ethernet switching beyond the LAN boundaries, with therefore much

more machines to address, much more traffic to switch and more stringent con-

straints on latency and reliability. A similar interest was also expressed a few years

later for data center networks. The first shortcomings that were addressed at the
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(a) 802.1Q frame. (b) 802.1ad frame

Figure 2.7: IEEE 802.1ad frame format.

IEEE were in terms of scalability: the VLAN addressing space is limited and cannot

be shared between enterprise networks and a metropolitan area network (MAN) or

DC network provider providing interconnection of many Ethernet highlands sites

via a high-speed Ethernet network; the MAC table size would explose at MAN and

DC scopes because of the much higher number of connected terminals. These two

issues are addressed by the Provider Bridge (PB) node, IEEE 802.1ad ‘QinQ’ [31],

and the Provider Backbone Bridges (PBB) node, IEEE 802.1ah [32] ‘M-in-M’.

IEEE 802.1ad introduces an additional VLAN tag, also called Service-provider

tag (S-TAG), for network provider usage only, as presented in Figure 2.7, to allow

the network provider to uniquely identify customers. In DC networks, this opera-

tion is typically performed at the access switch level, where traffic from servers is

aggregated. The Ethernet switching logic is then not altered under IEEE 802.1ad:

traffic is distributed following the 3F modes and the STP. At each PB node, a

separate MAC table for each S-TAG is maintained.

IEEE 802.1ah introduces MAC in MAC layer encapsulation of endpoint frames

into PBB frames in order to isolate the addressing of endpoints from the addressing

of core bridges (PBB), hence reducing the PBB MAC table size. 802.1ah and

802.1ad can coexist in a same frame, and in such a case the S-TAG is copied upwards

in the 802.1ah header part as shown in Figure 2.8. In addition, an Informational tag

(I-TAG) of 24 bits is added, to either extend the VLAN addressing space or to allow

proprietary usages. In the PBB domain, traffic is then distributed following the 3F

modes and the STP. In DC networks, IEEE 802.1ah is commonly performed at the

Top of Rack (ToR) switch level, even if some hypervisors offer the possibility to do it
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(a) 802.1ad frame (b) 802.1ah frame

Figure 2.8: IEEE 802.1ah frame format.

directly in the virtualization server for traffic coming from virtual machines. In such

cases, the I-TAG can be used as virtual network (IaaS) identifier, which somehow

anticipates similar functionalities offered by cloud network overlay protocols (as

presented later in this chapter).

In order to reinforce the Ethernet switching architecture with traffic engineering

features, there have been various attempts. Short term attempts essentially con-

sist in marginal adaptations of the legacy architectures. One way is to aggregate

multiple physical links as a single virtual one for the STP using the Link Aggre-

gation Group or the multi-chassis EtherChannel protocols [33]. Another protocol

acting at the The Multiple Spanning Tree Protocol (MSTP) [34] is one solution

largely deployed (many other variants of MSTP, also proprietary, exist [35, 36]): it

allows distributing Ethernet traffic on multiple spanning trees concurrently, with a

VLAN:ST N:1 assignment.

The assignment of VLANs to STs can be the result of a TE optimization policy

as presented in [34]. Such extensions allow reaching a higher traffic distribution

and a higher bandwidth efficiency, avoiding to disable entire links as done in STP,

which can be very costly for both DC and MAN network environments. However,
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there is a very high level of complexity in the management of MSTP solutions, in

terms of signaling, state management and VLAN:ST multiplexing optimizations.

Considered as short-term patches, for DC network environments MSTP is de-factor

today overcome by novel protocols conceived for implementing routing of Ethernet

frames similarly to how routing is performed in IP networks, as described hereafter.

Toward Ethernet Routing

The real bottleneck in performing TE efficiently in an Ethernet switching context

being the spanning tree bridging of Ethernet traffic, eventually the STP control-

plane has been removed from more recent cloud fabric solutions implementable

for DC Networks (DCNs). The protocols that have been largely commercialized

are: the IEEE Provider Backbone Bridges with Traffic Engineering (PBB-TE) [37],

where centralized control servers push MAC tables to backbone switches (in a sim-

ilar philosophy OpenFlow [13] does so too); the IETF Layer 2 Label Switched

Paths (L2LSP) [38] effort suggesting to use the VLAN fields as MultiProtocol Label

Switching (MPLS) label fields; the IEEE 802.1aq Shortest Path Bridging (SPB) [39]

and IETF Transparent Interconnection of a Lot of Links Protocol (TRILL) [40] pro-

tocols where the control-plane is distributed adapting a layer-3 link state routing

protocol, the Intermediate System to Intermediate System (ISIS) protocol, to work

with the Ethernet data-plane.

While differing in terms of scalability and deployability, the latter three solutions

(L2LSP, SPB, TRILL) have proven to be viable ones and have been adopted by

many vendors. Notably, these protocols enabled multipath routing and forwarding

of Ethernet frames, and hence opened the way to active load-balancing over multiple

paths across virtual and physical switches. A problem that is addressed in the data-

plane of SPB and TRILL is the fact that, without STP, loops can appear during

ISIS convergence. To cope with loops, a Time to Live (TTL) field has been included

in both protocols. While SPB needs the whole DCN backbone to be upgraded with

new switches, TRILL can be implemented only at key points (e.g., at the hypervisor

level only using software implementations) and is therefore considered more scalable.

As nodes in this context are no longer simple bridges since they perform a routing

function in TRILL as well as in this dissertation, the term Router-Bridges (RBs) is

adopted.

Cloud Network Overlay Protocols

All the Ethernet carrier grade and routing protocols presented above strictly work

with an Ethernet data-plane. Those performing Ethernet frame encapsulation in

another Ethernet frame, i.e., PBB, PBB-TE, SPB, TRILL, are in particular inter-
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Table 2.1: Features of cloud network overlay protocols.

Cloud network

overlay feature SPB TRILL LISP VXLAN NVGRE STT

Encapsulation Ethernet over Ethernet over IP over Ethernet Ethernet Ethernet over

Ethernet Ethernet IP over IP over IP TCP/IP

Inter-data center Ethernet Ethernet IP IP IP IP

link

Intra-data center Ethernet Ethernet IP IP IP IP

link

User device None None Yes None None None

integration

Virtual network Yes Limited Yes Yes Yes Yes

segmentation

Firewall Very high Very high High High Low Very low

friendliness

Incremental Low High Very high High Low Low

deployability

Multipath and Native Native Native Partial Partial Partial

load balancing

Multicast Native Native Ongoing Native Partial Partial

esting for DCN environment because the association they create between the address

and the routing locator of the destination is very beneficial for the reduction of the

routing table size and for the support of VM migrations. In networking, protocols

performing encapsulation at the same layer or across layers are typically referred

to as ‘overlay protocols’. Those having as direct application the DCN environment

(e.g., PBB, PBB-TE, SPB) are commonly referred to as ‘cloud network overlay’

or ‘virtual network overlay’ protocols [41]. Other cloud network overlay protocols

exist. Some of them are compared in Table 2.1.

The only standard protocol performing IP-in-IP encapsulation with a complete

control-plane architecture decoupled by the data-plane is the Locator/ Identifier

Separation Protocol (LISP) [42]. LISP has intermediate UDP and LISP shim head-

ers - UDP allows passing transparently through middle-boxes. Despite it has been

originally designed to cope with Internet routing, it is actually used as a cloud net-

work overlay protocol in commercial solutions, such as Cisco and NU@GE Cloud

solutions, because its functionalities allow efficiently managing virtual machines and

IaaS isolation.

Other protocols encapsulate Ethernet frame into higher layer packets such as IP,

UDP and TCP. The Virtual Extensible LAN (VXLAN) [43] protocol encapsulates

Ethernet packets into IP packets. It shares with LISP most of its data-plane, apart

the inner packet that is IP in LISP and Ethernet+IP in VXLAN. The VXLAN shim

header, as well as the LISP one, allows transporting a virtual network identifier (on

24-bit as for the IEEE 802.1ah I-TAG) useful for IaaS segmentation. The Network

Virtualization Using Generic Routing Encapsulation (NVGRE) [44] works similarly

than VXLAN, but it does not uses UDP - it uses instead its own shim header for

virtual network identifier, and it has therefore issues in passing through middle-

boxes. Finally, the Stateless Transport Tunneling (STT) [45] performs Ethernet
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encapsulation over a TCP/IP packet, where TCP functions are de-facto non used

in practice. The TCP header is added to exploit TCP offloading and optimization

present in some commercial NICs.

Table 2.1 briefly summarizes the six cloud network overlay protocols we briefly

presented. As the table suggests, they all natively support multipath forwarding

and load balancing, at least to some extent. The most promising protocols (e.g.,

VXLAN, LISP), however, are also incrementally deployable, support virtual network

segmentation, natively pass through IP networks and easily cross firewalls.

2.2 Data Center Network Optimization

We review in the following a selection of the state of the art on data center net-

work optimization algorithms and protocols that see real applications in data center

networking today. We classify as virtual network embedding, virtual machine place-

ment, and traffic engineering methods.

2.2.1 Virtual Network Embedding

Virtual Network Embedding (VNE) is a term adopted since the inception of ad-

vanced software virtualization in early 2000s’. A generic definition of the virtual

network embedding problem is to assign to a set of virtual network demands a vir-

tual network built over a same physical network infrastructure, which technically

is supposed to offer isolation and possibly deterministic service level specifications

at both nodes and links. In the literature the term Virtual Data Center (VDC) is

also frequently used, often associated to an embedding algorithm. A representation

of a virtual network is given in Figure 2.9. Each virtual network is represented by

a graph that has to be embedded over a physical network graph that shall have

sufficient idle resources to serve the demands. A virtual network demand can be

rejected in case of resource unavailability.

VNE algorithms at the state of the art can be classified as static or dynamic.

Static approaches do not consider the remapping possibility of some VNs to improve

the embedding cost as a function of changing network states, while the dynamic ap-

proach allows it, taking into consideration several metrics such as network resources

fragmentation. In fact, over time, some VNs can expire and release their resources,

which cause fragmentation; this fragmentation can increase the rejection rate of fu-

ture VN embedding requests. Hence the dynamic approach allows a better network

resource allocation efficiency. In this context, the authors of [46] have shown that

most VN request rejections can be due to bottlenecked links.

VNE algorithms can also be classified as centralized or distributed. In centralized

approaches, a computation server is logically present and responsible for computing
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Figure 2.9: A sample of virtual network embedding.

the VNE, while in distributed approaches collaboration takes place between different

computation nodes to compute VNE solutions.

The literature on VNE is vast. Many propositions have been proposed to solve

many variations of the VNE problem. Most of the proposals have adopted mathe-

matical programming approaches [47,48], often applicable only for small instances of

the problem because it is NP-hard. Many others propose heuristic or metaheuristic

algorithms [49–55]

The performance goal is most of the time expressed through a single fitness met-

ric. A mapping request cost or a request acceptance/rejection rate are commonly

defined as abstract metrics in [48, 56]. Others consider quality of service metrics

such as the ‘stress level’(function of the amount of virtual nodes or links embedded

over the same physical nodes or links) in [57], or the path length [58], the system

utilization (e.g., in terms of CPU and RAM) in [59], or the link utilization in [52],

or the throughput in [50]. Some papers as [55, 60] include two metrics in the ob-

jective function. The VNE problem can be seen as composed of two sub-problems,

nodes mapping and link mapping. Hence, it can be solved by solving the two sub-

problems separately, as done in [48], also called the uncoordinated approach, or with

a coordination with the two sub-problems where each solution affect the other as

in [61].
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2.2.2 Virtual Machine Placement

With the emergence of server virtualization and Cloud network overlay protocols,

adaptive, online or recurrent virtual machine placement and replacement procedures

have been designed and implemented in Cloud orchestration platforms.

Server consolidation is one of the first VM placement optimization problems

of interest for industrial data centers: - it aims to reduce the number of enabled

(turned-on) virtualization servers by regrouping the VMs on the same server when-

ever possible. Therefore itallows taking direct monetary benefits from server vir-

tualization, thanks to lower energy consumption granted by adaptive hibernation

of unused servers. The VM consolidation problem is derived from capacitated fa-

cility location problem and/or bin-packing problems and is therefore a NP-hard

optimization problem. In order to allow its quick resolution also including online

environments some of them proposed extensions of simple greedy algorithms such as

First Fit Decreasing [62], Least full first [63], Most Full First [63], Best Fit [64], to

avoid attempting optimal yet too time consuming mathematical programming ap-

proaches; they show, however, a non-deterministic guarantee on the optimality gap.

In [65] the authors proposed Ant Colony Optimization a metaheuristic to minimize

two objectives the resource wastage and the power consumption. Also, in [66] they

solved the problem by using Ant Colony Optimization and only considered CPU

and memory constraints.

A few works detach from specific straightforward modeling and resolution algo-

rithms of the virtual machine placement problem, taking into consideration other

parameters than energy consumption only, and in particular networking constraints.

In [67], the authors proposed a VM placement solution also considering network

resource consumption. They designed a two-tier approximation algorithm that ef-

ficiently solves the VM placement problem. They assumed that a VM container

could be divided into CPU-memory slots, where each slot could be allocated to any

VM. They considered the number of VMs as equal to the number of slots; if the

number of slots was higher than the number of VMs, they added dummy VMs (with

no traffic), and did not affect the algorithm. Due to a communication cost between

slots, defined as the number of forwarded frames among them, the objective was set

as the minimization of the average forwarding latency. They also assumed static

single-path routing and focused on two traffic models. A dense one where each VM

sent traffic to every VMs at an equal and constant rate, and a sparse Infrastructure

as a Service (IaaS)-like one with isolated clusters so that only VMs in the same IaaS

could communicate. Similarly in [68], the authors minimized the energy consump-

tion of active servers, bridges and links, to maximize the global EE. The authors

converted the VM placement problem into a routing problem, so as to address the

joint network and server optimization problem (where there is no tread-off between
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network and server objectives).

Some other works proposed genetic algorithms to solve the problem. In [69], the

authors proposed a genetic algorithm based approach, namely GABA, the authors

proposed an online self-reconfiguration approach for reallocating VMs in large-scale

data centers, and just considered the CPU resources. In [70], the authors also

propose a genetic algorithm for resolving the VM placement problem. They for-

mulate the problem as a multi-objective optimization minimizing the total resource

wastage, the power consumption, and thermal dissipation costs, and they proposed

genetic algorithm to incrementally search the better solution combining possibly

conflicting objectives.

Many works have formulated the problem as a bin-packing problem. Apart

those already mentioned, in [71], the authors consolidated VM placement consider-

ing a non-deterministic estimation of bandwidth demands. The bandwidth demand

of VMs was set to follow normal distributions as the authors assumed that server

consolidation usually occurs at weekly or monthly timescale. They formulated the

consolidation in a Stochastic Bin Packing problem and introduced an online heuris-

tic approach to resolve it. In [72] the authors also formulated the problem as a

bin-packing problem considering only server resources constraints, and they pro-

posed an optimized First-Fit-Decreasing, where instead of placing directly the new

arrived workload into the first node that can accommodate, the heuristic tries to

reorganize the workloads smaller than the newcomer. The heuristic also reorganizes

the workloads when workload departs.

In [73], the authors revisited the virtual embedding problem by distinguishing

between server and bridge nodes with respect to the common formulation. They

proposed an iterative 3-step heuristic: during the first step an arbitrary VM map-

ping was done; the second step mapped virtual bridges to bridge nodes, and the

third one mapped virtual links accordingly. If one of these steps failed, the heuristic

would come back to the previous one until a solution was found. The quality of the

solution seemed dependent on the first step, the other steps just minimized the im-

pact of the previous step. Furthermore, there may have been a scaling problem due

to the uncontrollable backtracking. More generally, virtual embedding approaches

in the literature often discarded specificities of the network control-plane such as

the routing protocol and TE capabilities.

In [74], the authors considered network constraints in addition to CPU and

memory constraints in the VM placement problem. They defined a network-aware

VM placement optimization approach to allocate VM placement while satisfying

predicted traffic patterns and reducing the worst case cut load ratio in order to

support time-varying traffic. Interested by network cuts, they partitioned the set of

hosts into non-empty connected subsets, which are bottlenecks for the traffic demand
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between VMs placed in different sides of the cut. In [75], the authors optimized

jobs placements where each job required a number of VMs; the objective function

minimized the network and the node costs. The authors did not handle the link

capacity constraints, and did not consider multipath forwarding capabilities instead

of multipath routing with one single egress path. In [68], the authors minimized

the power energy consumption of activated servers, bridges and links, to maximize

the global energy saving. The authors converted the VM placement problems into

a routing problem, and so they addressed the network and server optimization

problem as a single one. So, there was no trade-off between the network-side and

server-side optimization objective.

