Maria Predari

Load Balancing for Parallel Coupled Simulations iii iv

Keywords: simulations numériques, simulations couplées, parallélisme, équilibrage de charge, partitionnement de graphe Load Balancing for Parallel Coupled Simulations numerical simulations, coupled simulations, parallelism, load balancing, graph partitioning vi x

Équilibrage de la charge des simulations parallèles couplées Résumé

Dans le contexte du calcul scientifique, l'équilibrage de la charge est un problème crucial qui conditionne la performance des simulations numériques parallèles. L'objectif est de répartir la charge de travail entre un nombre de processeurs donné, afin de minimiser le temps global d'exécution. Une stratégie populaire pour résoudre ce problème consiste à modéliser la simulation à l'aide d'un graphe et à appliquer des algorithme de partitionnement.

En outre, les simulations numériques tendent à se complexifier, notamment en mixant plusieurs codes représentant des physiques différentes ou des échelles différentes. On parle alors de couplage de codes multi-physiques ou multi-échelles. Dans ce contexte, le problème de l'équilibrage de charge devient également plus difficile, car il ne s'agit plus d'équilibrer chacun des codes séparément, mais l'ensemble de ces codes pris dans leur globalité.

Dans ce travail, on propose de resoudre ce problème en utilisant le modèle de partitionnement à sommets fixes qui pourrait représenter efficacement les contraintes supplémentaires imposées par les codes couplés (co-partitionnement). Nous avons donc développé un algorithme direct de partitionnement de graphe qui gère des sommets fixes. L'algorithme a été implémenté dans le partitionneur Scotch et une série d'expériences ont été menées sur la collection des graphes DIMACS.

Ensuite nous avons proposé trois algorithmes de co-partitionnement qui respectent les contraintes issues des codes couplés respectifs. Nous avons egalement validé nos algorithmes par une étude expérimentale en comparant nos méthodes aux strategies actuelles sur des cas artificiels ainsi que sur des codes réels couplés.

Équilibrage de la charge des simulations parallèles couplées Résumé

Dans le contexte du calcul scientifique, l'équilibrage de charge est une étape importante conditionnant la performance des applications parallèles. L'objectif ici est de répartir la charge de calcul entre un nombre de processeurs donné afin de minimiser le temps d'exécution. Ceci est particulièrement critique lorsque le nombre de processeurs augmente, c'est-à-dire pour des applications hautement parallèles s'executant sur des architectures parallèles à plusieurs noeuds. Malheureusement, le problème ci-dessus est connu pour être NP-hard [START_REF] Garey | Computers and Intractibility: A Guide to the Theory of NP-Completeness[END_REF] mais de nombreux algorithmes d'équilibrage de charge existent, principalement basés sur des méthodes heuristiques.

Parmi eux, une approche commune pour résoudre l'équilibrage de charge d'une application consiste à modéliser le problème avec des structures à base de graphes (ou hypergraphes). Plus précisément, un sommet d'un graphe représente une tâche de calcul de la simulation tandis qu'une arête représente les dépendances entre les calculs. Par conséquent, pour distribuer la charge d'une simulation, on peut effectuer un partitionnement du graphe correspondant en k parties, chaque partie étant affectée à un processeur. Ainsi, le partitionnement de graphe apparaît comme une technique fondamentale pour la parallélisation des simulations, en minimiser le temps total d'exécution. Ils existent de nombreux outils de partitionnement du graphe tels que sont Metis [START_REF] Karypis | PARMETIS[END_REF], Zoltan [START_REF] Zoltan | Parallel partitioning, load balancing and data-management services[END_REF] ou Scotch [START_REF] Pellegrini | SCOTCH[END_REF].

De nos jours, les simulations numériques deviennent de plus en plus complexes, mélangeant plusieurs modèles et codes pour représenter différentes physiques ou différentes échelles (multi-physics, multi-scale simulations). Ici, l'idée clé est de réutiliser les codes existants à travers un cadre (framework) de couplage, au lieu de les fusionner dans une application unique [START_REF] Piacentini | Open-palm: an open source dynamic parallel coupler[END_REF]. Ces simulations sont appelées simulations couplées. Un exemple typique de telles simulations est la modélisation du climat de la terre, qui implique au moins quatre codes pour l'atmosphère, l'océan, la surface terrestre et la glace [START_REF] Boville | The ncar climate system model, version one*[END_REF]. La combinaison de ces différents codes est toujours un challenge difficile pour atteindre des performances élevées et pour passer à l'echelle.

