Nowadays, there are a lot of applications related to machine vision and hearing which tried to reproduce human capabilities on machines. These problems are mainly amenable to a temporal signals classification problem, due our interest to this subject. In fact, we were interested to two distinct problems, humain gait recognition and audio signal recognition including both environmental and music ones. In the former, we have proposed a novel method to automatically learn and select the dynamic human body-parts to tackle the problem intra-class variations contrary to state-of-art methods which relied on predefined knowledge. To achieve it a group fused lasso algorithm is applied to segment the human body into parts with coherent motion value across the subjects. In the latter, while no conventional feature representation showed its ability to tackle both environmental and music problems, we propose to model audio classification as a supervised dictionary learning problem. This is done by learning a dictionary per class and encouraging the dissimilarity between the dictionaries by penalizing their pairwise similarities. In addition the coefficients of a signal representation over these dictionaries is sought as sparse as possible. The experimental evaluations provide performing and encouraging results.
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Chapter 1 Introduction

Human perception is the process of recognizing (being aware of), organizing (gathering and storing), and interpreting (binding to knowledge) sensory information.

Perception deals with the human senses that generate signals from the environment through sight, hearing, touch, smell and taste. Another simple definition of perception is the process by which we interpret the world around us, forming a mental representation of the environment. Human brain makes assumptions about the world to overcome the inherent ambiguity in all sensory data. Vision and audition are the most important and well understood human senses. In the real world these senses provide us with information about the more remote surroundings, as opposed to taste (degustation), smell (olfaction) and touch (pressure) which provide information about our immediate vicinity. Furthermore vision and audition are able to communicate spatial and temporal information of the environment and objects.

Understanding how we perceive the world, and using that knowledge to make intelligent machines that can mimic us, has been an ongoing and exciting scientific quest. Vision has had the lion's share of attention in the field. Despite our thinking is so concretely grounded in vision than hearing, this latter is of big important for a lot of tasks and has known a growing attention in the recent past years. For instance, we can hear the car we did not see approaching us in the pedestrian crosswalk, we can recognize a piece of music or we can recognize a speaker, etc.

In intelligent systems, different embedded sensors such as digital cameras and microphones have shown good ability to capture information in same manner human perceives. However machines do not have the ability to analyze, interpret and extract useful information in order to take relevant decisions. Fortunately, with the development of machine learning and artificial intelligence techniques this became possible.

Currently there are a lot of applications related to machine vision and hearing.

In this thesis we are focused on two distinct problems: human gait recognition and audio signal recognition. The former stands for the recognition of humans identity based on the manner they walk while the latter represents the recognition of audio data including computational auditory scene recognition and music chord recognition. To tackle these problems, they are frequently amenable to a signal classification problem, due our interest to the topic of automatic signal recognition.

In chapter 2, we describe the notion of temporal signals and different applications related to it. We further introduce the architecture of an automated signal-based recognition system which seeks to transform the raw information into adequate characteristics allowing to classify the studied signal. Its three basic subtasks corresponding to feature extraction, feature representation and classification are also well detailed. These subtasks seek to generate features from objects, mapping these features into appropriate discriminative space where objects from different groups are well separated and finally learn a classifier.

In chapter 3, we treat the problem of human gait recognition. It is a very challenging problem due to the various intra-class variations caused mainly by clothing and view-angle variations in addition of carrying-conditions which drastically influence the classification accuracy. To tackle this problem, we propose to automatically learn and select the dynamic body-parts which are proven to be robust to the intra-class variations. The existing methods in the literature tried to select these body-parts based on predefined anatomical properties. Furthermore, we have introduced several methods based on empirical experiments (Rida et al., 2016a(Rida et al., , 2014b,a),a). Contrary to all these previous methods, our novel method is totally automated based on the group fused Lasso of motion (Rida et al., 2016c(Rida et al., , 2015a[START_REF] Rida | 123 Acoustic scene classification: Classifying environments from the sounds they produce[END_REF]. The experiments are performed on CASIA dataset B to evaluate its ability to handle the carrying, clothing and view angle variations. Obtained results are compared to the state-of-the-art methods.

In chapter 4, we interest to the problem of audio signal recognition. We treat two distinct problems: computational auditory scene recognition and music chord recognition. While no conventional feature representation showed its ability to tackle both problems, various hand-crafted features have been introduced to solve each specific task. Here, we propose to model audio classification as a supervised dictionary learning problem seeking to minimize and maximize the intra-class and inter-class variations respectively. The resulting optimization problem is non-convex and solved using a proximal gradient descent method. Experiments are performed on both simulated music chord and computation auditory scene recognition databases (East Anglia and Rouen). Obtained results are compared to conventional hand-crafted state-of-the-art features including our introduced Interpolated Power Spectral Density (Rida et al., 2014c).

In the chapter 5, we offer our conclusion as well as our perspectives.

Over the past two decades, there has been a massive and abundant amount of data garnered from social media, data from internet-enabled devices (including smartphones and tablets), video and voice recordings (digital cameras, microphones), etc. The recorded data represents a huge and important resource of information and knowledge which could be exploited in real life applications such as, security, education, healthcare etc. Despite the ability of recorded data to give useful information, it is not always captured in ready and adequate format for analysis and interpretation which clearly shows the need of novel efficient methods to address this problem. However, doing this correctly and completely represents a continuous challenging problem which took the effort and attention of researchers.

Due to the huge progress of the recording devices, data from heterogeneous nature can be recorded, such as spatial, temporal and spatio-temporal. Nowadays, time-based data is of particular interest since it has the ability to capture the characteristics evolution of the data over time. The temporal data could be gait, auditory scene, piece of music, and so on. In this context, we are interested in automatic temporal signals recognition which has known a keen interest in many applications related to audio information retrieval and security.

Automatic signal recognition consists in determining the corresponding class for a given input signal (the signal is assumed to belong to one predefined class). In this chapter, we introduce the notion of temporal signals recognition and some of its dominant applications. We further explain the architecture of a recognition system and its different stages including feature extraction, feature representation and classification. Different approaches in the literature belonging to each step are presented.

Temporal signals

Temporal signals constitute a popular class of signals, where data records are indexed by time. There is a large variety of examples in the context of temporal signal recognition applications; within the most popular ones we can find: audio signal recognition or human behavior analysis and recognition.

Audio signal recognition

Human listeners are very good at all kinds of sound detection and identification tasks, from understanding heavily accented speech to noticing a ringing phone underneath music playing at full blast. Efforts to duplicate these abilities on computer have been particularly intense in the area of audio signal recognition. The beginning was with speech-based applications [START_REF] Rabiner | Fundamentals of speech recognition[END_REF], later sis. These trends of research aim at building intelligent machines able to interpret and infer based on audio information.

A Speech

Speech has been one of the fundamental audio research topics for many years now. There are three main topics in speech research in recognition context: speaker, speech and language recognition. Speaker recognition is the general term of discriminating one person from another based on the sound of their voices. It was for instance a good biometric modality used as alternative of conventional passwords, personal identification numbers (PINs) or smart cards [START_REF] Douglas | Robust text-independent speaker identification using gaussian mixture speaker models[END_REF][START_REF] Douglas A Reynolds | Speaker verification using adapted gaussian mixture models[END_REF][START_REF] Douglas | Speaker identification and verification using gaussian mixture speaker models[END_REF]. Speech recognition is the ability of a machine to convert a speech signal to a readable sequence of words and phrases [START_REF] Lawrence R Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF][START_REF] Rabiner | Fundamentals of speech recognition[END_REF][START_REF] Xiong | Achieving human parity in conversational speech recognition[END_REF], while language recognition refers to the process of automatically identifying the language spoken in a speech sample [START_REF] Dehak | Language recognition via i-vectors and dimensionality reduction[END_REF][START_REF] Li | Spoken language recognition: from fundamentals to practice[END_REF].

B Automatic music transcription

In the past years, the problem of Automatic Music Transcription (AMT) has known an increased interest due to many applications associated with it, such as, interactive music systems, automatic search and annotation of musical information, as well as musicological analysis [START_REF] Pablo | Towards the automated analysis of simple polyphonic music: A knowledge-based approach[END_REF][START_REF] Klapuri | Signal processing methods for music transcription[END_REF]. It corresponds to the process of taking a sequence of sound waveform and extracting from it some form of musical notation related to the high-level musical structures [START_REF] Juan | Techniques for automatic music transcription[END_REF]. AMT machine generally follows three main stages, spectral estimation, pitch detection and symbol formation (Gerhard, 2003a). Spectral estimation is usually done with Fourier analysis and the detected pitch information is represented in recognizable format by humans and computers such as Music Instrument Digital Interface (MIDI). A melody line represented by a series of pitches could be represented in any key signature.

The AMT problem can be divided into several subtasks such as, musical instrument identification which seeks to identify the musical instrument(s) playing in a music piece [START_REF] Herrera-Boyer | Automatic classification of pitched musical instrument sounds[END_REF][START_REF] Bay | Multiple-timbre fundamental frequency tracking using an instrument spectrum library[END_REF]; onset detection which aims to find beginnings of notes or events [START_REF] Juan | A tutorial on onset detection in music signals. Speech and Audio Processing[END_REF][START_REF] Dixon | Perceptual smoothness of tempo in expressively performed music[END_REF] or music chord recognition [START_REF] Fujishima | Realtime chord recognition of musical sound: A system using common lisp music[END_REF][START_REF] Lee | Acoustic chord transcription and key extraction from audio using key-dependent hmms trained on synthesized audio. Audio, Speech, and Language Processing[END_REF][START_REF] Oudre | Template-based chord recognition: Influence of the chord types[END_REF]. The latter represents the most fundamental structure and back-bone of the tonal system which makes them deft to represent occidental music. Moreover harmonic informations extracted from chord recognition task can serve as features for high level tasks such as music genre classification or music retrieval.

Overview of Signal Classification

C Computational auditory scene analysis

Perception refers to the process of becoming aware of the elements of the environment through physical sensation, which can include sensory input from the eyes, ears, nose, tongue, or skin. While most of the efforts have focused on vision perception (it represents the dominant sense in humans to build intelligent artificial machines), there is now a growing interest based on audio modality. Computational Auditory Scene Analysis (CASA) refers to the computational analysis of an acoustic environment, and the recognition of specific sounds and events in it. Automatic sound event detection (also called acoustic event detection) and Computational Audio Scene Recognition (CASR) represent two emerging topics in the general context of CASA [START_REF] Wang | Computational auditory scene analysis: Principles, algorithms, and applications[END_REF]. The former aims to process the continuous acoustic signals and convert them into symbolic descriptions of the corresponding sound events present at the auditory scene when the latter seeks to recognize the acoustic environment or context. Applications that can specifically benefit from CASA include automatic tagging in audio indexing [START_REF] Mesaros | Acoustic event detection in real life recordings[END_REF], context-aware services [START_REF] Schilit | Context-aware computing applications[END_REF], intelligent wearable devices [START_REF] Xu | Intelligent wearable interfaces[END_REF] and robotics navigation systems [START_REF] Chu | Where am i? scene recognition for mobile robots using audio features[END_REF].

Human behavior analysis and recognition

There is an increasing interest in video surveillance applications to propose solutions able to analyze the human behaviors and identify individuals. Currently, visual surveillance is one of the most active research areas in computer vision and pattern recognition. The goal of visual surveillance is not only to replace the human eyes by cameras but also to make the surveillance task as automatic as possible. Applications in visual surveillance can be divided into two main tasks, human behavior analysis and person recognition.

A Human behavior analysis

In the past years, a considerable number of surveillance cameras have been installed in public places, train stations, airports and many research efforts have been devoted to build intelligent systems able to analyze the visual data in order to extract information about the humans behavior in scenes. Ideal intelligent monitoring system should be able to automatically, analyze the collected video data, detect the suspicious or endangering behaviors and give out an early warning before the adverse event happens.

Many suspicious behaviors could be defined depending on the application domain, such as loitering (waiting time to catch a bus longer than a threshold time) illustrated in Figure 2.2 or fighting shown in Figure 2.3. Detection of suspicious

B Human recognition in surveillance systems

A system which detects abnormal behavior should also be able to identify all the suspicious persons in the scene, and track them across the zones. Monitoring system requires not only to estimate the location and behavior, but also to obtain the identity information.

Gait is the most suitable biometric modality in the case of intelligent video surveillance [START_REF] James B Hayfron-Acquah | Automatic gait recognition by symmetry analysis[END_REF]. In monitoring scenes, people are usually distant from cameras, which makes most of biometric features not suitable even the use of face for identification. The drawbacks are obvious, for example, view angle variations and occlusions cause the impossibility to capture the full faces and distance brings low-resolution face images. Therefore, face can not always achieve good performances in practice. In contrast, gait is a behavioral biometric, including not only individual appearance, such as limb, leg length, width, but also the dynamic information of individual walking. Compared with other biometric modalities, gait is remote accessed and difficult to imitate or camouflage. Moreover, the capturing process does not require cooperation, contact with special sensor, or high images resolution [START_REF] Mark S Nixon | Automatic gait recognition[END_REF][START_REF] Nikolaos V Boulgouris | Gait recognition: a challenging signal processing technology for biometric identification[END_REF].

Given temporal signals (either audio or video), signal-based recognition systems mainly proceed by transforming the raw information into adequate characteristics allowing to recognize or to classify the studied signal. In the following we review the overall architecture of such a system and present the steps its construction involves.

Architecture of automated recognition systems

Assume that we have several objects associated with classes and that objects belonging to the same class share the same features more than with objects in other classes. The pattern recognition problem consists of assigning a new unlabeled object to a class. It is accomplished by determining the features of the object and identifying the class of which those features are most correlated.

Given the goal of recognizing objects based on their features, the main task of an automated recognition system can be divided into three basic subtasks: the description subtask which generates features of an object using feature extraction techniques, mapping raw features into another discriminative space where objects from different groups are well separated by feature representation techniques and finally the classification subtask which assigns a class label to the object based on those features and a trained classifier (see Figure 2.4).

As the ultimate goal of an automated recognition system is to discriminate the class membership of the observed novel objects, a good functional automated pattern recognition system should be able to classify the novel observed objects with the minimum misclassification rate possible.

Raw Data

Feature Extraction

Feature Representation Classification Predicted Label Figure 2.4 -Scheme of a conventional recognition system.

There are two fundamental approaches for implementing a recognition system: statistical and structural approach [START_REF] Anil K Jain | Statistical pattern recognition: A review. Pattern Analysis and Machine Intelligence[END_REF]. Each one employs different techniques to implement the feature extraction, representation and classification tasks.

Feature extraction

Relevant and discriminative features are of critical and fundamental importance to achieve high performances in any automatic pattern recognition system. Feature extraction seeks to transform and fix the dimensionality of an initial input raw data to generate a new set of features containing meaningful information contributing to assign the observations to the correct corresponding either on training samples or new unseen data class.

Different type of information can be extracted from the initial recorded raw data (time, frequency, spatial information etc) depending on the nature of the input raw data, the context and domain of the task. In the following we present some of the commonly used features in the domain of audio and human behavior analysis application.

Audio features extraction

Humans have powerful brain capabilities to analyze and distinguish between different sounds and assign them to a specific semantic class. Unfortunately this is not possible for the machines due to the hidden nature of semantic information in the recorded sounds. This motivates the researchers to introduce several processing tools for audio signal which led to a large variety of features for different applications, such as music transcription, CASA, speech recognition etc.

Feature extraction is of extreme importance since the performance of the system depends on the quality of the extracted features. The features, determine which information and properties are available during the recognition process. They should capture enough invariant audio properties within the same class and variant ones between different classes.

Audio features represent specific characteristics of audio signals. Several attributes have been introduced to describe different types of audio signals from psychoacoustic point of view such as, duration, loudness, pitch, and timbre [START_REF] Mitrović | Features for content-based audio retrieval[END_REF].

Duration: represents the time between the beginning and the end of the audio signal. The envelope of the sound over time can be divided into, Attack, Decay, Sustain and Release (ADSR).

Loudness: is a psychoacoustic property of the sound, it represents our human perception of how loud or soft sounds of various intensities are. The loudness of a sound is subjective, it varies from person to person and measured by sone and phon units [START_REF] Dw Robinson | The relation between the sone and phon scales of loudness[END_REF].

Pitch: is a perceptual property. In [START_REF] Adrianus | Pitch and timbre: Definition, meaning and use[END_REF] is defined as the intensive attribute of auditory sensation in terms of which a sound may be ordered on a scale extending from soft to loud. The pitch is measured with mel unit. In some cases the pitch means the fundamental frequency [START_REF] Gerhard | Pitch extraction and fundamental frequency: History and current techniques[END_REF].

Timbre: is defined as the attribute of auditory sensation which makes the listener able to judge that two non-identical sounds which are presented similarly and have the same loudness and pitch are dissimilar [START_REF] Adrianus | Pitch and timbre: Definition, meaning and use[END_REF]. It is the most complex attribute in the sound. For example, timbre helps to distinguish between two different instruments playing the same note with same loudness.

Audio features extraction attempts to capture the aforementioned attributes most adapted to the application domain. Audio features hold five main properties [START_REF] Mitrović | Features for content-based audio retrieval[END_REF]: signal format, domain, temporal scale, semantic meaning, and the underlying model which will be further discussed in the following.

• Signal format: there are two main categories, features based on linear coding and based on lossy compression. The majority of audio features are linearly coded based, however several works tried to introduce features in lossy compression context (MPEG format) (Wang et al., 2003b).

• Domain: it represents the final domain of the extracted audio feature. The features could belong to different domains such as, temporal, frequency, cepstral, modulation frequency and reconstructed phase space [START_REF] Mitrović | Features for content-based audio retrieval[END_REF].

• Temporal scale: in this property, the features could belong to three different categories, intraframe, interframe and global. In the intraframe features, the signal is considered locally stationary. Each frame is taken in consideration separately which results in one feature vector by frame. A well known example of intraframe (or short-time) features is MFCCs. In contrast the interframe features capture the temporal change of a given audio signal.

An example of the interframe features are rhythmic features. Note also the global features which are computed from the whole signal.

• Semantic meaning: it includes perceptual features which are based on the aspects of human perception such as pitch, rhythm, and physical features describing the audio signals based on physical and statistical properties (Fourier transform).

• Underlying model: there are two types of features, those based on psychoacoustic model and those without it. An example of psychoacoustic model is the incorporation of the filter banks [START_REF] Mitrović | Features for content-based audio retrieval[END_REF].

From the previous description one can remark there is a various and large variety of features to tackle the problem of audio signal recognition. This shows the need to a taxonomy organization into hierarchical groups with shared properties. Inspired by the taxonomy proposed by [START_REF] Mitrović | Features for content-based audio retrieval[END_REF], we introduce the following organization which divides the audio features into five main domains, temporal, physical frequency, perceptual frequency, cepstral and modulation frequency as illustrated in Figure 2.5.

A Temporal features

Temporal features are directly extracted from the audio raw data without any transformation. The temporal features include: • Zero crossings: it is a very simple characteristic of the audio signals that has been used in speech recognition. We can find features as, Zero Crossing Rate (ZCR) [START_REF] Kedem | Spectral analysis and discrimination by zero-crossings[END_REF], Linear Prediction Zero Crossing Ratio (LP-ZCR) [START_REF] El-Maleh | Speech/music discrimination for multimedia applications[END_REF], Zero Crossing Peak Amplitude (ZCPA) [START_REF] Kim | Feature extraction based on zero-crossings with peak amplitudes for robust speech recognition in noisy environments[END_REF] and Pitch Synchronous Zero Crossing Peak Amplitude (PS-ZCPA) [START_REF] Ghulam | A noise-robust feature extraction method based on pitch-synchronous zcpa for asr[END_REF].

• Amplitude: features are extracted from amplitude. An example is the Amplitude Descriptor (AD) that has been introduced for animal sounds discrimination [START_REF] Mitrovic | Discrimination and retrieval of animal sounds[END_REF].

• Power: it represents the mean square of the input raw signal such as, Short Time Energy (STE) [START_REF] Zhang | Content-based audio classification and retrieval Bibliography for audiovisual data parsing[END_REF] and volume [START_REF] Jiang | Svm-based audio scene classification[END_REF].

B Physical frequency features

The physical audio features are based on mathematical and statistical formulations such as, Fourier and Wavelet transforms. The physical frequency features are structured as follows:

• Autoregression features: we can find features such as, Linear Predictive Coding (LPC) [START_REF] Lawrence | Digital processing of speech signals[END_REF] and Line Spectral Frequencies (LSF) [START_REF] Jr | Speaker recognition: a tutorial[END_REF].

• Adaptive time-frequency decomposition features: they include features using time-frequency representations based on wavelet transformation. The advantage of the wavelet is the ability to provide variable frequency resolutions within time [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF].

• Short time Fourier transform (STFT) features: these features calculated based on the STFT can capture properties of spectral envelope and phase information, such as subband energy ratio [START_REF] Liu | A study on content-based classification and retrieval of audio database[END_REF], spectral flux [START_REF] Scheirer | Construction and evaluation of a robust multifeature speech/music discriminator[END_REF], spectral slope [START_REF] Mörchen | Modeling timbre distance with temporal statistics from polyphonic music. Audio, Speech, and Language Processing[END_REF], and spectral peaks (Wang et al., 2003a).