Most of the studies on the state of the art focused on a single criterion. Some

of these studies ignored link capacity constraints, [62, 63, 63, 64], others excluded

dynamic routing as in [67], or just considered the traffic volume to reduce the

number of containers as in [71], or just the network resources as in [67] and [74],

only [68] considered multipath forwarding capabilities.

Some of these studies excluded dynamic routing functionalities; for example

in [67] the authors propose a VM placement solution considering network resource

consumption, wherein the objective is set as the minimization of the average for-

warding latency. Others studies take only the network resources into account, as

in [67] [74], or just consider the traffic volume to reduce the number of containers as

in [71] where authors propose a VM placement considering a non-deterministic esti-

mation of bandwidth demands, formulating the problem as a Stochastic Bin Packing

problem, and introducing a new heuristic approach to resolve it. In [73], where the

authors revisited the virtual embedding problem by distinguishing between server

and switching nodes; they do not handle the link capacity constraints, and they also

do not consider multipath forwarding (load balancing), but a multipath routing with

single egress path. Commonly, because of the relatively recent employment of vir-

tual bridging for transiting traffic at the server level, virtual bridging capabilities

for external traffic forwarding were ignored.

2.2.3 Traffic Engineering

As defined by [76] ‘Internet traffic engineering is defined as that aspect of Internet

network engineering dealing with the issue of performance evaluation and perfor-

mance optimization of operational IP networks. Traffic Engineering encompasses

the application of technology and scientific principles to the measurement, charac-

terization, modeling, and control of Internet traffic. . . ’. This definition by the IETF

is quite broad, and indeed encompasses a large number of different components. We

review in the following two TE features that are recalled in the next chapters of

this dissertation.
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Explicit routing

Starting by the end of the nineties, increasing interest was addressed to traffic en-

gineering (TE) techniques that are able to better distribute traffic load on existing

links with respect to standard link-state routing. The first article proposing to opti-

mize Interior Gateway Protocol (IGP) metrics as a function of network load is [77].

Given the NP-hardness of the problem when considering link capacity constraints

in the multi-commodity flow formulation, heuristics were proposed therein and in

subsequent works [78–80]. In [78], the problem of finding the optimal set of metrics

also accounting for transient link failures is formulated. Another important work is

the one in [80] where the metric set is computed also in order not to induce route

deviations in BGP due to the coupling between IGPs and the Border Gateway

Protocol (BGP).

The typical objective in TE metric optimization for IP networks is the minimiza-

tion of the maximum link utilization. This goal is opposed to opposite goals used in

transport optical networks, typically the maximization of circuit acceptance or min-

imization of blocking rate. The reason resides in the major difference between the

connection-less packet-switching nature of IP routing and the connection-oriented

circuit-switching buffer-less nature of optical switching. In IP networks, there is

no a so certain guarantee on the bitrate as it can happen in optical networks, so

that the routing solution should be as far as possible from the risk of congestion

to support real-time services. Indeed, real-time services are not be able to recover

data stream loss while users are exploiting the service.

There is therefore the need to better master network impairments such as link

failure and traffic variations. About the latter, in [79] robust IGP metrics are

computed to take into account the traffic matrix variations, by the definition of

incertitude sets integrated in the optimization engine. Another way is to (easily)

include in previous TE methods the maximization of load-balancing for a same

destination prefix. This can be reached by selecting for the final IGP metric set

the metrics that not only satisfy the TE goal, but that also maximizes the usage

of Equal Cost Multi-Path (ECMP) routing, i.e., the load-balancing of traffic over

multiple paths when these paths have equal IGP path cost.

In order to master link failures, the proactive optimization of IGP metrics so

that they are robust against link failure, i.e., so that the TE objective is minimized

also taking into account the occurrence of link failure, as done in In [78], is, however,

not sufficient. The reason is the IGP routing convergence time upon failure that

can be too high in very-high capacity networks such as DC and carrier networks. In

IGP link-state routing, the convergence time upon failure can be of many seconds,

essentially due to a combination of the time needed to detect the failure, announce

it everywhere and to allow for the recomputation of the new shortest paths and
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their writing in the forwarding information base.

Also to answer to faster rerouting upon failure, major interest has been de-

voted to label-switching solutions for IP networks based on the Multi-Protocol La-

bel Switching (MPLS) protocol and its generalizations [81]. In MPLS, data-plane

switching is done using label-switching tables that associate input port and label

information to output port and label, where the label is an identifier of the desti-

nation pre-distributed using specific control-plane protocols. The routing decision

behind the input/output port and label associations can rely on legacy IGP routing

or can also be the result of explicit path computation logics.

Advanced constrained path computation solutions have been conceived for MPLS

networks extended so that multiple metrics can be associated to each single link.

Such extensions, referred to as MPLS with Traffic Engineering extensions (MPLS-

TE), rely on IGP-TE extensions [82,83], and on the Resource ReSerVation Protocol

with TE extensions (RSVP-TE) [84]. This allows imposing explicit paths that com-

pletely bypass legacy IGP routing, while being able to maintain in the same switch-

ing table instructions related to unconstrained plain IGP routing and instructions

computed using multiple constraints. Moreover, with MPLS-TE, fast-rerouting so-

lutions can be implemented in relative straightforward way exploiting the fact that

labels have all a local significance: at each hop, the external label of incoming pack-

ets changes (swapped with another label, replaced with a new pushed label on the

top of it, or popped out from the IP stack). Thanks to local significance, upon

detection of a failure a node can immediately react by pushing a new external label

and swapping the port for the packets to the destinations beyond the failed link, so

that the value used for the label upon failure has been pro-actively pre-signaled. In

this way, recovery upon failure can stay below 50 ms [85].

These same TE features can be implemented also at lower layers, and notably at

the Ethernet switching level [81]. With Layer-2 Label Switching (L2LSP), a IEEE

802.1ad data-plane can host at the S-TAG level an MPLS label. Other Cloud fabric

protocols presented in the previous section, such as PBB-TE, TRILL, SPB and

OpenFlow, are not as powerful as layer-2 MPLS in terms of fast rerouting based

on current specifications. TRILL, SPB and OpenFlow have however the potential

of acquire needed extensions to support fast-rerouting, yet this appears as much

simpler with OpenFlow, which shares with MPLS-TE the logically centralized TE

path computation way. Indeed, in MPLS-TE, path computation can be externalized

to external computation servers called Path Computation Elements (PCEs) [86].

2.2.4 Traffic Fairness

Explicit routing TE methods act at the aggregate network level. TE policies, includ-

ing ECMP and fast rerouting, do apply so that a same transport-level flow sees its
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packets routed over a same path, and that load-balancing is performed for different

flows or even for different groups of destination networks (based on the definition

of the MPLS forwarding equivalence class, for instance).

Another concern in operational networks is to guarantee that different flows

sharing the same network links subject to congestions suffer from the same level

of bandwidth reduction, at stable equilibrium situations. This concern is typically

referred to as traffic fairness. Since the first steps of the Internet, it was recognized

that unrestricted access to the Internet resulted in poor performance in the form

of low network utilization and high packet loss rates [87]. These phenomenons

were called congestion collapses, and led to the development of congestion control

algorithms appropriate to the Internet. The basic dominating idea was to detect the

congestion in the network through packet losses, and integrate this information in

the way throughput is offered to greedy applications; upon detecting a packet loss,

the source reduces its transmission rate, or otherwise it increases the transmission

rate. Eventually, many versions of the Transport Control Protocol (TCP) [88] use

the lack of acknowledgement of packets as an alert of packet loss.

In a network with multiple competing TCP sessions sharing links, several stud-

ies [89–92] have shown that TCP implicitly solves a utility problem in equilibrium.

This utility problem is formally described as a maximization of an aggregate utility

subject to capacity constraints:

max
X≥0

∑
j∈J

U(Xj) (2.1)

subject to ∑
j∈J

δjeXj ≤ ce, e = 1, 2, ..., E (2.2)

The above model maximizes the utility function U(Xj) of each session j ∈ J where

Xj denotes the rate of session j while δje is the indicator that takes the value 1 if

session j uses link e, 0 otherwise.

Multiple approaches in order to address the fairness between costumers exist.

In [93] two approaches are described, the Max-Min Fairness (MMF) approach,

which maximizes the minimal assignment of capacity to demands. In fact the solu-

tion can be resumed in iterative steps; first, MMF assigns the same minimal volume

to all demands, until some free capacity is still present, each minimal assignment

is increased whenever possible, and so on until the maximization does not improve

any longer the situation.

To illustrate MMF, the authors consider a network where V is the set of nodes,

E is the set of links and D is the set of demands between nodes. Each node is

identified by vi such as vi ∈ V and i = 0, 1, . . . , |V | and each link is identified by

ej such as ej ∈ E and j = 0, 1, . . . , |E| and finally each demand is identified by dk
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Figure 2.10: A reference network example for MMF and PF allocations. Source:

Routing, Flow, and Capacity Design in Communication and Computer Networks

book [93].

such as dk ∈ D and k = 0, 1, . . . , |D|. Each demand is identified by an origin and

a destination between two nodes. A route is specified by a sequence of links. Let

xd be the rate at which source v is allowed to transmit data. Each link e in the

network has a capacity c. Given the capacity constraints on the links, the source

allocation problem is to assign a rate xd to the users in a fair manner.

To illustrate the difficulties in defining a fair allocation, we consider the example

in Fig. 2.10. Supposing a network with three links, two nodes and three demands.

The network consists of two links e1 and e2 and three nodes v1, v2 and v3 and three

demands d1, d2 and d3. d1 and d2 cover only one link, e1 and e2, respectively. The

third demand d3 covers both links, e1 and e2. Suppose that the capacity of link e1

is c1 = 2, of link e2 is c2 = 1. A resource allocation that satisfies the link capacity

constraints is x2 = x3 = 0.5 and x1 = 1.5. Indeed, MMF attempts to divide the

capacity of each link among the demands. Then, the demands d1 and d3 on the

link e1 would get a rate of 1 each. The demand d2 and d3 on link e2, would get a

rate of 0.5 each. However, since the demand d3 covers both links e1 and e2 it can

only transmit at rate 0.5. Thus, there is still one more unit of capacity remaining

to be allocated on link e1. This remaining capacity will be allocated to the only

other demand using that link, which is demand d1, thus given x1 = 1.5, x2 = 0.5

and x3 = 0.5. Then, supposing that c1 = c2 = 1.5, the resource allocation that

satisfies the link capacity constraints is x1 = x2 = x3 = 0.75. Clearly this is not

optimal with respect to the throughput. In fact the resulting throughput is equal

to x1 + x2 + x3 = 2.25.

In the alternative Proportional Fairness (PF) [94,95] allocation that is applica-

ble to TCP, utility U(xj) is set to ωj log xj , where ωj is the weight of the session

j. Hence, the resource allocation corresponding to this utility function is commonly

referred to as weighted proportionally fair, or, if all ωd are equal to one, as propor-

tionally fair. Thus, (2.1) for PF becomes:

max
X≥0

∑
j∈J

ωj logXj (2.3)
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The log function avoids the assignment of zero or too low volumes to demands

since log x→ −∞ as x→ 0. Furthermore, it makes it not profitable to assign much

volume to any demand. We note that the PF objective function is non-linear with

respect to the MMF one. Taking the example in Figure 2.10, the corresponding

explicite resource allocation is given by:

max {logx1 + logx2 + logx3} (2.4)

subject to:

x1 + x3 ≤ 2, (2.5)

x2 + x3 ≤ 1, (2.6)

x1, x2, x3 ∈ R+. (2.7)

The corresponding weighted proportionally fair resource allocation is c1 = c2 =

1.5, which favor shortest flows. The resource allocation that satisfies the link ca-

pacity constraints is x1 = x2 = 1 and x3 = 0.5. From a fairness perspective, the PF

solution is less fair than the MMF solution. However, since it favors shorter flows,

the PF allocation is more efficient in terms of global throughput, in this case it is

equal to x1 + x2 + x3 = 2.5.

An open question is what happens in terms of fairness in Cloud fabrics that today

expose a large number of paths to applications and servers, also using extended

versions of TCP such as Mutlipath TCP [96]. How path diversity coupled with

multipath transport can affect TCP fairness is a question to which we try to answer

in the next chapters.



Chapter 3
Traffic Engineering and Energy

Efficiency in Virtual Machine

Placement

The increasing adoption of server virtualization has recently favored three key tech-

nology advances in data center networking: the emergence at the hypervisor soft-

ware level of virtual bridging functions, between virtual machines and the physical

network; the possibility to dynamically migrate virtual machines across virtualiza-

tion servers in the data center network (DCN); a more efficient exploitation of the

large path diversity by means of multipath forwarding protocols. In this chapter,

we investigate the impact of these novel features in DCN optimization by providing

a comprehensive mathematical formulation and a repeated matching heuristic for

its resolution. We show, in particular, how virtual bridging and multipath forward-

ing impact common DCN optimization goals, traffic engineering (TE) and energy

efficiency (EE), and assess their utility in the various cases of four different DCN

topologies. We show that virtual bridging brings a high performance gain when

TE is the primary goal and should be deactivated when EE becomes important.

Moreover, we show that multipath forwarding can bring relevant gains only when

EE is the primary goal and virtual bridging is not enabled.

3.1 Introduction

The advent of efficient software virtualization techniques allows running server vir-

tualization at competitive performance-cost trade-offs with respect to legacy solu-

tions. The increasing adoption of server virtualization has recently favored three key

technology advances in data center networking: the emergence of virtual bridging

37
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functions at the hypervisor software level (between virtual machines and the phys-

ical network); a more efficient exploitation of path diversity by means of multipath

forwarding protocols; the possibility to dynamically migrate virtual machines across

virtualization servers at different places in the data center networking (DCN). In

the context of DCN optimization, virtual bridging is useful for the management of

Virtual Machines (collocated in the same virtualization server), by offloading inter-

Virtual Machine (VM) traffic from access and aggregation switches at the expense

of an additional computing load on the virtualization server. Moreover, with the

emergence of flat DCN topologies, such as Fat-Tree [26], DCell [28], and BCube [27],

offering more path diversity, multipath forwarding can become useful to fully utilize

the available paths and capacity and therefore offer higher throughput and resiliency

to the servers. The ability to synchronize VM copies and migrate across virtual-

ization servers (referred in the following also as ‘containers’ or ‘VM containers’)

further adds elasticity to the cloud fabric by allowing fault-restoration and resource

consolidation.

Virtual machine placement algorithms typically address a traffic engineering

(TE) [75, 97] or a energy efficiency (EE) [98, 99] objective, that is, such as to min-

imize the maximum link utilization when balancing the traffic load on DCN links

or to maximize server utilization to turn off or hibernate some servers to save en-

ergy. Addressing TE and EE goals eventually leads to savings in DCN maintenance

and planning costs while increasing the performance. The relationship between

the presented three recent trends, virtual bridging, multipath forwarding, and VM

placement, is a rather unexplored subject that we investigate in our contribution.

The contribution of this chapter is is two-fold:

• Given that, to the best of our knowledge, no work at the state of the art offers

a DCN optimization framework supporting virtual bridging and multipath

forwarding, we formally formulate the virtual machine placement optimization

problem with these features in a novel, compact, and versatile formulation.

For its resolution with dense, flat, and large DCN topologies, we propose a

repeated matching heuristic.

• We analyze the impact of virtual bridging and multipath forwarding in DCN

optimization with TE and EE objectives, and with a detailed sensibility anal-

ysis including four different DCN topologies (3-layer, FatTree, BCube, DCell)

that cover all possible cases. We draw observations on the case-by-case suit-

ability of virtual bridging and multipath forwarding features with respect to

DCN VM placement optimization.

In the following, the DCN optimization model is formulated in Section 3.2,

the proposed heuristic in Section 3.3, and simulation results are in Section 3.4.
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Table 3.1: Mathematical notations

N set of VM containers and RBs; n ∈ N .

C container set; C ⊂ N .

V VM set; V ⊂ N .

R RB set; R ⊂ N . Ra ⊂ R is the access RB set.

T V set of VM pairs; T V ⊂ V × V .

TC set of container pairs; TC ⊂ C × C.

TR set of RB pairs; TR ⊂ R×R.

Variables and Parameters

ev,c 1 when v is at c, 0 otherwise. v ∈ V, c ∈ C.

bc 1 if c is enabled, 0 otherwise. c ∈ C.

ac,r 1 when c traffic via r. Multipath: ∈ [0, 1]. c ∈ C, r ∈ R.

ρks,d 1 if traffic from rs to rd transits by the kth path if unipath.

Multipath: ∈ [0, 1]. (rs, rd) ∈ TR.

tci,cj traffic from ci to cj , (ci, cj) ∈ TC .

tri,rj traffic from ri to rj ; (ri, rj) ∈ TR.

tc,r traffic from c ∈ C to r ∈ R.

