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Rearing practices and early performance of migratory fish for stocking program: study of the 

critically endangered European sturgeon (Acipenser sturio). 

 

Abstract  

Stocking for conservation purposes is the practice of raising animals in captivity and releasing them 

into an area from which the species have either declined or disappeared, in an attempt to enhance 

the natural population. Fish reared in hatcheries are exposed to selective reproduction, and early life 

experiences in a safe setting can strongly influence the behavioral, genetic, morphological and 

physiological attributes necessary to respond adequately to natural conditions after stocking. 

Exposing naive individuals to variability during early stages −enriched environment− could reduce 

such deficiencies and improve fish survival after release. This approach needs to be studied to 

understand how it affects performance traits that will directly impact fish fitness in the wild and 

consequently, its effects on stocking programs efficiency for conservation. The last remaining wild 

sturgeon population in Western Europe, the European sturgeon (Acipenser sturio), is located in the 

Gironde (Southwest France). This species is critically endangered and subject of a recovery plan with 

specific action plans in France and Germany. In this study, this species was used as a model to assess 

effects of rearing practices on survival, growth and behavioral performance of young-of-the-year 

sturgeons before stocking and their behavior and survival in the wild after release. Captive-born 

sturgeons belonging to two crossings were reared under traditional (i.e. low spatial and temporal 

variability) and enriched (i.e. higher spatial and temporal variability) practices for 3 months and their 

performance was evaluated in laboratory. Then, the fish were released in the Dordogne River and 

their individual movements were tracked for 20 days using a acoustic telemetry system; after 

evaluating the tagging effects on fish performance. Results in the laboratory demonstrated that 

enriched environment resulted in bigger fish from the first month. Growth curve analysis revealed 

that enriched environment made both fish crossings grow in a similar manner. In contrast, crossings’ 

growth differed in traditional rearing. Behaviorally, enriched-reared fish were slower to explore a 

new environment but more individuals engaged on doing so than traditional-reared fish. Post-release 

assessment on such small individuals was carried out for the first time for a sturgeon species. Fish 

overall survival was 69.3% (52.2−90.2%) where the lowest survival was found for one crossing reared 

under traditional conditions. After release, most movements (85.7%) occurred during the first three 

days after stocking and downstream direction. During the study, 82% of the fish were detected 

within 13.5km from the release site and no fish reached the saline estuary. Fish were mainly active 

during night hours, but traditional-reared fish were significantly more active during the day than 

enriched-reared fish during the first three days. Our findings advocate for the integration of enriched 

rearing practices within the juvenile production for release in order to boost the performances linked 
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to fitness. Stocking practices and life history research should work together to favor adaptive 

aquaculture approaches, which support species conservation. 

 

Keywords: conservation aquaculture, stocking, sturgeon, rearing conditions, behavior, acoustic 

telemetry, survival. 
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Pratiques d’élevage et performances des jeunes stades de poissons migrateurs amphihalins dans le 

cadre de programmes de repeuplement : cas d’étude d’une espèce en danger critique d’extinction 

l’esturgeon européen (Acipenser sturio) 

 

Résumé 

En biologie de la conservation, les pratiques de réintroduction consistent à élever des animaux en 

captivité et à les relâcher dans l’aire de répartition où l’espèce en question a décliné ou disparu, ceci 

dans le but de soutenir la population naturelle. Pour les poissons, l’élevage en pisciculture implique 

une sélection des individus au moment de la reproduction et un développement des jeunes stades 

dans un environnement contrôlé qui peuvent influencer fortement les attributs comportementaux, 

génétiques, morphologiques et physiologiques nécessaires pour répondre de manière adéquate aux 

conditions du milieu naturel. L’exposition de ces individus naïfs, particulièrement les jeunes stades, à 

la variabilité (environnements enrichis) pourrait limiter ces carences et améliorer la survie post-

lâcher. Dans ce cadre, des expérimentations sont nécessaires pour comprendre comment 

l’environnement d’élevage affecte les performances individuelles qui impacteront directement la 

fitness en milieu naturel et par conséquent l’efficacité des programmes de réintroduction avec un 

objectif de conservation. La dernière population d’esturgeon sauvage  d’Europe de l’ouest est issue 

de la Gironde (Sud-Ouest France), il s’agit de l’esturgeon européen (Acipenser sturio). Cette espèce 

est classée en danger critique d’extinction et fait l’objet d’un programme de restauration européen 

décliné en plans d’actions nationaux en France et en Allemagne. Dans ce travail, cette espèce est 

utilisée comme modèle afin d’évaluer les effets des pratiques d’élevage sur la survie, la croissance et 

le comportement des jeunes de l’année en captivité puis leur comportement et leur survie post-

lâcher en milieu naturel. Des esturgeons nés en captivité, issus de 2 croisements, ont été élevés selon 

deux méthodes, l’élevage « traditionnel » (faible variabilité spatiale et temporelle) et l’élevage 

« enrichi » (augmentation de la variabilité spatiale et temporelle), jusqu’à ce qu’ils atteignent trois 

mois puis leurs performances ont été évaluées en conditions contrôlées. Les individus ont ensuite 

étaient relâchés en rivière et leurs déplacements individuels ont été suivis pendant 20 jours à l’aide 

d’une technologie de télémétrie acoustique après avoir évalué les effets du marquage sur les 

performances individuelles. Les résultats en conditions contrôlées mettent en évidence que dans un 

élevage enrichi les individus atteignent un poids et une taille supérieurs dès le premier mois de vie. 

L’analyse de la croissance révèle que les individus issus des deux croisements ont une croissance 

similaire en conditions enrichies mais celle-ci diffère dans un environnement traditionnel. L’analyse 

du comportement en milieu contrôlé indique que les individus élevés en conditions enrichies 

seraient plus lents à explorer un environnement inconnu mais plus nombreux que parmi les individus 

élevés de manière traditionnelle. Le suivi post-lâcher des jeunes stades de cette espèce et plus 
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largement des espèces d’esturgeon a été réalisé pour la première fois dans le cadre de ce travail. La 

survie globale des poissons était de 69,3%  (52.2−90.9%), la survie la plus faible concernant un 

croisement élevé de manière traditionnelle. Après le lâcher, la plupart des mouvements (85,7%) se 

sont produits au cours des trois premiers jours et ils étaient orientés vers l’aval. 82% des poissons ont 

été détectés jusqu'à 13.5km du site de lâcher et aucun des poissons n’a atteint l'estuaire salé. Les 

poissons étaient principalement actifs durant la nuit, mais les poissons élevés de manière 

traditionnelle étaient significativement plus actifs pendant la journée que les poissons issus de 

l’élevage enrichi durant les trois premiers jours. Nos résultats plaident en faveur de l’intégration de 

pratiques d’élevage enrichies pour la production de juvéniles destinés au repeuplement afin 

d’améliorer les performances liées à la fitness. Ce travail milite pour que les pratiques de 

repeuplement et la recherche sur l’écologie des espèces travaillent en synergie afin de favoriser la 

mise en place d’une aquaculture adaptative qui soutienne la conservation des espèces. 

 

Mots clefs: aquaculture de conservation, réintroduction, esturgeon, pratiques d’élevage, 

comportement, télémétrie acoustique, survie. 
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Prácticas de cría y rendimiento temprano de peces migratorios en programas de repoblación: 

estudio del esturión europeo (Acipenser sturio), especie en peligro crítico de extinción. 

 

Resumen  

En conservación, la repoblación de especies es la práctica de criar animales en cautiverio y su 

posterior liberación en zonas donde la especie ha disminuido o desaparecido con la finalidad de 

aumentar la población natural. Los peces cultivados en piscifactorías están expuestos a la 

reproducción selectiva, y la experiencia temprana en ambientes seguros puede tener una fuerte 

influencia en los atributos genéticos, morfológicos, fisiológicos y de comportamiento, necesarios 

para responder adecuadamente en la naturaleza después de la liberación. La exposición de 

individuos sin experiencia previa a la variabilidad en el ambiente (ambientes enriquecidos) durante 

los estadios tempranos de su desarrollo puede reducir estas deficiencias y mejorar la sobrevivencia 

después de la liberación. Este tema necesita ser estudiado más a fondo para entender cómo el 

ambiente de cría afecta los atributos de rendimiento que influirán directamente en el “fitness” de los 

individuos una vez en la naturaleza y por consecuencia, en la eficiencia de los programas de 

repoblación para la conservación. El último relicto de esturión salvaje en el sudoeste de Europa, el 

esturión europeo (Acipenser sturio), está en peligro crítico de extinción, sujeto a un plan de 

recuperación y planes específicos de conservación en Francia y Alemania. En este estudio, esta 

especie fue usada como modelo para evaluar los efectos de las prácticas de cría en la sobrevivencia, 

crecimiento, y comportamiento en juveniles de menos de un año de edad antes de la liberación y, su 

comportamiento y sobrevivencia en la naturaleza después de la liberación. Para esto, esturiones de 

dos cruces diferentes fueron criados durante tres meses en cautiverio en ambientes tradicionales 

(baja variabilidad espacial y temporal) y ambientes enriquecidos (alta variabilidad espacial y 

temporal) y evaluados en laboratorio. Posteriormente los peces fueron liberados en el río Dordoña y 

se rastrearon sus movimientos individualmente durante 20 días usando un sistema de telemetría; los 

efectos de este marcado se evaluaron previamente. Los resultados de laboratorio demuestran que la 

cría enriquecida produce peces de mayor tamaño desde el primer mes de crianza. Los análisis en las 

curvas de crecimiento revelaron que la cría enriquecida hizo que los peces de ambos cruces crecieran 

de manera similar. Por el contrario, el crecimiento fue diferente bajo la cría tradicional. Con respecto 

al comportamiento, los peces de cría enriquecida tardaron más en empezar a explorar un ambiente 

nuevo pero más individuos se involucraron en esta actividad que los peces de cría tradicional. En la 

naturaleza, es la primera vez que se monitorea esturiones de tan poca edad. La sobrevivencia global 

fue del 69.3% (52.2−90.9%) donde uno de los cruces criado tradicionalmente tuvo la tasa más baja. 

La mayoría de los movimientos (85.7%) ocurrieron durante los primeros tres días después de la 

liberación y orientados río abajo. Durante el estudio, 82% de los peces fueron detectados a menos 
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13.5km del sitio de liberación y ninguno alcanzó el estuario salino. Los peces estuvieron  

principalmente activos durante las horas de la noche. Sin embargo, durante los 3 primeros días 

después de la liberación, los peces criados por medios tradicionales estuvieron significativamente 

más activos durante el día que aquellos criados en medios enriquecidos. Este estudio aboga por la 

integración de las prácticas de cría enriquecida dentro de la producción de juveniles para la 

liberación con el objetivo de mejorar el rendimiento ligado al “fitness”. Las prácticas de repoblación y 

la investigación de historia de vida deben trabajar en conjunto para favorecer los enfoques 

adaptativos de acuacultura que apoyen la conservación de especies. 

 

Palabras clave: acuicultura de conservación, repoblación, esturión, condiciones de cría, 

comportamiento, telemetría acústica, sobrevivencia. 
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1.1.  Biodiversity and conservation 

The world’s biodiversity shows a decline of 58% in the last 42 years (WWF 2016). Overall, the most 

impacted habitats are freshwater environments with a decline of 81% (WWF 2016). Biodiversity 

extinction rates in the past few centuries are comparable with mass extinction events in the past and 

thus, it has been considered that a sixth mass extinction is in progress (Pievani 2014). Generally 

speaking, a decrease in species diversity alters the ecosystem robustness and resilience and, 

consequently its capacity to sustain humans in the biosphere (Costanza et al., 1997). To overcome 

this diversity’s loss a wide range of actions are taken worldwide to identify its threats and to correct 

them. In situ corrective actions aim to facilitate diversity to maintain itself within the context of their 

natural environment as habitat protection, restoration and fishing and hunting regulations (Bain 

1987; Armstrong et al., 2001; Pikitch et al., 2005). They can be targeted to populations, species and 

whole ecosystems. Ex situ actions, on the other hand, aim the conservation of biological components 

outside their natural habitats like zoos and captive breeding programs (Arlati and Poliakova 2009; 

Williot et al., 2009a). Breeding species in captivity to be released into the wild for conservation 

purposes has been considered a strong mean to stabilize, re-establish or enhance populations that 

have suffered significant decline (Jachowski et al., 2016). This strategy occurs worldwide in a wide 

range of fish species (Aprahamian et al., 2003; Buckmeier et al., 2005; Zhu et al., 2006; Williot et al., 

2009a). In this work, this type of actions, within the fish context will be referred to as “stocking” and 

encompass the IUCN/SSC definitions for introduction1, reintroduction2 and reinforcement3. The 

ultimate goal of stocking for conservation purposes is to enhance or produce a self-sustaining 

(Robinson and Ward 2011) and persistent population (Seddon 1999). This action is a complex and 

long term process generally expensive in which several aspects like habitat requirements, behavioral 

and genetics issues, population dynamics and species intrinsic characteristics, citizens awareness and 

implementation of management protocols are implicated in its success achievement (Jachowski et 

al., 2016). Yet, conservation of migratory species are even more challenging due to their multiple 

spatio-temporal scales and wide-range movements (Shuter et al., 2011).  

 

 

                                                           

1
 introduction: intentional or accidental dispersal by human agency of a living organism outside its historically known native 

range (International Union for Conservation of Nature, 1987). 
2
 reintroduction: intentional movement and release of an organism inside its indigenous range from which it has 

disappeared (International Union for Conservation of Nature/Species Survival Commission, 2013). 
3 reinforcement: intentional movement and release of an organism into an existing population of conspecifics (International 

Union for Conservation of Nature/Species Survival Commission 2013). 
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Migration itself can lead to high mortality due to increased exposure to threats along the way. Often, 

it can place the species outside of protected areas and their routes can go through various 

jurisdictional and political boundaries (Shuter et al., 2011). Also, these species have annual or multi-

cycles in which timing of events is critical making them vulnerable to a variable environment e.g. 

climate change (Mihoub et al., 2010; Shuter et al., 2011). Thus, events affecting any stage of the 

migratory cycle will affect the others and the whole population. This is the case of Acipenseridae 

species which most of them are migratory and at risk of extinction (Birstein et al., 1997; Billard and 

Lecointre 2001). Furthermore, there is very limited information on biology and ecology or particular 

life stages of critically endangered species due to lack of specimens to study. This points out the need 

of urgent research to improve their conservation outcomes.  

 

1.2. Stocking programs  

Through human history, stocking have been often a tool to mitigate the overexploitation of seas and 

inland waters for food, commerce and recreation (Olden 2006). Some can be even traced back to the 

Middle Ages. For example, in the 14th century, trout culture initiated when a French monk came 

across with the artificial fertilization of trout eggs (Pillay and Kutty 2005). Then, trout culture spread 

around the world and by 18−19th century, hatcheries were establish everywhere in the world and 

used to stock natural water bodies to improve sport fishing (Pister 2001; Pillay and Kutty 2005). By 

that time, fish stocking happened without management plans and it was driven by a utilitarian 

resource management ethic (Pister 2001) used to satisfy commercial and recreational demands. 

Therefore, these introductions were focused on fish species with recreational and commercial value. 

By this means, rainbow trout (Oncorhynchus mykiss) ended being the most widely distributed 

salmonid in the world (Stanković et al., 2015). This type of fish stocking has also been considered as 

one of the main threats to freshwater fish conservation (Seddon et al., 2012). Nowadays, stocking 

practices have evolved to address the need of ecosystem and biodiversity conservation (Pister 2001). 

According to the Food and Agriculture Organization of the United Nations (2005-2016), ninety four 

countries have reported stocking into aquatic habitats to alleviate environmental damage, 

compensate overfishing, maintain productivity and conservation of threatened species. Stocking, 

which is still a controversial practice (Araki and Schmid 2010), is also an important tool for 

conservation (IUCN/SSC 2013; Cochran-Biederman et al., 2015), mainly focused on population 

enhancement, that is gaining relevance as biodiversity continue to decline (Reading et al., 2013). 

Although, stocking cannot address the factors of diversity decline in first place so, it is not enough to 

protect species against decline or extinction. But, it can be regarded as a complementary action 

along within in situ conservation strategies like habitat protection and restoration (George et al., 

2009). In these programs the fish to be released are often captive-born from a broodstock that is 
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wild-caught and/or of hatchery origin. In this context, aquaculture practices are important since the 

species’ survival in early stages can be significantly increased in captive conditions over the rates 

found in the wild (Secor et al., 2002). Therefore, stocking programs need high breeding success and 

low mortality rates to allow them to provide individuals for release that will survive and breed in the 

wild (Reading et al., 2013). However, the successful integration of these individuals into the wild is 

influenced by many biological (e.g. genetic diversity, species characteristics), environmental (e.g. 

habitat quality) and socio-economic factors (e.g. funds) (Reading et al., 2013; Cochran-Biederman et 

al., 2015). A better knowledge of these aspects can increase success and can help to design strategies 

and methodologies that could result in baseline data to be shared and compared between current 

and future programs improvement. 

Worldwide, 76% of sturgeon species are subjected to conservation stocking programs (Waldman and 

Wirgin 1998; Billard and Lecointre 2001; Jackson et al., 2002; Arlati and Poliakova 2009; Maltsev 

2009; Williot et al., 2009a; IUCN 2015) mainly because it is a very vulnerable fish group as from its 25 

species, 18 are listed under the endangered and critically endangered category of the IUCN red list 

(2015) (Table 1). Records of the use of stocking to compensate poor natural reproduction in 

sturgeons come as early as 1954 in the Caspian Sea (Birstein 1993) where stocking was heavily used 

to increase catches (Barannikova 1987). Currently, stocking is mostly focused on natural population 

enhancement, as a conservation measure mainly done in North America and Europe (Waldman and 

Wirgin 1998; Billard and Lecointre 2001; Drauch and Rhodes 2007; Arlati and Poliakova 2009; 

Gessner et al., 2010a; Dreal 2011; Kirschbaum et al., 2011). As sturgeons are threatened in their 

entire range of distribution, some species have disappeared from most of it and are on the verge of 

becoming extinct (Billard and Lecointre 2001). For such species captive stocks and stocking programs 

are the only possible means to save them from extinction (Birstein 1993).  
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Table 1. List of extant sturgeons species in alphabetic order. A: Acipenser, H: Huso, P: Pseudoscaphirhynchus, S: Scaphirhynchus. 

Species English name Historical geographic distribution Status (1) Stocking (2)  

A. baerii (Brandt, 1869) Siberian Siberia, Arctic EN + 

A. brevirostrum (Lesueur, 1818) Shortnose From Florida to New-Brunswick VU + 

A. dabryanus (Duméril, 1868) Yangtze / Dabry’s China, Yangtze, Korea CR + 

A. fulvescens (Rafinesque, 1817) Lake Great Lakes and lakes of S. Canada LC + 

A. gueldenstaedtii (Brandt, 1833) Osetra / Russian Caspian, Black and Azov Seas CR + 

A. medirostris (Ayres, 1854) Green N. Pacific NT  

A. mikadoi (Hilgendorf, 1892) Sakhalin N.W. Pacific CR  

A. naccarii (Bonaparte, 1836) Adriatic Adriatic, Pô, Adige, Mediterranean CR + 

A. nudiventris (Lovetzky, 1828) Ship Caspian, Black and Azov Seas (Aral) CR + 

A. oxyrinchus (Mitchill, 1814) Atlantic Aoo / Gulf Aod Gulf of Mexico, Hamilton/Fundy NT + 

A. persicus (Borodin, 1897) Persian Caspian and Black Seas CR + 

A. ruthenus (Linnaeus, 1758) Sterlet Europe, ex. USSR Caspian, Black, Azov VU + 

A. schrenckii (Brandt, 1869) Amur River Amur River, Okhotsk and Japan Seas CR + 

A. sinensis (Gray, 1834) Chinese Yangtze, Pearl Riv., Korea, Japan CR + 

A. stellatus (Pallas, 1771) Sevruga / Stellate Black, Caspian Azov Seas CR + 

A. sturio (Linnaeus, 1758) European / Atlantic Europe (North Africa) CR + 

A. transmontanus (Richardson, 1836) White N.E. Pacific LC + 

H. dauricus (Georgi, 1775) Kaluga Amur Riv., Japan sea CR  

H. huso (Linnaeus, 1758) Beluga / Giant Black, Caspian Azov, Adriatic Seas CR + 

P. fedtschenkovi (Kessler, 1872) Syr Dar Shovelnose Syr-Darya CR  

P. hermanni (Kessler, 1877) Small Amu Dar Shovelnose Aral, Amu-Darya CR  

P. kaufmanni (Bogdanov, 1874) Large Amu Dar Shovelnose Aral, Amu-Darya CR + 

S. albus (Forbes and Richardson, 1905) Pallid Mississippi, Missouri EN + 

S. platorynchus (Rafinesque, 1820) Shovelnose Mississippi, Missouri VU  

S. suttkusi (Williams and Clemmer, 1991) Alabama Alabama, Mississippi CR + 

Table taken and adapted from Billard and Lecointre (2001). 
(1) CR: critically endangered, EN: endangered, VU: vulnerable, NT: near threatened, LC: least concern (IUCN 2015). 
(2) Conservation stocking is practiced on the species at least experimentally (IUCN 2015).
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1.3. Rearing practices 

1.3.1. Aquaculture  

Hatchery environments vary from ponds to high-technology recirculation systems. Most of these 

farming conditions are very different from natural habitats to which species are naturally adapted; 

fish are reared in unchallenging, invariable and structurally very simple conditions (Huntingford et al., 

2012; Johnsson et al., 2014). In these conditions, fish adapt and undergo intended or unintended 

changes that can get accentuated generation after generation (Price 2002; Johnsson et al., 2014) and 

the rearing purpose will dictate the importance and direction of these changes. Adaptations to 

captivity are important in commercial aquaculture that aims to produce a supply for consumption 

and fish required to adapt to rearing conditions (i.e. density, handling, feed administration, 

pathogens) to maximize productivity and profit (Parker 2011). However, in conservation aquaculture, 

these adaptations to rearing conditions are incongruent with the aim of conservation and recovery of 

endangered populations along with their locally adapted gene pool and their typical phenotypes and 

behaviors (Anders 1998). In this context, conservation aquaculture is also contrasting with traditional 

supplementation programs that aimed to release large records quantities of fish to build a 

harvestable surplus (Anders 1998). The advantage of aquaculture practices for conservation lays in 

the fact that fish survival, especially in early stages, can be increased several times in the hatchery’s 

controlled conditions over the rates found in the wild (Secor et al., 2002). Nevertheless, there are 

concerns associated with aquaculture practices like artificial selection and domestication. 

 

1.3.2. Artificial selection, natural selection in captivity and relaxation of natural selection  

Fish rearing for conservation faces similar problems as fish rearing for other purposes. Indeed, 

environmental conditions established in the hatchery are artificial, i.e. different from those found in 

nature (Youngson and Verspoor 1998; Huntingford et al., 2012; Johnsson et al., 2014). As a 

consequence, the phenotypes produced via genotype by environment interaction as well as the 

genotypes selected by the new environment can strongly differ from those found in the wild 

population (Huntingford et al., 2012; Johnsson et al., 2014). This process is often termed 

domestication, and can be divided in two well defined mechanisms, artificial and relaxed natural 

selection, often occurring simultaneously (Price 2002). Artificial selection occurs because the breeder 

defines the crossing pairs to select specific traits and can manipulate reproduction timing for some 

species (Price 2002). For example, in commercial aquaculture, high growth rates are often the trait of 

interest (Huntingford 2004; Huntingford and Adams 2005), as it promotes directly the fish farm 

productivity. Thus, fast growing fish will be given priority by the man-made selection to establish a 

genetic pool in the next generation. Furthermore, the more the promoted traits are heritable, the 
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more the effect of artificial selection will be pronounced in the offspring. Fish farm managers often 

have to deal with indirect selection of secondary traits, strongly linked to the traits of interest, or 

traits unintended selected because they are beneficial in captivity (Waples 1999; Price 2002) allowing 

fixation of non-adaptive traits and the accumulation of deleterious alleles (Price 2002). For example, 

selection for productivity traits have been linked with lower lifetime reproductive success (Youngson 

and Verspoor 1998). Fish rearing for conservation purposes are not under the same constraints e.g. 

high generational turn-over, high feed conversion ratio, as those in commercial farms. However, in 

many cases, where the parental stock is low, the establishment of genetic pool for the next 

generation is limited to the few fish able to reproduce –natural selection in captivity. In other words, 

to start, wild specimens that would not adapt to captivity would die, have low reproductive success 

or no reproduce at all (Price 2002). Those that have survived to adulthood have undergone 

adaptations to this environment, i.e. physiological changes, and they are able to reproduce (Price 

2002). Furthermore, changes occur since the first-generation of captive fish (Siikavuopio et al., 1996; 

Alvarez and Nicieza 2003; Christie et al., 2016); thus, the following generations will be more fit to 

captive conditions, pointing out that natural selection is stronger in the first generations (Price 2002).  

In captivity, many traits and skills that are important for survival in the wild lose their adaptive value 

and therefore natural selection is not strong on them; this relaxation of natural selection leads to 

higher variability of phenotypic traits (Price 2002) by increasing the frequency of reaction norms that 

would be otherwise disfavored in the wild. Indeed, fish mortality is often higher in the wild than in 

the captive born fish, where the whole environment is setup for the best survival of individuals since 

the youngest stages. For example, survival rate of steelhead trout juveniles (Oncorhynchus mykiss) 

reach 85–95% in the hatchery (Reisenbichler et al., 2008) while in the wild it is 27–35% (Melnychuk 

et al., 2007). Relaxed natural selection in captive-bred fish is not a concern when they will end-up on 

a plate, but is not the case if fish are stocked and expected to match the wild phenotype (Waples 

1999).  

