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0
Introduction

Many body physics describes the behavior of physical systems with a large number of constituents.
Its applications covers many domains such as quantum chemistry, where it describes the behavior
of electrons in atoms or molecules, nuclear physics, condensed matter physics where it describes
electrons in a crystal or ultracold atoms physics where it describes small gaseous samples (up
to a few billions atoms). The N body problems with N≫ 1 are not exactly solvable despite their
ubiquity in physics. Many approximate solutions were developed to circumvent this issue and
obtain effective descriptions of these systems that can be used to predict their properties.
In almost all cases, a statistical approach (see refs. [1, 2]), allowed by the large number of particles,

is used to describe the system by a limited set of macroscopic state functions (temperature T,
pressure P, density n...). The relations between these are derived from specific assumptions on the
microscopic system. Perhaps the simplest assumption consists in considering the constituents of
the gas to be independent, which leads to the ideal gas model. Ideal gas theory however fails when
the interparticle distance becomes small enough such that interactions between atoms ormolecules
are not negligible. This happens in dense samples (condensed matter, nuclei) and also, perhaps
more surprisingly, in dilute atomic gases at ultralow temperatures. In this case, the deviations from
ideal theory can be treated perturbatively, for example with a virial expansion. The parameters of
such expansion depend on the microscopic properties of the system and are in general challenging
to compute for large corrections.
A particularly spectacular failure of this type of theories is observed when interactions lead to a

particular ordering at the macroscopic level, i.e. to a new state of matter. This new state often form
collective states and are usually observed at “low” temperature. The ordering characteristic of the
collective state washes out due to thermal fluctuations above a second order phase transition at a
temperature that depends on the interaction strength. Examples of such systems are realized with
ferromagnetic materials (see ref. [3]), in which a permanent magnetic moment can be observed
even in absence of magnetic fields below the Curie temperature, due to the alignment of the
spins within the material. Another example of collective behavior results from the observation
of superfluid flow in liquid helium at low temperatures (see refs. [4, 5]). This originates from a
peculiar effect of the quantum statistics of bosonic particles predicted by Bose for photons (see
ref. [6]) and generalized by Einstein (see ref. [7]) in 1924 that leads to a large fraction of the liquid
composed of atoms being in the lowest energy single particle state (a plane wave at rest in uniform
systems). This phenomenon called Bose-Einstein condensation, is predicted even for an ideal



10 0. Introduction

gas. The large interactions in liquid helium complicates the theoretical description of its exact
properties (see ref. [5]).

The advances in laser cooling of atoms (that were awarded by a Nobel prize to S. Chu, C. Cohen-
Tannoudji and W. Phillips in 1997, see ref. [8–10]) enabled the production of extremely cold
gaseous samples at temperature in the microKelvin range. Further advances in trapping and
evaporative cooling led to the production of even lower temperature clouds and to the first gaseous
Bose-Einstein condensate, where a macroscopic population appears in the ground state of the
trapping potential containing the gas. Their realization was awarded by a Nobel prize to E. Cornell,
W. Ketterle and C. Wieman in 2001, see refs [11–13] in 1995. Depending on the details of the trap
(size, shape, dimensionality), BECs can display many peculiar properties due to their quantum
nature and to interactions between their components, in particular superfluidity (see reviews
in refs. [14, 15]). Bose-Einstein condensates provide an advantageous experimental platform for
the study of quantum fluids as they are created in a well controlled and isolated environment.
Additionally, as compared with liquid helium or electrons in solid state systems, the interactions
strength in ultracold gases are well understood and can (for several atomic species) be accurately
controlled using Fesbach resonances (see ref.[16, 17])
Following their discovery, the coherent nature of Bose-Einstein condensates have been experi-

mentally demonstrated by interference type experiments (see refs.[18, 19]) and their superfluid
nature by the observation of quantized vortices (see refs.[20–22]) and superfluid flow (see ref. [23]).
The cooling and trapping techniques developed for Bose gases were extended to fermionic systems,
leading to the realization of a degenerate Fermi gas (see refs. [24]). The degree of control in the
potentials in which these gases are created led to the study of low-dimensional gases, for example
Tonk-Girardeau gases in 1D (see refs. [25, 26]), or superfluid gases below the so-called Berezinky-
Kosterlitz-Thouless (BKT) transition in 2D (refs. [27, 28]). The equilibrium thermodynamics of
Bose gases near the Bose-Einstein transition was also studied [14] and measured [29]. Another
direction that is still extensively explored results from trapping ultra cold atoms in lattice-like
potentials created with interfering laser beams. These geometries opened new possibilities regard-
ing the simulation of complex states of condensed matter. Spectacular results in this field include
the observation of the superfluid-Mott insulator transition [30–32], many-body localization in
disordered potentials [33] and the detection of inter-site magnetic correlations [34, 35].

In the first Bose-Einstein condensate experiments, only single components gases were studied
due to the use of magnetic trapping [11–13]. Few years later, the development of optical trapping
(see ref. [36, 37]) allowed the study of multicomponent gases. In all multi-component quantum
fluids, the internal degree of freedom plays a significant role in the physical behavior of the system
(for example in the superfluidity of 3He [38, 39]). Ultracold Bose gases with a spin degree of
freedom are called “spinor Bose gases” and constitute another example of spinful quantum fluid.
They present a wide variety of novel physical phenomenons and constitute a good system for the
study of magnetic phases of matter.
The most striking differences between spinor BEC and their single component counterpart

results from the interactions between their internal components. These are of two types: spin-
exchange contact interaction and dipole-dipole interactions. Contact interactions are present in all
spinor gases and give rise to spin dynamics analogous to Josephson oscillation in superconductor
junctions (see [40–51]), to spin textures (see refs. [52, 53]), and to magnetic ordering in the ground
state (see refs. [47, 54–57]). On the other hand, dipolar interactions are significant mostly for
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higher spin atoms (such as chromium, erbium or dysprosium), even though they were shown not
to be completely negligible for rubidium atoms as discussed in ref. [58]. Nevertheless, in these
higher spin atoms, the relatively high magnitude of the dipole-dipole interactions modifies the
physics significantly as compared with low spin species. Examples of such effects are strong dipolar
relaxation phenomena (see refs. [59–61]) or anisotropic behavior (see refs [60, 62, 63]).
This manuscript studies some of the properties of spin 1 Bose gases at thermal equilibrium. We

will show that the physics of this system is governed by spin exchange contact interactions and
Zeeman energy. The ground state of spin 1 Bose gases is predicted to present two magnetic phases
for spin 1 [47, 54–57, 64, 65]. One of the phase is called an antiferromagnetic phase, and bears
similar properties to the Néel phase of spin 1/2 antiferromagnets. The other magnetic phase is a
polar phase [66, 67] and does not exist in spin 1/2 systems. In polar phases, the magnetic order
is not set by a magnetization, but rather by spin fluctuations transverse to a preferred axis. Spin
nematic order takes its name from the similarity of the order parameter to the one of nematic liquid
crystals (see ref. [68]). Spin 1 nematic phases have been widely studied in the context of solid state
physics (see refs. [69–71, 71–81]). The unambiguous demonstration of nematic order in condensed
matter systems remains challenging (see refs. [70, 72–74, 76, 82]) because the bulk properties that
are often measured such as the magnetic susceptibility mostly depend on magnetization which
vanishes in polar phases. Ultracold spinor Bose gases (see refs. [47, 51, 54–56, 65, 77–79, 81, 83, 84]
allow for more controlled and thorough measurements, and as such offer a good alternative to
study such a magnetic phase. In this thesis, we study experimentally this kind of magnetic ordering
using an antiferromagnetic spin 1 Bose-Einstein condensate.
Considering finite temperature properties, the onset of magnetic ordering in spin 1 Bose gas has

also been covered theoretically in many references (see refs. [85–92]), and is predicted to offer a
rather rich behavior. However, the thermodynamic of spin 1 Bose gases was only scarcely explored
experimentally. We present in this manuscript a thorough study of the thermodynamic properties
of a spin 1 Bose gas using a sodium gas with antiferromagnetic interactions.

Summary

In the chapter 1, we first recall in section 1 introductory notions about Bose-Einstein con-
densation in scalar gases merely as an occasion to set notations. We start by introducing the
thermodynamics of Bose gases near the critical temperature for Bose-Einstein condensation,
and what are the expected deviations to the ideal gas picture due to interaction and finite atom
number. We then describe a more sophisticated formalism that we have developed to estimate the
deviations from the harmonically trapped gas model due to the anharmonicity and final trap depth
of the trapping potential. This modifies the critical temperature for Bose-Einstein condensation
and we estimate the resulting shift. In sections 2 and 3, we recall the methods to describe the
ground state of scalar and spinor Bose-Einstein condensates. In section 4, we introduce the ther-
modynamic of the ideal spin 1 Bose gas. This chapter is intended as a detailed introduction to the
topic and to give the reader an overview of the theoretical tools that we use in the following chapters.

The experimental techniques that we use to create and observe the spinor Bose gases are in-
troduced in chapter 2. In section 1, we start by giving an overview of the cooling sequence, and
of the trapping potentials that we use to create spinor Bose gases. We then discuss in section 2
the detection of spinor Bose gas with spin dependent imaging, and its limits in term of noise. In
section 3, we detail the fitting methods that we use to extract thermodynamic quantities from
images. In section 4, we discuss a particular set of techniques more specific to spinor Bose gases,
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that are used to manipulate the spin degree of freedom of the gas.

In chapter 3, we discuss low-temperature properties of a spin 1 Bose gas with antiferromagnetic
interactions, e.g. its ground state and magnetic phases. In section 1, we recall the general properties
of the antiferromagnetic phase observed for low magnetic fields, and of the broken axisymmetry
phase observed for high magnetic field. They mostly differ by the length of their transverse spin
that vanishes for the former, and is minimal for the latter. We show that the minimization of
the transverse spin in the broken axisymmetry phase results from a phase locking mechanism
mediated by spin changing interactions. In section 2, we study this phase locking mechanism
using spin rotations, and demonstrate experimentally the minimization of the transverse spin. We
discuss modifications of this results that comes from the finite temperature of the gas. In section 3,
we mention the measurement of fragmentation near zero magnetic field due to the degeneracy
of all three Zeeman components. This leads to large population fluctuations and we discuss that
these can originate from a finite spin temperature.

In chapter 4, wemeasure the thermodynamic properties of spin 1 Bose gas near the Bose-Einstein
transition. In section 1, we describe the modifications to the experimental setup that we had to
implement to measure “high temperature” gases, and describe the data analysis procedure that we
have applied to extract thermodynamic quantities from absorption images. In section 2, we show
the measurement of the thermodynamic phase diagram of a spin 1 Bose gas and compare our
measurement to the predictions of ideal gas theory for several strengths of the Zeeman energy. We
discuss how to interpret a large deviation from ideal gas theory by the effect of interactions, and
show that these are enhanced below the first critical temperature by the presence of a condensate.
In section 3, we compare the data to the results of a numerical resolution of an Hartree-Fock model
and discuss possible additional effects (finite atom number and trap anharmonicities) that affect
the measured critical temperature.

Chapter 5 concludes the thesis. We first summarize the content of each chapter and also discuss
prospects for future work.



“À raison d’un enfoncement de la ville de trente cen-
timètres par siècle, expliquais-je, donc de trois mil-
limètres par an, donc de zéro virgule zéro zéro quatre-
vingt-deux millimètres par jour, donc de zéro virgule
zéro zéro zéro zéro zéro zéro un millimètre par seconde,
on pouvait raisonnablement, en appuyant bien fort nos
pas sur le trottoir, escompter être pour quelque chose
dans l’engloutissement de la ville.”
La salle de bain
Jean-Phillipe Toussaint 1

Elements of theory
for spinor Bose gases

This chapterwill expose some of the basic phenomenons that govern the behavior of dilute spinor
Bose gases at very low temperatures. We will recall these notions as a mean to set notations and
to introduce more complicated concepts in the rest of the manuscript. In section 1, we will start by
discussing the Bose-Einstein transition for an ideal scalar Bose gas, as an introduction to the case
of spin 1 gases that we cover later on. We will recall the refinements over ideal gas theory such as
the effect of interactions and finite atom numbers. I will take advantage of this chapter to introduce
a slightly less common notion, which is the modification of the thermodynamics of Bose gases due
to the anharmonicity and finite depth of the trapping potential. In this paragraph, we determine
the critical atom number in a realistic trapping potential that corresponds to the one created by
two crossed laser beams. We discuss how we define the trap depth from the mechanisms at stake
in evaporative cooling, and we will derive the expected shift in critical temperature. In section 2, I
will recall how to describe a pure single-component Bose-Einstein condensate at zero temperature
and describe its expansion dynamics in free space. In section 3, I will introduce the physics of
spinor Bose-Einstein condensates through scattering properties and interactions with magnetic
fields. Both these section will set the grounds for the study of low temperature phases of spin 1
Bose-Einstein condensates in chap. 3.
In section 4, I will introduce the thermodynamic of an ideal spin 1 Bose gas near the Bose-

Einstein critical temperature. This section is intended to give the reader a taste of the experimental
study of the problem in chapter 4. We will see that ideal gas theory predicts a surprisingly rich
thermodynamic behavior due to the conservation of the magnetization.

1.1 Single component Bose gas at finite temperature

Bose-Einstein condensation results from the role of the quantum statistics of bosons [6, 7] at
low temperature. In the grand canonical ensemble [2], the minimization of entropy given the
mean energy E and particle number N lead to the density operator:

ρ̂ = 1
Ξ
e−β(Ĥ−µN̂), (1.1)
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where µ, the chemical potential, and β = 1/kBT are two Lagrange multipliers for the particle
number and energy respectively. Ξ is the grand canonical partition function:

Ξ = Tr (e−β(Ĥ−µN̂)) . (1.2)

The Gibbs Free energy is deduced from the grand partition function:

G(N, T, V) = −kBT ln(Ξ), (1.3)

the total atom number is:

N = ∂G
∂µ
= − 1

β
∂ lnΞ

∂µ
=∑

i
giNi , (1.4)

where gi is the degeneracy of the energy level i and the average occupation number of the state i,
Ni is expressed as:

Ni = β ∂ ln ξi
∂µ

= 1
eβ(E i−µ) − 1 , (1.5)

In particular, the occupation number of the ground state is:

N0 = 1
eβ(E0−µ) − 1 . (1.6)

We note that expression (1.6) imposes an important bound on the chemical potential:

µ < E0, (1.7)

where E0 is the the energy of the ground state of the system. If the temperature is high (β(Ek−E0)≪
1), the Bose-Einstein statistics is equivalent to the Maxwell-Boltzmann statistics used to described
classical gases:

NMB ≃ e−β(Ek−µ). (1.8)

An important difference between Bose-Einstein and Maxwell-Boltzmann statistics is that in the
former case the occupation number of the ground state diverges as µ → E0. Then, the ground state
can become macroscopically populated even if kBT ≫ (E1 − E0). The fraction of ground state
particles of this type of gas is called a Bose-Einstein condensate (BEC). It is often convenient to
treat the BEC separately such that the total number of atom N is written as:

N = N0 +N′, (1.9)

where N′ is the population of the normal component, defined as the atoms that does not belong to
the condensate.

1.1.1 Ideal gas in a harmonic trap

Density of states

Ultracold atomic gases are created and cooled in traps, usually well approximated by a 3D
harmonic potential:

V(x , y, z) = 1
2

mω2
x x2 + 1

2
mω2

y y2 + 1
2

mω2
zz2. (1.10)
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Figure 1.1: Condensed fraction of an ideal Bose gas in a harmonic trap.

The characteristic length scales of the ground state wavefunction are the harmonic oscillator
lengths:

aho,i =
√

ħ
mωi

. (1.11)

where i stands for x , y, z. The spectrum of such a potential is given by three quantum numbers
nx , ny , nz ∈ N3 such that we obtain:

ε(nx , ny , nz) = (nx + 12) ħωx + (ny + 12) ħωy + (nz + 12) ħωz , (1.12)

With the spectrum, the population of the normal component N′ in the trap is calculated explicitly
by summing over the occupation numbers of all excited states and we have:

N′ = ∞∑
i=1

gi
exp β(εi − µ) − 1 , (1.13)

We note however that the spectrum, and its degeneracies are not known for anisotropic harmonic
traps or for more complicated trap shapes.
For now, we will study the case of an isotropic harmonic potential of trapping frequency ω,

and instead of considering the full spectrum in Eq. (1.12), we will study the case kBT≫ ħω and
consider a continuous spectrum where the density of states ρ(E) can be expressed as:

ρ(E) ≃ E2

2ħ3ω3 , (1.14)

The excited state population is then given by:

N′ = ∫ ∞0 ρ(E)gBE(E) (1.15)



16 1. Elements of theory for spinor Bose gases

where we have defined the Bose distribution function :

gBE(E) = 1
exp βE − 1 . (1.16)

We remark that even for a vanishing chemical potential, the integral in Eq. 1.15 converges, and
provides a finite population Nc in the excited states:

Nc = (kBT
ħω
)3 g3(1). (1.17)

where we have defined the Bose function of order n, see fig.1.2:

gn = ∞∑
k=1

xk

kn . (1.18)

If the total atom number is larger than Nc , the excess population goes to the ground state and
constitutes a Bose-Einstein condensate. As such, Nc is called the critical atom number and is
associated with a critical temperature Tc (that is defined by N = Nc for Tc = T) that we deduce
from Eq. (1.17):

Tc = 1
kB

ħω ( N
g3(1))

1/3
. (1.19)

The condensed fraction defined as fc = N0/N is plotted on figure 1.1:

fc = 1 − ( TTc0)
3
. (1.20)

As we noted earlier, in more complicated potentials, the spectrum {εi} and the density of states
ρ(ε) are in general not known, and another approach is needed.
The semiclassical approximation

We turn to a description of the gas using canonical variables r and p and rather than considering
the spectrum, we compute the phase space distribution by directly evaluating the density of states
with expression [14, 93]:

ρ(E) = 1(2πħ)3 ∫ d3rd3p δ (E −H(r, p) − µ) , (1.21)

where H = p2/2m + V(r) is the Hamiltonian of the system. We note that with this method, we
make no assumption regarding the nature of the potential, such that potential shapes beyond the
harmonic one can be considered, as we shall discuss in a later paragraph. We can define a phase
space distribution f (r, p) using the Bose distribution

(2πħ)3 f (r, p) = gBEδ (E −H(r, p)) = 1
exp (β (p2/2m + V(r) − µ)) − 1 (1.22)

The excited state population is computed by integration of the phase space distribution:

N′ = ∫∫ f (r, p)d3rd3p, (1.23)

We note that using the potential for an isotropic harmonic trap Vho = mω2∣r∣2/2 we recover the
same critical atom number as in Eq. (1.17)
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Figure 1.2: Bose functions and density profiles of Bose gases. We see that “integrated” density
profiles (g2, g3, g5/2) show a “smoother” behavior near x = 0.
Density distributions

The density of the thermal component is obtained through integration of the phase space
distribution f (r, p) over momentum space:

n3D(r) = 1(2πħ)3 ∫ d3p
eβ(p2/2m+V(r)−µ) − 1 = 1

λ3dB
g3/2 (eβ(µ−V(r))) , (1.24)

where λdB =√2πħ2/mkBT is the de Broglie wavelength. In experiments, the quantities that are
measured are integrated over one or two dimensions of space. This type of profiles obtained
from integration of Eq. (1.24) are of the form gk(gaussian), with k = 3/2, 2, 5/2 for respectively
3D, 2D and 1D density profiles, see fig.1.2. The densities differ significantly in the case of a high
temperature or a saturated gas. At high temperature, the chemical potential goes to infinity: µ →∞,
and the density profiles are 3D Gaussian functions. Indeed, the Bose functions of any order are
well approximated by f (x) = x close to the origin as seen in figure 1.2.
Close to the Bose-Einstein transition, as µ → 0, both the density and momentum distribution of

the thermal gas become more peaked than a Maxwell Boltzmann distribution as seen in figure 1.2.
However, the “wings” of both distributions are still well approximated by Gaussian functions. It is
also worth noting that the condition for condensation µ → 0 (for V(0) = 0) applied to the thermal
gas density yields n3D(0) = g3/2(1)/λ3dB. This condition means that a condensate is created at the
center of the trap when the central density reaches the critical value for an homogeneous gas.

1.1.2 Finite size effects

The thermodynamic properties of Bose gases are usually defined within the thermodynamic
limit in which both the particle number N and the volume V goes to infinity while the density of
the gas N/V stays constant. In analogy, we define a procedure in which the trapping frequencies
ωi go to zero while the ratio Nω3 is kept constant [93, 94]. In this limit, kBTc ≫ ħω, which is
equivalent to say that many levels are populated, and justifies the semiclassical approximation
used to obtain the critical temperature before. Besides, this procedure leaves expression (1.19)
unchanged, thus allowing the description of Bose-Einstein condensation. We note it also produces
a divergence of the peak density of the ideal condensate which scales as Nω3/2. However, this does
not affect the critical temperature evaluation as the ground state is always considered separately in
the calculations.
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Figure 1.3: Finite size shift for a Bose gas in an isotropic harmonic trap.

Finite-size critical temperature shift

Since the number of atoms we can work with is finite, we determine the differences with infinite
systems (see refs. [95–99]). We consider an isotropic trap of angular frequency ω. The density of
states of the system is modified from the semi-classical density of states given in Eq. (1.14):

g(єk) = 12(єk + 1)(єk + 2) ∼ є2k
2ħω

+ 3єk
2ħω

, (1.25)

with єk = Ek/ħω. Above Tc0, to first order in ħω/kBT, the total atom number is modified:

N′ =( ħω
kBT
)3 g3 (z̃) + 32 ( ħω

kBT
)2 g2 (z̃) + O( ħω

kBT
) , (1.26)

with z̃ = eβµ.The correction to critical atomnumber and temperature to first orderN → Nc0+δNFS
and T → Tc0 + δTFS :

δNFS = 32 (kBT
ħω
)2 g2(1) (1.27)

(1.28)

We can then use the N1/3 scaling in Eq. (1.19) critical temperature to obtain the expression of
the shift of the critical temperature δTint with δTint/Tc0 = −δNc/3Nc0, and compute a practical
formula:

δTFS
Tc0
= − g2(1)

2g2/33 (1)N
− 1

3 ≃ −0.73N− 1
3 (1.29)

The density of states of a 3D anisotropic harmonic trap cannot be expressed analytically. While it
is possible to compute it numerically, it is more convenient to use an alternative, but equivalent
approach. Instead of using the modified density of state, we use the semi-classical expression
keeping the zero-point energy as a first order correction to the chemical potential (see ref. [100]):

Nc = g3 (ze− 3β̃
2 ) = g3(z) − 3β̃2 g2(z). (1.30)
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In the case of an anisotropic trap we have:

Nc = g3 (ze− βħ
2 (ωx+ωy+ωz)) = (kBT

ħω
)3 g3(z) ∏

i={x ,y,z}(1 −
βħωi
2

g2(z)) . (1.31)

After simplifications, this gives a very similar result to the isotropic case with a correction factor
depending on the geometric average of the trap frequencies:

δTc
Tc,ideal

= −0.73ωx + ωy + ωz

3ω
N−1/3. (1.32)

For our parameters, this is a small correction from Eq. (1.29). We show the finite size correction to
the critical temperature for typical experimental parameters in fig.1.3.

1.1.3 Role of interactions

Inter-atomic interaction potential

The gases we study are very dilute. For example, if we consider a Bose gas in a harmonic trap at a
typical temperature in our experiment T ∼ 1 µK, the density will be n ∼ 1013 at/cm−3. In this density
regime, only binary collisions play a significant role. Three-body collisions take place at a much
lower rate. When three atoms are close to each other, two of themmay form a molecule in a highly
energetic vibrational state. The third atom takes away the energy released by the dimer formation.
Since the energy released by the process is usually very high compared to typical trapping energy
scales, the third atom is lost with the excited molecule, and three body collisions are treated as a
loss process [101].
We now study the scattering between two atoms. We consider the center of mass frame, and

consider the asymptotic behavior of the relative motion between the two particles well before
and well after the scattering event [102, 103]. We first consider the decomposition of the incident
wavepacket into the plane wave basis, and study the behavior of each term of its decomposition.The
effect of the collision is given by a scattering amplitude f (θ, k), where k is the incident wavevector
and θ is the relative angle between the incident and diffused wavefunction. With this definition,
we write a stationary scattering state: ψk = exp(ikz) + f (k, θ) exp(ikr)/r. The next step consists
in developing this state on the basis of spherical harmonics: ψk = ∑∞l=0∑l

m=−l Ylm(θ, Φ)ukl(r)/r
where ukl are the partial wave amplitudes.These obey to a radial equation that includes a centrifugal
barrier term ħl(l + 1)/(2µr2), where µ is the reduced mass. In the case of ultracold gases, atoms
have very low relative speed. In particular, partial waves with l > 0 never reach the interaction
region due to the centrifugal barrier, only the l = 0 – s-wave – channel contributes.
The complexity of the short range inter atomic potentialsmakes the calculation of such scattering

amplitude difficult. Instead, we take the low energy limit of the partial wave amplitude solution
such that f does not depend on the incident energy. In this limit, the binary interactions can
be described by a single parameter: the scattering length a such that f (k, θ) = −a. A positive
scattering length indicates repulsive interactions. The scattering properties generally depends on
the internal state of the atom. For example, we consider sodium in the F=1, mF = +1 hyperfine
state, which scattering length is [104]:

a = 54.54aB = 2.89nm, (1.33)
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Figure 1.4: Interaction shift of the critical temperature for Bose-Einstein condensation of a sodium
Bose gas in the F = 1,mF = +1 component in a harmonic trap of angular frequency ω = 2π ⋅ 1 kHz.
where aB = 53 pm is the Bohr radius. The short range potential is generally unknown (or too
complicated) and the value of the scattering length is very sensitive on its details. We define a
pseudo potential whose properties are simple, but which allows us to retrieve the same scattering
length as the actual atomic potential. We choose a contact potential:

V(r, r′) = gδ(r, r′), (1.34)

where the interaction coupling constant is chosen to reproduce the correct scattering length:

g = 4πħ2a
m

. (1.35)

Scalar gas critical temperature shift due to interactions

In a harmonically trapped Bose gas repulsive interactions tend to “spread” the gas, hence
lowering its density at the center. The many body Hamiltonian of the interacting Bose gas in
second quantization is [93]:

Ĥ = ∫ dr Ψ̂†(r) (−ħ∇
2m
+ V(r)) Ψ̂(r) + g

2 ∫ dr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) (1.36)

We adopt an Hartree-Fock (HF) approach (see refs. [93, 105, 106]) in which the gas generates a
repulsive potential 2gn(r), where n is the atomic density, that is determined self-consistently. The
potential then experienced by the gas is:

Veff(r) = Vext(r) + 2gn(r). (1.37)

This in turn modifies the chemical potential of the gas µ = µ(0) + δµ. Because the condition to
fulfill condensation remains n(0)λ3dB = g3/2(1), The shift in chemical potential δµ is determined
by the interaction energy at the center:

δµ = 2gn(0) (1.38)
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We apply a perturbative treatment to the ideal gas formula (see refs. [93, 100, 107, 108]) and take
Nc → Nc0 + δNc . We compute the change in critical atom number δNc within the local density
approximation, and we obtain:

δNc = 1(2πħ)3 ( ∫∫ d3pd3r
exp (β (p2/2m + Veff(r) − δµ)) − 1

− ∫∫ d3pd3r
exp (β (p2/2m + V(r))) − 1) ,

(1.39)

The expression (1.39) has been computed by Giorgini et al. in ref. [107]:

δNc
Nc0
≃ 4 a

aho
N1/6. (1.40)

In term of temperature shift, this gives:

δTint
Tc,ideal

= −1.33 a
aho

N1/6. (1.41)

We plot the interaction shift for typical experimental parameters in fig. 1.4.

1.1.4 Role of realistic trapping potentials

Optical traps used in our experiment are only approximately harmonic near the potential
minimum. Deviations from harmonicity can affect the thermodynamics of the system. In this
section, we investigate the effect of finite trap depth and anharmonicities on the Bose-Einstein
critical temperature.

Optical traps

In the experiment, far detuned optical traps are used to confine ultra cold atoms. Optical dipole
traps (ODT) are created with laser beams, and generate an atomic potential V(r)∝ −αI(r) where
α the atomic polarizability described in annex B and ref. [37]. If the laser frequency is lower than
the atomic transition frequency – the laser is then red detuned – the polarizability is positive, and
atoms are attracted towards high intensity regions. Instead, if the laser frequency is higher than
the transition frequency – the laser is then blue detuned – the polarizability is negative and atoms
are attracted towards low intensity regions. For alkali atoms, the polarizability is independent on
the internal state if the detuning is large enough.

Gaussian trapping potentials

Laser beams are described by Gaussian optics [109], where intensity is a Gaussian function of
the distance to the optical axis. In the case the laser is red detuned, there is a potential minimum
at the intensity maximum that is located in the focal plane, on the optical axis. We will see in the
following that such a trap is not harmonic away from the center, and also, that unlike a harmonic
trap, it has a finite depth, related to the peak intensity of the laser beam.
The simplest kind of ODT consists in a single beam from a red detuned laser. The simplest ideal

laser beams are in the TEM00 mode whose intensity distribution is (in the case of a laser beam
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Figure 1.5: Maximum radii of classical trajectories in a crossed optical dipole trap, neglecting
gravity, expressed in units of beam waists w. On the left we show examples of classical trajectories
(blue for an atom of energy E < V0 and red for an atom of energy V0 < E < 2V0) and the definition
of the maximum radius. The shaded area corresponds to one waist on each arm. On the right we
show the maximum radius versus the energy of the trajectory. The escape from the crossing region
is seen as a sudden increase of the maximum radius at E = V0.

propagating along z):

I(r, z) = I0 w2
0

w2(z) exp( −2r2

w2(z)) , (1.42)

We defined the beam widthw(z) = w0(1+(z/zR)2)1/2, with thewaist of the laser beamw0 and the
Rayleigh length zR = πw2

0/λL. The potential created from such a beam can be written, referencing
the energy zero at the trap bottom:

V(z)ODT(x , y, z) = V0 − V0

1 + (z/zR)2 exp
⎛⎝− 2 (x2 + y2)

w2 (1 + (z/zR)2)
⎞⎠ . (1.43)

whereV0 is the single beam potential depthV0 = αI0. Near the origin, the trap is well approximated
by a harmonic trap with trapping frequencies:

ωx ,y =
¿ÁÁÀ 4V0

mw2 , ωz =
¿ÁÁÀ 2V0

mz2R
. (1.44)

Given the wavelength λ ∼ 1 µm and the waist (typically w0 ∼ 10 µm) of the laser beam, the aspect
ratio of such a trap is rather large (“cigar-shaped” trap). In order to obtain more spherical traps,
we cross two beams of comparable waists propagating along z and along x respectively. Such a
trap will be referred to as a crossed dipole trap (CDT) and is:

VCDT(r) = V(z)ODT(r) + V(x)ODT(r). (1.45)

TheCDT is harmonic near r = 0 and its trap frequencies can be obtained byw(CDT)i =√ω(x)2i + ω(z)2i
where i denote the axis x , y or z, and ω(x ,z)i the trap frequencies of the single beams from Eq. (1.44).
The behavior of a classical particle in the potential (1.45) can be understood by considering the
iso-energy contours plotted in figure 1.6. These contours correspond to the position of the turning
points of classical trajectories of energy E. We observe three regimes depending on the mechanical
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Figure 1.6: Contour plot of the potential VCDT −mgz felt by atoms in the CDT, including gravity.
We notice a minimum along x corresponding to the crossing region, and a saddle point along the
z direction at (x , z) ∼ (0,−1) at energy V ∼ V0 that indicates that atoms are not confined in the
vertical arm due to gravity.

energy E. A first regime, where E < V0, corresponds to atoms trapped in the crossing region. A
second regime, where V0 < E < 2V0 consists in atoms exploring the arms of the crossed dipole
trap, and a third regime where atoms are not trapped for E > 2V0. The two first regimes can be
distinguished by the maximum radius of their classical trajectories in figure 1.5. We observe a sharp
rise of Rmax, defined as the largest radius of the iso-energy contour when E = V0. This increase
reveals the transition from the first to the second regime.
So far, we have solely considered the trapping potential due to the optical dipole trap. However,

trapped atoms are also affected by gravity. This is shown on fig. 1.6 as a saddle point on the z
direction near V = V0, indicating that with chosen parameters, the isolated vertical arm cannot
hold atoms against gravity, and that the trap depth, defined as the highest energy at which classical
trajectories are bound, is reduced to ∼ V0 −mgw. We shall discuss this definition of the trap depth
later on. Another effect of gravity on the potential, hardly visible with the scale of the figure 1.6, is
a displacement – “sag” – of the potential minimum:

zsag ≈ − g
ω2

z
. (1.46)

For ωX ∼ 2π ⋅ 1 kHz, the sag is ∼ 250nm. In the case of a Gaussian optical dipole trap, this result
holds as long as the sag remainsmuch smaller than the waist of the laser. In principle, the horizontal
arm is not affected by gravity. However, a small tilt of the laser propagation axis would result
in an effective reduction of the potential height on this direction, eventually to the point where
atoms cannot be held in the horizontal arm. We estimate the tilt should be small compared to
zRω(x)2x /g ∼ 0.07 ∼ 4○ for ωZ ∼ 2π ⋅ 5Hz, w = 15 µm.
density of states in the crossed dipole trap

In order to study the thermodynamic of Bose gases in such potentials, we turn to the computation
of the density of states as discussed in Sec. 1.1.1. We evaluate it in the potential VCDT using the
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Figure 1.7: Comparison of the density of states of the CDT and in a harmonic
trap. The shaded area represent the energy range where atoms stay within the
crossing region.

semiclassical approximation [14, 93]:

ρ(E) = 1(2πħ)3 ∫ d3rd3pδ (E −H) , (1.47)

where H = p2/2m + VCDT(r) is the Hamiltonian. Integrating over momentum, this becomes:
ρ(E) = (2mw2

0
ħ2 )

3/2√
V0 ∫VCDT(r)≤E

√
E − VCDT(r)

V0

d3r
4π2w3

0
, (1.48)

We compare in figure 1.7 the density of states in the CDT with the one of the harmonic trap with
the same curvature, see Eq. (1.14). When the energy is small, the density of states of the CDT is
close to the one given by the harmonic approximation. However, at higher energy the density of
states of the Gaussian trap is always larger than the one of the harmonic trap. This is due to the fact
that the Gaussian trap is “looser” than the harmonic trap away from the center. Furthermore, we
observe a rapid rise of the density of states at energy E = V0. This is due to the much larger extent
of the classical trajectories at this energy, with atoms exploring the arms. As a conclusion, we see
that the effect of anharmonicity of the CDT potential is in general to increase the density of states
compared to the case of a harmonic trap. This will lead to an increase in critical atom number
(and associated decrease in critical temperature) that we will discuss in the next paragraph.

Critical atom number in the crossed dipole trap

We compute the total number of excited states in the trap with the help of the Bose-Einstein
distribution function from Eq. (1.16):

N′ = ∫ ∞0 dEρ(E)gBE(E). (1.49)
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Figure 1.8: Density as a function of energy for η = 8. We see that the cross dipole trap bears a
relatively larger populations at high energy compared to the harmonic trap due to its increased
density of state at E > V0.

It is convenient to express (1.49) using dimensionless quantities, remarking that the density of
states in Eq. (1.48) only depends on E/V0:

e = E
V0
, η = V0

kBT
, (1.50)

ρ(e) = V0ρ(E), (1.51)

such that we can write very simply the excited states population as a function of the evaporation
parameter η:

N′ = ∫ ∞0 deρ(e)gBE(e) = ∫ ∞0 deρ(e)
exp(ηe) − 1 . (1.52)

As we did in the case of a harmonic trap in section 1, we compute the excited population for a given
value of η (or T equivalently), which gives a critical atom number for Bose-Einstein condensation.
The critical temperature is obtained by finding the temperature at which the gas is saturated,
corresponding to N′ = N.
The situation we discuss is related to the one described by Simon in [110] et al. for a single

beam ODT. They described the critical atom number for a single beam ODT (1.43). In such a
trap, the “Lorentzian” dependence of the trapping potential along the propagation direction leads
to a logarithmic divergence of the critical atom number, that prevents the occurrence of BEC.
This divergence will probably not survive realistic experimental effects such as optical aberrations,
that make the beam diverge more strongly on axis than an ideal Gaussian beam limited only by
diffraction.
The situation will be different in a crossed dipole trap, where atoms mostly stay in the crossing

region, in which the potential has a Gaussian dependence in all axis. In fig. 1.8, we show the atomic
density as a function of energy. It shows the influence of this increased density of states on the
energetic atom density. We notice that a small but visible portion of the atoms explore the arms of
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the CDT (E > V0), and that there is a divergence of the atomic density near E = 2V0 of the same
origin as the one discussed for the single beam ODT. Experimental realities such as gravity, or a
tilt of the horizontal arm would however prevent the divergence by introducing an effective energy
cutoff for the thermal distribution.
In the following, we will analyze the relevance of the above picture for the evaporation dynamics,

and determine the proper energy cutoff for the calculation of thermodynamic quantities such as
the critical atom number.

Principle of evaporative cooling

The extreme temperatures required for Bose-Einstein condensation are reached through evapo-
rative cooling, see ref. [111]. This method relies on the elimination of atoms whose energy is above
the trap depth Vtd and thermalization occurs through binary collisions. Thermalization refers
to the establishment of thermal equilibrium starting from a perturbed energy distribution. This
process requires only a few scattering events per particle to retrieve an equilibrium distribution (see
refs [111, 112]). As such, we can define a thermalization rate Γth ≃ nσv where n is the average density,
σ = 8πa2 is the collision cross-section and v = (8kBT/πm)1/2 the average thermal velocity. The
evaporation process requires that atoms with an energy above E > Vtd escape from the trap. In the
case the evaporation parameter η = Vtd/kBT is large η≫ 1, ref. [111] provides an expression for the
evaporation rate Γev ≃ nσvηe−η. We remark that in this description, thermalization is necessarily
fast in regard with the evaporation process. This is actually a requirement for evaporation, along
with ergodicity, which we will discuss further in a moment.
The reduction of temperature is obtained by a progressive diminution of the trap depth, at

a rate – the cooling rate ∣V̇0/V0∣ – that should be comparable to Γev or slower. We note that in
experiments, the cooling rate needs to be faster than the rates of collision with the background gas
or of three-body recombination¹. A typical lifetime of Bose-Einstein condensates is ∼ 40 s in this
experiment. Besides, we estimate for example that for a sodium gas at T = 5 µK, that Γth ≃ 1000 s−1
and Γev ≃ 7 s−1. We note that the evaporation rate is slightly faster than the typical cooling rate that
we use in the experiment ∼ 1 s−1.
At this point, it may be useful to discuss the ergodicity of the dynamics of atoms in phase

space in our experimental situation. If we consider a single atom in a three dimensional harmonic
trap, a trajectory along a particular trap eigenaxis will never explore the two other degree of
freedom due to the separability of harmonic potentials. As such, single particle trajectories in
such traps are not ergodic since they explore only a small part of the phase space available for a
given energy. Realistic traps however display asymmetries and anharmonicities that restore an
ergodic behavior. The degree of ergodicity of trajectories in a trap is measured by the ergodic
mixing time, which corresponds to the time scales required for an excitation along a single axis to
propagate along other directions in space. This has been measured to be very long in magnetic
traps (0.5 s in [113] and 50 s in [114] for example²). We however expect optical trapping potential
to deviate more strongly from the harmonic model due their inherent anharmonicity and because

¹Ultracold Bose gases are inherently in a metastable state as their true chemical equilibrium state is solid. The
formation of a solid phase (or smaller size clusters) is inhibited by the very low density. Hence, the formation of
molecules by 3-body collisions can provide an upper bound for the experimental time scales.
²We remark that even if magnetic traps can be extremely harmonic, this is a design feature rather than an intrinsic
property. Ioffe-Pritchard traps can be made extremely harmonic for example. The reference [115] shows a study in a
non separable magnetic trap.
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of possible optical aberrations. For these reasons, the ergodic mixing time could be shorter than
in the magnetic traps of refs. [113, 114].
We illustrate the effect of ergodic mixing on evaporation by considering the case of 1D evap-

oration due to gravity. We shall consider two situations. In a first case, the atom is alone in the
trap, and we consider its energy is V0 −mgw < E < V0, such that it remains bound on horizontal
trajectories but escapes on vertical ones. If the atom starts in an horizontal trajectory, the typical
time before it escape will be similar to the ergodic mixing time. In a second case, there are many
atoms in the trap and the typical time between collisions is short compared to the ergodic mixing
time. If we consider the result of an hypothetical collision between two atoms, such that one of
them end up with an energy V0 −mgw < E < V0. Then, we can discuss whether this atom will
end up in a bound or an unbound trajectory from the amount of phase space available in each
case. Given unbound trajectories are limited to purely vertical ones, they will be described by a
phase space with a lower dimension than the one of bound trajectories that can explore both other
directions. Hence, it is much more likely that the atom ends up in a bound trajectory in this case.
Given the ergodic mixing time is much longer than the intercollision time, this atom will undergo
another collision before it can escape from the trap, will redistribute its energy and will not be lost.
This argument is often summarized by stating that one dimensional evaporation processes are
inefficient (see ref. [111]), and that the dimensionality of the selection process should be as high as
possible.
The first situation that we have considered here would correspond to an almost non interacting

gas, where themean free path ismuch larger than the typical size of trajectories.The typical situation
in the crossing region of the CDT is however the opposite as the mean free path l = v/Γth ∼ µm is
smaller than the dimension of the classical trajectories. As we will discuss in the next paragraph,
the situation is not the same for the fraction that explore the arms of the CDT.