C Perceptual frequency features

Contrary to physical features, the perceptual ones try to include the semantic in the feature extraction based on the human auditory system. The perceptual features are organized below:

• Brightness: brings information about the dominant frequency of the signal such as, spectral centroid [START_REF] Li | Factors in automatic musical genre classification of audio signals[END_REF] and sharpness [START_REF] Herre | How similar do songs sound? towards modeling human perception of musical similarity[END_REF].

• Tonality: it is the characteristic of the sound that distinguish noise in tonal sounds including spectral dispersion [START_REF] William A Sethares | Beat tracking of musical performances using low-level audio features. Speech and Audio Processing[END_REF] and spectral flatness [START_REF] Jayant | Digital coding of waveform: Principles and applications to speech and video[END_REF].

• Loudness: it includes integral loudness [START_REF] Lienbart | Scene determination based on video and audio features[END_REF].

• Pitch: several features have been introduced in this subgroup such as, pitch histogram [START_REF] Tzanetakis | Musical genre classification of audio signals. Speech and Audio Processing[END_REF] and psychoacoustic pitch [START_REF] Meddis | A unitary model of pitch perception[END_REF].

• Chroma: the sensation of pitch is based on, tone height and chroma. The range of chroma is divided into 12 pitch classes such as the Pitch Class Profile (PCP) [START_REF] Fujishima | Realtime chord recognition of musical sound: A system using common lisp music[END_REF].

• Harmonicity: it represents the Power Spectral Density (PSD) at integer multiples of the fundamental frequency (Agostini et al., 2003).

D Cepstral features

Cepstral features have been widely used in speech analysis. They aim to capture the timbral and pitch characteristics. We can find three main subgroups:

• Perceptual filter bank based features: they represent the Fourier transform of logarithm of the magnitude spectrum. A representative of these features is the widely used Mel-Frequency Cepstral Coefficients (MFCCs) and its extensions such as Relative Autocorrelation Sequence MFCC (RAS-MFCC) and CHNRAS-MFCC [START_REF] Yuo | Combination of autocorrelation-based features and projection measure technique for speaker identification[END_REF].

• Advanced auditory model based features: these features try to model the physiological human hearing process. An example is noise robust audio features [START_REF] Sourabh Ravindran | A physiolog-ically inspired method for audio classification[END_REF].

• Autoregression based features: the features are calculated based on linear predictive analysis such as, Perceptual Linear Prediction (PLP) (Hermansky, 1990), Relative Spectral Perceptual Linear Prediction (RASTA-PLP) [START_REF] Hermansky | Rasta processing of speech. Speech and Audio Processing[END_REF] and Linear Prediction Cepstrum Coefficients (LPCC) (Atal, 1974).

E Modulation frequency features

These features attempt to capture rhythm information. They represent a timbre and energy change over time such as, beat spectrum [START_REF] Foote | Automatic audio segmentation using a measure of audio novelty[END_REF] and pulse metric [START_REF] Scheirer | Construction and evaluation of a robust multifeature speech/music discriminator[END_REF].

This section offered a non exhaustive collection of features related to different audio recognition applications which may serve as a reference to identify the adequate feature for a specific task. Table 2.1 summarizes different features along with their category and potential applications.

The use of the presented features in Table 2.1 is not restricted to the reported applications. Extensions to other audio recognition tasks have been explored in the literature in order to evaluate their efficiency and genericity ability. The principal remark in this context is the fact that features designed for music were only successfully applied to music based application, in contrast to the speech and speaker recognition features which have already shown good performances for auditory scene recognition [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF]. This is due to the ability of speech-based features to capture intrinsic characteristics present in the audio scenes. 

Human behavior analysis and recognition features extraction

Recognizing complex human behaviors and activities from video recorded data helps to develop intelligent video monitoring systems. However human behavior analysis and recognition represents one of the most challenging problems in the domain of computer vision due to the view angle variations, occlusions and the randomness of the activities. In visual perception based systems, the features try to capture characteristics that describe the human object segmented out from the raw video sequence such as, shape, silhouette, colors, poses, and body motions. We introduce a taxonomy which divides these features into four main groups: space-time volumes, space-time trajectories, space-time local and body model as is shown in Figure 2.6. The next subsections describe those features. 

A Space-time volumes

Space-time volumes are constructed by stacking 2-D (XY) image frames along the time axis (T) as a 3D (XYT) cube as shown in Figure 2.7. The space-time volumes are able to capture both spatial and temporal information of the recorded object. Mainly the images are stacked after a segmentation step which aims to track the shape changes of the person in question [START_REF] Aaron | Gait recognition using static, activityspecific parameters[END_REF]. Based on the training video data, a space-time volume is constructed for different activities and persons [START_REF] Shechtman | Space-time behavior based correlation[END_REF][START_REF] Ke | Spatio-temporal shape and flow correlation for action recognition[END_REF].

Mainly, the space time volume features provide an efficient way to capture and combine both spatial and temporal information; however this requires a good preprocessing step of silhouette segmentations. Furthermore, viewpoint and occlusion are factors that drastically affect the performances.

B Space-time trajectories

These features seek to capture space-time trajectories by capturing the human joint positions as a set of 2-dimensional (XY) or 3-dimensional (XYZ) points.

taken in consideration, it is simple to implement. However in outdoor conditions the subjects suffer from different intra-class variations caused by different conditions such as occlusion which make the segmentation step very complicated. The performance of space-time volume features is affected by the quality of segmentation and can lead to very low performances in case of poor segmentation. Features based on space-time trajectories follow the same principle of the latter ones, however instead of taking the whole silhouette, some key points are retained to construct the moving body trajectories. The performance depends on the choice and amount of the trajectories.

Motivated by the impact of segmentation on the performance of previous features, local space-time features have been introduced; they are extracted as local descriptors and are further concatenated to construct a feature vector. Following the same idea, features capturing geometric and kinematic structure of the human body have been suggested. This type of features showed good performances however modeling the body is not a trivial task.

Once the features are extracted, finding a suitable feature representation space is of extreme importance to achieve good classification performances. The next section reviews different feature representation approaches.

Feature representation

The performance of any recognition system is heavily dependent on finding a good and suitable feature representation space. However, finding this proper representation adapted for data classification is a challenging problem which has taken a huge interest in machine learning, data analysis and computer vision communities. A suitable feature representation should satisfy the following assumptions [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]):

• Smoothness: in a high density region, if two points x 1 and x 2 are near

x 1 ≈ x 2 , their outputs by a decision function f are more probable to be close f (x 1 ) ≈ f (x 2 ). This assumption implies also that in case two points are connected by a high density path, their outputs are also likely to be close also. On the other hand, if they are connected by a low density path, then their outputs don't need to be close.

• Cluster: the data tend to be organized in discrete clusters, and points in the same cluster are more likely to share the same class label. The cluster assumption does not mean the data from each class forms a single and unique compact cluster, but rather that we may not observe data from two different classes within the same cluster.

• Manifolds: curse of dimensionality represents a huge problem for many discriminative learning algorithms since the distances tend to be less meaningful and representative. The manifold assumption implies that, the initial data of high dimension reside in a manifold of lower dimension integrated in the ambient space to overcome the curse of dimensionality problem.

• Sparsity: a feature vector x is called sparse if most of its entries are zeros.

Sparse representations are able to extract the hidden structure and provide a simple interpretation of the input data. Furthermore, it has been found that biological vision is based on sparse representations [START_REF] Poultney | Efficient learning of sparse representations with an energy-based model[END_REF].

• Temporal and spatial coherence: spatially nearby or consecutive (temporally close) observations tend to share the same value (x t ≈ x t+1 ). The simultaneous temporal and spatial changes should be penalized.

We envision feature representations under three points of view: dimensionality reduction, feature selection and decomposition learning (see Figure 2.11). 

Dimensionality reduction

The increase amount of data is not only caused by the number of the collected samples, but also by the number of attributes, or characteristics, that are simultaneously measured. Analyzing high-dimensional data is a difficult problem, since the high-dimensional spaces have geometrical properties that are very complex and hardly interpretable compared to low-dimensional ones. Furthermore, learning a good model needs enough data, while the number of learning data should grow exponentially with the dimension (for instance, if 10 data samples are reasonable in the case of one-dimensional model, 100 data samples are necessary to learn a two-dimensional model and so on) which causes the so called curse of dimensionality [START_REF] Verleysen | The curse of dimensionality in data mining and time series prediction[END_REF]. Dimensionality reduction aims to find a transformation mapping the original data residing in a high-dimensional space into a lower one able to capture and preserve the intrinsic characteristics of the initial data. Dimensionality reduction helps in classification, visualization and compression since it has ability if well designed, to reduce the undesirable effects of high-dimensional spaces [START_REF] Luis | Supervised classification in highdimensional space: geometrical, statistical, and asymptotical properties of multivariate data[END_REF]. Dimensionality reduction techniques can be broadly divided into two main groups, linear and non-linear. We briefly introduce hereafter the prominent linear and non-linear methods.

A Linear dimensionality reduction

Given n d-dimensional samples {x i } n i=1 stored in matrix X ∈ R d×n and a dimensionality choice r < d, linear dimensionality reduction aims to find a linear matrix transformation P ∈ R r×d by optimizing an objective function J such that the high-dimensional X is mapped into low-dimensional data Z = PX ∈ R r×n .

Linear dimensionality reduction methods can be formulated as an optimization problem over a manifold matrix [START_REF] John | Linear dimensionality reduction: Survey, insights, and generalizations[END_REF] as follows:

         min M∈R d×r J(M, X) s.t M ∈ M (2.1)
The objective function J and the manifold matrix M try to capture the desired and relevant characteristics. In some linear dimensionally techniques, the matrix M is imposed to be orthogonal, hence M = {M ∈ R d×r : M T M = I}. In this particular case the manifold M is noted O d×r . The relation between the projection matrix P and M will change depending on the used method. Indeed, there are many techniques in linear dimensionality reduction such as, Principal Component Analysis (PCA) [START_REF] Pearson | Liii. on lines and planes of closest fit to systems of points in space[END_REF], Linear Discriminant Analysis (LDA) [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF], Independent Component Analysis (ICA) [START_REF] Hyvärinen | Independent component analysis[END_REF] and Factor Analysis (FA) [START_REF] Spearman | general intelligence," objectively determined and measured[END_REF]. The objective function J differs according to desired properties or assumptions (supervised or not, gaussian assumption, statistical independence, etc) encoded by these techniques.

Principal component analysis

Principal Component Analysis (PCA) is an unsupervised linear dimensionality reduction technique initially formulated as the minimization of the residual errors between the original and the projected data [START_REF] Pearson | Liii. on lines and planes of closest fit to systems of points in space[END_REF]:

         min M∈R d×r X -MM T X 2 F s.t M ∈ O d×r (2.2)
Problem 2.2 can be equivalently reformulated as variance maximization of projected data (Bishop, 2006b) leading to:

         min M∈R d×r -tr (M T XX T M) s.t M ∈ O d×r (2.
3)

The solution M corresponds to the r leading principal eigenvectors of XX T and we get the projection matrix P = M T . The size of covariance matrix XX T is proportional to the dimensionality of the data which could lead to the tedious calculation of the eigenvectors when the initial data has very high-dimensionality. There have been some extensions of the PCA, such as Kernel PCA [START_REF] Scholkopf | Kernel principal component analysis[END_REF] a non-linear extension, probabilistic PCA (Tipping and [START_REF] Michael | Probabilistic principal component analysis[END_REF][START_REF] Roweis | Em algorithms for pca and spca[END_REF] and sparse PCA [START_REF] Zou | Sparse principal component analysis[END_REF][START_REF] Alexandre D'aspremont | A direct formulation for sparse pca using semidefinite programming[END_REF][START_REF] Journée | Generalized power method for sparse principal component analysis[END_REF].

Linear discriminant analysis

Linear Discriminant Analysis (LDA) is a supervised technique which aims to project the data in lower subspace where the data from different classes are well separated. In other terms, the LDA seeks to minimize the intra-class variations and to maximize the between-class variations. It is formulated by the following minimization problem:

           min M∈R d×r tr (M T Σ B M) tr (M T Σ W M) s.t M ∈ O d×r (2.4) with Σ W = n i=1 (x i -µ µ µ c i )(x i -µ µ µ c i ) T Σ B = n i=1 (µ µ µ c i -µ µ µ)(µ µ µ c i -µ µ µ) T (2.5)
where µ µ µ and µ µ µ c i respectively represent the mean of the whole dataset and the mean of class c which the sample x i belonging to. The projection matrix P = M T .

Independent component analysis

Independent Component Analysis (ICA) is a linear higher-order method which does not impose the orthogonality constraint and with assumption that the components are as independent as possible. Compared to uncorrelatedness of linear PCA, the statistical independence represents a stronger condition to represent the data. ICA tries to find a matrix P ∈ R r×d which is able to capture the independent sources Z ∈ R r×n from the initial data X ∈ R d×n where Z = PX.

The majority of ICA implementations deal with dimension preserving case where the projection P is such that d = r (in this case, the ICA is not seen as a dimensionality reduction method since it preserves the dimensionality of the initial data).

To use the ICA as dimensionality reduction method, an undercomplete version r < d is needed. There are several works which tried to undercomplete the ICA using a preprocessing step [START_REF] Porrill | Undercomplete independent component analysis for signal separation and dimension reduction[END_REF][START_REF] Zhang | Natural gradient algorithm for blind separation of overdetermined mixture with additive noise[END_REF][START_REF] Welling | Probabilistic sequential independent components analysis[END_REF][START_REF] De Ridder | Texture description by independent components[END_REF][START_REF] Zhang | Natural gradient algorithm for blind separation of overdetermined mixture with additive noise[END_REF]. A possible preprocessing is PCA, which reduces the dimensionality of the initial data to r < d, after that the conventional ICA is applied to the resulting data [START_REF] Joho | Overdetermined blind source separation: Using more sensors than source signals in a noisy mixture[END_REF] which leads to a projection in a low-dimensionality space with statistical independence. Note also that there are also overcomplete versions of the ICA when r > d [START_REF] Fabian | A geometric algorithm for overcomplete linear ica[END_REF] mainly applied to blind source separation task.

Factor analysis

Factor analysis (FA) is a generative model which assumes that the observed data have been produced from a set of latent unobserved variables (called here factors). FA can be seen as a more general case of Probabilistic PCA (PPCA) [START_REF] John | Linear dimensionality reduction: Survey, insights, and generalizations[END_REF][START_REF] Kao | Learning a factor model via regularized pca[END_REF] and addresses the following problem:

min M∈R d×r log |MM T + D| + tr (MM T + D) -1 XX T (2.6)
where M is the factor loading matrix and D is a diagonal matrix for the conditional data likelihood x i |z i ∼ N (Mz i , D) representing the observation noise fit. The linear dimensionality reduction mapping of the initial data X is given by Z = PX where P = M T (MM T + D) -1 .

B Nonlinear dimensionality reduction

Conventional linear dimensionality reduction techniques, such as PCA and ICA are designed to operate when the observed initial high-dimensionality data is embedded in a low-dimensional linear manifold. However, real world data have a very complex structure and reside generally on nonlinear manifolds. Based on the latter reasons it has been demonstrated that traditional methods are not suitable to deal with such complex structure.

Encouraged by the gaps and weakness of linear techniques, numerous nonlinear dimensionality reduction techniques have been introduced. These techniques can be broadly divided into two main groups: local and global. The local approach involves Locally Linear Embedding (LLE) [START_REF] Sam | Nonlinear dimensionality reduction by locally linear embedding[END_REF] and Laplacian Eigenmaps (LE) [START_REF] Belkin | Laplacian eigenmaps and spectral techniques for embedding and clustering[END_REF]; when the global approach involves Isometric Feature Mapping (Isomap) [START_REF] Tenenbaum | A global geometric framework for nonlinear dimensionality reduction[END_REF] to name a few.

Local methods seek to preserve the local geometry of the observed data; in other terms, these methods try to preserve the neighborhood by mapping the nearby points in the initial high-dimensional manifold to nearby points in lowdimensional one. This is done by approximating each point on the manifold with a combination of its neighbors; and then based on resulting weights, a lowdimensional embedded manifold is constructed. Local approaches have good representational ability, for a larger range of manifolds, whose local geometry is close to Euclidean, furthermore they are computationally efficient [START_REF] Vin | Global versus local methods in nonlinear dimensionality reduction[END_REF].

Global methods, attempt to preserve the geometry at all scales, mapping nearby points on the manifold to nearby points in low-dimensional space, and faraway points to faraway points. The advantage of the global methods is the ability to give more general and faithful representation of global structure of the data (Silva and [START_REF] Vin | Global versus local methods in nonlinear dimensionality reduction[END_REF].

There have been some works which tried to incorporate strengths of the local methods in the global methods such as Conformal Isomap (C-Isomap) (Silva and [START_REF] Vin | Global versus local methods in nonlinear dimensionality reduction[END_REF]. C-Isomap extends Isomap to be capable to learn the structure of curved manifolds. As a result it is computationally efficient (equals to or better than the existing local approaches such LLE and LE) with good stability and theoretical tractability characteristics of the methods belonging to global approach (Silva and [START_REF] Vin | Global versus local methods in nonlinear dimensionality reduction[END_REF].

In the following we introduce the main concepts of several widely used nonlinear techniques.

Isomap

Isomap attempts to preserve the geometric properties of the data. It was introduced to deal with the problem of classical scaling methods which consider two high-dimensional data points lying in curved manifold as close points whereas they are not really close [START_REF] Van Der Maaten | Dimensionality reduction: a comparative[END_REF].

Isomap method has three main steps, the first one consists on constructing a neighborhood graph G where each data point {x i } n i=1 is connected with its neighbors {x j } k j=1 in the high-dimensional dataset X ∈ R d×n . In second step, Isomap estimates the geodesic distances between all pairs of data points by computing their shortest path in the graph G using Dijikstra's [START_REF] Edsger | A note on two problems in connexion with graphs[END_REF][START_REF] Robert | Algorithm 97: shortest path[END_REF] shortest path algorithm. The third and ultimate step consists on applying classical Multidimensional Scaling (MDS) [START_REF] Warren S Torgerson | Multidimensional scaling: I. theory and method[END_REF] to resulting geodesic distance matrix D ∈ R n×n . It consists in solving the following optimization problem:

min {z i ∈R r } n i=1 n i=1 n j=1 d ij 2 -z i -z j 2 (2.7)
where d ij represents the geodesic distance between x i and x j . z i and z j stand for the low-dimensional representation of x i and x j respectively. It has been shown that the solution of the problem is Z = UΣ 1 2 issued from the spectral decomposition of the Gram matrix K which is the double centering of the geodesic distance matrix D.

Locally linear embedding

Locally Linear Embedding (LLE) is a method which aims to preserve the local characteristics and properties of the data. Compared to the methods belonging to global approach such as Isomap, the LLE is less sensitive to short-circuiting problem which happens when the local neighborhood connections shortcut across the manifold [START_REF] Van Der Maaten | Dimensionality reduction: a comparative[END_REF].

LLE captures the local properties of the manifold around each data point

{x i ∈ R d } n i=1 by expressing x i as a linear combination of its k neighbors {x ij } k j=1 with coefficients {w i ∈ R k } n i=1 .
Here x ij represents the j th neighbor of x i . By doing so, the manifold is assumed to be locally linear which implies that the weights w i of x i are invariant to different transformations such as translation and rotation, etc. Formally the weights {w i ∈ R k } n i=1 are first estimated by solving

                     min {w i ∈R k } n i=1 n i=1 x i - k j=1 w ij x ij 2 s.t k j=1 w ij = 1 ∀i = 1, • • • , n
We shall notice that the weights w ij = 0 for all samples x j not belonging to the k-neighborhood of x i .

Based on the transformation invariance property, the weights

w i = [w i1 , • • • , w ik ]
that construct the initial data in high-dimensional space based on its neighbors are also able to reconstruct z i from its neighbors in low-dimensional space. Finding the new representation {z i ∈ R r } n i=1 where r < d is formulated by the following minimization problem:

               min {z i ∈R r } n i=1 n i=1 z i - k j=1 w ij z ij 2 s.t z i 2 = 1 ∀i = 1, • • • , n
(2.8) [START_REF] Sam | Nonlinear dimensionality reduction by locally linear embedding[END_REF] established that the reduced dimension solutions {z i } n i=1 are obtained by calculating the eigenvectors corresponding to r smallest nonzero eigenvalues of (I -W) T (I -W) where I ∈ R n×n and W ∈ R n×n a matrix with entries equal to the weight w ij when i and j are connected in the neighborhood graph and 0 otherwise. Note that there have been some extensions of the LLE such as Orthogonal Neighborhood Preserving Projections [START_REF] Kokiopoulou | Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique[END_REF] and Neighborhood Preserving Embeddings [START_REF] He | Neighborhood preserving embedding[END_REF].

Laplacian eigenmaps

Laplacian Eigenmaps (LE) aims to find a low-dimensional representation by preserving local properties of the high-dimensional data based on pairwise distances between neighbors. For the latter, LE tries to minimize a cost function based on the sum of the distances between each data point in the low-dimensional space {z i } n i=1 and its k nearest neighbors {z j } k j=1 . The distance between each data point and its first nearest neighbor contributes more in the cost function than the second and so on. This is made possible by constructing a weighting matrix W ∈ R n×n , where its entries w ij corresponds to the distance between data point x i and its k-nearest neighbor using the Gaussian kernel function given by:

         w ij = e - x i -x j 2 2σ 2 if x j is in the k-neighborhood of x i w ij = 0 otherwise (2.9)
where σ is the bandwith of the Gaussian. The computation of the low-dimensional representation z i is obtained through the following optimization problem:

min {z i ∈R r } n i=1 n i=1 n j=1 z i -z j 2 w ij (2.10)
In the cost function, large values of w ij means that the data points x i and x j have small distance in the high-dimensional space. In other words, nearby points x i and x j in the high-dimensional space are mapped into low-dimensional space z i and z j with the lowest distance possible.

