N

N

A model driven engineering approach to build secure
information systems
Thi Mai Nguyen

» To cite this version:

Thi Mai Nguyen. A model driven engineering approach to build secure information systems. Modeling
and Simulation. Université Paris Saclay (COmUE), 2017. English. NNT: 2017SACLLO001 . tel-
01514651

HAL Id: tel-01514651
https://theses.hal.science/tel-01514651
Submitted on 26 Apr 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01514651
https://hal.archives-ouvertes.fr

TELECOM

e
universite

PARIS-SACLAY mEEt

DOCTORAT EN CO-ACCREDITATION
TELECOM SUDPARIS ET L'UNIVERSITE PARIS-SACLAY

Spécialité: Informatique
Ecole doctorale: Sciences et Ingénierie

Présenté par
Mme Thi-Mai Nguyen

Pour obtenir le grade de
DOCTEUR DE TELECOM SUDPARIS

A MODEL DRIVEN ENGINEERING
APPROACH

TO BUILD SECURE INFORMATION
SYSTEMS

Soutenue le 13/01/2017

devant le jury composé de :

Directeurs de thése :

Mme. Amel Mammar Maitre de conférences, HDR, TELECOM SudParis, France

Mme. Régine Laleau Professeur, Université Paris-Est Créteil, France
Rapporteurs :

M. Yves Roudier Professeur, Université Nice Sophia Antipolis, France

M. Christian Attiogbé Professeur, Université de Nantes, France

Examinateurs :
M. Pascal Poizat Professeur, Université Paris Ouest Nanterre La Défense, France
M. Akram ldani Maitre de conférences, Université Grenoble Alpes , France
M. Paul Gibson Maitre de conférences, HDR, TELECOM SudParis, France

Thése numéro : 2017SACLL0O01

to my family

Acknowledgment

<>

I would like to express my deepest appreciation and gratitude to my supervi-
sors Dr. Amel Mammar and Professor Régine Laleau for their regular feedback,
encouragement, and excellent advices throughout this research. Without their
mentorship, I would have not been able to finish this dissertation.

I am also thankful to Dr. Akram Idani for his scientific advices and support.
It has been a real pleasure to work with him.

I would like to thank all members of the jury. I thank Professor Christian
Attioghé and Dr. Ludovic Apvrille for accepting being my thesis reviewers and
for their attention and thoughtful comments. I also thank Professor Pascal
Poizat, Dr. Akram Idani and Dr. Paul Gibson for accepting being my thesis
examiners.

I wish to thank all the members of the computer science department of Tele-
com SudParis, whose friendly company during my thesis was a great pleasure. |
would like to thank Brigitte Houassine for her kind help and assistance. A spe-
cial thank to my colleagues Karn, Nabila, and Monika for their moral support
and the lovely moments we spent. I would like to express my deepest gratitude
to Nathan for all his encouragement and support when I needed the most.

Next, I owe my deepest gratitude to my friends especially Son, Huy, Long,
Hoa for their support. I would like to express my warmest affection to Minh for
always being by my side, helping me unconditionally and for all the beautiful
moments we shared in France.

I am forever thankful to my family: my father, my mother, my sister and
my brothers who were always there for me with encouraging words. Your en-
couragement made me go forward and made me want to succeed. I would like
to express my heartiest gratitude to my boyfriend, Luong. His love, encour-
agement, understanding and support helped me to get through all the difficult
times. This is because of him that I can reach the goal. Thank you so much for
having faith in me even when I doubted myself! I love you so much. I dedicate
this thesis to all of you, my wonderful family.

Abstract

Nowadays, organizations rely more and more on information systems to collect,
manipulate, and exchange their relevant and sensitive data. In these systems,
security plays a vital role. Indeed, any security breach may cause serious con-
sequences, even destroy an organization’s reputation. Hence, sufficient precau-
tions should be taken into account. Moreover, it is well recognized that the
earlier an error is discovered, the easier and cheaper it is debugged. The ob-
jective of this thesis is to specify security policies since the early development
phases and ensure their correct deployment on a given technological infrastruc-
ture.

Our approach starts by specifying a set of security requirements, i.e. static
and dynamic rules, along with the functional aspect of a system based on the
Unified Modeling Language (UML). Fundamentally, the functional aspect is ex-
pressed using a UML class diagram, the static security requirements are modeled
using SecureUML diagrams, and the dynamic rules are represented using secure
activity diagrams.

We then define translation rules to obtain B specifications from these graphi-
cal models. The translation aims at giving a precise semantics to these diagrams,
thus proving the correctness of these models and verifying security policies with
respect to the related functional model using the AtelierB prover and the ProB
animator. The obtained B specification is successively refined to a database-like
implementation based on the AOP paradigm. The B refinements are also proved
to make sure that the implementation is correct with respect to the initial ab-
stract specification. Our translated AspectJ-based program allows separating
the security enforcement code from the rest of the application. This approach
avoids scattering and tangling the application’s code, thus it is easier to track
and maintain.

Finally, we develop a tool that automates the generation of the B specifica-
tion from UML-based models and the derivation of an AspectJ implementation
from the refined B specification. The tool helps disburden developers of the
difficult and error-prone tasks and improve the productivity of the development
process.

Résumé

Aujourd’hui, les organisations s’appuient de plus en plus sur les systémes d’-
information pour collecter, manipuler et échanger leurs données. Dans ces sys-
témes, la sécurité joue un role essentiel. En effet, toute atteinte a la sécurité
peut entrainer de graves conséquences, voire détruire la réputation d’une or-
ganisation. Par conséquent, des précautions suffisantes doivent étre prises en
compte. De plus, il est bien connu que plus to6t un probléme est détecté, moins
cher et plus facile il sera & corriger. L’objectif de cette thése est de spécifier les
politiques de sécurité depuis les premiéres phases de développement et d’assurer
leur déploiement correct sur une infrastructure technologique donnée.

Notre approche commence par spécifier un ensemble d’exigences de sécurité,
i.e. des regles statiques et dynamiques, accompagnées de 'aspect fonctionnel
d’un systéme basé sur UML (Unified Modeling Language). L’aspect fonction-
nel est exprimé par un diagramme de classes UML, les exigences de sécurité
statiques sont modélisées a l'aide de diagrammes de SecureUML, et les régles
dynamiques sont représentées en utilisant des diagrammes d’activités sécurisées.

Ensuite, nous définissons des régles de traduction pour obtenir des spéci-
fications B a partir de ces modeles graphiques. La traduction vise a donner
une sémantique précise a ces schémas permettant ainsi de prouver l'exactitude
de ces modeéles et de vérifier les politiques de sécurité par rapport au modéle
fonctionnel correspondant en utilisant les outils AtelierB prover et ProB anima-
tor. La spécification B obtenue est affinée successivement & une implémentation
de type base de données, qui est basée sur le paradigme AOP. Les affinements
B sont également prouvés pour s’assurer que I'implémentation est correcte par
rapport a la spécification abstraite initiale. Le programme d’AspectJ traduit
permet la séparation du code lié & la sécurité sécurité du reste de ’application.
Cette approche permet d’éviter la diffusion du code de I'application, et facilite
ainsi le tracage et le maintien.

Enfin, nous développons un outil qui génére automatiquement la spécifi-
cation B & partir des modéles UML, et la dérivation d’une implémentation
d’Aspect] a partir de la spécification B affinée. L’outil aide a décharger les
développeurs des taches difficiles et & améliorer la productivité du processus de
développement.

10

List of Publications

1. Thi Mai Nguyen, Amel Mammar, Regine Laleau and Samir Hameg, A tool
for the generation of a secure access control filter, IEEE 10" International

Conference on Research Challenges in Information Science, RCIS 2016,
Grenoble, France, June 01-03, 2016.

2. Amel Mammar, Thi Mai Nguyen and Regine Laleau, Formal develop-
ment of a secure access control filter, IEEE 17" International Symposium
on High Assurance Systems Engineering, HASE 2016, Orlando, Florida,
USA, January 07-09, 2016.

11

12

Table of contents

1 Introduction 23
1.1 Research Motivations 24
1.2 Research Contributions 26
1.3 Thesis Structure 27

2 Background 29
2.1 Introduction 30
2.2 The B Method, 30

2.2.1 Abstract machine 30
2.2.2 Refinement 34
2.2.3 Discussion 36
2.3 Model-Driven Engineering 37
2.3.1 Anoverview 37
2.3.2 Model-Driven Architecture 37
2.4 Role Based Access Control 38
24.1 Core RBAC 39
2.4.2 RBAC Constraints 40
2.4.3 SecureUML 41
2.5 RBAC in Database Management Systems 41
251 Database User. 42
2.5.2 User-defined Database Role 42
2.5.3 User-Role assignment 42
2.5.4 Permission assignment 43
2.6 Aspect Oriented Programming 44
2.6.1 Anoverview 44
2.6.2 Aspect 46
2.7 Conclusion 48

3 State of The Art 49
3.1 Introduction 50
3.2 Techniques for Security Specification 50

3.2.1 UML and OCL based approaches 50
3.2.2 Alloy-based Approaches 58
3.2.3 Z-based Approaches 63
3.2.4 A B-based Approach, 68
3.2.5 Discussion 72
3.3 Support Tools for Access Control Policies 74

13

14 Table of contents
3.3.1 SecureMOVA 74

3.3.2 B4MSecure 77

3.3.3 Discussion 79

3.4 Implementation of An Access Control Specification 80
3.5 Enforcement of Access Control Policies 82
3.5.1 Java Authentication and Authorization Service 83

3.5.2 Annotation-based approaches 83

3.5.3 AOP-based approaches 84

3.5.4 Discussion 86

3.6 Conclusion 88

4 Formal Development of a Secure Access Control Filter 89
4.1 Introduction 90
4.2 The case study: a bank system 92
4.3 Graphical modeling of security requirements 93
4.3.1 SecureUML 93

4.3.2 Activity diagrams for dynamic security rules 94

4.4 Generation of a B specification 96
4.4.1 Overview of the B method 97

4.4.2 Translation of the functional model: the class diagram . 97

4.4.3 Formalizing SecureUMLin B 99

4.4.4 Translation of the secure UML activity diagrams into B . 101

4.4.5 Putting all the security and functional constraints together 105

4.5 Verification and validation 107
4.6 Conclusion 109

5 A Tool for the Generation of a Secure Access Control Filter 111

5.1 Imtroduction 112
5.2 Overview of the tool 113
5.3 Overview of the Bmethod 115
5.4 Graphical modeling of the application: case study 115
5.5 From graphical diagrams to B formal notations 121
5.5.1 Translation of the class diagram 121
5.5.2 Translation of the SECUREUML diagram 123
5.5.3 Translation of the secure UML activity diagram 124
5.6 The B specification of a secure filter 126

5.7 Conclusion 127

Table of contents 15

6 A Formal Approach to Derive an AOP-Based Implementation

of a Secure Access Control Filter 131
6.1 Introduction 132
6.2 The case study: a purchase order system 134
6.3 A formal B specification of a secure filter 136

6.3.1 Translation of the class diagram into a B specification . . 136

6.3.2 Translation of the SecureUML diagram into a B specification137
6.3.3 Translation of the secure UML activity diagrams into a B

specificationo 139
6.3.4 Designing the secure filter 140
6.4 From an abstract B specification to a relational-like B implemen-
tationo 141
6.4.1 Data refinement L 141
6.4.2 Behavioral refinement 143
6.5 The AspectJ implementation of the application 146
6.5.1 Transformation rules of B into JAVA/SQL 148
6.5.2 Deployment of the class diagram 151
6.5.2.1 Definition of the tables and the associated JAVA
methods and stored procedures 153
6.5.2.2 Translation of the operations of the class diagram154
6.5.3 Deployment of the SecureUML diagram 155
6.5.4 Deployment of the secure activity diagrams 158
6.5.4.1 Definition of the log tables and the associated
JAVA classes 158
6.5.4.2 Translation of the secure operations of the secure
activity diagrams 160
6.5.4.3 Translation of the log operations 161
6.5.5 Deployment of the filter 161
6.6 Toolsupport. 163
6.6.1 Translating the B specification of the class diagram . . . 163

6.6.2 Translating the B specification of the SecureUML diagram 164
6.6.3 Translating the B specification of the secure activity dia-

GTATIL . . . e e e e e e e e e 166

6.6.4 Translation of the access control filter 167

6.7 Conclusion 168

7 Conclusions and Future Work 171
7.1 Contributions 172

7.2 Future Work 173

16

Table of contents

2.1
2.2
2.3

3.1
4.1

6.1
6.2

List of Tables

The visibility of the SEES clause 33
The visibility of the INCLUDES clause 34
The visibility of the IMPORTS clause 36
Synthesis of formal-based approaches for security specifications . 75
Results of the proof phase 109
Type mappings table among B, JAVA | and SQL Server 149
Transformation of B expressions to SQL Server 150

17

18

List of Tables

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

4.1
4.2
4.3

List of Figures

Software development processin B 31
B machine oL 32
Core RBAC [1] o 40
SecureUML metamodel [2] 41
Normal compilation process (left) and AOP compilation process

(right) 45
Astaticmodel [3]o o 51
A functional model [3] oo 52
Collaboration Diagram: Permission Approval [3] 52
Conceptual class model for RBAC [4] 53
A RBAC class diagram template [5,6] 55
A RBAC class diagram for a banking system [6] 56
Violation of SSD Constraint [5,6] 56
Object Diagram for SSD Policies [6] 56
Use case: TeamWorker [7] 57
Model Driven Security [8] 58
Assurance Management Framework [9] 62
The transformation method [10] 63
An access control filter [11]o o Lo 69
A dynamic access control rule in ASTD [11] 70
A secure operation 72
A dynamic operation [12] L 73
An access control filter [12]o 73
Validation/Verification activities supported by B4MSecure [13] . 77
The architecture of BAMSecure 78
UML to B translation, 78
SecureUML to B translation 79
A secure operation 79
The AAC metamodel [14] 82
Aspect code for object-based access control [15] 85
An example of the JSAL implementation in AspectJ [16] 87
JSAL architecture [16] 88
The class diagram of a simplified banking system 92
Generic SecureUML model oL L 94
Static access control modelo o oL 94

20 List of Figures
4.4 A generic form of a secure activity diagrams 95
4.5 Example of dynamic security rules modeled by activity diagrams:

Rule 3 96
4.6 Example of dynamic security rules modeled by activity diagrams:
Ruled 96
4.7 Machine Context 98
4.8 The static part of the functional B specification 98
4.9 The functional specification of Operation validateDeposit 99
4.10 The B context machine of the SecureUML diagram of Figure 4.3 101
4.11 The B machine managing the roles of users 101
4.12 B translation of a SecureUML permission (Figure 4.2) 102
4.13 B translation of a SecureUML operation (Figure 4.3) 102
4.14 Machine ActionsHistory 103
4.15 Translation of a secure operation of an activity diagram 104
4.16 Translation of the activity diagram of Figure 4.5 104
4.17 Translation of the activity diagram of Figure 4.6 105
4.18 The abstract specification of Machine Secure_Filter 106
4.19 The concrete specification of Machine Secure_Filter 107
4.20 The architecture of the B specification 108
5.1 Translation workflow 114
5.2 Editing a class diagram under the BAMSECURE platform 116
5.3 The SecureUML metamodel (adapted from [17]) 117
5.4 Editing a SecureUML diagram under the BAMSECURE platform 118
5.5 The secure UML activity metamodel 119
5.6 Example of dynamic security rules modeled by activity diagrams:
Rule2 120
5.7 Example of dynamic security rules modeled by activity diagrams:
Ruled 120
5.8 Translation of the class diagram 122
5.9 Generation of the B operation makePayment of the class Hospi-
talStay 122
5.10 The B context machine of the SecureUML diagram of Figure 5.4 124
5.11 The B modeling of the static secure operation corresponding to
the operation makePayment of Figure 5.4 125
5.12 The B specification of the history execution of the operation
makePayment 125
5.13 The B translation of the activity diagram of Figure 5.6 126
5.14 The B specification of the filter for the operation makePayment 127

List of Figures 21

5.15 The concrete specification of the filter of the operation makePayment 128

6.1 The class diagram of a simplified purchase order 135
6.2 A secure activity diagram modeling a dynamic security rule . . 136
6.3 The B specification of the class diagram 137
6.4 The B translation of the SecureUML diagram 138
6.5 The B translation of the activity diagram in Figure 6.2 139
6.6 The B specification of the filter of the operation Receive 140
6.7 The B specification of a relational table 142
6.8 The B evaluation of a predicate 142
6.9 The B specification of a log table 144
6.10 The B implementation of the operation receive 145
6.11 The B implementation of a log operation LogReceive 145
6.12 The B implementation of the operation ADReceive 146
6.13 Derivation of the AspectJ implementation 147
6.14 AspectJ implementation principleo L 148
6.15 Transformation of a B operation to a stored procedure 149
6.16 Transformation of B operation to JAVA method 151
6.17 Transformation of B expressions into JAVA 152
6.18 Generation of a table 163
6.19 Generation of a stored procedure NotReceive 163
6.20 Generation of the associated JAVA method NotReceive 164
6.21 Generation of the stored procedure receive 164
6.22 Generation of the associated JAVA method receive 165
6.23 Generation of the security data 165
6.24 Generation of the class SecureUMLJAVATrans 166
6.25 Generation of alogclass 167
6.26 Generation of alogtable 167
6.27 Generation of the log method 167
6.28 Generation of the method ADOp 168

6.29 Generation of the aspect class 168

22

List of Figures

CHAPTER 1
Introduction

Contents
1.1 Research Motivations 24
1.2 Research Contributions 26
1.3 Thesis Structure 0000 27

An information systems (IS) is any system for the collection, organization,
storage and communication of information. The impact of ISs on our economic
and social life is increasing significantly due to the spreading of the ubiquitous
computing. In these systems, security plays a vital role and is a central issue
in their construction and manipulation. ISs are required to be more secure in
order to resist to potential attacks. Due to the importance of security in ISs, it
has been receiving a large number of interests.

One of the most common security issues is access control. An access control
policy regulates accesses to the protected resources of a system. There are
several access control mechanisms available, such as Mandatory Access Control
(MAC), Discretionary Access Control (DAC), and Role-Based Access Control
(RBAC). In this thesis, we choose RBAC for its advancement over MAC and
DAC in term of simplifying the permissions management and improving the
organizational productivity. Moreover, a large number of products support
RBAC directly, and others support close forms of the role concept, such as user
groups [18]. For example, the notion of role is considered as a part of the SQL
standard in some commercial database management systems, such as Oracle [19]
and SQL Server [20].

An important and challenging task is to tackle security requirements in the
early stages of the development process. That can avoid an ad-hoc integration

23

24 Introduction

of security mechanisms after the system has been implemented. It is also easier
to analyze security policies at the abstract level because security specifications
contain less details about specific platforms and underlying technologies in these
early stages.

UML is a de facto standard to model requirements of secure systems on top of
its textual descriptions. Graphical models provide intuitive and synthetic views
of a system that can facilitate the communication among stakeholders, such as
developers, designers and users. However, their semantics are often blurred,
and therefore their meaning can be ambiguous to the interpretation. This may
end up in implementing some undesirable functionalities. OCL is then designed
to minimize the ambiguity of UML models [21]. Likewise, formal languages,
such as Alloy [22], Z |23], and B [24] can be alternative techniques for precisely
representing a system. Combining graphical and formal notations in software
development has been an interesting area. As such, it is able to take advantages
of both techniques, and they can complement each other: graphical models offer
the visualization of a system, but they are not precise enough for the reasoning;
due to the precision of mathematical notations and automatic reasoning, formal
methods can overcome the ambiguity of these graphical models and provide
rigorous specifications of the system.

Security is seen as a crosscutting concern of an application since it impacts
on nearly each component of the application. The classical methods often in-
tegrate security codes inside the components that they affect. That is a major
cause of the code tangling and scattering. Consequently, it is remarkably dif-
ficult to maintain the program, especially in large systems. We believe that
security policies should be enforced as crosscutting concerns. It means that
the security logic is separated from the application program, but it should be
able to automatically intercept method invocations. Regarding the separation
of concerns, the aspect oriented programming (AOP) stands out to be the best
technique. It allows the modularity of crosscutting concerns by introducing ad-
ditional behaviors into an existing code without any modification. Indeed, it
separately encodes these concerns within aspects, specifies which pieces of code
are modified through pointcuts, and injects additional behaviors implemented
in advices into the business program without cluttering it.

1.1 Research Motivations

The literature review shows that functional and security models of a secure
information system are generally treated separately in the design step. However,
security requirements have a large impact on the functional model. Thus, it is

Research Motivations 25

necessary to consider both models at the same time in order to specify the effect
of security concerns and to have a complete security analysis. There are a few
attempts that specify the security aspect along with the functional model of
a secure system. For example, the work of Basin et al. [2] allows to point out
which elements of the functional model are protected in the security model. Our
work is influenced by this direction.

The use of formal languages, such as Z, B, and Alloy on top of graphical
models of secure systems has been investigated in several studies [10, 11, 25].
The combination of formal and graphical techniques can produce specifications
which, on one hand, can be understood and then validated by participants (e.g.
developers, designers, and users) and, on the other hand, can be formally ver-
ified using the different tools available for formal methods. We are interested
precisely in the B method as it is a complete formal language, and it has been
used in many industrial projects, especially in railway systems (Metro line 14,
the Charles de Gaule airport shuttle automated pilot, etc.). Moreover, it has
reliable free tools (AtelierB [26], ProB [27]) to support the whole software de-
velopment process.

Despite the benefits of combining graphical and formal methods, developers
are still reluctant to apply such approaches. The reason is that using formal
methods requires a well-prepared knowledge about mathematical basics, which
is difficult and challenging for their users. Automating model transformations
from security models to formal specifications is an obvious need of developers.
It can also improve the quality of the produced system and the productivity of
the development process. Several efforts are deployed to automatically trans-
late UML models into B specifications [28-30|. Nonetheless, these works focus
only on the functional aspect of a secure system. The B4MSecure platform [13]
permits to extract various B specifications from functional and static security
models, but it does not consider dynamic security requirements. We particu-
larly complement this work by supporting the dynamic security aspect of secure
information systems.

Once security and functional requirements are specified, the development
process consists in implementing them. Our goal is to separate the security
and functional codes so that the structure of the final system is clear and easy
to maintain. That is why we choose an approach based on AOP. There are
many efforts on applying this paradigm to enforce security policies [14-16, 31—
33]. Notwithstanding, these works consider access control constraints in the
implementation stage [15, 16,31, 32| or generate security codes from not-yet-
verified models [14,33]|. Our approach covers the whole development life-cycle
of secure systems: it starts by graphically modeling the functional and security

26 Introduction

requirements; the graphical models are then translated into formal specifications
that are successively validated and verified; the proved specifications are in turn
refined until it is possible to straightforwardly map them into an AOP-based
program.

1.2 Research Contributions

The dissertation aims at providing a Model Driven Engineering (MDE) ap-
proach to build secure information systems. The following describes our contri-
butions to the specification, model transformations, and enforcement of security
policies involving the functional aspect of such systems:

e Specification of security design models: we propose to graphically
express functional and security models by UML-based diagrams: UML
class diagrams are used to represent the functional requirements, Se-
cureUML models static security rules, and UML activity diagrams de-
scribe dynamic security rules related to ordering and history-based con-
straints. These visual models are then translated into B specification
modules. This translation intends to have rigorous descriptions and to
avoid multiple interpretations for the specifications. It also allows to vali-
date and verify a security policy at the platform independent level. That
means that the security policies are specified and validated before their
implementation. Therefore, the security enforcement code can vary in
different settings. We also derive an access control filter that integrates
different specifications related to a secure operation: i.e. functional, static,
and dynamic specifications. As such, the security policies can be verified
with respect to the functional specification.

¢ Enforcement of access control policies: our security enforcement ap-
proach allows a separation of concerns. In other words, the security logic
and the main functionalities of an application are separated. To do so, we
devise translation rules from the B specification to an AOP-based appli-
cation. Essentially, the verified B specification is refined until obtaining a
relational-like B implementation that is straightforwardly mapped into an
AspectJ-based program connected to a Relational Database Management

System (RDBMS).

e Automation of the languages transformations (from UML to B
and from B to AspectJ/JAVA /SQL): as stated above, the graphical
models of a secure application are transformed into the B specifications.

Thesis Structure 27

We have done this transformation automatically by developing a tool.
The generated B specifications are correctly checked using AtelierB [26]
without any additional modification. Most proofs are automatically dis-
charged: the abstract and the refinement specifications of the filter are
automatically proved. The verification of these models can also be done
by playing scenario using the ProB [27] animator. ProB implements an
automatic model-checking technique to verify a B specification. Such a
specification is moved through several state changes, starting from a valid
initial state into a state that violates its invariant. As such, security flaws
that the static check cannot detect can be recognized.

The initial B specification is successively refined into a relational-like im-
plementation, which can be mapped into an AspectJ-based application
connected to a DBMS. Using our tool, the executable code can be auto-
matically generated from the formal implementation. The security code
and the main program are produced separately, making the application
easier to track and maintain. The JAVA/SQL program is derived from
the functional specification, while the access control filter results in the
aspect code. The generated SQL statements are correct with respect to
the SQL Server syntax.

1.3 Thesis Structure

The thesis is organized in seven chapters:

e Chapter 2: Backgrounds presents a description of the different con-
cepts needed for understanding the rest of the manuscript. It includes
theoretical details of the B method. It also presents an overview of Model
Driven Engineering, role based access control, and aspect oriented pro-
gramming. SecureUML and RBAC features supported in database man-
agement systems are also covered in this chapter.

e Chapter 3: The State of The Art reviews the existing works related
to the development of secure systems. We present techniques for the speci-
fication of access control requirements and supporting tools for specifying
and validating RBAC models. This chapter also includes a number of
approaches that deal with model transformations of RBAC policies to im-
plementation codes. The state of the art in the security enforcement based
on AOP is also considered in this chapter.

28

Introduction

e Chapter 4: Formal Development of a Secure Access Control Fil-

ter describes graphical representations of a secure system using UML-
based models and their translation into B. We present the mapping rules
from UML class diagrams, SecureUML, and secure activity diagrams into
B specifications, through which we can ensure the consistency of these
models and validate the system. Finally, a proved filter, which permits to
take into account different security rules, is formally derived using the B
refinement technique.

Chapter 5: A Tool for the Generation of a Secure Access Control
Filter describes a tool that automates the translation presented in Chap-
ter 4. The tool is built based on the Eclipse platform which integrates the
TopCased modeling environment.

Chapter 6: A Formal Approach to Derive an Aspect Oriented
Programming-Based Implementation of a Secure Access Control
Filter proposes an AOP-based approach for the security enforcement. It
describes the translation rules from the presented B specifications into an
AspectJ implementation connected to a SQL server. The automation of
this transformation is also provided here.

Chapter 7: Conclusions and Future Works sum up our claimed
contributions along with future perspectives.

CHAPTER 2

Background

Contents
2.1 Introduction0 0., 30
22 The B Method, 30
2.2.1 Abstract machine 30
2.2.2 Refinement 34
2.2.3 Discussion 36
2.3 Model-Driven Engineering 37
2.3.1 Anoverview 37
2.3.2 Model-Driven Architecture 37
2.4 Role Based Access Control 38
2.4.1 Core RBAC 39
2.4.2 RBAC Constraints 40
2.4.3 SecureUML 41
2.5 RBAC in Database Management Systems 41
2.5.1 Database User 42
2.5.2 User-defined Database Role 42
2.5.3 User-Role assignment 42
2.5.4 Permission assignment 43
2.6 Aspect Oriented Programming 44
2.6.1 Anoverview 44
2.6.2 AspectJ 46
2.7 Conclusion. i i it 48

29

30 Background

2.1 Introduction

This chapter presents the basic knowledge and concepts to help the readers
understand the different contributions described in the rest of the manuscript.
We will start by the B method in Section 2.2. Afterwards, we will give an
overview of Model Driven Engineering in Section 2.3. Role-based access control
and its features supported in relational database management systems will be
introduced in Sections 2.4 and 2.5 respectively. Finally, we will present aspect-
oriented programming in Section 2.6.

2.2 The B Method

The B method is a formal language introduced by J-R Abrial. Based on first-
order logic, it provides a means for “the central aspects of the software life cycle,
namely: the abstract specification, the design by successive refinement steps, the
layered architecture, and the executable code generation” [24]. In other words,
the B method covers most of the life-cycle stages of the software development
process: from the design phase to the implementation phase. That allows the
early error detection of systems. It is commonly known that the earlier an error
is detected, the easier and cheaper it is to fix

B formal representations express different levels of abstraction of a system,
from an abstract specification to an executable code (Figure 2.1). The abstract
specification describes the fundamental properties of the product. Conceptual
details are added incrementally through the refinement process. The last result
of the refinement step, called the implementation, should be close to the target
programming language. As such, we may generate an executable code.

The benefit of using B is the availability of supporting tools. For instance,
AtelierB [26] developed by ClearSy is an industrial tool for analyzing, checking
types, and generating proof obligations of a B component. AtelierB provides an
automatic prover with a predefined rule base and an interactive prover permit-
ting users to define their own rules. Another tool, called ProB [27], allows the
automatic animation of a B specification.

2.2.1 Abstract machine

An abstract machine is a fundamental concept in B. It is seen as a “pocket
calculator” [24], which includes an invisible memory and a number of keys. The
memory stores the state of the machine, while the keys are operations used for
any modification of the state.

The B Method 31

@

P i B components;
Yy ’ i
Machine
POs
T POs
{)
refine
Refinement €
= POs
refine i
> POsi

Y

Implementation

Figure 2.1: Software development process in B

refine

Each abstract machine is composed of static and dynamic parts (See Figure
2.2):

e The static part declares the state of a system in terms of sets (the
SETS clause), constants (the CONSTANTS clause), and variables (the
VARIABLES clause). The definition of these declarations is specified by
the Predicate Calculus and Set Theory languages. Predicates denoting
the properties of the constants are defined in the PROPERTIES clause.
The INVARIANT clause permits to type the variables and to define the
properties that they must always verify.

e The dynamic part is expressed through the initialisation (the INITIAL-
ISATION clause) and the operations (the OPERATIONS clause). The
initialisation aims to set initial values for the variables. The operations
describe the evolution of a machine by modifying the state of that ma-
chine. An operation is specified as a non-executable pseudo-code, and it
does not include any sequence or loop. This pseudo-code is formalized

32

Background

Static part

MACHINE

CO?\TSTANTS
PRi)PERTIES
VAI:RIABLES
IN’E}ARIANT

Dynamic part

INITIALISATION
Init
OPERATIONS
r+ Of(w) = PRE P THEN S END;

Figure 2.2: B machine

in the Generalized Substitution Language. Fach substitution used in our
work is an assignment statement that specifies variables to be modified.
An operation is executed under a precondition (P) specifying the neces-
sary and sufficient conditions that make the invariant satisfied after its
execution (after executing S). An operation may also assume parameters

(w) and return a value (7).

defined as follows:

r <+ O(w) =

PRE P THEN S END;

Abstract machine correctness

The general form of a B operation can be

Definition: “A proof obligation is a mathematical formula to be proven, in
order to ensure a B component is correct” [24].

The proof obligations generated for an abstract machine cover:

e the correctness of the initialisation (2.1): the initialisation is correct
if and only if the invariant ([) is true after executing the initialisation

(Init):

[Init] I

(2.1)

The B Method 33
Table 2.1: The visibility of the SEES clause
Objects Clauses .
(of seen machine) (of seeing machine)
PROPERTIES | INVARIANT | OPERATIONS
sets visible visible visible
constants visible visible visible
variables no no read-only
operations no no no

e the correctness of operations (2.2): the proof obligations of an opera-
tion verifies that the invariant remains verified after the execution of that

operation:

INP=[S|I

Modularity of an abstract specification

(2.

2)

Modularity is an efficient solution to deal with the complexity of a system [34].
The concept of an abstract machine is very close to some well-known concepts,

such as class and module in programming languages.

This notion supports

the modularity in software development, thus it allows us to construct abstract
machines in a shared way.

At an abstract level, B introduces four clauses relating to the modularity.
These clauses differ on the visibility rules. Here, we only present the clauses
that are used in our work.

e The SEES clause addresses a list of machines sharing a part of data with

the seeing components. The visibility of the elements of a seen machine
within different clauses of the seeing machine is shown in Table 2.1. The
rows correspond to the elements of the seen machine and the columns cor-
respond to the elements of the seeing machine. The value visible indicates
that the considered element of the seen machine is accessible in specific
clauses of the seeing machine. The value no means that the considered
element of the seen machine cannot be referenced in specific clauses of the
seeing machine.

Table. 2.1 shows that the sets and the constants of the seen machine are
fully visible within the seeing machine. The variables of the seen machine
can not be referenced within the invariant of the seeing machine. Although
they are visible in the operations of the seeing machine, they cannot be

34

Background

Table 2.2: The visibility of the INCLUDES clause

(of included machine)

Clauses

Objects (of including machine)

PROPERTIES | INVARIANT | OPERATIONS
sets visible visible visible
constants visible visible visible
variables no visible read-only
operations no no visible

modified. The operations of the seen machine are fully invisible within
the seeing machine.

The SEES clause is non-transitive: if a machine M; sees a machine Ms
which, in turns, sees another machine Ms, then M; has to see M; again if
M; requires certain information of Ms.

The INCLUDES clause allows us to include other machines in a given
machine. The visibility of the different elements of an included machine
is shown in Table. 2.2.

As we can notice, the sets and the constants of an included machine are
accessible from anywhere in the including machine. The variables can be
only read by the operations of the including machine. The operations of
the included machine can be called within the operations of the including
machine.

The INCLUDES mechanism is transitive: if a machine M; includes a
machine M, then M; does not need to include again the machines already
included in Ms. These included machines of M2 are implicitly included
in Ml-

2.2.2 Refinement

Refinement is a technique that is used to transform an abstract model into a
more concrete one. Basically, refinement consists in weakening preconditions
and replacing a parallel substitution by a sequence one. The last refinement
step, called implementation, aims at obtaining data and substitutions close to
those of a programming language such that the translation into the chosen
target language of the data and control structures (used in this level) must be
a straightforward task. Fach refinement primarily concerns the two following
notions:

The B Method 35

e VARIABLES: abstract variables may be preserved, deleted, or changed
the form within the VARIABLES clause of a refinement. A refinement
can also introduce new variables. In this case, the invariants that links
the abstract variables and the concrete ones must be specified.

¢ OPERATIONS: each abstract operation must be refined accordingly
in refinements. To do so, we remove non-executable elements of each
operation, such as precondition and choice. We can use more concrete and
deterministic substitutions or call operations of other abstract machines
imported within the implementation.

The refinement of an abstract machine is performed gradually in several
steps rather than all at once. Details of the problem are added incrementally
through each step. Note that the B refinement cannot change the signature of
the operations or introduce new operations. The last level of the refinement
is called implementation which should be close to a particular programming
language, such as C, Ada, or Java.

Refinement correctness

To prove the correctness of a refinement, we have to establish:

e The correctness of the initialisation (2.3): it proves that the ini-
tialisation of a refinement (Init,) establishes its invariant (7.) without
contradicting the initialisation of the refined component (Init).