Dans ce contexte, une question cruciale est sans aucun doute l'équilibrage de la charge des simulations couplées qui reste toujours une question ouverte. L'objectif ici est de trouver la meilleure distribution de données pour l'ensemble de l'application couplée et pas seulement pour chaque code pris séparément, comme c'est fait habituellement. En effet, l'équilibrage naïf de chaque code séparément peut conduire à un déséquilibre important et à des communica-Load Balancing for Parallel Coupled Simulations vii tions mal agençées entre les codes au cours de la phase de couplage. Cela peut considérablement diminuer la performance globale de l'application. Par conséquent, il est necessaire de modéliser le couplage lui-même afin d'assurer le passage à l'echelle, en particulier lors de l'exécution sur des milliers de processeurs. En d'autres termes, il faut développer de nouveaux algorithmes et de logiciel afin de appliquer un partitionnement " coupling-aware" de l'application entière.

De plus, des calculs récents (effectués au CERFACS1) pour des configurations industrielles concernant le problème du transfert de chaleur conjugué ont montré les avantages potentiels de la modélisation de ce problème avec des simulations couplées. Néanmoins, le temps total d'exécution est partiellement déterminé par la façon dont les maillages des deux solveurs sont partitionnés [START_REF] Duchaine | High performance conjugate heat transfer with the openpalm coupler[END_REF]. L'utilisation de nouveaux algorithmes pour équilibrer correctement la charge des simulations couplées avec un partitionnement de graphe adapté apparaît comme un moyen prometteur pour obtenir de meilleure performance des applications couplées. Nous nous attendons à ce que ce travail soit vraiment adapté à la prochaine génération de simulations scientifiques à grande échelle exécutées sur des architectures à plusieurs noeuds.

Nous présentons ci-après les principales contributions de ce travail. La première contribution implique la définition formelle du problème d'équilibrage de charge lorsque deux ou plusieurs modèles numériques (composants) sont couplés ensemble dans le cadre d'un phenomene physique plus complexe. Pour ce faire, nous présentons le modèle d'exécution des simulations couplées, qui évolue itérativement dans le temps en entrant de séquences de deux phases d'exécution différentes, régulières et couplées (séparées par étapes de synchronisation). Notez que pendant une phase régulière, chaque composant résout un système individuel définie dans son propre domaine de calcul, alors que pendant une phase de couplage, les composants interagissent principalement l'un avec l'autre, en échangant de données sur leurs interface de couplage.

Dans ce contexte, nous étendons la définition du partitionnement de graphe classique pour qu'il cible le problème de distribution de données des simulations couplées, ce que nous appellons le problème de co-partitionnement. De plus, nous proposons deux algorithmes qui éffectue un partitionnement "couplingaware" plutôt que de diviser chaque composante de façon indépendante, c' est fait aujourd'hui dans de telles simulations. L'idée clé derrière les algorithmes de co-partitionnement est de prendre explicitement en considération l'existence de plusieurs composantes et leurs interactions potentielles. Par conséquent, des contraintes supplémentaires sont introduites dans le modèle et influencent les résultats de partitionnement entre différents composants ou différentes phases du même composant. Au cours de cette étude, nous validons nos algorithmes en termes de la qualité de partitionnement et les coûts de communication, en mesurant le facteur de déséquilibre au cours des phases régulières et de couplage, la minimisation globale du coup d'arêtes coupées (edgecut) et le nombre de messages échangés entre les composants.

Nous évaluons initialement les algorithmes proposés sur des simulations et donées synthétiquement générés et ensuite nous testons des configurations réelles d' une simulation couplée utilisée dans le domaine de la propulsion aéronautique. Cette dernière étude a été réalisée en collaboration avec l'équipe CFD au CERFACS qui nous a fourni ce test. Plus précisément, deux différents solveurs qui représentent des propriétés physiques sont couplée pour simuler une chambre de combustion réaliste à l'intérieur d'une moteur d'hélicoptère. Les deux solveurs modèlent séparément la combustion et des phénomènes de conduction qui sont impliqués dans le processus, mais qui appartiennent des différentes propriétés telles que la discrétisation du maillage et les échelles de temps. Dans ce contexte, nous souhaitons évaluer les algorithes proposées ici du co-partitionnement sur les données ci-dessus en termes de la qualité de partitionnement et les coûts de communication. Les résultats obtenus font partie d'une étude préliminaire mais indiquent une direction prometteuse pour le problème de l'équilibrage de charge pour les simulations couplées.