U maximum network link utilization.

KP
c power capacity of container c ∈ C.

KM
c memory capacity of container c ∈ C.

dPv computing power demand of VM v ∈ V .

dMv memory demand of VM v ∈ V .

tvi,vj traffic from vi to vj , (vi, vj) ∈ T V ; tvi,vi = 0.

Ki,j (i, j) link capacity, null if no link; (i, j) ∈ N ×N .

pk,s,di,j 1 when kth path from rs to rd uses link (ri, rj).

α trade-off coefficient between TE and EE objective, α ∈ [0, 1].

Section 3.5 concludes our contribution.

3.2 Optimization Problem

In the following, we present the mathematical formulation of the target VM place-

ment problem. The optimization problem is to determine how to place VMs at VM

containers in a DCN supporting virtual bridging and/or multipath forwarding while

satisfying TE and/or EE goals. We first present the formulation with no multipath

forwarding and virtual bridging capabilities, and then we show how it can be easily

extended to enable these features. The notations are provided in Table 4.1.

Our problem is a bi-criteria optimization problem: the goal is to minimize both
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the maximum link utilization (TE goal), and the number of enabled containers (EE

goal), simultaneously. This problem can be formulated as follows:
min U

min
∑
c∈C

bc
(3.1)

Subject to the following constraints:

A VM is assigned to only one container:

∑
c∈C

ev,c = 1 ∀v ∈ V. (3.2)

A container is enabled only if it hosts at least one VM:

bc ≥ ev,c ∀c ∈ C, ∀v ∈ V. (3.3)

Each container is assigned to one RB:

∑
r∈R

ac,r = 1 ∀ c ∈ C. (3.4)

Traffic between two access RBs is sent over a single path:

∑
k

qkrs,rd = 1 ∀(rs, rd) ∈ Ra ×Ra. (3.5)

A VM is assigned to a container only if there are available residual computing

resources:

∑
v∈V

dPv ev,c ≤ KP
c

∑
v∈V

dMv ev,c ≤ KM
c ; ∀c ∈ C. (3.6)

Container-RB traffic does not violate the access link capacity:

tc,r ≤ Kc,r ∀ c ∈ C ∀r ∈ R. (3.7)

Similarly for the aggregation-core link capacity:

∑
rs,rd

∑
k

trs,rdρ
k
rs,rd

pk,rs,rdri,rj < U Kri,rj ∀(ri, rj) ∈ TR (3.8)

tc,r =
∑

(vi,vj)∈TV

(tvi,vj + tvj ,vi) evi,c ac,r ∀r ∈ R, ∀c ∈ C

trs,rd =
i 6=j∑

(ci,cj)∈TC

tci,cj aci,rs acj ,rd ∀(rs, rd) ∈ TR

tci,cj =
∑

(vx,vy)∈TV

(tvx,vy + tvy ,vx) evx,ci evy ,cj ∀ ci, cj ∈ C.
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We could solve this bi-criteria optimization problem by searching the Pareto

frontier (the set of optimal solutions to this problem), and then select a Pareto

optimal solution that offers a good trade-off between our two criteria. However, in

this dissertation we propose to simplify the problem by scalarizing it to a single

objective function, which is a linear combination of our two criteria weighted by the

α trade-off parameter. Hence, data center providers can control the importance they

want to give to the one or to other criterion. We note that this method is one of the

most common general scalarization methods for multi-objective optimization [100]:

min α U + (1− α)
∑
c∈C

bc (3.9)

Enabling multipath capabilities

Multipath forwarding between containers and RBs (in the place of link aggrega-

tion/bonding or similar approaches) can simply be enabled by declaring ac,r as a

non-negative real variable. Hence, we add the following integrity constraint:∑
k

ac,r = 1 ∀ c ∈ C. (3.10)

Similarly, multiple paths between RBs can be enabled by declaring ρks,d as a

non-negative real variable and adding the following integrity constraint:∑
k

ρkrs,rd = 1 ∀(rs, rd) ∈ Ra ×Ra, (3.11)

where the traffic between RBs in (3.8) becomes

trs,rd =
i 6=j∑

(ci,cj)∈TC

tci,cjaci,rs acj ,rd ; ∀(rs, rd) ∈ TR ∀ ci, cj ∈ C.

Enabling virtual bridging

Enabling virtual bridging means that the container takes the function of a bridge

(typically at the hypervisor level). This feature can be easily included by transform-

ing the variable ac,r in a parameter and extending the RB set including the container

nodes. Given that virtual bridging consumes additional power and memory, (4.3)

should be slightly changed so that such an additional component (function of the

traffic load) is included.

The use of virtual bridging consumes VM container power and memory. The

constraints (3.6) change to (3.12) and the traffic between VMs in the same container

no longer transits by physical bridges.

τ(tc,c + tc,r + tr,c) +
∑
v∈V

dPv ev,c ≤ KP
c ; ∀ c ∈ C
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γ(tc,c + tc,r + tr,c) +
∑
v∈V

dMv ev,c ≤ KM
c ; ∀ c ∈ C. (3.12)

This optimization model is an extension of the baseline multi-commodity flow

(MCF) problem for network routing with link capacity constraints [93] by taking

into account peculiar data center networking constraints due to VM mobility, VM

container switching on and off, virtual bridging, and multipath forwarding.

Given the elasticity related to VM migrations and multipath forwarding that

require double mapping, between VMs and VM containers and between VM con-

tainers and usable paths, our optimization problem, beside being comprehensive and

versatile (considering both unipath and multipath modes with and without virtual

bridging) is a non-linear one.

To summarize, the problem is

min (3.9) subject to : (3.2), (3.3), (3.4), (3.5), (4.3), (3.7) and (3.8)

where (4.3) is replaced by (3.12) for the virtual bridging case. Contraints (3.10)

and (3.11) are added for the multipath case. The problem has |V | + 2|C| + |Ra|2

variables, |V |+ |C|+ |Ra|2 with multipath forwarding and virtual bridging, and less

than |V |+ |C|(2 + |V ||R|) + 2|R|2 constraints.

3.3 Heuristic approach

Classically, mapping problems reduce to facility location problems; when capacity

constraints need to be verified as a function of the type of mapping, there are

similarities with the capacitated facility location problem [101], in particular, to the

single source facility location problem (SSFLP) [102,103].

It is easy to derive that our DCN optimization problem can be reduced to the

SSFLP, and hence, is NP-hard. In the SSFLP, we have a set of customers that

must be served by a single facility, and there is a cost associated with opening a

facility in a particular location and a transportation cost from the facility to the

customer. Each customer has a particular demand and each facility has a limited

capacity. The problem is to find where to locate the facilities to minimize the cost

of the network.

Our optimization problem can be reduced to an instance of a SSFLP as follows.

Each VM pair can be seen as a customer of the SSFLP, and the VM pair has a

global traffic demand that can be seen as the customer demand from a facility of

the SSFLP. To translate our problem to a SSFLP instance, let (i) the traffic demand

between two VMs of our VM placement problem correspond to a customer demand

from a facility in the SSFLP; (ii) the cost of the link between the potential containers

(where the two VMs can be located) and each access RBs correspond to half the
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cost between the potential facility location and the customer of the SSFLP; (iii) the

first assignment of a VM to a container corresponds to the cost of opening a facility

of the SSFLP; (iv) the container capacity constraint corresponds to the capacity

of the facility in the SSFLP. In this way, the solution of such an SSFLP instance

provides us with the solution of our VM placement problem and hence, NP-hard.

3.3.1 Reformulation of the optimization problem

Recently, modeling an optical network design problem as a facility location problem,

the authors in [104] extended a repeated matching heuristic described in [102, 103]

to solve the SSFLP and proved it can reach good optimality gaps for many large

instances of the problem.

Motivated by those results and basic similarities with the problem in [104], we

redesign our DCN optimization problem as a repeated matching problem. With

respect to the network context of [104], we have more matching sets with peculiar

constraints due to fundamental differences between optical networks and DCNs.

The double mapping we have to handle in our problem and the multiple capacity

constraints we have to care about (at both the link and VM container sides) makes

this problem more combinatorial than [104], so that comparison to the optimum is

not differently possible than in previous applications [102–104].

In our DCN scope, communications are between VMs that can be hosted behind

the same VM container or behind distant containers interconnected by a DCN

path. External communications can be modeled introducing fictitious VMs and

VM containers acting as an egress point, if needed. When multipath is enabled,

multiple paths can be used toward a same destination, and when virtual bridging

is enabled, a VM container can transit external traffic if the topology supports

it. When communicating VMs are not collocated, inter-VM communication should

involve a pair of containers and at least a DCN path between them.

Let a VM container node pair be designated by cp, cp ∈ TC , so that cp = (ci, cj),

i.e., a container pair is composed of two containers ci and cj . When the source (ci)

and the destination (cj) of the container pair cp are the same (ci = cj ) it is

called recursive container. A subset of container node pairs is designated by DC so,

DC ⊆ TC . Let the kth path from RB r1 to RB r2 be designated by rp = (r1, r2, k).

A set of RB paths is designated by DR so that DR ⊂ TR.

Definition 3.3.1. A Kit φ is composed of a subset of VMs DV , a VM container

pair cp ∈ TC and a subset of RB paths DR. Each VM v ∈ DV is assigned to one

of the containers in a pair cp (c1, c2). A container pair cp (c1, c2) is connected by

each RB path rp (r1, r2, k) ∈ DR, so that c1 and c2 are respectively mapped to r1

and r2. The Kit is recursive when its cp is recursive, and in such a case DR must
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Figure 3.1: Representation of heuristic sets: L1, L2, L3, and L4.

be empty. When the multipath is not enabled, |DR| = 1. The Kit is denoted by

φ(cp,DV , DR).

Definition 3.3.2. A Kit is a Feasible Kit if:

• DV is not empty, i.e., DV 6= �.

• Memory and power demands of each VM are satisfied, i.e.(4.3), restricted to

DV and cp.

• In case of a non-recursive Kit, the link capacity constraints between VM con-

tainers are satisfied, i.e., (3.7) is restricted to DV , DR and cp.

Definition 3.3.3. L1,L2,L3,and L4

• L1 is the set of VMs not matched with a container pair, i.e., L1 = {v | v ∈
DV ∧ v /∈ φ}.

• L2 is the set of VM container pairs not matched with an RB path, i.e., L2 =

{cp | cp ∈ TC ∧ cp /∈ φ}.

• L3 is the set of RB paths not matched with a container pair, i.e., L3 =

{rp | rp ∈ TR ∧ rp /∈ φ}.

• L4 is the set of Kits. It is worth mentioning that L4 becomes Packing when

all its kits are feasible.

Definition 3.3.4. A Packing Π is a union of Kits in L4. A Packing is said to be

feasible if it contains at least one feasible Kit and L1 is empty.
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3.3.2 Matching Problem

Given the DCN optimization problem elements using the above described sets, it

can be reformulated as a matching problem. The classical matching problem can be

described as follows. Let A be a set of q elements h1, h2, . . . , hq. A matching over A

is such that each hi ∈ A can be matched with only one hj ∈ A. An element can be

matched with itself, which means that it remains unmatched. Let si,j be the cost

of matching hi with hj . We have si,j = sj,i. Let zi,j be a binary variable equal to

1 if hi is matched with hj . The matching problem consists in finding the matching

over A that minimizes the total cost of the matched pairs.

min

q∑
i=1

q∑
j=1

si,j zi,j (3.13)

s.t.

q∑
j=1

zi,j = 1, i = 1, . . . , q (3.14)

q∑
i=1

zi,j = 1, j = 1, . . . , q (3.15)

zi,j = zj,i, i, j = 1, . . . , q (3.16)

zi,j ∈ {0, 1}, i, j = 1, . . . , q. (3.17)

(3.14) and (3.15) ensure that each element is exactly matched with another one.

(3.16) ensures that if hi is matched with hj , then hj is matched with hi. (3.17) sets

zi,j as binary.

In our heuristic, one matching problem is solved at each iteration between the

elements of L1, L2, L3, and L4. At each iteration, the number of matchable elements

is n1 +n2 +n3 +n4 where n1, n2, n3, and n4 are the current cardinalities of the four

sets, respectively. For each matching iteration, the costs si,j have to be evaluated.

The cost si,j is the cost of the resulting element after having matched element hi

of L1, L2, L3, or L4 with element hj . A basic example of matching is shown in

Figure 3.2: L1 is empty (n1 = 0), L2 has two containers (n2 = 2), L3 has two RB

paths (n3 = 2), and L4 has one feasible Kit (n4 = 1). The result of the matching

creates an unfeasible Kit, and modifies the existing feasible Kit with an additional

RB path (n1 = n2 = n3 = 0, n4 = 2). At each iteration, the least-cost matching

between the elements has to be determined. The computed matching costs zi,j are

stored in a (n1 + n2 + n3 + n4)× (n1 + n2 + n3 + n4) cost matrix Z. Z dimensions

change at each iteration, and Z is a symmetric matrix. Given the symmetry, only

ten blocks have to be considered. The notation [Li−Lj ] is used hereafter to indicate

the matching between the elements of Li and the elements of Lj as:
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Figure 3.2: A simple example of matching.

Z =


[L1 − L1] [−] [−] [−]

[L2 − L1] [L2 − L2] [−] [−]

[L3 − L1] [L3 − L2] [L3 − L3] [−]

[L4 − L1] [L4 − L2] [L4 − L3] [L4 − L4]



=


[1] [−] [−] [−]

[2] [3] [−] [−]

[4] [5] [6] [−]

[7] [8] [9] [10]

 .

Selecting the least cost matching vector enables solution improvements via set

transformations in the next iterations. Obviously, L1 − L1, L2 − L2 and L3 − L3

matchings are ineffective. To avoid a matching, e.g., because it is infeasible, its

cost is set to infinity (a large number in practice). Matchings corresponding to

other blocks without L4 lead to the formation of Kits. Other matchings involving

elements of L4 shall lead to the improvement of the current Kits that also generate

local improvements due to the selection of better VM containers or RB routes.

Note that for such blocks, local exchange problems are to be solved for determining

an exchange of VMs, VM containers and Kits, between the heuristic sets, while

satisfying computing capacity constraints. The details on how to precisely compute

each block matching costs are given in the Appendix.

The Kit cost computation has to maintain the same rationale as in the reference

optimization problem when setting individual matching costs. The cost needs to be

computed to de-motivate under-loading VM containers in terms of CPU and RAM

utilization, while avoiding over-loading RB paths in terms of link utilization and

respecting computing capacity constraints. The Kit cost function has to appropri-

ately model two opposite forces due to the dual aspects stressing DCNs: computing

and network resources. On the one hand, the Kit feasibility in terms of the link

capacity constraints as described above, does not need to be enforced during the

repeated matching iterations but rather to be motivated via the classical TE costs
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inducing the minimization of the maximum link utilization, and hence maximizing

the minimum residual link capacity.

On the other hand, the residual computing capacity at the VM container level

should be considered as a cost. In fact, it is not suitable for the DCN provider

to have idle memory and CPU capacities. The overall Kit cost is not meant to

represent a direct monetary cost, but it is so that the repeated matching promotes

more efficient Kits. Therefore, to align with the objective function (3.9), and by

remembering that the cost of a Packing corresponds to the cost of its Kits, we set

the cost of a Kit φ(cp,DV , DR) as:

µ(φ) = (1− α)µE(φ) + αµTE(φ). (3.18)

Where α is the trade-off scaling factor between the EE and the TE components,

that are, respectively:

µE(φ) =
∑
ci∈cp

 KP
ci∑

v∈DV
i

dPv
+

KM
ci∑

v∈DV
i

dMv
+ ΓTv

 (3.19)

µTE(φ) = max
(ni,nj)∈rp,rp∈φ

Uni,nj (Π). (3.20)

Where Tv represents the global traffic v sends and receives, i.e., Tv =
∑v 6=v′

v′∈V tv,v′ .

Γ is the additional power and memory, to take into account the impact of traffic to

the VM container CPU and memory consumption when virtual bridging is enabled

(zero otherwise).

Note that the computing capacity constraints are indirectly enforced within

the [L4 − L4] matching cost computation. Uni,nj (Π) is the link utilization of each

link used by the current Packing Π solution, so that the maximum link utilization

experienced by the Kit RB paths can be minimized. In our heuristic, in order to

linearly compute the RB paths link utilization, the aggregation and core links of

the RB paths are considered as congestion free, while the access container-RB links

are considered as prone to congestion, which adheres to the reality of DCNs today.

This is a realistic approximation we believe to be acceptable in a heuristic approach,

especially because it allows a significant decrease of the time complexity.