[Init,|—~[Init] =1, (2.3)

e The correctness of the operation (2.4): assuming that S, is the sub-
stitution of the concrete operation, I, is the invariant of the refinement.
A refinement operation is correct when it preserves the invariant without
contradicting the specified operation. In other words, the effects of the re-
finement operation must not be in contradiction with the effects specified
in the abstract operation. The aim of the proof obligation will therefore
be built around a double negative.

IAPAIL = [S]-[S]1, (2.4)

36 Background

Table 2.3: The visibility of the IMPORTS clause

Clauses

Objects (of implementation)

(of imported machine)

PROPERTIES | INVARIANT | OPERATIONS
sets visible visible visible
constants visible visible visible
variables no visible no
operations no no visible
Implementation

Implementation is the last refinement. It cannot be refined further. As al-
ready mentioned, the implementation should be easily translated into a given
programming language. The implementation data must be concrete and the
abstract sets have to be valued. The precondition, parallel, choice, and ANY
substitutions are not allowed in the implementation.

Modularity of an implementation

The implementation of a refinement may import some machines to implement
its variables and operations (the IMPORTS clause). The imported machines
offer their data and operations, which are either refined into an implementation
or easily translated into the target language. Table 2.3 describes the visibility
of the IMPORTS clause. As we can see, the sets and the constants of the
imported machine are fully visible within the implementation. The variables
of the imported machine are only accessible within the invariant of the imple-
mentation. This aims to express the relationship between the variables of the
imported machine and those of the component refined by the implementation.
The operations of the implementation are encoded by calling the operations of
the imported machines.

2.2.3 Discussion

To summarize, the main advantages of the B method are:
e the modularization facilities.
e the code generation

e the availability of supporting tools.

Model-Driven Engineering 37

The B method has been successfully used in industrial projects, especially in
the domain of safety critical systems [35]. Among industrial large-scale projects
developed in B, the METEOR, project [36] is the first one that fully applies
the formal process to develop the first automatic train operating system in
Paris (line 14). In the establishment of the VAL shuttle for Roissy Charles de
Gaulle airport [37], driverless light trains developed by Siemens Transportation
Systems, B has been used for construction of the software.

2.3 Model-Driven Engineering

2.3.1 An overview

Model Driven Engineering [38], MDE for short, is a promising paradigm for
software development. The goal of MDE is to increase the abstraction level in
representing a system and the automation in constructing it. In MDE, mod-
els play an important role in software development. The automation in the
production of the system can be achieved by model transformations.

Models are considered as central entities in MDE. A model is an abstract
representation of a (part of) system. It shows a partial view of the system by
simplifying the one that needs to be captured or automated. A model focuses
on the relevant information of a (part of) system rather than details from a
given viewpoint. Therefore, it often requires multiple models for a better repre-
sentation of a system. Promoting the use of models intends to improve quality
of the resulting software, because it is easier to understand, simulate, analyze,
and validate abstract models than computer programs.

Model transformations allow a source model to be automatically transformed
into a target model according to transformation rules. One can define mappings
between models in the same or different languages. Transformation tools are
essential to maximize the benefits of using models and minimize the effort of
constructing the modeled system. Using supporting tools can reduce the bur-
den of hand-coded tasks, that are tedious and error-prone. Thus, they can
significantly improve the productivity of the software development.

2.3.2 Model-Driven Architecture
Model Driven Architecture (MDA) [39] is known as the best MDE initiative. It

is a mission of the Object Management Group (OMG) in “solving integration
problems through open, vendor-neutral interoperability specifications” [39]. The
objective of MDA is to improve productivity, portability, interoperability, and

38 Background

reusability by using models to describe a system. The core of MDA is multiple
OMG’s standards, including: the Unified Modeling Language (UML), Meta
Object Facility (MOF), XML Metadata Interchange (XMI), and the Common
Warehouse Metamodel (CWM).

The MDA framework includes the following three model types:

e Computation Independent Model (CIM) describes what a system
is expected to do, but hides all information on how this system will be
implemented.

e Platform Independent Model (PIM) describes the function and the
structure of a system without any technical details. It provides a degree
of independence to the features of a specific platform. Not surprisingly,
all PIMs are expressed in UML.

e Platform Specific Model (PSM) represents the business model with
technical concepts of a particular type of platform. Although it is still a
UML model, it should be able to simulate how a system operates on the
target platform.

Automating model transformations is a major goal of MDA. A transforma-
tion can be executed through tools to transform PIM to PIM, PIM to PSM,
PSM to PSM, and PSM to code. In some restricted cases, the whole application
can be generated: the more completely the PSM specifies the target platform
environment, the more completely the code is generated. As a result, we can re-
duce the effort of hand programming and the cost of the models maintenance. In
the transformation step, MOF is used to define languages and transformations
between languages.

During the development, some tools can be used to model, verify, compare,
transform, analysis, test, and simulate.

2.4 Role Based Access Control

Role based access control (RBAC) [40] is a de facto standard for controlling
access to information systems. It has been standardized by the NIST (National
Institute of Standards and Technology) and widely used in industrial projects.
The idea is to regulate accesses to the resources of a system basing on the roles
of the users. RBAC permits to reduce the complexity and cost of security man-
agement within enterprises [41|. Indeed in RBAC, a role is relatively persistent
with respect to a job function or title within an organization. Individual users

Role Based Access Control 39

are assigned to roles, which permissions are associated with. As a result, a user
gains rights based on his roles.

There are two principal RBAC concepts, namely the core RBAC and con-
straints. These concepts are explained in the following subsections.

2.4.1 Core RBAC

Core RBAC is an essential part in any RBAC system. The static aspect of core
RBAC addresses five basic data elements: users (Users), roles (Roles), permis-
sions (Permissions), objects (Objects), and operations (Operations) executed
on objects.

e Users are people who use the system.
e Roles are permanent job tittles within enterprises.
e Permissions are the ability to perform operations on protected objects.

e Objects are potential resources to protect, that contain or receive infor-
mation, such as files or directories in an operation system.

e Operations are actions through which users can perform on objects in the
system. The type of these operations depends on the considered system.
For example, within a database management system, operations include
insert, select, delete, and update.

Figure 2.3 shows the core RBAC elements and their relations. The central
of RBAC is the concept of role relations, including User Assignment and Per-
mission Assignment. A user assignment shows that a user can play one or more
roles, and a single role can be assigned to more than one user. Comparably, a
permission assignment is a many-to-many relation. That means that a single
permission can be assigned to several roles, and a single role can be associated
to multiple permissions.

Core RBAC also introduces the concept of Sessions, which is associated with
the dynamic aspect of RBAC. During a session, a user might activate one or
many roles. At a given moment, the permissions which are available to a user
are those associated to the roles activated during the user’s session. A user may
establish one or more sessions, but a session is established by a single user.

40 Background

Permission
Assignment

Operations

Permissions

USEF_Sessions Session_roles

Figure 2.3: Core RBAC [1]

2.4.2 RBAC Constraints

It has been long recognized that collusions among users is a major security
issue within an organization. To minimize such a fraud, additional constraints
are addressed in RBAC models. For example, one may require different users
to perform a delicate business function. This is a type of separation of duty
constraints.

Separation of duty can be either static or dynamic [42]. The distinction
between static separation of duty (SSD) and dynamic separation of duty (DSD)
constraints is based on the moment they are established. A SSD constraint can
be defined during the assignment of users to roles. For example, we may want
to state that two conflict roles should not be assigned to the same user. On the
other hand, a DSD policy should be verified during the execution of the system.
For instance, a user is allowed to activate two exclusive roles independently but
it is prohibited to activate them simultaneously.

History-based constraints can be seen as a special type of DSD constraints.
This kind of constraints takes into account the history of the system resources
access. In some situations, a coordination of permissions is necessary in order
to prevent fraud. For example, within a shopping online system, a special order
has to be received by the client who demanded it. That means we have to store
the actions history in order to grant or deny other actions. On the other hand, a
fraud prevention can be implemented by splitting a business functionality into a
set of actions that are assigned to different users. For example, in an inventory
system, we may want to state that a purchase order cannot be created and
received by the same user.

RBAC in Database Management Systems 41

2.4.3 SecureUML

SecureUML [2,43] is a UML-based modeling language for access control policies.
SecureUML extends UML models with concepts of RBAC, such as roles, users,
and permissions. Using SecureUML, it is possible to visually represent security
requirements based on RBAC along with the functional aspect of secure systems.

The metamodel encoding the abstract syntax of SecureUML is depicted in
Figure 2.4. Essentially, this language expresses which roles are assigned to
which users, which permissions are assigned to which roles, which actions and
constraints are assigned to which permissions, and which resources are assigned
to which actions. Actions related to permissions can be either atomic or com-
posite. An atomic action denotes an actual operation from the modeled system,
whereas a composite action groups lower-level actions to specify permissions for
a set of actions.

Role _ PermissionAssignment Permission ~ ActionAssi 1.® = ResourceAssi
+EivVesACoess & +isassigned +accesses| Action |+action

+subrole | default: Boolean [1 +haspermussion | default: Boolean [+

+resource| Resource

+eonstrams | 1 ActionHicrarchy
ConstraintAssignment
+isconstraintby | 0.1 -Gy
AuthorizationConstraint | CompositeAction] ‘ AtomicAction [
@ body: String ’ I | i
@ language: String

Figure 2.4: SecureUML metamodel [2]

SecureUML allows a separation of the functional and security aspects of
the system to secure. The functional component is represented using UML
diagrams, whereas the security component is designed using UML profile exten-
sions like stereotypes, tagged values, and constraints. SecureUML can also be
combined with other design modeling languages, such as ComponentUML and
UML class diagrams. The goal is to automatically generate applications and
their associated security infrastructures from those combined models.

2.5 RBAC in Database Management Systems

RBAC has received a considerable attention as an alternative approach for tra-
ditional mandatory and discretionary access controls, because it significantly
simplifies the security management within organizations. Recently, most popu-
lar commercial database management systems support RBAC. In this section,
we analyze RBAC features supported in Microsoft SQL Server (version 2014).

42 Background

2.5.1 Database User

Each database has a list of database users. Every user is mapped to a login,
which is an identity that the user uses to authenticate himself within a database
instance. A login can be created, changed, and removed from a database. Sim-
ilarly, we can create a new user and delete an existing user in a database.
Before creating a user in SQL Server, a login must be created. The CRE-
ATE LOGIN statement creates a new login that can be used to connect to a
SQL Server instance. Because it is a high-rank privilege, only security admin-
istrators can have this right. A login name within a database must be unique.
The following statement creates the bobLogin login with a password bobPwd.

CREATE LOGIN bobLogin
WITH PASSWORD = bobPwd

After a login is created, it is then mapped to a user. To create a new user, we
must use the CREATE USER statement. Only a security administrator has
the right to execute this statement for it is a powerful privilege. For example, the
following statement creates a user whose name is bob for the login bobLogin:

CREATE USER bob FOR LOGIN bobLogin;

2.5.2 User-defined Database Role

In SQL Server, a user-defined database role is created through the CREATE
ROLE statement. The name of a role must be unique in the database. We
can also specify the owner of the new role, i.e. a database user or role, by the
AUTHORIZATION option. If no owner is specified, the new role will be
owned by the user who executed the creation of that role. The following syntax
creates the manager role.

CREATE ROLE manager;

2.5.3 User-Role assignment

Microsoft SQL Server supports a many-to-many relation between the users and
the roles. That means that a role can have multiple users called members, and
a user can play more than one role. To assign a role to a user, we use the
ALTER ROLE statement together with the ADD MEMBER option. For

example, the statement that assigns bob to the manager role is as follows:

RBAC in Database Management Systems 43

ALTER ROLE manager ADD MEMBER bob;

2.5.4 Permission assignment

In SQL Server, database-level permissions regulate the use of specific commands
that access certain objects within the scope of the specified database. An object
in SQL Server can be a table, a view, a table-valued function, a stored procedure,
etc. In the thesis, we consider solely the granting of permissions on stored
procedures.

Stored procedures

A stored procedure is a compiled database object that contains one or more SQL
statements. Its goal is to reuse the code that is called in many places within
applications. Instead of writing a query each time needed, we can encode it
as a part of a stored procedure and call it when needed. A stored procedures
is created using the CREATE PROCEDURE statement. For example, a
simple stored procedure that gets all the bills in the OnlineShop database is
defined by:

CREATE PROCEDURE getBill
AS

SELECT x FROM OnlineShop.Bill
GO

The stored procedure offers several advantages, such as:

e As they are saved within the database, the syntax is checked in the
database.

e Writting redundant code is avoided. Indeed, a stored procedure can be
called as many times as needed from any machine that connects to the
database.

e Grant permissions to execute a stored procedure can be assigned to user-
s/roles.
Grant permissions

The owner of an object has the right to grant permissions on that object, and
permissions can be assigned to roles or users. The syntax of granting permissions
on objects is defined by:

44 Background

GRANT <some_ permission>
ON <some_ object>
TO <some_ user[some_login/some_ role>

Regarding the stored procedure, the granting syntax implies:
o < some_permission >: EXFECUTE.
e < some_object >: the name of the granted stored procedure.

o < some_user | some_login | some_role >: a database user, a log in, or a
database role.

The following example grants the EXECUTE permission to the manager
role on the stored procedure getBill within the OnlineShop database. The
OBJECT phrase is optional if the schema name is specified. If the OBJECT
phrase is used, the scope qualifier (::) is required.

GRANT EXECUTE
ON OBJECT::OnlineShop.getBill

TO manager;

Granting the execution of a stored procedure to a role also means that this
role is allowed to performed actions encapsulated within the stored procedure.
The below list details the actions of the objects, that can be included in the
body of the stored procedure.

e Table actions: DELETE, INSERT, REFERENCES, SELECT, UPDATE.
e Column actions: SELECT, REFERENCES, UPDATE.

2.6 Aspect Oriented Programming

2.6.1 An overview

Aspect-Oriented Programming (AOP) [44] is a programming technique for im-
proving the separation of crosscutting concerns in softwares. The goal is to help
the engineer develop and maintain large applications. By doing so, it allows the
developer to separately specify crosscutting concerns, and to insert them into
the main logic without modifying the program itself.

Aspect Oriented Programming 45

Crosscutting concerns tend to affect several other modules in the system.
Thus, their related implementations often span multiple implementation mod-
ules. This can cause code scattering: code is duplicated in several modules.
Thus, changing a concern requires to modify all the affected modules. On the
other hand, in the system, a module may interact simultaneously with different
crosscutting concerns. This can cause code tangling: several concerns are imple-
mented in the same modules. That means that changing a concern may cause
unintended modifications of other tangled concerns. Examples of crosscutting
concerns are security, logging, synchronization, persistence, and so on.

AOP attempts to solve the tangling and scattering problems related to cross-
cutting concerns by allowing the implementation of such concerns in stand-alone
modules called aspects. The concept of an aspect is similar to a class: it can be
abstract or concrete; it can extend other classes and aspects; it can contain at-
tributes and methods. Applying AOP, the concern remains being a crosscutting
to other modules, but localizing concerns is easier and clearer.

The compilation of a program developed using AOP differs from the com-
pilation of an ordinary program in the way that, the aspect weaver tailors the
aspect code with the main code before compiling into an executable code (Fig-
ure 2.5). The weaver accepts the core functionality and the aspect program as
inputs, and produces the desired total system operation.

Main |I
program

SR weaver
Compiler

Executable
code

Woven
program

Compiler

(Non-AOP compilation process| |AOP compilation process

Figure 2.5: Normal compilation process (left) and AOP compilation process
(right)

AQOP languages define three main elements for the modularization of cross-
cutting concerns. These elements are explained in Subsection 2.6.2 introducing

46 Background

AspectJ:
e Joinpoints.
e A means for identifying joinpoints.

e A means for specifying behaviors at joinpoints.

2.6.2 AspectJ

Aspect] [45] is a general-purpose aspect-oriented extension for Java. It is a
de facto standard for AOP. AspectJ uses Java syntax for encoding crosscutting
concerns. As a result, AspectJ code is compiled into standard Java bytecode.

Joinpoint

The central concept in AOP is the joinpoint. A joinpoint is a position in the
execution of a program. AspectJ allows a diversity of locations where a joinpoint
can refer to, including:

Method/Constructor call at which a method (a constructor of a class) is
called.

Method/Constructor execution at which an individual method/construc-
tor is invoked.

Field get at which a field of a class, object, or interface is read.

Field set at which a field of an object or class is set.

Pointcut

A pointcut (or a pointcut designator) is a collection of joinpoints and optional
values in the execution context of the pointcut. A pointcut selects a number
of joinpoints based on defined criteria. The criteria can be method names or
method names specified by wild-cards. Pointcuts can be combined using and
(&&), or (||), and not (!) operators.

Aspect Oriented Programming 47

Advices

The concept of advice is similar to that of function. Advices are used to specify
code that should be executed at each joinpoint specified in a pointcut.
In AspectJ, there are three critical types of advices as follows:

e Before advice: the advice code starts execution when a joinpoint is
reached but before the computation proceeds.

e After advice: the advice code starts execution after the computation of
a joinpoint, but before exiting this point.

e Around advice is the most important and powerful advice. Such an
advice surrounds the joinpoint, i.e. a part the advice code is executed
before and another part is executed after the execution of the joinpoint.
This advice can also choose to proceed the execution of the joinpoint or
not.

Aspect

Aspects are modular units of crosscutting implementation. An aspect is a class
that implements concerns that cut across other classes. In AspectJ, an aspect
is declared by the keyword aspect. It includes pointcuts and advices. Only an
aspect can define advices.

An example

To illustrate how AspectJ works, let us take a simple HelloWorld example. The
method sayHello simply prints a hello message to a given name.

HelloWorld.java
public class Hello World
{

public static void sayHello(String name)

{

/
/

The aspect in this example aims to add messages before and after executing
the method sayHello. Before printing the greeting message " Hello, name", the
program should print "A greeting message from aspect!". After printing the
greeting message, it should print "See you soon!".

System.out. println ("Hello, " + name);

48 Background

/Hello WorlAspect.java
public aspect Hello WorldAspect
{
pointcut callSayHello() : call (public static void
HelloWorld.sayHello(...)) ;
A before advice
before() : callSayHello ()
{

/

An after advice
after() : callSayHello ()
{

/

System.out. println ("A greeting message from aspect!");

System.out. printin ("See you soon!");

/

2.7 Conclusion

This chapter describes the basic concepts related to our work. First, we intro-
duced the B method, a formal language that we use to formalize, validate, and
verify security rules together with the functional requirements of an informa-
tion system. Then, we presented an overview of model-driven engineering that
is a software development methodology applied in our research. The security
mechanism that we aim to treat, namely role-based access control, was carried
on. Its features integrated in a commercial database management system was
also studied. Finally, we specified the aspect oriented programming paradigm
that we target to. In the next chapter, we will advance our investigations with
existing works related to the topics that we are interested in.

CHAPTER 3

State of The Art

Contents
3.1 Introduction00, 50
3.2 Techniques for Security Specification 50
3.2.1 UML and OCL based approaches 50
3.2.2 Alloy-based Approaches 58
3.2.3 Z-based Approaches 63
3.24 A B-based Approach L. 68
3.25 Discussion 72
3.3 Support Tools for Access Control Policies 74
3.3.1 SecureMOVA 74
3.3.2 BdMSecure 7
3.3.3 Discussion 79

3.4 Implementation of An Access Control Specification . . . 80

3.5 Enforcement of Access Control Policies 82
3.5.1 Java Authentication and Authorization Service 83
3.5.2 Annotation-based approaches 83
3.5.3 AOP-based approaches 84
3.5.4 Discussion 86

36 Conclusion. 00000, 88

49

50 State of The Art

3.1 Introduction

In this chapter, we survey the state of the art on the specification and enforce-
ment of access control policies together with a number of supporting tools in
the security development. We start by examining approaches on security spec-
ification using semi-formal and formal languages in Section 3.2. Afterwards,
we review supporting tools for modeling, analysis and model transformations of
security policies in Section 3.3. A selection of approaches on security code gen-
eration is described in Section 3.4. Section 3.5 summarize a number of security
enforcement techniques. Finally, we conclude the literature review in Section
3.6.

3.2 Techniques for Security Specification

This section reviews the literature on security specification techniques that em-
ploy RBAC variants [40]. These techniques fall into two categories: semi-formal
techniques refer to approaches using UML and OCL, while formal techniques
are based on formal languages, such as Alloy [22|, Z [23], and B [24]. The
benefits and limitations of the presented approaches are also discussed.

3.2.1 UML and OCL based approaches

UML has been a standard modeling language in the software industry for
decades. Meanwhile, OCL [46] has been used for expressing and analyzing
constraints in object oriented models as a standard constraints specification
language. Due to the fact that UML and OCL are widely used in industrial
environments, there are a large number of UML and OCL based approaches
to specifying access control requirements. In this manuscript, we highlight a
selection of them.

Shin et al. in [3] used different UML models to represent various views of
RBAC. These views are as follows:

e Static: the static view embodies the conceptual structure of RBAC using
a UML class diagram. Figure 3.1 depicts the static model of RBAC.
Classes are used to represent the basic elements of RBAC, namely User,
Role, Permission, Constraint, and Session. The Role and Permission
classes may be specialized into two categories, i.e. user and administrative,
depending on the level of users’ qualification. A constraint is defined for
a user, a role, a permission, or a session. In addition, the static model

Techniques for Security Specification 51

has a special class called Session Hour. This class is used when a user
has to establish a session to activate her/his roles. This notion is useful
to express session-based constraints. For example, an organization may
require that a session is only valid within one hour.

Activates
(roles) Inherits

A
Establishes
(user)

Assigned to »

0.* Assigned to
(UA relation) <

(PA relation)

Permission

User Administrative
Permission Permission

Administrative
Role
Has

UA PA Session
Constraint Constraint Constraint

Figure 3.1: A static model [3]

e Functional: the functional view constructs more clearly functions that
the RBAC system should provide by using UML use case diagrams. For
example, this view can be used to describe roles within a system and their
permitted actions. Figure 3.2 illustrates that the actor User is permitted
to establish sessions, request permission approval, and close sessions.

Dynamic: the dynamic view uses UML collaboration diagrams to refine
the use cases of the functional view. The goal is to show interactions
among elements of the use case diagram. The collaboration diagram for
Permission Approval is illustrated in Figure 3.3. It requires that a session
should be created to activate roles before approving the permission.

Although UML models are investigated to represent the different aspects of
RBAC, this approach does not address the validation of these models. Also,
it omits the notion of protected resources in RBAC. As a result, there is no
interaction between security and functional requirements.

In [4], Ahn et al. proposed to use UML and OCL to express RBAC con-
straints at the design stage. In this work, the basic entities of RBAC and their
relations are represented using a UML class diagram (Figure 3.4), whereas the

52 State of The Art

Session Establishing

N

Permission Approval

Session Closing

Figure 3.2: A functional model [3]

/1\

User

P1:Parmission

o Approval Input
> <<user interface->
Userinterface
Lser o) g.approval
P1.8: P1.1:Permission
Approval Approval Input
P1.4:Request P1.2:Request
SUhm'Iesq «<state dependent Activiied Hokes
Ll - conlrE\» — =<entity>»
Bale — RBACController < Session
P1.5:Subroles P1.3:Activated Roles
| P1.6:Approval
i ||| R
<@ Nty
Permission

Figure 3.3: Collaboration Diagram: Permission Approval [3]

RBAC constraints are specified as OCL expressions. There are three types of
constraints supported by this approach:

e separation of duty constraints: they ensure that conflicting roles can-
not be assigned to the same user. For example, the following OCL expres-
sion makes sure that two conflicting roles accounting and manager are not
assigned to the same user. To do so, this constraint identifies all the sets
of mutually exclusive roles, checks all the roles assigned to each user, and
enforces that the considered user cannot have more than one exclusive
role.

Techniques for Security Specification 53

Session
Activates
name L (rolés) | 4
1.*
Inherits
A v
Establishes
{user)
1 Assigned to 1.* 1 0.* < Assigned 1o Permission
Yo, * {UA relation) * . . {PA relation) *
User 5 Role name
name
name F
User Administrative
User Administrative Permission Permission
Role Role

Figure 3.4: Conceptual class model for RBAC [4]

context User inv:
let M :Set = {{accounting, manager},...} in
M— >select(m/self.role— >intersection(m) >size >1)— >isEmpty

e prerequisite constraints: such constraints mean that a user can only
play a certain role if he has already played another role. For example, a
user can be a member of the tester role only if he is already a member of
the project_team role. This constraint can be specified as follows:

context User inv:
self . role — >includes(’tester’) implies
self . role — >includes('project _team’)

e cardinality constraints: this kind of constraints defines a numerical
limitation for roles. For example, the chairman role should be assigned to
only one person in the organization. The OCL expression of this constraint
is described as follows:

context Role inv:
self . user— >select(u/self . name="chairman’)— >size = 1

In term of supporting tools, Ahn et al. also developed a tool, called RAE [47],
for the validation of the RBAC model and constraints and the generation of
a JAVA code from them. The validation component of the tool uses a set of
system states and checks such states against authorization policies.

54 State of The Art

A pattern-based approach for modeling RBAC policies is introduced by Ray,
Kim and their colleagues. [5,6]. They used UML diagram templates for defining
reusable RBAC policies patterns. Figure 3.5 shows a class diagram template
describing hierarchical RBAC with static and dynamic separation of duty con-
straints. The symbol (]) is used to indicate parameters to be bound. Class
templates represent essential RBAC concepts, namely User, Role, Permission,
Object, Operation, and Session. Each class template is associated with at-
tribute templates (e.g. |Name : String of Role) and operation templates (e.g.
| GrantPermission of Role). An association template (e.g. |UserAssignment)
consists of the parameters indicating the association name and multiplicities.
The RBAC model, i.e. the class diagram, of a specific application is obtained
by instantiating the RBAC template with the values of the application. For
example, Figure 3.6 shows the RBAC class diagram of a banking application.
BankRole, BankObject, and Transaction are bound to the Role, Object, and Op-
eration parameters respectively in the RBAC template diagram. RBAC con-
straints, such as separation of duty, prerequisite, and cardinality constraints
are formalized in OCL. For example, the OCL expression formulating the SSD
constraints is defined by:

//8SD constraints
context /User inv:
self ./ Role —> forAll(r1, r2 | r1./SSD —> excludes(r2))

To gain a better understanding of RBAC constraint violations, they created
UML object diagram templates. These patterns can be used to check the
presence of constraint violations. Developers can instantiate these patterns
as UML object diagrams to recognize violations of application-specific security
constraints. For instance, static separation of duty policies prevent a user from
being assigned to two conflicting roles. The template representing such con-
straints is shown in Figure 3.7. In the banking system, the following pairs of
conflicting roles (teller, accountant), (teller, loanOfficer), (loanOfficer, accoun-
tant), (loanOfficer, accountingManager), (customerServiceRep, accountingMan-
ager) are visualized in Figure 3.8. The validation approach uses the violation
patterns to identify policy conflicts, i.e. if the violation pattern occurs in an
object diagram modeling the security policy of a particular application, then a
conflict exists. However, checking the presence of a pattern within an object
diagram requires to search subgraphs in an object diagram. This is known as
the subgraph isomorphism problem that can be a difficult task [48].

In [7], Breu et al. presented the use of UML use case elements and OCL for
specifying user rights. The main idea of the user rights models is that actors are

Techniques for Security Specification 55

|SSD IDSD [RoleHierarchy
[h Ir s Ji | |senior
|Role li

le |Name: String "m

|GrantPermission (|p : [Permission)

|RevokePermission (|p : [Permission)
[User CheckAccess (jobj : [Object,
|UserlD: |String |UserAssignment |f3d.f-“\?re§;:;§lr(‘|]r _?;g]]gm
[CreateSession (|s : [Session) b jc| DeleteAscendant((r : [Role) |PermAssignment [Permission
|EeleteSi.:siﬁmn ‘(|.‘;{A |lSessmn) |AddDescendant(|r : |Role) K Il | [CheckAccess(jobj : |OineL't‘
|AssignRole (Jr: [Role) |DeleteDescendant(]r : |[Role) |op : |Operation) : [Boolean
IDfa_P-SIgnRule (Jr: !Rulel |AddSSDRole(]r : [Role)
|AssignedRoles () : Set([Role) |DeleteSSDRole()r : [Role) [m In
|AuthorizedRoles () : Set{|Role) |AddDSDRole(|r : |Role)
I |DeleteDSDRole(|r : [Role) i
|AssignedUsers () : Set{[User) [PermObjects
[UserSessions |AuthorizedUsers () : Set(|User)
|Ascendants() : Set(|Role) [PermOperations
|Descendants() : Set{|Role)
|SSDRoles() : Set(|Role)
la |DSDRoles() :Set(|Role)
|Session le

It Ip

i 0 ExecuteOn [:
|SessionRoles Object | | |Operation

‘ {|lo.lowerbound = 1} and {lg.lowerbound = l?‘

|AddActiveRole(|r : |Role)
|DropActiveRole(|r : |[Role)
|CheckAccess(|obj:|Object,
|up:|0peratiunk]]Boo ean
|InvokeOperation(jobj:|Object,
|op:|Operation)

Figure 3.5: A RBAC class diagram template [5, 6|

assigned to permissions linked to objects of the class diagram (the functional
model). Each use case diagram corresponds to a coherent interaction between
a particular actor and the system. The basic concepts of the use case model are
actors who interact with the system, use cases, and objects involved in the use
cases. Actors in such a model stand for the roles that the system users play. For
example, the use case diagram in Figure 3.9 depicts permissions of the Team-
Worker role. The left hand of the model is the actor representing all the users
who play the Team Worker role, while the right hand includes objects appearing
in the class diagram that the actor is authorized to access (the class diagram
is omitted here for simplicity). In this work, OCL is used to formalize the use
case model, i.e. the role-permission assignment. Considering the following OCL
operation that allows a team worker to read his own accountings through the
getAccountingdate() method. Precisely, the ACTeam Worker actor is mapped to
the Accounting class. The associated predicate verifies that the actor who calls
getAccountingdate() should be a team worker.

context Accounting :: getAccountingDate()
perm (act : ACTeamWorker) : self.user = act.map()

o6

State of The Art

SSD DSD RoleHierarchy

BankUser

assignRole(r: BankRole)

= * * senior

#*

BankRole -

name: String it
juni

grantPermission (p: Permission)
revokePermission (p: Permission)

deassignRole (r: BankRole)
createSession(): BankSession
deleteSession(s: BankSession|

1,.*

BankSession

addActiveRole(r: BankRole)

dropActiveRole(r: BankRole)

checkAccess(obj:BankObject,
op:Transaction): Boolean

Permission

checkAccess(obj: BankObject,

op: Transaction): Boolean)
addInheritance(r: BankRole)
deletelnheritance(r: BankRole)
checkSSD(r: BankRole): Boolean
addSSDRole(r: BankRole)
deleteSSDRole(r: BankRole)
checkDSD{r: BankRole): Boolean
addDSDRole(r: BankRole)
deleteDSDRole(r: BankRole)

1.*

B

BankObject

+| checkAccess(obj: BankObject,
. op: Transaction) : Boolean

1.%

Li*

*
Transaction ‘

Figure 3.6: A RBAC class diagram for a banking system [6]

<<invalid>>

|UserAssignment

[r2 : [Role

1 Ju:|User Jl

|SSD [

I :Role

|UserAssignment

Figure 3.7: Violation of SSD Constraint |5, 6]

SSD

customerServiceRep : Role ‘

SSD

ssD |

accountingManager : Role ‘

SSD

loanOfficer : Role
——

SSD

teller : Role

accountant : Role

Figure 3.8: Object Diagram for SSD Policies [6]

Techniques for Security Specification 57

I ProjetInfo ‘ |ActivityType |

| |
% :> ‘AdministratoH Project H Activity |

has permission to | |
TeamWorker ’ User H Accounting |

Figure 3.9: Use case: TeamWorker [7]

To enhance the manipulation of OCL for specifying and validating RBAC
extensions, Sohr et al. [49] investigated the USE system [50]. In their work,
authorization constraints, e.g. static SoD and prerequisite roles restrictions, are
formulated in OCL. Let’s consider an example of RBAC constraint as follows:

context User inv Prerequisite Role:
self . role — >includes(engineer) implies self. role— >includes(employee)

This OCL expression describes a prerequisite constraint stating that a user
can be assigned to the engineer role only if he/she is already assigned to the
employee role. Due to the fact that OCL expressions consider only the current
system states, it is unsuitable to represent constraints that refer to distinct
instants of time. Therefore, the authors employed TOCL (Temporal OCL)
[51], which is an OCL extension with temporal elements, for specifying history-
based authorization constraints. Dynamic object-based SoD is an example of
such constraints. It states that a user is not allowed to execute an action
acting upon an object if he/she has previously performed a certain action acting
upon the same object. To specify this constraint in TOCL, they used two
predicates introduced in [52], namely auth(u,op,0bj) and exec(u,op,o0bj). The
auth predicate means that the user u is permitted to performed the operation
op on the object obj, while the exec predicate means that the user u executes
the operation op on the object obj at the present state. The following TOCL
specification expresses object-based dynamic SoD constraints.

context Object inv ObjDSoD:
Operation. alllnstances — >forAll(op,op1 | User. alllnstances— >forAll(u/

(Exec(u,op,self) and opl<>op) implies always not
Auth(u,opl,self))))

Finally, this paper demonstrated how to exercise the USE tool to validate and
test access control policies expressed in UML and OCL. Using this tool, a policy
designer can detect conflicting and missing authorization constraints.

Basin et al. [8,53] introduced a MDA-based approach for the modeling of se-

58 State of The Art

curity requirements and the generation of security infrastructures, called Model
Driven Security (MDS) (Figure 3.10). They combined a UML-based design
language (e.g. ComponentUML) with a security modeling language (i.e. Se-
cureUML [43]) by defining a dialect. The role of the dialect is to identify partic-
ular elements of the design language as the protected resources of the security
language. Such a combined model is also the base of model transformations that
produce an access control infrastructure. Analyzing access control decisions is
performed upon the combined model through OCL queries. These queries for-
malize questions about the relationships between users, roles, permissions, and
actions. For example, the operation User::allAllowedActions():Set(Action) re-
turns the collection of actions that are permitted for the given user.

context User::allAllowedActions():Set (Action) body:
self . hasrole . allPermissions (). allActions ()— >asSet()

The analysis process is automated by using a tool called SecureMOVA [2] (more
details in Sect. 3.3.1).

System Model + Security Model

. G araior
A B <<secuml Permission>>

Customer

“ Model Transformation
+ Extension

Target System

Application Server

+ Security Infrastructure
(RBAC, assertions, etc.)

Figure 3.10: Model Driven Security (8]

3.2.2 Alloy-based Approaches

Alloy is a textual modeling language based on first-order logic. It is 1) a
lightweight language and yet capable to express a useful range of structural
properties, 2) precise enough to formally express complex constraints, and 3)
amenable to a fully automatic semantic analysis [22|. In the following, we
present a list of the existing works that apply Alloy to specify RBAC require-
ments.