Defining Z = [z 1 , • • • , z n ],
the problem in formula (2.10) can be reformulated as an eigenproblem [START_REF] Van Der Maaten | Dimensionality reduction: a comparative[END_REF] as follows:

         min Z∈R r×n 2ZLZ T s.t ZDZ T = I (2.11)
where the equality constraint removes an arbitrary scaling factor in low-dimensional space, D is a diagonal matrix with entries

D ii = n j=1
w ij and L is the graph Laplacian given by L = D -W. The solution of the problem is the r eigenvectors corresponding to the r smallest nonzero eigenvalues of generalized eigenvalue problem:

Lv = λDv (2.12)

Remarks

We have presented an overview of dimensionality reduction techniques. Dimensionality reduction is a common preprocessing step for classification. Learning a classifier on low-dimensional space is fast (despite learning the dimensionality reduction itself may be costly). Furthermore, dimensionality reduction can help learn a better classifier, particularly when the data do have an intrinsic low-dimensional structure at small scale since dimensionality reduction has a regularizing effect that can help avoid overfitting. This can be explained by the ability of dimensionality reduction to attenuate the impact of noise that perturbs the samples along the manifold.

The majority of supervised dimensionality reduction techniques usually encourage to learn a mapping F to push apart inputs having different labels. For classification, once the data is mapped into the low-dimensional space, a classifier g is learned on the pairs (F(x i ), y i ). This clearly shows that F and g are separately learned and this gives an insight to jointly learn them for improved performances [START_REF] Kilian | Distance metric learning for large margin nearest neighbor classification[END_REF][START_REF] Bellet | A survey on metric learning for feature vectors and structured data[END_REF].

Feature selection

Feature selection aims to select a relevant feature subset S from the original initial set I (S ⊂ I) which is efficiently able to describe the intrinsic characteristics of the input data by reducing the impact of the noise and irrelevant features. In fact dependent features do not give extra information about the data belonging to a class (e.g. when two features are highly correlated, a single one is sufficient to describe the characteristics of the class). In other words, the total information of the data can be captured only from few unique features able to express the discriminative characteristics of each class leading to the reduction of the data dimension [START_REF] Chandrashekar | A survey on feature selection methods[END_REF]. As such feature selection can be seen as an instance of dimension reduction preserving the original variables.

Removing irrelevant features requires an efficient feature criterion which measures the relevance of each feature so as to be able to select a feature subset from 2 d possible subsets where d is the cardinality of I. There are three main approaches used in features selection, filter, wrapper and embedded methods [START_REF] Guyon | An introduction to variable and feature selection[END_REF].

Filter

Filter methods include non-learning techniques exclusively. Features are ranked according to scores that depend on their relevance according to pre-defined criterion. They are mainly applied before the classification step, to filter out the irrelevant features (for instance features with scores below a threshold are discarded).

The notion of feature relevance remains an open question; several definitions have been introduced based on the context of the problem [START_REF] Guyon | An introduction to variable and feature selection[END_REF][START_REF] Kohavi | Wrappers for feature subset selection[END_REF][START_REF] Langley | Selection of relevant features in machine learning[END_REF]. In our thesis and since we are in classification context, we adopt the definition that presents an irrelevant feature as the independent one of the class label. In other words, a feature is considered irrelevant if it has no information about the class label [START_REF] Martin Hc Law | Simultaneous feature selection and clustering using mixture models[END_REF]. In some cases features which have no dependency or correlation with classes serve as noise and eliminating them might lead to improvement in the classification accuracy.

Several criterions have been introduced such as, Pearson correlation coefficients [START_REF] Guyon | An introduction to variable and feature selection[END_REF][START_REF] Battiti | Using mutual information for selecting features in supervised neural net learning[END_REF] and Mutual Information (MI) [START_REF] Battiti | Using mutual information for selecting features in supervised neural net learning[END_REF][START_REF] Kohavi | Wrappers for feature subset selection[END_REF][START_REF] Lazar | A survey on filter techniques for feature selection in gene expression microarray analysis[END_REF] which are able to estimate the dependency between a feature and a target (the target can be for instance the class label). The advantage of methods belonging to filter approaches is that they are computationally efficient and avoid overfitting since they do not rely on learning algorithms [START_REF] Guyon | An introduction to variable and feature selection[END_REF][START_REF] Lazar | A survey on filter techniques for feature selection in gene expression microarray analysis[END_REF]. However filter methods have also some drawbacks, such as, MI and correlation-based methods which are not able to estimate the correlation between features leading sometimes to correlated features within the same feature subset [START_REF] George H John | Irrelevant features and the subset selection problem[END_REF]Liu et al., 1996). Furthermore filter methods are usually not optimal since they do not account for the mechanism of the learning algorithm (Archibald and Fann, 2007).

Wrapper

Wrapper methods used a learning algorithm as a black-box. Given the original feature set, all possible subsets obtained by search algorithms are evaluated with a classifier. The prediction performance serves as the selection criterion, and the subset that performs the best is retained. Sadly, evaluating 2 d is an NP-hard problem and can become intractable and computationally intensive when the number of features is very large [START_REF] Kohavi | Wrappers for feature subset selection[END_REF][START_REF] Patrenahalli | A branch and bound algorithm for feature subset selection[END_REF]. Based on that, some simplified algorithms such as Genetic Algorithm (GA) [START_REF] David | Genetic algorithms in search optimization and machine learning[END_REF] and Particle Swarm Optimization (PSO) [START_REF] Kennedy | Particle swarm optimization[END_REF] have been introduced; they can make a good trade off between computational cost and performance. Methods belonging to wrapper approaches can be broadly divided into, Sequential Selection Algorithms and Heuristic Search Algorithms [START_REF] Chandrashekar | A survey on feature selection methods[END_REF].

In sequential selection algorithms we can find Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS). The first one starts with an empty set and adds one feature at time which gives the maximum classification accuracy. The process is repeated until the number of required features is reached. The second one follows the same steps, however instead of starting with empty set, it starts with the full set and, instead of adding a feature, it removes it.

In the heuristic search algorithms we can find algorithms such as GA [START_REF] David | Genetic algorithms in search optimization and machine learning[END_REF] and its variants such as CHCGA (Eshelman, 2014) and PSO [START_REF] Kennedy | Particle swarm optimization[END_REF]. The heuristic algorithms have been introduced to avoid ex-haustive search and cope against the problem of the greedy methods which do not examine all possible subsets and hence do not guarantee finding an optimal subset.

Embedded

Embedded methods, as the name suggests, embed feature selection into the learning algorithm. They seek to reduce the computation complexity time needed to evaluate the different feature subsets in order to select an optimal one as in the wrapper methods [START_REF] Chandrashekar | A survey on feature selection methods[END_REF]. Embedded methods have been successfully used in linear problems, by including convex and concave regularization terms [START_REF] Subrahmanya | Sparse multiple kernel learning for signal processing applications[END_REF]. Recently, there have been also some works to extend feature selection methods to group feature selection in both linear and nonlinear models [START_REF] Mairal | Sparse modeling for image and vision processing[END_REF].

For sake of simplicity, we suppose that our decision function is linear and applied on x ∈ R d . The definition is given by:

f (x) = x T w + b (2.13)
with w ∈ R d and b ∈ R is the bias. Embedded methods typically attempt to solve the learning problem:

min w,b 1 n n i=1 L(y i , f (x i )) + λΩ(w) (2.14)
where y i is the label associated with x i , Ω(w) is the regularization term and λ > 0 the regularization parameter. The first term in previous equation expresses data fitting error (see Section 2.5 for a thorough description). Regularization aims to select features and also to avoid the overtraining. This generally leads to better performances of the learned decision function [START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF].

The regularization Ω(w) tends to promote peculiar characteristics such as sparsity on w. Norms and quasi-norms ℓ p represent one of the most used regularization terms, they are given by:

Ω p (w) = w p = d i=1 |w i | p 1 p (2.15)
with 0 < p ≤ ∞ and Ω p (w) is considered as norm for p ≥ 1. The regularization can be broadly categorized as standard and structured.

Standard regularization

• ℓ 0 -"pseudo norm": it counts the number of non zero coefficients in the vector w.

• Convex relaxation: it promotes sparsity on the vector w using convex regularizers which generally lead to easier optimization problem.

-Norm ℓ 2 : also called Euclidean norm because it is inducted from the dot product. In the case of the linear regression [START_REF] Hastie | Springer series in statistics[END_REF], the square of the ℓ 2 regularization is called ridge regression. Notice that sparsity is attained in practice for high values of the regularization parameter λ.

-Norm ℓ 1 : it is known in the linear regression as LASSO (Least Absolute Shrinkage and Selection Operator) [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF].

-Fused Lasso: it penalizes ℓ 1 -norm of the difference between two successive coefficients of w which leads to sparsity of the coefficients difference [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF]:

Ω(w) = d-1 i=1 w i+1 -w i 1 (2.16)
• Non-convex relaxation: promotes sparsity more strongly than convex regularizers, but it suffers the difficulties brought by local optimums.

ℓ p with 0 < p < 1: when the sparsity obtained by ℓ 1 is not sufficient and more sparsity is needed, the ℓ p with 0 < p < 1 could be applied.

-Log-sum: introduced in [START_REF] Weston | Use of the zero norm with linear models and kernel methods[END_REF] for sparse SVM classification, it is given by:

Ω ǫ (w) = d i=1 log(ǫ + |w i |) (2.17)
-Minimax concave penalty (MCP): introduced in the context of linear regression [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF], it is given by: 

Ω λ,γ (w) =              λ|w i | - |w i | 2 2γ if |w i | ≤ γλ γλ 2 2 if |w i | > γλ (2.18)
- • ℓ 1 - - • Fused lasso - - • ℓ p 0<p<1 - - • Log-sum - • MCP - • ℓ 0 - -

Structured regularization

In some cases, it is interesting to introduce sparsity by group of features based on the previous regularizers. For a linear decision function, the weights of w ∈ R d can be decomposed intro groups (overlapping or not) g ∈ G. For instance, when d = 3, the partition G = {(1, 2), ( 3)} contains two groups, the first one includes two variables (1 and 2) when the second includes only the variable 3. The group regularization applied to the coefficients of w based on the mixed norm ℓ pℓ q is as follows:

Ω p,q (w) = g∈G w g q p (2.19)
where w g corresponds to the sub-vector of w corresponding to variables of the group g.

In the structured regularization, we can find the mixture ℓ 1ℓ 2 (also called the group Lasso), it represents the most known mixture of norms which applies the norm ℓ 1 to the sum of the ℓ 2 of each group leading to sparsity on the groups [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF][START_REF] Rakotomamonjy | Simplemkl[END_REF]. There are some variants such as ℓ pℓ q where 0 < p < 1 able to promote more sparsity.

In the family of structured regularization, we can also find the group fused Lasso [START_REF] Bleakley | The group fused lasso for multiple change-point detection[END_REF], which penalizes ℓ 1 -norm of the difference between two successive groups of variable which leads to sparsity of groups difference. It is given by:

Ω(W) = d-1 i=1 w i+1, • -w i, • 1 (2.20)
where w i, • is the i th group corresponding to the i th row of W.

Instead of selecting most relevant features or learning a mapping of the data in low dimensional another trend of feature representation attempts to find a sparse decomposition of the data over a learned dictionary. The involved approaches are described in the next section.

Decomposition learning

The problem of sparse decomposition has known growing interest. A very interesting task in this field is dictionary learning which attempts usually to design a dictionary capable to capture all or most information of the signal with a linear combination of a small number of elementary signals called dictionary atoms.

Different from conventional predefined dictionaries such as wavelet basis, wavelet packet basis, Gabor atoms or Discrete Cosine Basis, dictionary learning allows more representation flexibility and efficiency in reconstruction and classification. Searching for the sparse representation of a signal over a dictionary is achieved by optimizing an objective function that consists of two terms: one that measures the reconstruction error and the other that measures the sparsity of the representation.

Dictionary learning has been applied for different applications, such as image denoising [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF], inpainting [START_REF] Elad | On the role of sparse and redundant representations in image processing[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF], clustering [START_REF] Cheng | Learning with-graph for image analysis[END_REF][START_REF] Wright | Sparse representation for computer vision and pattern recognition[END_REF] and classification [START_REF] David | Differential sparse coding[END_REF][START_REF] Mairal | Supervised dictionary learning[END_REF].

It has been shown that the conventional dictionary learning algorithm is rather adapted for signal construction than classification (Kong and Wang, 2012a). Therefore, researchers introduced novel approaches more adapted for signal classification by taking the class label in consideration. Dictionary-based classification can be broadly divided into two main groups (Kong and Wang, 2012a):

• Discriminative dictionaries, such as Meta-face learning [START_REF] Yang | Metaface learning for sparse representation based face recognition[END_REF] and dictionary learning with structured incoherence [START_REF] Ramirez | Classification and clustering via dictionary learning with structured incoherence and shared features[END_REF].

• Discriminative coefficients, such as supervised dictionary learning [START_REF] Mairal | Supervised dictionary learning[END_REF], discriminative K-SVD [START_REF] Zhang | Discriminative k-svd for dictionary learning in face recognition[END_REF], label consistent K-SVD [START_REF] Jiang | Learning a discriminative dictionary for sparse coding via label consistent k-svd[END_REF] or fisher discriminant dictionary learning [START_REF] Yang | Fisher discrimination dictionary learning for sparse representation[END_REF].

Conventional dictionary learning

Let n d-dimensional

signals {x i } n i=1 stored in X = [x 1 • • • x i • • • x n ] ∈ R d×n .
The conventional learning approach attempts to find a dictionary (possibly overcomplete) of

K atoms D = [d 1 • • • d k • • • d K ] ∈ R d×K
and the sparse coefficients A ∈ R K×n corresponding to the representation of X over D by minimizing the following objective function:

           min D∈R d×K A∈R K×n X -DA 2 F + λ A 1 s.t d k 2 2 ≤ 1 ∀k = 1, • • • , K (2.21) 
where 

A = [a 1 • • • a i • • • a n ] with a i ∈ R K represents

Discriminative dictionary

Let {(x i , y i ) ∈ R d ×Y} n i=1 where Y = {1, • • • , C} is the label set. A method introduced in this context is dictionary learning with structured incoherence [START_REF] Ramirez | Classification and clustering via dictionary learning with structured incoherence and shared features[END_REF]. It attempts to learn a dictionary per class while enforcing incoherence in order to make dictionaries from different class as different as possible. The resulting optimization problem is:

               min {Dc} C c=1 ∈R d×K {Ac} C c=1 ∈R K×n C c=1 X c -D c A c 2 F + λ A c 1 + η C c=1 C j=1 j =c D T c D j 2 F s.t d c k 2 2 ≤ 1 ∀k = 1, • • • , K ∀c = 1, • • • , C
(2.22) where X c , D c and A c respectively correspond to the data from class c, the corresponding learned dictionary and the coefficients of representing X c over D c . The first term in (2.22) represents the classical dictionary learning expression; the second term promotes orthogonality of learned D c hence inducing their incoherence.

Discriminative coefficients

The most prominent method in the context of discriminative coefficients is the supervised dictionary method introduced in [START_REF] Mairal | Supervised dictionary learning[END_REF]. They incorporated a classification cost based on the logistic loss function:

                   min D∈R d×K A∈R K×n w∈R K b∈R n i=1 (L(y i f (x i , a i , w)) + λ 0 x i -Da i 2 2 + λ 1 a i 1 + λ 2 w 2 2 s.t d k 2 2 ≤ 1 ∀k = 1, • • • , K
(2.23) where L represents the logistic loss function (Section 2.5.2) and f (x, a, w) = w T a+b is a linear classification function depending on the learned decomposition coefficients a for the sample x.

After we have reviewed the different feature extraction and representation approaches, we end up with the last stage of signal recognition systems namely the classification step.

Classification

Classification methods can be broadly organized in two main groups: generative and discriminative approaches. The Generative classifiers learn a model of the joint probability p(x, y), of the inputs x and the label y, and make their predictions using Bayes rule to calculate p(y|x), and then picking the most likely label y (Bishop, 2006a). Discriminative classifiers model the posterior p(y|x) directly, or learn a direct map from inputs x to the class label. There are several compelling reasons for using discriminative rather than generative classifiers, one of which, succinctly articulated by [START_REF] Vapnik | The nature of statistical learning theory[END_REF] is that "one should solve the classification problem directly and never solve a more general problem as an intermediate step such as modeling p(x|y)". Indeed leaving aside computational issues and other matters, the prevailing consensus seems to be that discriminative classifiers are efficient alternatives to generative approaches. Indeed, the discriminative methods require few parameters to be determined ; they are not prone to a mis-specification of the joint distribution p(x, y).

Let suppose {(x i , y i )} n i=1 ∈ X × Y
where each sample (x, y) is drawn from an unknown joint distribution P(X, Y ). The goal of classification is to find a decision function f : X → R capable to predict the correctly the label y ′ of a given observation x ′ .

Regularized risk minimization

Learning a decision function could be based on a fixed structure such as k nearest neighbors, or by expressing the learning as an optimization problem. For this sake, a loss function L which measures the error between the predicted and real label is defined. Usually one seeks this function equals to 0 if the real and predicted labels are similar and greater than 0 otherwise. Theoretically, the best possible decision function is the one which minimizes the expected prediction error:

R(f ) = E[L(Y, f (X))] = X ×Y L(y, f (x))P(x, y) dydx (2.24)
Unfortunately, in practice R(f ) can not be minimized since the distribution P(X, Y ) is unknown. However, an approximation called empirical risk, can be computed by averaging the loss function on the training set:

R(f ) = 1 n n i=1 L(y i , f (x i )) (2.25)
Minimizing R(f ) with respect to f does not guarantee to obtain a function with good generalization properties (as overfitting can occur). Indeed, the minimization of empirical risk suffers from a lack of generalization and stability. Furthermore it has been demonstrated that the generalization and stability are linked, a stable problem implies generalization and vice versa [START_REF] Bousquet | Stability and generalization[END_REF][START_REF] Mukherjee | Regression and classification with regularization[END_REF]. To make the problem stable, a regularization term Ω(.) is added leading to the minimization of the structural risk [START_REF] Vapnik | The nature of statistical learning theory[END_REF][START_REF] Evgeniou | Regularization and statistical learning theory for data analysis[END_REF]. Usually one addresses the regularized empirical risk minimization:

min f 1 n n i=1 L(y i , f (x i )) + λΩ(f ) (2.26)
The first term is the classical empirical risk and the second is similar to the one introduced in (2.15) to (2.19). We refer the reader to [START_REF] Mairal | Sparse modeling for image and vision processing[END_REF] to have a broad overview of the usual regularizers.

Loss function

There are numerous loss functions L(y, ŷ) measuring the error of prediction ŷ of y. A large part of binary classification methods are based on learning a function capable to predict the class label using the sign of the predicted value. In this case the quantity used in the loss function is the product y ŷ. In the following we review a few most common loss functions shown in Figure 2.14.

A 0-1 loss It returns 0 if the class is well predicted and 1 otherwise. This cost is non differentiable and non-convex. Furthermore, the complexity of the resulting optimization problem is combinatorial which makes it very difficult to use in practice. It is given by:

L(y, ŷ) = (1 -sgn(y ŷ))/2 (2.27)

B Hinge loss

It is the cost used in the Support Vector Machines (SVM). Unlike the previous loss function, this cost is not necessarily equal to 0 when the class is well predicted. Hinge loss is equal to 0 only if y ŷ is greater than 1, which means in other terms that ŷ is predicted with some margin. The hinge function is convex, however it needs a regularization term to make the problem strictly convex and ensure the uniqueness of the solution [START_REF] Scholkopf | Learning with kernels: support vector machines, regularization, optimization, and beyond[END_REF]. Its expression is:

L(y, ŷ) = max(0, 1 -y ŷ)
(2.28)

C Logistic loss

It permits to learn probabilistic classifiers; the decision could be made based on the estimation of class conditional probability. In the binary classification case with Y = {-1, 1} this probability is:

P (Y = y|X = x) = 1 1 + exp(-yf (x)) (2.29)
The logistic loss has the particularity to be strictly convex with value equals to 0 when y ŷ = ∞; it is given by: L(y, f (x)) = log(1 + exp(-yf (x))

(2.30)

Conclusion

In this chapter, we have reviewed the different steps of temporal signals recognition, from feature extraction and representation to classification. We could notice that there is no universal feature extraction method but rather a large variety of methods most part of which are highly related to the human expertise of the problem nature. Based on that, we conclude there is no significant contribution that could be made in this stage. If we are dealing with temporal signals in general, they could be from totally different origins and nature of the recorded data (audio, video etc).

Obtaining good classification performances relies mainly on finding suitable feature representations where observations from different classes are well separated. For the latter, huge efforts have been devoted to find adequate feature spaces which could offer these properties. Several approaches have been introduced, such as dimensionality reduction, feature selection and decomposition learning.

From our point of view, despite the positive points of dimensionality reduction and feature selection techniques, we believe that the methods based on learning feature representations such as dictionary learning are more able to represent the data for classification purpose, since they have more flexibility to model the problem while introducing classification in the formalized problem and sparsity to avoid the overfitting.

