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Sous la direction de: Jean Roman

Laboratoire d’accueil: LaBRI, Inria

Devant la commission d’examen composée de :
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Équilibrage de la charge des simulations paral-

lèles couplées

Résumé

Dans le contexte du calcul scientifique, l’équilibrage de la charge est un prob-
lème crucial qui conditionne la performance des simulations numériques par-
allèles. L’objectif est de répartir la charge de travail entre un nombre de pro-
cesseurs donné, afin de minimiser le temps global d’exécution. Une stratégie
populaire pour résoudre ce problème consiste à modéliser la simulation à l’aide
d’un graphe et à appliquer des algorithme de partitionnement.

En outre, les simulations numériques tendent à se complexifier, notam-
ment en mixant plusieurs codes représentant des physiques différentes ou des
échelles différentes. On parle alors de couplage de codes multi-physiques ou
multi-échelles. Dans ce contexte, le problème de l’équilibrage de charge de-
vient également plus difficile, car il ne s’agit plus d’équilibrer chacun des codes
séparément, mais l’ensemble de ces codes pris dans leur globalité.

Dans ce travail, on propose de resoudre ce problème en utilisant le mod-
èle de partitionnement à sommets fixes qui pourrait représenter efficacement les
contraintes supplémentaires imposées par les codes couplés (co-partitionnement).
Nous avons donc développé un algorithme direct de partitionnement de graphe
qui gère des sommets fixes. L’algorithme a été implémenté dans le partition-
neur Scotch et une série d’expériences ont été menées sur la collection des
graphes DIMACS.

Ensuite nous avons proposé trois algorithmes de co-partitionnement qui re-
spectent les contraintes issues des codes couplés respectifs. Nous avons egale-
ment validé nos algorithmes par une étude expérimentale en comparant nos
méthodes aux strategies actuelles sur des cas artificiels ainsi que sur des codes
réels couplés.

Mots-clés

simulations numériques, simulations couplées, parallélisme, équilibrage de charge,
partitionnement de graphe
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Load Balancing for Parallel Coupled Simulations

Abstract

Load balancing is an important step conditioning the performance of parallel
applications. The goal is to distribute roughly equal amounts of computational
load across a number of processors, while minimising interprocessor communi-
cation. A common approach to model the problem is based on graph structures
and graph partitioning algorithms.

Moreover, new challenges involve the simulation of more complex physical
phenomena, where different parts of the computational domain exhibit differ-
ent physical behavior. Such simulations follow the paradigm of multi-physics
or multi-scale modeling approaches. Combining such different models in mas-
sively parallel computations is still a challenge to reach high performance.
Additionally, traditional load balancing algorithms are often inadequate, and
more sophisticated solutions should be explored.

In this thesis, we propose new graph partitioning algorithms that balance
the load of such simulations, refered to as co-partitioning. We formulate
this problem with the use of graph partitioning with initially fixed vertices
which we believe represents efficiently the additional constraints of coupled
simulations. We have therefore developed a direct algorithm for graph parti-
tioning that manages successfully problems with fixed vertices. The algorithm
is implemented inside Scotch partitioner and a series of experiments were car-
ried out on the DIMACS graph collection. Moreover we proposed three co-
partitioning algorithms that respect the constraints of the respective coupled
codes. We finally validated our algorithms by an experimental study com-
paring our methods with current strategies on artificial cases and on real-life
coupled simulations.

Keywords

numerical simulations, coupled simulations, parallelism, load balancing, graph
partitioning
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Équilibrage de la charge des simulations paral-

lèles couplées

Résumé

Dans le contexte du calcul scientifique, l’équilibrage de charge est une étape im-
portante conditionnant la performance des applications parallèles. L’objectif
ici est de répartir la charge de calcul entre un nombre de processeurs donné afin
de minimiser le temps d’exécution. Ceci est particulièrement critique lorsque le
nombre de processeurs augmente, c’est-à-dire pour des applications hautement
parallèles s’executant sur des architectures parallèles à plusieurs noeuds. Mal-
heureusement, le problème ci-dessus est connu pour être NP-hard [30] mais de
nombreux algorithmes d’équilibrage de charge existent, principalement basés
sur des méthodes heuristiques.

Parmi eux, une approche commune pour résoudre l’équilibrage de charge
d’une application consiste à modéliser le problème avec des structures à base
de graphes (ou hypergraphes). Plus précisément, un sommet d’un graphe
représente une tâche de calcul de la simulation tandis qu’une arête représente
les dépendances entre les calculs. Par conséquent, pour distribuer la charge
d’une simulation, on peut effectuer un partitionnement du graphe correspon-
dant en k parties, chaque partie étant affectée à un processeur. Ainsi, le
partitionnement de graphe apparâıt comme une technique fondamentale pour
la parallélisation des simulations, en minimiser le temps total d’exécution.
Ils existent de nombreux outils de partitionnement du graphe tels que sont
Metis [40], Zoltan [1] ou Scotch [53].

De nos jours, les simulations numériques deviennent de plus en plus com-
plexes, mélangeant plusieurs modèles et codes pour représenter différentes
physiques ou différentes échelles (multi-physics, multi-scale simulations). Ici,
l’idée clé est de réutiliser les codes existants à travers un cadre (framework)
de couplage, au lieu de les fusionner dans une application unique [2]. Ces si-
mulations sont appelées simulations couplées. Un exemple typique de telles
simulations est la modélisation du climat de la terre, qui implique au moins
quatre codes pour l’atmosphère, l’océan, la surface terrestre et la glace [13].
La combinaison de ces différents codes est toujours un challenge difficile pour
atteindre des performances élevées et pour passer à l’echelle.

Dans ce contexte, une question cruciale est sans aucun doute l’équilibrage
de la charge des simulations couplées qui reste toujours une question ouverte.
L’objectif ici est de trouver la meilleure distribution de données pour l’ensemble
de l’application couplée et pas seulement pour chaque code pris séparément,
comme c’est fait habituellement. En effet, l’équilibrage näıf de chaque code
séparément peut conduire à un déséquilibre important et à des communica-
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tions mal agençées entre les codes au cours de la phase de couplage. Cela
peut considérablement diminuer la performance globale de l’application. Par
conséquent, il est necessaire de modéliser le couplage lui-même afin d’assurer
le passage à l’echelle, en particulier lors de l’exécution sur des milliers de pro-
cesseurs. En d’autres termes, il faut développer de nouveaux algorithmes et de
logiciel afin de appliquer un partitionnement “ coupling-aware” de l’application
entière.

De plus, des calculs récents (effectués au CERFACS1) pour des configu-
rations industrielles concernant le problème du transfert de chaleur conjugué
ont montré les avantages potentiels de la modélisation de ce problème avec des
simulations couplées. Néanmoins, le temps total d’exécution est partiellement
déterminé par la façon dont les maillages des deux solveurs sont partitionnés
[26]. L’utilisation de nouveaux algorithmes pour équilibrer correctement la
charge des simulations couplées avec un partitionnement de graphe adapté ap-
parâıt comme un moyen prometteur pour obtenir de meilleure performance des
applications couplées. Nous nous attendons à ce que ce travail soit vraiment
adapté à la prochaine génération de simulations scientifiques à grande échelle
exécutées sur des architectures à plusieurs noeuds.

Nous présentons ci-après les principales contributions de ce travail. La pre-
mière contribution implique la définition formelle du problème d’équilibrage
de charge lorsque deux ou plusieurs modèles numériques (composants) sont
couplés ensemble dans le cadre d’un phenomene physique plus complexe. Pour
ce faire, nous présentons le modèle d’exécution des simulations couplées, qui
évolue itérativement dans le temps en entrant de séquences de deux phases
d’exécution différentes, régulières et couplées (séparées par étapes de synchro-
nisation). Notez que pendant une phase régulière, chaque composant résout
un système individuel définie dans son propre domaine de calcul, alors que
pendant une phase de couplage, les composants interagissent principalement
l’un avec l’autre, en échangant de données sur leurs interface de couplage.

Dans ce contexte, nous étendons la définition du partitionnement de graphe
classique pour qu’il cible le problème de distribution de données des simulations
couplées, ce que nous appellons le problème de co-partitionnement. De plus,
nous proposons deux algorithmes qui éffectue un partitionnement “coupling-
aware” plutôt que de diviser chaque composante de façon indépendante, c’ est
fait aujourd’hui dans de telles simulations. L’idée clé derrière les algorithmes
de co-partitionnement est de prendre explicitement en considération l’existence
de plusieurs composantes et leurs interactions potentielles. Par conséquent, des
contraintes supplémentaires sont introduites dans le modèle et influencent les
résultats de partitionnement entre différents composants ou différentes phases
du même composant. Au cours de cette étude, nous validons nos algorithmes
en termes de la qualité de partitionnement et les coûts de communication,

1http://cerfacs.fr
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en mesurant le facteur de déséquilibre au cours des phases régulières et de
couplage, la minimisation globale du coup d’arêtes coupées (edgecut) et le
nombre de messages échangés entre les composants.

Nous évaluons initialement les algorithmes proposés sur des simulations
et donées synthétiquement générés et ensuite nous testons des configurations
réelles d’ une simulation couplée utilisée dans le domaine de la propulsion
aéronautique. Cette dernière étude a été réalisée en collaboration avec l’équipe
CFD au CERFACS qui nous a fourni ce test. Plus précisément, deux différents
solveurs qui représentent des propriétés physiques sont couplée pour simuler
une chambre de combustion réaliste à l’intérieur d’une moteur d’hélicoptère.
Les deux solveurs modèlent séparément la combustion et des phénomènes de
conduction qui sont impliqués dans le processus, mais qui appartiennent des
différentes propriétés telles que la discrétisation du maillage et les échelles de
temps. Dans ce contexte, nous souhaitons évaluer les algorithes proposées ici
du co-partitionnement sur les données ci-dessus en termes de la qualité de
partitionnement et les coûts de communication. Les résultats obtenus font
partie d’une étude préliminaire mais indiquent une direction prometteuse pour
le problème de l’équilibrage de charge pour les simulations couplées.

La deuxième contribution de ce travail est liée à une variante du problème
classique de partitionnement de graphe, c’est-à-dire le problème de partition-
nement du graphe avec des sommets initialement fixes. Cette instance modi-
fiée de partitionnement de graphe apparâıt généralement lorsque l’application
sous-jacente impose des contraintes supplémentaires sur le problème initial.
Deux exemples qui utilisent le modèle ci-dessus sont l’équilibrage de charge
des simulations adaptatives de raffinement de maillage [11] et la conception
de circuit dans le contexte de VLSI [16]. La motivation de cette étude vient
des contraintes supplémentaires imposées par les simulations couplées qui peu-
vent être modélisées en utilisant des sommets fixes supplémentaires dans le
graphe sous-jacent.

Par conséquent, nous proposons un nouvel algorithme de partitionnement
k -way qui utilise des techniques de croissance de graphe pour partitionner
directement un graphe en k parties, sans utiliser le paradigme de la bissec-
tion récursive. Cette stratégie a été validée par des observations qui montrent
que la bissection récursive produit souvent des partitions de moindre qualité
lorsque les sommets fixes sont impliqués dans la procédure. L’algorithme est
implémenté comme l’étape de partitionnement initiale d’un algorithme multi-
niveau à l’intérieur du cadre de Scotch partitionneur et une série des tests
expérimentaux ont été réalisés en utilisant des graphiques de la collection bien
connue DIMACS’10 [7].

Le reste de ce travail est organisé comme suit: dans le chapitre 2, nous
présentons l’état de l’art en termes de charge d’équilibrage et de couplage de
codes. Plus précisément, nous citons brièvement les techniques de partition-
nement de graphes bien connues et nous présentons les approches actuelles
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pour coupler deux ou plusieurs simulations numériques. Dans le chapitre 3,
nous presentons le problème de partitionnement de graphe avec des sommets
fixes et nous proposons un algorithe (appelé kgggp) qui résout le problème
ci-dessus. Une vaste étude expérimentale sur la collection DIMACS’10 est
également inclus. Après, dans le chapitre 4, nous introduisons le problème
de co-partitionnement avec une solution proposée basée sur de nouvelles tech-
niques de partitionnement. De plus, on présente des résultats obtenus sur les
cas de test générés par synthèse et sur une simulation couplée réelles fourni
par CERFACS. Enfin, dans le chapitre 5, nous discutons nos conclusions con-
cernant cette étude et nous donnons les prospectifs possibles pour les travaux
futurs.
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Chapter 1

Introduction

In the field of scientific computing, load balancing is an important step condi-
tioning the performance of parallel applications. The goal is to distribute the
computational load across multiple processors in order to minimize the execu-
tion time. This is especially critical when the number of processors increases,
i.e., for highly parallel applications running on many-core architectures. Un-
fortunately the above problem is known to be NP-hard [30] but many load
balancing algorithms exist, mainly based on heuristic methods. Among them,
a common approach to solve the load balancing of an application is to model
the problem with graph based structures and to apply graph partitioning tech-
niques. Examples of mature and efficient partitioning tools are Metis [40],
Zoltan [1] or Scotch [53].

Nowadays, numerical simulations are becoming more and more complex,
mixing several models and codes to represent different physics or scales. Here,
the key idea is to reuse available legacy codes through a coupling framework
instead of merging them into a standalone application [2]. Such simulations
are called coupled simulations. A typical example of such simulations is the
modeling of the earth’s climate that involves at least four codes for atmosphere,
ocean, land surface and sea-ice [13]. Combining such different codes is still a
challenge to reach high performance and scalability.

In this context, one crucial issue is undoubtedly the load balancing of the
coupled simulation that remains an open question. The goal here is to find
the best data distribution for the whole coupled application and not only for
each standalone code, as it is usually done. Indeed, the naive balancing of
each code on its own can lead to an important imbalance and to a commu-
nication bottleneck during the coupling phase that can dramatically decrease
the overall performance. Therefore, one argues that it is required to model the
coupling itself in order to ensure a good scalability, especially when running
on thousands of processors. In other words, one must develop new algorithms
and software implementation to perform a “coupling-aware” partitioning of
the whole application.
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Additionally, recent computations (at CERFACS1) for industrial config-
urations concerning the problem of conjugate heat transfer have shown the
potential benefits of modeling this problem with coupled simulations. Never-
theless, the total execution time is partly driven by the way the meshes of the
two solvers are partitioned [26]. The use of new algorithms to correctly load
balance coupled simulations with enhanced graph partitioning techniques ap-
pears as a promising way to reach better performance of coupled applications
on massively parallel computers.

Following, we present the main contributions of this work. The first con-
tribution involves the formal definition of the load balancing problem when
two or more numerical models (components) are coupled together as part of
a more complex physical system. To do so, we introduce the execution model
of coupled simulations, that evolves iteratively in time entering sequences of
two different execution phases, a regular and a coupling one (separated by syn-
chronization steps). Note that during a regular phase, each component solves
an individual system defined in its own computational domain, while during a
coupling phase, components mainly interact with each other, exchanging data
on their overlapping domains. Under this context, we extend the definition
of graph partitioning so that it addresses the data distribution problem of
coupled simulations, denoted as the co-partitioning problem. Additionally, we
propose two algorithms that perform a “coupling-aware” partitioning, instead
of partitioning each component independently, as it is usually done in such
simulations nowadays. The key idea behind the co-partitioning algorithms is
to take explicitly into consideration the existence of several components and
their potential interactions. Hence, additional constraints are introduced in
the model and influence the partitioning results between different components
or different phases of the same component. During this study, we validate our
algorithms in terms of partitioning quality and communication costs, measur-
ing the imbalance factor during regular and coupling phases, the global edgecut
minimization and the number of messages exchanged among components.

We initially evaluate the proposed algorithms on synthetically generated
mesh structures and then we test real-life configurations of a coupled simulation
used in the field of aeronautic propulsion. The latter study has been done in
collaboration with the CFD team at CERFACS that provided us with this
test case. More precisely, two different solvers that represent distinct physical
properties are coupled together to simulate a realistic combustion chamber
inside a helicopter engine. The two solvers separately model the combustion
and conduction phenomena that are involved in the process, but have very
different properties such as mesh discretization and time scales. In this context,
we are interested in evaluating the proposed co-partitioning algorithms on the
above data in terms of partitioning quality and communication costs. The

1http://cerfacs.fr
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1. Introduction

results we obtain are part of a preliminary study but indicate a promising
direction for the problem of load balancing for coupled simulations.

The second contribution of this work, is related to a variant of the clas-
sic graph partitioning problem, that is, the graph partitioning problem with
initially fixed vertices. This modified instance of graph partitioning typically
appears when the underlying application imposes additional constraints on the
initial problem. Two examples that make use of the above model are the load
balancing of adaptive mesh refinement simulations [11] and the circuit design
in the context of VLSI [16]. Our motivation behind this study comes from
the additional constraints imposed by the coupled simulations that may be
modeled using additional fixed vertices in the underlying graph.

Therefore, we propose a new k-way partitioning algorithm that uses greedy
graph growing techniques to directly partition a graph in k parts, without using
the recursive bisection paradigm. This strategy has been validated by obser-
vations that show that recursive bisection often produces partitions of lower
quality when the fixed vertices are involved in the procedure. The algorithm
is implemented as the initial partitioning step of a multilevel algorithm inside
the Scotch partitioning framework and a series of experimental tests have
been conducted using graphs from the well-known DIMACS’10 [7] collection.

The remainder of this work is organized as follows: in Chapter 2, we present
the state-of-the-art in terms of load balancing and coupled simulations re-
spectively. More precisely, we briefly review well-known graph partitioning
techniques and we present current approaches to couple two or more numer-
ical simulations. In Chapter 3, we discuss the problem of graph partitioning
with fixed vertices and we propose a new graph partitioning method (named
kgggp) that addresses the above problem. An extensive experimental study
on the DIMACS’10 collection is also included. Following, in Chapter 4, we
introduce the co-partitioning problem along with a proposed solution based on
new partitioning techniques. Moreover, experimental results on synthetically-
generated and real-life test cases for CERFACS are presented. Finally, in
Chapter 5, we discuss our conclusions regarding this study and we give possi-
ble prospectives for future work.

Load Balancing for Parallel Coupled Simulations 3
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Chapter 2

Overview of the Problem and
Related Work

In this chapter, we introduce the problem of load balancing for coupled si-
mulations along with the methods that are currently employed to address it.
Since load balancing in numerical simulations is highly associated with graph
or hypergraph structures, we also present here the formulations and related
techniques for graph partitioning.

2.1 Load Balancing in Scientific Computing

The increasing complexity of scientific computing often dictates a decomposi-
tion of the computational load in order to ensure high performance. In other
words, when highly parallel simulations are executed on distributed environ-
ments of hundreds of processors, a distribution of the workload among the
available processors is essential to achieve an efficient parallel solution. This
distribution requires a data partitioning procedure and the use of distributed
data structures in order to be performed successfully.

In applications with constant workload, a general strategy of distributing
computations is to apply a static assignment of the workload to the processors
at the beginning of the simulation. In other cases, where computations are
unpredictable or change during execution, a redistribution of the workload is
required at runtime. An example of such applications is the Adaptive Mesh Re-
finement (AMR) [11, 12] in which the mesh resolution is adapted dynamically
within certain critical regions of the simulation.

Consequently, an equal distribution of a simulation’s workload across the
processors which, additionally, minimizes interprocessor communication may
account for a significant reduction in the execution time of a parallel appli-
cation. Note that communication costs are governed by the amount of data
exchanged by the processors (communication volume) and the number of pro-
cessors that share the same data (number of messages). The above problem

5



2.2. Background on Graph Partitioning

is defined as the load balancing problem and may highly determine the perfor-
mance of parallel applications.

A plethora of load balancing strategies have been developed [9, 17, 23,
28, 48, 54, 57, 62], strongly governed by trade-offs between load balancing
quality, the amount of data movement or load balancing speed. In general, the
properties of an application determine which load balancing strategy should
be used to decompose its workload. For instance, mesh-based PDE solvers and
their sparse linear solvers mainly use graph-based partitioning algorithms [23,
28, 48, 57, 62] due to their excellent results on such applications. On the other
hand, simpler geometric methods [9, 17, 54] are more suitable for applications
such as particle simulations since they exploit available geometric information
to obtain at a lower cost an efficient data decomposition. A great number of
software libraries are available that provide high-quality implementations of
partitioning procedures, some of which are described later in this work.

Even though existing partitioning methods have been very successful, re-
search challenges remain and new partitioning algorithm should be proposed
for the efficient execution of modern applications or new architectures. In
this context, in the remainder of this document we will study the load bal-
ancing strategies of more complex, numerical simulations, that involve several
models, each one representing different physics or scales. In such simulations,
the corresponding meshes may have significantly different load characteristics
depending on the different physics of the problem. Thus, traditional load bal-
ancing algorithms may be inadequate here, and more suitable data distribution
techniques should be investigated.

Another example of modern challenges that however will not be addressed
in this document is the resource-aware load balancing. Here, the hierarchical
and heterogeneous nature of increasingly targeted cluster and grid architec-
tures requires new techniques for load balancing. Algorithms that address this
problem have been proposed for instance in [51] and [71].

2.2 Background on Graph Partitioning

Before we describe what is graph partitioning and how it is used to balance the
load of parallel applications, we repeat here some well-known graph definitions
and notations in order to keep this document self-contained.

2.2.1 Notations and Definitions

Definition 2.1 (Undirected Graph).
A graph is a pair G = (V,E) comprising a set of vertices V together with a set
of edges E, such that E ⊆ V ×V . Moreover an undirected graph is a graph in
which edges have no orientation. The edge (x, y) is identical to the edge (y, x),
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i.e., they are not ordered pairs, but sets {x, y} (or two-multisets) of vertices.

An edge (u, v) is said to be incident to vertices u and v, and accordingly
u, v are said to be adjacent to edge (u, v). Moreover, when two vertices u, v
are connected directly with an edge (u, v), u and v are said to be neighbors.

Definition 2.2 (Vertex degree).
The degree of a vertex, denoted as deg(v), is the number of edges incident to
the vertex. The maximum degree of a graph G, denoted as ∆(G), and the
minimum degree of a graph, denoted as δ(G), are respectively the maximum
and minimum degree of its vertices.

Note that a graph where each vertex has the same number of neighbors
(same degree) is called a regular graph.

Definition 2.3 (Subgraph).
A subgraph S = (U, F ) of a graph G is a new graph formed from G such that: U
is a subset of V , and F is the restriction of E by U , such that F = E∩ (U×U)

Definition 2.4 (Hypergraph).
A hypergraph H = (V,N) is a generalization of a graph where V is a set of
vertices and N is a set of non-empty subsets of V called nets or hyperedges.

While graph edges are pairs of vertices, nets are arbitrary sets of vertices.
The vertices in a net are called its pins and the number of pins of a net is
called the size of it. Finally, it is often desirable to study hypergraphs where
all nets have the same cardinality: a k-uniform hypergraph is a hypergraph
such that all its nets have size k. So a two-uniform hypergraph is a graph, a
3-uniform hypergraph is a collection of unordered triples, and so on.

2.2.2 The Problem of Graph Partitioning

It is known that a common approach to solve the problem of load balancing
is based on graph theory and more precisely on graph partitioning [33, 64].
In this context, a vertex of the graph represents a basic computational task
of the problem (often related to a mesh element) and an edge represents a
dependency in calculations between two tasks. Besides, each vertex has a
weight proportional to the task’s cost while each edge has a weight representing
the communication cost between two computational tasks. Therefore, in order
to balance the load of a parallel application among k available processors, one
may perform a graph partitioning in k parts and assign each resulting part to
a processor.