Techniques for Security Specification 59

Schaad et al. [54] introduced a methodology dealing with RBAC extensions.
In particular, they described the transformation of different access control vari-
ants into Alloy, including:

e from the RBAC96 model [18] specifying access control policies to
Alloy: the initial structure of the RBAC96 model can be easily specified
in Alloy. Essentially, the domain paragraph describes RBAC objects with
the fized keyword indicating that they are drawn from a specified pool
of objects. The state paragraph describes the relations between these
objects. If the cardinality of the relation is not specified, then it is auto-
matically assumed to be zero or more, otherwise the (!) and (+) symbols
indicate cardinalities of one and one or more respectively.

model RBACI96{

domain {fixed User, fized Role, fized Session, fized
Permission}

state {
ur_assignment: User —> Role
rp_assignment: Role — > Permission
us_assignment: User! — > Session
sr_assignment: Session —> Role+
rr_hierarchy: Role —> Role

e specifying SoD constraints in Alloy: to enforce SoD constraints, they
expanded the (model RBAC96) specification by adding the following new
relation r_exclusive. This relation defines pairs of conflicting roles.

r_exclusive: Role —> Role

The static and dynamic SoD invariants verify that all pairs of conflicting
roles are not assigned to the same user or the same user within a session
respectively.

//Static SoD Invariant:

inv static_sod {all r1, r2:Role | rl in r2.r_exclusive
—>no(rl. “ur_assignment & r2. “ur_assignment)}

//Dynamic SoD Invariant:

inv dynamic_sod {all r1, r2:Role | r1 in r2.r_exclusive
—>no(rl. “sr_assignment € 2. sr_assignment)}

60 State of The Art

By using the Alloy Analyzer, it is able to automatically check conflicts that may
arise after executing the administrative operations with respect to separation of
duty constraints. Yet, the validity of the RBAC models is not addressed. The
Operation and Object concepts of RBAC are also ignored in this work.

In [55], Zao et al. reported the use of Alloy to analyze the internal consis-
tency of their RBAC schema and verify the correctness of its implementation.
Similar to Schaad et al. in [54], they also defined two paragraphs in the Al-
loy specification of RBAC96: the domain paragraph specifies RBAC entities,
and the state paragraph describes the relations between entities. This specifi-
cation also includes formulas expressing RBAC constraints, such as SoD (the
conflictRoleRule invariant).

model rbac96 {

domain {Users, Roles, fized Operations, Objects, Sessions}

state {
userRole : Users —> Roles
permissions : Operations — > Objects
rolePermis [Roles|[: Operations —> Objects
userRoleExt: Users —> Roles
objectOprToRole[Objects[: Operations — > Roles
objectOprToRoleEzt [Objects]: Operations —> Roles
roleObjToOperation[Roles[: Objects —> Operations
conflictRoles : Roles —> Roles //Role—centric SoD
conflictObjects : Objects — > Objects //Permissions—centric SoD
conflictUsers : Users —> Users //User— centric SoD
inherits : Roles —> Roles + //Role inherits

}

//SoD Rule: User—role conflicts

// — Enforces "inherited conflicts "

// ex. vl conflicts r2 (no user can be both r1, r2)

/) r8 >=1r2 —>rl conflicts r3

inv conflictRoleRule {
no r [rin r. conflictRoles // irreflexive
all v/ nori, r2, r3 |/
rl in u.userRole &&
rl in r2. conflictRoles &&
r2 in r3. inherits &&

r3 in wu.userRole

Techniques for Security Specification 61

This work provided a more complete RBAC specification than that defined
in [54]. In addition, it demonstrated the capacity of Alloy in (1) verifying the
correctness of different RBAC implementations, (2) checking the consistency
among entities, relations and constraints of the RBAC schema, and (3) searching
for a plausible instance of the schema. These verifications are done using the
Alloy Constraint Analyzer.

Hu and Ahn [9] presented a framework, so-called Assurance Management
Framework (AMF) (Figure 3.11), for the formal verification and the test cases
generation of RBAC models. In AMF, core RBAC and constraints are formal-
ized in Alloy. Essentially, basic RBAC elements and relations are defined as
sets, including a set of roles, a set of users, a set of permissions, a set of user-
role, a set of role-permissions, etc. The primary representation of the RBAC
model in Alloy is defined as follows:

module RBAC

sig User {}
sig Role {}
sig Operation {}
sig Object {}
sig Permission {Operation, Object}
sig Session {}
sig URA {
ura: User—>Role}
sig PRA {
pra: Permission— >Role}
sig US {
us: User!—>Session}
sig SR {
sr: Session—>Role}
sig PB {
pb: Operation— >Object}

The framework also supports SoD constraints in the context of conflicting roles.
The following Alloy definitions express these constraints, where conflict role is
a set of roles conflicting to each others, and cardinality is the maximum number
of roles in the exclusive roles set that a user can be assigned.

sig SCR {
conflict_role : set Role,
cardinality : Int}

62 State of The Art

Formal Security ModelPolicy

I

[Formal Verification)

AL

Madeling [Tesl Case Gene ration]

Application- Application-
oriented Model oriented Policy
Representation Specification

| | |1 J
I}] |
== ==
[Enforcermnent Code Generation _J

Implementation ==
[Test Case]:f){ Simulation Evaluation J

Figure 3.11: Assurance Management Framework 9]

By running the Alloy Analyzer, one can verify the compliance of the access
control specifications with respect to the selected security properties. The con-
formance testing is then automatically derived from the security formal spec-
ification. The obtained test cases are used to compare the actual system im-
plementation to the expected result derived from the formal specification. In
addition to the above features, the framework also supports the automatic gen-
eration of the security enforcement code in the Java language using the RAE
tool [47].

In their work [10], Toahchoodee et al. focused on the transformation of
a UML class diagram and its OCL specification into an Alloy model. Figure
3.12 sketches the transformation function proposed in this approach. They uti-
lized a class diagram to merge the functional and security models of a system.
Classes of this combined model are simplified by removing attributes that are
not relevant to security reasoning. Furthermore, each class can be constrained
by location and time. A class is mapped to an object declaration in the sig
structure in Alloy. The sig User, sig Role, sig Permission, sig Task (denotes
secure operations), sig Location and sig Time are the basic signatures of the
model. Each Property of a class is translated into a field of the mapped signa-

Techniques for Security Specification 63

ture. For example, the Role class has a property (location: Location), which is
then converted to the field (location: one Location) of sig Role (i.e. sig Role
{location: one Location,...}). The permission-role assignment and the static
SoD constraints realized in OCL expressions are transformed into Predicates
in Alloy. The following describes the Alloy predicate of a SoD constraint. It
states that a user who plays the roles (r1 and r2) is not allowed to execute two
conflicting tasks (ELEVEN and FIFTEEN).

pred SoD/self: User[{
all r1, r2: self. roles |
((ELEVEN in rl.tasks) => (FIFTEEN lin r2.tasks)) &&
((FIFTEEN in rl.tasks) => (ELEVEN lin r2.tasks))}

Regarding the automation of the transformation, the authors made use of the
UML2Alloy tool [56] for automatically converting a class diagram and its OCL
specification into an Alloy model, which is subsequently analyzed by the Alloy
Analyzer.

Class diagram

metamodel Transformation } Alloy EBNF representation
Rules < of Alloy’s grammar

OCL ’ metamaodel
metamodel A

L
T

ﬂ <<Implements>>
<<ConflormTo>> |

<<Conifd
<<ConfprmTo>>

Class diagram

Alloy model

OCL
statements

Figure 3.12: The transformation method [10]

3.2.3 Z-based Approaches

Boswell [57] demonstrated the use of Z to develop a security policy model for
NATO AIR Command and Control System. Nonetheless, this work covers only
the mandatory and discretionary access controls, but it does not support the
RBAC model. On the other hand, the validation of the security model is per-
formed manually to produce informal arguments which could ensure a suitable

64 State of The Art

level of confidence. In [58], Morimoto et al. proposed a Z-based technique for
specifying and verifying security properties with respect to the ISO/TEC 15408
common criteria. They also developed a verification process for security proper-
ties by using the theorem prover Z/EVES. The process consists of four steps: 1)
select the formalized criteria (defined in the ISO/IEC 15408 common criteria)
required in a target system; 2) formalize the specifications of the target sys-
tem in Z; 3) instantiate the selected criteria templates; 4) verify the formalized
specifications against the instantiated criteria. Using this process, it is possible
to check whether the specifications meet the security criteria of the Common
Criteria.

In [59], Abdallah and Khayat attempted to specify a variety of state-based
Flat RBAC models in Z. The formalization starts by specifying a core RBAC
model. The state of the core RBAC model comprises a set of principals (Prin-
cipals), a set of roles (Roles), and a set of valid tasks (7Zasks). This model
also includes two relations: PrincipalRoles that assigns roles to principals; and
RolePermissions that relates tasks to roles. The whole model can be described
in Z using the following scheme:

__Core_RBAC
Roles : P ROLE
Principals : P PRINCIPAL
Tasks : P TASK
PrincipalRoles : PRINCIPAL <> ROLE
RolePermissions : ROLE +» TASK

Principals C dom PrincipalRoles
ran PrincipalRoles C Roles
Roles C dom RolePermissions
ran RolePermissions C Tasks

Then, the core RBAC model is refined to the Flat RBAC model by adding two
additional components: Operations that represent a set of valid operations, and
Objects that denote a set of protected objects. The goal is to refine the type
TASK into a cross product of two other types OPERATION and OBJECT
(TASK == OPERATION x OBJECT). Hence, a task is defined as a pair of
an operation and an object. The expanded Flat RBAC model can be formalized
as follows:

Techniques for Security Specification 65

__Flat_RBAC
Core_RBAC
Objects : P OBJECT
Operations : P OPERATION

dom Tasks C Operations
ran Tasks C Objects

The refinement may include constraints involving the cardinality and separa-
tion of duty. For this purpose, they defined a new relation named ActiveRole
representing the current role of a principal. To activate a role for a principal,
the role must be already assigned to the principal. That means that this pair
is a value of PrincipalRoles. The specification of ActiveRole is defined by:

__ActiveRole
Core_RBAC
ActiveRole : PRINCIPAL «++ ROLE

ActiveRole C PrincipalRoles

A SoD constraint prohibits a principal to assume two conflicting roles at the
same time. This kind of constraint is defined by the ConflictRoles declaration
storing pairs of mutual exclusive roles, and a predicate ensuring that the active
roles set of any principal does not contain conflicting roles.

SoD
ActiveRole
ConflictRoles : ROLE <+ ROLE
V p : Principals e
(ActiveRoles(] p |) x ActiveRoles(| p |)) N ConflictRoles = ()

Although this approach offers a formal representation of RBAC variants, it does
not address the validation and verification of the RBAC model.

The work in [60] coped with the specification and verification of a state-
based RBAC model. It used the Z language to express the RBAC state model.
This model is a tuple [USERS, ROLES, OPS, OBJS, SESSIONS, UA, PA, RH,
CCJ, where USERS, ROLES, OPS, OBJS, SESSIONS are the set of users, roles,
operations, objects and sessions respectively; UA and PA are the assignment
relations of users to roles and permissions to roles respectively; RH is the role
hierarchy relation; C'C is a set of constraints. Essentially, the basic RBAC

66 State of The Art

concepts, namely users, roles, operations, objects, permissions, and sessions
are defined as power sets in Z. The relationships between these elements are
specified as relations. For instance, the user-role assignment permits to assign
a set of roles to a user. Moreover, the Z specification of RBAC also contains
four functions that express the following RBAC constraints: (1) the pmutez(p)
function represents all the permissions conflicting to the given permission p;
(2) RSSoD(r) and (3) RDSoD(r) identify a set of roles in which each role has
respectively a static/dynamic mutual exclusive roles relationship with a given
role r; (4) the Cardinality(r) function restricts the maximum number of users
being assigned to a given role . The RBAC elements, relations between the
elements, and constraints are included in the RBAC schema.

__RBAC
Users : P USERS

Roles : P ROLES

Ops : P OPS

Objs : P OBJS

Perms : P PERMS

Sessions : P SESSIONS

assigned_roles : USERS — (P ROLES)
authorized_roles : USERS — (P ROLES)
assigned_perms : ROLES — (P PERMS)
assigned_users : ROLES — (P USERS)
user_sessions : USER — (P SESSIONS)
pmutex : PERMS — P PERMS

RSSoD : ROLES — P ROLES

RDSoD : ROLES — P ROLES
Cardinality : ROLES — N

Based upon well-constructed security theorems, their verification guarantees
the consistency of the RBAC model, i.e. it makes sure that the system always
remains in the secure states. This process is automated by using the Z/EVES
theorem prover.

In [25], Qamar et al. presented a contribution in specifying and validating
security-design models based on the Z notation. Their proposal took into ac-
count both functional and security requirements. The functional specification is
automatically generated through the translation from the UML class diagram
to Z by using their developed tool, called RoZ [61]. The security aspect is based
upon a reusable security kernel which defines RBAC elements in Z. In this work,
the concept of role represents job titles in the modeled system like doctors and

Techniques for Security Specification 67

patients; users are individuals using the system, and they connect to the sys-
tem by establishing sessions based on their identities; permissions are a list of
operations introduced in the class diagram, e.g. readMedicalRecord and update-
Doctor; such operations are classified into different types of abstract actions,
such as EntityRead and EntityUpdate; these operations affect on protected re-
sources which are classes in the class diagram; The presented RBAC basics
are introduced in Z as the enumerated sets. The values of these sets are ex-
tracted from the SecureUML diagram of a particular application to instantiate
the security kernel.

__ RBACSets
role : F ROLE
user : F USER
wid : ¥ USERID
permission : F PERMISSION
abs_action : F ABS_ACTION
atm_action : F ATM_ACTION
resource : F RESOURCE

In addition to the essential concepts, the security kernel also specifies their rela-

tionships through functions. For example, the permission assignment perm_Asmt
is defined as a relation between (user identity, user, role) and (permissions,

atomic actions, resources). The session_User function links a session to a user

who activates a set of roles during the session by using the session_Role func-

tion.

__ Relations
perm_Asmt : (USERID x USER x ROLE) <>
(PERMISSION x ATM_ACTION x RESOURCE)
session_User : SESSION + USER
session_Role : ROLE < SESSION

The SecureOperation operation checks whether a user identified by his id, acting
with a given role during a given session, is allowed to perform a given action
on a resource. SecureOperation is then included in the secure operations of the
functional model as a precondition before their actual execution.

68 State of The Art

__SecureOperation
session? : SESSION
resource? : RESOURCE
atm_action? : ATM_ACTION
role? : ROLE
user? : USER
wid? : USERID
permission? : PERMISSION

(session?, user?) € sessio_User
(role?, session?) € session_Role
((uid?, user?, role?), (permission?, atm_action?, resource?)) € perm_Asmt

Using the Jaza tool [62], the validation is performed by animating the model.
The animation of the specifications is able to check the execution right of the
user who requests an action. Such a process is based on the evaluation of queries
about the access control rules and the animation of user-defined scenarios.

3.2.4 A B-based Approach

Despite the fact that the B method is useful for formalizing safety-critical sys-
tems, and there are a number of commercial supporting tools, the use of B
for the security of information systems has not been notably investigated. The
work of Milhau et al. [11] is one of the B-based approaches for formalizing access
control requirements that strongly inspires our proposal in the thesis.

Figure 3.13 gives an overview of the access control filter proposed in [11].
They started by visually representing functional and security requirements us-
ing UML-based languages. In particular, they introduced the functional aspect
of an information system with a UML class diagram, static access control poli-
cies using SecureUML diagrams, and dynamic access control constraints with
ASTD [63]. The graphical models are then translated into a set of B compo-
nents. Finally, they defined an access control filter that combines different B
components in order to make the final access control decisions.

Here, we focus on the use of ASTD for modeling dynamic constraints, while
the representation of the functional and basic authorization requirements using
a class diagram and SecureUML respectively will be presented in Chapter 5.
ASTD extends Harel’s Statecharts [64] by using EB? operators [65] to specify a
sequence of actions in information systems. For example, in a hospital system,
we could have an access control rule such as "If a patient has left the hospital,
only doctors belonging to the hospital during the patient’s stay will keep read

Techniques for Security Specification 69

IS Functional Access Control G Wcszi:ﬂ;gamﬂ graphical
UML SecureUML ASTD notations
i | |
1 1 I
1 I I
........... R R B T R R
[} I I
1 1 I
¥
Functional Model Static AC Rules Dynamic AC Rules
A
translation
Abstract AC Filter |_ refines ACFilter | ~7°77°7
Specification i Specification includes

Figure 3.13: An access control filter [11]

access to his medical record”. This rule considers a set of ordered actions,
such as JoinHospital(d, h) describing that a doctor is assigned to a hospital,
leaveHospital(d, h) representing that a doctor leaves the hospital, etc. In [11],
the authors used the ASTD notation to specify this kind of rule (Figure 3.14).
Each action of the ASTD model is represented by a notation < &, a(7) >,
where ¥ is a list of parameters (e.g. user and role), a is an action of the system,
and P is its parameters. As we can notice, some actions define ¥ through
wildcards (_), while others state specific values of §. The wildcard represents
that the specification accepts any values of &. The ASTD model also uses EB3
operators. For example, the quantified choice operator (| h : Hospital) indicates
that the hospital h of the class Hospital is associated to the doctor d of the
class Doctor. The action JoinHospital(d, h) assigns a doctor to a hospital when
the doctor joins the hospital, whereas the action LeaveHospital(d,h) removes
the link of d and h when the doctor leaves the hospital. The Kleene closure
operator (denoted by x) allows the iteration of the sub-ASTD. That means
that after leaving a hospital, a doctor can join another one, creating a new link
between d and h (see Section 3.2 in [11]).

Afterwards, the graphical models, i.e. class diagram, SecureUML, and
ASTD, are translated into B specifications. This work applied the separation of
concerns methodology. It specified the functional, static security, and dynamic
security parts in isolation.

e A single B machine is created for the functional model. It contains the data
denoted by sets, system states denoted by variables, and states evolution
denoted by operations. This B component is the formal representation

70

State of The Art

ruled | i d:Doctor | % | |h: Hospital

.< _, _, joinHospital(d,h)>
[h = PatientHospitalRel(p)]

< d, DoctorRole, MedicalRecord_GetData(
PatientMedicalRecordRel-1(p))>
4

_, _. leaveHospital(d,h)>

dp || p: Patient | %

Figure 3.14: A dynamic access control rule in ASTD [11]

of the UML class diagram. The translation rules from the UML class
diagram into B are adapted from several existing works [28,30,66]. Let’s
take a simple library system as an example. Assuming that there is a
class Book with an attribute series denoting the id of a book and two
operations: borrow and return. The functional B specification of this
example is defined as follows:

MACHINE

Library
SETS

BOOK
VARIABLES

book, series
INVARIANT

book C BOOK A series € book — NAT
INITTALISATION

book := 0 || series := ()
OPERATIONS

borrow = ...

return = ...

The second B machine formalizing the static access control policies is
the result of the translation of the SecureUML model. It represents the
SecureUML elements as enumerated sets. For example, Jack and Member
represent respectively a user and a role in the library system. The static

Techniques for Security Specification 71

security specification of the library example is defined by:

SETS
USERS = {Jack,...};
ROLES = {Member,... };
PERMISSIONS = {MemberPermission,... };
ACTIONS = {borrow, return,...};
ENTITIES = {Book,...}

The relations between SecureUML elements are also introduced in the
static security specification. For instance, roleOf returns a set of roles
that a user can play, and isPermitted computes the set of authorized
functional operations for each role.

roleOf € USERS — P(ROLES)
1sPermitted € ROLES < ACTIONS

This machine also contains a secure operation for each functional operation
needed to be protected. A secure operation ensures that only authorized
users can call the referred functional operation (Figure 3.15). It adds two
parameters user and role corresponding respectively to the user who is
trying to invoke the operation and one of his roles (role € roleOf (user)).
The predicate operation € isPermitted[{role}] verifies whether operation
is granted to user acting on role. Such a secure operation returns a value
that grants or denies the invocation.

e The dynamic security component includes operations that constrain the
functional operations with dynamic security properties. In [12], the au-
thors focused on history-based constraints. Such constraints can refer
to different system states. Let’s go back once again to the example in
Figure 3.14. Figure 3.16 describes the B operation for the action Dy-
namic_MedicalRecord_GetData. Conditions user € Doctor and role =
DoctorRole check whether the user user who is trying to perform Medi-
calRecord_GetData is a doctor and is assigned to the DoctorRole role. The
condition State@)Choice(user) = PatientHospitalRel(pp) makes sure that
the doctor user already joined the hospital where the patient pp stays.
The condition StateAutomaton_DoctorHospital(user) = dp verifies that
the doctor user is still working in the hospital by checking that the ASTD
remains in the state dp. The condition StateAutomaton_dp(user, pp) = pl
ensures that the patient pp admitted to the hospital after the joining of the

72 State of The Art

o~

answer<—secure_operation(..., user, role)=

PRE

user € USERS N
role € ROLES
THEN
IF
role € roleOf(user) A
operation € isPermitted|{role}] N

THEN

answer = granted
ELSE
answer := denied
END
END

Figure 3.15: A secure operation

doctor wuser. StateAutomaton_dp and StateAutomaton_DoctorHospital
are partial functions representing the state of the inner and upper au-
tomaton respectively, where dp is a place.

The separate development method allows to avoid tangling different con-
cerns of an application, thus developers and security engineers can focus on
their own tasks. In the end, the presented separate components are put to-
gether in an access control filter. The goal is to check security requirements
before the actual execution of the secure operations. This weaver tailors the
functional logic and its associated access control rules, including both static
and dynamic constraints, in the same language. Figure 3.17 describes an access
control decision algorithm proposed in [12]. Essentially, The filter grants the
execution of a secure operation only if both static and dynamic access control
grant it.

3.2.5 Discussion

In this section, we surveyed the existing works on specifying access control poli-
cies using semi-formal (UML+OCL) and formal languages. The formal tech-
niques supporting the verification and validation of access control specifications
are based on Z, Alloy, and B. Table 3.1 summarizes our analysis of these tech-
niques.

Techniques for Security Specification

73

answer <— Dynamic_MedicalRecord _GetData(Instance, user, role)
PRE
Instance € MedicalRecord N
user € USERS N
role € ROLES
THEN
IF
user € Doctor A
role = DoctorRole N
StateQChoice(user) = PatientHospitalRel(pp) N
State Automaton_DoctorHospital(user) = dp A
StateAutomaton_dp(user, pp) = pl
THEN
State Automaton_dp (user, pp) := pl ||
answer 1= granted
ELSE
answer := denied
END
END

o~

Figure 3.16: A dynamic operation [12]

answer,executed < Filter_operation(..., user, role)=
VARGstatic, dynamic, functional IN
static < Secure_operation(..., user, role);
IF static = granted THEN
dynamic < Dynamic_operation(..., user, role);
IF dynamic = denied THEN
answer := denied; executed := NotFExecuted
ELSE
functional < operation(...);
IF functional = ok THEN

answer := granted; executed := ok

ELSE
answer := granted; executed := NotFEzecuted
END;
ELSE
answer := denied; executed := NotFExecuted
END

END

Figure 3.17: An access control filter [12]

74 State of The Art

Combining UML and OCL can, on the one hand, graphically model security
requirements and, on the other hand, analyze various security properties of a
secure system. However, the literature review shows that the automated analysis
of security models has not been widely investigated. SecureMOVA and USE are
major contributions on modeling access control policies in UML diagrams and
automatically analyzing RBAC models realized in OCL.

Models written in Alloy can be automatically analyzed using the Alloy Ana-
lyzer [67]. However, the discussed solutions mainly focus on the static aspect of
RBAC. Dynamic access control policies are partially covered in some proposals.
Moreover, since the verification techniques of Alloy are based on model-checking,
it is not efficient for analyzing large models. The explosion of the system state
space is the main issue of the model-checking techniques that has to be tackled.

In contrast, the solutions based on the B method can cope with the prob-
lem of the state space explosion thanks to a theorem proving technique. The
work of Milhau et al. [11] based on the B method covers various types of access
control requirements, including static and dynamic rules. These requirements
also involve the functional aspect of the application. Nonetheless, the use of
ASTD only for visualizing security requirements may be too complicated. We
believe that the visual representations of a system should be easily understand-
able/readable to disburden the communications among participants, i.e. the
designer, the developer, and the end-user.

The other formal techniques reviewed in this section are based on the Z
notation. Z has been mostly used to write precise application specifications.
One of the major drawback in using Z is the lack of tools supporting the analysis
of the formalized model.

3.3 Support Tools for Access Control Policies

In this section, we review tools supporting the modeling and model transfor-
mations of access control policies. The first tool is SecureMOVA that allows to
model and validate the combination of SecuretUML and ComponentUML mod-
els. The other tool is BAMSecure that provides a mean to transform UML-based
models to formal specifications.

3.3.1 SecureMOVA

Developed by Basin et al. [2], SecureMOVA is a modeling and analysis tool
for security-design models. This kind of model is a composition of SecureUML
and ComponentUML: SecureUML is a modeling language for RBAC policies;

)

Support Tools for Access Control Policies

AT J0 uoryeredog OTRUA(]

= (S ‘“Am(jo uoryeredog o1e)g = (ISS ‘03 109dsor YIM = }'I'M ‘UOIIROYLIDA /UOTIRPI[RA = A/A ‘ON = N ‘S9f = A

qo1d ‘goIay | Al A & A | [T1] Te 10 ey
sayovouddp pasvq-g

ezef A N| N A |gz] 18 10 reured)

SHAH/Z N A A A [8¢] "Te 30 ojourLIoly

N A A A [09] ‘e 30 weng

sayovosddp pasvq-7

wzATeuy Ao[y A N A A | [o1] ‘T8 10 99pootpyro],
IozAeuy Aoy (soseo 1599 ®IA) X A A A L7 6] Te 10 nH ‘uyy
zATeuy Ao[y N N A A leg] Te 30 oez
WzATRUY AoV N A A A [7cl Te 1o preydg

sayovouddp pasvq-fio))y

s[oog, | o130 [euoryouny 1 I'M A/A [ASA | ASS | uonezZIIOYINY | SuOpN[OS PAIPNIS

suorjeoyoads A)1moes 10J sotprordde paseq-[euriof Jo SISOYIUAG :T°¢ d9[qe],

76 State of The Art

whereas, ComponentUML is used for modeling component-based systems that
contains a subset of UML class elements (i.e. entities, associations, and at-
tributes/methods of entities). SecureMOVA provides facilities for modeling
functional requirements in UML class diagrams, formalizing different access
control information in OCL, and evaluating OCL queries on a given model.
These queries concern the relationships between users, roles, permissions, and
actions. They can refer to elements of the functional model.

SecureMOVA allows an automated analysis of security-design models. In
particular, it supports reasoning authorization constraints in a security scenario
(a system state) involving entities that take part in the system model. To
this end, the authors implemented a dialect metamodel which merges the Se-
cureUML metamodel with the ComponentUML model. Hence, one is capable
to write and analyze OCL queries on the snapshots of this combined metamodel.

Using SecureMOVA one can ask questions about the basic authorization
constraints. The following is a list of such queries:

e Given a role, what are the atomic actions that a user playing this role can
perform?

e Given an atomic action, which roles can perform this action?

e Given a role and an atomic action, under which circumstances a user
playing this role can perform this action?

e Are there two roles with the same set of atomic actions?

e Given an atomic action, which roles allow the least set of actions, including
the atomic action?

e Do two permissions overlap?
e Are there overlapping permissions for different roles?

e Are there atomic actions that every role, except the default role, may
perform?

SecureMOVA also allows to analyze access control decisions on a snapshot
(an object diagram) of the ComponentUML model. In other words, such con-
straints query about the actions that a given user or a given role are permitted
to perform at a given system state (so-called security scenario). Some examples
of this kind of queries are listed below:

Support Tools for Access Control Policies 7

e Given an action on a concrete resource, which roles are to be assigned to
a given user to be able her to perform the action in the given scenario?

e Are there actions on the concrete resources that every user can perform
in the given scenario?

Notwithstanding, all the reported access control decisions that SecureMOVA
supports depend on the static access control information, i.e. user-role and
role-permission assignments. This tool does not address dynamic security con-
straints. The analysis is executed merely on snapshots.

3.3.2 B4MSecure

Existing works in the use of formal methods for security mainly focus on the
verification of security policies without addressing the functional aspect of an
application [54,55,58|. Idani et al. [13] have made a further step by taking
into account both functional and access control models (Figure 3.18), which are
then formally validated and verified. They introduced the B4MSecure platform
that allows the translation of the functional model (i.e. UML class diagram)
and its associated security model (i.e. SecureUML diagram) into formal B
specifications. This subsection gives an overview of the B4MSecure tool. The
architecture of the tool is shown in Figure 3.19.

Functional |,v&v, &g+ ,v&v Security
Formal model <:> \Mﬁ Formal model
nalyst _

readMedicalRecorde SecReadMedicalRecord
—_—]

joinHospital secloinHospital

| ———— il

Analyst

Figure 3.18: Validation/Verification activities supported by B4MSecure [13]

With the B4MSecure tool, one can present the functional logic of an appli-
cation using a UML class diagram and access control policies with SecureUML
models. SecureUML is a UML profile that includes RBAC elements such as
user,role and permission. The foundation of B4MSecure’s modeling function is
the Eclipse Topcased environment. On this editing environment, it is possible
to manually define B invariants and preconditions for operations. That is done
by annotating the operations of the functional model with additional B pre-
conditions and substitutions. This function bridges the gap between B and the
modeling language.

78 State of The Art

Topcased

UML Class diagram SecureUML

@ @ enhance |<<R>>|_:_| c |

<<RBAC profile=>

M

generate generate
B generator W
Functional AC
machine machine

Figure 3.19: The architecture of B4MSecure

The tool produces B specifications from the functional and security models.
The transformation follows the MDE paradigm, i.e. it is based on metamodels
which encode semantics of the models used in the framework, namely UML,
SecureUML, and B metamodels. The transformation rules are defined as map-
pings between these metamodels. The resulting B specifications include:

e The B specification of the functional model describes data and functional-
ities of the system. The B elements are generated from classes, attributes,
and associations between classes (Figure 3.20).

| UML class diagram |

MACHINE
Class1 Functional _Model
SETS
Atz Type, ARt CLASS1; CLASS?
VARIABLES
. |:> Class1, Att1, Class2, Att2
L INVARIANT
Class2 Classl € CLASSI A
Attl € Classl — Type_Attl N
Att2 : Type_Att2 Class2 C CLASS2 A
Att2 € Class2 — Type_Att2

Figure 3.20: UML to B translation

e The formal specification derived from SecureUML gathers secure opera-
tions that encapsulate functional operations (Figure 3.22) and the essential

Support Tools for Access Control Policies

79

RBAC concepts (Figure 3.21).

SecureUML

r

<<role>>

Class

Att: Type_Att

<<permission>>

u

<<user>>

P

method()

<<MethodAction>>method

—

MACHINE

StaticAC_Model
SETS
ENTITIES = {Class .. .};

ATTRIBUTES = {Att .. .};

ACTIONS = {method .. .};
PERMISSIONS = {p .. .};
ROLES = {r.. .}
USERS = {u ...}

Figure 3.21: SecureUML to B translation

A secure operation (Figure 3.22) is used to check if the user (i.e. the cur-
rently logged-in user) requesting the corresponding functional operation
has the right to execute it or not: the execution proceeds if the current
role of this user is authorized to perform the operation.

secure_method(p1,...,pn)=
PRE
ple Tp1 A...A\ pn € Ty,
THEN
SELECT
method € isPermitted[currentRole/
THEN
method (p1,...,pn)
END
END

Figure 3.22: A secure operation

The validation of the resulting B specifications can be performed in two ways:
proof-based and animation techniques. Taking benefit of the AtelierB tool [26],
one can validate the consistency of the B specification based on the generated
proof obligations. The ProB tool [27] supports the validation by animating the
secure operations.

3.3.3 Discussion

In this section, we presented tools that support RBAC, namely SecureMOVA
and B4MSecure tools. Both tools provide a capability of combining a security

80 State of The Art

language and a functional modeling language. In the case of SecureMOVA, it
allows the composition of SecureUML and ComponentUML. B4MSecure allows
the integration of SecureUML and UML class diagrams. The validation and
the verification of models within SecureMOVA are performed by verifying OCL
properties, while B4MSecure supports these activities based on the B method.
However, in both cases, they only consider static access control rules. These
contributions do not address dynamic security requirements. In our work, we
take into account both static and dynamic aspects of an access control along
with the functional model. Our goal is to formally verify the correctness and
the consistency of these models.

3.4 Implementation of An Access Control Speci-
fication

The literature review has shown that security policies can be integrated into
system design models. Such an integration can be seen as a basic for generating
systems along with their security infrastructures. This section surveys a number
of techniques on transforming the RBAC policies into enforcement codes.

In [8], Basin et al. presented the generation of applications and their security
infrastructures from UML-based models. They demonstrated model transfor-
mations from two combinations of security languages and modeling languages.
The first combination is between UML class diagrams and SecureUML, from
which they generate access control infrastructures of EJB and .NET systems.
The second combination is based on statecharts and SecureUML, which pro-
duces access control infrastructures for web applications. However, their gen-
erated code does not respect the separation of concerns principle. That means
that the generated access control logic is not separated from the application
program.

The work in [33] stressed on formalizing a compilation process that automat-
ically generates an AOP-based enforcement code from role-slices access control
policies. A role slice is a UML extension which specifies roles as specialized
class diagrams. Such diagrams contain classes of the functional model and their
methods. The role is granted to the methods appearing in its specialized class
diagram. The idea is to gather in a package all the class methods that a role
is authorized to perform. Once an access control policy is modeled by using
role slices, they are automatically translated to the enforcement code through a
code generator. The outputs of the code generator include a policy database and
an access control aspect. The policy database contains the access control policy

Implementation of An Access Control Specification 81

and an authorization schema storing users and their assigned roles. The access
control aspect intercepts all the calls to the protected classes and grants/denies
accesses according to permissions defined in the policy database. Nonetheless,
the generated security code is only an abstraction of a real AOP program: i.e. a
pointcut is a declaration referring to a specific method, and it has no attribute;
an advice represents only the around construct of the associated pointcut, and
it does not contain any implementation. The approach proposed in this thesis
generates a more complete aspect-oriented program for access control enforce-
ment.