However, we shall notice that a growing and intensive body of research, with the goal of end-to-end recognition system from feature extraction, representation and classification, is displayed by Deep Learning [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF][START_REF] Lecun | Deep learning[END_REF]. The involved approaches proceed by giving raw signal as input features and by stacking more than the usual two neural layers. Each low level layer encodes specific properties of the signals as primitives that are gradually combined by successive higher level layers in order to produce representative and hopefully discriminative representations of the signals.

Among the deep learning models we can cite: i) Convolutional Neural Networks (CNN) [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], suited to represent signal with invariance property; ii) Deep Boltzman Machine (DBM) [START_REF] Salakhutdinov | Deep boltzmann machines[END_REF] that can provide a generative model of the data; and iii) (Bidirectional) Long-Short Term Memory (BLSTM) [START_REF] Graves | Framewise phoneme classification with bidirectional LSTM and other neural network architectures[END_REF] adapted for a recurrent representation, taking into account the temporal nature of the data. These models are rich and have provided state of the art result in computer vision [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF][START_REF] Mnih | Recurrent models of visual attention[END_REF][START_REF] Gregor | Draw: A recurrent neural network for image generation[END_REF], speech and writing recognition [START_REF] Graves | Framewise phoneme classification with bidirectional LSTM and other neural network architectures[END_REF][START_REF] Liwicki | A novel approach to on-line handwriting recognition based on bidirectional long shortterm memory networks[END_REF] or natural language processing [START_REF] Luong | Effective approaches to attention-based neural machine translation[END_REF].

To be effective deep models require a huge amount of data, due to their complex structure coupled with their computing power to exhibit striking performances. When one lacks training data (as in the case of gait recognition presented in chapter 3), the previously presented features extraction approaches provide valuable alternatives. 

Chapter 3 Human Gait Recognition

Human Gait Recognition

Biometrics technologies were primarily used by law enforcement. Nowadays, biometrics are increasingly being used by government agencies and private industries to verify person's identity, secure the nation's borders, and to restrict access to secure sites including buildings and computer networks. Biometrics systems recognize a person based on physiological characteristics, such as fingerprints, hand, facial features, iris patterns, or behavioral characteristics that are learned or acquired, such as how a person signs his name, typing rhythm, or even walking pattern.

Gait based biometric aims to discriminate among people by the way or manner they walk. It represents a biometric at distance which has many advantages over other biometric modalities. State-of-the-art methods require a limited cooperation from the individuals. Consequently, contrary to other modalities, gait is a non-invasive approach. As a behavioral analysis, gait is difficult to circumvent. Moreover, gait can be performed without the subject being aware of it. Consequently, it is more difficult to try to tamper one own biometric signature.

In the following we review different features and approaches used in gait recognition. A novel method able to learn the discriminative human body-parts to improve the recognition accuracy will be introduced. Extensive experiments will be performed on CASIA gait benchmark database and results will be compared to state-of-the-art methods.

Problem statement

The problem of resolving the identity of a person can be categorized into two fundamentally distinct problems with inherent complexities: the authentication and recognition (most commonly known as identification). In fact, they do not address the same problem. Authentication, also known as verification, answers to the question " am I who I claim to be". The biometric system compares the information registered on the proof identity to the current person features. It corresponds to the concept of one-to-one matching. Identification refers to the question "who am I?". The subject is compared to the subjects already enrolled in the system. It is analogous to the notion of one-to-many matching. In our chapter we are rather interested in the recognition context.

Gait is defined to be the coordinated, cyclic combination of the movements that result in human locomotion. The movements are coordinated in the sense that they must occur with a specific temporal pattern for the gait to occur. The movements in a gait repeat as a walker cycles between steps with alliterating feet. It is both coordinated and cyclic nature of the motion that makes gait a unique phenomenon [START_REF] Jeffrey | Biometric gait recognition[END_REF].

People are often able to identify a familiar person from distance simply by recognizing the way the person walks. Based on this common experience, and the growing interest of biometrics, researchers exploit the gait characteristics for identification purpose. Initially, the ability of humans to recognize gaits arouses interest of the psychologists [START_REF] Johansson | Visual perception of biological motion and a model for its analysis[END_REF][START_REF] Johansson | Visual motion perception[END_REF] who showed that humans can quickly identify moving patterns corresponding to the human walking.

Gait recognition can be defined as the recognition of some salient property, such as, identity, style of walk, or pathology, based on the coordinated cyclic motions that result in human locomotion. In our chapter we are rather interested in recognizing the identity based on the gait characteristics. A distinction could be made between gait recognition and the so called quasi gait recognition. In the first one, salient property which is in our case the identity can be recognized from the gait characteristics of the walking subject; when in the second one the identity is recognized based on features extracted during walking, however these features do not rely on gait. For example, body dimensions could be measured and used for individuals recognition.

It has been demonstrated that the gait recognition performance is drastically influenced by different intra-class variations related to the subject itself, such as clothing variation, carrying conditions; or related to the environment such as view angle variations, walking surface, shadows and segmentation errors [START_REF] Darko S Matovski | The effect of time on gait recognition performance. Information Forensics and Security[END_REF][START_REF] Yu | A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[END_REF]Han and Bhanu, 2006b). Figure 3.1 shows an example of intra-class variations caused by the clothing variations of the same subject recorded at instants t and t + 1. The researchers in [START_REF] Sarkar | The humanid gait challenge problem: Data sets, performance, and analysis[END_REF][START_REF] Yu | A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[END_REF] considered several conditions including carrying conditions, view angle and clothing variations and measure their impact on the recognition accuracy. Due to the influence of the previous intra-class variations caused by these conditions, considerable efforts have been devoted to build robust systems able to deal with individuals under different conditions. In this chapter we introduce a novel method able to select the robust human body-part corresponding to the dynamic part of the body which has been demonstrated to be less influenced by intra-class variations [START_REF] Bashir | Gait recognition without subject cooperation[END_REF][START_REF] Dupuis | Feature subset selection applied to model-free gait recognition[END_REF].

Gait analysis

Gait cycle

The gait cycle is the continuous repetitive pattern of walking or running. It is the time interval between successive instances of initial foot-to-floor contact "heel strike" for the same foot [START_REF] Cunado | Automatic extraction and description of human gait models for recognition purposes[END_REF]. A complete gait cycle can be divided into two main phases: stance and swing as is shown in Figure 3.2, these phases can be even eventually further split up. It has been shown that when a person walks, stance phase accounts 60 % of the gait cycle, however when a

Characteristics of human gait

It has been demonstrated that the human gait is unique [START_REF] Murray | Walking patterns of normal men[END_REF][START_REF] Murray | Gait as a total pattern of movement: Including a bibliography on gait[END_REF]. It has also been shown that the information such pelvic and thorax is different from one person to another. This information could be used for individuals discrimination, however the main issue is that these patterns are not adapted for computer vision based biometric systems since they are hardly measured during the individual walk.

Since many features established by medical studies appear unsuited to a computer vision-based system, the components for this investigation have been limited to the rotation patterns of the hip and knee. These patterns are possible to be extracted from real images, furthermore it has been shown from medical studies that they possess a high degree of individual consistency and inter-individual variability. These features belong to the so called model-based gait recognition which will be introduced in Section 3.3.1.

Currently, more adapted vision systems features called holistic have been introduced. These features take in consideration all the body motion which contains very discriminative information to differentiate between different individuals. These features belong to the so called model-free approach described in Section 3.3.2.

Gait recognition approaches

Model-based gait recognition

In the model-based approach, the features representatives of a gait are derived from a known structure or fitted model. The model mimics the human skeleton. Consequently, model-based approaches are based on prior knowledge.

The model based approaches, often need both a structural and a motion model which attempt to capture both static and dynamic information of the gait. The models could be 2 or 3 dimensional. The structured model describes the body topology, such as stride length, height, hip, torso, knee. This model can be made up of primitive shapes (cylinders, cones, and blobs), stick figures, or arbitrary shapes describing the edge of these body parts. On the other hand, a motion model describes the kinematics or the dynamics of the motion of each body part. Kinematics generally describe how the subject changes position with time without considering the effect of masses and forces, whereas dynamics will take into account the forces that act upon these body masses and hence the resulted motion [START_REF] Benabdelkader | Stride and cadence as a biometric in automatic person identification and verification[END_REF]. Examples of the models are depicted in Figure 3.3.

The proposed works in model-based approach can be broadly splitted into two [START_REF] Cunado | Automatic extraction and description of human gait models for recognition purposes[END_REF] motion upper leg nearest-neighbor • [START_REF] Zeng | Model-based human gait recognition via deterministic learning[END_REF] lower limb joint-angles RBF neutral network • [START_REF] Lee | Gait analysis for recognition and classification[END_REF] parameters of fitted ellipse model support vector machine • [START_REF] Wang | Fusion of static and dynamic body biometrics for gait recognition[END_REF] rigid model (joint-angles) nearest-neighbor • [START_REF] Zhang | Representation and matching of articulated shapes[END_REF] non-rigid model (deformations) chain-like model • [START_REF] Zhang | Human gait recognition at sagittal plane[END_REF] five-link biped model (joint-trajectories) hidden Markov models • (Lu et al., 2007) deformable model (length, width, orientations) adaboost • (Ariyanto and [START_REF] Darko S Matovski | The effect of time on gait recognition performance. Information Forensics and Security[END_REF] 3D model (motion) nearest-neighbor • [START_REF] Yoo | Automated human recognition by gait using neural network[END_REF] 2D model (rhythmic, periodic motion) neural network • [START_REF] Tafazzoli | Model-based human gait recognition using leg and arm movements[END_REF] model based anatomy (leg and arm movement) nearest-neighbor the contour. [START_REF] Zhang | Human gait recognition at sagittal plane[END_REF] suggested a five-link biped human locomotion model to extract the joint position trajectories. The recognition step is then performed using Hidden Markov Models (HMMs). (Lu et al., 2007) used a fullbody layered deformable model to capture information from the silhouette of the walking subject. (Ariyanto and [START_REF] Darko S Matovski | The effect of time on gait recognition performance. Information Forensics and Security[END_REF] introduced a new 3D model approach using a marionette and mass-spring model. [START_REF] Yoo | Automated human recognition by gait using neural network[END_REF] extracted nine coordinates from the human body contours based on human anatomical knowledge to construct a 2D model; back-propagation neural network algorithm has been used for classification. [START_REF] Tafazzoli | Model-based human gait recognition using leg and arm movements[END_REF] used active contour models and Hough transform to model the movements of the articulated parts of the body. Nearest-neighbor is applied for classification. Table 3.1 summarizes the captured features and the classifiers used in modelbased techniques introduced above. Model-based methods seem to be very attractive and promising since they have the ability to deal with the various intra-class variations caused by different conditions such as clothing, carrying, which affects the subjects appearance. However the complexity of the models and the extraction of their components from the video stream is not a trivial task. Consequently, model-based techniques are preferred in practice.

Model-free gait recognition

In the model-free approach, the gait characteristics are derived from the moving shape of the subject. It actually corresponds to image measurements. In this case, no human model to rebuild the human walking steps is needed. A random example of model-free approach features is the shape variation within a particular region of walking subject. In the recent past, a lot of features have been intro- [START_REF] Kale | Gait-based recognition of humans using continuous hmms[END_REF] introduced a method that directly incorporates the structural and transitional knowledge about the identity of the person performing the activity. They used the width of the outer contour of the binarized silhouette of a walking person as features. Hidden Markov Model (HMM) is used for classification. [START_REF] Robert T Collins | Silhouette-based human identification from body shape and gait[END_REF] have presented a simple method based on matching 2D silhouettes extracted from key frames across a gait cycle sequence (information such as body height, width, stride length and amount of arm swing is implicitly captured). These key frames are compared to training frames using the correlation and subject classification is performed by nearest-neighbor among correlation scores. (Wang et al., 2003c) introduced a method based on statistical shape analysis. They represented a gait sequence by the so called "eigenshape" signature based on Procrustes analysis [START_REF] John | New directions in shape analysis[END_REF], which implicitly captures the structural shape cue of the walking subject. The similarity between signatures is measured by Procrustes mean shape distance [START_REF] John | New directions in shape analysis[END_REF] and the classification is performed based on nearest-neighbor. [START_REF] Lee | Shape variation-based frieze pattern for robust gait recognition[END_REF] suggested a novel Shape Variation-Based Frieze Pattern (SVB frieze pattern) gait signature which captures horizontal and vertical motion of the walking subject over time. It is calculated by projecting pixel values of the difference between key frames along horizontal or vertical axes. For recognition they have defined a cost function for matching. [START_REF] James B Hayfron-Acquah | Automatic gait recognition by symmetry analysis[END_REF] suggested a contour representation by analyzing the symmetry of human motion. The symmetry operator, essentially forms an accumulator of points, which are measures of the symmetry between image points to give a signature. Discrete Fourier transform of the signature and nearest-neighbor were used for classification. Some works tried to find good and suitable feature representation spaces for the extracted contour and silhouette features based on supervised and unsupervised representation learning techniques. (Wang et al., 2003d) proposed a method able to implicitly capture the structural and transitional characteristics of gait. In this method, the 2D silhouette images are mapped into a 1D normalized distance signal by contour unwrapping with respect to the silhouette centroid (the shape changes of these silhouettes over time are transformed into a sequence of 1D distance signals to approximate temporal changes of gait pattern). Principal Component Analysis (PCA) is applied to vectorized 1D distance signals to reduce the dimensionality and the similarity between two sequences is performed by Spatial-Temporal Correlation (STC) and Normalized Euclidean Distance (NED). The classification process is carried out via nearest-neighbor. [START_REF] Benabdelkader | Gait recognition using image self-similarity[END_REF]) introduced a technique capable to capture 3D information (XYT) of the patterns. This is done by computing image Self Similarity Plot (SSP) defined as the correlation of all pairs of images in the sequence. Normalized SSPs containing an equal number of walking cycles and starting at the same body pose were used as features. Principal Component Analysis (PCA) and Linear Discrim-inant Analysis (LDA) combined with nearest-neighbor was used for classification. [START_REF] Kobayashi | Action and simultaneous multiple-person identification using cubic higher-order local auto-correlation[END_REF]) presented a novel method called Cubic Higher-order Local Auto-Correlation (CHLAC), which is an improved and extended version of Higher-order Local Auto-Correlation (HLAC) [START_REF] Otsu | A new scheme for practical flexible and intelligent vision systems[END_REF]. CHLAC was proposed to extract spatial correlation in local regions. Linear Discriminant Analysis (LDA) combined with nearest-neighbor were used for classification. [START_REF] Lu | Gait recognition for human identification based on ica and fuzzy svm through multiple views fusion[END_REF] proposed a gait recognition method based on human silhouettes characterized with three kinds of gait representations including Fourier and Wavelet descriptor. Independent Component Analysis (ICA) and Genetic Fuzzy Support Vector Machine (GFSVM) classifier were chosen for recognition.

Recent trends seem to favor Gait Energy Image (GEI) representation suggested by (Han and Bhanu, 2006b). It is a spatio-temporal representation of the gait obtained by averaging the silhouettes over a gait cycle (see Section 3.4.2). It is an effective representation, which makes a good compromise between the computational cost and the recognition performance. For the recognition step, they have used Canonical Discriminant Analysis (CDA) which corresponds to PCA followed by LDA combined with nearest-neighbor. The efficiency of the PCA+LDA strategy has been demonstrated in face recognition [START_REF] Peter | Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[END_REF], in which PCA aims to retain the most representative information and suppress noise for object representation, while LDA aims to pursue a set of features that can best distinguish different objects. Furthermore, in the GEI based recognition, the dimensionality of the feature space is usually much larger than the size of the training set, this is known as the Under Sample Problem (USP). LDA often fails when faced the USP and one solution is to reduce the dimensionality of the feature space using PCA [START_REF] Tao | General tensor discriminant analysis and gabor features for gait recognition[END_REF].

In the literature, a considerable amount of works combined GEI features with different feature representation techniques to find suitable feature spaces. (Hofmann and Rigoll, 2012) extracted discriminative information from GEI based on Histogram of Oriented Gradient (HOG). CDA combined with nearest-neighbor were applied for classification. [START_REF] Martín | Uncooperative gait recognition by learning to rank[END_REF], formulated the gait recognition problem as a bipartite ranking problem for more generalization of unseen gait scenarios. [START_REF] Xing | Complete canonical correlation analysis with application to multi-view gait recognition[END_REF]) have proposed a novel scheme which is called Complete Canonical Correlation Analysis (C3A) to overcome the shortcomings of Canonical Correlation Analysis (CCA) when dealing with high dimensional data. [START_REF] Yu | A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[END_REF] applied a Template Matching (TM) on GEIs without any dimensionality reduction, and classification was out carried based on nearest-neighbor.

Motivated by the problem caused by the vectorization of the feature vectors when using conventional dimensionality reduction techniques which leads to under sample problem and the specialized structure of the extracted features (in form of second-order or even higher order tensor), tensor-based dimension reduction methods have been introduced. [START_REF] Xu | Human gait recognition with matrix representation[END_REF] used two supervised and unsupervised subspace learning methods: Coupled Subspaces Analysis (CSA) [START_REF] Xu | Coupled subspaces analysis[END_REF] and Discriminant Analysis with Tensor Representation (DATER) [START_REF] Yan | Graph embedding: A general framework for dimensionality reduction[END_REF] to extract discriminative information from GEIs. [START_REF] Tao | General tensor discriminant analysis and gabor features for gait recognition[END_REF] used Gabor filters to extract information from GEI templates. Motivated also by under sample problem, they developed a General Tensor Discriminant Analysis (GTDA) instead of conventional PCA as a preprocessing step for LDA. Inspired also by recent advances in matrix and tensor-based dimensionality reduction, [START_REF] Xu | Marginal fisher analysis and its variants for human gait recognition and contentbased image retrieval[END_REF] presented an extension of Marginal Fisher analysis (MFA) introduced by [START_REF] Yan | Graph embedding: A general framework for dimensionality reduction[END_REF] to address the problem of gait recognition. [START_REF] Chen | Distance approximating dimension reduction of riemannian manifolds[END_REF] proposed a Tensor-based Riemannian Manifold distance-Approximating Projection (TRIMAP) framework to preserve the local manifold structure of the high-dimensional Gabor feature extracted from GEIs. [START_REF] Guan | On reducing the effect of covariate factors in gait recognition: a classifier ensemble method[END_REF] introduced a classifier ensemble method based on the Random Subspace Method (RSM) and Majority Voting (MV). The random subspaces are constructed based on 2D Principal Component Analysis (2DPCA) and further enhanced with 2D Linear Discriminant Analysis (2DLDA). Table 3.2 summarizes the different features, transformations and classifiers for GEI-based gait recognition methods. [START_REF] Tao | General tensor discriminant analysis and gabor features for gait recognition[END_REF] GEI+Gabor GTDA+LDA nearest-neighbor • [START_REF] Xu | Marginal fisher analysis and its variants for human gait recognition and contentbased image retrieval[END_REF] GEI MFA nearest-neighbor • [START_REF] Chen | Distance approximating dimension reduction of riemannian manifolds[END_REF] GEI+Gabor TRIMAP nearest-neighbor • [START_REF] Guan | On reducing the effect of covariate factors in gait recognition: a classifier ensemble method[END_REF] GEI RSM (2DPCA+2DLDA) nearest-neighbor Despite its good performances, GEI and like all features in model-free gait recognition suffers from various intra-class variations caused by different conditions such as the presence of shadows, clothing variations and carrying conditions which drastically influence the recognition performances. Silhouettes segmentation to calculate GEI and view angle variations represent further causes of the recognition errors (Han and Bhanu, 2006b;[START_REF] Yu | A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[END_REF][START_REF] Darko S Matovski | The effect of time on gait recognition performance. Information Forensics and Security[END_REF]. To overcome the limitations of GEI representation, several approaches have been proposed. They can be broadly organized in two groups: the first group tried to improve GEI by applying different feature selection techniques while the second introduced novel feature representations based on the gaps of GEI.

In the former, [START_REF] Bashir | Feature selection on gait energy image for human identification[END_REF] suggested filter selection method which selects GEI pixels based on their intensity value. The idea is to keep the pixels with intensity value greater than a threshold and discard the remaining ones. In other terms, this method aims to select the dynamic pixels since it has been found that they are more discriminative and less sensitive to intra-class variations compared to the static ones (Han and Bhanu, 2006b). Remaining in the same idea of capturing dynamic information of the walking subject, [START_REF] Bashir | Gait recognition without subject cooperation[END_REF] introduced a feature selection method named Gait Entropy Image (GEnI). It computes entropy for each pixel from GEI to distinguish static and dynamic pixels:

GEnI(x, y) = K k=1 p k (x, y) log 2 (p k (x, y)) (3.1)
where p k (x, y) is the probability that the pixel (x, y) takes the k th value in an entire gait cycle. The GEnI represents in this case a measure of feature significance or importance since the dynamic pixels (with high entropy value) are less sensitive to different intra-class variations. Pixels with greater entropy value than a threshold are kept when others are discarded. [START_REF] Dupuis | Feature subset selection applied to model-free gait recognition[END_REF] introduced an embedded feature selection method based on Random Forest (RF) feature ranking algorithm in order to select features maximizing the recognition accuracy. To avoid the overfitting of the selected features to a specific training dataset, they divided the initial dataset into training, validation and testing datasets. Random Forest feature rank was applied to GEIs on validation dataset and the features were ranked based on their importance. Optimal feature subset was selected based on forward and backward selection algorithms. (Rida et al., 2015) learned a mask based on the pixel variations. The mask takes the value 1 for the selected features and 0 otherwise. The role of the mask is to select GEI features with low variations over time. In all previously introduced methods, CDA of the selected GEI pixels combined with nearest-neighbor were applied for recognition. Recently, [START_REF] Rida | Gait recognition based on modified phase-only correlation[END_REF] introduced a wrapper feature selection technique based on Modified Phase-Only Correlation (MPOC) matching algorithm to select the discriminative human body-part. The classification was carried out based on nearest-neighbor.