The main objective of graph partitioning is to divide the given graph into
k smaller parts of roughly equal weight and minimize the number of edges cut
between them as seen in Figure 2.1. Thus, when graph partitioning is used for

Load Balancing for Parallel Coupled Simulations 7



2.2. Background on Graph Partitioning

load balancing in a parallel environment, a balanced distribution of the work-
load among the available processors is obtained, while the communication costs
of the application are minimized. Consecutively, graph partitioning appears
as a fundamental technique for parallelization that offers high performance by
substantially minimizing the total execution time.

Figure 2.1: Example of a graph partitioned in three parts. We consider that the
vertex and edge weights are equal to 1.

Let us consider a graph G where each vertex u ∈ V has a weight w(u)
representing the computational load of a task and each edge e = (u, v) ∈ E
has a weight w(e) representing the communication cost between tasks u and
v.

Definition 2.5 (Graph partitioning in k parts).
A partition of a graph G is a set of k vertex subsets P = (V1, V2, . . . , Vk), such
that: each part Vi, 1 ≤ i ≤ k, is a non-empty subset of V ; parts are pairwise
disjoint (Vi ∩ Vj = ∅ for all 1 ≤ i < j ≤ k) and the union of the k parts is
equal to V .

Given a vertex v mapped to the part Vi, we note part[v] = i as its part
number. Note also that when k = 2 the partition is called bipartition (or
bisection) and the problem becomes the bi-partitioning problem.

Definition 2.6 (Problem of k-way graph partitioning).

Given a graph G, the problem of k-way graph partitioning can be defined as
the optimization problem of dividing a graph into k parts, P = (V1, V2, . . . , Vk),
such that P :

i. is subject to the balance constraint

Wi ≤ Wavg(1 + ε) for i = 1, . . . , k; (2.1)

ii. and optimizes the following objective

min
∑
e∈F

(w(e)), where F = {(a, b) ∈ E, a ∈ Vi ∧ b ∈ Vj ∧ i 6= j} (2.2)
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In the above formula, Wi is the sum of the weights of all vertices in part Vi
and Wavg =

∑
ui∈V w(ui)/k represents the weight of each part in G under the

perfect load balance. Moreover ε denotes the maximum imbalance tolerance
as a percentage of the ideal weight where typical values are between 2%, 5%,
or 10%. Note that throughout this document ε will be set to 5% of the ideal
weight, unless stated otherwise.

The objective in definition 2.2 is to minimize the edgecut metric
∑

e∈F(w(e))
(where F is the edge separator). The edgecut of a partition is the weighted sum
of all edges whose incident vertices belong to different parts. Another possible
objective is to minimize the maximum communication volume metric [7]. For
each vertex u, one determines the number of different parts V(u) in which u
has neighbors, except P [u]. Then, the communication volume is given by the
maximum over i, of the sum of all V for vertices u belonging to part i, i.e.

max
1≤i≤k

∑
u∈Vi

V(u) (2.3)

In the remainder of this work, we use the edgecut metric to measure the
quality of a partitioning since it is easy to compute; it is commonly used in the
literature and it is known to successfully approximate the total communication
volume of load balancing [32].

Accordingly, for hypergraph structures, the definition of a k-way hyper-
graph partitioning follows the one presented above, where a partition of a
hypergraph is subjected to a balance constraint (defined in a similar way as
for graphs) and optimizes a certain objective function. There are various objec-
tive functions that can be used as metrics for the quality of a valid hypergraph
partitioning [19]. For instance, a commonly used metric that is shown to accu-
rately model the total communication volume of parallel applications is called
the connectivity-1 metric. The objective function is defined as:

min
∑
n∈N

(w(n)(λn − 1)) (2.4)

For a k-way partition P , a net that has at least one pin in a part is said
to connect that part. The number of parts connected by a net n defines
its connectivity and is denoted as λn. A net n is said to be internal if it
connects exactly one part (i.e. λn = 1), and cut otherwise (i.e., λn > 1). Thus
w(n)(λn − 1) defines the cost of net n related to connectivity-1.

Finally, another problem which is highly related to graph partitioning and
will be often mentioned throughout this manuscript is the repartitioning pro-
blem.

Definition 2.7 (Problem of k-way graph repartitioning).
Given a weighted graph G and an unbalanced partition P in M parts, the
classic repartitioning problem aims to compute a new partition P ′ of G (in M
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parts) that satisfies the balance constraint and minimizes 1) the edgecut, and
2) the migration volume.

The additional objective aims to minimize the migration time, which con-
sists of minimizing the communication costs required in order to redistribute
the data among parts.

2.2.3 Graph Partitioning Algorithms

Unfortunately, the graph partitioning problem and its variants fall in the cate-
gory of NP-hard problem [30], so finding a balanced partition of a given graph
is usually based on approximation algorithms. Exact algorithms, where the
solution space is extensively explored, exist (e.g. dynamic programming) but
are too expensive in terms of execution time and will not be studied in this
work.

Here, we briefly present some of the most common heuristic techniques for
graph partitioning that are divided into two categories based on their view of
the problem: the local approach (or refinement) and the global approach.

Global Approaches

Spectral Method. The spectral graph partitioning approach consists of
finding the eigenvalues of the Laplacian matrix L associated with a given
graph G. The Laplacian matrix is defined as L = D − A, where A is the
adjacency matrix with Aij implying an edge between node i and j, and D
the diagonal matrix, where each entry Dii represents the degree of the node
i. Since L is a positive semi-definite matrix, its eigenvalues can be ordered as
follows: λ1 = 0 ≤ λ2 ≤ . . . ≤ λn. The algebraic connectivity of a graph G
is the second-smallest eigenvalue of the Laplacian matrix, and yields a lower
bound on the optimal cost of a bipartitioning. This eigenvalue is greater than
0 if and only if G is a connected graph, which derives from the fact that the
number of times 0 appears as an eigenvalue in the Laplacian is the number of
connected components in the graph. The eigenvector v2 corresponding to λ2,
called the Fiedler vector, bisects the graph into two parts based on the sign of
the corresponding vector entry. Division into a larger number of parts is usu-
ally achieved by recursively applying the procedure to subgraphs. While this
method results in partitions with good quality, it is very expensive in terms
of execution time. Some graph partitioning algorithms that are based on the
spectral information are found in [33, 48, 49, 67]

Bubble/Greedy Growing. The bubble growing algorithms is usually used
as a global graph partitioning and in the most simple versions of this approach,
like the algorithm of Farhat [28] or the greedy graph growing [8, 35], initial
seeds are included to guide the growing development of parts. During the
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partitioning procedure, the seeds are visited one after the other and so the
parts are created sequentially based on the graph traversal. Since the bubble
growing approach strongly depends on the selected seeds and usually produce
solutions of poor quality for the lastly created parts, those methods call the
partitioning routine multiple times using different initial seeds and the best
partitioning result is chosen at the end.

In most advanced versions of this approach the parts are managed and
developed in a simultaneous way [50]. The main idea here is that the bubbles
start to grow using the seeds as centers until they become stable and their union
cover all the vertices in the graph. The partition is defined by considering the
bubbles as the new parts and the center of those bubbles become the new seeds.
The above procedure continues until the distance between the old and the new
center of the bubble becomes small enough. Moreover, during the part growing
procedure, the algorithm tries to minimize both the contact between different
parts and the maximal vertex distance of a part to the bubble’s center. Thus,
the algorithm results in creating bubbles that are as much convex as possible,
which lead to a more optimized partitioning considering the quality of the
edgecut result.

Recursive Bisection. Nowadays the size of graphs deriving from parallel
numerical simulations becomes larger and larger, thus the majority of modern
graph partitioning methods follow a divide and conquer approach to solve the
problem. The idea behind the recursive approach is to partition the graph in
a number of small parts, usually two but it could be four or even eight, and to
repeat the same process in each resulting part until the right number of parts
is obtained. Since the number of parts is commonly set to two the recursive
approach is called recursive bisection.

In Figure 2.2, one may see how a graph is partitioned in eight and five
parts (in 4.3a and 4.3c respectively). As one may observe in Figure 4.3c, the
graph can be easily partitioned in any number of parts k, even if it is not a
power of two. The above is possible by forcing bisections that result in two
unbalanced subgraphs during some recursive steps, as long as at the end of
the overall procedure the proper number of balanced parts is obtained. Note
that the recursive bisection can use any algorithm to compute each bisection,
so different algorithms can be used to implement the actual bisection step.
The recursive approach has been shown to be fast and to result in partitions
of relative good quality; however some disadvantages of the method will be
discussed later on this document and more specifically in chapter 3.

Local Approaches

The algorithms that are presented here are examples of the local graph par-
titioning approaches, that make no use of the global graph structural infor-
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(a) in 8 parts (b) in 5 parts

Figure 2.2: Illustration of recursive bisection approach in three bisection levels.

mation, and locally improve a solution starting from an initially (random)
bisection. Multiple trials of the above methods may increase the amont of
local view as the number of trials increases.

Kernighan-Lin Algorithm. The Kernighan-Lin [43] (KL) algorithm is an
iterative algorithm, performed in several passes, that starts from an initial bi-
partition and repeatedly selects a pair of vertices to exchange parts. A vertex
that has already changed parts will not be considered for another displacement
during the same pass. The algorithm continues the vertex exchanges even if
it temporarily deteriorates the edgecut that leads to exploring more solutions
instead of remaining blocked in a locally optimal partition. At the end of a
pass, only the displacements that led to the best edgecut improvement will
be considered. The fact that vertices are exchanged in pairs helps in main-
taining the balance constraint, however it restricts the edgecut minimization.
Finally, multiple passes may be needed to further improve the edgecut, and
the complexity of the algorithm is O(|V |2 log(|V |)).

Fidducia-Mattheyses Algorithm. The Fiduccia-Matthyses [29] (FM) al-
gorithm is an improvement of the KL algorithm in terms of execution time,
exhibiting an almost linear behavior that typically converges in several passes.
Opposite to the KL algorithm, FM performs displacements of a vertex from
one part to the other one instead of vertex pair exchanges. Naturally, this may
lead to load imbalance between the parts, therefore only displacements that
respect the balance constraint are allowed.

The FM algorithm maintains for each vertex a gain value which represents
the variation in the total edgecut when the vertex is moved to the other part.
The vertices are sorted based on their gain value into a bucket structure. This
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is done using an array whose jth entry contains a doubly-linked list of vertices
with gain currently equal to j. Additionally, another array is maintained to
access the elements of the linked lists by their vertex number allowing a quick
search and update of the gain values. This data structure can be seen in
Figure 2.3.

Figure 2.3: Gain bucket structure introduced in FM algorithm. sp(v) defines the
gain function of moving vertex v into part p

Throughout the algorithm, a vertex that corresponds to the maximum gain
value is chosen from the bucket structure to be moved to the other part. If this
displacement does not violate the balance constraint, the algorithm performs
the displacement and the vertex is marked as moved. Finally FM updates the
gain values in the bucket structures for the neighbors of v that have not yet
been moved. Employing this simple but efficient data structure FM finds the
vertices with the maximum gain faster than KL in an almost linear time.

The main drawback of the iterative algorithms described above has to do
with their strictly local vision of the problem which may produce solutions
that are no better than a local optimum and strongly dependent on the initial
partition. However as will be explained later on, such iterative algorithms are
extensively used to refine roughly good partitioning solutions.

2.2.4 Multilevel Framework

In the early ’90s, the multilevel recursive bisection algorithm (abbreviated as
mlrb) emerged as a highly effective method for computing a k-way partitioning
of a graph [14, 42, 48]. A major contribution of mlrb is the introduction
of the multilevel framework which is widely used nowadays in most graph
partitioning algorithms. The basic structure of the multilevel framework is
rather simple. The main objective here is to reduce the size of a graph with
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local optimizations, so that the solution space is reduced equally, resulting in a
smaller problem where a partitioning algorithm could be applied in reasonable
time. As we have mentioned before, the size of graphs (which model numerical
simulations, VLSI design, etc) has become larger and larger and methods such
as spectral partitioning can not be applied directly without increasing the
runtime to a significant extent. Employing the multilevel framework, the size
of a graph can be reduced without entirely losing its topological properties and
the problem of graph partitioning can be solved much faster.

The multilevel framework consists of three phases:

i. coarsening phase, where a coarsening algorithm is performed recursively
on the initial graph until a smaller structure (coarsest graph) is obtained;

ii. initial partitioning phase, during which a partition of the coarsest graph
is calculated;

iii. uncoarsening phase, where the partition obtained from the previous phase
is projected back to the original graph. During this phase a refinement
algorithm is also applied after each projection.

Coarsening Phase

During the coarsening phase, a sequence of smaller graphs Gi = (Vi, Ei), is
constructed from the original graph G1 = (V1, E1) such that |Vi| < |Vi−1|. In
most coarsening schemes, a set of vertices of Gi is combined to form a single
vertex of the next level coarser graph Gi+1, called super vertex. Adding up
the weights of the combined set of vertices in Gi determines the weight of
their corresponding super vertex v in Gi+1. The edge weight of v is calculated
accordingly. This coarsening method ensures the following properties [48]: i)
the edgecut of the partitioning in a coarser graph is equal to the edgecut of the
same partition in the finer graph; ii) a balanced partition of a coarser graph
leads to a balanced partition of the finer graph.

This edge collapsing idea can be formally defined in terms of matchings [2,
12] and more precisely maximal matching. A matching of a graph is a set of
edges, no two of which are incident on the same vertex. A matching is called
maximal, if it is not possible to add any other edge to it without making two
edges become incident on the same vertex. The coarsening phase ends when
the coarsest graph Gl has a small number of vertices or if the reduction in the
size of successively coarser graphs becomes too small. Among many matching
algorithms like RM (random matching) [48], LEM (light edge matching) [14]
and HEM∗ [42], here we briefly describe the HEM (Heavy Edge Matching)
algorithm which is widely used in modern partitioning tools. The HEM algo-
rithm works as follows: the vertices are visited in a random order and each
vertex u is matched with one of its adjacent unmatched vertices v, such that
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(a) Vertex pairs of Gi coarsening
level.

(b) Vertices of Gi+1

level after contraction.

Figure 2.4: Contraction of egdes in HEM. Note how the edge weights are updated
after the contraction of vertices. Vertex weights are not illustrated

the weight of the edge (u, v) is maximal over all possible incident edges (Fig-
ure 2.4). Hence, the HEM algorithm naturally encourages the minimization of
edgecut.

Initial Partitioning Phase

The initial partitioning phase of the multilevel framework aims to calculate a
partitioning of the coarsest graph Gl that will later be projected back to the
initial graph structure. Since the quality of the partition of Gl will highly influ-
ence the quality of the final partition, the choice of the partitioning strategy in
this step is important. Note that any partitioning strategy mentioned above,
may be used during this step; among them the spectral approach, greedy algo-
rithms, or even another multilevel algorithm. Since Gl is small in size compared
to G1, the multilevel framework tends to yield partitions of good quality, since
a more global view of the problem is possible, and later tries to preserve them
during the uncoarsening phase.

Uncoarsening Phase

The uncoarsening phase is the last step of the multilevel framework and the
main objective here is to project the partition obtained on the coarsest graph
Gl back to the initial graphG1 going through the sequenceGl, Gl−1, . . . , G2, G1.
Since a partition Pi is locally optimized for graph Gi and not necessarily for
the graph of the next level Gi+1, a refining procedure should be applied in
order to preserve the quality of each Pi and eventually the quality of the very
first partition P1. It is important to observe that graph Gi−1 has more degrees
of freedom compared to Gi, since it unveils new vertices that may have an
influence on the quality of the partition in this level. Hence local refinement
algorithms are used after each projection step and are usually based on KL or
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FM algorithms to further improve the partition.

Remember that KL or FM are iterative algorithms that have a local view
of the partitioning problem and starting from a bisection, they swap vertices
among the two parts in order to reduce the edgecut of the partition. Those
methods along with their extensions to k-way refinement, that is refinement
algorithms directly for k parts and not just for a bisection, are extensively used
during the uncoarsening phase.

2.2.5 Multilevel Algorithms: mlrb and mlkw

As mentioned before, the first method that used the multilevel scheme is the
mlrb algorithm which combines the multilevel framework with the classic re-
cursive bisection in order to obtain a k-way partition. mlrb follows the W
cycle paradigm seen in 2.5a where more that one calls to the multilevel frame-
work are performed. Starting from the original graph, a call to the multilevel
framework is made which results in a refined bipartition. That is, during the
initial partitioning phase the coarsest graph is partitioned in two parts with a
bisection algorithm and then it is refined using the FM algorithm. Consecu-
tively, for each resulting part a new multilevel framework is performed and this
procedure continues recursively until the desired number of parts is obtained.
As we may see in Figure 2.5a, a 4-way partition is obtained with 3 calls to
the multilevel framework. The complexity of the mlrb for producing a k-way
partitioning of a graph G is O(|E| log(k)).

Moreover, the multilevel paradigm can also be used to construct a k-way
partitioning of the graph directly during the initial partitioning phase as illus-
trated in 2.6. This method follows the V-cycle paradigm shown in 2.5b. In
a V-cycle the multilevel framework is called just once. Again, the graph is
coarsened successively to a smaller structure, but the coarsest graph is now
directly partitioned into k parts. During the uncoarsening phase, this k-way
partition is refined successively as the graph is projected back into the original
graph.

There are a number of advantages for computing the k-way partitioning
directly (rather than computing it successively via mlrb). First, the entire
graph now needs to be coarsened only once, reducing the complexity of this
phase to O(|E|) from O(|E| log(k)). Secondly, it is well known that recursive
bisection can do arbitrarily worse than k-way partitioning [63]. Thus, a method
that obtains a k-way partitioning directly can potentially produce partitions
of better quality. Note that the direct computation of a good k-way partition-
ing is harder than the computation of a good bisection in general (although
both problems are NP-hard). This is because the problem of finding the best
assignment of a vertex to a part among k possible parts such that the edgecut
is minimized, is more complicated than choosing between just two parts. In
the former case, the optimization space is increased combinatorially.
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However in the context of multilevel framework, we only need a rough k-
way partitioning of the coarsest graph, as this can be potentially refined as the
graph is uncoarsened. The coarsest graph can be partitioned in k parts using
any known algorithm, for instance a method is to simply coarsen the graph
down to k vertices. During the refinement phase, one needs to refine a k-way
partitioning, which is considerably more complicated than refining a bisection.
However, algorithms that refine a direct k-way partition exist as for example
in [58] where a generalization of FM algorithm is proposed for refining a k-way
partition with a complexity of O(|E|).

Overall methods that follow the above approach are called mlkw (for
multilevel k-way partitioning) and the best known algorithms have a time
complexity of O(|E|) and produce partitions that are comparable or of better
quality that mlrb in substantially less time.

(a) W cycle scheme. (b) V cycle scheme.

Figure 2.5: Illustration of the multilevel framework.

Figure 2.6: Representation of a 4-way direct partitioning using the multilevel frame-
work.

In the literature many integrated software for graph or hypergraph parti-
tioning exist, that often use mlrb or mlkw such as Scotch, kMetis or
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PaToH (a detailed list of tools is presented in Chapter 3). Finally, there
are some partitioning tools that use parallel algorithms like ParMetis [40],
which extends its functionalities under an MPI-based parallel environment,
and PT-Scotch [53] that proposes a multi-threaded and multi-processor graph
partitioning.

2.3 Coupled Simulations

2.3.1 Introduction

A new challenge emerging in scientific computing involves the understanding
and systematic modeling of more complex physical phenomena that are found
in many academic fields such as plasma physics, climate and weather, hydrol-
ogy and material science.

In such complex systems, several phenomena are considered at the same
time which results in an increased complexity of the underlying numerical
models and tools. The reason is that each phenomenon is described by at
least one mathematical equation and these equations rarely have the same
mathematical properties.

One approach to address such problems is to solve all different equations
at once, thus creating a standalone simulation, ensuring the coupling between
different physical equations. However, even though this approach ensures the
continuity of all variables, it has a few drawbacks. First of all, as mentioned
above, different equations may require different numerical methods. It can
become quite difficult to implement all of these methods in one code and to
solve all of them together in an efficient way.

Secondly, the configurations to be studied are often unsteady, adding to the
global complexity. The unsteady nature leads to another issue: the different
phenomena have different time scales. For instance, when comparing the heat
conduction in a wall with a reactive flow, the time scale of the former model is
often two to three orders of magnitude higher than the time scale of the latter.
Hence, solving both equations at once, implies using the same integration time
step which is limited by the fastest physics, leading to a waste of computational
resources.

Finally, an important disadvantage of using standalone simulations to model
such systems is that re-usability of existing models is not possible. In other
words, legacy codes cannot be integrated directly inside the simulation, in-
stead, they have to be re-implemented in order to be compatible with the
code. Additionally, standalone simulations may be hard to maintain. For in-
stance, if at some point a better tool is available for a certain phenomenon,
it cannot easily replace an existing one without having to modify the overall
simulation.

18 Maria Predari



2. Overview of the Problem and Related Work

Given the above reasons, an efficient approach to address such complex
phenomena is to develop modern simulations that combine distinct numeri-
cal models, plugged in together under a coupling framework. In this section,
we give an overview of such simulations and we refer to them as coupled si-
mulations.

Examples of coupled simulations often follow the multi-physics or multi-
scale modeling approaches. To simulate real-word conditions under the multi-
physics model, one must consider the impact of a number of different physics
that occur concurrently. Typically, in such simulations, effects from one phys-
ical phenomenon influence the behavior of an object in the computational
domain of another physical phenomenon. Understanding multi-physics behav-
ior is therefore a major challenge to accurately predict the performance of such
simulations. In addition, a broad range of scientific problems involve multiple
scales. Indeed in applications such as the simulation of crack propagation [4],
traditional mono-scale approaches have proven to be inadequate, even if a par-
allel machine is used. This is due to the range of scales and the prohibitively
large number of variables being involved in the simulation. Thus, there is a
growing need to develop systematic modeling and simulation approaches for
multi-scale problems.

Consequently, the potential benefits of using coupled simulations are more
important than those of using standalone simulations. However different chal-
lenges still exist. Indeed, combining such diverse numerical models in massively
parallel coupled simulations, is not an easy task, neither in terms of the archi-
tecture of the coupled simulation nor in terms of data processing during the
coupling.

To support the successful execution of coupled simulations, software tools
(called couplers) have been developed and provide the necessary functionali-
ties to plug in together multiple standalone solvers (called components in the
following). In general, coupling frameworks are responsible for two main opera-
tions: to manage the execution of the components within a coupled simulation
and to perform the exchange of information at the coupling interfaces. For the
first one, coupling frameworks need to specify the sequencing, synchronization
and coupling frequency among components while for the second one, they need
to manage the communication infrastructure. Note that different components
may have completely different internal characteristics (e.g. space resolution,
domain decomposition etc) making the exchange of data more complicated.
Therefore, the coupling framework performs the data transfers between com-
ponents and provide all the necessary coupling facilities such as mapping be-
tween different component grids (interpolation) or computing fluxes between
components. Depending on the overall design of the coupling architecture,
the above functionalities may be performed at different levels of the coupling
framework. Some designs may include both a high-level driver and a coupler,
whereas others may only include a coupler or may perform direct coupling
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from within the components using a dedicated coupling library.