La deuxième contribution de ce travail est liée à une variante du problème classique de partitionnement de graphe, c'est-à-dire le problème de partitionnement du graphe avec des sommets initialement fixes. Cette instance modifiée de partitionnement de graphe apparaît généralement lorsque l'application sous-jacente impose des contraintes supplémentaires sur le problème initial. Deux exemples qui utilisent le modèle ci-dessus sont l'équilibrage de charge des simulations adaptatives de raffinement de maillage [START_REF] Betts | Mesh refinement in direct transcription methods for optimal control[END_REF] et la conception de circuit dans le contexte de VLSI [START_REF] Caldwell | Hypergraph partitioning for VLSI CAD: Methodology for heuristic development, experimentation and reporting[END_REF]. La motivation de cette étude vient des contraintes supplémentaires imposées par les simulations couplées qui peuvent être modélisées en utilisant des sommets fixes supplémentaires dans le graphe sous-jacent.

Par conséquent, nous proposons un nouvel algorithme de partitionnement k -way qui utilise des techniques de croissance de graphe pour partitionner directement un graphe en k parties, sans utiliser le paradigme de la bissection récursive. Cette stratégie a été validée par des observations qui montrent que la bissection récursive produit souvent des partitions de moindre qualité lorsque les sommets fixes sont impliqués dans la procédure. L'algorithme est implémenté comme l'étape de partitionnement initiale d'un algorithme multiniveau à l'intérieur du cadre de Scotch partitionneur et une série des tests expérimentaux ont été réalisés en utilisant des graphiques de la collection bien connue DIMACS '10 [7].

Le reste de ce travail est organisé comme suit: dans le chapitre 2, nous présentons l'état de l'art en termes de charge d'équilibrage et de couplage de codes. Plus précisément, nous citons brièvement les techniques de partitionnement de graphes bien connues et nous présentons les approches actuelles Load Balancing for Parallel Coupled Simulations ix pour coupler deux ou plusieurs simulations numériques. Dans le chapitre 3, nous presentons le problème de partitionnement de graphe avec des sommets fixes et nous proposons un algorithe (appelé kgggp) qui résout le problème ci-dessus. Une vaste étude expérimentale sur la collection DIMACS'10 est également inclus. Après, dans le chapitre 4, nous introduisons le problème de co-partitionnement avec une solution proposée basée sur de nouvelles techniques de partitionnement. De plus, on présente des résultats obtenus sur les cas de test générés par synthèse et sur une simulation couplée réelles fourni par CERFACS. Enfin, dans le chapitre 5, nous discutons nos conclusions concernant cette étude et nous donnons les prospectifs possibles pour les travaux futurs.

Chapter 1

Introduction

In the field of scientific computing, load balancing is an important step conditioning the performance of parallel applications. The goal is to distribute the computational load across multiple processors in order to minimize the execution time. This is especially critical when the number of processors increases, i.e., for highly parallel applications running on many-core architectures. Unfortunately the above problem is known to be NP-hard [START_REF] Garey | Computers and Intractibility: A Guide to the Theory of NP-Completeness[END_REF] but many load balancing algorithms exist, mainly based on heuristic methods. Among them, a common approach to solve the load balancing of an application is to model the problem with graph based structures and to apply graph partitioning techniques. Examples of mature and efficient partitioning tools are Metis [START_REF] Karypis | PARMETIS[END_REF],

Zoltan [START_REF] Zoltan | Parallel partitioning, load balancing and data-management services[END_REF] or Scotch [START_REF] Pellegrini | SCOTCH[END_REF]. Nowadays, numerical simulations are becoming more and more complex, mixing several models and codes to represent different physics or scales. Here, the key idea is to reuse available legacy codes through a coupling framework instead of merging them into a standalone application [START_REF] Piacentini | Open-palm: an open source dynamic parallel coupler[END_REF]. Such simulations are called coupled simulations. A typical example of such simulations is the modeling of the earth's climate that involves at least four codes for atmosphere, ocean, land surface and sea-ice [START_REF] Boville | The ncar climate system model, version one*[END_REF]. Combining such different codes is still a challenge to reach high performance and scalability.

In this context, one crucial issue is undoubtedly the load balancing of the coupled simulation that remains an open question. The goal here is to find the best data distribution for the whole coupled application and not only for each standalone code, as it is usually done. Indeed, the naive balancing of each code on its own can lead to an important imbalance and to a communication bottleneck during the coupling phase that can dramatically decrease the overall performance. Therefore, one argues that it is required to model the coupling itself in order to ensure a good scalability, especially when running on thousands of processors. In other words, one must develop new algorithms and software implementation to perform a "coupling-aware" partitioning of the whole application.