Evaporation in a crossed dipole trap

In this paragraph, we turn to the situation in a crossed dipole trap typically described by fig.1.8.
The atomic cloud trapped in the CDT is composed of a dense, interacting component confined in
the crossing region, and of a less populated, much more dilute component that resides mostly in
the horizontal arm (atoms exploring the vertical arm are expelled by gravity, see Sec. 1.1.4). We will
first recall the mechanisms and time scales for evaporation, then discuss the role of gravity, and
finally discuss the coupling between the component in the crossing region and the one that explore
the arms. In a crossed dipole trap, if kBT≪ V0, most of the atoms remain in the crossing region
as seen in figure 1.8. As such, the density in the arm region, which is both much larger and less
populated, is lower than in the center of the CDT by several orders of magnitude narm ≪ ncross.
In this case the mean free path becomes comparable to the trap dimension, and it is reasonable
to assume that the only relevant collision process for the gas exploring the arm happens when
they pass through the crossing region. In this case, the intercollision time depends mainly on their
trajectories and we can estimate the number of collision per passage through the crossing region
from their speed varm ∼ (2E/m)1/2, the size of the center Rth ∼ (2kBT/mω2)1/2, and the time to
go through the crossing region τac ∼ Rth/varm:

Ncoll ∼ n0σvarmτac ∼ n0σRth ∼ 0.1 to 1 (1.53)

The timescales for trajectories in the arms (∼ 100ms) being much longer than the time between
collisions in the crossing region (∼ 1ms), the component in the arms are effectively decoupled
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Figure 1.9: Critical atom number for several condensation scenarii for a CDT with two crossed
Gaussian traps with waists w = 20 µm. We consider either atom from the whole trap (Full CDT),
atoms in the crossing region (CDT), or the prediction from the harmonic approximation near the
trap minimum (Harmonic). We observe that taking into account atoms in the arms, the critical
atom number rises quickly with η. However, considering only atoms from the crossing region, the
rise is limited by the energy cutoff imposed by the hypothesis on the evaporation dynamics. We
note that with an efficient evaporation procedure, the lowest values of η cannot be observed.

from the one in the crossing region. They will be lost eventually as the HDT power is decreased. In
the following, we will only consider the thermodynamic of the component located in the trapping
region.
Summarizing on energy selection, there are two processes to consider which are atoms escaping

to the arms and atoms escaping through the saddle point created by gravity (see fig. 1.6). Even
though gravity impose a slightly lower energy threshold compared to atom escaping to the arms,
the much lower evaporation efficiency of 1D evaporation processes make us choose the energy
threshold for atoms escaping through the arms as the trap depth Vtd = V0.

Conclusions about the critical atom number in crossed dipole traps

Now that we have discussed how to define properly the trap depth, we shall explore three
particular realistic situations for the sake of completeness. We take a realistic crossed dipole trap
composed of two beams of waist w = 20 µm and of trap depth V0 = 20 µK. We consider three
evaporation situations:

1. We define the modified critical atom number by integrating over the crossing region only:

Nc = ∫ 1

0

deρ(e)
exp(ηe) − 1 . (1.54)

2. We define the modified critical atom number by integrating over the whole trap:

Nc,full = ∫ 2

0

deρ(e)
exp(ηe) − 1 . (1.55)
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3. We only consider the harmonic description near the center of the trap and compute the
critical atom number “naively” from this potential

Nc,ho = ∫ ∞0 deρho(e)
exp(ηe) − 1 . (1.56)

We plot the critical atom numbers determined for these three situations on in figure 1.9 as a
function of the evaporation parameter η. We note that in absence of gravity, this is the only
relevant parameter, and the actual trap depth V0 (or equivalently temperature) does not matter.
The critical atom number in the first situation is not very different from the harmonic prediction in
the third situation. This demonstrates that the increased density of states due to the anharmonicity
of the trapping potential (see fig. 1.8) ismostly compensated by the cut-off of the energy distribution
imposed by the trap depth of the crossing region. Nevertheless, there is a small but experimentally
measurable shift of a few percents (up to 10% depending on assumptions on the trap sizes and
eta) as we will discuss in more details in chapter 4.
The shift in critical temperature due to this effect will be limited to a few percents in the first

scenario, while it can be rather large in the second scenario. However, gravity should be taken
into account within this second scenario, such the predictions will depend on the precise shape
of the trap (along the vertical direction) and on the trap depth (gravity will have a larger effect
for low trap depths at the end of evaporation). We shall discuss more in detail this shift in the
context of the measurement of the critical temperature of spinor Bose gases in chapter 4. We note
that we did not simulate our evaporation process such that a quantitative prediction of the shift
to the critical temperature is not within reach. Besides, the significance of these estimations is
also limited by our knowledge of the exact trapping potential (we suspect the traps are not perfect
Gaussian beams due to aberrations for instance).

1.2 Single component Bose-Einstein condensates at T=0

In the first section, we discussed the excited states populations and the associated thermody-
namic quantities. We now consider what happens below the critical temperature. As discussed in
section 1.1, the lowest energy state needs to be considered independently from the rest of the gas
(the normal component). In particular, the large densities achieved by the condensate result in a
large effect of interactions, modifying substantially the equilibrium state of the system. For the
sake of simplicity, we will focus in this section on the single component case.

1.2.1 Ground state of Bose-Einstein condensates

The condensate wavefunction of an ideal Bose-Einstein condensate is the ground state of the
harmonic oscillator:

Ψ =√N ∏
x ,y,z
( 1
πa2

i,ho
)1/4 exp(− x2

i
2a2

i,ho
) , (1.57)

where ai,ho are the harmonic oscillator length given by Eq.(1.11). However, most experiments are
incompatible with the prediction (1.57), because the BEC wavefunction is strongly affected by
interactions. Taking into account interactions, the ground state of the system is then described by
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Figure 1.10: 3D simulated density profiles of condensates, normalized by their area, of varying
atom number in an isotropic harmonic trap of trap frequency ω = 2π ⋅ 500 s−1. The density profile
evolve from a Gaussian profile (labeled ideal) for small condensates to an inverted parabola (for
profile with one million atoms for example).

the Gross-Pitaevskii equation (GPE, see ref [93]):

(−ħ2
∇

2

2m
+ V(r) + g ∣Ψ(r)∣2)Ψ(r) = µΨ(r), (1.58)

where µ is the chemical potential. We recover the harmonic oscillator as the ground state of the
Hamiltonian when the interaction strength g goes to zero.The opposite limit in which interactions
are so strong that they make the kinetic energy term negligible is called the Thomas-Fermi limit.
For a harmonic potentialV, the cloud takes the form of an inverted parabola as shown in figure 1.10:

∣Ψ(r)∣2 = max(µTF − V(r)
g

, 0) . (1.59)

The chemical potential µTF is given by the normalization of the wavefunction:

µTF = ħω
2
(15N a

aho
)2/5 , (1.60)

where ω = (ωxωyωz)1/3 is the geometric average of the trap angular frequencies. The condensate
wavefunction is characterized by the Thomas-Fermi radii, defined as the distances to the center at
which the wavefunction vanishes:

RTF,i =
√

2µTF
mω2

i
. (1.61)

We discuss the validity of the Thomas-Fermi approximation by defining an interaction parameter:

χ = Na
aho

. (1.62)

On the one hand, if χ ≫ 1, interactions dominate, and the condensate wavefunction is well
described by equation (1.59). On the other hand, if χ ≪ 1, then the condensate wavefunction is well
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Figure 1.11: Thomas-Fermi sizes of a free expanding BEC from a trap of angular frequencies
ωx ,y,z = 2π ⋅ 300, 400, 500, s−1. We observe that the aspect ratios get inverted after ∼ 1/ω ∼ 0.5ms.
described by equation (1.57). For N = 5000, ω ∼ 2π × 500Hz, the interaction parameter is χ ∼ 26.
In this case, the condensate density profile is well described by a Thomas-Fermi profile. However,
when the condensed fraction is lower, or when the condensate is made deliberately smaller, the
density profile needs to be obtained numerically [116] from the GP equation (1.58) as χ ∼ 1.
Finally, it is useful to give the length scale associated with interactions. While this is rather

uneasy in harmonically trapped gases, given the interaction strength depends on density, we can
instead consider the case of an uniform gas, in which we can define a healing length ξ (see ref. [93]):

ξ =
¿ÁÁÀ ħ2

2mgn
(1.63)

This length represents the typical length scale on which interactions limit the scale of density
changes. Faster spatial variations cost too much kinetic energy and are “smoothed” in the equilib-
rium state.

1.2.2 Free expansion of Bose-Einstein condensates

Due to their high optical density and small size, Bose-Einstein condensates can be challenging
to detect in situ with standard imaging techniques. This is often avoided by releasing the cloud
from the trap and letting it expand in free space for a time ttof before an image is taken. This step
is called time of flight. The expansion dynamics of a BEC differs significantly from the one of a
thermal Bose gas. For the latter, it is driven (mostly) by the initial kinetic energy of the atoms, and
as such is isotropic. In the case of a Bose-Einstein condensate, it is mostly driven by interactions
and is in general anisotropic.This is what leads to an inversion of the aspect ratio of clouds released
from a harmonic trap during time of flight.This effect has been used as a signature of Bose-Einstein
condensation since its first experimental realizations [13, 117]. In this section, we will discuss the
approach from Castin and Dum in ref. [118] describing the expansion of a T=0 BEC in theThomas
Fermi regime.
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In this regime, they showed that the expansion is self-similar and characterized by scaling
factors λx ,y,z such that λi(t = 0) = 1 and Rx ,y,z(t) = λx ,y,z(t)Rx ,y,z(0) are scaledThomas-Fermi
radii. The scaling factors obey a set of classical equations including the time-dependent potential
energy and interaction energy:

λ̈i = ω2
i (0)

λiλ1λ2λ3
− ω2

i (t)λi , i = x , y, z. (1.64)

A time of flight experiment consists in setting all trap frequencies to 0 simultaneously at t = 0. The
most confining axis (with largest trap frequencies) expands the fastest as seen in figure 1.11.
In order to address the intermediate case where χ ∼ 1, one must use a time dependent Gross-

Pitaevskii equation:

iħ ∂Ψ(r, t)
∂t

= (−ħ2
∇

2

2m
+ Vext(r, t) + g ∣Ψ(r, t)∣2)Ψ(r, t). (1.65)

The equation is solved numerically by finite difference methods, with the initial condition Ψ(r, 0)
previously calculated with imaginary time propagation of the GPE (see ref [116]). A particular
issue associated with equation (1.65) lies in the very different length scales at the beginning and at
end of the expansion. We deal with this issue by choosing an adaptative grid with a discretization
size varying with the Thomas-Fermi scaling factors. This procedure is described in ref. [119].

1.3 Spin-1 Bose-Einstein condensate at T=0

The first atomic Bose-Einstein condensates were created in magnetic traps and in a single
internal state (see refs [11–13]). A few years later, optical trapping techniques allowed to confine
atoms in several internal states, e.g. in several hyperfine or Zeeman states. This resulted in the
realization of a BEC in such a trap [36] and opened the way for the study of new systems called
spinor Bose-Einstein condensates [83, 120]. Magnetism in these systems arise from the interaction
between the different internal components. In this section, we will introduce the main effects
governing their physics such as atom-atom scattering and interaction with the magnetic field.

1.3.1 Spinor scattering properties

Weconsider ultra-cold collisions of two sodiumatoms in the lowest hyperfinemanifold 3S1/2, F =
1 [65, 120] as in section 1.1.3, considering additionally the spin of the atoms. The microscopic
interaction Hamiltonian – given by Van der Waals interactions – is rotationally invariant in spin
space, which ensures that the total spin of the system remains unchanged during the collision. In
the cold collision limit, like for the scalar case only the s-wave channel contributes, such that the
spatial part of the stationary scattering state is symmetric under exchange. Furthermore, the total
wavefunction must also be symmetric under exchange given that we consider a pair of bosons. As
such, the spin part of the asymptotic scattering state must be even and the total spin of the pair
must be 0 or 2. We decompose the interaction pseudo-potential into two collision channels:

V̂(r, r′) = δ(r, r′)⊗ (g0PF̂p=0 + g2PFp=2) , (1.66)

where PFp= f is the projector into the subspace Fp = f . This expression can be written in a more
convenient way, as a function of the spins of each particles F̂1 and F̂2. For this we use the following
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Figure 1.12: Illustration of the effect of spin changing collisions on the Zeeman populations. The
populations to the left and the right of the arrow represent the state of each atom before and after
collision.

relations:

Id = P2 +P0, (1.67)
F̂1 ⋅ F̂2 = P2 − 2P0. (1.68)

This yields the more convenient expression of the interaction potential:

V̂(r, r′) = δ(r, r′)⊗ (gÎd + gs F̂1 ⋅ F̂2). (1.69)

where the expression of the spin independent and the spin dependent coupling constants are:

g = 2g2 + g0
3

, (1.70)

gs = g2 − g0
3

. (1.71)

These coupling constants can also be parametrized as scattering lengths through the relation gi =
4πħ2a/m. For sodium atoms the relevant scattering lengths have beenmeasured in reference [104]:

a = 52.66aB = 2.8nm, (1.72)
as = 1.88aB = 98pm. (1.73)

It is worth noticing that as > 0, which indicates antiferromagnetic interactions as the pseudo
potential favors minimization of ⟨F̂1 ⋅ F̂2⟩¹.
We now consider a N-particle system described in the second quantization formalism. The

interaction term (1.69) is composed of one spin independent term analogous to the interaction
term for scalar gases (1.34) and a weaker spin dependent term. The interaction Hamiltonian
associated with Eq. (1.69) reads:

Ĥint = ∫ dr g
2∑i, j Ψ̂†

j (r)Ψ̂†
i (r)Ψ̂j(r)Ψ̂i(r)

+ ∫ dr gs
2 ∑α ∑i, j,k,l(Fα)i j(Fα)kl Ψ̂†

l (r)Ψ̂†
k(r)Ψ̂j(r)Ψ̂i(r), (1.74)

¹In 5S1/2 , F = 1 rubidium atoms, another widely studied spin system, interactions are ferromagnetic and aS < 0.
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where F̂α are the spin-1 matrices:

F̂x = 1√
2

⎛⎜⎝
0 1 0
1 0 1
0 1 0

⎞⎟⎠ , F̂y = 1√
2

⎛⎜⎝
0 −i 0
i 0 −i
0 i 0

⎞⎟⎠ , F̂z = ⎛⎜⎝
1 0 0
0 0 0
0 0 −1

⎞⎟⎠ . (1.75)

The interaction Hamiltonian can be somewhat simplified by rather tedious calculations:

Ĥint = ∫ dr ∑
i, j

g + ∆gi j

2
Ψ̂†

j (r)Ψ̂†
i (r)Ψ̂j(r)Ψ̂i(r) (1.76)

+ ∫ dr gs(Ψ̂†+1(r)Ψ̂†−1(r)Ψ̂0(r)Ψ̂0(r) + h.c.), (1.77)

∆g = ⎛⎜⎝
gs gs −gs
gs 0 gs−gs gs gs

⎞⎟⎠ . (1.78)

This form of the interaction Hamiltonian distinguishes two contributions from the spin-dependent
interaction. The first changes the energy without changing the Zeeman populations and is present
in any mixture of quantum gases. The second term, specific to spinor gases, changes the Zeeman
populations through spin changing collisions as represented in figure 1.12. This give rise to many
physical effects both in the dynamics of the system such as for spin-mixing oscillations (see
refs. [44, 47, 49, 51]), and for its equilibrium properties (see refs. [54]).
The interaction Hamiltonian commutes with F̂ as a consequence of the rotational symmetry

of the interaction potential. However, dipole-dipole interactions and applied magnetic fields can
break rotational symmetry of the interaction Hamiltonian. Concerning dipole-dipole interactions,
the magnetic moment of sodium is µ ∼ µB/2. For a sample polarized in mF = +1, we compare the
dipolar interaction strength to the spin-dependent interactions (see ref. [103]):

Vdd
Vsd
∼ µ0µ2Bm
16πħ2as

≈ 0.075. (1.79)

The dominant antiferromagnetic interactions will favor less polarized samples, making the dipole-
dipole interactions even smaller and showing the dipolar interactions are indeed negligible in
our system. This is not the case for higher spin atoms such as chromium (see refs. [62, 121]),
Dysprosium (see ref. [122]) or Erbium (see ref. [123]) leading to a very different physical behavior.
Experiments are always performed in a magnetic field which breaks rotational symmetry.

However, the total Hamiltonian, including the Zeeman Hamiltonian still commutes with Fz , the
spin along the quantization axis z. This means that the eigenvalue of the longitudinal spin i.e. the
magnetizationMz = N+1 −N−1, is a conserved quantity in atomic spinor gases.
1.3.2 Zeeman energy

Another contribution from the spinor Hamiltonian of the T=0 system arises from interaction
with the magnetic field (see refs. [124, 125]). We work with alkali atoms (sodium) in the electronic
ground state, where the spin, orbital, nuclear, fine and hyperfine quantum numbers are S =
1/2, L = 0, I = 3/2, J = 1/2, F = 1. The interaction with the magnetic field is given by the Zeeman
Hamiltonian HZ = µB

ħ (gSS + gLL + gII) ⋅ B, where S is the electronic spin operator, L the electron
angular momentum operator, and I the nucleus spin operator. If the Zeeman energy remains small



1.3. Spin-1 Bose-Einstein condensate at T=0 35

0 5 10

−5
0
5

mF = +1

mF = −1
mF = 0

B [G]

p/h
[M

H
z]

0 5 10
−30
−20
−10

0

mF = 0

B [G]

q/h
[k

H
z]

Figure 1.13:Zeeman energy.We show the dominant linear contribution on the left, and the relevant
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Figure 1.14: Schematic of the effect of Zeeman shifts to the energy levels of each Zeeman compo-
nent. On the right, we remove the constant linear Zeeman shift to keep only the effect of quadratic
Zeeman energy, which is the only scale relevant in determining the equilibrium and dynamical
properties of the system.

compared to the fine structure splitting, J = L+ S is a good quantum number and the Hamiltonian
is HB ≈ µB

ħ (gJJ + gII) ⋅ B. Using the fact the nuclear contribution is much smaller – gI ≪ gJ – we
obtain the familiar expression for the linear Zeeman Hamiltonian :

ELZE = µBgJJ ⋅ B, (1.80)

At this level, the response of the atom is essentially that of the peripheral electron. Beyond first
order, the Breit-Rabi formula [126] includes higher order corrections due to hyperfine coupling
between the electron and the nucleus:

EBR = − δEhfs2I + 1 + gIµBmFB +mF
∆Eh f s

2

√
1 +mFx + x2, (1.81)

x = (gJ − gI)µBB
∆Ehfs

. (1.82)

where the energy of the mF = 0 state is taken as reference. We represent the Zeeman energy of
each Zeeman state in fig. 1.13. For weak fields, such that x ≪ 1, we recover the zero field limit of
the Zeeman Hamiltonian eigenvalues (1.80):

ELZE = µBgFmFB = pmF , (1.83)
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Figure 1.15: Experimental 2D densities and integrated density profiles (along
the strong axis of a 1D trap) of spinor BECs (the mean to obtain such images
and profiles shall be described in more details in chapter 2). On the left, we
note that the mF = 0 and mF = +1 components are not miscible while on the
right mF = ±1 components are.

where µB is the Bohr magneton, mF = 0,±1, and gF is the Landé g-factor gF ∼ 1/2. This gives:

p/B ≈ 700 kHz ⋅G−1. (1.84)

The linear Zeeman energy of the cloud is directly proportional to the magnetization and, as such,
is conserved during the evolution of the system. Additional corrections to the Zeeman energy
arise from the second order expansion of the Breit-Rabi formula:

EZ ≃ pmF + (gJ − gI)2µ2BB2

8∆Eh f s
= pmF + q(1 − n0). (1.85)

The additional term is proportional to the square of the magnetic field and is called the quadratic
Zeeman energy. It increases equally in energy the mF = ±1 components as sketched in figure 1.14.
The value of q is:

q/B2 ≃ 277Hz ⋅G−2. (1.86)

1.3.3 Single mode approximation

Phase separation of Bose mixtures

At T = 0, several Zeeman components of a spin-1 Bose gas can condense. In particular, we will
discuss the case of a 2 speciesmixture, andwhether the two components coexist as an homogeneous
phase or undergo phase separation as immiscible fluids do (see refs. [127, 128]).
In the case of negligible interactions, each component is independent and their wavefunction

can overlap. Phase separation can be triggered (or prevented) by spin-dependent interactions. We
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Figure 1.16: Density profile of a three component spinor BEC showing identical Thomas-Fermi
density profile fitted on the three component.

show in fig. 1.15 an example of demixing. In order to predict qualitatively the behavior of a spinor
BEC, we can compare the interaction energy of different configurations. In the simpler case of a
condensate in a box of volume V. Since the density is constant, for a mixture of the components
a/b, it is equal to:

Esep,a/b = (g + gaa)N2
a

2V
+ (g + gbb)N2

b
2V

+ (g + gab)NaNb
V

(1.87)

while the interaction energy of two separate phases (we neglect the contribution of the boundary
region) is:

Esep,a/b = (g + gaa)N2
a

2V(Na/N) +
(g + gbb)N2

b
2V(Nb/N) (1.88)

We examine the difference between these two quantities:

∆Ea/b = Emix,a/b − Esep,a/b = NaNb
2V

(2gab − gaa − gbb) , (1.89)

In the case of a mixture of the mF = ±1 and mF = 0 components, ∆E± ∝ gs > 0, and the formation
of spin domains is favored as seen in figure 1.15 on the left. The case is different for mixture of
the ±1 components, ∆E± ∝ −4gs < 0 and we expect that in the ground state of the system, the
components are miscible as observed in figure 1.15.The distribution of the domains can be deduced
from energetic arguments. As the interaction parameter for the mF = 0 component is g, and the
one for the mF = +1 is g + gs, the energy is minimized if the mF = 0 component is placed such
that it is denser than the mF = +1 one [129]. As such, it is placed at the center of a sufficiently weak
harmonic trap. This phenomenon can be observed in figure 1.15, and is also discussed in ref. [55].

Single mode approximation in tight traps

In this section we will discuss the case of tight harmonic traps in which the trapping energy
required to form a domain becomes comparable or bigger than the interaction energy. In order to
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have a better understanding of the phenomenon, we define in analogy with the healing length
defined in Sec. 1.2, a spin healing length:

ξs =
¿ÁÁÀ ħ2

2mgsn
. (1.90)

This quantity gives the typical thickness of a spin domain boundary in an homogeneous system.
As such, intuitively, if the trap size¹ becomes smaller than the typical spin healing length, domain
formation is energetically penalized. This is equivalent to say that the trap level spacing becomes
larger than the interaction energy. The single mode approximation is valid when the trap is tight
enough so the formation of domains is prevented:

gsn(0) ≤ ħω. (1.91)

The Hamiltonian of the system in second quantized formalism is obtained from the expression
of the interaction Hamiltonian of Eq. (1.77) is:

H = ∫ dr

spatial part : Ĥ0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
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,
(1.92)

where Ψ̂m are the field operators for each Zeeman components. We take advantage of the weakness
of the spin changing interactions gs ≪ g and follow a perturbative approach (see ref. [46, 127, 130]).
The field operator is written:

Ψ̂m(r) = Φ0(r)âm , (1.93)

and where the operator âm create one boson in a mode given by a common “single mode” function
Φ0(r), and bears the usual bosonic commutation relations [âm , â†

n] = δmn. The single mode
wavefunction is calculated from the spatial part H0 neglecting terms proportional to gs such that:

Ĥ0Φ0(r) ≃ [ħ∇
2m
+ V + gN∣Φ0(r)∣2]Φ0(r) = µΦ0(r) (1.94)

In a second step, we simplify the spin-dependent part of hamiltonian (1.92) (see ref. [46, 127, 130])
and obtain:

Ĥs = Us
2N

F̂2 − qN̂0. (1.95)

We ignored the linear Zeeman hamiltonian as it commutes with ŝ. The spin exchange energy Us is
evaluated from the spin wavefunction as:

Us = gsN ∫ dr∣Φ0(r)∣4. (1.96)

¹The trap size is given either by the harmonic oscillator length or theThomas-Fermi radius depending on the
spin-independent interaction parameter ξ.
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Within the mean field approximation, the spin wavefunction represent a state with N spins in the
mean field state ζ which reads:

ζ = ⎛⎜⎝
√n+1eiθ+1√n0eiθ0√n−1eiθ−1

⎞⎟⎠ , (1.97)

where nm are the normalized populations in each Zeeman component and θm their phase. The
mean field ground state and its properties are discussed in more detail in chapter 3.

1.4 Critical temperatures of ideal spin-1 gases

The spin degree of freedom plays a role at very low temperature, but also for the thermodynamic
of the system around the Bose-Einstein condensation threshold. In this case, the conservation of
the magnetization imposed by the spin-exchange interactions shapes the phase diagram of the
system which can be very different from the one of a single component gas, even when ignoring
spin exchange interactions.

Spin-1 ideal gas theory

We calculate the BEC critical temperature of a spin 1 gas with fixed magnetizationMz . The gas
is trapped in a harmonic potential of angular velocities ωi , i = x , y, z (see refs. [64, 131, 132]). The
expression of the Gibbs energy is:

G = Hq=0 − qN0 − µN − λMz , (1.98)
G = Hq=0 − (µ + λ)N+1 − (µ + q)N0 − (µ − λ)N−1. (1.99)

Here, Nm is the population of the Zeeman state of quantum number m, N is the total population
of the three Zeeman states,Mz is the magnetization defined asMz = N+1 −N−1, µ and λ are two
Lagrange multipliers ensuring conservation of N andMz . The effective chemical potentials for the
Zeeman components are given by:

µ+1 = µ + λ, (1.100)
µ0 = µ + q, (1.101)
µ−1 = µ − λ. (1.102)

We define two effective fugacities:

α = e−βq , (1.103)

γ = e−βλ , (1.104)

and a normalized temperature:

t = kBT
ħω

. (1.105)
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Figure 1.17: Critical temperature Tc , renormalized by the scalar gas critical temperature as a
function of magnetization computed for a total number of atoms N = 50000, trap frequency of
ω = 2π × 1200 s−1. The different phases are described by which component is condensed (C) or
thermal (N).

The thermal populations are then written:

N′+1 = t3g3(z/γ), (1.106)
N′0 = t3g3(z/α), (1.107)
N′−1 = t3g3(zγ). (1.108)

The BEC transition takes place when µm = 0 (saturated Bose gas), as in the case of spinless bosons
and the phase diagram displays two regimes, one where the mF = 0 component condenses first
and one where mF = +1 condenses first. We also remark that in presence of quadratic Zeeman
shift, the mF = −1 component never condenses in the ideal case. We note that we consider here,
and in the following of this study onlyMz ≥ 0. ForMz ≤ 0, the role of the components mF = ±1 is
simply inverted as the quadratic Zeeman energy does not distinguish between the two.

mF=+1 condenses first

At the first critical point, z = γ (µ = −λ):
N = t31 (g3(1) + g3(γ1/α1) + g3(γ21 )) , (1.109)
Mz = t31 (g3(1) − g3(γ21 )) . (1.110)

The index 1 corresponds to the values taken at the first critical point. We compute the first critical
temperature by solving equations (1.109) and (1.110) numerically.
The second critical temperature takes place for γ = α (λ = q), where the mF = 0 component

condenses:

N = Nc,+1 + t32(2g3(1) + g3(α22)), (1.111)
Mz = Nc,+1 + t32(g3(1) − g3(α22)). (1.112)
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Condensation order +1→ 0 0→ +1
Tc1 µ = −λ µ = −q
Tc2 λ = q λ = q

Table 1.1: Summary of the conditions of condensation in the ideal case

Nc,+1 is the condensed atom number in the mF = +1 component, and the index 2 indicates
quantities taken at the second critical temperature. From equations (1.111) and (1.112), we eliminate
Nc,+1, and obtain

N −Mz = t3(g3(1) − 2g3(α2)). (1.113)

The solution of this equation is obtained numerically.

mF=0 condenses first

The situation is very similar except that, at the first critical point z = α (µ = −q) and the equations
to solve are:

N = t31 (g3(α1γ1) + g3(α1/γ1) + g3(1)) , (1.114)
Mz = t31 (g3(α1/γ1) − g3(α1γ1)) . (1.115)

The equations to solve for the second critical temperature are (γ = α (λ = q)):

N = Nc0 + t32(2g3(1) + g3(α22)), (1.116)
Mz = t32(g3(1) − g3(α22)). (1.117)

Expression of the point of simultaneous condensation

Regardless of the value of the magnetic field, there exists a point (m∗z , T∗c ) (equivalently(m∗z , t∗)) where mF = +1 and mF = 0 condense at the same time:
N∗ = t3∗ (2g3(1) + g3(α2∗)) , (1.118)
Mz = t3∗ (g3(1) − g3(α2∗)) . (1.119)
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Figure 1.18:Magnetization (right) and reduced critical temperature t∗ = T∗c /Tc,id (left) at the point
of simultaneous condensation of mF = +1 and mF = 0.These figures correspond to N = 50000 and
ω = 2π ⋅ 1200 s−1. The red horizontal line marks the critical temperature of a single component gas
with N/3 atoms, T/Tc,id = (1/3)1/3.
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Solving (1.118) and (1.119) for t gives the coordinates of the point of simultaneous condensation.We
conclude by showing a summary of the conditions for condensation obtained from the chemical
potentials in table 1.1.

1.5 Conclusion

In this chapter, we have introduced some of the theoretical concepts that we shall use and
develop in the following chapters. In section 1, we recalled the thermodynamics of Bose gases
near the Bose-Einstein transition, then we have discussed the effects of finite atom number and
interactions. Additionally, we have discussed more in depth our estimation of the influence of
finite trap depth and anharmonicities in the Bose-Einstein critical temperature of a gas trapped
in optical dipole traps. We have discussed the evaporation dynamics and the influence of several
scenarii on the critical temperature.
In section 2, we have recalled the theoretical treatment used to describe Bose-Einstein conden-

sates and their evolution in time of flight. We then discussed the case of spinor Bose-Einstein
condensate within the single mode approximation in section 3. We shall discuss more in detail
the ground state of spinor Bose-Einstein condensates in chapter 3, in which we will study their
magnetic phases with the quadratic Zeeman energy and the magnetization as control parameters.
We will see how to describe each of these magnetic phases, by examining their spin eigenvalues,
and demonstrate a measurement method to reveal particular magnetic properties of the system.
In section 4, we have introduced the thermodynamics of ideal spin 1 Bose gases. We have shown

that the conservation of magnetization induces several condensation scenarii depending on the
magnetization and on the magnetic field. In chapter 4, we will discuss a measurement of the
thermodynamics of a spin 1 gas of sodium with antiferromagnetic interactions. We will show
that the scenarii predicted by the ideal gas theory are indeed observed, but that a quantitative
determination of the critical temperature, and a description of the phase diagram at low magnetic
field requires to take interactions into account. In addition to the discussion of the measurement,
We shall study in more detail the effect of interactions on the thermodynamics of the system in
chapter 4.



L’officier, au voyageur:
“Je veux, en effet, vous décrire d’abord l’appareil et
je ne ferai procéder qu’ensuite à l’opération. Vous
pourrez ainsi suivre plus facilement.”
La colonie pénitentiaire
Franz Kafka 2

Production and diagnostics
of ultracold gases of sodium atoms

Spinor Bose-Einstein condensates are created, manipulated and observed with the help of a
complex experimental apparatus. It is designed to isolate, trap and cool a gaseous sample so that
we can eventually create and observe a Bose-Einstein condensate (BEC). The figure of merit in
the characterization of the properties of an ultracold gas is the phase space density (PSD, see
refs. [11, 93, 133]) :

D = n(0)λ3dB, (2.1)

where n(0) is the density at the center of the trap and λdB the de Broglie wavelength defined in
Eq. (1.24). The condition for condensation in a-non interacting gas is given by D ≥ 2.612.
The realization of a BEC relies on several experimental steps, each designed to increase the PSD.

The first is the magneto-optical trap (MOT): it captures and cool atoms from a room temperature
vapor. The second step involves loading an optical dipole trap from atoms in the MOT. The third
and final cooling stage is evaporative cooling in this optical dipole trap. This is in this step that the
Bose-Einstein criterion is reached.

Because the cooling stages were already thoroughly documented in previous theses of our
research group refs. [119, 134–136], I will refer to these works rather than go into details and
focus on the main developments I have contributed to. In section 1, I will describe the trapping
and cooling apparatus and the characterization of the trapping potentials. In section 2, I will
detail the detection methods for spinor Bose-Einstein condensates and discuss the influence of
noise on absorption images. In section 3, I will discuss how to extract thermodynamic quantities
such as atom number and temperature from images by describing several procedure where we fit
specific functions to experimentally measured density profiles. In section 4, I will discuss the spin
manipulation techniques that allow us to control and prepare the spin of the clouds studied in this
manuscript.
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Figure 2.1: Summary of some thermodynamic quantities of the gas along a typical experimental
sequence. We represent the timing and numbers from the gases studied in chapter 4. We note
that t = 0 is taken at the end of the step where we load the MOT from the background gas. We
observe that loading the dipole trap increases the phase space density, and that two additional
evaporation steps in respectively the crossed dipole trap and the dimple trap allows us to cross the
BEC transition.

2.1 Experimental realization of spinor Bose-Einstein condensates

2.1.1 Overview

Ultra-cold gases are very fragile systems. They need to be isolated because of their extreme
temperature difference with environment. This is achieved by performing experiments in a ultra
high vacuum chamber, in which the pressure is on the order of ∼ 10−11mbar. This limits collisions
between ultra-cold atoms and room temperature molecules from the background gas that lead to
losses. It is also worth noting that spinor condensates are very sensitive to magnetic fields, which
has been carefully considered in the design of the experiment (see previous theses [134, 135]).
A typical experiment is shown in fig. 2.6 and starts by loading a magneto-optical trap (MOT)

from a warm sodium vapor (see refs. [137–140]). While this step increases the PSD strongly, this
is not enough to reach Bose-Einstein condensation as the PSD at the end of this step is typically
D = 10−6, see fig. 2.1. In order to be able to cross the Bose-Einstein transition, we transfer atoms in
an optical trap (see 1.1.4). The final step consists in lowering the optical trap potential height, by
reducing the power of the dipole traps in order to achieve a high enough PSD and obtain a BEC.
Before we detail each cooling step, it is important to emphasize the importance of computer

control for realizing the experiments presented in this thesis (see ref. [134]). A typical experimental
cycle consists in a complex sequence of various events triggered with precise timings – typically
µs to ms precision – the combination of which leads to an experimental run. We rely on computer
control because of the large number of devices to synchronize. We use the software developed
by Keshet in Wolfgang Ketterle’s group at MIT, described in ref. [141], to control digital to analog
converters (DAC) from National Instrument. The different events are encoded into voltages that
are transmitted to the devices in the room. The sequence can be divided in steps, each either
preparing – for instance cooling steps – or manipulating – spin rotations – a cold gaseous sample.
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Figure 2.2: Schematic of the experimental setup displaying the vacuum chamber, MOT beams,
and the location of some of the UV LEDs we use for light induced atomic desorption. It also
displays the location of the MOT coils, and of the RF coil used for spin manipulation in later steps.
The gravity axis is indicated for reference.

The final step always consists in detecting the sample. These steps may or may not be performed
depending on the needs of the experiment. In the following sections we will detail each of these
steps.

2.1.2 Laser cooling and trapping

The first cooling step relies on a relatively high vapor pressure of “warm” sodium as a source of
atoms to produce a MOT.This “high” pressure is contradictory with the low pressure requirements
for the following cooling and manipulation steps of the experiment.
These contradictory requirements are dealt with in most atomic physics experiments by dissoci-

ating the very first cooling stages from the final ones, with 2D magneto-optical traps or Zeeman
slowers for example (see ref. [137] for example). We choose instead a solution in which the pressure
of sodium is modulated in time by a technique called light-induced atomic desorption (LIAD,
see ref. [140]). This consists in illuminating surfaces previously coated by sodium atoms with
short-wavelength light. The light provokes the desorption of some of the atoms from the surface,
hence generating a vapor pressure of sodium. The advantage of this technique is that a sufficiently
low background pressure can be reached only a few tens of milliseconds after the light is turned off
(see ref. [140]). Experimentally, we use atomic dispensers¹ for coating the chamber and windows

¹These are small metal shells containing, in our case, sodium oxides. These shells can be heated by passing an electric
current of a few Ampères. When they reach a certain temperature the oxides dissociate, generating sodium in a
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with sodium, and we use ultraviolet (UV) light emitting diodes (LED), at a wavelength λ ≈ 375 nm
for the desorption (see ref. [134, 140]). We have observed the efficiency of LIAD for the MOT
loading decreases over a few weeks.This is probably due to atoms being slowly pumped off surfaces.
Because of this, we turn on the dispensers on a weekly basis to ensure that the LIAD process
remains efficient.

Magneto-Optical trap

The vapor pressure of sodium obtained with the LIAD loads a magneto-optical trap in which
atoms are trapped and cooled. We typically capture above 20 million atoms within 6 seconds of
loading. The MOT confines the atoms with the radiation pressure force of 6 slightly red detuned
beams and reduces their temperature via the Doppler cooling mechanism (see refs. [137–139]). We
use 6 beams in a geometry that is partially shown on fig. 2.2, and is identical to the one described
on previous theses [134, 135]. Each beam contains two optical frequencies (see fig. 2.3). The most
intense addresses the cooling transition 3S1/2, F = 2 → 3P3/2, F′ = 3 and is detuned by about 2Γ
to the red of the transition, where Γ ≃ 2π × 9.8MHz is the natural linewidth of the D line for
sodium. The second frequency addresses the repumping transition 3S1/2, F = 1 → 3P3/2, F′ = 2
and is resonant. This ensures that atoms are recycled in the 3S1/2, F = 2 manifold, as the cooling
transition is not perfectly closed, and atoms can undergo spontaneous emission process and end
up in the “dark state” 3S1/2, F = 1.
The quadrupolar field required for the MOT (see refs [137–139]) is created with a pair of coils

in anti-Helmoltz configuration (the MOT coils, see fig 2.2), and 3 pairs of bias coils in Helmoltz
configuration (see fig.2.4).

Cooling lasers

The laser light used for cooling is generated with the laser system described in the thesis of
Emmanuel Mimoun [134, 143] is based on cavity enhanced sum-frequency generation from two
YAG lasers. This solution provides ∼ 600mW of laser light that we use for cooling, trapping and
imaging.
The frequency of the laser is locked on a iodine molecular line (see ref. [144]) measured by

modulation transfer spectroscopy (see refs. [145–147]). The different frequencies required for
cooling, repumping and imaging are generated with the help of acousto-optic modulators (AOM).
The AOM used to generate the cooling light is also used to stabilize the MOT intensity by using
a feedback loop on the RF amplitude delivered by the AOM driver. It is worth noting that the
relatively low hyperfine splitting – Ahf ≃ 1.77GHz – in sodium allows us to produce repump light
with a high frequency AOM, and as such, to use a single laser source.
One issue with this laser system is the very small tuning range allowed by the YAG laser sources.

Recently, semi-conductor amplifiers have been developed at 1178nm such that large powers (few
W) of infrared light at 2λ can be obtained. I have developed and built a intracavity doubling system
similar to the system from [148], that offers large powers of yellow light (typically ∼ 700mW) at
the sodium D2 wavelength. It is presented in annex A. Besides being able to replace the current

gaseous form. However, due to poor thermal coupling with the outside (only through the electrical connections), the
modulation of the sodium vapor pressure from these devices is quite slow (minutes to hours timescale). This is why
LIAD is used on our setup. Note however that a solution to obtain fast modulation of vapor pressure with dispensers
has recently been developed in the team of J. Reichel at ENS, see ref. [142].
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Figure 2.3: Level structure of sodium atoms. This figure
indicates the cooling and repumping transitions.

cooling system in case of failure, the large tuning range offered by the diode laser technology also
allows other applications, such as driving Raman transitions (see annex B,C).

Loading of the dipole trap

The temperature and densities of a MOT are actually limited, such that it is not possible to cool
the atoms sufficiently to obtain a Bose-Einstein condensate. The temperature can be decreased
a bit further by sub-Doppler cooling methods [137, 138]. Typically, the sub-Doppler temperature
TSD scales as TSD ≈ Ω2

r/∆ where Ωr is the coupling strength and ∆ the detuning to the cooling
transition (see refs. [137, 138]). The limiting temperature for such mechanisms is a few Er , the
recoil energy:

Er = ħ2k2L
2m
∼ kB ⋅ 1 µK. (2.2)

This energy corresponds to the kinetic energy transferred upon absorption or spontaneous emission
of one photon¹.
The transfer of atoms from the magneto optical trap into a crossed dipole trap (CDT, see

ref. [149]) is done with a few extra steps. The CDT has a typical size of ∼ 40µm which is much
smaller than theMOT size (typically ∼ 1mm).We apply a compression phase in order to maximize
the density in the center of the MOT and optimize the number of atom transferred into the
dipole trap (see refs. [135, 149]). This phase is called “dark MOT” and increases both density and
temperature in the MOT by lowering the power of the repumper beam. We then perform a final
laser cooling step called “coldMOT” in which the detunings are increased to favor the sub-Doppler

¹These low temperatures can furthermore only be achieved at very low densities such that reabsorption and multiple
scattering of photons does not come into play. This is not the situation encountered in a typical MOT where multiple
scattering is important. As a result laser cooling is not sufficient to reach Bose-Einstein condensation, and another
cooling step is performed in optical dipole traps.
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Figure 2.4: Schematic of the dipole trapping geometry from two different perspectives. We show
the crossed dipole trap (CDT), and the dimple trap geometry (the horizontal arm is labeled HDT,
and the vertical one VDT). The polarization of each beam is indicated on the pictures. We also
show the bias coils used both for setting the quadrupolar field of the magneto optical trap and the
bias fields for evaporation and spin manipulation. Finally, two set of axis coordinates are presented.
The capital letters (X, Y, Z) represent the referential set by the dimple trap axes, while the one in
lower case letters (x , y, z) corresponds to the one set by the coil axes. The main imaging axis of
the experiment is set along z, and an additional imaging axis, mainly used for diagnostics is set
along axis y.

cooling mechanism [133, 138]. We end up with typically one million atoms at T ∼ 100 µK in the
crossed dipole trap (see fig.2.1).