Relaxation of selection can produce changes in behavior, physical and immune condition 

(Kronenberger and Medioni 1985; Dohm et al., 1994; Olla et al., 1998; Yampolsky et al., 1999; 

Berejikian 2005). For example, being reared in a predator-free environment has negative 

consequences in anti-predator performance; fish do not react properly or even approach the threat 

(Johnsson and Abrahams 1991; Berejikian 1995; Olla et al., 1998; Alvarez and Nicieza 2003; Biro et 

al., 2004; Meager et al., 2011). Thus, captive fish tend to be bolder (Biro et al., 2004; Sundström et 

al., 2004; Houde et al., 2010) and explore novel objects faster (Sundström et al., 2004) because they 

not necessarily associate correctly the predator presence with immediate danger. Thus, once 

released into the wild, predation is the main reason of mortality (Olla et al., 1998; Braithwaite and 
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Salvanes 2005). Homogeneous conditions in hatcheries also contribute to altered behavior in captive 

fish; it can decrease behavioral flexibility, i.e. adjustment of behavior in response to changes in the 

environment (Braithwaite and Salvanes 2005; Johnsson et al., 2014), as there is no need to maintain 

the potential to adapt in an unchanging environment. Others traits such cognitive skills, spatial 

memory and learning abilities can also be altered (Brown et al., 2003; Salvanes and Braithwaite 2005; 

Salvanes et al., 2013; Johnsson et al., 2014). Most of the traits are influenced simultaneously by the 

environment and artificial/unintended selections, giving raise to specific behavioral syndromes 

(boldness vs shyness) or stress coping styles (proactivity vs reactivity) (Réale et al., 2007; Stamps 

2007; Biro and Stamps 2008; Réale et al., 2010). 

 

1.3.3. The alternative approaches: pre-release training and environmental enrichment 

Rearing environment of captive animals for conservation purposes is a subject rising attention as a 

method to improve captive breeding and release programs (Brown et al., 2003; Strand et al., 2010; 

Chebanov et al., 2011; Roberts et al., 2011; Reading et al., 2013; Bergendahl et al., 2016). The goal of 

conservation aquaculture for stocking programs is to enhance the fitness of individuals –ability to 

survive and reproduce (Maynard-Smith 1989) following release. Thus, these individuals require a set 

of morphological, behavioral and cognitive skills that will allow this to happen. These skills develop in 

early stages and consequently are shaped by their genetic properties and the environment they 

grow-up in (Reading et al., 2013; Johnsson et al., 2014). However, the individuals destined for 

stocking grow in artificial environments and these settings, as mentioned before, influence traits 

necessary to respond adequately to natural environments after release (Brown et al., 2003; 

Braithwaite and Salvanes 2005; Klefoth et al., 2012). It has been documented that after 

reintroduction, hatchery strain individuals are less successful in establishing and surviving than wild 

strains (Maynard et al., 1995); most of the mortality occurs the immediate days after reintroduction 

(Howell 1994; Svåsand et al., 1998; Blaxter 2000) and 5% or less make it to adult stages (McNeil 

1991; Salvanes 2001). Some important traits that could impact success after release are territorial 

and feeding efficiency, social and anti-predator skills, reproductive success or locomotor skills that 

can differ between captive-born individuals and their wild counterparts (Olla et al., 1998; Sundström 

and Johnsson 2001; Aarestrup et al., 2005; Salvanes and Braithwaite 2006; Stamps 2007; Araki et al., 

2008; Reading et al., 2013). For this reason, many programs try to incorporate pre-release protocols 

to familiarize individuals with the environment to which they will be introduced (Beck et al., 1994; 

Olla et al., 1998; Braithwaite and Salvanes 2005). For example, in social species, naïve individuals 

could learn skills from the more experienced ones. Thus, cohabitation incentives social learning and 

improves skills needed to survive in the wild (Suboski and Templeton 1989; Brown and Laland 2001; 
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Brown and Laland 2003). Other skills as predator avoidance and foraging can also be improved when 

captive-bred individuals are exposed to natural live preys and predators cues before release (Järvi 

1990; Järvi and Uglem 1993; Hossain et al., 2002; Arai et al., 2007). Temporal allocation in semi-

natural enclosures before release is also practiced in order to improve  the captive-wild transition 

(Näslund 1992; Maynard et al., 1996). The post-release recovery time is reduced, the individuals can 

feed on natural prey and adjust to the new environment while being safe from predators (Brown and 

Day 2002). Nevertheless, studies show that these procedures do not always obtain the expected 

results (Johnsson and Abrahams 1991; Sundström and Johnsson 2001; Brown and Day 2002; 

Vilhunen and Hirvonen 2003) probably because the training period occurred too late in animals’ lives 

or because the method may not be adapted to the species concerned. Indeed, the effects of 

environment occur early in life (Kotrschal and Taborsky 2010; Ebbesson and Braithwaite 2012; 

Salvanes et al., 2013). So, it has been suggested that exposing individuals to “environmental 

enrichment” in early stages can alleviate behavioral deficiencies that cause significant mortality rates 

(Braithwaite and Salvanes 2005; Kotrschal and Taborsky 2010; Roberts et al., 2014). Environmental 

enrichment consists in providing an environment with increased complexity in which animals can 

demonstrate their species-typical behavior and choice over their environment (Young 2003; AZA 

2016); features that are absent in traditional captive environments. The purpose is to reduce atypical 

behavior and increase ability to cope with challenges (Young 2003). Enrichment can be provided in a 

variety of ways such as presence of spatial cues (e.g. novel objects, plants, logs) (Salvanes and 

Braithwaite 2005; Salvanes et al., 2007); variability in food items and its distribution (Brown et al., 

2003; Chapman et al., 2010; Kotrschal and Taborsky 2010) and presence of other individuals (Young 

2003; Strand et al., 2010). Thereby several authors suggest this type of environment would promote 

neural development (Brown et al., 2003; Reading et al., 2013), behavioral flexibility (Braithwaite and 

Salvanes 2005; Salvanes et al., 2007; Kotrschal and Taborsky 2010), phenotypic variation (Crossman 

et al., 2014) and physical fitness (Biggins et al., 1991; Mathews et al., 2005) which can improve post-

release survival. For this reason, it has been considered as a promising approach to improve 

reintroduction programs outcomes.  

Specifically in sturgeons, Crossman et al., (2011) has studied the enrichment approach for 8−13 

weeks in lake sturgeon using a streamside hatchery (river water and natural temperature 

fluctuations) from the natal river. His results showed a main effect of rearing method favoring 

recapture rate of enriched-reared fish compared to controls (traditional hatchery). In another study, 

the same authors (Crossman et al., 2009), reared fish for 3 months in the same streamside hatchery 

and then transfer them to a traditional hatchery for 3 more months. Fish of both rearing methods 

were released at the age of 6 months and were acoustically monitored for 2 months. The author did 
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not find survival differences between the rearing methods and suggested that the enriched-reared 

fish could have lost any advantage developed during the first months when maintained in the 

traditional hatchery or because of a size threshold beyond which rearing effects may not be relevant. 

Boucher et al., (2014) found that white sturgeon (A. transmontanus) larvae reared on a combination 

of gravel and warm water temperature resulted in higher survival, better yolk absorption efficiency 

and bigger fish than the control group. Finally, Du et al., (2014) reared 15−40 days post hatch (dph) 

Dabry’s sturgeon (A. dabryanus) under water current resulting in higher endurance and critical 

swimming speed (Ucrit) for those fish under current conditions than those reared in static tanks. The 

mentioned studies in sturgeons have chosen to work with few variables, all of them directed to 

improve fish physical condition to increase survival but none took into account fish behavioral skills. 

This suggests that alternative rearing approaches for sturgeons need more study considering that 

stocking for conservation is done on 19 of 25 sturgeon species (Table 1).  

 

1.4.  Post-release monitoring  

Once individuals are released into the wild, monitoring is a vital component and the only means to 

evaluate the reintroduction outcome, successful or not, is through information regarding changes in 

the targeted populations, its development (population trends) and their impact on the environment 

(Sutherland et al., 2010; Acolas et al., 2011b; Gitzen et al., 2016). The data obtained allow developing 

adaptive management responses that will not only fit the program specific needs but also will help to 

improve current and future plans (Bearlin et al., 2002). Based on this, indicators related to population 

size and distribution as well as parameters influencing them are often used (Gitzen et al., 2016). In 

the long run,  reintroduction’s main purpose is to produce a self-sustaining (Robinson and Ward 

2011) and persistent population (Seddon 1999), and these demographic qualities can only be 

assessed with long term monitoring (Gitzen et al., 2016).  

For post-release monitoring, individual identification is needed to distinguish stocked from wild fish 

and marking techniques allows it (Taylor et al., 2005; Sutherland et al., 2010). Nevertheless, to access 

the information that marking can provide, most of the time, recapturing the specimens is also 

necessary. Therefore, a combination of marking and re-capture techniques, allow the acquisition of 

demographic and ecological information such as recruitment, survival, growth, health, feeding 

habits, etc. Marking can be achieved using a wide range of methodologies and done individually or in 

groups. The techniques used will depend on the specimen’s characteristics, the environment, the 

type of information to be collected and economic resources available.  

Telemetry technology is the automatic measurement and wireless transmission of data from remote 

sources to the receiving equipment (Bégout et al., 2016). It is one of the most efficient techniques for 
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individual recognition and can be used to evaluate the fate of the stocked fish to improve 

conservation actions outcomes. So, it has been widely used for post-release monitoring in 

conservation stocking programs (Ebner and Thiem 2009; Grabowski and Jennings 2009; Mohler et al., 

2012; Thompson et al., 2016). It is a reliable means to study spatial ecology of fish (Lucas and Baras 

2000; Cooke et al., 2004; Bégout et al., 2016) and it is used in several taxa (Dieperink et al., 2001; 

Ingraham et al., 2014; Horká et al., 2015). In sturgeons it has been previously used in stocked 

population monitoring to evaluate post-release survival (Parkyn et al., 2006; Rudd et al., 2014; Eder 

et al., 2015), habitat use (Jordan et al., 2006; Acolas et al., submitted), dispersal and migration (Secor 

et al., 2000; Neufeld and Rust 2009) mainly on large juveniles. Yet, nowadays telemetry transmitters 

tend to decrease in size which will allow monitoring of smaller individuals in the near future 

(McMichael et al., 2010; Ferrari et al., 2014; Lu et al., 2016). 

 

1.5.  The European sturgeon (Acipenser sturio)  

1.5.1. Study model context 

In Western Europe, the last remaining wild population of the European sturgeon (Acipenser sturio) is 

listed in several international conventions and directives as critically endangered (Rochard 2011) 

(Table 2). Thus, the species is strictly protected and a subject of the European recovery strategy 

(Rosenthal et al., 2007) along with national action plans in France (MEDDTL 2011) and Germany 

(Gessner et al., 2010b). In the eighteenth century the species had almost pan-European distribution 

and spawning was occurring in 196 basins (Lassalle et al., 2011) (Figure 1). By 1850 the species was 

present in 26 basins and by 1950 only in 18 (Lassalle et al., 2011). Currently, there is only one 

functional population in the Gironde basin in France and its two last reproductions in the wild were 

reported in 1988 and 1994 (Lochet et al., 2004). The European sturgeon is a long-lived and slow-

growing species that can reach 3.50m in length (Magnin 1962; Lepage and Rochard 1995). The wild 

population effective size is estimated to be around 20–750 individuals as consequence of habitat loss 

and overexploitation that reduced the population to 10% (IUCN 2015). The age at first maturation is 

estimated to be around 10–12 years for males and 14–15 years for females and spawning interval is 

reported between two and three to four years for males and females, respectively (Magnin 1962; 

Rochard and Jatteau 1991). In virtue of these extreme life history traits common in sturgeons: large 

species, late age at the first maturation, long spawning intervals, low density and endangered status 

(Jager et al., 2008), studies and manipulation under control and in situ conditions are not 

straightforward. But, this species is a perfect model to study behavior and ecology under the 

reintroduction programs context. 
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Table 2. Conventions and directives listing Acipenser sturio (from Rochard 2011). 

Name Ratification (place/date) Listing of A. sturio in the text 

Convention on International 
Trade in Endangered Species 
of Wild Fauna and Flora. 
(CITES) 

Washington, 1975 

Appendix I means that CITES prohibits international  
trade in specimens of these species except  for  
scientific research (http://www.cites.org/eng/ 
resources/pub/checklist08/Checklist.pdf). 

Convention on Migratory 
Species (CMS) 

Bonn, 1979 

 
Appendix I lists endangered migratory species 
(http://www.cms.int/documents/ appendix/ 
cms_app1_2.htm#appendix_I). 

Bern Convention on the 
Conservation of European 
Wildlife and Natural Habitats 

Bern, 1979 

 
Appendix II lists animal species requiring 
special  protection (http://www.coe.int/t/dg4/ 
cultureheritage/nature/bern/default_en.asp), 
action plans go with this listing. 
 

Council Directive on the 
conservation of natural 
habitats and of wild 
fauna and flora (CEE 1992) 

Brussels, 1992 

Appendix II lists animal and plant species of  
community interest whose conservation requires 
the designation of special areas of conservation  
(Natura 2000 network) (http://www.central2013.eu/ 
fileadmin/user_upload/Downloads/ 
Document_Centre/OP_Resources/HABITAT_ 
DIRECTIVE_92-43-EEC.pdf) 

Convention protecting and 
conserving the North-East 
Atlantic and its 
resources (OSPAR) 

Oslo–Paris, 1992 

 
The list of threatened and/or declining species 
(http://www.snh.gov.uk/docs/B469310.pdf) 
is to guide the setting of protection priorities by  
the parties. 
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Figure 1: Distribution of Acipenser sturio during 1750−1850. Dotted area indicates the species marine 

distribution. The Nile basin and the Caspian Sea are truncated to ease visualization (adapted from 

Lassalle et al., 2011). 

 

1.5.2. Life cycle 

The species is anadromous. Reproduction occurs between May and June in rivers where it has been 

suggested that females mate with numerous males. Adults, return to the sea by the end of July 

(Magnin 1962; Castelnaud et al., 1991; Acolas et al., 2011a). The species early life stages are poorly 

documented but juveniles migrate to the estuary within the first year of life for further growth 

(Rochard et al., 2001; Acolas et al., 2011a). The estuarine phase is well documented (Taverny et al., 

2002; Brosse 2003); after the second year of life, fish move seasonally between the estuary and the 

sea until they reach 3-7 years old to and then they become permanent sea residents (Castelnaud et 

al., 1991; Acolas et al., 2011a). Thus, most of the growth and the beginning of maturation take place 

at sea before they return to the rivers to spawn (Acolas et al., 2011a) (Figure 2).  
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Figure 2: Biological cycle of Acipenser sturio (adapted from Acolas et al., 2011a). 

 

1.5.3. The stocking program  

Since the 1920s, the European sturgeon was exploited for flesh and caviar while its habitats were 

receding due to water dam constructions and gravel extraction in the Dordogne and Garonne Rivers 

(Rochard et al., 1990; Williot et al., 1997). By the 1970s, the species has disappeared from all the 

West Europe except France (Williot et al., 1997; Williot et al., 2009b) losing its commercial 

importance (Williot et al., 1997). Protection and conservation concerns lead to a total fishing, 

transport and trade ban in 1982 in France (Williot et al., 2009b). At the same time natural life history 

research on wild sturgeon and on artificial reproduction for stocking purposes started. The creation 

of a French captive stock started in the 1993, and the first successful artificial reproduction and 

larvae stocking was accomplished in 1995 (Williot et al., 2009b). Since then, the captive stock has 

been formed mainly by wild origin individuals from 1970s−1994 cohorts and hatchery produced fish 

of 1995 (Williot et al., 2009b). This broodstock has been supporting the wild sturgeon population by 

frequent larvae and juvenile stockings since 2007 (Acolas et al., 2016) (Figure 3). Up to date (January 

2017), more than 1.5 million fish originated from assisted reproduction have been released into 

historical spawning grounds (Jego et al., 2002) in the Dordogne and Garonne rivers (Acolas et al., 

2016). Most of the fish released are 7 dph larvae and 3-month old juveniles. Stocking of 1−2 years old 

fish and older is also done in lesser proportion to spread the mortality risk between different age 

classes (in total 3430 individuals between 2008 and 2015). Currently, the captive stock is composed 

of 6 females, 15 males and about 300 juveniles; the spawners number has drastically decreased in 

the last 4 years (39 females and 33 males in 2012 (Acolas 2013)). In addition to the French captive 

stock, another is held in Germany (Gessner et al., 2010a; Kirschbaum et al., 2011), which was built on 

hatchery reared individuals produced in France. The German stock has 6 broodstock fish of 1995 and 
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about 808 juveniles (Gessner 2017, pers. comm). With the aim of increasing the broodstock, 

individuals obtained from the different genetic crossings that are produced every year are kept and 

incorporated into the French and German captive stocks (Acolas 2013; Jatteau 2014).  

 

 

Figure 3: Hatchery fish produced by the European sturgeon stocking program since 2007. In years 

2010, 2015 and 2016 artificial reproduction was unsuccessful and thus stocking did not occur 

(adapted from Acolas et al., 2016). 

 

1.5.4. Monitoring the European sturgeon 

The European sturgeon restoration program uses several monitoring approaches to assess the 

effectuation of the restoration plan: incidental capture declaration, standardized scientific 

monitoring in the estuary and specific studies (MEDDTL 2011; Acolas et al., 2016). For incidental 

capture, the program encourages the fishermen and the general population to declare sturgeon 

catches through awareness campaigns carried out by the fisheries association and a close 

partnership between managers and scientists to collect and analyze data (Rochard et al., 1997; 

Acolas et al., 2011a; Acolas et al., 2016; MEDDTL 2011). These data provide insights on fish 

distribution and habitat utilization which are consistent with the species life cycle (Acolas et al., 

2016). To monitor the estuarine population since the recent stocking, trawling campaigns have been 
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used since 2009 (Acolas et al., 2011b) on the same line as the historical protocol that was carried out 

for the wild population (Rochard et al., 2001). The protocol is standardized, and the sampling occurs 

once every two months throughout the year in the mesohaline area of the estuary. Each sturgeon 

captured is measured, weighed and fin samples are taken for age estimation (Rochard and Jatteau 

1991; Jatteau et al., 2011), parental assignation (Roques et al., 2016) and diet is analyzed through 

non-invasive methods (Brosse et al., 2002; Vega 2016). Besides, each fish is tagged externally 

(Hallprint tags), to ease recognition by fishermen, and internally (PIT tags) (Acolas et al., 2016). This 

specific monitoring allows evaluating health state of the estuarine population, demographic 

parameters, life history traits and to estimate stocking efficiency. The estuarine population is mainly 

composed of 2−3 years old fish (age range 1−7 years, mean total length 71.4cm) and the preliminary 

annual survival estimation at the age of two years old range between 5.5−8.9% for 2007 to 2009 

cohorts (mainly released at the age of 3 months) and between 0.8−3.3% for 2011−2013 cohorts 

(released as larvae and 3 months old fish) (Acolas 2017, pers. comm). In the estuary the population 

density and spatial distribution has shown an increasing trend since 2014. Specific studies on 

European sturgeon aim at better understanding the species life history, the effect of environmental 

factors on their ecology and to evaluate the ex-situ practices. Recent studies include research in 

hypoxia and pollutant’s tolerance in sturgeon of young stages (Delage 2015) , migration patterns and 

habitat utilization of 1 year-old stocked fish (Acolas et al., 2012; Acolas et al., submitted), diet 

specificity and estuarine carrying capacity (Vega 2016), species repositioning within the climatic 

change scenario (Lassalle et al., 2010), phylogeography of the species (Chassaing et al., 2016) and 

experimental releases of older juveniles in the watershed where the species has disappeared were 

tested (Brevé et al., 2014). The ex-situ practices are assessed through the genetic characterization of 

the broodstock to optimize mate crossings (Roques et al., 2015) and to develop genetic markers for 

parental assignment of the recaptured individuals (Roques et al., 2016) as well as by analyzing the 

individual capacity of the juveniles produced (Acolas and Gesset 2014).  

 

1.6. Thesis outline 

The European sturgeon’s only population left has been under protection over 35 years and has 

probably not reproduced naturally in the last 22 years. Consequently, wild offspring of this species 

does not currently exist. Conservation and stocking actions are probably the main factors why the 

species is still present today. Nevertheless, current conservation actions need to constantly seek 

ways to improve and evolve for a better fulfillment of the ecological needs of the species. Up to date, 

there are many gaps in early life history of the species that cannot be studied in wild fish but that are 

essential for population conservation. For example, it is expected that fish stocked years ago will 
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start reproducing in the years to come. Yet, ecology of the larvae and early juvenile’s is not well 

known and improving this knowledge will allow conservation action plans to better meet the 

requirements of these stages. Moreover, the stocking will continue to occur for several years before 

the natural population could sustain itself and constant evaluation to improve these practices is a key 

factor to success. Currently, studying the stocked juveniles is the only mean to obtain such data as 

the program progresses. Therefore, assessing the rearing practices within the program is needed to 

understand their effects on the fish produced and thus, pursue, ameliorate or adapt the practices to 

the program’s goals. The European captive stock is small and not all individuals are available for 

reproduction every year. Therefore, in my study, two males and one female were used leading then 

to the unforeseen insights of father influence on the offspring. In the restoration program, many fish 

are released at three-month-old and thus, the study focused on this particular stage. However, 

monitoring these early stages in the wild was not only limited due to lack of sturgeon’s recruitment 

but also because the techniques to do so were not suitable for very young fish. In this study, recent 

miniaturization in acoustic techniques developed in other species (McMichael et al., 2010) was 

tested for the first time on a sturgeon species and thus allowed us to study young of the year 

European sturgeons in the wild.   

In this context, the aim of my work was to assess different rearing practices and early performances 

of young sturgeons within the frame of the restoration program (Figure 4). Specifically, my study 

aimed to: 1) assess the effects of rearing on the survival, growth and behavioral performance of 

three-month-old sturgeons belonging to two different crossings under controlled conditions (chapter 

2); 2) evaluate the feasibility of intraperitoneal tagging and effects on survival, growth, and 

swimming behavior in young-of-the-year Siberian sturgeon to be able to transfer the results onto 

protected sturgeon species (chapter 3); 3) obtain a better understanding of the species freshwater 

early stages and assess the effects of rearing on post-release behavior and survival (chapter 4).  In 

chapter 5, the main results will be summarized and discussed on the grounds of the study’s main 

hypothesis: enriched rearing practices can improve fitness-related traits in European sturgeon 

juveniles, specifically improve growth, survival and behavior.  The results insights and limits will be 

discussed, and some perspectives will be proposed to better understand rearing practices for 

conservation purposes.  
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Figure 4: Scheme of the thesis outline showing the flow between the chapters that will be presented 

in this work. 

 

References 

 Aarestrup, K., Jepsen, N., Koed, A. Pedersen, S. 2005. Movement and mortality of stocked brown 

trout in a stream. J Fish Biol. 66, 721-728. 

Acolas, M.L. 2013. Programme de recherche et de conservation de l’esturgeon européen Acipenser 

sturio; bilan scientifique et technique 2012. Étude n° 153. Irstea Bordeaux. 

Acolas, M.L., Castelnaud, G., Lepage, M. Rochard, E. 2011a. Biological cycle and migrations of 

Acipenser sturio, in: Williot P., Rochard E., Desse-Berset N., Kirschbaum F., Gessner J. (Eds.), 

Biology and conservation of the Atlantic European sturgeon Acipenser sturio L 1758 The 

reunion of the European and Atlantic sturgeons. Germany. Springer, pp. 147-152. 

Acolas, M.L. Gesset, C. 2014. Mise au point de tests d'adaptabilité des juvéniles d'esturgeons 

européens au milieu naturel. Rapport final (2011-2013) Irstea-Onema.  

Acolas, M.L., Le Barh, R., Michelet, N., Mas, L., Lambert, P., Gazeau, C., Jatteau, P., Ballion, J.F. 

Rochard, E. 2016. Post release monitoring strategies for Acipenser sturio in France. Workshop 

"Post release monitoring strategies in sturgeon restoration programs" Bordeaux, France. 

Acolas, M.L., Le Pichon, C. Rochard, E. submitted. Spring habitat use of stocked one year old 

European sturgeon Acipenser sturio. 

Acolas, M.L., Rochard, E., Le Pichon, C. Rouleau, E. 2012. Downstream migration patterns of one-

year-old hatchery-reared European sturgeon (Acipenser sturio). J Exp Mar Biol Ecol. 430-431, 

68-77. 



25 

 

Acolas, M.L., Roqueplo, C., Rouleau, E. Rochard, E. 2011b. Post release monitoring techniques, in: 

Williot P., Rochard E., Desse-Berset N., Kirschbaum F., Gessner J. (Eds.), Biology and 

conservation of the European sturgeon Acipenser sturio L 1758. Germany. Springer, pp. 407-

416. 

Alvarez, D. Nicieza, A.G. 2003. Predator avoidance behaviour in wild and hatchery-reared brown 

trout: the role of experience and domestication. J Fish Biol. 63, 1565-1577. 

Anders, P.J. 1998. Conservation aquaculture and endangered species. Fisheries. 23, 28-31. 

Aprahamian, M.W., Smith, K.M., McGinnity, P., McKelvey, S. Taylor, J. 2003. Restocking of 

salmonids—opportunities and limitations. Fish Res. 62, 211-227. 

Arai, T., Tominaga, O., Seikai, T. Masuda, R. 2007. Observational learning improves predator 

avoidance in hatchery-reared Japanese flounder Paralichthys olivaceus juveniles. J Sea Res. 

58, 59-64. 

Araki, H., Berejikian, B.A., Ford, M.J. Blouin, M.S. 2008. Fitness of hatchery-reared salmonids in the 

wild. Evol Appl. 1, 342-355. 