3.3.3 Steps of the repeated matching heuristic

Due to the advantage of repeated matching between the different sets as described

above, we can get rid of the non-linearities of the reference optimization problem

with a heuristic approach that, based on the state of the art, is geared to achieve

low optimality gaps.
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Figure 3.3: Chart of the repeated matching heuristic steps.

A global chart resuming the steps of our repeated matching heuristic is given in

Figure 3.3. Its steps are as follows:

• Step 0: The algorithm starts with a degenerate Packing with no Kits and all

other sets full.

• Step 1: A series of Packings is formed.

• Step 1.1: The cost matrix Z is calculated for every block.

• Step 1.2: The least cost matching vector is selected.

• Step 1.3: Go back to 1.1 for a new iteration unless the Packing cost has not

changed in the last three iterations.

• Step 2: The heuristic stops, and in the case that L1 is not empty, a local

incremental solution is created assigning VMs in L1 to enabled and available

VM containers or, if none, to new containers.

The least cost matching computation (Step 1.2) can be hard to optimally solve

because of the symmetry constraint (3.16). In our heuristic, we decided to solve it in

a suboptimal way to lower the time complexity. We have implemented the algorithm

in [105], based on the method of Engquist [106]. Its starting point is the solution

vector of the matching problem without the symmetry constraint (3.16) obtained

with the algorithm described in [107] that was chosen for its speed performance. Its

output is a symmetric solution matching vector.
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For instance, if the resulting Packing in Figure 3.2 does not change for three

times, the result composed of the feasible kits (one Kit in the example) is kept

as final result. Designing the matching costs in an efficient and rational way, the

Packing cost across iterations should be decreasing - the decrease is expected to

be monotonic starting by the moment when L1 gets empty, so that the heuristic

converges.

3.3.4 Time complexity

The complexity of the whole heuristic depends on its different sub-algorithms and

phases. The calculation of the cost matrix is straightforward except for two blocks

of the matrix (see blocks 10 and 8 in the Appendix) where a polynomial swapping

problem depends on the number of connections in the network. The resolution of

the matching problem operates on the cost matrix through the Forbes’s [105] and

the Volgenant’s [107] algorithms. In the worst case, the first has a 	(n3) complexity

while the second one has a 	(n2) complexity, where n = n1 + n2 + n3 + n4.

3.4 Simulation results

We implemented our heuristic using Matlab, and CPLEX for the computation of

matching costs of some blocks. The adopted VM containers correspond to an Intel

Xeon 5100 server with 2 cores of 2.33GHz and 20GB RAM and able to host 16 VMs.

We use various weights for the TE and EE components in the optimization objective,

and we analyze what happens when multipath forwarding and virtual bridging are

enabled. We use the different forms of multipath forwarding, encompassing the

following cases.

1. Multipath forwarding between RBs (MRB).

2. Multipath forwarding between containers and RBs (MCRB).

3. Both multipath forwarding modes (MRB-MCRB).

We executed our heuristic on the following topologies: 3-layer Figure 2.1, 4-pod

Fat-Tree Figure 2.2, BCube Figure 2.3 with n = 4 and DCell Figure 2.4 with n = 4.

We note that BCube and DCell work properly only by employing virtual bridging

at the server level. We allowed for a small modification of the topology to allow a

reference comparison between them and the other topologies for the cases without

virtual bridiging, calling these variations BCube* 3.4 and DCell* 3.6, respectively.

We allow the access switches in DCell* to be directly connected to each-other, and

we allow each access switch in BCube* to be directly connected to all core switches.
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Figure 3.4: BCube∗ allows Multipath between RBs (MRB).

Figure 3.5: BCube∗∗ allows Multipath between RBs (MRB) and Multipath between

Container and RB (MCRB).

Figure 3.6: DCell∗ allows Multipath between RBs (MRB).
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Table 3.2: Evaluated DCN setting cases.

VB Multipath mode Objective Topologies

yes MRB EE BCube, DCell

TE BCube, DCell

EE+TE BCube, DCell

no MRB EE+TE 3-layer, Fat-Tree, BCube*,DCell*

MCRB EE+TE BCube**

MRB-MCRB EE+TE BCube**

Table 3.3: Evaluated DCN size cases.

Topologies Container Container VM

number capacity number

Fat-tree, BCube 16 16 150

DCell 20 16 240

Moreover, the 3-layer, Fat-Tree and DCell topologies have no multipath for-

warding capabilities between containers and RBs, because there are no multiple

links between containers and RBs (only BCube has that specificity). To also evalu-

ate the case with multipath between RBs and containers, we use another variation

to BCube, referred to as BCube** 3.5, where each server is multi-homed with two

switches, its pod switch and one core switch. Table 3.2 summarizes the topologies

that do or do not support the virtual bridging mode for each multipath forwarding

case.

In the simulations, all DCNs are loaded at 70% in terms of computing capac-

ity. Table 3.3 summarizes each topology’s container capacity, the number of VMs

that a container can host, and the total number of VMs used for our simulations.

Note that with all topologies, we allowed for a certain level of overbooking in the

resource allocation area for the sake of algorithm fluidity, especially at starting and

intermediate iterations. The capacity of the access link was set to 10 Gbps.

We ran 30 different instances with different traffic matrices for each case. The

reported results have a confidence interval of 95%. Our heuristic reached conver-

gence roughly within a dozen minutes of each execution and successfully reaching

steady states.

In the following, we detail the adopted traffic model and related state of the art.

Then, we report experiment results we obtained considering the impact of virtual

bridging and multipath forwarding on EE-oriented and TE-oriented VM placement.

We look at the impact of virtual bridging and multipath forwarding without mixing

the TE and EE objectives, and we perform sensibility analysis by varying the EE-TE
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α trade-off coefficient.

3.4.1 Traffic model

Choosing an appropriate traffic model is important when running DCN simulations.

In the state of the art there are a few relevant works. We built our traffic drawing

conclusions from the following studies [67,108–110]. Authors in [108,109], collected

data from 3-layer-like DCNs and found that the traffic originating from a rack

showed an ON/OFF behavior following heavy-tailed distributions. 80% of the DC

server-originated traffic stayed within the rack, while between 40% and 90% left the

rack. In [110], more than 90% of transfers had a volume from 100 MB to 1 GB.

Moreover for 50% of its running time, a VM handled approximately 10 concurrent

flows, and at least for 5% of its running time, a VM had more than 80 concurrent

flows. In [67], the authors analyzed the incoming and outgoing traffic rates of an

IaaS DCN with 17,000 VMs, reporting that 80% of the VMs had an average rate

less than 800 KB/min. However, 4% of them had a ten times higher rate. Moreover,

the traffic rate standard deviation was 82%, lower than or equal to twice the mean

traffic.

Since not all VMs communicate with each other in todays DCNs adopting net-

work virtualization, but instead traffic is segmented by IaaS networks, we built

an IaaS-like traffic matrix as in [67], which somehow also takes into account the

IaaS traffic rack vicinity trend reported in [108, 109]. We apply the experimental

incoming and outgoing traffic distribution of [67], with IaaS clusters of up to 30

VMs communicating with each-other and not communicating with other IaaS VMs.

Within each IaaS, the traffic matrix was built according to the traffic distribution

of [110].

3.4.2 Energy efficiency considerations

Figure 3.7 illustrates the results in terms of enabled VM containers for different

topologies when EE is the unique goal (i.e., α = 0 in the problem formulations).

We report results for both the cases when multipath forwarding is not enabled (i.e.,

|DR| = 1 for all Kits) and the case where it is enabled. By observing the results we

can assess the following:

• Impact of virtual bridging : When the EE is the goal, virtual bridging leads to

negligible differences in EE performance;

• Impact of multipath forwarding : It has a positive impact on EE when virtual

bridging is disabled, and seems to be counterproductive when virtual bridging

is enabled;
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Figure 3.7: Number of enabled VM containers Energy Efficiency (EE) results, with

EE as single objective (VB=Virtual Bridging).

• Sensibility to topologies: The DCell topology shows a better EE performance

than the BCube, especially when multipath forwarding is enabled. This can

be explained by the higher path diversity at the DCell container. Hierarchical

topologies, Fat-Tree, and 3-layer, show an overall worst EE performance for

single-path forwarding and a better EE performance for multipath forwarding,

with a negligible difference.

This analysis suggests that enabling virtual bridging does not bring any useful

EE gain and can even worsen the EE performance when the consolidation EE ob-

jective is minimizing the number of enabled VM containers. In the following, we
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Figure 3.8: Number of enabled VM containers EE results, without virtual bridging.

discuss the results with an EE perspective when we vary the impact of the EE goal

in the VM placement.

Optimization goal sensibility with respect to multi-path forwarding fea-

tures

With respect to multipath forwarding features, Figs. 3.8 illustrates the results in

terms of enabled VM containers for different values of the trade-off parameter α

between the EE and TE goal, ranging from a null value giving full importance to

the EE goal, to a maximum value giving importance to the TE goal, with a step of

0.25.

We report the results including the case when multipath is not enabled (i.e.,

|DR| = 1 for all Kits) and the case where it is enabled. Observing the results we

can assess that:

• When EE is discarded (α = 1), the number of VM containers reaches its

maximum, which could be expected.

• The results for all topologies are similar for MRB - the DCell slope is slightly
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Figure 3.9: Maximum link utilization Traffic Engineering (TE) results, with TE as

single objective (VB=Virtual Bridging).

higher then the other ones, which can be explained by the number of containers

within DCell topology, equal to 20.

• For MRB, the enabling of multipath forwarding decreases roughly up to 30%

the number of enabled VM containers, and only by 20% for MCRB when EE

is considered as an important objective.

• The impact of multipath forwarding becomes negligible when EE is not con-

sidered important;

• MRB-MCRB gives the same effect as enabling MRB.
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Figure 3.10: Maximum link utilization TE results, without virtual bridging.

These results are counter-intuitive. On the one hand, decreasing the access link

bottleneck by enabling multipath L2 forwarding seems to free VMs and allow a

better VM consolidation switching off unused containers that lead to energy gains.

On the other hand, multipath communications appear not to be useful for that goal

when switching off VM containers is either not interesting or not possible.

Optimization goal sensibility with respect to virtual-bridging features

Furthermore, we analyze the results with an EE perspective when both virtual

bridging and multipath forwarding features are enabled. Figure 3.11 illustrates

the results in terms of enabled VM containers for different values of the trade-off

parameter α, ranging from a null value giving full importance to EE goal, to a

maximum value giving importance to the TE goal. The figure reports the results

for BCube and DCell topologies that support virtual bridging when multipath is

enabled or not. Observing the results we can assess that:

• Enabling only virtual bridging (Figure 3.11(a,c)) does not have a relevant

impact on the number of enabled VM containers. We note a negligible gain

when EE is the goal (α = 0), for BCube, and the opposite for DCell topologies
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Figure 3.11: Number of enabled VM containers EE results, with virtual-bridging.

(both have the same confidence interval).

• Enabling multipath forwarding (Figure 3.11(b,d)) has a positive EE impact

when virtual bridging is disabled (the two curves have the same confidence

interval when virtual bridging is enabled) - this impact becomes negligible

when EE is not considered as an important.

• We note that DCell topology shows better EE results than the BCube topol-

ogy. In fact, the DCell topology used ∼ 55% of the containers while BCube

used ∼ 69% of the containers.

These results confirm that, on the one hand, enabling virtual bridging has no

impact on the EE goal regardless of the EE-TE trade-off level. On the other hand,

multipath forwarding has a positive impact only when the virtual bridging is dis-

abled.

3.4.3 Traffic engineering considerations

As already mentioned, EE goals can be considered the opposite of TE goals. Chasing

EE tends to minimize the number of enabled VM containers, yet no care is given
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Figure 3.12: Maximum link utilization TE results, with virtual bridging.

to network link utilization.

Figure 3.9 reports the results when TE is the single goal of the virtual machine

placement optimization, i.e., α = 1, considering singlepath and multipath forward-

ing for the different topologies. We make the following observations:

• Impact of virtual bridging : Virtual bridging lead to sensible TE performance

gains.

• Impact of multipath forwarding : With singlepath forwarding, the DCell case

gets the largest TE gain, from a median of roughly 65% of the maximum link

utilization to roughly 45% - this is due to the fact that virtual bridging in the

DCell allows for indirectly minimizing the number of links used to interconnect

servers (with multipath forwarding, the BCube case gets the largest TE gain,

with the maximum link utilization being halved from about 80% to 40%);

• Sensibility to topologies: BCube and DCell do have similar TE performances,

with a slighter better performance with the BCube probably because the gain

in path diversity brought by virtual bridging is higher with the BCube (which

keeps a core layer unlike the DCell) - the TE gain with respect to hierarchi-
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cal topologies (Fat-tree, 3-layer) is always positive and slightly higher with

enabled multipath forwarding.

These TE performance results are not intuitive and appear to be quite relevant.

It is interesting to adopt virtual bridging when the primary goal of the virtual

machine placement is traffic engineering. Flat topologies show a sensible gain with

respect to more hierarchical topologies, which once more motivate the migration to

such new topologies for IaaS-based DCNs.

Optimization goal sensibility with respect to multipath forwarding fea-

tures

Under a TE perspective, the lower the maximum utilization is, the better it is,

to ensure highly efficient communications. Under this perspective, we perform a

sensibility analysis varying the TE-EE trade-off. Figure 3.10 reports the maximum

link utilization for both the unipath and the multipath cases, under different trade-

off coefficients.

As expected, the curve decreases with α (oppositely to the previous curve, ob-

serving EE performance, in Figure 3.8). We make the following observations:

• MRB can be counterproductive: the unipath case guarantees a better TE

performance when TE is not considered as an important goal in DCN op-

timization (i.e., when α → 0) - the MRB mode induces unacceptable TE

performance when TE is not the primary goal.

• The curves of all topologies are similar for the unipath case - DCell has the

worst curve when EE is the goal, and all curves converge when the maximum

importance is given to TE.

• MRB-MCRB gives the same effect as enabling MRB.

Optimization goal sensibility with respect to virtual-bridging features

Furthermore, we analyse the impact of virtual bridging under a TE perspective.

Figure 3.12 illustrates the results in terms of maximum link utilization for different

values of the trade-off parameter, considering the case when multipath is enabled

and when it is not enabled, for the DCell and BCube topologies. We make the

following observations:

• With respect to the BCube case (Figure 3.12a-b), enabling virtual bridging

when EE is the goal has a negative impact on the maximum link utilization

and a positive one when TE is the goal.
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• According to Figure 3.12c, the DCell topology is less impacted by virtual

bridging than BCube, which can be explained by the totally flat nature of

DCell (with its single access layer).

• Enabling multipath forwarding appears to have a negative impact on TE when

TE is not the goal, regardless of the topologies.

We note that virtual bridging has a positive impact when TE is the goal, but it

can have a negative TE impact when EE is the goal, and the topology that benefites

the most from virtual bridging is BCube.

3.5 Summary

Data center networking is a challenging field of applications of old and new tech-

nologies and concepts. In this chapter, we investigate how traffic engineering (TE)

and energy efficiency (EE) goals in virtual machine placement can coexist with the

emergence of virtual bridging (i.e., the capability to switch traffic at the hypervisor

level in virtualization servers) and of multipath forwarding (i.e., the capability to

balance the load toward a same destination on multiple egress paths). We provide a

versatile formulation of the virtual machine placement problem supporting virtual

bridging capabilities and multipath forwarding and propose a repeated matching

heuristic for its resolution.

Through extensive simulation of realistic instances with legacy and novel flat

DC topologies (i.e., 3-layer, Fat-Tree, BCube, and DCell), we found that:

• Impact of multipath forwarding : Multipath forwarding has a positive impact

on EE when virtual bridging is disabled, and this positive impact becomes

negligible when virtual bridging is enabled or EE is not considered as impor-

tant.

Enabling multipath forwarding between virtualization servers (containers) and

router-bridges (RBs) does not bring relevant additional performance gains

with respect to both EE and TE goals. This suggests that legacy link ag-

gregation/bonding protocols between servers and bridges are sufficient and

multipath routing protocols do not need to be brought down to the hypervi-

sor level.

• Impact of virtual bridging : When TE is the primary goal, virtual bridging

shows notable positive gains, and the TE performance gain can be important

and can be improved up to two times, with a maximum link utilization that

can be halved for the BCube DCN topology, while remaining important also

for the DCell topology. Flat topologies show a notable gain with respect to
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more hierarchical topologies (3-layer, Fat-Tree) that once more motivate the

migration to such new topologies for IaaS-based DCNs.

• Sensibility to DCN optimization goals: When EE is the primary goal of the

DCN optimization, both multipath forwarding and virtual bridging can be

counter-productive, leading to saturation at some access links. Instead, when

TE is the primary goal, multipath forwarding grants only a moderate gain.