2.1.3 Optical dipole traps and evaporative cooling

Atoms are loaded in a crossed optical dipole trap (CDT) composed of two gaussian beams
of waists wCDT ∼ 40 µm (see refs. [134, 135, 149]). We use a crossed geometry, that we show on
fig. 2.4 in order to obtain a roughly spherical trap, higher densities, and hence higher collision
rates. Interferences between the two arms are avoided by crossing their polarizations.
We control the trap depth using the laser power since V0 ∝ I0 ∝ 2P/πw2 (see annex B). The

power is stabilized using a servo loop. One way of controlling the power is to adjust the pump
diode current of the high power laser. This solution does not allow to access very low intensities
as the threshold of the laser may be reached before the target intensity is. The spatial mode of
high power lasers also changes as their power is varied which is undesirable for atom trapping.
Another way of controlling the power is a motorized λ/2 waveplate followed by a Glan polarizer.
This solution however suffers from relatively low bandwidth (the waveplate rotates at a maximum
rate of 10 turns per second) and limited dynamic range. In order to achieve high dynamic range,
we use a combination of these control methods (see ref. [150]). The servo loop controls the pump
diode current in order to follow a ramp on the dipole trap power (represented in fig. 2.6). The
waveplate is rotated simultaneously such that the pump diode current is approximately constant
and that the servo loop only compensates for high frequency noise. This solution allows to control
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Figure 2.5: Evaporation trajectory in the dimple trap, showing the variation
of quantities of interest, i.e. N, T, mz , ω for the spinor gas.

the intensity of the optical dipole trap with a dynamic range of 104 and a bandwidth above a kHz
(limited by the servo loop). We use a maximum power PCDT ∼ 25W corresponding to a trap
depth VCDT ∼ 1mK.
We observe that the pump current during this ramp displays a sawtooth-like behavior as a

function of time near the end of the evaporation ramp, when the waveplate is rotated very slowly.
We believe that this irregular behavior comes either from the finite resolution of the rotary encoder
or from slip-stick behavior, that would make the waveplate rotation irregular for slow angular
speed.
The collision rate plays a key role in evaporation efficiency as seen in the first chapter and is∼ nσvth with vth = (8kBT/πm)1/2. In optical dipole traps, the reduction of the trap depth necessary

for evaporation comes with a gradual reduction of the trap frequencies ωi ∝ (V0)1/2 ∝ P1/2.
This translates in a reduction of the density, and a reduction of the collision rate as evaporation
goes. Even though the reduction of temperature induces an increase in density, the atom loss and
reduction of trap frequencies decrease the density more. This issue is specific for ODT, and has
been circumvented with several ingenious technical solutions (see refs. [151–153]) allowing to
control trap depth and trap frequency independently.
The dimple method provides another solution (see ref. [154, 155] and later on refs. [149, 156–

158]). It consists in superimposing a small volume trap – the “dimple” – to the initial CDT.The
evaporation is then divided in two steps (see fig. 2.6). At first, most of the atoms are too energetic
to be trapped in the dimple trap (DT). As the first evaporation goes, and as the gas gets colder,
atoms “fall” into the dimple trap, which boosts significantly the density hence the collision rate
while maintaining a roughly constant temperature. This allows a second evaporation step to be
performed, during which we obtain a Bose-Einstein condensate.
In our experiment, the dimple trap is composed of two beams (see fig. 2.4) : the horizontal

dipole trap (HDT) and the vertical dipole trap (VDT). We generate HDT and VDT from the same
high power infared (IR) laser at λ = 1064nm. As such, we took special care to offset the HDT
and the VDT in frequency by ∼ 200MHz with the help of two AOMS, that we use with opposite
diffraction order. This also allows us to stabilize the intensity of each dipole trap beam using a
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Figure 2.6:Typical experimental sequence performed to produce a Bose-Einstein condensate. Spin
manipulation typically takes place in a short additional sequence in between hold and imaging.

servo loop on the RF power of each acousto-optic modulator. The waists of the HDT and VDT
beams are both set in accordance with the need of the experiment¹. We display the typical PSD,
atom number and temperature at the begining and end of the evaporation ramp in the dimple
trap on fig. 2.1.

2.1.4 Absorption imaging

Ultracold atoms are almost always detected through their interaction with light. Most of the
techniques used for imaging are based on the direct detection of spontaneously emitted photons
(fluorescence imaging), of resonant photons absorbed by the gas – absorption imaging – or on
the detection of the phase shift induced by the atoms on slightly detuned light – phase contrast
imaging (see refs. [55, 133]).
In absorption and fluorescence imaging, many photons need to be scattered in order to obtain

enough signal. The recoil energy ER transferred to the atom by each scattered photon is typically
higher than the energy per atom (see Eq.(2.2)). This means that both absorption and fluorescence
imaging are “destructive imaging” as they heat up the gas. Fluorescence imaging enables very low
atom counting noise as demonstrated for example in the Oberthaler group in ref. [159]. However,
the long integration time requires cooling of the cloud during imaging. This is typically done
by turning on an optical molasse, whose scattered photons are collected. This procedure alters
substantially the density distribution of the sample, preventing from extracting thermodynamic
quantities other than atom numbers.
Absorption imaging is the method we use for the experiments presented in this thesis. It consists

in measuring the absorption of resonant light by the atomic cloud. In the experiment the resonant
light beam – the probe – is sent along the vertical axis, see fig. 2.7. Imaging is performed with a bias

¹For the experiments shown in chapter 3, wHDT ≃ 9 µm and wVDT ≃ 11 µm. For the experiments shown in chapter 4, ,
wHDT ≃ 22 µm and wVDT ≃ 25 µm.
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Figure 2.7: Schematic of absorption imaging. The probe is sent from above the vacuum chamber
and it is roughly collimated. An intermediary image is created by the microscope objective µ1
and a high NA achromat Ac1. A second microscope objective µ2 and an achromat Ac2 form the
final image on the CCD sensor. The two systems (µ1 + Ac1) and (µ2 +Ac2) have a calculated
magnification of 1.5 and 5 respectively and are designed to work in an afocal configuration. A razor
blade is placed at the intermediary image position in order to mask part of the camera sensor for
frame transfer.
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Figure 2.8: Upper First image, taken in the presence of atoms. The vertical scale is in digital grey
levels – “counts” – as returned by the ADC of the CCD camera. Middle Second image, taken
without atoms.The vertical scale is in CCD counts. LowerOptical density computed with equation
(2.5).

magnetic field of 1G along z. The probe is circularly polarized and addresses the cooling transition
3S1/2, F = 2→ 3P3/2, F′ = 3.The atoms are previously repumped onto the F=2 manifold by a short
repumping light pulse sent along the same 6 axis as the MOT beams (see fig. 2.2).
The imaging system is shown in fig. 2.7. An image of the atoms is created through a first afocal

system composed of a microscope objective of effective focal length f ∼ 40mm and a high NA
achromat Ac1 of focal f ∼ 80mm. A second microscope objective µ2 of effective focal length
f = 18mm and an achromat Ac2 of focal f = 100mm form the final image on the CCD sensor.
The two systems (µ1 + Ac1) and (µ2 +Ac2) have a theoretical magnification of 1.5 and 5 respectively
and are designed to work in an afocal configuration. Half of the intermediary image is masked by
a razor blade image in order to mask part of the camera sensor, which is needed for taking images
as we shall discuss in the next paragraph. We have estimated the resolution of this optical system
by measuring the in situ size of small Bose-Einstein condensates (N ∼ 500) whose size is predicted
to be around one micrometer. We could not detect clouds with a RMS size of less than 2 µm. We
mention here for the sake of completeness the existence of a second imaging axis along axis x,
that we mainly use for diagnostics and to calibrate the main imaging setup as we shall discuss in a
section 2.
We produce an absorption image by taking two successive images, the first one “I1” in the

presence of atoms and the second one “I2” in their absence. We use the frame transfer technique
where two images can be taken sequentially without waiting for the sensor to be read. The first
image is transferred to a masked part of the charge coupled device (CCD) sensor, and a second
image can be taken as soon as the shifting is complete. This process is typically much faster than
the readout time and allows for a short time between images, which minimizes noise as we will
discuss in following sections.
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The sensor is read entirely at the end of the imaging step, and we extract pairs of images such as
the one shown in fig. 2.8. The probe pulses used for imaging last 10 µs and are separated by ∼ 5ms.
Passing through the atomic cloud, the intensity of light obeys the Beer-Lambert law:

∂I
∂z
= −σnI, (2.3)

where n is the density and σ is the absorption cross-section. For a two-level atom, the cross-section
is given by:

σ = σ0
1 + (I/Isat) + (2δ/Γ)2 , (2.4)

where σ0 = 3λ2/2π is the resonant scattering cross-section, λ the resonant wavelength, δ the
detuning, Γ the linewidth of the transition, and Isat the saturation intensity. For most results
presented in this manuscript, we have worked at low intensity, I≪ Isat, such that saturation only
give rise to a small correction. In the experiment, we measure two images corresponding to the
intensity of the probe without any absorption (I2 = limz→−∞ I) and to z = +∞ corresponding
to a region with negligible atomic density (I1 = limz→∞ I). Using the two level scattering cross-
section (2.4), and assuming the probe is resonant (δ = 0)¹, authors of ref. [160] obtained the
following formula for the column density n:

n(x , y) = 1
σ0
(−log( I1

I2
) + I2 − I1

Isat
) . (2.5)

The measurement of the density of ultracold clouds is limited by the dynamic range of the camera.
Typically, the optical density log(I2/I1) is limited to ∼ 5 for a camera with a 16 bits ADC. This
prevents frommeasuring in situ distribution in our parameter regime. As such, the density profiles
of cold clouds are typically taken after a step of free expansion called time of flight, such that
OD < 2.This also prevents multiple scattering events (see refs. [161, 162] and methods of ref. [163]),
that would complicate the quantitative interpretation of images.
Most of the noise in absorption is produced by the differences between the two images that

are not due to the atoms. This is why it is crucial to maintain a short interval between the two
images since vibrations and index changes along the imaging path can change strongly the intensity
profile due to the high coherence of the imaging light. There might also be artifacts on the edges
of absorption images due to diffraction by sharp objects such as the razor blade, or sensor edges.
For this reason, we never study signals near the image edges.
The simplest quantity to obtain from Eq. (2.5) is the atom number. We typically obtain it from

integration of the optical density over regions of interest where there are atoms. We choose a
square region of the sensor S such that the atom number is obtained from summation of the pixel
value over this area: N = ∑S nx ,y. More sophisticated analysis rely on fitting model functions and
is discussed in Sec. 2.3 and ref. [133].

2.1.5 Characterization of the trapping potential

Many optical elements are used to obtain the optical dipole trap with the precise size and
position required for the experiments we perform. Since we have an imprecise knowledge of the

¹If δ ≠ 0, one can simply replace σ0 → σ0/(1 + (2δ/Γ)2) and Isat → Isat(1 + (2δ/Γ)2) as suggested by Eq. (2.4)
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Figure 2.9: Parametric heating spectrum with modulation of the power of the vertical dipole
trap and of the one of the horizontal dipole trap. Vertical lines indicate peak positions from
Lorentzian fits. Red lines are attributed to Y axis and display both ω and 2ω resonances (at 2 f and
4 f respectively). Blue lines indicate X axis resonances while black solid lines are attributed to the
z axis.

.

optical characteristics of these elements (that may depend on the wavelength for example), the
precise intensity map of the beam cannot be known unless it is directly measured. This is both
tedious and imprecise – we cannot for example include the viewports from the experiment in such
a measurement – so we adopted another approach. We consider the harmonic approximation is
good enough for most atoms in the trap as seen in Sec. 1.1.4 and we measure directly the oscillation
frequencies from two kinds of experiments that we will describe in the next paragraphs.

Parametric heating

For thermal clouds in relatively tight traps, we perform parametric heating (see refs [164–167]).
It consists in a resonant modulation of the ODT potential to induce heating. We modulate the
power – hence both trap frequencies and trap depth – by a sine function. In the case of thermal
clouds, which are dilute enough to neglect interactions, the excitation becomes resonant at twice
the trap frequency (see ref [164]), and the cloud heats up. This is detected either directly by an
increase of the size after time-of-flight as seen in figure 2.9 or equivalently by an atom loss after a
hold time as a result of evaporation of the heated cloud. The identification of frequencies in the
spectrum (including harmonics) is done by observing their change while tuning the relative power
of both arms of the DT.
Unfortunately, this technique becomes more complicated to use for the intensities at which we

reach the BEC transition. The parametric heating spectrum becomes difficult to analyze because
the resonant frequencies are modified by interactions (see refs. [93, 164]). In the case the Thomas-
Fermi approximation is valid, the resonant frequencies in harmonic traps become ωres,i =√5ωi
(see [93, 164]). However, in partially condensed clouds, relating themeasured parametric resonance
spectrum to actual trapping frequencies would require careful modeling of the gas including finite
temperature which is a difficult task. In addition, for our experiments, corrections to the Thomas
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Figure 2.10: Center of a BEC during a dipole oscillation along the Y axis. The solid line is a
sinusoidal fit of the data.

Fermi approximation can be significant. These corrections lead to potential systematic errors that
we avoid with a different technique.

Dipole oscillations

For condensed clouds in relatively loose traps, we measure the frequency of the dipole mode
(or equivalently of the center of mass motion). This method consists in inducing center of mass
oscillations with the sequence shown in fig. 2.11 in the trap as seen in fig. 2.10. We displace a BEC
polarized in mF = +1 with a gradient. The force is oriented towards the X + Y + Z direction. As
shown in fig. 2.11, the gradient is then suddenly cut. In this case, the 3 dipole modes are excited,
and we observe an oscillation of the cloud center at all three trap frequencies. The different modes
can be isolated by projection of their movement on the trap axes X, Y, Z. The displacement is
enhanced by time of flight. In a purely harmonic trap, the dipole mode frequency does not depend
on the interaction potential (generalized Kohn theorem, see refs. [168, 169]). However, deviations
of the actual trapping potential from its harmonic approximation can lead to damping of the
dipole mode on relatively long timescales. As such, we extract the oscillation frequencies from fit
to the data with a possible exponential damping (see fig. 2.10).
This method shows limitations for high trapping frequencies f ∼ 1 kHz because the switch-off

time of the gradient, that is limited to approximately a millisecond, becomes longer than the typical
oscillation period. In this case, the trap is brought back to the equilibrium position “adiabatically”,
without inducing dipole oscillations.

Model of the dimple trap for trap depth estimation

Similarly to trap frequencies, it is not possible to obtain the trap depth (see Sec. 1.1.4) from
knowledge of the optical set-up, and we need to develop a model of the dimple trap. We consider
two crossed Gaussian beams. The potential is then the sum of the two optical potentials given by
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Figure 2.11: Experimental sequence for exciting dipole oscillations. We first create a BEC. Then
the power of the dipole trap is raised in order to obtain the trap frequencies we want to measure.
We ramp a large bias field in the X+Y+Z direction and then ramp a gradient. The strength of the
gradient is adjusted depending on the trap frequencies to measure. After the gradient is released
the cloud oscillates in the trap during a given time before it is imaged.

[37] (see also annex B and section 1.1.4):

V(x , y, z) = VHDT(y, z) + VVDT(x , y). (2.6)

We have found that we needed to consider the ellipticity of the laser spatial modes to reproduce
the data. We found that the VDT could be taken isotropic (with a beam waist wx) but not the
HDT (beam waists wy, wz). The trap frequencies are given by a Taylor expansion of the Gaussian
potential around the trap minimum:

ωX =
√

4VV
mw2

x
, (2.7)

ωY =
¿ÁÁÀ 4VH

mw2
y
+ 4VV

mw2
x
, (2.8)

ωZ =
√

4VH
mw2

z
, , (2.9)

VH = 2α0PHπwywz
, (2.10)

VV = 2α0PVπw2
x
. (2.11)

where α0 is the calculated atomic polarisability (see ref. [37] and annex B). PH and PV are obtained
by direct calibration of the optical power. The sizes of the beams are obtained from fits to the
calibrated trap frequencies. The results of such a procedure are summarized on figure 2.12.
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Figure 2.12: Trap frequencies along the evaporation ramp. The solid lines are the results of
the fit to the interpolation functions from Eq. (2.7), (2.8), (2.9) with waists wX ,wY ,wZ =(21.74 µm, 21.55 µm, 29.79 µm).
A singlemeasurement of the oscillation frequencies or parametric heating spectrum yields a very

precise trap frequency (≤ 1Hz uncertainty per measurement). However, we observed that when
repeating this measurement several times, over a few days for example, we could not reproduce
the initial measurement within its uncertainty. The trap frequencies are determined by the optical
power and beam mode, which are very stable, but also by the relative alignment of the HDT and
VDT which could drift over time. The reproducibility of the trap frequencies has been tracked by
repeating the measurements with identical conditions over several days. We found that the trap
frequencies were reproducible to within 5Hz.

2.2 Spin-dependent imaging

The diagnostics of spinor gases require spin-dependent imaging. We perform a Stern-Gerlach
(SG) experiment, which consists in applying a spin dependent force, and separate spatially the
clouds during the time of flight. As such, different Zeeman components are imaged in different
parts of the CCD sensor at the end of the time of flight sequence. Noise in pictures (δOD ∼ 0.02)
provides an upper limit for time of flight thus a limit for the distance between Zeeman components
at the time of imaging for a given spin dependent force. Our experimental setup uses relatively high
trapping frequencies (hence high temperatures and interaction energies), such that the expansion
is practically limited to a few ms in order to keep high enough signal-to-noise. This limit requires
special care on the design of a SG sequence as the magnetic fields required to separate the clouds
by a large enough distance need to be applied in short time scales.

2.2.1 Stern-Gerlach Imaging

A Stern-Gerlach sequence consists in a spatially dependent magnetic field, that creates a spin-
dependent force (see refs. [170–172]). We apply a magnetic gradient by passing current through
the MOT coils. In principle, the magnetic field created in the frame (x , y, z) (see fig. 2.4) centered
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on the atoms is equal to Bq = (b′x ,−2b′y, b′z). However, small positioning imperfections result
in an additional uniform field Bm at the position of the atoms. We further apply a bias field
B0 = (B0,x , B0,y , B0,z) such that the total field during the Stern-Gerlach experiment is BSG =
Bq +Bm +B0. The potential felt by the atoms is then VSG = mF gFµB∣BSG∣, and the force felt by the
atoms, initially at r = (0, 0, 0) is FSG = −∇VSG(0). The total force is:

FSG = µBgFmFb′
2∣BSG∣

⎛⎜⎝
(B0,x + Bm,x)−2 (B0,y + Bm,y)(B0,z + Bm,z)

⎞⎟⎠ . (2.12)

We chooseB0mostly along y, and attempt to compensate Bm,x ,z such that atoms experience a force
that is mostly along the y axis. We remark that atoms with mF = ±1 will experience an opposite
force in this case, while an atom with mF = 0 is not affected. The short time scales (∼ ms) in which
we ramp both Bq and B0 lead to eddy currents, and the compensation of Bm,x ,y cannot be done
straightforwardly using calibrated values of the bias field. We instead use a ad hocmethod in which
we apply an additional constant bias field along z and optimize its value so that the trajectories of
mF = ±1 end up in the same plane as the one of the mF = 0 atoms at the time of imaging.
In order to separate the Zeeman component faster than their expansion, we have to ramp BSG

in a short time. However, the power supply used to control the current generating the magnetic
field gradient limits the rise time to a few ms (the voltage being limited to 15 V) resulting in a
force too small to separate the cloud enough so they do not overlap. We have developed two
types of sequence for the experiments of this thesis. Both are based on gradient pulses, but each
with different scopes. The first method is used for experiments with condensed clouds with little
thermal fraction. We apply an attenuation sequence (see ref. [135]), where the trap is “opened”
before time of flight in order to slow down the expansion while the gradient is simultaneously
ramped up. This allows for slightly longer TOF and smaller separations as the atomic clouds are
effectively smaller at the time the image is taken [119, 135] than in absence of attenuation sequence.
The attenuation method works well with condensates, but fails with thermal clouds, because

the trap depth at the end of the attenuation sequence is too small to hold a cloud at the critical
temperature or above. As a result, thermal atoms “spill out” of the trap during the opening (see
refs. [135]). We have designed an alternative sequence for these warm clouds that we will detail in
chapter 4 that allows to obtain larger separation in absence of an attenuation sequence by applying
a short and intense pulse of current through the MOT coils.

2.2.2 Imaging noise reduction

Due to the high spatial coherence of the probe light, the spatial profile of the probe beam displays
a contrasted intensity pattern on the CCD camera, see fig. 2.8. If this intensity pattern was static,
absorption imaging would not be affected as it would rely on the differences between two similarly
patterned images. However, any change of this pattern between the two images translates into
noise on absorption pictures. In this section, we will analyze the properties of this pattern and its
influence on imaging noise. We will then expose two image analysis methods that allows us to
reduce the amount of imaging noise.

Speckle pattern

Speckle typically appears when coherent light (typically laser) is scattered off a rough surface
(see refs. [173–175]). It results in an irregular, contrasted intensity pattern. At one point in the
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Figure 2.13: Distribution of intensity on the probe image (similar to the one
shown in fig. 2.8 but with lower average intensity). With our camera settings,
the detection efficiency is ∼ 0.9 count/photon (in other words, a pixel count is
equivalent to approximately 1.1 detected photons).

image plane, the intensity is the sum of contributions from a very large numbers of scatterers and
beam paths. As such, the problem can be treated statistically, and the field amplitude is the sum
of many random contributions, which leads, using the central limit theorem to an exponential
probability distribution function for the density (see refs. [173–176]): p(I) = (1/⟨I⟩) exp(−I/⟨I⟩).
At first glance, this is a problem for absorption imaging as the probability to find dark regions,
in which we cannot measure absorption, is high. In reality, the integration over a sensor with
finite spatial resolution (the CCD camera) somewhat mitigates the issue. The integration over
the intensity pattern due to the finite pixel area modifies the detected probability distribution. In
particular, the most probable intensity is not necessarily zero if the pixel size is large compared
to the speckle typical length scale. The distribution can be expressed as a gamma probability
distribution function (see ref. [173, 174, 176]):

p(I) = 1
Γ(µ) ( µ⟨I⟩)

µ
Iµ−1 exp(− µI⟨I⟩) , (2.13)

where µ is a parameter that depends on the relative size of the speckle grain b and the pixel size a.
We analyzed a sample from a set of “empty” images, taken purposely without atoms. We show

the distribution of pixel intensities from this image (see an example of this kind of image in image
2 from fig. 2.13), and find a good agreement Eq.(2.13) where we have found µ ∼ 10 by a fitting
procedure. This is a good indication that the intensity variations on the spatial profile of the probe
originate from speckle and not from straight interference fringes as the one that could result from
interference between the main probe beam and a reflection from an imperfect coating. In the case
the speckle is small µ≫ 1, an analytic approximation (4πµ ∼ (a/b)2 [176]) indicates the speckle
size is around b ∼ 1.5 µm, which is much smaller than the pixel size (13 µm). Overall, the main
property of interest of the speckle pattern concerning absorption imaging is its large intensity
variance σI/I ∼ 30% (compared to σI/I ∼ 5% expected from pure shot noise at I ∼ 500 counts
for instance). Despite this large intensity variance, there is no fully dark pixel, which allows us to
measure atomic density everywhere in the sensor.
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Figure 2.14: Distribution of the fluctuations of the differential of averaged intensity I1 and I2 (see
Eq.(2.14))
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Absorption imaging is based on the comparison of two images, one taken as a reference I2,κ(r),
and one modified by atomic absorption I1,κ(r) (see ref. 2.2.1, and 2.1.4). The index κ indicates
the experimental run at which the pair of image has been taken. The large intensity variance
with r for each κ does not in principle cause noise on absorption images, unlike the intensity or
spatial pattern changes from I1,κ(r) to I2,κ(r). This can happen due to small displacements of the
scattering surface or modifications of the optical path that can arise from vibrations or thermal
currents for example. In this experiment absorption images are performed using a time delay
between the 2 images as short as possible (see Sec. 2.2.1) in order to minimize these noise sources.
In the following, we will quantify the noise due to changes of this intensity pattern and discuss
means of reducing it.

Imaging noise from empty absorption pictures

We examine the properties of the speckle pattern by examining a set of ∼ 250 “empty” absorption
images taken purposedly in absence of trapped atoms. First, we remark that there is a scaling of the
spatially averaged intensity from the first to the second picture corresponding to a global scaling
of the intensity pattern. We quantify this effect by the quantity ακ:

ακ = ∑r I1,κ∑r I2,κ
− 1, (2.14)

We show the binned probability distribution from one set of image on fig. 2.14, and observe typically
percent level differences between the two images. It is worth noting that these fluctuations cannot
arise from shot noise because of the large number of pixels on which the intensity is averaged
and probably arises from technical sources such as polarization fluctuations from the optical fiber
output, fluctuations in the coupling efficiency, or on the imaging AOM diffraction efficiency.
Besides the global scaling factor, we examine the change on the properties of the speckle pattern

by considering the correlations between two arbitrary images Ia and Ib. We note that for now a
and b are generic indexes, and we shall consider in more detail which images to compare later on.
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Correlations between images can be measured with the help of a cross correlation function given
by GCU(a, b, δr) = ∑r Ia(r)Ib(r − δr) (see ref. [177]). For two identical images a = b, this is the
autocorrelation function. We note that it is in principle possible to extract speckle properties from
autocorrelation functions, but this is hard to do if the pixel size is large compared to the speckle
size (see ref [173]). This is why we will instead analyze cross correlation functions. In order to ease
further interpretation, we normalize the value of the cross correlation function by the geometrical
mean of the autocorrelation functions such that we obtain:

GC(a, b, δr) = ∑r Ia(r)Ib(r − δr)√(∑r Ia(r)Ia(r − δr))(∑r Ib(r)Ib(r − δr)) . (2.15)

With this definition the autocorrelation function, i.e. a = b in (2.15) shows a peak of height 1 near
δr = 0. Otherwise, the height of the central peak reflects the similarity between the two images.
This function also permits to measure whether there is a global translation of the same pattern
between two images. This would translate in a displacement of the peak position equal to the
relative displacement. We analyzed the position of the maximum of GC considering different
pairs of pictures (nearest neighbor I1,κ and I1,κ+1, each image I1,κ compared to their means ⟨I1, κ⟩,
first and second images I1,κ and I2,κ) and could not detect a displacement. The maximum of the
cross-correlation function was always found at δr = 0 for all considered pairs, and we conclude
that the intensity pattern is generally static.
As such, we analyze the similarity between pairs of pictures by considering the maximum value

of the cross-correlation function GC(a, b, 0). We plot it on figure 2.15 for three different pairs of
images from the set of empty images that we have taken:

1. In a first case we take Ia = I1,κ and Ib = I2,κ, where we recall I1,κ and I2,κ are respectively the
first and second image taken for the image κ from the set.

2. In the second case, we take Ia = I1,κ and Ib = I2,brp,κ, where the second image is obtained
with a specific noise reduction algorithm (see refs. [178–180]) that we shall describe in more
details later on.

3. In the third case, we take Ia = I1,κ and Ib = ⟨I1,κ⟩. This is a way to discuss the “stability” of
the pattern over time.

We plot the cross-correlation function GC in fig. 2.15 for each of these cases. We note that pairs of
images taken with short intervals (as in case 1) are generally more similar than images taken in
different experimental run (as in case 3). This tends to confirm that a short time between images
helps to obtain a similar pattern between images. We also show on a that image processing (see
fig. 2.18 for a more graphic demonstration) can be used to further improve the similarity between
images. We will describe the procedures that we use in more details in the next paragraphs.

Modeling of the imaging noise

Given the empirical observations of the previous paragraph, we propose a general model of the
intensity pattern:

I1,2(r) = f1,2(r)I0 + δI1,2(r). (2.16)

where I0 = ⟨⟨I⟩r⟩ is the doubly averaged intensity, f1(r) and f2(r) are random variables describing
the variations of the speckle pattern and δI1(r) and δI2(r) describe the shot noise. We write r
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Figure 2.15: Normalized cross correlation function between different pairs of images. We remark
that the correlation is mostly better between the two images taken with short interval I1 and I2 (case
1), than between each image and their mean (case 3). We see that the cross correlation between
I1 and ⟨I1⟩ shows many incidents that indicate localized changes of experimental conditions (air
conditioning, doors...). A third curve displays the cross-correlation between I1 and Ibrp, that we
obtained by applying a noise reduction algorithm (“best reference picture”). We observe that this
algorithm allows us to generate images that are more “similar” to I1 than I2.

the pixel index. Ensemble averages over a set of couples of images {(I1,κ , I2,κ)} are written ⟨⋅⟩
and spatial averages over the pixels from the full image will be written ⟨⋅⟩r . If the intensities are
uncorrelated from pixel to pixel, the two operations commute. In Eq. (2.16), the shot noise terms
are uncorrelated from pixel to pixel. For each pixel r it follows a normal distribution of width(η⟨ f1/2(r)⟩I0)1/2 where η ∼ 0.9 counts/pixel is the detectivity of the CCD camera. The general
statistical properties of the functions f (r) are far less obvious and can vary with environmental
conditions. Nevertheless, by construction of the intensity model, we have ⟨⟨ f1,2⟩r⟩ = 1.
In the experiment, the quantity of interest is the column density n, obtained from Eq. (2.5).

We derive a formula for sufficiently high imaging intensity such that the shot noise (SN) term is
smaller than I0 (δI1,2(r)≪ I0), and obtain:

∆n(r) = 1
σ
(− ln( f1(r)

f2(r)) + ( f2(r) − f1(r)) I0Isat)
+ 1
σ
( δI1

f1(r)I0 (1 + f1(r)I0
Isat

) − δI2
f2(r)I0 (1 + f2(r)I0

Isat
)) . (2.17)

We recall that σ is the absorption cross-section given in Eq. (2.4). Eq. (2.17) does not refer to a real
atomic density, but describes how optical noise will affect atom number counting. The first line of
formula (2.17) describes the effect of pattern changes, while the second line describes the effect of
the shot noise.
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Fluctuations of the probe intensity

In this paragraph, we will treat the case of a static speckle pattern with global intensity fluc-
tuations. In this case, we can take f1(r) = f (r) and f2(r) = (1 + α) f (r) where α is a random
variable whose probability distribution is shown on fig. 2.14. For the sake of simplicity, we will
consider α follows a Gaussian distribution ofmean ⟨α⟩ = 0.007 and of standard deviation σα = 0.01.
Equation (2.17) can be simplified, by keeping only first order noise terms as :

∆n(r) = α
σ
(1 + f (r)I0

Isat
) + δI1 − δI2

f (r)I0 (1 + f (r)I0
Isat

) (2.18)

Instead of the atomic density of a single pixel, we will consider “atom numbers” obtained from
integration over square boxes S of size L pixels. We denote averages over this box as ⟨⋅⟩S. The atom
number extracted from this box is a random variable NL = ∑S ∆n(r). Its mean can be computed
for small intensity fluctuations α≪ 1 from Eq. (2.18):

⟨NL⟩ = ⟨α⟩σ ⟨∑(1 + f (r)I0
Isat

)⟩ . (2.19)

If S is large enough compared to the characteristic size of the pattern, we will consider ⟨⟨ f1,2⟩S⟩ = 1.
We have verified that this approximation holds for boxes down to L=30 pixels. In this case, above
expression simplifies as:

⟨NL⟩ ≃ L2 ⟨α⟩σ (1 + I0
Isat
) . (2.20)

For ⟨α⟩ ∼ 1%, this represent ∼ 140 “atoms” already for L=20 pixels.
In order to compute the variance of NL we have to consider separately the two terms from

Eq. (2.18). The first one, proportional to α, is a random variable that is fully correlated from pixel
to pixels, while the second term that represent the shot noise is uncorrelated from pixel to pixel,
such that we can swap spatial and ensemble averages. As such, the variance of NL is:

Var(NL) = 1
σ2
Var(α) ⟨∑

S
1 + f (r) I0

Isat
⟩2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Global intensity fluctuations

+ 1
σ2∑S

2
f (r)I0 ⟨1 + f (r) I0

Isat
⟩2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
shot noise

. (2.21)

We can simplify further the above expression by considering large enough boxes:

Var(NL) = σ2L4Var(α) (1 + I0
Isat
)2 + σ2L2 2

I0
(1 + I0

Isat
)2 . (2.22)

We remark in Eq. (2.21) that the noise due to global intensity fluctuations scale as (Var(N))1/2 =
∆N ∝ N2 while the noise due to shot noise scales as (Var(N))1/2SN = ∆NSN ∝ N. Hence we expect
the noise due to global intensity fluctuations to be much larger than the one due to shot noise for
large boxes.
We plot on fig. 2.16 the measured standard deviation of the atom number from the set of empty

picture we have taken. We observe the noise measured from integration of absorption picture
scales quadratically with the integration box size indicating that indeed correlated noise dominates.
We will detail in the following paragraph a method to circumvent this noise source and reach
lower noise levels, comparable to the one allowed by shot noise.



64 2. Production and diagnostics of ultracold gases of sodium atoms

20 40 60 80 100

0

1000

2000

3000
No image processing

Best reference picture
Rescaling method

Shot Noise

Ga
uss
ian

int
ens
ity
flu
ctu
ati
on
s

Size of integration box L

√ Va
r(N

L)

Figure 2.16: Atom number noise as a function of integration region size. We remark the quadratic
scaling for the uncorrected atom number, indicating correlated noise due to technical intensity
fluctuations. On the other hand, atom number from corrected images display a noise level close
to shot noise, and the linear scaling indicates uncorrelated noise from pixel to pixel. It is worth
noting these data were taken for I0/Isat ∼ 0.1 such that the best reference picture algorithm is not
in its best performance regime.

Figure 2.17: The lighter area represent a typical region used for the noise reduction algorithms.
Darker area are ignored either because they may contain atom or because they are too close to the
edges of the image and may contain undesirable features.

Noise reduction by image processing

We present in this paragraph two methods that we use to reduce imaging noise. The first is
straightforward and consists in measuring the fluctuating parameter α from a zone without atoms
such as the one represented in fig. 2.17.The second image is rescaled in order to cancel the correlated
term from Eq. (2.21). We show the effect of this procedure on fig. 2.16, where we compare it to
the shot noise obtained from numerical integration of Eq. (2.21). We demonstrate a very strong
reduction of the atom number noise, almost down to the shot noise limit.
We have also implemented another method in order to deal with changes of the speckle pattern

similar to the one from refs. [178–180]. This algorithm looks for a “best reference picture” I2,brp
from a linear combination ∑κ cκI2,κ of reference pictures I2,κ from all available experimental
realizations inside a particular data set.This algorithm finds the most appropriate set of coefficients
cκ byminimization of the quantity∑BG(I1(r)−∑κ cκI2,κ(r))where BGdesignate the zonewithout
atoms from figure 2.17. In the case the background varies in a correlated way from this zone to
the region of interest (as it is the case for fringes, or shifts of the speckle pattern), this methods
provides minimization of the noise. We observe a large reduction of the noise on figs 2.16, 2.18 and
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Figure 2.18: Example of the noise reduction methods for two different experimental realizations.
The first example shows a situation where the best reference picture does not have a sizable effect
due to the absence of fringe pattern in the “raw” image. One sees in the other situation the dramatic
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Figure 2.19: Imaging noise from boxes of size L=60 pixel. We remark the effect of noise reduction
method for different intensity, and detect an optimum for the noise around I ∼ Isat.
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2.19. While this method does not provide a particular advantage for low imaging intensities, when
the noise is dominated by shot noise and technical probe fluctuations, it is however extremely
efficient for higher imaging intensities. Figure 2.19 shows that the noise varies with intensity
and displays a minimum for I ∼ Isat. This is predicted by eqs. (2.18) and (2.21), only taking into
account shot noise. In general, shot noise dominates for I≪ Isat, while the noise due to pattern
changes becomes dominant at high imaging intensities. We observe that the algorithms described
in this chapter each has their domain of applicability. The rescaling method works for low imaging
intensity where the “log” term in Eq. (2.5) dominates, and fringe noise is negligible (the lower the
pattern fluctuations the higher the “crossover” intensity). On the other hand, the best reference
picture works better when the difference term in Eq. (2.5) dominates, because it corresponds to
the quantity minimized by the algorithm.
If the goal is solely to count populations it is best to work with I ∼ Isat and to use the “best

reference picture” algorithm to obtain the minimum noise in population counting. Otherwise, if
we rely on fitting to extract populations or temperatures, we will prefer to work at low intensities
I≪ Isat. The minimum noise on the population of each component has been measured to be ∼ 60
atoms, measured for I∼Isat in square boxes of 60 pixels.

2.2.3 Magnification

An important quantity to extract quantitative information from absorption images is the optical
magnification of the imaging system.The atoms are imaged on the CCD camera through two afocal
systems (see fig. 2.7). In order to avoid systematic errors in the determination of temperatures
that could be due to imperfect alignment or poor knowledge of the exact focal lengths of the
optical components, we chose to calibrate the magnification using known length scales at the atom
position.
A first method to obtain the magnification consists in preparing a BEC, and letting it fall.

The magnification is obtained from the gravity acceleration (g = 9.81 m s−2). We observe the
displacement of a polarized sample after a Stern-Gerlach experiment from the horizontal imaging
axis (see fig. 2.20). This allows to calibrate the horizontal magnification. We then observe a Stern-
Gerlach trajectory on both the horizontal and vertical camera. Since they share one axis, we
infer from the calibration of the horizontal imaging setup the calibration of the vertical one. The
previous method is indirect, and subject to uncontrolled systematic errors when comparing the
two imaging axis, for example from an unknown small angle between the two imaging systems.
The recent installation of a retro-reflected lattice beam along the HDT axis, see fig. 2.4, allowed us
to use a more direct method. We apply a pulsed lattice to a Bose-Einstein condensate. The cloud
get diffracted by the standing-wave (see ref. [181]), and we obtain a momentum pattern composed
of clouds that have absorbed ±ħλl, where λl is the wavelength of the lattice laser. We reveal the
Kapitza-Dirac diffraction by a time of flight, after which we can see several clouds corresponding
to the diffraction orders, see fig.2.21. The spacing between the zeroth and first order is known from
the laser wavelength λl:

d01 = h
mλl

ttof . (2.23)

We obtain a magnification of 7.75 ± 0.11 with the first method and 7.64 ± 0.07 with the second,
which is close to the expected one 7.5 but not completely identical. This could be due to the two
systems not being in an afocal configuration for instance.
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Figure 2.20: Center of a BEC in freefall obtained from a fit with aThomas-Fermi function. The
blue line is a parabolic fit of the fall. From this data, we obtainM = 1.54 ± 0.01 (corresponding
to 4.2 µm/px) for the horizontal axis andM = 7.75 ± 0.11 (corresponding to 1.68 µm/px) for the
vertical axis.
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Figure 2.21: Kapitza-Dirac diffraction pattern imaged after time of flight. The central cloud is the
undiffracted cloud (zeroth order), while the two smaller ones are the +1 and −1 order. The distance
between this two clouds is given by twice Eq.(2.23). We extract a magnificationM = 7.64 ± 0.07
(corresponding to 1.7 µm/px) from this measurement.
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2.2.4 Determination of the scattering cross-sections

In our experiments we work with multilevel atoms instead of the idealized two-level atom
introduced in Sec. 2.2.1. We see on ref. [182] for example a representation of sodium atom level
structure and Clebsch-Gordan coefficients. The two level model is a relatively good representation
of the system in the case the atom is in the F = 2,mF = 2 state and illuminated by σ+ polarized light.
The transition addressed then is called the cycling transition and couples the states F = 2,mF = 2
and F′ = 3,m′F = 3.
Given the geometry of the repumping beams, and the initial populations in the F=1 state, the

repumping step cannot ensure all atoms are transferred to the F = 2,mF = 2 state before imaging.
Nevertheless, atoms in the F=2 manifold illuminated by σ+ polarized light always end up in the
mF = 2 state regardless of their initial Zeeman state by a process referred as optical pumping.
This process however requires a few absorption-spontaneous emission cycles. We use tim ∼ 10 µs
pulses, and in the worst case scenario, the saturation parameter is s = (I/Isat)/(1 + I/Isat) ∼ 0.05,
and the number of scattered photon per atom is Np = Γstim/2 ≃ 15 (see ref. [125] for numbers
used).The rather small number of photons scattered during absorption imaging suggests that
optical pumping will affect the scattering cross section. The Clebsch-Gordan coefficients of the
transitions addressed during optical pumping being smaller than 1 (see ref. [182]), the atoms scatter
effectively less photons during the process than when the cycling transition is addressed. Besides,
optical pumping will be different for each Zeeman component. In order to account for these effects,
we propose a heuristic generalization of the two level formula (2.3):

∂I
∂z
=∑

m

σ0
αm

nm
1 + I/Isat,m I, (2.24)

In Eq. (2.24), we introduce three parameters αm,m = 0,±1 to parametrize three effective absorption
cross-sections for each Zeeman component, and three saturation intensities Isat,m. As discussed
above, atoms scatter less photons if optical pumping occurs rather than if only the cycling transition
is addressed, hence α ≥ 1.
In the case the different Zeeman components do not overlap, as it in the case for condensed

clouds (see Sec. 2.2.1), we define three separated analysis zones for each image containing each the
contribution of one Zeeman component: Im

1 and Im
2 , m = +1, 0,−1. We consider the formula in

each of these zones, such that we can extract independently the density of each component nm
from an absorption image (see ref. [160]):

nm = αm
σ0
(−log( Im

1
Im
2
) + Im

2 − Im
1

Isat,m
) . (2.25)

The case where the components overlap is more complicated. For this thesis, it is only relevant in
chapter 4 and we shall discuss this case in detail there.
We will show in the next paragraphs how to calibrate the scattering cross-sections and saturation

intensities in order to extract quantitative information from absorption images.This procedure will
contain three steps. First we will calibrate the saturation intensities by examining Bose-Einstein
condensates with a varying probe intensity, then we will calibrate two of the relative cross-sections
α+1/α0 and α−1/α0 by minimizing the observed change in signal while modifying the relative
populations by a spin rotation. In a final step, we will calibrate the cross-section of a single
component gas (here in the mF = 0 component), by comparing the density profiles of a pure
condensate to the one of Gross-Pitaevskii simulations.
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Figure 2.22: integrated atom number from mF = +1 cloud (60x60 integration box) imaged with a
varying probe intensity. The curve “uncalibrated” shows the prediction of Eq. (2.5) ignoring the
term proportional to Isat. This is equivalent to taking the limit Isat →∞, hence no saturation. The
corrected atom number uses Isat = 5057 ± 171, which was determined by a a minimization of the
slope of N(I).
Saturation Intensity

In a first step, we determine the saturation intensity Isat with the method developed by Reinaudi
et al. in ref. [160]. The OD is calculated for a given Isat considered as a parameter in equation (2.5).
We vary the imaging intensity and calculate the atom numberN[Isat](I) by integrating the density
of a condensate. If formula (2.5) describes well the absorption cross-section, then N[Isat] should
not depend on the intensity. We take the saturation intensity to be the value Isat that minimizes
the change in OD with I (the slope of N[Isat]). We show the effect of the saturation intensity on
fig.2.22 where we compare the case where there is no saturation taken into account (Isat →∞)
and the corrected case.

Differential cross-sections

We determine next the difference in scattering between Zeeman components, e.g. the two ratios
α0/α+1 and α−1/α+1. We vary the relative populations of the Zeeman components at fixed total
atom number N by driving Rabi oscillations as explained in Sec. 2.4.1. We adjust the ratios α0/α+1
and α−1/α+1 and the Rabi Frequency Ω to fit the evolution of the relative populations (n+1,0,−1)
predicted by theory (see Sec. 2.4.1).This procedure is in principle equivalent to the one that consists
in adjusting both ratio such that the apparent atom number does not vary during the rotation,
and in practice provides very similar results. An example of a calibration procedure is shown on
fig. 2.23.