Araki, H. Schmid, C. 2010. Is hatchery stocking a help or harm?: evidence, limitations and future 

directions in ecological and genetic surveys. Aquaculture. 308, Supplement 1, 2-11. 

Arlati, G. Poliakova, L. 2009. Restoration of Adriatic sturgeon (Acipenser naccarii) in Italy: Situation 

and perspectives, in: Carmona R., Domezain A., García-Gallego M., Hernando J., Rodríguez F., 

Ruiz-Rejón M. (Eds.), Biology, conservation and sustainable development of sturgeons. 

Netherlands. Springer pp. 237-245. 

Armstrong, D.S., Richards, T.A. Parker, G.W. 2001. Assessment of habitat, fish communities, and 

streamflow requirements for habitat protection, Ipswich River, Massachusetts, 1998-99. US 

Geological Survey Water-Resources Investigations Rep 01-4161. 

AZA (Association of Zoos and Aquariums). 2016. Reintroduction programs. Access 08.12.2016. 

<https://www.aza.org/reintroduction-programs> 

Bain, M.B. 1987. Structured decision making in fisheries management: trout fishing regulations on 

the Au Sable River, Michigan. N Am J Fish Manage. 7, 475-481. 

Barannikova, I. 1987. Review of sturgeon farming in the Soviet Union. J Ichthyol. 35, 62-71. 

Bearlin, A.R., Schreiber, E.S.G., Nicol, S.J., Starfield, A.M. Todd, C.R. 2002. Identifying the weakest link: 

simulating adaptive management of the reintroduction of a threatened fish. Can J Fish Aquat 

Sci. 59, 1709-1716. 

Beck, B., Rapaport, L., Price, S. Wilson, A. 1994. Reintroduction of captive-born animals., in: Olney 

P.J., Mace G., Feistner A. (Eds.), Creative Conservation: Interactive management of wild and 

captive animals. Springer Netherlands, pp. 265-286. 



26 

 

Bégout, M.L., Bau, F., Acou, A. Acolas, M.L. 2016. Methodologies for investigating diadromous fish 

movements: conventional, PIT, acoustic and radio tagging and tracking, in: Morais P., Daverat 

F. (Eds.), An Introduction to Fish Migration. CRC Press, pp. 214-250. 

Berejikian, B.A. 1995. The effects of hatchery and wild ancestry and experience on the relative ability 

of steelhead trout fry (Oncorhynchus mykiss) to avoid a benthic predator. Can J Fish Aquat 

Sci. 52, 2476-2482. 

Berejikian, B.A. 2005. Rearing in enriched hatchery tanks improves dorsal fin quality of juvenile 

steelhead. N Am J Aquac. 67, 289-293. 

Bergendahl, I., Salvanes, A.G.V. Braithwaite, V.A. 2016. Determining the effects of duration and 

recency of exposure to environmental enrichment. Appl Anim Behav Sci. 176, 163-169. 

Biggins, D., Hanebury, L., Miller, B., Powell, R. Wemmer, C. 1991. Release of Siberian ferrets (Mustela 

eversmanni) to facilitate reintroduction of black-footed ferrets. US Fish and Wildlife Service 

Report (unpublished), Fort Collins, CO. 

Billard, R. Lecointre, G. 2001. Biology and conservation of sturgeon and paddlefish. Rev Fish Biol Fish. 

10, 355-392. 

Biro, P.A., Abrahams, M.V., Post, J.R. Parkinson, E.A. 2004. Predators select against high growth rates 

and risk–taking behaviour in domestic trout populations. Proc R Soc B Biol Sci 271, 2233-

2237. 

Biro, P.A. Stamps, J.A. 2008. Are animal personality traits linked to life-history productivity? Trends 

Ecol Evol. 23, 361-368. 

Birstein, V., Bemis, W. Waldman, J. 1997. The threatened status of acipenseriform species: a 

summary. Environ Biol Fishes. 48, 427-435. 

Birstein, V.J. 1993. Sturgeons and paddlefishes: threatened fishes in need of conservation. Conserv 

Biol. 7, 773-787. 

Blaxter, J.H.S. 2000. The enhancement of marine fish stocks, Adv Mar Biol. Academic Press. 1-54. 

Boucher, M.A., McAdam, S.O. Shrimpton, J.M. 2014. The effect of temperature and substrate on the 

growth, development and survival of larval white sturgeon. Aquaculture. 430, 139-148. 

Braithwaite, V.A. Salvanes, A.G.V. 2005. Environmental variability in the early rearing environment 

generates behaviourally flexible cod: implications for rehabilitating wild populations. Proc R 

Soc B Biol Sci. 272, 1107-1113. 

Brevé, N.W.P., Vis, H., Houben, B., de Laak, G.A.J., Breukelaar, A.W., Acolas, M.L., de Bruijn, Q.A.A. 

Spierts, I. 2014. Exploring the possibilities of seaward migrating juvenile European sturgeon 

Acipenser sturio L., in the Dutch part of the River Rhine. J Coast Conserv. 18, 131-143. 

 



27 

 

Brosse, L. 2003. Caractérisation des habitats des juvéniles d’esturgeon européen, Acipenser sturio, 

dans l’estuaire de la Gironde. Doctorat, Université Paul Sabatié, Toulouse. 

Brosse, L., Dumont, P., Lepage, M. Rochard, E. 2002. Evaluation of a gastric lavage method for 

sturgeons. N Am J Fish Manage. 22, 955-960. 

Brown, C., Davidson, T. Laland, K. 2003. Environmental enrichment and prior experience of live prey 

improve foraging behaviour in hatchery-reared Atlantic salmon. J Fish Biol. 63, 187-196. 

Brown, C. Day, R.L. 2002. The future of stock enhancements: lessons for hatchery practice from 

conservation biology. Fish Fish. 3, 79-94. 

Brown, C. Laland, K. 2001. Social learning and life skills training for hatchery reared fish. J Fish Biol. 

59, 471-493. 

Brown, C. Laland, K.N. 2003. Social learning in fishes: a review. Fish Fish. 4, 280-288. 

Buckmeier, D.L., Betsill, R.K. Schlechte, J.W. 2005. Initial predation of stocked fingerling largemouth 

bass in a Texas reservoir and implications for improving stocking efficiency. N Am J Fish 

Manage. 25, 652-659. 

Castelnaud, G., Rochard, E., Jatteau, P. Lepage, M. 1991. Données actuelles sur la biologie 

d'Acipenser sturio dans l'estuarie de la Gironde., in: Williot P. ed, Acipenser. France. 

Cemagref Publ., pp. 

Chapman, B.B., Morrell, L.J. Krause, J. 2010. Unpredictability in food supply during early life 

influences boldness in fish. Behav Ecol. 21, 501-506. 

Chassaing, O., Desse-Berset, N., Hänni, C., Hughes, S. Berrebi, P. 2016. Phylogeography of the 

European sturgeon (Acipenser sturio): a critically endangered species. Mol Phylogenet Evol. 

94, Part A, 346-357. 

Chebanov, M., Rosenthal, H., Gessner, J., Van Anrooy, R., Doukakis, P., Pourkazemi, M. Williot, P. 

2011. Sturgeon hatchery practices and management for release: guidelines. FAO Fisheries 

and Aquaculture Technical Paper No 570. 

Christie, M.R., Marine, M.L., Fox, S.E., French, R.A. Blouin, M.S. 2016. A single generation of 

domestication heritably alters the expression of hundreds of genes. Nat Commun. 7, 10676. 

Cochran-Biederman, J.L., Wyman, K.E., French, W.E. Loppnow, G.L. 2015. Identifying correlates of 

success and failure of native freshwater fish reintroductions. Conserv Biol. 29, 175-186. 

Cooke, S.J., Hinch, S.G., Wikelski, M., Andrews, R.D., Kuchel, L.J., Wolcott, T.G. Butler, P.J. 2004. 

Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol. 19, 334-343. 

Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., 

O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. van den Belt, M. 1997. The value of the 

world's ecosystem services and natural capital. Nature. 387, 253-260. 



28 

 

Crossman, J., Forsythe, P.,  Baker, E., Scriber, K. 2009. Overwinter survival of stocked age-0 lake 

sturgeon. J. Appl.Icthyol. 25, 516-521. 

Crossman, J., Forsythe, P., Scriber, K., Baker, E. 2011. Hatchery rearing environment and age affect 

survival and movements of stocked juvenile lake sturgeon. Fish Manag Ecol. 18, 132-144. 

Delage, N. 2015. Etude expérimentale des effets des conditions environnementales (température, 

oxygène, polluants) sur la survie, le développement et le comportement des stades embryo-

larvaires d'esturgeon européen, Acipenser sturio. Dissertation doctorale. Université de 

Bordeaux, France. 

Dieperink, C., Pedersen, S. Pedersen, M.I. 2001. Estuarine predation on radiotagged wild and 

domesticated sea trout (Salmo trutta L.) smolts. Ecol Freshw Fish. 10, 177-183. 

Dohm, M.R., Richardson, C.S. Garland, T. 1994. Exercise physiology of wild and random-bred 

laboratory house mice and their reciprocal hybrids. Am J Physiol. 267, R1098-R1108. 

Drauch, A.M. Rhodes, O.E. 2007. Genetic evaluation of the lake sturgeon reintroduction program in 

the Mississippi and Missouri Rivers. N Am J Fish Manage. 27, 434-442. 

Dreal, A. 2011. Plan national d'actions en faveur de l'esturgeon européen Acipenser sturio 2011- 

2015. Dreal Aquitaine: 69. 

Du, H., Wei, Q.W., Xie, X., Shi, L.L., Wu, J.M., Qiao, X.M. Liu, Z.G. 2014. Improving swimming capacity 

of juvenile Dabry's sturgeon, (Acipenser dabryanus Dume´ril, 1869) in current-enriched 

culture tanks. J Appl Ichthyol. 

Ebbesson, L.O.E. Braithwaite, V.A. 2012. Environmental effects on fish neural plasticity and cognition. 

J Fish Biol. 81, 2151-2174. 

Ebner, B.C. Thiem, J.D. 2009. Monitoring by telemetry reveals differences in movement and survival 

following hatchery or wild rearing of an endangered fish. Mar Freshw Res. 60, 45-57. 

Eder, B.L., Steffensen, K.D., Haas, J.D. Adams, J.D. 2015. Short-term survival and dispersal of 

hatchery-reared juvenile pallid sturgeon stocked in the channelized Missouri River. J Appl 

Ichthyol. 31, 991-996. 

FAO. 2005-2016. World inventory of fisheries. Stocking techniques for increased production. Issues 

Fact Sheets. Access 29.12.2016. <http://www.fao.org/fishery/topic/14885/en> 

Ferrari, S., Chatain, B., Cousin, X., Leguay, D., Vergnet, A., Vidal, M.O., Vandeputte, M. Bégout, M.L. 

2014. Early individual electronic identification of sea bass using RFID microtags: A first 

example of early phenotyping of sex-related growth. Aquaculture. 426–427, 165-171. 

George, A.L., Kuhajda, B.R., Williams, J.D., Cantrell, M.A., Rakes, P.L. Shute, J.R. 2009. Guidelines for 

propagation and translocation for freshwater fish conservation. Fisheries. 34, 529-545. 

 



29 

 

Gessner, J., Tauteman, M., Von Nordheim, H. Borchers, T. 2010a. Plan national d'actions pour la 

protection et la conservation de l'Esturgeon européen (Acipenser sturio) en Allemagne. 

Ministère fédéral de l'environnement de la protection de la nature et de la sureté nucléaire 

France. 

Gessner, J., Williot, P., Rochard, E., Freyhof, J. Kottelat, M. 2010b. Acipenser sturio. The IUCN Red List 

of Threatened Species 2010. Access 20.01.2016. <www.iucnredlist.org> 

Gitzen, R., Keller, B., Miller, M., Goetz, S., Steen, D., Jachowski, D.S., Godwin, J. Millspaugh, J.J. 2016. 

Effective and purposeful monitoring of species reintroductions, Reintroduction of Fish and 

Wildlife Populations. University of California Press. 

Grabowski, T.B. Jennings, C.A. 2009. Post-release movements and habitat use of robust redhorse 

transplanted to the Ocmulgee River, Georgia. Aquat Conserv. 19, 170-177. 

Horká, P., Horkỳ, P., Randák, T., Turek, J., Rylková, K. Slavík, O. 2015. Radio-telemetry shows 

differences in the behaviour of wild and hatchery-reared European grayling Thymallus 

thymallus in response to environmental variables. J Fish Biol. 86 (2), 544-557. 

Hossain, M.A.R., Tanaka, M. Masuda, R. 2002. Predator–prey interaction between hatchery-reared 

Japanese flounder juvenile, Paralichthys olivaceus, and sandy shore crab, Matuta lunaris: 

daily rhythms, anti-predator conditioning and starvation. J Exp Mar Biol Ecol. 267, 1-14. 

Houde, A.L.S., Fraser, D.J. Hutchings, J.A. 2010. Reduced anti-predator responses in multi-

generational hybrids of farmed and wild Atlantic salmon (Salmo salar L.). Conserv Genet. 11, 

785-794. 

Howell, B. 1994. Fitness of hatchery-reared fish for survival in the sea. Aquacult Fish Manage, 3-17. 

Huntingford, F. Adams, C. 2005. Behavioural syndromes in farmed fish: implications for production 

and welfare. Behaviour. 142, 1207-1221. 

Huntingford, F., Jobling, M. Kadri, S. 2012. Aquaculture and behavior. UK: John Wiley & Sons 

Huntingford, F.A. 2004. Implications of domestication and rearing conditions for the behaviour of 

cultivated fishes. J Fish Biol. 65, 122-142. 

Ingraham, J.M., Deng, Z.D., Martinez, J.J., Trumbo, B.A., Mueller, R.P. Weiland, M.A. 2014. Feasibility 

of Tracking Fish with Acoustic Transmitters in the Ice Harbor Dam Tailrace. Sci Rep. 4. 

IUCN. 1987. The IUCN position statement on translocation of living organisms. Gland, Switzerland: 

Species Survival Commission. 

IUCN. 2015. The IUCN red list of threatened species. Access 20.01.2016 <www.iucnredlist.org> 

IUCN/SSC. 2013. Guidelines for reintroductions and other conservation translocations. IUCN species 

survival commision.Gland, Switzerland.  

 



30 

 

Jachowski, D.S., Slotow, R., Angermeier, P.L. Millspaugh, J.J. 2016. Animal reintroduction in the 

Anthropocene, in: Jachowski D.S., Slotow R., Angermeier P.L., Millspaugh J.J. (Eds.), 

Reintroduction of Fish and Wildlife Populations. University of California Press, pp. 1-4. 

Jackson, J.R., VanDeValk, A.J., Brooking, T.E., VanKeeken, O.A. Rudstam, L.G. 2002. Growth and 

feeding dynamics of lake sturgeon, Acipenser fulvescens, in Oneida Lake, New York: results 

from the first five years of a restoration program. J Appl Ichthyol. 18, 439-443. 

Jager, H.I., Rose, K.A. Vila-Gispert, A. 2008. Life history correlates and extinction risk of capital-

breeding fishes. Hydrobiologia. 602, 15-25. 

Järvi, T. 1990. Cumulative acute physiological stress in Atlantic salmon smolts: the effect of osmotic 

imbalance and the presence of predators. Aquaculture. 89, 337-350. 

Järvi, T. Uglem, I. 1993. Predator training improves the anti-predator behaviour of hatchery reared 

Atlantic salmon (Salmo salar) smolt. Nord J Freshwater Res, 63-71. 

Jatteau, P. 2014. Programme de recherche et de conservation de l’esturgeon européen Acipenser 

sturio - Bilan scientifique et technique 2013. Irstea Bordeaux, Etude N°167, 112. 

Jatteau, P., Rochard, E., Lepage, M. Gazeau, C. 2011. Age assessment in European sturgeon, in: 

Williot P., Rochard E., Desse-Berset N., Kirschbaum F., Gessner J. (Eds.), Biology and 

conservation of the Atlantic European sturgeon Acipenser sturio L, 1758. Springer, pp. 343-

348. 

Jego, S., Gazeau, C., Jatteau, P., Elie, P. Rochard, E. 2002. Les frayères potentielles de l'esturgeon 

européen Acipenser sturio L. 1758 dans le bassin Garonne-Dordogne. Méthodes 

d'investigation, état actuel et perspectives. . Bull Fr Peche Piscic. 365-366, 487-505. 

Johnsson, J.I. Abrahams, M.V. 1991. Interbreeding with domestic strain increases foraging under 

threat of predation in juvenile steelhead trout (Oncorhynchus mykiss): an experimental 

study. Can J Fish Aquat Sci. 48, 243-247. 

Johnsson, J.I., Brockmark, S. Näslund, J. 2014. Environmental effects on behavioural development 

consequences for fitness of captive-reared fishes in the wild. J Fish Biol. 85, 1946-1971. 

Jordan, G.R., Klumb, R.A., Wanner, G.A. Stancill, W.J. 2006. Poststocking movements and habitat use 

of hatchery-reared juvenile pallid sturgeon in the Missouri River below Fort Randall Dam, 

South Dakota and Nebraska. Trans Am Fish Soc. 135, 1499-1511. 

Kirschbaum, F., Williot, P., Fredrich, F., Tiedemann, R. Gessner, J. 2011. Restoration of the European 

sturgeon Acipenser sturio in Germany, Biology and conservation of the European sturgeon 

Acipenser sturio L 1758. Springer. 309-333. 

 

 



31 

 

Klefoth, T., Pieterek, T. Arlinghaus, R. 2012. Impacts of domestication on angling vulnerability of 

common carp, Cyprinus carpio: the role of learning, foraging behaviour and food preferences. 

Fish Manag Ecol. 20, 174-186. 

Kotrschal, A. Taborsky, B. 2010. Environmental change enhances cognitive abilities in fish. PLoS Biol. 

8: e1000351. 

Kronenberger, J.-P. Medioni, J. 1985. Food neophobia in wild and laboratory mice (Mus musculus 

domesticus). Behav Processes. 11, 53-59. 

Lassalle, G., Béguer, M. Rochard, E. 2011. An overview on geographical distribution from past 

descriptions, in: Williot P., Rochard E., Desse-Berset N., Kirschbaum F., Gessner J. (Eds.), 

Biology and conservation of the European sturgeon Acipenser sturio L 1758: The reunion of 

the European and Atlantic sturgeons. Berlin, Heidelberg. Springer Berlin Heidelberg, pp. 81-

90. 

Lassalle, G., Crouzet, P., Gessner, J. Rochard, E. 2010. Global warming impacts and conservation 

responses for the critically endangered European Atlantic sturgeon. Biol Conserv. 143, 2441-

2452. 

Lochet, A., Lambert, P., Lepage, M. Rochard, E. 2004. Croissance de juvéniles d’esturgeons européens 

Acipenser sturio (Acipenseridae) sauvages et issus d’alevinage, durant leur séjour dans 

l’estuaire de la Gironde (France). Cybium. 28, 91-98. 

Lu, J., Deng, Z., Li, H., Myjak, M.J., Martinez, J.J., Xiao, J., Brown, R.S. Cartmell, S.S. 2016. A small long-

life acoustic transmitter for studying the behavior of aquatic animals. Rev Sci Instrum. 87. 

Lucas, M.C. Baras, E. 2000. Methods for studying spatial behaviour of freshwater fishes in the natural 

environment. Fish Fish. 1, 283-316. 

Magnin, E. 1962. Recherches sur la systématique de la biologie des Acipenséridés. Annales de la 

station centrale d'hydrobiologie appliquée. 9, 7-242. 

Maltsev, S.A. 2009. Conservation of the sturgeon fish in lower Volga, in: Carmona R., Domezain A., 

García-Gallego M., Hernando J.A., Rodríguez F., Ruiz-Rejón M. (Eds.), Biology, conservation 

and sustainable development of sturgeons. Netherlands. Springer, pp. 265-273. 

Mathews, F., Orros, M., McLaren, G., Gelling, M. Foster, R. 2005. Keeping fit on the ark: assessing the 

suitability of captive-bred animals for release. Biol Conserv. 121, 569-577. 

Maynard-Smith, J. 1989. Evolutionary genetics. UK: Oxford University Press 

Maynard, D.J., Flagg T. A., Mahnken C. V. W. L., S.S. 1996. Natural rearing technologies for increasing 

postrelease survival of hatchery-reared salmon. Bulletin of the National Research Institute of 

Aquaculture. Supplement 2, 71–77. 

 



32 

 

Maynard, D.J., Flagg, T.A., Mahnken, C.V., Schramm Jr, H. Piper, R. A review of seminatural culture 

strategies for enhancing the postrelease survival of anadromous salmonids. Am Fish Soc 

Symp; 1995 

McMichael, G.A., Eppard, M.B., Carlson, T.J., Carter, J.A., Ebberts, B.D., Brown, R.S., Weiland, M., 

Ploskey, G.R., Harnish, R.A. Deng, Z.D. 2010. The juvenile salmon acoustic telemetry system: 

a new tool. Fisheries. 35, 9-22. 

McNeil, W.J. 1991. Expansion of cultured Pacific salmon into marine ecosystems. Aquaculture. 98, 

173-183. 

Meager, J.J., Rodewald, P., Domenici, P., Fernö, A., Järvi, T., Skjæraasen, J.E. Sverdrup, G.K. 2011. 

Behavioural responses of hatchery-reared and wild cod Gadus morhua to mechano-acoustic 

predator signals. J Fish Biol. 78, 1437-1450. 

MEDDTL, Ministère de l'écologie du développement durable des transports et du logement. 2011. 

Plan national d'actions en faveur de l'esturgeon européen Acipenser sturio. 2011-2015: 

2069p. 

Melnychuk, M.C., Welch, D.W., Walters, C.J. Christensen, V. 2007. Riverine and early ocean migration 

and mortality patterns of juvenile steelhead trout (Oncorhynchus mykiss) from the 

Cheakamus River, British Columbia. Hydrobiologia. 582, 55-65. 

Mihoub, J.-B., Gimenez, O., Pilard, P. Sarrazin, F. 2010. Challenging conservation of migratory species: 

Sahelian rainfalls drive first-year survival of the vulnerable lesser kestrel falco naumanni. Biol 

Conserv. 143, 839-847. 

Mohler, J.W., Sweka, J.A., Kahnle, A., Hattala, K., Higgs, A., DuFour, M., Breece, M.W. Fox, D.A. 2012. 

Growth and survival of hatchery-produced Atlantic sturgeon released as young-of-year into 

the Hudson River, New York. Journal of Fish and Wildlife Management. 3, 23-32. 

Näslund, I. 1992. Survival and distribution of pond- and hatchery-reared 0+ brown trout, Salmo trutta 

L., released in a Swedish stream. Aquac Res. 23, 477-488. 

Neufeld, M.D. Rust, P.J. 2009. Using passive sonic telemetry methods to evaluate dispersal and 

subsequent movements of hatchery-reared white sturgeon in the Kootenay River. J Appl 

Ichthyol. 25, 27-33. 

Olden, J.D. 2006. Biotic homogenization: a new research agenda for conservation biogeography. J 

Biogeogr. 33, 2027-2039. 

Olla, B.L., Davis, M.W. Ryer, C.H. 1998. Understanding how the hatchery environment represses or 

promotes the development of behavioral survival skills. Bull Mar Sci. 62, 531-550. 

Parker, R. 2011. Aquaculture Science: Cengage Learning. 

 



33 

 

Parkyn, D.C., Murie, D.J., Colle, D.E. Holloway, J.D. 2006. Post-release survival and riverine 

movements of Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi Acipenseriformes) 

following induced spawning. J Appl Ichthyol. 22, 1-7. 

Pievani, T. 2014. The sixth mass extinction: Anthropocene and the human impact on biodiversity. 

Rendiconti Lincei. 25, 85-93. 

Pikitch, E.K., Doukakis, P., Lauck, L., Chakrabarty, P. Erickson, D.L. 2005. Status, trends and 

management of sturgeon and paddlefish fisheries. Fish Fish. 6, 233-265. 

Pillay, T.V.R. Kutty, M.N. 2005. Aquaculture principles and practices: Blackwell publishing 

Pister, E.P. 2001. Wilderness fish stocking: history and perspective. Ecosystems. 4, 279-286. 

Price, E.O. 2002. Animal Domestication and Behavior. UK: CABI 

Reading, R.P., Miller, B. Shepherdson, D. 2013. The value of enrichment to reintroduction success. 

Zoo Biol. 32, 332-341. 

Réale, D., Garant, D., Humphries, M.M., Bergeron, P., Careau, V. Montiglio, P.-O. 2010. Personality 

and the emergence of the pace-of-life syndrome concept at the population level. Proc R Soc 

B Biol Sci. 365, 4051. 

Réale, D., Reader, S.M., Sol, D., McDougall, P.T. Dingemanse, N.J. 2007. Integrating animal 

temperament within ecology and evolution. Biol Rev. 82, 291-318. 

Reisenbichler, R., Rubin, S., Wetzel, L. Phelps, S. 2008. Natural selection after release from a hatchery 

leads to domestication in steelhead, Oncorhynchus mykiss. Stock Enhancement and Sea 

Ranching: Developments, Pitfalls and Opportunities, Second Edition, 371-384. 

Roberts, L.J., Taylor, J. Garcia de Leaniz, C. 2011. Environmental enrichment reduces maladaptive 

risk-taking behavior in salmon reared for conservation. Biol Conserv. 144, 1972-1979. 

Roberts, L.J., Taylor, J., Gough, P.J., Forman, D.W. Garcia de Leaniz, C. 2014. Silver spoons in the 

rough: can environmental enrichment improve survival of hatchery Atlantic salmon Salmo 

salar in the wild? J Fish Biol. 85, 1972-1991. 

Robinson, A.T. Ward, D.L. 2011. Interactions between desert pupfish and gila topminnow can affect 

reintroduction success. N Am J Fish Manage. 31, 1093-1099. 