We may generalize the above coupling designs into two main categories,
the couplers that have a centralized communication scheme (CCS) and the
ones that follow a fully distributed communication scheme (DCS). The CCS is
the most straightforward scheme that follows a many-to-one and one-to-many
communication design as it is shown in Figure 2.7a. In this scheme, the cou-
pler is sequential and, thus, runs on one processor. Furthermore, a variant
of the CCS is shown in Figure 2.7b that employs a parallel coupler running
on a set of processors S. On the other hand, the DCS corresponds to a fully
distributed, direct communication scheme, where only one level of communi-
cation is needed, enabled directly inside the components. In Figure 2.7c, we
illustrate the above scheme, where one may see that the coupling processes are
performed directly by the processor sets assigned to each component (P and
Q respectively).

Some examples of parallel couplers that follow the CCS are the CPL7 [22]
coupler, found in the latest version of the Community Climate System Model [13]
(CCSM4) and the coupler of the Parallel Climate Model (PCM) [73]. More
precisely, the coupler of the CCSM4 (CPL7) runs on a distinct subset of all the
processors as if it was a separate component and thus performs the coupling
operations in parallel. In this version of the CCSM4 the sequencing and hub
attributes are migrated in a top-level driver. Finally, note that both couplers
mentioned above, offer ad-hoc solutions designed for the specific problem of
climate modeling. On the other hand, examples that follow the DCS are the
OpenPALM [2], the MCT [46] and the MPCCI [37] coupling frameworks which
are more suitable for generic solvers. Finally, OASIS [66] is another generic
coupler that supports both CCS and DCS using the MCT coupling library (in
the OASIS3-MCT version).

2.3.2 Examples

Understanding the global climate, how it has changed in the past centuries
and how it is likely to change in the future, is a very important challenge that
requires the systematic development of high-end climate models. Climate mod-
eling is a typical example of coupled simulations following the multi-physics
and multi-scale paradigm that requires huge amounts of computational power
and may run for long periods of time. Nowadays, many climate models exist
that simulate the earth’s climate, including the CCSM4, the Coupled General
Circulation Models (CGCMs) [61] or the PCM. Climate modeling is gener-
ally implemented as a coupled simulation and has been developed by different
research groups for over decades, resulting in several software tools. These
models usually consist of a coupling framework and four fundamental physical
components: an atmosphere model, a surface land model, an ocean model, and
a sea-ice model.
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(a) CCS (sequential coupler).

(b) CCS (parallel coupler on a set S of processors).

(c) DCS.

Figure 2.7: Different communication schemes for coupling component models with different
mesh resolutions and different partitions on sets P,Q respectively.

Recent versions of the climate models have the ability to better support
new science adding new components to the basic model such as atmospheric
chemistry models or new land-ice components. As explained before, this is
an advantage of the coupled simulation paradigm compared to a standalone
simulation since it allows the re-usability of legacy codes with minimum mod-
ifications. Furthermore, following the coupled paradigm, individual models
continue to be usable as single executables in the research groups where they
have been initially developed, an important requirement in the climate mod-
eling community.
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To improve the understanding of the climate processes, the components are
coupled by exchanging quantities in a consistent way across typical surfaces.
Examples are the flux of energy and fresh water. This is a natural approach,
because each component can be considered to evolve independently, while at
the same time it is driven by the interactions with other components at the
coupling interfaces. In other words, components periodically exchange two-
dimensional boundary data, communicating via the coupling framework that
is responsible for remapping the boundary-exchange data in space and time.
In Figure 2.8 we illustrate an example of coupling between two components
with different space resolutions, the atmospheric and the ocean one, performed
by a coupler that follows the CCS design.

Figure 2.8: Coupling between atmospheric and ocean model.

Nevertheless, the accurate simulation of the global climate at high resolu-
tion and at a reasonable time is still a challenge despite the current advances
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in climate modeling. This is mainly due to technological or financial limita-
tions. Under this context, as stated in [24], the next generation of climate
model should have the ability to significantly increase the spatial resolution,
to include new components, and to improve the representations of sub-grid
scale processes in order to produce regionally improved simulations of climate.

Another example of coupled simulations which appears in the field of com-
putational biology, aims to model the highly complex process of thrombus
formation in intra-cranial aneurysms1 Note that thrombosis is a problem that
depends on a large number of interactive biochemical agents and until today,
there is no full understanding of the detailed process that leads to its creation.
More precisely, thrombosis requires the concurrent simulation of both blood
flow in complex geometries and biological processes such as blood coagulation
under the influence of local flow properties. The main difficulty when coupling
the above components is that they occur in highly different spatial and tempo-
ral scales, which prevents the application of classic simulation techniques and
imposes the use of a multi-scale approach.

Figure 2.9: Reduced separation map of the spatial and temporal scales, (extracted
from [76]).

In Figure 2.9, we illustrate the scale separation map that is typically used
to describe the formation of a thrombus in intra-cranial aneurysms. A scale
separation map is defined as a two dimensional map with the temporal scales

1An intra-cranial aneurysm is a cerebrovascular disorder in which weakness in the wall of
a cerebral artery causes a localized dilation or ballooning of the blood vessel (thrombosis).

Load Balancing for Parallel Coupled Simulations 23



2.3. Coupled Simulations

on the x- and the spatial scales on the y-axis. Here, we illustrate the map
of a reduced complexity as it is presented in [76], since a full implementation
of a multi-scale simulation for the thrombus formation is beyond reach at the
moment. The simplified version presents different components of the coupled
simulation as well as their spatial and temporal scales spanning over several
orders of magnitude. In Figure 2.10, one may see the required interactions
among the components and the data that are exchanged during the simulation
of a thrombus formation.

Figure 2.10: Interaction scheme with the data dependencies among components, (ex-
tracted from [76]).

Finally the authors of [76] state that the results obtained from the multi-
scale simulation match in quality the expected process of thrombus growth
after comparing them with clinical observations. The use of the multi-scale
modeling approach for such a complex problem is highly crucial since without
considering this solution, the simulation would not be feasible even on very
large super-computers. It is important to note that the authors believe that the
use of a distributed coupling framework (e.g. MAPPER 2) might be extremely
helpful to achieve the ambitious task of a realistic simulation of thrombus
formation.

2http://www.mapper-project.eu
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Other examples of coupled simulations can be found in the astrophysics do-
main where highly complex problems like the evolution of planetary systems,
dense stellar clusters, and galactic nuclei can be simulated as multi-physics or
multi-scale processes. For instance, in order to accurately model the formation
of stellar clusters, the simulation should include a large range of physical com-
ponents such as self-gravity, supersonic turbulence, hydrodynamics, outflows,
radiation and magnetic fields. Also most astronomic problems are generally
multi-scale with different spatial and temporal scales. For instance time may
range from 104 minutes and 10−3 seconds to 1020 minutes and 1017 seconds.
In [56] the authors present a software framework for combining existing com-
putational tools for different astrophysical domains into a single multi-physics,
multi-scale application. MUSE facilitates the coupling of existing codes writ-
ten in different languages by providing inter-language tools and by specifying
an interface between each module, as seen in Figure 2.11.

Figure 2.11: Basic structure design of the framework MUSE used for astrophysical appli-
cations (extracted from [56]).

Finally, another example of coupled simulations, that will be later reviewed
in more details (in Chapter 4), emerges in the field of aeronautic propulsion
where the behavior of hot components is impacted by complex interactions
between different physics such as turbulent combustion, radiation and heat
conduction [3].

2.3.3 Load Balancing

Reaching high performance within a coupled simulation is a challenging task
since it is constrained by many factors such as the size of the problem, its com-
plexity and its multi-component nature. Furthermore, within each component
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there is an internal imbalance that contributes in the overall performance of
the coupled simulation. In this context, the term internal imbalance refers to
the load imbalance of a component as if it was executed in a standalone sim-
ulation. As expected, the internal imbalance of a component depends on the
underlying domain decomposition and is governed by internal communication
costs (among the processors of the same component).

As mentioned before, a coupling framework provides two main functional-
ities; it enables the coupling between different components and it facilitates
their execution throughout the coupled simulation. Regarding the latter, most
coupling frameworks improve the load balancing of the coupled simulation
through efficient sequencing of components.

In a standalone simulation, different computational tasks may run in par-
allel on an independent set of processors to achieve high performance. In
practice, this is more difficult to achieve within a coupled simulation, since
coupled simulations are governed by scientific requirements that impose lim-
itations to the coupling. For instance, in the coupled simulation of earth’s
climate, the atmosphere component should wait for the ice and land compo-
nents to finish before it starts executing. Because of that, existing sequencing
techniques for coupled simulations are mainly not generic and highly depend
on the underlying problem. Finally, since couplings invoke a large number of
data dependencies among components, communication costs are often impor-
tant and not easy to minimize. Nevertheless, efficient scheduling techniques
exist and contribute in the minimization of the total execution time.

Earlier, we divided the architecture of coupling frameworks into two cat-
egories, based on their underlying communication scheme CCS (sequential or
parallel) and DCS. Following, we give an overview of the load balancing issues
as they appear in each category.

Let us start considering a coupled simulation with two parallel components
(C0, C1) and a sequential coupler that follows the CCS. An example of such
a sequential coupler is OASIS33. Before presenting the load balancing prob-
lem, it is important to explain the operations that take place during coupling
and demonstrate the additional overhead. For this reason, we assume that the
components are executed sequentially in time in respect to one another and in
Figure 2.12 we depict one iteration of this execution. Note that the sequential
(in time) execution is not preferred in real coupled simulations but sometimes,
constraints on the sequencing of certain components may impose it. Finally,
we consider that coupling happens bidirectionally, from C0 to C1 and from
C1 to C0. Therefore, the operations that take place during one coupling are
the following: both components send to the coupler at different times their
coupling interfaces (at t0 and τ0 for C0 and C1 respectively). Then the coupler
gathers the data from the interfaces, performs any essential computations such

3Do not confuse with the OASIS3-MCT or OASIS4 versions that uses the DCS.
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as flux calculations or interpolations (at t1 and τ1) and finally sends the data
to the second component (at t2 and τ2). As a result, the coupling overhead ac-
counts for the exchange of data among different components (inter-component
communication) and the computations performed by the coupler.

Now, for concurrent executions of parallel components, the coupling over-
head depends on the sequencing of components and their internal load balanc-
ing. Assuming a platform with a set Π of processors, in Figure 2.13 we illustrate
two different configurations of a fully concurrent execution for (C0, C1) within
the sequential CCS. Note that in similar figures throughout this section, white
boxes are representative of the time spent in internal computation of the com-
ponents while gray boxes correspond to their idle times. Finally, red boxes
represent the time spent during coupling. In Figure 2.13a, the components
run on processor sets P and Q respectively, such that Π = P t Q, while the
coupler runs on one processor, as expected. In this configuration we assume
that C1 is not perfectly balanced and hence slower than C0. In this case,
C0 waits for C1 and the coupler can perform its work, or part of it, during
this waiting time. The coupling overhead can therefore be totally or partially
hidden by the internal imbalance of the slower component.

Figure 2.12: Coupling overhead within the CCS when components run sequentially in
time. Example of one iteration.

However, for scalable components, it is expected that their elapsed run time
will decrease with an increased number of processors. Therefore, for an actual
coupled system, it is most likely that the time spent in the coupler becomes
proportionally more important when the parallel efficiency of the components
increases. In this case, the coupler may become a bottleneck for the simu-
lation. Indeed, for high-resolution components running on a high number of
processors, the time spent in the coupler becomes relatively more important
when the elapsed time spent in the components decreases. An illustration of
this problem is presented in Figure 2.13b where coupling overhead is important
due to lack of load balancing at the coupling. In this configuration, we assume
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(a) C1 dominates elapsed time. (b) Coupler dominates elapsed time.

Figure 2.13: Two examples of the fully concurrent execution of components for the se-
quential CCS (where P 6= P ′,Q 6= Q′ ). In 2.13a the coupling overhead is partially hidden,
as opposed to 2.13b.

that the components are scalable, thus increasing the number of processors to
P ′ and Q′ results in minimizing their elapsed time. As expected the coupling
overhead is not minimized, since the coupler is sequential, and it is now less
hidden.

A natural way to solve the above load balancing problem would be to em-
ploy a parallel coupler that follows the parallel CCS. In this model, communi-
cations are still centralized via a coupler but the latter is executed in parallel.
Following, we examine the load balancing problem that appears in a paral-
lel coupler, based on the CPL7 coupler of CCSM4 climate modeling. Under
this context, CPL7 offers a flexible component layout across processors in an
attempt to optimize both parallel efficiency and component throughput. Fig-
ure 2.14 presents some of the potential component layout available in CCSM4
for the classic climate model, running on a total of 128 processors ( [22]) (again
boxes are indicative of the elapsed time of one iteration of the coupled sim-
ulation). Here ICE stands for ice component, ATM for atmosphere, LD for
land and OCN for ocean. Couplings occur between ATM-LD, ATM-ICE and
ATM-OCN.

First, Figure 2.14a illustrates the fully concurrent layout of components
(in both time and computational resources). In this layout, the set Π of pro-
cessors is divided into independent subsets (X ,Z,R,P ,Q). Each component
is mapped onto one separate subset. For instance, the ATM component is
mapped on subset P , while OCN is mapped on subset Q. In the parallel CCS,
the coupler must also be mapped on processors, here CPL is mapped onto
subset X . On the opposite side of the spectrum, Figure 2.14b represents the
fully sequential layout. Here, each component is distributed to all processors
but components are executed sequentially with respect to each other.

In general, the effectiveness of running components concurrently is a trade-
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(a) Fully concurrent. (b) Fully sequential.

(c) Sequential with concurrent ocean. (d) Mixed sequential/concurent.

Figure 2.14: Four different processor layouts for the coupled simulation of earth’s climate.
Each figure is an example of one iteration for the coupled simulation.
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off between the idle time created by concurrent execution versus the generally
sub-linear scaling of components as processor counts are increased. Addition-
ally, the optimal layout and processor count depend heavily on the application
and the type of coupling between components. The scaling performance and
spatial resolution of each component are also essential in determining an effi-
cient layout. In this example, the fully concurrent layout does not optimize the
idle time because of sequencing limitations (ATM can not start before ICE or
LD) and the relatively small number of processors assigned to the whole cou-
pled simulation (i.e. Π = 128). However, in general terms, the fully concurrent
layout is better than the fully sequential one, since it has higher performance
potentials as the number of processors increases. Indeed, this is not the case for
the fully sequential layout that is limited by poor time and memory scalability
of the components.

As a result, for this example, more efficient layouts include mixed sequential
and concurrent solutions as depicted in Figures 2.14c and 2.14d. Those lay-
outs combine the benefits of both sequential and concurrent executions. More
precisely, through sequential execution, the idle time of components with se-
quencing limitations is minimized (e.g ATM and ICE), while the scalability
of the coupled simulation is increased with the concurrent execution of other
components (e.g. ATM and OCN).

Note that in this communication scheme (parallel CCS), the coupler is
viewed as a separate component and it is attributed a number of processors.
Under this context, the load balancing of the coupler should also be considered.
Remember that the number of processors that are attributed to the coupler in
CCSM4 is often determined based on the load balancing and optimization of
the other components first. The above solution suggests that the components
share with the coupler additional information about their internal partition
and processor count that corresponds to the coupling data. As a result, the
coupler maintains the same partition of the coupling interfaces placed on the
same processor count for each component that participates in the coupling.
For scalable components this may lead to a load imbalance of the coupled
simulation during the coupling process. Additionally, within the coupler, the
communication costs that correspond to data exchanges among different com-
ponents are not optimized. This is not surprising since the data distribution
of each component is performed independently from one another, thus the
inter-component communications are not minimized during the partitioning
procedure.

Finally, we discuss the load balancing problem, when the DCS is used,
where components are mainly executed in fully concurrent layout as shown in
Figure 2.15. This scheme is very promising since there is no explicit coupler
and the components directly communicate with each other. An example of a
coupling framework that uses the DCS scheme is OpenPALM. Here, coupling
is performed exclusively by the processors of each component that participate
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in the coupling process and own parts on the coupling interface. Again, as
in the parallel CCS, each component uses its internal partition and processor
subset when exchanging data with another component which may lead to load
imbalance during the coupling process. Additionally, in the DCS, components
exchange data directly on their mesh structures without the use of a coupler.
Again, since the partition of the coupling data is done independently for each
component, the inter-component communication may not be optimized.

To conclude, we notice that current coupling architectures try to minimize
the imbalance of a coupled simulation by providing efficient processor layout
and sequencing but do not address the load imbalance that appears during
the coupling process. Indeed, even when the parallel CCS or the DCS are
employed as communication schemes, the data distribution related to the cou-
pling data is not well balanced. Moreover the inter-component communication
may not be optimized. More precisely, when components are executed in the
non-coupling mode (similarly to the standalone execution), their execution is
governed by computational operations and their load is balanced due to an
internal partitioning. However, when components enter a coupling process
their operations change, due to data exchanges, and lead to a communication-
intensive execution. This change on the type of operations between coupling
and non-coupling modes is not reflected in the internal partition of each com-
ponents and results in imbalanced couplings. In the next section, we explain
in more details the above problem, providing illustrative examples.

Figure 2.15: Fully concurrent execution of two components within the DSC.

2.4 Positioning

Nowadays, most coupled simulations use a straightforward approach to ad-
dress the data distribution problem which simply treats each component as
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a completely independent simulation. As a result, the data decomposition is
done independently and each computational domain is partitioned separately
with a classic partitioning algorithm.

As explained before, the coupling framework determines how many proces-
sors will be assigned to each component, following a specific processor layout
that optimizes the efficient execution among components (component through-
put). Here, we assume a fully concurrent layout, where N components are
mapped to distinct sets of processors. Therefore, one obtains N independent
partitions, each of which divides the mesh of the corresponding component into
the desired number of parts. As a final step, all parts from the N partitions
are assigned to the processors of the parallel machine.

The above approach to partition coupled simulations, which we call naive
approach, is the most commonly used method regarding the data distribution
of a coupled simulation. Additionally, as far as we know, little work has been
done to understand and address this problem in a more systematic way. While
the naive approach is obviously easy to use and solves the partitioning problem
for each component separately, it does not address the major challenges of
coupled simulations, that is, the load imbalance during the coupling process
and the inter-component communication costs. Indeed, for the non-coupling
execution the internal load of each component is balanced and the internal
communication costs are minimized. However, if we focus just on the coupling
interface, we observe that the load might be highly imbalanced.

To illustrate the potential load imbalance, we consider in Figure 2.16 a
coupled simulation with two components (C0, C1) and two different partition-
ing results obtained on the computational domain of C0. C1 is also depicted
here, but its data distribution is not important for the purpose of this exam-
ple. Note that both partitions in 2.16a and 2.16b equally balance the load of
C0 that corresponds to the entire computational domain (dividing it in three
parts) and both minimize the internal communication costs (same edgecut).
As a consequence, they are optimal from the point of view of the naive ap-
proach. However in Figure 2.16b, one may observe that the load related to the
coupling interface is highly imbalanced as opposed to the load of the coupling
interface in Figure 2.16a. More precisely, the latter (Figure 2.16a) is equally
balanced both on the entire domain and the coupling interface. In Figure 2.16c,
we illustrate the execution time and processor layout of the coupled simulation
that corresponds to the data distribution of C0, shown in Figure 2.16a. In a
similar way, Figure 2.16d corresponds to Figure 2.16b. Note that for C1 we
assume a balanced load distribution during the coupling, so that we can focus
on C0. As one may see in Figure 2.16d, the time spent in the coupling process
for C0 may be significantly higher because of the load imbalance among the
processors involved in the coupling. We also remark that two out of three pro-
cessors of C0 are (almost) idle during the coupling. Consequently, the above
example shows in a simple way that the naive approach does not consider
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the coupling as a different phase and hence does not guarantee explicit load
balancing throughout coupling.

(a) Balanced partition on coupling. (b) Imbalanced partition on cou-
pling.

(c) Execution time of one iteration
for the coupled simulation corre-
sponding to Figure 2.16a.

(d) Execution time of one itera-
tion for the coupled simulation cor-
responding to Figure 2.16b.

Figure 2.16: Example of load balancing problem of coupled simulations.

In addition, within a coupled simulation the inter-component communica-
tion costs are often not optimized. This is not surprising if we consider that the
data of different components have been partitioned completely independently
from one another. Note that the total volume of inter-component communica-
tions remains rather constant since it corresponds to essential data exchanges
that are imposed by the coupling dependencies between components. As a
result, our objective here is to minimize the maximum volume of communica-
tion per processor and to minimize the number of messages exchanged among
components.

Let us consider an example of a coupled simulation with two components
(C0, C1) that exchange data on their coupling interfaces, as shown in 2.17. In
Figure 2.17a, we show the data distribution on the computational domain of
each component as it is computed by the naive approach. Let us assume that
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the partition of both components is balanced in eight and twelve parts, respec-
tively, and that the internal communication costs are minimized. However, we
may see that the processors of C0 that have data on the coupling interface
(four processors here) are not “well-aligned” with the processors of C1 that
also have data on that interface (five processors). As a result, the number of
messages that are exchanged between the two components is not optimal (8
inter-component messages). Ideally, if we use a partitioning algorithm that
takes the coupling process into account, the number of inter-component mes-
sages may be reduced. In Figure 2.17b, one may see such a partitioning result,
where the data of each component are distributed in such a way, that the
number of inter-component messages is reduced to 4 with an optimized com-
munication scheme.

(a) Naive approach. (b) Optimized approach.

Figure 2.17: Number of inter-component messages of a coupled simulation with two dif-
ferent partitioning strategies. The coupling surfaces for both components are noted with
the red dashed square line (1D coupling).

As a conclusion, in this work, we address the problem of data distribu-
tion for coupled simulations where two (or more) components are combined
together in order to solve highly complex physical systems. In this context,
we observe that there are still challenges concerning the load balancing of the
whole simulation.

In Chapter 4, we propose new graph partitioning algorithms that address
this problem. Our objective is to efficiently decompose the data of a coupled
simulation as part of an interactive system and not just as part of independent
components. In this way, the load is balanced both during internal compu-
tations for each component and during couplings while the inter-component
communications may be reduced. Additionally, with a partitioning method

34 Maria Predari



2. Overview of the Problem and Related Work

that is aware of the coupling process, one may explicitly control the number of
processors allocated in the coupling for each component. This offers an addi-
tional flexibility to the architecture of coupled simulations and is important for
components with highly different load characteristics. We call the procedure
of finding such data distributions the co-partitioning.

Moreover, in Chapter 3 we address the problem of graph partitioning with
initially fixed vertices. We believe that an algorithm that supports such graph
structures may improve the quality of our co-partitioning solutions. In both
Chapters 3 and 4, we evaluate the results of our work with a series of experi-
ments. Finally, in Chapter 5 we give our conclusions on this work along with
some future prospectives.
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Chapter 3

Graph Partitioning with Initial
Fixed Vertices

3.1 Introduction

In this chapter, we study a variant of the classic graph partitioning problem,
that is, the graph partitioning problem with initially fixed vertices. In gen-
eral, this modified instance of graph partitioning typically appears when the
underlying application imposes additional constraints on the assignment of
computations to specific processors. For instance, an application may have an
a priori knowledge on data locality for certain computations. This information
can be modeled with the presence of fixed vertices in the initial graph and may
guide the partitioning procedure into reaching solutions of better quality. In
particular, a fixed vertex is a vertex whose partition assignment is predeter-
mined as part of the input description and shall not be moved throughout the
partitioning. Note that in the remainder of this chapter, we refer to the other
vertices, that may move to any part, as free.