Braga [14] proposed a MDS approach that supports code generation from
RBAC policies. Towards this end, the author used SecureUML to model RBAC
policies and introduced a transformation from SecureUML to aspects. The
transformation is based on the three following metamodels:

e The SecureUML metamodel defines roles, permissions, resources (i.e.
entities, attributes, and methods), authorization constraints, and their as-
signments. An authorization constraint is essentially a predicate over the
state of its associated entity, represented as an OCL boolean expression.

e The Aspects for Access Control (AAC) metamodel (Figure 3.23):
an instance of the AAC metamodel represents an aspect program of a Se-
cureUML policy. In particular, for each entity in a SecureUML policy,
there exists an abstract class (ResClass) and an aspect (Aspect): the ab-
stract class is actually an interface which is constituted by its attributes
(ResAttribute) and methods (ResMethod); the aspect controls the access
to the abstract class. For each method of the abstract class, there ex-
ists a pointcut (Pointcut) and an advice (Advice). The advice relates
to SecureUML’s authorization constraints associated with the method.
The body of an Advice is essentially a sequence of conditions (i.e. au-
thorization constraints). It may return successfully if the user has the
appropriate Role and fulfills the authorization constraints. Otherwise it
returns an error (for instance, by raising an exception). Each role in a
policy corresponds to a role instance of the aspect (RoleClass).

e The merged metamodel of SecureUML and AAC defines classes
that are given by the disjoint union of SecureUML’s and AAC’s classes.
The relations of this combined metamodel are given by the disjoint union
of the relations on each metamodel. The role of such a metamodel is to
validate the transformation process by specifying a set of invariants. For
instance, an implementation of the transformation from SecureUML to

82 State of The Art

ResAtribute | resattribute -resclass 'HasCIass-:ireSCIass -aspect Aspazrt'
I % it L |
|)] 1

-resclass (1 -aspect |1

-resmethod |* -pointcut |*

ResMethod |-resmethod -pointcut |Pointcut |-pointcut -advice | Advice |
I T T 1 !

i
|

ResGetMethod | |ResSetMethod ResOperationMethod |

RoleClass Env

Figure 3.23: The AAC metamodel [14]

AAC must ensure that each entity in a SecuretUML model must have an
abstract class in the corresponding AAC model.

To sum up, this work is similar to ours in the way they use SecureUML to
graphically express access control policies and AOP to enforce these policies.
But it differs in the validation and model transformations. In this approach,
the validation is restricted to syntactical verification of the different models.
Moreover, they do not address the effect of access control models on the func-
tional model, neither do they provide a formal verification of the interaction
between security and functional requirements. In our work, we design access
control models along with the related functional model. These models are then
mapped into B specifications in order to formally reason about their correctness
and consistency. In other words, our security policies are verified and validated
with respect to the functional specification. The verified B specification is suc-
cessively refined until its implementation can be straightforwardly mapped into
an AspectJ-based program.

3.5 Enforcement of Access Control Policies

Application-level access control policies enforcement has been studied in great
details. In this section, we highlight a selection of contributions in this domain.
First, we present a practical security library developed by Sun Microsystems in
Section 3.5.1. We then discuss the use of annotations for security in Section
3.5.2. Section 3.5.3 reviews a number of the existing works based on AOP for
the access control enforcement.

Enforcement of Access Control Policies 83

3.5.1 Java Authentication and Authorization Service

RBAC is now available in the standard enterprise software development envi-
ronments. For instance, Sun Microsystems has released a security framework
and library, called Java Authentication and Authorization Service (JAAS) [68],
which enhances the Java platform with access control capabilities. In JAAS, the
authentication is used to check who is running the system (called subject). Both
users and computing services can represent subjects. Once authentication has
been verified, JAAS provides an authorization check based on privileges (prin-
ciples) associated with the authenticated subject. JAAS also allows enforcing
access controls upon roles/groups just as they are with any principle. Although
the goal of JAAS is to isolate the user authentication module from the appli-
cation code and treat it independently, the developer still needs to write code
within the functional program in order to use methods of JAAS. As a result,
the final program is tangled and scattered, thus it is difficult to maintain.

3.5.2 Annotation-based approaches

Another notable approach which applies annotations in Java programs for secu-
rity enforcement is explored in [69,70]. In particular, protected elements, such
as classes, interfaces, and methods in the Java source code, are annotated with
roles. Only the users who have at least one of the roles annotated on a method
(resp. a class or an interface) are permitted to access that method (resp. that
class or interface). The enforcement of RBAC policies is performed dynamically
by inserting runtime checks to verify that the current user has the adequate roles
when the annotated method is called.

For example, the following code defines a class Order, which has two methods
Order and approve. The Order method is the constructor creating an object
of the class. The approve method is used to approve an order. Assuming that
the Accounting role is granted to execute the approve method. To express
this rule, one must explicitly annotate the method with the role by writing
@Accounting above the approve definition (the annotation in Java is denoted
by the @ symbol). Whenever approve is invoked, the system verifies that the
currently logged in user is a member of the Accounting role. If it is not the case,
then the invocation is denied.

public class Order {
Order(List<Items> items) { ... }
@Accounting

void approve() { ... }

84 State of The Art

/

In this approach, the user-role assignment can be implemented explicitly,
in a XML file for example. Annotating roles on applications can enforce au-
thorization policies at run-time. However, annotations are placed on protected
elements in all over the program. It is remarkably difficult to know where a
specific annotation should go, especially in large programs.

3.5.3 AOP-based approaches

The problem about scattered and tangled code of the above approaches can
be overcome by using AOP. Indeed, this paradigm allows to express separately
multiple concerns and automatically merge them together into working systems.
The use of AOP for security concerns has been intensively investigated at both
modeling [71-73| and implementation levels [15,16,31-33,74]. The following
reviews the existing works based upon AOP for enforcing security.

Viega et al. have pioneered an AOP-based approach for enforcing security
policies [31]. They developed an aspect-oriented extension of the C program-
ming language for specifying security concerns and implementing a weaver that
merges security code into C programs. There are several types of locations
that the weaver can operate on, including function calls, function definitions,
and pieces of functions. Once the location is identified, one can insert a code
before or after the join point, or replace a code at this point. Although their
aspect is used to deal with various crosscutting concerns, such as performing
error-checking, implementing the buffer overflow protection, and logging data,
it does not report how they can be used to enforce access control policies.

AOP-based security enforcement on Java applications was first explored by
De Win et al. [15,32,74]. The authors introduced a framework based on AspectJ
for handling access control to distributed systems. This framework consists of
generalized aspects for security requirements, including the Identification, Au-
thentication, and Authorization aspects (Figure 3.24). The Identification aspect
is used to tag the entities that must be authenticated. It also contains a field
Subject that stores the identity information. The Authentication aspect defines
the authenticationCall pointcut to specify all the places where the method of
an application is invoked. Before the actual execution of a method, the identity
information from the Identification aspect is copied to a local field of this as-
pect so that the authentication information can be passed to the access control
mechanism. Finally, the Authorization aspect verifies access based on the iden-
tity information received through the Authentication aspect. The verification
is performed for every execution of the method by using JAAS. In brief, this

Enforcement of Access Control Policies 85

public aspect Identification of eachobject (instanceof(Client)){
public Subject subject null;
/

public aspect Authentication of eachcflowroot (authenticationCall ())
{
private Subject subject ;
pointcut serviceRequest () : calls (ServerInterface, x service (..));
pointcut authenticationCall () :
hasaspect (Identification) && serviceRequest();
before (Object caller) : instanceof(caller) && authenticationCall(){
final Identification id = Identification .aspectOf(caller);
if (id. subject == null){
<login>;
subject = id. subject ;}
}
public Subject getSubject (){
return subject;}
/
public aspect Authorization{
pointcut checkedMethods () : executions(x service (..));
before () returns Object : checkedMethods(){
Authentication au = Authentication.aspectOf();
Subject subject = au.getSubject();
boolean allowed = <check access control>;
if (allowed)
return proceed();
else
throw new FEzception("Access denied");}

Figure 3.24: Aspect code for object-based access control [15]

approach mainly focused on authentication and authorization, in comparison
to our approach that defines an aspect including various types of crosscutting
concerns, such as history-based security constraints. Moreover, their approach

supports user-based access control, whereas ours is based on role-based access
control.

In [16], Huang et al. described the principle and the architecture of a security

86 State of The Art

aspect library called JSAL (Figure 3.26). This library is built in AspectJ based
on the Java security packages JAAS and JCE [75]. It contains four independent
aspect components, namely Encryption/Decryption, Authentication, Authoriza-
tion, and Security audit. They created for each component an abstract aspect,
which includes common operations. Such an abstract aspect defines codes in-
voking Java security packages, such as JAAS and JCE. Developers can define
a concrete aspect for a specific application by extending the abstract aspect
according to the security policy of the application. The extension is done by
defining or overriding pointcuts. For example, the abstract encryption aspect
AbstractDESAspect (Figure 3.25) contains two abstract pointcuts, namely en-
cryptOperations and decryptOperations, and two around advices implementing
the pointcuts. The advices make calls to the JCE package to use its security
operations, such as encrypt and decrypt. When it is used, the developer needs to
extend the abstract encryption aspect and define the concrete pointcuts within
the extended aspect. e.g. sendMsg and recvMsg are the concrete pointcuts in
the simple example main. Whenever these methods (sendMsg and recvMsg) are
called, the concrete aspect MyDESAspect will intercept them with their corre-
sponding advices code. In summary, the approach provided reusable security
aspects in AspectJ as a practical software component. However, their aspects
are based only on popular Java security packages. That might not be enough
for the security of a system.

3.5.4 Discussion

In comparison, aspect-oriented security is more flexible than annotation-based
approaches and JAAS. Regarding the annotation-based security techniques, se-
curity properties are declaratively expressed within the application, but the
annotations cause code tangling and scattering. In the case of JAAS, appli-
cation developers are free from implementing security mechanisms and leave
the definition of security properties to security experts at first step. Yet, this
solution does not allow the separation of concerns since it requires to mix the se-
curity and application codes in the final system. On the other hand, AOP-based
solutions allow to implement independently the security code and then weave
it into the application code during the compile time or the runtime. No mod-
ification of the functional program is required to introduce security properties
in this approach.

To our best knowledge, none of the studies based on AOP consider dynamic
security requirements (e.g. history-based and order-based constraints). In this
thesis, we propose a security enforcement approach that includes both static

Enforcement of Access Control Policies 87

x Abstract aspectx/
public abstract aspect AbstractDESAspect {
public abstract pointcut encryptOperations(String msg);
public abstract pointcut decryptOperations(String msg);
public void around(String msg): encryptOperations(msg) {
DesCipher enc = new DesClipher();
enc.savekey("Deskey");
Encrypt
String encryptedMsg = enc.encrypt(msg);
proceed (encryptedMsg);
}
public void around(String msg): decryptOperations(msg) {
DesCipher enc2=new DesClipher("Deskey");
Decrypt
String decryptedMsg = enc2.decrypt(msg);
proceed (decryptedMsg);
}
x Concrete aspectx
public aspect MyDESAspect extends AbstractDESAspect {
public pointcut encryptOperations(String msg):
call (String sendMsg(String)) && args(msg);
pointcut decryptOperations(String msg):
call (String recvMsg(String)) && args(msg);
/ |
x A simple examplex
public static void main(String// args) {
String text = "Hello world!";
send messages, needs encryption here
String set = sendMsg(text);
System.out. println ("The send messages are : " + set);
String dec = recuvMsg(set);
receive messages, needs decryption here
System.out. println ("The send messages are : " + dec);

Figure 3.25: An example of the JSAL implementation in AspectJ [16]

88 State of The Art

4 3
s D
Java Security Aspect Library
Encryption’ Security :- —Oth:r B :
Authentication | | Authorization TEeron Audit Security
TYpti | Asects |

I/]
Y

ther Java |
JCE | Security]
| Packages 1

Figure 3.26: JSAL architecture [16]

and dynamic security properties of an information system. The proposed aspect
checks the permission of authenticated users as well as history-based and order-
based conditions associated to each method called by the users. Moreover, the
security program is generated from a proved formal specification.

3.6 Conclusion

Access control policies protect the resources of software systems by controlling
who has rights to access to them. RBAC has become the standard authoriza-
tion model used in the industrial applications because it simplifies the access
control management. Thus, there are a large number of studies dealing with
RBAC. In this chapter, we have presented existing works on the specification
and enforcement of access control policies. We have also reviewed tools that
support the modeling and the formal specifications of such requirements. In
our work, we propose a solution based on the MDE paradigm to handle various
security requirements from the early design step to the implementation step.

CHAPTER 4

Formal Development of a Secure

Access Control Filter

The contents of this chapter are adapted from our paper [76]. My main con-
tributions in this paper are the modeling of different security requirements of
an information system in UML-based diagrams and their transformations into
B specifications together with the functional model of the system. The paper
is submitted and accepted in the 17" IEEE International Symposium on High
Assurance Systems Engineering took place in Orlando, Florida, USA on 7Tth-9th
January 2016.

Contents
4.1 Imntroduction 0o, 90
4.2 The case study: a bank system 92
4.3 Graphical modeling of security requirements 93
4.3.1 SecureUML. 93
4.3.2 Activity diagrams for dynamic security rules 94
4.4 Generation of a B specification 96
4.4.1 Overview of the Bmethod 97
4.4.2 Translation of the functional model: the class diagram . . . 97
4.4.3 Formalizing SecureUMLin B 99

4.5
4.6

4.4.4 Translation of the secure UML activity diagrams into B . . 101
4.4.5 Putting all the security and functional constraints together 105
Verification and validation 107

Conclusion. v v v v i i e e e e e e e e e e e e e e 109

89

90 Formal Development of a Secure Access Control Filter

With the advent of the Internet, most organizations offer more and more
access to their information systems in order to increase their benefits. How-
ever, such an opening may cause security issues if sufficient precautions are not
taken. An adequate solution to secure access to information systems consists
in (1) defining the sufficient security policies and (2) ensuring their correct de-
ployment on a given technological infrastructure. The present chapter deals
with the first point by introducing a formal approach that permits to develop
a secure filter for an information system that respects different kinds of secu-
rity rules: functional, static and dynamic rules. The proposed approach uses
the SecureUML language |77] to express the static rules and adapts the UML
activity diagrams for dynamic ones while the structure of the manipulated data
and the functionalities are expressed using a UML class diagram. Starting from
these graphical notations, the approach consists in mapping them into a B for-
mal specification to ensure their consistency and validate the system. Finally,
a proved filter, which permits to take into account different security rules, is
formally derived using the B refinement technique [78|.

4.1 Introduction

An Information System (IS) is the part of an organization responsible for col-
lecting and manipulating all its relevant and sensitive data. Nowadays, it is at
the heart of most companies and constitutes then a critical element that needs
an adequate attention regarding security issues. Indeed, an information system
often interacts with humans or other systems by exchanging information and
any security breach may cause serious and even irreversible consequences. To
avoid such risks, a common way is to control access to an information system by
defining some security rules. Roughly speaking, a security rule specifies, for an
authenticated user, which actions are allowed/forbidden according to his/her
current role and context. To ensure the security of a system, many types of
rules may be required. These rules can be classified into two main classes:
static and dynamic. Static rules refer to a given single moment of the system
whereas dynamic ones require to take the execution history of the system into
account, that is the actions already performed in the system in general or by
a given user in particular. If we consider the case of a hospital, a static rule
will be, for instance, “only a person with the role Doctor can make a diagno-
sis”, whereas a dynamic rule will be, for example, “the person who performs a
laboratory test cannot validate it”. In addition to these kinds of rules, we have
also to consider the usual functional constraints like, for instance, the maximum

Introduction 91

number of patients each doctor can treat. In face of this rule diversity, several
languages may be needed to cope with them. In this chapter, we propose to
use three UML-based languages: a class diagram to describe the structure of
the data manipulated in the system together with their functional constraints,
SecureUML |77] to deal with static rules and activity diagrams [79] for dynamic
ones.

Even if the use of a graphical notation to express functional/security rules
argues for an intuitive, synthetic and visual presentation of the considered sys-
tem, it is often a source of ambiguities. Moreover, we need a unifying language
in which all the functional /security rules can be expressed in order to be coor-
dinated to verify the consistency of the different security rules with respect to
the functional aspects of the system. To this aim, we suggest to translate the
obtained graphical modeling into a formal B specification that can be formally
verified using the different associated tools. We have chosen the B method be-
cause it is based on concepts that are easy to learn. Moreover, it has a reliable
free tool (AtelierB [80]) that supports all the development stages. The obtained
B specification is then taken as a basis for the development of a correct access
control filter that ensures that the execution of each action of the system can
happen only if all the specified functional/security rules are fulfilled. Such an
approach permits to consider the different functional/security constraints from
the first design phases on and therefore to reduce the global development cost.

The main contributions of the present chapter can be summarized as follows:

1. A set of generic rules to map a SecureUML diagram, modeling static secu-
rity rules, into a B specification,

2. A set of generic rules to map a UML diagram, representing a dynamic
security rule, into a B specification,

3. A generic specification of a filter that permits to coordinate all the speci-
fied security rules.

The rest of the chapter is organized as follows. The case study used throughout
the chapter to illustrate the proposed approach is introduced in the next section.
Section 4.3 shows the modeling of the functional and security requirements
using UML-based notations namely, a class diagram, SecureUML and activity
diagrams. The translation of these diagrams into a B specification is presented
in Section 4.4. The verification and the validation of these specifications are
illustrated in Section 4.5. The last section concludes and presents some future
work.

92 Formal Development of a Secure Access Control Filter

0.1 Bank |p 4 User

+joinBank{usr, bnk)
+leaveBank{usr)

—

Y
=
S

Client
-id Cheque
:::;Et 0.1 «| =chid
-value
+crea?eCI|enl{d. na, am) / +createChequelch)
+modifyAmount(cl,am}) Deposit +deleteCheque(ch)
+deleteClienticl) -status

+createDeposit{ch,cl)
+validateDeposit{ch)
+verifyDepositich)
+saveleposit{ch)

Figure 4.1: The class diagram of a simplified banking system

4.2 The case study: a bank system

To illustrate the proposed approach, we reuse the case study introduced in [81].
It is about a cheque deposit use case of a banking system whose class diagram
is depicted in Figure 4.1. This use case involves two classes, Client and Cheque,
which are linked by an association class Deposit. Each class or association class
is described by a set of attributes and defines some operations to create new
instances or delete the existing ones. We make the assumption that the first
attribute of each class denotes its key. As specified by the multiplicities, each
cheque may be deposited by one client at most (multiplicity 0..1), whereas each
client may deposit zero to several cheques (multiplicity 0..x). In addition, the
bank manages a set of users that can join/leave the bank at any moment.

The deposit of a cheque by a client is executed by a bank’s employee and
launches the following ordered actions:

1) creating a new deposit to link the client to the cheque (operation creat-
g
eDeposit)

(2) validating the cheque by an employee of the branch (operations validat-
eDeposit)

(3) saving the cheque (operation saveDeposit)

(4) verifying the cheque if its amount exceeds a given limit (operation verify-
Deposit)

To ensure the security of this deposit process, a set of security rules have been
identified. For the sake of concision, only the following rules are presented:

Graphical modeling of security requirements 93

Rule 1. Only Tellers and Advisors are authorized to make a deposit (operation
createDeposit),

Rule 2. Only Tellers are permitted to validate a deposit (operation validateDe-
posit),

Rule 3. A deposit should not be validated by the same user who created it,

Rule 4. The validation of a cheque (operation validateDeposit) should be executed
by a user who belongs to the bank at the time the deposit is created.

Analyzing the above rules gives:

(i) Rules 1 and 2 specify which roles the user must play to perform the cor-
responding actions,

(ii) Rules 3 denotes a dynamic separation of duty since the same user cannot
play different roles for the same deposit. The separation of duty allows
to restrict the roles that a user can play depending on the actions he/she
has/has not performed in the past.

(iii) Rule 4 is a dynamic rule since the permission of a cheque validation de-
pends on an action executed in the past.

The following section presents the graphical modeling of these rules using
SecureUML and UML activity diagrams.

4.3 Graphical modeling of security requirements

Before describing how we use the SecureUML and UML activity diagrams to
describe both static and dynamic security rules, we give a brief introduction of
these notations.

4.3.1 SecureUML

Based on UML graphical notations, SecureUML allows to extend a UML func-
tional model with concepts of role-based access control models (RBAC [82]) in
order to specify the different roles that a user can play and their associated
permissions on the resources of the system. Basically, a SecureUML diagram
depicts some classes of the class diagram that are linked to classes representing
roles (stereotype << role >>). These links are association classes (stereotype

94 Formal Development of a Secure Access Control Filter

=<rola=> Class <<parmission=>
<<usr=> R ; +opi(...) PermissionName?
usri ¢ *o +opil...}
___ +opn(...) +opi(...}
<<permissior>>
(:grir” PermissionMame .
+opi(...) <<rple=> lecysras
+opl{...) RoleMName2 usrj
Figure 4.2: Generic SecureUML model
S>> -
Jack z<rplgs> Deposit
TellerRole -status
Eeysr=> Vd +createDepositich,cl)
Paul _— +validateDeposit(ch)
==parmission=> +verifyDeposit(ch)

TellerPerm Tas=?| [+saveDeposil(ch)
+ereateDepositich,el) || | b <<permission==
+validateDeposit(ch) \ <<role>> AdvisorPerm
+saveDeposit(ch) AdvisorRole | [+createDeposit(ch,cl)

+verifyDeposit{ch)
+saveDepositich]

Figure 4.3: Static access control model

<< permission >>) denoting the permissions of the role to execute some oper-
ations of the class/association class. Finally, specific users can be attached to a
given role to state that they can play it (See Figure 4.2).

Figure 4.3 can be seen as an instantiation of Figure 4.2 to model the rules
1 and 2 of the case study: two roles are defined TellerRole and AdvisorRole;
TellerPerm states that users with Role TellerRole are permitted to create (op-
eration createDeposit), validate (operation validateDeposit) and save (operation
saveDeposit) a deposit; Jack and Paul both can play Role TellerRole.

4.3.2 Activity diagrams for dynamic security rules

In [83], the ASTD notations [84] are used to model dynamic security rules. Even
if ASTD has a rich power of expressing, they are not always simple to use and
the translation of such a modeling into B gives a very complex specification
with very difficult proof obligations. This is why in this chapter, we suggest to
use the UML activity diagrams to model dynamic security rules.

UML activity diagrams are used to describe the dynamic aspects of systems.
They aim at depicting the control flow from one activity to another by including
sequencing, branching, parallel flow, swimlanes, etc. They are usually used to
describe business processes. In a UML activity diagram, an activity cannot
start its execution before the completion of all the activities that precede it.

Graphical modeling of security requirements 95

useri userz

DD
@D Gl @D

Figure 4.4: A generic form of a secure activity diagrams

To model a dynamic security rule with an activity diagram, we consider
that activities refer to the operations of classes/associations, whereas swimlanes
denote the actors executing them. Moreover, a dynamic security rule is modelled
by a partial activity diagram to show, on the one hand, the execution order of
the operations and, on the other hand, the constraints on the users executing
them. Basically, this is achieved as follows (See figure 4.4):

e if an operation Op; should be executed after an operation Op;, then we
link the activity nodes related to them by a transition from Op; to Op;,

e using the stereotype <<secure>>, we indicate that the operation Op is
the operation to secure, that means that any execution constraints will be
put on this operation,

e if the users that perform the operations Op; and Opy should be different
(resp. the same), then we put both operations in different (resp. the
same) swimlanes.

e the operation Op; that should not happen before the operation to secure
is placed after it using a control flow.

Figure 4.5 and 4.6 show the UML activity diagrams associated with Rules
3 and 4. As stated before, these rules are dynamic since they take the his-
tory of the system into account. Rule 3 states that the users executing op-
erations createDeposit and wvalidateDeposit should be different. Both rules
implicitly express that Operation createDeposit is executed before Operation
validateDeposit.

96 Formal Development of a Secure Access Control Filter

Rule 3

useri user2

0 <<Sacure==
createDepositich.cl) validateDeposit(ch

Figure 4.5: Example of dynamic security rules modeled by activity diagrams:
Rule 3

Rule 4

joinBank(usr,bnk)

createDepositich.cl)

Lsr

<<secure>>
validateDeposit(ch) leaveBank{usr

Figure 4.6: Example of dynamic security rules modeled by activity diagrams:
Rule 4

4.4 Generation of a B specification

The graphical modeling achieved in the previous section offers a visual, synthetic
and user-friendly view of the system. However as stated before, it may be source
of ambiguity and does not permit any formal verification. On the other hand,
formal methods permit to build precise models on which it is possible to verify
a large range of properties and even to generate a correct implementation of
the system. This is why much research work has investigated the combination
of graphical notations with formal methods in order to take advantage of both
notations [85-89]. In that direction, we have proposed formal rules to translate
UML notations into a B specification [90,91]. This work mainly stressed the
functional aspects of a system and did not consider any security constraints.
This section briefly recalls the defined translation rules, then it shows how the
obtained B specification can be completed with the translation of the security
diagrams, that are the SecureUML and UML activity diagrams.

Generation of a B specification 97

4.4.1 Overview of the B method

Introduced by Jean-Raymond Abrial [78|, B is a formal method dedicated to
developing safe systems. B specifications are organized in abstract machines.
Each machine contains state variables on which operations act, and an invariant
constraining them. Operations are specified in the Generalized Substitution
Language. A substitution is like an assignment statement. It allows us to
identify which variables are modified by the operation without mentioning the
variables not modified. A preconditioned substitution is the form (PRE P
THEN S END) where P is a predicate, and S a substitution. When P holds,
the substitution is executed, otherwise nothing can be ensured. For instance,
the substitution S might not terminate or might violate the invariant. The B
refinement is the process of transforming, by successive steps, a specification
(the variables and the operations) into a less abstract one. The last refinement
step, called implementation, aims at obtaining data and substitutions close to
those of a programming language such that the translation into the chosen
target language of the data and control structures (used in this level) must be a
straightforward task. Both specification and refinement steps give rise to proof
obligations. At the abstract level, proof obligations ensure that each operation
maintains the invariant of the system, whereas at the refinement level, they
ensure that the transformation preserves the properties of the abstract level.

4.4.2 Translation of the functional model: the class dia-
gram

The translation rules defined in [90,91] generate a B specification from a UML
class diagram as follows. For each class C, we define a given set S¢ and a variable
Ve to respectively represent the set of all possible instances and the existing
ones at each moment. Each attribute is mapped into a function from V¢ to its
type, the function modeling the key of the class is an injection. An association
involving two classes C; and (5 is mapped into a B variable defined as a relation
between V¢, and V¢,. According to its multiplicities, this association becomes
partial function (-), total function (—), an injection (—), etc. To ease the
integration of the security rules, this B specification is structured as follows: all
the derived given sets are included into a machine called Contezt that can be
seen (Clause SEES) by any machine to have access in read to them (See Figure
4.7). The variables and the operations are defined in a separate machine that
sees the machine Context. Figure 4.8 shows a part of the B machine generated
for the class Cheque and the association Deposit (See Figure 4.1).

The machine Functional_Requirement specifies a set of operations of the

98 Formal Development of a Secure Access Control Filter

MACHINE Context

SETS Clients; Cheques;
Status= {deposited, validated, saved};
ExecutionResult={Ok, Ko}

END

Figure 4.7: Machine Context

MACHINE Functional_Requirement
SEES Context
VARIABLES cheques, chid, value, deposit, status
INVARIANT
cheques C Cheques N chid € cheques — NAT A
deposit € cheques - clients A status € deposit — Status

END

Figure 4.8: The static part of the functional B specification

classes/associations. Such operations permit, for instance, to add/delete an
instance and also to update the attribute values. Contrary to the transla-
tion rules defined in [90,91], a defensive strategy is adopted in the present
chapter for the generation of these operations since we take all the possible
parameter values into account. Basically, only the type of the input param-
eters is assumed in the precondition of an operation, all the other conditions
required for its correct execution are checked in its body using an IF sub-
stitution: if the conditions are fulfilled then the state of the system evolves
otherwise it remains unchangeable. In both cases, a value is returned to in-
form the user about the result of the execution of the operation. Figure 4.9
depicts the B specification of the operation validateDeposit defined on the as-
sociation Deposit. This operation assumes the type of its input parameter
(ch € Cheques), then it verifies if the related cheque has been deposited: if so
(ch € dom(deposit)), the status of the deposit is updated to validated (using the
substitution status(ch, deposit(ch)) := validated) and the user is informed that
the state of the system has been updated (result := Ok). Otherwise, nothing is
done and the value Ko is returned.

Generation of a B specification 99

result < validateDeposit(ch) =
PRE ch € Cheques THEN
IF ch € dom(deposit) THEN
status(ch, deposit(ch)) := validated ||

result := Ok
ELSE result := Ko
END

END;

Figure 4.9: The functional specification of Operation validate Deposit

4.4.3 Formalizing SecureUML in B

To our best knowledge, research work on the translation of SecureUML into
formal specifications is rather narrow. In [92], the authors present an Event-B
model for OrBAC policies with the purpose of deploying a security policy. Our
goal is to integrate security policies into functional requirements from the early
design phases.

An interesting idea of integrating security requirements in the software de-
velopment process is introduced in [93] using Alloy, a formal method based on
a model checking technique. Due to the state space explosion problem which
is intrinsic to model checking, such an approach is not suitable for information
systems where applications are data intensive. The closest work to ours seems
to be that presented in [94,95] where formal mapping rules are defined to de-
rive B specifications from SecureUML diagrams. Basically, these rules consists
in defining a secure operation secureOp for each operation Op whose execution
is permitted to a given role r. Operation secureOp has two additional input
parameters, the user executing the operation and his/her current role. After
verifying that the role has the permission to execute op, then the operation Op
is called:

SecureOp(..., usr, role)=
PRE usr € Users A role € PermittedOfUser(usr) A
Op € Permitted(role) A ... THEN

Op(...)
END

The main drawback of such approaches is that the proposed translation is not
faithful to the semantics of the SecureUML diagram. Indeed, the semantics of
a SecureUML diagram only states which role can execute a given operation but

100 Formal Development of a Secure Access Control Filter

does not mean the actual execution of the operation. Indeed, the actual execu-
tion of the operation can require other conditions like dynamic security rules.
Moreover, since the permission of the role to execute the operation Op is checked
in the precondition, the user still can call the operation even if his/her role is
not allowed to do that! In this chapter, we propose an alternative of this trans-
lation that overcomes these drawbacks. We translate the SecureUML diagram
of Figure 4.2 as follows by defining a new context machine Secure UMLContext
that includes:

e 3 given sets: Roles = {RoleNamel, RoleName2} represents the different
roles existing in the system, Operations = {op1, ..., op,} to denote the op-
erations defined in classes and associations, and Users = {usrl, usn, usrj}
to represent the users of the system,

e 2 constants: Permissions = {RoleNamel +— opi, RoleNamel — opl,
RoleName2 — opi, RoleNamel — opj} to model the permitted operations
of each role, and PermittedUsersRoles = {usrl — RoleNamel, usrn
RoleNamel,usrj — RoleName2} to store the roles that a user can play.

Applying these rules to the SecureUML diagram of Figure 4.3 gives the B spec-
ification of Figure 4.10.

The above machine Secure UMLContext is included into a new machine that
defines a variable CurrentRole that gives the current role of each user and
an operation ConnectUser(user, role) that permits User usr to connect to the
system using Role role (See Figure 4.11).

To introduce the translation of SecureUML into B, let us consider the dia-
gram of Figure 4.2. Each operation Op;, that can appear in several permissions
PermissionName;, is mapped into a single B operation SecureOp; with a pa-
rameter usr to denote the user that wants to execute Op,;. The operation checks
whether the current role of the user has the permission to execute op;. Accord-
ing to the result, the system informs the user that the execution is granted or not
(See Figure 4.12). These generated operations are defined in one or several new
machines that see Machines Secure UMLContext and Secure UMLTranslation.

For instance, Figure 4.2 states that Operation opl is permitted for any user
that has either Role RoleNamel or Role RoleName2. In B, this is translated as
depicted in Figure 4.12.

By instantiating the above generic operation, the B specification of Opera-
tion SecureValidateDeposit is as in Figure 4.13.

These generated operations are included into Machine Secure UMLTranslation.

Generation of a B specification 101

MACHINE Secure UML Context
SETS Roles = { TellerRole, AdvisorRole};
Operations = { createDeposit, validateDeposit,
saveDeposit, verifyDeposit };
Users = { Paul, Jack, Martin};
Access={granted, denied};
CONSTANTS Permissions, Permitted UsersRoles
PROPERTIES
Permissions = { TellerRole — createDeposit,
TellerRole — wvalidateDeposit,
TellerRole — saveDeposit,
AdvisorRole — createDeposit,
AdwvisorRole — verifyDeposit,
AdvisorRole — saveDeposit };
PermittedUsersRoles = { Paul — TellerRole,
Jack — TellerRole, Martin — AdvisorRole}

END

Figure 4.10: The B context machine of the SecureUML diagram of Figure 4.3

MACHINE SecureUMLTranslation
SEES SecureUMLContext
VARIABLES CurrentRole
INVARIANT
CurrentRole € Users + Roles/\
CurrentRole C PermittedUsersRoles
OPERATIONS
ConnectUser(usr, role)=
PRE usr € Users A role € Roles/N
role € PermittedUsersRoles[{usr}] THEN
CurrentRole(usr) := role
END

Figure 4.11: The B machine managing the roles of users

4.4.4 Translation of the secure UML activity diagrams
into B
Let us recall that we use UML activity diagrams to express dynamic secu-

rity rules. Such rules often depend on the execution history of the differ-
ent system’s actions. In other words, we need to know, at each moment,

102 Formal Development of a Secure Access Control Filter

access «— SecureOpl(usr)=
PRE usr € Users THEN

IF usr € dom(CurrentRole)A

CurrentRole(usr) € { RoleNamel, RoleName2} THEN
access := granted

ELSE access := denied

END
END

Figure 4.12: B translation of a SecureUML permission (Figure 4.2)

access «— SecureValidateDeposit(usr)=
PRE user € Users THEN

IF usr € dom(CurrentRole) N\

CurrentRole(usr) € { TellerRole} THEN
access := granted

ELSE access := denied

END
END

Figure 4.13: B translation of a SecureUML operation (Figure 4.3)

which actions have actually been executed in the system. This is why for
each operation op(p1, ..., p,), we define two additional variables historyOp and
OrderFExecutionOp that store its corresponding execution occurrences together
with the user that executes it and the execution time:

historyOp € Typey, % ... x Type,, - Users
OrderEzecutionOp € Typey, % ... x Type,, - NAT

Such variables are included into a new machine ActionsHistory that defines
an operation EzecutionOp for each operation Op of the functional model. Re-
garding Op, EzecutionOp has an additional parameter that denotes the user
who is executing Op; it also checks the same functional constraints (using the
IF substitution). If the functional constraints required for the execution of
op are fulfilled, it calls the operation Op and updates the variables historyOp
and OrderEzrecutionOp using the value of the clock of the system currentOrder.
Of course, to make the call to Operation Op possible, Machine ActionsHistory
includes (INCLUDES of B) Machine Functional_Requirement:

Generation of a B specification

103

result «+— ExecutionOp(usr, pi,...,pn) =
PRE usr € UsersA precondition_of_Op THEN
IF same_conditions_as_Op THEN
result «<— op(p1,...,pn) ||
historyOp(p1, - .., pn): = usr ||
OrderExecutionOp(p1, ..., pn): = currentOrder
ELSE result := Ko
END
END

MACHINE ActionsHistory
SEES SecureUML Context, Context
INCLUDES Functional_Requirement
VARIABLES
history ValidateDeposit, OrderExecution ValidateDeposit
INVARIANT
history Validate Deposit € cheques + Users
OrderExecution ValidateDeposit € cheques + NAT
OPERATIONS
result +— ExecutionValidateDeposit(usr, ch, cl) =
PRE usr € UsersA ch € ChequeA cl € Clients THEN
IF ch € dom(deposit) THEN
result «<— wvalidateDeposit(ch) ||
history Validate Deposit(ch): = usr ||
OrderEzecution ValidateDeposit(ch): = currentOrder
ELSE result := Ko
END
END

Figure 4.14: Machine ActionsHistory

Instantiating these mapping rules gives the following B specification for Op-
eration ValidateDeposit (See Figure 4.14).