Absolute cross-section

In a third step, we determine the last missing coefficient α0 (we could also measure α±1) by
comparing Gross-Pitaevskii simulation of pure condensates to actual density profiles. We compare
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Figure 2.23: a. : Relative populations during a Rabi oscillation starting from a cloud polarized in
mF = +1 (after correction). b. difference between the atom number during the oscillation and its
mean value. We see that there is a clear oscillation of the population at the Rabi frequency before
correction. This is due to the relatively large value of α−1/α+1 = 1.39(5), and is eliminated with
the calibrated values of the absorption cross-sections. c. Relative population in a Rabi oscillation
starting from a cloud polarized in mF = 0. d.We observe that in this case, the required correction
is much smaller because the population of mF = ±1 are roughly equal during the oscillation.
As such, this is mostly the value of α0/α+1 = 0.88(4), closer to one, that matter. The values of
the relative cross sections extracted from this calibration procedure are α+1/α0 = 0.88(4) and
α−1/α0 = 1.22(5).
the Thomas-Fermi (TF) radii from simulations with the ones obtained from absorption images.
Simulated atomic densities after time of flight (TOF) are obtained from solving the 3D Gross-

Pitaevskii equation (GPE) using measured trap frequencies and several atom numbers. We first
propagate the GPE in imaginary time to obtain to the ground-state density in the trap. In a second
step, we simulate the TOF by propagating the GPE in real time after switching off the trap.
To compare the results of the simulations with data, we fit the simulated column densities as well

as the experimental images with the sameThomas-Fermi function n(x , y) = n0max(1−(x/Rx)2−(y/Ry)2). We then compare the data from the fit and the simulations using an ad hoc function for
the condensate sizes, where N is the atom number, and a, b, c three adjustable parameters:

s =√a2 + b2(α+1N2lvl)c (2.26)

The parameter a have been introduced to account for the quantum pressure of the BEC which is
not negligible for small atom numbers (for N=500, ξ ∼ 2) while b, c account for the mean field
potential. For a condensate in the TF regime, a = 0, b = 2µTF/mω2, and c = 2/5. We obtain the
parameters a, b, c from a fit of the simulated data¹, and we finally adjust the parameter α0 so the
ad-hoc function fits the data, see fig. 2.24. Finally, α ∼ 2, which confirms the two level absorption
cross section is not adequate to model the scattering of the light during absorption imaging.

¹Typical values are a ≃ 12 µm, b ≃ SI1.5µm and c = 0.25.
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Figure 2.24:Determination of α0. a. and b. blue and red symbolize the TF radii in the two trapping
directions X and Y. a. Empty symbols represent simulated data. The solid lines represent the ad
hoc fitting functions (2.26) adjusted on the simulated profile sizes. Filled symbols in b. represent
experimental data for a cloud polarized in mF = 0. We obtain α0 = 2.44(22) from this data.
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Figure 2.25: Representation of the plateau fitting procedure. a. single shot absorption image
showing masks of radius 40 µm. b. Integrated profile from the same absorption image, showing the
overlapping thermal fractions. c. Fitted sizes as a function of mask size. The plateau is designated
by blue vertical lines.

2.3 Image analysis

In this section wewill discuss how to extract quantitative properties of our gases from absorption
images that have been obtained as described in sec 2.2.1. We will focus on fitting methods of scalar
gases for the sake of simplicity and detail eventual modification for multi component gas in chapter
4.

2.3.1 Fit of images

Thermodynamic quantities can be extracted by fitting appropriate theoretical density profiles to
measured atomic densities. The correct modeling depends on the nature of the cloud studied, and
can sometimes be non trivial. As it is usual in cold atoms experiments, we fit Bose functions to
thermal clouds (see [133]), and inverted parabola – Thomas-Fermi profiles – to pure condensates.
For partially condensed clouds, we use a sum of these two functions.
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Thermal gases

Weconsider thermal clouds that are dilute enough so that we can neglect the effect of interactions.
In this case, we can deduce the density from Bose statistics as described in Sec. 1.1.1. We use 6
free parameters for the Bose density profiles, 2 centers cx ,y, 2 “gaussian” sizes sx ,y, the fugacity
z = exp(βµ), one amplitude A:

n(x , y)Bose = A ⋅ g2 (z exp(−(x − cx)2
s2x

− (y − cy)2
s2y

)) , (2.27)

We remark that above Tc , A and z are not independent. Furthermore, in the case of high tempera-
ture gases, when z ≪ 1, the function (2.27) is equivalent to a “Gaussian” fit function with amplitude
Az. The temperature can be extracted from the size of the Bose distribution (see ref.[133]) through
the relation:

kBT = 12m ( ω2
i

1 + ω2
i t2tof

s2i) . (2.28)

We also note that at low temperature, the time of flight density (TOF density) of the thermal gas is
largely masked by the one of the condensate.

Bose-Einstein condensates

We have shown in chapter 1 that a Thomas-Fermi condensate expands such that the density
distribution after time of flight remains an inverted parabola (see refs. [118]).The TF function has 5
free parameters, 2 centers, 2 Thomas-Fermi radii rx , ry and an amplitude (that is not independent
from the two TF radii because they all depend on the chemical potential):

n(x , y)Bose = A ⋅max(1 − (x − cx)2
r2x

− (y − cy)2
r2y

, 0) . (2.29)

While Thomas-Fermi profiles are relatively good models for pure condensates in our experiment,
they are not always adapted for partially condensed clouds, in which the condensed atom number
is not large enough so that the Thomas-Fermi approximation is well verified.

2.3.2 Extraction of temperatures

In the case of partially condensed clouds, the presence of a condensate modifies strongly the
momentum distribution for low k. Because of this, it is quite difficult to extract temperatures from
the sizes extracted from bimodal fits to the total density.Themodel of function (2.27) is heuristic as
it does not account for interactions, which can substantially modify the expansion speed (kBT≪ µ
for clouds well below Tc). The high momentum tail – or “wings” – of the momentum distribution
are expected to be less affected by interactions, and as such to behave as in Eq.(2.27).
We have developed a method that allows us to determine the size of the normal component

without relying on a precise definition of the wings of the distribution that we call the plateau
procedure. It consists in fitting time of flight distributions in the presence of a mask in the center.
When we increase the size of the mask, at some point, we reach high enough momenta so that the
distribution is well described by a Bose function (see fig. 2.25). If we observe the fitted thermal
sizes as a function of mask size, we observe the condensate modifies the fitted sizes in the case the
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Figure 2.26: Experimental sequence for Rabi oscillations used to obtain spin rotations such as the
one shown in fig.2.28

mask is small. Above a particular size, that depend on atom number and condensed fraction, the
fitted sizes do not change – a plateau is reached – and represent the size of the thermal distribution.
Increasing the mask size further and further, the fit eventually fails as the signal to noise ratio
(SNR) becomes SNR ∼ 1. We found that this methods give much more reliable temperatures than
bimodal fitting (see chapter 4 for more details).

2.4 Manipulation of the atomic spin

The rich physics of spinor condensates originates from their internal degree of freedom.The
preparation and manipulation of the spin state is a prerequisite of all the experimental data
presented in this manuscript. It relies on several spin manipulation techniques first developed by
the atomic physics community (see ref. [183, 184]) and further used in nuclear magnetic resonance
(NMR, see refs.[185]). It also requires a quiet and well known magnetic environment as these
techniques are typically very sensitive on magnetic fields.

2.4.1 Rabi oscillations

Spin rotations arewidely used inmodern physics, e.g. for hydrogen spins (NMR) and alkali atoms
spins (atomic clocks). In this paragraph, we will discuss the simple case of couplings obtained with
an oscillating magnetic field. We apply a radio frequency (RF) field of amplitude BRF at an angular
frequency ωRF along x, orthogonally to the bias field axis z such that the coupling Hamiltonian is
written:

ĤRF = µBgFBRF cos(ωRF t)F̂x (2.30)
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Figure 2.27: Graphical representation with stacked images of the Rabi oscillation presented in
fig.2.28. On the top panel, we observe an oscillation starting from a state polarized in mF = +1. In
the bottom panel, we observe an oscillation starting from a state polarized in mF = 0.
It is convenient to rewrite expression (2.30) in the referential precessing at ωRF with the unitary
transformation:

Ĥ′RF = Û†
rotĤRF Ûrot + iħ

dÛ†
rot

dt
Ûrot, (2.31)

where the rotation is performed by a unitary operator:

Ûrot = exp(−iωRFtF̂z). (2.32)

A prime will indicate rotated quantities, e.g. F′+ = F+eiωRF t and F′− = F−e−iωRF t . If we also include
the Zeeman Hamiltonian to equation (2.31) and perform the rotating wave approximation (RWA),
in which we only keep slowly varying terms (see refs. [186, 187]), we obtain a single particle spin
Hamiltonian:

H′ = H′RF +HZ = ⎛⎜⎝
−δ 0 0
0 −q 0
0 0 δ

⎞⎟⎠ +
⎛⎜⎝

0 Ω/2 0
Ω/2 0 Ω/2
0 Ω/2 0

⎞⎟⎠ , (2.33)

where δ = ωRF − p is the detuning of the RF field from the resonance frequency and Ω = µBBRF
is the Rabi frequency. When the excitation is resonant δ ≃ 0, and when the quadratic Zeeman
energy is q = 0, the evolution of the system is described by a rotation operator:

R̂†
x = exp(iΩtF̂x) (2.34)

In the case of a non-zero detuning δ, the rotation operator is more complicated to write (see [119]
for example). When the quadratic Zeeman energy is not zero on the other hand, the RF transitions
mF = −1 → mF = 0 and mF = 0 → mF = +1 do not have the same resonant frequency and the
evolution cannot be described by a rotation anymore (orientation to alignment transitions are
observed for example see ref. [188, 189]).
In the experiment, the coupling field is produced by a coil located in the upper microscope

flange, see fig. 2.2. We use RF frequencies from 10 kHz to a few MHz which corresponds to the
bandwidth of our high power amplifier. In this frequency regime, the wavelength is very large
compared to experiment dimensions¹. As such, the location of this coil is crucial to determine the

¹For a RF field of frequency f = 1MHz, the wavelength is λRF = 300m.
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Figure 2.28: Rabi oscillations starting from quasi polarized states in Upper : mF = +1, and Lower
: mF = 0. The solid lines are fit of the theory to the data.

coupling strength and we place it the closest possible to the atom, in the largest aperture available
which is the upper microscope flange (see fig.2.2). Another limiting factor comes from the very
poor impedance matching that we are able to obtain since the dimensions of the coil are much
smaller than the wavelength. We can nevertheless obtain coupling strength up to h ⋅ 30 kHz with
this apparatus.
We will present two particular examples to illustrate 3-level Rabi oscillations in a simple manner.

Both examples are illustrated with experimental data in fig. 2.28 and 2.27, obtained with the
rotation sequence shown in fig. 2.26.The first example is the rotation of a state ζ+ = (1, 0, 0), which
translates in term of populations as :

∣ζ′+∣2 = ⎛⎜⎝
n′+1
n′0
n′−1
⎞⎟⎠ =
⎛⎜⎝

cos4(Ωt)
sin2(2Ωt)/2
sin4(Ωt)

⎞⎟⎠ , (2.35)

while the second one consists in the resonant rotation of a state ζ0 = (0, 1, 0):
∣ζ′0∣2 = ⎛⎜⎝

n′+1
n′0
n′−1
⎞⎟⎠ =
⎛⎜⎝
sin2(Ωt)/2
cos2(2Ωt)
sin2(Ωt)/2

⎞⎟⎠ , (2.36)

The experimental sequence used to obtain such rotations is shown on figure 2.26. Typically, it
consists on a pulse of RF, followed by a fast rotation of the B-Field for imaging, which is necessary
given the geometry of the setup. The RF coil produces a RF field along z (see fig. 2.2), such that the
coupling is a functionΩ ∝ ∣sin(θ)∣, where θ is the azimuthal angle between the z axis and the bias
field. As such, a good RF coupling requires a Bias field that is included on the x y plane. On the
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other hand, with a vertically propagating probe laser, imaging requires a bias field along z, in order
to address the σ+ cycling transition. In the following paragraph, we will discuss the condition that
we need to fulfill to rotate the magnetic field between these two steps without inducing transitions
between Zeeman components.

2.4.2 Adiabaticity in magnetic field ramps

Wediscussed in the previous paragraph how time-varyingmagnetic fields can trigger transitions
between Zeeman sublevels. While this is useful for spin manipulations, this can also be detrimental
if themagnetic fields need to bemodifiedwithout changing the Zeeman populations. In this section,
we will derive a criterion for “adiabaticity” for magnetic field ramps such as the one required
between a Rabi oscillation and imaging for instance.
In this context, adiabaticity means there is no transition between Zeeman levels. First, we recall

the general time varying Zeeman Hamiltonian (see section 1.3.2) with the quantization axis z
aligned with the magnetic field axis:

Ĥz = AhfP2 + p(t)F̂z + q(t) (1 − F̂2z) . (2.37)

In this expression, the magnetic field axis rotates over time, and we need to express the actual
Hamiltonian in a frame that rotates along with it. In this case, and without loss of generality, we
take the y axis as the rotation axis (meaning that B remains in the xz plane), θ(t) the rotation
angle and express the effective Hamiltonian as:

Ĥeff = Ĥz − ħθ̇(t)F̂y . (2.38)

We can determine the angle by the geometric arguments:

θ = tan−1 (Bx
Bz
) , (2.39)

θ̇ = ḂxBz − ḂzBx
B2

z + B2
x

. (2.40)

There are two cases of interest in the experiment. Depending on the experimental step, we need
either different axes in the magnetic fields (for example for Rabi oscillations, along x, and for
imaging along z) or different magnitudes. In any case, the changes of magnetic field are done by
linear ramps performed sequentially in the axes concerned. We take as an example a ramp in the
axis x while the axis z is kept constant :

Bz = B1, Bx = B2t/τ (2.41)

In this case, the change of magnetic field is adiabatic if the coupling is much smaller that the
Larmor frequency p/ħ:

ħθ̇≪ p, or equivalently , Ḃx
B
≪ µBB

ħ
. (2.42)

This translates in a condition for the ramp described in Eq. (2.41) :

τ≫ ħ
µB

B1B2

[B2
1 + (B2t/τ)2]3/2 ,∀t. (2.43)
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In the case condition (2.43) is not fulfilled, atoms experience “Majorana transitions” (see ref. [133]).
They are well known in quadrupolar magnetic traps, in which they happen near the magnetic field
zero at the trap center, and result in atoms being lost. In optical traps in which all Zeeman states
are trapped, it translates into large fluctuations of the magnetization. This happens mostly when
the atom experience a very low magnetic field value. This is referred at as a “zero-crossing”.
The ramp speed is limited by the power supply and is measured around ∼ 1G/ms for the

bias coils. Conditions (2.42), (2.43) corresponds to a minimal bias field B1 ≫ 38mG to fulfill the
criterion from Eq. (2.43) for a linear ramp. For smoother ramps, e.g. quadratic, a similar calculation
shows that the criterion is much relaxed.

2.4.3 Diagnostics of the magnetic environment

A precise knowledge of the magnetic field is necessary for experiments with spinor Bose gases,
for instance in order to avoid zero crossings during the experimental sequence. This section will
expose the methods we developed to characterize the magnetic field environment of the atoms.
The atoms are placed in the center of a metallic chamber that forms a Faraday cage. While it does
not shield static magnetic field, time-dependent magnetic fields may or may not be attenuated
depending on their frequency and the thickness of the vacuum chamber. We find for titanium¹
that the frequency corresponding to a 5 cm skin depth is ∼ 150Hz. Given the chamber does not
have uniform thickness, the determination of the cut-off frequency for magnetic shielding may be
more difficult. However, this estimation suggests that only relatively low frequency noise will be
of interest ( f ≤ 100Hz). We will then divide the discussion in term of stray quasistatic magnetic
fields and of low frequency noise.

Stray magnetic field determination with Zeeman spectroscopy

There are many sources of stray magnetic fields, the most obvious being the earth magnetic
field, but it also includes smaller contributions frommagnetic objects surrounding the experiment.
Even though the experiment was constructed mostly with amagnetic materials such as titanium,
aluminum or copper, there are a large number of small steel components close to the chamber².The
residual stray field at the position of the atoms is referred as Bs. We observe that the stray magnetic
fields do not vary much over time (mG level or below), such that they can be compensated by
fixed – “compensation” – currents in the bias coils Ic,i , i = x , y, z.
The measurement of these compensation currents used to obtain a zero of magnetic fields at the

atom position must be done in situ with the atoms as the environment may be different away from
the vacuum chamber due to gradients. We measure the local magnitude of the magnetic field by
Zeeman spectroscopy. We apply a long, low intensity, RF pulse and detect the rotation of the spin
as a function of RF frequency. The sequence is similar to the one of Rabi oscillations, see fig. 2.26.
We prepare a Bose-Einstein condensate polarized in mF = +1, such that the resonance is detected
by depolarization of the sample. The pulse length is typically 5 ms while the spectrum width is
a few kHz. We apply a small transverse field B⊥, and detect the resonance frequency ωres as a
function of the current in the compensation coil, see fig. 2.29. The curve is fitted by the function:

∣B∣(Ii) = 2ħωres/µB =√B2
s,⊥ + B2⊥ + (Bs,i + αiIi), (2.44)

¹We take for AL6V4 titanium, the resistivity ρ = 1.7 × 10−6 Ωm and the relative magnetic permeability µr = 1
²Kovar alloy in UV LED glass/cover seals, springs of mirror mounts, steel construction elements in the room, etc.
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Figure 2.29: Resonant frequency, representing the magnetic field magnitude, as the current in
varied in the y pair of bias coils. A small field (∼ 20mG) is applied along x to ensure finite resonance
frequency at the compensation value. The compensation current is the one that minimizes the
resonance frequency.

where αi is the magnetic field-current characteristics of the pair of coil i = x , y, z. Theminimum of
this function is obtained for Ic,i = Bs,i/αi and indicates the compensation current. This procedure
assumes each pair of coil creates a field purely along x , y or z, i.e. that there is no “cross-talk”
between the different axis. We find Bs = (311(2), 87(2), 352(2))mG and αx = 0.287(1)G/V, αy =
0.248(1)G/V, αz = 0.358(1)G/V.The error bars are determined from the fit to Eq. (2.44).

Magnetic field noise

There are many sources of time dependent-magnetic noise. A rather large contribution comes
from unshielded mains transformers from various devices located around the experiment. We
recognize this noise easily from its characteristic 50Hz frequency, and this is the dominant source
of noise for our experiments. We have also remarked a lower frequency contribution of amplitude∼ 10mG along axis z. Its amplitude is much reduced between 2:00AM and 5:00AM. which makes
us suspect it is related to the subway line, that runs a few hundredmeters away from the experiment
under boulevard Saint-Germain. Thankfully, we mostly work with bias fields along x or y for
spin manipulation sequences, such that this noise does not affect very much the amplitude of the
magnetic field¹ and does not perturb these experiments.
One of the main issues associated with magnetic noise is observed during Rabi oscillations

where it causes a variation in the detuning. The 50Hz noise translates into a detuning from one
experimental cycle to another that reads:

δ = p − ωRF − δωM cos(2π fMt + ϕ), (2.45)

where δωM is related to the noise amplitude, fM = 50Hz and ϕ is random from one shot to the
next. Given the typical Rabi frequencies we achieve are much higher than 50 Hz, this random

¹A perturbation δBz affects the modulus of the field ∣B∣ as δ∣B∣ ≃ δBz/2B⊥. B⊥ ≫ δBz is the modulus of the field
applied along x/y. This effect is negligible when B⊥ > 50mG.
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Figure 2.30: Typical spin manipulation sequence in which we show the variable hold inserted
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Figure 2.31: Magnetic noise measured by time dependent RF spectroscopy. We show two exper-
imental realizations with different positioning of surrounding power supplies. We observe that
moving noisy power supplies away reduces the amount of mains noise from 6mG to 1.5mG peak
to peak in this example.



80 2. Production and diagnostics of ultracold gases of sodium atoms

detuning translates in irreproducibility of the population measurements after a Rabi oscillation.
We deal with this issue by triggering the experiment on the mains frequency. We extract a low
voltage signal synchronous to the mains with a transformer, and use a Schmitt trigger that provides
a rising edge for a given value of the phase ϕ. We insert a small variable hold time step in the
sequence. During this step, the DAC “waits” for a rising edge from the Schmitt trigger. As such,
the spin rotation starts from a given value of ϕ, fixed from shot to shot. This procedure does not
remove the 50 Hz magnetic field noise, however it allows us to perform repeatable spin rotations
in time scales much shorter than the mains period.
We measured the magnetic noise by RF spectroscopy using the synchronization of the experi-

ment to the mains. We changed the phase ϕ at which a spectroscopy sequence is performed by
adding a time delay before we perform the spectroscopy, and used short pulses time (100 µs) to
resolve the change of resonance frequency with time. We note the resolution of the measurement
is reduced by Fourier broadening. We have observed this way a magnetic noise of 5 mG peak to
peak (p-p), that we were able to reduce to 1.5 mG p-p by adjusting the position of noisy power
supplies as shown in fig 2.31.

2.4.4 Preparation of the magnetization

As exposed in chapter 1, the magnetization is a conserved quantity in our system. In the crossed
dipole trap, optical pumping processes during the loading sequence lead to a cloud ofmagnetization
mz ∼ 0.7. We adjust this quantity by applying a preparation sequence to the thermal gas, in the
CDT, well above the critical temperature.We can choose between two types of sequence depending
whether we need higher or lower magnetization (see refs. [54, 119, 135, 136]). The combination of
these procedures allows us to control the magnetization of our samples mz from 0 to 1 continuously.

Depolarization

In order to reduce the magnetization we apply a RF coupling sequence similar to the one of
section 2.4.1. We apply this sequence on a thermal gas, in the CDT before evaporation starts,
such that the temperature is much above the critical one for Bose-Einstein condensation. We also
apply a small magnetic gradient such that there is inhomogeneous broadening, and ensure the
addressing of the whole cloud by sweeping the RF frequency.
The combination of spin precession in an inhomogeneous magnetic field and of spin diffusion

due to atomic collisions destroys off diagonal coherences created by the RF pulse. The process
“randomizes” the populations, and we end up for sufficiently long interaction times with a balanced
mixture of the three Zeeman components.The degree of polarization is controlled by the RF power
as seen in fig. 2.32 (or equivalently by the pulse length) from the “natural” magnetization m ∼ 0.7
to a roughly balanced mixture of the three Zeeman components.

Spin distillation

In order to obtain more polarized samples, we use a method called spin distillation. It consist
in applying a spin dependent force with a magnetic gradient (see Sec. 2.2.1) during evaporation.
The magnetic gradient is created by the MOT coils and a large bias field set the direction of the
magnetic force (see Sec. 2.2.1). The magnetic force acts on the mF = ±1 (mF = 0 is not affected)
and has opposite direction for each component.
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Figure 2.32: Effect of the depolarization sequence on the magnetization. We observe that we can
tune continuously the magnetization between mz = 0 and mz = 0.7, the pulse length is set to 800
ms and there is a typical resulting noise of 5% RMS on mz .

The applied force modifies the potential depth seen by the mF = ±1 state while mF = 0 is not
affected (see chap. 1). We set the bias field along z such that the magnetic force effectively modifies
the strength of gravity for species mF = ±1. With our geometry, if the coil current is positive, the
magnetic force cancels gravity for mF = +1, and strengthen it for mF = −1 that get eliminated
preferentially during evaporation (see fig. 2.33). If the coil current is negative, the roles of mF = ±1
are reversed. When the bias field is applied in a plane transverse to gravity, the evaporation of both
mF = ±1 is enhanced, and the cloud produced will be more “polarized” in mF = 0. The effect is
further enhanced as the BEC forms.
This techniques allows us to produce polarized clouds with magnetization mz ∼ 1. The value of

the magnetization can be adjusted between mz = 0.7 to mz = 1 by controlling the gradient strength.
It is worth noting that the preparation noise for a fully polarized cloud mz = 1 with this technique
is on the order of 1% RMS, which is much lower that the one obtained with the depolarization
technique (at best 5 % RMS).

2.4.5 Adiabatic rapid passage

Adiabatic rapid passage is a technique well known in the NMR community. It is used to flip spins
in the presence of inhomogeneous broadening (see ref. [190]). It consists in applying a RF field at
a fixed frequency and varying the magnetic field slowly across the resonance. If this procedure is
performed both slow enough compared to the RF transition rate – “adiabatic” – but fast enough
compared to the relaxations processes – “rapid” – it leads to an inversion of the spin population
regardless on the precise details of the initial and final magnetic fields.
The eigenenergies of the dressed states (see ref. [186]) can be found from diagonalization of the

Hamiltonian (2.33). The eigenenergies are shown in fig. 2.35 and are the roots of the equation:

e3 + qe2 + (δ2 +Ω2
0/2) e − qδ2 = 0 (2.46)

We verify that, in the limits of zero coupling or large detunings (δ≫ Ω0) we recover the unper-
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Figure 2.33: Effect of a spin distillation sequence on the magnetization of the sample. We observe
that depending on the bias field direction, the magnetization of the cloud is either mz = +1 or
mz = −1.The higher dispersion observed on the positive side of the z Bias field (mz = −1) originates
from a much lower atom number, which results in the presence of a constant imaging noise, in
higher dispersion in renormalized quantities such as magnetization. This is due to the positive
natural polarization at the beginning of the cooling sequence. Due to an additional bias in x, we
can also obtain a state polarized in mF = 0 by setting the z bias field to 0 (“transverse distillation”).

turbed eigenenergies e = −q,±δ. The associated eigenvectors are the unperturbed Zeeman states.
In the presence of coupling however, the eigenvectors are modified as shown in fig. 2.35. Starting
from the mF = +1 state and large detuning, one can “follow adiabatically” one eigenstate in the
presence of coupling by varying the detuning δ from δ < 0 to δ > 0, ending up in a different
Zeeman state projection.
In this experiment, we keep Ω constant and vary the detuning by a ramp of magnetic field,

while applying a RF field (see ref. [191]). The ramp is slow compared to the coupling, such that the
state is changed adiabatically. Following the lowest energy branch, starting from a cloud polarized
in mF = +1, we can obtain a mixture of mF = ±1, 0 or a cloud polarized in mF = −1, see fig. 2.35.
2.5 Conclusion

In this chapter, we have presented the main experimental techniques and diagnostics that we
have developed for the experiments that will be shown in chapters 3 and 4.
In section 1, we have presented the main experimental techniques used to cool and trap our

sodium Bose gases and obtain Bose-Einstein condensates. We have also shown how to characterize
the trapping potential, which will be particularly important for comparing our data with theory in
chapter 4.
In section 2, we have presented the detection techniques for Bose gases observed in this experi-

ment. We have discussed how to obtain absorption images, and characterized their level of noise.
We have presented the calibrations methods for themagnification and the calibration cross-section.
The methods presented in this chapter will be applied directly in chapter 3 for measuring atom
numbers (chapter 3, section 2 for example).
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Figure 2.34: Typical experimental sequence used for adiabatic rapid passage (ARP). We produce
a BEC within a given bias field (along x in this case). We turn on a relatively large RF field, and
ramp the magnetic field until the desired value of the detuning is reached. Then we turn off the RF
coupling.
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Figure 2.35: Population of a cloud, starting from mF = +1, after an adiabatic rapid passage
sequence. The x axis give the final value of the ARP magnetic field ramp expressed in term of RF
transition detuning. The inset sketches the eigenenergies as a function of detuning.
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In section 3, we have described fitting methods to extract thermodynamic quantities from
absorption images of scalar Bose gases (methods for multicomponent gases will be detailed in
chapter 4). We have also introduced the “plateau” procedure, in which absorption images are fitted
with a mask. This method is used to extract temperatures from partially condensed clouds using
a big enough mask such that the condensate density is hidden, but not the thermal wings. This
method will be used to determine temperatures in chapter 3 (section 3 for example).
In section 4, we have introduced several spin manipulation techniques used in experiments

from this manuscript and discussed the diagnostics of the magnetic environment. We introduced
Rabi oscillations, that will be used to measure spin nematic order in chapter 3. We discussed the
adiabaticity of our magnetic field ramps, and ensured that within the parameters we use, the rate
of Majorana transitions is negligible. In the section 2.4.3, we discussed the influence of the ambient
magnetic field and shown that we can consider separately two contributions. A stray bias field, that
we measure by RF spectroscopy and compensate with static currents in the bias coils and a time
varying magnetic noise, mostly at mains frequency, that we circumvent by synchronizing sensitive
experiments to the mains. Then we discussed the preparation of the magnetization, which we use
to vary the magnetization of our cloud continuously from mz = 0 to mz = 1. Finally we presented
adiabatic rapid passage.



“Comme s’il eût voulumontrer qu’il était capable de
se redresser. Mais non. Il n’avait rien à prouver. Il
avait depuis peu quelque chose en lui qui l’incitait,
lui ordonnait de se redresser. Non, ni incitation ni
ordre. Cela le dépassait.”
L’incident
Christian Gailly 3

Magnetic phases of antiferromagnetic
spinor BEC at low temperatures

The following chapter is written using material from refs. [192, 193]. Section 3.1.1 is essentially
from [192] while other sections have been rewritten. Section 3 uses material from [119].

Magnetism in spin 1/2 systems is often illustrated by the 1D Ising model, that describes spin order-
ing on a spin chain with nearest neighbor exchange interactions and an eventual magnetic field.
The sign of the exchange interaction J, positive for antiferromagnetic interactions, negative for
ferromagnetic interactions, determines the arrangement of the spins at low temperature kBT≪ J.
When interactions are ferromagnetic, the total spin of the chain is maximal, and spins are aligned.
In presence of a magnetic field, the symmetry between the two orientations is broken. In the case
of antiferromagnetic interactions, the spin orientations are staggered, and the spin forms a Néel
antiferromagnet.
With a spin S > 1/2, the behavior at low temperature is much richer, and many types of magnetic

phases, depending on the spin are predicted (see ref. [194]). In the case of spin 1 particles, it is
possible to obtain spin nematic phases (see refs [65–67, 69, 70, 80]) in which the average spin
is zero ⟨ŝ⟩ = 0 but nevertheless have a preferential axis in space (thus breaking spin rotational
symmetry) without having a preferential direction along this axis (thereby preserving time reversal
symmetry). Spin nematic phases in spin 1 Bose-Einstein condensates are named after the nematic
phase of liquid crystals¹ (see ref. [68]). These systems are composed of rod-shaped molecules that
roughly align along their axis (in other words the system exhibit long range directional order)
even in liquid phases where there is no long range positional order. In spin nematic phases, the
magnetic order translates into spin fluctuations that are preferentially in a plane perpendicular to
a certain direction, that is called, in analogy with the liquid crystal terminology, the director.
Spin nematic order have been discussed for spin 1 Bose-Einstein condensates with antiferro-

magnetic interactions in many references (see refs. [47, 51, 54–56, 65, 77–79, 81, 83, 84]). In this
chapter, we will demonstrate a new way to reveal and characterize spin nematic order in spin 1
Bose-Einstein condensates, and more generally explore the low temperature magnetic properties
of the system.
We have discussed general theoretical considerations about spinor BEC in the first chapter, and

how to realize them experimentally in the second chapter. We now focus on very cold clouds, with

¹That themselves takes their name from the greek νήµα, which means thread.
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a condensed fraction typically above fc ∼ 0.9. In this chapter, we consider that T = 0 and that
the actual temperature of the system is sufficiently low such that it only affects measurement and
theory as small corrections. In this regime, the physics of the system is dominated by a competition
between spin changing interactions and the quadratic Zeeman energy. This competition sets the
magnetic properties of the system, such that we observe two magnetic phases of which we study
the properties in this chapter.
In section 1, we give the theoretical background to understand these phases, then recall the

measurement of their equilibrium populations that have been performed during the thesis of
David Jacob (see [54, 135]) as it help the understanding of the following sections. We then discuss
the measurement of the transverse spin length that we performed by observing the fluctuations of
the magnetization after a spin rotation.We show how to relate this measurement to a phase locking
mechanism of the relative phase between Zeeman components. We also discuss the influence
of a small but finite temperature. Finally, I turn to the measurement of spin fluctuations at low
magnetic field and low magnetization. In this regime, the degeneracy between many mean field
states leads to large population fluctuations. We measured these populations and extracted a spin
temperature that corresponds to the thermal energy of the spin degree of freedom.We then discuss
the equilibration of the spin degree of freedom with the kinetic ones.

3.1 Mean-Field description of spinor Bose-Einstein condensates

In this section, we continue the theoretical description of a spin-1 Bose-Einstein condensate that
we started in chap. 1, Sec. 1.3. We recall that we work within the single mode approximation (SMA,
see ref. [127]) in which the three Zeeman components of the spinor BEC have the same spatial
wavefunction (see Sec. 1.3). This approximation is justified by the rather large trap frequencies
ω ∼ 2π ⋅500Hz compared to typical spin-exchange interaction energiesUs ∼ 40Hz. In this section,
we will describe several properties of the spin wavefunction, that is solution of the Hamiltonian
from Eq. (1.95) that we recall here:

Ĥs = Us
2N

Ŝ2 − qN̂0. (3.1)

In the following, we will rather work with quantities normalized by the total atom number N, that
we will write in lower case. The normalized populations are n0,±1 = N0,±1/N and normalized spin
operators are ŝ = Ŝ/N, ŝx ,y,z = Ŝx ,y,z/N. The spin wavefunction can be parametrized as:

∣ζ⟩ = ⎛⎜⎝
√n+1 exp(iϕ+1)√n0 exp(iϕ0)√n−1 exp(iϕ−1)

⎞⎟⎠ . (3.2)

We will discuss in the following the properties of this wavefunction via either its populations or its
phases ϕ0,±1. In the following, we will encounter some specific states that we need to name for the
sake of clarity. In the case a single Zeeman component is populated, we will speak of a polarized
state. The family of states where the spin length is maximal ∣⟨s⟩∣ = 1 is called oriented. For example,
a state polarized in mF = ±1 along z is oriented. Finally, a family of state with ∣⟨s⟩∣ = 0 is called
spin-nematic state (it is also denoted in the literature as polar or aligned). For example, the state
polarized in mF = 0 is a spin-nematic state. Other states in the oriented or spin-nematic families
are deduced from above examples by spin rotations.
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3.1.1 Alignment and spin-nematic order

So far, spin 1 states have been described in the standard basis, defined from angular momentum
theory as the ones formed from the eigenvectors of ŝz , {∣+1⟩ , ∣0⟩ , ∣−1⟩}, with eigenvalues +1, 0,−1
respectively. It is however sometimes convenient to use instead a Cartesian basis defined as (see
refs. [75, 79, 195, 196]):

∣x⟩ = (∣−1⟩ − ∣+1⟩) /√2, (3.3)

∣y⟩ = i(∣−1⟩ + ∣+1⟩)/√2, (3.4)∣z⟩ = ∣0⟩ . (3.5)

These states obey the relation Sa ∣b⟩ = iєabc ∣c⟩ (єabc is the fully antisymmetric tensor). The states∣a⟩ are the eigenvectors of Ŝa with eigenvalue 0. We note with this definition the analogy with the
polarization of a photon. In this case the eigenstate in the normal basis correspond to circular
polarizations “σ±” for ∣±1⟩ and to linear polarization “π” for ∣0⟩. This Cartesian representation can
be related to the geometrical representation¹ of a pure spin 1 states in the normal basis by:

∣Ψ⟩ = ⎛⎜⎝
(Ψ−1 −Ψ+1)/√2

i(Ψ−1 + Ψ+1)/√2
Ψ0

⎞⎟⎠ = (u + iv) ∣r⟩ , (3.6)

where u and v are two real vectors that fulfill the normalization relation u2 + v2 = 1. In contrast
with the spin 1/2 representation, where each state is represented by one unique vector, there can
be multiple definitions of vectors u and v because of the gauge freedom in the total phase of
the wavefunction². As such, the transformation Ψ → Ψ exp(iϕ)modifies the vectors such that
u→ cos(ϕ)u − sin(ϕ)v and v → cos(ϕ)v + sin(ϕ)u. We can always choose a value of the phase
ϕ such that u ⋅ v = 0 and ∥u∥ ≥ ∥v∥.
The spin corresponding to such state is characterized by a mean spin vector:

⟨ŝ⟩ = ⟨Ŝ⟩
N
= 2u × v, (3.7)

and by a spin quadrupole tensor Qi j = ⟨ŝi ŝ j + ŝ j ŝi⟩/2 that characterizes the spin fluctuations. There
are several possible definitions (see ref. [79]) and we choose:

Qi j = δi j − (uiu j + viv j). (3.8)

In order to understand better the link between the tensor Q and magnetic ordering in the system,
we study two limiting cases.
The first one is the case of an oriented state, where all the atoms are in the Zeeman component

mF = +1. In this case, the average spin ∥⟨ŝ⟩∥ = 1 is maximal, and we deduce from eqs. (3.3), (3.4):
u = −x/√2, v = y/√2. The tensor Q is then diagonal in the x , y, z basis with eigenvalues 1/2, 1/2, 1.

¹This definition is set in analogy with pure spin 1/2 states that are characterized by two angle θ, and ϕ usually
represented on a Bloch sphere. These angles define a unit vector u such that ∣Ψ⟩ = u ⋅ ∣r⟩, where ∣x⟩ = (1, 1)/√2,∣y⟩ = (1, i)/√2 and ∣z⟩ = (1, 0)
²There are 6 degrees of freedom allowed by u and v. If we remove two due to the normalization of ∣Ψ⟩ and the global
phase, we end up with only four relevant parameters.
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The second limiting case consists in a spin-nematic where the spin wavefunction is the eigenvec-
tor of ŝ ⋅ n with eigenvalue 0, where n is a real vector of length 1 that denotes a particular direction
in space. In this case, we obtain ∣Ψ⟩ = u ⋅ ∣r⟩ with u = n. In such state, the average spin vanishes∥⟨ŝ⟩∥ = 0 and the spin quadrupole tensor takes the simple form Q = Id − u⊗ u∗ with eigenvalues{0, 0, 1}. In such state, the vector u is the director and the tensor Q (or equivalently u) plays the
role of the order parameter of the spin nematic phase.
In the following we propose to quantify the proximity to either of these two limiting cases by

defining a quantity called the alignment A. We can define it by remarking the eigenaxis of Q are
along u, v and ⟨ŝ⟩ and by rewriting Q as:

Q = 1 −A
2

u⊗ u∗ + 1 +A
2

v ⊗ v∗ +w ⊗w∗, (3.9)

where we have defined u = u/∥u∥, v = v/∥v∥ and w = ⟨ŝ⟩/∥⟨ŝ⟩∥ from normalization of the three
eigenaxis from normalization of u, v and ⟨ŝ⟩. The alignment¹ A quantifies the proximity to the
limiting cases mentioned above. An alignment A = 1 denotes a fully aligned state while A = 0
denotes a fully oriented state.
It is convenient to express the alignment as a function of the spin length which is a more easily

measurable observable in the system (as we shall discuss in Sec. 3.2), hence we have:

A2 + ⟨ŝ⟩2 = 1, (3.10)

So far, we have discussed the state of a single spin. In the following paragraph, we will turn to a N
particle system that we will discuss within a mean field approximation. We will discuss how to
relate the equilibrium state of the system at zero temperature to the alignment, and more generally
how the ground state wavefunction parameters vary with experimental conditions.

3.1.2 Mean-Field description at T=0

We consider the wavefunction from Eq. (3.2) that we rewrite in a more convenient way using
n0,mz and the relative phases α = ϕ+1 − ϕ−1 and Θ = ϕ+1 + ϕ−1 − 2ϕ0:

∣ζN⟩ = e iϕ0

⎛⎜⎜⎜⎝

√
1−n0+mz

2 exp (i Θ+α2 )√n0√
1−n0−mz

2 exp (i Θ−α2 )
⎞⎟⎟⎟⎠ . (3.11)

The state ∣ζN⟩ corresponds to a mean spin vector ⟨ŝ⟩ = mzez + ⟨s⊥⟩, where mz = n+1 − n−1 is the
magnetization and ⟨s⊥⟩ = ⟨sx⟩ex + ⟨sy⟩ey is the transverse spin. We recall that the magnetization
is a conserved quantity due to the rotational symmetry of Van der Waals interactions (see Sec. 1.3).
The phase α determines the azimuthal angle of ⟨s⊥⟩ while Θ sets its length:

⟨ŝ⊥⟩2 = 2n0 (1 − n0 +√(1 − n0)2 −m2
z cos(Θ)) . (3.12)

The ground state of Hamiltonian (3.1) is determined byminimization of the spin energy per particle
Es/N (which is the expectation value of hamiltonian (3.1) for the mean field state in Eq. (3.11)):

Es
N
= ⟨ζN∣ Ĥs ∣ζN⟩ = Us

2
m2

z + Us
2
⟨ŝ⊥⟩2 − qn0, (3.13)

¹We note a similar quantity was defined in ref. [79].
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Figure 3.1: Magnetic phase diagram of an antiferromagnetic spinor Bose-Einstein at T=0. Left:
Experimental measurement from ref [54], Right: Theoretically predicted population in the mF = 0
component by minimizing Eq. (3.13), with Θ = π. We plot on both curve the critical line predicted
by Eq. (3.16) with Us = h ⋅ 65.6Hz.
where there are two control parameters: the magnetization mz (that enter in Eq. (3.12)) and the
quadratic Zeeman energy q (that is set by the magnetic field with q ≃ B2 ⋅ 277Hz/G2). The
population of the mF = 0 component (hence the transverse spin length, hence the alignment)
is set by an energy competition between the spin exchange energy Us⟨ŝ⊥⟩2/2 and the quadratic
Zeeman energy q. We remark that the phase α does not appear in expression (3.12) expressing
the residual rotational symmetry along the z axis when a magnetic field is present. Besides, for
Us > 0 the value of the phase Θ that minimizes the spin energy Es is Θ = π because of the term
proportional to cos(Θ) that is set to -1 to minimize the spin length in Eq. (3.12), which in turn
minimizes the spin exchange energy for a fixed value of mz . In the next section, we will discuss
the value of the equilibrium populations.