We believe these results provide important insights on the possible joint or in-

dividual adoption of multipath forwarding protocols and virtual bridging in data

center networks, to help data center network designers take the right choices when

energy efficiency and traffic engineering performance goals need to be taken into

account.
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Chapter 4
Traffic Fairness of Data Center Fabrics

A present challenge in data center networks (DCN) is to better understand the

impact of novel flattened and modular DCN architectures on congestion control

protocols, and vice-versa. One of the major concerns in congestion control is the

fairness in the offered throughput: the impact of the additional path diversity and

forwarding features, brought by the novel DCN architectures and protocols, on the

throughput of individual endpoints (servers) and aggregation points (edge switches)

being unclear. This contribution attempts to answer these open questions. Specif-

ically, how best is the allocation of the competing elastic demand flows and how

is this allocation impacted with the increase in capacity? We provide a linear pro-

gramming formulation of the problem based on the proportional fairness principle of

TCP. We conducted a series of test scenarios on the fat-tree and BCube data center

topologies by considering load balancing and link capacities for different network

cases in order to present our analysis on the results. We observed that the traffic

allocation fairness is primarily impacted by the weights associated with the TCP

implementation in use.

63
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4.1 Introduction

The emergence of network virtualization solutions, such as Infrastructure as a Ser-

vice (IaaS), offers several advantages to organizations in terms of both operational

and capital expenditures [1]. The transition from physical independent networks

to virtual de-localized networks operated in the Cloud can be facilitated if, besides

security concerns, connectivity performance is at an acceptable level and shows

desirable fairness properties.

With the growth in customer volumes, service differentiation and elastic de-

mands, avoiding bottlenecks is a critical point in Data Center Network (DCN)

architectures. With the de-facto dominating trend of deploying services using vir-

tualization servers, a non negligible ratio of the traffic is horizontal traffic between

virtualization servers, in support of virtual machine migration and storage syn-

chronisation. The amount of intra-DC horizontal traffic can overcome the access

vertical traffic volume [109]. This has eventually favored the emergence of novel

DCN architectures that expose additional horizontal capacity between server racks

and clusters of racks such as fat-tree (Fig. 2.2), and BCube ( (Fig. 2.3).

An open question is: how best is the traffic allocation of the competing elastic

demand flows for horizontal traffic between edge servers in data center fabrics,

and how is this allocation impacted with the increase in capacity? To address

this question, we assume that all traffic uses TCP allowing multipath forwarding.

More specifically, we are interested in understanding this impact in equilibrium, on

other words, we want to study the impact of bandwidth sharing at the stationary

state of the congestion control mechanism. It has been shown that several variants

of TCP are proportionally fair in equilibrium, which have been verified through

simulation [91, 92]. We, therefore, use a proportional fairness model to understand

the allocation for competing demands in data center fabrics. Our study is focused

on the fat-tree and BCube data center topologies, which are popular ones, and

structured so that one distinguish clearly two traffic management segments: intra-

pod and inter-pod segments.

The rest of the chapter is organized as follows. Our optimization model is

formulated in Section 4.2 and the simulation results are presented in Section 4.3.

Section 4.4 concludes the chapter.
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Table 4.1: Mathematical notations

Indices

d = 1, 2, . . . D demands associated with pairs of edge switches.

p = 1, 2, . . . Pd candidate paths for demand d.

e = 1, 2, . . . E links.

Variables

xdp amount allocated to path p of demand d.

Xd amount allocated to d.

ye amount of throughput carrying by the link e.

Parameters

δedp = 1 if link e belongs to path p of demand d; 0, otherwise.

α a minimum sub-flow ratio allocated to each path p

available to a demand d.

ce capacity of link e.

ωd weight of demand d (constant).

4.2 Problem Formulation

Following [93], we now generalize the basic proportional fairness model for DCN 2.2.4

allowing multipath forwarding for elastic demands that use TCP. First, while the

actual TCP sessions are between edge servers in a DCN, we can consider the model

in terms of elastic demands between a pair of edge switches since all such sessions

must enter and exit through edge switches (see Figure 2.2). Thus, moving away

from sessions (identified by j earlier), we identify a demand between a pair of edge

switches by d with the elastic demand denoted by Xd. Secondly, due to multipath

forwarding, we identify traffic flow along each path p associated with demand d by

using xdp (notations are summarized in Table 4.1). Therefore, for a given demand,

the sum of traffic amount allocated to the paths is equal to the total elastic demand

Xd given by: ∑
p

xdp = Xd d = 1, 2, . . . , D. (4.1)

Next, the sum of all the flows using a particular link e must satisfy the link

capacity constraint:

∑
d

∑
p

δedpxdp − ye = 0 e = 1, 2, . . . , E (4.2)

ye ≤ ce e = 1, 2, . . . , E. (4.3)
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Table 4.2: Linear approximation

Indices

k = 1, 2, . . . ,K Consecutive pieces of the approximation of log x.

Variables

fd approximation of logXd.

Parameters

ak, bk coefficients of the linear pieces of the linear

approximation of log x.

The goal is to maximize the utility objective:

max
X,x≥0

F (X) =
∑
d

ωd logXd. (4.4)

where ωd is weight for demand d, which is discussed further in Section 4.2.2.

It is worth noting that while elastic demand Xd is non-negative, the logarithm

function ensures that no elastic demand takes the value zero, i.e. every demand

must get its fair share while satisfying the network constraints.

In addition to the above model, we are also interested in understanding the

behavior when for each demand d we enforce the usage of multiple paths, which can

be imposed using the following additional constraint:

xdp ≥ αXd d = 1, 2, . . . , D p = 1, 2, . . . , P. (4.5)

Here, each available path has to carry at least αXd, i.e. the minimum of the

rate allocated to demand d on each candidate path.

4.2.1 Linear approximation of the objective

We note that in the previous formulation, the objective function is non-linear due

to the logarithm function. We use a linear approximation [93] of the logarithm

function as follows:

logXd = min
k=1,2,...,K

{akXd + bk}. (4.6)

Then, the optimization objective becomes:

max
X,x,f ≥ 0

F =
∑
d

ωdfd. (4.7)

subject to (4.1)-(4.3).(4.5) also applies for the case where multipath is enforced.
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fd ≤ akXd + bk d = 1, 2, . . . , D k = 1, 2, . . . ,K. (4.8)

The advantage of this approximation is that it leads to a linear programming

problem that can be solved using well-known linear programming solvers such as

CPLEX.

4.2.2 On weights wd

We now elaborate on the role of wd. It allows taking into consideration two different

interpretations of TCP Vegas [92,111] at the state-of-the-art: the one based on bytes

per round trip time, and the other based on bytes per second, hence using to different

utility functions.

U(Xd) = logXd (4.9)

U(Xd) = ω̄d logXd. (4.10)

Here ω̄d corresponds to the propagation delay of session d. The first situation

(4.9) does not weight the session: we refer to it as the fixed-delay case. The second

situation (4.10) weights the propagation delay by means of ω̄d for session d: we

refer to it as the weighted-delay case. Besides the two valid implementations of TCP

Vegas, FAST TCP follows the weighted-delay case [91]. For comparison purposes,

we use a simplification for the weighted-delay case by setting ω̄d to be based on

the number of hops between the source and the destination, to serve as a rough

approximation of the delay being the number of hops [112].

4.3 Performance evaluation

We evaluate the proposed fairness model for DCNs using the fat-tree [26] and the

BCube [27] DCN topologies (at one level, k = 1, and with different sizes, n =

{4, 6, 8}), and under different settings as explained hereafter.

4.3.1 Study cases

In order to assess traffic fairness with different levels of the horizontal DCN capac-

ities, we consider the two following DCN dimensioning cases:

• Uniform capacity: all link capacities are set equal. In this case, we consider

different capacity configurations, increasing the capacity on all the links from

300 to 1200 units in increments of 100 units.
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.1: Global throughput, fat-tree (n=4)

• Asymmetric capacity: the starting configuration has an equal capacity of 300

units per link. We then increase the capacity only on the intra-pod links (link

between edge and aggregation switches) from 300 to 1200 units by increments

of 100 units. The capacity of links between the aggregation and core switches

(”extra-pod links”) remains fixed at 10 units.

We run the simulations for different values of α, i.e. the minimum sub-flow traffic

ratio allocated to each path available to a demand d. We consider the following

cases:

• Unbounded MultiPath (UMP) case, with α = 0, so that multipath forwarding

is not forced for any demand, but can be used.

• Equi-distribution MultiPath (EMP) case, with α being replaced by αd = 1/Nd

in (4.5), where Nd is the number of paths available to demand d, so that traffic

distribution is forced to be even over the paths available to each demand.

• Bounded MultiPath (BMP) case, with α = 1/(maxd(Nd)/2), for all the de-

mands, where maxd(Nd) represents the highest number of paths available for

all the demands. Hence, multipath forwarding is lightly forced on all available

paths for all demands, and can be freely used.

It is worth noting that for the fat-tree topology, intra-pod traffic can have two

paths, while inter-pod traffic can use four paths for n = 4, three and nine for n = 6

and four and eight for n = 8. Regarding the BCube architecture, only the parallel

paths are valid; in BCubel, between any access node pairs there are l+ 1 paths, one

path in each level. Hence, every access server has two paths.
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.2: Global throughput, fat-tree (n=6).
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.3: Global throughput, fat-tree (n=8).
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.4: Global throughput, BCube (n=4).

Moreover, we evaluate the results for both the utility functions presented in

Section 4.2: the fixed-delay situation (ω̄ = 1) given by (4.9) and the weighted-delay

situation (ω̄d = hop count) given by (4.10). These two options allow us to see how
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.5: Global throughput, BCube (n=6).
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.6: Global throughput, BCube (n=8).

fairness is guaranteed for intra-pod and inter-pod traffic. More importantly, a data

center provider can decide to deploy its preferred TCP implementation (as far as

it owns the computing infrastructure) by taking advantage of the lessons learned

from this study, and accordingly allocate jobs to servers to target traffic fairness. In

other words, this study could also help the Cloud provider to decide on fine-grained

scheduling of jobs that meets traffic fairness requirements.

In order to show the impact on throughput allocation between intra-pod and

inter-pod edge switches, we measure the intra-to-inter-pod traffic allocation ratio.

Finally, we measure the path diversity of the solution for the UMP case for all the

edge-to-edge demands, where each edge has a demand to all the edges.

4.3.2 Results

This subsection illustrates the results of the proportional fairness model concen-

trating the analysis around three key aspects: the throughput allocation, the traffic

distribution within and across pods, and the achieved path diversity.
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.7: Intra-to-inter pod traffic ratio, fat-tree (n=4).
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.8: Intra-to-inter pod traffic ratio, fat-tree (n=6).
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(a) Uniform capacity case
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Figure 4.9: Intra-to-inter pod traffic ratio, fat-tree (n=8).

Throughput allocation

First, we consider the fat-tree topology, regarding to the global throughput when

traffic between all pairs of edge switches are allowed. In Figures 4.1, 4.2 and 4.3,
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.10: Intra-to-inter pod traffic ratio, BCube(n=4).

we plot the global throughput as a function of the capacity. We find that it grows

linearly as dictated by the capacity of intra-pod links, irrespectively of the capacity

of the links connecting aggregation and core switches. More importantly, it is not

affected by the multipath case (UMP, BMP, EMP) nor by the type of the utility

function (fixed-delay vs. weighted delay). In order to explain this behavior, first let

us focus on the asymmetric capacity case. Let us assume that all extra-pod links are

dropped, i.e. there are only intra-pod links with a capacity of 300 each, each pod is

isolated and there is no inter-pod traffic. Thus, the traffic throughput between the

two edge switches in a pod is limited by the capacity of the intra-pod links. Since

two links form a path in the pod, for the 4-pod fat-tree topology, we can observe

that the throughput within a pod between its two edge switches is 600 units. Thus,

we can see that every access link is fully saturated (active). Since there are 4 pods

the total throughput is 2400 units. In this case, the traffic allocation between intra-

pod and inter-pod is skewed. It is interesting to note that when extra-pod links

have a positive capacity, the total throughput still remains at 2400 units as long

as the capacity of the intra-pod links are at 300 units each. Similarly, for 6-pod

fat-tree topology since two links form a path, further in a pod we have nine links,

we can see that the throughput within a pod between its two edge switches is 1350,

and the total throughput is equal to 8100. In the same manner, we find that the

total throughput is 19200 for 8-pod topology. These results show that the global

throughput depends only on the access links where all are fully saturated.

Secondly, regarding the BCube topology, from Figures 4.4, 4.5 and 4.6, we note

that the throughput changes with the different dimensioning and multipath cases.

Knowing that in BCube1 topology there are two paths between any servers, we

can deduce the amount of throughput for a flow in each path at optimality, as an

example, when using EMP the flow allocations are equal (x∗d1 = x∗d2). Hence, we

can explain why the two dimensioning cases are different as opposed to the fat-tree
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.11: Intra-to-inter pod traffic ratio, BCube(n=6).
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(a) Uniform capacity case
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(b) Asymmetric capacity case

Figure 4.12: Intra-to-inter pod traffic ratio, BCube(n=8).

topology, and why the two curves (BMP and EMP) of the asymmetric case are flat.

On the one hand, in the BCube topology all links are access links, and thus for the

asymmetric case only the intra-pod link loads (only for the links at the BCube0

level) are increased while all the link loads are increased for the uniform capacity

case. We get higher global throughput with the uniform capacity case. On the

other hand, when multipath is forced each flow has to use two paths: one path uses

only the links at the BCube0 level, and the other one use Bcube1 links. Therefore

the flow throughput strictly depends on the link with the smallest capacity. That

is the reason why for the asymmetric case, when forcing multipath, the throughput

strictly depends on the restricted link with the capacity of 300 units, and all the

cases are equal. In the EMP case, it gets the worst throughput since it has to share

equally the traffic between all the available paths (two in this case: one at the pod

level at BCube0 with unrestricted capacity and the other at the extra-pod level at

level-1 with restricted capacity). In the BMP case, it is between both paths, since

it has to share the throughput between the available paths but also can give slightly
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(b) Asymmetric capacity case

Figure 4.13: Used paths ratio, fat-tree (n=4).

more throughput to one of the two paths (the path belonging to BCube0 level).

Moreover, we can explain why the UMP case (multipath is not forced) gets higher

throughput than the other multipath forms, for the uniform and the asymmetric

cases. In fact, this is due to the fact that the UMP case can potentially use one

or two paths for a flow with any ratio; when using the two paths, it can lead

to higher throughput along one path. As opposite to the other multipath mode

where they have to use two paths (hence more links are shared by many flows), the

global throughput goes down. In order to confirm this guess we observe the link

utilization for the uniform case (since for the asymmetric case it can be explained by

the dependence on the restricted link as explained before) and we find that for the

UMP case all links are fully saturated (active). Nevertheless when forcing multipath

forwarding we note that not all the links are active due to the equation (4.5) that

forces multipath forwarding, hence forcing multipath forwarding implies the use of

the two paths, which leads to share more links and to loss in the global throughput.

This phenomenon is further amplified with larger topology size.

Traffic distribution

We investigate how traffic distribution is affected between intra-pod and inter-pod

edge switches, for which we use the intra-to-inter pod traffic ratio as metric. We

characterize the traffic distribution sensibility with respect to the various cases fo-

cusing on the intra-to-inter pod traffic ratio.

For the fat-tree topology, in the uniform capacity case with regards to the intra-

to-inter pod traffic ratio (Figures 4.7-a, 4.8-a, and 4.9-a), we find that on average the

inter-pod traffic has a traffic proportion that is almost twice that of the intra-pod

traffic in the weighted-delay situation. This is explained by the fact that the path

hop count of an inter-pod demand (4 hops) is twice that of an intra-pod demand
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(b) Asymmetric capacity case

Figure 4.14: Used paths ratio, fat-tree (n=6).
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(b) Asymmetric capacity case

Figure 4.15: Used paths ratio, fat-tree (n=8).

(2 hops) – this is reflected in the weights for the weighted-delay situation. The

fixed-delay situation is almost similar: we note the presence of some oscillations

that can be explained by the fact that there is no preference set to the inter or

intra demands. For the asymmetric capacity case, the observation is strikingly

different than for the uniform case. The intra-pod demands have many times more

throughput than inter-pod demands (Figures 4.7-b, 4.8-b, and 4.9-b). According

to our previous analysis regarding to the global throughput for this case where all

the access links are equal to the capacity. Hence, even the capacity of the intra-

pod links can reach 1200 units (the extra-pod links capacity was kept fixed at 300

units). Indeed, the global throughput depends on the access links, since in the fat-

tree topology all the access links belong to the pod (intra-pod demands), whereas

the inter-pod demands see the extra-pod links kept fixed at 300 units. Hence, all

the intra-pod demands get the maximum throughput, which grows as the intra-pod

links capacity increases, regardless to the inter-pod demands that cannot get more
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(b) Asymmetric capacity case

Figure 4.16: Used paths ratio, BCube (n=4).