Rochard, E. 2011. Present legal status of the European sturgeon Acipenser sturio, in: Williot P., 

Rochard E., Desse-Berset N., Kirschbaum F., Gessner J. (Eds.), Biology and conservation of the 

European sturgeon Acipenser sturio L 1758: the reunion of the European and Atlantic 

sturgeons. Berlin, Heidelberg. Springer Berlin Heidelberg, pp. 251-255. 

Rochard, E., Castelnaud, G. Lepage, M. 1990. Sturgeons (Pisces: Acipenseridae); threats and 

prospects. J Fish Biol. 37, 123-132. 

 



34 

 

Rochard, E. Jatteau, P. 1991. Amélioration de la méthode de détermination de l'âge de l'esturgeon 

commun Acipenser sturio et premières applications, in: Williot P. ed, Acipenser. Antony, 

France. Cemagref publications, pp. 

Rochard, E., Lepage, M., Dumont, P., Tremblay, S. Gazeau, C. 2001. Downstream migration of juvenile 

European sturgeon Acipenser sturio L. in the Gironde estuary. Estuaries. 24, 108-115. 

Rochard, E., Lepage, M. Meauzé, L. 1997. Identification et caractérisation de l'aire de répartition 

marine de l'esturgeon européen Acipenser sturio à partir de déclarations de captures. Aquat 

Living Resour. 10, 101-109. 

Roques, S., Berrebi, P. Acolas, M.L. Caractérisation génétique de l'esturgeon européen et assignation 

de parenté: implications pour le programme d'élevage et de repeuplement, p.99-118. In 

Jatteau Ph. Coord. Programme de recherche et de conservation de l'esturgeon européen 

Acipenser sturio -Bilan scientifique et technique 2014. Irstea Bordeaux, Etude n°187. 2015 

Roques, S., Berrebi, P., Chevre, P., Rochard, E. Acolas, M.L. 2016. Parentage assignment in the 

critically endangered European sturgeon (Acipenser sturio) based on a novel microsatellite 

multiplex assay: a valuable resource for restocking, monitoring and conservation programs. 

Conserv Genet Resour. 8, 313-322. 

Rosenthal, H., Bronzi, P., Gessner, J., Moreau, D. Rochard, E. 2007. Action plan for the conservation 

and restoration of the European sturgeon. France: Council of Europe Publishing 

Rudd, M.B., Ahrens, R.N.M., Pine, W.E. Bolden, S.K. 2014. Empirical, spatially explicit natural 

mortality and movement rate estimates for the threatened Gulf sturgeon (Acipenser 

oxyrinchus desotoi). Can J Fish Aquat Sci. 71, 1407-1417. 

Salvanes, A. Ocean ranching. in: Steele J., K.K T., S.A T., eds. Encyclopedia of Ocean Sciences: 

American Press; 2001 

Salvanes, A. Braithwaite, V. 2005. Exposure to variable spatial information in the early rearing 

environment generates asymmetries in social interactions in cod (Gadus morhua). Behav Ecol 

Sociobiol. 59, 250-257. 

Salvanes, A.G. Braithwaite, V. 2006. The need to understand the behaviour of fish reared for 

mariculture or restocking. J Mar Sci. 63, 9-9. 

Salvanes, A.G.V., Moberg, O. Braithwaite, V.A. 2007. Effects of early experience on group behaviour 

in fish. Anim Behav. 74, 805-811. 

Salvanes, A.G.V., Moberg, O., Ebbesson, L.O.E., Nilsen, T.O., Jensen, K.H. Braithwaite, V.A. 2013. 

Environmental enrichment promotes neural plasticity and cognitive ability in fish. Proc R Soc 

B Biol Sci. 280, 20131331. 

 



35 

 

Secor, D.H., Anders, P.J., Van Winkle, W. Dixon, D.A. 2002. Can we study sturgeons to extinction? 

What we do and don't know about the conservation of North American sturgeons, in: Van 

Winkle W., Anders P.J., Secor D.H., D.A. D. (Eds.), Biology, management and protection of 

North American sturgeon. USA. American Fisheries Society, 3-12. 

Secor, D.H., Niklitschek, E.J., Stevenson, J.T., Gunderson, T.E., Minkkinen, S.P., Richardson, B., 

Florence, B., Mangold, M., Skjeveland, J. Henderson-Arzapalo, A. 2000. Dispersal and growth 

of yearling Atlantic sturgeon, Acipenser oxyrinchus, released into Chesapeake Bay (*). Fishery 

Bulletin. 98, 800-800. 

Seddon, P.J. 1999. Persistence without intervention: assessing success in wildlife reintroductions. 

Trends Ecol Evol. 14, 503-503. 

Seddon, P.J., Strauss, M.W. Innes, J. 2012. Animal trasnlocations: what are they and why do we do 

them?, Reintroduction biology: integrating science and management. Wiley, pp. 1-32. 

Shuter, J.L., Broderick, A.C., Agnew, D.J., Jonzén, N., Godley, B.J., Milner-Gulland, E.J. Thirgood, S. 

2011. Conservation and management of migratory species, in: Milner-Gulland E.J., Fryxell 

J.M., Sinclair A.R.E. (Eds.), Animal migration: a synthesis. Oxford University Press, pp. 173-

206. 

Siikavuopio, S.I., Baardvik, B.M. Jobling, M. 1996. Domestication effects on fin nipping, survival and 

growth in hatchery-reared arctic charr, Salvelinus alpinus (L.), in competition with wild 

conspecifics. Aquac Res. 27, 205-211. 

Stamps, J.A. 2007. Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol Lett. 10, 355-

363. 

Stanković, D., Crivelli, A.J. Snoj, A. 2015. Rainbow trout in Europe: introduction, naturalization, and 

impacts. Rev. fish. sci. aquac. 23, 39-71. 

Strand, D.A., Utne-Palm, A.C., Jakobsen, P.J., Braithwaite, V.A., Jensen, K.H. Salvanes, A.G.V. 2010. 

Enrichment promotes learning in fish. Mar Ecol Prog Ser. 412, 273-282. 

Suboski, M.D. Templeton, J.J. 1989. Life skills training for hatchery fish: Social learning and survival. 

Fish Res. 7, 343-352. 

Sundström, L.F. Johnsson, J.I. 2001. Experience and social environment influence the ability of young 

brown trout to forage on live novel prey. Anim Behav. 61, 249-255. 

Sundström, L.F., Petersson, E., Höjesjö, J., Johnsson, J.I. Järvi, T. 2004. Hatchery selection promotes 

boldness in newly hatched brown trout (Salmo trutta): implications for dominance. Behav 

Ecol. 15, 192-198. 

 

 



36 

 

Sutherland, W.J., Armstrong, D., Butchart, S.H.M., Earnhardt, J.M., Ewen, J., Jamieson, I., Jones, C.G., 

Lee, R., Newbery, P., Nichols, J.D., Parker, K.A., Sarrazin, F., Seddon, P.J., Shah, N. Tatayah, V. 

2010. Standards for documenting and monitoring bird reintroduction projects. Conserv Lett. 

3, 229-235. 

Svåsand, T., Skilbrei, O.T., Van Der Meeren, G.I. Holm, M. 1998. Review of morphological and 

behavioural differences between reared and wild individuals: Implications for sea-ranching of 

Atlantic salmon, Salmo salar L., Atlantic cod, Gadus morhua L., and European lobster, 

Homarus gammarus L. Fish Manag Ecol. 5, 473-490. 

Taverny, C., Lepage, M., Piefort, S., Dumont, P. Rochard, E. 2002. Habitat selection by juvenile 

European sturgeon Acipenser sturio in the Gironde estuary (France). J Appl Ichthyol. 18, 536-

541. 

Taylor, M.D., Fielder, D.S. Suthers, I.M. 2005. Batch marking of otoliths and fin spines to assess the 

stock enhancement of Argyrosomus japonicus. J Fish Biol. 66, 1149-1162. 

Thompson, B.C., Porak, W.F., Leone, E.H. Allen, M.S. 2016. Using radiotelemetry to compare the 

initial behavior and mortality of hatchery-reared and wild juvenile Florida bass. Trans Am Fish 

Soc. 145, 374-385. 

Vega, J. 2016. Etude de la capacité d'accueil trophique de l'estuaire de la Gironde pour les juvéniles 

d'esturgeon européen Acipenser sturio. Rapport de stage Master II "Fonctionnement et 

gestion des ecosystèmes marins", Université de Lille 1 et Université du littoral Côte d'opale, 

49p. 

Vilhunen, S. Hirvonen, H. 2003. Innate antipredator responses of Arctic charr (Salvelinus alpinus) 

depend on predator species and their diet. Behav Ecol Sociobiol. 55, 1-10. 

Waldman, J.R. Wirgin, I.I. 1998. Status and restoration options for Atlantic sturgeon in North 

America. Conserv Biol. 12, 631-638. 

Waples, R.S. 1999. Dispelling some myths about hatcheries. Fisheries. 24, 12-21. 

Williot, P., Rochard, E., Castelnaud, G., Rouault, T., Brun, R., Lepage, M. Elie, P. 1997. Biological 

characteristics of European Atlantic sturgeon, Acipenser sturio, as the basis for a restoration 

program in France, in: Birstein V., Waldman J., Bemis W. (Eds.), Sturgeon biodiversity and 

conservation. Springer Netherlands, pp. 359-370. 

Williot, P., Rochard, E., Rouault, T. Kirschbaum, F. 2009a. Acipenser sturio recovery research actions 

in France, in: Carmona R., Domezain A., García-Gallego M., Hernando J., Rodríguez F., Ruiz-

Rejón M. (Eds.), Biology, conservation and sustainable development of sturgeons. 

Netherlands. Springer pp. 247-263. 

 



37 

 

Williot, P., Rouault, T., Pelard, M., Mercel, D. Jacobs, L. 2009b. Artificial reproduction and larval 

rearing of captive endangered Atlantic sturgeon Acipenser sturio. Endanger Spec Res. 6, 251-

257. 

WWF. 2016. Living Planet Report 2016. Risk and resilience in a new era. Gland, Switzerland: WWF 

International. 

Yampolsky, L.Y., Webb, C.T., Shabalina, S.A. Kondrashov, A.S. 1999. Rapid accumulation of a vertically 

transmitted parasite triggered by relaxation of natural selection among hosts. Evol Ecol Res. 

1, 581-589. 

Young, R.J. 2003. Environmental enrichment for captive animals: Blackwell Publishing 

Youngson, A.F. Verspoor, E. 1998. Interactions between wild and introduced Atlantic salmon (Salmo 

salar). Can J Fish Aquat Sci. 55, 153-160. 

Zhu, Y., Wei, Q., Yang, D., Wang, K., Chen, X., Liu, J. Li, L. 2006. Large-scale cultivation of fingerlings of 

the Chinese Sturgeon Acipenser sinensis for re-stocking: a description of current technology. 

J Appl Ichthyol. 22, 238-243. 

 

 

  



38 

 

 

2 

European sturgeon (Acipenser sturio L.) young of the 

year performance in different rearing environments –

study within a stocking program. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published chapter: Erika Carrera-García, Eric Rochard, Marie-Laure Acolas. 2016. European sturgeon 

(Acipenser sturio L.) young of the year performance in different rearing environments –study within a 

stocking program. Environmental Biology of Fishes 99: 887−901. 



39 

 

Foreword  

Environmental enrichment has captured attention because increased environmental complexity 

could support the preservation of species characteristic phenotypes and behaviors as demonstrated 

in previous studies (Brown et al., 2003; Berejikian 2005; Näslund and Johnsson 2016). However, 

experimental studies in sturgeon species are lacking and therefore their importance in ex situ 

conservations programs are unknown. 

Within this context, the first experiment focused on comparing fish performances in controlled set-

ups: the traditional rearing practice used since 2007 to raise 3-month old European sturgeons for 

stocking in the Gironde and an alternative approach. It was decided to use modified tanks in an 

attempt to resemble wild conditions as much as possible. The premise was that fish will have better 

chances to survive if they are familiar with the diverse and variable environment they will encounter 

in the wild. Also, these “wilder” conditions will make release less abrupt for the fish. To evaluate fish 

performance linked to fitness many attributes could be evaluated such as fecundity (Murua et al., 

2003; Riesch et al., 2012), size and number of offspring (Einum and Fleming 2000) and morphology 

and swimming capacity (Peake et al., 1997; Pakkasmaa and Piironen 2000; Smith et al., 2017). 

However this study focused on growth and survival because these traits can be easily measured in 

juvenile fish and are widely used in aquaculture to evaluate fish performance (Deng et al., 2003; 

Jalali et al., 2009; Falahatkar et al., 2012). Furthermore, studying behavioral traits was considered 

important as it’s through behavior that an organism interacts with and adapts to the environment 

(Huntingford et al., 2012). Thus, this aspect should be taken into account in conservation programs. 

In the European sturgeon captive stock, few spawners are available each year and the number of 

offspring for experimentation can be limited, thus this work had access to the progeny of only two 

wild-born males and one female. So, in addition to the comparison between rearing methods, I was 

able to examine genotype effect also. 
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2.1. Abstract 

The European sturgeon is critically endangered and the French ex-situ conservation approach 

involves developing a captive stock to produce offspring for release to boost natural populations. The 

purpose of our study was to assess the effects of rearing environment before stocking on the 

survival, growth, and behavior of three-month-old sturgeons from two different crossings. Enriched 

rearing was designed to mimic the variability of the natural environment using river water, natural 

photoperiod, substrate, variable water current and depths. Traditional rearing was carried out with 

bare tanks, underground water, dark conditions, without current and at constant depth. Fish survival 

was determined monthly and growth was estimated weekly. Behavior was assessed with exploration 

and novel prey tests in solitary using video tracking. Results demonstrated that enriched condition 

resulted in bigger fish from the first month. Growth curve analysis revealed that enriched 

environment made both fish crossings grow in a similar manner. In contrast, crossings growth 

differed in traditional rearing which may reflect a genotype-environment interaction. Behavioral data 

highlighted that enriched-reared fish were slower to explore a new environment but more 

individuals engaged on doing so than traditional-reared fish. Results also showed that survival was 

high (>80%) during all the trial. However, survival was lower during the second month in enriched 

environment. Our findings advocate for the integration of enriched rearing practices within the 

juvenile production for release in order to boost the performance linked to fitness. Stocking practices 

and life history research must work together to favor adaptive aquaculture approaches which 

support species conservation.  

Keywords: stocking, sturgeon, survival, growth, behavior, rearing conditions.  

 

2.2. Introduction 

Most of the 25 species of sturgeons are believed to be at risk (Birstein 1993; Billard and Lecointre 

2001), and 72% of the family are considered “endangered” or “critically endangered” according to 

the IUCN status (IUCN 2015). Many species benefit from specific conservation measures, such as 

habitat restoration and protection, fishing regulations, and specific targeted stocking practices 

(Waldman and Wirgin 1998; Jackson et al. 2002; Arlati and Poliakova 2009; Maltsev 2009; Williot et 

al. 2009). The European sturgeon, Acipenser sturio (Linnaeus, 1758) is a critically endangered 

migratory species (Lepage and Rochard 1995; Lassalle et al. 2010; Chassaing et al. 2016) which is 

currently the subject of a European recovery plan (Rosenthal et al. 2007), along with national action 

plans in France (MEDDTL 2011) and in Germany (Gessner et al. 2010). The species has a complex life 

cycle involving migration periods associated with habitat shifts (Castelnaud et al. 1991; Rochard et al. 

2001; Acolas et al. 2011a; Acolas et al. 2012). The reproduction occurs in rivers between May and 
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June, following which juveniles migrate to estuaries in the first year of their life. They then remain 

and grow in estuaries for several years. Sturgeons adopt a nomadic lifestyle by foraging within 

estuarine and marine habitats until finally leaving the estuary to further grow at sea before coming 

back to the river to breed. However, knowledge about young stages of this species in the wild is 

limited (Acolas et al. 2011b). The specific needs of this migratory species with regard to habitat, as 

well as vulnerability during migration, due to overfishing and habitat degradation are major factors 

involved in population collapse over the past few decades (Rochard et al. 1990). One species 

restoration action consists of developing a captive stock to produce offspring for release in river 

systems in an attempt to boost natural populations (IUCN 1987; Chebanov et al. 2011). 

Elasticity analyses which calculate the potential to increase a population provided the highest values 

for the young of the year stage (Gross et al. 2002). Indeed, while this age-class suffers from the 

highest natural mortality rate, there could be a recovery of declining populations if vital rates such as 

growth, survival and migration capacities during early stages were increased (Secor et al. 2002). This 

aspect highlights the importance of hatcheries in conservation programs, since captive fish survival 

rates in early life stages can be significantly greater than those found in the wild (Secor et al. 2002). 

Therefore, stocking practices should consider knowledge provided by studies of early life history in 

order to develop creative and adaptive aquaculture approaches that will allow support for better 

species conservation (Chebanov et al. 2002; Secor et al. 2002). This type of research-based approach 

in aquaculture is a promising avenue for sturgeon conservation. Generally, major concerns of 

stocking for conservation purposes focused on the impact of genetic drift  (Busack and Currens 1995; 

Campton 1995; Yokota et al. 2003), introgression (Susnik et al. 2004; Lamaze et al. 2012) and 

genotypic fitness (Zhu et al. 2002; Aprahamian et al. 2003; Jager 2005) on wild populations. 

Nowadays, rearing environment of hatchery fish for stocking purposes is a subject raising attention 

(Brown et al. 2003; Strand et al. 2010; Roberts et al. 2011; Bergendahl et al. 2016) because artificial 

environments may induce behavioral responses different from those expected in wild fish (Johnsson 

et al. 2014). Indeed, hatcheries often expose the fish to selective reproduction and early life 

experiences in a safe setting, which could strongly influence the behavioral (Brown et al. 2003; 

Klefoth et al. 2012), genetic, morphological and physiological attributes necessary to respond 

adequately to natural conditions after stocking (Brown et al. 2003; Braithwaite and Salvanes 2005). 

In other words, artificial selection enacted in hatchery conditions will produce fish suited to that 

environment, but which may be not well-suited to face life in the wild. Fitness value, defined as the 

ability of an individual to survive and reproduce in a particular environment (Maynard-Smith 1989), is 

difficult to quantify in nature (Arnold 1983). Instead, some traits, such as growth (Huusko and 

Vehanen 2011), swimming capacity (Adams et al. 1997; Adams et al. 1999), foraging abilities (Brown 
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et al. 2003; Massee et al. 2007), and the ability to detect and escape predators (Alvarez and Nicieza 

2003; De Mestral and Herbinger 2013) are used as alternative predictors, which can be measured in 

controlled conditions (Arnold 1983). When comparing these fitness-related traits in hatchery and 

wild-born fish, the former often show behavioral deficiencies, such as reduced territorial and feeding 

efficiency (Aarestrup et al. 2005), reduced anti-predatory responses and social interactions (Salvanes 

and Braithwaite 2006), reduced reproductive success in the wild (Araki et al. 2008), risk taking 

behavior (Sundström and Johnsson 2001; Stamps 2007), increased vulnerability towards angling 

(Klefoth et al. 2012), than in wild fish. These deficits may lead to poor post-release survival 

(Aarestrup et al. 2005; Braithwaite and Salvanes 2005). However, exposing the fish to variability 

during early stages, also called an “enriched environment”, can reduce such deficiencies (Braithwaite 

and Salvanes 2005; Kotrschal and Taborsky 2010; Roberts et al. 2014). Enriched conditions are 

characterized by increased habitat complexity (Braithwaite and Salvanes 2005; Johnsson et al. 2014), 

often mimicking the instability of natural habitats in photoperiod, temperature, prey availability, 

visual and spatial cues, and could be considered as a “training” approach that would increase fish 

survival in the wild. Test on salmonids showed that exposure to such conditions increases the ability 

of fish to feed on novel prey (Brown et al. 2003) and increased survival after restocking in semi-

natural conditions (Maynard et al. 1996). These results could be explained by the improvement of 

cognitive efficiency and behavioral flexibility as proven in other reintroduced animal groups (Hunter 

et al. 2002; Rabin 2003).  

Studies using enriched rearing conditions need to be specifically designed for the fish species studied, 

because the ways they can be improved largely depend on the species’ sensitivity to environmental 

conditions, i.e. phenotypic plasticity. In previous studies, the majority of data obtained is related to 

species of commercial interest (i.e. salmonids), and were gathered under controlled conditions 

(Braithwaite and Salvanes 2005; Salvanes and Braithwaite 2006). However, there should be more 

research into the effects of enriched environment on fish performance (growth, survival and 

swimming capacities) under natural conditions and on other fish species. For fish species in 

reintroduction programs, as is the case of the European sturgeon, there is a real need to understand 

how rearing conditions of artificially reproduced larvae can affect life history and performance traits 

that will directly impact fish fitness once released into the wild (Chebanov et al. 2011). Fish 

performance is the product of a combination of environmental and genetic effects (Dammerman et 

al. 2015). The program’s European sturgeon broodstock is small, i.e. few numbers of spawners and 

not all fish are ready to reproduce every year, and breeding of genetic dissimilar individuals may not 

be enough to guarantee good offspring quality, since genetic quality (additive and non-additive 

genetic effects) is not assessed (Neff and Pitcher 2005; Pitcher and Neff 2007). Paternal effects on 
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early life history success may be more important than previously thought, and may also merit more 

extensive investigation (Rideout et al. 2004). 

The aim of the present study was to assess the effects of enriched rearing on the survival, growth 

and behavioral performance of three-month-old sturgeons belonging to two different crossings. This 

particular life stage was chosen because it is one of the preferred stages used for stocking in the 

Gironde. 

 

2.3. Methodology 

Fish: Fish specimens used in this experiment came from French captive stock, and experiments were 

carried out at the Irstea experimentation station in St Seurin sur l’Isle. Fish for this study were raised 

between June and September 2014, from 6 days post-hatch (dph) until 92 dph (3-month old). Fish 

originated from assisted fecundation of a single female with two males (C1=crossing male 1, 

C2=crossing male 2) (Chèvre et al. 2011).  These wild-born spawners were chosen based on 

availability and their characteristics are described in Table 1. 

 

Table 1: Spawners characteristics 

Sex Cohort Capture year Time in captivity (years) Weight (kg) Total length (cm) 

Female1 1994 2003 11  29.4 169 

Male 12 1994 1995 19 12.4 133 

Male 23 1994 2002 12 27.6 163 

Fish ID: 
1
3D49, 

2
041121E3C4, 

3
0411285AA5  

 

Rearing conditions: Two sets of rearing conditions were tested: enriched and traditional. Two 

hundred and fifty larvae from each crossing were reared under each set of conditions (n=500 larvae 

per rearing conditions). During the first month, for each rearing environment, larvae from each 

crossing were reared separately in hatching tanks (raceways 135x50x22cm; length*width*height; 

water level=15cm, two raceways per rearing condition). Later, 50 fish of each crossing (n=100 per 

rearing conditions) were randomly chosen, mixed and reared together in larger tanks (2 replica per 

rearing condition) until they were 3 months old. To identify their parental background, larvae from 

both crossings were marked, beneath the rostrum, using visible implant elastomer tags (VIE) 

(Northwest Marine Technology Inc.) (Kapusta et al. 2015) at 1-month old (Photo 1). Based on a 

preliminary trial on 1-month old Siberian sturgeon (Acipenser baerii), the VIE tag was expected to last 

2 months.  

Traditional rearing conditions were based on the protocol used to raise fish for stocking in the 

Gironde and captive stock supplementation (Chèvre et al. 2011). In this experiment, we used tanks 



45 

 

(from month 2 tanks size 120x120x60cm, water level=40cm) run indoors in darkness 

(0.43±0.51x10lux, mean±SD, Chauvin Arnoux luxmeter DA815) with a flow-through system of 

underground water (Photo 2). Tank conditions were maintained at a constant temperature of 

18.4±0.2°C and 30% of water renewal per hour. Temperature and oxygen (>90%) were recorded 

automatically once every 5 minutes with an automatic computerized system (WTWTM devices). 

Additionally, ammonium (0.1mg/l), nitrites (0.02mg/l), nitrates (1.5±0.84mg/l) levels (Visocolor® ECO 

test kit) and pH (7.7±0.12) were registered weekly. Fish were fed ad libitum with live artemia 

(Artemia salina) since 9 dph for 12 days, a mix of artemia and unfrozen bloodworms (Chironomus sp.) 

for 9 more days and then only bloodworms as mentioned in Chèvre et al. (2011). Tanks were cleaned 

twice per day by flushing water away. 

Enriched rearing conditions consisted of small mesocosms imitating the variability of the natural 

environment. Spatial cues were added and manipulated. Tanks were run outdoors to be subject to 

natural photoperiod, but covered with mesh to reduce brightness and strong light 

(natural=346.6±634.0x10lux; under cover=32.6±55.9x10lux) and avoid bird predation. One-month 

old fish were placed in 170x100x75cm tanks (2 replica, same density as in traditional rearing i.e. 

density=0.2 fish/m3) (Photo 3). A partition wall was added in the middle of the tanks to allow water 

current circulation using a water pump. The water supply consisted of a flow-through system of 

filtrated river water with the same water flow as in traditional rearing. Temperature (21.5±1.5°C, 

Figure 1), oxygen (>90%), were recorded once every 5 minutes and ammonium (0.1mg/l), nitrites 

(0.04±0.02mg/l), nitrates (8.83±3.31mg/l) levels and pH (7.8±0.08) were registered weekly. During 

week 6−8 of rearing, a mix of well and river water (1:1) was used to decrease water temperature due 

to the high records registered on week 3−5 (max. registered 25.8°C) (Table 2, Figure 1). Fish were fed 

in the same way as for traditional rearing. Landscapes were created using different elements, 

according to variability encountered in the river: sand (0−2mm), fine gravel (8−16mm), coarse gravel 

with pebbles (30−95mm) (standard A.S.T.M), logs (20−30cm), variable water current and depth 

(Table 3). These cues were modified once a week and combination levels were chosen at random 

(Photo 4). Tanks were cleaned twice per day by flushing water away. 