3.1.3 T=0 magnetic phase diagram (D. Jacob et al. PRA 86 061601)

In this section, we will recall the results of refs [47, 54] concerning the equilibrium phase
diagram at zero temperature of a spin 1 antiferromagnetic Bose gas (see also refs.[55, 56]). The
spin Hamiltonian (3.13) illustrates the competition between the quadratic Zeeman energy and
the spin-exchange energy, such that the equilibrium populations of the gas at a given value of
the magnetization mz will depend on the magnetic field strength. We distinguish two regimes
depending on which energy scale dominates. If the magnetic field is small, the quadratic Zeeman
energy can be neglected in Eq. (3.13), and the population of the mF = 0 spin vanishes in order to
minimize the transverse spin. This forms a first phase where only mF = ±1 are present, that can be
called antiferromagnetic in analogy with Néel phases in spin 1/2 antiferromagnets (see ref. [64, 84]).
As the magnetic field increases, the population in the mF = 0 grows to accommodate for the larger
quadratic Zeeman energy, such that in the limit of very high magnetic field, the population of
the mF = −1 vanishes. This phase can be called broken-axisymmetry phase (see refs.[84, 197]), in
reference to the fact the total spin tilts against the magnetic field axis. The direction of ⟨ŝ⊥⟩ is given
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Figure 3.2: alignmentA (left) and transverse spin length ⟨ŝ⊥⟩2 (right) calculated for the parameters
of ref. [54]. We plot in white the critical line described in Eq. (3.16). We note that ⟨ŝ⊥⟩2 = 0 in
the antiferromagnetic phase (AF), while it takes a finite values in the broken-axisymmetry phase
(BA). Besides, ⟨ŝ⊥⟩2 = 0 both in the limits mz = +1 and mz = 0 which correspond to oriented and
nematic states respectively as can bee seen from the alignment that tends to A = 0 and A = 1
respectively.

by the phase α. The hamiltonian (3.12) and Eq. (3.13) indicate that all values of α are degenerate. As
such, we consider that α is random from one experimental realization to another. Equivalently, this
means the orientation of the transverse spin vector is random from one experimental realization
to the other. Even though this does not have any effect on the equilibrium populations that we
discuss in this paragraph, we will see this impacts spin measurements after a rotation in a later
section.
For a given longitudinal spin length ⟨sz⟩ = mz , the phase boundary between the antiferromag-

netic phase and the broken-axisymmetry phase can be calculated by minimizing the energy (3.13).
This leads to Θ = π and:

n0 = 0, q ≤ qc (3.14)
n0 ≠ 0, q > qc (3.15)

where the critical field is:

qc = Us (1 +√1 −m2
z) , (3.16)

We display on fig. 3.1, the phase diagram measured on refs.[54, 135], which shows the population
in the mF = 0 state n0 as a function of the two control parameters: the magnetic field B and
the magnetization mz. We observe at low magnetic field that the mF = 0 component vanishes
as it is predicted by theory. The critical line displayed on fig. 3.1 with the spin exchange energy
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Us = h ⋅65.6Hz obtained by a solving numerically the Gross-Pitaevskii equation (see ref. [54]). We
note that this quantity can also be obtained bymeasuring the period of spinmixing oscillations (see
annex D) as done for the results of ref. [192].In fig. 3.2, we plot the alignment and corresponding
transverse spin in a range of parameter similar to the phase diagram. We see that the transverse
spin vanishes in the antiferromagnetic phase, and that the corresponding alignment is maximized,
given the constraint of magnetization (max(A) = 1 −mz). Instead, on the broken-axisymmetry
phase, a small transverse spin is required to minimize the total energy (because of the quadratic
Zeeman energy), but the alignment is nevertheless maximized when considering the appropriate
equilibrium populations (equivalently Θ = π). We observe on fig. 3.2 that the antiferromagnetic
phase corresponds to a purely longitudinal spin with ⟨s⊥⟩2 = 0. Instead, the transverse spin in the
broken axisymmetry phase can vary between 0 for clouds polarized in mF = +1 and mF = 0 and
0.5 for mz ∼ 0.5, and is set by the maximization of the population of the mF = 0. In the case of
mz = 1, the spin in purely longitudinal, and atoms are in an oriented state. In the case mz = 0, the
average spin length vanishes ⟨s⟩ = 0 and we have a spin nematic state.

3.2 Observation of phase locking in spinor BEC

In the previous section, we discussed several aspects of the mean field theory of spin 1 Bose-
Einstein condensates and showed the population dependence on the experimental control parame-
ters. We have observed two magnetic phases that result from a competition between the quadratic
Zeeman effect and the spin exchange energy. We have seen that these two phases can be distin-
guished from the length of their transverse spin, which is finite in the broken axisymmetry phase
and zero in the antiferromagnetic phase. Coming back to Eq. (3.12), we note that the transverse
spin length is not only set by the value of the populations at equilibrium (here mz , n0), but also
by the relative phase Θ = ϕ+1 + ϕ−1 − 2ϕ0. Its equilibrium value, in case of antiferromagnetic
interactions isΘ = π, such that the spin length is minimized (see eq. (3.13)). In contrast, the relative
phase α cannot be deduced from energetic arguments. The minimization of the transverse spin in
equilibrium (to minimize Es, see Eq. (3.13)) implies the existence of a phase locking mechanism.
In this section we demonstrate a method to measure this relative phase by examining spin noise
after a rotation. We will first present the experimental methods used for this measurement and
discuss whether or not a phase locking mechanism could be detected.

3.2.1 Methods

In experiments, we measure populations from integration of absorption pictures as described in
Sec. 2.2.1 such that the phase is not directly accessible. In this section, we propose a measurement
of the transverse spin length of the system, that gives us the value of the phase Θ. This is made
possible by the measurement of the longitudinal spin expectation value mz = n+1 − n−1 from
the normalized populations in the mF = +1 and mF = −1 components. As such we propose to
map the transverse spin on the longitudinal spin by performing a spin rotation, and to extract
the transverse spin length from the value of the magnetization after a rotation. We note similar
techniques were used to characterize spin squeezing in refs. [198–200].
Unlike Θ that is locked to a well defined value by spin changing interactions, α is expected to be

random from one shot to the next given that it does not enter in the mean field energy Eq. (3.13).
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Figure 3.3: Schematic showing the principle of the measurement of the transverse spin length.
a. We show the representation of the average spin ⟨s⟩ in the Cartesian frame. The magnetization⟨ŝz⟩ is set in the thermal gas, well above the critical temperature, and the transverse spin ⟨ŝ⊥⟩ is
given by the minimization of the mean field spin energy from Eq. (3.13). The phase α determines
the orientation of the transverse spin ⟨s⊥⟩. All values of α are energetically degenerate. b. For this
reason, the phase α varies randomly from one experimental realization to another, and the density
matrix ρ̂ is a statistical mixture of all possible values of α that we represent as a circle of radius⟨ŝ⊥⟩, perpendicular to the axis z. c. We perform a Rabi oscillation, that can also be seen as a spin
rotation along axis y. Before rotation, the circle does not have a projection on the z axis such that
the variations of α do not affect the value of the magnetization. However, after a rotation, this
projection becomes non zero, and the fluctuations of α result in fluctuations of the magnetization⟨sz⟩. After a rotation of angle π/2, the projection along the z axis is maximal and the transverse
spin length is directly proportional to the magnetization variance.

To represent this, we consider the many body state to be a statistical mixture:

ρ̂ = ∫ 4π

0

dα
4π
∣ζN⟩ ⟨ζN∣ , (3.17)

where ∣ζN⟩ is a pure state of N bosons in state ∣ζ⟩ with given values ofΘ, n0,mz and varying α. The
randomness of the phase α translates as a random precession around the magnetic field axis when
considering many experimental realizations:

ρ̂ = ∫ 4π

0

dα
4π

R̂†
z(α/2) ∣ζNα=0⟩ ⟨ζNα=0∣ R̂z(α/2), (3.18)

where the rotation operator (see Eq. (2.31)) is R̂z(θ) = exp iθŜz. We represent this random
“precession” as an horizontal circle on fig. 3.3b.We now consider the effect of a spin rotation around
y (see Sec. 2.4.1, we recall ω is the Rabi frequency and t the rotation time such that ωt is the
rotation angle) on state 3.17. It is described by the rotation operator R̂y such that :

Ŝ′z = R̂†
y(ωt)ŜzR̂y(ωt) = cos(ωt)Ŝz − sin(ωt)Ŝx , (3.19)

Amapping Sx → S′z is realized for a π/2 pulse, that corresponds to a 90○ rotation¹. We represent the
rotation of the state (3.17) in fig.3.3c. The randomness of the phase α then translates into variations
of the longitudinal spin ⟨ŝ′z⟩ = ⟨Ŝ′z⟩/N. We consider averages over many measurements such that
the value of an observable Ô measured after rotation is:

⟨Ô′⟩α = 1
4π ∫

4π

0
dα⟨R̂†ÔR̂⟩. (3.20)

¹A π/2 pulse corresponds to a Rabi oscillation of angle Ωt = π/2 with Ω the Rabi frequency and t the oscillation time.
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where R̂ = R̂y(ωt) exp(−iαŜz/2). ⟨⋅⟩α denotes a double average. First we compute the expectation
value in the quantum state ∣ζN⟩ for a given value of α. The second average is realized by the integral
in Eq. (3.20), and corresponds to an average over (sufficiently)many realizations of the experiment¹.
For example, we can compute the average value of the magnetization after rotation:

⟨m′z⟩α = ⟨ŝ′z⟩α = cos(ωt)mz . (3.21)

We remark that the mean value of the magnetization after rotation does not depend on the
transverse spin, which is expected from the symmetries on figure 3.3 given that α varies randomly.
However, the variance of m′z depends on α as:

∆m′2z = 12 sin2(ωt)⟨ŝ2⊥⟩. (3.22)

Eq. (3.23) shows that it is possible to measure the transverse spin length from the variance of the
longitudinal spin after a Rabi oscillation, as the length of the transverse spin is directly mapped to
the longitudinal spin length fluctuations (see fig. 3.3d). We note that when the atom number is
large, we have ⟨ŝ2⊥⟩ ≃ ⟨ŝ⊥⟩2 +O(1/N). Additionally, there are additional fluctuations ∆mz of the
magnetization in the initial state due for example to imperfections of the preparation sequence
Eq. (3.22) is modified such that:

∆m′2z = cos2(ωt)∆m2
z + 12 sin2(ωt)⟨ŝ2⊥⟩. (3.23)

It results in an additional “offset” to the signal after a π pulse for example. In the following
paragraph, we will verify whether the population variances extracted from experiment agree with
this prediction.

3.2.2 Observation of phase locking

Figure. 3.2 suggests which experimental parameters one should use to measure the transverse
spin in the broken axisymmetry phase. The first phase we study (denoted by point a in fig. 3.5) is
the broken-axisymmetry phase, but with a magnetic field small enough such that the three Zeeman
states are populated. The experiment starts by the preparation of a Bose-Einstein condensate of∼ 7500 atoms in the dimple trap (see chap. 2) that for this particular experiment has trap frequencies
of ωx ,y,z = 2π ⋅ (460, 540, 270)Hz and a trap depth V0/kB ≃ 400nK. The magnetization is set to
mz ≃ 0.33 (see Sec. 2.4.4) and the quadratic Zeeman energy to q ≃ 6Hz (corresponding to a bias
field B ≃ 150mG along x). We estimate from the absence of detectable thermal wings on single
component Bose-Einstein condensates, that the condensed fraction is above 80%. We perform a
spin rotation as described in Sec. 2.4.1, andmeasure populations by atom counting from absorption
images obtained with the Stern-Gerlach sequence (see Sec. 2.2.1).
We present the results of this experiment on fig. 3.4. We observe a sinusoidal variation of the

average magnetization as expected from Eq. 3.21. We also observe the error bars, corresponding to
∆m′z increase around ωt = π/2, 3π/2, 5π/2. This corresponds to the fluctuations of the transverse
spin that have been mapped on the z axis as predicted in the previous paragraph. We observe
the effect on fig. 3.5, in which we plot the expectation values of ∆m′2z using the initial value n0
measured at t = 0 according to eq. (3.23). We plot the theoretical curves corresponding to three

¹We note that when considering experimental imperfections (e.g. fluctuations of the magnetization due to
imperfections in the preparation step), a third average over them is also required.
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Figure 3.4: Mean magnetization during a Rabi Oscillation starting from a BEC created with
parameters denoted with a in fig. 3.5. We fit the data to a sine function accordingly with Eq. (3.21).
We note the increasing error bars near t = 75 µs, 250 µs, 450 µs that corresponds to ωt = π/2, 3π/2
and 5π/2.

cases, the first is Θ = π and corresponds to antiferromagnetic phase locking. The second is Θ = 0
and would correspond to ferromagnetic phase locking. A third curve is calculated assuming there
is no particular phase relation between the Zeeman components. The phase Θ is then random and
the contribution proportional to cos(Θ) in Eq. (3.12) averages out.
We observe that the experimental data on fig. 3.5 is indeed incompatible with the prediction

that assume ferromagnetism or no phase locking mechanism. However, we remark that the
experimental points are always below the theory curves, which indicates the transverse spin is
smaller than expected by the T=0 mean field theory. We verified that this is not due to a detuning
of the radiofrequency used for the Rabi oscillation by fitting the evolution of the magnetization
in fig. 3.4 by the expected evolution including a detuning. We have found that the detuning was
much smaller than the Rabi frequency. We have applied the same method for two additional
sets of parameters b and c and obtained the curves shown in fig. 3.5. Even though they address a
different magnitude of the transverse spin, both display the same general behavior as the curve in
fig. 3.5, indicating the phase locking mechanism indeed happens regardless of the magnetic phase
considered.

Two important questions remained to be addressed in order to obtain a more complete un-
derstanding of this mechanism. First, the overestimation of the transverse spin length by mean
field theory seems puzzling at first sight. Second, according to fig. 3.2, the value of the transverse
spin vanishes at point c, which is in disagreement with the observation plotted in fig. 3.5. We will
discuss in the next paragraph that it is possible to explain both effects by taking either the finite
kinetic temperature (hence a finite thermal fraction) into account, and also by considering a finite
“spin” temperature for the spin ensemble.
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Figure 3.5: Magnetization variance during a Rabi oscillation. The initial parameters for figs. a,b,c
are shown on the phase diagram above the figure. The solid curves indicate the expectation from
eqs. (3.23) with a transverse spin length calculated from initial parameters with Eq. (3.12) and
Θ = π, which corresponds to antiferromagnetic phase locking. The dashed line indicate the
expectation for Θ = 0, which would correspond to ferromagnetic (F) phase locking. The dotted
line indicate the expectation value for Θ random from shot to shot, that we would expect in
absence of a phase locking mechanism (uniform Θ). We see that our data are only compatible
with the theory obtained in presence of antiferromagnetic (AF) phase locking, Θ = π regardless
of the initial parameters used before the oscillation. We note that in the panel c, the T=0 theory
does not predict the existence of a transverse spin for this parameter regime (see fig. 3.2). This is
resolved by considering thermal spin fluctuations that effectively generate a small, but measurable
transverse spin for mz < 1.
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3.2.3 Effect of a finite kinetic temperature

Eq. (3.17) describe a statistical mixture of pure states and only applies for T=0. We can however
modify this description, first by considering the thermal depletion of each Zeeman component
and then by including thermal fluctuations of the spin state (see ref.[193]). In the next paragraphs
we will see that the finite kinetic temperature effectively decreases the transverse spin in the broken
axisymmetry phase by depleting the population of the mF = 0 state. We will also see that a finite
spin temperature can generate a small transverse spin in the antiferromagnetic phase.

Effect of thermal depletion on the transverse spin

The spin of the normal fraction of a condensed Bose gas is predicted to differ significantly from
the one of the condensate. The authors of ref. [91] considered this for uniform gases and show that
the spin of the normal fraction tends to oppose the one of the condensate at very low temperatures.
In our temperature regime, which fulfills kBT ≫ q, Us, the spin of the thermal component is
always of much smaller magnitude than the one of the condensed part.
WeperformedHartree-Fock calculations thatwe have adapted from ref. [91] to include a trapping

potential. Details about this can be found in ref. [192] and in the thesis of Vincent Corre [119]. We
compute the density matrix of the gas, that we write as the sum of condensates wavefunction ϕm
and of the density matrix of the thermal gas ρ′:

ρmn(r) = ϕ∗m(r)ϕn(r) + ρ′mn(r). (3.24)

As described in chapter 1 (see. 1.3), we consider the spinor condensate in the single mode ap-
proximation such that ϕm =√Nϕζm, where ζm is the spin mean-field wavefunction and ϕ is the
single-mode wavefunction obtained by numerical resolution of the Gross-Pitaevskii equation
(see ref. [119]). The mean field spin wavefunction is found from minimization of the mean field
spin energy as described in Sec. 3.1.2. The thermal density matrix is computed within a semi ideal
model (see ref. [201]), where we neglect the influence of the thermal atoms on the condensate. We
expect this approximation to be valid for high condensed fractions, at temperatures well below
the critical temperatures. We determine explicitly the modes and eigenenergies of atoms in the
effective potential obtained from the sum of the external potential and the mean field contribution
of the condensate:

(− ħ2

2m
∆ + Vext(r) + A(r))u(ν) = Eνu(ν), (3.25)

where A is a matrix that contains the mean field potential of the condensate and Lagrange multi-
pliers to enforce the atom number and magnetization of the thermal gas (the matrix A is given
explicitely in ref. [91]). We note that the mean field potential is in general a non diagonal matrix
due to the spin exchange interaction term, and as such A is not diagonal either. The expression
of the matrix A is given explicitly in ref. [91]. We determine the thermal density matrix ρ′ and
the condensate wavefunction in a self consistent way. Each step consists in solving a spinor Gross-
Pitaevskii equation and computing the density of the thermal gas with the mean field potential
determined by the results of the previous step. The process is repeated varying the value of the
Lagrange multipliers until the target magnetization and atom number are reached. We use an
isotropic potential as it reduces significantly the numerical complexity and should provide ac-
curate result given our trap geometry is nearly spherical (the trap frequencies are in the ratio
ω = 2π(1.17 ∶ 1 ∶ 0.59) ⋅ 344Hz).
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Figure 3.6: Condensed fraction fc and transverse spin length ⟨ŝ⊥⟩2 as a function of temperature
obtained by solving Hartree-Fock equations adapted from ref. [91] to include a trapping potential.
We observe a sequential condensation of the mF = ±1 and the mF = 0 (see chap. 4 for more
details). Given Us ≃ 0.08ħω, the condition kBT ≫ Us is always fulfilled such that the thermal
fraction of the gas can be considered to have mz ∼ 0. Until the temperature reaches the BEC critical
temperature for the mF = 0 component, the transverse spin remains equal to 0. The dependence
of the transverse spin on the total condensed fraction is rather steep, as the condensed fraction of
the mF = 0 component decreases faster than the overall thermal fraction around T=0. As such, a
thermal fraction of 10% reduces the transverse spin by as much as 30%.

We plot the result of this Hartree-Fock calculation in fig. 3.6, in which we show the condensed
fraction of each component as a function of the temperature, along with the transverse spin
length. We observe that the condensation of the components is not simultaneous (as studied
in greater details in chapter 4), and that the transverse spin rises as the mF = 0 component
condenses. This happens at relatively low temperatures, and a diminution of 20% of the total
condensed fraction reduces the condensed population of the mF = 0 by a factor of almost 60%.
The diminution of the population of mF = 0 translates directly in a diminution of the transverse
spin. This effect can be taken into account in Eq. (3.23) by only considering only condensed atom
such that n0 → n0c < n0 in 3.12 which effectively reduces the magnitude of the transverse spin. We
show the effect of such treatment on fig. 3.7, in which we plot an additional dashed line compared
to fig. 3.5, representing the predictions of HF theory for a condensed fraction fc = 0.9. The shaded
area represent 0.8 < fc < 1 corresponding to the experimental zone in fig. 3.6.
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Figure 3.7:We reproduce themagnetization variance along a Rabi oscillation of dataset a presented
in fig. 3.5. We compare the data, with the T=0 theory (plain line) and with the theory for fc = 0.9
(dashed line). We indicate by a shaded area the magnetization variances expected for 0.8 < fc < 1.
3.2.4 Effect of a finite spin temperature

In section 3.2 we discussed the measurement of phase locking in the antiferromagnetic phase
by the measurement of a small transverse spin length (dataset c from fig. 3.5). We have shown
that this small but finite transverse spin is compatible with the minimization of the spin energy
given a finite value of the population n0 that we observe without a spin rotation. This however is
incompatible with the mean field prediction in the antiferromagnetic phase, where the transverse
spin length should vanish (see fig. 3.12). This small, but observable deviation to mean field theory
can be accounted for by taking into account the finite temperature of the spin degrees of freedom
in the determination of the equilibrium state of Eq. (3.13).
We have developed a theory to describe the changes in the observables due to finite spin

temperatures (see refs. [119, 193]). We used a statistical ensemble, obtained from modifying the
grand canonical ensemble. We account for a given magnetization probability distribution by
adding two additional Lagrange multipliers λ1,2 to the free energy F of the system to enforce a
particular average value and standard deviation of the distribution of magnetization (more details
are found in ref. [193]). In the N ≫ 1 limit, average values of observables can be determined by
considering the family of states ∣ζN⟩ and by weighting their contributions by a modified Boltzmann
factor exp(−βF) (see ref. [119, 193]). The average value of an observable describe by operator Ô is:

⟨Ô⟩ = 1
Z ∫ dn0dmzdαdΘ ⟨ζN∣ Ô ∣ζ′N⟩ exp(−βF(n0,mz , α, Θ)), (3.26)

where Z is a normalization factor. We can express the free energy F = ⟨ζN∣ Ĥs − λ1 ŝz − λ2 ŝ2z ∣ζN⟩ as:
βF = β′z

2
(mz −m∗z )2 − ηn0 + β′ (n0(1 − n0 +√(1 − n0)2 −m2

z cos(Θ)))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶⟨s⊥⟩2
, (3.27)
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Figure 3.8: Sketch of the Free energy as a function of the population in n0. We note that within
our experimental temperature range (indicated as experimental zone), the average population in
the mF = 0 can be almost 1% such that the data for point c can be explained by the transverse spin
from Eq. (3.31) resulting from finite spin temperature.

where we introduced two external parameters:

η = Nβq, (3.28)
β′ = NβUs. (3.29)

We reexpressed the two Lagrange multipliers λ1,2 in a more convenient way : β′z = β′ + 2N2λ2 and
m∗z = −Nλ1/β′z . With these definitions, the inverse temperature β′ characterizes the fluctuations
of the transverse spin while β′z characterize the fluctuations due to the prior distribution of
mz (technical preparation noise for example). A purely thermal prior distribution would be
characterized by β′z = β′. In our experiments we find that β′z ≫ β′ in general, which corresponds
to a “narrow” prior distribution.
In order to understand better the effect of the finite spin temperature, we consider an antifer-

romagnetic state such that the mean field state predicts n0 = 0 (such as in the case of point c in
fig. 3.5 for example), we will study the case of finite magnetization and small magnetic field. In
this case, we develop Eq. (3.27) around n0 = 0, Θ = π and obtain:

Feff = Nqc [√1 −mz
2n2

0 − ( q
qc
− 1) n0] +O(n3

0, n0Θ2), (3.30)

where qc is the critical quadratic Zeeman energy defined in Eq. (3.16) and mz is the average
magnetization. We represent the free energy on fig. 3.8 for the parameter of our point c. We also
represent the typical temperature range in our experiments (kBT ≤ 3ħω) by a shaded area, that we
estimate by considering that the absence of visible thermal wings on absorption picture indicates
a condensed fraction above 80%. As we can see, for finite β′, a detectable population can build
in the mF = 0 component due to spin fluctuations. For small average population n0 and small
fluctuations of Θ, when Eq. (3.30) holds, we apply eq. (3.26) and we have:

⟨s⊥⟩th = 2n0qc
Us

+O (n2
0, n0Θ2) . (3.31)
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Figure 3.9: Comparison of 10 experimental realizations at low (q ∼ h ⋅ 0Hz) and high magnetic
field (q ∼ h ⋅ 200Hz). We see that in the case of the quadratic Zeeman energy is low, there are large
fluctuations of the populations in the mF = 0 component. At high quadratic Zeeman energy, the
fluctuations disappear, and all the atoms are in the mF = 0 component, as expected from the mean
field picture.

With our experimental parameters estimate that n0 ≤ 0.02. This would result in ⟨s⊥⟩2th ≤ 0.012
which is compatible with the observations from fig.3.5.
So far, we focused on situations where mz > 0. In the next section, we will examine the case mz ≃ 0
and explore regions of low magnetic field, where the three Zeeman states are nearly degenerate. In
this case, the population of the three Zeeman states can become comparable, but more interestingly,
large population fluctuations arise from the finite spin temperature.

3.3 Spin fluctuations

This section gives an overview of the work performed in our team during the beginning of my PhD
thesis. The methods and results are detailed in the thesis of Vincent Corre (ref. [119]).

For q=0, the three Zeeman sublevels of a spin 1 Bose-Einstein condensate are degenerate. In the
theoretical frame that we have developed so far, there are multiple possible mean field states, the
whole spin-nematic state family, as all possible orientations of spin-nematic states are degenerate.
In an experiment where we would prepare a condensate at q = 0, this would result in large observed
population fluctuations. However, the slightest magnetic field would lift the degeneracy and favor
the particular spin nematic state with its director along the field axis, resulting in state polarized in
mF = 0. In the experiment, setting the quadratic energy to a low value, we observe large fluctuations
of the relative population in the mF = 0 state as shown in fig. 3.9 even for finite magnetic fields
(q ∼ 1Hz) which indicates that the mean field picture may not be sufficient. In the following, we
will show how to account for these fluctuations with a finite spin temperature similarly to what we
have discussed in section 3.2.4.
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3.3.1 Spin fluctuations for lowmagnetization

We apply the description introduced in section 3.2.4 to compute the distribution of the popula-
tion in the mF = 0 component in the regime of low magnetizations and low magnetic fields. We
consider mz ≃ 0 and Θ ≃ π, and we develop the expression of the free energy F from Eq. (3.27)
and obtain:

βF ≃ m2
z

2σ2
+ β′n0(1 − n0)(Θ − π)22

− ηn0, (3.32)

σ2 = 1 − n0
β′n0

β′z(1 − n0). (3.33)

We note that the overall energy minimum is found for the mean field ground state described in
Sec. 3.1.2 e.g. n0 = 1, Θ = π and mz = 0. With this expression, we see that if

η = Nβq ≃ 1, (3.34)

the finite thermal spin energy will translate in large fluctuations of the population in the mF = 0
component. We note that within our experimental parameters N = 5000 and T ≃ 100nK, the
crossover to the mean field regime happens for q ∼ 0.5Hz (corresponding to B ∼ 40mG). As such,
the use of relatively small clouds here allows to observe large fluctuations in a regime of parameters
where ambient field fluctuations are not relevant (we estimate the magnetic field fluctuations along
the bias field axis to 1.5 mG peak to peak, see chapter 2).
We use the property 3.26 to compute the probability distribution of the mF = 0 component

population (considering narrow distributions of mz and θ):

p(n0)∝ ∫∫ dΘdmze−βF , (3.35)

Given the Gaussian form of the integrand in mz andΘ (see eq. (3.32)), the integration can be done
analytically and we obtain:

p(n0)∝ eηn0√
n0(β′n0 + β′z(1 − n0)) . (3.36)

We calculate the moments of this distribution numerically, and represent them in fig. 3.10. We
observe that for high magnetic fields, we retrieve the mean field behavior, e.g. the cloud is polarized
in mF = 0 and the fluctuations of the population n0 are small. For η ≤ 1, the fluctuations of
populations become very large the mean population tends to n0 = 1/3. We note that when η ≤ 1,
we have σn0 ∼ 0.3 and σN0 ∝ N. This corresponds to super-Poissonian spin fluctuations.

3.3.2 Experimental measurement of fluctuations

In this section, we turn to the experimental investigation of spin fluctuations. We will prepare
samples with mz ≃ 0 with the help of the demagnetization sequence described in Sec. 2.4.4. We
perform evaporative cooling such that we obtain an almost pure BEC. We note that a hold time
of 6 seconds at the final trap depth was added to ensure the gas is at equilibrium. We apply a
uniform magnetic field during the evaporation, that is taken as a control parameter in a similar
way to experiments discussed in secs. 3.1.3 and 3.2. We obtain the atom number from integration
on square boxes, from absorption images obtained with the defringing algorithm described in
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Figure 3.11:Mean and standard deviation of the population in the mF = 0 component as a function
of magnetic field. The solid line shows a fit to the data by the moments from eq. (3.36), taking
into account the prior distribution of mz and a finite temperature ( fc < 1). The fitting method is
described in ref. [119]. We see that the regime of large fluctuation is reached to η ∼ 1 corresponding
to B ∼ 20mG in this case.
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Sec. 2.2.2. We repeat the experiment about 150 times per parameter sets and obtain experimental
distributions of n0 such as the ones shown in fig. 3.12. We observe a broadening of the distribution
of n0 as the magnetic field is lowered, that corresponds to spin fragmentation.
We extract a spin temperature from measurements such as the ones shown in figure 3.11. We

extract a “critical” quadratic Zeeman energy at which the fluctuations of the population become
important. Since we know the theoretical moments, that we compute from eq. (3.36), we can relate
this critical magnetic field to a particular value of η = Nβq ∼ 1, and extract from the knowledge
of atom number and critical Zeeman energy, a value for the spin temperature Ts = 1/kBβ. The
extraction of the critical Zeeman energy is done by directly fitting moments computed with
eq. (3.36) with the spin temperature as a parameter. We note an alternative approach consists in
fitting directly distributions (this is shown on fig. 3.12 by solid lines). This procedure is detailed in
ref. [119].

3.3.3 Spin thermometry

In the following paragraph, we investigate the effect of another control parameter which is the
final evaporation trap depth. We vary it by stopping at different point of our evaporation ramp,
such that the rate of cooling is the same from one experiment to another. However, stopping at
higher trap depth allows us to obtain higher temperature clouds (as seen in fig. 3.13) and a smaller
condensed fraction. The experiment consists in varying the magnetic field, and measure several
realizations of the experiment. The mean and standard deviation of the population of the mF = 0
component are measured, and we can extract the critical value of η at which fluctuations appear.
We note that for high temperature clouds, the picture described in section 3.3.1 is modified, as
the condensed fraction is predicted to have roughly equal population in all Zeeman states (since
kBT≫ Us). This modifies the distributions shown in figs. 3.10 and 3.11 in several ways. First, in
the η →∞ limit, the mean ⟨n0⟩ is reduced to a value 1 − 2 fc/3. Second, in the limit η → 0, as the
populations of the thermal fraction do not fluctuate, the value of σn0 is reduced, and the mean
value is also modified (however, this modification depends on the prior distribution of mz).
We extract the spin temperature from fits to the distributions showed in fig. 3.11 when we vary

the final evaporation trap depth. We compare the spin temperatures with the kinetic temperatures
we have obtained from direct fits of the thermal component (using the mask method described in
Sec. 2.3 on images taken without a Stern-Gerlach sequence). We show on fig. 3.13 the measured
kinetic temperatures as a function of trap depth. The fitting procedure fails for low trap depths
V0 < 4 µK due to the absence of visible thermal wings, hence we extrapolate the data by a linear
fit to lower trap depth. The spin temperatures are also displayed on fig. 3.13. The value of the
spin temperature could not be measured for the highest trap depth because there are too few
fluctuations on the population of the mF = 0 component due to the low condensed fraction.
We observe that for the lowest values of q the spin temperature is much lower than the kinetic
temperature and its value Ts ≃ 50nK does not depend on the trap depth. We note however that
for a higher quadratic Zeeman energy, the spin temperature is compatible within error bars to the
kinetic temperature.
In order to explain this behavior we shall recall what distinguishes the two temperatures Ts and

Tk discussed above. The spin temperature describes the excitation of the spin ensemble described
by the hamiltonianHs, while the kinetic temperature describes thermal excitation from the kinetic
hamiltonian. The energy scales in both spectra are very different. Excitation of the spin degree of
freedom will have a typical energy ∼ Us/N ≃ 1 pK while the excitation in the BEC, will take the
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Figure 3.12: Experimental probability distribution of n0 with varying magnetic field. We observe
the distribution gets narrower, and more peaked around n0 = 0 as the magnetic field is increased
as expected from the SU(3) description presented in this section. We show fits to the function
(3.36), where the distribution of mz and a finite (and fluctuating) condensed fraction is taken into
account.
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Figure 3.13: Summary of the temperature measurement. The kinetic temperature is obtained from
fits to the wings of the time of flight distribution of the gas. The absence of points below V0 < 4 µK
is due to the absence of visible thermal wings. The spin temperature is obtained from fits to the
distribution of n0. We note that for the lowest values of q, the spin temperature does not vary
with the trap depth V0 and takes a much lower value than the kinetic temperature. For the highest
value of q however, we see the spin temperature is comparable to the kinetic temperature for trap
depths above V0 = 3 µK.
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form of a spin wave that will have a typical energy scale of ∼√g2/għω ≃ 6nK (see ref. [64]).
This large energy difference can be assimilated to a large detuning when considering energy

exchange processes between the two degree of freedom. As such, we believe both degree of freedom,
spin and kinetic, equilibrate independently within experimental time scales. For higher values
of q, the spectrum of Hs changes. In the ground state, all condensed atoms are in the mF = 0
components and an excitation consists in creating two atoms in the mF = ±1 components. As for
finite q these components do not condense, this process involves collisions between atoms from
the condensate and the thermal fraction, which effectively couples the kinetic and spin degree of
freedom, and leads to thermal equilibrium between the two. We observe the transition between
these two regimes effectively happens when q ∼√g2/għω.

3.4 Conclusion

In this section we have discussed the low temperature magnetic properties of spin-1 Bose-
Einstein condensates with antiferromagnetic interactions. We have recalled how the presence
of spin exchange interactions define the ground state populations of the system. By varying the
magnetic field (hence the quadratic Zeeman energy q) and the magnetization, the authors of
ref. [54] were able to detect two magnetic phases. One is called the antiferromagnetic phase, where
there is no population in the mF = 0 component such that the spin length is minimized. A second
phase is called the broken axisymmetry phase, where the mF = 0 component gets populated
because its energy is reduced by the quadratic Zeeman energy. Eventually, they observed that for
large quadratic Zeeman energy the population in the mF = −1 component vanishes.
In this chapter, we have shown that these two phases could be distinguished by their spin length⟨s⟩2, or equivalently by a related quantity called the alignment A. In the antiferromagnetic phase,

the spin is purely longitudinal, while in the broken axisymmetry phase, a transverse spin appears
due to the influence of the quadratic Zeeman energy. As the longitudinal spin length ⟨sz⟩ = mz
is conserved by the spin exchange interactions, it is the transverse spin length ⟨s⊥⟩2 that defines
magnetic ordering in our system.
We proposed and demonstrated a method to measure the transverse spin length by measuring

spin noise after a spin rotation. We have shown that the minimization of the spin length is realized
by locking the relative phase Θ = Φ+1 +Φ−1 − 2Φ0 between the different Zeeman components.
This phase locking mechanism originates from the spin exchange interactions and enforce the
magnetic order in the system. We have shown that given the azimuthal angle α = Φ+1 −Φ−1 of the
total spin varies from shot to shot, the transverse spin length could be retrieved after a π/2 rotation
along a transverse axis from the magnitude of the magnetization fluctuations (see fig. 3.3). We
have performed the measurement with three sets of parameters, two in the broken axisymmetry
phase and one in the antiferromagnetic phase, and in each case observed the phase locking of
the phase Θ to π. We have shown that a full understanding of our data could only be obtained by
taking into account the finite kinetic and spin temperatures of our cloud.
In the following we have considered the particular case of q ≃ 0, mz = 0 where the three

Zeeman components are degenerate. In this case, the observation of large fluctuations of the
relative populations n0 and n±1 contradicts mean field theory that predicts a condensate polarized
in mF = 0 even for small values of the quadratic Zeeman energy. We have shown that a refined
theory taking into account a finite spin temperature allowed to retrieve large fluctuations ∆N ∝ N
for finite quadratic Zeeman energies q. We have extracted the spin temperature from experimental
n0 distributions. We noted a very different behavior for high and low values of the quadratic
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Zeeman energy q. For high q, the spin temperature follows the kinetic temperature, while for low
q, the spin temperature does not depend on the trap depth and is much lower than the kinetic
temperature. We believe this originates from a different mechanism, in which the thermalization
between the spin and kinetic degree of freedom is inhibited by the large difference in energy scales
at low quadratic Zeeman energies.
Both studies presented in this chapter were performed for quite high condensed fractions

fc > 0.7, such that the thermal fraction enters only as a correction to the T = 0 model. The study of
higher temperature clouds would allow the study the onset of phase locking with condensation. For
example, we have seen that the amount of transverse spin was reduced as the kinetic temperature
was increased due to the mF = 0 component vanishing. We could measure the transverse spin as
a function of temperature and see whether the phase locking mechanism exist regardless of the
condensed population in the mF = 0 component, or whether it washes out near the critical point.
Another study could consist in studying the dynamics of thermalization in both system. We

could quench through the second critical temperature for Bose-Einstein condensation (we call the
second critical temperature, the temperature at which the minority component condenses, see
chapter 4 for more details) and observe the spin of the system, either by measuring their transverse
spin, or by measuring the fluctuations of n0 for mz ∼ 0 and q ∼ 0. It would be interesting to study
whether the condensate appears already with the correct phase relation, or if the phase goes from
random to π within a few spin changing collisions (a time scale ∼ 1/Us).





“L’air était frais au fond du puits. Mon état d’excitation
devait être telle à mon arrivée en bas, que je n’avais
pas du tout pensé à la température. Mais maintenant,
je sentais nettement le froid sur ma peau. [...] J’avais
complètement oublié que la température au fond d’un
puits n’était pas la même qu’à la surface de la terre.”
Chroniques de l’oiseau à ressort
Haruki Murakami 4

Thermodynamic phase diagram
of a spin 1 Bose gas

Spin-dependent interactions are responsible for many properties of spin 1 Bose-Einstein con-
densates, such as the existence of several magnetic phases, or of a phase locking mechanism
between Zeeman components as discussed in chapter 3. They also conserve the magnetization.
As we discussed in chapter 1, section 4, the conservation of the magnetization in the system give
rise to several thermodynamic phases where either one or two spin components are condensed
depending on the temperature. In this chapter, we study experimentally these thermodynamic
phases. We vary the temperature, magnetization and magnetic field and deduce from observation
of a spin 1 Bose gas which Zeeman components are condensed and which are not.
In the temperature range that we can explore in this experiment, the thermal energy is much

higher than the spin exchange energy kBT≫ Us. If we considered a naive analogy to magnetism
in solid state systems, we would no expect to observe magnetic order in our system. Nevertheless,
we have seen in the previous chapter that the large spin degeneracy in the condensed component
makes the small spin exchange energy relevant even when small compared to temperature of the
gas and the chemical potential of the condensate. One consequence of the relation kBT≫ Us can
be observed in thermal Bose gases. Above the critical temperature for Bose-Einstein condensation,
we observe (see the left part of fig. 4.1 for example) that all Zeeman states are populated although
not equally, as the thermal gas has a finite magnetization. At low quadratic Zeeman energies, we
typically observe that N0 ∼ N−1 and that N+1 ∼ N−1 +Mz . Near T = 0 on the other hand, where we
observe quasi pure condensates, we have seen in the previous chapter that a competition between
the spin exchange interactions and the quadratic Zeeman energy sets the magnetic order in the
system. In this chapter, we investigate the transition between these two temperature regimes, e.g.
whether magnetic ordering appears simultaneously to Bose-Einstein condensation or whether
they appear in a particular sequence.
The transition from a thermal gas to a magnetically ordered spinor BEC has been extensively

studied theoretically both for the ferromagnetic case and antiferromagnetic case (see refs. [64, 85–
92]). We recall in particular that ideal gas theory, including a conserved magnetization, predicts
five condensation scenarii depending on the magnetization and quadratic Zeeman energy (see
chapter 1, sec. 4):

1. q = 0,mz > 0: The mF = +1 component condenses first and the mF = 0,−1 components
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condense simultaneously at lower temperature.

2. q = 0,mz = 0: The mF = 0,±1 components condense simultaneously.
3. q > 0,mz = 0: Only the mF = 0 component condenses.
4. q > 0,mz < m∗z : The mF = 0 component condenses first and the mF = +1 component

condenses at lower temperature. The mF = −1 component never condenses. We have seen
in chapter 1 (see Sec. 1.4), that m∗z is defined as the magnetization for which the mF = 0 and
mF = +1 components condense simultaneously.

5. q > 0,mz > m∗z : The mF = +1 component condenses first and the mF = 0 component
condenses at lower temperature. The mF = −1 component never condenses. We note that if
0 < q < kBTc,id where Tc,id is the critical temperature of the scalar gas, m∗z is small, and this
scenario is the most commonly observed.

In contrast with numerous theoretical investigations (see refs. [85–92]), the thermodynamics of
spinor Bose gases was scarcely studied. First, the LPL group in Paris measured the thermodynamic
phase diagram of chromium atoms, for which there is no conservation of mz (see ref. [202]). The
physics of this system is strongly affected by dipolar interactions. They lead to a process called
dipolar relaxation (see refs. [59, 203]) which prevents the study of multi-component condensed
phases at equilibrium (see ref. [41, 203] for out of equilibrium investigations). Because of this, only
the first transition, of the majority component was observed in ref. [202]. Second, in the Berkeley
group (see refs. [204, 205]), a gas of spin impurities is created from a gas of rubidium atoms
polarized in mF = −1 with a radio frequency pulse. This gas of mF = 0 atoms (called magnons) is
observed to condense at low temperature.This study highlights that spin-independent interactions
affects the condensation of the spin impurity due to the presence of a large condensate in the
majority component. We note that the study was limited to nearly polarized samples mz > 0.9 and
negligible quadratic Zeeman energy.
In this chapter, we present a comprehensive study of the thermodynamic phase diagram of

an antiferromagnetic spinor condensate of sodium for a wide range of magnetizations from
0 to 1. We will demonstrate experimentally the existence of a double condensation scenario,
and highlight the effect of interactions (both spin-independent and spin exchange interactions)
on the thermodynamic phase diagram of the system. As an introduction, fig. 4.1 presents an
overview of the various phases that we observed.We present pictures from the experiment, stacked
from left to right with decreasing temperature, for four different parameter sets. Regardless our
control parameters (the magnetic field B and the magnetization mz), we observe all Zeeman
components are populated at high temperature. As the temperature decreases we observe the
general behavior starts to differ from one parameter set to the other. We observe a phase in which
only one component is condensed, below a first critical temperature Tc1. This phase is common to
several values of the experimental control parameters B andmz . Below a second critical temperature
Tc2, we observe a different behavior for all 4 set of parameters shown in fig. 4.1. We also observe
that well below Tc2, we recover the magnetic phases observed in ref. [54] for T=0.
In section 1, I will present the experimental methods that we developed for the needs of this

experiment. Indeed, the measurement of high temperature gases in a way that allows us to distin-
guish each spin component requires different imaging and fitting methods than the ones described
in chapter 2. In section 2, I will present and discuss the exploration of the thermodynamic phase
diagram. We have measured numerous samples by varying both magnetization and temperature,



4.1. Experimental methods 111

Cooling ramp

-1
0
+1B = 0.1G,

mz ≃ 0.57

-1
0
+1B = 0.5G,

mz ≃ 0.02

-1
0
+1B = 5.6G,

mz ≃ 0.26

-1
0
+1B = 0.5G,

mz ≃ 0.57

Figure 4.1: Stacked pictures of spinor Bose gases with decreasing temperature toward the right.
We show the different Bose-Einstein condensation scenarii observed while cooling of an anti-
ferromagnetic spin 1 Bose gas. On the first line, B = 0.5G and mz = 0.57, and we observe the
sequential condensation scenario 5. The majority component mF = +1 condenses first, followed by
the mF = 0 component, while the mF = −1 remains thermal. On the second line, B = 5.6G and
mz = 0.26, we observe scenario 4, the mF = 0 condenses first. This is due to the large quadratic
Zeeman energy q ∼ kBT, which favors the mF = 0 component and increases its density near
the critical temperature for low magnetizations mz . In a third line, B = 0.5G and mz = 0.05, we
observe scenario 3, the mF = 0 condenses alone. In the fourth line, B = 0.1G and mz = 0.57, and
we observe a scenario that we shall discuss in more details later in the chapter and that is not
predicted by ideal gas theory. It suggests that the magnetic ordering demonstrated in chapter 3 for
very low temperatures is also observed close to the Bose-Einstein transition and manifests as a
different condensation scenario. In this case, the mF = +1 condenses first, but it is followed by the
mF = −1, and the mF = 0 component does not condense.
and considered three values of the quadratic Zeeman energy for which the thermodynamic phase
diagrams differ. We will present methods to extract critical quantities from these measurements
and discuss the results in term of critical temperatures of each Zeeman component. In section 3, we
will discuss how to relate our observations to a realistic theoretical description of the experiment
using the Hartree-Fock theory. This is required because, to our knowledge, none of the previous
theoretical studies found in refs. [64, 85–92] include all the elements required for a complete
description of our gases e.g. a trap, the quadratic Zeeman energy and interactions.