 300 400 500 600 700 800 900 1000 1100 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Links capacity

U
s
e
d

 p
a
th

s
 r

a
ti

o

 

 

fixed−delay − UMP

weighted−delay − UMP

single path

(a) Uniform capacity case

 300 400 500 600 700 800 900 1000 1100 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Intra−pod links capacity

U
s
e
d

 p
a
th

s
 r

a
ti

o

 

 

fixed−delay − UMP

weighted−delay − UMP

single path

(b) Asymmetric capacity case

Figure 4.17: Used paths ratio, BCube (n=6).

than 300 units of throughput.

For the BCube topology, regarding the uniform capacity situation (Figures 4.10-

a, 4.11-a, and 4.12-a), we note that the intra-to-inter pod traffic ratio is affected by

both the multipath cases and the utility functions. First, for both TCP situations

we find that on the average the UMP and BMP cases give slightly higher throughput

to the intra-pod demands, while EMP is around 1 and gives the same throughput

to the intra-pod or inter-pod demands, which is coherent with our analysis of the

global throughput results. Secondly, comparing the two TCP situations, in some

cases the intra-pod demands get slightly higher throughput than the fixed-delay

situation. This is explained by the weights associated with the TCP. In fact, with

the BCube topology the two paths between any access nodes, not belonging to the

same pods (inter-pod demands), have the same hop count (equal to 4), while the

hop count for any two paths between any intra-pod demands is equal to 2 or 6.

Regarding the asymmetric capacity case, only for the UMP case the intra-pod de-
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(b) Asymmetric capacity case

Figure 4.18: Used paths ratio, BCube (n=8).

mands have a largely higher throughput than the inter-pod demands (Figures 4.10-

b, 4.11-b, and 4.12-b), due to the fact that UMP can possibly use or not the two

paths for a flow with any ratio for each flow, and in the case of using the two paths

for a flow it can give more throughput to the Bcube0 links that have more capacity.

The growth of the UMP curve can be explained as done for the fat-tree topology.

In fact, all the intra-pod demands get the maximum throughput, which grows as

the intra-pod link capacity increases (it can reach 1200 units), while the inter-pod

demands have always the same throughput since the extra-pod links capacity was

kept fixed at 300 units. Regarding to the BMP and EMP cases, the two curves are

flat. The same throughput is offered to the the intra or inter-demands for the EMP

case and more throughput is offered to the intra-pod demands. This confirms our

global throughput analysis.

Path Diversity

Figures 4.13, 4.14, 4.15, 4.16, 4.17 and 4.18 illustrate the path diversity for the

UMP case, measured as the ratio of the overall used paths to the number of overall

available paths. We also plot the line corresponding to the single-path situation. It

is worth remembering that for the BMP and EMP cases, all the paths are used (so

it would be a top line at a ratio equal to 1).

Any path diversity of the solution does not seem to be affected by the specific

utility function (TCP behavior). We can see that although path diversity was

allowed, the unconstrained multipath forwarding case did not take full advantage of

it. On the contrary, with the BCube topology the UMP case lead to higher global

throughput. This implies that path diversity is not always needed to maintain the

highest throughput, and can even lead to a decrease to the global throughput.
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4.4 Summary

In this chapter, we investigated the fairness issue in the offered throughput to DCN

end-points (edge switches and servers) at the equilibrium, using TCP utility func-

tions for modeling elastic demands.

We presented a generalized formulation of the basic proportional fairness model

for DCNs allowing multipath forwarding for elastic demands. We also described,

analyzed and evaluated our model under two different TCP utility functions: the

fixed-delay and the weighted-delay ones. Through a series of scenarios studied

on the fat-tree and BCube topologies of various sizes, we discovered a number of

interesting results.

Our study, to the best of our knowledge, is the first one to address the impact

of DCN topology design, capacity planning and multipath forwarding on traffic

fairness in DCN fabrics. We believe our results are interesting and deserve further

study, especially grounded on real DCN traffic data.



Chapter 5
Virtual Network Function Placement

and Routing

Network Functions Virtualization (NFV) is incrementally deployed by Internet Ser-

vice Providers (ISPs) in their carrier networks, by means of Virtual Network Func-

tion (VNF) chains, to address customers’ demands. The motivation is the increasing

manageability, reliability and performance of NFV systems, the gains in energy and

space granted by virtualization, at a cost that becomes competitive with respect to

legacy physical network function nodes. From a network optimization perspective,

the routing of VNF chains across a carrier network implies key novelties making the

VNF chain routing problem unique with respect to the state of the art: the bitrate

of each demand flow can change along a VNF chain, the VNF processing latency

and computing load can be a function of the demands traffic, VNFs can be shared

among demands, etc. In this chapter, we provide an NFV network model suitable

for ISP operations. We define the generic VNF chain routing optimization problem

and devise a mixed integer linear programming formulation. By extensive simula-

tion on realistic ISP topologies, we draw conclusions on the trade-offs achievable

between legacy Traffic Engineering (TE) ISP goals and novel combined TE-NFV

goals.

79
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5.1 Introduction

After about ten years of fundamental research on network virtualization and virtual

network embedding, the virtualization of network functions is becoming a reality

thanks to huge investments being undergone by telecommunication providers, cloud

providers and vendors.

The breaking point sits in 2012, when calls for experimentation and deployment

of what was coined as “Network Functions Virtualization (NFV)” [113] lead to the

creation of a NFV industry research group at the European Telecommunications

Standards Institute (ETSI) [114]. Since then, applied researches and developments

have accelerated the investments and the first prototypes are being demonstrated

and deployed (leading to commercialization in some cases) since late 2014 [115].

With NFV, network functions historically directly implemented using specialized

hardware nodes are run instead as Virtual Machines (VMs). As above mentioned,

running routers, firewall, etc, as VMs was a technological step already conceived

and experimented well before 2012. However, starting by 2012 the attention of NFV

researchers focused on key aspects of NFV systems that were either not considered

relevant or not conceived at all before the NFV standardization effort at ETSI (as

well as at other Standards Developing Organizations, SDOs, such as the Internet

Engineering/Research Task Force, IETF/IRTF). Key aspects that are worth being

mentioned and that we address in our work are:

• the so-called NFV chaining, i.e., the problem of allowing a traffic flow passing

through a list of NFV nodes;

• the flow orchestration over VNF nodes and chains, i.e., the fact that NFV

nodes can be placed at and migrated across virtualization clusters as a function

of traffic flow assignment to existing VNF chains or sub-chains;

• the consideration ingress/egress bit-rate variations at VNFs (such as com-

pression as in coding, decompression as in tunneling) due to specific VNF

operations;

• the consideration of the VNF switching latency as an important orchestration

parameter. It can indeed be exponential with the traffic load on the VNF,

or constant up to a maximum bound if computation offloading solutions are

adopted, such as direct memory access bypassing the hypervisor as done with

Intel/6Wind Data-Plane Development Kit (DPDK) [116], and similar other

‘fastpath’ solutions are present.

These key aspects make the NFV orchestration problem substantially different from

the network embedding problem, as discussed hereafter.
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ETSI is de-facto the reference SDO for the NFV high-level functional architec-

ture specification. High-level means that its identified role is the specification of the

main functional blocks, their architecture and inter-relationship, whose implementa-

tion elements are then precisely addressed by other SDOs such as the IRTF/IETF.

So far, ETSI specified three key functional blocks of the NFV architecture: Virtual

Network Functions (VNFs), the nodes; the NFV Infrastructure (NFVI), including

the logical elements needed to run VNFs such as the hypervisor node architecture;

the MANagement and Orchestration (MANO) layer, handling the operations needed

to run, migrate, optimize VNF nodes and VNF chains, possibly in relationship with

transport network orchestrators.

MANO procedures come therefore to support the economies of scale of NFV, so

that physical NFVI virtualization resources (servers and clusters) dedicated to NFV

operations are used efficiently with respect to both NFVI operators and edge users.

A typical NFV use-case for carrier networks is the virtual Customer Premises Equip-

ment (CPE) that simplifies the CPE equipment by means of virtualized individual

network functions placed at access and aggregation network locations, as depicted

in Fig. 5.1. Some MANO operations that can be mentioned are where to place

VNFs to better meet user’s demands, how to route VNF chains over a transport

network disposing of multiple NFVI locations, how to share VNFs among active de-

mands, while meeting common Traffic Engineering (TE) objectives in IP transport

networks as well as novel NFV efficiency goals such as the minimization of VNF

to install. These orchestration operations must take into consideration the special

nature of NFV architectures, such as the latency/traffic bounds at both the VNF

node and the end-to-end level, the fact that some VNFs can modify the incoming

bitrate by compressing or decompressing it, etc. In this context, our contribution

is as follows:

• we define and formulate via mathematical programming the VNF placement

and routing (VNF-PR) optimization problem, including compression/decompression

constraints and two switching latency regimes (with and without fastpath),

with both TE and NFV objectives.

• we design a math-heuristic approach allowing us to run simulations also for

large instances of the problem within an acceptable execution time.

• we evaluate our solution on realistic three-tier topologies and compare it to

alternative algorithms at the state of the art. We draw valuable considerations

on NFV deployment strategies.

The chapter is organized as follows. Section 5.2 presents the state of the art on

NFV orchestration. Section 5.3 describes the network model and the mixed integer
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Figure 5.1: VNF chaining with virtualized Customer Premises Equipment (vCPE).

linear programming (MILP) formulation. Discussion of simulation results are given

in Section 5.4. Section 5.5 concludes the chapter.

5.2 Background

In the state of the art, preliminary works on NFV orchestration tend to map the

problem into a Virtual Network Embedding (VNE) problem. This is for example

the case of [117], where VNFs are treated as normal virtual machines to be mapped

on a network of VM containers interconnected via physical links which can host

logical links of the virtual network. Similarly, authors in [118] propose a VNF

chaining placement that combines the location-routing and VNE problems. First,

they solve the placement problem and then the chaining problem. In [119] the

authors decouple the legacy VNE problem into two embedding problems: service

chain embedding and VM embedding, where a service chain is embedded on a VM,

and each VM on physical servers. Each service chain has specific requirements as

notably an end-to-end latency requirement.

The placement and routing of VNF chains is a problem fundamentally different

from the VNE problem. Similarly than in VNE, virtual network nodes need to be

placed in an underlying physical infrastructure. However, differently from VNE, in

VNF chaining: (i) the demand is not a multipoint-to-multipoint network connection

request, but as a point-to-point source-destination flow routing demand and (ii)

specific aspects of NFV such as forwarding latency behavior, ingress/egress bit-rate

changes, and chaining are not addressed in VNE, and their inclusion would further

increase the VNE problem time complexity. In this sense VNF chaining problem is

more similar to facility location problems, whereas NVE is a mapping problem.
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Figure 5.2: Example of VNF forwarding latency profiles.

We believe the appropriate way to deal with NFV MANO decision problems is to

define the VNF Placement and Routing (VNF-PR) problem directly tailored to the

NFV environment, for the sake of time complexity, modeling precision and practical

usability. This is the approach adopted by a few papers in the literature [120–

122]. In [120] the authors consider the online orchestration of VNFs, modeling it

as a scheduling problem of VNFs and proposing heuristics to scale with the online

nature of the framework. In [121] the authors consider a VNF-PR problem for data-

center environments with both optical and electronic elements. They formulate

the problem as a binary integer programming problem, and propose an heuristic

algorithm to solve it. In their work, VNF chains are set as an input to the problem.

In [122] the specific Deep Packet Inspection (DPI) VNF node placement problem

(with no chaining) is targeted, with a formal definition of the problem and a greedy

heuristic algorithm to solve it. Our contribution takes inspiration from these latest

works, yet goes beyond being more generic and integrating the specific features of

NFV environments mentioned in the introduction.

5.3 Network Model

We provide in the following a definition of the VNF Placement and Routing (VNF-

PR) problem, described with our network modeling assumptions, and we provide

a mathematical programming formulation, along with a description of its possible

customization alternatives.

5.3.1 Problem Statement

Definition (VNF-PR: Virtual Network Function Placement and Routing)

Given a network graph G(N,A), where N is the set of nodes, A the set of arcs



84 CHAPTER 5. VIRTUAL NETWORK FUNCTION PLACEMENT AND ROUTING

Figure 5.3: Adopted network topology and VNF-PR solution example.

between nodes, Nv ⊂ N the set of nodes disposing of NFVI server clusters. Given

a set of edge demands D, each demand k ∈ D being characterized by a source ok, a

destination tk, a bandwidth bk, and a set of VNFs of different types to be traversed

by edge flows, the VNF-PR optimization problem is to find:

• the optimal placement of VNF nodes over NFVI servers;

• the optimal assignment of demands to VNF node chains.

subject to:

• NFVI cluster capacity constraints;

• VNFs’ flow compression/decompression constraints;

• VNF forwarding latency constraints.

• VNF node sharing constraints.

The optimization objective should contain both network-level and NFV-level

performance metrics. In our NFV network model, we propose as network-level met-

ric the classical TE metric, i.e., the minimization of the maximum link utilization.

As NFV-level metric we propose the minimization of computing resources volume.

Furthermore, in our network model we assume that:

• Only a subset Na ⊂ N of the nodes are source and/or destination of demands.

• Multiple VNFs of the same type (i.e., providing same functionality) can be

allocated on the same node, but each demand cannot split its flow on multiple

VNF of the same type.
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• No sequence is imposed on the VNFs used by each demand.

• There are different Virtual Machine templates, each with a different computing

resource consumption and VNF forwarding latency performance.

• The VNF computing resource consumption demand is expressed in terms of

live memory (e.g., RAM) and Computing Processing Units (CPUs).

• Latency introduced by a VNF can follow one among the two following regimes

(as represented in Fig. 5.2):

– Bufferized : VNFs possess buffers such that the forwarding latency is

considered as a convex piece-wise linear function of the aggregate bit-

rate at the VNF. This is the case of default VNF functioning, with kernel

socket buffers possibly resized.

– Bufferless: VNFs behave without buffers, or with a very small buffer (1-2

packets), so that the forwarding latency is constant up to a maximum

aggregate bit-rate (after which packets are dropped). This is the case for

Intel/6WIND DPDK fastpath solutions [116].

Examples of forwarding latency profiles for the two cases are given in Fig. 5.2

(with different VM templates we used for the tests).

• for each demand and each NFVI cluster, only one compression/decompression

VNF (referred to as ‘comp/dec’ in the following) can be installed. This allows

us to keep the execution time at acceptable levels, without reducing excessively

the VNF placement alternatives.

• for each network node we have a NFVI cluster node attached, with the fol-

lowing simplifications in the notations with a single identifier for collocated

network and NFVI nodes.

5.3.2 Mathematical Formulation

Table 5.1 reports the mathematical notations used in the following Mixed Integer

Linear Programming (MILP) formation of the VNF-PR problem. We work on an

extended graph, in which each access node i is duplicated in a node i′. Arc (i, i′)

will be added and all arcs (i, j) originating from access node i will be transformed in

arcs (i′, j). Traffic (demand) originates from original access nodes. This will allow

to distinguish between nodes origin/destination of flow and nodes where NVF are

allocated.
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Table 5.1: Mathematical Notations
sets

Na access nodes

N ′a duplication of access nodes

Nc aggregation/core nodes

Nv nodes where a VNF can be located, Nv = N ′a ∪Nc

N set of all nodes, N = Na ∪Nv

A set of all arcs, A ⊆ N ×N
R resource types (CPU, RAM, storage)

D demands

F VNF types

Cf set of possible copies of VNF of type f

T set of VNF configurations

demand parameters

ok origin of demand k ∈ D
tk destination of demand k ∈ D
bk qt (bandwidth) of demand k ∈ D

mkl 1 if demand k ∈ D requests v.f. l ∈ F
network parameters

γij arc capacity

λij link latency

Γir capacity of node i ∈ N in terms of resource of type r ∈ R
NFV parameters

rr rt demand of resource r ∈ R for a VM of type t

µf compression/decompression factor for VNF f ∈ F
gtfj(b) j-th latency function of f ∈ F and aggregate bandwidth b

if allocated on VM of type t, linear in requested bandwidth

L maximum allowed latency for a demand

binary variables

xkij 1 if arc (i, j) is used by demand k ∈ D
zknift 1 if demand k ∈ D uses copy n-th of VNF of type f ∈ F

placed on node i ∈ Nc on a VM of type t

ynift 1 if n-th copy of type of VM t is assigned to VNF

of type f ∈ F hosted by node i ∈ Nc

continuous variables

φkij flow for demand k ∈ D on arc (i, j)

ψknif flow for demand k ∈ D entering in node i and using copy n

of VNF of type f ∈ F
lkif latency that demand k ∈ D ‘suffers’ using VNF

of type f ∈ F hosted by node i ∈ Nc
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Binary variables xkij represent the per-demand link utilization, and therefore also

the path used by the demand. Binary variables ynift represent the allocation of a

copy of VF on a given node. Binary variables zknift represent the assignment of a

given demand to a certain copy of a VF. To introduce the possibility of compress-

ing/decompressing flows for some VNFs, we need introduce explicit flow variables

φkij , and a compression parameter µf for each type of VNF. Furthermore, variables

ψknif represent the flow of demand k entering node i and using copy n of VNF of

type f . In the following we present the constraints.