The history of executed actions being memorized, each secure activity of an
activity diagram is translated into a B operation as follows. Let us consider a
secure operation Opk preceded by a sequence of activities Op;(p;1, - - -
and followed by an activity Op;(p1, ...
lated as illustrated by Figure 4.15.

Regarding the initial operation (which is defined in the class diagram), this
operation has as additional parameters (py, ...

) Din)iz1.n
, Pn) (See figure 4.4). Then, Opk is trans-

, pn) all the parameters of the

104 Formal Development of a Secure Access Control Filter

access «— ADSecOpk(pi,...,pn, usr) =
PRE usr € UsersA typing of the input parameters THEN
IF A,_ ,,(pi1,- .., pin) € dom(historyOp;) A
Ni—1 ,_1 OrderEzecutionOp;(pi1, ..., pin) <
OrderEzxecutionOp;+1(Pit11, - - - 5 Pit1n) N
(p1,-..,pn) & dom(historyOp;) A
additional conditions
THEN access := granted
ELSE access := denied
END
END

Figure 4.15: Translation of a secure operation of an activity diagram

activities that appear in the activity diagram. Moreover, we have a parameter
usr denoting the user executing it. The operation returns granted if the previous
operations Op; are executed in the right order and the following Op,; action is
not executed yet. Additional conditions may be included in order to translate
constraints related to the users executing the operations. These conditions are
of the form:

historyOp;(pit, - - -, Pin) 0p historyAOp;(pi1, - .., Pjn)

where op="=" (resp. op="#") if the operations Op; and Op; should be ex-
ecuted by the same user (resp. different users). For instance, the activity
diagrams of Figure 4.5 and 4.6 modeling Rules 3 and 4 are translated into B in
Figure 4.16 and 4.17 respectively:

access «+— ADValidateDeposit(ch, cl, usr) =
PRE usr € UsersA ch € Cheques A cl € clients
THEN IF ch — cl € dom(historyCreateDeposit) N
usr = historyCreateDeposit(ch — cl)
THEN access := granted
ELSE access := denied
END
END

Figure 4.16: Translation of the activity diagram of Figure 4.5

The operations generated from the activity diagrams are defined in a new B
machine AD_Translation that sees Context, ActionsHistory and Secure UMLContext.

Generation of a B specification 105

access «— ADValidateDeposit(ch, cl, usr,bnk) =
PRE usr € UsersA ch € Cheques N
cl € Clients N\ bnk € Banks THEN
IF ch — cl € dom(historyCreateDeposit) N
usr € dom(historyJoinBank)A
ch — cl € dom(historyCreateDeposit) N\
usr ¢ dom(historyLeave Bank)\
OrderEzecutionJoinBank(usr, bnk) <
OrderEzecutionCreateDeposit(ch, cl)
THEN access := granted
ELSE access := denied
END
END

Figure 4.17: Translation of the activity diagram of Figure 4.6

4.4.5 Putting all the security and functional constraints
together

As we can remark, the B specification we have built makes a separation between
functional and static/dynamic security modeling. The advantage of such a sep-
aration is twofold. New security or functional requirements can be integrated
to the system without altering the existing B specification. The same remark
applies for the deletion of existing security /functional requirements. In both
cases, the modification is not very important since it would only affect a par-
ticular part of the specification. In addition, software designers having different
qualifications can be assigned to specific parts of the development.

Nevertheless, an additional step is needed to put all these parts together
in order to take a decision about the permission/prohibition of an access to a
specific user. Let us suppose, e.g., that a user has to validate a deposit. The
question is now which operation the user has to invoke:

e validateDeposit is not suitable since it does not take into account the
security rules at all,

o SecureValidateDeposit is not suitable since it does not take into account
either the functional constraints or the dynamic security rules,

e ADValidateDeposit is not suitable since it does not take into account either
the functional constraints or the static security rules,

106 Formal Development of a Secure Access Control Filter

Thus, we have to specify a new operation that permits/denies a user to exe-
cute an operation by taking all the security/functional constraints into account.
We call such an operation a filter which we develop using the B refinement.

The filter is defined in a new machine Secure_Filter that sees both Context
and SecureUMLContext. It also includes ActionsHistory (See Figure 4.18). At
the abstract level, the filter defines an operation FilterOp for each operation
Op defined in a class or an association. Compared with the operation Op, this
operation has an additional parameter usr to denote the user who is invoking
Op. It returns two values access and result: (access = granted) means that
all the static/dynamic security rules are fulfilled, otherwise denied is returned;
result = Ok means that the operation Op has been successfully executed, oth-
erwise Ko is returned. Of course, the values of access and result should imply
the following property that states that: the operation Op can be executed only
if the access is granted for the user:

result = Ok = access = granted

MACHINE
Secure_Filter
SEES Context, SecureUML Context
INCLUDES ActionsHistory
OPERATIONS
result, access < FilterValidateDeposit(usr, ch, cl,bnk)
PRE usr € Users A ch € Cheques N
cl € Clients N bnk € Banks THEN

~

CHOICE
result < ExecutionValidateDeposit(usr, ch, cl) ||
access : = granted
OR result : = Ko || access : = denied
END
END;
END

Figure 4.18: The abstract specification of Machine Secure_Filter

At the abstract level, the filter states that when Operation validateDeposit
is invoked by a user, two options are possible: either the access is denied and
the operation is not called at all (result = Ko) or the access is granted and the
result is equal to what the operation call returns. More precisely, the result
depends on the functional requirements. At this level, we do not specify how

Verification and validation 107

the access rights are defined for a user. It is the purpose of the refinement that
details the steps to follow to do that.

To give access to the resources of the system, the filter has to check both
static and dynamic security rules. If both rules are satisfied, the access is granted
and the user can safely invoke the operation, otherwise the access is denied and
nothing is done (See Figure 4.19).

result, access < FilterValidateDeposit(usr, ch, cl,bnk) =
VAR staticRights IN
staticRights < SecureValidateDeposit(usr);
IF staticRights = granted THEN
VAR dynamicRights IN
dynamicRights <+ ADValidateDeposit(ch, cl, usr);
IF dynamicRights = granted THEN
result < ExecutionValidateDeposit(usr, ch, cl,bnk)

ELSE result : = Ko

END;
access : = dynamicRights ;
END
ELSE access : = denied ; result : = Ko
END

END

Figure 4.19: The concrete specification of Machine Secure_Filter

Figure 4.20 gives the global architecture of the B development. It shows how,
in a first step, different aspects of the system are separately modeled. These
parts are then combined to coordinate them and ensure the correctness of the
global specification.

4.5 Verification and validation

To verify the correctness of the obtained B specification, a set of proof obliga-
tions have been generated using the Proof Obligations Generator of AtelierB
(GOP). Table 4.1 gives the statistics of the proof phase where:

1. PO: denotes the number of proof obligations generated for each machine,

2. AutoDischarged PO: denotes the number of proof obligations automati-
cally discharged by the provers of AtelierB without any human interven-
tion,

108 Formal Development of a Secure Access Control Filter

Graphical notations

Dynamic Security Requirements Static Security Requirements
(UML activity diagrams) (SecureUML diagram)
Translation . Translation
1Y Y
ActionsHistory » SecureUMLContext [
A /’ A
AD_Translation SecureUMLTranslation

Secure_Filter_r

¥

Secure_Filter

Formal notations (B)

——» Sees

——r=Includes

—+=> Refines

Figure 4.20: The architecture of the B specification

3. PO InterDischarged: denotes the number of proof obligations interac-
tively discharged. The intervention of the user is necessary for some proof
obligations to help the prover find the rules to apply to discharge them.
For the running case study, the prover fails to automatically discharge
only one proof obligation (for the machine Secure UMLTranslation) that
we have interactively proved.

Let us note that these proof obligations ensure that all the properties ex-
pressed as invariants are satisfied and the development of the filter by refinement
is also correct. However, we need to check that the dynamic security rules, we
have specified using UML activity diagrams, are also verified. For that purpose,
we animate the specification using the ProB [96] animator by applying several
scenarios like the following one to validate Rule 4:

(1) a deposit for a cheque ch is performed in a bank bk;
(2) a new user usr joins Bank bk;

(3) User usr connects to the system as a teller (his/her current role is TellerRole);

Conclusion 109

PO PO AutoDischarged PO InterDischarged

Context 0 0 0
FunctionalRequirement 7 7 0
Secure UMLContext 0 0 0
SecureUMLTranslation 4 3 1
ActionsHistory 9 9 0
AD_Translation 2 2 0
SecureFilter 1 1 0
SecureFilter_r 6 6 0

Table 4.1: Results of the proof phase

(4) the user usr tries to validate Cheque ch.

As expected, the last action fails since the access is denied. Indeed, User usr
joins the bank after the creation of the deposit. So, we have reversed actions
(1) and (2) and in that case the cheque has been successfully validated.

4.6 Conclusion

In this chapter, we present a formal approach to integrate functional and se-
curity requirements from the first design stages in the domain of Information
Systems. The approach is based on the modeling of the different aspects of
the system using UML-based notations, namely a class diagram to describe the
structure of the data, SecureUML to model static security rules and adapted
UML activity diagrams to deal with dynamic ones. Even if it is well established
that graphical notations are in favor of an intuitive and visual view of systems,
there is no tool that would permit to validate them. This is why we define a
set of formal translation rules to map them into a B specification on which ver-
ification/validation tools are used to ensure their correctness and consistency.
The use of a unifying language (B in our case) also permits to coordinate all
the requirements specified in different diagrams by designing a secure filter that
checks all these requirements before giving access to the resources of the system.

To make our approach workable, we have developed a tool that automates
all the translation rules and also the design of the filter. The tool has been im-
plemented as an eclipse plugin and uses the TOPCASED environment in order
to edit the different UML diagrams. As a next step, we will define refinement
rules to deploy the application as a relational application.

110 Formal Development of a Secure Access Control Filter

CHAPTER b5
A Tool for the Generation of a
Secure Access Control Filter

The contents of this chapter are reproduced from our paper [97]. My contribution
in this paper is the development of the tool that generates the B specification for
a secure information system from its different UML-based models. The paper is
submitted and accepted in the 10" IEEFE International Conference on Research
Challenges in Information Science took place in Grenoble, France on 1st-3rd
June 2016.

Contents

5.1 Introduction 0000, 112
5.2 Overviewofthetool. 113
5.3 Overview of the Bmethod 115
5.4 Graphical modeling of the application: case study 115
5.5 From graphical diagrams to B formal notations 121

5.5.1 Translation of the class diagram 121

5.5.2 Translation of the SECUREUML diagram 123

5.5.3 Translation of the secure UML activity diagram 124
5.6 The B specification of a secure filter 126
57 Conclusion. o L n e 127

Currently, it is well recognized that coupling graphical and formal notations
offers several advantages. Indeed, even if a graphical representation permits to

111

112 A Tool for the Generation of a Secure Access Control Filter

design a visual, synthetic and user-friendly view of the system, it may be source
of ambiguity and does not permit any formal verification. Formal methods
help to remedy these shortcomings by giving a precise semantics to graphical
notations such that it becomes possible to verify a large range of properties
and even to generate correct implementations. Nevertheless, users cannot take
a full advantage of the benefits of such a combination if it is not supported
by an automatic tool that liberates them from the tedious translation activity.
Following this direction, the present chapter describes the main functionalities
of a tool that automatically generates a formal secure access control filter for
information systems. The goal of the filter is to regulate the access to data of
an information system according to a set of static and dynamic rules. Data are
described using a UML class diagram, whereas the static and dynamic rules are
modeled using SECUREUML and UML activity diagrams respectively. Basi-
cally, the tool automatically generates the B formal specification corresponding
to these diagrams and the filter.

5.1 Introduction

Despite the well-recognized advantages that formal methods offer in terms of
precision and possibilities of correctness proof, their use are rather restricted
to critical systems involving human lives. The developer’s reluctance to use
this kind of methods can be explained (partly) by the strong mathematical
skills they require especially if formal specifications have to be written by hand.
Moreover even if there is no human risk, some systems, like information systems,
need to be secure. Indeed, an information system often interacts with humans
or other systems by exchanging information and any security breach may cause
serious and even irreversible consequences. The present chapter describes a tool,
in support of the use of formal methods that automatically generates a secure
filter for information systems. A secure filter permits to restrict access to a
system only to the allowed users according to a given security policy. Roughly
speaking, a security rule specifies, for an authenticated user, which actions are
allowed /forbidden according to his/her current role and context. These security
rules range from static rules related to a single system’s state to dynamic ones
involving its execution history. Furthermore, functional requirements should be
also taken into account.

To develop a secure filter for information systems, we adopted a coupling-
based approach that combines formal notations and graphical ones in order to
take advantage of both notations as demonstrated in several previous research
work [85,98-101]. On the one hand, graphical notations permit to design in-

Overview of the tool 113

tuitive and visual models and, on the other hand, formal methods bring the
precision and reasoning possibilities that are missing in graphical notations. Ba-
sically, we use a UML class diagram to describe the data of a system together
with its functional requirements, SECUREUML and UML activity diagrams to
describe the static and dynamic rules respectively. Then a set of transformation
rules permits to translate these diagrams into a B specification. The goal of the
current chapter is to present a tool that automates such transformations in or-
der to make our approach workable and free software designers from a tedious
and error-prone activity.

The sequel of the chapter is structured as follows. The next section gives
an overview of the functionalities of the tool. Section 5.3 briefly introduces
the B method. The modeling of the different diagrams is presented in Section
5.4 throughout a case study. The B specification produced by the tool on
these diagrams is presented in Section 5.5. In Section 5.6, we describe how the
generated B specification is combined to generate a secure filter that regulates
the access to information of a system by given access exclusively to authorized
users. Finally, we conclude and present some future work.

5.2 Overview of the tool

A team from the French LIG laboratory has developed an Eclipse platform
tool, called BAMSECURE [102], to extract B specifications from functional UML
models enhanced by an RBAC access control policy [82]. With this tool data
are described by a class diagram and static secure rules by a SECUREUML
diagram. However, the following weaknesses can be raised:

1. translation into B specifications of the UML association class concept is
not supported.

2. translation of SECUREUML diagrams follows an offensive style which may
cause security issues if the adequate conditions are not fulfilled.

3. dynamic security rules are not considered at all.

The present chapter suggests to extend this tool by adapting certain transla-
tion rules and introducing new ones in order to overcome the above limitations.
Figure 5.1 depicts the workflow followed by the extended tool to generate a
secure filter from UML notation-based diagrams describing the data and the
security rules of a system. Mainly, four phases are distinguished:

114 A Tool for the Generation of a Secure Access Control Filter

1. constructing the class diagram to describe the data and the functional
requirements of a system.

2. generating a B specification from the previous class diagram.

3. constructing the SECUREUMUL and activity diagrams that model both the
static and dynamic security constraints; the tool checks the consistency
of the SECUREUML and activity diagrams with respect to the previous
B specification, that is, each operation used in such diagrams must refer
to a B operation of the class diagram.

4. generating a B specification from the previously checked diagrams.

Input
Class diagram SecureUML diagram Activity diagram
(Functional requirements}) (Static security requirements) (Dynamic security requirements)
)eck operstiol ieck operatior
existence in B existence in B
specificaion specificaion
Output
Sl anT
B functional specification B specification of SecureUML| B specification of ADs
B filter specification
:
!
>
1
i
B abstract filter specification
£&—— generate Famannnnn reference y=1== refine

Figure 5.1: Translation workflow

The rest of the chapter illustrates the use of the tool throughout a case study
presented in the next section.

Overview of the B method 115

5.3 Overview of the B method

Introduced by Jean-Raymond Abrial [78], B is a formal method dedicated to
developing safe systems. B specifications are organized in abstract machines.
Each machine contains state variables on which operations act, and an invariant
constraining the variables. Operations are specified in the Generalized Substi-
tution Language. A substitution is like an assignment statement. It allows us
to identify which variables are modified by an operation without mentioning
the variables not modified. A preconditioned substitution is of the form (PRE
P THEN S END) where P is a predicate, and S a substitution. When P
holds, the substitution is executed, otherwise nothing can be ensured. For in-
stance, the substitution S might not terminate or might violate the invariant.
The B refinement is the process of transforming, by successive steps, a specifi-
cation (variables and operations) into a less abstract one. The last refinement
step, called implementation, aims at obtaining data and substitutions close to
those of a programming language such that the translation into the chosen tar-
get language of the data and control structures (used in this level) must be a
straightforward task. Both specification and refinement steps give rise to proof
obligations. At the abstract level, proof obligations ensure that each operation
maintains the invariant of the system, whereas at the refinement level, they
ensure that the transformation preserves the properties of the abstract level.

5.4 Graphical modeling of the application: case
study

To illustrate the use of the tool to generate a secure filter, we consider a case
study, from the medical domain, that deals with a set of hospitals where pa-
tients can be treated by doctors. Each patient, identified by his/her social
security number, is described by an address and has a unique medical record
that contains information related to the patient. Medical records are shared by
all hospitals and are thus independent from any hospital. Patients may make
several stays in different hospitals. Each hospital stay is stored with its entry
date. During these stays, patients receive treatments by doctors. Figure 5.2
depicts the edition of the class diagram under the BAMSECURE platform. As
we can remark, unfortunately, the parameters of the operations of an associa-
tion class cannot be displayed; they can be found in the outline menu of the
associated class association (See Figure 5.2).

When a patient arrives in a hospital, a secretary registers his/her admission

A Tool for the Generation of a Secure Access Control Filter

oty Hospitalurnddi 2

t Scnpls SmartiVT B

Hospital Haspital/ Modek Hospital umldi

Fun Windew Help

Q-

auf Srnvedly

B 0- Q-

> 2F| v

EH -

=

package Funchonal }

Patient

(= Objects

[Package

+snn ; Integer
+adaess :Siing

+patient

smedicalRecond

=i Pan EEM '

& Topcased M...

AH(Em &~ =0

B2 Outline =

*l> BAMSecureMndel

* |ackager> BAMSecurebodel

MedicalRecord
+ dota - Sxing

1 MuodcalBy

[rrr

[H class

B2 Data Type

b Pusuiation

£ Association
Class

= hmtae
(= Comment &

I=3 Comment

o Comment
finke

sk Comatrsind

O Properties I3

vpatient |
{ unsque }

+hospital
{umique b,

=

Hospital Stay
+ daluin
+ Py
+adrssion)
+ delatetospialStay ()
+ makaFayment ()

1
0. BelnngingHosgpilaln

+hospital

<Operation> admission (pp : Paticnt, hh : Hospital)

FPaameters

Stereatypes
Steseotype Allibutes

Direction Heme
2

in hh

Type
Fatient
Hospitsl

renrdO]

))

~doctar

17| isValid ; Booleon
+waliddali {mr ModicalRocord)

Doctor

o +jointfospial {dd : Doctos, hh: Fospital)

+leaveiospital (dd : Dactar)

<Packages Functicnal
] <Class> MedicalReeond
] sClasss Patient
] sClasss Docter
] <Class> Haspital
[<Associstion Class> HospitalStay
1 <Propertys dateln - Integer
1 <Propertys itPayed : Boclesn
& <Operstion> admission (pp : Patient, hih : Hospital)
i <Operation> deletetlospitalStay (pp : Patient, hh : Hospital)
& <Operations makePayrnent (pp - Patient, hh : Hospitel)
i <Propertys patient: Patient [0.]
i <Propertys hospitel : Hospital [0.1
/ <hssocistions MedicallecordOf
<hssocistions BelongngHospital Of
¥, Class Diagram Functional
<Package» Policy
«<Packages AL

7| Class Diagram Hospitsl

=0

=

| Delete|

salide Apghication>
solde Apglication» SecureD

sulide Application> UML_CO_AC_prafile
anal Resources

v

case sensitive

-

@f & B |

Figure 5.2: Editing a class diagram under the BAMSECURE platform

by storing his/her arrival date.

During his/her stay, the patient undergoes

medical examinations whose results are reported in his/her medical record. Such
stored data should be validated by a doctor before the patient discharges. This
arises the following security rules:

Rule 1 Only Secretaries are authorized to make the admission (resp. make pay-
ment) of a patient (operations admission/makePayment),

Rule 2 The admission and payment processes of each hospital stay should be
made by the same secretary,

Rule 3 Only Doctors are authorized to validate medical records of patients (op-
eration validate),

Rule 4 To validate a medical record, the doctor should be present, in the hospital,
since the arrival time of the patient.

Analyzing the above rules gives:

(i) Rules 1 and 3 specify which roles the user must play to perform the corre-
sponding actions. Such security rules are static since they do not depend
on the past or/and the future execution of the system.

Graphical modeling of the application: case study 117

User Class Q.1
1% 0..1
1..* 1..* 1.
. 1..* 1..* .
Role L.* 1..* | PermissionClass Operation
1. L.*
0..1

ClassAssociation | 0--1

Context PermissionClass
Inv Class. notEmpty() XOR ClassAssociation. notEmpty()

Context PermissionClass
Inv Class. notEmpty() implies Class.Operation—includesAll{Operation) and

ClassAssociation. notEmpty() implies ClassAssociation.Operation—includesAll(Operation)

Figure 5.3: The SecureUML metamodel (adapted from [17])

(ii)) Rules 2 and 4 are dynamic rules since the permission of executing an
action depends on an action executed in the past.

To give a visual representation of these rules, we describe static security rules
with a SecureUML diagram whereas dynamic ones are modeled with an adapted
version of UML activity diagrams. Roughly speaking, SecureUML allows to ex-
tend a UML functional model with concepts of role-based access control models
(RBAC [82]) in order to specify the different roles that a user can play and their
associated permissions on the resources of the system.

Figure 5.3 shows the metamodel used by the tool for the SecureUML models.
Basically, a SecureUML model consists of a set of roles. Each role may be played
by several users; each user can play several roles. Each role is associated with one
to several permission classes. Each permission class is related to either a class
or a class association: expressed by the UML multiplicities and the first OCL
constraint. Also, each permission class concerns one to several operations of the
related class (resp. class association): expressed by the UML multiplicities and
the second OCL constraint.

According to this metamodel, Figure 5.4 depicts the SecureUML model of the

118 A Tool for the Generation of a Secure Access Control Filter

qi]%?;:} z<role=> Deposit
TellerRole -status
ST !,f rd +ereateDeposit(ch.cl)
Paul _— +validateDeposit{ch)
<<panmissions=:= +varifyDeposit(ch)

TellerPerm Masr>*|+saveDepositich)
+ereateDepositich,e) [T | oo <<permission=>
+validateDeposit(ch) \ ZZrole=> AdvisorPerm
+saveDepositich) AdvisorRole | [+createDepositich,cl)

+verifyDepositich)
+saveDepositich)

Figure 5.4: Editing a SecureUML diagram under the BAMSECURE platform

case study. Two roles DoctorRole and SecretaryRole are defined with their re-
spective permissions: a user with the role DoctorRole (resp. SecretaryRole) has
the permission to validate a medical record (resp. to make admissions/delete-
HospitalStay/payments). Finally, specific users are attached to roles to state
that they can play it: for instance, the users Mary and Jack (resp. Paul and
Bob) can play the role SecretaryRole (resp. DoctorRole); thus they can execute
all the actions permitted to the related role.

As stated before, dynamic security rules are modeled using specialized UML
activity diagrams. Recall that UML activity diagrams are used to describe
dynamic aspects of systems by depicting the control flow from one activity to
another as sequencing, branching, parallel flow, swimlanes, etc. To use them to
model dynamic security rules, we make some assumptions on these diagrams.
Indeed, we consider that activities, appearing in a secure activity diagram,
refer to the operations of classes/associations, whereas swimlanes denote the
actors executing them. Moreover, a dynamic security rule is modeled by a
partial activity diagram to show, on the one hand, the execution order of the
operations and, on the other hand, the constraints on the users executing them.
To do that, the tool is based on the secure UML activity metamodel depicted
in Figure 5.5. A secure activity diagram is composed of a set of operations that
may be designed in swimlanes to state the user that should execute them. An
operation may be preceded/followed by another operation. As for SECUREUML
diagrams, each operation must refer to either an operation of a class or a class
association. Finally, the last OCL constraint imposes a single secured operation
for each secure activity diagram.

Basically, Figures 5.6 and 5.7 are interpreted as follows:

1. each of these diagrams has a unique operation to which a stereotype
<<Secure>> is attached. This means that any execution constraints will
be put on this operation: Operations makePayment and validate are to

Graphical modeling of the application: case study 119

Swimlane
0.1
contains
isToSecure : BOOL L.* isPreceded
. 0..1
Operation
SecureActivityDiagram 1.2 - 1.* ;I
as
Isfollowed
0..1 0.1
Class ClassAssociation

Context Operation
Inv Class. notEmpty() XOR ClassAssociation. notEmpty()
Context Operation
Inv Class. notEmpty() implies Class.Operations—includes(Operation) and
ClassAssociation. notEmpty() implies ClassAssociation.Operations— includes(Operation)
Context SecureActivityDiagram Inv contains.alllnstances()—select(o | o.isToSecure) —size()=1

Figure 5.5: The secure UML activity metamodel

be secure, that is additional conditions should be verified before executing
them,

2. all the operations occurring before the operation to secure have to be
executed before it: the operation makePayment cannot be executed before
the operation admission. Also, to validate a medical record, the doctor
must have joined the hospital before the patient’s arrival,

3. the operation that should not happen before the operation to secure is
placed after it using a control flow: a doctor cannot validate a medical
record after leaving the hospital.

4. if the users that perform the operations Op; and Opy should be different
(resp. the same), then we put both operations in different (resp. the
same) swimlanes: the operations admission and makePayment should be
executed by the same secretary.

Under the tool, it is not possible to specify expressions as input parameters
of an activity. Indeed in Figure 5.7, we would like to specify that the input

120 A Tool for the Generation of a Secure Access Control Filter

SmartQVT Bad Smells Run Window Help

B e & & Java

& D }
e | o el 27 % | S| 100% -] @5 ByResoure

Hospital/Hospital/Models/Hospital.umldi
[Select activity secureAD: diagram rule2)

roa
v Marquee

[/ Note

(= Common P User: SecretaryFole

= Activity Partition

(== Control o
@ Initial Mode
01 Decision Node

2% Merge Node
| e, DS
(= Actions

(= Object
(== Connections

admission

{pp:Patienthh:Hospital)

<<Securerr

makePayrment
Patienthh:Hospital
= Comment &0 pp:Pati hh:Hospital
=1 Comment

" Comment Link

= Constraint B

Figure 5.6: Example of dynamic security rules modeled by activity diagrams:
Rule 2

ﬁnmmwm-mmmwmumm

MR R Q- B -0-Q- BHG- SPr M GcPeeEr - g Oan @) 7
P AT a|EmE s S sE| W B Topeased M.

o (B e [et [secmespec Aopt | @ AD Tramisionanch | =0 (B utine 5., ARB[EEE 0]
et ot o el £

[Setect activity sacuraAlr diagram ndad | = || <Peckages BiMSecurehodel
[<Packiges Functionsl

vl .
r:"?* ||| 2 <Packages Posicy
= =1 | P <Packages AD
(& Common @ jonkaspital . & 4] bty secureAD)
= [dd Dy pial] 4 & <Property> Propertyl : SecretanRole
—— dd: Docirfale i <Propetyr Properyl : Dectorfole
& Contrsl = 3 = [8) <Call Operation Action> admasicn
@ Insiad Nede - S () <comcuran> <Call Operation Actions makePay
& Datition Made admission tuSecurais (8] «Cal Operation Actions jenbospasl
bl (g Paionth Hospnal) validetn o (8 <<secures » <Call Operation Actions validate |
._u:m imeMBdicaiacard) + BAnnoctaton sdditions¥enstrents
. : 4 4 Thnnctaticn replacedParameters
2 Obeect % Eitring To String Map Entry pp
(2 Connectrem . = elngas Fins ma
(24 Comenent . "’:‘;’;ﬂ"“ (&} <Cal Operstion fction> sdrintion
123 Comment i " (8] <Call Uperation Action» lesveHospral

2Control Flows CoetrelFiswl

' Comment Link ! = fr 1 = Conbrol Flows Cotrelfiend
= . - - # <Cantrol Flow> ContrelPlond
[Properties 11 o) # sContiol Flaws CeetrsiPiowd
= | = cActivity Partitions User
+ EString To String Map Entry pp = «hetiity Partition> dd
2
= ; g mmm
: ey ¥ pp ¥ o el
L Value 1% MadicaRecondOf- (i) ik — 3

‘ o o || eeareh

Figure 5.7: Example of dynamic security rules modeled by activity diagrams:
Rule 4

From graphical diagrams to B formal notations 121

parameter mr denotes the medical record of the patient pp. To do that, we
use the annotation facility to introduce such information in the diagram. As
illustrated by Figure 5.7, the common parameters appearing in the different
activities denote the same object that may be a value of a given type, a user of
a given role or/and a object of a given class.

5.5 From graphical diagrams to B formal nota-
tions

In this section, we describe the different steps followed by our tool to map
the previous graphical diagrams into a B formal specification. The translation
proceeds in three steps corresponding to the different diagrams. A detailed
description of the translation rules can be found in [103].

5.5.1 Translation of the class diagram

To translate a class diagram into a B specification, the tool follows mainly the
rules defined in [90,91]. For each class C, we define a given set S¢ and a
variable V¢ to respectively represent the set of all possible instances and the
existing ones at each moment. Each attribute is mapped into a function from
Ve to its type, the function modeling the key of the class is an injection. An
association class involving two classes () and (3 is mapped into a B variable
defined as a relation between V¢, and V¢,. According to its multiplicities, this
association becomes a partial function (+), a total function (—), an injection
(—), etc. Initially, the tool does not adequately support the B translation of
associations with attributes (called association class): it is translated like a
class and its attributes are completely ignored. So we have extended it with the
previous rules by considering the attributes of an association class like those of a
classical class. To ease the integration of the security rules, this B specification
is structured as follows: all the derived given sets are included into a machine
called Context that can be seen (Clause SEES) by any machine to have read
access to them. Variables and operations are defined in a separate machine
that sees the machine Context. Figure 5.8 shows a part of the B specification
generated for the case study.

The machine Functional_Requirement specifies a set of operations of the
classes/associations. Such operations permit, for instance, to add/delete an in-
stance and also to update the attribute values. Contrary to the translation rules
defined in [90,91], a defensive strategy is adopted in the present chapter for the

122

A Tool for the Generation of a Secure Access Control Filter

21, Hospital3tay isPayed
. Patient_ snn

INVARIANT

ZeMedicalRecord <: MEDICALRECORD
Patient <: PATIENT

Docror <: DOCTOR

Hospital <: HOSPITAL

HospitalStay : Patient <-> Hospital
MedicalRecordOf : Patient >->> MedicalRecord
BelongingHospitalOf : Doctor +->> Hospital
MedicalRecord data : MedicalRecord --> SIR
MedicalRecord isValid : MedicalRecord —-> BOOL
Patient address : Patient --> STR
HospitalStay dateln : HospitalStay --> HAT

Z27&

"

moeonoRm o R

j6&

ok Hospital.umidi | [J] runjava |L—J Fumet
File Edit Navigate Search Project Scripts SmartQVT Bad Smells Run Window Help 1
BrEsl B Qr i~ = SMACHINE
v &l et Oow - 4 Functional Requirement
- ’ s S5EES
- %5 Navigator B Contetimch 5 _m runjave g CoRERkE
= BAMSecureProfiles 7 1 -
@ bc‘ frlig.vasco.selkis.ctm.example.umizb = 2 EVARIABLES
1= frlig.vasco.selkis.security. model.AC_Mod SMACHINE =
4 1= Hospital 4 Context MedicalRecord
(= Hospital 55EIS Patient
4 5 Models & SIR acpax
a@b 7 : MEDICALRECORD e
2 Contetmch : ; PATIENT 3'-‘:1'_-‘“:;2"—35"10:
- : : DOCTOR edica. COr
= Functional_Requirement.mch 4 SO ETRa BelongingHospitalOf
[Hospitalb f EXECUTION ={0k, Ko} MedicalRecord data
p L e oA i MedicalRecord iaValid
w3 Hospital.umidi ;dﬂ run.java S
Patient_ address

HospitalStay_ dateln
HospitalStay isPayed
Patient_ snn

Figure 5.8: Translation of the class diagram

(4 Topcased Modeling - Hosp[lalfHos;;qitalf'in'udelifhfFuncﬁunal_REquirementmch - Eclipse Platform

Sl

&
O

il

File Edit Mavigate Search Project Scripts SmartQVT Bad Smells Run Window Help
HrHEe R iy iGridr BN HFre oo B ¥5-Debug [laTL
|] runjava ;}l'!Hospita[.umldi || Functional Re ent.n 50
2 1553result<--HospitalStay makePayment(pp , hh)= -
[@ 154PRE
| 155 pp: PATIENT & hh: HOSPITAL
| = 156THEN
o 157 TE D
= 158 pp : Patient & hh : Hospital
159 & pp|->hh : HospitalStay /* Precondition generated from annotation*/
160 THEN
161 HospitalStay isPayed(pp|->hh) := TRUE /* Body generated from annotation */ ||
162 result := Ok
163 ELSE
164 result := Ko
165 END
1e6ENT|
167 ;
A0 [] 3
T] T

Figure 5.9: Generation of the B operation makePayment of the class Hospital-

Stay

From graphical diagrams to B formal notations 123

generation of these operations since we take all the possible parameter values
into account. Basically, only the type of the input parameters is assumed in the
precondition of an operation, all the other conditions required for its correct
execution are checked in its body using an IF substitution: if the conditions are
fulfilled then the state of the system evolves otherwise it remains unchangeable.
In both cases, a value is returned to inform the user about the result of the ex-
ecution of the operation. Figure 5.9 depicts the B specification of the operation
makePayment defined on the association class HospitalStay. This operation
assumes the type of its input parameter (pp € PATIENT N hh € HOSPITAL),
then it verifies if the related hospital stay exists: if so, the status isPayed is
updated to TRUFE and the user is informed that the state of the system has
been updated (result := Ok). Otherwise, nothing is done and the value Ko is
returned. Of course, the substitution that updates the variables is included as
annotations for the operation in the class diagram.

5.5.2 Translation of the SECUREUML diagram

The BAMSECURE tool implements a translation of a SECUREUML diagram into
B. Basically, each operation Op of the class diagram to which a permission is
granted to a role R, an operation SecureOp is defined. Compared with Op, this
operation has an additional parameter that denotes the user executing it. The
body of the operation consists in executing Op under the precondition that the
related user has the role R. However, this is not faithful to the semantics of the
SecureUML diagram that only states which role can execute a given operation
but does not mean the actual execution of the operation. Indeed, the actual
execution of the operation can require other conditions like dynamic security
rules. Moreover, since the permission of the role to execute the operation Op is
checked in the precondition, the user still can call the operation even if his/her
role is not allowed to do that! This is why we have implemented our own rules
as follows.