Additionally, recent computations (at CERFACS1) for industrial configurations concerning the problem of conjugate heat transfer have shown the potential benefits of modeling this problem with coupled simulations. Nevertheless, the total execution time is partly driven by the way the meshes of the two solvers are partitioned [START_REF] Duchaine | High performance conjugate heat transfer with the openpalm coupler[END_REF]. The use of new algorithms to correctly load balance coupled simulations with enhanced graph partitioning techniques appears as a promising way to reach better performance of coupled applications on massively parallel computers.

Following, we present the main contributions of this work. The first contribution involves the formal definition of the load balancing problem when two or more numerical models (components) are coupled together as part of a more complex physical system. To do so, we introduce the execution model of coupled simulations, that evolves iteratively in time entering sequences of two different execution phases, a regular and a coupling one (separated by synchronization steps). Note that during a regular phase, each component solves an individual system defined in its own computational domain, while during a coupling phase, components mainly interact with each other, exchanging data on their overlapping domains. Under this context, we extend the definition of graph partitioning so that it addresses the data distribution problem of coupled simulations, denoted as the co-partitioning problem. Additionally, we propose two algorithms that perform a "coupling-aware" partitioning, instead of partitioning each component independently, as it is usually done in such simulations nowadays. The key idea behind the co-partitioning algorithms is to take explicitly into consideration the existence of several components and their potential interactions. Hence, additional constraints are introduced in the model and influence the partitioning results between different components or different phases of the same component. During this study, we validate our algorithms in terms of partitioning quality and communication costs, measuring the imbalance factor during regular and coupling phases, the global edgecut minimization and the number of messages exchanged among components.

We initially evaluate the proposed algorithms on synthetically generated mesh structures and then we test real-life configurations of a coupled simulation used in the field of aeronautic propulsion. The latter study has been done in collaboration with the CFD team at CERFACS that provided us with this test case. More precisely, two different solvers that represent distinct physical properties are coupled together to simulate a realistic combustion chamber inside a helicopter engine. The two solvers separately model the combustion and conduction phenomena that are involved in the process, but have very different properties such as mesh discretization and time scales. In this context, we are interested in evaluating the proposed co-partitioning algorithms on the above data in terms of partitioning quality and communication costs. The

Introduction

results we obtain are part of a preliminary study but indicate a promising direction for the problem of load balancing for coupled simulations.

The second contribution of this work, is related to a variant of the classic graph partitioning problem, that is, the graph partitioning problem with initially fixed vertices. This modified instance of graph partitioning typically appears when the underlying application imposes additional constraints on the initial problem. Two examples that make use of the above model are the load balancing of adaptive mesh refinement simulations [START_REF] Betts | Mesh refinement in direct transcription methods for optimal control[END_REF] and the circuit design in the context of VLSI [START_REF] Caldwell | Hypergraph partitioning for VLSI CAD: Methodology for heuristic development, experimentation and reporting[END_REF]. Our motivation behind this study comes from the additional constraints imposed by the coupled simulations that may be modeled using additional fixed vertices in the underlying graph.

Therefore, we propose a new k-way partitioning algorithm that uses greedy graph growing techniques to directly partition a graph in k parts, without using the recursive bisection paradigm. This strategy has been validated by observations that show that recursive bisection often produces partitions of lower quality when the fixed vertices are involved in the procedure. The algorithm is implemented as the initial partitioning step of a multilevel algorithm inside the Scotch partitioning framework and a series of experimental tests have been conducted using graphs from the well-known DIMACS '10 [7] collection.

The remainder of this work is organized as follows: in Chapter 2, we present the state-of-the-art in terms of load balancing and coupled simulations respectively. More precisely, we briefly review well-known graph partitioning techniques and we present current approaches to couple two or more numerical simulations. In Chapter 3, we discuss the problem of graph partitioning with fixed vertices and we propose a new graph partitioning method (named kgggp) that addresses the above problem. An extensive experimental study on the DIMACS'10 collection is also included. Following, in Chapter 4, we introduce the co-partitioning problem along with a proposed solution based on new partitioning techniques. Moreover, experimental results on syntheticallygenerated and real-life test cases for CERFACS are presented. Finally, in Chapter 5, we discuss our conclusions regarding this study and we give possible prospectives for future work.