The two types of rearing environment differed in terms of temperature regime (Mann-Whitney, 

U=0.5, p<0.01), nitrites (Mann-Whitney, U=3.0, p<0.01), and nitrates (Mann-Whitney, U=0.0, 

p<0.01), but had similar levels of ammonium (Mann-Whitney, U=18, p=1) and pH (Mann-Whitney, 

U=2.0, p=0.63) features.  
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A B 

Photo 1: One month A. sturio marked with visible implant elastomer, dorsal view. A) Fish of crossing 

1 and B) Fish of crossing 2. Fish size is approximately 3.5 cm. 

 

 

Photo 2: Example of the traditional rearing set up. The rearing tanks in the photo do not represent 

the tank’s size used in this study. 

 

 

Photo 3: Enriched rearing set up. 
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Table 2: Temperature in enriched rearing condition. 

Week Min (°C) Max (°C) Daily mean (°C) Standard deviation 

1 (1 – 7 July ) 18.5 21.6 19.9 0.7 

2 (8 – 14 July) 18.8 22.0 20.8 0.5 

3 (15 – 21 July) 20.0 24.9 23.1 1.1 

4 (22 – 28 July) 22.6 25.8 24.1 0.7 

5 (29 July – 4 August) 20.3 24.1 21.9 1.0 

6 (5 – 11 August) 20.1 21.7 21.0 0.3 

7 (12 – 18 August) 19.0 20.6 19.8 0.3 

8 (19 – 25 August) 18.3 19.7 19.1 0.3 

9 (26 August – 1 September) 19.3 22.7 21.6 0.7 

10 (2 – 8 September) 20.5 23.1 21.9 0.6 

11 (9 – 15 September) 20.4 23.1 21.9 0.6 

12 (16 – 24 September) 19.8 23.0 21.8 0.7 

 

 

Figure 1: Mean temperature during fish rearing. Interrupted line indicates enriched rearing and 

continuous line traditional rearing.  

 

Table 3: Landscape cues in the mesocosms 

Water parameters Landscape 

Level Depth (cm) Average velocity (cm/s)
1
 Logs Substratum 

1 0.70 8 ± 5 Present Large/medium 

2 0.57 6 ± 4 Absent Medium/small 

3 0.40 0  Large/small 

1
water velocity varied across the water column and around the tank. 
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Photo 4: Enriched environment landscape arrangement. A) sand, gravel and logs; B) gravel and 

cobble. 

 

Growth, survival and pigmentation: Each month, the total number of live fish per crossing per tank 

was counted to assess the mortality rate for each treatment (2 crossings x 2 rearing methods). 

Mortality was determined monthly as: Mortality (%) = (number of dead fish / total number of fish) * 

100. Survival probability for fish on each rearing method, at the end of the experiment, was 

calculated as the product of each month survival probability which was determined as: survival 

probability = (number of live fish / total number of fish). To assess growth and adjust the food ration, 

fish were weighed to the nearest 0.001g (Sartorius Practum 513−1S) and measured for length 

(Mitutoyo Absolute Digimatic) individually (n=25 per treatment) every week from the second week of 

trial (not done before due to small larvae size) until 2 months. During the third month, fish were 

measured only once at the end of the experiment to avoid handling before behavioral tests. The 

heterogeneity index was determined at 92 dph as: Coefficient of variation (%) = (Standard deviation / 

mean weight) * 100. Observations on fish pigmentation were done empirically as an unintended 

outcome of the study. 

 

Behavioral tests: To assess differences in fish cognition, behavioral tests were carried out on 

randomly chosen 78 dph old juveniles. A subsample of the fish was used in the 2 different tests. The 

first set up was designed to evaluate fish exploratory behavior (n=35 per treatment): It was carried 

out in Komatex (walls) and Plexiglas (bottom) aquariums (90x50x30cm) divided into three 
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compartments (start and challenge chamber 20x50x30cm; novel chamber 50x50x30cm; Figure 2), in 

dark conditions and using either well or river water depending on fish rearing condition. Water in the 

experimental arena was replaced between every individual to eliminate chemical cues. First, fish 

were placed individually in the “start chamber” for 5 minutes. The divider was then removed to let 

the fish explore the “novel” and “challenge” chambers (both connected through a semi-circle 

passage of 4.5 cm radius) for 15 minutes. Behavior was video recorded (Ikegami ) from above using 

EthoVision® XT 9 software (Noldus et al. 2001) using infrared light (Photo 5). The measured 

parameters were: latency to enter and swimming speed in the “novel chamber”, success (pass or 

not), frequency (number of successes) of movement into the “challenge chamber”, latency to first 

enter the “challenge chamber” and success in exiting from it. After the test, every fish tested was 

weighed and measured for length (up to 1 mm) to standardized swimming speed. The second 

behavioral test “novel prey” experiment was conducted after the exploration test for a subsample 

(n=20 per treatment). This test aimed to measure the ability of individuals to feed on unknown prey. 

Individuals were placed in separate glass aquaria (28x19x17 cm) in darkness, using water depending 

on their origin, and fasted for 24 hours (Photo 6). Afterwards, fish were provided with 10 live white 

worms (Enchytraeus albidus) and given 60 minutes to feed. Success to feed (food consumed or not) 

and amount of prey consumed per fish were recorded. The white worms came from a local aquarium 

store and were unfamiliar to the fish. We choose this worm species because it has been previously 

recorded in the stomach contents of wild juveniles (Acolas et al. 2011c). 
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Figure 2, Photo 5: Behavioral experimental arena, 3-chamber aquarium. A) 3-chamber aquarium and 

B) computer view of the 3 experimental arenas, while actively recording. Red tracks represent fish in 

movement. 

 

 

Photo 6: Space and arrangement of aquariums for novel prey tests. 

 

Statistical analysis: The X2 test of independence was used to explore differences in mortality 

between treatments, after determining no differences among replicas (i.e. tanks). A stepwise 

multinomial logistic regression model was used to assess the best predictors of growth (i.e. weight 

was used as proxy of growth) by testing the effects of the rearing method, crossings, replicas, and 

temperature. Analysis of variance and Mann-Whitney and Scheirer-Ray-Hare tests (when 
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assumptions on normality and homoscedascity were not met) were used to compare weight and 

length between treatments at 14, 35, 64 and 92 dph. In addition, growth for the different treatments 

was compared using general lineal models (GLMs) with a Gaussian distribution considering age in 

accumulated thermal units to compare fish at the same ontogenic stage. Behavioral discrete data 

were analyzed using negative binomial and binary regressions, continuous data using Scheirer-Ray-

Hare test and behavioral data correlations were analyzed using Spearman correlations as assumption 

on normality and homoscedascity were not met. Statistical analyses were performed using R 

statistical software (R Core Team 2013) and p-values < 0.05 were considered significant. 

 

2.4. Results 

Survival: No fish during the experiment died or exhibited symptoms due to obvious bacterial 

infection or any other visible pathogen. During the first month of rearing, mortalities were observed 

from 12 dph of rearing in all treatments. The mortality rate during the first month varied between 

12.8% and 18%, and there was no significant difference in mortality between treatments (X2=2.05, 

df=3, p=0.15) (Table 4). For the second month of rearing, mortality in enriched rearing was 10.15% 

and significantly different from the value of 0.49% obtained in traditional rearing (X2=18.65, df=1, 

p<0.01). In enriched rearing, a positive correlation was identified between temperature and fish 

deaths (Spearman, rs=0.54, p=0.04). Mortality in enriched rearing conditions decreased to 1.12% 

during the third month, and increased to 3.48% for traditional rearing, but no differences between 

both were found (X2=2.24, df=1, p=0.13). Survival probability during all the experiment was higher for 

traditional-reared fish (0.8) than for enriched-reared fish (0.7).  

 

Table 4: Rate of monthly survival according to treatment. Replicas have been pooled together 

because there were no significant differences between them. Different letters represent significant 

differences. 

 Survival rate (%) 

 Enriched Traditional 

Month 1 83.8a 87.0a 

Month 2 89.9a 99.5b 

Month 3 98.9a 96.5a 

 

Growth: For growth measurements, larvae were chosen randomly from all treatments and replicas 

data were pooled together because no differences between them were found. Initial weight and 

length were not measured because larvae were too small to be accurately measured alive. On this 
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basis, we assume no initial difference due to random sampling in the same hatching tanks for all 

treatments. The multinomial logistic regression model pointed out “rearing” and “crossing” as the 

best growth predictors explaining 82% of data variation (AIC=1950.6, Cox-Snell=0.82, Table 5), tank 

and temperature effects were not considered to be significant explanatory variables. 

Differences in growth between rearing environments favored enriched rearing from 14 dph onwards 

(H2=59.7, p<0.01). Both crossings had similar body weight (Mann-Whitey; enriched, U=298.5, p=0.8; 

traditional U=281.5, p=0.6; Table 6) and length (one-way anova; enriched F(1,45)=0.85, p=0.36 ; 

traditional F(1,48)=2.87, p=0.09; Table 6) within each rearing environment. By 35 dph until 92 dph, 

both crossings in enriched conditions performed similarly but their weight (Scheirer-Ray-Hare; 

method, H=37.1, p<0.01; cross, H=11.4, p<0.01; Table 6, Figure 3) and length (Scheirer-Ray-Hare; 

method, H=42.5, p<0.01; cross, H=8.2, p<0.01; Table 6) differed under traditional conditions. 

Moreover the final heterogeneity index was higher for traditional rearing (6 to 13% higher than in 

enriched condition). Further analysis to compare juveniles of the same ontogenic stage (age 

expressed in degree days), was consistent with results previously obtained: similar growth for both 

crossings enriched rearing (GLM, p=0.81, Figure 4) but different growth among crossings for 

traditional rearing (GLM, p<0.01, Figure 4). In traditional rearing, fish from crossing 2 showed similar 

growth performance to the fish from both crossings in enriched rearing (GLM, p=0.06, Figure 4) for 

the same ontogenic stage. In traditional rearing, crossing 1 had the lowest growth performance of all. 

In addition, empirical observations on pigmentation showed that fish coloration differed between 

rearing conditions from 14 dph: fish reared in enriched tanks were dark colored, while traditional fish 

were pale, although coloration was not precisely measured (Photo 7).  

 

Table 5: Multinomial logistic regression models. Rearing refers to traditional or enriched rearing 

conditions, crossing refers to C1 and C2 parental background and tank to replicas. 

Variables Significant variables AIC p-value 
Pseudo-square 

(Cox-Snell) 

Rearing, crossing, tank, temperature rearing, crossing 2628.69 0.00 0.83 

Rearing, crossing, temperature rearing, crossing 2304.31 0.00 0.83 

Rearing, crossing rearing, crossing 1950.58 0.00 0.83 
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Table 6: Growth performance of two crossings of juvenile European sturgeon (A. sturio) exposed to 

two different rearing conditions. C1 (male 1) and C2 (male 2) indicate the fish crossings. Letters 

indicate, for each line of the table, the comparison between treatments: different letters represent 

significant differences.  

 Traditional rearing Enriched rearing 

Parameter C1 C2 C1 C2 

Weight at 14 dph (g) 0.04 ± 0.0a 0.04 ± 0.0a 0.06 ± 0.0b 0.06 ± 0.0b 

Length at 14 dph (cm) 1.9 ± 0.0a 1.9 ± 0.1a 2.1 ± 0.1b 2.2 ± 0.1b 

Weight at 35 dph (g) 0.1 ± 0.0a 0.3 ± 0.1b 0.4 ± 0.1bc 0.4 ± 0.1c 

Length at 35 dph (cm) 3.1 ± 0.3a 3.5 ± 0.4b 4.0 ± 0.4c 4.2 ± 0.4c 

Weight at 64 dph (g) 1.5 ± 0.7a 2.1 ± 0.9ab 2.9 ± 1.2c 2.7 ± 1.0bc 

Length at 64 dph (cm) 6.5 ± 1.3a 7.2 ± 1.3a 8.3 ± 1.2b 8.2 ± 1.2b 

Final weight at 92 dph (g) 4.4 ± 2.0a 7.2 ± 2.8b 9.6 ± 3.0c 9.6 ± 3.2c 

Final length at 92 dph (cm) 9.8 ± 1.5a 11.5 ± 1.7b 13.0 ± 1.3c 12.9 ± 1.5c 

Heterogeneity at 92 dph (%) 46.7 39.9 31.9 33.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 

 

 

 

 

 

 

 

Figure 3: Box plot of juveniles weight of two crossings (C1 and C2) of European sturgeon at a) 14 dph, 

b) 35 dph, c) 64 dph and d) 92 dph reared in enriched and traditional conditions. Circles represent 

outliers, whiskers denote minimum and maximum values, box indicates interquartile range and line 

indicates median. Within each panel, different letters represent significant differences.  
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Figure 4: Juveniles growth of two crossings of European sturgeon (A. sturio) during 3 months (92 dph) 

of rearing in enriched and traditional methods. Interrupted lines indicate mean values and 

continuous lines 95% confidence intervals. a) indicate enriched rearing fish, both crossings plotted 

together, b) indicates C2 crossing in traditional rearing and c) indicates C1 crossing in traditional 

rearing. 
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Photo 7: Fish pigmentation of juvenile A. sturio reared under enriched and traditional conditions. 

 

Behavior: During exploratory tests, fish expressed different behavior according to the rearing 

environment. First, no differences between crossing and rearing conditions were found in latency to 

enter the novel chamber (Scheirer-Ray-Hare; method p=0.17, cross p=0.11, interaction=0.73) and in 

swimming speed within this novel chamber (Scheirer-Ray-Hare; method p=0.29, cross p=0.3, 

interaction p=0.14). Fish reared under enriched conditions took longer to enter the challenge 

chamber for the first time (452±243 seconds) than traditionally reared fish (437 ± 309 seconds) 

(Scheirer-Ray-Hare, method, H=6.8, p=0.01), but 88.4% of them engaged at least once into the 

challenge chamber against 67.8% of the traditionally reared fish (GLM binary logistic, X2=9.1, p=0.02; 

method, p<0.01). Considering the fish that engaged in the challenge chamber, enriched-reared fish 

made an average of 1.53 entries while traditional-reared fish entered an average of 1.29 times. Also, 

81.1% of the enriched-reared fish and 71.4% of the traditional-reared which entered the challenge 

chamber manage to get out of it. However, no significant differences were found in the number of 

entries (GLM negative binomial, X2=6.4, p=0.09) or success to exit (GLM binary logistic, X2=6.2, p=0.1) 

the challenge chamber between rearing methods. 

In the novel prey test, 81.9% of fish ate at least one worm (mean 5.59±3.84 worms eaten), 

consequently, no differences in feeding success (GLM binary logistic, X2=2.8, p=0.2) or the number of 

worms consumed (GLM negative binomial, X2=3.5, p=0.3) between treatment was found. The 
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amount of worms consumed was not correlated to fish size (Spearman, rs=−0.10, p=0.35). Further 

correlations between number of preys eaten and exploratory test parameters (latency to enter novel 

chamber, latency to enter challenge chamber and frequency to enter it) revealed a negative 

association between latency to enter to the challenge chamber and the amount of prey consumed 

for traditional reared individuals (Spearman, rs=-0.53, p=<0.01) but no significant correlation was 

detected for enriched-reared individuals or other tested correlations on any rearing condition 

(Sperman, p>0.05). 

 

2.5. Discussion 

When breeding fish for stocking purposes, it is important to optimize early stage survival in order to 

reduce the early mortality that would otherwise occur in the wild due to predation, starvation or 

disease. Fish survival gives a good initial quantitative insight into the efficiency of hatchery conditions 

from a conservation point of view. Observed early mortality was most likely produced by the 

adjustment from endogenous to exogenous feeding, as reported in other sturgeon studies at similar 

developmental stages (Charlon and Bergot 1991; Gisbert et al. 2000; Williot et al. 2005; Boucher et 

al. 2014). Following the exogenous feeding transition, mortality usually declines (Gisbert et al. 2000). 

In our experiment, for the first and the third month of rearing, mortality rates were similar between 

crossings and rearing conditions, which is a promising result for the enriched rearing approach. 

However, we highlighted a higher mortality in enriched rearing during the second month. This can be 

explained by the higher water temperatures observed during the summer time. Even though the 

precise optimal growth temperature for juveniles of A. sturio is unknown, 20°C have been reported 

to maximize survival, hatching and metabolism capacities on larvae of this specie (Delage et al. 2014). 

Deleterious effects on larvae have been seen between 23−26°C, (Delage et al. 2014). These results 

suggest that survival during the first three months can be impacted by temperature. Enriched 

rearing, as proposed in this study, can be a promising approach as long as the river water 

temperature can be maintained below 22 °C as high mortality was not observed below this 

temperature.  

 

The growth of fish in rearing conditions is another key life history trait considered by aquaculture 

practice studies. During rearing of larvae, many biotic (parental effects, genetic background, density, 

hierarchical interactions) (Huntingford et al. 2012) and abiotic parameters (temperature, salinity, pH, 

etc.) (Stickney 2005) are intensively studied to create an optimal setup for fish growth. We found 

that growth performance of European sturgeon juveniles was influenced by crossing and rearing 

methods. However, temperature is one of the factors included in the “rearing method”. When 
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comparing growth, achieved in different conditions at the same number of dph, temperature 

variation could partly explain these differences, since temperature is known to have a significant 

influence on fish growth (Jobling 2002). Separating the effects of each parameter was not the goal of 

this study but to test how environmental heterogeneity could affect fitness-related traits instead. In 

our study, fish in enriched environment tended to grow better than those reared in traditional 

hatchery conditions. All the parameters used in enriched conditions were expected to have a positive 

impact on fish performance. In different species, it has been demonstrated that a minimal light 

threshold is required to develop and grow correctly (Boeuf and Le Bail 1999). In sturgeons, 

photoperiod treatment increases fish growth rates and weight gain compared with fish reared in 

darkness (Ruchin 2007; Ghomi et al. 2010); Kryuchkov and Obukhov 2010, as cited in Ghomi et al., 

2010). Differences in fish growth in enriched rearing could also be explained by substrate occurrence. 

For example, white sturgeon larvae reared on substrate resulted in improved growth and survival 

and these effects remained after larvae were transferred to a bare environment (Boucher et al. 

2014). Such observations have been attributed to reduction in fish activity and stress (Boucher et al. 

2014) because substrate provides shelter. Better growth of enriched-reared fish can also be 

explained by exercise conditioning caused by water currents. Some studies suggest that the effects of 

training on fish significantly increase final weight, growth rates and food conversion efficiency (Young 

and Cech Jr 1993; Davison 1997). This is explained by an increment in muscular development and 

heart performance that can be beneficial in stocking programs because it might improve survival in 

the wild (Young and Cech Jr 1993; Davison 1997). Being bigger can also improve survival in the wild 

(Hutchings 2002; Wilke et al. 2014) because bigger fish have wider size ranges of prey items and have 

a lower predation risk than smaller fish (Juanes et al. 2002). 

 

When analyzing juvenile growth at the same developmental stage we highlighted that one crossing 

performed differently depending on its rearing environment. This result might be explained by 

interaction between genotype and the environment. Based on hematological indices hatchery 

settings can be considered as unnatural and stressful environment (Ruchin 2007; Grant 2015). 

Exposure to stress can separate genotypes according to their capacity to cope with it (Wu et al. 

2003), which can explain the differences in growth of both fish crossings and the higher 

heterogeneity in traditional rearing. Within the spawners, male 1 was the smallest with the longest 

time in captivity and the lowest growth performance in captivity (12.2 kg vs 27.6 kg for male 2 of the 

same age). This could suggest maladaptation to captivity conditions; a tendency which appears to be 

mirrored through its offspring which perform better in enriched environments (phenotypic plasticity) 

(West-Eberhard 2003; Monaghan 2008). To be able to conclude on this genotype-environment 
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interaction on European sturgeon, more families for common garden experiment studies are needed 

in the future.  

 

In addition to the well-established parameters (i.e. survival and growth) directly assessed on fish 

during the rearing period, other characteristics could play an important role in their fitness once 

released in the wild. For example, body pigmentation may provide with good camouflage within the 

environment, reducing predation risk and increasing survival (Svanbäck and Eklöv 2011). In 

sturgeons, it is believed that body pigmentation is linked to behavioral traits and early life foraging 

and migration (Kynard et al. 2005). We observed differences in pigmentation that may be caused by 

the light differences between both methods they could have a significant influence on habitat-

specific fitness of individuals after release. Another aspect to highlight is the homing behavior 

occurring in anadromous species (McDowall 2001; Metcalfe et al. 2002). Sturgeon is considered to 

have strong homing skills, although there are few data regarding their imprinting and homing 

processes (Bemis and Kynard 1997; Waldman and Wirgin 1998). Nevertheless, given the homing 

behavior of other migratory fish groups such as salmonids (Metcalfe et al. 2002), there is likelihood 

that hatchery-reared sturgeons may exhibit a higher straying rate than wild counterparts if the 

imprinting occurs at an early stage. In this regard, rearing fish using river water from the release-

sites, as in the present study, may produce better-imprinted fish than those produced in well water 

that is not found in the wild. In addition, rearing on release-site water may overcome the 

introduction of parasite-naïve individuals that can fail to join the natural population due to local 

pathogens as have been documented previously (Work et al. 2000; Antolin et al. 2002). 

 

Individual fish behavior may play an important role in fish survival in the wild. Indeed, individual 

response to challenging environments (e.g. stress coping style) which correspond to potentially risky 

situations can have a direct consequence on fish survival or growth by influencing fish physiological 

and behavioral state (Wingfield 2003; Øverli et al. 2007). Habitat heterogeneity promotes behavioral 

flexibility (i.e. ability to adjust their behavior to the new conditions) (Braithwaite and Salvanes 2005; 

Salvanes et al. 2007; Kotrschal and Taborsky 2010) and exploratory behavior (Nilsson et al. 1999; 

Zimmermann et al. 2001; Braithwaite and Salvanes 2005) required to deal with unpredictable 

environmental conditions as the conditions found in the wild. In our study, we found that more 

individuals from enriched rearing entered the challenge zone of our experimental device, when 

compared to the group of traditionally reared fish. This can be interpreted as more pronounced 

exploratory behavior within the individuals reared in enriched environment and corroborates 

previous studies where exploratory tendency of individuals could be a consequence of higher habitat 
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heterogeneity (Nilsson et al. 1999; Zimmermann et al. 2001; Meehan and Mench 2002; Braithwaite 

and Salvanes 2005). However, we found that fish from enriched conditions took longer to enter the 

challenge zone. This apparently paradoxical result can be explained by higher tendency towards 

environmental assessment developed under enriched conditions. Indeed, it has been suggested that 

environmental variability improves individual reaction to novel circumstances (Meehan and Mench 

2002; Salvanes et al. 2007; Strand et al. 2010). In this case, the fish require longer time lapses in 

order to perceive the cues, assess them and adjust the behavior accordingly. In this perspective, we 

could associate the fish from different rearing conditions to behavioral strategies with different 

stress coping style, known to have a genetic background but also to be under high influence of early 

life environment (Frost et al. 2007; Chapman et al. 2010; Roberts et al. 2011; Jonsson and Jonsson 

2014). In this case, behavior of enriched-habitat reared fish may be better suited to the conditions 

found in the wild. Environmental heterogeneity also increases phenotypic variation (Crossman et al. 

2014) and this is a key feature that enhance population fitness and facilitates its establishment and 

persistence (Whitman and Agrawal 2009; Forsman 2014; Forsman 2015). Therefore, the success of 

stocking programs with conservation purposes relies on genetic and phenotypic diversity (Forsman 

2014) that we can promote under adaptive aquaculture approaches. 

When analyzing the results on the novel prey test, no significant differences between treatments 

were found. We assume that this is an outcome of similar feeding protocols in both rearing 

environments. In enriched rearing no cues were manipulated during feeding, and unpredictability on 

food supply has been shown to shape behavioral traits (Chapman et al. 2010). Also, it is possible that 

the fish motivational state were not enough to elicit different feeding behavior. Prey characteristics 

as color, movement, size, shape, fish stomach fullness (Croy and Hughes 1991; Gill and Hart 1994) 

and prey density (Ioannou et al. 2009) have an important role on foraging behavior and our test 

conditions may not match the thresholds required for our species to initiate differential feeding on 

novel prey. However a negative correlation between latency to enter the challenge zone and amount 

of prey consumed was highlighted on traditional-reared fish which is difficult to interpret with the 

elements we have and would require further experiments. 

 

Overall, our results suggest that rearing conditions for fish early stages should be taken into account 

for stocking purposes. We found that enriched rearing conditions influence positively fitness related 

traits of fish such as growth and behavior. They would benefit from better growth but they would 

also exhibit more exploratory but cautious behavior when facing a new environment. We also 

suspect a genotype-environment interaction in favor of enriched rearing environment that would be 

promising to study on further research. These are important results that encourage enhancing fish 
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performance within restocking programs with enriched rearing practices. 
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3 

Tracking juvenile sturgeon in the wild: miniature tag 

effects assessment in a laboratory study on Siberian 

sturgeon (Acipenser baerii).   
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Foreword 

In conservation programs, post-release monitoring is crucial. Within the context of this restoration 

program, assessing the rearing practices outside the laboratory constrains will provide a better and 

more complete understanding of its effects on the fish produced. This type of evaluation will allow 

pursuing, ameliorating or adapting the practices to the program’s goals. However, monitoring these 

early stages in the wild has been limited not only for the lack of sturgeon’s recruitment but also 

because the telemetry techniques available were not suitable for very small fish. In the last few 

years, a new miniature acoustic tag has been available to monitor very young salmon. This 

technology provided the opportunity for further assessment of the effects of rearing practices in the 

wild and to obtain information on the early life stages in this species that is poorly known. This 

technology has never been used before in sturgeons thus, points out the relevance of doing 

feasibility study for posterior use in the program. Moreover it has constituted an opportunity to 

obtain surgical skills. 