The work presented in this chapter is motivated by our interest in solving
the load balancing problem of coupled simulations. More precisely, we believe
that graph partitioning algorithms for problems with initially fixed vertices
may be part of this solution. As explained in Chapter 2, classic graph parti-
tioning strategies may fail to guarantee load balancing throughout the entire
execution of coupled simulations. This is because different components do not
just run as standalone simulations, but also interact with each other through
dedicated coupling periods. Indeed, when components interact with each other
and exchange data on their coupling interfaces, the operations involved in the
process may not be well balanced. In this case more advanced partitioning algo-
rithms should be considered. In this work, we propose load balancing solutions
for such simulations and we introduce fixed vertices in order to influence the
partitioning results between different components or different types of opera-
tions (computationally intensive or communication intensive). In other words,
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the presence of fixed vertices may help the partitioning to successfully balance
the load throughout the overall execution of such simulations and ultimately
improve their makespan.

In the literature, other problems that use the fixed vertex paradigm are
drawn from various areas, such as dynamic load balancing or integrated circuit
design (VLSI). Here, we briefly present these examples. In scientific comput-
ing, a well-known example where the fixed vertex paradigm occurs is the load
balancing of adaptive scientific computations [31]. In such applications, the
discretization of the computational domain changes irregularly over time, lead-
ing to imbalanced load even for initially well-balanced simulations. The above
feature gives rise to the repartitioning problem that addresses the difficulties
of maintaining a dynamically changing load at runtime [18].

Note that the repartitioning problem is often modeled with graph or hyper-
graph structures and assumes an initially balanced partition. The additional
requirement of repartitioning is to minimize the migration volume that ap-
pears when moving data among processors following a new partition. Under
this context, a common approach to solve the repartitioning problem is to
enrich the initial graph (or hypergraph) with one fixed vertex per part. Ad-
ditional edges should be used in order to connect each fixed vertex to all free
vertices of its respective part. These edges are called migration edges since
they represent the cost of migrating data from the former partition to the
new one. As a result, fixed vertices along with migration edges successfully
model the additional constraint of repartitioning. Thus a good approach to
solve the repartitioning problem is to perform a biased partitioning of the en-
riched graph, that accounts for minimizing the migration costs (in addition to
minimizing the regular communication costs).

Graph partitioning with initial fixed vertices may be also used for non-
numerical applications, such as the top-down placement technique [16] used in
the integrated circuit design. Related studies [16, 27] demonstrate the impor-
tance of modeling the above problem with fixed vertices, proposing new par-
titioning approaches that account for extra constraints. The authors suggest
that the presence of fixed vertices represents more accurately any positioning
information, such as the locations of external pin connections, or the potential
locations of certain cells in the final placement. In this context, the number of
fixed vertices can reach up to 50% of the total number of vertices.

The main contribution of this chapter is a new algorithm, named kgggp,
that finds a direct k-way graph partitioning, extending a classic greedy ap-
proach for bipartitioning. Though kgggp addresses the general problem of
graph partitioning, its best results appear mainly when fixed vertices are used
during the partitioning procedure. To complete our study we present a sys-
tematic comparison of different partitioning algorithms that address the above
problem. What we observe is that for the graph partitioning problem with
initial fixed vertices, kgggp exhibits better partitioning results compared to
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state-of-the-art partitioning tools, which use Recursive Bisection (RB) based
techniques. This is an interesting result that motivates us to understand what
happens when RB is used to partition a graph with fixed vertices.

3.2 Issues of Recursive Bisection

The motivation behind our study comes from the observation that RB based
algorithms produce partitions of lower quality when the fixed vertex paradigm
is involved, a remark initially shared in [6]. Here, we attempt to further explain
this behavior.

More precisely, RB based methods follow a divide & conquer strategy:
the original graph is first split in two parts (bisection) and this procedure is
recursively repeated independently on the two resulting subgraphs, until the
desired number of parts is obtained. Thus, it is possible to represent this
procedure with a bisection tree (Figure 3.1) which illustrates the implicit part
numbering scheme used by RB.

Let us now assume that the number of desired parts at the end of the
partitioning is k. Note that at each bisection step, RB selects half of the
available part numbers and assigns them to one of the two resulting subgraphs.
This step has a complexity of O(k!) since there are combinatorially many part
numbering selections for each bisection step. Therefore, in order to avoid
choosing among k! combinations, RB decides to blindly group together parts
with consecutive part indices. For instance in the first bisection, RB will try
to assign the first half of all the part indices, [1, k/2], to one subgraph and the
second half, [k/2 + 1, k], to the other. At each level of the bisection tree, the
same methodology is applied.

Figure 3.1: Illustration of the RB method: bisection tree and its implicit part
numbering (in red) for a 8-way partition.

In Figure 3.2, we illustrate a simple but compelling example that exhibits
the partitioning issues emerging when a RB algorithm partitions a graph with
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fixed vertices. More precisely, as one may see in 3.2a, we use a grid graph (of
dimensions 1000× 1000) with an initial part numbering of fixed vertices such
that vertices near the corners are assigned accordingly to 4 different parts.
We consider the rest of the vertices as free (part −1). Following, we partition
the whole graph in 4 parts. We compare two different methods implemented
within the same multilevel framework and tuned with the same parameters.
To make the analysis easier, the refinement algorithms have been disabled. In
Figure 3.2b, we present the result obtained by the RB method (implemented
by Scotch), while in 3.2c, we present the same result obtained by our kgggp
method, which will be described later in this chapter. Here, one may clearly
see that during the first recursion level of RB it is not possible to select a good
bisection between parts [1, 2] and [3, 4] which respects the constraint of initial
fixed vertices. Thus, the final partition quality is considerably poor for the
RB based method. Indeed, when the part numbering of fixed vertices conflicts
with the inherent numbering constraint of RB, the method can not successfully
respect both constraints, leading to largely disjoint parts and bad edgecut.

(a) Initial fixed ver-
tices.

(b) RB. (c) kgggp.

Figure 3.2: Given initial fixed vertices, comparison of two different partitioning methods
(RB and kgggp). Results of a 4-way partition of a 1000× 1000 grid graph: the RB method
fails to extend an initial partition while the kgggp method succeeds.

To better understand what goes wrong in this case, let us consider the
Figure 3.3 that reproduces the same experiment on a smaller 10 × 10 grid
graph. Here, we realize the same 4-way partitioning under the constraint of
fixed vertices depicted in Figure 3.3a. Following a similar methodology as
Simon and Teng [63], one may clearly see that RB does not succeed in finding
the optimal solution under the constraint of fixed vertices. This is because RB
tries at each step to find the optimal local solution, and in this case the first
optimal bisection involves disconnected components as shown in Figure 3.3b
(i.e. vertices fixed to 3 are disconnected from the part containing vertices fixed
to 4 and the same happens for vertices fixed to parts 2 and 1). Note that RB
cannot find a better bisection that puts fixed vertices of parts 1 and 2 in a single
connected component. Another possible solution for the first bisection would
give edgecut of higher cost (not optimal). Therefore, the first “bad” bisection
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of RB is maintained in the final solution, which is clearly not optimal: the best
solution of RB is presented in Figure 3.3c compared to the optimal solution
shown in Figure 3.3d.

Note that the above examples are just an illustration of the problematic
behavior of RB methods with initial fixed vertices. Further experiments that
confirm our observations follow in Section 3.5.

(a) Initial fixed vertices. (b) Optimal first bisection.

(c) Best solution for RB. (d) Optimal solution.

Figure 3.3: Issues of the RB method under the constraint of initial fixed ver-
tices. While finding the optimal first bisection, the best solution of RB to the
4-way partitioning problem will not be optimal, showing an additional cost of
8 edges cut.

3.2.1 Graph Partitioning Algorithms with Fixed Ver-
tices

In Table 3.1, we present some useful information about common graph and
hypergraph partitioning tools, such as Scotch, Metis or PaToH. First,
we note that most partitioning tools use the widely adopted RB heuristic
combined with the multilevel framework (MLRB or MLKW with RB for the
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initial partitioning phase). The above observation is not surprising, since these
methods have been proven to be very efficient for the classic graph partitioning
problem and are viewed as the state-of-the-art. Another interesting remark is
that, despite the research interest on the partitioning problem with initial fixed
vertices, more than half of the given tools do not handle at all this specific
problem. Note that this is especially true for graph partitioning tools. More
importantly, after testing some of the tools which actually provide solutions
for graph/hypergraph partitioning with fixed vertices, we observed that they
do not successfully minimize the edgecut, resulting most of the times in lower
quality partitions. Following the explanation in Section 3.2, we credit the
above behavior to the use of the RB heuristic, which provides great results
for the classic graph partitioning problem but may fail to properly handle the
presence of initial fixed vertices.

Nevertheless, there are some interesting studies about partitioning algo-
rithms that successfully handle initial fixed vertices and we review them here.

An algorithm that addresses graph problems which involve initially fixed
vertices is the one proposed in RM-Metis, where the adaptive object space
decomposition is modeled as a graph instance [5]. However, the proposed algo-
rithm addresses only the k-way repartitioning problem and requires an existing
partition of a graph that has become imbalanced. The main idea of the algo-
rithm is to apply greedy growing techniques, selecting k− 1 growing parts and
a shrinking one, until the load of every part drops below the maximum allowed
part size. As mentioned before, in such re-balancing problems fixed vertices
help the repartitioning procedure to re-distribute the load more efficiently.
Note that RM-Metis has limitations to the number of initial fixed vertices
that may be used during the repartitioning, namely one per part, whereas
kgggp has no such restrictions. Finally this algorithm is implemented inside
the multilevel framework of Metis but unfortunately, as far as we know, its
implementation is not publicly available.

Following we describe in detail the two alternative methods that solve the
partitioning problem with initial fixed vertices. In the next section, we review
the rbbgm algorithm that was first introduced in kPaToH and then, we
review the kgggp method in Section 3.4.

3.3 Recursive Bisection with Bipartite Graph

Matching (rbbgm)

An algorithm for hypergraph partitioning is introduced in [6] that successfully
handles problems with initially fixed vertices. In this work, the authors identify
the inferior performance of RB when fixed vertices are involved in the process,
mentioning its inability to explore the combinatorially many part labelings
that correspond to a given fixed vertex configuration. To correct the above
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Table 3.1: Graph and hypergraph partitioning tools.
Tools Type Fixed Parallel Scheme Initial Part. Available
Metis [40] graph no no MLRB – source
kMetis [39] graph no no MLKW RB source
ParMetis [40] graph no yes MLKW RB source
Scotch [53] graph yes no MLKW RB source
PT-Scotch [53] graph no yes MLRB – source
RM-Metis [5] graph only k no MLKW greedy no
KaFFPa [59] graph no no MLKW RB source
Chaco [48] graph no no MLRB spectral source
HMetis [40] hypergraph yes no MLRB – binary
KHMetis [40] hypergraph no no MLKW RB binary
PaToH [77] hypergraph yes no MLRB – binary
kPaToH [6] hypergraph yes no MLKW rbbgm no
Zoltan (PHG) [1] hypergraph yes yes MLRB – source
Mondriaan [68] hypergraph no no MLRB – source

deficiency, they propose a new multilevel direct k-way hypergraph partitioning
that uses a RB-based algorithm and an additional post-processing technique to
relabel the resulting parts such that the edgecut remains minimized. They refer
to the above algorithm as rbbgm and they provide an implementation called
kPaToH based on modifications of the multilevel framework of PaToH.

For the coarsening phase of kPaToH, a modified Heavy Connectivity
Matching 1 is proposed such that no two fixed vertices are matched together
at any coarsening level. However, a fixed vertex can be matched with any free
vertex, forming a fixed super-vertex for the next level. Therefore, the number
of fixed super-vertices in the coarsest level is equal to the number of initially
fixed vertices of the hypergraph. As always, free vertices are matched together
according to the chosen heuristic.

During the initial partitioning phase of kPaToH, fixed vertices are tem-
porarily removed from the coarsest hypergraph and a partitioning of the re-
sulting hypergraph is performed with a classic RB-based algorithm. Once the
partition is computed, fixed vertices are re-introduced in the hypergraph ac-
cording to a relabeling strategy. Note that if no relabeling is used, fixed vertices
are simply re-assigned to the parts based on their initial part numbering. In
this case, the final partition may not be optimized in terms of net cost min-
imization, since nets incident to fixed vertices are not considered during RB.
In other words, a relabeling strategy that minimizes the net cost contribution
of re-introduced fixed vertices is necessary to obtain an optimized partition for
the coarsest hypergraph.

The problem of relabeling fixed vertices is formulated in kPaToH as a
maximum weighted bipartite graph matching problem, that represents the min-
imum increase of edgecut. In the proposed formulation, sets of fixed vertices
and resulting parts form the two node sets of the bipartite graph B = (X, Y ).
More precisely, each vertex Xi in B represents fixed vertices, initially assigned

1HCM is the equivalent algorithm of HEM for hypergraph partitioning
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to part i, while each vertex Yi represents vertices that belong to part i after
the partitioning. Additionally, the bipartite graph contains all possible edges
(Xi, Yj) between fixed vertices and ordinary ones with a weight that corre-
sponds to the sum of weights for edges with incident vertices in both Xi and
Yj.

Figure 3.4: Example of coarsest graph where each color corresponds to a dif-
ferent part. Fixed vertices are represented as squares and free ones as circles.

Following, we give an example of the initial partition phase of kPaToH
on a graph structure rather than on a hypergraph for reasons of consistency
with the focus of this work. Figure 3.4 shows the partitioning result of a
graph with fixed vertices using kPaToH and no relabeling strategy is used to
reassign fixed vertices. That is, the modified graph which contains only free
vertices has been partitioned in four parts with RB while fixed vertices have
been simply re-introduced in the graph after the partitioning, maintaining their
initial part assignment. Note that fixed vertices are represented in the figure
as squares while free vertices as circles. Additionally, for ease of presentation,
unit edge weights are assumed and only edges connecting fixed vertices and
free ones are displayed, since any additional edgecut contribution may be due
to such edges.

In this partitioning example, the upper bound of edgecut contribution after
fixed vertices are re-introduced in the graph is 14 (edges). In Figure 3.5, we
present two instances of the bipartite graph that models the re-assignment of
fixed vertices for this example, one (3.5a) that corresponds to no relabeling
and a second one (3.5b) which follows a relabeling strategy. Finally, note that
sets of fixed and (previously) free vertices that are assigned to the same part
are drawn in both figures with the same color.

Therefore, in the case of no relabeling, the edgecut increase is 10 and implies
an edgecut saving of four (colored edges). However, it is easy to see that there
is an assignment of fixed vertices that leads to higher egdecut saving and is
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the solution of the maximum-weight bipartite graph, illustrated in 3.5b. This
relabeling obtains the highest saving of edgecut which leads to the minimum
cost increase of 14-7 = 7, instead of 10.

(a) No relabeling. (b) Relabeling strategy of
minimized cost contribu-
tion.

Figure 3.5: The bipartite graph used for the reassignment of fixed vertices in
the example 3.4. A square vertex represents a set of fixed vertices Xi, while a
circle vertex represents a part i

Finally, for the uncoarsening phase, a modified version of the k-FM refine-
ment algorithm is used where fixed vertices are locked to their respective parts
and are not allowed to move between parts.

Experiments on hypergraphs with fixed vertices performed by kPaToH
show a net cost improvement of overall average between 17% and 21% com-
pared to the multilevel RB-based method used in PaToH. Unfortunately, as
it is mentioned in Table 3.1 kPaToH is not available; therefore we decide to
implement our own version of rbbgm for graph structures described below.

Discussion on Graph Implementation of rbbgm

We choose to implement rbbgm inside the multilevel framework of Scotch
for two main reasons. First, Scotch is one of the most widely used graph
partitioning tools, with a fast implementation of the multilevel framework and
an easy programming interface. But more importantly, Scotch already in-
cludes a RB-based method that addresses the problem of graph partitioning
with initially fixed vertices that can be used as a reference method. Remember
that the multilevel framework consists of multiple heuristics and each parti-
tioning tool has different parameters for the coarsening, initial partitioning and
uncoarsening phase, that may heavily influence the quality or execution time
of the final solution. Therefore, in order to conduct a reliable comparison of
different methods used for the initial partitioning phase (such as rbbgm and
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kgggp), one shall implement them all inside the same multilevel framework.
Finally, note that in order to solve the maximum weighted bipartite graph
matching problem that appears in rbbgm, we use an implementation of the
Hungurian algorithm [45] which finds an exact solution and has a complexity
of O(k3).

3.4 The kgggp Algorithm

In this section, we describe a direct k-way graph partitioning algorithm, called
kgggp (k-way greedy graph growing partitioning), which can be easily inte-
grated in a multilevel framework and that successfully handles any number of
initially fixed vertices.

To begin with, we briefly describe here the standard greedy approach for
bipartitioning [21, 8] that has served as key idea for many partitioning algo-
rithms and particularly for kgggp. This greedy approach starts by placing a
random seed vertex into each of the two parts and then the remaining vertices
are iteratively added into the parts according to a minimization criterion.

3.4.1 Algorithmic description of kgggp

The kgggp algorithm is an extension of the standard greedy bipartitioning
algorithm for a k-way graph partitioning, where a partitioning of k parts (in-
stead of just two) is directly computed. In a certain way, kgggp can be seen
as a variation of the FM algorithm [29] with k growing parts and a free part,
denoted as −1, which initially contains all free vertices and becomes empty
at the end of the procedure. A detailed description of kgggp is given in
Algorithm 1 that will be discussed below.

As we mentioned above, greedy algorithms often use seeds to initiate the
partitioning procedure, usually based on BFS (breadth first search) [25]; how-
ever in kgggp, the use of seeds is optional. As an alternative, the selected
minimization criterion determines the first vertex displacement for each part.

At each step of the main loop, the kgggp algorithm selects the best global
displacement (v, p), among all free vertices and all possible parts. Note that
we initially consider all free vertices in part −1 as candidates to move to any
of the k parts and we choose the best displacement, based on an edgecut
minimization criterion (gain), subject to the balance constraint. Additionally
to the above criteria, the algorithm enforces the selection of a displacement
(v, p), such that v is connected with vertices already assigned to the part p
(connectivity constraint). In other words, one prefers to select a vertex v in
the neighborhood of the growing part p, as far as possible.

In order to quickly locate the best displacement, we use a similar data
structure as in FM adapted here for k parts. This structure, called gain bucket
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data structure, maintains a sorted list of displacement gains. To implement
the bucket, we use an array whose ith entry contains a doubly-linked list of
all displacements with gain currently equal to g = max gain− i (Figure 3.6).
Additionally, an array containing references of all displacements is used to
perform quick gain updates in the same way as in FM. More precisely, in
kgggp, a two dimensional array is employed which can be accessed by vertex
and part numbering (v, p) allowing the updates of neighbor vertices after a
displacement in constant time.

Figure 3.6: Bucket data structure (inspired from FM algorithm), illustrating
two displacements (v,p) and (v′,p′) having the same gain g that is currently
the best possible gain.

The kgggp algorithm uses three instances of the gain bucket structure
to store and select displacements: HREG initially contains all possible regular
displacements (line 2), while HNCC and HNBC store displacements that do
not respect the connectivity and balance constraint respectively. Note that at
first, HNCC and HNBC are both empty (lines 3–4). In the main loop of the
algorithm, the best displacement is selected initially from HREG and if it re-
spects all constraints, the chosen displacement will be applied. However, each
time we encounter a displacement that violates the connectivity or the balance
constraint, we move it to the appropriate bucket (HNCC and HNBC respec-
tively). It is expected that at a given time, bucket HREG will become empty
while buckets HNCC and HNBC will contain the rest of possible displacements.
In this case, until the algorithm terminates, we repeat the above procedure
searching for displacements in HNCC and if they do not respect the balance
constraint, we move them into bucket HNBC . Finally, when HNCC becomes
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empty, the only displacements left for selection are included in HNBC .
Once a displacement (v, p) is chosen (line 29), v is moved to the corre-

sponding part p (line 31) and then (v, p) is removed from the respective bucket
(line 33). Additionally, we remove from any bucket all possible displacements
of the same vertex to other parts (line 34) and we update the selection cri-
terion of its neighbors as in the FM algorithm (line 37). Finally, each time
a vertex v is moved to a part p, the algorithm checks if displacements (v′, p)
in the neighborhood of v that previously violate the connectivity constraint,
respect it once again. In this case, such displacements become “regular” and
are moved from HNCC back to HREG (line 42), as explained in Figure 3.8.

(a) Step 100. (b) Step 3000. (c) Step 6000. (d) Step 10000.

Figure 3.7: Steps of kgggp while partitioning a 100 × 100 grid graph in 4
parts. The free part is colored in blue. This part becomes empty at the final
step (10000) showing a 4-way partition.

In Figure 3.7, we illustrate the evolution of the part growing when a simple
100 × 100 grid graph is partitioned into 4 parts using the kgggp algorithm
without a multilevel framework. As one may see, the algorithm aims to respect
both the balance and the connectivity constraints leading to a rather balanced
and connected partition even with no refinements.

3.4.2 Fixed Vertex Management

Note that it is very straightforward to handle initial fixed vertices within
kgggp. More precisely, fixed vertices are directly placed in their respective
parts before the algorithm starts and are simply not considered as candidates
for any displacement. Obviously, these vertices are not ignored: they influence
the balance among parts and are taken into account in the gain calculation of
free vertices in the neighborhood.

3.4.3 kgggp in a Multilevel Framework

The kgggp algorithm can be easily integrated in any multilevel framework
with some simple adjustments regarding the initial fixed vertices. Firstly, dur-
ing the coarsening phase, an extra constraint is added, so that fixed vertices
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Algorithm 1 The kgggp algorithm.
Input: graph G = (V,E)
Input/Output: partition array part[] (of size |V |) initialized with fixed and free vertices
1: % initialization step of gain bucket structures (HREG, HNCC and HNBC)
2: HREG ← initialize with all displacements (v, p) of any free vertices v to any parts p
3: HNCC ← ∅
4: HNBC ← ∅
5: % main loop
6: while there are free vertices do
7: % select the best displacement
8: repeat
9: if HREG is not empty then

10: (v, p)← consider a displacement with maximum gain from HREG

11: if balance constraint is not respected for displacement (v, p) then
12: move (v, p) from HREG to HNBC

13: else if connectivity constraint is not respected for displacement (v, p) then
14: move (v, p) from HREG to HNCC

15: else
16: choose (v, p)
17: end if
18: else if HNCC is not empty then
19: (v, p)← consider a displacement with maximum gain from HNCC

20: if balance constraint is not respected for displacement (v, p) then
21: move (v, p) from HNCC to HNBC

22: else
23: choose (v, p)
24: end if
25: else if HNBC is not empty then
26: (v, p)← consider a displacement with maximum gain from HNBC

27: choose (v, p)
28: end if
29: until a displacement (v, p) is chosen
30: % perform the chosen displacement (v, p)
31: part[v]← p
32: % update buckets
33: remove (v, p) from gain bucket structures
34: remove (v, p′) where p′ 6= p from gain bucket structures
35: for all vertex v′ adjacent to v do
36: for all parts p′ do
37: update the gain of displacement (v′, p′) in gain bucket structures
38: if (v′, p′) ∈ HNCC and p′ = p then
39: move (v′, p′) from HNCC to HREG

40: end if
41: end for
42: end for
43: end while
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which belong to different parts can not be matched together, while they may
be matched with free vertices. Following, we partition the coarsest graph with
kgggp as it is described above and we continue with the uncoarsening phase,
where refinements for k-way partitioning are performed to further improve the
final result. Note that during this phase, we maintain all fixed vertices locked,
forcing them to remain in place.