In the introduced features to cope against the gaps of GEI, [START_REF] Bashir | Gait representation using flow fields[END_REF] suggested a gait representation by a weighted sum of the optical flow corresponding to each direction of human motion. Because of the lack o robustness of GEI towards the appearance changes and ability of the Shannon Entropy to encode the randomness of pixel values in the silhouette images over a complete cycle, [START_REF] Jeevan | Gait recognition based on gait pal and pal entropy image[END_REF] 

GPPE(x, y) = K k=1 p k (x, y)e (1-p k (x,y)) (3.2)
where p k (x, y) is the probability that the pixel (x, y) takes the k th value. PCA followed by SVM has been used for recognition. (Kusakunniran, 2014a,b) Finally, in recent years, researchers started to have an increasing interest for gait recognition in view angle variations. (Choudhury and Tjahjadi, 2015) introduced a two-phase View-Invariant Multiscale Gait Recognition method (VI-MGR) which is robust to variation in clothing and presence of carried items. In phase 1, VI-MGR uses the entropy of the limb region of the gait energy image (GEI) combined with 2DPCA and nearest-neighbor to determine the matching training view of the query testing GEI. In phase 2, the query subject is compared with the matching view of the training subjects using multiscale shape analysis and ensemble classifier.

In the following we propose a novel method capable to address the problem of intra-class variations caused by carrying conditions, clothing and view-angle variations. The method represents our major contribution for gait based recognition.

3.4 Body-part segmentation for improved gait recognition

Introduction

Among the available feature representations we choose GEI which is an effective representation making good compromise between the computational cost and the recognition performance [START_REF] Bashir | Gait recognition without subject cooperation[END_REF][START_REF] Dupuis | Feature subset selection applied to model-free gait recognition[END_REF]. However it has also been shown that the GEI suffers from intra-class variations caused by different conditions which affect the recognition accuracy. One possible solution to tackle this problem is to focus only on dynamic parts of GEI which has been proven to be less sensitive to intra-class variations [START_REF] Bashir | Gait representation using flow fields[END_REF][START_REF] Dupuis | Feature subset selection applied to model-free gait recognition[END_REF].

In our work we propose to automatically select the dynamic body-parts contrary to the existing methods in the literature which tried to select the body-parts based on predefined anatomical properties of the human body. For instance in [START_REF] Altab Hossain | Clothinginvariant gait identification using part-based clothing categorization and adaptive weight control[END_REF] for a body height H, the human body is segmented according to the vertical position of the neck (0.87H), waist (0.535H), pelvis (0.48H), and knee (0.285H) as is shown in Figure 3.9. In some other works, the human body-parts were estimated empirically, such as in [START_REF] Bashir | Feature selection on gait energy image for human identification[END_REF][START_REF] Rokanujjaman | Effective part-based gait identification using frequency-domain gait entropy features[END_REF] where they defined each row of the GEI as a new feature unit and tried different combinations of the new feature units which maximize the recognition accuracy as is shown in Figure 3.10. [START_REF] Foster | Automatic gait recognition using area-based metrics[END_REF] used horizontal and vertical masks to capture both horizontal and vertical motion of the walking subject. They have found that the gait of an individual is characterized much more by the horizontal than the vertical motion. Furthermore, they pointed out that the horizontal motion is more reliable to represent the characteristic of gait. Therefore, instead of estimating the motion of each pixel [START_REF] Bashir | Gait recognition without subject cooperation[END_REF], we propose to estimate the horizontal motion by taking the Shannon entropy of each row from the GEI. The resulting column vector is named as motion based vector. Group Fused Lasso is applied to the motion based vectors to segment the human body into parts with coherent motion value across the subjects. The body segmentation processing flow is shown in Figure 3.11.

Given the segmentation process, our overall gait recognition system is described in Figure 3.12 and Figure 3.13 depicting the representation learning based on the selected body-part of training data and the classification of testing samples respectively.

In the next subsections we introduce the notion of Gait Energy Image, body segmentation based on group fused Lasso of motion as well as feature representation and classification. Intensive experiments under carrying conditions, clothing and view-angle variations using CASIA gait database will be reported in comparison with state-of-the-art methods. 

Gait Energy Image

GEI is a spatio-temporal representation of gait pattern. It is a single grayscale image (see Figure 3.14) obtained by averaging the silhouettes extracted over a complete gait cycle (Han and Bhanu, 2006b) as follows:

G = 255 T T t=1 B(t) (3.3) 
Here G = {g i,j } is GEI, 1 ≤ i ≤ N and 1 ≤ j ≤ M are the spatial coordinates, T is the number of the frames of a complete gait cycle, B(t) is the silhouette image of frame t.

GEI has two main regions, the static and dynamic areas. These two areas contain different types of information. Dynamic areas are considered as being invariant to individual's appearance and most informative. Static parts despite being useful for identification they should be discarded because are greatly influenced by clothing variance [START_REF] Bashir | Gait recognition without subject cooperation[END_REF]. Static parts are localized in the top of GEI while the dynamic parts are localized in the bottom part of GEI (see Figure 3.14). 3.4.3 Motion based vector [START_REF] Bashir | Gait recognition without subject cooperation[END_REF] tried to distinguish between the static and dynamic areas of the human body by calculating the motion of each pixel of the GEI (the motion is estimated based on Shannon entropy). As we have mentioned previously, during the walking process humans are much more characterized by horizontal than vertical motion. For the latter an horizontal motion vector is proposed that is more reliable and better characterizes the gait than the pixel-wise motion.

For each GEI, a motion based vector e ∈ R N shown in Figure 3.15 is generated by computing the Shannon entropy of each row of GEI which is considered as a new feature unit. The resulting vector is named motion based vector. The entry i of the motion based vector e is given by:

e i = - 255 k=0 p i k log 2 p i k (3.4)
where p i k is the probability that the pixel value k occurs in the i th row of image G, which is estimated by:

p i k = #(g i,j = k) M ∀j ∈ 1, • • • , M ∀i ∈ 1, • • • , N (3.5)
where #(g i,j = k) counts the number of pixels containing the value k. 

Group fused lasso for body-part segmentation

Let P motion based vectors {e k } P k=1 of P GEIs stored in N × P matrix E. The aim is to detect the shared change-point locations across all motion based vectors {e k } P k=1 (see Figure 3.16) by approximating matrix E ∈ R N ×P by a matrix V ∈ R N ×P of piecewise-constant vectors that share change points. This can be achieved by resolving the following convex optimization problem:

min V∈R N ×P E -V 2 F + λ N -1 i=1 v i+1, • -v i, • 1 (3.6)
where v i, • is the i-th row of V and λ > 0 a regularization parameter. Intuitively, increasing λ enforces many increments v i+1v i to converge towards zero. This implies that the position of non-zeros increments will be same for all vectors e k . Therefore, the solution of (3.6) provides an approximation of E by a matrix V of piecewise-constant vectors with shared change-points. The problem (3.6) is reformulated as a group Lasso regression problem as follows:

min β∈R (N -1)×P E -Xβ β β 2 F + λ N -1 i=1 β i, • β i, • β i, • 1 (3.7)
demonstrated in several applications such as face recognition [START_REF] Peter | Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[END_REF], in which PCA aims to retain the most representative information and suppress noise [START_REF] Jiang | Asymmetric principal component and discriminant analyses for pattern classification[END_REF][START_REF] Jiang | Linear subspace learning-based dimensionality reduction[END_REF], while LDA aims to determine features which maximize the distance between classes and preserve the distance inside the classes. Furthermore, in the GEI based recognition, the dimensionality of the feature space is usually much larger than the size of the training set. Hence applying CDA help avoiding the overfitting phenomenon.

In our work CDA is applied to the GEI features of the robust human body of the training dataset. As suggested by (Han and Bhanu, 2006b) we retain 2c eigenvectors after applying PCA, where c corresponds to the number of classes. The classification is carried out by a nearest-neighbor classifier and the performance of our method is measured by the Correct Classification Rate (CCR) which is the ratio of the number of correctly classified samples over the total number of samples.

Experiments

In this section, we evaluate our proposed gait recognition methodology. We introduce first the dataset for this sake and hence the different experiments performed on it as well as the obtained results.

A Dataset

The proposed method is tested on CASIA dataset B1 [START_REF] Yu | A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[END_REF] to evaluate its ability to handle the carrying, clothing and view angle variations. CASIA dataset B is a large multiview gait database created in January 2005 containing 124 subjects captured from 11 different view angles using 11 USB cameras around the left hand side of the walking subject starting from 0 • to 180 • (see Figure 3.17).

Each subject is recorded six times under normal conditions (NL), twice under carrying bag conditions (CB) and twice under clothing variation conditions (CL) (see Figures 3.18 and 3.19). The first four sequences of (NL) are used for training. The two remaining sequences of (NL) as well as (CB) and (CL) are used for testing normal, carrying and clothing conditions, respectively. For each sequence, GEI of size 64 × 64 is computed.

The selected robust human body-part should not be overspecialized for a specific training dataset [START_REF] Dupuis | Feature subset selection applied to model-free gait recognition[END_REF]. As consequence, human bodyparts are estimated on a validation dataset independent from training and testing datasets. To create our body-part selection dataset, we have randomly selected 24 GEIs for each variant (normal, carrying, clothing), hence our validation dataset contains in total 72 GEIs. Table 3.3 summarizes the content of CASIA database under each view angle from 0 • to 180 • . Table 3.4 and Table 3.5 represent the data partition of the carried out experiments under 90 • and the other remaining view angles respectively. Contrary to 90 • , the remaining view angles do not contain a validation set, the body parts selected for experiments under 90 • are kept for the other angles experiments. To sum up validation set serves for body-part selection. The retained parts are then exploited for feature representation (PCA followed by LDA) on the basis of the training set which is used as reference data for a nearest neighbor classifier. Reported performances are calculated over test set.

B Selected robust human body-part

As we have already mentioned, the segmentation of the body into parts (regions of interest) and the selection of the robust part should not be overspecialized for a specific training dataset. As consequence we perform it on the validation dataset. To evaluate the robustness of our body segmentation method, we perform a without-replacement bagging of size P = 45 GEIs from the validation dataset containing 72 GEIs. The operation was repeated L = 5 times, resulting in 5 subsets of size 45 GEIs. 2010; [START_REF] Dupuis | Feature subset selection applied to model-free gait recognition[END_REF]. Based on the latter assumption, we select the bodyparts with the highest motion which are supposed to cope against the intra-class variations problem. This can be seen as a filter feature selection approach since the estimated parts by group fused Lasso are ranked according to their scores.

The scores are calculated based on predefined criterion corresponding in our case to the mean entropy value of each part. The parts with the highest mean motion values are selected for classification. From Figure 3.20 we can see that the parts formed by feature units (rows of GEI) from 46 to 64 have the highest mean motion value. They correspond to the GEI parts shown in Figures 3.21(c) and 3.21(d). In the following we will perform experiments under different conditions using those selected parts.

C Effect of clothing and carrying conditions

In this section, we focus on the effect of the carrying conditions and clothing variations so we carried out our experiments under 90 • view angle. This is motivated by the fact that side view is more affected by the clothing and carrying conditions than frontal view (see Figure 3.22 and 3.23). Furthermore gait information is more significant and reliable in the side view [START_REF] Bashir | Gait recognition without subject cooperation[END_REF].

Table 3.6 compares, Correct Correction Rate (CCR) under normal, carrying and clothing conditions, the mean and standard deviation of the performances under the three conditions of our proposed method, against the reported by other methods under 90 • view angle using similar experimental protocol. It shows that the CCR of our method is marginally lower in the normal and carrying conditions and significantly higher in the clothing variations than all other methods.

It is common in real life that people have different clothes depending on days (warm or cool days) and seasons (summer or winter). Unfortunately, the intraclass variation of the static features (low motion) is mainly caused by the clothing variation that greatly affects the recognition accuracy adversely. It has been demonstrated by [START_REF] Darko S Matovski | The effect of time on gait recognition performance. Information Forensics and Security[END_REF] that clothing is the factor that drastically Table 3.6 -Comparison of performances under different conditions (in percent), mean and standard deviation of the performances using 90 • view. Part-selection and without part-selection correspond to our method using the selected GEI part with group fused Lasso and whole GEI respectively. The best and second best results are highlighted by bold and star respectively. affects the performance of gait recognition. Thus, alleviating the problems caused by the clothing variation has significant meaning for gait recognition.

The proposed method alleviates the clothing variation problem very well as it significantly outperforms all other approaches as shown in Table 3.6. In the normal and carrying conditions, different persons have different clothing conditions but all samples of a same person always have the same clothing condition in the dataset. Thus, the clothes in the normal and carrying conditions in fact undesirably contribute to differentiate persons. Therefore, these recognition rates could be misleading as they do not well reflect the real gait recognition performance. Note also that in the carrying conditions, some walking subjects carry handbags which influence the selected body-part leading to lower performances.

Nevertheless, the proposed method performs the best among all approaches on the whole test dataset that contains one-third samples with cloth variation and two-third samples without the cloth variation and offers the best performance compromise between different conditions. This can be seen in the mean and standard deviation of our method which outperforms the mean and standard deviation of the other methods.

D Effect of view-angle variations

In this section we focus on the effect of the view-angle variations. In real life subjects are often captured under different view angles. To simulate these conditions we perform experiments in the so called "cross-view gait recognition". It corresponds to recognizing walking subjects where training and testing data are recorded from two different view angles.

Different view angle combinations (from 0 • to 180 • ) between training and testing data are used to estimate the recognition performances based on CDA. Tables 3.7 to 3.9 summarize the performances of the body-part cross-view gait recognition under normal, carrying conditions and clothing variations respectively when Tables 3.10 to 3.12 show the same performances of whole-body (GEI without segmentation based group fused Lasso) under the same conditions.

The results demonstrate that our body-part method significantly outperforms the whole-body one under cloth variations however it has marginally lower performances in normal conditions due the undesirable contribution of clothing in recognition which was already pointed out previously. From the same results it can be seen that both the whole-body and body-part give good performances when the training view angle is similar to the testing one, however the performances significantly decrease when the difference between the training view angle and the testing one increases. This makes us conclude that there is an invert relationship between the view angle difference between training and testing data and the performance.

Based on the obtained results, we can clearly understand that conventional methods without pose estimation fail to give good recognition performances in case of the large intra-class variations caused by view angle variations between the training and testing data. Unfortunately, the latter is frequently encountered in real life gait recognition applications. This clearly show the mandatory to introduce new methods capable to address these issues.

Starting from the observation that the view-angle similarity between the training and testing data impacts performances, we introduce in the following section a novel method named "gait recognition without prior knowledge of the view angle" capable to reduce the intra-class variations. Our method is based on two main steps, the first one aims to estimate the view-angle of the testing samples when the second one compares them to training samples with similar view-angle. Based on this approach, the intra-class variations caused by view-angle variations are considerably reduced which leads to an improvement in the recognition performances. The method is described in next section. The framework in Figure 3.24 is designed to recognize individuals without a prior knowledge of the viewpoint. Towards this end, the first step consists on estimating the pose of the query test sample using the selected human body part .i.e. row 46 to 64 (it has been explained above how the body part is selected using the group fused Lasso of motion) and nearest-neighbor classifier to find the group of training samples which have the pose similar to that of the query subject. The next step consists on identifying the query subject among the group of training samples with the same pose using Canonical Discriminant Analysis (CDA).

The results of pose estimation are shown in Table 3.13, it can be seen that the selected body-part is very discriminative and we are able to estimate the pose of the query subjects of the test dataset with an error less than 3 % for all view angles from 0 • to 180 • . Figure 3.25 shows the CCR under different conditions of our proposed bodypart approach, the approach that uses the whole-body (without body segmentation) and the View-Invariant Multiscale Gait Recognition method (VI-MGR) (Choudhury and Tjahjadi, 2015) representing the most recent introduced method to deal with the problem view-angle variations based on the idea of estimating the pose. Results clearly show that our proposed body-part method significantly outperforms VI-MGR and the approach without the part selection for all 11 view angle variations in the case of the clothing variation (see Figure 3.25(c)). On the whole test dataset that contains one-third samples with cloth variation and twothird samples without the cloth variation, the proposed approach outperforms the whole-body approach for all view angle variations and outperforms VI-MGR in 8 of the 11 view angle variations (see Figure 3.25(d)).

The previously encountered problems of the CCR for normal and carrying conditions are shown in Figure 3.25(a) and Figure 3.25(b). Our approach takes in consideration only the dynamic part, when other approaches take both static and dynamic parts. The latter could be very discriminative and complementary to the dynamic information mostly when subjects keep the same clothes which is the case in normal condition experiments. In addition of this, in the carrying conditions, our selected body-part could be affected when the walking subjects carry handbag instead of backpack which influences the recognition performances.

Conclusion

We have proposed a method that finds the discriminative human body-part that is also robust to the intra-class variations for improving the human gait recognition. The proposed method first generates a horizontal motion based vector from GEI and then applies the group fused Lasso on the horizontal motion based vectors of a feature selection dataset to automatically learn the discriminative human body-parts for gait recognition. The learned human body part is applied to the independent training and test datasets. The proposed method significantly improves the recognition accuracy in the case of large intra-class variation such as the clothing variation. This is verified by the experiments, which show that the proposed methods not only significant outperforms other approaches in the case of clothing variations but also achieves the overall best performance among all approaches on the whole testing dataset that contains normal, carrying, clothing and view angle variations. The method was further improved to deal with the problem of intra-class variations caused by the view-angle variations between training and testing gait sequences based on a pose estimation technique able to compare the training and method such as optimal transport for domain adaptation based on a manifold regularization inspiring from the work in [START_REF] Courty | Optimal transport for domain adaptation[END_REF].

Humans have a very high perception capability through physical sensation, which can include sensory input from the eyes, ears, nose, tongue, or skin. A lot of efforts have been devoted to develop intelligent computer systems capable to interpret data in a similar manner to the way humans use their senses to relate to the world around them. While most efforts have focused on vision perception which represents the dominant sense in humans, machine hearing also known as machine listening or computer audition represents an emerging area [START_REF] Richard F Lyon | Machine hearing: An emerging field [exploratory dsp[END_REF].

Machine hearing represents the ability of a computer or machine to process audio data. There is a wide range variety of audio application domains including music, speech and environmental sounds. Depending on the application domain, several tasks can be performed such as, speech/speaker recognition, music transcription, computational scene auditory recognition, etc (see Table 4.1). In this chapter, we are interested in the classification of audio signals in both environmental and music domains and more particularly, Computational Auditory Scene Recognition (CASR) and music chord recognition. The former refers to the task of associating a semantic label to an audio stream that identifies the environment in which it has been produced while the second task aims to recognize music chords that represent the most fundamental structure and the back-bone of occidental music.

In the following we briefly review different approaches for audio signal classification. A novel method able to learn the discriminative feature representations will be introduced. Extensive experiments will be performed on CASR and music chord benchmark databases and results will be compared to conventional stateof-the-art hand-crafted features.

Problem statement

The problem of audio signal classification is now becoming more and more frequent, ranging from speech to non-speech signal classification. The usual trend to classify signals is first to extract discriminative feature representations from the signals, and then feed a classifier with them. Features are chosen so as to enforce similarities within a class and disparities between classes. The more discriminative the features are, the better the classifier performs.

For each audio signal classification problem, specific hand-crafted features have been proposed. For instance, chroma vectors represent the dominant representation which has been developed in order to extract the harmonic content from music signals for different applications [START_REF] Oudre | Template-based chord recognition: Influence of the chord types[END_REF][START_REF] Oudre | Chord recognition by fitting rescaled chroma vectors to chord templates[END_REF][START_REF] Fujishima | Realtime chord recognition of musical sound: A system using common lisp music[END_REF][START_REF] Sheh | Chord segmentation and recognition using em-trained hidden markov models[END_REF][START_REF] Mauch | Simultaneous estimation of chords and musical context from audio[END_REF][START_REF] Daniel | Classifying music audio with timbral and chroma features[END_REF][START_REF] Miotto | A music identification system based on chroma indexing and statistical modeling[END_REF][START_REF] Mark | Audio thumbnailing of popular music using chroma-based representations[END_REF].

In audio scene recognition, recorded signals can be potentially composed of a very large amount of sound events while only few of these events are informative. Furthermore, the sound events can be from different nature depending on the location (street, office, restaurant, train station, etc). To tackle this problem, features such as Mel-Frequency Cepstral Coefficients (MFCCs) [START_REF] Davis | Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[END_REF][START_REF] Kinnunen | Low-variance multitaper mfcc features: a case study in robust speaker verification[END_REF][START_REF] Zheng | Comparison of different implementations of mfcc[END_REF][START_REF] Benzeghiba | Automatic speech recognition and speech variability: A review[END_REF][START_REF] Li | An overview of noise-robust automatic speech recognition[END_REF] have been successfully applied and combined with different classification techniques [START_REF] Ellis | Computational auditory scene analysis exploiting speech-recognition knowledge[END_REF][START_REF] Vesa Peltonen | Computational auditory scene recognition[END_REF].