First, we define an additional context to model the different roles, the per-
missions granted to them but also the users associated to each role (See Figure
5.10). The context being defined, this latter is seen by a new machine that trans-
lates each operation SecureOp as follows: the operation has a single parameter
denoting the user who wants to execute Op. The precondition of SecureOp
simply assumes the right type of the parameter, then checks if the current role
of the user permits to execute Op. If so, the operation returns granted other-
wise denied is returned. Figure 5.11 depicts the B specification of the operation
SecuremakePayment. Of course, we have specified another operation that per-

124 A Tool for the Generation of a Secure Access Control Filter

phL e

=1 [@ Topeama it

Figure 5.10: The B context machine of the SecureUML diagram of Figure 5.4

mits for a user to play a given role.

5.5.3 Translation of the secure UML activity diagram

As illustrated through the case study, a secure UML activity diagram states
constraints on the execution order of some operations. This is why we need
to store the moment when each operation occurs. Thus for each operation
op(p1, ..., pn), we define two additional variables historyOp and orderEzecutionOp
that store its corresponding execution occurrences together with the user that
executes it and the execution time. Also, we define a new operation ADOp
that has the same parameters as Op plus a new parameter usr; it checks
the same functional constraints (using the IF substitution). If the functional
constraints required for the execution of Op are fulfilled, it calls the opera-
tion Op and updates the variables historyOp and orderEzecutionOp using the
value of the clock of the system currentOrder. This B specification is put in
a new machine ActionsHistory that includes (INCLUDES of B) the machine
Functional _Requirement in order to make the operation calls possible. Figure
5.12 depicts such a specification for the operation makePayment.

The translation of each secure UML activity diagram produces a single B
operation ADOp that corresponds to the operation to secure Op. This operation
has as parameters all the parameters appearing in the different operations of the
activity diagram together with the possible actors appearing in the swimlanes
to state who executes the operations. In the precondition, we check the typing
of the parameters, the body of the operation consists in returning the execution

From graphical diagrams to B formal notations

125

[Topcased Modeling - Hospital/Hospital/Models/b/SecureUMLTranslation.mch - Eclipse Platform

File Edit Mavigate Search Project Scripts SmartQVT Bad Smells Run Window Help
MrEHS R Ier i o iBE N e e

8 access:=denied

T72ConnectUser (usr, role)=

T3PRE

74 usr : Users & role : Roles &

15 usr|-»>role : PermittedUsersRoles
TETHEN

CurrentRole (usr) :=role

TSEND

-] runjava i, Hospital.umldi (Secure_Filter.mch l__ IMLTrans|
@ | ccess<--SecureHospitalStay makePayment (usr)=
| S9PRE
=] usr : Users
61THEN
62 IF.
= a3 usr : dom({CurrentRole) &
(ol 64 HospitalStay makePayment Label : Permissions(CurrentRole(usr))
| &5 THEN
66 access:=granted
&7 ELSE

4| i

m

Figure 5.11: The B modeling of the static secure operation corresponding to

the operation makePayment of Figure 5.4

B4 Topcased Modeling - Hospital/Hospital/Models/b/ActionsHistory.mch - Eclipse Platform

File Edit Mavigate Search Project Scripts SmartQVT BadSmells Run Window Help
MrH8 R ier-idris Bl i H-F-eeD

1 runjava :',ﬁ*; Hospital.umldi [SecureUMLTranslation.mch

=

) result<-— ExecutionHospitalStay makePayment (pp, hh, usr)=
I pp: PATIENT & hh: HOSPITAL
1= & currentOrder+l: NAT

o= & usr : Users

pp : Patient &
hh : Hospital

result<-- HospitalStay makePayment(pp, hh} ||
historyHospitalStay makePayment (pp, hh) := usr ||

currentQrder := currentCrder + 1
ELSE
result:=Ko

Ik

& ppl->hh : HospitalStay /* Precondition generated from annotation#*/

orderExecutionHospitalStay makePayment (pp, hh) := currentOrder ||

m

Figure 5.12: The B specification of the history execution of the operation

makePayment

126 A Tool for the Generation of a Secure Access Control Filter

B4 Topcased Modeling - Hospital/Hospital/Models/bfAD_Translaticn.mch - Eclipse Pla... /=2 G X
File Edit Navigate Search Project Scripts SmartQVT Bad Smells Run Window Help

Cr-H&l® Q- Q- ¥~ BN E %> Debug y
Plx @ re ooy a1t & Java

JB run.java e Hospital.umldi [5| AD_Translation.mch Eﬂl =&

-~

289access<--ADHospitalStay makePayment (pp, hh, usr)= =
30PRE e
31 pp: PATIENT & hh: HOSPITAL & wusr : Users

= 32THEN

L)

3 IFE
34 pp|->hh : dom(historyHospitalStay admission)
2o & usr = historyHospitalStay admission(pp, hh)

THEN
3B access = granted
385, ELSE
40 access = denied

m

< m o 3

Figure 5.13: The B translation of the activity diagram of Figure 5.6

result of the corresponding operation Op if the other operations of the diagram
are executed in the right order. Otherwise, Ko is returned. Figure 5.13 depicts
the operation generated for the secure operation makePayment of the activity
diagram of Figure 5.6.

5.6 The B specification of a secure filter

As we can remark, the B specification we have built makes a separation between
functional and static/dynamic security modeling. This is why an additional
step is needed to put all these parts together in order to take a decision about
the permission/prohibition of an access to a specific user. Indeed among the
operations we have derived right now, none of them takes all the constraints
into account. Thus, we have to specify a new operation that permits/denies a
user to execute an operation by taking all the security/functional constraints
into account. We call such an operation a filter which we develop using the B
refinement.

The filter is defined in a new machine Secure_Filter that sees both Context
and SecureUMLContext. It also includes ActionsHistory. At the abstract level,
the filter defines an operation FilterOp for each operation Op defined in a class

Conclusion 127

B# Topcased Modeling - Hospital/Hospital/Models/b/Secure_Filter.mch - Eclipse Platform = i;h,l
File Edit Mavigate Search Project Scripts SmartQVT Bad Smells Run Window Help
Ci-H & @ Q- Q-:&L- EM B %5 Debug B
R W= = A &'lava
I_ﬂ run.java J',?ﬁ Hospital.umidi || secure Filter.mch &2 =&
23 - :l
@ Z4result, access<--FilterHospitalStay makePayment(pp, hh, usr)= o=
Z5PRE
= 26 pp: PATIENT & hh: HOSPITAL & usr : Users
27THEN
28 CHCICE
= 29 result<--ExecutionHospitalStay_ makePayment (op, hh, usr)]|
o 30 access = granted
1 CR 2
32 result:=Ko || acecess := denied T
3 END |
Z4END =
M
o . . ;

Figure 5.14: The B specification of the filter for the operation makePayment

or an association class. Compared with the operation Op, this operation has an
additional parameter usr to denote the user who is invoking Op. It returns two
values access and result: (access = granted) means that all the static/dynamic
security rules are fulfilled, otherwise denied is returned; result = Ok means that
the operation Op has been successfully executed, otherwise Ko is returned (See
Figure 5.14).

At the abstract level, the filter states that when Operation makePayment
is invoked by a user, two options are possible: either the access is denied and
the operation is not called at all (result = Ko) or the access is granted and the
result is equal to what the operation call returns. More precisely, the result
depends on the functional requirements. At this level, we do not specify how
the access rights are defined for a user. It is the purpose of the refinement that
details the steps to follow to do that.

To give access to the resources of the system, the filter has to check both
static and dynamic security rules. If both rules are satisfied, the access is granted
and the user can safely invoke the operation, otherwise the access is denied and
nothing is done (See Figure 5.15).

5.7 Conclusion

This chapter describes the tool, we have developed, to support the formal gen-
eration of a secure access control filter for information systems. It implements

128 A Tool for the Generation of a Secure Access Control Filter

B4 Topcased Medeling - Hospital/Hospital/Models/b/Secure_Filter_rmch - Eclipse Platform =

File Edit Mavigate Search Project Scripts SmartQVT Bad Smells Run Window Help

CrEl® @B Qi iGr A BN i HrF-oarD- %> Debug
I‘ﬂ run.java s Hospital.umldi [Secure Filter_r.mch 52 3 S
oz]
Q 3lresult, access<--FilterHospitalStay makePayment (pp, hh, usrc)= - O-
o T o=

VAR staticRights IN
33 staticRights<--SecureHospitalStay makePayment (usr);
= 34 IF staticRights = granted THEN
35 VAR dynamicRights IN
dynamicRights<--ADHospitalStay_ makePayment (pp, hh, usr);
IF dynamicRights = granted THEN
result<--ExecutionHospitalStay makePayment (pp, hh, usr
ELSE
result := Ko
END;
access := dynamicRights
END
ELSE
access := denied ;
result := Ko
END
END -
|

=

m

Figure 5.15: The concrete specification of the filter of the operation
makePayment

translation rules that produce a B formal specification from the UML model-
ing of the functionalities and the security rules of a system. Basically, data
are represented with a class diagram whereas the static and dynamic security
rules are modeled by SECUREUML and specialized UML activity diagrams.
The tool is developed in the JAVA language and uses the TOPCASED frame-
work for the construction of the different UML diagrams. We did not build the
tool from scratch but we have extended/adapted the BAMSECURE tool built
by a team from the French LIG laboratory. In fact, we have augmented the
tool by translation rules to take class associations into account. We have also
adapted the translation rules related to the SECUREUML diagrams by adopt-
ing a defensive style mapping into a B specification. Finally, the modeling and
the translation to B of secure activity diagrams have been introduced to sup-
port secure dynamic rules. The development of the tool took us five months.
This time includes the initiation to the tool whereas no documentation is avail-
able. Indeed, the extension of the tool required a careful study of the code in
order to extend it. But this is compensated by the significant time-saving for
users when automatically generating several secure filters. Indeed, the generated
B specification is correctly checked using AtelierB [80] without any additional
modification. Moreover, most proofs are automatically discharged: the abstract
and the refinement specification of the filter are automatically proved.

Conclusion 129

As a next step, we plan to extend the tool to support more UML concepts like
inheritance and aggregation/composition. We would like also to define refine-
ment rules to generate an implementation in a relational database environment.

130 A Tool for the Generation of a Secure Access Control Filter

CHAPTER 6

A Formal Approach to Derive an
AOP-Based Implementation of a
Secure Access Control Filter

Contents
6.1 Introduction, 132
6.2 The case study: a purchase order system 134
6.3 A formal B specification of a secure filter 136
6.3.1 Translation of the class diagram into a B specification . . . 136

6.3.2 Translation of the SecureUML diagram into a B specification 137

6.3.3 Translation of the secure UML activity diagrams into a B

specification 139
6.3.4 Designing the secure filter 140
6.4 From an abstract B specification to a relational-like B
implementation 0000000, 141
6.4.1 Data refinement L. 141
6.4.2 Behavioral refinement 143
6.5 The AspectJ implementation of the application 146
6.5.1 Transformation rules of B into JAVA/SQL 148
6.5.2 Deployment of the class diagram 151
6.5.2.1 Definition of the tables and the associated JAVA
methods and stored procedures 153

6.5.2.2 Translation of the operations of the class diagram 154
6.5.3 Deployment of the SecureUML diagram 155

131

A Formal Approach to Derive an AOP-Based Implementation of a Secure

132 Access Control Filter
6.5.4 Deployment of the secure activity diagrams 158
6.5.4.1 Definition of the log tables and the associated JAVA
classes 158

6.5.4.2 Translation of the secure operations of the secure

activity diagrams 160

6.5.4.3 Translation of the log operations 161

6.5.5 Deployment of the filter 161

6.6 Tool support, 163
6.6.1 Translating the B specification of the class diagram 163

6.6.2 Translating the B specification of the SecureUML diagram . 164
6.6.3 Translating the B specification of the secure activity diagram166
6.6.4 Translation of the access control filter 167
6.7 Conclusion. i e 168

This chapter presents a formal approach for the development of a secure filter
that regulates the access to sensitive resources of information systems. This
approach consists of three complementary steps. Designers start by modeling
the functionalities of the system and its security requirements using dedicated
UML diagrams. These diagrams are then automatically translated into a B
specification suitable not only for reasoning about data integrity checking but
also for the derivation of a trustworthy implementation. In a last step, the B
implementation is translated into JAVA /SQL code following the aspect oriented
programming paradigm, which allows a separation of concerns by making a clear
distinction between functional and security aspects. This chapter focuses more
on the two last steps by describing the refinement process that permits to obtain
a relational-like B implementation and presenting a set of rules to translate it
into an AspectJ implementation connected to the SQL Server (release 2014)
relational database system.

6.1 Introduction

Ensuring the security of the data part of an information system becomes a
necessity, especially because systems are nowadays at the heart of critical ap-
plications not necessarily for human risks but at least for economic interests.
Indeed, consequences of some security breaches might be irreversible and even

Introduction 133

lead to lawsuits. Such a risk increases significantly with the advent of the web
through which most organizations offer accesses to their information systems in
order to make things easier for their users.

In the previous chapter (Chapter 5), we started to provide an answer for the
data security problem by proposing a formal approach for the development of
a filter that controls accesses to data of a system according to a set of security
rules that specify, for an authenticated user, which actions are allowed /forbid-
den according to his/her current role and context. The security rules that have
been considered range from static rules to dynamic ones. Static rules refer to a
single moment of the system whereas dynamic ones require to take the execu-
tion history of the system into account, that is the actions already performed in
the system in general or by a given user in particular. If we consider the case of
a hospital, a static rule will be, for instance, only a person with the role Doctor
can make a diagnosis, whereas a dynamic rule will be, for example, the person
who performs a laboratory test cannot validate it. In addition to these kinds of
rules, we have also to consider the usual functional constraints like, for instance,
the maximum number of patients each doctor can treat. Basically, the approach
consists in designing data together with functional requirements using a UML
class diagram, the static and dynamic security rules using a SecureUML [77]
diagram and dedicated UML activity diagrams respectively. These diagrams
are then mapped into a formal specification for verification purpose. We have
chosen the B method [78] because of its powerful support tools (provers, ani-
mators, etc.). As some constraints on an operation execution may be specified
in different diagrams, a filter is built to coordinate all these constraints and to
make possible the execution of the operation only if they are all fulfilled.

Even if the obtained B specification permits to verify some properties and
also to simulate the system to build, it can neither be executed nor straight-
forwardly translated into an executable code. This is why a refinement step is
required to bridge the gap between the B abstract level and the chosen target
implementation. We have already defined such a process for the development of
trustworthy database applications that satisfy integrity constraints [104]. The
approach presented here extends this previous work with the following contri-
butions:

e a set of mapping rules that translates the B specification corresponding to
the translation of the SecureUML diagram into a set of SQL orders. The
targeted database management system is SQL Server, release 2014.

e a set of mapping rules that generates an AspectJ implementation from
the refined B specification: this includes the definition of the SQL orders

A Formal Approach to Derive an AOP-Based Implementation of a Secure
134 Access Control Filter

to create the database, the roles, the users, and the execution rights but
also the JAVA program corresponding to the operations of the system to
build. We choose an aspect programming technique (AspectJ) in order to
separate the security concerns from the functionalities of the application in
such a way that security rules could be added or removed without altering
the whole application.

e a tool support that automatically generates an AspectJ implementation
from a B specification. This tool extends the tool presented in the previous
chapter.

The rest of the chapter is organized as follows. Section 6.2 presents the
case study used throughout the chapter to illustrate the proposed approach.
Section 6.3 shows how the B specification of a secure filter is built from its
UML-based description. Section 6.4 illustrates the refinement of the obtained
B specification into relational-like B implementation. Such an implementation
is directly translated into an AspectJ-based program as described in Section
6.5. The tool that supports this translation is presented in Section 6.6. The
last section concludes and presents some future work.

6.2 The case study: a purchase order system

The proposed approach is illustrated through a simplified purchase order sys-
tem whose class diagram is depicted in Figure 6.1 (the white part). This case
study involves two classes PurchaseOrder and Supplier, which are linked by an
association BelongTo. Each class is described by a set of attributes and defines
some operations to create new instances or delete existing ones. We make the
assumption that the first attribute of each class denotes its key. As specified by
the multiplicities, each purchase order belongs to one supplier (multiplicity 1),
whereas each supplier may have zero to several purchase orders (multiplicity).

To ensure the security of this process, a set of security rules have been
identified. Such security rules may be static referring to a given single moment
of the system (i.e, the values of the data are taken at the same moment) or
dynamic requiring to take the execution history of the system into account, that
is the actions already performed in the system in general or by a given user in
particular. Examples of such rules are as follows:

Rule 1. Only Managers are authorized to approve a purchase order (operation
approve)

The case study: a purchase order system 135

<<Permission>> <<Permission>>
gerPerm StaffPerm

PurchaseQrder

(from Functional)

<<MethodAction» >+ create ()
<ehdethodactionz >+ receival)

<<hethodAction»>+ approve ()

5 +id :Integer =
<<Role>> N +createdDate : Integer i <<Role>>
Manager ~ +isApproved :Boolean & Staff
+igReceived :Boolean

+create (po : PurchaseOrder) |

+approve (po: PurchaseOrder) | 12 jearss e M e
+receive (po : PurchaseOrder) Alice Panl Bob

==zlser=>
Tom

*

+purchaseOrder

BelongTo

+supplier |1
Supplier
(from Functional)
+id :Integer
+name : String

Figure 6.1: The class diagram of a simplified purchase order

Rule 2. Only Staffs are permitted to make the creation and the reception of a
purchase order (operations create and receive)

Rule 3. The creation and the reception of a purchase order should be executed by
two different persons.

Rules 1 and 2 specify which roles the user must play to perform the correspond-
ing actions. Whereas, Rule 3 denotes a dynamic rule that implies to check that
the user, with the role Staff, who wants to perform a receive operation on a given
purchase order is different from the user, with the role Staff, who executed the
create operation on the same purchase order. This requires to register this last
action and then to consider the execution history of the system. In [76], we
have discussed in detail the modeling of such rules using SecureUML to deal
with static rules and activity diagrams [79] for dynamic ones. Formal rules to
translate such diagrams into a B formal specification are also provided.

Figures 6.1 (the grey part) denotes the SecureUML diagram associated with
the rules 1 and 2. This diagram depicts two classes, stereotyped by <<Roles>>,
to denote two roles (Manager and Staff) which can be played by users {Tom}
and {Alice, Paul, Bob} respectively. Moreover, a stereotype <<Permission>>
is attached to an association class linking a class, from the class diagram, to a
class representing a role. This association class specifies which operations of the
class can be executed by the users playing the related role.

The rule & is depicted in Figure 6.2. The activity diagram states that the
operations create and receive should be executed by different users by represent-

A Formal Approach to Derive an AOP-Based Implementation of a Secure
136 Access Control Filter

ing them in two different swimlanes usr! and usr2. Also, the activity diagram
permits to describe the order in which these different operations are executed.

ueH Usr2

<<Securex>
receive
(po:PurchaseOrder)

Create approve
(po:Purchase0rder) (po:PurchaseOrder)

Figure 6.2: A secure activity diagram modeling a dynamic security rule

The next section describes the translation of these diagrams into a B formal
specification.

6.3 A formal B specification of a secure filter

The goal of this section is to characterize the B formal specification of a filter
that controls access to the information system of the previous case study. This
filter is generated from the different previous diagrams and allows to give access
to the operations of the system while respecting all the security rules. The
generation of the filter is achieved into three steps described in detail in [76].

6.3.1 Translation of the class diagram into a B specifica-
tion

According to the rules defined in [90, 104], we define an abstract set S for
each class C' to denote the set of all its possible instances, and an enumerated
set Ezecution = {OK, KO} to state whether an operation has been executed
or not. For each class C, we define a variable Vi to represent the set of the
existing instances at each moment. Each attribute is mapped into a function
from V¢ to its type, the function modeling the key of the class is an injection.
An association involving two classes C; and (5 is mapped into a B variable
defined as a relation between V¢, and Vi,. According to its multiplicities, this
association becomes partial function (+), total function (—), an injection (—),
etc. In addition, a set of operations are derived to read/update the data of the
system. Such operations check the type of the parameters in the precondition
clause, then update the variables and return OK if the parameters satisfy the

A formal B specification of a secure filter 137

functional requirements, otherwise the state of the system remains unchanged
and KO is returned (See Figure 6.3).

SETS
PURCHASE_ORDER;
SUPPLIER;
EXECUTION = {OK,KO}
VARIABLES
Purchase_Order, id, createdDate, isApproved,
1sRecetved, . . .
INVARIANT
Purchase_Order C PURCHASE_ORDERA
id € Purchase_Order — NATA
createdDate € Purchase_Order — NATA
isApproved € Purchase_Order — BOOLA
isReceived € Purchase_Order + BOOLA

result < receive(po) =
PRE po € PURCHASE_ORDER THEN
IF po € Purchase_Order A isReceived(po) = FALSE
THEN
isReceived(po): = TRUE]|
result: = OK
ELSE
result: = KO
END
END

Figure 6.3: The B specification of the class diagram

6.3.2 Translation of the SecureUML diagram into a B spec-
ification

From the SecureUML diagram, we generate a set of abstract sets to describe
the static part of the diagram, that are, the roles and its associated users,
the operations and the permissions of the roles to execute the operations. In
addition, a variable, called Session, is added to memorize the current role of each
connected user. Two operations are specified: ConnectUser to permit a user to
connect to the system and a single generic operation, checkUserPermission, that

A Formal Approach to Derive an AOP-Based Implementation of a Secure
138 Access Control Filter

takes a user and the name of an operation as parameters and returns granted if
the user has the right to execute the operation and denied otherwise (See Figure
6.4)

SETS

Users = { Alice, Bob, Paul, Tom};

Roles = {Staff, Manager};

Operations = { create, approve, receive }
CONSTANTS Permissions, UsersRoles
PROPERTIES

Permissions = {Staff — create, Staff — receive,

Manager — approve} A
UsersRoles = { Alice — Staff, Bob — Staff,
Paul — Staff, Tom — Manager}
VARIABLE Session
INVARIANT Session € Users - RolesA

Session C UsersRoles
OPERATIONS

connectUser (usr, rol)

PRE usr € Users A rol € RolesN

usr — rol € UsersRoles A\ usr ¢ dom(Session)
THEN
Session(usr): = rol

END;
access < checkUserPermission (usr, op) =
PRE usr € Users A op € Operations THEN

IF usr € dom(Session) THEN

IF (Session(usr) — op) € Permission THEN
access: = granted

ELSE access: = denied

END

ELSE access: = denied

END
END

o~

Figure 6.4: The B translation of the SecureUML diagram

A formal B specification of a secure filter 139

6.3.3 Translation of the secure UML activity diagrams
into a B specification

As stated, a secure activity diagram is used to specify order-based and sepa-
ration of duty constraints related to a set of operations, in which there is an
operation to secure. For each operation, we define two variables to store the
user whose executes the operation together with the execution instant and an
operation to update such variables. Then, the secure operation of a secure activ-
ity diagram is mapped into a B operation that returns granted if the execution
orders of the operations and the separation of duty constraints are satisfied,
denied otherwise.

For example, the variables userEzecutedReceive and orderFExecutionReceive
are defined to memorize the information related to the execution of the operation
receiwe as follows:

userEzecutedReceive € PURCHASE_ORDER —+ Users
orderEzecutionReceive € PURCHASE_ORDER +— NAT

The operations LogReceive updating these variables and ADReceive grant-
ing/denying the execution of the secure operation receive (See Figure 6.2) are
defined in Figure 6.5 (currentOrder denotes a natural number initialized to 0):

LogReceive (po, usr) =
PRE po € PURCHASE_ORDER A usr € Users THEN
userErxecutedReceive(po) := usr ||
orderEzecutionReceive(po) := currentOrder ||
currentOrder := currentOrder + 1
END
access <+ ADReceive(po, usr) =
PRE po € PURCHASE_ORDER A usr € Users THEN
IF po € dom(userEzxecutedApprove)A
orderExecutionCreate(po)
< orderExecutionApprove(po) A
usr # userExecutedCreate(po)
THEN access := granted
ELSE access := denied
END
END

Figure 6.5: The B translation of the activity diagram in Figure 6.2

A Formal Approach to Derive an AOP-Based Implementation of a Secure
140 Access Control Filter

6.3.4 Designing the secure filter

As one can remark, the operation receive, of Figure 6.3, does not take into
account the static constraints specified in Figure 6.4: according to Figure 6.3,
the operation can be executed by any user even if he/she is not playing the role
Staff. This is why we need to specify a filter that allows the execution of such
an operation only for a user playing the adequate role. To this aim, we add a
filter operation for each operation to secure. This operation returns two values
access and result: (access = granted) means that all the static/dynamic security
rules are fulfilled, otherwise denied is returned; result = OK means that the
operation Op has been successfully executed, otherwise KO is returned (See
Figure 6.6) .

result,access <— FilterReceive(po, usr)=
VAR staticRight IN
staticRight < checkUserPermission(receive, usr);
IF staticRight = granted THEN
VAR dynamicRight IN
dynamicRight <— ADReceive(po, usr);
IF dynamicRight = granted THEN
result < receive(po);
IF result = OK THEN
LogReceive(po, usr)
END
END:;
access: = dynamicRight
END
ELSE
access: = denied; result: = KO
END
END

Figure 6.6: The B specification of the filter of the operation Receive

From an abstract B specification to a relational-like B implementation 141

6.4 From an abstract B specification to a relational-
like B implementation

In this section, we present the refinement process to generate a relational-like B
implementation from the previous abstract specification. To do so, we mainly
reuse the B refinement process defined in [104]. It consists of two main steps:
Data refinement and Behavioral refinement. The goal of the data refinement
process is to transform the variables of the B specification in order to be close to
the structure of the tables used in relational databases, whereas the behavioral
refinement aims at replacing the parallel substitutions with sequential ones and
eliminating preconditions since they are supported neither in JAVA nor in SQL
languages. Hereafter, we sum up the result of this process on the case study;
more details about the process itself can be found in [104].

6.4.1 Data refinement

We target a relational implementation whose data structures are tables or
records that permit to gather the different information related to entities of
the system. This is why we define a table structure T4 for each B variable
V' which is source of several functions (Vi,..., V,) that become its attributes.
One of these variables should be an injective function to represent the key of
the created table otherwise a new injective variable is introduced. Indeed, the
B language is object oriented whereas the relational language is value oriented.
Consequently, the transition from the B language to the relational language
consists in replacing each object by its key value. In other words, each action
on a B object, whose the value of its key V; is equal to wval, is replaced by an
adequate action on the record whose the value of its field V; is equal to val too.
For instance, we define the table structure T'_Purchase_Order for the variable
Purchase_Order with attributes purchaseOrderld, createdDate, isApproved and
isReceived. We also define some operations to add (resp. delete) tuples and to
update the values of the different attributes (See Figure 6.7).

As the variable T_Purchase_Order will replace all the variables related to
Purchase_Order, we have to specify some additional operations that return
the values of the different predicates/expressions that are used in the initial
specification and depend on these omitted variables. For instance, we define
the operation NotReceive that returns the truth value of the predicate (po €
Purchase_Order N isReceived(po) = FALSE) used by the operation receive (See
Figure 6.8).

O2'y: denotes the value of the field y of the record x.

A Formal Approach to Derive an AOP-Based Implementation of a Secure
142 Access Control Filter

VARIABLES
T_Purchase_Order
INVARIANT
T_Purchase_Order C struct(purchaseOrderld:NAT,
createdDate:N AT, isApproved: BOOL, isReceived:BOOL)
INITIALISATION
T_Purchase_Order := ()
OPERATIONS
T _receive(po)=
PRE po € NAT THEN
ANY pos, date, isApproved WHERE
pos € T_Purchase_Order A
pos purchaseOrderld = po A
date = pos createdDate N
isApproved = posisApproved
THEN
T_Purchase_Order := T_Purchase_Order - {pos}
U {rec(po, date, isApproved, TRUE)}
END
END

Figure 6.7: The B specification of a relational table

-~

res <— NoReceive(po)
PRE po € NAT THEN
res := bool(3 pos.(pos € T_Purchase_Order A
pos purchaseOrderld = po A
pos'isReceived = FALSE))
END

Figure 6.8: The B evaluation of a predicate

Let us recall that we use UML activity diagrams to express dynamic security
rules, which often relate to the execution history of the different system’s actions.
Hence, it is important to store the execution information of each operation
op(p1, ..., pn), such as its corresponding execution occurrences together with
the user that executes it and the execution time. To do so, we define the two
following variables userEzecutedOp and orderExecutionOp, where Type,, is the
type of the parameter p; of the operation op.

userErxecutedOp € Type,, x ... x Type, -+ Users

From an abstract B specification to a relational-like B implementation 143

orderExecutionOp € Type,, % ... x Type, -+ NAT

Since we target a relational implementation, we create a table structure
T_Op_log for each pair userEzecutedOp and orderFExecutionOp. Such a vari-
able T_Op_log defines each parameter’s type Type,, as an attribute and two
additional attributes userEzecutedOp denoting the person who executed op and
orderEzecutionOp representing its executed moment. The set of the attributes
i=1.n Lype,, represents the key of the created table. Similar to the transition
of the previous object table (T_Purchase_Order for instance), this transition
also consists in replacing an object by its key value. For example, the table
structure T_Receive_log gathers an attribute purchaseOrderld to represent the
key of each purchase order along with two variables userEzecutedReceive and
orderEzecutionReceive.

To query about the execution history of the operation op, we define some
operations on the table T_Op_log. We create an operation AddOp_log to add
a new tuple to the table T_Op_log. The operation NoOp_log is created to
check whether or not the operation op is performed in the past: it returns
false if op is already executed, true otherwise. In addition, the operations
Op_user and Op_order are defined to return respectively the user who executed
the operation and the executed instant. For example, Figure 6.9 denotes the
table structure T_Receive_log and its associated operations AddReceive_log,
NoReceive_log, Receive_user, and Receive_order.

Notice that the B specifications of the defined tables, that are Figures 6.7,
6.8, and 6.9 are no longer refined because they can be straightforwardly trans-
lated in JAVA/ SQL (See Section 6.5.2).

6.4.2 Behavioral refinement

The variables of the first level have been replaced by new ones to represent
the relational tables. This is why we have to replace each substitution/predi-
cate/expression of the initial variables with call to the operations acting on the
new variables. In addition, all the preconditions can be eliminated since they
are just typing constraints and then are already assumed as true. Moreover,
the sequential operator is introduced to replace the parallel one. When the
parallel substitutions modify distinct variables then the parallel operator (||) is
simply replaced by the sequential one (;) by keeping the same substitutions.
For instance, the operation receive(po) is rewritten as in Figure 6.10.

The operation LogReceive is refined by calling, on the one hand, the opera-
tion getldPurchaseOrder to get the key of the object po and, on the other hand,
the operation AddReceive_log to update the imported variable Receive_log that

A Formal Approach to Derive an AOP-Based Implementation of a Secure
144 Access Control Filter

VARIABLES T_Receive_log
INVARIANT T_Receive_log C struct(purchaseOrderld: NAT,
userEzecutedReceive : Users, orderEzecutionReceive : NAT)
INITIALISATION T_Receive_log == ()
OPERATIONS
//check if the operation receive is already executed on a given object:
/ /returns false if it is executed, true otherwise.
res < NoReceive_log(po)=
PRE po € NAT THEN
res := bool(= (3 log.(log € T_Receive_log N log purchaseOrderld = po)))
END;
//get the user who executed the operation receive on a given object
res < Receive_user(po)=
PRE po € NAT THEN
ANY log WHERE
log € T_Receive_log N log purchaseOrderld = po
THEN
res := log userEzecuted Receive
END
END;
//get the executed time of the operation receive on a given object
res < Receive_order(po)=
PRE po € NAT THEN
ANY log WHERE
log € T_Receive_log N log purchaseOrderld = po
THEN
res := log orderEzecutionReceive
END
END;
//adds a new record of the operation receive execution on a given object
AddReceive_log(po, usr, time)=
PRE
po € NAT A usr € Users N\ time € NAT
THEN
T_Receive_log := T_Receive_log U {rec(po, usr, time)}
END

Figure 6.9: The B specification of a log table

From an abstract B specification to a relational-like B implementation 145

result < receive(po) =
VAR id, notyet_receive IN
id + getIdPurchaseOrder(po);
notyet_receive < NoReceive(id);
IF notyet_receive = TRUE THEN
T _receive(id);

result: = OK
ELSE
result: = KO
END
END

Figure 6.10: The B implementation of the operation receive

replaces the variables userEzecutedReceive and orderEzecutionReceive (See Fig-
ure 6.11):

LogReceive(po, usr) =
VAR id IN
id + getldPurchaseOrder(po);
AddReceive_log(id, usr, currentOrder);
currentOrder := currentOrder + 1
END

Figure 6.11: The B implementation of a log operation LogReceive

Similarly, the operation ADReceive is refined by calling a number of op-
erations: the operation getldPurchaseOrder that gets the key of the purchase
order po; the operation NoApprove_log(po) that makes sure that po is already
approved; the operations Approve_order(po) and Create_order(po) that check
the executed instants of the operations approve and create; and the operation
Create_user(po) that ensures the user who created the object po is different from
the user who is trying to perform the operation receive. Figure 6.12 denotes the
implementation of ADReceive.

The next section describes the translation of the refined B specification into
an executable AspectJ program.

A Formal Approach to Derive an AOP-Based Implementation of a Secure
146 Access Control Filter

access < ADReceive(po, usr)=
VAR id, notyet_approve, notyet_create,
create_user, create_order, approve_order
IN
id < getIdPurchaseOrder(po);
notyet_approve < NoApprove_log(id);
notyet_create < NoCreate_log(id);
create_user < Create_user(id);
create_order <— Create_order(id);
approve_order <— Approve_order(id);
IF notyet_approve = FALSE A
notyet_create = FALSE A
usr # create_user N\
create_order < approve_order

THEN
access 1= granted
ELSE
access := denied
END
END

Figure 6.12: The B implementation of the operation ADReceive

6.5 The AspectJ implementation of the applica-
tion

In this section, we describe the translation of the refined B specification into an
AspectJ implementation that uses a relational DBMS, in our case SQL Server
release 2014. The use of an aspect programming technique, like AspectJ, per-
mits to enforce the security as crosscutting concerns by separating it from the
functional part of the application in order to avoid the scattering of the security
code over the whole system. Figure 6.13 shows how each JAVA/SQL and As-
pectJ element is derived from the B implementation level. Multiple colors are
used to show the correspondence between the B specification and the AspectJ
implementation elements. The AspectJ-based implementation generated from
the previous refined B specification is composed of the following JAVA classes:

1. a set of JAVA classes to implement the tables described as B structures
(struct) together with their associated operations declared as JAVA meth-

The AspectJ implementation of the application

147

Functional Requirements

(UML class diagram)

Dynamic Securiry Requirements
(UML activity diagrams)

StaticSecuriry Requirements
(SecureUML diagrams)

Graphical notations

Functional B specification
(secure operation op)

(LogCp)

B specification of ADs

B specification of ADs

B specification of SecureUML
(CheckUserPermission)

B representation of the
relational tables
* Object Log table structures

(ADOp)

* Assocaited operations S (FllierOp) e
S ‘ Relational-like B implementation
Stored procedure JAVA class JAVA class JAVA class JAVA class
(op procedure) N (op method) (LogOp method) (ADOp method) (CheckUserPermission,
7 isPermittedRole methods)
Table implementation
* Database schemas in SQL
*JAVA classes encoding the)
methods on the tables Database security
* Stored procedures associated 1+l Aspectclass 'gata:ase “51"15
with the methods called by the P] - REELERE IR
secure operations. : Thepamtcut _(pc?ol.p,_‘ : * Permission grants
« The associated advice .
1
| AspectJ implementation
«—— call €=—————— grant permission === import

Figure 6.13: Derivation of the AspectJ implementation

ods,

2. a JAVA class to implement, as JAVA methods, the operations derived from
the class diagram. Such methods call their associated stored procedures,
which have the same signatures as them,

3. a JAVA class SecureUMLJAVATrans to implement the B operations gen-
erated from the SecureUML diagram (operations checkUserPermission,
isPermittedRole, and connectUser),

4. a JAVA class ADJAVATrans to implement the B operations generated
from the secure activity diagrams (the operation ADOp),

5. a JAVA class ActionsHistoryJAVATrans to implement the log operations

LogOp,

6. an AspectJ class for the operations for which a filter is specified.