The experiment of chapter 2 allowed highlighting significant differences under controlled conditions 

for fish raised very differently. In 2014, the next step was to follow up the first experiment in the 

natural environment after release. Assessing the same individuals in controlled conditions and in the 

wild make this work have a very complete approach which is uncommon. However, to carry out the 

fish monitoring in situ, a way to monitor the fish in the wild is needed. Sampling constitutes an 

option as it is used in many species (Fjellheim et al., 1995; Chiasson et al., 1997; Crossman et al., 

2011) with electrofishing, drift nets or gillnets but considering the risks to injure the fish and their 

low number limiting the probability to recapture them it was not considered. Acoustic telemetry 

technique seemed the most relevant considering the site configuration and the availability of the 

recent small tags.  
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3.1. Abstract 

Acoustic telemetry is commonly used to study movements of fish within their natural environment. 

Telemetry studies on sturgeons have focused mainly on large individuals; research on juveniles is 

scarce and tagging-effect studies on young-of-the-year are needed considering the species 

threatened status and their poorly known freshwater ecology. To study the feasibility of acoustic 

tagging in juveniles, a trial on Siberian sturgeon (Acipenser baerii) was carried out. The purpose of 

our study was to assess the effects of intraperitoneal acoustic tagging on survival, growth, swimming 

behavior and tag retention in young-of-the-year sturgeons. Fifty fish were tagged with dummy-

acoustic transmitters (1.07x0.54x0.31cm, 0.28 g) and compared to 55 control individuals that were 

handled and anesthetized but not tagged. Fish ranged between 14–19.1 cm in total length (TL) and 

the tag burden for implanted fish was 1.3–2.6% body weight. Fish growth was estimated 15 and 30 

days after tagging. Swimming behavior was assessed at 2, 7, 12, 21 and 26 days post-tagging using 

video tracking. All fish were also tagged with Radio Frequency Identification microtags (RFID 

microtags) to allow individual recognition during the trial. After one month of rearing, survival and 

tag retention rate of dummy-tagged fish were both 98%. Tag implantation had no effect on length or 

weight either 15 or 30 days after tagging. Specific growth rate was influenced positively by fish initial 

weight 15 days after tagging but this influence disappeared by day 30. Under stress, swimming 

performance was influenced by tagging: during stressful swim treatments, dummy-tagged fish 

moved greater distances and had higher swimming speeds at 12 days after tagging. Also, their 

swimming paths were straighter at 21 days after tagging compared to the pre-stress behavior. RFID 

microtag loss probability was 22.6% for control and 46.9% for dummy-tagged fish; RFID microtag loss 

was influenced by surgeon on dummy-tagged fish. These results suggest that loss rate of RFID 

microtags is acceptable when applied alone on juveniles of this species but the tagging procedure 

should be improved. Implantation of miniature acoustic transmitters can be successfully applied to 

young sturgeons as small as 14 cm TL and 10.7 g taking into account a possible higher sensitivity to 

stress during the first 21 days after surgery.  

 

Keywords: acoustic transmitters, survival, growth, swimming behavior, RFID microtags, stress.  
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3.2. Introduction 

Sturgeons constitute a group of 25 species and most of them are considered to be under threat 

(IUCN 2015). Their conservation status and the lack of information in many aspects of their biology, 

life and evolutionary history make them a priority for research, management and conservation 

actions (Birstein 1993; Waldman and Wirgin 1998; Billard and Lecointre 2001; Williot et al. 2011). 

Improvement of species basic knowledge in their natural environment can be obtained by telemetry 

techniques. This approach is one of the most common and reliable means to study fish spatial 

ecology (Lucas and Baras 2000; Cooke et al. 2004; Bégout et al. 2016). Telemetry has previously been 

used for sturgeon species, mainly on large juveniles and adults, to characterize behavior such as 

movement patterns (Hall et al. 1991; Dionne et al. 2013), habitat use (Auer 1999; Erickson et al. 

2002; Taverny et al. 2002; Sulak et al. 2009; Peterson et al. 2013), dispersal and migration (Foster and 

Clugston 1997; Neufeld and Rust 2009; Brevé et al. 2014). In order to obtain information through 

telemetry techniques, fish need to be identified individually and this lead to the development of a 

variety of transmitters and tagging procedures (Bridger and Booth 2003). Studies have revealed that 

fish physiological, behavioral and growth responses to tagging procedures are influenced by 

transmitter size and attachment technique and seem to be species-specific (Cooke et al. 2011; 

Crossman et al. 2013). In view of this, preliminary tests are needed to adapt the transmitters and 

tagging method to a particular species and life stage (Jepsen et al. 2002) in order to minimize adverse 

effects on the animal being studied. In sturgeons, surgically implanted transmitters with external 

antennas can injure the fish as the transmitter migrates inducing tag loss (Collins et al. 2002). 

Externally attached transmitters can reduce sturgeon swimming performance (Counihan and Frost 

1999) and result in poor growth and survival (Johnson et al. 2014). Internal implantation of  tags 

without anchoring has a highly variable retention rate depending on the sturgeon species (Crossman 

et al. 2013). Gastric implantation has shown high rates of expulsion as well as mortality (Neely et al. 

2009). Finally, peritoneal implantation is the most recommended method (Neely et al. 2009; 

Crossman et al. 2013; Miller et al. 2013) because it causes fewest adverse long-term effects (Mulcahy 

2003). Up to now, due to transmitter design,  the smallest  sturgeons tracked in the wild have been 

restricted to individuals of 9 months of age of 27–38 cm with transmitters weighing 2.9 g in the air 

(Acolas et al. 2012). To our knowledge, the smallest sturgeon successfully tagged in laboratory  with 

telemetry transmitters (0.2 g in the air) were age-0 pallid sturgeon (Scaphirhynchus albus), 17–26 cm,  

which were either given surgical or external attachments (Johnson et al. 2014). Recent reductions in 

the size and weight of telemetry transmitters, as seen for the Juvenile Salmon Acoustic Telemetry 

System (JSATS) tags (McMichael et al. 2010), may enable monitoring smaller sturgeons movements 

for approximately 30 days (tag expected life). JSATS have been successfully used, without effects on 
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growth and survival, on juvenile salmon species of 9–9.9 cm and 6.8–12.4 g (Brown et al. 2010) but 

its feasibility and effects in young sturgeons is unknown. Miniaturization has been also developed on 

radio frequency identification tags (RFID). These tags have been successfully used on several taxa 

from small species to young individuals of larger ones, allowing long term individual identification 

studies (Moreau et al. 2010; Cousin et al. 2012; Ferrari et al. 2014; Ouedraogo et al. 2014; 

Podgorniak et al. 2015) without any impact on growth or survival for fish as small as 1.6–4.2 cm and 

0.14–0.78 g (Cousin et al. 2012).  

In Western Europe, the last remaining wild sturgeon population, the European sturgeon (Acipenser 

sturio), is strictly protected and subject to a European restoration action plan (Rosenthal et al. 2007). 

Fish are usually stocked at a young stage in rivers and means to assess the efficiency of the stocking 

program are required (UICN reintroduction specialist group, 1998). Most of the current knowledge 

on the species traits concerns their estuarine life phase i.e. 3 to 7 year-old fish (Rochard et al. 2001; 

Brosse 2003). The ecology of the young-of-the-year in rivers is largely unknown (Acolas et al. 2011b) 

and it’s a priority to improve the species conservation efforts (Gross et al. 2002; Acolas et al. 2011b). 

Considering the protected status of this species and the low number of specimens available, 

assessing the tagging impact directly on European sturgeons is not suitable and a model species must 

be used. For our study, Siberian sturgeon (Acipenser baerii) was used as it has anatomical and 

physiological similarities to other sturgeon species (Boone et al. 2013), as well as being available in 

local hatcheries. This species is not protected under French regulations. The aim of the present study 

was to evaluate the feasibility of intraperitoneal tagging and effects on survival, growth, and 

swimming behavior in young-of-the-year Siberian sturgeons to be able to transfer the results onto 

protected sturgeon species. 

In the present study, also RFID microtags were used to identify individual fish reared in common 

garden conditions to assess individual growth. 

 

3.3. Methodology 

Fish rearing: The fish specimens used in this experiment were 2-month old hatchery-reared Siberian 

sturgeons obtained from a local commercial hatchery. The fish ranged from 14–19.1 cm TL (16.3±1.0 

cm, mean ± SD) and 9.9–22.1 g (15.0±2.5). The fish (n=105) were raised between February and 

March 2014 at the Irstea experimentation station of Saint-Seurin-sur-l’Isle (Southwest France). Fish 

were reared in 2 cylindrical tanks of 471L capacity (100x60 cm; diameter*height) under common 

garden conditions (half dummy-acoustic tagged fish and half control fish in each tank considered as 

replicas). Tanks were indoors under 12L: 12D photoperiod but covered with mesh to reduce 

brightness (light under cover =10 lux). Tanks were supplied with a 5Lmin-1 flow-through system of 
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underground water and temperature was recorded automatically (Tinytag) every half hour and 

maintained constant at 17.4±0.5 °C (no significant differences between tanks, Wilcoxon test=475, 

p=0.16). Additionally, ammonium (<0.05mg/L) and nitrites (0.01–0.025mg/L) levels were kept below 

toxic levels (JBL kit) and oxygen over 95% saturation (WTWTM multi 3430). Fish were fed at 2.5% 

body weight twice per day using 0.2 cm pellets (Coppens International, Steco Pre Grower-14). 

Tanks were cleaned once a day by scraping the bottom and food leftovers were flushed away twice 

per day. 

 

Fish tagging: Dummy acoustic tags (0.28±0.2g in air) were made-up using fishing lead immersed in 

molded epoxy resin that aimed to replicate the JSATS L-AMT-1.416 acoustic tags (Lotek) which are 

1.07x0.54x0.31 cm (length*width*depth) and 0.28g in air (Photo 8). Fish had one week of 

acclimation period and were food-deprived for 24 hours before tagging which occurred on February 

26, 2014. Sedation was done using clove oil (0.5ml L-1 of clove oil diluted in 5ml of ethanol 75% per 

10L of water). Once anesthetized, fish were measured (TL±0.1 mm) and weighed (W±0.1g). Control 

fish were 14.2–19.1 cm TL (16.4±1.1) and 9.9–20.8g (15.1±2.6); dummy-tagged fish were 14–18.9 cm 

TL (16.1±1.0) and 10.7–22.1g (14.9±2.5). Transmitters represented 1.3–2.6% of the tagged fish body 

mass in air. Fish were then placed on their backs in a V-shaped ruler and gills were regularly irrigated 

with water containing a half dose of anesthetic to maintain an anesthetized condition and keep gills 

moisted as described in Acolas et al. (2012) for older sturgeons. To allow fish individual recognition 

during the trial, RFID microtags (NonatecTM, diameter=0.1 cm, length=0.6 cm, weight≈0.01 g) were 

inserted in all individuals (control + dummy-tagged) (Annex 8). All equipment used during the tagging 

process was autoclaved and sterilized before surgery and disinfected between each fish. Tags were 

cleaned in ethanol and air-dried before use. Fish skin was disinfected before any incisions with a 

sterile pad with 10-time diluted hydrogen peroxide. RFID microtag insertion was done by piercing the 

abdominal cavity, slightly left of the midline and anterior to the pelvic girdle, using a 21 gauge needle 

(Terumo Neolus standard) and the tag was pushed into the cavity as described in Cousin et al. 

(2012) (Annex 9). Dummy acoustic transmitters were surgically implanted (n=50) through a ≈0.7–

0.8 cm ventral incision, in anterior position to the RFID microtag insertion site (Photo 9). Incisions 

were closed with surgeon knots using absorbable monofilament (Ethicon, PDSTM II 4–0). Antiseptic 

cream was placed on the closed incision and fish were transferred to a recovery tank (water without 

anesthetic) before being returned to their rearing tanks once they had recovered their balance. 

Control fish (n=55) were handled similarly to the dummy-tagged fish: sedated, weighed, measured 

and RFID-tagged but they did not received dummy transmitters neither suturing. Three surgeons 

carried out the tagging: surgeon A manipulated 41 fish and surgeons B and C manipulated 32 
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individuals. Fish biometrics (TL and W) did not differ between surgeons (ANOVA; W: F(2,102)=0.15, 

p=0.86; TL: F(2,102)=0.06, p=0.94) as well as the proportion of dummy-tagged vs control fish 

manipulated by each one (X2 (2)=0.11, p=0.95). 

 

 

Photo 8: RFID nanotag (left) and acoustic dummy-tag (right) used to mark juvenile A. baerii (©Acolas 

ML, Irstea). 

 

 

Photo 9: Insertion site of the RFID microtag (a) and implantation site of the acoustic dummy-tag (b) 

on of juvenile A. baerii (©Acolas ML, Irstea). 

 

Post-surgery monitoring: Fish mortality was monitored daily during tank inspection. To assess 

growth, fish biometrics (TL and W) were measured at 15 and 30 days post-tagging on fasted and 

sedated fish, as mentioned in the tagging procedure. In addition, wound healing, dummy-tag and 

RFID microtag retention rates were checked on these two occasions. To evaluate the influence of the 

tagging procedure (surgery + tag) on fish behavior, swimming activity was used as a proxy. For 

swimming tests, fish (n=6) were placed in solitary arenas (50x25x30 cm; length*width*height) at low 

light intensity (10 lux). Arenas had their sides covered to prevent fish seeing neighboring fish. 

Behavior was video recorded (Ikegami® camera) from above with an infrared light from below the 



77 

 

arenas using EthoVision® XT software (Noldus et al. 2001) to analyze swimming variables. Fish were 

filmed for 20 minutes: 10 minutes of acclimation and 10 minutes of testing. Within the test time 

frame, a stressor stimulus (bright light =110 lux) was applied after 5 minutes during 30 seconds. For 

each testing session, 12 tagged and 12 untagged individuals were observed. In total, 5 sessions were 

performed at 2, 7, 12, 21, 26 days after tagging. Selected variables, such as total distance moved 

(body length, BL in cm), mean swimming speed (BL/s) and mean turn angle (degrees, °/s) (i.e. amount 

of turning per unit time that quantify trajectory complexity (Benhaïm et al. 2012)) were measured 

every 10 seconds as the experiment progressed for each individual. At the end of the trial, all fish 

were euthanized by exposure to a sedative dose of clove oil first and then to a lethal dose of the 

same anesthetic according to the French legislation in force (act 02.01.2013 Art. R. 214-98).  

Afterwards, dead fish were dissected to determine the location of the dummy-tags in the 

intraperitoneal cavity and to detect possible lesions caused by it or by the surgery. 

 

Data analysis: Survival was determined at the end of the trial as: Survival (%)= (number of alive fish 

/total number of fish)*100. After verification of parametric test assumptions, fish initial weight and 

total length were compared between treatments (i.e. dummy-tagged fish vs control fish) using a T-

test of independence. A two-way analysis of variance (ANOVA) was used to assess the effect of the 

tagging procedure (dummy-tagged or not) and tank on fish growth (TL, W) between treatments at 15 

and 30 days post-surgery. Specific growth rates (SGR) were assessed on individuals that retained 

their RFID microtags and calculated as: SGR (%/d) =100*(lnW2–lnW1)/t, where W1 and W2 were 

weight (g) at the first and last experimentation day respectively, and t was time (in number of days). 

SGR was calculated for the entire experiment duration and for the growth phase between days 1–15 

(SGR1) and between days 15–30 (SGR2). Initial condition factor (K) was calculated as: K=W/TL
3
*100, 

where W is fish weight (g) and TL is fish total length (cm). A logistic regression was used to estimate 

RFID microtags loss rate probabilities and to test the effects of tagging and surgeon. A stepwise linear 

regression model (GLM) selection by AIC was used to analyze the effects of tagging, tank, fish initial 

weight, initial total length and initial condition factor on the SGR at 15 and 30 days post-tagging. 

Then, a Pearson correlation was used to explore the relationship between SGR1 and the explanatory 

variables of the model. Concerning behavioral data, as assumptions for parametric statistics were not 

meet, Wilcoxon and Friedman tests were used. Wilcoxon tests were used to compare each swimming 

variable before and after the stressor for each group (control and dummy-tagged) separately and in 

each post-tagging time (2, 7, 12, 21, 26 days post-tagging) (Supplementary figure 1A). Friedman test 

was used to check for differences between fish groups before the stressor and another after the 

stressor in each post-tagging time (Supplementary figure 1A). Additionally, Wilcoxon test with 
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Bonferroni correction was used to compare each behavior variable along post-tagging time for each 

fish group and test frame (before and after the stressor) (Supplementary figure 1B). Statistical 

analyses were performed using IBM SPSS statistics 22.0 software (2013), p-values <0.05 were 

considered significant and the Bonferroni corrected p-value was <0.005. 

 

3.4. Results  

Survival and tag retention: Of the 105 individuals, 1 dummy-tagged fish died one day post-surgery. 

Its tag burden was 1.9% and no damaged organs were found after further inspection. Additionally, 2 

control fish died within the last 3 days of the trial due to swim bladder disorder. Accordingly, survival 

rate was 98% for dummy-tagged fish and 96.4% for the controls. Fish dissection revealed that one 

individual lost its dummy-tag through a wound in the anus resulting in a retention rate of 98%.  

Most RFID microtags losses (n=37) occurred through the insertion spot in control fish and through 

the dummy-tag implantation site on dummy-tagged fish within the first 15 days. This resulted in 

35.6% loss rate at 15 days that reached a total of 41.2% loss rate (n=42) by the end of the 

experiment. RFID microtag loss rate was higher for dummy-tagged fish (46.9%) than for controls 

(22.6%). The probability of RFID microtag loss within the 15 days post-tagging was related to the 

interaction between dummy-tagging and surgeon (logistic regression, F=5.6, df=2, p<0.01, n=102) 

(Figure 1). Further analysis revealed that for dummy-tagged fish, surgeon was a significant factor 

influencing RFID microtag loss (GLM, F=8.4, df=1, p<0.01) but it was not the case for the control 

group (GLM, F=3.6, df=1, p=0.06). RFID microtag loss rate probability within the 15–30 days post 

tagging was not further analyzed because very few fish lost their tag on this time period (n=7). 
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Figure 1. Probability of RFID’s microtags loss according to surgeons for juvenile Siberian sturgeons (A. 

baerii) 15 days after implantation. 

 

Healing: Fifteen days after tagging, most dummy-tagged fish had external wounds healed. However, 

three individuals still had wounds with separate edges and visible monofilament. Scars were hardly 

noticeable by the end of the study, yet 17 fish had slight hypertrophy at the incision site and 15 

individuals had the monofilament still visible. Dissection revealed that 23 fish had mild tissue 

adhesions, one had an internal infection, another had hypertrophy inside the coelom and the 

remaining fish had smooth healed wounds (n=24) (Photo 10). Except for the dummy-tag which was 

not found and considered expelled -most of them were located close to the implantation area and 

free in the peritoneal cavity. RFID microtags were found at their insertion point except for one case 

in which it has joined the intestine.  

 

 

Photo 10: Juvenile A. baerii showing completely healed wounds after 30 days of being marked.  
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Growth: At the beginning of the study, no significant differences in biometrics between the fish 

allocated as controls or dummy-tagged (W: t(103)=0.49, p=0.62; TL: t(103)=1.26, p=0.21) or between 

the tanks (W: t(103)=-0.28, p=0.78; TL: t(103)=-0.67, p=0.51) were found (Table 1). Tagging effects 

were not detectable on weight (F(1,100)=2.46, p=0.12) or length (F(1,100)=4.0, p=0.05) 15 days post-

tagging; tank effects were not found either (W: F(1,100)=0.39, p=0.54; TL: F(1,100)=0.02 p=0.90) 

(Table 1). By the end of the study, no significant differences between treatment appeared (W: 

F(1,99)=1.14, p=0.29; TL: F(1,99)=2.50, p=0.12) but tank effects on weight did (W: F(1,99)=4.53, 

p=0.04; TL: F(1,99)= 2.92, p=0.09) (Table 1). The mean SGR of fish (n=39 control, n=24 dummy-

tagged) from the start until the end of the trial was 3.0±0.6% per day for control and 2.9±0.5% per 

day for dummy-tagged fish. The GLM revealed that fish SGR1 was influenced by initial weight 

(F(1,63)=10.6, p<0.01) and SGR2 only by tank (F(1,55)=5.0, p=0.03) favoring fish of tank 1 (Table 2, 

Figure 2). For both GLMs (SGR1 and SGR2), tagging, initial length and condition factor were not 

selected as explanatory variables by the model (Table 2). Further analysis showed that bigger 

individuals had higher specific growth rate during the first 15 days of the experiment (Pearson, r=0.4, 

p<0.01). 

 

Table 1. Total length and weight evolution of juvenile Siberian sturgeons (A. baerii) after tagging. 

Time means number of days post-tagging. Letters indicate, within each time period and treatments, 

the comparison between treatments: different letters represent significant differences. 1 & 2 

between brackets indicate the fish tank; tank’s data were clustered when no differences between 

them were found. 

Treatment Control Dummy-tagged 

Time  (Tank) 0 15 30 (1) 30 (2) 0 15 30 (1) 30 (2) 

Sample size 55 55 26 27 50 49 27 21 

Weight (g) 15.1±2.6
a
 24.7±6.4

a
 39.7±10.2

a
 34.1±10.7

b
 14.9±2.5

a
 22.9±5.9

a
 36.4±9.0

a
 32.9±10.0

b
 

Length (cm) 16.4±1.1
a
 19.5±1.8

a
 23.2±2.4

a
 22.1±2.3

b
 16.1±1.0

a
 18.8±1.7

a
 22.2±2.2

a
 21.6±2.3

b
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Table 2. Specific growth rate (SGR) modelling in juvenile Siberian sturgeon (A. baerii) after tagging. 

GLM test SGR in function of tagging, tank, initial weight (Wi), initial total length and initial condition 

factor variables. AIC means akaike information criterion and df is degree of freedom. The best model 

selected (bold) corresponds to the smallest AIC with the lowest number of parameters. 

Model AIC df 

SGR1~ Wi  190.9 63 

SGR1~ Wi + tank  189.6 62 

SGR2~ tank 181.5 55 

SGR2~ Wi + tank 180.8 54 

 

 

Figure 2. Growth performance of juvenile Siberian sturgeon (A. baerii) after tagging. A) specific 

growth rate between 0–15 days after tagging (SGR1) and B) specific growth rate between 15–30 days 

after tagging (SGR2). Asterisks represent extreme values and different letters indicate significant 

differences on the model explanatory variable “tank” for SGR2. 

 

Swimming activity: Swimming behavior in control fish did not differ in any of the variables 

measured: distance moved (body length, BL in cm), mean swimming speed (BL/s) and mean turn 

angle (degrees, °/s) before or after the stressor was applied at 2 days (W, p>0.24), 7 days (W, 

p>0.12), 12 days (W, p>0.15), 21 days (W, p>0.72) and 26 days (W, p>0.18) after tagging (Table 3). 

For dummy-tagged fish, distance moved (W, Z=-2.27, p=0.02) and speed (W, Z=-2.48, p=0.01) were 

higher under stress at 12 days after tagging and fish path (turn angle) were straighter also under 

stress (W, Z=-2.22, p=0.03) at 21 days after tagging (Figure 3). No significance differences were found 

for the remaining variables at 2 days (W, p>0.53), 7 days (W, p>0.68), 12 days, (W, p>0.14), 21 days 

(W, p>0.07) and 26 days (W, p>0.40) after tagging. No effects on swimming behavior between 
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treatments were found before the stressor was applied (Friedman, p>0.21) or after (Friedman, 

p>0.08) regardless of the number of days after tagging. Moreover, no post-tagging time effects were 

found before (control, W, p>0.008; dummy-tagged, W, p>0.005) or after (control, W, p>0.01; 

dummy-tagged, W, p>0.009) the stressor on either fish group in any of the behavioral variables.  

 

Table 3. Swimming performance of control and dummy-acoustic tagged juveniles Siberian sturgeons 

before and after a stressor stimulus was applied. Variables represent median and interquartile range 

(between parentheses) values of all the sessions examined combined between 2 and 26 days after 

tagging.  

 Control fish Dummy-tagged fish 

Variable Before stimuli After stimuli Before stimuli After stimuli 

Distance moved (BL) 77.1 (44.2) 70.5 (51.9) 63.4 (41.2) 72.8 (35.7) 

Mean swimming speed (BL/s) 0.3 (0.2) 0.3 (0.1) 0.2 (0.1) 0.2 (0.1) 

Turn angle (°/s) 132.1 (69.0) 127.5 (50.1) 132.3 (66.0) 141.3 (50.1) 
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Figure 3. Swimming behavior of dummy-tagged juvenile Siberian sturgeon (A. baerii) before and after 

stressor was applied. (A) Total distance moved, (B) swimming speed and (C) turn angle during the 

experiment. Different letters represent significant differences within the same post tagging time. 

 

3.5. Discussion 

In our study, no differences in weight and length were found between dummy-tagged and control 

sturgeon during the experiment. In addition, fish growth in the first 15 days after surgery was 

influenced only by fish initial weight; bigger fish grew faster during those 15 days. These results 

suggest that the tagging procedure did no impacted fish growth. However, initial weight influence, 

during the first half of the study, could suggest that bigger fish were less impacted by the whole 

manipulation than the smaller ones. The lack of tagging effects in our study are consistent with Miller 

et al. (2013) that found no tagging effects on green sturgeon but this study had no midterm 

evaluation. However, most tagging studies in juveniles of fish of other species found differences that 
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are noticeable for some weeks that disappear later on (Adams et al. 1998; Robertson et al. 2003; 

Neely et al. 2009). At 30 days, difference in growth between the tanks (replicas) was also found 

where tank 2 ended up with smaller fish. This tank was unintentionally placed under the room’s air 

conditioning device which produced air flow over it and presumably disturbed the fish at feeding 

time. Although sturgeons are bottom dwellers, the fish used in this study come from lines that have 

been in captivity for generations and are therefore also accustomed to swim close to the surface. 