These predefined features may be of variable discrimination power according to the signal nature and learning task if they are extended to other application domains. For this reason machine hearing systems should be able to learn automatically the suited feature representations. Time-frequency features have shown good ability to represent real-world signals [START_REF] Davy | Optimized support vector machines for nonstationary signal classification[END_REF] and methods have been designed to learn them. They can be broadly divided into four main approaches [START_REF] Sangnier | Filter bank learning for signal classification[END_REF]: wavelets, Cohen distribution design, dictionary and filter banks learning summarized in Table 4.2.

Wavelets showed very good performance in the context of compression [START_REF] Ahmed H Tewfik | On the optimal choice of a wavelet for signal representation[END_REF][START_REF] Roger L Claypoole | Adaptive wavelet transforms via lifting[END_REF] where one minimizes the error between the original and approximate signal representation. While the latter may be a salutary goal, it does not well address the classification problems. [START_REF] Jones | Genetic algorithm wavelet design for signal classification[END_REF] suggested a classification-based cost function maximizing the minimum probability of correct classification along the confusion-matrix diagonal. This cost function is optimized using a genetic algorithm (GA) [START_REF] David | Genetic algorithms and machine learning[END_REF]. [START_REF] Daniel | Feature extraction by shape-adapted local discriminant bases[END_REF] tried to tune their introduced wavelet by maximizing the distance in the wavelet feature space of the means of the classes to be classified. This is done by constructing a shape-adapted Local Discriminant Bases (LDBs) called also morphological LDBs (MLDBs) as an extension of LDBs (Saito et al.,Table 4.2 -Non exhaustive time-frequency representation learning for classification [START_REF] Sangnier | Filter bank learning for signal classification[END_REF].

Approach Methods

• [START_REF] Jones | Genetic algorithm wavelet design for signal classification[END_REF]) • Wavelets • (Strauss et al., 2003) • [START_REF] Yger | Wavelet kernel learning[END_REF] • Cohen Distribution • [START_REF] Davy | Optimized support vector machines for nonstationary signal classification[END_REF] • [START_REF] Honeiné | Optimal selection of time-frequency representations for signal classification: A kerneltarget alignment approach[END_REF] • Dictionary

• [START_REF] Mairal | Supervised dictionary learning[END_REF] • [START_REF] Ramirez | Classification and clustering via dictionary learning with structured incoherence and shared features[END_REF] • Filter Bank

• [START_REF] Biem | An application of discriminative feature extraction to filter-bank-based speech recognition[END_REF] • [START_REF] Sangnier | Filter bank learning for signal classification[END_REF](Sangnier et al., ) 2002)). In other words they aim to select bases from a dictionary that maximize the dissimilarities among classes. [START_REF] Yger | Wavelet kernel learning[END_REF] tried to learn the shape of the mother wavelet, since classical wavelet such as Haar, or Daubechies ones may not be optimal for a given discrimination problem. Then, the best wavelet coefficients that are useful for the discrimination problem are selected. Features obtained from different wavelet shapes and coefficient selections were combined to learn a large-margin classifier.

In the Cohen distribution design, [START_REF] Davy | Optimized support vector machines for nonstationary signal classification[END_REF] proposed to use a Support Vector Machine (SVM) of the Cohen's group Time-Frequency Representations (TFRs). The main problem is that the classification performance is depending on the choice of TFR and SVM kernel respectively. To tackle this problem, they presented a simple optimization procedure to determine the optimal SVM and TFR kernel parameters. [START_REF] Honeiné | Optimal selection of time-frequency representations for signal classification: A kerneltarget alignment approach[END_REF] proposed a method for selecting Cohen class time-frequency distribution appropriate for classification tasks based on the kernel-target alignment [START_REF] Cristitiaini | On kernel-target alignment[END_REF].

Motivated by their success in image denoising [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF] and inpainting [START_REF] Elad | On the role of sparse and redundant representations in image processing[END_REF], dictionary learning was further extended to classification tasks. It consists in finding a linear decomposition of a raw signal or potentially its time-frequency representation using a few atoms of a learned dictionary. While conventional dictionary learning techniques tried to minimize the signal reconstruction error, [START_REF] Mairal | Supervised dictionary learning[END_REF][START_REF] Mairal | Task-driven dictionary learning[END_REF] introduced supervised dictionary by embedding a logistic loss function to simultaneously learn a classifier, the dictionary D and the decomposition coefficients of the signals over D. [START_REF] Ramirez | Classification and clustering via dictionary learning with structured incoherence and shared features[END_REF] introduced a dictionary learning method by adding a structured incoherence penalty term to learn C dictionaries for C classes while enforcing incoherence in order to make these dictionaries as different as possible.

In the filter bank approach, [START_REF] Biem | An application of discriminative feature extraction to filter-bank-based speech recognition[END_REF] designed a method named Discriminative Feature Extraction (DFE) where both the feature extractor and classifier are learned with the objective to minimize the recognition error. The designed feature extractor is a filter bank where each filter's frequency response has a Gaussian form determined by three kinds of parameters (center frequency, bandwidth, and gain factor). The classifier was defined as a prototype-based distance [START_REF] Mcdermott | Prototype-based minimum classification error/generalized probabilistic descent training for various speech units[END_REF]. [START_REF] Sangnier | Filter bank learning for signal classification[END_REF] proposed to build features by designing a data-driven filter bank and by pooling the time-frequency representations to provide time-invariant features. For this purpose, they tackled the problem by jointly learning the filters of the filter bank with a support vector machine. The resulting optimization problem boils down to a generalized version of a Multiple Kernel Learning (MKL) problem [START_REF] Rakotomamonjy | Simplemkl[END_REF].

It can be seen that methods among, wavelets, Cohen distribution and filter bank approaches, solely seek to find a suitable time-frequency feature representation for signal classification. Although time-frequency representations showed efficiency to classify temporal signal (audio, electroencephalography, etc), there is no effectiveness guarantee for all type of signals. On the other side, dictionary learning can be combined with any initial feature representation and hence may have the ability and flexibility to deal with signals from different nature.

In this chapter, based on an initial time-frequency representation, the problem of signal audio recognition is formulated as a supervised dictionary learning problem. The resulting optimization problem is non-convex and solved using a proximal gradient descent method. In the following we introduce our representation learning method based on dictionary learning as well as the performed experiments on both music chord recognition and computation auditory scene recognition databases.

Dictionary learning for audio signal classification

Sparse representation of signals and images has known a big interest from researchers in order to analyze, extract or select features. A "sparse representation" means that a signal or image can be represented as a linear combination of few representative elements, called dictionary atoms. The main challenge of the sparse representation is the choice of the dictionary on which the signal will be represented and the sparsity type (see equations (2.15) to (2.19)). The simplest approach to tackle this problem is to take predefined dictionary such as wavelet analysis, Gabor atoms or Discrete Cosine Basis, but this will give us no guarantee that these predefined dictionaries will be able to represent and extract useful information for the problem in question.

Alternative approach is to learn the suited set of atoms from the data. From the view of compression sensing, dictionary learning is originally designed to learn an adaptive codebook to faithfully represent the signals with sparsity constraint. Dictionary learning has been applied for different applications such as image denoising [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF], inpainting [START_REF] Elad | On the role of sparse and redundant representations in image processing[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF], clustering [START_REF] Cheng | Learning with-graph for image analysis[END_REF][START_REF] Wright | Sparse representation for computer vision and pattern recognition[END_REF] and classification [START_REF] David | Differential sparse coding[END_REF][START_REF] Mairal | Supervised dictionary learning[END_REF][START_REF] Mairal | Task-driven dictionary learning[END_REF].

In the following we review the conventional dictionary learning based on a single dictionary and the different approaches to build supervised dictionary for classification. We also introduce our class based dictionary learning method.

Conventional dictionary learning

Let suppose a dictionary D ∈ R M ×K composed of K atoms {d k ∈ R M } K k=1 . We seek a sparse representation a n ∈ R K of a signal x n ∈ R M over D such as:

x n ≈ K k=1 a nk d k = Da n (4.1)
Given a set of N signals {x n } N n=1 , the coefficients of a n as well as the dictionary D are obtained by solving the following optimization problem:

         min D,{an} N n=1 N n=1 x n -Da n 2 2 + λ a n 1 s.t d k 2 2 ≤ 1 ∀k = 1, • • • , K (4.2) 
It can be seen that the original formulation for dictionary learning is based on the minimization of the reconstruction error between a signal and its sparse representation over the learned dictionary. Although this formulation is optimal for solving problems such as denoising and inpainting, it may not lead to optimal solution in classification tasks, where the ultimate goal is to make the learned dictionary and corresponding sparse representation as discriminative as possible since it does not take the label information in consideration. This motivated the emergence of supervised dictionary learning techniques.

Supervised dictionary learning

Supervised dictionary learning can be organized in six main groups [START_REF] Mehrdad | Supervised dictionary learning and sparse representation-a review[END_REF]: learning one dictionary per class, unsupervised dictionary learning followed by supervised pruning, joint dictionary and classifier learning, embedding class labels into the learning of dictionary, embedding class labels into the learning of sparse coefficients and learning a histogram of dictionary elements over signal constituents. In the following we briefly introduce these approaches as well the main works belonging to them. Note that the advantages and drawbacks of each approach are summarized in Table 4.3.

A Learning one dictionary per class

The first and simplest approach is to compute one dictionary per class, i.e., using the training samples of each class, a dictionary is constructed. The overall dictionary is obtained by the concatenation of individual class dictionaries. In this framework, [START_REF] Wright | Robust face recognition via sparse representation[END_REF] proposed the so-called Sparse Representationbased Classification (SRC), where training samples of each class serve as dictionary. The sparse representation of a testing sample over each dictionary is calculated based on Lasso. The test sample is then assigned to class label which dictionary provides the minimal residual reconstruction error. [START_REF] Yang | Metaface learning for sparse representation based face recognition[END_REF], instead to use dictionaries based on training samples proposed to learn a dictionary per class based on the conventional approach (4.2). Although this approach can be potentially performing, learned dictionaries can capture similar properties for different classes leading to poor classification performance. To tackle this problem, [START_REF] Ramirez | Classification and clustering via dictionary learning with structured incoherence and shared features[END_REF] suggested to make the learned dictionaries as different as possible to capture distinct information by minimizing the pairwise similarity between dictionaries as described in (2.22). (Kong and Wang, 2012b) proposed to learn a dictionary per class to capture the particularity information and a shared dictionary to capture the commonality. After finding the overall dictionary, the classification of test samples is performed the same way as with the SRC.

B Prune large dictionaries

In this approach, a very large dictionary in learned following the conventional approach (4.2), then the dictionary atoms are merged based on a predefined criterion so as to obtain a reduced discriminative dictionary. For instance, [START_REF] Fulkerson | Localizing objects with smart dictionaries[END_REF] used Agglomerative Information Bottleneck (AIB) which iteratively merges two atoms that cause the smallest decrease in the mutual information between the dictionary atoms and the class labels. In the same context, [START_REF] Winn | Object categorization by learned universal visual dictionary[END_REF] proposed another method based on merging two dictionary atoms so as to minimize the loss of mutual information between the histogram of dictionary atoms and class labels.

C Joint dictionary and classifier learning

This approach showed very good performances and represented a big advance in the field. It seeks to jointly learn dictionary and classifier. In [START_REF] Mairal | Supervised dictionary learning[END_REF] a linear classifier and logistic loss function (see 2.23) was applied. [START_REF] Zhang | Discriminative k-svd for dictionary learning in face recognition[END_REF] suggested a technique called discriminative K-SVD (DK-SVD) which also jointly learns the classifier parameters and dictionary. However, instead to solve the optimization problem iteratively and alternately between classifier parameters and dictionary, a sub-optimal learning process is built upon two main steps. The first one aims to learn a conventional dictionary and sparse representation coefficients of the signals over it. The second step uses the resulting sparse coefficients to learn a linear classifier.

D Embedding class labels into the learning of dictionary

In this framework we can cite the approach of (Zhang et al., 2013). They propose to first project the data into an orthogonal space where the intra and interclass reconstruction errors are minimized and maximized respectively, and subsequently learn the dictionary and the sparse representation of the data in this new space. [START_REF] Lazebnik | Supervised learning of quantizer codebooks by information loss minimization[END_REF] seek to minimize the information loss due to class labels prediction from a supervised learned dictionary instead of the original training data samples.

E Embedding class labels into the learning of sparse coefficients

This approach seeks to include class labels in the learning of coefficients. Supervised coefficient is based on minimizing the within-class covariance of coefficients and at the same time maximizing their between-class covariance. [START_REF] Yang | Fisher discrimination dictionary learning for sparse representation[END_REF] tried to learn simultaneously a dictionary per class by decomposing every signal x n with label y n over the C dictionaries and enforcing the sparsity of the coefficients related to the dictionaries D j such that y n = j. Classification of a new sample is done in the same way as SRC [START_REF] Wright | Robust face recognition via sparse representation[END_REF].

F Learning a histogram of dictionary elements over signal constituents

There are situations where a signal is made of some local constituents, e.g., an image is made up of patches or a speech made of phonemes. In this case histogram of dictionary atoms learned on local constituents is computed. The resulting histograms are used to train a classifier and predict the class label of unknown signals. [START_REF] Varma | A statistical approach to material classification using image patch exemplars[END_REF] aggregated small patches over all images in a class, and clustered them using k-means algorithm. Obtained cluster centers form a dictionary. Although the latter method gives good results, it does not really include the label information in the learning process. This motivated to exploit the class information to learn dictionaries in supervised way [START_REF] Lian | Probabilistic models for supervised dictionary learning[END_REF].

Based on the brief study of supervised dictionary approaches, we introduce in the following a novel supervised dictionary method. Our proposed method tries to exploit the strong points of the previous methods that is: i) learning one dictionary per class, and ii) embedding class labels to force sparse coefficients. To this end, we encourage the dissimilarity between the dictionaries by penalizing the pairwise similarity between them. To reach superior discrimination power, we push towards zero the coefficients of a signal representation over other dictionaries than the one corresponding to its class label.

Class based dictionary learning

Let consider {(x n , y n )} N n=1 where x n ∈ R M is a signal and y n ∈ {1, • • • , C} its label. We consider a dictionary D c ∈ R M ×K ′ associated to each class c.

The global dictionary

D = [D 1 • • • D C ] ∈ R M ×K represents the concatenation of the class based dictionaries {D c } C c=1 . Each dictionary D c is composed of K ′ atoms {d k ∈ R M } K ′ k=1 .
For simplicity sake we consider K ′ is the same for all {D c } C c=1 . The sparse representation of x n over the global dictionary D is a

T n = [a T n1 • • • a T nc • • • a T nC ]
where a nc represents the sparse representation over the class specific dictionary D c . Hence the sparse representation of the overall train-

ing data{x n } N n=1 is gathered in A = [a 1 • • • a n ].
The dictionary learning problem we intend to address is formulated as follows: 4.3) where in the problem (4.3)

         min {Dc} C c=1 ,{an} N n=1 J = J 1 + J 2 + λJ 3 + γ 1 J 4 + γ 2 J 5 s.t d ck 2 2 ≤ 1 ∀c = 1, • • • , C and ∀k = 1, • • • , K ( 
J 1 = N n=1 x n -Da n 2 2
represents the global reconstruction error over the global dictionary D.

J 2 = C c=1 N n=1 ✶ yn=c x n -D c a nc 2 2
stands for the class specific reconstruction error over the dictionary D c . In other words J 2 measures the quality of reconstructing a sample (x n , y n = c) over the sole dictionary D c .

J 3 = N n=1 a n 1
is the classical sparsity penalization.

J 4 = N n=1 C c=1 ✶ yn =c a nc 2 2
aims to push toward zero the coefficients a nc of the signal x n representation over non-class specific dictionary D j , j = y n .

J 5 = C c=1 C c ′ =1 c ′ =c D T c D c ′ 2 F
with . F is the Frobenius norm, encourages the pairwise orthogonality between different dictionaries.

To sum up, our dictionary learning problem (4.3) seek to:

• Capture as much as possible information in the signal by minimizing the global reconstruction error.

• Specialize the extracted information per class by minimizing the class specific reconstruction error similar to intra-class variations minimization.

• Render dissimilar the extracted class specific information by promoting orthogonality of dictionaries and "zeroing" coefficients not specific to the sample label. In other words, we attempt to maximize inter-class variations.

• Promote coefficients sparsity to maintain generalization ability.

λ, γ 1 and γ 2 are regularization parameters controlling the sparsity, the structure of sparse coefficients and pairwise orthogonality of learned dictionaries respectively. We could have associated a regularization parameter to the term J 2 , however to avoid multiplying the number of hyper-parameters we choose to fix it to 1. Furthermore, conducted experiments show that it does not have significant impact on the performances.

Compared to (Kong and Wang, 2012b) where they propose to learn a shared dictionary combined with class specific, we only rely on the latter one. Furthermore their optimization scheme is based on a simplifying assumption that ✶ yn =c a nc 2 2 = 0 which eases the optimization but harms the convergence. In our formulation we do not rely on those assumptions and we provide a more general optimization algorithm described in the next section.

Optimization scheme

At the first sight, the objective function in (4.3) seems to be complex but it can be solved based on an alternating optimization scheme which involves a sparse coding step and dictionary optimization step. Indeed, problem (4.3) is convex in D c for the coefficients a nc fixed and is so the inverse way when the D c are fixed.

A Sparse coding step

In this step, we fix {D c } C c=1 and we estimate the coefficients {a n } N n=1 . For each signal x n of class y n , the related vector a n is decoupled in the optimization problem. Let y n = c ′ , this conducts us to solve the following problem:

min an x n -Da n 2 2 + x n -D c ′ a nc ′ 2 2 + γ 1 ( a n 2 2 -a nc ′ 2 2 ) + λ a n 1 (4.4) where a n 2 2 = C c=1 a nc 2 2 and C c=1 ✶ c =c ′ a nc 2 2 = a n 2 2 -a nc ′ 2 2
It can be seen that ( 4.4) consists of quadratic error terms and elastic-net type penalization. Thus this problem is amenable to a Lasso problem which can be solved by a classical Lasso solver [START_REF] Lee | Efficient sparse coding algorithms[END_REF].

B Dictionary optimization step

Here we illustrate the estimation of {D p } C p=1 while fixing {a n } N n=1 . It can be seen that ( 4.3) involves quadratic terms with respect to the dictionaries. The derivative of the objective function with respect to D p is:

∇ Dp J = ∇ Dp J 1 + ∇ Dp J 2 + γ 2 ∇ Dp J 5 (4.5)
with the involved terms defined below using the matrix derivation formula [START_REF] Brandt Petersen | The matrix cookbook[END_REF].

               J 1 = N n=1 x n -Da n 2 2 = N n=1 xn -D p a np 2 2 ∇ Dp J 1 = N n=1 -2x n a T np + 2D p a np a T np (4.6) where xn = x n - C c=1 c =p D c a nc
For the second term of the derivative ∇ Dp J we can write

               J 2 = N n=1 ✶ yn=p x n -D p a np 2 2 + N n=1 c =p ✶ yn=c x n -D c a nc 2 2 ∇ Dp J 2 = N n=1 ✶ yn=p -2x n a T np + 2D p a np a T np (4.7)
Finally the expression of the last term is given by

             J 5 = c =p 2 D T p D c 2 F + c =p c ′ =c c ′ =p D T c D c ′ 2 F ∇ Dp J 5 = c =p 4(D c D T c )D p (4.8)
Algorithm 1 summarizes the different steps of our optimization approach which is based on an alternating scheme: the first step consists of a signal sparse coding based on the Lasso algorithm. The second step is dictionary optimization based on proximal gradient descent approach. The proximal procedure is useful in order to handle the atom normalization constraint d ck ≤ 1 in the problem (4.3).

Algorithm 1: The optimization algorithm 1: Initialization: D 0 , t ← 1, initialize η 0 and α 2: while t ≤ T do 3:

Solve for A t ← argmin A J(D t-1 , A) using Lasso algorithm

4:

Compute the gradient

G D t-1 ← ∇ D J(D t-1 , A t )
based on equations (4.5) to (4.8)

5: η ← η 0 6: repeat 7: D t 2 ← D t-1 -ηG D t-1 8: D t ← Prox D t 2 with Prox D t 2 : {d k } K k=1 =    d k if d k 2 ≤ 1 d k d k 2 otherwise 9: η ← η × α 10: until J(D t , A t ) < J(D t-1 , A t-1 )
11:

t ← t + 1 12: end while

Classification

Once the dictionaries are learned, they are used to encode both training and testing samples based on Lasso. The resulting coefficients are used to feed an SVM classifier. Figures 4.1 to 4.3 show the processing flow of dictionary learning based on the training data, coding both training and testing data over the learned dictionary respectively. H and is obtained as the solution of [START_REF] Schölkopf | Learning with kernels: support vector machines, regularization, optimization, and beyond[END_REF]: 

{x n ∈ R M } N n=1 Dictionary Learning {D c ∈ R M ×K ′ } C c=1 {y n } N n=1
{x n ∈ R M } N n=1 Sparse Representation {D c ∈ R M ×K ′ } C c=1 SVM Learning {y n } N n=1 h {a n } N n=1
{x n ′ ∈ R M } Ntest n ′ =1 Sparse Representation {D c ∈ R M ×K ′ } C c=1 SVM Classification h {ỹ n ′ } Ntest n ′ =1 {a n ′ } Ntest n ′ =1
         min h 0 ,b 1 2 h 2 H + C svm N n=1 ξ n s.t y n h(a n ) ≥ 1 -ξ n , ξ n ≥ 0 ∀n = 1, • • • , N ( 
               max α α α N n=1 α n - 1 2 N n=1 N n ′ =1 α n α n ′ y n y n ′ k(a n , a n ′ ) s.t ∀n 0 ≤ α n ≤ C svm , N n=1
α n y n = 0 with data from class c taken as positive samples and the remaining training samples as negatives. Note that in our case we have used a simple linear kernel as the non-linear aspect of the classification problem is taken into account in the dictionary learning. This is customary in supervised dictionary classification [START_REF] Mairal | Supervised dictionary learning[END_REF][START_REF] Mairal | Task-driven dictionary learning[END_REF].