3.4.4 Gain Formulas for Minimization Criterion

As we mentioned above, there exist multiple minimization criteria to deter-
mine displacement selection. Here, we present three of them: the classic gain
minimization as it is presented in FM algorithm, the diff gain proposed by
Battiti and Bertossi [8] and finally a hybrid minimization criterion.

Assuming that a vertex v moves into part p, we divide its incident edges
(v, v′) in three categories: the internal edges such that part[v′] = p, the external
edges such that part[v′] 6= p, and the free edges such that part[v′] = −1. Let
Nint(v) be the number of internal edges, Next(v) the number of external edges
and Nfree(v) the number of free edges, for v. Clearly, Nint(v) measures how
strongly v is connected to the part p, while Next(v) measures how strongly it is
attracted to other parts (except −1). The parameter α is an integer constant
that is used to enforce the part connectivity once again; more precisely, it
favors internal edges compared to other edges. Typical values of α are in the
range 1 to 10.

Table 3.2: Description of minimization criteria.
Criterion Gain Formula

classic G = α.Nint(v)−Nfree(v)
diff G = α.Nint(v)−Next(v)
hybrid G = α.Nint(v)−Next(v)−Nfree(v)

Based on the above definitions, the Table 3.2 presents the gain formulas
of the different criteria. The main difference between those formulas is due to
the free edges, depending on whether they are considered as external or not.

3.4.5 Time and Space Complexity

The main steps of the kgggp algorithm consist of initializing displacements,
selecting displacements and updating the bucket structures after a displace-
ment is performed. The initialization step needs to compute the gain for all
possible displacements (v, p) of any free vertices v to any parts p. As the gain
calculation depends on the neighborhood of each vertex v, the time complex-
ity is O(k|E|). Then, during the main loop, we select at each iteration the
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“best” displacement using the three bucket structures. In Figure 3.8, we il-
lustrate a diagram of all possible moves of a displacement between the three
buckets during the selection phase. Each transition may happen exactly once
for each displacement. In the worst case, a displacement (v, p) may be con-
sidered up to three times before being selected. This is the case when (v, p) is
initially in HREG but does not respect the connectivity constraint, so it moves
to bucket HNCC . However, due to a possible displacement of a neighbor vertex
to p, vertex v becomes connected to the part and (v, p) moves back to bucket
HREG (lines 38–39). Note that this is an update step (dashed arrow) and is
not considered in the complexity of the selection phase. Moreover, (v, p) may
move to HNBC if the balance constraint is not respected, before being finally
selected as the best displacement. As a consequence, the time complexity of
the selection phase is equal to O(|V |). Note that the actual displacement of a
vertex has constant time complexity. Furthermore, during the update phase,
displacements that correspond to already assigned vertices should be removed
from all buckets and then the gain of neighbors should be updated. That is,
for each neighbor of a newly assigned vertex, it is necessary to update its gains
regarding all k parts, leading to a complexity of O(k|E|) for this step.

Therefore, the total complexity of kgggp is O(k|E|), considering that |V |
is dominated by |E|. As a reminder, the time complexity of RB is O(log(k)|E|).
As concerns the space complexity, it is mainly due to storing all possible dis-
placements in the gain bucket data structure, which is O(k|V |).

SELECTION

Figure 3.8: Diagram of all possible moves of a displacement during the selection
phase.

3.4.6 Optimization: Local Greedy Approach

In order to reduce the total time complexity of kgggp, we implement a sec-
ond version of the method, where we enforce local selection of displacements
instead of the global selection described above. The key idea here is to search
for upcoming displacements only in the neighborhood of vertices that belong
already to a part. This approach is similar to the one used in kMetis to
optimize the k-way FM refinement heuristic [39]. As a result, we do not need
to initialize the HREG bucket structure by computing a priori the gain value
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for all possible displacements. Instead, after a displacement (v, k) is chosen,
we dynamically insert in HREG new displacements (v′, k) for all neighboring
vertices v′ of v, that remain free. If HREG becomes empty while the partition
is not complete, the method switches back to the global approach for the re-
maining free vertices, giving a time complexity of O(k|E|) in the worst case
and O(|E|) in the best case.

3.5 Experiments

In this section, we present the experimental results on the partitioning quality
and time performance of different algorithms that solve the graph partitioning
problem with initially fixed vertices. Our main goal is to analyze the perfor-
mance of kgggp and compare it to existing solutions.

For our experiments, we implement two versions of the kgggp algorithm,
one that follows the global greedy approach (kgggp g) and one that follows
the local approach (kgggp l) as described in Section 3.4. Following, we com-
pare the two versions of kgggp with our rbbgm implementation of kPaToH
(explained in 3.4) and the default RB-based method of Scotch. Both codes
of kgggp and the one of rbbgm are publicly available in the MetaPart library
at http://metapart.gforge.inria.fr.

Note that we implement the above methods inside the same multilevel
framework (that of Scotch), as part of the initial partitioning phase of a
MLKW algorithm. Moreover, all methods are tuned with exactly the same
partitioning parameters: imbalance factor of 5%, HEM for coarsening, maxi-
mum coarsest graph size equal to 30 × k, FM refinement with 10 passes and
a maximum number of negative moves allowed set to 100 for each refinement
pass. As a result, the above configuration allows us to fairly compare the im-
pact of rbbgm, kgggp and RB algorithm on the final partitioning solution.
In the remainder of this section, we will refer to the default RB method of
Scotch as “Scotch”, and it will serve as a reference for the relative compar-
isons in the following experiments.

To perform the experiments, we use graphs that come from different scien-
tific domains (numerical simulations, clustering problems and road network-
ing) available in the public DIMACS’10 collection [7], for experimentation on
graph partitioning and graph clustering. One may find in Table 3.4 the differ-
ent graph categories that are used in our experiments along with some useful
information, such as the total number of vertices or edges, for each graph.

For the sake of brevity and readability of our experimental results, we
include here two different types of figure. In Figures 3.11, 3.14 and 3.16 for
each graph category we present normalized results relative to Scotch on the
average values over all included graphs (within that category). Besides, each
experiment is performed 5 times for every graph. In these figures, the x-axis
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represents the edgecut and the y-axis represents the execution time, while
the number of desired parts increases from 10 to 500. Moreover, to analyze
our experiments in a global perspective, we include figures that demonstrate
average values of the obtained results (either the edgecut or the execution time)
over the entire graph collection or over significant groups of categories. Note
that the error bars in those latter figures indicate the standard deviation for
each method. Finally, whenever a method fails to compute a valid partition,
its results are not taken into account in the average calculations. Obviously by
doing so, we may favor methods that fail to respect the balance constraint. To
address this problem, we carefully examine the success rate of each partitioning
tool in addition to the main metrics (edgecut and execution time).

In this study, we perform three different experiments. The first one aims to
evaluate the behavior of kgggp algorithms for the classic graph partitioning
problem, while the second one evaluates kgggp and other existing algorithms
for the graph partitioning with initially fixed vertices. Finally, since most
tools that support fixed vertices are designed for hypergraphs, we include a
last experiment that compares kgggp with hypergraph tools.

3.5.1 Tuning of kgggp without Multilevel Framework

The goal of this preliminary experiment is to tune some important param-
eters of the kgggp method. More precisely, we want to evaluate the best
gain formula (classic, diff or hybrid) and the impact of the local optimization
(kgggp l) vs the global approach (kgggp g) on both quality and perfor-
mance. Those parameters have been previously described in Sections 3.4.4
and 3.4.6.

To enable an easier analysis, we disable the multilevel framework for every
method and we perform the experiment only on the Walshaw collection, that
contains graphs of smaller size. The results are presented in Figure 3.9 relative
to Scotch. Here we see that the local approach, tuned with the classic or
hybrid gain formulas and α = 1, provides the best results for both edgecut
and execution time. More precisely, for kgggp l the classic formula gives a
slightly better edgecut than the hybrid, while the hybrid one slightly improves
the runtime performance.

Besides as concerns the performance results, one may see that the local
approach kgggp l is around two times faster than the global one for almost the
same edgecut, while the memory footprint (not presented here) is considerably
reduced. As a conclusion, in the following experiments, we will use the classic
gain formula with α = 1 for both global and local methods, and we expect that
kgggp l outperforms kgggp g for runtime performance.
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Figure 3.9: kgggp evaluation on the Walshaw collection relatively to Scotch,
without multilevel framework. Comparison of the three gain formulas (classic,
diff and hybrid) for a parameter α equal to 1 or 10, and comparison of the
global and local version of kgggp.

3.5.2 Experiment without Fixed Vertices

In this experiment, we compare both versions of kgggp (kgggp g and kgggp l)
to Scotch and kMetis on graphs that do not contain any initially fixed ver-
tices. The purpose of this experiment is to evaluate the overall performance of
kgggp compared to two of the best partitioning tools. Clearly we do not ex-
pect that kgggp will outperform Scotch or kMetis for any metric (edgecut
or runtime). This is because both kMetis and Scotch use the RB paradigm
which is globally recognized as the best approach for the classic graph par-
titioning. What we aim to find out through this experiment is the relative
increase of edgecut obtained by kgggp algorithms for problems with no fixed
vertices.

In Figure 3.10a we present the edgecut results after average calculations
over the entire DIMACS’10 collection, as the number of parts increases. Here,
we clearly see that kMetis provides the best partitioning quality followed by
Scotch with an average edgecut increase of 9%. This confirms that RB based
methods perform better than the greedy ones for the classic graph partition-
ing problem. Following, the edgecut increase of kgggp l is on average 4%
compared to Scotch and thus 13% compared to kMetis. Finally, kgggp g
has an average edgecut increase of 10% compared to Scotch and thus 19%
compared to kMetis (the average here is assumed over the different number
of parts). Moreover, in Figure 3.10b we present the average execution time of
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each method over the entire collection, as the number of parts increases. Here,
one may see that Scotch has the best performance followed by kMetis or
kgggp l depending on the number of parts. Additionally, we observe that the
execution time of both kgggp g and kgggp l become worse as the number
of parts increases. This is not surprising if we recall their time complexity
compared to RB based algorithms. However, it is important to remark that
kgggp l manages to reduce the execution time compared to kgggp g and is
two times faster than the latter.
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Figure 3.10: Average results over the entire DIMACS’10 collection for graphs
without fixed vertices.

To complete the analysis of this experiment, in Figure 3.11 we present the
same results but we depict them separately for each group of graphs. Here we
may see that for certain collections of graphs (Matrix, Numerical, dynframe
and Walshaw), the edgecut of kgggp l and kgggp g is almost the same as
that of Scotch. More precisely, if we focus just on the results of kgggp l,
we see that the edgecut for these groups is on average 7% more than that of
kMetis and 2% more than that of Scotch. Note that these groups include
either graphs that derive from numerical simulations (Matrix, Numerical and
dynframe) or graphs that are deliberately chosen to test partitioning meth-
ods (Walshaw). In the remainder of this chapter, we will refer to this group
of graphs as group1. On the other hand, graphs from Clustering or Streets
collections appear to be more difficult to partition. Note that these graphs
have a particular structure with vertices of highly varying degrees (Clustering)
or many vertices that are connected to only one vertex (Streets). This group
of graphs is denoted as group2. To conclude, we believe that the optimized
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version of kgggp (kgggp l) may be a fine partitioning choice even for classic
graph partitioning problem, depending on the characterists of the graph in use.
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Figure 3.11: Average results on the edgecut quality and time execution for
each group in the DIMACS’10 collection (without fixed vertices).

3.5.3 Experiments with Fixed Vertices

Following, we present results with fixed vertices from two experimental cases,
each one representing a different way to distribute the initial fixed vertices to
the graph before the partitioning. We believe that the two proposed exper-
iments represent configurations of fixed vertices that may appear in real life
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problems in areas such as circuit design or dynamic load balancing. We denote
these schemes bubble and repart.

In this section, we compare graph partitioning methods that support ini-
tially fixed vertices such as kgggp, rbbgm and the RB-based method of
Scotch. Note that kMetis does not support fixed vertices so it is not part
of the following experiments. Also, based on the previous experiment, we de-
cide to present results only for the kgggp l method and not for kgggp g.
Indeed kgggp l has been proven to be faster than kgggp g while it produces
partitions with similar quality.

Bubble Scheme

In the bubble scheme, we simply compute k initial seeds based on a BFS [25]
technique and we use each one as the center of a bubble of fixed vertices. In
particular, each bubble is a group of fixed vertices initially assigned to the same
part that grows until it reaches a certain percentage of ideal vertex weight. In
this scheme, we allow different weights among the bubbles that vary linearly
from 5% to 20% of the ideal part size.

In Figure 3.12a, we depict the average edgecut results over the entire DI-
MACS’10 collection for all methods involved in this experiment. Here, one may
see that both kgggp l and rbbgm reduce the edgecut compared to Scotch
with an average gain of 19% and 16% respectively. Let us now examine the
above results in respect to group1 and group2 separately. In Figure 3.13a we
depict the average edgecut results just over the graphs that belong to group1.
Here, we see that both kgggp l and rbbgm equally minimize the edgecut
with an average gain of 19%. Now if we focus on the edgecut results obtained
for group2 in Figure 3.13b, we may see that kgggp l provides better results
with an average gain of 20% followed by rbbgm with a gain of 10%.

To measure the performance results of this experiment, in 3.12b we present
the average execution time of each method over the entire collection. In this
figure we see that kgggp l and rbbgm perform sightly better than Scotch
until the number of parts reaches 200, but become worse than Scotch when
the number of parts is 500. If we focus on the performance results of group1 and
group2 separately (in Figures 3.13c and 3.13d), we may see that the overhead
of kgggp l is due to group1. More precisely in Figure 3.14, it is clear that
the poor performance of kgggp l comes mainly from the Walshaw collection
where kgggp l is 2.5 times worse than Scotch when the number of parts is
500.

This overhead is related to the fact the kgggp l fails to find a balanced
partition in 10% of the total executions for the Walshaw collection. Note also
that both Scotch and rbbgm have difficulties finding a partitioning solution
and often exhibit a large number of failures. In Table 3.3 we demonstrate the
percentage of failures for each method when the number of parts is 500. In
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Figure 3.12: Average results over the entire DIMACS’10 collection (bubble
scheme).

this context, we may say that kgggp l is more robust since it fails only for
the Walshaw group.

Table 3.3: Failure percentages of each method when the number of parts is
500 (bubble experiment).

method streets matrix numerical clustering dynframe walshaw
Scotch 88% 2.5% 32% 33% 10% 62%
rbbgm 97% 7.5% 45% 40% 5% 60%
kgggp l 0% 0% 0% 0% 0% 10%

Repartitioning Scheme

For the repart scheme, we follow the repartitioning method proposed by Zoltan
in [20] (and described in Section 3.1), where an initial partition is used and
its total vertex weight is randomly modified in order to obtain 50% of load
imbalance. Based on the above imbalanced partition, we build an enriched
graph adding one single fixed vertex per part along with the migration edges
that connect it with its respective part. Note that the enriched graphs are
larger in size compared to the original ones, thus we test our algorithms on
a sub-collection of the graph set in Table 3.4 omitting the large collections
dynframe and Streets.

For this experiment, global results on the edgecut and execution time are
presented in Figures 3.15a and 3.15b while the same results are also depicted
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Figure 3.13: Average results over group1 and group2 (bubble scheme).

separately for each group of graphs in 3.16. In Figure 3.15a, we see that
kgggp l obtains minimized edgecut results for the entire collection with an
average gain of 11% compared to Scotch and 18% compared to rbbgm.
More precisely, if we examine the results of each group of graphs separately,
we notice that kgggp performs very well for graphs that come from numerical
simulations. For instance, kgggp l exhibits an edgecut minimization of up to
30% compared to Scotch and up to 36% compared to rbbgm for the Numer-
ical group, as seen in Figure 3.16. Additionally, we observe that rbbgm does
not produce partitions of high quality and thus may not be a suitable solu-
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Figure 3.14: Average results on the edgecut quality and time execution for
each group in the DIMACS’10 collection (bubble scheme).

tion for the repart scheme. A possible explanation is that, in this experiment,
fixed vertices are connected through migration edges to all vertices of their
respective part. As a result, the maximum-weight graph matching problem
that should be solved during this method is more complicated. As a result
the additional edgecut of re-introducing fixed vertices to the graph is rather
significant.

Finally, regarding the runtime performance of this experiment, in Fig-
ure 3.15b one may see that Scotch is often the fastest method along with
kgggp l while rbbgm is always the slowest one. Even though kgggp is
not much slower than Scotch, these results confirm the poor performance

60 Maria Predari



3. Graph Partitioning with Initial Fixed Vertices

of kgggp l as the number of parts increases. However for certain groups of
graphs like Numerical and Matrix, we may see in Figure 3.16 that kgggp l
is the fastest method for all number of parts.
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Figure 3.15: Average results over the entire DIMACS’10 collection (repart
scheme).

3.5.4 Experiments with Hypergraph Tools

Finally, in order to further evaluate our results, we add a last comparison be-
tween the above methods and two well-known hypergraph tools, PaToH and
Zoltan. We choose these hypergraph tools because they are quite efficient
and they support problems with initially fixed vertices (as seen in Table 3.1).
Note that partitioning a graph structure with hypergraph tools may be some-
what unfair. This is due to the fact that hypergraph tools are designed for
more complicated structures and an additional overhead is introduced when
they partition a graph. However it is still interesting to compare the results
especially in terms of edgecut minimization.

To convert the graphs to hypergraphs, we transform each edge of the graph
to an hyperedge of size two. In order to conduct the above experiment, we
use a small collection, for instance the Walshaw collection. Again, we perform
experiments with fixed vertices following the bubble and repart schemes. For the
hypergraph tools we use the connectivity-1 metric (mentioned in Section 2.2)
to measure communications because it can directly be compared to the classic
edgecut metric for graphs. Note that in hypergraph partitioning, other metrics
may be more important such as the total or maximum communication volume.
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Figure 3.16: Average results on the edgecut quality and time execution for
each group in the DIMACS’10 collection (repart scheme).

However since graph partitioning algorithms primarily minimize the edgecut
metric, we continue to use it as the main metric for these experiments.

The edgecut results for these experiments are depicted in Figures 3.5.4 and
Figure 3.5.4 for the bubble and repart schemes respectively. For the bubble
scheme, Zoltan produces partitions of slightly better quality compared to
Scotch with an edgecut gain of 2%. For the repart scheme the edgecut results
of Zoltan are almost the same as that of Scotch. Finally, PaToH does not
manage to minimize the edgecut in these experiments.

Here we choose not to show the performance results of the hypergraph
tools, since such a comparison would be unfair. During both experiments
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(bubble and repart), PaToH and Zoltan were the slowest tools. This result
is expected, since PaToH and Zoltan use complicated structures designed for
hypergraphs that are treated by more time consuming partitioning algorithms.
Also Zoltan is meant to be a parallel partitioner, thus using it here as a
sequential tool introduces a huge overhead. However, we may remark that
PaToH scaled better than the other methods as the number of parts increases.

0.8

1.0

1.1

10 20 50 100 200 500
nb parts

re
la

tiv
e 

ed
ge

cu
t

Methods KGGGP_L PATOH RBBGM SCOTCH ZOLTAN

Figure 3.17: Average edgecut results over the Walshaw collection, comparing
graph algorithms to hypergraph tools for the bubble scheme.

3.6 Conclusion

This work is driven from our interest in graph partitioning with initially fixed
vertices that appear in many scientific problems such as the dynamic load bal-
ancing of large-scale applications. We strongly believe that the above problem
plays an important role in solving the load balancing of coupled simulations.
Under this model, additional constraints of the underlying problem are repre-
sented in the graph with initially fixed vertices. In this case, we notice that
the state-of-the-art algorithm (RB), often does not produce partitions of good
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Figure 3.18: Average edgecut results over the Walshaw collection, comparing
graph algorithms to hypergraph tools for the repart scheme.

quality. Here, we investigate the behavior of RB methods under this constraint
and we present a comparison between RB and the two main alternative algo-
rithms for such problems. More precisely, the first alternative is kgggp, a
new greedy graph growing algorithm and the method proposed in kPaToH.
In this chapter we compare the optimized version of kgggp (kgggp l) and an
implementation of kPaToH for graphs, named rbbgm with an RB-based al-
gorithm (Scotch). This implementation was necessary since kPaToH is not
publicly available and allows a fair comparison of the algorithms that support
problems with fixed vertices.

In this study, kgggp l and rbbgm are tested on two different configura-
tions of fixed vertices and their results in terms of edgecut minimization and
runtime performance indicate that they handle graphs with fixed vertices bet-
ter than RB. More precisely, in the first experiment both methods exhibit an
up to 25% edgecut minimization, while in the second one kgggp performs
better than rbbgm and Scotch, with a maximum gain of 36% and 30%
respectively. Note finally that kgggp remains robust to different graph struc-
tures compared to rbbgm and Scotch but is amenable to a high number of
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parts in terms of runtime performance.
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Table 3.4: List of graphs used for experiments from the popular DIMACS’10
collection.
group collection graph # vtx # edges avg d◦ min d◦ max d◦

1 walshaw 144 144,649 1,074,393 14.86 4 26
1 walshaw 4elt 15,606 45,878 5.88 3 10
1 walshaw cs4 22,499 43,858 3.90 2 4
1 walshaw cti 16,840 48,232 5.73 3 6
1 walshaw fe 4elt2 11,143 32,818 5.89 3 12
1 walshaw fe ocean 143,437 409,593 5.71 1 6
1 walshaw fe sphere 16,386 49,152 6.00 4 6
1 walshaw whitaker3 9,800 28,989 5.92 3 8
1 walshaw wing 62,032 121,544 3.92 2 4
1 walshaw auto 448,695 3,314,611 14.77 4 37
1 matrix audikw1 943,695 38,354,076 81.28 20 344
1 matrix ecology1 1,000,000 1,998,000 4.00 2 4
1 matrix thermal2 1,227,087 3,676,134 5.99 2 10
1 matrix af shell10 1,508,065 25,582,130 33.93 14 34
1 matrix G3 circuit 1,585,478 3,037,674 3.83 1 5
1 matrix nlpkkt120 3,542,400 46,651,696 26.34 4 27
1 matrix ldoor 952,203 22,785,136 47.86 27 76
1 matrix cage15 5,154,859 47,022,346 18.24 2 46
1 numerical NACA0015 1,039,183 3,114,818 5.99 3 10
1 numerical 333SP 3,712,815 11,108,633 5.98 2 28
1 numerical NLR 4,163,763 12,487,976 6.00 3 20
1 numerical adaptive 6,815,744 13,624,320 4 2 4
1 numerical AS365 3,799,275 11,368,076 5.98 2 14
1 numerical M6 3,501,776 10,501,936 6.00 3 10
1 numerical channel-b050 4,802,000 42,681,372 17.78 6 18
1 numerical venturiLevel3 4,026,819 8,054,237 4.00 2 6
1 dynframe hugebubbles-00000 18,318,143 27,470,081 3.00 2 3
1 dynframe hugebubbles-00010 19,458,087 29,179,764 3.00 2 3
1 dynframe hugebubbles-00020 21,198,119 31,790,179 3.00 2 3
1 dymframe hugetrace-00000 4,588,484 6,879,133 3.00 2 3
1 dymframe hugetrace-00010 12,057,441 18,082,179 3.00 2 3
1 dynframe hugetrace-00020 16,002,413 23,998,813 3.00 2 3
1 dynframe hugetric-00000 5,824,554 8,733,523 3.00 2 3
1 dynframe hugetric-00010 6,592,765 9,885,854 3.00 2 3
2 clustering citationCiteseer 268,495 1,156,647 8.62 1 1318
2 clustering coAuthorsCiteseer 227,320 814,134 7.16 1 1372
2 clustering coAuthorsDBLP 299,067 977,676 6.54 1 336
2 clustering coPapersCiteseer 434,102 16,036,720 73.88 1 1188
2 clustering coPapersDBLP 540,486 15,245,729 56.41 1 3299
2 clustering as-22july06 22,963 48,436 4.22 1 2390
2 streets asia 11,950,757 12,711,603 2.13 1 9
2 streets belgium 1,441,295 1,549,970 2.15 1 10
2 streets germany 11,548,845 12,369,181 2.14 1 13
2 streets great-britain 7733822 8156517 2.11 1 8
2 streets italy 6,686,493 7,013,978 2.10 1 9
2 streets netherlands 2,216,688 2,441,238 2.20 1 7
2 streets luxembourg 114,599 119,666 2.09 1 6
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Chapter 4

Partitioning for Coupled
Simulations

In this chapter, we focus on the problem of load balancing for coupled si-
mulations, as presented earlier in this work (Chapter 2). Remember that when
coupling operations are executed in parallel (following the parallel CCS or the
DCS), the computational load during couplings is unevenly distributed among
processors and the inter-component communications are not minimized. Under
this context, the currently used method that includes classic graph partitioning
techniques that balance each component separately, is not sufficient.