However, comparisons between dummy-tagged and control fish had the same trend in both replicas, 

which supports our results.  

 

Our study revealed that dummy-tagged fish had different swimming behavior before and after the 

stressor. There are several approaches to study fish swimming behavior (Kawabe et al. 2004; Bolliet 

and Labonne 2008; Martin et al. 2012; Walker et al. 2016) ; critical swimming speed (Ucrit) being the 

most popular practice for comparing tagging effects in fish swimming capabilities (Cote et al. 1999; 

Counihan and Frost 1999; Johnson et al. 2014). However, the goal of our study was to compare 

spontaneous swimming behavior between treatments before and after a stress stimulus. The 

methodology chosen, using video tracking, is simple to implement, can test multiple individuals at a 

time, and has been used successfully on other species (Millot et al. 2009; Benhaïm et al. 2012; 

Benhaïm et al. 2013; Ferrari et al. 2014). Using this approach, Ferrari et al. (2014) were able to 

demonstrate differences in swimming behavior between tagged and untagged juvenile seabass 

(Dicentrarchus labrax) and such differences disappeared 41 days after tagging. In our study, 

swimming behavior of young Siberian sturgeons was affected between 12 and 21 days after surgery 

after a stressor was applied, which may suggest a hypersensitivity to stress conditions. This effect 

does not appear right after the tagging procedure, probably because it is linked to the healing 

process and not to the manipulation itself. Similar effects on tagged fish have been found by Ferrari 

et al. (2014) and was suggested that fish anxiety after surgery could lead to higher activity under 

stress conditions (Bégout-Anras et al. 1998). In both, the Ferrari et al. (2014) study and our study, 

effects did not extend until the end of the trial suggesting lack of permanent effects and successful 

fish recovery.  

 

As an unexpected result, our study observed higher loss rate of RFID microtags on dummy-tagged 

fish than for controls. This result can be explained by the fact that dummy-tagged fish had a nearby 

0.7 – 0.8 cm opening, closed by 2 stiches, which facilitated the exit of the RFID microtag. Although, it 

was considered that both implantation sites were distant enough from each other. In addition, RFID 

microtag loss was also influenced by surgeon. In this study, the tagging procedure was done by three 
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surgeons with different expertise level suggesting that the implantation of the tags and wound 

closure were not always optimal. Surgeon performance, have been reported before as an significant 

factor on suture and tag retention (Deters et al. 2010) and important enough to be assessed on data 

analysis (Wagner and Cooke 2005). The RFID microtags loss of dummy-tag fish in this study was 

higher compared with loss rates in other studies while controls rates for two of the surgeons were 

similar. Expulsion rates of 11–28% have been observed in zebrafish (Danio rerio) of 1.6–4.2 cm and 

seabass (Dicentrarchus labrax) juveniles of 3.1–4.1 cm (Cousin et al. 2012; Ferrari et al. 2014). These 

two surgeons have probably inserted the RFID microtag deeper under the skin explaining the 

comparable loss rate between control fish and the literature. Also, justifying the higher loss rate they 

had on the dummy-tagged fish. The third surgeon, on the contrary, have probably placed the RFID 

microtag too superficially or very close to the insertion point which explains a higher loss rate for the 

control than for the dummy-tagged fish compared to the two other surgeons. The RFID micro-tagging 

of sturgeons of the size tested in this study is not recommended at the same time as an 

intraperitoneally tagging because the rate loss is high during the first 15 days after tagging. Although 

the rate loss diminishes after, the use of a smaller needle gauge or surgical glue to seal the insertion 

site could result in improved retention.   

 

Conclusions 

The high dummy-tag retention and negligible mortality obtained in this experiment suggest that 

intraperitoneal acoustic tagging is adequate and can be applied successfully to sturgeon juveniles 

ranging between 14–18.9 cm TL and 10.7–22.1 g. However, the influence of initial weight on growth 

within the first 15 days should be considered. RFID microtags can be successfully applied for this 

species but the procedure can be improved and it is not recommended at the same time as 

intraperitoneal surgical tagging.  
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Supplementary information 

 

Figure 1. Swimming behavior analysis on 3 month old Siberian sturgeon. A) Wilcoxon tests were used 

to compare behavior (distance moved, swimming speed and turn angle), within each fish group, 

(dummy-tagged or not) before and after the stressor was applied. Friedman test were used to 

compare fish groups within each test frame (before and after stressor). B) Wilcoxon test were used 

to compare behavior among all the experiment duration (2, 7, 12, 21, 26 days post-tagging). 
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Foreword 

In the context of this study, the assessed and endorsed tagging method allowed to observe the fish 

in the wild (chapter 3). Therefore, it was possible to evaluate the effects of rearing on the post-

release behavior of young sturgeons. Moreover up to date, there are many gaps in early life history 

of the species while in freshwater and this study will help to acquire knowledge on this phase that is 

essential for population conservation. 

For this last chapter, the juvenile sturgeons produced in the first experiment (chapter 1) were 

tagged and released in the Dordogne River. Fish are stocked since 2007 in the Garonne and 

Dordogne rivers. In total, 23 historical spawning grounds have been described and used as release 

sites for stocking. The Dordogne River release site was chosen, relatively upstream in the river, to 

assess the freshwater section as a first step in the monitoring. Despite the fact that following up the 

fish in both rivers would have been relevant, the material used is extremely costly and only allowed 

to survey one river. We choose the Dordogne River because we had some previous experiments in 

this area and then a good knowledge of this area. Lack of knowledge in freshwater offers a large 

possibility of specific study and, as a first step general movement’s patterns according to diel were 

assessed. 
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4.1. Abstract  

Stocking is an important tool for conservation that is gaining relevance as biodiversity continue to 

decline. The European sturgeon (Acipenser sturio) is a critically endangered species subject to a 

stocking program in which a better understanding of its natural life history and stocking achievement 

is crucial for population conservation. In this study, acoustic assessment on post-release behavior of 

3-month old fish was carried out for the first time on a sturgeon species. We aimed to improve the 

knowledge of movement, distribution and survival of the species’ early juveniles stocking. Fish 

belonging to two different crossings were reared in enriched and traditional hatchery conditions, 

tagged and monitored for 21 days in the Dordogne River, France. Fish overall survival estimate was 

69.3% (52.2−90.9); the lowest survival was found for one crossing reared under traditional 

conditions. After release, most movements (85.7%) occurred during the first three days after 

stocking and were oriented in a downstream direction. During the whole study, 82% of the fish were 

detected within 13.5km from the release site. Three enriched-reared fish reached the tidal 

freshwater area (26 to 32 km downstream from the release site) but no one reached the saline zone 

of the estuary. Fish were mainly active during night hours, but traditional-reared fish were 

significantly more active during the day than enriched-reared fish during the first three days. 

Nevertheless, no differences in mean total distance covered (7.5 ± 7.0km) were found between 

treatments. The study highlights the importance of post-release monitoring and early life rearing 

conditions on stocking programs for species conservation. 

 

Keywords: Acoustic telemetry, stocking, behavior, sturgeon, rearing condition. 

 

4.2. Introduction   

The world’s biological biodiversity is on decline and the most impacted habitats are those in 

freshwater (Dudgeon et al., 2006). To mitigate diversity loss a wide range of actions have been taken 

worldwide; fish species benefit from specific conservation measures such as habitat protection and 

restoration, fishing regulations and specific targeted stocking practices (Waldman and Wirgin 1998; 

Arlati and Poliakova 2009; Williot et al., 2009). Stocking is considered an important tool for 

conservation that is gaining relevance as biodiversity continue to decline (Reading et al., 2013). In 

stocking, the released individuals are often captive-born. This highlights the importance that 

aquaculture has on species conservation as survival in early stages can be significantly increased 

compared to those in the wild (Secor et al., 2002). However, there are major concerns regarding the 

quality of fish as a consequence of selective reproduction (Campton 1995; Zhu et al., 2002; Yokota et 

al., 2003; Susnik et al., 2004; Jager 2005) and early life experiences in artificial environments 
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(Braithwaite and Salvanes 2005; Salvanes and Braithwaite 2006; Johnsson et al., 2014) that may not 

produce well-suited fish to face life in the wild. Some studies (Braithwaite and Salvanes 2005; 

Johnsson et al., 2014) have suggested that enriched conditions, increasing habitat complexity could 

be considered as a “training” approach that would ease adjustment and increase survival after 

stocking. The European sturgeon (Acipenser sturio) is a critically endangered species (IUCN 2015) 

subjected to a stocking conservation program. All but one of this species populations have been 

extinct during the last century (Lassalle et al., 2011). This has resulted in scarce retrospective 

information available on traits of their natural life history that are indispensable for their population 

conservation (Acolas et al., 2011b). In this case, monitoring stocked populations is the only mean to 

obtain such data while the stocking programs progresses (Nichols and Armstrong 2012; Gitzen et al., 

2016). The European sturgeon is an anadromous species; it reproduces in rivers and juveniles 

migrate to estuaries in the first year of life. They remain and grow in estuaries for several years until 

they migrate to sea before returning to the river to breed (Castelnaud et al., 1991; Acolas et al., 

2011a). Most of the current knowledge on the species concerns their estuarine life phase (Rochard et 

al., 2001; Brosse 2003) but the species freshwater ecology during the first year of life is poorly known 

(Acolas et al., 2011b). Telemetry techniques are one of the most common and reliable approaches to 

obtain such data through an individual based analysis of movements (Lucas and Baras 2000; Cooke et 

al., 2004; Bégout et al., 2016). However, up to now, this technique has been restricted to large 

juveniles and adults (Kynard et al., 1995; Bramblett and White 2001; Lepage et al., 2005; Neufeld and 

Rust 2009; Sulak et al., 2009) and due to transmitter design the smallest sturgeon acoustically 

tracked in the wild was 9-month old Acipenser sturio (Acolas et al., 2012). Nevertheless, a recent 

telemetry system (Juvenile Salmon Acoustic Telemetry System, Lotek) initially developed to 

acoustically track young salmonids (McMichael et al., 2010), allowed the use of miniature tags for 3-

month old sturgeons (Carrera-García et al., 2017). In our study, post-release behavior assessment, on 

such small individuals, was carried out for the first time on a sturgeon species. We aim to improve 

the understanding of movement, distribution and survival on the species early juveniles within 

stocking practices.  Therefore, we assessed the effects of two rearing conditions on post-release 

behavior and survival of juveniles belonging to two different crossings. This specific life stage was 

chosen because it is one of the most commonly used stages used for stocking in the Gironde-

Garonne-Dordogne basin, France (MEDDTL 2011). 

 

4.3. Methodology 

Study area: This study was carried out in a 73km section of the Dordogne River, South-West France, 

between September 29 and October 20, 2014 (Figure 1). The river is influenced by the tide which 
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upstream limit is located 162.5km from the sea. In this solely freshwater area, the tide influences 

water depth and flow but not salinity. The fish were released in Le Fleix, a non-tidal river zone, 

known as an historical spawning site (Jego et al., 2002). The section surveyed comprised 27 km in 

non-tidal influence and 46 km under tidal influence. During the study, river flow was 106.2 ± 

19.4m3/s (mean ± SD) (HYDRO 2015). Temperature was recorded 3 times per minute using 

dataloggers (Tinytag) placed in gates 5 and 9 of the studied river section (Figure 1). The registered 

temperature was 17.88°C ± 0.55 (mean ± SD) and similar in both gates (Mann-Whitney, U=992108, 

p=0.05). Additionally, every 30 minutes a multi-parameter water quality probe (YSI 6600 V2), located 

at the release site, monitored oxygen (9.05mg/L ± 0.55), pH (7.73 ± 0.25) and conductivity 

(173.61μS/cm ± 136.75). 

 

Fish origin and rearing: Fish originated from controlled reproduction of a single female with two 

males (C1=crossing male 1, C2=crossing male 2), all wild born spawners from the French captive 

stock (Williot et al., 2005). Fish were reared in captivity from 6 day-post-hatch (dph) until 92 dph (3 

months old) using two rearing methods: enriched and traditional (Carrera-García et al., 2016). 

Traditional rearing was based on the protocol used to raise fish for stocking in the Gironde and 

captive stock supplementation (Chèvre et al., 2011). This method consisted in rearing fish in bare 

tanks with a flow-through system of underground water in darkness with no current. Enriched 

rearing consisted of small mesocosms imitating the natural environment using modified tanks under 

natural photoperiod with a flow-through system of river water, variable water depth, current and 

spatial cues (Carrera-García et al., 2016). Fish in both rearing methods were fed ad libitum with live 

artemia (Artemia salina) since 9 dph for 12 days, a mix of artemia and defrosted bloodworms 

(Chironomus sp.) for 9 more days and then only bloodworms as mentioned in Chèvre et al. (2011).   

 

Fish Tagging: Acoustic transmitters were surgically implanted on 88 fish (Table 1). Tagging was done 

using JSATS L-AMT-1.416 acoustic tags (Lotek; 1.07x0.54x0.31cm, length*width*thickness, 0.28g in 

air, delay rate: 5 seconds). Fish were fasted for 24 hours before surgery and sedation was done using 

clove oil (0.5ml/L of clove oil diluted in 5ml of ethanol per 10L of water). Following anesthesia, fish 

were measured for total length (range 12.0–16.3cm; 14.2cm±0.9) and weighed (6.6–15.1g; 

10.8g±2.0) (Table 1). Transmitters represented 1.9–4.2% of the tagged fish body mass (Table 1). They 

were implanted into the peritoneal cavity using surgical procedure as described in (Carrera-García et 

al., 2017) through a ≈7–8mm incision, slightly left of the ventral midline and anterior to the pelvic 

girdle. Incisions were closed with 2 surgeon knots using absorbable monofilament (Ethicon, PDSTM 

II 4–0). The fish were kept in captivity for 3 additional days for post-surgery recovery. Most fish 
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(n=65) were released on September 29, 2014. The remaining fish (n=23) were released on September 

30. These individuals needed additional stitches because the wound opened (stiches were intact but 

torn in one side of the wound). The proportion of these fish did not differ between treatments (X2 (3) 

=2.91, p=0.40) and did not differ in survival estimation (X2 (1) =0.31, p=0.58) or mobility (MW, 

U=345.5, p=0.65) compared with the fish released the day before. 

 

Table 1: Juvenile European sturgeon (A. sturio) tagged before stocking in the Dordogne River. C1 and 

C2 indicate the fish crossings. Letters indicate, for each line of the table, the comparison between 

treatments: different letters represent significant differences.  

 Traditional rearing Enriched rearing 

Parameters C1 C2 C1 C2 

Individuals tagged and released 23 21 22 22 

Individuals detected in the wild 12 14 20 15 

Recapture rate (%) 52.2 66.7 90.9 68.2 

Weight (g) 9.4 ± 1.4a 10.8 ± 2.0b 11.8 ± 2.0b 11.1 ± 1.6b 

Total length (cm) 13.4 ± 0.7a 14.0 ± 0.8b 14.8 ± 0.8c 14.4 ± 0.6bc 

Tag burden (%) 3.1 ± 0.5a 2.7 ± 0.5b 2.4 ± 0.4b 2.6 ± 0.4b 

 

 

Telemetry survey: Twenty-six receivers (Lotek®, JSATS WHS4000) were placed along the 73km river 

section (Figure 1). Receivers were placed about 0.8m above the river’s bottom in homogenous areas 

to hang the material in a vertical position and to avoid shadow zones in tag detection. Preliminary 

detection tests were performed from a boat 3 weeks in advance of stocking. An activated tag was 

moved gradually away from a receiver. Detections could be obtained at 200m around the receivers 

but satisfactory detection range was considered at 100m (distance at which 79.4% of the theoretic 

transmissions (every 5s) were detected; detections also occurred each 10, 15 and 20s). Based on 

these tests results, each acoustic gate consisted of two receivers arranged according to river width. 

When river width was below 100m, the receivers were located one behind the other in the river 

longitudinal axis; when width was above 100m, receivers were located side by side transversally to 

allow detection range overlapping. River’s mean width, in the studied area, was 150.2m and 

maximum width didn’t exceeded 300m. Additionally, the receivers were checked once every week to 

ensure their correct position and location and cleaned to restraint dragging by biofouling. Data were 

collected once per week on 4 gates to orientate the active tracking (Figure 1). Active tracking was 

done two times per week with a hand-operated receiver from a boat and performed in the river 
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sections where fish were detected by the nearby gates. For each fish detected, its depth and the mid-

column water flow were recorded. Each passive receiver and each fish localized in active tracking 

were geo-localized using a differential GPS (Magellan MobileMapper CX). Fish tracking lasted 21 days 

due to tag battery’s life expectancy.   

 

Data analysis: After verification of parametric test assumptions, fish initial weight, length and tag 

burden were compared between treatments (2 rearing methods x 2 crossings) using a two-way 

analysis of variance (ANOVA). Differences between the number of fish detected and the number of 

fish released for each treatment were expressed as percentage and used as a survival estimate 

because the released conditions and the tracking effort were similar for all treatments (same number 

of fish, same tracking period). X2 test of independence was used to compare this survival estimation 

between treatments. Logistic regressions were used to determine if fish survival could be explained 

by fish weight or tag burden at release for each treatment. To compare the total number of 

detections per fish between treatments, a Kruskal-Wallis test was used.  

To analyze movement data, a database was constructed including both passive (99.8%) and active 

(0.2%) tracking data. Our acoustic data, obtained with the JSATS technology (frequency= 416 KHz), 

contained considerable amount of false detections. Thus, data required post-treatment using a 

receiver interface application (WHS Host, Lotek) and R statistical software (R-Core-Team 2013). 

WHS Host application filtered the detections by known fish identification codes and using R software, 

we selected consecutive detections spaced of 5, 10, 15 or 20s which were considered as “true 

detections” according to the preliminary tests. Then the database consisted of date and time of 

detection associated to a location (either the passive hydrophone’s geographical coordinates or the 

active tracking’s) for each fish. Hydrographical distances between two consecutive locations and 

their orientation (upstream, downstream, lateral, no movement) were estimated using ArcGis 10.2 

(ESRI 2013) and Anaqualand 2.0 (Le Pichon et al., 2006) software as in Acolas et al. (2012) . We 

considered “no movement” to two consecutive locations of the same individual within the detection 

range of one receiver. Also, fish trajectories were smoothed using an estimation of fish swimming 

speed (maximum set at 0.8 m/s) between two consecutives locations as an approach to discern 

overestimated data, which mostly happened on “lateral movements”. It concerned individuals 

detected by the two hydrophones of the same gate, at the same time or within seconds of 

difference, for which the hydrographical calculations estimated distances as if the fish was going 

from one hydrophone location to the other. In this case, the “lateral movement” identified was 

considered as “no movement”. The speed threshold was calculated using the maximum speed that a 

three-month-old sturgeon (14.3 cm, average size in this study) can sustain according to a preliminary 
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current speed test (Jatteau 2014, pers. comm) and the average current’s velocity estimated during 

the study (0.09 m/s). Day, night and twilight time were determined weekly using a sunlight phase 

web application (SunCalc, Agafonkin 2009) using the study date and location. Sunrise and sunset 

together were considered as twilight (i.e. 6h22−8h02 and 19h40−21h21, respec~vely). Movement 

data were analyzed according to two time scales: during the whole study (n=21 days) and during the 

three first days and remaining days separately. At each period, Scheirer-Ray-Hare and Mann-Whitney 

tests were used to compare total distance covered (i.e. the sum of the distances between 

consecutive locations for each fish) between treatments and within each diel cycle. Spearman 

correlation was used to test fish total distance moved and fish length for the whole study. Statistical 

analyses were performed using IBM SPSS statistics software (2013), p-values<0.05 were considered 

significant. 

 

Figure 1: Study area in the Dordogne River, Southwest of France. The star shows the stocking 

location of 3-month-old sturgeons. Circles represent acoustic gates, each consisting in two receivers. 

  

4.4. Results  

Fish initial condition: Fish initial weight at tagging was significantly different between treatments 

(method, F(1,84)=13.5, p<0.01; cross, F(1, 84)=0.89, p=0.34; method*cross, F(1,84)=7.78, p<0.01) and 

similar results were found for initial total length (method, F(1,84)=32.4, p<0.01; cross, F(1,84)=0.54, 

p=0.46; method*cross, F(1,84)=10.7, p<0.01) and tag burden (method, F(1,84)=14.98, p<0.01; cross, 

F(1, 84)=1.62, p=0.20; method*cross, F(1,84)=7.05, p<0.01) (Table 1). Further inspection revealed 

that fish belonging to crossing C1, reared in traditional environment, were the smallest of all groups 

in weight (enriched, F(1,42)=1.63, p=0.20; traditional, F(1,42)=7.27, p=0.01), length (enriched, 

F(1,42)=3.32, p=0.08; traditional, F(1,42)=7.80, p<0.01) and had the highest tag burden (enriched, 

F(1,42)=1.33, p=0.25; traditional, F(1,42)=7.19, p=0.01) (Figure 2).  
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Survival estimates: Fish overall survival estimate (number of fish detected) was 69.3% (n=61) and it 

was significantly different between treatments (X2=8.08, p=0.04). No differences were highlighted 

between the enriched-reared crossings (C1=90.9%, C2=68.2%) and traditional-reared C2 (66.7%) 

(X2=4.33, p=0.11) but the traditional-reared C1 treatment had significantly lower survival than the 

other treatments (52.2%) (X2=8.21, p<0.01) (Table 1). Survival probability was not explained by initial 

weight (logit reg., p>0.08), length (logit reg., p>0.10) or tag burden (logit reg., p>0.09) for any of the 

treatments.   

 

General distribution patterns: The total number of detections per fish were highly variable; they 

ranged from 2 to 25878 (473.3±838.4) detections and no differences between treatments were 

noticed (KW, H(2)=3.03, p=0.39). During the whole study, 82% of the fish (n=50; enriched: C1=14, 

C2=14; traditional: C1=12, C2=10) were detected within the first 13.5km (from the release site to half 

way beyond acoustic gate 3) and no differences in proportions of fish between treatments were 

found (x2=6.94, p=0.07). Moreover, among these fish, 30% (n=15; enriched: C1=4, C2=2; traditional: 

C1=5, C2=4) settled within 1.2km downstream of the release site. From the remaining individuals, 

13.1% (n=8; enriched: C1=2, C2=2; traditional: C2=4) moved downstream into the 13.5–26.5km river 

section (half way beyond acoustic gate 5) and only 4.9% (n=3; enriched C1=3) moved more than 

26.5km, into the freshwater tidal area, but not beyond 32km (half way before gate 7). The 3 fish 

recorded in the freshwater tidal area were registered there 3 days after release. Most of the fish 

movement was oriented downstream (n=60, 7.88 ± 7.02km) with few lateral (n=4, 0.05 ± 0.02km) 

and upstream incursions (n=12, 0.58 ± 0.88km); only one individual (enriched C1) was detected 

upstream the stocking site one day after release. During active tracking alone, 35 fish were detected 

and 2 of them could not be located because of rapid signal attenuation. All the remaining fish (n=33) 

were found in areas of 3.3 ± 1.2m in depth and 0.09±0.09m/s of current velocity.  

 

Movement characterization 

Whole study: During the whole study period, fish total distance covered did not differ between 

treatments (Scheirer-Ray-Hare, method, p=0.87; cross, p=0.58, method*cross, p=0.17; distance 

covered = 7.5 ± 7.0km). Within each diel cycle, no difference in total distance covered between 

treatments were found in diurnal (Scheirer-Ray-Hare, method, p=0.06; cross, p=0.25, method*cross, 

p=0.67) or nocturnal movements (method, F(1,26)=0.44, p=0.51; cross, F(1,26)=0.16, p=0.70; 

method*cross, F(1,26)=0.94, p=0.34). As very few fish were detected during twilight (enriched, n=11; 

traditional, n=8), data were only compared by rearing method and no differences were found (MW, 
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U=38, p=0.66). However, for all fish the distance covered was significantly different along the diel 

cycle (night vs day, MW, U=282, p<0.01; night vs twilight, MW, U=112, p<0.01; day vs twilight, MW, 

U=365, p=0.02); considerably higher during night hours than during day and twilight (Figure 3). 

Overall fish movements also revealed that bigger fish travel longer distances for both enriched-

reared treatments (Spearman, C1, r=0.57, p<0.01; C2, r=0.66, p<0.01), but this relationship was not 

found for the fish reared using the traditional method (Spearman, C1, r=-0.03, p=0.94; C2, r=0.29, 

p=0.33) (Figure 4). According to the individual trajectory analysis (Figure 5), fish were moving mainly 

during the three first days after stocking, i.e. 85.7% of the whole distance covered on average, and 

they seemed to settle after those three first days as few movements were recorded later on. 

 

 

Three first days and the remaining days separately: During the 3-day period after release, fish of the 

different treatments didn’t differ in the total distance moved (Scheirer-Ray-Hare, method, p=0.54; 

cross, p=0.45, method*cross, p=0.12). However, during the day, enriched-reared fish were less active 

than traditional-reared fish as well as fish belonging to crossing C1 compared to those belonging to 

C2 (Scheirer-Ray-Hare, method, p<0.01; cross, p=0.01, method*cross, p=0.62) (Figure 6). Movements 

during night were not different between treatments (Scheirer-Ray-Hare, method, p=0.82; cross, 

p=0.74, method*cross, p=0.66; distance covered = 7.9 ± 5.2km) and at twilight, movements were 

scarce and concerned few fish (enriched, n=11; traditional, n=8) where no differences were found 

between rearing methods (MW, U=38, p=0.66; distance covered = 4 ± 2.2km). When comparing 

distances achieved during the remaining days after stocking, we didn’t found any differences 

between fish treatments in total distance moved during this period (Scheirer-Ray-Hare, method, 

p=0.79; cross, p=0.72, method*cross, p=0.74), during day (Scheirer-Ray-Hare, method, p=0.89; cross, 

p=1.00, method*cross, p=0.59) and analyses on night and twilight movements were not done due to 

insufficient data. 
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Figure 2: Weight at tagging for 3-month-old sturgeons belonging to two crossings and reared in 

enriched and traditional environments. Different letters indicate significant differences.  