Experiments

We conduct our experiments on two different audio signal classification problems, Computational Auditory Scene Recognition (CASR) and music chord recognition. For each problem, dictionary learning based on a initial time-frequency representation is compared to conventional hand-crafted features.

Computational auditory scene recognition

In this section we briefly review different approaches to tackle CASR problem as well as the evaluation of our proposed dictionary learning technique compared with conventional hand-crafted features on East Anglia (EA) and LITIS Rouen datasets.

Several categories of audio features have been employed in CASR systems. (Barchiesi et al., 2015) divided the features into 12 categories summarized in Table 4.4. From the features organization in Table 4.4, we can distinguish four main categories: low-level time/frequency, frequency band energy, learned features based on an time-frequency representation and speech-based. Among low-level features, we find easy and simple features to compute such as zero crossing [START_REF] Antti J Eronen | Audio-based context recognition[END_REF]. Frequency band energy feature are based on the computation of the energy at different frequency bands using Fourier transform [START_REF] Antti J Eronen | Audio-based context recognition[END_REF] or filter banks such as Gammatone [START_REF] Sawhney | Situational awareness from environmental sounds[END_REF] and Mel-scale filter banks [START_REF] Clarkson | Auditory context awareness via wearable computing[END_REF] which seek to mimic the response of the human auditory system. The goal of learning methods is to describe an acoustic signal as a linear combination of elementary functions that capture salient spectral components [START_REF] Lee | Acoustic scene classification using sparse feature learning and event-based pooling[END_REF]. Beside the first three introduced feature categories, speech-based features and more particularly Mel-Frequency Cepstral Coefficients (MFCCs) represent the most prominent features that have been considered in the problem of audio scene recognition.

A considerable amount of works have applied MFCCs for CASR, (Aucouturier et al., 2007) used Gaussian Mixture Model (GMM) to estimate the distribution of MFCC coefficients. [START_REF] Ma | Acoustic environment classification[END_REF] combined MFCCs with Hidden Markov 

B Competing features and protocols

In the following we introduce the different features used in our experiments as well as the data partition and protocols.

Features

Based on an initial time-frequency representation (spectrogram) computed on sliding windows of size 4096 samples and hops of 32 samples, we apply our class based dictionary learning method introduced in 4.2.3. In order to evaluate the efficiency of our proposed method, we compare its performance to the following conventional features:

• Spectrogram pooling: represents the temporal pooling of the spectrogram computed on sliding windows of size 4096 samples and hops of 32 samples.

• Bag of MFCC: consists in calculating the MFCC features on windows of size 25 ms with hops of 10 ms. For each window, 13 cepstra over 40 bands are computed (lower and upper band are set to 1 and 10 kHz). The final feature vector is obtained by concatenating the average and standard deviation of the batch of 40 windows with overlap of 20 windows.

• Bag of MFCC-D-DD: in addition of the average and standard deviation, the first-order and second-order differences of the MFCC over the windows are concatenated to the feature vector.

• Texture-based time-frequency representation: it consists on extracting features from time-frequency texture [START_REF] Yu | Audio classification from time-frequency texture[END_REF].

• Recurrent Quantification Analysis (RQA): aims to extract from MFCCs some additional information on temporal dynamics. For all MFCCs obtained over 40 windows with overlap of 20, 11 RQA features have been computed [START_REF] Roma | Recurrence quantification analysis features for environmental sound recognition[END_REF]. Afterwards, MFCC features and RQA features are all averaged over time and MFCC averages, standard deviations as well as the RQA averages are concatenated to form the final feature vector.

• HOG of time-frequency representation: applies HOG to time-frequency representations transformed to images. The time-frequency representations are calculated based on Constant-Q Transform (CQT). HOG is able to provide information about the occurrence of gradient orientations in the resulting images [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF].

More details to extract these features can be found in [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF]. Note that for classification, Support Vector Machine (SVM) with linear kernel is applied.

Protocols and parameters tuning

For sake of comparison we have performed the same experiments using the same repartitions and protocols in [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF]. We have averaged the performances from 20 different splits of the initial data into training and test. The training set represents 80 % of data while the rest represents the test set. Our proposed dictionary learning technique requires the following parameters:

• λ, γ 1 , γ 2 controlling respectively, the sparsity, the structure of sparse coefficients and pairwise orthogonality of learned dictionaries. The parameters are selected among {0.1, 0.2, 0.3}.

• K ′ the size of each dictionary D c . Its value is explored among {10, 20, 30}.

Beyond that we use a linear SVM classifier which its regularization parameter C svm is selected among 10 values logarithmically scaled between 0.001 and 100. All these parameters are tuned according to a validation scheme. Model selection is performed by resampling 5 times the training set into learning and validation sets of equal size. The best parameters are considered as those maximizing the averaged performances on the validation sets. Note that K-SVD [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF] has been used to initialize the class based dictionaries and the parameters T = 200, α 0 = 0.5 and η = 10 -3 was applied for the optimization scheme (see Section 4.2.4).

C Results and analysis

Table 4.6 represents the performance (classification accuracy) comparison between different conventional features as reported in [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF] and our class based dictionary method on Rouen and EA datasets. Texture denotes the work of [START_REF] Yu | Audio classification from time-frequency texture[END_REF] while MFCC-D-DD denotes the MFCC with derivatives features. MFCC, MFCC-RQA, MFCC-900 and MFCC-RQA-900 denote, MFCC features, the MFCC with RQA with cut-off frequency of 10 kHz, the MFCC and the MFCC combined RQA with upper frequency set at 900 Hz respectively. Spectrogram pooling stands for the temporal pooling of the time-frequency spectrogram. HOG-full and HOG-marginalized represent the concatenation of histogram obtained from different cells resulting to very-high dimensionality feature vector and the concatenation of the averaged histograms over time and frequency respectively. X-axis and Y-axis stand for the class numbers organized in the same order in Table 4.5.

spectrogram is also giving good results and almost reach the ones obtained by HOG-marginalized. Surprisingly the temporal pooling of the spectrogram on all analysis windows helps to estimate the energy variation over time for a raw signal assumed to represent a single scene. Indeed it has been found that the use of the analysis windows improves the recognition performance. Moreover the small size of the windows helps to capture the stable characteristics of the signal [START_REF] Tzanetakis | Musical genre classification of audio signals. Speech and Audio Processing[END_REF]. Note also that MFCC+RQA features are performing better than other MFCC based features, however the cut-off-frequency of 900 Hz leads to a large loss in performance.

We can also notice that our proposed dictionary learning is giving very promising results and is outperforming texture and conventional speech recognition feature, MFCC and MFCC-D-DD features which have been widely used in the literature and have showed their ability to tackle the problems of audio scene recognition.

Figure 4.4 and Figure 4.5 show the learned dictionaries per class on Rouen dataset and the pairwise similarity between them. The idea behind estimating the similarity between different learned dictionaries is to verify the initial goal to learn dissimilar dictionaries able to extract diverse information from classes for discrimination purpose. It can be seen that there is some similarity between some learned dictionaries which could influence the classification accuracy since these dictionaries tend to provide similar information for different classes. This may be related to the increasing number of classes that makes enforcing the pairwise dictionaries dissimilarity hardly feasible.

In the East Anglia dataset, all features including our proposed dictionary learning perform well except texture, however we should note a slight advantage of MFCC.

Music chord recognition

The simplest definition of a chord is few musical notes played at the same time. In western music, each chord can be characterized by the:

• root or fundamental: the fundamental note on which the chord is built,

• number of notes

• type: gives the interval scheme between notes.

A music signal can be deemed composed of sequences of these different chords. Commonly, the duration of the chords in the sequence varies over time rendering their recognition difficult. Given a raw audio signal, chord recognition system attempts to automatically determine the sequence of chords describing the harmonic information.

To recognize chords most approaches rely on features crafted based on timefrequency representation of the raw signals, the most common and dominant features being chroma [START_REF] Oudre | Template-based chord recognition: Influence of the chord types[END_REF]. Pitch Class Profiles (PCP) or chroma vectors was introduced by [START_REF] Fujishima | Realtime chord recognition of musical sound: A system using common lisp music[END_REF]. It is a 12-dimensional vectors representing the energy within an equal-tempered chromatic scale {C, C # , D, • • • , B}. The chroma has several variations, among them we can cite Harmonic Pitch Class Profiles (HPCPs) which is an extension of the Pitch Class Profiles (PCPs) by estimating the harmonics (Papadopoulos andPeeters, 2008, 2007) and Enhanced Pitch Class Profile (EPCP) which is calculated using the harmonic product spectrum [START_REF] Lee | Automatic chord recognition from audio using enhanced pitch class profile[END_REF]. Chroma vectors were combined with different machine learning such as Hidden Markov and Support Vector Machine [START_REF] Sheh | Chord segmentation and recognition using em-trained hidden markov models[END_REF][START_REF] Weller | Structured prediction models for chord transcription of music audio[END_REF].

A Dataset

We will focus on third, triad and seventh chords which are respectively composed of 2, 3 and 4 notes. When a note B has twice the frequency of a note A, the interval [A B] forms an octave. In tempered occidental music, the smallest subdivision of an octave is a semitone which corresponds to one twelfth of an octave, that is a multiplication by 12 √ 2 in term of frequency. To be tertian, i.e a standard harmony, each interval between notes in a chord must be composed of 3 or 4 semitones. These intervals are respectively called minor and Major. Thus, for a given root, there is 2 possible thirds, 4 possible triads, and 8 possible sevenths. Table 4.7 sum-up all the possible tertian third, triad and seventh chords.

The pursued goal in this work is to guess the type and not the fundamental of a chord leading to 14 possible labels (= 2 + 4 + 8). For this purpose, we have created a dataset which contains 2156 music chord samples of duration 2-seconds at frequency 44100 Hz with the 14 different classes. Each class contains 154 samples from different instruments at different fundamentals.

B Competing features and protocols

In the following we introduce the different features used in our experiments as well as the data partition and protocols.

Features

Similar to the previous application we compute an initial time-frequency representation (spectrogram) on sliding windows of size 4096 samples and hops of 32 samples. Then we apply our dictionary learning method. The resulting sparse representations are used as inputs of an SVM. The following conventional features serve as competitors to our approach. recognition problem.

C Results and analysis

Table 4.8 represents the performance (classification accuracy) comparison of evaluated features on music chord dataset. It can be seen that our dictionary learning method outperforms all other features. 4.9 represents the performance (classification accuracy) comparison of evaluated features on music chord dataset based on the polynomial kernel. It can be seen the interpolated PSD outperforms chroma and spectrogram. It can be also noticed that the polynomial kernel overcome the linear one in this particular task of chord recognition based on the conventional hand-crafted features. 4.6 and Figure 4.7 show the learned dictionaries and the pairwise similarity between them. Contrary to CASR Rouen dataset, it can be seen that the highest similarity between learned dictionaries is on the diagonal. This means that the resulting dictionaries are different between them leading to extract diverse information per class. While chroma, interpolated PSD and spectrogram failed totally to reach good performances based on a linear SVM, our dictionary learning method could achieve very promising results. Linear classification is a computationally efficient way to categorize test samples. It consists in finding a linear separator between two classes. Linear classification has been the focus of much research in machine learning for decades and the resulting algorithms are well understood. However, many datasets cannot be separated linearly and require complex nonlinear classifiers which is the case of our music chord dataset.

A popular solution to enjoy the benefits of linear classifiers is to embed the data into a high dimensional feature space, where a linear classifier eventually exists. The feature space mapping is chosen to be nonlinear in order to convert nonlinear relations to linear relations. This nonlinear classification framework is at the heart of the popular kernel-based methods [START_REF] Shawe | Kernel methods for pattern analysis[END_REF]. Despite the popularity of kernel-based classification, its computational complexity at test time strongly depends on the number of training samples (Burges, 1998), which limits its applicability in large scale datasets. An eventual alternative to kernel methods, is sparse coding which consists in finding a compact representation of the data in an overcomplete learned dictionary which can be seen as a nonlinear feature representation mapping. This is confirmed by our experiments which clearly shows that our proposed dictionary learning method outperforms the other hand-crafted features. A success story of automatically learning useful features is represented by deep learning techniques [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF][START_REF] Lecun | Deep learning[END_REF] which aim to learn several hierarchical layers, each layer can be seen as a kind of mapping operation to the one from dictionary learning.

Conclusion

We have proposed a novel supervised dictionary learning method for audio signal recognition. The proposed method seek to minimize the intra-class variations, maximize the inter-class variations and promote the sparsity to control the complexity of the signal decomposition over the dictionary. This is done by learning a dictionary per class, minimizing the class based reconstruction error and promoting the pairwise orthogonality of the dictionaries. The learned dictionaries are supposed to provide diverse information per class. The resulting problem is non-convex and solved using a proximal gradient descent method.

Our proposed method was extensively tested on two different audio recognition applications: computational auditory scene recognition and music chord recognition. The obtained results were compared to different conventional hand-crafted features. While there is no universal hand-crafted feature representation able to successfully tackle different audio recognition problems, our proposed dictionary learning method combined with a simple linear classifier showed very promising results while dealing with the two diverse recognition problems.

Despite the simplicity and good performances of our approach, we could notice that the task to make the learned dictionaries as different as possible is hardly feasible when dealing with large number of classes. An example is human identity recognition based on gait where each individual is seen as a class.

A possible alternative is to jointly learn the dictionary and classifier by incorporating a classification cost term. However, this will be leading to many parameters to tune, which makes the approach computationally expensive.

Chapter 5

Conclusion and Perspectives

In this thesis we were interested to the classification of signals and especially temporal ones which constitute a popular class of signals, where data records are indexed by time. Within the large variety of automatic signal-based classification problems we were focused on human gait recognition and audio recognition.

Human gait recognition feature representations, including Gait Energy Image (GEI) which represents the dominant features, are drastically influenced by various intra-class variations mainly caused by clothing and view-angle variations.

To tackle this problem, we have proposed a method which segments and selects automatically relevant dynamic body-parts of the GEI. These learned features are proven to be robust to the intra-class variations.

For this goal, we estimate the horizontal motion by taking the Shannon entropy of each row from GEI since humans walk is much more characterized by horizontal than vertical motion. The resulting column vector is named as motion based vector. Group Fused Lasso is applied to the motion based vectors to segment the human body into parts with coherent motion value across the subjects. The body-parts with the highest mean motion value are kept when others are discarded. Based on the selected body-parts, representation learning is carried out using Principal component Analysis (PCA) followed by Linear Discriminant Analysis (LDA) and the classification is achieved using nearest-neighbor method.

In the state-of-art methods, we could find methods improving GEI representation based on predefined anatomical properties or feature selection techniques. There are also methods that introduce novel representations based on GEI drawbacks. Our proposed method which automatically selects discriminative human body-parts showed very good results. It outperformed all those existing methods in situations where normal, carrying, clothing conditions and view angle variations are at stake. Furthermore it offered the best performance compromise under different conditions. However it remains room to improve the overall by better coping with the view angle variations and changing conditions.

For audio signal recognition, we have proposed to formulate the audio recognition problem as a supervised dictionary problem in order to learn the appropriate feature representation. For this sake, we design an objective function which minimizes and maximizes the intra-class and inter-class variations respectively and finally promotes sparsity to control the complexity and maintain generalization ability. This is done by learning a dictionary per class, minimizing the global reconstruction error, making the dictionaries as different as possible by promoting the orthogonality of dictionaries and finally pushing towards zero the coefficients of a signal representation over other dictionaries than the one corresponding to its class label.

The resulting optimization problem is non-convex and solved using a proximal gradient descent method. Once the dictionaries are learned, they are used to encode both training and testing samples based on Lasso. The resulting coefficients are used to feed an SVM classifier.

Compared to the state-of-art hand-crafted features, our supervised dictionary learning method showed very promising results to tackle both computational audio scene recognition and music chord recognition. However, we could notice that our proposed supervised dictionary learning method performance is influenced by the increasing number of classes making the task to have dissimilar dictionaries hardly feasible.

Starting from the limitations of proposed method for gait recognition (due to angle-view variations and different conditions), we hatch hereafter some perspectives of conducted work in this thesis. To improve on the classification stage and in order to gain in robustness we plan to investigate metric learning instead of the euclidean distance we apply. The metric learning approach will aim at finding the appropriate distance which allows to minimize the intra-class variation and maximize the inter-class variations. Another way to address the aforementioned issues is to resort to domain adaptation [START_REF] Gopalan | Domain adaptation for object recognition: An unsupervised approach[END_REF][START_REF] Kulis | What you saw is not what you get: Domain adaptation using asymmetric kernel transforms[END_REF][START_REF] Sun | Return of frustratingly easy domain adaptation[END_REF] with the objective to design our recognition method based on some training samples and make it work while applied to test data with different statistical and geometrical properties. Especially we can adapt optimal transport technique [START_REF] Courty | Optimal transport for domain adaptation[END_REF] to our concern. All the presented future works rely on the features issued from our body-part segmentation algorithm. An interesting perspective will be to design a learning problem that will simultaneously determine the relevant body parts while dealing with domain adaptation mechanism.

From our supervised dictionary learning side we envision to integrate a classification cost term in the problem formulation in order to help improving the generalization performances. Such an approach may however lead to tedious tuning of many parameters.
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  introduced a novel temporal feature representation as an extension of GEI representation named Gait Pal and Pal Entropy Image (GPPE). It is calculated based on Pal and Pal Entropy (Pal and Pal, 1991):
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  4.9) where (a n , y n ) ∈ A × {-1, +1} N n=1 are the labelled training samples. ξ n and C svm represent slack variables and tuning parameter used to balance margin and training error. The solution is given by h 0 (a) = N n=1 α n y n k(a n , a) where parameters α n are solution of the dual quadratic problem:

  solve our C-class audio classification problem we employ one-against-all strategy. It consists in constructing C binary SVM, each one separates a class from all the rest. The c th SVM solves the decision problem h (c) (a) = h (c) 0 (a) + b (c)
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 44 Figure 4.4 -Example of learned dictionaries per class on Rouen dataset. Rows correspond to learned dictionary atoms.
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 4 Figure 4.5 -Similarity between different learned dictionaries on Rouen dataset. X-axis and Y-axis stand for the class numbers organized in the same order in Table4.5.

Figure

  Figure 4.6 and Figure 4.7 show the learned dictionaries and the pairwise similarity between them. Contrary to CASR Rouen dataset, it can be seen that the highest similarity between learned dictionaries is on the diagonal. This means that the resulting dictionaries are different between them leading to extract diverse information per class. While chroma, interpolated PSD and spectrogram failed totally to reach good performances based on a linear SVM, our dictionary learning method could achieve very promising results.
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 47 Figure 4.7 -Similarity between different learned dictionaries on music chord dataset. X-axis and Y-axis stand for the class numbers.
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 2 1 -Overview of audio features and their applications.

	Type

Table 2 .

 2 2, Figure2.12 and Figure2.13 compare the properties of the different regularizers introduced above.

Table 2 .

 2 2 -Properties of several regularization terms.

	Standard Regularization
	Regularity Convexity Non Convexity
	• ℓ 2

Table 3 .

 3 1 -Overview of model-based methods (features and classifiers).

	Method	Features	Classification
	• (Bobick and Johnson, 2001)	length, width, stride	nearest-neighbor
	• (Tanawongsuwan and Bobick, 2001) joint-angle trajectories	nearest-neighbor
	• (BenAbdelkader et al., 2002)	stride, cadence	Bayesian
	• (Boulgouris and Chi, 2007)	body components	metric based body parts
	•		

Table 3 .

 3 2 -Overview of GEI-based methods (features, transformations and classifiers).

	Method	Features	Transformation	Classification
	• (Han and Bhanu, 2006b)	GEI	PCA+LDA	nearest-neighbor
	• (Hofmann and Rigoll, 2012)	GEI+HOG PCA+LDA	nearest-neighbor
	• (Martín-Félez and Xiang, 2014) GEI	transfer learning (RankSVM) SVM
	• (Xing et al., 2016)	GEI	C3A	nearest-neighbor
	• (Yu et al., 2006)	GEI	-	nearest-neighbor
	• (Xu et al., 2006)	GEI	CSA+DATER	nearest-neighbor
	•			

Table 3 .

 3 3 -CASIA database content under each view angle from 0 • to 180 • .

	Normal		Carrying conditions	Clothing variation
	# Subjects # GEIs # Subjects # GEIs # Subjects # GEIs
	124	744	124	248	124	248

Table 3 .