In this chapter, we propose new graph partitioning algorithms that ad-
dress this problem. The idea here is to efficiently partition the data of the
coupled simulation as part of an interactive system and not just as part of in-
dependent components. In this way, the load is balanced both during internal
computations of each component and during the coupling. Additionally, with
a partitioning method that is aware of the coupling process, the communica-
tion costs between processors of different components may be reduced in terms
of the number of exchanged messages. We call the procedure of finding such
data distributions the co-partitioning. Finally, note that solving the problem
of graph partitioning with initially fixed vertices (as studied in Chapter 3) is
a crucial step in designing efficient co-partitioning algorithms.

In the remainder of this chapter, we first describe the general model of cou-
pled simulations and then, we formally introduce the co-partitioning problem,
extending the classic definition. Furthermore, we propose new co-partitioning
techniques that explicitly take into consideration the coupling process and
perform a coupling-aware partitioning of the entire simulation. Finally, we
validate the proposed methods with a series of experiments on synthetically
generated and real-life data.
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4.1 Model of Coupled Simulations

In this section, we introduce a new model that describes the general execution
of coupled simulations following the organizing principles for coupling in multi-
physics and multi-scale simulations, in [47].

A coupled model consists of a number of component models (or simply
components), namely Ci, i = 1, . . . , N , that collectively represent a complex
system through their evolution and mutual interactions, under a coupling envi-
ronment. A component Ci represents a model that solves an individual system
defined in a computational domain Γi. Two components Ci, Cj interact, and
thus are coupled, when parts of their entire computational domains overlap,
imposing data dependencies on their models. The overlapping creates a com-
mon coupling interface Ωij = Γi∩Γj 6= ∅. In addition, solutions on the domain
of Ci may serve (directly or after computations) as input data for Cj and/or
vice versa. Note that the type of domain overlapping may range from the
simplest case of a lower dimension surface coupling (in Figure 4.1) to partially
volumetric coupling (in Figure 4.1) or to full volume coupling, where Γi = Γj.
In principle, three or more domains can intersect forming high order coupling
interfaces, but in this work we assume that each coupling involves exactly two
components.

Figure 4.1: Example of coupling interface for two rectangular computational do-
mains.

In some simulations, coupling between components may occur regularly
in time with a certain coupling period related to the physical timestep of the
coupled simulation. Therefore, depending on the frequency of the coupling, the
potential improvement introduced by a co-partitioning algorithm may result in
a significant minimization of the total elapsed time. On the other hand, when
the coupling is sporadic or highly unpredictable the performance gain may be
insignificant or even negative due to the overhead of the co-partitioning.

In Figure 4.2, we illustrate the model of a coupled simulation taken on
one iteration with two components running concurrently. This model may be
extended to N components, but for ease of presentation we depict it here just
for two components, C1 and C2. As one can see, a coupled model evolves
iteratively in time, entering a sequence of regular and coupling phases. Note
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that, we assume the presence of synchronization in our model, that occur before
and after entering a coupling phase.

Figure 4.2: General model of a complex simulation with two coupled components
C1 and C2.

A regular phase occurs when components compute solutions independently,
on their own computational domain. In this case, all data associated with
each component participate in the computations. The number of processors
assigned to each component Ci in the regular phase is ki. During a regular
phase, each component uses a different time and space discretization, so the
number of processors required by each solver may vary, and therefore ki 6=
kj for i 6= j. That usually leads to differences in execution time between
components at the end of the regular phase, which results in an idle time
Tidle for each coupling (Ci ∧ Cj). As explained in Chapter 2, Tidle denotes
the time the fastest component waits in the synchronization step until the
slower component finishes calculations on its computational domain and enters
a coupling phase.

Besides, a coupling phase occurs when components interact with each other,
exchanging data on the coupling interface Ωij for i 6= j. Note that we refer to
this type of communication as inter-component communication since data are
exchanged between processors that belong to different components. Addition-
ally, during this phase the coupling framework drives the overall application,
ensuring synchronization among the components, locating data through dis-
tributed geometries and performing the interpolation step between different
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meshes. Note that the number of active processors for each component during
the coupling phase (k

′
i) is often lower, namely k

′
i ≤ ki and depends on the size

of coupling interface. Observe that these are the processors of each component
that own data on Ωij.

Algorithm 2 Algorithmic description of a coupled simulation.
Input: C, k,N, t
Input/Output: s
1: for each iteration t do
2: for component Ci ∈ [1, . . . , N ] do
3: for all processor ki do in parallel
4: compute(si(t))
5: internal-exchange(si(t))
6: end for
7: end for
8: wait()
9: for each coupling (Ci ∧ Cj) do

10: for all processor k
′

i ∪ k
′

j do in parallel
11: compute(si(t))
12: inter-component-exchange(si(t))
13: end for
14: end for
15: end for

In Algorithm 2, the algorithmic description of a coupled simulation with
N components (Ci, i = 1, . . . , N) is illustrated. We assume that for each
component an independent data distribution of the computational domain has
been computed, as part of a preprocessing step. The data are then distributed
in the proper number of processors, that is ki for i = 1, . . . , N . The processors
that are active during the regular phase of Ci are denoted as ki while its
processors that are active during the coupling phase (Ci ∧ Cj) as k

′
i.

Let us now analyze the total execution time of a coupled simulation with
two components under the following expression. Again, this expression could
be extended to include N components but for simplicity we focus here on just
two:

Ttotal = max(α1 ∗ T (C1), α2 ∗ T (C2)) + T
′
(C1 ∧ C2) (4.1)

= min(α1 ∗ T (C1), α2 ∗ T (C2)) + Tidle + T
′
(C1 ∧ C2) (4.2)

where:

• αi is the number of iterations performed during the regular phase for Ci,
where i = 1, 2;

• T (Ci) is the time spent by Ci during the regular phase;

• Tidle is the time the fast component has to wait before entering a coupling
phase;
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• T ′
(Ci ∧ Cj) is the time spent during the coupling phase between Ci and

Cj.

More precisely, since there is an independent data distribution for each
component that assigns the computations of each domain to a number of pro-
cessors, T (Ci) may be written as following:

T (Ci) = (Tcomp(ki) + Tcomm(ki)) (4.3)

where:

• Tcomp(ki) is the time required for Ci to execute one iteration of compu-
tations during the regular phase, taken on the slowest processor;

• Tcomm(ki) is the communication time of exchanging data among the pro-
cessors of Ci during the regular phase.

Therefore, in order to minimize the total execution time of a coupled sim-
ulation under a parallel environment, one should minimize each factor of the
equation 4.2. Now if we consider that the load balancing of C1 and C2 is
solved independently with a graph partitioning for each component, the fac-
tors T (C1) and T (C2) are minimized. In other words, the computations during
the regular phase are equally distributed among the available processors for
each component and the internal communication costs are minimized based on
the edgecut criterion. However, using such a load balancing approach (naive
co-partitioning), the Tidle is not minimized and neither is the time spent during
the coupled phase (T

′
(C1 ∧ C2)).

Therefore, in order to minimize the total execution time of a coupled ap-
plication, we identify two important subproblems:

i. The resource distribution problem: Here, the problem is to find a good
distribution of the total number of available processors among the compo-
nents, in order to minimize Tidle. The main idea is to assign less processor
resources to the fastest component following an empiric approach based
on performance studies, as they do for instance in [36]. That way, Tidle
is minimized and the load balancing of the regular phase for the whole
coupled simulation is optimized.

ii. The data distribution problem: Assuming a given number of processors
for each component (by solving the previous problem), the goal here is to
find a good data distribution that minimizes the execution time during
the coupling phase. Employing a classic load balancing algorithm for
each component separately does not minimize the total execution time
of a coupled simulation 4.2, but only the time of each component spent
during the regular phase (T (Ci)).
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More precisely, the time spent during the coupling phase follows the ex-
pression below:

T
′
(C1 ∧ C2) = max(T

′
(C1), T

′
(C2)) + T

′

inter−comm(k
′

1 ∧ k
′

2) (4.4)

where

T
′
(Ci) = T

′

comp(k
′

i) + T
′

comm(k
′

i)

and T
′
inter−comm(k

′
1∧k

′
2) represents the inter-component communications. Note

that T
′
comp(k

′
i),

′
Tcomm(k

′
i) and T

′
inter−comm(k

′
1∧k

′
2) are not minimized by a clas-

sic load balancing algorithm since neither the computations nor the commu-
nications required during the coupled phase have been explicitly considered
during the load balancing. Remember that k

′
i is the number of processors

that own data belonging to Ci and are active during the coupling phase. Note
that under a naive co-partitioning, there is no control on this number since
a classic partitioning algorithm ignores the additional requirements (in terms
of computations or communications) of each component during the coupled
phase.

In this work, we assume that the resource distribution problem is already
addressed, and thus Tidle is minimized. As a result, we focus on the data
distribution problem and we propose algorithms that aim at minimizing the
time spent during the coupling phase. Note that there is a trade-off between
the minimization of the coupling phase and the minimization of the regular
phase which is imposed by the additional requirements of the co-partitioning
problem.

4.2 Related Work

In this section, we discuss existing work that is related to the load balancing
problem for coupled simulations. Remember that in Chapter 2, we reviewed
existing load balancing techniques regarding the resource distribution problem.
However note, that as far as we know, partitioning solutions that address
the data distribution problem have not been yet proposed in the literature.
Nevertheless, in this section, we briefly review studies that address a similar
problem, that is, the graph partitioning for multi-phase computations.

A multi-phase simulation is a single-constraint code with N distinct compu-
tational phases, each separated by an explicit synchronization step. In general,
the amount of computations performed for each element of the mesh is different
for different phases. In order to effectively solve such multi-phase computa-
tions in parallel, one must partition the mesh such that the computation in
each phase is balanced, and the amount of interactions among the different
processors in each phase is minimized. Note that the traditional graph parti-
tioning model is not effective in such computations. For example, if we assign
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to each vertex a weight that corresponds to the total amount of computations
performed by all phases, we will get a partitioning that is not necessarily bal-
anced during each computational phase (due to the explicit synchronization
steps).

Such an example is the scientific simulations in which the mesh elements
come in contact with each other and are routinely performed in the context of
simulations that study vehicle crashes, material deformations, and projectile-
target penetration. Typically, the simulation involves localized stress-strain
finite element calculations over the entire mesh together with a much more
complex contact detection phase over the restricted areas of possible penetra-
tion. Most of the existing partitioning algorithms cannot effectively decompose
these types of simulations as they ignore the underlying geometry and produce
subdomains that result in high-communication overheads during the contact-
search phase of the computation. In Figure 4.3 one may see various stages of
a compact-impact simulation.

Figure 4.3: Example of contact-impact simulation (extracted from [41]).

A first approach to balance contact-impact simulations is proposed in [55]
and uses two different partitions of the mesh, one for the contact phase and
another one for the finite element calculation. In the first partitioning, a tradi-
tional multilevel graph partitioning algorithm is used to evenly distribute the
entire mesh, whereas in the second partitioning, a recursive coordinate bisec-
tion (RCB) algorithm is used to evenly distribute only the surface elements.
As a result, these two different decompositions ensure that the overall compu-
tation is balanced throughout the entire simulation. The main disadvantage
of this approach is that data must be redistributed between the two partitions
at every time-step and that some memory is duplicated. However, the authors
report that the advantage of achieving load-balance in both phases greatly
outweighs the cost of maintaining two partitions.

Another approach to solve such problems is based on the multi-constraints
partitioning algorithm, initially proposed in [38]. The multi-constraint par-
titioning method extends the classic graph partitioning problem formulation,
by assigning a vector of weights to each vertex, that represents the different
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computational load of the vertex in every phase. The problem now becomes
that of finding a partitioning that minimizes the communication costs and is
balanced for each weight constraint.

However, even though this multi-constraint based approach achieves the
desired load balance, care must be taken to ensure that the overall approach
does not lead to excessive communication overheads during the contact-impact
phase for contact detection. To overcome the above problem, in [41] the authors
develop multi-constraint graph partitioning algorithms that take into account
the underlying geometry. Additionally, they propose better parallel search
algorithms specifically designed for locating detections, that reduce the number
of excessive communication. Finally, a last approach that employs the model of
the multi-constraint method is presented in [72] and aims to find a partition
for the compact-impact simulations that treats each phase separately, using
results obtained from previous phases.

At first glance, one could consider the co-partitioning problem as several
multi-phase problems, each one representing a different component. How-
ever this representation is not adequate, since it does not include the coupling
communications between components which indicate external dependencies be-
tween different multi-phase simulations. Moreover, since this approach has no
control on the number of processors in each phase, it would impose the use
of all available processors in the coupling phase, that may degrade the global
edgecut. This is especially true if the coupling interface is small compared to
the whole computation domain.

4.3 The Co-Partitioning Problem

In this section, we first give a formal definition of the co-partitioning problem,
equivalent to the classic partitioning one. Then we introduce some graph
operators based upon which we describe our co-partitioning algorithms, called
Aware, ProjRepart and ProjSubpart. For reasons of consistency, we
also describe the state-of-the-art method called Naive as a sequence of graph
operators.

4.3.1 Definition of Co-Partitioning

Here, we explain how we propose to enrich the classic graph model to take into
account the coupling phase of a coupled simulation explicitly and we formally
define the co-partitioning problem. In the remainder of this chapter, we assume
coupled simulations with two components represented by subscript letters A,B
while the exponent notation ′ denotes the coupling phase.

Let us consider that each individual component involved in the simulation,
is represented by a graph, that is GA = (VA, EA) for model A and GB =
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(VB, EB) for B. As shown in Figure 4.4, we represent the coupled model with
the global graph, GAB = (VA ∪ VB, EA ∪ EB ∪ IAB), where IAB is the set of
weighted edges that interconnect some vertices of VA and VB. We call those
edges interedges1 (as they connect vertices from different graphs), and they
represent the communication costs of exchanging data that belong to different
components during the coupling phase (inter-component communications). In
practice, these interedges are located thanks to geometric intersection between
mesh cells of A and B.

Figure 4.4: Example of a global graph GAB based on two graphs GA and GB and interedges
IAB (in dashed red), showing the coupled subgraphs G

′

A and G
′

B (circled in blue).

Moreover, we may define the coupled graph G
′
AB as the subgraph of GAB

whose vertex set includes only vertices that are adjacent to interedges. Like-
wise, we can obtain the coupled subgraphs G

′
A = (V ′A, E

′
A) and G

′
B = (V ′B, E

′
B)

from GA and GB respectively.
In this context, we aim to find a partitioning of the global graph that

is aware of the coupled subgraph. We call this problem the co-partitioning
problem. More precisely, a K-way partition PAB of the global graph GAB is
said to be a (kA, kB, k

′
A, k

′
B)-way co-partition, if the following conditions hold:

• PA is a kA-way balanced partition of GA,

• PB is a kB-way balanced partition of GB,

• P ′
A is a k

′
A-way balanced partition of G

′
A,

• P ′
B is a k

′
B-way balanced partition of G

′
B,

• P ′
A = PA \ V ′A,

• P ′
B = PB \ V ′B,

• PAB = PA ∪ PB,

1In other words, the interedges IAB just represent a binary relation from VA to VB .
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• K = kA + kB,

• k′
A ≤ kA and k

′
B ≤ kB.

Following the above definition, we expect that such a co-partition will pro-
vide a good load balancing for both the regular phase and the coupling phase,
and for both components A and B, since it explicitly finds a partition for the
graphs that participate in the regular phase (GA and GB) and their subgraphs
involved in the coupling phase (G

′
A and G

′
B). As an additional criterion, we

aim to minimize the inter-component communication cost (represented by the
weighted interedges), by minimizing the total number of messages (totZ) and
the maximum volume of communication per processor that participate in the
coupling phase (maxV ). Note that the total volume of communication (totV )
remains rather constant in the coupling phase.

Figure 4.5: Example of (4, 6, 2, 3)-way co-partition of GAB.

Figure 4.5 depicts a (4, 6, 2, 3)-way co-partition. Assuming all vertex/edge
weights are 1, we see that the balance criterion is perfectly respected in the
regular phase for both PA and PB (kA = 4 and kB = 6), with an edgecut
respectively equal to 8 and 12. As for the coupling phase (red vertices), P

′
A

and P
′
B are perfectly balanced as well (k

′
A = 2 and k

′
B = 3), with an edge-

cut equal to 1 and 2 respectively. Considering the coupling communication,
totV = 6, maxV = 2 and totZ = 4, corresponding to the following processor
pairs assigned to different components: (1, 5), (1, 6), (2, 6), (2, 7). The following
communication matrix C = (Ci,j)kA×kB represents the coupling exchange from
A to B:

C =


0 0 0
1 1 0
0 0 0
0 1 1


Based on C, it is easy to define the coupling metrics:
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totV =
∑

1≤i≤kA,1≤j≤kB

Ci,j

maxV = max

(
max

1≤i≤kA

∑
1≤j≤kB

Ci,j , max
1≤j≤kB

∑
1≤i≤kA

Ci,j

)
totZ = |{Ci,j > 0}|

4.3.2 Graph Operators

Subsequently, we describe in detail the basic steps of the proposed algorithms.
To facilitate this description, we introduce some graph operators as building
blocks that produce new graph structures or partitions. Namely, we use the
following operators: partition, repartition, subpartition, restriction, extension
and projection.

Partition. First, we define the partition operator as Part(G, k)→ P which
simply returns a k-way balanced partition of the graph G with respect to an
imbalance tolerance ε (see Chapter 2 for the definition).

Repartition. Then, the repartition operator is defined asRepart(G,P, k, l)→
P ′. This operator computes a new l-way balanced partition of a graph G using
a former (possibly unbalanced) k-way partition of the same graph, such that
the migration volume is minimized as an additional criterion. This repartition
operator uses the k× l repartitioning algorithm presented in [70], that contrar-
ily to classic repartitioning algorithms (scratch-remap [52], diffusion [60, 44] or
biased partitioning [5, 20]) enables to change the target number of parts (i.e.,
l 6= k). The k × l repartitioning algorithm constructs, with a greedy strategy,
a good migration matrix2 C, that minimizes both the total migration volume
(totV ) and the total number of messages exchanged during migration (totZ).
Then it performs a biased partitioning of the graph G, enriched with l addi-
tional fixed vertices connected to the k former parts based on the migration
matrix C (Fig. 4.6). More details on this operator and its implementation can
be found in [69, 70].

Subpartition. The subpartition operator is defined as Subpart(G,P, k, l)→
P ′. Assuming that P is well-balanced, this operator is a simple alternative to
the repartition operator, in the particular case where k and l are multiples with
k ≤ l. This operator computes a l-way balanced partition of a graph G using

2A migration matrix C = (Ci,j) of dimension k × l represents the amount of data that
migrates from a former part i to a newer part j (if i 6= j) or the amount of data that remains
in place (if i = j).
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P (unbalanced) C

G̃ P ′

Figure 4.6: Sample of a 5×7 repartitioning of a 2D grid of dimensions 10×10. The
migration matrix C explains how vertices will migrate from the 5 former parts to the
7 newer. It is chosen to minimize both totZ and totV . On the enriched graph G̃, the
square vertices represents the l fixed vertices, connected to former parts according
to C. The final partition obtained is well balanced and respects the communication
scheme imposed by C.

an initial balanced k-way partition of the same graph (under an imbalance
factor ε). It just subdivides each part of P into l/k subparts to obtain a final
partition P ′ into l parts. This method is straitghforward, as it just requires to
apply the partition operator k times using an imbalance tolerance of ε/2.
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Restriction. The restriction operator can be expressed asRest(G, V ′)→ G′,
and returns a subgraph G′, that is the restriction of G = (V,E) to vertex set
V ′ ⊂ V . Given the interedges IAB and the graph GA, we will use this op-
erator to compute the coupled subgraph G

′
A as Rest(GA, Dom(IAB)) where

Dom(IAB) = {ua ∈ VA, (ua, ub) ∈ IAB} is the departure domain of IAB. The
Figure 4.14 illustrates this operator on two cubic meshes with a surface cou-
pling.

Extension. Next, we define the extension operator Ext(G,G′, P ′, k, l)→ P ,
which returns a l-way partition of a graph G using a given k-way partition P ′

of a subgraph G′ ⊂ G, where l ≥ k. The idea behind this operator is to extend
a given partition P

′
A of the coupled subgraph G

′
A to the graph GA, such that

vertices already assigned to a part in P
′
A remain fixed in the new partition PA,

as shown in Figure 4.7.

(a) initial partition (b) extended partition

Figure 4.7: Given the k
′
A-way partition P

′
A of G

′
A in Figure 4.7a, the extension

operator computes a kA-way partition PA of GA in Figure 4.7b, with k
′
A = 2 and

kA = 4.

Projection. Finally, we define the projection operator, Proj(G,G′, I, P, k)→
P ′, that finds a k-way partition of a graph G′, using a given k-way partition of
a graph G and the interedges I ⊂ V × V ′, with G = (V,E) and G′ = (V ′, E ′).
The key idea of the projection operator is to compute a similar partition of
G on G′ using the relation provided by interedges I, that map vertices from
V to V ′. More precisely, lets consider a vertex u′ ∈ V ′ and the vertex set
S(u′) = {u ∈ V, (u, u′) ∈ I}. In the case where all the vertices of S(u′) are
mapped to the same part p in P , then u′ is trivially assigned to this part p in
P ′. In the case where the vertices of S(u′) are mapped to different parts, the
situation is ambiguous, and one must select a part for u′ according to a second
criterion, like the edgecut optimization. In practice, this operator is used to
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compute a similar partition between the two coupled subgraphs G
′
A and G

′
B,

connected through interedges IAB, as shown in Figure 4.8. In this example,
the projection is trivial for interedges (a, e) and (d, g), that are respectively
mapped to part 1 and 2. But, it is clearly ambiguous for vertex f , that is
shared by interedges (b, f) and (c, f), since b and c are already mapped to
different parts. As the edgecut criterion in G

′
AB gives the same result for this

vertex, one chooses randomly to assign f in part 1.