 

 

Figure 3: Total distance covered for 3-month-old sturgeons stocked in the wild according to the 

moment of the day during the whole study period (21 days). Asterisks represent extreme values and 

different letters indicate significant differences. 
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Figure 4: Total distance covered (21 days) according to fish length for 3-month-old sturgeons, 

originated from two rearing methods and crossings, stocked in the wild. 
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Figure 5: Individual movement’s trajectories of 3-month-old sturgeons belonging to two crossings (C1 

& C2) and reared in two different environments (traditional and enriched). Fish were acoustically-

tagged, stocked in Dordogne River and tracked during 21 days. In each panel Y axis represents the 

cumulative distance from the release site, X axis represents tracked days (date) and each color 

corresponds to one individual. 
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Figure 6:  Box plot of total distance covered by 3-month-old sturgeons during the day for the first 3 

days after release. Fish belong to two crossings (C1 & C2) and were reared in two different 

environments (traditional and enriched). Enriched-reared fish were less active than traditional-

reared fish as well as fish belonging to crossing C1 compared to those belonging to C2.  

 

4.5. Discussion 

For European sturgeon, the last natural reproductions registered in the Gironde to have happened in 

1988 and 1994 (Lochet et al., 2004). Therefore, young of the year (YOY) individuals are currently 

inexistent in the watershed. Fish in this study represent the youngest European sturgeon (3-months 

old) ever tracked and thus, our study revealed for the first time distribution and activity patterns in 

this age class. Even more, up to date, fish in this study are the smallest sturgeons (12.0–16.3cm TL) 

tagged and monitored in the wild. These results are important at providing basic knowledge of post-

stocking behavior in freshwater. One particularity of our study was to take into account the rearing 

practices to explain fish fate and thus the results can help in designing stocking programs.  

 

The technology used allows tagging very small individuals but low frequencies signals used in these 

tags experience more distortion than higher frequencies and have transmissions limitations 

associated with underwater noises and habitat characteristics (Bégout et al., 2016) that result in high 

proportion of false detections. Nevertheless, filters settings reduce significantly the amount of errant 

detections. We have obtained 4−9 fold more false posi~ves on receivers that were setup to work 

without filter. Thus, the data required substantial cleaning even after using the brand’s associated 

software. Active tracking with the technology used was not as efficient as passive tracking, it was 

very time consuming as some fish were difficult to locate due to prevalent signal attenuation. There 



106 

 

are several factors in aquatic environments that can imperil the range of acoustic signals (Ireland and 

Kanwisher 2012) but we were not able to point out what could have produce it. Due to the telemetry 

arrangement design chosen (coupled receivers with overlapped detection range), we were not able 

to assess fish lateral movements. The lateral movements corresponded mainly to detections on both 

hydrophones of the same gate and we have removed them to avoid overestimating movements. This 

probably have leads to underestimate the total distance covered per fish. Nevertheless, this does not 

affect the aims of the study which intended to explore general patterns of fish movement and fish 

survival after stocking.  

 

In this study, data were obtained from 69.3% of the fish released and it has been used as a 

estimation of survival as all fish were stocked and monitored during the same period of time (Heisey 

and Fuller 1985; Acolas et al., 2012). We considered that the fish overall survival in this study (69.3%) 

is acceptable when compared with other studies on YOY hatchery-reared sturgeons: 40% (Crossman 

et al., 2009) and 5-15% (Crossman et al., 2011) in lake sturgeon (A. fulvescens) released at 6 and 2−4 

months old respectively, 87% in European sturgeon released at the age of 9-12 months (Acolas et al., 

2012). Nevertheless, monitoring duration and fish age vary among those studies and an accurate 

comparison is not possible. Of the 88 fish released, 27 were never detected and one was found 

upstream which is suspicious considering the swimming capacity of such small individuals. Although, 

tag malfunction could not be discarded for the fish never detected, it is probable that predation was 

the main reason of fish disappearance or rapid upstream move as cormorants and herons are 

commonly present along the river bank as well as big fish such as the European catfish (Silurus 

glanis). Many authors have confirmed predation as the main reason of mortality of stocked fish after 

release; 27% in largemouth bass (Buckmeier et al., 2005), 46% in Florida bass (Thompson et al., 

2016), 65% in sea trout (Dieperink et al., 2001).   

In our study, survival of both crossings under enriched rearing (90.9% & 68.2%) and traditional C2 

(66.7%) had better survival when compared with traditional C1 (52.2%). Fish size is also an important 

factor influencing predation −smaller fish are more at risk than bigger ones (Dieperink et al., 2001; 

Juanes et al., 2002) and traditional-reared C1 fish were the smallest with the lowest survival of all 

treatments. However, we demonstrated in our study that fish size was not linked to the survival and 

there is the possibility that low survival in this treatment is better explained by rearing conditions 

(Carrera-García et al., 2016). These results  would be congruent with studies done on YOY lake 

sturgeon where 3-month old fish had lower recapture rates when reared traditionally than under 

more enriched conditions (approx. 2−4 fold higher) (Crossman et al., 2011). Nevertheless, there were 

no differences due to rearing for 4 and 6-month old fish suggesting that the influence of rearing 
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decreases with fish age (Crossman et al., 2009; Crossman et al., 2011). Besides this, there are other 

studies where improved post-release survival has been obtained using environmental enrichment 

during rearing; 1.9 higher in common snook (Centropomus undecimalis) (Brennan et al., 2006), 6.4% 

and 19% higher in Atlantic salmon (Salmo salar) (Hyvärinen et al., 2013; Roberts et al., 2014). The 

enriched approaches of rearing would allow the fish to develop morphological, behavioral and 

cognitive traits that are necessary to respond adequately to wild environments which in 

consequence will increase survival (Braithwaite and Salvanes 2005; Kotrschal and Taborsky 2010; 

Roberts et al., 2014).  

 

The fish of this study had preferendum for areas of 3.3m mean depth (1.4−6.2m) and 0.09m/s mean 

water current (0.004−0.4m/s). Previous records on 5-month old European sturgeon confirm their 

preference for low velocity areas (<0.25 m/s) and report also preferences for fine substrate in the 

wild (Acolas et al., 2009) as in controlled conditions (Charles et al., 2009). Fredrich et al., (2008) 

reported that 9-month old Atlantic sturgeon’s were mainly located in zones of 3−5m depth in the 

Drawa River.  

 

Our study revealed that YOY European sturgeons are mainly nocturnal while in riverine systems: they 

move downstream during night hours. This is congruent with a previous study in this species under 

controlled conditions (Charles et al., 2009), and with observations on the closely related Atlantic (A. 

oxyrinchus) (Fredrich et al., 2008) and Gulf of Mexico (A.oxyrinchus desotoi) (Kynard and Parker 2004) 

sturgeons, as well as for other less related acipenserids (Benson et al., 2005; Kynard et al., 2005). 

Increase activity in most species of the group could be considered as an evolutionary response to 

predation while in freshwater habitats (Wishingrad et al., 2015). It’s possible this is so as clear water 

in the river could ease their exposure to predators during the day, while the nocturnal behavior is 

less important in the estuary where the channel is deeper and the water is turbid. Acolas et al., 

(2012) found no differential diel movements on 10-month-old European sturgeon in tidal area and 

once the saline estuary is reached. 

 

We also observed that European sturgeon’s orientation was mostly downstream. Such patterns, 

mainly downstream migration with occasional upstream movements, are also reported on YOY 

Atlantic sturgeon (Kynard and Horgan 2002; Fredrich et al., 2008; Kapusta et al., 2011). During the 

whole study, 82% of the fish didn’t move more than 13.5km downstream from the release site. Also, 

most movements occurred during the three days after release after which, the fish apparently 

settled. It could be suggested that right after release, fish move to suitable areas and then at some 
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point they will start migrating again. An experimental study done by Kynard and Horgan (2002) on 

Atlantic sturgeons pointed out that free embryos hide, then, start migrating at 8 days post hatch 

(dph) and cease migration at 19 dph. Later on, fish were reported to swim actively but never resume 

migration while under observation –approx. 4 months. This could suggest that after release, young 

European sturgeon reach favorable patches, stay in them and later on continue going downstream. 

This behavior has also been reported on 10-month old Atlantic sturgeon (Fredrich et al., 2008) and 

European sturgeon (Acolas et al., 2012).  

 

By the end of our study, fish aged 4 months, 95.1% of them settled in freshwater and only 4.9% 

reached the tide influence zone; no fish reached the oligohaline zone of the estuary. Development of 

salinity tolerance has not been studied in YOY European sturgeon. Nevertheless, all anadromous 

sturgeon species need to develop such tolerance (Altinok et al., 1998; Bain et al., 2000; Kynard and 

Horgan 2002; Allen et al., 2011) which, is age dependent (Magnin 1962; Altinok et al., 1998) and as 

far it is known, occurs at the age of 9−12 months at the earliest (Kynard et al., 2005). Hatin et al., 

(2007) pointed out that habitat use in Atlantic sturgeon juveniles is controlled by salinity and 

distance to the salt wedge where YOY use freshwater zones only. Furthermore, from previous 

telemetry studies, we know that 10-month-old stocked European sturgeons reach the saline estuary 

soon after release (Acolas et al., 2012). Thus, we can infer that the downstream migration towards 

saline waters occurs at the age of 4 and 10 months for stocked European sturgeons.  

 

Our study revealed behavioral differences related to fish crossing and rearing methodology for the 

first days after release. Traditional-reared fish were more active during the day than enriched-reared 

fish. As the former fish were maintained under complete darkness, their circadian clock probably 

didn’t match the outdoors light−dark cycles. In the long run, fish reared under traditional rearing 

would acquire a diel rhythm because the environment induce rhythms’ synchronization (Reebs 2002; 

Zhdanova and Reebs 2006). But, it takes some time for the adjustment to happen and, during 

entrainment, those fish may be more at risk to predators than the enriched-reared fish, affecting 

survival during the first days of release. For example, these fish could have been more exposed to 

cormorants (Phalacrocorax carbo), which are diurnal and feed mainly on fish within the size range of 

those of this study (Kirby et al., 1996). Even more, Carrera-García et al., (2016) highlighted that 

traditional-reared fish were light-colored compared with enriched-reared fish. Fairchild and Howell 

(2004) demonstrated that unnatural light-color and abnormal behavior of hatchery-flounders made 

them more conspicuous to predators, explaining flounder’s low survival after stocking.  
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In our study the total distance covered was not significantly different according to fish origin; 

however the only fish reaching the tidal area were reared under enriched conditions. We may 

suggest that being reared under water current conditions (Carrera-García et al., 2016) may have 

helped them to cope with current variability in the wild and thus, travel further. Moreover, a 

correlation between fish size and distance covered was found only on enriched-reared fish. This 

could be explained also by the same fact; enriched-reared fish had better swimming performance 

which is often positively correlated with size (Wardle 1977). On the other hand, traditional-reared 

fish were not trained to cope with water current and whatever their size, their swimming capacity 

was similar at release. 

 

Conclusions 

Our results expose the first behavioral data for such young European sturgeon in the wild which 

improve knowledge on early life histories of a sturgeon species. We consider that rearing conditions 

for fish early stages is an aspect that should be contemplated in stocking for conservation programs. 

Our results highlight the importance of rearing effects and post-release monitoring for identifying 

factors that could be undermining the stocking success to guide decisions to mitigate them. 
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5.1. Summary results 

In this study, during the controlled experiment in the hatchery (chapter 2), we obtained high fish 

survival in both rearing environments (>83.8%) and enriched-reared fish were affected negatively by 

high temperatures during the second month of rearing. Results showed that enriched rearing 

conditions influence positively fitness related traits of fish such as size and behavior. Fish size was 

determined by fish crossing and their rearing environment. Enriched-reared fish of both crossings 

resulted in bigger final size (weight and length) than the traditional-reared fish. Considering 

ontogenic age, both crossings in enriched conditions and one of those reared traditionally (C2) had 

similar growth performance while the remaining traditional-reared crossing was considerably smaller 

(C1). In addition, empirical observations on pigmentation showed that enriched-reared were dark 

colored while traditional-reared fish were pale. Fish from different rearing conditions also differed 

behaviorally. Enriched-reared fish had more pronounced exploratory behavior than traditional-

reared fish but they took longer to initiate such behavior than fish reared traditionally. On the other 

hand, fish didn’t react differently when exposed to a novel prey, probably because the feeding 

method was the same in both rearing practices. 

The acoustic dummy-tagging assessment (chapter 3) revealed that intraperitoneal acoustic tagging is 

adequate and can be applied successfully to 3-month old sturgeons. In this study, fish survival (98%) 

was not affected by the dummy-tagging procedure and in dummy-tagged fish, RFID microtags loss 

was related to the surgeon that performed the procedure. The study showed that most fish healed 

well, that growth of dummy-tagged and control were alike by the end of the study and that 

swimming behavior of dummy-tagged fish were more reactive between 12 and 21 days after surgery 

after a stressor was applied. 

Up to date, fish in this study are the smallest sturgeons acoustically tagged and monitored in the wild 

(chapter 4). Once stocked, fish overall survival estimate was 69.3% where both crossings under 

enriched rearing and traditional C2 had better survival than traditional C1. The study confirmed that 

YOY European sturgeons are mainly nocturnal while in the river and move mainly downstream. After 

release, most fish remained within 13.5km downstream from the release site and most of the 

movements occurred during the first three days after release. None of them reached the saline 

estuary. Behavioral differences related to fish crossing and rearing methodology were also found; 

traditional-reared fish were more active during the day than enriched-reared fish during the three 

first days after release. Total distance covered was similar in all treatments but distance covered was 

related to fish size only for enriched-reared fish. The tidal area was reached by very few individuals, 

all of them enriched-reared fish. 
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5.2. Discussion 

Why is this project original and what are its contributions?  

Individuals in this study were assessed in controlled conditions and also in the wild, giving this work a 

very integrated approach which is uncommon. Also, this fish represent the youngest European 

sturgeon (3-months old) ever tracked in the wild and thus, revealed for the first time the diel cycle 

activity, river distribution and post stocking movements of this age class. Basic knowledge on life 

history is important because it is based on the most fundamental components of life and fitness: 

survival and reproduction (Hutchings 2002). Thus, life histories traits determine individual’s fitness, 

population persistence and growth rate at low abundance (Hutchings 2002). This highlights the vital 

role it has in population management and conservation of fish. Moreover, the study has taken into 

account rearing practices within the stocking context which can help designing and improving 

conservation programs. Furthermore, it is also important to study rearing practices as it has 

consequences on fish quality. Nowadays, it is recognized that enriched rearing has an important role 

in ex situ actions because this approach helps to preserve behavioral diversity in captive populations 

and ensures behaviorally viable populations (Shepherdson 1994). In consequence, it could contribute 

to stocking programs’ success through the production of fish with the skills to live and adapt to the 

new environment that consequently will be able to survive and reproduce. Therefore, this study 

states the importance and effects of rearing conditions in fish supporting that the European sturgeon 

stocking program can improve the quality of the fish produced to ameliorate post-release survival 

and have a better understanding of the species.  

 

Is the enriched practice tested the best choice? 

The enriched rearing as practiced in this study was done in modified tanks which fulfilled the 

experiment’s needs during this work i.e providing a contrasted environment compared to traditional 

rearing. These tanks were deep and big enough to be able to use different water depths and arrange 

water current. Nevertheless, they presented some drawbacks: first, the tanks were difficult to clean 

because they were too deep and due to substrate presence. Second, probably fish were excessively 

handled due to the choice of modifying the tank’s landscape every week. Using these modified tanks 

without landscape will probably make things easier from a manipulation point of view. However, 

spatial cues are indispensable for behavioral and cognitive skills improvement on the fish (Salvanes 

and Braithwaite 2005; Salvanes et al., 2013). What could be reconsidered is how often the landscape 

was changed. Less recurrent adjustment will decreased fish manipulation and still achieve the 

positive effects that spatial cues could generate. Finally these modified tanks on the long term are 

probably not the best suited for implementing a new rearing method in the program which needs 
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large scale structures. Therefore, other reservoirs should be tested. Currently, at the Irstea 

experimentation station two artificial rivers were implemented, each equipped with a propeller to 

create water current (Photo 11). These infrastructures could harbor bigger fish quantities, provide 

them with even more naturalistic rearing conditions without handling the fish and with less daily 

handwork required. Indeed, during this study, two of them were setup with substrates and ready to 

be used but left untested because of failed reproduction on 2015−2016. Yet, it is worth pointing out 

that in these bigger reservoirs equipped with substrate, capturing the fish would be harder and more 

time consuming than in the tanks and predator control has also to be refined. Many fish species have 

been studied in enriched rearing environments for conservation and reported positive results e.g. 

salmon (Brown et al., 2003; Roberts et al., 2011; Hyvärinen et al., 2013), rainbow trout 

(Oncorhynchus mykiss) (Maynard et al., 2004; Berejikian 2005; Bergendahl et al., 2016), Coho salmon 

(Oncorhynchus kisutch) (Maynard et al., 2004), cod (Braithwaite and Salvanes 2005; Salvanes and 

Braithwaite 2005), June sucker (Chasmistes liorus) (Rasmussen et al., 2009), striped knifejaw 

(Oplegnathus fasciatus) (Makino et al., 2015). In previous studies in sturgeons (Crossman et al., 2011; 

Boucher et al., 2014; Du et al., 2014), the authors have chosen to work with few variables. Surely, fish 

quality can be improved when particular variables are used to enrich the rearing conditions but it 

does not mean that it is optimal. For example, water current as used by Du et al., (2014) make the 

fish physically more fit and probably in the wild they are able to cope with river current variability. 

Nevertheless, if the fish behavior is not adequate then probably it would not be able to survive long. 

The opposite situation would be also possible; a fish could be behaviorally competent but its physical 

condition could put it in disadvantage once released. Certainly, considering many parameters 

simultaneously as used in this study does not allow understanding how each variable affect fish. 

However making the rearing conditions as similar as possible to those found in the wild will assure to 

optimize the physical and behavioral quality of the fish. Furthermore, the variables themselves affect 

fish quality but surely, it cannot be denied that synergistic effects are possible as found by Boucher et 

al., (2014) and this subject is poorly understood.   

Also, an aspect to highlight is that variables to use for enrichment could be chosen accordingly to the 

species needs.  For example, water currents would be of much importance for riverine fish than for 

lacustrine species. In the case of migratory fish, for which most species undergo the imprinting 

process, using water of the natal river would be a meaningful variable to consider–if imprinting 

occurs during captivity.  In the case of European sturgeon, the timing of imprinting is unknown. In 

this work, the fish were stocked in the Dordogne River and the water used came from one of its 

tributaries –l’Isle River. However, the program also releases fish in the Garonne River and obtaining 

water from there to use in recirculated systems is costly or moving a hatchery to the Garonne 
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surroundings, certainly is not realistic. In this case, the available running water options i.e I’Isle or 

underground sources, for rearing the fish constitute local constraints.  

 

 

Photo 11: One of two artificial rivers prepared (left) for rearing juveniles of A. sturio using sand, 

gravel and cobble as substrate. The rivers were left untested due to failed reproduction on 

2015−2016 (©Gentil A, Irstea). 

 

Are the traditional-reared fish maladapted?  

In this study, the results showed that rearing environment has effects on fish fitness-related traits. 

Specifically, it’s noted physical and behavioral improvements in fish reared under an enriched rearing 

approach. All this suggest that enriched-reared fish are more suitable to face life in the wild. 

Nevertheless, it is not possible to state that these fish will indeed survive long enough to join the 

natural population, reach adulthood and reproduce. It is still poorly understood how long hatchery 

effects may last once in the wild (Svåsand et al., 1998). With the methodology used in this work it 

would not be possible to identify the individuals used in the future. However, our results do not 

suggest that traditional-reared fish could not adjust and succeed in the same environment, at least 

B A 
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not for this program. The lack of differences in certain features studied as overall survival in the 

hatchery, similar survival in the wild for 3 of the 4 fish treatments, alike general movement patterns 

in the wild could be linked to the fact that the fish belonging to the first generation descendants of 

wild-born fish are still adapted to the natural environment. It has been stated that adaptation to 

captive environment can be minimized by reducing the numbers of generations that the species 

spend in captivity (Price 2002; Williams and Hoffman 2009). Thus, these results are encouraging 

considering the amount of first-generation fish stocked since 2007. Although, this is something to 

take into account in the future, as the program’s wild stock (wild–born spawners) is reducing and the 

first-generation captive individuals increasing, suggesting that the program will eventually start 

stocking with second generation fish in the near future.    

 

Can the program be improved towards conservation aquaculture?  

Conservation aquaculture is nothing more than the use of aquaculture for conservation and recovery 

of endangered species which goal is to preserve and work adaptively with the local gene pool, 

provide diversity to the target populations and avoid domestication effects to protect characteristic 

phenotypes and behaviors (Anders 1998).  It doesn’t imply any particular hatchery techniques to do 

so. Nevertheless, the standard hatchery practices cannot satisfy these goals and thus, conservation 

aquaculture practices need to create and adapt its rearing techniques to match these goals. Based on 

that, the European sturgeon conservation program currently does what is on hand to work with the 

local gene pool and maintain its genetic diversity. However, to advance towards conservation 

aquaculture, improvements are still to be done on augmentation of fish morphological, behavioral 

and cognitive characteristics that could be lost in the standard hatchery environment. Currently, 

implementation of enriched rearing would be the way to achieve so. 

 

5.3. Recommendations and perspectives 

Main priorities 

Conservation program’s key to success is constantly seeking ways to improve and adapt it. In this 

work, there were several aspects that were not assessed but that would be important to take into 

account in the future to improve the current releases. For example, in this study, enriched rearing 

was done considering many parameters simultaneously. Certainly this approach does not allow 

understanding how each variable affect fish and it’s relevant not to dismiss the importance to 

understand them separately. So, I would suggest studying fish performance using these variables 

independently. Initially, in this study it was planned to assess the influence of water source and 

natural photoperiod. However, failed reproduction on 2015−2016 left the system ready to be used 
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but untested. Furthermore, as there are studies that show that type of rearing can affect fish 

morphology (Berejikian 2005; Pulcini et al., 2014), it was also planned to rear the fish in the artificial 

rivers and make a morphometric study to compare the fish of both (enriched and traditional) rearing 

methods. In the same case as before, it wasn’t possible due to lack of biological material to test. 

Based on this, it is recommended to follow up with these plans to provide a better understanding of 

rearing effects on fish quality.  

Also carrying out further post-release monitoring would be relevant. In my study, it was possible to 

monitor fish acoustically for only 21 days. Nevertheless, marking the fish externally (e.g. branding) in 

addition to acoustic tagging, may allow having further information about their survival during the 

habitual estuary monitoring to understand better rearing conditions effects in the wild. Even more, 

this study was done in the Dordogne River but in this restoration program, fish are also stocked in 

the Garonne River. So, it’s also proposed to run similar studies in this river. Late last year, Lu et al., 

(2016) launched a new acoustic tag that lasts 98−365 days. It could be used on young fish but since 

the tag is 2.5 fold heavier than the tag used in this study, it should only be considered suitable for 

approximately 6−7 months old fish.  

As mention before, stocking for conservation practices is done in many species, even though it is 

difficult to know if these programs have indeed implemented the enriched rearing approach in a 

permanent basis and if so, the caveats that they have found. Studying and sharing this information is 

essential as studying the approach itself because it would help to improve and maximize the 

implementation process and success in other programs. Based on this premise, it would be relevant 

to run an engineer study on the feasibility of rearing a large amount of fish using an enriched 

approach. A study like this would provide information about how realistic it is to implement this 

rearing according to our facility capacity and constraints, the costs of it, workload, space and 

equipment requirements. 

 

Secondary priorities 

This study did not assess the predator-prey relationship but the survival estimated after fish release 

in the wild suggested important predation component. Therefore, it is suggested to study the 

predators stocks in the release areas to optimize the release method to reduce predation. Nowadays, 

releases are done during the day to decrease predation by the European catfish (Silurus glanis) which 

has a strongly nocturnal feeding activity (Boujard 1995; Carol et al., 2007). Nevertheless, it remains 

unknown if other fish and avian predators would be more relevant on post-release mortality. Under 

the same context, it could be suggested to train the fish to avoid possible predators before stocking. 

Concerning fish predators, the process of pairing a predator cue and an alarm cue of heterospecific 
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prey guild members (Chivers et al., 1995; Berejikian et al., 1999) or prey alarm cue on the predators 

diet/faeces (Mathis and Smith 1993; Brown et al., 1995b,a; Mirza and Chivers 2003), have been 

proven effective to acquire predator recognition. 

Even though this work focuses on juvenile rearing practices, the welfare of the captive stock which 

will constitute the future spawners is also relevant. Chronic stress and under-stimulation in captive 

conditions has inhibitory effects on reproduction and may be responsible of failure to achieve it in 

these populations (Beck et al., 1994). It has been suggested that simple forms of enrichment can 

reduce or eliminate this negative effects and aide reproduction (Shepherdson 1994; Young 2003). 

Improving the stock welfare and in consequence the conservation program could be something to 

consider in the program’s future. 

In this study basic information about the species early life history has been collected but there is still 

almost no information about the behavior of A. sturio before the age of 3 months. However, this 

information is valuable as most of the fish released by the program are 7 dph. It is not possible to 

mark and monitor such small fish but research on habitat selection, ontogenic behavior and 

migration of larvae to 2−3 month old fish would be possible under controlled conditions.  
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