4.1 Experimental methods

In chapter 2, we have described the experimental methods used, for example, in chapter 3, to
characterize Bose-Einstein condensates and single component thermal gases. In this section we
will describe how to modify and extend these techniques in order to measure the thermodynamic
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Figure 4.2: Pictures of three component condensates after a regular, and a boosted Stern-Gerlach
sequence. We observe that the boosted Stern-Gerlach sequence achieves a significantly larger
separation in a (slightly) shorter time of flight and without the need of an attenuation sequence.

phase diagram of spin 1 Bose gases. In Sec. 2.2.1, we have seen that we perform spin-dependent
detection by separating spatially the Zeeman components, in a Stern-Gerlach experiment, such
that we image them in different locations of the CCD sensor at the end of the time of flight. For
the highest temperature thermal gases, we observe a fast expansion such that a larger separation
between the cloud is needed to distinguish each component than for the case of condensates.
Furthermore, we have discussed in chap. 2 that the Stern-Gerlach sequence that we used to observe
BECs involves an attenuation sequence during which the gradient is ramped. For warm clouds
(around Tc1 or above) this attenuation sequence leads to thermal atoms “leaking” to the arms of
the dimple trap (DT), and as such cannot be used to extract temperatures or total atom number
from time of flight distributions near the critical point.
In this section, after having discussed the experimental sequence, we will describe how we

achieved this higher separation with a “boosted” Stern-Gerlach sequence. We show an example of
image obtained with this boosted SG sequence in fig. 4.2. We observe (see the first line of fig. 4.5
for instance) that for the highest temperatures measured, the expansion is nonetheless faster than
the separation axis, such that we needed to develop new fitting methods to extract thermodynamic
quantities from absorption images showing overlapping thermal clouds. In a second paragraph,
we will present how we fit simultaneously the three components and how we obtain quantities of
interest such as atom numbers and temperature.

4.1.1 Overview

We performed this experiment in a dimple trap (DT, see Sec. 2.1.3 and fig. 2.4), of which we
adjusted the optical power (hence the trap depth V0) in order to observe clouds at various temper-
atures. The experimental sequence is shown on fig. 4.3 and consists in stopping the evaporation
ramp at the desired trap depth, and holding the atoms in the DT during 4 seconds to ensure
equilibration. Then we apply a modified SG imaging sequence, and obtain an image of the cloud.
We measured the trap frequencies as a function of dipole trap optical power by the methods
described in Sec. 2.1.5. The sizes of the DT beams were deduced from a fit. We could not obtain a
good agreement with a fit function using two isotropic beams because (ω2

Y − ω2
X)1/2 ≠ ωz in our

measurement. Instead, we considered an anisotropic horizontal beam, such that the three trap
frequencies can be set independently. We note that this anisotropy could be an effective way of
accounting for optical aberrations on the horizontal arm of the dimple trap. We obtain that the
isotropic vertical arm has a waist of wV = 21.3 µm and that the anisotropic horizontal arm has
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Figure 4.3: Experimental sequence for the measurement of the thermodynamic phase diagram of
a sodium Bose gas. After a step of evaporation in the dimple trap, the cloud is held during four
seconds to ensure equilibration. The hold time is also used for loading the capacitor used for the
boosted Stern-Gerlach imaging.

waists of wH,Y = 21.7 µm and wH,Z = 29.8 µm (the data are the one represented in fig. 2.12)¹
We deduce the values of the trap depth V0 from the dipole trap size, and calibrated dipole trap

powers PV,PH with the help of Eq. (2.10):

V0 = 2α0min( PH
πwH,YwH,Z

, PV
πwV
) . (4.1)

The magnetization of the cloud is prepared (Sec. 2.4.4) by either applying a RF field in presence
of inhomogeneous broadening (which decreases mz) or by applying a magnetic gradient (which
increases mz). We apply this preparation sequence before any of the experimental steps presented
in this section, in a thermal cloud above at least twice the critical temperature Tc1. It is worth
noting that each Zeeman component may undergo a different evaporation dynamics, such that the
magnetization is not conserved during the evaporation ramp. However, as discussed in chapter 1
(see Sec. 1.1.4), the dynamics of evaporative cooling is much slower than the thermalization
dynamics. As such, we consider the equilibrium state of the gas is determined by a Hamiltonian
that conserves magnetization, and which follows the slowly changing magnetization of the ramp
remaining in equilibrium at all time.
We find that the magnetization indeed varies, and changes by 10% as V0 is varied from the

highest to the lowest value we use.We illustrate this in fig. 2.5 from chapter 2. In order to account for
this effect, we will measure the magnetization in each realization of the experiment, and determine
the “critical” magnetization mz,c at the critical point.

¹This model will only be used to determine the trap depth. For the measurement of the thermodynamic phase diagram,
we extracted the geometric average of the trap frequencies ω from an exponential interpolation of the data shown in
fig. 2.12.
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Figure 4.4: Representation of the high voltage current pulse generator used for the boosted Stern-
Gerlach imaging sequence. Left: electrical circuit. Typical values for components are C ∼ 2.2mF,
L ≃ 140 µH and R ∼ 112mΩ. Right: current pulse calculated with a loading voltage of U0 = 150V.

4.1.2 Boost to the Stern-Gerlach separation

The measurement of the thermodynamic phase diagram of a spin 1 gas requires to measure
“warm” clouds, above the critical temperature for BEC, while keeping spin-dependent imaging.
These cloud have a high thermal energy such that the expansion speed is higher at the release than
the one of condensates that we have considered until this chapter. This causes the clouds to overlap
on absorption images taken with the Stern-Gerlach sequence described in Sec. 2.2.1.

In order to minimize the overlap, we need to increase the separation between Zeeman com-
ponents, while keeping high enough signal to noise ratio. This is done by increasing the spin-
dependent force used to separate the clouds for a fixed expansion time. According to Eq. (2.12), this
can be achieved by a stronger quadrupolar field. The main challenge in obtaining higher gradient
lie in the timescales with which the current needs to be settled in the MOT coils (see fig. 2.2),
and by the current strength required. The large current pulse is by no means straightforward to
obtain as the instantaneous electrical power required for such a process can be quite high. For
example, the energy necessary to settle a current of I = 300A in a coil with inductance L = 150 µH
is E = 6 J in absence of any dissipation. If the process is performed in a half a millisecond the
average required power is around 12 kW.This value is increased in presence of dissipation (finite
resistance of the circuit), and is nevertheless beyond the capabilities of our power supplies.

As a solution, we developed a current pulse generator based on a large capacitance, high voltage
capacitors, that can store this large energy and deliver it to the coils in a short time. The modified
Stern-Gerlach sequence (see fig. 4.3) starts by loading the capacitor with a low current, high voltage
(150 V) power supply during the hold. Then, we ramp an appropriate magnetic bias field such that
the separation axis is set along the y axis (see fig. 2.4 and Eq. (2.12)). Finally, we trigger a current
pulse when atoms are released from the trap by applying a voltage on the gate of an insulated gate
bipolar transistor (IGBT). This triggers half an oscillation of the LC circuit formed by the MOT
coil and the capacitor. The peak current can reach up to 1000 A depending on the initial charge in
the capacitor. We damp the negative alternation in a large power diode and in varistors placed in
parallel to the IGBT (see fig. 4.4). We note that the loading of such capacitor, can require up to a
few seconds with a regular high voltage DC lab power supply (power 100 W in our case).

As shown in Eq. (2.12), the strength and direction of the magnetic force is not only determined
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by the gradient strength b′ but also by the presence of a large bias field:

FSG = µBgFmFb′
2∣BSG∣

⎛⎜⎝
− (B0,x + Bm,x)
2 (B0,y + Bm,y)− (B0,z + Bm,z)

⎞⎟⎠ . (4.2)

During the current pulse, we observed that a large uniform field was generated along the vertical
direction together with the intended quadrupolar field, which we believe can be due to a relative
tilt of the MOT coils with each other or to eddy currents. Because of the limited current we could
apply to the bias coils (in particular to the vertical pair), it was not possible to compensate for this
vertical field and obtain a strong enough bias field along y. As such, we generate an additional,
strong, bias field by adding a coil on one side of the setup (at the position of one of the coil from
the pair Y bias in fig 2.4) that we connect in series with the MOT coil in the circuit from figure 4.4.
In this way, the uniform field during the Stern-Gerlach sequence is mostly along y at all times. We
observed the trajectory of the atoms during time of flight were only affected by the current pulse∼ 1ms after the start of their release. We suspect this delay on the magnetic pulse as compared
with the current pulse is due to eddy currents from the vacuum chamber and copper vacuum
gaskets. With this setup we can achieve a separation roughly twice as big after 2.5 ms time of flight
than with the method from sec 2.2.1 without the need of the attenuation sequence.
The main inconvenient of this method is that the current pulse is so strong that it actually gen-

erates vibrations in the setup, which is detrimental for the absorption image quality. Furthermore,
due to the vertical component of the uniform field, we observe a tilt of the separation axis along
the vertical direction (see Eq. (4.2)). This leads to a vertical separation of the Zeeman components
at the time of imaging of roughly 80 µm. It results in an slight difference in imaging resolution
when considering different Zeeman components. For experiments discussed in this chapter, this is
not relevant because we only measure objects of size much larger than the imaging resolution.

4.1.3 Image Analysis

Absorption signal

Themeasurement of the populations of Bose-Einstein condensates, and the extraction of tem-
peratures from single component gases have been discussed in Secs. 2.2.1 and 2.2.4. In this chapter,
different methods are required because the Zeeman components can overlap after time of flight.
We recall that we measure atomic densities through the absorption of a probe laser of intensity
I(r) propagating along z. This intensity is measured twice in the experiment in presence of atoms
(I1) and without atoms (I2). If we neglect the influence of the changes of probe profile intensity
between the two images (which has been considered in Sec. 2.2.2), we have I1 = limz→−∞I(z) and
I2 = limz→∞I(z). The expression of I(z) can be obtained by considering the Beer-Lambert law:

∂I
∂z
= −∑

m
σm ñmI. (4.3)

where ñm are the column density of each Zeeman component. We recall that the absorption
cross-sections are given by the ad hoc formula:

σm = ςmσ0
1 + (I/Isat,m) + (2δm/Γ)2 , (4.4)
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where ςm is a coefficient that describes the deviation of the scattering cross-section to the two-level
model due to optical pumping for example.
At this point we shall recall that in experiments with Bose-Einstein condensates, each component

sits in a region of the sensor where the density of the two other components is negligible (see
chapters 2 and 3). As such, in chapter 2, Sec. 2.2.1, we defined three region of interest each containing
one component. In each of them, the right hand side of Eq. (4.4) reduces to one term, andwe can use
Eq. (2.5) to compute the column densities ñm from images I1 and I2 in each zone independently. In
this chapter, where components overlap for high temperature clouds, we notice that the extraction
of the three column densities ñm from the second image (by solving the equation (4.3) for ñm) is
not possible without assumptions on the spatial variations of ñm. In fact, it is not even possible
to compute the total column density ñ = ∑m ñm from the second image if the cross-sections σm
take a different form e.g. different values of the detunings δm, the parameter ςm or the saturation
intensity Isat,m.
From there on, the fitting procedure of such overlapping cloud could be done by converting the-

oretical column densities into intensities with eq. (4.3). Besides being tedious, this procedure does
not allow straightforward averaging given the probe intensity profiles varies from one experimental
realization to another (see chapter 2, Sec. 2.2.2). Instead, we take advantage that experiments in
this chapter were performed at low intensities I≪ Isat. In this case the right hand side of Eq. (4.3)
becomes:

∂I
∂z
≃ −∑

m

σ0
αm

ñmI (1 − I
Isat
+ IδIsat,m

I2sat
) , (4.5)

Where we have considered that all Zeeman components have a similar value for their saturation
intensities ςmαmIsat,m = Isat + δIsat,m, with δIsat,m ≪ Isat. The coefficient αm is expressed as
αm = (1+ (2δm/Γ)2)/ςm. We neglect the third term in Eq. (4.5) since IδIsat,m/I2sat ∼ 1%≪ I/Isat ∼
0.1 ≪ 1¹. For our experimental parameters I ∼ Isat/10. This allows us to obtain the following
equation:

dI
I (I/Isat − 1) ≃ −dII + dI

Isat
≃∑

n

σ0ñm
αm

(4.6)

We note that if the column density ñ = ∑n ñm is still not directly accessible with Eq. (4.6). We can
however extract an absorption signal, that we define as:

Sabs = − 1
σ0
[ln( I1

I2
) + I2 − I1

Isat
] ≃∑

m

ñm
αm

, (4.7)

with an error of about 1% due to saturation effects. We note that if α+1 = α0 = α−1, the absorption
signal is directly proportional to the total column density.
The absorption signal is in this model composed of the weighted sum of atomic column densities.

The atom number Nm in each component m can be recovered from the fits by simple integration
of the fits. We calibrate the parameters αm and Isat using nearly pure BECs that do not overlap at
the time the image is taken (see Sec. 2.2.4). In the following we will rather speak of the “optical
density” OD = σ0Sabs.
As discussed in Sec. 2.2.2, an additional benefit of using low imaging intensities comes from

the reduction of fringes in absorption images without requiring the defringing algorithm as

¹We estimated the differences in saturation intensity δIsat,m ∼ 500 ∼ 0.1Isat by calibrating independently the saturation
intensities with non overlapping clouds.
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Figure 4.5: Example of three bimodal fits on averaged images. On the left we show integrated
density profiles (dots represent integrated data, solid lines integrated fits). On the right we show
the corresponding pictures for both data and fit. In the first line, we represent a pure thermal cloud,
in which we observe that each of the three components are populated, and that they overlap after
the Stern-Gerlach imaging sequence. In the second line, we show a lower temperature cloud, in
which the mF = 1 component has condensed. We observe the characteristic “double structure” on
the mF = +1 component. On the third line, we show an even lower temperature cloud in which
both the mF = +1 and mF = 0 component have condensed. We observe a small thermal population
in mF = −1.
described in Sec. 2.2.2. Indeed, structured noise that typically appear for high imaging intensity
leads to artifacts on the output of the fitting procedure, which is not the case for uncorrelated
noise provoked by photonic shot noise. In addition, the defringing algorithm from ref. [179] (see
Sec. 2.2.2) requires to be efficient to use a large number of pixels, close to the region of interest for
fitting, which is difficult in this experiment due to the large size of the highest temperature thermal
clouds. As discussed in Sec. 2.2.2, probe intensity fluctuation are accounted for by including an
offset to the fitting functions we use, which eliminates the shift of the optical density caused by the
intensity difference between the two images.

Simultaneous fit of the three components

We show examples of absorption images obtained by Eq. (4.7) (averaged on four experimental
realizations), and corresponding integrated profiles, obtained after the boosted Stern-Gerlach
sequence on fig. 4.5. We extract populations (hence the magnetization) and temperatures from a
fit to such images. We extend the fitting methods exposed in Sec. 2.3 and fit our images with the
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Figure 4.6: Extraction of temperature by fitting three Bose functions to masked images. b Rep-
resentation of a masked image for a mask size of radius R = 50 µm. a Size of a Bose function
extracted from fits with varying mask radius. We observe that the size of the Bose distribution is
underestimated for small mask radii where the BEC distribution is not completely masked. For
mask radii larger than 35 µm, the fitted size does not depend on the mask, and this value is taken
as the size for the thermal distribution.

sum of three Bose functions (2.27) andThomas Fermi-functions (2.29) (see ref. [133]):

Sabs(x , y) = ∑
m=+1,0,−1 ñm,Bose(x , y) + ñm,TF(x , y). (4.8)

We recall for the sake of clarity the expression of the Bose and Thomas-Fermi models for the
column densities:

ñm,Bose(x , y) = Ag2 (z exp(−(x − cx)2
s2x

− (y − cy)2
s2y

)) , (4.9)

ñm,TF(x , y) = Amax(1 − (x − cx)2
r2x

− (y − cy)2
r2y

, 0) . (4.10)

We note that we fit simultaneously the three Zeeman components, which is required because of
the overlap of the thermal fractions for highest temperatures (see upper panel of fig. 4.5). We
have found that using Eq. (4.8) with its large number of parameters (12 sizes, and 6 amplitudes, in
addition to centers and offsets) was difficult. As such, we decided to fix a few parameters in order to
make the parameter estimation procedure more reliable. We fixed the position of the clouds, as we
did not detect significant variations (less than 1 pixel) of the center of Bose-Einstein condensates.
Furthermore, we have set identical sizes for all components, which is justified for thermal clouds
if the Zeeman components are in thermal equilibrium with each others, and for the condensates
by the single mode approximation, valid in our parameter range ħω≫ Us (regardless of the trap
depth considered). Finally, we have taken z = 1 in the thermal gas (model (4.9)). This does not bias
the temperature extraction at the critical point, but may lead to an underestimation for clouds
above the critical temperature, which does not play a large role in the following measurement.
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Figure 4.7: Comparison of the two temperature extraction methods, from three bimodal fits –
Tbimodal – and from fit to masked images – TMask. We see both methods agree within error bars
above Tc1. However, they disagree slightly below Tc1 and strongly around Tc2.

We show an example of the results of the bimodal fitting procedure in different temperature
regimes in fig. 4.5. We observe that the thermal fractions are indeed overlapping such that it is
hard to distinguish the different Zeeman components in the upper panel, showing a thermal gas
above Tc1. The thermal components still overlap below the first critical temperature shown in
the central panel, but can be distinguished more easily. We observe on this panel, the familiar
“bimodal” distribution composed of a narrow peak on top of a larger Gaussian-like cloud, that is
often shown as a signature for Bose-Einstein condensation (see ref. [11]). In the third panel, the
condensed fraction is high, and it is hard to distinguish thermal wings on condensed components.

The fitting functions considered in this section are chosen by default in the absence of a more
accurate model for the TOF distribution. They are expected to represent faithfully the time of
flight distributions in two limiting cases only, a pure BEC (with large atom number) and a warm
cloud above Tc1. In the case of the condensate, the BEC should be populated enough such that
it is in the Thomas-Fermi regime (see chapter 1). We expect this approximation to fail near the
critical point (see ref. [107]), and the fitting procedure could miss small condensates. Regarding the
thermal component, we expect the Bose function representation of the momentum distribution to
hold as long as interactions can be neglected in the determination of the expansion dynamics. In
the case a condensate is present, the low momentum part of the momentum distribution will be
affected, and the density distribution after time of flight is likely to be affected near the center. As a
conclusion, we suspect this procedure is in fact subject to uncontrolled systematic errors in the
determination of sizes below the critical point and of condensed fractions near the critical point.
We expect however that the determination of atom numbers, by integrating fitted absorption
signals, will be faithful because the least square minimization ensures a minimal difference in the
integrated densities.
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Figure 4.8: Comparison of the extraction of the condensed fraction in a gas with mz ∼ 0.9 either
from fitting Thomas-Fermi profiles to the residuals of the masked fits, or by direct fit bimodal
density distributions to the absorption signal. We observe that the determination of the condensed
atom number seems to differ around V0 ≃ 7 µK, which corresponds to the points where the two
fitting methods disagree on their fitted temperature.

Extraction of the temperature from fits with a mask

As discussed in the previous paragraph, the bimodal fitting procedure uses heuristic fitting
functions for the condensed and thermal components which possibly leads to systematic errors of
uncontrolled amplitude on the extraction of the temperature or the condensed fraction. However,
as we have discussed in chap. 2, Sec. 2.3 the behavior of the thermal wings is expected to match
that of an ideal gas distribution at large momenta irrespective of the trap potential or interactions,
nth ∝p→∞ g2(exp β(µ − p2/2m)). As such, in order to avoid systematic errors in temperature
determination when a condensate is present, we generalize the “plateau” (or “mask”) method
presented in Sec. 1.11 to three component clouds. We use the sum of three Bose functions that we fit
to a masked image such as the one shown in fig. 4.6b. We repeat this procedure with many masks
of varying size, and represent the sizes of the Bose distribution as a function of the mask radius as
in fig. 4.6a. When the mask is smaller than the condensate size, the fit procedure underestimates
the size of the Bose distribution due to the presence of the much narrower condensate distribution.
However, as the mask covers fully the condensate, the fitted size does not depend anymore on
the mask size (we call it a “plateau”, see ref. [135]). We extract the temperature by averaging the
sizes found by fits with mask values between 50 µm and 60 µm, which is always larger than the
condensate size, and ensures good signal to noise down to Tc2.
For the sake of completeness, we have compared the temperature determination methods either

from three bimodal fits or from the mask method in fig. 4.7. We observe that the methods agree
with each other within error bars above Tc1. However, they disagree around and below Tc2. The
bimodal fit method systematically returns a lower temperature for the coldest clouds. This could
be due to the presence of a large condensate in this temperature regime that would either modify
the expansion dynamics of the thermal fraction or result in artifact of the fitting procedure.
Beside the extraction of temperature, the analysis of the residuals of the fits obtained with the

mask method allows us to obtain an estimation of the condensed population. We display the
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number of condensed atom obtained by integration of these residuals on fig. 4.8. We observe that
the integrated residuals suggest a much higher condensed fraction than the bimodal fitting at low
temperatures. We believe that in this range of parameter, the time of flight density profile of the
thermal cloud is modified near the condensate such that the bimodal fitting procedure finds a
larger (and narrower) thermal cloud than the mask procedure, resulting in an underestimation of
the condensed fraction.

4.2 Experimental thermodynamic phase diagram of a spin 1 Bose
gas

In the previous section, we have described how obtain the optical density and how to extract
thermodynamic quantities from absorption images. In this section, we will focus on the determi-
nation of the critical points where Bose-Einstein condensates appear, present the measurement of
the thermodynamic phase diagram and discuss the thermodynamic phases that we observe. As
discussed in the previous section, the condensed fractions are quite difficult to extract from the
fits near the critical point, and we discuss in this section an alternative method to determine at
which trap depth Bose-Einstein condensation effectively takes place. Once we have exposed the
method to obtain the critical points, and associated thermodynamic quantities, we will present
our measurement of the thermodynamic phase diagram of a spin 1 Bose gas.

4.2.1 Extraction of the critical temperature

Themost natural way to obtain the critical point for Bose-Einstein condensation would consist
in plotting the condensed atom number Nc as a function of temperature Nc = f (T) and to search
for the lowest temperature at which no condensed fraction is detected T[Nc = 0]. However, we
have discussed in the previous section, that we could not trust the results of the bimodal method
near the critical point. We discussed that the mask method allowed to extract high condensed
fractions in a more reliable way than the bimodal fit method. However the detection of a small
condensate on top of a large thermal cloud present different constraints. In particular, the adequacy
of the fitting function near small momenta is very important if one needs to determine a very
small difference in density near the center from a fit to the wings. However, we have discussed that
the central region of time of flight distributions, that corresponds to small momenta, is the part of
the time of flight distribution that is most sensitive to the effect of interactions on the expansion
dynamics. Because near the critical temperature, interactions in the thermal cloud can have a
significant effect (see Sec. 1.1.1), we believe the determination of the condensed atom number near
Tc with the “plateau” method is also subject to uncontrolled systematic errors near the critical
point.
As such, we have decided to determine the critical point by directly analyzing images, using

the peak density of the cloud as a proxy for condensed fraction. This procedure avoids systematic
errors that any prior fitting procedure could induce in the determination of the critical point
and simplifies the extraction of error bars on fit parameters. We measure the peak density from
integration of a square zone of 3 by 3 pixels near the center of the time of flight distribution of
each component. It is well known that Bose-Einstein condensation manifests by a sharp increase
in peak optical density (see ref. [13] for example). As such, the critical point for each Zeeman
component is determined by an abrupt change of optical density at a particular trap depth near
the center of the time of flight distribution.
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Figure 4.9: Determination of the critical trap depths V0,c by fitting two straight lines to the peak
OD.We observe a sequential condensation scenario where the mF = +1 component condenses first
followed by the mF = 0 component. The error bars represented are statistical, calculated from the
peak OD of four images. We have added an offset to the peak OD of 0.1 for the mF = 0 component
and 0.2 for the mF = +1 component in order to improve the figure legibility.
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Figure 4.10: Peak optical density compared to the OD below and above the center region. This
figure shows that the sharp increase in OD is only measured in the center of the momentum
distribution. The inset shows the correspondence between the symbols and integration regions.
The black line corresponds to the critical point extracted from a fit to the data, while the gray area
represent the 1σ confidence interval of the fit.
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Figure 4.11: Comparison of the determination of the critical point either from critical atom
number extracted from the increase of optical density (a,c) or from bimodal fits (b,d). We observe
that in this particular case, the determination from the critical atom number extracted from fits
underestimates the second critical temperature.

We represent the peak optical density as a function of trap depth V0 fig. 4.9. Note that we
added a 0.1 shift to the peak OD of the mF = 0 component and a 0.2 shift to the peak OD of the
mF = +1 component for clarity. We observe a sequential condensation scenario where the mF = +1
component condenses first, followed by the mF = 0 component. For this particular parameter set,
mz ≃ 0.4 and B = 0.5G, the mF = −1 component never condenses (we observe no steep increase
of the peak OD). We obtain the critical trap depth Vc for each component by fitting piece-wise
linear functions to the peak OD near the critical point:

odm = am + bm ⋅max (0, V0 − Vc,m) . (4.11)

We display an example of the fitting procedure in fig. 4.9. We extract error bars on the critical trap
depth Vc,m by considering the sum of the squared residual χ2¹ calculating the contour of value
min(χ2) + 1 (which is a 3 dimensional surface in (am , bm , Vc,m) space), and extract a confidence
interval on the critical trap depth from the maximum extent of this surface over the dimension
Vc,m.
In order to ensure the validity of this analysis, we verified that the increase of the optical density

is limited to the center of the density distribution. For this, we have compared the peak OD to the
result of integration on a similar box, translated by 20 pixels upwards or downwards. We display
the comparison on fig. 4.10, where we also display the measured critical point and its error bars,
and confirm that the sudden increase of optical density we consider for the critical point is indeed
limited to the center of the time of flight distribution.
Finally, for the sake of completeness, we compared the method used to determine the critical

points from the peak OD as mentioned above to another one that uses the results from the three-
component fitting procedure. For this, we consider the critical number of atoms Nc,m, obtained

¹We recall that, in the case of least square fitting, the χ2 function is the sum of the squared residuals, and is a good
estimator of the proximity between data and fit functions if each datapoint is described by a random variable that
follow a normal law, see ref. [206].



124 4. Thermodynamic phase diagram of a spin 1 Bose gas

0 5 10 15 20 25 30

0

0.5

1

Trap Depth V0/kB [µK]

T/T
c,
id

Figure 4.12: Renormalized temperature as a function of the trap depth. We show statistical error
bars (each data point represent 4 images). The large statistical error bars for the lowest points can
be explained by our inabilities to fit the lowest temperatures due to a poor signal to noise ratio
when the thermal fraction vanishes.

from integration of the condensed density nc,m from Eq. (4.8). The critical point is found from
a piece-wise linear fit as for the peak OD.The results of this procedure, compared with the one
described above is presented on fig. 4.11. We observe both methods are in good agreement for the
first critical temperature, but not for Tc2 where the determination from the critical atom number
tends to underestimate Vc as seen in the left panel.

4.2.2 Graphical representation of the data

In the previous paragraph, we have discussed how to determine critical points from the peak
density. In this paragraph, before we turn to the actual representation of the critical points, we
will first discuss a global representation of the peak OD that is shown in fig. 4.13, which allows
a discussion on the general behavior regardless of the fitting method. When the experiment is
performed, the precise value of the atom number and temperature varies slightly from shot to shot
and with the magnetization preparation sequence. In order to compare all our points in a single
representation, we used normalized quantities. We chose a normalized temperature by the critical
temperature of a single component Bose gas with the same atom number and trap frequencies:

T
Tc,id

= kBT
ħωN1/3 g3(1)1/3, (4.12)

We use the temperature obtained from fitting with masks as described in the previous section,
and the atom number from integration of bimodal fits. The trap frequencies are obtained from an
interpolation of the results from Sec. 2.1.5 by the function shown in fig. 2.5. We binned each data
set with respect to magnetization and reduced temperature and showed the average peak OD of
each bin on fig. 4.13.
We first observe on figure 4.13 that the condensation behavior is different for each component,

second that it is also different for each magnetic field. The first line shows the measurement taken
with a magnetic field B = 5.6G corresponding to q = h ⋅ 8.9 kHz. In this regime, the quadratic
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Figure 4.13: Graphical representation of the thermodynamics of a spin 1 Bose gas with antiferro-
magnetic interactions. We show the peak OD, binned in regard with reduced temperature T/Tc,id
andmagnetization mz . The three columns represent the peak OD of each Zeeman component.The
first line represent the dataset taken at B = 5.6G (corresponding to q = h ⋅ 8.9 kHz, and q ∼ kBTc1),
and shows two condensation scenarii. For low magnetization, the mF = 0 condenses first, followed
by the mF = +1 component. For magnetizations higher than 0.3, the mF = +1 component con-
denses first followed by the mF = 0 component. The mF = −1 is not observed to condense. The
second line shows the dataset taken at B = 0.5G (corresponding to q = h ⋅ 70Hz, q≪ kBTc1 and
q > Us), and shows only one condensation scenario, where the mF = +1 component condenses first,
followed the mF = 0 component. The third line shows the dataset at B = 0.1G (corresponding to
q = h ⋅ 2.7Hz, q≪ kBTc1 and q < Us). This case differs from the second line because two magnetic
phases are observed at low temperature. We observe several condensation scenarii, in which the
mF = +1 component always condenses first. Depending on the magnetization, we observe either
one or two more critical temperatures. For mz ∼ 0 we observe the three components condense
simultaneously although only the mF = 0 component remains populated at low temperature. For
0.1 < mz < 0.3 we observe that the mF = −1 condenses second, followed by mF = 0 at a third
critical temperature. When mz > 0.4, we observe that only the mF = −1 component condense.
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Zeeman energy q is not negligible compared to the thermal energy at the critical point kBTc such
that for low magnetizations, the mF = 0 component condenses before the mF = +1 component.
We do not observe the condensation of mF = −1 in this case.
On the second line, taken for B = 0.5G corresponding to q = h ⋅ 70Hz, the situation is different

since the quadratic Zeeman energy is much smaller q≪ kBTc . The mF = +1 component always
condenses first unless the magnetization vanishes (mz = 0 where it does not condense). We
remark the mF = −1 never condenses for B = 0.5G. This is consistent with the expectation for low
temperature clouds, where we should reconnect to the T = 0 phase diagram. Since Us ≲ q in this
case, we are in the large magnetic field limit in the broken-axisymmetry phase with negligible
population in the mF = −1 component due to the large quadratic Zeeman energy.
The third line shows the data taken for B = 0.1G, which corresponds to q ≃ 3Hz. This case is

similar to the case q = h ⋅ 70Hz for the first critical temperature, as the mF = +1 always condenses
first. However, We observe either one or two additional critical temperatures depending on the
magnetization. For mz ∼ 0 we observe the three components condense simultaneously. For
0.1 < mz < 0.3 we observe the mF = −1 condenses at a second critical temperature, followed by
mF = 0 at a third critical temperature. When mz > 0.4, we only observe the mF = −1 component
condense below the second critical temperature and the mF = 0 component never condenses. We
note that the condensation of the mF = −1 component disagrees with ideal gas theory, as it would
be inhibited by the slightest quadratic Zeeman energy (we recall at Tc2, µ−1 = −2q for an ideal spin
1 gas). However, it is consistent with the measurement from ref. [54], since for this magnetic field
and at zero temperature, a critical magnetization of mz ∼ 0.3 separating the broken axisymmetry
phase and the antiferromagnetic phase would correspond to Us = 60Hz (which is consistent with
the value of 59Hz computed in theThomas Fermi limit withN = 20000 and ω = 2π ⋅500Hz).This
seems to indicate that this behavior constitutes an evidence that the spin changing interactions
influence the thermodynamic of the system even near the second critical temperature.

4.2.3 Thermodynamic phase diagram

We plot the critical reduced temperatures for each component Tc,+1, Tc,0 and Tc,−1, defined as
the reduced temperature at the critical point, as a function of the magnetization at the critical
point (the critical magnetization mz,c). We also represent the expectation from ideal gas theory.
The slightly irregular behavior on these theoretical calculations for B = 5.6G comes from the
variation of the relevant parameters for the calculation of the phase diagram i.e. ω and N within
of the thermodynamic phase diagram.
This representation of the critical temperature allows direct comparison with ideal gas theory,

and we notice in fig. 4.14 two major differences with the data. First, we consistently measure
lower critical temperatures than what is expected from ideal gas theory. Second, we show the
mF = −1 component condenses even in presence of a magnetic field. Both effects originate from
the interactions, and we will study them more in detail in the next section.
Before we turn to amore detailed theoretical description, we propose to discuss briefly the role of

the spin-changing interactions. As the spin exchange are much weaker than the spin-independent
interactions, we expect they have a much less dramatic effect than the latter on thermodynamic
quantities such as the critical temperature. This effect is shown on fig. 4.15, in which we compare
the transition temperature in the cases q > Us and q < Us. We observe that the second transition
happens at the same temperature (within experimental precision) for both dataset, regardless of
the actual Zeeman component that condenses. This is a consequence of the very high temperature
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as compared with magnetic energy scales q, Us ≪ kBTc2. As we will see in the next paragraph, the
shift of this second critical temperature is mostly caused by the influence of the condensate, present
during the second condensation, on the normal component.The effect of spin changing interaction
is much more subtle, and consists in slightly favoring either mF = 0 or mF = −1 depending on the
relative value of q, Us, and of the magnetization (similar to what was discussed in chapter 3 and
refs. [54, 192]). Given the complexity of the theoretical treatment of the spin changing interaction,
we will mostly ignore them in further calculations.
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Figure 4.14: Coordinates of the critical points in the {mz , T/Tc,id} plane. This representation
allows an accurate comparison with theory. We observe in the upper and middle panel, that the
general shape of the phase diagram iswell reproduced, but that there is a systematic downwards shift
compared to the ideal gas prediction. The shift is much larger for the second critical temperature
than for the first one. In the third panel, the ideal gas theory does not even reproduce the general
shape of the phase diagram as it does not predict the condensation of the mF = −1 component.
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Figure 4.15: Direct comparison of the experimental phase diagram for q = h ⋅ 69Hz and q =
h ⋅ 2.7Hz. We observe that the second critical temperature does not depend on the bias field
irrespective of which Zeeman component condenses below it (mF = 0 for q = h ⋅ 69Hz, mF = −1
for q = h ⋅ 2.7Hz). This can be explained by the relatively low strength of the spin exchange
interactions compared to the spin independent ones.
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4.3 Hartree-Fock model

As we have seen in fig. 4.14, ideal gas theory is not able to describe quantitatively our datasets.
As we discussed in chapter 1 section 1, the thermodynamics of single-component Bose gases is
influenced by interactions. In this section, we will discuss the case of a spin 1 Bose gas.
The influence of interactions on the thermodynamics of Bose-Einstein condensates is studied

nearly since Bose-Einstein condensates were realized in 1995 (see refs. [14, 100, 107, 201, 207–209]),
and interactions were shown experimentally to affect the thermodynamics of scalar Bose gases
(see refs [29, 108, 210–212]). These studies showed that near the critical point, the interactions
within the thermal gas were slightly reducing the density near the trap center, hence reducing
the critical temperature. This picture holds in the case of a spinor Bose gas for the first critical
temperature Tc1, where only a thermal gas is present, because the spin-independent interactions
are much stronger than the spin dependent ones. However, near the second critical temperature,
the situation is different, and the presence of a dense condensate on top of the thermal gas needs
to be considered specifically.
The thermodynamics of spin 1 gases was studied theoretically within amean field approximation,

in refs. [64, 87, 88] for an homogeneous gas and q = 0, in ref. [85, 89] for an harmonic trap and
q = 0, and in refs [91, 92] for an homogeneous gas and q ≥ 0. We noted that none of these
article includes all elements that comes into play in our system, e.g. the spin changing interactions,
quadratic Zeeman energy and an harmonic trap. We extend here the Hartree-Fock model of [91]
(with added assumptions) to the case of harmonically trapped gases to describe our experiment.
In this section we will introduce the Hartree-Fock theory. We first study a simplified version

that consists in a semi-ideal “four” gases model, in the spirit of ref. [201], consisting in three
ideal thermal gases in interaction with aThomas-Fermi BEC. In a second part, we compare the
“simplified” and complete Hartree-Fock models that we use to obtain a description of our phase
diagram and show a comparison of this model with our experimental data.

4.3.1 Hartree-Fock description

The Hartree-Fock (HF) theory is a mean-field approach, perhaps the simplest available to
describe a many-body system. It consists in using an ansatz in which the complete system is
modeled by a non interacting one with a effective potential describing the effect of interactions at
equilibrium. This Hartree-Fock potential is determined self consistently in an iterative process.
We start by recalling the Hamiltonian of the interacting spinor system in second quantized

picture (see chap. 1, Eq. (1.92)). It is expressed as a function of the spinor field operators Ψ̂m with
the equation:

Ĥ = ∫ d3r
⎡⎢⎢⎢⎢⎣∑m Ψ̂†

m(r)
Ĥsp³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(ħ∇
2m
+ Vext(r) + pm − qδm,0) Ψ̂m(r)

+∑
m,n

g
2
Ψ̂†

m(r)Ψ̂†
n(r)Ψ̂n(r)Ψ̂m(r)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=g ρ̂2(r)/2
+ gs
2 ∑

σ,i, j,k,l
(Fσ)i j(Fσ)kl Ψ̂†

i (r)Ψ̂†
k(r)Ψ̂l(r)Ψ̂j(r)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=gsS2(r)/2

⎤⎥⎥⎥⎥⎦,
(4.13)

The first line contains single particle contributions, while the second line is the interaction Hamil-
tonian. Its first term describes spin-independent interaction, while the second describes spin
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changing interactions. It is worth noting that the spin-dependent term is much weaker than the
spin-independent one such that it will be neglected in order to simplify further computations. In
the following, we seek an effective state, described by the density matrix ρ̂HF that minimizes the
Gibbs energy in a modified grand canonical ensemble in which the magnetization mz is fixed. The
expression of the Gibbs energy functional for the Hartree-Fock state is:

G [ρ̂HF] = TSHF + ⟨Ĥ⟩HF − µNHF − λmz,HF

= Tr (kBTρ̂HFlnρ̂HF + ρ̂HFĤ − µρ̂HFN̂ − λρ̂HFŜz) , (4.14)

with N̂ the number operator, and λ a Lagrange multiplier introduced in addition to the chemical
potential µ to enforce a particular average value of the magnetization. Under a mean field approxi-
mation, we consider an Hartree-Fock ansatz that can be written as the sum of a pure state that
describes a condensate and a thermal density matrix ρth:

ρ̂HF = ∣ϕ⟩ ⟨ϕ∣ + ρ̂th, (4.15)

where ϕ = {ϕ+1, ϕ0, ϕ−1} is the condensate wavefunction. In the Hartree-Fock approach, the
thermal gas is described as an ideal gas in a Hartree-Fock potential Veff (the full Hamiltonian will
be written ĤHF = Ĥsp − Vext + Veff ). Veff describes the effect of the interaction term of Eq. (4.13)
and is in general determined self consistently. The density matrix used to described the thermal
component is then given by:

ρ̂th = 1
Z0

e−βĜhf , (4.16)

where the free energy ĜHF is expressed as a function of the thermal population n̂th(r) = Tr(ρthN̂)
and of the Hartree-Fock Hamiltonian ĤHF:

Ĝhf = ĤHF − µ ∫ d3r n̂th(r) − λ ∫ d3rSz,th(r), (4.17)

where µ is the chemical potential and λ is a Lagrange multiplier that ensures the conservation of
the thermal magnetization mz,th = ∫ d3rSz,th(r), where:

Sz,th(r) = Tr(ρ̂thŜz). (4.18)

With this definition we can estimate the effective potential for each component, neglecting spin
changing interactions (since they are much weaker than the spin-independent ones), such that :

Veff ,m(r) = g (nth(r) + nc(r) + nm(r)) , (4.19)

where we have defined the density of each component nm(r) and the condensed density nc(r) =∑m ϕ∗m(r)ϕm(r). We note the last term accounts for bosonic enhancement.
In principle, the HF equations have to be solved by first solving for the ground state wavefunction
(Gross-Pitaevskii equation) and for the excited state (eigenvalues of HHF) in a self-consistent pro-
cedure. The full diagonalization of the Hartree-Fock potential of Eq. (4.19) can be computationally
intensive in our regime where kBT≫ ħω. A large number of levels need to be considered and this
must be repeated in each step used to determine self consistently the Hartree-Fock potential. An
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alternative solution consists in using a semi classical approximation, as in chapter 1. In this case,
the thermal density is given by the equation:

nm(r) = Tr (ρ̂thN̂m) ≃ 1(2πħ)3 ∫ d3p
exp (βĤsp(r, p) + Veff ,m(r) − µN − λmz) − 1 (4.20)

We note that this equation needs to be solved self consistently for the three components as the
thermal densities are “hidden” within the effective potential. A typical procedure to obtain the
density for a given trap and a given set of parameter (N,mz , q) consists in several steps. In each
of them, one chooses a priori certain values of µ, λ and obtain the condensate wavefunction ϕ
by solving 3 coupled Gross-Pitaevskii equations from (4.13) with an effective Hamiltonian given
by the thermal density from a previous resolution step. Next, one obtains a new value for the
thermal density given the new condensate wavefunction. In a final step, the actual atom number
and magnetization are calculated, and compared with their target values. In case of disagreement,
the values of λ, µ are modified and the procedure is repeated. We note the convergence of such
procedure to the best approximation of actual ground state of the system is not trivial. Given the
complexity of the above procedure, we will present in the following a simplified model, that is
nevertheless sufficient to account for many of the thermodynamical properties of our system.