To implement this operation, we just perform a graph partitioning of G
′
AB

in k parts, where the vertex weight of G
′
AB is set to zero such that all ver-

tices of G
′
A are fixed to their own part according to P

′
A, with a vertex weight

set to zero. As an optimization, one collapses all vertices of G
′
A into k fixed

super-vertices that represent each part. By minimizing the edgecut of such an
enriched graph, the partitioning routine will compute the desired projection as
a balanced partition P̃

′
B, assuming P

′
A is initially well-balanced.

Note that the repartition, projection and restriction operators use initially
fixed vertices in order to model additional constraints on the graph struc-
tures. For that, we implement the above operators with a graph partitioning
algorithm that supports fixed vertices, as for instance rbbgm or kgggp as
explained in Chapter 3.

Figure 4.8: Illustration of the projection operator from graph G
′
A to G

′
B. Given the

k
′
A-way partition P

′
A (in blue), one aims to find a k

′
A-way partition of G

′
B (in dashed

blue), with k
′
A = 2.

4.3.3 Co-Partitioning Algorithms

We will now present our co-partitioning algorithms, called Aware, Proj-
Repart and ProjSubpart, and the Naive method used as the state-of-the-
art solution. All these algorithms are precisely described as a sequence of the
graph operators previously defined.
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For these algorithms, we use as an input the graphs GA and GB, the in-
teredges IAB (or I−1AB = IBA) and the number of processors kA and kB used for
both components. Besides, as we do not address the problem of resource dis-
tribution (introduced in Section 4.1), we assume that the number of processors
used in the coupling phase for both components (i.e., k

′
A and k

′
B) are also pro-

vided as an input). Nevertheless, in section 4.4, we will give a simple heuristic
to compute these inputs. All our algorithms solve the co-partitioning problem
(defined in Section. 4.3.1) and compute the output partitions PA and PB. Let
us now give some explanations about our three co-partitioning algorithms:

Naive. As described in Figure 4.9, the Naive method just computes a par-
tition for each graph (GA and GB) independently, without taking into account
the interedges, as it is currently done in complex coupled simulations. This
simple algorithm is clearly not aware of the coupling phase. It will be used
as a standard to compare against other methods in the experimental study
(Sec. 4.4). In this method, the parameters k

′
A and k

′
B are not managed, and

the coupled partitions P
′
A and P

′
B are not controlled.

Inputs: GA, GB, kA, kB
Outputs: PA, PB

i. Part(GA, kA)→ PA

ii. Part(GB, kB)→ PB

Figure 4.9: Description of the Naive co-partitioning algorithm.

Aware. This method is divided in three main steps, symmetrically applied
to graphs GA and GB (Fig. 4.10). It starts by computing the coupled subgraphs
(G

′
A and G

′
B) based on the interedges, using the restriction operator. Then,

one partitions each subgraph independently into k
′
A and k

′
B parts respectively.

Finally, the obtained partitions are stretched to the global graphs using the
extension operator.

ProjRepart. This method works as the Aware method, except it replaces
the “naive” partition of G

′
B by the projection & repartition steps (Fig. 4.11).

Here, the key idea is to improve the communication scheme during the cou-
pling phase, by minimizing both the maximum volume of communications per
processor (maxV ) and the number of messages (totZ). First, the projection
operator tries to keep the parts of P

′
A face-to-face with those of P̃

′
B (Fig. 4.13a

and 4.13b). Then, the repartitioning operator computes the partition P
′
B in a
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Inputs: GA, GB, IAB, kA, kB, k
′
A, k

′
B

Outputs: PA, PB

i. Rest(GA, Dom(IAB))→ G
′
A

ii. Rest(GB, Dom(I−1AB))→ G
′
B

iii. Part(G
′
A, k

′
A)→ P

′
A

iv. Part(G
′
B, k

′
B)→ P

′
B

v. Ext(GA, G
′
A, P

′
A, k

′
A, kA)→ PA

vi. Ext(GB, G
′
B, P

′
B, k

′
B, kB)→ PB

Figure 4.10: Description of the Aware co-partitioning algorithm.

way to maintain maxV and totZ quite low (Fig. 4.13c). In practice, it injects
the newer parts (in the case where k

′
A < k

′
B) and tries to keep the former ones

in place as far as it is possible (minimization of migration volume). Finally,
we extend the partitions obtained for G

′
A and G

′
B to the global graph as we do

also in Aware.

Inputs: GA, GB, IAB, kA, kB, k
′
A, k

′
B

Outputs: PA, PB

i. Rest(GA, Dom(IAB))→ G
′
A

ii. Rest(GB, Dom(I−1AB))→ G
′
B

iii. Part(G
′
A, k

′
A)→ P

′
A

iv. Proj(G
′
A, G

′
B, IAB, P

′
A, k

′
A)→ P̃

′
B

v. Repart(G
′
B, P̃

′
B, k

′
A, k

′
B)→ P

′
B

vi. Ext(GA, G
′
A, P

′
A, k

′
A, kA)→ PA

vii. Ext(GB, G
′
B, P

′
B, k

′
B, kB)→ PB

Figure 4.11: Description of the ProjRepart co-partitioning algorithm.

ProjSubpart. This method is a variant of the ProjRepart method in
the particular case, where k

′
A and k

′
B are multiples. One simply replaces the
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repartition operator by the subpartition operator to compute P
′
B from P̃

′
B.

Other steps are not changed (Fig. 4.12).

Inputs: GA, GB, IAB, kA, kB, k
′
A, k

′
B

Outputs: PA, PB

i. Rest(GA, Dom(IAB))→ G
′
A

ii. Rest(GB, Dom(I−1AB))→ G
′
B

iii. Part(G
′
A, k

′
A)→ P

′
A

iv. Proj(G
′
A, G

′
B, IAB, P

′
A, k

′
A)→ P̃

′
B

v. Subpart(G
′
B, P̃

′
B, k

′
A, k

′
B)→ P

′
B

vi. Ext(GA, G
′
A, P

′
A, k

′
A, kA)→ PA

vii. Ext(GB, G
′
B, P

′
B, k

′
B, kB)→ PB

Figure 4.12: Description of the ProjSubpart co-partitioning algorithm.

4.4 Experiments

In this section we present the experimental results performed on two sets of
data; synthetically generated and real-life coupled simulations.

4.4.1 Results on Synthetically Generated Meshes

In this section, we present some experimental results on a synthetically gen-
erated data set for the co-partitioning problem. Remember that Naive is our
implementation of the most commonly employed method for partitioning a cou-
pled simulation used in industrial and research context. More precisely, Naive
partitions each component as an independent problem with any partitioning
algorithm (for instance Metis or Scotch). In the remainder of this study, we
consider Naive as the reference approach and we compare its quality and per-
formance results to our co-partitioning methods: Aware, ProjRepart and
ProjSubpart. A small analysis over the use of a multi-constraint algorithm
as a solution to the co-partitioning problem is also included.

As explained before, we model the repartition, projection and extension op-
erators using initially fixed vertices, so that we need to implement these steps
with a partitioning tool that supports such structures. Therefore, in these
experiments we consider Scotch, kgggp and rbbgm (presented in Chap-
ter 3) as possible partitioning options. Remember that the above partitioning
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(a) Partition of G
′

A in k
′

A =
2.

(b) Projection to G
′

B . (c) Repartition of G
′

B in

k
′

B = 3.

(d) Overview of partitions for GA (left) and GB (right) after exten-
sion (kA = 4 and kB = 6).

Figure 4.13: Example of the PROJREPART co-partitioning for a test case
similar to setup3 (see Sec. 4.4).

84 Maria Predari



4. Partitioning for Coupled Simulations

algorithms are all implemented inside the same multilevel framework and have
exactly the same partitioning parameters (coarsening, refinement, imbalance
factor, etc).

In our experiments, we also include a version of the multi-constraint al-
gorithm presented in [38], as an alternative solution to the co-partitioning
problems. As said before, this method is used for a similar problem, the
multi-phase graph partitioning and addresses simulations where computations
of different phases have different load characteristics. Here, we implement
the Multiconst method that applies a multi-constraint partitioning for each
component separately. Even though the co-partitioning and the multi-phase
problem are not equal, in this work, we include results of the Multiconst
approach since it is still an interesting alternative.

Figure 4.14: Overview of the surface coupling between two mesh domains A
(left) and B (right) showing the restriction to the coupled subdomains (in red)
and interedges between cells. It corresponds to the setup3 test case described
in section 4.4.

In the following experiments, we use synthetically generated graphs that
correspond to mesh structures, and their characteristics are described in Ta-
ble 4.1. The coupling that we perform in these experiments is a simple surface
coupling between two components A and B with cubic domains, and hexahe-
dral or tetrahedral mesh discretization as explained in Figure 4.14. Besides, we
assume that all graphs have vertex/edge weigth of 1. In the remainder of this
section, we present the results of four experimental setups, named setup1,
setup2, setup3 and setup4, as illustrated in Table 4.2. Finally, we repeat
each experiment 5 times in order to compute average values for our results.
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Table 4.1: Description of the meshes used in the experiments.
Graph Elements |V | |E|
hexa-25x25x25 hexa 15,625 45,000
hexa-70x70x70 hexa 343,000 1,014,300
hexa-100x100x100 hexa 1,000,000 2,970,000
tetra-40630 tetra 40,630 78,131
tetra-928984 tetra 928,984 1,822,323

Table 4.2: Description of the experiments.
Exp. Graph A Graph B
setup1 hexa-25x25x25 hexa-100x100x100

setup2 hexa-25x25x25 hexa-70x70x70

setup3 tetra-40630 hexa-100x100x100

setup4 tetra-40630 tetra-928984

To measure the overall partitioning quality, we initially compare the ob-
tained results against the main objectives of partitioning, that is, the global
edgecut and partition imbalance for graphs GA and GB. In order to mea-
sure the co-partitioning quality, we introduce here some additional metrics
that give us an insight on the quality of the partitioning during the coupling
phase. Thus, an obvious yet important metric in this context is the partition
imbalance of the coupled subgraphs G

′
A and G

′
B. Finally, we are interested

in measuring the inter-component communication, so we also compare our re-
sults in terms of the number of messages exchanged between the components
(totZ) and the maximum volume of communication per processor in the cou-
pling phase (maxV ). Note that, we divide the number of messages exchanged
between components into two different types, the major (totZM) and minor
ones. The minor messages correspond to messages with size equal or less than
5% of the largest message and represent the latency in the network.

First Experiment

In the first experiment, we evaluate the behavior of co-partitioning methods
as the number of processors assigned to GB (kB) increases. Therefore, we keep
the number of processors assigned to GA (kA) fixed to a value (16) and for kB
we choose values that are multiples of kA. Note that an important aspect of our
co-partitioning algorithms is that they control the number of processors that
are assigned to the coupling phase for both components, k

′
A and k

′
B. Therefore,

for each pair of (kA,kB), we find a pair (k
′
A,k

′
B) where again k

′
B is a multiple of

k
′
A. This is not required by our methods, except for ProjSubpart which is

only applicable when k
′
B is a multiple of k

′
A. Finally, in this first experiment,

we include results for different partitioning tools that handle fixed vertices,
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that is Scotch, kgggp and rbbgm (see Chapter 3).

In Figures 4.15a and 4.15b, we present the average edgecut results over
all four setups for GA and GB respectively. The results are normalized to
the values obtained by the Naive method with Scotch as the partitioning
routine. Note that the edgecut results are quite similar among the different
setups, so we do not include details on the behavior of our methods for each
setup individually. In Figure 4.15a, we see that the edgecut of GA for Aware,
ProjRepart and ProjSubpart is not significantly increased compared to
the results of the Naive approach (less than 5% in average). This increase is
conditioned by the partitioning tool that implements the graph operators, and
here we see that kgggp has a minimum increase of 3% followed by rbbgm
and Scotch with an increase of 4% and 9% respectively. In Figure 4.15b, we
notice a relative increase on the edgecut results of GB for all methods compared
to those of GA. This is mainly due to the fact that our co-partitioning methods
are asymmetric and impose more constrains on the partitioning of GB through
the use of different operators.

Concerning the internal partitioning routine, one may see that here, rbbgm
and kgggp are better than RB with rbbgm being slightly better than kgggp
(for the chosen graphs). Since the edgecut of GB is more critical, in the
remainder of our experiments, we prefer to use the rbbgm method for the
implementation of the graph operators for all co-partitioning methods. (Naive
still uses Scotch since Scotch is the best partitioning solution for problems
without fixed vertices). Finally, we observe that the Multiconst method has
an edgecut overhead of 23% for GA and 15% for GB.

Additionally in Figures 4.16a and 4.16b, we present the imbalance results
during the coupling phase for both graphs, G

′
A and G

′
B. Remember that we

measure the imbalance explicitly for the coupling phase following the definition
of the co-partitioning and we allow a tolerance of 5% on the average part
weight. As one may see, all methods respect the balance constraint for both
graphs, except Naive, whose imbalance may reach in average 44% for G

′
A

and 50% for G
′
B (not shown in the figures). Remember that we should always

make sure that the imbalance constraint during the regular phase is equally
respected for both graphs. In this experiment, this is true for all methods
except Multiconst. Indeed, Multiconst fails to respect the classic load
balancing constraint in 31% of the cases. Even though, in this experiment, it
slightly overpasses the imbalance tolerance for G

′
B or G

′
A, this observation is

very important and reveals the main limitation of this method. More precisely,
Multiconst does not control the number of processors during the coupling
and, as a result, assigns almost all of the available processors of each component
to their coupling interface. This problem becomes highly important when the
number of processors for each component increases and leads to increased
inter-component communications.

Finally, in Figure 4.17, one may see the total number of messages exchanged
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Figure 4.15: Comparison of co-partitioning algorithms and partitioning meth-
ods: relative edgecut mean over all setups.

between the two components (totZ) for Aware, ProjRepart and ProjSub-
part. We present these results for each setup separately. Note that here we
distinguish the number of major and minor messages, coloring the latter with
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Figure 4.16: Comparison of co-partitioning algorithms with RBBGM

method: mean imbalance in coupling phase, over all setups (imbalance toler-
ance fixed to 5%).

a yellow shade. Additionally, the dashed red line represents the optimal num-
ber of messages that may be exchanged during the coupling phase among the
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processors of the two components. The calculation of the optimal totZ follows
the formula: totZ ≥ k

′
A + k

′
B − gcd (k

′
A, k

′
B), presented in [69].
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Figure 4.17: Comparison of co-partitioning algorithms with RBBGM method: to-
tal number of major messages totZM and total number of messages totZ for
each setup separately.

From the above formula, it is easy to see that the total number of messages
depends on the number of active processors in the coupling interfaces of both
components, k

′
A and k

′
B. In this experiment, we compare the results of our co-

partitioning methods to the optimal number of messages and not to the results
of Naive. We do that since the number of processors during the coupling phase
may be different between Naive and our co-partitioning methods. Remember
that Naive does not control k

′
A or k

′
B, so these values may be different and

would lead to an unfair comparison with other methods where k
′
A and k

′
B are
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imposed. More precisely, Naive assigns almost the same number of processors
for k

′
A compared to Aware, ProjRepart and ProjSubpart, but k

′
B highly

differs from that of Aware, ProjRepart and ProjSubpart as the total
number of processors for component B increases and does not allow us to
draw clear conclusions. Results for the Multiconst are also omitted for the
same reasons. Remember that Multiconst assigns many processors in the
coupling phase leading to a large number of messages during coupling.

Due to the differences in the mesh discretization between component A and
B, the problem of minimizing the communication costs in the coupling interface
is more complex for the setups setup2, setup3 and setup4 than for setup1.
Indeed, for setup1 we use similar mesh discretization (with hexaedral elements
well aligned), unlike for setup2, setup3 or setup4, where we use misaligned
elements (hexaedral or tetraedral). In Figure 4.18, we illustrate two examples
of mesh alignment in the coupling interface along with the messages to be ex-
changed in each case. In 4.18a, there is an exact correspondence of one element
in mesh A to several elements in mesh B, like for setup1. On the contrary,
in 4.18b, a bad alignment between the two meshes creates possible additional
messages, denoted with the dashed lines, like for setup2, setup3 and setup4.
These latter messages correspond to minor messages that, as said before, may
represent the latency in a network. Therefore, in Figure 4.17, we see that for
setup1, where the mesh structures of A and B are well aligned, the number
of messages is minimized for both ProjRepart and ProjSubpart, but not
for Aware. This is expected since Aware does not minimize the number
of messages and does not take into consideration the intersection of different
mesh elements on the coupling interfaces (as do ProjRepart and ProjSub-
part). For the other setups, we see that ProjRepart and ProjSubpart
do not minimize the total number of messages exchanged between components
(totZ), but they do minimize the number of major messages, which is often
equal to the optimal value. Note, that is an interesting result since, under a
fast network the minor messages may be ignored.

mesh A mesh B

(a) Good mesh alignment.

mesh A mesh B

(b) Bad mesh alignment.

Figure 4.18: Examples of different mesh alignment in the coupling interface.

Additionally, in Figure 4.19, we present results on the maximum volume
of inter-component communications (maxV ) for each setup separately. By
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definition, we calculate maxV for the component with the smaller number of
processors on the coupling interface, since the maximum volume per processor
is greater when the number of processors is smaller. Remember that we take
k

′
A ≤ k

′
B, so we calculate the maxV for component A. In this experiment, for

Aware, ProjRepart and ProjSubpart k
′
A is set to 6, while the number of

processors that are active in the coupling interface of component A for Naive
is between 6 and 8. Considering that k

′
A is almost equal for all methods, we

may include the results of Naive in the comparison of maxV (with a slight
advantage for Naive).
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Figure 4.19: Comparison of co-partitioning algorithms with RBBGM

method: maximum volume of inter-components communication for each setup
separately.

As a result in Figure 4.19, we may confirm that our co-partitioning al-
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gorithms manage to minimize the inter-component communication costs of
the coupling phase, since maxV is minimized compared to the results of the
Naive method (up to 26%). To conclude the analysis of this experiment,
in 4.20, we present the average execution time for each co-partitioning algo-
rithm relative to the Naive method. As one may observe the relative results of
Aware, ProjRepart and ProjSubpart are, in the worst case, 16% slower
that Naive which is expected to be faster since it is a more straightforward
solution.
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Figure 4.20: Comparison of co-partitioning algorithms with RBBGM method: rel-
ative time, mean over all setups.

Second Experiment

The second experiment that we present here studies the behavior of the co-
partitioning algorithms as the number of processors in the coupling interfaces
for component B (k

′
B) increases. In order to perform this experiment, we focus

on one setup case (setup4) and we fix the number of processors for GA and
GB, such that kA = 16 and kB = 48. Additionally, we also fix k

′
A to 6 and we

vary the values of k
′
B in a range of [k

′
A, kB] (with a step of two). Since in this
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Figure 4.21: Comparison of co-partitioning algorithms with RBBGM

method: edgecut of GB as k
′
B increases. Results for setup4 when kA = 16, k

′
A =

6, kB = 48.

experiment we test the behavior of our co-partitioning methods for the most
critical component B, results on component A (edgecut and load imbalance)
are omitted but they follow the analysis of the first experiment.

In Figure 4.21, we present the edgecut results of GB for our co-partitioning
methods normalized to the results of Naive. Note that since ProjSubpart
may be applied only when k

′
B is a multiple value of k

′
A, consequently some

results are missing for this method. In this experiment, we observe that the
edgecut results of GB increase for all methods as the number of processors in
the coupling phase increases.

The method with the best relative edgecut results is Aware and the one
with the worst results is ProjRepart, which is expected if we consider the
additional constraints of ProjRepart compared to Aware. Note that the
edgecut increases for the Aware method in the range of 1% to 17% compared
to Naive, while for ProjRepart is on average 4% more than Aware. It is
interesting to see that the best edgecut results of all methods appear when the
number of processors in the coupling phase is close to the the geometric ratio
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Figure 4.22: Comparison of co-partitioning algorithms with RBBGM

method: totZ,totZM as k
′
B increases. Results for setup4 when kA = 16, k

′
A =

6, kB = 48.

between the coupling surface and the entire cubic domain, i.e., k
′
X =

⌊
kX

2/3
⌋

and here k
′
B = 482/3 = 13.2.

Again for this experiment, all methods except Naive manage to balance the
additional constraint of load balance in the coupling phase for both components
A and B, that explain this edgecut overhead. On the other hand, Naive has
a huge imbalance factor of 68% for G

′
B.

In Figure 4.22, we present the total number of messages, major and minor,
exchanged during the coupling phase for this experiment. The total number
of messages (totZ) for each method is represented with dashed lines, while the
number of major messages (totZM) is represented with plain ones. Here, we
compare our results with the optimal number of messages represented with a
red dashed line. First, we observe that the total number of messages increases
linearly with the increase of k

′
B for all methods, which is expected. Addition-

ally, we see that both ProjRepart and ProjSubpart minimize the number
of major massages compared to Aware, when k

′
B remains relatively small.
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Figure 4.23: Comparison of co-partitioning algorithms with RBBGM method: rel-
ative time as k

′
B increases. Results for setup4 when kA = 16, k

′
A = 6, kB = 48.

However, since in this setup (setup4) the mesh elements between the two
components are not well aligned, there is a large number of minor messages.
As said before, under a fast network, those minor messages may be ignored as
they represent negligible volume (< 5%) compared to major messages.

Finally, in Figure 4.23, we present results for the runtime performance
of the co-partitioning algorithms compared to Naive. We observe that our
algorithms are getting slower as k

′
B increases since the problem becomes more

complicated regarding the additional constraints. Note that since Aware has
less constraints to optimize, it is in general faster that the other two methods.

Third Experiment

The final experiment that we present here aims to determine the quality of
the co-partitioning methods as the coupling interfaces increase, from a surface
overlap to a fully volumetric one. This experiment is only performed in the
setup2 and the overlap may be in the surface (0% of overlap), at 25% of the
whole volume, at 50% and at 100%, full overlap. In the following figures the
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overlap is denoted as 0,25,50 and 100 respectively.
In Figure 4.24, we illustrate the edgecut results for GA and GB relatively

to the Naive method for different combinations of kA, kB and k
′
A, k

′
B. The

number of k
′
A and k

′
B change proportionally to the volume of overlap. Here,

we see that the results are rather good for all methods and as the overlap
becomes larger (in volume), we notice that the edgecut minimization increases
for both components. We remark that when the coupling interface is small, the
co-partitioning algorithm has not enough information on the entire domain. So
a good partition of a small surface may lead to a bad partition of the entire
domain due to lack of global view in the extension operator.

For the load imbalance of G
′
A and G

′
B during the coupling phase, we

note that our co-partitioning algorithms respect this constraint as opposed
to Naive, but sometimes fail to respect the imbalance factor for the entire
graphs GA and GB. This leads us to believe that our co-partitioning methods
are not yet robust enough to handle larger coupling overlaps, and more care
should be taken, due to the large number of interdeges involved in these cases.

Moreover, in Figure 4.25, one may see the number of major and minor
messages during coupling as the overlap increases. In this experiment, we
confirm the observation from previous experiments that ProjRepart and
ProjSubpart minimize the number of major messages compared to Aware.
Additionally, as the overlap becomes larger, the number of major messages
becomes smaller. However, note that there is a large increase of minor messages
that correspond to a bad alignment among mesh elements of different types.
This is rather expected under a volumetric overlap. Finally, we notice (but do
not depict here) that the execution time of ProjRepart and ProjSubpart
becomes many times slower than Naive or Aware as the overlap increases.