A Formal Approach to Derive an AOP-Based Implementation of a Secure

148 Access Control Filter

The execution flow of the obtained implementation is depicted by Figure 6.14
where:

User | Interceptor [System

method . |
invocation 7 1 method
N

L _

Security 8
requirement B =

s £
checking 5 §

access? E

granted

acgess, result

Informing
the user

Figure 6.14: AspectJ implementation principle

1. A pointcut is associated with each operation to secure,

2. When a user invokes a method for which a pointcut is associated, the
interceptor immediately intercepts the invocation. That means that the
method is not actually called (represented by the dashed arrow) but in-
stead the interceptor executes the related advice that consists in:

(a) Checking whether the security rules are fulfilled.

(b) Calling the method only if the security rules are verified.
)
)

(c

(d) In both cases, informing the user about the result of the method

execution: are the security rules verified? what is the result of the
method call?

Logging the execution of the method if it is performed successfully.

6.5.1 Transformation rules of B into JAVA /SQL

This section describes a set of mapping rules that allow us to translate the
previous refined B specification into the JAVA /SQL language. These rules are
used to deploy the components of the targeted AspectJ application.

The AspectJ implementation of the application 149

Table 6.1: Type mappings table among B, JAVA, and SQL Server

B Type SQL Server Type JAVA Type

NAT int int

BOOL (TRUE/FALSE) bit (1/0) boolean (true/false)

Enum set (Users/Roles/...) | varchar String

defined string varchar String
res <— op(P1,..., Pn) = CREATE PROCEDURE op
PRE @py, Ty,,..., @p, T, ,

P € Ty P € T, @res T,., OUTPUT
THEN AS

body body
END GO

Figure 6.15: Transformation of a B operation to a stored procedure

Type mappings

The definition of types in B is similar to the definition of types in JAVA /SQL.
Yet, their syntax is different for each language. In Table 6.1, we map the B

types into those supported in the JAVA language and the SQL Server (version
2014).

From a B operation to a stored procedure

The translation of a B operation into a stored procedure includes the mapping
of its parameters and the predicates defined in its body. The signature of the
stored procedure translated from the B operation defined in Figure 6.15 has:

e the same name op

e the same input parameters p;. The syntax declaring an input parameter
of the stored procedure is @Qp; T),.

e the same output parameter e res typed T,.s. The syntax declaring an
output parameter of the stored procedure is Qres T,., OUTPUT.

Of course the type of these parameters is translated as defined in Table
6.1.

A Formal Approach to Derive an AOP-Based Implementation of a Secure
150 Access Control Filter

Table 6.2: Transformation of B expressions to SQL Server

B expression Stored procedure code
VAR var IN DECLARE Qvar
[F... THEN... (ELSE THEN...) END | IF(...) ... ELSE...
var = TRUE/FALSE @Qvar =1 /0
var = / > / < number @Qvar =/ > / < number
operation call stored procedure call
expression on tables [91] SQL query

The body of the obtained procedure is derived by mapping the B predicates
into the corresponding SQL code and replacing the operation call by the stored
procedure call. Table 6.2 describes the translation of some B expressions into
SQL Server. The expressions acting on tables are translated into SQL state-
ments by applying the rules defined in [91].

In the application, a JAVA method is created to call the associated stored
procedure. It informs the execution result of the stored procedure: if the SQL
code is successfully executed, it returns OK, KO otherwise. The structure of
such a call is as follows:

The generated JAVA method associates with the stored procedure op.
public String op(T),, p1,..., Tp, Pn)
{

String res = "KO";

CallableStatement statem,

try {
statem = prepareCall("{ call op(?)}");

Nico.n statem.setTy, (i, p;);
int eze = statem.executeUpdate();

if (exe > 0)

res = "OK";
else
res = "KO";

statem. close () ;
} catch (SQLException e) {...}

return res;

The AspectJ implementation of the application 151

res <— op(p1,..., pn) = public Ty op (T, p1,-.., Tp, Pn)
PRE {

p1 € Ty pn € T, T,es €S = initialisation;
THEN body

body return res;
END }

Figure 6.16: Transformation of B operation to JAVA method

From a B operation to a JAVA method

Mapping a B operation into a JAVA method is based on the translation of
its signature (i.e. the input/output parameters) and the predicates encoding its
body. The obtained JAVA method has the same name and the list of parameters
as those of the B operation (See Figure 6.16), while the B expressions can
be straightforwardly translated into JAVA. Indeed, the B control structures
obtained at the implementation level are supported in JAVA. Hence, we just
have to replace such B control structures by the corresponding JAVA control
structures and the operation call by the method call. Figure 6.17 shows the
translation of expressions used in our case study.

In the following sections, we describe the translation of each part of the
targeted AspectJ implementation.

6.5.2 Deployment of the class diagram

The deployment of the B specification generated from the class diagram permits
to define the database and a set of stored procedures and JAVA methods to
translate the associated B operations. The creation of the database is obtained
following the rules defined in [91] whereas we introduce a new manner to map
the operations as stored procedures. Indeed, in SQL, grants can be defined on
basic statements (INSERT, UPDATE, DELETE) or on stored procedures.
Of course, another solution would be to encode an ad hoc roles/permissions
management system using several tables. However such a solution may be very
cumbersome, this is why we preferred to use stored procedures.

A Formal Approach to Derive an AOP-Based Implementation of a Secure

152 Access Control Filter
- VAT constructor . local variable declaration
VAR wvar IN var < someOp(...) B .
(the returned type is Ty) Toar var = someOp(....);
2. IF constructor . if statement
IF... THEN... l(ilge){ {-}-)-}
(ELSE THEN...) END
3. bool expression . bool condition
cond = TRUE/FALSE cond = true /false
4. compare numbers . compare numbers
nbl =/>/< nb2 nbl =/>/< nb2
5. compare strings . compare strings
/
strl = str2)/strl # str2 strl. equals (str2) /!strl . equals (str2)
6. and predicate . and condition
exprl A expr? exprl && expr?
7. operation call . method call

someOp(...)

Classsomeop—instance.someOp(...)

Figure 6.17: Transformation of B expressions into JAVA

The AspectJ implementation of the application 153

6.5.2.1 Definition of the tables and the associated JAVA methods
and stored procedures

From the B specification defining variables as structures (struct) and its as-
sociated B operations (See Figure 6.7 and 6.8), a SQL table is created with
a set of JAVA methods/stored procedures translating the related operations.
An operation is mapped into a stored procedure plus a JAVA method that
invokes it if it is called by an operation to secure (appears in the secureUML
diagram), otherwise it is translated into a classical JAVA method. Indeed in
SQL Server, a stored procedure can only call another stored procedure and not
a JAVA method. Let us note that the stored procedure and the JAVA method
must have the same name. From Figures 6.7 and 6.8 for instance, a SQL table
T_Purchase_Order and the stored procedure and JAVA method are derived as
follows:

CREATE TABLE T_Purchase_Order(
purchaseOrderld INT PRIMARY KEY,
createdDate INT NOT NULL,
isApproved BIT NOT NULL,
isReceived BIT NOT NULL)

——checks whether a purchase order is received or not,
——returns 1 (true) if it has not been received, 0 (false) otherwise.
CREATE PROCEDURE NoReceive @po int, @res bit OUTPUT
AS
DECLARE @count int
SELECT @count = COUNT (x) FROM dbo.PurchaseOrder
WHERE purchaseOrderld = @po AND isReceived = 0
IF (@count > 0)
SET @res= 1
ELSE
SET @res = 0
GO

//calls the associated procedure
public boolean NotReceive(int po){
CallableStatement statem;
try{
statem = prepareCall("{call NotReceive (?)}");
statem.setInt(1, po);

A Formal Approach to Derive an AOP-Based Implementation of a Secure
154 Access Control Filter

//execution of the statement, returns true if the
/ /result of the query equals to 1
return (statem.ezecuteQuery()=1);

}catch (SQLException e){};

}

The operation NotReceive has been translated into a stored procedure because it
is called by the implementation of the operation receive that is itself translated
into a stored procedure. Similarly, a stored procedure and a JAVA method are
generated for the operation T_receive.

6.5.2.2 Translation of the operations of the class diagram

The translation of the operations generated from the class diagram depends if
the operation is to secure or not, that is, if a user needs to play specific roles
to execute the operation. An operation to secure appears in the SecureUML
diagram. In this case, it is translated into a stored procedure plus a JAVA
method that invokes it, otherwise a classical JAVA method is defined. In both
cases, the JAVA method calls those on the different tables defined in Section
6.5.2.1. For instance, the operation receive gives the following stored procedure
and JAVA method:

CREATE PROCEDURE receive(@Qpo int)
AS
DECLARE Qres bit
/ /executing the stored procedure NotReceive
EXEC NotReceiwe Qpo, @Qres OUTPUT
IF(Qres = 1)
BEGIN
EXEC T_receive Qpo
END
GO

public String receive(int po){
String result = "KO";
CallableStatement statem;
try{
//defining the CallableStatement JAVA variable statem to contain
//the call to the stored procedure receive
statem = prepareCall("call receive(?)");

The AspectJ implementation of the application 155

statem.setInt(1, po);
/ /execution of the stored procedure,
//returns the number of the modified tuples
int res = statem.executeUpdate();
if (res > 0) result = "OK";
statem.close();

}catch (SQLException e)

return result;}

6.5.3 Deployment of the SecureUML diagram

The deployment of the B specification generated from the SecureUML diagram
permits to create the users with their roles and allowed permissions. For that
purpose, we use the authentication mechanism provided by SQL Server (release
2014) database management system as follows:

e For each value Users; of the set Users, a SQL query is generated in order
to create the user. User Alice for instance is created by the following SQL
statements:

CREATE LOGIN Alice
WITH PASSWORD = pwdAlice

CREATE USER. Alice
FOR LOGIN Alice

e For each value Roles; of the set Roles, a SQL query is generated in order
to create the role. Role Staff for instance is created by the following SQL
statement:

CREATE ROLE Staff;

e For each pair of (Users;, Roles;) of the constant UsersRoles, a SQL query
is generated in order to assign the role Roles; to the user Users;. The
following SQL statement is generated for the pair (Alice — Staff):

ALTER ROLE Staff
ADD MEMBER Alice;

A Formal Approach to Derive an AOP-Based Implementation of a Secure
156 Access Control Filter

e For each pair of (Roles;, Op;) of the constant Permissions, a SQL query
is generated in order to grant the execution of the stored procedure Op;
to the role Roles;. The following SQL statement is generated for the pair
(Staff — receive):

GRANT EXECUTE ON receive TO Staff;

In addition to these SQL statements, a JAVA class Secure UMLJAVATrans
is created. It defines two attributes: connectingUser and currentRole derived
from the Session relation, which store respectively the user who is connecting
to the system and his/her current role. Of course, the getter (getConnectin-
gUser /getCurrentRole) and the setter (setConnectingUser/setCurrentRole) of
these attributes are also created in order to use them externally. It also encodes
the B operations connectUser(usr, role) and checkUserPermission(usr, op) as
JAVA methods with the same signature.

When a user usr connects to the system with one of his/her roles rol, the
method connectUser specifies that usr is the connecting user and 7ol is his/her
current role.

public void connectUser(String usr, String rol){
connectingUser = usr;
currentRole = rol;

/

The checkUserPermission method verifies whether a user usr is permitted to
perform an operation op by checking if his current role is granted to execute the
associated stored procedure or not. To do so, we define an additional method
1sPermittedRole encoding a SQL query to check an execution permission of a
given role rol on a given stored procedure op. Hence, checkUserPermission
grants the execution of the operation op for the connecting user usr only if his
current role is allowed to execute the stored procedure op. The JAVA methods
checkUserPermission and isPermittedRole are defined as follows:

public String checkUserPermission(String usr, String op) throws
SQLException {
String access = "denied";
getting the connecting user,
making sure that the werified wuser is currently
/connecting to the system.
String conUser = getConnectingUser();

The AspectJ implementation of the application 157

if (usr. equals(conUser)) {
//checking the permission based on the current role of the user,
//the execution is granted if the method isPermittedRole()
// returns true, denied otherwise.
boolean isPermitted = isPermittedRole(currentRole, op);
if (isPermitted)
access = "granted";
else
access = "denied";
/

return access;
/
//checking the execution permission of a given role on a given method
public boolean isPermittedRole(String rol, String op) throws
SQLException {
boolean access = false;
//defining a PreparedStatement JAVA wvariable to verify
//permission of a given role on executing a given stored procedure
PreparedStatement stm = prepareStatement("SELECT COUNT(x)"
+ "FROM sys.database_ permissions "
+ "WHERE USER__NAME(grantee_ principal_id) = (?) "
+ "AND OBJECT NAME(magjor_id) = (?) "
+ "AND permission_name = 'EXECUTE’;");
try {
stm. setString (1, rol);
stm. setString (2, op);
//the execution of the statement,
//returns true if there ewists at least one row in the database,
//returns false otherwise.
ResultSet resSet = stm.executeQuery();
if (resSet.next() && resSet.getInt(1) > 0)
access = true;
resSet. close () ;
} catch (SQLException e) {e.printStackTrace();}
return access;

A Formal Approach to Derive an AOP-Based Implementation of a Secure
158 Access Control Filter

6.5.4 Deployment of the secure activity diagrams

Recall that the translation into a B specification of the secure activity diagrams
gives a variable (T_Op_log) that stores the execution information of each op-
eration and two operations (LogOp and ADOp) that aim at updating the value
of this variable and also to check whether the dynamic constraints specified by
the secure activity diagram are fulfilled or not. The translation into JAVA of
this B specification gives:

1. each variable T_Op_log is mapped into an SQL table with the same at-
tributes (See Section 6.5.4.1).

2. a JAVA class T_Op_log is introduced to define a set of methods that
update/read the different data stored in the previous table (See Section
6.5.4.1).

3. a JAVA class ActionsHistoryJAVATrans is introduced as the deployment
of the B specification of the log operations (LogReceive for example) (See
Section 6.5.4.3).

4. a JAVA class ADJAVATrans is defined to encode the operation ADOp
(ADReceive for instance) as a method that calls the methods defined in
the class T_Op_log (See Section 6.5.4.2).

6.5.4.1 Definition of the log tables and the associated JAVA classes

For each variable T_Op_log defined as structures (struct) and its associated
B operations, we create respectively a SQL table and a set of JAVA methods.
The derivation of the JAVA/SQL code is obtained following the rules defined
in [91]. For instance, the variable T_Receive_log gives a SQL table with the
attributes PurchaseOrderld, userEzxecutedReceive, and orderFExecutionReceive.

CREATE TABLE T Receive_log(
PurchaseOrderld INT PRIMARY KEY NOT NULL,
userErecutedReceive VARCHAR/(25),
orderEzecutionReceive DATETIME CURRENT TIMESTAMP)

The JAVA class T_Op_log gives accesses to the table T_Op_log through
a set of methods. Such methods encode SQL statements querying the table
T_Op_log. For example, the B specification of the associated operations of the
variable T_Receive_log (See Figure 6.9) derives a class T_Receive_log including

the JAVA methods as follows:

The AspectJ implementation of the application 159

public class T Receive_log {
private PreparedStatement stmt;
private Connection dbcon;
public T Receive_ log(Connection conn) throws SQLException {
dbcon = conn;
stmt = conn.prepareStatement("SELECT orderEzecutionReceive,
userExecutedReceive "
+ "FROM T _Receive_log "
+ "WHERE purchaseOrderld = 2; "); }
public boolean NoReceive_log(int po) {
try {
stmt. setint (1, po);
//execution of the statement that checks if the method receive
//is already performed on the purchase order po or not,
//returns false if it is already executed, true otherwise.
ResultSet res = stmt.executeQuery();
if (res.next())
return false;
else
return true;
} catch (SQLException e) {} }
public void AddReceive log(int po, String usr){
try {
//defining a SQL statement to add a new record to the table
Statement stm = dbcon.createStatement();
String log = "INSERT INTO T _Receive_log"
+ "(purchaseOrderld, userEzecutedReceive) "
+ "VALUES(" + po + """ + usr + ");";
//executing the statement
stm.executeUpdate(log);
stm. close () ;
} catch (SQLException e) {} }
public String Receive user(int po){
try {
//checking whether the method receive is already executed on po,
J/if it is the case (i.e. NoReceive log(po) returns false),
//executes the statement to return the user who executed it .
if (!NoReceive log(po)){
stmt. setnt (1, po);

A Formal Approach to Derive an AOP-Based Implementation of a Secure
160 Access Control Filter

ResultSet res = stmt.executeQuery();
return res. getString ("userExecutedReceive”);
/
} catch (SQLException e) {} }
public String Receive order(int po){
try {

/checking whether the method receive is already executed on po,
if it is the case (i.e. NoReceive log(po) returns false),
executes the statement to return the executed instant.

if (!NoReceive log(po)){
stmt. setInt (1, po);

ResultSet res = stmt.executeQuery();
return res. getString ("order EzecutionReceive”);

/
} catch (SQLException e) {} }

6.5.4.2 Translation of the secure operations of the secure activity
diagrams

To call the methods of a log class within the method ADOp, we create an
instance of the log class as an attribute. For example, we define two attributes
to use the methods of the classes T_Approve_log and T_Create_log for the
deployment of the operation ADReceive.

public class ADJAVATrans {
parser the datetime type
SitmpleDateFormat sdf = new
SimpleDateFormat("yyyy— MM—dd hh:mm:ss");
private T Approve log t approve log;
private T Create_log t_create log;
public String ADReceive(int po, String usr) {
String access = "denied";
boolean notyet approve = t_approve_log. NoApprove_log(po);
boolean notyet create =t _create_log. NoCreate log(po);
String create_user = t_create_log.Create_user(po);
String create_order = t_create_log.Create order(po);
String approve order = t_approve log. Approve_order(po);
/verifying (1) the action approve() is already performed,

The AspectJ implementation of the application 161

(2) the action create () is also executed
/and it should be executed before approve(),
/(3) the current user is not the person who created the order.
/the execution 1s granted if all these conditions are fulfilled
/denied otherwise.
if (notyet approve == false && notyet create == false &&
sdf . parse(create_ order). before (sdf . parse (approve order) &&
lusr. equals (create _user))

access = "granted”;
else
access = "denied";

return access;

6.5.4.3 Translation of the log operations

The execution of a specific method is saved through the class ActionsHistory-
JAVATrans, which is the deployment of the B specification of the log operations
(LogReceive for instance). To use the method AddOp_log within the method
LogOp, we declare its class as an attribute. For instance, we define an attribute
T_Receive_log to deploy the method LogReceive. Recall that the B variable
currentOrder is used to calculate an executed order (an executed instant). In
fact, we can omit it in the deployment of the operation LogReceive since the
DBMS allows to automatically capture any moment in the system thanks to
the property CURRENT_TIMESTAMP.

public class ActionsHistoryJAVATrans {
private T Recewe_log t_receive log;
public void LogReceive(int po, String usr){
t receiwe_log. AddReceive_log(po, usr);
}

/

6.5.5 Deployment of the filter

On the invocation of a given secure operation op, the filter aims at verifying the
static and dynamic security rules before its actual execution. If these security
rules are verified, the operation op is called. In all cases, the user is informed

A Formal Approach to Derive an AOP-Based Implementation of a Secure
162 Access Control Filter

about the result of its operation invocation. Thus, we deploy the filter as an
advice associated with the pointcut defined on the operation op. This advice
is defined with the around keyword since some actions are executed before and
others after the invocation of the operation op. The signature of the advice is
that of the filter omitting the user who is requesting to execute the operation
op. The reason is that the method proceed() within the advice must have the
same signature with both the operation op and the advice. Moreover, security
rules are checked for the connecting user, which can be obtained by calling
the method getConnectingUser() of the class Secure UMLJAVATrans. To call
a security-checking method, we define an attribute for its class in the aspect
SecureFilter2Aspect.J.

public aspect SecureF'ilter2Aspect] {
private SecureUMLJAVATrans staticC;
private ADJAVATrans dynamicC;
private ActionsHistoryJAVATrans logC;

//the pointcut to a method named receive
/regardless of its return type (denoted by wildcard *)
pointcut pc_receive(int po): args(po) && call(x receive(int));
//the advice associated with the previous pointcut
String around (int po): pc_receive(po){
String result = "KO";
String usr = Secure UMLJAVATrans.getConnectingUser();
try {
// check static security rules
String staticRight = staticC.checkUserPermission("receive”, usr);
if (staticRight == "granted") {
// check dynamic security rules
String dynamicRight = dynamicC.ADReceive(po, usr);
if (dynamicRight == "granted") {
proceed the method execution
result = proceed(po);
if (result == "OK") logC.LogReceive(po, usr);
/
}
} catch (SQLException e) {}
return result ;

/

Tool support 163

6.6 Tool support

In this section, we describe the extension of the tool presented in Chapter 5
to generate the AspectJ implementation of an application from its B formal
specification. Towards this end, we define a grammar for the B specification
in XText [105], which is an adaptation of the grammar of the ABTool [106]
(written in the ANTLR syntax [107]). The translation process is performed in
four steps corresponding to the different B components.

6.6.1 Translating the B specification of the class diagram

Once the B specification of the class diagram is refined into a relational-like
implementation, the tool generates:

2 Table Purchase Order.mch 57 [2) T_Purchase Order.sql 5
MACHINE o --SQL code ot Table_Purchase_Order "
Table Purchase Order /*generate the SOL table from the B variable T_Purchase Order=/ :
VARIABLES e LREATE TABLE T_Purchase_Order { =
T Purchase Order /*the key is the first attribute*/ -
IWAREANT - purchaseOrderId INT /*convert type NAT in B to INT in SQL®/ PRIMARY KEY NOT NULL ,

createdDate INT /*convert type NAT in B to INT in SQL*/ NOT NULL ,
isApproved BIT /*convert type BOOL in B to BIT in SQL*/ NOT NULL ,
isReceived BIT /*convert type BOOL in B to BIT in SQL®/ NOT NULL
- } -

1 n » 4] . 3

T_Purchase_Order <:
struct(purchaseOrderId:NAT, createdDate:NAT,
isApproved:BOOL, isReceived:BOOL)

Figure 6.18: Generation of a table

= Table_Purchase_Ordermch 2 [l T_Purchase_Order.sql 52
MACHINE - S .
Table Purchase Order T * generated stored procedure of the operation NoReceive
= - W

VARIABLES
T_Purchase Order CREATE PROCEDURE NoReceive

INVARIANT @po INT /*convert type NAT in B te INT in SQL*/,
@res BIT OUTPUT /*BOOL type in B is converted to BIT type in SQL*/

m

T_Purchase_oOrder <:

struct(purchaseOrderId:NAT, createdDate:NAT, AS
isApproved:BOOL, isReceived:BOOL) /*checks the existance of records*/
INITIALISATION DECLARE flexist int
T_Purchase_Order := {} SELECT f@exist = COUNT(*) FROM T_Purchase_Order
OPERATIONS /*generates conditions from the B predicates*/
res<--NoReceive(po)= WHERE purchaseOrderId= @po AND isReceived= @ =
PRE po :NAT THEN /*returns 1 (corresponds to TRUE in B) if there exists such an instance, |
res := bool({#pos.(pos:T_Purchase_Order & returns @ (corresponds to FALSE in B) otherwise*/
pas ' purchaseOrderId = po & IF(@exist > @)
pos'isReceived = FALSE)) SET fires = 1
END ELSE
SET fires = @
¥ a0 -
< n 3 l [T b

Figure 6.19: Generation of a stored procedure NotReceive

e a SQL table for each B variable in the form of a structure (struct). For
example, Figure 6.18 shows the derivation of a SQL table from the B
structure T_Purchase_Order.

A Formal Approach to Derive an AOP-Based Implementation of a Secure
164 Access Control Filter

|Z| Table_Purchase_Order.mch i3 [4] T_Purchase_Orderjava &1

MACHINE -
Table_Purchase_Order i

automatic generation of the operation NoReceive
/

VARIABLES = pu‘bli: boolean MNoReceive(int po) {
T_Purchase_Order CallableStatement stmt;
INVARIANT

try{
//call the stored procedure NoReceive
stmt = dbcon.prepareCall("{call HoReceive (?)}"); (D
stmt.setInt{1l,po);

T_Purchase_Order <:
struct(purchaseOrderId:NAT, createdDate:NAT,
isApproved:BOOL, isReceived:BOOL)

INITIALISATION //execution of the statement:
T_Purchase_Order := {} if there exists at least a returned result,|
OPERATIONS //false othe

res<--NoReceive(po)=
PRE po :NAT THEN
res := bool(#pos.(pos:T_Purchase_Order &
pos 'purchase0rderId = po &
pos 'isReceived = FALSE))

ResultSet res = stmt.executeQuery(); E
if (res.next() && res.getInt(1)>@)
return true;
else
return false;
} catch (SQLException e) {e.printStackTrace();}
return false;

Figure 6.20: Generation of the associated JAVA method NotReceive

e a set of JAVA methods/stored procedures for the associated B opera-
tions of the previous variable, which are called by secure operations. For
instance, Figure 6.19 and Figure 6.20 are the translation of the stored pro-
cedure and the JAVA method generated from the operation NotReceive
on the table T_Purchase_Order, called by the secure operation receive.

e a stored procedure and a JAVA method that calls it for each operation to

secure . These transformations are illustrated by the operation receive in
Figure 6.21 and 6.22

FunctionalRequirement_i.imp & .| FunctionalRequirement.sql 3
result <-- PurchaseQrder__receive (po) = == Automatic translation from B Operation: PurchaseOrder__receive po
VAR po_id , notyet_received IN 2 CREATE PROCEDURE PurchaseOrder__receive Epo int
po_id <-- getPURCHASEORDERNE (po) ; AS
notyet_received <-- NoReceive (po.id) ; + DECLARE @notyet_received int
IF notyet_received = TRUE THEN 5 EXEC NoReceive Epo /*Replaced po_id by po®/,Bnotyet_received QUTPUT
T_receive { po_id) ; o IF (notyet_received = 1
result := Ok /*BOOLEAN type in B is converted to BIT type im SQL: TRUE->1, FALSE-=@*/)
ELSE BEGIN
result := Ko] T_receive €po /*Replaced po_id by po*/
END i END
END Leli]
END

Figure 6.21: Generation of the stored procedure receive

6.6.2 Translating the B specification of the SecureUML di-
agram

The B specification of the SecureUML diagram encodes the security data, such
as users, roles, user-role assignments, and permission-role assignments together

Tool support 165

FunctionalRequirement_i.imp % 4] FunctionalRequirement.java
15 OPERATIONS B /* Automatic genergtion of B Operation PurchaseOrder__receive®/
] ublic String PurchaseOrder__receive(int
result <-- PurchaseOrder__receive (po) =) g String rf-su'l ta"KO" ¢ (ARt poRDlE
VAR po_id , notyet_received IN CallableStatement stmt;

po_id <-- getPURCHASEORDERND C po) ;

t
notyet_received <-- NoReceive (po_id) ; 4!

x /4 defining the CallableStatement JAVA variable stmt to contain
Ir Mtwt‘—rece‘ved = TRUE THEN Afthe call to the stored procedure receive
T_receive (po_id) ; 14 stmt = dbcon.preporeCall{"{call PurchaseDrder__receive (73}");:
result := Ok 1 stmt. setInt(1,po);
ELSE : //execution of the store procedure
reAULL i KA 1 //returns the number of modified tuples
S END 18 int res = stmt.executeUpdate();
1B if(res>@) result = "OK";
4 END 2 stmt . close();
- 121 }eatch (SQLException ¢) { e.printStockTrace();}
4 | return result;

Figure 6.22: Generation of the associated JAVA method receive

with security relevant operations. In Section 6.5.3, we described the deploy-
ment of such a specification in JAVA /SQL. Consequently, the tool generates
the following components from this specification:

: = SecureUMLContext.mch i3 [2] SecureUMLContext.sql &2

MACHINE - /{Create database users -
SecureUMLContext CREATE LOGIN Bob WITH PASSWORD = pwdBob
SETS CREATE USER Bob FOR LOGIN Bob
| Users = {Bob, Paul, Tom, Alice, noneuser};
Roles = {Staff, Manager, nonerole}; CREATE LOGIN Paul WITH PASSWORD = pwdPaul
Operations = { CREATE USER Paul FOR LOGIN Paul
PurchaseOrder__approve,
PurchaseOrder__create, CREATE LOGIN Tom WITH PASSWORD = pwdTom
PurchaseOrder__receive}; CREATE USER Tom FOR LOGIN Tom
Access = {granted, denied}
CONSTANTS CREATE LOGIN Alice WITH PASSWORD = pwdAlice
Permissions, UsersRoles CREATE USER Alice FOR LOGIN Alice
PROPERTIES i
Permissions ={ //Create database roles 3
Manager|-> PurchaseOrder__approve, CREATE ROLE Staff
Staff|-> PurchaseOrder__create, CREATE ROLE Manager
Staff|-> PurchaseOrder__receive} &
= UsersRoles ={ //fGrant permissions
Bob|->5taff, GRANT EXECUTE ON PurchaseOrder_ approve TO Manager
Paul|->staff, GRANT EXECUTE ON PurchaseOrder_ create TO Staff
Tom| ->Manager, GRANT EXECUTE ON PurchaseOrder_ receive TO Staff
Alice|->staff,
noneuser | ->nonerole} // Assign roles to users
END ALTER ROLE Staff ADD MEMBER Bob

ALTER ROLE Staff ADD MEMBER Paul
ALTER ROLE Manager ADD MEMBER Tom
» ALTER ROLE Staff ADD MEMBER Alice *
18 i | 3 4l 1 al 3

Figure 6.23: Generation of the security data

e a set of SQL statements depending on SQL Server (release 2014) to create
users and roles, to assign roles to users, and to grant permissions to roles
(See Figure 6.23),

A Formal Approach to Derive an AOP-Based Implementation of a Secure
166 Access Control Filter

=| SecureUMLTranslation.mch 23 [4] SecureUMUAVATransjava &2

public class SecureUMLIAVATrans {

MACHINE private String connectingliser;

SecureUlLTranslation private String currentRole;
SEES private Connection dhcon;

SecureUMLContext public void connectUser(String usr, String rol)
VARIABLES

Session connectingUser = usr;
TNVARTANT

' currentRole = rol;
Session : Users +-> Roles &

aessdonics USECsRoles public String checkliserPermission(String usr, String op) throws SQLException

INITIALISATION
Session :={noneuser|->nonerole} String access = "denied”; L
OPERATIONS /g g t ing user, 1
Eotheecinaar iy vod)s / r erified user is currently
.- //connecting to t ystem.
uspyz Userss8 rol) s Roles & String conUser = getConnectingUser();

usr|-»rol : UsersRoles
THEN
Session(usr):=rol
END;

if (usr.equals(cenUser)) {
//checking the permi
//the execution is granted i

// returns tru therwise.
boolean isPermitted = isPermittedRole(currentRole, op);
if (isPermitted) L

access<--checkUserPermission(ep, usr)=

PRE usr : Users & op : Operations THEN atiiss metgraniadss
IF usr : dom(Session) THEN adde
IF Session(usr)|-> op : Permissions THEN Lccess = mdenied™;

access:-granted

ELSE return access;

access:=denied 3
END
RS % ffchecking the execution permission of a given role on a given method
- access:=denied public boolean isPermittedRole(String rol, String op) throws SQLException
- boolean access = false;
s //defining a Preparedstatement JAVA ify
//permission of a given role on executi tored procedure
¥ PreparedStatement stm = dbcon.prepareStatement("SELECT COUNT(*)" A

4 » « m | v

Figure 6.24: Generation of the class Secure UMLJAVATrans

e a JAVA class SecureUMLJAVATrans (See Figure 6.24) defining security
checking methods (connectUser, checkUserPermission, and isPermitted-
Role)

6.6.3 Translating the B specification of the secure activity
diagram

Taking the B specification of the secure activity diagram as an input, the tool
gives:

e a log table and its associated JAVA class for each B table structure
T_Op_log. For instance, Figure 6.26 and 6.25 depict the mappings of
the variable T_Receive_log and its related operations into a SQL table
and the JAVA methods on this table.

e a JAVA class ActionsHistoryJAVATrans encoding the log methods derived
from the log operations. This translation is demonstrated through the
operation LogReceive in Figure 6.27.

e a JAVA class ADJAVATrans deploying dynamic security-checking oper-
ations. For example, the operation ADReceive is mapped into a JAVA
method as in Figure 6.28.