Single path routing flow balance:

∑
j:(i,j)∈A

xkij −
∑

j:(j,i)∈A

xkji =


1 if i = ok

−1 if i = tk

0 otherwise

∀k ∈ D,∀i ∈ N (5.1)

Flow and compression/decompression balance for NFVI nodes and for each demand:∑
j∈N :(i,j)∈A

φkij −
∑

j∈N :(j,i)∈A

φkji =
∑

f∈F,n∈Cf

(1− µf )ψknif

∀k ∈ D,∀i ∈ Nv (5.2)

Flow balance for access nodes:∑
j∈N :(i,j)∈A

φkij −
∑

j∈N :(j,i)∈A

φkji

=


bk if i = ok

−bk ·
∏mkf=1
f∈F µf if i = tk

0 otherwise

∀k ∈ D,∀i ∈ Na (5.3)

Coherence between path and flow variables:

φkij ≤Mix
k
ij ∀k ∈ D,∀(i, j) ∈ A (5.4)

xkij ≤
1

bk
∏
f∈F :µf≥1 µf

φkij ∀k ∈ D,∀(i, j) ∈ A (5.5)

VNF compression/decompression linearization constraints:

ψknif ≤
∑

j∈N :(j,i)∈A

φkji +Mi(1−
∑
t∈T

zknift)

∀i ∈ Nv, k ∈ D, f ∈ F, n ∈ Cf (5.6)

ψknif ≥
∑

j∈N :(j,i)∈A

φkji −Mi(1−
∑
t∈T

zknift)

∀i ∈ Nv, k ∈ D, f ∈ F, n ∈ Cf (5.7)
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ψknif ≤Mi(
∑
t∈T

zknift) ∀i ∈ Nv, ∀k ∈ D,∀f ∈ F, n ∈ Cf (5.8)

Only one compression/decompression VNF for each node and demand:∑
t∈T

∑
f∈F,n∈Cf :µf 6=1

zknift ≤ 1 ∀k ∈ D,∀i ∈ Nv (5.9)

Utilization rate constraints:∑
k∈D

bkphi
k
ij ≤ Uγij ∀(i, j) ∈ A (5.10)

If there is no VNF, it cannot be used by any demand:

zknift ≤ ynift ∀k ∈ D,∀i ∈ Nv, ∀f ∈ F,∀t ∈ T, n ∈ Cf (5.11)

If traffic does not pass by a VNF, it cannot use it:

zknift ≤
∑

j:(j,i)∈A

xkji ∀k ∈ D,∀i ∈ Nv,∀f ∈ F,∀t ∈ T : mkf = 1 (5.12)

Each demand uses exactly one NVF of each type it asks for∑
i∈Nc

∑
n∈Cf

∑
t∈T

zknift = 1 ∀k ∈ D,∀f ∈ F : mkf = 1 (5.13)

On each node at most a VM assigned for each VNF copy of a certain type:∑
t∈T

ynift ≤ 1 ∀f ∈ F,∀i ∈ Nc, ∀n ∈ Cf (5.14)

Node resource capacity (VNF utilization):∑
f∈F

∑
n∈Cf

∑
t∈T

rr rty
n
ift ≤ Γir ∀i ∈ Nv,∀t ∈ R (5.15)

Latency function linearization:

lkif ≥ g
j
ft(

∑
d∈D

ψdnif )− Lmax(1− zknift) ∀i ∈ Nc,∀f ∈ F, n ∈ Cf

∀t ∈ T, ∀k ∈ D,∀j ∈ 1..G (5.16)

Maximum latency bound:∑
(i,j)∈A

xkij +
∑
i∈Nc

∑
f∈F

lkif ≤ L ∀k ∈ D (5.17)

Eq. (5.3) represent flow balance for access nodes. At destination node the quan-

tity of flow is set equal to the demand multiplied for all factors of compression of
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all the demanded VNFs. Eq. (5.2) represent the flow balance for a given node that

has the possibility of hosting VNFs. We work under the assumption that given a

node i, and a demand k, such demand uses at most a VNF f with a factor of com-

pression/decompression µf 6= 1. If a demand pass through a VNFs with a factor of

decompression µf , then the out-flow of the node is proportional to the in-flow:∑
j∈N :(i,j)∈A

φkij = µf
∑

j∈N :(j,i)∈A

φkji

Using variable z that represents the assignment of demand to VNFs and subtracting

the out-flow we get: ∑
j∈N :(i,j)∈A

φkij −
∑

j∈N :(j,i)∈A

φkji =

∑
j∈N :(j,i)∈A

φkji
∑
n∈Cf

∑
t∈T

(µf − 1)zknift (5.18)

Variable ψknif represents the flow of demand k that enters node i and pass by copy

n of VNF of type f (non-linear representation)

ψknif = (
∑

j∈N :(j,i)∈A

φkji)
∑
t∈T

∑
n∈Cf

zkift

Then constraints (5.18) can be linearized using (5.6)-(5.8), with parameter Mi

equal to
∑

(j,i)∈A γji, that represent the maximum quantity of flow entering node i.

As mentioned before, we consider two objective functions:

• TE goal: minimize the maximum network link utilization:

minU (5.19)

• NFV goal: minimize number of cores (CPU) used by the instantiated VNF:

min
∑
i∈Nv

∑
f∈F

∑
t∈T

∑
k∈D

∑
r=‘CPU ′

rrrt y
n
ift (5.20)

The former allows taking into consideration the inherent fluctuations related to

Internet traffic and therefore minimizing the risk of sudden bottleneck on network

links. The latter assumes the fact that today the first modular cost in virtualization

servers, especially in terms of energy consumption, is the CPU.

5.3.3 Multi-objective math-heuristic resolution

We are faced to a multi-objective problem: minimizing the maximal link utilization

and minimizing the total virtualization cost at the NFVI layer. These two objectives
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are in competition; in fact, to obtain a low utilization, a large number of VNFs must

be allocated. We decided to prioritize the objectives under two cases. Under the

first case, named TE-NFV, we minimize first the maximal link utilization, and then

the NFV cost, which reflects the ISP-oriented vision to improve the user quality

of experience (strictly related to link congestion, especially for real-time services).

Under the second case, named NFV-TE, we minimize first the NFV cost, and then

the TE cost, which reflects the priorities of the NFVI provider, which makes sense

especially when it is a different entity than the ISP.

In practice, in order to do our best to meet the second objective and allow the

largest possible marginal gain, we perform a first step to find the best solution

accordingly to the first objective, and then, keeping the best value found in the

first step as a parameter, we minimize the second objective in a second step. In

fact, for a given optimal value of the first step, different possible configurations are

available to the second step, and a large primary cost reduction can be achieved by

this second step without losing with respect to the secondary objective.

Furthermore, in order to allow a larger reduction of the total cost, an iterative

approach can be used: increasing step by step the value of the first objective until

the desired cost level of the second objective is found. Such an iterative procedure

can have the advantage of providing to the second step of optimization a feasible

solution (warm-start), which in many practical cases can reduce the computational

time of the optimization.

5.3.4 Possible modeling refinements and customization

The model we provided above can be possibly refined and customized to meet

specific requirements. We list in the following possible variants as well as the cor-

responding modeling variations.

• VNF isolation: if the same VNF cannot be shared between different demands

(but two VNFs can share same server if there is enough space), then we need

to add: ∑
k∈K

zknif ≤ 1 ∀i ∈ Nc, ∀f ∈ F,∀n ∈ Cf (5.21)

• Multiple comp/dec VNFs per NFVI node: to make presentation simpler, we

assumed that in each NFVI node there is at most one VNF that can com-

press/decompress a flow, i.e. with a factor of compression µf 6= 1. This

assumption can be relaxed using an extended graph in which each node that

can host a VNF (Nv) is expanded in multiple copies, one for each type of
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VNF that can be allocated in the node. Otherwise, we can represent all pos-

sible combinations of different VNFs allocated to the same node, and adding

additional binary variables to represent which combination is chosen.

• VNF chain ordering : our formulation does not impose any fixed order of VNFs

in a VNF chain. However, it can be easily found heuristically, starting from

a (possibly) disordered solution, and proceeding with a basic neighborhood

search heuristic swapping VNF places to create a solution with ordered chains.

• Additional computing constraints: can be easily included by tuning existing

parameters, as far as computing resource requests can be expressed in an

additive way (e.g., for storage).

• Load balancing : Multiple VNFs of the same type (i.e., providing the same

functionality) can be allocated on the same node so that each demand can

split its flow on multiple NVF of the same type. This could be done by

extending the model allowing multiple paths for each demand, which however

is expected to largely increase the execution time.

• Core routing as a VNF : If also the core routing function is virtualized, i.e., if

the NFVI node and the network router can be considered as a single physi-

cal node that runs the core routing function, processing the aggregate traffic

independently of the demand, as a VNF, then we need to add InFlow plus

OutFlow to (5.15):

∑
k∈D

∑
j:(i,j)∈A

rkφ
k
ij +

∑
k∈D

∑
j:(j,i)∈A

rkφ
k
ji (5.22)

+
∑
k∈D

∑
f∈F

∑
n∈Cf

rrfry
n
if ≤ cit ∀i ∈ Nc, ∀t ∈ R

5.4 Results

We implemented our VNF-PR algorithm using CPLEX and AMPL scripting. We

limited the execution time to 2 hours for the TE optimization phase and to 3

hours for the NVF optimization phase, which most of the time allowed reaching the

optimum for the TE objective and good results for the NVF objective.

We adopted the three-tier topology represented in Fig. 5.3 as a good reference

for an Internet Service Provider network. Each access node is connected to two

aggregation nodes, each aggregation node is connected to two core nodes, and core

nodes are fully meshed. We consider all the nodes as NFVI nodes that can host
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(a) TE objective.

(b) TE-NFV cost objective.

Figure 5.4: VNF node distribution across VNFI layers (bufferized case).

VNFs. The demands are created uniformly in the interval [a, b] so that edge de-

mands cannot create any bottleneck at the access links. The aggregation links are

dimensioned so that there is a risk of link saturation (i.e., link utilization higher

than 100%) if the traffic distribution is not optimized. The core links are such that

there is a very low bottleneck risk. Link latencies are set as follows, to cope for the

different geographical scopes: 1 ms for access links, 3 ms for aggregation links, and

5 ms for core links (so that routing through core links is facilitated).

VNF processing latencies are set as in Fig. 5.2, for the bufferized and bufferless

cases. We use two VM templates, one requiring 1 CPU and 16 GB of RAM, and

one requiring 4 CPUs and 64 GB of RAM. We run tests setting for the end-to-end

latency bound (L) with strict and loose values (10 and 20 ms, resp.). In order

not to introduce unnecessary complexity to capture the differences between the

different cases, we limit to two VNF types per demand: a tunneling VNF (requiring

decompression) and a firewall-like VNF. The NFVI layer is dimensioned so that

there are enough computing resources to satisfy individually half of all the demands

(i.e., excluding VNF sharing); NFVI access nodes are dimensioned so that they are

composed of 5 CPUs, 80 GB RAM at each access node, twice and four times this
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quantity at aggregation and core nodes, respectively.

Each case is emulated with 10 random demand matrices. For the bufferized

VNF case, we analyze in the following the results shown in Fig. 5.4 (NFV cost

distribution), Fig. 5.5 (link utilization distribution), Fig. 5.6 (end-to-end and VNF

forwarding latency distribution).

As a general remark, independently of the objective and the latency bound, there

is almost no VNF instantiated at access nodes and the quantity of both firewall and

tunneling VNFs greatly varies at the aggregation and core segments. Moreover,

in all cases but one, there are more tunnelling VNFs than firewall VNFs at the

aggregation level, while the inverse holds at the core level, which is likely due to

the fact that tunnelling VNFs are pushed toward the destination edge given the

corresponding increasing in the traffic rate.

We provide a detailed analysis in the following, with two points of views: what

happens when we also consider the NFV cost in the objective function, and what

happens when we change the bound on the end-to-end latency. Then, we compare

the bufferized case with the bufferless case.

5.4.1 TE vs. TE-NFV objectives sensibility

We analyze the difference between the results with the TE objective and the results

with the combined TE-NFV objective, comparing them for an equivalent maximum

latency (L).

• NFVI cost (Fig. 5.4): the NFVI cost is significantly reduced with the TE-

NFV objective. The relative gap between the two VNF types decreases passing

from the TE objective to the TE-NFV objective, for both the aggregation and

the core layers. Passing from the TE to the TE-NFV case allows to almost

halve the overall number of required CPUs, while maintaining the same TE

performance level thanks to our math-heuristic.

• Link utilization (Fig. 5.5): for the aggregation links, there is no major differ-

ence. This is likely due to our math-heuristic that first optimizes the TE goal,

and then the NFV cost. The core links tend to be less used with the TE-NFV

objective and when the latency is set to 20ms.

• Latency distribution (Fig. 5.6): the total latency distributions are roughly

equivalent, while the experienced forwarding latency of the two VNF types

increases under the TE-NFV objective. This is likely due to the VNF cost

reduction of the second step of the math-heuristic, leading to higher con-

centration of the flows on fewer VNFs (see Fig. 5.4), whose latency increase

exponentially with the traffic load in the bufferized case.
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(a) L = 10ms (TE) (b) L = 20ms (TE)

(c) L = 10ms (TE-NFV) (d) L = 20ms (TE-NFV)

Figure 5.5: Link utilization empirical CDFs (bufferized case).

Independently of the objective, the forwarding latencies of the firewall and

tunneling VNFs are close and globally largely lower than the total latency

given the non negligible weight of the link latencies.

5.4.2 Sensibility to the latency bound

We analyze in the following the results further insisting on the impact of the VNF

chain latency bound L on the results.

• NVFI cost (Fig. 5.4): setting a strict delay bound pushes the NFV cost down

and the level of VNF sharing up. While in the TE case the strict latency

bound case (L = 10 ms) leads to 30% lower NFVI cost than the loose latency

bound (L = 20 ms), in the TE-NFV case we have an opposite behavior,

with a cost doubled passing from the strict to the loose latency bound. This

happens because the NFV step under TE-NFV objective let VNFs be better

distributed across the different NFVI nodes, almost independently of the layer
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(a) L = 10ms (TE) (b) L = 20ms (TE)

(c) L = 10ms (TE-NFV) (d) L = 20ms (TE-NFV)

Figure 5.6: Empirical CDFs of latency components (bufferized case).

(aggregation or core) and also be better shared.

• Link utilization (Fig. 5.5): all the links are affected by the latency change.

The strict latency bound case (L = 10 ms) leads to lower utilization than the

loose case - access and aggregation link utilization increases by around 10%

while it increases by 30% for core links.

• Latency distribution (Fig. 5.6): obviously, the strict latency bound case leads

to the lowest latency distribution: the end-to-end latency and VNF forwarding

latency have similar profiles regardless to the objectives. Instead, for the loose

case (L = 20 ms), the VNF forwarding latency is higher for both types.The

median latency ranges from 1 to nearly 3 for the loose case, which indicates

that VNF sharing is strongly motivated when the latency bound becomes less

stringent. This is confirmed by the distribution of the number of enabled

VNFs, which significantly decreases for less stringent latency bounds.
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Figure 5.7: VNF node distribution across NFVI layers (bufferless, L = 20ms).

(a) L = 20ms (TE) (b) L = 20ms (TE-NFV)

Figure 5.8: Link utilization empirical CDFs (bufferless case).

5.4.3 Bufferized vs bufferless VNF switching mode

At last, we compare the bufferized case to the bufferless case. We consider only

the strict latency bound (L = 20 ms) situation in order to better analyze the

impact of the VNF forwarding mode (indeed, more stringent latency bounds have

a higher impact on the placement and routing). Fig. 5.7, Fig. 5.8 and Fig. 5.9 show

respectively the NFV cost, link utilization, latency distributions, to be compared

with the corresponding previous ones. We can observe that:

• NFVI cost (Fig. 5.7 vs Fig. 5.4): for the TE case, the number of CPUs,

and hence VNFs, in the bufferless mode is less than in the bufferized mode.