4.3.2 Semi-ideal “four gases” formalism

In this paragraph, we will develop a simplified modeling in the spirit of refs. [107, 201] in order
to obtain a better understanding of the effect of interactions on the second critical temperature of
spin 1 Bose gases. We ignore spin-dependent interactions in this model as these are much weaker
than the spin-independent one. We discuss only the second critical temperature here, as a first
approach to the shift of the first critical temperature would consist to apply the shift calculated for
the scalar gas (see chap. 1 and ref. [100]).
Depending on the magnetic field, the condensate can be either in the mF = +1 or in the mF = 0

component. We distinguish between these cases by indexing quantities related to the condensed
phase by m = c with m the component that condenses (for example, for high magnetization, the
condensed component density will be n+1=c).
In this section, we will use the Thomas-Fermi approximation to calculate the condensed wave

function, and a semi classical approximation to calculate the thermal densities. We will neglect the
terms proportional to ⟨n̂2

th⟩ in Eq. (4.17), due to the much lower density of the thermal component
as compared to the condensed one (⟨n̂2

th⟩≪ ⟨n̂thϕ⟩). This corresponds to neglecting interactions
among thermal atoms or deviations from the Thomas-Fermi wavefunction due to the thermal
atoms. This semi-ideal approximation holds as long as the second critical temperature is “much”
smaller than the first one. Near the point of simultaneous condensation, we however expect this
treatment to fail.
The Hartree-Fock Hamiltonian is written:

ĤHF = ∫ d3r∑
m
Ψ̂†

m(r)(ħ∇
2m
− qδm,0 + Vext(r) + (1 + δm,m=c)gn(0)c (r)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Veff(r)
)Ψ̂m(r), (4.21)

where nc = max [0, (µm=c − Vext(r)) /ḡ] is the condensed density within the Thomas Fermi
approximation, µm=c the chemical potential of the condensed component and where we note the
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Figure 4.16: Effective potentials Veff in presence of a condensate in the mF = +1 component in an
harmonic trap. The atoms in the mF = +1 component experience a characteristic “W” potential,
while the atoms in the mF = 0,−1 component experience a flat bottom potential.

bosonic enhancement factor for the thermal component of the condensed specie. The effective
Hartree-Fock potential Veff is shown in fig. 4.16.
We now consider the case of an isotropic harmonic potential¹ of angular frequency ω in which

the condensed density is an inverted parabola, and theThomas Fermi radius is R =√2µm=c/mω2.
The HF potential takes either the form of a “flat bottom” potential for the uncondensed Zeeman
component (the mean field potential approximately compensates the trapping potential within
the condensate volume, see fig. 4.16) or of a “W” trap (due to the indistinguishability between the
normal and condensed atoms, the mean field potential bears an additional factor 2, see fig. 4.16) :

Veff ,m=nc = ⎧⎪⎪⎨⎪⎪⎩
1
2mω2r2, if r > RTF,
µm=c , if r < RTF,

(4.22)

Veff ,m=c = ⎧⎪⎪⎨⎪⎪⎩
1
2mω2r2, if r > RTF,
2µm=c − 1

2mω2r2, if r < RTF.
(4.23)

We compute the thermal populations N′m using the semi-classical approximation:

Nth,m = 1(2πħ)3 ∫∫ d3pd3r

e
β( p2

2m+Veff ,m(r)−µm) − 1 (4.24)

¹Within this approach, the anisotropic case is actually equivalent. We define the characteristic lengths R i in the three
principal axis i = x , y, z, R i =√ 2µ

mω2
i
and theThomas-Fermi radius :

RTF = (∏
i
R i)1/3 =

√
2µ
mω̄2 .

It is possible to express the potentials by the only variable r̄ with :

r̄2 = (∑
i

x2
i

R2
i
)R2

TF .

such that we recover the case of an isotropic harmonic potential.
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Figure 4.17: Effect of interactions on the thermodynamic phase diagram for N = 50000, ω =
2π× 1200 s−1 in a magnetic field B = 0.5G and B = 5.6G.The dashed line shows the ideal gas phase
diagram while the plain line display the effect of interactions on the second critical temperature.
We observe that the reduction of the second critical temperature due to interaction is much larger
than the one predicted for the first critical temperature by scalar gas theory (see chap. 1), as it is
expected from the large density of the condensate as compared to the thermal gas at Tc2.
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It may be useful at this point to recall the form of the effective chemical potential in the modified
grand canonical ensemble (see chapter 1):

µ+1 = µ + λ, (4.25)
µ0 = µ − q, (4.26)
µ−1 = µ − λ, (4.27)

With these definitions, we determineN′m=c the thermal population of atoms in the first component
that has condensed (mF = +1 or 0 depending on q and mz) and N′m=nc the thermal population in
the two other components. The result can be expressed rather simply as:

N′m=nc =4π3 (RTF
λth
)3 g3/2 (eβ(µm=nc−µm=c)) + t3

Γ(3/2)
∞∑
k=1

eβkµm=nc

k3
Γ (3

2
, kβµc) , (4.28)

N′m=c = t3

Γ(3/2)
∞∑
k=1

e−βkµm=c

k3
h (kβµm=c) + t3

Γ(3/2)
∞∑
k=1

eβkµm=c

k3
Γ (3

2
, kβµm=c) , (4.29)

where we recall the thermal de Broglie wavelength λth = (2πħ2/mkBT)1/2 and the reduced tem-
perature t = kBT/ħω. We give the expression of the Γ and h functions¹ :

Γ(n, x) = ∫ ∞x
tn−1e−tdt, (4.30)

h(x) = ∫ x

0

√
tetdt. (4.31)

We recall that Γ(3/2) = Γ(3/2, 0) = √π/2. In the limiting case where only one Zeeman state
is populated, we recover the result of [201] for the thermal population N′m=c . We compute the
condensed atom number in the Thomas-Fermi approximation :

NBEC
m=c =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
15 ( 2µm

ħω )5/2 aho
ā , if µm > 0

0, if µm ≤ 0 (4.32)

At the second critical point, regardless of the condensation scenario, in analogy to the ideal case
(see table 1.1) we have :

µ+1 = µm=c , (4.33)
µ0 = µm=c , (4.34)
µ−1 = µm=c − 2q. (4.35)

The equation system to solve for the second critical temperature depends upon the first condensed
specie. If mF = +1 condense first, it is :

N = NBEC+1 +N′+1=c +N′0=nc +N′−1=nc , (4.36)
Mz = NBEC+1 +N′+1=c −N′−1=nc (4.37)

¹the h function can be expressed as an incomplete gamma function h(x) = −iγ(3/2, x) with γ(n, x) = ∫ x
0 tn−1e−tdt
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If mF = 0 condense first then the system to solve is :

N = NBEC
0 +N′+1=nc +N′0=c +N′−1=nc , (4.38)

Mz = N′+1=nc −N′−1=nc (4.39)

We solve both systems numerically and obtain the results from figure 4.17. We note a discontinuity
in the curve representing Tc2 for q = h ⋅ 8.9 kHz. This is not a numerical artifact but rather a
“feature” of this simplified HF model, and it can be retrieved by an analytical expansion around the
point of simultaneous condensation (see annex E).

4.3.3 Numerical resolution of the HFmodel and comparison with data

As we have discussed in the above paragraph, the semi-ideal model in which we only consider
the influence of the condensate on the thermal gas for the second critical temperature is no longer
justified when two Zeeman components condense at similar temperatures. In this case, we use a
more complete procedure. We calculate the density of the condensate according to theThomas
Fermi approximation, but in this case including the effect of the thermal component on the
condensate density:

nc(r) = µm=c − V(r) − g (nth(r) + n′c(r))
g

, (4.40)

where nth is the total density of the thermal component, n′m the thermal density in the component
m and n′c the thermal density in the component that has condensed. Beside we compute the density
of the thermal cloud within a semi-classical approximation :

nm(r) = g3/2 [exp (β (µm − V(r) − g [nth(r) + n′m(r) + (1 + δm,c)nc(r)]))] , (4.41)

where nc is the density of the condensed component in case there is a condensate. We note
the additional term n′m(r) in the mean field potential accounts for bosonic enhancement. As
mentioned in the first chapter, the condition for condensation is when the chemical potential
reaches the value of the mean field potential at the region of highest density. In our case, this is
always at the trap center.

First critical temperature

We follow two procedures to determine the critical temperature depending whether there is a
condensate or not. In the case T > Tc1, the procedure consists in computing the chemical potential
at the critical point. Similarly to the ideal case, either mF = +1 condense first resulting in the
following equation system:

µ+1 = g (nth(0) + n+1(0)) , (4.42)
µ0 = g (nth(0) + n+1(0)) − q, (4.43)
µ−1 = g (nth(0) + n+1(0)) − 2λ. (4.44)

Otherwise, if 0 condense first :

µ+1 = g (nth(0) + n0(0)) − q + λ, (4.45)
µ0 = g (nth(0) + n0(0)) , (4.46)
µ−1 = g (nth(0) + n0(0)) − q − λ. (4.47)
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Using the above chemical potential, we obtain an equation system on the thermal population with
Eq. (4.41) written as:

N = N′+1 +N′0 +N′−1, (4.48)
Mz = N′+1 −N′−1. (4.49)

We obtain (T, λ) at the critical point by numerically solving the above system.
Second critical temperature

In the case of the second critical temperature, there is again two scenarii, depending on which
Zeeman component condenses first. However, given we have neglected spin changing interactions,
we cannot observe the mF = −1 to condense. Regardless of condensation scenario, and using
λ = µ+1 − µ0 − q, we obtain:

µ+1 = g (nc(0) + nth(0) + n+1(0)) , (4.50)
µ0 = g (nc(0) + nth(0) + n0(0)) , (4.51)
µ−1 = g (nc(0) + nth(0) + 3n0(0)) − 2q. (4.52)

Using these chemical potential we solve a set of equations similar to the one of the previous
section e.g. (4.36),(4.37),(4.38),(4.39). In figure 4.18, we compare the results from this approach
with the one of the simplified Hartree-Fock model presented above. We see that the critical
temperatures obtained from the full HF model are consistently lower than the one obtained from
the simplified one, which is consistent with taking into account additional interactions with the
thermal component. We note the discontinuity for q = h ⋅ 8.9 kHz seen on the simplified model
remains present.

Comparison with data

Before we continue, we shall describe briefly how we handle comparison between the Hartree-
Fock theory and the data. Our control parameters for exploring the thermodynamic phase diagram
are the trap depth V0 and the magnetization mz . As the trap depth is decreased, the temperature
T, the atom number N and the trap frequency ω all change. Furthermore, we have observed that
different preparation sequences give rise to different atom numbers. As such all data points showed
in figs. 4.13, 4.14 and 4.15 have different parameters and a realistic theory should be calculated for
the correct parameters corresponding to their respective position in the thermodynamic phase
diagram (mz , T/Tc,id).
We extend the normalization procedure applied to temperature to all energy scales and length

scales (see ref. [100]). For example µ → µ/kBTc,id . We also define two thermal length scales,
one is the thermal size R∗ = (kBTc,id/mω2)1/2 and the second is the de Broglie wavelength
λ∗ = (2πħ/mkBTc,id)1/2 at the critical point. Given this, it is natural to renormalize the length
scales as r → r/R∗. Using these units, the interaction strength can be reduced to a dimensionless
parameter γ∗:

γ∗ = 2a
λ∗ (4.53)

With this choice of normalization, the only parameter that varies within the phase diagram is
the parameter γ∗. For our data, its value varies from 0.01 to 0.03 depending on the atom number
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Figure 4.18: Comparison between the simplified HF model that neglects the mean field potential
created by the thermal atoms with the full modeling for N = 50000, ω = 2π × 1200 s−1 in magnetic
fields B = 0.5G and B = 5.6G. We note that the full modeling always predicts a lower critical
temperature than the simplified one, which is expected since it accounts for additional interactions
from the thermal component. We also note that the disagreement between the simplified HF
model and the full one is the largest when Zeeman components condense nearly simultaneously
in the ideal case. The shift to the first critical temperature is similar to the one predicted by the
scalar gas theory in chapter 1.
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Figure 4.19: Comparison of data with the full Hartree-Fock model. We observe a systematic
downward shift that we discuss in figures 4.20 and 4.21. The curve shown for the dataset q =
h ⋅ 2.7Hz shows the expected second critical temperature for the mF = 0 component in the
Hartree-Fock model.
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and trap frequencies considered. We use a linear interpolation of its value as a function of the
magnetization to compute the theoretical curves shown in fig. 4.19, where we compare it to our
measurement (that we already showed in fig. 4.14).
We observe the general shape of the phase diagram is well reproduced regardless of the value

of q. It is worth noting that the case q < Us, which would not predict the condensation of the
mF = −1 component, we have plotted the curve for q ≃ 0 where mF = −1 and mF = 0 condense
simultaneously. Our calculations cannot account for the phases found below Tc2, however, the
critical temperature of the mF = −1 component is well reproduced. This is due to the fact that our
model ignore spin exchange interaction, which must be taken into account in a more sophisticated
theory. It is the object of an ongoing collaboration with Laurent de Forges de Parny, Adam Rançon
and Tommaso Roscilde.

Effect of anharmonicities and finite atom number

We note that a downward shift of the data from the HF theory remains, by approximately 10%.
This residual shift can be accounted for by two effects that were not considered so far in this chapter.
First, using the semi classical approximation, we have ignored the effect of finite atom numbers
that is estimated to shift the critical temperature by a value between -1% and -4% (according to
chapter 1, Sec. 1.1.1, fig. 1.3) for critical atom numbers between 104 and 105.
Additionally, the anharmonicity of the trapping potential should be taken into account. As

discussed in Sec. 1.1.4, the precise estimation of this shift is limited by our understanding of the
evaporation dynamics (and possibly by our precision in the determination of the potential shape).
Nevertheless, we attempted to estimate this shift, by computing the critical atom number Nc in a
realistic dimple trap potential VDT composed of two crossing optical dipole traps, one of depth V0
and size wh ∼ 25 µm propagating horizontally and the second of depth αV0 and size wv ∼ 21 µm
propagating vertically. We recall (see chapter 1) that it can be computed with the help of a semi
classical approximation with the formula:

Nc = ∫ ecutoff

0
ρDT(e)gBE(e)de , (4.54)

where ρDT(e) is the density of state in the dimple trap calculated as in chapter 1 with Eq. (1.48).
We recall that the Bose population is gBE(e) = (exp(ηe) − 1)−1, that e = E/V0 is the normalized
energy, and that η = βV0 is the evaporation parameter. We considered three possible cases, in
which the cutoff energy ecutoff varies depending on the assumptions on the evaporation scenario:

1. The trap depth is set by gravity. Atoms with energy such that they are not trapped with
purely vertical classical trajectory are not considered in the determination of the critical
atom number. The energy cutoff ecutoff is set at the energy of the last trapped trajectory
(ecutoff ∼ V0 −mgw when the effect is small, and when the vertical arm does not hold atoms
against gravity).

2. We consider the atoms trapped in the full dimple potential, including the horizontal arm.
This is motivated by the specific influence of gravity, which is a one dimensional selection
process and may not be relevant in the evaporation dynamics. We estimate the critical
atom number in this case by setting the gravity to zero, and by setting the energy cutoff to
ecutoff = 1 + α.
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Figure 4.20: Expression of the anharmonic shift as a function of the trap depth, calculated for a
given value of the evaporation parameters η = V0/kBT. The region in which critical temperature
are measured is indicated by a shaded area. We note that calculating these quantities for a given η,
make them independent on V0 in absence of gravity. In the case the energy cutoff of the integration
of the density is imposed by the gravity, we observe two regimes. For low trap depths, the vertical
arms does not hold against gravity, and the anharmonic shift is comparable to the value where
we consider only the crossing region. On the other hand, for the highest trap depth, the vertical
arm may hold atoms against gravity, resulting in an increased critical atom number, thus reduced
critical temperature. From these data, we estimate the shift due to anharmonicity is between -2%
and -6%.
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Figure 4.21: Comparison of data with the Full Hartree-Fock model including the possible finite
size and anharmonic shift.This is represented as a shaded region of width 0.07.Themaximum shift
is expected to be 10% (6% for anharmonicities and 4% for finite atom number) and the minimum
shift to be 3% (2% for anharmonicities and 1% for finite atom number).
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3. We only consider atoms in the crossing region as it is the most densely populated region. As
we discussed in chapter one, atoms that explore the arms are much less dense, and may not
be in thermal equilibrium with the ones in the center. We estimate the critical atom number
in this case by setting the gravity to zero, and by setting the energy cutoff to ecutoff = 1 (we
note that in our experimental case, α > 1).

For the sake of clarity, we calculate the critical atom number at fixed evaporation parameter η,
and varying the trap depth. This procedure allows to assess the role of gravity along the ramp,
but eliminates the dependence on the trap depth in the case there is no gravity. The change in
critical atom number δNc as compared to the ideal case is converted in a critical temperature shift
with δNc/Nc,id = −3δTc/Tc,id. We display the predicted critical temperature shift for each of these
scenarii in fig. 4.20, and show that regardless of the precise scenario we consider, the shift due to
anharmonicities is comprised between -2% and -6%. When the gravity is considered, in scenario 1,
we note a change of behavior is observed on fig. 4.20 near V0 = 20 µK. This change takes place
when the trap depth begin to be large enough so the vertical arm is holding atoms against gravity.
In this case, there is an increase in the critical atom number corresponding to atoms in this arm.
We note that the predicted shift then comes closer to the case of scenario 2, while for lower trap
depth, it is closer to scenario 3.
We represent the effect of this shift by plotting on a figure similar to fig. 4.19 a shaded region

indicating the calculations from HF theory with the maximum (6% for anharmonicities and
4% for finite atom number) and minimum shift (2% for anharmonicities and 1% for finite atom
number) we can expect. This is plotted in fig. 4.21, and we see, that taking into account these shifts
would allows us to obtain a much better agreement between the Hartree Fock theory and our data,
especially on the low magnetic fields cases. We note that if a more rigorous treatment of the finite
size shift is likely to be possible (see ref. [85]), the lack of knowledge of the evaporation dynamic
will probably not allow a more precise estimation of the shift due to anharmonicities.

4.4 Conclusion

In this chapter we studied the thermodynamics of a spin 1 Bose gas with antiferromagnetic
interactions. In section 1, we have developed a new imaging procedure, using a boosted Stern-
Gerlach sequence, that allowed us to measure the thermodynamic properties of high temperature
clouds. We have developed a fitting procedure that allowed the determination of thermodynamic
properties of the spinor gas such as atom numbers and temperatures. With these methods, we have
explored the thermodynamic phase diagram of the gas by varying magnetization, temperature
and quadratic Zeeman energy.
Depending on the magnetization and the quadratic Zeeman energy, we observed in section 2

four condensation scenarii. For magnetization mz ≃ 0 the mF = 0 component condenses alone. For
high quadratic Zeeman energies q ∼ kBT, and low (but finite) magnetizations, mF = 0 condenses
first and the mF = +1 component condenses at lower temperature. For finite magnetizations and
q > Us, the order is flipped and the mF = +1 condenses first followed by the mF = 0 component.
For the former three scenarii, the mF = −1 component does not condense, as expected by ideal gas
theory in presence of a magnetic field.
The final scenario may be the most intriguing as it is not even predicted qualitatively by ideal

theory. For low quadratic Zeeman energies q < Us, the mF = +1 condenses first, and is followed
either by one or two more condensations. Depending on the magnetization, we observe that the
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mF = −1 condenses, even in presence of a finite magnetic field. Furthermore, at lower temperatures
and low magnetizations, the mF = 0 is also observed to condense. This latter scenario highlights
the link between the second condensation and magnetic order. Indeed, this is not until the second
component condenses that we observe the magnetic phases measured for a pure condensate in
ref. [54].We observe that these phases survive at finite temperatures, and we can guess the existence
of a tricritical point, in which the magnetic phase transition crosses the second Bose-Einstein
condensation temperature.
Further study of this regime requires an extensive theoretical description that is being investi-

gated at the time this thesis is written by Laurent de Forges de Parny, Adam Rançon and Tommaso
Roscilde. We expect this collaboration to bring a better understanding of the low magnetic field
regimes and to raise new open questions about the finite temperature properties of spin 1 anti-
ferromagnetic gases. In particular, we could investigate the existence of a tricritical point, either
in a complete theory, or by a more precise experimental investigation in this regime of parame-
ters. Another question that naturally arises, is what happens for higher interaction strength, in a
lattice potential for example. This case, have been explored by the authors of refs. [77, 213], and
predicts that each of the lobes of the Mott insulating phase in the ground state phase diagram of
Bose-Hubbard model (see ref. [214]) bears a particular magnetic phase that depends on the parity
of the filling of the insulator. The experimental study of the magnetic order as a function of the
filling factor of the Mott insulator or the tunneling rate could provide insight on this behavior.
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Conclusion

Along this manuscript, we described an experimental study of spin 1 Bose gases with antiferro-
magnetic interactions. We have studied the magnetic properties of quasi pure spinor Bose-Einstein
condensates and the thermodynamics of a spinor gas of sodium around the Bose-Einstein critical
temperature.

5.1 Summary

In chapter 1, we have introduced the subject by recalling the most basic properties of spinor
Bose-Einstein condensates. We started in section 1, by discussing the thermodynamics of a scalar
Bose gas, and how it is affected by interactions, finite atom numbers and trap anharmonicities. In
section 2, we have recalled the theoretical description of a scalar Bose-Einstein condensate with
the help of the Gross-Pitaevskii equation. In section 3, we introduced spinor Bose-Einstein conden-
sates, and described their scattering properties. Due to the rotational symmetry of the interaction
hamiltonian, we have seen that the spin changing interactions conserve the magnetization mz.
We introduced the single mode approximation, which applies for tight trapping potentials and
assumes that all Zeeman components condense with the same spatial wavefunction. We discussed
a consequence of the conservation of the magnetization is that only the quadratic energy enters
in the spin Hamiltonian. It effectively favors energetically the mF = 0 component as compared
to the mF = ±1 components in presence of a magnetic field. In section 4, we have discussed
the thermodynamics of the spin 1 gas with conserved magnetization. We showed that several
sequential condensation scenarii are predicted depending on the magnetization and the quadratic
Zeeman energy.

In chapter 2, we described the experimental apparatus and the measurement techniques that
we used to produce and observe spinor Bose gases. In section 1, we described the experimental
setup and the cooling steps, from laser cooling of sodium atoms to two-step evaporative cooling
in optical dipole traps. We also showed how to characterize the trapping potential in situ. In
section 2, we discussed the techniques that we have developed to detect spinor Bose-Einstein
condensates, and extract atom numbers from absorption images. We then developed the origin
and the influence of noise on extracted atom number, and then showed the calibration methods
that we used to extract atomic densities. In section 3, we have described the fitting techniques
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for scalar Bose gases. We showed how to obtain thermal sizes from fits to the wings of the time
of flight distribution. In section 4, we developed the spin manipulation techniques that we have
used through this work. We described how to perform spin rotation by applying a resonant radio
frequency to the condensate, and how to achieve a good control of the magnetic environment
necessary for spin manipulations. Then we discussed how to prepare the magnetization of the
BEC with the help either of a depolarization sequence that consists in applying radiofrequency in
presence of inhomogeneous broadening and spin diffusion, or from a polarization sequence that
consists in spin distillation by evaporation in a magnetic gradient. We also discussed adiabatic
rapid passage, that can be used to prepare reliably a BEC polarized in the mF = −1 component. We
discussed additional possibilities to manipulate the spins with Raman transitions in annex A, B, C.
In chapter 3, we turned to the study of the magnetic phases of quasi pure spinor condensates.

In section 1, we recalled the mean field theory of spinor Bose-Einstein condensates with an-
tiferromagnetic interactions, and the properties of the low temperature magnetic phases. The
antiferromagnetic phase, observed for finite magnetization and low magnetic field, has a purely
longitudinal spin and the mF = 0 component is not populated. The broken axisymmetry phase is
observed for higher magnetic fields. It has a transverse spin component that builds up with the
population of the mF = 0 component, that appears due to the quadratic Zeeman energy. In both
phases, the antiferromagnetic nature of the spin exchange interaction results in a minimization
of the transverse spin. The underlying mechanism consists in locking the relative phase of the
Zeeman components Θ = Φ+1 +Φ−1 − 2Φ0 = π. In section 2, we measured the transverse spin
length using spin rotations. We showed that the signature of the transverse spin length lied in the
fluctuations of the magnetization after a π/2 pulse, and demonstrated this way that the length of
the transverse spin was indeed minimal given the properties of the state before the rotation. We
discussed the effect of finite kinetic and spin temperature to obtain a quantitative description of
our data.
Following the study of the phase locking mechanism, we turned in section 3 to low magnetiza-

tions and low magnetic field, where the degeneracy of the three Zeeman components give rise to
large fluctuations of the spin populations. We observe that for low quadratic Zeeman energies and
mz = 0, that there are large fluctuations of the populations n0. We measured the fluctuations of the
population of the mF = 0 component and extracted spin temperatures from fits to the probability
distributions. We show the dependence of the spin temperature with the evaporation trap depth,
and compare it to the kinetic temperature. We demonstrate two regimes, one for low q where the
spin temperature is consistently lower than the kinetic temperature and one for high quadratic
Zeeman energies q where both temperatures are similar. We interpret the decoupling between
the two degree of freedom in the first regime by the large difference in energy scales between
typical kinetic excitation (e.g. spin waves) and the spin excitation. The coupling is restored when
the quadratic Zeeman energy is increased as the condensate is polarized in mF = 0, and the energy
scale for spin excitation becomes on the order of q.

In the chapter 4, we explored the thermodynamics of a spin 1 Bose Einstein condensate near
the Bose-Einstein critical temperature. In section 1, we discussed experimental methods, and the
modifications to the procedures described in chapter 2 that were required to measure “high” tem-
perature clouds. First, we developed a boosted Stern-Gerlach sequence in order to accommodate
for the faster expansion of thermal clouds. As the highest temperature clouds were overlapping, we
discussed how to obtain an absorption signal and how to relate this absorption signal to densities
and atom numbers. Then we extended the fitting procedures developed in chapter 2 for three
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components clouds. We use bimodal fits to obtain atom numbers, hence magnetizations. We
measure the temperature by a procedure where we fit three Bose functions to masked images in
order to exclude the influence of the condensate from the time of flight distributions.
In section 2 we discussed how to extract critical points from our data. As it is challenging to

fit the signature of a small condensed fraction on top of a large thermal gas densities, we use
the peak optical density as a proxy to the condensed fraction. We detected the critical point as
a sharp increase of the optical density as the trap depth is decreased. The representation of this
peak optical density as a function of the reduced variables magnetization mz and temperature
T/Tc,id demonstrated several sequential condensation scenarii as predicted by ideal gas theory. We
observe that for high quadratic Zeeman energy, either the mF = 0 or the mF = +1 condenses first
depending on the magnetization. A lower second critical temperature is observed where mF = +1
and mF = 0 condense respectively. As predicted by ideal gas theory, the mF = −1 do not condense
in this case. When we decrease the magnetic field, hence q, the first condensation scenario, where
the mF = 0 condense first only happens for mz = 0 (and it is the only component to condense). For
even lower quadratic Zeeman energies, where q < Us, we observe a completely different scenario.
While the mF = +1 component condenses first as for the intermediate magnetic field case, we
observe either one or two more critical temperatures depending on the magnetization. We find
that the mF = −1 component condenses, which contradicts the predictions of ideal gas theory.
Additionally, we find that the temperature at which it condenses is similar to the one at which
mF = 0 condenses in the intermediate magnetic field case.The comparison of critical temperatures
with ideal gas theory reveals a large discrepancy, especially for the second critical temperature.
In a section 3, we discussed a simplifiedHartree-Fockmodel to describe the effect of interactions

on the critical temperature. We ignored spin exchange interactions, as they are much weaker than
the spin independent ones. We considered condensates in the Thomas Fermi regime and applied
a semiclassical approximation for the estimation of thermal populations. In a first model, we
ignored the interaction between the thermal atoms, and focused on the description of the second
critical temperature. In this picture, the thermal atoms of the condensed component experience
a “W” shaped potential and the second component condenses in a flat bottom potential. In a
more detailed model, we also consider the mean field potential of the thermal atoms. We find this
refined description agrees well with the simplified model for the second critical temperature and
additionally predicts of the shift of the first critical temperature similar to the one discussed in
chapter 1. We compare the results of this model to our experimental data and find that despite
good qualitative agreement, however with a remaining discrepancy of ∼ 10% on all the data that
we could explain by the combined effects of the finite atom number and trap anharmonicities.

5.2 Prospects

At this point, there are two natural directions that could be explored. First, we could extend
the measurement of the phase locking mechanism to higher temperatures, and observe whether
it survives below, near or above the second critical temperature. Another direction we could
take would consist in study the dynamics of equilibration of the spin degree of freedom (see
refs. [41, 203]). Two types of experiments could be performed, one where we would cool suddenly a
cloud across Tc2 at finitemagnetization and lowmagnetic fields. For sufficiently lowmagnetic fields,
we expect that a large spin temperature would result in condensation of themF = 0 component even
if the mean field ground state predicts a vanishing population. Another experiment, would take
place at low magnetizations mz ∼ 0 and low magnetic field, such that we can use the fluctuations
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of the population to perform spin thermometry (see ref. [215]). In this case, we expect that a fast
quench of the temperature would raise the quadratic Zeeman energy threshold for obtaining a
non fluctuating state.
Perhaps as a longer term prospect, the recent installation of a 1D optical lattice along the

axis of the horizontal arm of the dimple trap could allow the study of novel regimes of interac-
tion strength. The references. [77, 213] suggests for example the study of peculiar magnetic order
inMott insulating phases, where themagnetic order in each site depends on the parity of the filling.

During the realization of this manuscript, our experimental team has developed an experimental
procedure to create 1 dimensional Bose-Einstein condensates.Themost striking difference between
the systems presented in this thesis (that can be described within the single mode approximation)
and 1D systems comes from the emergence of spin domains in the broken axisymmetry phase (see
chapter 1, and ref.[55]). This is due to the non miscibility of the mF = 0 and mF = ±1 components.
Our team is currently revisiting the study of the T=0 magnetic phase diagram in a gradient free
1D BEC. As the system undergo demixing as it crosses the T=0 magnetic transition, we believe
the magnetic phase transition becomes a first order transition. We observed that this observation
is very sensitive to gradients. Indeed, as the long direction of the trap has very low trapping
frequencies, relevant spin dependent magnetic forces can be generated by very small magnetic
gradients. Our team have developed a method to cancel these gradients by applying a bias in a
specific direction, such that the magnetic forces are canceled along the weak direction. We believe
these ongoing studies will allow a better understanding of the magnetic phases of spin 1 BECs out
of the single mode approximation. A perhaps longer term goal would be to observe the dynamics
of domain formation after a quench through the T=0 phase transition (see ref. [216]). We observe
three domains at equilibrium if gradients are well compensated.The mF = 0 sits in the center of the
trap, and two domains mF = ±1 components are on both ends of the weak axis of the 1D trapping
potential. We could study whether in the case of a quench, we would observe the formation of
several domains, and study the number of domain as a function of the magnetic field ramp speed.
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A
Alternative laser source

for laser cooling and Raman transitions

The wavelength corresponding to the D1 and D2 lines of sodium (respectively 589.757nm and
589.158 nm in vacuum) cannot be generated directly from laser diodes as in the case for Rubidium
or Lithium D lines. Dye lasers used to be the most common source at these wavelengths but they
suffer from a relatively high intrinsic noise levels and from frequent need of dangerousmaintenance
(as the dye used are very toxic and carcinogenic). For these reasons, EmmanuelMimoun developed
the laser source described in Chapter 2 and refs. [134, 143], based on intracavity sum frequency of
2 YAG lasers of wavelengths λ = 1064nm and λ = 1319 nm. This solution works very well for laser
cooling of sodium, however, the small tuning range of both YAG laser sources forbids applications
that requires detuning of more than a few hundred MHz (such as Raman couplings see annexes B
and C, or resonant addressing of the D1 line).
During my master’s internship, we have developed an alternative source, based on a commercial

laser source of wavelength λ = 1178 nm. This source is composed of a diode laser and a semi-
conductor optical amplifier – tapered amplifier (TA) – that provides us with 1.6 W of single
mode laser light and of a frequency doubling apparatus in which we generate 589 nm light from
intracavity second-harmonic generation (see refs. [134, 143, 148]). In this annex, we will describe
shortly this laser source and its performances and demonstrate the tuning capability of the laser
using iodine spectroscopy.

A.1 Second Harmonic Generation

Before we present the laser source itself, we will recall very shortly the laws of non linear optics
leading to the generation of second harmonic in non linear crystals. More details on this matter
can be found on ref. [134, 217].
Most materials develop an electric polarization P proportional to an applied electric field E :

P = є0χ(1)E. However, a more detailed description (see ref.[217]) includes non linear terms that
cannot be neglected when this field is strong. In potassium titanyl phosphate (KTP, see ref.[218])
crystals, such as the one used in this laser source, the absence of inversion symmetry leads to a
second order term:

PNL = Eχ(2)E, (A.1)
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where χ(2) is a third rank tensor named second order susceptibility. In the following, we will
consider only linearly polarized light along axis “z”, which limit us to the term χzzz (also noted in
crystallographic notations d33 ∼ 16 pm/V) of the susceptibility. In KTP, this axis is the one that
displays the strongest non linearity.
We deduce from eq. A.1 that in presence of an electric field from a linearly polarized plane wave

propagating along x : E = E0ez cos(ωt − kx) such as the one produced by the 1178 nm laser, the
material polarization will display a DC term and a term oscillating at ω2 = 2ω, which corresponds
to photons at a wavelength λ2 = λ/2 = 589nm. In most cases, the non linearity is weak and the
conversion efficiency small, such that the pump beam is considered to be unaffected by the SHG
process. The second harmonic power P2 at the output of a parallelepipedic crystal of length L
illuminated uniformly on a surface S by the pump beam described above is:

P2 = αP21 sinc2 (∆kL
2
) , (A.2)

α = 2ω2d2
33L2

є0c3Sn2
1 n2

, (A.3)

where є0 is the vacuum permeability, c is the speed of light, α is the phase matched conversion
efficiency (usually α ∼ 10mW/W2) and n1, n2 are the material index of refraction for respectively
the pump frequency and the second harmonic. The quantity ∆k reflects a very important aspect of
SHG that is called phase matching and corresponds to the necessity to cancel the difference in the
wave vectors of the pump and second harmonic light: ∆k = k2 − 2k1 = (n2 − n1)2ω/c = 0. If phase
matching is realized, the efficiency of the SHG is only limited by the system constraints such as
available power, non-linearity coefficient or geometry. In reality, dispersion in the crystal prevents
to obtain phase matching straightforwardly and the (large) phase dematching limits the conversion
efficiency to a very low value (see a = 0.1 panel of fig. A.1, for phase matching dependence of the
SHG efficiency).
One method to obtain phase matching in such configuration consist in using a periodically

modified crystal structure with a period Λ (periodically poled KTP, PPKTP). With this method,
the crystal properties are modified such that (see ref. [217]):

d33 → deff = 2d33
π

, (A.4)

∆k → ∆k − 2π
Λ
. (A.5)

Although the conversion efficiency is reduced to about 40 % of the ideal one, the phase matching
parameter is not fixed anymore by the intrinsic properties of the crystal but can be tuned by
the parameter Λ, the poling period. In practice, both the phase matching ∆k and the poling
period Λ can be tuned with temperature via respectively the index temperature dependence
(given by Sellmeier relations, see ref. [219]) and the thermal expansion of the crystal (see ref.[218]).
Proper initial design of the PPKTP crystal (which needs to be done for each particular frequency
conversion process) ensures the phase matching temperature is a few (tens of) degrees above room
temperature. We stabilize the crystal temperature at the phase matching value with a servo loop
that controls a Peltier thermoelectric “cooler”.
Eq. (A.3) highlights that the conversion efficiency, for a given accessible power, is enhanced if the

area S of the beam is small. This is due to the fact that for a given power, the field is stronger if the
beam size is small. Laser light obey the laws of Gaussian optics, and in the case the laser is focused
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Figure A.1: Boyd-Kleinmann factor for different crystal sizes. We observe the peak value is higher
for a ∼ 1 (see fig.A.2). We recall b = (∆k − 2π

Λ ) is the phase matching parameter, that is typically
tuned by changing the temperature of the crystal.

inside the crystal, eq. (A.2) is not valid. SHG theory requires taking into account the Gaussian
nature of the laser electric field (see refs. [217, 220]). In this case, the power on the output of the
crystal can be expressed as a function of the quasi-phase matching parameter b from eq (A.5), and
an additional parameter a that reflects the relative size of the crystal and the beam Rayleigh length
zR :

P2 = αBKP21 , (A.6)

αBK = ω3d2
effL

2πє0c4n1n2
h (a = L

2zR
, b = (∆k − 2π

Λ
) zR) . (A.7)

The function h quantifies the effect of phase matching, and depends on the relative sizes of the
crystal and the beam (see fig. A.1).We retrieve in particular a sinc function for very large waists.We
see that the function changes strongly from a plane wave to a strongly focused beam. In particular,
since the minimum size of a Gaussian beam is related to its divergence, the use of a very small
waist may lead to poor SHG efficiency as the field is strong only in a very small volume of the
crystal. The optimum for SHG is found when the Rayleigh range of the beam is comparable to the
size of the crystal, a ≃ 3, h ∼ 1 (see fig. A.2).
A.2 Intracavity frequency doubling

The second harmonic generation process is rather inefficient for pump powers accessible with
our laser source (we measured αeff ∼ 16mW/W2). This can be circumvented by placing the
doubling crystal within an optical cavity such that the power of interest is not the laser source
power but rather the intracavity power. We designed a cavity which is resonant only for the pump
frequency ω, but transparent for the doubled frequency 2ω. In this case, the efficiency of the
doubling process is given by the cavity finesse, that determines the power build-up inside the cavity.
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The intracavity power is ultimately limited by losses in the cavity (imperfect alignment, scattering
off the optical surfaces, higher order non linear processes, thermal effects in the crystal, etc). We
chose a butterfly geometry similar to the one used in the sum frequency laser from ref. [134]. The
cavity dimensions are chosen to maximize the conversion efficiency given the given dimensions of
the PPKTP crystal, and according to Boyd-Kleinman theory.
Intracavity doubling requires the simultaneous realization of mode and impedance matching

(see refs [134, 143, 148]) to achieve high SHG efficiencies. Mode matching refers to the adaptation
of the spatial mode of the laser to the one of the cavity. We use a set of three lenses to set the input
pump Gaussian beam size and position superimposed with the one of the cavity. As the mode of
the tapered amplifier is not TEM00 as opposed to the one of the cavity, perfect mode matching
cannot be achieved, and is limited by the TEM00 projection of the input beam.Themode matching
is taken into account by a parameter η such that the power transmitted into the cavity mode of
interest by the input coupler of the cavity is ηP1. We assume the remaining photons are reflected.
We measured a posteriori from the intracavity power η ∼ 70% (see eq. (A.8)) and from a fit to the
output second harmonic power (see fig. A.3).
Impedance matching on the other hand refers to the proper choice of cavity coupler reflectivity

R that maximizes the SHG efficiency. In order to understand this process better, we expressed the
intracavity power as a function of the coupled input pump power ηP1 (see [109]), SHG induced
losses αPcav per round trip and other losses p per round trip:

Pcav = (1 − R)ηP1(1 −√(R(1 − p)(1 − αPcav))2 (A.8)

This allows us to calculate the reflectivity R of the input mirror that ensure impedance matching.
Given low losses p ∼ 0.01, we find R ∼ 90%.
The last ingredient for an efficient SHG process consists in a servo loop on the cavity length in

order to keep the cavity resonant (Lcav = Nλ). We installed piezo actuators on cavity mirrors, and
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Figure A.2: Maximum value h̄ of the function h (see fig.A.1) as a function of the relative beam
size.
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stabilize the second harmonic output power.
We display on fig. A.3 the output power we obtain when we vary the temperature of the crystal.

The plain line is a simulated curve (given eqs. (A.7) and (A.8)), with fitted losses, mode matching
factor η and poling period. This theory does not take into account potential inhomogeneities of
the crystal, or the effect of temperature gradients which may explain the imperfect agreement
between experiment and theory. We demonstrate overall doubling efficiency of 38% ( 55% if we
count only the mode matched light from the TA).
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Figure A.3: Output power of the cavity as a function of temperature.

A.3 Iodine spectroscopy
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Figure A.4: Iodine Saturated absorption spectrum. P114(14-1) on the left and P38(15-2) on the
right. We have represented the sodium D line frequency for scale.

We demonstrate on fig. A.4 the tuning possibilities of this laser by performing spectroscopy
on iodine molecular lines by modulation transfer spectroscopy (see ref. [145, 221]). In particular,
ref. [144] shows that the P114(14-1) line has similar frequency to the sodium D2 line, and that the
P38(15-2) to the D1 line. In the future, a servo loop could be build to stabilize the frequency of
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the laser on these spectroscopy signals, by acting on the laser diode current or cavity size. For
applications such as Raman transitions, this is a priori not necessary.



B
Light-Atom Interaction

in the ground state electronic manifold

In the main text, we have discussed optical dipole traps, and in particular, how we can trap
atoms in the focus of red detuned laser beams. In this appendix, we will discuss a more refined
treatment in which we will see that in the case of circularly polarized beams, the interaction with
far detuned light can lead to more complex hamiltonian, analogous to magnetic fields (see ref [222]
for a review).

B.1 Derivation of the lightshift hamiltonian

We calculate the light-shift operator for an alkali atom in the electronic ground state in presence
of hyperfine coupling. The ground state is the 32S1/2 (n = 0, l = 0, S = 1/2, J = 1/2) which
present two hyperfine multiplets which are F = 1, 2 for sodium (which nuclear spin is 3/2). We
consider the 3S → 3P transition which split into two lines due to spin-orbit coupling: the D1
(J = 1/2 → J′ = 1/2) and the D2 (J = 1/2 → J′ = 3/2) lines. The excited state for the D1 line is
the 32P1/2 (n′ = 1, l ′ = 1, s′ = 1/2, J′ = 1/2) which splits into two hyperfine multiplets F′ = 1, 2 for
sodium. The excited state for the D2 line is the 32P3/2 state (n = 1, l = 1, S = 1/2, J = 3/2) which
split into four hyperfine multiplets F′ = 0, 1, 2, 3.
We consider a dipolar interaction with light:

V̂AL = −d̂ ⋅ Etot, (B.1)

and write the light field in the standard basis e±, e0¹:

Etot =∑
q
eqEq cos (k ⋅ r − ωt) . (B.2)

We also define the complex field:

Ẽ =∑
q

Eq

2
eqei(k⋅r−ωt). (B.3)

¹We remind the expression of the standard basis eigenvectors into the Cartesian basis: e0 = ez, e+ = (ex + iey)/√2,
e− = (ex − iey)/√2.