Tool support

167

[LogFilereceivemch 52

[

VARIABLES
T_Receive_log
INVARIANT
& T_Receive log <: struct(purchaseOrderId: NAT,
userExecutedReceive : Users, orderExecutionRece
INITIALTSATION
T_Receive log := {}
OPERATIONS

res<--NoReceive_log(po)=
PRE po : NAT THEN
- res := bool(not(#log.(log : T_Receive_log &
log'purchaseOrderTd = po)))
END;

= AddReceive_log(po, usr, time)=
PRE
po : NAT & usr :
THEN
= T_Receive_log := T_Receive_log \/
{rec(po, usr, time)}

Users & time : NAT

END;

© res<--Receive_user(po)=
PRE po : NAT THEN
ANY log WHERE
log : T Receive_log &
1og'purchaseorderId = po
THEN
res = log'userExecutedReceive
END
END;

res<--Receive_order(po)=
PRE po : NAT THEN
@ ANY log WHERE

[J) T_Receive_logjava 5%

® public T Receive log(Connection conn) throws SQLException {
dbcon = conn;
stmt = conn.prepareStatement("SELECT ="
+ "FROM T_Receive log "

ive : NAT) + "WHERE purchaseOrderId:

")
}

* automatic generation of the operation NoReceive log
ay

= public boolean MoReceive_log(int pa) {
try
stmt. setInt(1,pa);
f/execution of the statement that checks if the method
//is already performed or not,
//returns false if it is already executed, true otherwise.
ResultSet res = stmt.executeQuery();
if (res.next())
return false;
else
return true;
} catch (SQLException e) {e.printStackTrace();}
return false;

m

S je

* autematic gencration of the operation AddReceive_log
=/

= public void AddReceive_log(int po,String usr

try {

//defining a SQL statement to add a new record to the table T Receive_log |

Statement stm = dbcon.createStatement();
String log = "INSERT INTO T Receive log"
+ "(purchaseorderId, userExescutedReceive) "
+ "VALUES("+ po +",""+ usr +"');";
/fexecuting the statement
stm.executeUpdate(loe):

Figure

6.25: Generation of a log class

/*omit the datekims type that is automatically calculated in java/sql®/){

I

LogFile_receivemch i3

VARIABLES -
T_Receive_log
INVARTANT
& T_Receive_log <:
struct(purchaseOrderId: NAT,

T_Receive log.sgl B2

--SQL code of LogFile_receive

/*generate the SQL table from the B variable T_Receive_log*/

CREATE TABLE T Receive log {
purchaseOrderId INT /*convert type NAT in B to INT in SQL*/ NOT NULL ,
userExecutedReceive VARCHAR(25) NOT NULL ,

userExecutedReceive : Users, orderExecutionReceive DATETIME DEFAULT CURRENT_TIMESTAMP
orderExecutionReceive : NAT) /*the key is a set of attributes denoting the parameters of the method to log*/
INITIALISATION PRIMARY KEY(purchaseOrderId)
T_Receive_log := {} - } -
S b]
Figure 6.26: Generation of a log table
ActionsHistory_iimp 2 4] ActionsHistoryJAVATrans.java 3
. public closs ActionsHistorylAVATrans {
OPERATIONS _ ?::vnko T_Receive_log t_receive_log;
m":‘:"{':‘:g"d"—“m“ ST * Automatic translation of B Operation: LogPurchaseDrder__receive(po, usr)

po.id <-- getPURCHASEORDERNE (po) ;
AddReceive_log (po_id , usr , currentOrder) ;
currentOrder 1= currentOrder + 1

.
public String LogPurchaselrder __receive(int po,String usr){
t.receive.log.AddReceive.log(po /*Replace po.id by po*/,usr)

i /* Omit time vorigble currentOrder that is outomaticolly calculated in jova/sql */

END

Figure 6.27: Generation of the log method

6.6.4 Translation of the access control filter

The B specification of the filter results in an aspect class defining a pointcut and
an associated advice for each filter operation. This transformation is illustrated
by the filter operation FilterPurchaseOrder_receive in Figure 6.29.

A Formal Approach to Derive an AOP-Based Implementation of a Secure

168

Access Control Filter

ADTranslation_i.imp 3

OPERATIONS

access <-- ADPurchaseOrder__receive (po , usr)=

VAR

N

po_id, notyet_opprove, notyet_create,
create_user, create_order, opprove_order

po_id <-- getPURCHASEORDERNE { po) ;
notyet_spprove <-- NoApprove_log (po_id
notyet_create <-- NoCreate_log (po_id) ;
create_user <-- Create_user (po_id) ;
create_order <-- Create_order (po_id) ;

opprove_order <-- Approve_order (po.id) ;

IF notyet_opprove = FALSE &
notyet_create = FALSE &
usr f= create_user &
creote order < approve_order
THEN
access = granted
ELSE
access = denied

D

4| ADJAVATrans.java E2
* Automatic translotion of B Operation: ADPurchaseOrder__receive{ po, usr)

public String ADPurchoseOrder__receive(int po,String usr){

String access = “denied”;
boolean notyet_approve = t_approve.NoApprove_log(po /*Replace po_id by po®/);
boglean notyet_create = t_create.MoCreate_log(po /*R o_id by po*/);
String create_user = t_create.Create_user{po /*Replace D 3
String create_order = t_create.Create_order(po /*Reploce p
String approve_order = t_opprove.Approve_order{po /*Replace po_i
if{notyet_opprove == false &4

notyet_create == false &&

tusr. equols(create_user) &&

sdf parse{create_order}.before(sdf parse(approve_order))

"
access = “gronted”
}elsef

access = “denied”
}

reEturn Gccess;

END }
END ¥
END 4

Figure 6.28: Generation of the method ADOp

SecureFilter_i.imp & | SecureFilter2Aspectlaj 2

result,occess<--FilterPurchaselrder _receive(po, usrj= pointcut po Purchaselrder _receive(int pa)iargs(pe)

VAR staticRight IN 1 &Beoll(* Purchaselrder__receive(intl);
staticRight 19 String arowmd(int po):Purchasedrder__receive(po){
«--checkliserPermission(Purchasedrder__receive_Lobel, use); J initAspectdC();

IF staticRight = granted THEM String result ="K0" ;
VAR dynamicRight IN 2 String usr = SecurcUMLIAVATrans, getlonncctingUser();
dynasti cRight<--ADPurchaseOrder__receivelpe, usrd; : try{ . .
IF dynomicRight = granted THEN String stotichight-staticC,checkUserPernission(Purchaselrder__receive® usrd
if (stoticRightes"granted”){
String dynamicRight=dynomicC.ADPurchasedrder__receive(po,usr);
if (dynomicRighte="granted™){

resul t<--Purchaselrder__receive(po);
IF result = OK THEN
LegPurchaselrder _receivelpe, usr)

ENDH E result = processipo);
END;] 1F(resul t=="0K"3{
access 1= dynamicRight] logC. LegPurchaseOrder__receive(po,usr);
END 1
ELSE i 3
cccess o= denied; result i= WO ¥
END Jeatch (SQLException e) {}
END return result;
END }

Figure 6.29: Generation of the aspect class

6.7 Conclusion

In this chapter, we presented a systematic approach for developing a secure
access control filter. The approach consists in designing the functionalities of
the system to build using a UML class diagram and the static and the dynamic
security concerns with SecureUML and activity diagrams respectively. These
diagrams are then translated into a B formal specification following a set of
well defined rules in order to be verified by establishing some invariant prop-
erties. To generate an executable implementation, the verified B specification
is refined until obtaining a relational-like B implementation that is straightfor-
wardly mapped into an AspectJ-based program.

Some approaches have been developed in the area of the security enforce-
ment. In [14], transformation rules are proposed to generate an aspect for
access control implementation from a SecureUML model. The validation of the
transformation is made through the evaluation of some OCL constraints that

Conclusion 169

are evaluated on both the source and the target models. Even if the SecureUML
model is implemented as a JAVA program that verifies the different user’s rights
which is different from our implementation, this work is close but the approach
does not describe how the generated code can be mixed with the functional part
of the application. An other approach introduced in [69, 70| consists in anno-
tating the elements to protect in a JAVA program (i.e. methods, interfaces,
and classes) with the roles that a user has to play to call them. The problem
with such an approach is to know where annotations should be put without
overloading the program. Moreover, this approach produces a scattered and
tangled code. This is why an aspect oriented programming-based approach
is chosen in this chapter in order to overcome these drawbacks by making a
clear separation between the functional and security concerns as described in
existing approaches with JAVA [15] for user-based access control and with C
languages [31] for buffer overflow protection, log data, etc.

A next step in the presented work concerns the correctness of the derived
AspectJ code. Our derivation process being done outside any formal environ-
ment, one cannot be sure of its correctness. In general, the correctness of a code
generation algorithm is a very complex task. This problem has been addressed
in [108] (for the C language) where the used structures of the target language
are very closed to those of the B implementation. We think that the correctness
of our translation process would require more in-depth analysis.

A Formal Approach to Derive an AOP-Based Implementation of a Secure
170 Access Control Filter

CHAPTER 7

Conclusions and Future Work

Contents
7.1 Contributions e e e e e e e 172
7.2 Future Work @ @ @ i e e e 173

Security is a central issue in information systems since any security bleaches
may cause serious consequences for the organizations that use them. However,
dealing with security properties of such systems is a difficult and tedious task.
Developers tend to postpone the security concerns until the final phases of
software development. In consequence, errors are often discovered late making
them difficult and even impossible to fix. Therefore, it seems important to take
into account security requirements since the early phases of system development.

This thesis aims at developing information systems and their access control
mechanisms using formal techniques. We first specify the considered system and
its access control requirements using UML-based languages. Even if graphical
models give an intuitive view, but their semantics often cause the ambiguity of
interpretation. Hence, we formalize these models in B formal language. The
formal specification offers an unambiguous and a precise representation. Fur-
thermore, it can be rigorously validated and verified, enabling to early errors
detection. Finally, we refine the abstract specification until obtaining a concrete
one, which can be easily translated into a trustworthy relational-based imple-
mentation. Such an implementation is based on an AOP paradigm in order to
promote a separation of concerns.

171

172 Conclusions and Future Work

7.1 Contributions

In this work, we started by reviewing the existing approaches related to our
thesis subject. Our study of the state of the art was divided into four parts re-
lated respectively to specification techniques for access control policies, support
tools, implementation methods for an access control specification, and security
enforcement approaches. We then recapitulated the benefits and the drawbacks
of the surveyed works. Consequently, we proposed three major contributions in
order to provide a comprehensive MDE approach to build secure information
systems. In this thesis, we are particularly interested in two types of security
rules: : static and dynamic. Static rules refer to a given single moment of the
system without keeping the history of actions. Whereas dynamic ones require
to take the execution history of the system into account, that is the actions
already executed in the system in general or by a given user in particular. For
example, in the case of an inventory, a static rule could be: Only users playing
the Manager role is permitted to approve an order, and a dynamic rule could
be: The person who is trying to recewve the goods of an order should not be the
person who created that order.

In the first contribution, we visualized security policies and functional re-
quirements of a system using UML-based languages: SecureUML diagrams are
used to represent the static aspect of access control, dedicated UML activity dia-
grams, called secure activity diagrams, are used to model dynamic security rules,
and the functional requirements are introduced using a class diagram. Also at
the platform independent level, we defined mapping rules of these graphical
models into B. As such, the system specification is precise enough to be vali-
dated and verified using AtelierB [26] and ProB [27]. We also defined an access
control filter where the functional and different security specifications are com-
bined.

The second contribution uses the refinement technique of the B method.
We defined transformation rules of the abstract specification targeting an AOP-
based implementation. The obtained implementation follows the separation
of concerns principle. Basically, the functional component is transformed into
a relational-based application, while the security component is mapped into
an AspectJ code. Thanks to the Aspect] weaver, the security check can be
dynamically injected into the functional program.

Finally, we developed a tool to support the approach proposed in this thesis.
In fact, we have extended the BAMSECURE tool [13] built by a team from the
French LIG laboratory by translation rules to take class associations into ac-
count. We have also adapted the translation rules related to the SECUREUML

Future Work 173

diagrams by adopting a defensive style mapping into a B specification. The
modeling and the translation into B of secure activity diagrams have been in-
troduced to support dynamic security rules. The tool is an Eclipse platform
integrated the Topcased modeling environment. No modification is required
for the validation and the verification of the generated B specifications. The
implementation of these initial B specifications derives a trustworthy database
application based on Java/SQL and AspectJ. The transformation of the formal
implementation into an executable code is also performed automatically using
our tool. The generated SQL code is correct with respect to the SQL Server
syntax. The Java/SQL program is derived from the functional specification.
Security enforcement policies are separately implemented in an aspect, making
the code easier to track and maintain.

7.2 Future Work

This section suggests a number of possible directions for extending the research
carried out in this dissertation. Limitations of our work open future perspectives
to follow in short and long terms.

In this thesis, we proposed a transformation approach from the Platform
Independent Model level to the Platform Specific Model level (i.e. from the B
abstract specification to an AspectJ-like application connected to a relational
database management system) based on the refinement technique of the B for-
mal language. Yet, our refinement is currently performed manually. Although
this hand-operated refinement is systematic, it requires a good background
about mathematic notations and B refinement techniques. As a short term
work, we plan to automate the refinement process.

As a long term future work, we aim to go further in the diversity of secu-
rity concerns. In our approach, we solved various access control requirements,
namely, essential access control policies, dynamic separation of duty constraints
(history-based and ordering-based rules). It would be interesting to consider
other constraints, such as delegation, prerequisite, and so on. We are aware
that adding new kinds of security requirements will bring new challenges. But
we are confident that the benefits of our approach will help us deal with it.
Indeed, our approach allows the modularity of different aspects throughout the
development life-cycle: from the design phase to the implementation phase. As
a result, additional security constraints can enhance the safety and security of
a system without having a remarkable impact on the existing components. To
take into account new types of security constraints, other UML-based diagrams
may be necessary, for example, sequence diagrams and state diagrams. A set of

174 Conclusions and Future Work

translation rules is also required for the transformations from graphical models
into B and from B specifications into Java/SQL.

Finally, we did not evaluate the scalability of our tool. We only used it for
small systems with acceptable response times. It is important to experiment the
tool on real-size systems and, if needed, optimize its performance and efficiency.

1]

2|

3]

4]

[5]

(6]

17l

8]

Bibliography

David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based ac-
cess control. ACM Transactions on Information and System Security

(TISSEC), 4(3):224-274, 2001.

David Basin, Manuel Clavel, Jiirgen Doser, and Marina Egea. Automated
analysis of security-design models. Information and Software Technology,
51(5):815-831, 20009.

Michael E Shin and Gail-Joon Ahn. UML-based representation of role-
based access control. In Enabling Technologies: Infrastructure for Collab-
orative Enterprises, 2000.(WET ICE 2000). Proeedings. IEEE 9th Inter-
national Workshops on, pages 195-200. IEEE, 2000.

Gail-Joon Ahn and Michael E Shin. Role-based authorization constraints
specification using object constraint language. In Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2001. WET ICE 2001. Pro-
ceedings. Tenth IEEE International Workshops on, pages 157-162. IEEE,
2001.

Indrakshi Ray, Na Li, Robert France, and Dae-Kyoo Kim. Using UML
to visualize role-based access control constraints. In Proceedings of the

ninth ACM symposium on Access control models and technologies, pages
115-124. ACM, 2004.

Dae-Kyoo Kim, Indrakshi Ray, Robert France, and Na Li. Modeling role-
based access control using parameterized UML models. In Fundamental
Approaches to Software Engineering, pages 180-193. Springer, 2004.

Ruth Breu, Gerhard Popp, and Muhammad Alam. Model based devel-
opment of access policies. International Journal on Software Tools for
Technology Transfer, 9(5-6):457-470, 2007.

David Basin, Jiirgen Doser, and Torsten Lodderstedt. Model driven secu-
rity: From UML models to access control infrastructures. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 15(1):39-91,
2006.

175

176

Bibliography

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Hongxin Hu and GailJoon Ahn. Enabling verification and conformance
testing for access control model. In Proceedings of the 13th ACM sym-
postum on Access control models and technologies, pages 195-204. ACM,
2008.

Manachai Toahchoodee, Indrakshi Ray, Kyriakos Anastasakis, Geri
Georg, and Behzad Bordbar. Ensuring spatio-temporal access control
for real-world applications. In Proceedings of the 14th ACM symposium
on Access control models and technologies, pages 13-22. ACM, 20009.

Jérémy Milhau, Akram Idani, Régine Laleau, Mohamed-Amine Labiadh,
Yves Ledru, and Marc Frappier. Combining UML, ASTD and B for the
formal specification of an access control filter. Innovations in Systems and
Software Engineering, 7(4):303-313, 2011.

J Milhau, M Frappier, F Gervais, and R Laleau. Systematic translation of
EB3 and ASTD specifications in B and EventB. Université de Sherbrooke,
Rapport technique, 30:v3, 2010.

A Idani and Y Ledru. B for modeling secure information systems-the
B4MSecure platform. ICFEM, 2015.

Christiano Braga. A transformation contract to generate aspects from
access control policies. Software & Systems Modeling, 10(3):395-409, 2011.

Bart De Win, Bart Vanhaute, and Bart De Decker. Security through
aspect-oriented programming. In Advances in Network and Distributed
Systems Security, pages 125-138. Springer, 2002.

Minhuan Huang, Chunlei Wang, and Lufeng Zhang. Toward a reusable
and generic security aspect library. AOSD: AOSDSEC, 4, 2004.

D. Basin, J. Doser, and T. Lodderstedt. Model Driven Security: From
UML Models to Access Control Infrastructures. ACM Trans. Softw. Eng.
Methodol., 15(1), 2006.

Ravi S Sandhu, Edward J Coynek, Hal L Feinsteink, and Charles E
Youmank. Role-based access control models yz. IEEE computer, 29(2):38—
47, 1996.

Oracle. https://www.oracle.com/database/index.html.

https://www.oracle.com/database/index.html

Bibliography 177

[20]

21

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Microsoft sql server 2014 express. https://www.microsoft.com/en-us/
download/details.aspx?7id=42299.

Jos B Warmer and Anneke G Kleppe. The object constraint language:
Precise modeling with UML (addison-wesley object technology series).
1998.

Daniel Jackson. Alloy: a lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodology (TOSEM),
11(2):256-290, 2002.

J Michael Spivey and JR Abrial. The Z notation. Prentice Hall Hemel
Hempstead, 1992.

JR Abrial. The B book. 1996.

Nafees Qamar, Yves Ledru, and Akram Idani. Validation of security-
design models using Z. In International Conference on Formal Engineering
Methods, pages 259-274. Springer, 2011.

Atelier B. The industrial tool to efficiently deploy the B method. URL:
hitp://www. atelierb. eu/index-en. php (access date 22.05. 2015), 2008.

Michael Leuschel and Michael Butler. ProB: A model checker for B.
In International Symposium of Formal Methods Europe, pages 855-874.
Springer, 2003.

Regine Laleau and Amel Mammar. An overview of a method and its sup-
port tool for generating B specifications from UML notations. In Auto-
mated Software Engineering, 2000. Proceedings ASE 2000. The Fifteenth
IEEE International Conference on, pages 269-272. IEEE, 2000.

Hung Ledang. Automatic translation from UML specifications to B.
In Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th
Annual International Conference on, page 436. IEEE, 2001.

Colin Snook and Michael Butler. U2B-A tool for translating UML-B
models into B. 2004.

John Viega, JT Bloch, and Pravir Chandra. Applying aspect-oriented
programming to security. Cutter IT Journal, 14(2):31-39, 2001.

https://www.microsoft.com/en-us/download/details.aspx?id=42299
https://www.microsoft.com/en-us/download/details.aspx?id=42299

178

Bibliography

[32]

[33]

[34]

[35]

[36]

137]

[38]

[39]

[40]

[41]

42|

Bart De Win, Wouter Joosen, and Frank Piessens. Developing secure
applications through aspect-oriented programming. Aspect-Oriented Soft-
ware Development, pages 633—650, 2005.

Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian. A for-
mal enforcement framework for role-based access control using aspect-
oriented programming. In Model Driven Engineering Languages and Sys-
tems, pages b37-552. Springer, 2005.

Carliss Young Baldwin and Kim B Clark. Design rules: The power of
modularity, volume 1. MIT press, 2000.

John C Knight. Safety critical systems: challenges and directions. In Soft-
ware Engineering, 2002. ICSE 2002. Proceedings of the 24rd International
Conference on, pages 547-550. IEEE, 2002.

Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Me-
teor: A successful application of B in a large project. In FM’99—Formal
Methods, pages 369-387. Springer, 1999.

Frédéric Badeau and Arnaud Amelot. Using B as a high level program-
ming language in an industrial project: Roissy VAL. In International
Conference of B and Z Users, pages 334-354. Springer, 2005.

Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEFE
COMPUTER SOCIETY-, 39(2):25, 2006.

Richard Soley et al. Model driven architecture. OMG white paper,
308(308):5, 2000.

David Ferraiolo, D Richard Kuhn, and Ramaswamy Chandramouli. Role-
based access control. Artech House, 2003.

David F Ferraiolo, John F Barkley, and D Richard Kuhn. A role-based
access control model and reference implementation within a corporate

intranet. ACM Transactions on Information and System Security (TIS-
SEC), 2(1):34-64, 1999.

Richard T Simon and Mary Ellen Zurko. Separation of duty in role-
based environments. In Computer Security Foundations Workshop, 1997.
Proceedings., 10th, pages 183-194. IEEE, 1997.

Bibliography 179

[43]

|44]

|45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

Torsten Lodderstedt, David Basin, and Jiirgen Doser. SecureUML:
A UML-based modeling language for model-driven security. In UML
2002—The Unified Modeling Language, pages 426-441. Springer, 2002.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In European conference on object-oriented programming,
pages 220-242. Springer, 1997.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G Griswold. An overview of AspectJ. In Furopean Conference
on Object-Oriented Programming, pages 327-354. Springer, 2001.

Jos B Warmer and Anneke G Kleppe. The object constraint language:
getting your models ready for MDA. Addison-Wesley Professional, 2003.

Gail-Joon Ahn and Hongxin Hu. Towards realizing a formal RBAC model
in real systems. In Proceedings of the 12th ACM symposium on Access
control models and technologies, pages 215-224. ACM, 2007.

Bruno T Messmer and Horst Bunke. Subgraph isomorphism in polynomial
time. Citeseer, 1995.

Karsten Sohr, Gail-Joon Ahn, Martin Gogolla, and Lars Migge. Specifi-
cation and validation of authorisation constraints using UML and OCL.
In European Symposium on Research in Computer Security, pages 64—79.
Springer, 2005.

Mark Richters et al. A precise approach to validating UML models and
OCL constraints. Citeseer, 2002.

Paul Ziemann and Martin Gogolla. An OCL extension for formulating

temporal constraints. Rapport technique, Universitat Bremen, page 87,
2003.

Till Mossakowski, Michael Drouineaud, and Karsten Sohr. A temporal-
logic extension of role-based access control covering dynamic separation
of duties. In Temporal Representation and Reasoning, 2003 and Fourth
International Conference on Temporal Logic. Proceedings. 10th Interna-
tional Symposium on, pages 83-90. IEEE, 2003.

180

Bibliography

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

David Basin, Jiirgen Doser, and Torsten Lodderstedt. Model driven secu-
rity for process-oriented systems. In Proceedings of the eighth ACM sym-
postum on Access control models and technologies, pages 100-109. ACM,
2003.

Andreas Schaad and Jonathan D Moffett. A lightweight approach to
specification and analysis of role-based access control extensions. In Pro-

ceedings of the seventh ACM symposium on Access control models and
technologies, pages 13-22. ACM, 2002.

John Zao, Hoetech Wee, Jonathan Chu, and Daniel Jackson. RBAC
schema verification using lightweight formal model and constraint analy-

sis. Submitted to SACMAT, 2003.

Behzad Bordbar and Kyriakos Anastasakis. UML2ALLOY: A tool for
lightweight modelling of discrete event systems. In ITADIS AC, pages 209—
216, 2005.

Anthony Boswell. Specification and validation of a security policy model.
IEEE Transactions on Software Engineering, 21(2):63, 1995.

Shoichi Morimoto, Shinjiro Shigematsu, Yuichi Goto, and Jingde Cheng.
Formal verification of security specifications with common criteria. In
Proceedings of the 2007 ACM symposium on Applied computing, pages
1506-1512. ACM, 2007.

Ali E Abdallah and Etienne J Khayat. Formal z specifications of several
flat role-based access control models. In 2006 30th Annual IEEE/NASA
Software Engineering Workshop, pages 282-292. IEEE, 2006.

Chunyang Yuan, Yeping He, Jianbo He, and Zhouyi Zhou. A verifiable
formal specification for RBAC model with constraints of separation of
duty. In International Conference on Information Security and Cryptol-
oqy, pages 196-210. Springer, 2006.

Sophie Dupuy, Yves Ledru, and Monique Chabre-Peccoud. An overview
of roz: a tool for integrating UML and Z specifications. In International
Conference on Advanced Information Systems Engineering, pages 417—
430. Springer, 2000.

M Utting. Jaza: Just another z animator, 2005.

Bibliography 181

[63]

|64]

[65]

|66]

[67]

[68]

[69]

[70]

[71]

72|

Marc Frappier, Frédéric Gervais, Régine Laleau, Benoit Fraikin, and
Richard St-Denis. Extending statecharts with process algebra operators.
Innovations in Systems and Software Engineering, 4(3):285-292, 2008.

David Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of computer programming, 8(3):231-274, 1987.

Marc Frappier and Richard St-Denis. EB3: an entity-based black-box
specification method for information systems. Software and Systems Mod-
eling, 2(2):134-149, 2003.

Kevin Lano, David Clark, and Kelly Androutsopoulos. UML to B: Formal
verification of object-oriented models. In International Conference on
Integrated Formal Methods, pages 187-206. Springer, 2004.

Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: the alloy
constraint analyzer. In Software Engineering, 2000. Proceedings of the
2000 International Conference on, pages 730-733. IEEE, 2000.

Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and Roland
Schemers. User authentication and authorization in the Java platform.
In Computer Security Applications Conference, 1999.(ACSAC’99) Pro-
ceedings. 15th Annual, pages 285-290. IEEE, 1999.

Jeff Zarnett, Mahesh Tripunitara, and Patrick Lam. Role-based access
control (RBAC) in Java via proxy objects using annotations. In Proceed-
ings of the 15th ACM symposium on Access control models and technolo-
gies, pages 79-88. ACM, 2010.

J. Fischer, D. Marino, R. Majumdar, and T.Millstein. Fine-Grained Ac-
cess Control with Object-Sensitive Roles. In ECOOP-Object-Oriented
Programming. Springer, 2009.

Shu Gao, Yi Deng, Huiqun Yu, Xudong He, Konstantin Beznosov, and
Kendra Cooper. Applying aspect-orientation in designing security sys-
tems: A case study. In SEKFE, pages 360-365, 2004.

Indrakshi Ray, Robert France, Na Li, and Geri Georg. An aspect-based

approach to modeling access control concerns. Information and Software
Technology, 46(9):575-587, 2004.

182

Bibliography

(73]

[74]

[75]
|76]

[77]

78]

[79]

[30]

[81]

[82]

[83]

[34]

Djedjiga Mouheb, Chamseddine Talhi, Mariam Nouh, Vitor Lima,
Mourad Debbabi, Lingyu Wang, and Makan Pourzandi. Aspect-oriented
modeling for representing and integrating security concerns in UML.
In Software Engineering Research, Management and Applications 2010,
pages 197-213. Springer, 2010.

Bart De Win, Bart Vanhaute, and Bart De Decker. How aspect-oriented
programming can help to build secure software. Informatica, 26(2):141—
149, 2002.

Jonathan Knudsen. Java cryptography. " O’Reilly Media, Inc.", 1998.

A. Mammar, T-M. Nguyen, and R. Laleau. Formal Development of a
Secure Access Control Filter. In 17th IEEFE International Symposium on
High Assurance Systems Engineering, (HASE), pages 173-180, 2016.

T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based
Modeling Language for Model-Driven Security. In Proceedings of the 5th
International Conference on The Unified Modeling Language, UML ’02.
Springer-Verlag, 2002.

J-R. Abrial. The B-Book - Assigning Programs to Meanings. Cambridge
University Press, 2005.

UML2. Unified modeling language: Superstructure. Object Management
Group, version 2.4, 2011.

Clearsy. Atelier De Génie Logiciel Permettant De Développer Des Logi-
ciels Prouvés sans Défaut. http://www.atelierb.eu/.

P. Konopacki. Une Approche Evenementielle Pour La Description De
Politiques De Controle D’Acces. PhD thesis, 2012.

R-S. Sandhu, E-J. Coyne, H-L. Feinstein, and C-E. Youman. Role-Based
Access Control Models. IEEE Computer, 29(2), 1996.

J. Milhau, A. Idani, R. Laleau, M-A. Labiadh, Y. Ledru, and M. Frappier.
Combining UML, ASTD and B for the formal specification of an access
control filter. ISSE, 7(4), 2011.

M. Frappier, F. Gervais, R. Laleau, B. Fraikin, and R. St.-Denis. Ex-
tending statecharts with process algebra operators. ISSE, 4(3):285-292,
2008.

http://www.atelierb.eu/

Bibliography 183

[85]

[36]

87|

[38]

[89]

[90]

[91]

[92]

93]

[94]

S. Dupuy, Y. Ledru, and Mo. Chabre-Peccoud. An Overview of RoZ: A
Tool for Integrating UML and Z Specifications. In Advanced Information
Systems Engineering, 12th International Conference (CASE 2000), 2000.

H. Ledang and J. Souquiéres. Contributions for Modelling UML State-
Charts in B. In Integrated Formal Methods, Third International Confer-
ence, IFM, 2002.

H. Treharne. Supplementing a UML Development Process with B. In
FME 2002: Formal Methods - Getting I'T Right, International Symposium
of Formal Methods Europe, 2002.

Y. Chen and H. Miao. From an Abstract Object-Z Specification to UML
Diagram. Journal of Information & Computational Science, 1(2), 2004.

A. Idani, Y. Ledru, and D. Bert. Derivation of UML Class Diagrams as
Static Views of Formal B Developments. In Formal Methods and Soft-
ware Engineering, 7th International Conference on Formal Engineering
Methods (ICFEM), 2005.

R. Laleau and A. Mammar. An Overview of a Method and Its Support
Tool for Generating B Specifications from UML Notations. In ASE, 2000.

A. Mammar and R. Laleau. A formal approach based on UML and B for
the specification and development of database applications. Automated
Software Engineering, 13(4), 2006.

S. Preda, N. Cuppens-Boulahia, F. Cuppens, J. Garcia-Alfaro, and
L. Toutain. Model-Driven Security Policy Deployment: Property Ori-
ented Approach. In Engineering Secure Software and Systems, Second
International Symposium, (ESSoS), 2010.

M. Toahchoodee, I. Ray, K. Anastasakis, G. Georg, and B. Bordbar. En-
suring spatio-temporal access control for real-world applications. In Bar-
bara Carminati and James Joshi, editors, 14th ACM Symposium on Access

Control Models and Technologies, (SACMAT) Proceedings. ACM, 2009.

N. Qamar, Y. Ledru, and A. Idani. Validation of Security-Design Models
Using Z. In S. Qin and Z. Qiu, editors, Formal Methods and Software Engi-
neering - 13th International Conference on Formal Engineering Methods,

ICFEM, volume 6991 of Lecture Notes in Computer Science. Springer,
2011.

184

Bibliography

[95]

[96]

197]

198

[99]

[100]

101]

[102]
103

[104]

[105]

[106]

A. Idani, Y. Ledru, and A. Radhouani. Modélisation graphique et valida-
tion formelle de politiques RBAC en systémes d’information. plateforme
B4MSecure. Ingénierie des Systémes d’Information, 19(6):33-61, 2014.

M. Leuschel and M-J. Butler. ProB: A Model Checker for B. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, Formal Methods, International Sym-
posium of Formal Methods Proceedings, volume 2805 of Lecture Notes in
Computer Science. Springer, 2003.

T-M. Nguyen, A. Mammar, R. Laleau, and S. Hameg. A Tool for the
Generation of a Secure Access Control Filter. In 10th IEEE International
Conference on Research Challenges in Information Science (RCIS), 2016.

H. Ledang and Jeanine S. Contributions for modelling UML state-charts
in B. In Integrated Formal Methods. Springer-Verlag, 2002.

H. Treharne. Supplementing a UML Development Process with B. In
FME 2002: Formal Methods—Getting I'T Right. Springer, 2002.

A. Idani, Y. Ledru, and D. Bert. Derivation of UML Class Diagrams as
Static Views of Formal B Developments. In Formal Methods and Software
Engineering. Springer, 2005.

K-C. Mander and F. Polack. Rigorous Specification using Structured
Systems Analysis and Z. Information and Software Technology, 37(5),
1995.

http://bdmsecure.forge.imag.fr/.

A. Mammar, T-M. Nguyen, and R. Laleau. Formal Development of a
Secure Access Control Filter. In 17th International IEEE Symposium on
High-Assurance Systems Engineering, HASE. IEEE Computer Society,
2016.

A. Mammar and R. Laleau. From a B formal specification to an exe-
cutable code: application to the relational database domain. Information
& Software Technology, 48(4):253-279, 2006.

Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing Ltd, 2013.

J-L Boulanger. Abtools: Another B tool. In Application of Concurrency
to System Design, 2003. Proceedings. Third International Conference on,
pages 231-232. IEEE, 2003.

http://b4msecure.forge.imag.fr/

Bibliography 185

[107] TJ Parr and RW Quong. Antlr: A predicated. Software—Practice and
Ezperience, 25(7):789-810, 1995.

[108] D. Bert, S. Boulmé, M-L. Potet, A. Requet, and L. Voisin. Adaptable
Translator of B Specifications to Embedded C Programs. In FME 2003:

Formal Methods, International Symposium of Formal Methods Furope,
2003.

	Introduction
	Research Motivations
	Research Contributions
	Thesis Structure

	Background
	Introduction
	The B Method
	Abstract machine
	Refinement
	Discussion

	Model-Driven Engineering
	An overview
	Model-Driven Architecture

	Role Based Access Control
	Core RBAC
	RBAC Constraints
	SecureUML

	RBAC in Database Management Systems
	Database User
	User-defined Database Role
	User-Role assignment
	Permission assignment

	Aspect Oriented Programming
	An overview
	AspectJ

	Conclusion

	State of The Art
	Introduction
	Techniques for Security Specification
	UML and OCL based approaches
	Alloy-based Approaches
	Z-based Approaches
	A B-based Approach
	Discussion

	Support Tools for Access Control Policies
	SecureMOVA
	B4MSecure
	Discussion

	Implementation of An Access Control Specification
	Enforcement of Access Control Policies
	Java Authentication and Authorization Service
	Annotation-based approaches
	AOP-based approaches
	Discussion

	Conclusion

	Formal Development of a Secure Access Control Filter
	Introduction
	The case study: a bank system
	Graphical modeling of security requirements
	SecureUML
	Activity diagrams for dynamic security rules

	Generation of a B specification
	Overview of the B method
	Translation of the functional model: the class diagram
	Formalizing SecureUML in B
	Translation of the secure UML activity diagrams into B
	Putting all the security and functional constraints together

	Verification and validation
	Conclusion

	A Tool for the Generation of a Secure Access Control Filter
	Introduction
	Overview of the tool
	Overview of the B method
	Graphical modeling of the application: case study
	From graphical diagrams to B formal notations
	Translation of the class diagram
	Translation of the SecureUML diagram
	Translation of the secure UML activity diagram

	The B specification of a secure filter
	Conclusion

	A Formal Approach to Derive an AOP-Based Implementation of a Secure Access Control Filter
	Introduction
	The case study: a purchase order system
	A formal B specification of a secure filter
	Translation of the class diagram into a B specification
	Translation of the SecureUML diagram into a B specification
	Translation of the secure UML activity diagrams into a B specification
	Designing the secure filter

	From an abstract B specification to a relational-like B implementation
	Data refinement
	Behavioral refinement

	The AspectJ implementation of the application
	Transformation rules of B into JAVA/SQL
	Deployment of the class diagram
	Definition of the tables and the associated JAVA methods and stored procedures
	Translation of the operations of the class diagram

	Deployment of the SecureUML diagram
	Deployment of the secure activity diagrams
	Definition of the log tables and the associated JAVA classes
	Translation of the secure operations of the secure activity diagrams
	Translation of the log operations

	Deployment of the filter

	Tool support
	Translating the B specification of the class diagram
	Translating the B specification of the SecureUML diagram
	Translating the B specification of the secure activity diagram
	Translation of the access control filter

	Conclusion

	Conclusions and Future Work
	Contributions
	Future Work