Instead, for the TE-NFV case, there are slightly more VNFs with the bufferless

mode. Associated with the observed increased latency, this implies that when

TE is the single goal, the bufferless mode offers a higher VNF sharing among

demands. For the TE-NFV case, this gap nullifies and is slightly inverted. We

also note that the bufferized mode pushes more VNFs toward the aggregation
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(a) L = 20ms (TE) (b) L = 20ms (TE-NFV)

Figure 5.9: Empirical CDFs of latency components (bufferless case).

NFVI nodes compared to the bufferless mode.

• Link utilization (Fig. 5.8 vs Fig. 5.5): a remarkable difference appears only

for the TE-NFV case and only for the core links. The median utilization of

core links moves from roughly 40% in the bufferized case to roughly 60% in

bufferless case.

• Latency distribution (Fig. 5.9 vs Fig. 5.6): the total latency is higher with

the bufferless mode. The firewall and tunneling latencies curves are identical

for the bufferless mode. Moreover, with the bufferless mode we globally get a

lower latency than with the bufferized mode.

5.5 Summary

This chapter proposes a network functions virtualization orchestration model and an

algorithm that go beyond recent work at the state of the art. Our model takes into

consideration specific NFV forwarding constraints that make the orchestration of

edge demands over virtual network function chains unique yet complex. In order to

master the time complexity while considering both traffic engineering and network

functions virtualization infrastructure cost optimization goals, we adopt a math-

heuristic resolution method.

Results from extensive tests qualify the impact of the virtual network func-

tion forwarding mode on the orchestration result. We highlighted many interesting

aspects. For instance, when the virtualization infrastructure cost is considered ir-

relevant (i.e., a lot of resources available), using a bufferless forwarding mode (i.e.,

a virtual network function setting such that it does not bufferize incoming packets

more than needed to allow a constant-latency forwarding time up to a maximum
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load) allows higher virtual network function resource sharing than using a bufferized

forwarding mode (where instead packets can be bufferized, with higher maximum

load and piece-wise forwarding latency behavior).

Another important insight of our analysis is that setting strict end-to-end la-

tency bounds on VNF chains can greatly affect the distribution of NFV nodes,

increases the virtualization infrastructure cost while decreasing network link uti-

lization because of a higher virtual network function distribution, especially at the

aggregation level. With the adopted datasets, access layer tends not to host virtual

network functions, which suggests that only extremely low service latency require-

ments related to edge cloud services, rather than network function virtualization,

could justify a so pervasive deployment of virtualization resources into the access

network.



Chapter 6
Conclusion and Perspectives

Data Center Networking (DCN) is a challenging field of applications of old and

new technologies and concepts. In this dissertation, we investigated various as-

pects related to data center network optimization. Our research motivation was

to understand new arising environments in networking mixing system and network

architectures, metamorphosed by software virtualization and new interconnection

topologies and softwarized communication modes. We presented in this dissertation

three main contributions.

Adopting the point of view of the data center network operator, the first contri-

bution presents the virtual machine placement problem for data-center networks

exposing two new key functionalities: layer-2 multipath forwarding and virtual

bridging. Once solely based on system level constraints, more recently virtual ma-

chine placement takes into consideration not only energy consumption minimization

but also network link utilization minimization (traffic engineering goal) to ensure

energy, application and network efficiency. In this field, our contribution lead to

the formalization of the generic virtual machine placement problem, the proposal

of a repeated matching heuristic for its resolution, and an exhaustive sensibility

analysis on not so-well understood aspects in data-center networking. We observed

counterintuitive behaviors, as for instance that multipath forwarding has a posi-

tive impact on energy efficiency when virtual bridging is disabled, and this positive

impact becomes negligible when virtual bridging is enabled or energy efficiency is

not considered as important. Moreover, we have found that when energy efficiency

is the primary goal of the data center network optimization, both multipath for-

warding and virtual bridging can be counter-productive, leading to link saturation.

Also relevant is the finding that using virtual bridging when traffic engineering is

the primary goal is instead definitely interesting. Other important observations al-

low assessing which data-center network topology better takes profit from specific

99
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data-center network environments.

Furthermore, adopting the point of view of the application and the Infrastructure

as a Service (IaaS) user, we investigated the throughput fairness offered at the

equilibrium to data-center edge nodes, accounting for the TCP utility and elastic

demand behavior. We presented a generalized formulation of the basic proportional

fairness model for data-center networks allowing multipath forwarding for elastic

demands. We described, analyzed and evaluated our model under two different TCP

utility functions: fixed-delay and weighted-delay. Analyzing the behavior with rising

data-center network topologies (fat-tree and BCube topologies of various sizes), we

observed a number of interesting aspects. In particular, we found out how and when

the global throughput is closely correlated to the topology.

Finally, we adopted the Internet service provider carrier network perspective.

Major interest has been lately oriented in both industry and academic fora toward

the virtualization of network functions in carrier networks. We explored the problem

of routing user demands via a chain of virtual network functions that need them-

selves to be placed across clusters into the carrier network. The modeled problem

mixes therefore facility location with multi-commodity flow problems, and integrate

unique constraints due to network functions virtualization. Results are interest-

ing and show under which circumstances it can become interesting placing virtual

network function and virtualization server clusters into the access, aggregation and

core network segments.

The latter is a preliminary work with high potential for further work. As it is ex-

pected that network functions virtualization will allow, in the close future, internet

service providers to get rid of the vendor lock-in in network hardware, virtualization

systems need to prove to be robust against security threads. NFV systems should

be at least as reliable as legacy systems. The expectation is that network func-

tion virtualization systems could even grant more advantageous reliability-cost and

availability-cost trade-offs than legacy systems. The protocols and architectures

needed to meet this expectation are yet not fully defined, nor investigated and stan-

dardized. Our further research effort will therefore address these open questions,

towards the design of advance carrier-grade cloud orchestration platforms and al-

gorithms, the integration of NFV systems in cellular and mobile networks, with

particular care toward the consideration of specific industry constraints and needs.
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.1 Matching cost matrix computation

Block 1

Matching two VMs. Given that the matching does not make real sense, its cost is

set to infinity.

Block 2

Matching a container pair with a VM. This matching forms a Kit φ(cp,D
V
, D

R
)

with D
R

= � and D
V

= {v}. Let cp be the ith element of L2 and v be the jth

element of L1. With a recursive cp, the matching cost is

zn1+i,j =
∑
s∈S

Ks
c1/d

s
v. (1)

Otherwise, the VM is assigned to the container with the least cost, i.e.:

zn1+i,j = min{
∑

s∈S
Ks

c1

dsv
,
∑

s∈S
Ks

c2

dsv
}+ Θ. (2)

For this latter case, Θ is a big constant so that Θ �
Ks

ci

dsvj
, ∀i,∀j; it is meant to

discourage the matching over lower cost matchings, given that the created Kit is

unfeasible (no route between containers), and it has an unused container.

Block 3: Matching two container pairs. Given that the matching does not make

real sense, its cost is set to infinity.

Block 4: Matching an RBridge path with a VM. Given that the matching does

not make real sense, its cost is set to infinity.

Block 5: Matching an RBridge path with container pair. Let rp be the ith

element of L3 and cp be the jth element of L2.

zn1+n2+i,n1+j =

{
2Θ if c1 6= c2

∞ otherwise.
(3)

In the first case, an unfeasible Kit is formed with both containers unused, while

the second case is impossible as it is pointless.

Block 6

Matching two RBridge paths. Given that the matching does not make real sense,

its cost is set to infinity.

Block 10

Matching two Kits. Let φi(cpa, D
V
a , D

R
a ) be the ith Kit of L4 and φj(cpb, D

V
b , D

R
b )

be the jth Kit of L4. For i = j, since an element cannot be matched with itself, the

matching cost is equal to the cost of the Kit; otherwise, several cases are possible:
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Case 1) All VMs are assigned to cpa. The matching cost is therefore equal to

the cost of the new Kit φ′(cpa, D
V = DV

a ∪DV
b , D

R
a ), i.e., v1 = µ(φ′). Assignment

of VMs to Kit container is the result of an optimization so that the cost of the Kit

is minimized as follows.

v1 = min (1− λ)

cp∑
c

DV∑
v

(∑
s∈S

Ks
c

dsv
+ ΓT c

v

)
xciv + λU (4)

subject to ∑
ci∈cpa

xciv = 1, ∀v ∈ DV (5)

∑
vi∈DV

i 6=j∑
vj∈DV

t
vj
vix

c
vi + le ≤ KeU, ∀e ∈ Ea (6)

∑
vi∈DV

i6=j∑
vj∈DV

(t
vj
vix

c
vi + t

vj
vix

c
vj ) = T c

v , ∀c ∈ cpa. (7)

where xciv is a binary variable equal to 1 if v ∈ DV is assigned to ci ∈ cpa (0

otherwise); E = {(c, r), (r, c)|c ∈ cp, r ∈ DR}, is the set containing the two links

from container c along the route r, and from r to c, and Ea = {(c, r), (r, c)|c ∈
cpa, r ∈ DR} ⊂ E; le is the load of the access link e ∈ E as of last Packing configu-

ration without φi and φj ; Ke are the link capacities. Constraint (5) guarantees each

VM is assigned to only one container; (6) computes U . The objective function also

includes cost components inversely proportional to system resources utilization.

Case 2) All VMs are assigned to cpb. Similarly to the previous case, the new kit

φ′′(cpb, D
V
a ∪DV

b , D
R
b ) is formed with v2 = µ(φ′′).

Case 3) The container pairs (cpa, cpb) and the set of RB paths (DR
a , D

R
b ) do not

change, and VMs can be exchanged between Kits. That is, every v ∈ DV
a ∪DV

b can

swap its container.

We then need to find the optimal pair assignment. The cost of the new situation

should be less then the previous one. This can be formulated as an integer linear

problem. Let us define wv as a binary variable so that wv = 1 if the v ∈ DV
a swaps

its current Kit φ′ for φ′′, and wv = 0 otherwise; in order to avoid non linearities,

we admit that v swaps its current ci
th ∈ cpa for the ci

th ∈ cpb, i.e., the destination

container is in the same indexed position in the container pair than in the source

container pair, so xciv is considered as a parameter and no longer as a variable in the

following. Also, let zv be a binary variable equal to 1 if v ∈ DV
b swaps its current

Kit φ′′ for φ′, and 0 otherwise. Finally, gv and hv are the marginal costs formed by

the pair exchanges (i.e., the difference between the new and the old cost for each

v ∈ DV
a ∪DV

b ), defined as

gv = µ(φ′′ ∪ {v})− µ(φ′) (8)
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hv = µ(φ′ ∪ {v})− µ(φ′′). (9)

The swapping problem can be formulated so as to minimize the cost of the Packing:

v3 = min
∑
v∈DV

a

gv wv +
∑
v∈DV

b

hv zv. (10)

Among the cases, we choose the least cost one:

zn1+n2+n3+i,n1+n2+n3+j = min{v1, v2, v3}. (11)

Block 8

Matching a Kit with container pair. Let φ1(cpa, D
V
a , D

R
a ) be the ith Kit of L4

and cpb be the jth pair of L2. The cpb can be seen as a Kit with none assigned

DV
a = DR

a = �: φ2 = (cpb,�,�) ∈ L4. The matching cost is then the cost of the

new kit φ(cpb, D
V
a , D

R
a )

zn1+n2+n3+i,n1+j = µ(φ). (12)

Block 7

Matching a Kit with a virtual machine. Let φ1(cpa, D
V
a , D

R
a ) be the ith Kit of L4

and q(v1, v2) be the jth pair of L1. Three cases can be considered.

Case 1) The Kit is as DV
a = �: φ(cpa,�, DR

a ). Then DV
a becomes DV

a = {q}.
The matching cost for this case is

zn1+n2+n3+i,j = µ(φ). (13)

Case 2) The Kit has DR
a = �, i.e., φ(cpa, D

V
a ,�). The virtual machine can be

assigned to the container cpa. Then DV
a becomes DV

a ∪ {q}. The matching cost for

this case is (now q ∈ DV
a ):

zn1+n2+n3+i,j =

{
µ(φ) if c1 = c2

∞ otherwise.
(14)

Case 3) The Kit is as φ(cpa, D
V
a , D

R
a ). Then DV

a becomes DV
a ∪ {q}. Noting

that now now q ∈ DV
a , the matching cost for this case is

zn1+n2+n3+i,j = µ(φ). (15)

Block 9

Matching a Kit with RBridge path. Let φ(cpa, D
V
a , D

R
a ) be the ith Kit of L4 and

q(r1, r2) be the jth pair of L3. Three case can be considered:
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Case 1): The Kit is as DV
a = �: φ(cpa,�, DR

a ). The matching for this case is

impossible, i.e.,

zn1+n2+n3+i,n1+n2+j =∞. (16)

Case 2): The Kit is as DR
a = �: φ(cpa, D

V
a ,�)

The RBridge path can be assigned to the container cpa. Then DR
a becomes DR

a =

{q}. This is possible if cpa is not recursive.

zn1+n2+n3+i,n1+n2+j =

{
µ(φ) if c1 6= c2

∞ otherwise.
(17)

Case 3): The Kit is as φ(cpa, D
V
a , D

R
a ). Then DR

a becomes DR
a ∪ {q}. The

matching cost for this case is (now q ∈ DR
a ):

zn1+n2+n3+i,n1+n2+j = µ(φ). (18)

The least cost case is then selected for this block.



References

[1] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud computing: state-of-the-art

and research challenges ”. Journal of Internet Services and Applications, Vol.

1(1), pages 7–18, 2010.

[2] K. Weins. Cloud computing trends: 2014 state of the cloud survey. April 2014.

[3] D. Floyer. Survey results: Vmware dominant in multi-hypervisor data centers.

http://wikibon.org/wiki/v/VMware_Dominant_in_Multi-Hypervisor_

Data_Centers, 2013.

[4] Hawley. “Evaluating server virtualization platforms for the future ”. NET

Developers Journal, SYS-CON Media, 2008.

[5] Extreme Marketing Team. Data center survey. http://www.

extremenetworks.com/data-center-survey-infographic, 2012.

[6] R. J. Creasy. “The origin of the vm/370 time-sharing system ”. IBM Journal

of Research and Development, Vol. 25(5), pages 483–490, 1981.

[7] G. J. Popek and R. P. Goldberg. “Formal requirements for virtualizable third

generation architectures ”. Communications of the ACM, Vol. 17(7), pages

412–421, 1974.

[8] Cisco. Cisco global cloud index: Forecast and methodology, 2013-2018. http:

//www.cisco.com/c/en/us/solutions/collateral/service-provider/

global-cloud-index-gci/Cloud_Index_White_Paper.html.

[9] R. Perlman. “An algorithm for distributed computation of a spanningtree in

an extended lan ”. In ACM SIGCOMM Computer Communication Review,

Vol. 15, pages 44–53. ACM, 1985.

[10] APC by Schneider Electric. Virtualization and consolidation. 2009. http:

//uk.idc.com/downloads/events/di09/8_oconnor.pdf

109

http://wikibon.org/wiki/v/VMware_Dominant_in_Multi-Hypervisor_Data_Centers
http://wikibon.org/wiki/v/VMware_Dominant_in_Multi-Hypervisor_Data_Centers
http://www.extremenetworks.com/data-center-survey-infographic
http://www.extremenetworks.com/data-center-survey-infographic
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://uk.idc.com/downloads/events/di09/8_oconnor.pdf
http://uk.idc.com/downloads/events/di09/8_oconnor.pdf


110 REFERENCES

[11] Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). 1995.

[12] J. Moy. “Open shortest path first (ospf) version 2 ”. IETF: The Internet

Engineering Taskforce RFC, 2328, 1998.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner. “OpenFlow: enabling innovation in campus

networks ”. ACM SIGCOMM Computer Communication Review, Vol. 38(2),

pages 69–74, 2008.

[14] Open Networking Foundation Committee et al. Software-defined networking:

The new norm for networks. 2012.

[15] GS NFV 001 Network Functions Virtualisation (NFV); Use Cases.

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_

60/gs_NFV001v010101p.pdf, October 2013.

[16] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story,

and D. Walker. “Frenetic: A network programming language ”. In ACM

SIGPLAN Notices, 46, pages 279–291. ACM, 2011.

[17] J. Batalle, J. F. Riera, E. Escalona, and J. Garcia-Espin. “On the implemen-

tation of nfv over an openflow infrastructure: Routing function virtualization

”. In IEEE SDN for Future Networks and Services (SDN4FNS)IEEE SDN

for, pages 1–6. IEEE, 2013.

[18] H. Xie, Y. Li, J. Wang, D. Lopez, T. Tsou, and Y. Wen. “vrgw: Towards

network function virtualization enabled by software defined networking ”. In

21st IEEE International Conference on Network Protocols (ICNP), pages 1–2.

IEEE, 2013.
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