158 B. Light-Atom Interaction in the ground state electronic manifold

32S1/2

32P1/2

D1
589.755 nm

F = 2

F = 1

F′ = 2

F′ = 1

1.77 GHz

189 MHz

32S1/2

32P3/2

D2
589.158 nm

F = 2

F = 1
F′ = 0F′ = 1
F′ = 2

F′ = 3

1.77 GHz

16 MHz
34 MHz

58 MHz

Figure B.1: Hyperfine structure of sodium

such that Etot = Ẽ + Ẽ∗. In the limit of far detuned light, the population of the excited state as
well as the ground-excited states coherences remain small and relax quickly compared with the
ground state populations and coherences. Therefore, we apply the rotating wave approximation
and perform an adiabatic elimination of the ground-excited states coherences in the interaction
Hamiltonian. The result is an effective Hamiltonian acting in the electronic ground state manifold
that is called the lightshift operator VLS [222]. Another point of view is to consider this as a result
of second order perturbation theory:

V̂LS = ∑
g i ,g j ,eν

∣gi⟩ ⟨g j∣ ⋅ ⟨gi ∣V̂−AL∣eν⟩ ⟨eν∣V̂+AL∣g j⟩
Eν − E j − ħωL

, (B.4)

where V̂+AL = d̂Ẽ = ∑q
1
2d ⋅ eqEq and V̂−AL = (V̂+AL)† are the two terms of V̂AL left after the RWA

has been performed. We define a polarizability tensor α such that:

V̂LS = 1
4∑qq′

E∗q′αqq′Eq , (B.5)

αqq′ = ∑
i, j,ν
∣gi⟩ ⟨g j∣ ⋅ ⟨gi ∣d†

q′ ∣eν⟩ ⟨eν∣dq∣g j⟩
Eν − E j − ħωL

. (B.6)

We also define the ground and excited state projectors:

PJ = ∑
J,F,mF

∣J, F,mF⟩ ⟨J, F,mF ∣ , (B.7)

PJ′ = ∑
J′ ,F′ ,mF′

∣J′, F′,mF′⟩ ⟨J′, F′,mF′ ∣ . (B.8)

Then we assume the detuning is large compared to the hyperfine splitting of the excited state
(which is in the order of 100 MHz for sodium cf figure B.1). In that case, we write the lightshift
operator can be simplified by letting Eν − E j − ħωL → E′J − EJ − ħωL = −∆1,2 depending whether
J′ = 1/2 or J′ = 3/2. The polarizability tensor can then be rewritten:

αqq′ ≃ −∑
i, j
∣gi⟩ ⟨g j∣ ⋅ ⟨gi

RRRRRRRRRRR∑J′
1
∆J′

PJd†
q′PJ′d′qPJ

RRRRRRRRRRR g j⟩ . (B.9)
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Figure B.2: relative transition strengths for the fine structure of the S→ P line for alkali. All the
figures on this schematics are to be understood within a square root.

Since dq is an electronic dipole operator, it will not affect the nuclear spin. Therefore, we define a
new tensor operator, acting only on the ground state fine basis subspace:

α(J)q,q′ = −∑
J′

1
∆J′

PJd†
q′PJ′dqPJ . (B.10)

We also define a reduced dipole operator Dq, restricted to a single J → J′ transition:
d2spD†

q′Dq = (PJd†
q′PJ′)(PJ′dqPJ). (B.11)

Since it acts on a spin 1/2 multiplet, the tensor D†
qDq′ can be decomposed as a sum of Pauli

matrices σk :

D†
i D j = A3 δi jI +∑

k
Bєi jkσk , (B.12)

where A and B are two constants that depend on the transition considered. The theorem of
Wigner-Eckardt allows us to write [223]:

⟨nSLJm∣ dq ∣nSL′J′m′⟩ = dJJ′(−1)J′−1+mJ ( J′ 1 J
mJ′ −q −mJ

) , (B.13)

where dJJ′ = ⟨J∣∣d∣∣J′⟩ are the dipole matrix elements for the J → J′ transition that can be found
in reference [125]. We introduce Wigner’s 3j symbols as a convenient way to express Clebsch-
Gordan coefficients.The square of the 3j symbols represent the relative transition strength between
sublevels mJ and mJ′ , q being the angular momentum carried by the photon. The value of the
relative transition strengths can be found on figure B.2. Then, it is convenient to further reduce
the dipole operators with the help of 6j symbols, and introducing the s → p dipole matrix element
dsp = ⟨L = 0∣∣d∣∣L′ = 1⟩:

dJJ′ = dsp(−1)J′+3/2√(2J + 1) (2J′ + 1){0 J S
J′ 1 1} . (B.14)

As an illustration, we compute the reduced ground state operators for J=3/2, for example two π
(q = 0) transitions can be expressed as:

D†
zDz = ∑

m1 ,m2 ,m′
8(−1)m1+m2 (3/2 1 1/2

m′ 0 −m1
)(3/2 1 1/2

m′ 0 −m2
){ 0 1/2 1/2

3/2 1 1 }
2 ∣m1⟩ ⟨m2∣ .

(B.15)
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Due to the properties of Wigner’s 3j symbols, only the terms m′ = m1 = m2 are non zero and:

D†
zDz = −29Id = A

3
Id. (B.16)

The procedure is similar for two σ+ (q = 1) or σ− (q = −1) transitions:
D†+D+ = ∑

m,m′
8(−1)2m (3/2 1 1/2

m′ −1 −m)
2 { 0 1/2 1/2
3/2 1 1 }

2 ∣m⟩ ⟨m′∣ , (B.17)

D†−D− = ∑
m,m′

8(−1)2m (3/2 1 1/2
m′ 1 −m)

2 { 0 1/2 1/2
3/2 1 1 }

2 ∣m⟩ ⟨m′∣ . (B.18)

Due to the symmetry properties of Wigner’s 3j symbols, only the terms m′ = m1 = m2 are non
zero and:

D†+D+ = − 19 ∣−1/2⟩ ⟨−1/2∣ − 13 ∣1/2⟩ ⟨1/2∣ , (B.19)

D†−D− = − 13 ∣−1/2⟩ ⟨−1/2∣ − 1
9
∣1/2⟩ ⟨1/2∣ . (B.20)

This allow us to express the parameter B as a function of these two operators:

D†
xDy = Bєx yzσz = Bσz , (B.21)

D†
xDy = − i

2
(D†− +D†+)(D+ −D−), (B.22)

= − i
2
(D†−D+ −D†+D−´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mF=±2
+D†+D+ −D†−D−), (B.23)

= i
6
[1 − 1/3 0

0 1/3 − 1] , (B.24)

= i
9
σz . (B.25)

We then consider the case of J′ = 1/2:
D†

zDz = ∑
m,m′

4(−1)2m (1/2 1 1/2
m′ 0 −m)

2 { 0 1/2 1/2
3/2 1 1 }

2 ∣m⟩ ⟨m′∣ , (B.26)

D†+D+ = ∑
m,m′

4(−1)2m (1/2 1 1/2
m′ −1 −m)

2 { 0 1/2 1/2
3/2 1 1 }

2 ∣m⟩ ⟨m′∣ , (B.27)

D†−D− = ∑
m,m′

4(−1)2m (1/2 1 1/2
m′ 1 −m)

2 { 0 1/2 1/2
1/2 1 1 }

2 ∣m⟩ ⟨m′∣ , (B.28)
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D†
zDz = − 19Id, (B.29)

D†+D+ = −29 ∣−1/2⟩ ⟨−1/2∣ , (B.30)

D†−D− = −29 ∣1/2⟩ ⟨1/2∣ , (B.31)

D†
xDy = − i

2
( 29 0
0 − 2

9
) , (B.32)

= − i
9
σz . (B.33)

In summary, we express the fine structure polarizability tensor as:

α(J)qq′ = d2sp3 ( 2
3∆2
+ 1
3∆1
) δi j + id2sp

9
( 1
∆1
− 1
∆2
) єi jkσk , (B.34)

and therefore, the lightshift operator as:

V̂(J)LS =∑
αβ

d2spE∗αEβ
12

[( 2
3∆2
+ 1
3∆1
) δαβ + i

3
( 1
∆1
− 1
∆2
) єαβγσγ] . (B.35)

B.2 Lightshift operator in the hyperfine basis

In order to express the lightshift operator in the hyperfine basis, we could add hyperfine closure
relations in the initial expression of the polarizability tensor in eq. (B.34). The matrix elements
in the hyperfine state basis would then be written with Clebsch-Gordan coefficients and matrix
elements from the tensor D†

qDq′ in the fine basis. Another method consists in rewriting the
polarizability tensor such that D†

qDq′ = IF ⊗ (scalar + vector)J. Then, the scalar part remains
unchanged while changing basis, and the vector part can be simplified using Landé projection
theorem:

⟨F,mF ∣V∣F′,mF′⟩ = ⟨F∣∣F ⋅V∣∣F⟩F(F + 1) × ⟨F,mF ∣F∣F′,mF′⟩ . (B.36)

We use the relation ⟨F ⋅ J⟩ = ⟨I ⋅ J⟩ + ⟨J2⟩ = ⟨F2⟩−⟨I2⟩+⟨J2⟩2 to get the prefactor which are 1/4 and−1/4 for, respectively, the HF ground state manifolds F=2 and F=1.
The lightshift operator then takes its final form:

V̂LS = d2
sp∣E∣2
12

( 2
3∆2
+ 1
3∆1
) Id +W ⋅ F, (B.37)

W = ± id2
sp

36
( 1
∆1
− 1
∆2
) Ẽ∗ × Ẽ, (B.38)

where the spin 1 matrices Fi can be found in chapter 1, section 3. We notice that the vectorW acts
on the atom the same way of a magnetic field does. Furthermore, this vector is not 0 only if the
field contains σ± polarization. Here, the sign of the vectorW correspond to themultiplets F = I± 1

2 .
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We give the expression for the S → P dipole matrix element for sodium (see ref. [37] for
example):

dsp =
√

9
8π2

є0λ3ħΓ, (B.39)

= 3.66 × 10−29Cm = 4.32ea0. (B.40)



C
Raman Schemes

Spin manipulation by RF coupling such as presented in chapter 2 is a well established technique,
but however has limits. The large wavelength of RF fields prevents direct spatial addressing of the
atoms and forbids large coupling in a metallic vacuum chamber. I will present here an alternative
solution based on Raman transitions.This solution has beenmade accessible by the new laser diode
based 589nm laser that I have developed (and described in annex A), and offers the opportunity
of position dependent couplings as well as large coupling strengths. It has one main drawback
compared to magnetic coupling, which is the spontaneous emission from the finite detuning
with the optical transition, that heats the atoms when the coupling is on. We recall the general
expression of the lightshift that we derived in appendix B:

V̂LS = d2
sp∣E∣2
12

( 2
3∆2
+ 1
3∆1
) +W ⋅ F, (C.1)

W = ± id2
sp

36
( 1
∆1
− 1
∆2
) Ẽ∗ × Ẽ, (C.2)

The lightshift hamiltonian is the sum of a spin independent term, that we have considered for our
dipole traps for example, and of a vector term, that acts as a magnetic field, and is non zero only in
presence of circularly polarized light.

C.1 Rabi oscillations with copropagating beams

interaction Hamiltonian

We consider the manifold F = 1 (F = I − 1/2) of the ground state of an alkali atom in presence of
two beams, propagating along axis x, polarized along axis x and z respectively, in presence of a
magnetic field along z of frequencies ω1 and ω2. The electric field is:

E = ezE0 cos (ω1t − kLx) + eyE0 cos (ω2t − kLx) , (C.3)

and the vectorW is:

W = −i
d2spE2

0

144
( 1
∆1
− 1
∆2
) (e−i∆ωt − ei∆ωt)ex , (C.4)
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Figure C.1: Schematic of Raman coupling between Zeeman sub-levels in F=1. On the left, we show
the three Zeeman levels of the F=1 manifold and the Raman transitions. On the right we show the
laser geometry including a bias magnetic field B and the polarization of the lasers.

where we have defined according to figure C.1:

∆ω = ω1 − ω2 = p − q + δ, (C.5)

The interaction Hamiltonian is written:

W ⋅ F = −i
d2spE2

0

288
( 1
∆1
− 1
∆2
) (F+e−i∆ωt − F+ei∆ωt + F−e−i∆ωt − F−ei∆ωt). (C.6)

It is convenient to express the Hamiltonian in the referential precessing at ∆ω. It transforms F+ into
F+ei∆ωt and F− into F−e−i∆ωt . We furthermore perform a rotating wave approximation, keeping
only time-independent terms and obtain:

W ⋅ Frot = −iΩR
2
(F+ − F−) = ΩRFy , (C.7)

where we have defined the effective Rabi frequencyΩR from the 2-level Rabi frequencyΩ0 = dspE0:

ΩR = Ω2
0

144
( 1
∆1
− 1
∆2
) . (C.8)

The Hamiltonian of the system is:

Htot = ( p22M + Vext) Id + (p − ∆ω)Fz − q ∣0⟩ ⟨0∣ +ΩRFy , (C.9)

and can be decomposed as the sum of a diagonal part H0 and a non-diagonal part Hint:

H0 = ( p22M + Vext − q) Id + ⎛⎜⎝
2q − δ 0 0
0 0 0
0 0 δ

⎞⎟⎠ , (C.10)

Hint = ΩRFy = ΩR√
2i

⎛⎜⎝
0 −1 0
1 0 −1
0 1 0

⎞⎟⎠ . (C.11)
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Figure C.2: Value of the figure of merit f as a function of the detuning of the Raman laser from
the D1 transition. It corresponds to the number of Rabi cycles per spontaneous emission cycle and
is calculated for the parameters of sodium.

Power per beam [mW] Ω0/h [GHz] ΩR/h [MHz] Rsp/2π [kHz]
100 17 2.6 1
10 5.4 0.26 0.1

Table C.1: Numerical estimation for Raman couplings with the geometry given in fig. C.1 beams
and a waist of 100 µm. Ω0 is the one photon coupling, ΩR is the two photons coupling and Rsp is
the spontaneous emission rate. We observe that the coupling achieved with this parameters are
at least one order of magnitude higher than what we can achieve with radiofrequencies (at most
Ω ∼ 20 kHz).
Rate of spontaneous emission and heating

In this paragraph, we calculate the spontaneous emission rate when a Raman coupling is applied
in order to infer the heating rates. In the limit of far detuned fields, the saturation parameters of the
D1 and D2 transition stay very small. In this limit, we can treat D1 and D2 lines as independent, and
sum the contribution of both lines with their respective transition strengths. In this approximation,
the spontaneous emission rate is:

Rsp = ΓΩ2
0 ( 1

3∆2
1
+ 2
3∆2

2
) . (C.12)

In the limit where the effective Rabi frequency is very small compared to linear Zeeman Energy,
such that the spin-dependent lightshift term can be neglected, we can define the figure of merit f :

f = Ωeff
R

Rsp
= 1

∆1
− 1

∆2

48Γ ( 1
∆2
1
+ 2

∆2
2
) . (C.13)

This quantity corresponds to the number of Rabi cycles one can perform before a spontaneous
photon is emitted. It is showed in figure C.2. We find that the figure of merit reaches a maximum
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f = 185 for a detuning of ∆1/h = 214 GHz. With this value for the detuning, and given beams
of waist w = 100 µm, the values of relevant quantities are given on table C.1. For the following
numerical estimations, we will always consider this detuning. We observe that the obtained
couplings are high as compared with magnetic field (factor of 10 to 100 higher). We see that in 10
Rabi periods, there are 40 scattered photons in a 10000 atoms sample, corresponding to a 4nK
heating.

C.2 Spin Orbit coupling: Spielman scheme

We consider in this section the scheme used in [224], two beams: one polarized σ+ propagating
along z and one polarized along z propagating along x. The magnetic field is set along z. The
electric field is:

E = e+E0 cos (ω1t − kLz) + e0E0 cos (ω2t − kLx) , (C.14)

and the vector fieldW is written:

W ⋅ F = d2spE2
0

144
( 1
∆1
− 1
∆2
)(F+e−i(∆ωt−kL(z−x)) + F−ei(∆ωt−kL(z−x)) − F0) , (C.15)

If we now perform the same unitary transformation as in the previous section, and keep only the
slow rotating terms, the interaction Hamiltonian is then:

W ⋅ Frot = ΩR (F+eikL(z−x) + F−e−ikL(z−x) − F0) , (C.16)

The full Hamiltonian is then written:

Htot = ( p22M + Vext) Id + (p − ∆ω −ΩR)Fz − q ∣0⟩ ⟨0∣
+ 2ΩRFx cos (kL(z − x)) − 2ΩRFy sin (kL(z − x)) . (C.17)

We note that in presence of a large quadratic Zeeman energy such as in the case of ref. [224], only
one of the Raman transition mF = 0→ mF = +1 or mF = 0→ mF = −1 can be resonant. These two
components are not miscible which is an issue to observe the phase transition of ref. [224] for
example. Direct coupling between the mF = +1 and mF = −1 states is not allowed in this geometry
with two photons as we can only achieve ∆mF = ±1 with one σ and one π beam. As we will see
in the next paragraph, this is can however be achieved by adding one additional σ beam with an
appropriate frequency to realize a four photons transition.

C.3 Spin orbit coupling: 4 photons transitions

4 photon coupling

Direct coupling between the mF = +1 and mF = −1 states with Raman beams with the previous
σπ scheme is not possible due to momentum conservation. We examine a 4 photon scheme, where
there are 2 σ+ polarized beams, both propagating along z and of frequencies ω1 and ω3 and one π
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Figure C.3: Schematic of Raman coupling using one σ and one π beam crossing at an angle. We
note that in presence of a large quadratic Zeeman energy, only two of the Zeeman states can be
coupled resonantly.
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Figure C.4: Schematic of population transfer from mF = 1 to mF = −1 going through mF = 0 with
a four photon transition using two σ beams and one π beam. We note that an effective four photon
coupling between the two states mF = ±1 is realized only for a large enough detuning δ0.
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polarized beam of frequency ω2 propagating along x. According to the figure C.4 we have:

2δm = ω1 − 2ω2 + ω3 = 2p + δ, (C.18)
δ12 = ω1 − ω2 = p − q + δ0, (C.19)

δ32 = ω3 − ω2 = p + q − δ0 + δ, (C.20)
δ31 = ω3 − ω1 = 2q − 2δ0 + δ, (C.21)

and the field is written:

E = e+E0 cos (ω1t − kLz) + e02E0 cos (ω2t − kLx) + e+E0 cos (ω3t − kLz) . (C.22)

The lightshift Hamiltonian containing only two photons transitions can be written as the sum of
two operators describing the action of each pair of Raman beam:

W ⋅ F = H(12) +H(32) − 2ΩR cos(δ13t)Fz (C.23)

H(12) = ΩR (F+e−i(δ12 t−kL(z−x)) + F−ei(δ12 t−kL(z−x)) − Fz) (C.24)

H(32) = ΩR (F+e−i(δ32 t−kL(z−x)) + F−ei(δ32 t−kL(z−x)) − Fz) (C.25)

We also consider the Hamiltonian for 4 photons processes:

H4φ = ∣+1⟩ ⟨−1∣ ⟨+1∣H(32) ∣0⟩ ⟨0∣H(12) ∣−1⟩δ0
+ h.c., (C.26)

= Ω2
R
δ0

e−i(2δm t−kL(z−x)) ∣+1⟩ ⟨−1∣ + h.c.. (C.27)

After a unitary transformation by operator Urot = exp(−iδm tFz),and keeping only stationary
terms, the full hamiltonian is written:

Htot =( p22M + Vext) Id + (p − δm − 2ΩR(1 + cos(δ13t)))Fz − q ∣0⟩ ⟨0∣
+ 2ΩR(Fx cos((δ12 − δm)t − ikL(z − x)) − Fy cos((δ12 − δm)t − ikL(z − x)))+ 2ΩR(Fx cos((δ32 − δm)t − ikL(z − x)) − Fy cos((δ32 − δm)t − ikL(z − x)))
+ Ω4φ

2
(∣+1⟩ ⟨−1∣ eikL(z−x) + ∣−1⟩ ⟨+1∣ e−ikL(z−x)),

(C.28)

where we define the 4 photon Rabi frequency:

Ω4φ = 2Ω2
R

δ0
= 2Ω4

0
δ0
( 1
∆1
− 1
∆2
)2 1

124
. (C.29)

We note that the factor 124 limits the coupling strength available with this scheme. The population
of the intermediary state during this process is:

n0 ∝ Ω2
R
δ20

. (C.30)
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P0 [mW] δ0/h [MHz] ΩR/h [MHz] Ω4φ/h [Hz] Rsp/2π [kHz] n0 [%]

100 80 2.6 4.1k 1 0.01
100 10 2.6 33k 1 0.7
10 10 0.26 329 0.1 0.007
10 1 0.26 3.3k 0.1 0.7
10 0.1 0.26 33k 0.1 66
1 0.1 0.026 330 0.01 0.7
1 0.01 0.026 3.3k 0.01 66

Table C.2: Numerical estimations for 4 photons Raman couplings using beams of 100 µm. P0 =
є0c∣E0∣2 is the power per σ beam, ΩR is the two photon Rabi frequency, Ω4ϕ is the 4 photons
Rabi frequency, Rsp is the spontaneous emission rate and n0 is the population in the state mF = 0
during the process.

We calculated the rate of spontaneous emission by summing the contribution of the 3 beams:

Rsp = 4ΓΩ2
0 ( 1

3∆2
1
+ 2
3∆2

2
) . (C.31)

Hence, the way to favor the 4 photon process compared to the 2 photons one is to increase the
intermediary detuning δ0 up to a large value. If p/h = 7MHz, q/h = 28kHz, and we choose the
following frequencies for the lasers:

ω1 = ωL + ωAOM, (C.32)
ω3 = ωL − ωAOM, (C.33)
ω2 = ωL − p. (C.34)

In practice, ωAOM could be either between 1MHz and 10MHz by using two AOMs with the same
diffraction order, or ∼ 100MHz if we use two opposite diffraction order.
We compute some relevant quantities for this scheme on table C.2.

Spin orbit coupling Hamiltonian

With this parameter we can drop the rapidly oscillating terms from equation (C.28) to obtain:

Htot = ( p22M + Vext) Id+ (−δ/2 − 2ΩR)Fz − q ∣0⟩ ⟨0∣
+ Ω4φ

2
(∣+1⟩ ⟨−1∣ eikL(z−x) + ∣−1⟩ ⟨+1∣ e−ikL(z−x)), (C.35)

The m f = 0 state is decoupled, and we can rewrite the Hamiltonian in the pseudo spin 1/2 basis{m f = −1,m f = +1}:
H2 = ( p22M + Vext) Id− (δ/2 + 2ΩR) σz +Ω4φσx cos (kL(z − x)) −Ω4φσy sin (kL(z − x)),

(C.36)
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We define an alternate basis to ease the calculations:

x̃ = (z + x)/√2, (C.37)

ỹ = (z − x)/√2, (C.38)
ỹ = y. (C.39)

Then we perform a rotation of angle Φ̂ = √2k ỹ around the axis z. In particular, Φ̂ and p2ỹ do
not commute and the application of the rotation operator to the kinetic energy create new terms
describing spin-orbit coupling:

R†
Φ̂p2ỹRΦ̂ = p2ỹ + 2ħ

√
2kLp ỹσz + 2ħ2k2L. (C.40)

The full Hamiltonian can be expressed:

R†
Φ̂H2RΦ̂ = ( p22M + Vext) Id− (δ/2 + 2ΩR) σz +Ω4φσx + 2ħ2√2kLk ỹ

2M
σz + 2Erec, (C.41)

where Erec is the recoil energy. We obtain an hamiltonian containing a spin-orbit coupling term.

conclusion

In table C.2 we show the coupling strength predicted for this scheme using realistic experimental
parameters. As discussed in ref. [224] for example, relevant values for the Raman couplings are
set by the recoil energy associated with the wavelength λ = 589nm of the Raman laser which
is Er ≃ 25 kHz. We observe that even though table C.2 suggests that this regime can be reached
with relatively high power in each beam (P0 = 100mW) and not too large intermediary detuning
(δ0 = h ⋅ 10MHz), the calculated heating rate is likely to be to high to allow for a sufficient
equilibration time to perform a spin orbit coupling experiment.
Even though the regime where we couple two components does not seem to be accessible, we

could instead choose a relatively low value of the intermediary detuning δ0. The figure of merit
would be similar to the case of two photon couplings, and would allow to couple the three Zeeman
components resonantly in presence of a finite quadratic Zeeman energy.



D
Spin-mixing oscillations

In this appendix we will describe spin mixing oscillations, which are dynamical manifestations
of the spin exchange interactions in spinor BEC (see refs. [43–45, 49, 51]). In our experiment, spin
mixing oscillations manifest in two occasion. First, they are a very convenient way to measure spin-
exchange interaction in spinor Bose-Einstein condensate. Second, spin mixing “oscillations” can
affect the populations during a ramp of magnetic field. This can modify the measured populations
after a Stern-Gerlach imaging sequence (see sec. 2.2.1), in which we ramp large fields to create the
spin dependent force required for Stern-Gerlach imaging.
The theoretical description of spin-mixing oscillation follows from the time dependent Gross-

Pitaevskii equation with the spin Hamiltonian (3.1) for a BEC in the single mode regime. Authors
of ref. [44] derived a set of coupled equations for the evolution of the spinor wavefunction (3.2):

ṅ0 = 2Us
ħ

n0

√(1 − n0)2 −m2
z sin(Θ) (D.1)

Θ̇ = 2q
ħ
+ 2Us

ħ
(1 − 2n0) + (2Us

ħ
) (1 − n0)(1 − 2n0) −m2

z√(1 − n0)2 −m2
z

cos(Θ). (D.2)

These equations are solved numerically in the cases considered in this annex. In the following, I
will present two example of situation in which the description of spin-mixing oscillations allows
either to measure the spin-exchange energy or to improve the accuracy of population counting.

D.1 Spin mixing oscillations after a Rabi Oscillation

We designed an experiment to trigger spin mixing oscillations on purpose to extract the spin
exchange energyUs from themeasured oscillation period.We bring the cloud to a non equilibrium
state by performing a spin rotation from a state polarized in mF = 0 (see sec. 2.4.1) that has been
“purified” by transverse distillation (see sec. 2.4.4) and observe the evolution of the population of
the component mF = 0 with a varying hold time. We set the initial population of the mF = 0 state
after a rotation to n′0 ∼ 0.3 and observe in figure fig. D.1 an oscillation of the population after a
hold time as predicted in ref. [44]. It is worth noting that the magnetization of the sample does
not vary during the oscillation because they originate from spin changing collisions that conserve
mz . We compute the evolution of n0 from eqs.(D.1), (D.2), that we solve numerically. We extract
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Figure D.1: Spin mixing oscillations obtained by free evolution of a spinor BEC during a time t
after a rotation of a nematic state. We determine the period by a fit to a exponentially damped sine
function (in red). We observe a rapid dephasing of the oscillation due to atom number fluctuations
in this particular dataset.

the oscillation period by fitting numerical data and present them in fig. D.2. We can deduce from
the oscillation period the actual interaction strength from our data Us = 38Hz.
We observe a rapid dephasing of spin mixing oscillation (only ∼ 10 period are visible). This

could be explained by atom number fluctuations during the data taking, that effectively varies the
spin-exchange energy hence the spin mixing oscillatory period (see fig. D.2).
The oscillations presented in fig. D.1, are obtained from rotation of a nematic state such that

Θ(t = 0) = π. We performed a similar experiment, this time by rotating an oriented state until
mz ∼ 0. This produces quite different results, shown in fig. D.3 in which we compare the results of
these two experiments. This is because in the case of the rotation of an oriented state, the phases
of the three Zeeman component are equal ϕ+1 = ϕ0 = ϕ−1 after rotation such that Θ(t = 0) = 0. In
this case, the period of the oscillations, their amplitude and initial phase are different as observed
in fig. D.3.
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Figure D.2: Oscillation period of spin mixing oscillations obtained from a numerical solution
of eqs (D.1),(D.2). We determine the period by performing a sinusoidal fit of the simulations for
the first five oscillations. We plot with black points the periods, and corresponding spin exchange
energy obtained from damped sinusoidal fits of the data shown in fig. D.3. We notice the data
starting from an oriented state has higher spin exchange energy than the sample starting from a
nematic state. This is due to the higher atom number in the latter case N ≃ 11000 compared to
N ≃ 7000 in the former.
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Figure D.3: Spin mixing oscillations obtained by free evolution of a spinor BEC during a time t
after a Rotation of either a nematic or an oriented state. We observe that the initial derivative of
the evolution is opposite in both case due to the different initial phase (populations in mF = 0 are
comparable and mz is equal to 0 in both case).
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D.2 Evolution of the populations during a magnetic field ramp

In the experiment, the measurement of populations after a Rabi oscillations requires a mech-
anism to “freeze” spin mixing dynamics. We do this by ramping a large homogeneous field im-
mediately after the spin rotation. Indeed, in the case the quadratic Zeeman shift is large q≫ Us,
eq (D.2) reduces to Θ̇ ≃ 2q/ħ, such that Θ ≃ 2qt/ħ. In this case, the right hand side of eq. (D.1)
averages out, and the evolution of the populations is suppressed (see ref. [44]). We simulate this
evolution by solving numerically eqs. (D.1), (D.2) including a time dependent quadratic Zeeman
energy (see fig. D.4 for a representation of this ramp).
We start from a cloud with mz ≃ 0.33, n0 ≃ 0.39 (data from the measurement in chapter 3),

and apply a linear ramp of magnetic field ramp along the y axis from 0 to 3 G in 3 ms. We show
the effect of this ramp in fig. D.4. We notice that the main effect of the spin mixing oscillations
in this case consist in a small systematic error on the order of 3% on the measured mF = 0This
translates in an error of 1.5% in the populations of the mF = ±1. The spin mixing dynamics does
not affect the magnetization such that the measurement of phase locking described in chapter 3 is
not affected. However, the measurement of the spin temperature, based on the actual mean of n0
requires to be corrected for this effect. Concerning the measurement on chapter 4, we expect the
datasets taken at B = 0.5 G and B = 5.6 G not to be affected due to the relatively high quadratic
energy already before the magnetic field ramp of the Stern-Gerlach imaging sequence. The case of
the dataset taken at B = 0.1 G is similar to the case described in sec. D.4. We do not expect that the
small increase of population in the mF = 0 to be mistaken for condensation, given the associated
increase in density would be small.
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Figure D.4: Illustration of the effect of spin changing collisions during a ramp of themagnetic field.
We use a linear ramp of the magnetic field, which corresponds to a quadratic ramp of the quadratic
Zeeman energy. On the lower panel, we see an increase of n0 of 3% between the beginning and the
end of the magnetic field ramps (discarding the small amplitude oscillation after the ramp ends).





E
Perturbative development around

the point of simultaneous condensation

We notice in fig. 4.17 a discontinuity of the second critical temperature Tc2, to the left of the
point m∗z (∗ stands for the point where both specie condense at the same time in the ideal case, the
“crossing point”, as described in the first chapter) in the case where B=5.6 G (we recall it corresponds
to q = 8.9 kHz, and that α = exp(−βq)).
Expansion near the point of simultaneous condensation

In this paragraph, wewill show that the discontinuity can be deduced from a first order expansion
around the point of coordinates (Mz , t, µ) = (M∗z , t∗, 0) such that (Mz , t, µ) = (M∗z + δMz , t∗ +
δt, δµ). Equations (4.36) and (4.37) on the one hand and (4.38) and (4.39) on the other hand, are
computed using the chemical potentials at the second critical temperature in eqs. (4.33), (4.34),
(4.35). The condensate population can be estimated within a Thomas Fermi approximation by
Nc = (2δµ)5/2aho/15a. At first order in δµ, δt/t∗, we can neglect the condensate population and
the expansion on both sides of the crossing point take the same form such that we have :

N =
N³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

t3∗ (2g3(1) + g3 (α∗2))+
t3∗ (2g2(1) + g2 (α∗2)) δµ̄+
t3∗ ( 3t∗ (2g3(1) + g3 (α∗2)) + 2q̄

t2∗ g2(α∗2)) δt + O(δµ5/2),
(E.1)

M∗z + δMz =
M∗z³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

t3∗ (g3(1) − g3 (α∗2))+
t3∗ (g2(1) − g2 (α∗2)) δµ̄+
t3∗ ( 3t∗ (g3(1) − g3 (α∗2)) − 2q̄

t2∗ g2 (α∗2)) δt + O(δµ5/2).
(E.2)

Here we introduce the reduced quadratic Zeeman energy and chemical potential q̄ = q/ħω and
δµ̄ = δµ/ħω̄, and the normalized magnetization mz = Mz/N. We recall that t = kBT/ħω is the
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reduced temperature. We simplify and renormalize eqs (E.1), (E.2) by N andM∗ respectively and
we obtain :

0 = 2g2(1) + g2 (α∗2)
2g3(1) + g3 (α∗2) δµ̄ +

⎛⎝ 3t∗ − 2q̄
t2∗

g2 (α∗2)
2g3(1) + g3 (α∗2)

⎞⎠ δt, (E.3)

δmz
m∗z =

g2(1) − g2 (α∗2)
g3(1) − g3 (α∗2) δµ̄ +

⎛⎝ 3t∗ − 2q̄
t2∗

g2 (α∗2)
g3(1) − g3 (α∗2)

⎞⎠ δt. (E.4)

We further develop:

0 = ⎡⎢⎢⎢⎣
2g2(1) + g2 (α∗2)
2g3(1) + g3 (α∗2)

⎤⎥⎥⎥⎦ δµ̄ + [3 +
2q̄t2∗
N

g2(α∗2)] δt
t∗ , (E.5)

δmz
m∗z =

⎡⎢⎢⎢⎣
g2(1) − g2 (α∗2)
g3(1) − g3 (α∗2)

⎤⎥⎥⎥⎦ δµ̄ + [3 −
2q̄t2∗
m∗N g2 (α∗2)] δt

t∗ . (E.6)

At this point, we propose to set:

0 = Aδµ + Bδt/t∗, (E.7)
δmz
m∗z = Cδµ +Dδt/t∗, (E.8)

such that :

δmz
m∗z = (D −

BC
A
) δt

t∗ , (E.9)

If we consider the case of fig. 4.17, N=50000, ω = 2π ⋅ 500Hz and B = 5.6G, we have:
m∗z = 0.18, (E.10)

t∗ = 0.72N1/3, (E.11)
A ≃ 1.33, B ≃ 4.42, C ≃ 1.46, D ≃ 3.1, (E.12)

δmz
m∗z ≃ −1.78δt/t∗. (E.13)

We see that with these coefficients, there are no couple of solutions (δt, δµ) that provide a physical
solution when δmz < 0 as δt > 0 contradicts the initial assumption used to write eqs. (4.39),(4.38).
This is represented in fig. E.1, where we show the values of eq. (E.6) for several values of δµ.
We see that when neglecting the condensate population near the crossing point, there are no
solutions found to its left. This explains the discontinuity of the critical temperature in fig. 4.17. We
note that this development does not describe well the case of an ideal gas (where the condensed
population needs to be included even for very small δt/t∗). It does not explain either why the
second condensation takes place at lower temperature. We will now consider what happens for
lower temperatures where the approximation δt/t∗ ≪ 1 is not valid anymore. We note that for
lower temperatures, there may be a large condensate such that δµ≪ 1 is not valid either.
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Figure E.1: Values of eq. (E.6) for several values of δµ. We plot the result of eq. (E.5) by a black
dot on each line. We observe that there are no solutions found to the left of the crossing point.

Expansion at low temperatures

We try another approach in which we look at equations (4.38) and (4.39) at very low tempera-
tures, such that µ/t ≫ 1. In this case, we ignore the thermal population of the mF = ±1 outside of
the region of the condensate. This is done in eq. (4.28) by setting Γ(3/2, kβµc) ≃ 0, such that at
the second critical point we have:

N+1 = N′+1 ≃ 4π3 (tµ)3/2g3/2(1) (E.14)

N0 = Nc +N′0, (E.15)

N−1 = N′−1 ≃ 4π3 (tµ)3/2g3/2(α2) (E.16)

We have used the relation (RTF/λth)2 = tµ to express the thermal atom numbers in each compo-
nent. We can obtain an equation on the second critical temperature by dividing (4.39) and (4.38)
with definitions (E.14), (E.15), (E.16) for the population in each component.Within the assumption
µ/t ≫ 1, the mF = 0 is mostly condensed and we neglect its thermal population N′0 ≪ Nc for the
sake of simplicity. The condensed atom number is given in the Thomas Fermi approximation by:

Nc = (2µ)5/2aho
15a

(E.17)

We finally obtain:

mz ≃ g3/2(1) − g3/2(α2)
(g3/2(1) + g3/2(α2)) + √2aho

5πa
µ
t

. (E.18)

With this expression, we see that the issue highlighted by eqs. (E.5) and (E.6) no longer exists in
the low temperature regime. We see that reducing the temperature reduces α = exp(−βq) which
in turn increases the magnetization. In other words, due to the conservation of magnetization the
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Figure E.2: Values of eq. (E.18) for several values of µ. We plot the value of the magnetization
at the crossing point in red. Each intersection between the red dashed curve and eq. (E.18) is
a solution. However, for higher values of µ there are many solutions. The right solution will be
determined by the dependence of the thermal population in the mF = 0 state on temperature.
mF = −1 components always have a slightly larger chemical potential that the mF = +1 component.
As such, as the temperature decreases, the mF = +1 component will stay almost saturated while
the mF = −1 will be progressively depopulated. This explains that for mz < m∗z , no solution can
be found if the condensate is ignored. The total magnetization of the gas can be reduced by the
growth of the condensate. If we allow the chemical potential µ to take a finite value, we see that it
is possible to find a solution for the right hand side of eq. (E.18) just by increasing µ.
We plot in fig. E.2, eq. (E.18) for several values of µ. For µ > 0 we observe that several couples

of solution (t, µ) exist. The temperature dependence of the condensed fraction, which depends
on the interaction strength, will fix which couple of solution to consider. In the case described by
figure 4.17, the solution is around (0.5, 15), such that the assumption µ/t ≫ 1 is well verified and
the model above is realistic. We note that in this case neglecting the thermal fraction of the mF = 0
component is not completely justified (the formula derived in ref. [201] for low temperatures
predicts fc ≃ 0.73 for example), but this does not change the above behavior qualitatively.
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Résumé
Dans ce manuscrit, nous présentons une étude expérimen-
tale d’un gaz de Bose de spin 1 avec des interactions anti-
ferromagnétiques avec des atomes de sodium ultra-froids
dans l’état hyper�n F=1. Les trois composantes Zeeman sont
piégées simultanément dans des pièges dipolaires optiques.
Nous obtenons un condensat de Bose-Einstein spineur par
refroidissement évaporatif et nous étudions ses propriétés
magnétiques. Il y adeux typesd’interactionsdans le système :
des interactions de contact qui ne changent pas les popula-
tionsdes composantesZeemanetdes interactionsd’échange
de spin qui les modi�ent. Une compétition entre l’énergie
Zeeman et l’énergie d’échange impose l’ordre magnétique
dans le système.
Nous étudions dans un premier temps les phases magné-
tiques de condensats de Bose-Einstein spineurs a tempéra-
ture quasi nulle. L’état fondamental comporte deux phases
qui sont observées en variant le champ magnétique (donc
l’énergieZeemanquadratique) et lamagnétisationde l’échan-
tillon. Dans la phase antiferromagnétique, le spin de l’échan-
tillonest simplement selon l’axeduchampmagnétique.Dans
la phase polaire, une composante transverse apparait pour
minimiser l’énergie Zeeman. Pour une magnétisation nulle,
le condensat spineur forme un nématique de spin. Cet état,
nommé par analogie avec la phase nématique dans les cris-
taux liquides, est caractérisée par des �uctuations de spin or-
thogonales à un axe particulier, mais sans préférer une des
deux direction sur cet axe. Dans chacune des deux phases,
l’ordre nématique se manifeste par un minimisation de la
longueur du spin transverse en imposant une valeur particu-
lière (π) de la phase relative des composantes Zeeman
θ = ϕ+1 + ϕ−1 − 2ϕ0 . Nous mesurons la longueur du spin
transverse en analysant le bruit de spin après une rotation.
Dans un second temps, nous étudions la thermodynamique
d’un gaz de Bose de spin 1 près de la température critique
pour la condensation de Bose-Einstein. Nous mesurons plu-
sieurs scénarios de condensation séquentiels en fonction de
la magnétisation et du champ magnétique. La température
critique mesurée révèle que les interactions ont un e�et im-
portant quand la condensation d’une composante se fait en
présence d’un condensat dans une autre composante. Nous
utilisonsune théoried’Hartree-Fock simpli�ée, ennégligeant
les interactions d’échange de spin. Nous constatons que les
résultats expérimentaux sont enbonaccord. Cependant, pour
de bas champs magnétiques, le diagramme de phase ther-
modynamique est largement modi�é par les interactions
d’échange de spin, ce qui pose de nouvelles questions sur
leur rôle a température �nie.

Mots Clés
Condensats de Bose-Einstein, magnétisme, spineur, gaz ul-
trafroids, ordre nématique de spin, thermodynamique.

Abstract
In this manuscript, we present an experimental study of a
Spin 1 Bose gas with antiferromagnetic interactions with ul-
tracold sodium atoms in the F=1 manifold. The three Zee-
mancomponents are trapped simultaneously inoptical dipole
traps. By performing evaporative cooling, we obtain quasi-
pure spinor Bose-Einstein condensates of which we study
themagnetic properties. There are two types of interactions
between the constituentsof the system: Contact interactions
that do not change the Zeeman populations and
spin-exchange contact interactions that do. A competition
betweenZeemanenergyand the spin-exchangeenergy sets
the magnetic ordering in the system.
We �rst study the magnetic phases of spinor Bose-Einstein
condensatesnear zero temperature. Thegroundstatepresent
two phases that are observed by varying the magnetic �eld
(hence the quadratic Zeeman energy) and the magnetiza-
tion of the sample. In the antiferromagnetic phase, the spin
of the sample is purely along the direction of the magnetic
�eld. In the broken-axisymmetry phase, a transverse compo-
nent appears in order to minimize the Zeeman energy. For
zero magnetization, the spinor condensate forms a spin ne-
matic. This state, named in analogy with the liquid crystal
nematic phase, is characterized by spin �uctuations orthog-
onal to a particular axis, with no preferred direction along
that axis. In both phases, spin nematic order manifests as
a minimization of the transverse spin length that is realized
by enforcing aparticular value (π) of the relative phase of the
Zeeman components θ = ϕ+1 + ϕ−1 − 2ϕ0 . We measure the
transverse spin length by analyzing spin noise after a spin
rotation.
Second, we study the thermodynamics of an antiferromag-
netic spin 1 Bosegas next to the critical temperature for Bose-
Einstein condensation. We measure several sequential con-
densation scenarii depending on themagnetization and the
magnetic �eld. The measured critical temperatures reveal a
large e�ect of interactions when one of the Zeeman compo-
nent condenses in presence of a condensate in another com-
ponent. We use a simpli�ed Hartree-Fock theory, neglect-
ing the spin exchange interactions and note a good agree-
ment with our data. However, for low magnetic �elds, the
thermodynamic phase diagram is strongly modi�ed which
raises new open questions about the role of spin exchange
interactions at �nite temperatures.

Keywords
Bose-Einstein condensates,magnetism, spinor, ultracoldgases,
spin nematic order, thermodynamics.
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