4.4.2 Overview of a Real Application

In this section, we present in detail an example of a coupled simulation (pro-
vided by CERFACS) that is used in real industrial configurations in order to
optimize the design of gas turbines [34, 36, 65, 74, 75]. Later we will present
experimental results for our co-partitioning algorithms on a data set related to
the above simulation. Experts in the field of computational physics agree that
multi-physics modeling approach is an encouraging alternative in reducing the
costs and the duration of the optimization of gas turbines. In this context,
an essential part of the problem is to study the temperature field in a turbine
blade placed in the high pressure distributor of a helicopter.

More precisely, the configuration of an helicopter combustion chamber is
presented in figure 4.26a. The function of the combustion chamber is to pro-
vide an enclosure in which large quantities of fuel, supplied through the fuel
spray nozzles (B), are burnt with extensive volumes of air provided from the
secondary air flow (A). This is achieved by means of a flame tube (C) which
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Figure 4.24: Comparison of co-partitioning algorithms with RBBGM

method: edgecut results for setup2 as the coupling overlap increases from
0 to 100.

contains a high pressure distributor with a blade of the downstream stator (D)
that controls the airflow along the chamber. Finally uniformly heated gas is
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Figure 4.25: Comparison of co-partitioning algorithms with RBBGM method:
totZM , totZ for setup2 as the coupling overlap increases from 0 to 100. The
optimal value for totZM is given by the red dashed line.
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released as required by the turbine.
Chamber cooling is achieved by cold air films along the walls. The main

thermal problem here is linked to the blade 4.26b, which does not hold the
high temperatures produced by the flame in the combustor. In order to de-
crease their temperature, the burnt gases are therefore mixed with cold air in
the dilution zone of the combustion chamber. The challenge is to reach an
homogeneous mixture at the chamber exit and guarantee the absence of hot
spots that could damage the blade.

(a) Sections of a combustion chamber. (b) Blade.

Figure 4.26: Presentation of geometric configuration inside a combustion chamber.

Recently, researchers use Large Eddy Simulation (LES)3 in order to model
realistic combustors. However, if it is not coupled with other physical phenom-
ena, its applicability remains limited for thermal aspects [10]. For instance,
when flames interact with the walls of a chamber, a simultaneous resolution of
the temperature may be required within the solid and around it. Therefore, in
order to improve the quality of the simulation, additional distinct numerical
models that account for radiation and heat transfer should be introduced in
the process. In other words, the objective is to evaluate the impact of heat con-
duction and radiation on the thermal behavior of the blade in the combustion
chamber.

More precisely, in this particular study performed by CERFACS, three dif-
ferent solvers that represent distinct physical properties are coupled together
to simulate a realistic combustion chamber provided by Turbomeca. The LES
in this implementation is performed with the CFD code AVBP which is de-
veloped at CERFACS and solves the Navier-Stokes equations together with
the energy and chemical species conservation equations. The calculation of
thermal diffusion in solids is performed with the code AVTP, which is also

3 LES is a mathematical model for turbulence simulation, where a low-pass filtering of
the Navier–Stokes equations is used to reduce the computational cost.
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developed at CERFACS and solves the classic heat equation. Finally, the ra-
diation solver, called PRISSMA, has been specifically designed for combustion
applications and uses discrete-ordinates-method (DOM) with different angular
discretizations and spectral models. DOM allows the use of the same kind of
mesh as used in LES, which is a great advantage for the coupling. The inter-
actions of the three physical phenomena, i.e. combustion, heat conduction and
radiation are illustrated in figure 4.27. Couplings occur between AVBP and
AVTP, PRISSMA and AVTP and finally PRISSMA and AVBP. Note that the
first two are surface couplings and data are exchanged at the boundaries of the
flow/solid domain, while the last one is volumetric. More details on the data
that are exchanged and the underlying physical interpretation during the cou-
pling can be found in [34]. Therefore, the problem of gas turbine optimization
is governed by two distinct coupled simulations, the first one couples the LES
with the heat conduction (denoted AA) and involves AVBP and AVTP, while
the second one couples the LES with heat conduction and radiation simulation
(AAP) and involves all three solvers.

Figure 4.27: Interactions between combustion, radiation and heat conduction in
solids.(modified version of figure in [34]).

The strong differences in time scales between the three physical phenomena
requires a coupling strategy. More precisely, the coupling between AVBP and
AVTP is not synchronized in physical time, since each model has a different
characteristic time, implying different time steps. Also the radiation source
exchanged between AVBP and PRISSMA must be updated at time intervals
corresponding to the characteristic time scale of the temperature and mass
fractions, imposing dependencies.

All three solvers used here are efficiently parallelized; they use subdo-
main decomposition, and in the case of PRISSMA, the calculation is also
parallelized using a spectral and angular discretization. However, the three
solvers have very different execution times. Typically, AVTP is very fast (0.96
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Table 4.3: Processor distribution and CPU time. The quantity CPU0.5 is the CPU time
needed to compute 0.5ms of physical time.

simulation AVBP AVTP PRISSMA CPU0.5

case AA 230 24 - 1hr
case AAP 105 12 48 3hr

s/iteration/processor), as it involves a simple equation for only one variable,
whereas PRISSMA is very long (3000 s/iteration/processor), mainly owing to
the spectral complexity and the non-local character of the integration (op-
tical paths go through the whole domain). AVBP is in between, with 95.2
s/iteration/processor, but requires many iterations. As already explained be-
fore, a coupling framework is necessary in most coupled simulations as it en-
ables the communication of the components at their coupling interfaces. In this
application, the OpenPALM coupler is used which follows a fully distributed,
direct communication scheme (DCS).

Table 4.3 gives the processor distribution as well as CPU times for the
different solvers in the two coupled simulations (AA and AAP), as extracted
from [34]. Note that AVBP and AVTP run on half of the processors in the AAP
simulation compared with the AA simulation. Because PRISSMA reaches a
speedup limit at 48 processors, load balancing and synchronization imply a
limitation of processors on the two other codes.

Researchers working on this problem confirm that an efficient coupling of
the above simulations may be achieved with better resource allocation strategy.
Moreover, they believe that a solution to the data distribution for a coupled
simulations may be an important step towards a high performance. As they
state in [36], the time spent during the inter-component synchronizations in
AA may reach approximately up to 30% of the total execution time.

4.4.3 Results on a Real-life Application

Finally, in this section we present experimental results on a test case for the
AA coupling simulation between AVBP and AVTP for the problem of gas
turbine optimization, as presented in the previous section. The meshes that
are used to describe the two components along with some characteristic values
can be found in Table 4.4. Additionally, in Figure 4.28, we give an illustrative
overview of the two meshes and the coupling interface of this simulation. As
one may see in the figures, the coupling interface in this configuration is rather
small compared to the domains of both mesh structures. Nevertheless the
above example is sufficient considering that this is a first evaluation of the co-
partitioning techniques for real applications. For these experiments we choose
AVTP to represent component A and AVBP to represent component B.

In order to evaluate the behavior of our co-partitioning methods in a real
coupling configuration, we perform here similar experiments as the ones per-
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Table 4.4: Information on the graph and mesh structure of the real-life application.
cylinder #vertices #edges mesh elements
meshA 38,080 75,406 hexa and prism
meshB 319,492 639,724 prism

(a) Mesh overview of component A. (b) Mesh overview of component B (the cou-
pling interface is inside the perimeter of the
circle).

(c) Coupling intersection.

Figure 4.28: Illustration of the mesh structures along with the coupling inter-
faces of components A and B of cylinder test case.

formed for the synthetically generated test cases in section 4.4.1. After these
experiments we will be able to determine the best parameters for the real-
life coupled simulations and we will have an insight on the limitations of our
methods.

First, we study the behavior of our methods as the number of processors
assigned in the coupling interface of each component increases. We perform
the experiment for both components A and B in order to evaluate the best
values of k

′
A and k

′
B for our co-partitioning methods. To start, we randomly

choose kA = 6 and kB = 26. In the first experiment, k
′
A takes values from

[2, kA] while k
′
B remains fixed. On the other hand, in the second experiment

k
′
A remains fixed while k

′
B increases from [k

′
A, kB]. For the first experiment we

also evaluate the impact of the projection operator by monitoring the edgecut
increase of GB as k

′
A increases.

The edgecut results for the first experiment and for both components A and
B are shown in Figure 4.29. More precisely, in Figure 4.29a, we observe that
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the edgecut of GA is highly dependent on the number of processor assigned in
the coupling phase and can be many times worse than that of Naive. It is
interesting to see that the best edgecut result for all co-partitioning methods
has a minimal overhead of 1% and is achieved when k

′
A = kA. A series of tests

on different input values kA and kB and varying k
′
A confirm the above results

but are not shown here, since they follow a similar pattern. Additionally, if
we consider the mesh of component A (in Figure 4.28a), we remark that its
geometric structure favors a partitioning where k

′
A = kA, due to the cylin-

dric form. Finally, in Figure 4.29b we see that the edgecut of component B
for ProjRepart and ProjSubpart remains relatively unaffected as k

′
A in-

creases. This indicates that the projection operator between component A and
B does not introduce an edgecut overhead whatever the value of k

′
A. Indeed,

the edgecut remains rather constant at a maximum increase of 6% relative to
Naive.

●

●

●

●

●● ● ● ● ●

●

●

●

●

●

●

●

●

●1

2

3

4

2 3 4 5 6
nb parts in Acpl

re
la

tiv
e 

cu
t i

n 
A

● ● ● ●NAIVE AWARE PROJREPART PROJSUBPART

(a) Relative edgecut in GA.

● ● ● ● ●

● ● ● ● ●

● ● ●
●

●●

●

● ●

0.75

1.00

1.25

1.50

1.75

2.00

2 3 4 5 6
nb parts in Acpl

re
la

tiv
e 

cu
t i

n 
B

● ● ● ●NAIVE AWARE PROJREPART PROJSUBPART

(b) Relative edgecut in GB .

Figure 4.29: Comparison of co-partitioning algorithms with RBBGM

method: edgecut of GB and GA as k
′
A increases. Results for cylinder when

kA = 6, kB = 26 and k
′
B = 12.

In Figure 4.30, one may see the edgecut results for component B as the
number of k

′
B varies while k

′
A is fixed to kA (following the results of the previous

experiment). Note that, the edgecut of component B is not heavily affected by
the different values of k

′
B and the maximum edgecut increase is only 8% relative

to Naive. More precisely, the worst results are obtained when k
′
B = kA,

while the best results are obtained when k
′
B = k

′
A = 6. This means that

component B is not as critical as component A regarding the partitioning
overhead introduced in the co-partitioning.
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Figure 4.30: Comparison of co-partitioning algorithms with RBBGM

method: edgecut of GB and GA as k
′
B increases. Results for cylinder with

kA = 6, kB = 26 and k
′
B = 6.

Moreover, we compare the totZ and maxV of our co-partitioning methods
to the results of Naive. Remember that for a fair comparison of the above
metrics, all methods should have the same values of k

′
A and k

′
B. Therefore, we

set the above values for our co-partitioning methods equal to the values indi-
cated by Naive, that is 6 and 5 respectively. As we may see in Figure 4.31a,
all methods (including the Naive) exchange the same number of total mes-
sages where the number of major messages is equal to the optimal value for all
methods. Additionally in Figure 4.31b one may see that the maximum volume
of communication is minimized for Aware and ProjRepart as opposed to
Naive that has an increased maxV of 30% (ProjSubpart is not included
since k

′
B is not a multiple of k

′
A).

Following, we perform a final experiment with random number of kA and
kB where k

′
A and k

′
B are carefully chosen as indicated by the two first experi-

ments. In Figures 4.32, one may see the edgecut results for components A and
B respective where the maximum edgecut increase is only 7% compared to
Naive. As we mentioned before, an edgecut increase for GA or GB is rather
expected due to the additional constraints imposed by the co-partitioning prob-
lem. Here, we see that if the number of k

′
A and k

′
B are carefully selected, this

increase may be minimised. Finally, in Figures 4.33 we present the imbal-
ance results during the coupling interface for both meshes, where, as expected,
our co-partitioning algorithms respect the additional balance constraint, while
Naive does not.

To conclude, we present performance results of the cylinder case, exe-
cuted on a the Neptune cluster at CERFACS. The cluster includes 2,528 cores
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Figure 4.31: Comparison of co-partitioning algorithms with RBBGM

method: inter-component communication costs for Naive, Aware and Proj-
Repart for same values of kA, kB, k

′
A, k

′
B. Results for cylinder.

distributed in 158 computational nodes each having 2 processors Intel with
together 8 cores SandyBridge running at 2.6 GHz with 32 GB of DDR3 mem-
ory. The network of the cluster is an Infiniband QDR non blocking network.
In these preliminary experiments we compare the ProjRepart method with
the Naive for the test cases presented in the experiment presented just be-
fore ( 4.32 and 4.33). More precisely, kA × kB take the following values:
10 × 105, 20 × 230, 6 × 26 and 8 × 64 respectively and for ProjRepart the
additional k

′
A×k

′
B parameters are chosen as 10×10, 20×20, 6×6, 8×16. The

partitions computed for ProjRepart are loaded in each solver at runtime. In
Table 4.5, we present the average time per iteration of the regular phase taken
on the slower component and the average time per coupling iteration for the
cylinder case. Note that the time spent in the regular phase is not degraded
when the ProjRepart is used, which reflects the minimum edgecut increase
presented in 4.32. As one may see here, the results indicate that a minimiza-
tion of the coupling time may be achieved but further investigation should be
made in order to analyze the performance of the co-partitioning algorithms.

Since in this experiment, kA and kB are rather small the overall coupling
time is not significant and reaches up to 5% of the time spent in the regular
phase. Because of that, the total execution time of the coupled simulation does
not substantially change between Naive and ProjRepart and thus it is not
shown here. Remember that we stated before that the coupling time may be
up to 30% of the total execution time. This may occur when the number of
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Figure 4.32: Comparison of co-partitioning algorithms with RBBGM

method: edgecut results for Naive, Aware and ProjRepart on different
values of kA, kB. Results for cylinder.

kB become very large. For the cylinder component B represents the slower
solver (AVBP) and thus when kB becomes very large, the time of the regular
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Figure 4.33: Comparison of co-partitioning algorithms with RBBGM method: im-
balance results during the coupling phase for Naive, Aware and Proj-
Repart on different values of kA, kB. Results for cylinder.

phase is minimized while the time in the coupling phase remains the same (or
even increases). Note that in this study we did not explore very large values
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Table 4.5: Results on the execution time of the AA simulation with different
input size for the two components (cylinder case).

6× 26 8× 64 10× 105 20× 230
Naive ProjRepart Naive ProjRepart Naive ProjRepart Naive ProjRepart

treg(ms) 190 190 370 370 310 310 50 40
tcpl(ms) 0.836 0.598 2.102 1.884 2.453 2.175 2.208 2.067
relative gain - (29%) - (11%) - (12%) - (7%)

of kA and kB.

4.5 Conclusion

In this chapter, we introduce the data distribution problem for coupled si-
mulations, following the classic definition of the graph partitioning problem.
To do so, we propose to enrich the classic graph model with fixed vertices,
in order to influence the partitioning results between different components or
different phases (regular and coupling).

In this context, we present three new co-partitioning algorithms, Aware,
ProjRepart and ProjSubpart and we compare them to the currently used
approaches Naive and Multiconst. Remember that Naive addresses the
load balancing of coupled simulations without considering the coupling be-
tween components while Multiconst attempts to simultaneously balance
both phases, within each component, using a multi-criteria graph partitioning.
Note that neither approach takes into account the inter-component communi-
cations.

In this chapter, we evaluate the proposed algorithms in a series of experi-
ments on synthetically generated and real-life data. We divide our experiments
in 3 categories, one that determines internal tuning, one that evaluates the scal-
ability as the number of processors increases and one that tests different sizes
of coupling interface (from surface to fully volumetric coupling).

We note that our co-partitioning algorithms succeed to balance the com-
putational load in the coupling phase in every case for the surface coupling
while Naive and Multiconst fail to do so. However, when the coupling
overlap becomes larger, the multiple objectives of the co-partitioning become
harder to satisfy. Surprisingly, we see that our algorithms do not highly de-
grade the global graph edgecut for either component, despite the additional
constraints that are imposed to the problem as opposed to the Multiconst
approach. We also remark that ProjRepart and ProjSubpart manage to
minimize the number of inter-component messages. Regarding the real-life
coupled simulation, the obtained results are quit similar. In more details, we
notice that the number of processors that are assigned during the coupling
phase may highly condition the final partitioning results. Therefore, one may
carefully choose the above values in order to not increase the global edgecut,
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especially for components where the ratio between the coupling interface and
the entire domain is high. Finally, preliminary results lead us to believe that
such co-partitioning algorithms may result in a minimized execution time dur-
ing the inter-component communications of a coupled simulation, but further
investigation should be made.
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Chapter 5

Conclusion and Future Work

Conclusion

In this work, we study the problem of load balancing for modern coupled si-
mulations that arise in various domains such as computational physics, mate-
rial science and climate science. Coupled simulations represent complex physi-
cal phenomena and consist of a number of different component models, plugged
in together under a coupling environment. Typically, within a coupled simu-
lation, different components interact with each other exchanging data on their
coupling interfaces. As a result, the computational load of each component
changes throughout the execution leading to load imbalance for the coupled
simulation. In this context, one should obtain a better data distribution that
takes explicitly into account the coupling process and balances the load for the
entire coupled application.

In this work, we propose new graph partitioning algorithms that address
the above problem, denoted as co-partitioning (Chapter 4). The goal here is to
efficiently decompose the data of a coupled simulation as part of an interactive
system and not just as part of independent components. Our co-partitioning
algorithms are designed as a generic approach that could be applied in differ-
ent coupled problems and potentially be extended in a large number of com-
ponents. We propose three different algorithms Aware, ProjRepart and
ProjSubpart and we compared our results in terms of partitioning quality
and runtime performance to the currently used approaches, Naive and Mul-
ticonst. Moreover, we performed experiments on synthetically generated
data and on a real-life application developed at CERFACS for the optimiza-
tion of gas turbines. The obtained results on the quality of our co-partitioning
methods are encouraging even though further experimental investigation on a
larger number of real-life coupled simulations should be included. More pre-
cisely, we manage to balance the load during the coupling phase, as opposed to
the currently used Naive method that is highly imbalance during coupling and
Multiconst that often fails to guarantee balance. As a result the maximum
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volume of inter-component communication is equally minimized. An impor-
tant remark concerning the co-partitioning problem is that there is a trade-off
between the minimization of the coupling phase and the internal execution of
each component.

Surprisingly, we observe that our proposed algorithms do not highly de-
grade the global edgecut for either component and thus the internal commu-
nication among processors of the same component is still minimized. This is
not the case for the Multiconst method especially as the number of proces-
sors increases. Regarding the coupled simulation for the real application, we
noticed that one may carefully decide the parameters of the co-partitioning
algorithms in order not to increase the global edgecut. More precisely, the
number of processors assigned in the coupling interface is an important factor
that needs to be determined based on the geometry of the problem and the ra-
tio of the coupling interface compared to the entire domain. Again, we remark
that our work on co-partitioning is still theoretical and further investigation
should be conducted with different geometries and more coupled simulations
that are more or less coupling-intensive.

Finally in this work (Chapter 3), we proposed graph partitioning algorithms
that support initially fixed vertices. The motivation behind this work is our
belief that partitioning solutions for problems with initially fixed vertices may
be part of the load balancing for coupled simulations. Under this context, we
explained why methods that are based on RB do not provide the best solution
for partitioning with initially fixed vertices, and we proposed a new graph
partitioning method, named kgggp, that successfully handles such problems.

In more details, kgggp is based on a greedy graph growing technique
and use the fixed vertices that are present in the graph in order to guide the
partitioning procedure. Experimental results on two different configurations of
fixed vertices showed that kgggp handles problems with initially fixed vertices
better than the commonly used RB methods. Finally note that kgggp is
proposed as a solution for the variant problem with fixed vertices and RB-based
methods are still the most efficient solutions for the classic graph partitioning
problem.

Future Work

Since the problem of load balancing for coupled simulations is a rather new re-
search topic, there are many different directions to explore as future work. Our
first remark is that the load balancing of coupled simulations is a complicated
problem and a more systematic experimental study on different configurations
of coupled simulations should be performed. It is interesting to explore the
scalability of our co-partitioning algorithms in terms of number of processors
but also in terms of number of components. In Chapter 2, we gave some
examples of multi-component coupled simulations that use three or more com-
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Figure 5.1: Dynamic processor allocation for two components A and B whose
relative load A/B increases.

ponents, such as the coupled simulation of earth’s climate. Under this context,
the data distribution problem of such simulation is more complicated. A ques-
tion that naturally arises here is whether a many-component coupling can be
modeled as a many two-component coupling.

Moreover, a parallel implementation of the co-partitioning algorithms could
be an interesting perspective for the future. In this context, an important
subproblem is the parallel implementation of kgggp, where an interesting
direction is to apply similar strategies as the ones followed in the parallel BFS
schemes [15].

Finally, the resource allocation problem is rather important when a coupled
simulation consists of many components. This is critical for the global coupling
efficiency, because each component involved in the coupling can be more or less
computationally intensive. Consequently, there is an effective trade-off to find
between resources assigned to each code in order to avoid that one of them
wait for the others at each coupling stage. Another question is what happens
if one component becomes more computationally intensive at runtime.

For instance, let us consider a coupled simulation with two components A
and B initially running on processors kA and kB respectively such that K =
kA +kB. Assuming that one component (say A) becomes highly imbalanced at
runtime, it could be convenient to dynamically adapt the number of processors
used for each component. Therefore one may perform a repartitioning of the
coupled simulation as illustrated on figure 5.1.

Load Balancing for Parallel Coupled Simulations 113



114 Maria Predari



Bibliography

[1] Zoltan: Parallel partitioning, load balancing and data-management ser-
vices. http://www.cs.sandia.gov/Zoltan/Zoltan.html. [Cited on pages vii,

1, and 43]

[2] A. Thevenin A. Piacentini, T. Morel and F. Duchaine. Open-palm: an
open source dynamic parallel coupler. In In IV International Conference
on Computational Methods for Coupled Problems in Science and Engi-
neering, 2011. [Cited on pages vii, 1, and 20]

[3] J. Amaya, E. Collado, B. Cuenot, and T. Poinsot. Coupling LES, ra-
diation and structure in gas turbine simulations. In Proceedings of the
Summer Program, Center for Turbulence Research, NASA AMES, Stan-
ford University, USA, 2010. [Cited on page 25]

[4] G Anciaux, O Coulaud, and J Roman. High performance multiscale sim-
ulation or crack propagation. In Parallel Processing Workshops, 2006.
ICPP 2006 Workshops. 2006 International Conference on, pages 8 pp.
–480, 2006. [Cited on page 19]

[5] Cevdet Aykanat, B. Barla Cambazoglu, Ferit Findik, and Tahsin Kurc.
Adaptive decomposition and remapping algorithms for object-space-
parallel direct volume rendering of unstructured grids. J. Parallel Distrib.
Comput., 67:77–99, January 2007. [Cited on pages 42, 43, and 77]

[6] Cevdet Aykanat, B. Barla Cambazoglu, and Bora Uçar. Multi-level di-
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