 3 4 -Data partition of carried out experiments under 90 • view.

	Validation set	Training set	Test set normal	Test set carrying	Test set clothing
	# Subjects # GEIs # Subjects # GEIs # Subjects # GEIs # Subjects # GEIs # Subjects # GEIs
	24	72	124	472	124	248	124	224	124	224
	24 NL, 24 CB, 24 CL	472 NL		248 NL		224 CB		224 CL	

Table 3 .

 3 5 -Data partition of carried out experiments under view angles from 0 • to 72 • and from 108 • to 180 • .

	Training set	Test set normal	Test set carrying	Test set clothing
	# Subjects # GEIs # Subjects # GEIs # Subjects # GEIs # Subjects # GEIs
	124	496	124	248	124	248	124	248
	496 NL		248 NL		248 CB		248 CL	

Table 3 .

 3 7 -Cross-view body-part recognition under normal conditions(%). Bold values correspond to CCR when training angle is similar to testing angle.

			Testing angle normal conditions (°)								
			0	18	36	54	72	90	108	126	144	162	180
		0	98.37	5.24	1.61	1.21	0.40	0.81	0.81	1.61	0.81	0.81	9.27
	Training angle normal conditions (°)	18 36 54 72 90 108 126 144 162	6.10 3.66 2.03 1.22 1.22 2.03 0.81 0.81 3.66	98.79 23.79 5.24 2.02 1.21 2.82 2.42 2.02 3.23	17.74 95.97 33.87 3.23 2.82 4.44 2.42 1.21 0.81	1.61 32.66 96.77 10.08 7.66 4.44 4.03 2.42 0.81	0.81 5.65 11.69 98.39 67.74 23.79 5.65 5.24 0.81	0.81 0.81 4.84 82.26 98.39 67.34 7.26 4.44 0.81	1.21 1.21 1.61 20.16 48.79 97.18 29.03 6.05 0.81	1.61 0.81 1.21 1.21 4.84 30.24 95.56 47.18 0.81	4.44 0.40 0.40 0.81 3.23 4.84 38.31 97.18 1.21	2.42 3.63 1.61 1.61 1.61 3.63 3.63 2.02 97.98	2.82 2.42 2.02 2.02 1.21 1.61 1.61 0.81 6.85
		180	10.57	2.42	1.61	0.40	0	0.40	0.81	1.61	2.42	3.63	97.58

Table 3 .

 3 8 -Cross-view body-part recognition under carrying conditions (%). Bold values correspond to CCR when training angle is similar to testing angle.

			Testing angle carrying conditions (°)								
			0	18	36	54	72	90	108	126	144	162	180
		0	72.36	2.02	0.81	0.81	0.40	0	0.40	2.02	1.62	2.04	8.50
	Training angle normal conditions (°)	18 36 54 72 90 108 126 144 162	5.28 4.07 1.63 1.63 0.81 0.81 1.22 1.22 2.85	73.79 16.94 6.45 1.61 1.61 0.81 1.21 0.81 1.21	9.68 77.02 25.40 1.61 2.42 4.03 2.42 1.61 1.21	2.03 27.64 75.61 10.16 5.69 3.66 2.44 2.03 1.22	2.02 4.44 10.48 75.00 45.16 14.92 6.85 4.84 1.21	1.79 1.34 3.57 56.70 75.89 53.57 6.25 4.46 1.34	1.61 2.02 1.21 15.32 25.00 75.00 29.84 5.24 0.81	2.02 0.81 1.21 2.02 4.86 22.27 76.52 33.60 0.81	1.62 0 0.81 0.81 2.43 6.88 28.34 77.33 0.40	3.67 5.31 2.04 2.04 0.82 3.27 2.04 0 74.69	2.02 1.62 2.02 2.83 1.21 2.43 1.21 0.81 3.24
		180	9.76	2.42	0.81	0.81	0.40	0.89	0.81	2.02	1.62	4.08	75.71
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 3 9 -Cross-view body-part recognition under clothing variations (%). Bold values correspond to CCR when training angle is similar to testing angle.

			Testing angle clothing conditions (°)								
			0	18	36	54	72	90	108	126	144	162	180
		0	80.89	4.03	2.42	1.62	0.81	0.89	0.81	2.43	2.02	0.82	9.27
	Training angle normal conditions (°)	18 36 54 72 90 108 126 144 162	5.28 2.44 1.63 1.22 0.41 1.63 1.22 2.03 3.25	83.06 19.35 5.65 1.61 1.61 3.23 1.61 1.21 2.82	12.90 85.08 30.24 2.42 3.23 1.61 1.61 1.61 2.02	2.02 29.55 87.04 12.96 6.07 3.64 4.05 2.02 1.62	0.81 6.85 10.08 91.13 60.48 18.95 4.44 5.65 1.21	0.89 2.68 4.02 62.95 91.96 56.25 4.91 1.79 1.34	0.81 1.61 1.21 18.55 40.32 88.71 22.18 4.03 1.21	1.62 1.62 0.81 0.40 4.05 31.58 87.04 27.13 1.62	2.83 0.40 0 0 2.43 4.45 40.08 90.28 1.21	2.04 2.45 0.82 0.82 1.63 3.67 3.67 2.86 86.94	3.23 1.21 0.81 0.81 1.61 1.61 1.61 1.61 6.85
		180	9.35	2.02	2.02	0.81	0.81	0.89	0.81	1.62	0.81	2.86	84.27

Table 3 .

 3 10 -Cross-view whole-body recognition normal (%). Bold values correspond to CCR when training angle is similar to testing angle.

			Testing angle normal conditions (°)								
			0	18	36	54	72	90	108	126	144	162	180
		0	100	70.16	14.92	5.24	2.42	2.02	0.81	0.81	4.44	15.32	40.32
	Training angle normal conditions (°)	18 36 54 72 90 108 126 144 162	82.11 38.21 9.76 6.10 2.03 2.44 6.50 13.01 20.73	100 94.76 27.82 4.03 2.02 0.81 4.84 15.73 25.00	92.74 99.19 92.34 16.13 6.45 8.06 12.10 27.02 15.32	16.13 85.89 99.19 63.31 17.34 33.06 31.45 19.35 6.05	3.63 30.24 70.97 99.19 98.79 79.84 47.58 8.87 0.81	1.21 15.73 35.48 98.79 100 97.98 50.81 6.45 0.81	2.42 12.50 21.77 74.19 97.18 99.60 90.73 31.45 1.21	4.84 22.58 27.42 14.92 22.98 91.53 98.39 95.16 2.42	15.32 20.97 23.79 4.84 6.05 22.58 94.76 99.19 6.05	21.77 21.77 6.05 5.24 2.82 3.63 15.32 34.68 99.60	31.85 9.27 6.45 4.44 2.42 2.42 6.45 11.29 70.56
		180	52.44	18.55	12.10	4.84	3.23	1.61	0.81	2.42	9.27	77.42	100

Table 3 .

 3 11 -Cross-view whole-body recognition carrying conditions (%). Bold values correspond to CCR when training angle is similar to testing angle.

			Testing angle carrying conditions (°)								
			0	18	36	54	72	90	108	126	144	162	180
		0	83.74	45.56	14.92	6.50	4.44	2.23	1.61	2.02	2.83	6.53	21.46
	Training angle normal conditions (°)	18 36 54 72 90	54.07 27.64 4.88 5.69 2.03 2.44 4.07 5.69 10.98	79.44 55.24 14.52 4.44 2.42 0.81 3.23 8.87 13.71	54.03 74.60 48.79 7.66 3.63 4.44 9.68 15.32 5.24	11.79 46.34 69.11 24.80 11.79 15.45 20.73 11.38 2.44	4.44 16.13 37.90 59.68 47.98 40.73 27.02 5.24 1.61	0.45 6.70 23.21 47.77 55.80 50.89 28.57 5.36 1.79	1.21 3.63 10.08 23.79 39.92 59.27 38.31 8.47 1.61	4.45 7.69 11.74 8.91 9.72 35.22 62.35 48.58 2.43	5.67 6.48 9.31 4.86 4.05 12.55 43.32 70.45 4.05	10.20 8.98 8.98 3.67 2.86 4.08 8.57 17.96 67.35	10.53 5.26 5.67 5.26 2.43 2.83 4.45 8.10 31.17
			29.27	13.71	6.05	3.66	2.42	0.45	2.02	2.02	6.48	34.29	76.11

Table 3 .

 3 12 -Cross-view body-part recognition clothing variations (%). Bold values correspond to CCR when training angle is similar to testing angle.

			Testing angle clothing conditions (°)								
			0	18	36	54	72	90	108	126	144	162	180
		0	28.05	14.52	5.65	2.02	1.21	0.45	1.21	1.62	3.64	6.94	7.66
	Training angle normal conditions (°)	18 36 54 72 90	11.38 8.94 1.22 0.81 2.85 0.81 1.22 5.28 5.28	25.81 18.95 7.66 1.61 1.61 1.61 2.02 5.65 6.45	21.37 31.05 20.97 2.42 2.02 3.23 3.23 7.26 7.26	6.48 23.48 28.34 9.31 7.29 5.26 5.26 8.50 5.67	4.03 8.87 16.53 29.44 16.53 13.71 10.48 6.45 1.21	3.57 6.70 7.59 22.32 25.45 17.86 11.61 3.13 1.34	2.82 4.44 6.85 12.50 14.92 24.60 23.39 6.05 0.81	4.05 6.88 6.88 4.86 5.67 12.96 31.58 25.91 2.02	6.07 5.26 4.45 1.62 1.62 5.26 19.43 37.25 4.45	6.94 7.76 2.45 1.63 2.04 1.63 1.22 4.08 31.02	5.65 2.42 0.40 2.02 0 0.40 1.21 3.23 12.10
			10.16	7.66	5.24	1.21	1.61	1.79	2.02	2.83	4.45	12.24	30.65

Table 3 .

 3 

			Predicted angle (°)									
			0	18	36	54	72	90	108	126	144	162	180
		0	98.78	0.27	0	0	0	0	0	0	0.40	0	0.54
		18	0.40	97.58	1.34	0	0	0.13	0	0.13	0.26	0	0.13
		36	0.26	1.20	97.31	0.80	0	0	0	0	0.40	0	0
	Real angle (°)	54 72 90 108	0.13 0 0 0	0.13 0.26 0.14 0	0.8 0.13 0 0	98.65 0 0.43 0.13	0 98.92 0.43 0	0 0.13 98.41 1.34	0.13 0.40 0.57 97.71	0 0.13 0 0.53	0.13 0 0 0	0 0 0 0.26	0 0 0 0
		126	0	0	0	0.13	0	0	0.40	98.92	0	0.26	0.26
		144	0	0.13	0.13	0	0	0	0.13	0.26	97.57	1.48	0.26
		162	0	0.27	0.13	0.13	0	0	0	0	1.62	97.83	0
		180	1.07	0.26	0	0	0	0	0	0.13	0	0	98.51

13 -Pose estimation-confusion matrix (%). Bold values correspond to well-predicted angles.

Table 4 .

 4 1 -Machine hearing tasks based on different application domains

	Domains Environnemental	Speech	Music
	Tasks			
	Description	Environment	Emotion	Music Recommendation
	Classification	Computational Auditory	Speech or Speaker Recog-	Music Transcription
		Scene Recognition	nition	
	Detection	Event Detection	Voice Activity Detection	Music Detection

Table 4 .

 4 5 -Summary of Litis Rouen audio scene dataset.

	Classes

Table 4 .

 4 6 -Comparison of performances related to different feature representations on Rouen, EA audio scene classification datasets. Bold values stand for best values on each dataset.It can be seen in Table4.6 that HOG-marginalized outperforms all competing features in Rouen dataset, it can be also seen that the temporal pooling of

	Features	Rouen	EA
	Texture MFCC-D-DD MFCC MFCC-900 MFCC+RQA MFCC+RQA-900 HOG-full HOG-marginalized Spectrogram pooling Dictionary learning	-0.66 ± 0.02 0.67 ± 0.01 0.60 ± 0.02 0.78 ± 0.01 0.72 ± 0.02 0.84 ± 0.01 0.86 ± 0.01 0.85 ± 0.01 0.71 ± 0.01	0.57 ± 0.13 0.98 ± 0.04 1.00 ± 0.01 0.91 ± 0.07 0.95 ± 0.08 0.93 ± 0.06 0.99 ± 0.02 0.97 ± 0.06 0.97 ± 0.04 0.97 ± 0.04

Table 4 .

 4 8 -Comparison of performances related to different feature representations on music chord dataset based on linear SVM. Bold value stands for best performance.

	Features	Music chord
	Chroma Interpolated PSD Spectrogram pooling Dictionary learning	0.19 ± 0.01 0.15 ± 0.02 0.14 ± 0.01 0.66 ± 0.01
	Table	

Table 4 .

 4 9 -Comparison of performances related to different feature representations on music chord dataset based on polynomial kernel. Bold value stands for best performance.

	Features	Music chord
	Chroma Interpolated PSD Spectrogram pooling	0.70 ± 0.01 0.74 ± 0.01 0.72 ± 0.01

RésuméDe nos jours, il existe de nombreuses applications liées à la vision et à l'audition visant à reproduire par des machines les capacités humaines. Notre intérêt pour ce sujet vient du fait que ces problèmes sont principalement modélisés par la classification de signaux temporels. En fait, nous nous sommes intéressés à deux cas distincts, la reconnaissance de la démarche humaine et la reconnaissance de signaux audio, (notamment environnementaux et musicaux). Dans le cadre de la reconnaissance de la démarche, nous avons proposé une nouvelle méthode qui apprend et sélectionne automatiquement les parties dynamiques du corps humain. Ceci permet de résoudre le problème des variations intra-classe de façon dynamique; les méthodes à l'état de l'art se basant au contraire sur des connaissances a priori. Dans le cadre de la reconnaissance audio, aucune représentation de caractéristiques conventionnelle n'a montré sa capacité à s'attaquer indifféremment à des problèmes de reconnaissance d'environnement ou de musique: diverses caractéristiques ont été introduites pour résoudre chaque tâche spécifiquement. Nous proposons ici un cadre général qui effectue la classification des signaux audio grâce à un problème d'apprentissage de dictionnaire supervisé visant à minimiser et maximiser les variations intra-classe et inter-classe respectivement.

http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp

http://lemur.cmp.uea.ac.uk/Research/noise_db/

https://sites.google.com/site/alainrakotomamonjy/home/audio-scene
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testing samples with similar pose. Some extensions to our approach for gait recognition are envisioned. For instance, a gain in performances can be expected by relying on more elaborate classification methods. Two aspects can be considered: learning of an adequate metric [START_REF] Bellet | A survey on metric learning for feature vectors and structured data[END_REF] or investigating classifiers as SVM. Issues related to view-angle variations are reminiscent to domain adaptation [START_REF] Gopalan | Domain adaptation for object recognition: An unsupervised approach[END_REF][START_REF] Kulis | What you saw is not what you get: Domain adaptation using asymmetric kernel transforms[END_REF][START_REF] Sun | Return of frustratingly easy domain adaptation[END_REF] where the statistics of testing samples differ from those of the training data used to learn the recognition system. Indeed, because of the different acquisition angles the recorded gait images of a person lean on a manifold in an ambient high dimension-space inducing hence geometrical transformations of training and testing sets. Moreover the changing conditions (normal, clothing, carrying) affect more heavily the statistics of both sets. In that context, as an interesting perspective we plan to lift our body part-selection approach in domain adaptation techniques. Particularly, we intend to explore novel

Methods

Approach Features [START_REF] Antti J Eronen | Audio-based context recognition[END_REF] Low-level time-based & frequency-based Zero crossing rate [START_REF] Robert | Classifying user environment for mobile applications using linear autoencoding of ambient audio[END_REF] Spectral centroid [START_REF] Antti J Eronen | Audio-based context recognition[END_REF] Frequency-band energy Magnitude or power spectrum [START_REF] Sawhney | Situational awareness from environmental sounds[END_REF] Auditory filter banks Gammatone filters [START_REF] Clarkson | Auditory context awareness via wearable computing[END_REF] Mel-scale filter bank [START_REF] Vesa Peltonen | Computational auditory scene recognition[END_REF] Cepstral Mel-frequency cepstral coefficients [START_REF] Nogueira | Sound scene identification based on mfcc, binaural features and a support vector machine classifier[END_REF] Spatial Interaural time/level difference (Krijnders and ten Holt, 2013) Voicing Tone-fit features [START_REF] Antti J Eronen | Audio-based context recognition[END_REF] Linear predictive model Linear predictive coefficients [START_REF] Chu | Environmental sound recognition with time-frequency audio features[END_REF] Parametric approximation Convolution spectrogram and [START_REF] Patil | Multiresolution auditory representations for Bibliography scene classification[END_REF] Gabor filters [START_REF] Lee | Acoustic scene classification using sparse feature learning and event-based pooling[END_REF] Feature learning Learned features from MFCCs [START_REF] Cauchi | Non-negative matrix factorisation applied to auditory scenes classification[END_REF] Matrix factorization Non-negative matrix factorization [START_REF] Benetos | Characterisation of acoustic scenes using a temporally constrained shit-invariant model[END_REF] Probabilistic latent component [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF] Image processing HOG time-frequence representation [START_REF] Heittola | Audio context recognition using audio event histograms[END_REF] Event detection Analysis of events occurrence Models (HMM). [START_REF] Cauchi | Non-negative matrix factorisation applied to auditory scenes classification[END_REF] used Non-Negative Matrix Factorization (NMF) with MFCC features. [START_REF] Hu | Combining frame and segment based models for environmental sound classification[END_REF] employed MFCC features in a two-stage framework based on GMM and SVM. [START_REF] Lee | Acoustic scene classification using sparse feature learning and event-based pooling[END_REF] used sparse restricted Boltzmann machine to capture relevant MFCC coefficients. [START_REF] Jürgen | Large-scale audio feature extraction and svm for acoustic scene classification[END_REF] extracted a large set of features including MFCCs using a short sliding window approach. SVM is used to classify these short segments, and a majority voting scheme is employed for the whole sequence decision. [START_REF] Roma | Recurrence quantification analysis features for environmental sound recognition[END_REF] applied Recurrence Quantification Analysis (RQA) on the MFCCs for supplying some additional information on temporal dynamics of the signal.

Another trend is to extract discriminative features from time-frequency representations. [START_REF] Courtenay | Spectral vs. spectro-temporal features for acoustic event detection[END_REF] applied NMF to extract time-frequency patches. [START_REF] Benetos | Characterisation of acoustic scenes using a temporally constrained shit-invariant model[END_REF] instead of the NMF used temporally-constrained Shift-Invariant Probabilistic Latent Component Analysis (SIPLCA) to extract time-frequency patches from spectrogram. [START_REF] Yu | Audio classification from time-frequency texture[END_REF] proposed a method based on treating time-frequency representations of audio signals as image texture. In the same context, [START_REF] Dennis | Image feature representation of the subband power distribution for robust sound event classification[END_REF] introduced novel sound event image representation called Subband Power Distribution (SPD). The SPD captures the distribution of the sound's log-spectral power over time in each subband, such that it can be visualized as a two-dimensional image representation. Recently [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF] proposed to use Histogram of Oriented Gradient to extract information from time-frequency representations.

A Datasets

We rely our experiments on two representative datasets which are described below.

• East Anglia (EA): this dataset 1 provides environmental sounds [START_REF] Ma | Context awareness using environmental noise classification[END_REF] coming from 10 different locations: bar, beach, bus, car, football match, launderette, lecture, office, rail station, street. In each location a recording of 4-minutes at a frequency of 22.1 kHz has been collected. The 4-minutes recordings are splitted into 8 recordings of 30-seconds so that in total we have 10 locations (classes) and each class has 8 examples of 30-seconds.

• Litis Rouen: this dataset 2 provides environmental sounds [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF] recorded in 19 locations. Each location has different number of 30-seconds examples downsampled at 22.5 kHz. Table 4.5 summarizes the content of the dataset. • Spectrogram pooling: represents the temporal pooling of the spectrogram as previously.

• Interpolated power spectral density: music notes follow an exponential scale, however Power Spectral Density (PSD) is based on Fourier transform which follows a linear scale. To address this problem PSD (which lies on a linear scale) is sampled at specific frequencies corresponding to 96 notes leading to an exponential representation more suitable for chord recognition (Rida et al., 2014b).

• Chroma: it represents a 12-dimensional vector, every component represents the spectral energy of a semi-tone within the chromatic scale. Chroma vector entries are calculated by summing the spectral density corresponding to frequencies belonging to the same chroma [START_REF] Oudre | Template-based chord recognition: Influence of the chord types[END_REF].

Protocols and parameters tuning

We have averaged the performances from different 10 splits of the initial data into training and test. The training set represents 2/3 of data. Model selection is performed by resampling 2 times the training set into learning and validation set of equal size. The best parameters are considered as those maximizing the averaged performances on the validation sets. Note that the parameters are chosen from the same intervals used above in the computational auditory scene

Appendix A Derivation of group fussed Lasso problem

We make the change of variables (β β β, γ γ γ) ∈ R (N -1)×P × R 1×P given by:

We immediately get an expression of V as a function of β β β and γ γ γ:

This can be rewritten in matrix form as:

where X is the N × (N -1) matrix with entries X ij = 1 for i > j. Making this change of variable, we can re-express (A.1) as follows:

Plugging this into (A.5), we get that the matrix of jumps β β β is solution of:

where X and E are obtained by centering each column from X and E.
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