Chapter 2

Overview of the Problem and Related Work

In this chapter, we introduce the problem of load balancing for coupled simulations along with the methods that are currently employed to address it. Since load balancing in numerical simulations is highly associated with graph or hypergraph structures, we also present here the formulations and related techniques for graph partitioning.

Load Balancing in Scientific Computing

The increasing complexity of scientific computing often dictates a decomposition of the computational load in order to ensure high performance. In other words, when highly parallel simulations are executed on distributed environments of hundreds of processors, a distribution of the workload among the available processors is essential to achieve an efficient parallel solution. This distribution requires a data partitioning procedure and the use of distributed data structures in order to be performed successfully.

In applications with constant workload, a general strategy of distributing computations is to apply a static assignment of the workload to the processors at the beginning of the simulation. In other cases, where computations are unpredictable or change during execution, a redistribution of the workload is required at runtime. An example of such applications is the Adaptive Mesh Refinement (AMR) [START_REF] Betts | Mesh refinement in direct transcription methods for optimal control[END_REF][START_REF] Betts | Practical Methods for Optimal Control and Estimation Using Nonlinear Programming[END_REF] in which the mesh resolution is adapted dynamically within certain critical regions of the simulation.

Consequently, an equal distribution of a simulation's workload across the processors which, additionally, minimizes interprocessor communication may account for a significant reduction in the execution time of a parallel application. Note that communication costs are governed by the amount of data exchanged by the processors (communication volume) and the number of processors that share the same data (number of messages). The above problem is defined as the load balancing problem and may highly determine the performance of parallel applications.

A plethora of load balancing strategies have been developed [START_REF] Berger | A partitioning strategy for nonuniform problems on multiprocessors[END_REF][START_REF] Paul | Dynamic octree load balancing using spacefilling curves[END_REF][START_REF] Cybenko | Dynamic load balancing for distributed memory multiprocessors[END_REF][START_REF] Farhat | A simple and efficient automatic fem domain decomposer[END_REF][START_REF] Leland | A multilevel algorithm for partitioning graphs[END_REF][START_REF] Pilkington | Dynamic partitioning of non-uniform structured workloads with spacefilling curves[END_REF][START_REF] Pothen | Partitioning sparse matrices with eigenvectors of graphs[END_REF][START_REF] Horst | Partitioning of unstructured problems for parallel processing[END_REF], strongly governed by trade-offs between load balancing quality, the amount of data movement or load balancing speed. In general, the properties of an application determine which load balancing strategy should be used to decompose its workload. For instance, mesh-based PDE solvers and their sparse linear solvers mainly use graph-based partitioning algorithms [START_REF] Cybenko | Dynamic load balancing for distributed memory multiprocessors[END_REF][START_REF] Farhat | A simple and efficient automatic fem domain decomposer[END_REF][START_REF] Leland | A multilevel algorithm for partitioning graphs[END_REF][START_REF] Pothen | Partitioning sparse matrices with eigenvectors of graphs[END_REF][START_REF] Horst | Partitioning of unstructured problems for parallel processing[END_REF] due to their excellent results on such applications. On the other hand, simpler geometric methods [START_REF] Berger | A partitioning strategy for nonuniform problems on multiprocessors[END_REF][START_REF] Paul | Dynamic octree load balancing using spacefilling curves[END_REF][START_REF] Pilkington | Dynamic partitioning of non-uniform structured workloads with spacefilling curves[END_REF] are more suitable for applications such as particle simulations since they exploit available geometric information to obtain at a lower cost an efficient data decomposition. A great number of software libraries are available that provide high-quality implementations of partitioning procedures, some of which are described later in this work.

Even though existing partitioning methods have been very successful, research challenges remain and new partitioning algorithm should be proposed for the efficient execution of modern applications or new architectures. In this context, in the remainder of this document we will study the load balancing strategies of more complex, numerical simulations, that involve several models, each one representing different physics or scales. In such simulations, the corresponding meshes may have significantly different load characteristics depending on the different physics of the problem. Thus, traditional load balancing algorithms may be inadequate here, and more suitable data distribution techniques should be investigated.

Another example of modern challenges that however will not be addressed in this document is the resource-aware load balancing. Here, the hierarchical and heterogeneous nature of increasingly targeted cluster and grid architectures requires new techniques for load balancing. Algorithms that address this problem have been proposed for instance in [START_REF] Minyard | Parallel load balancing for dynamic execution environments[END_REF] and [START_REF] Walshaw | Multilevel mesh partitioning for heterogeneous communication networks[END_REF].

Background on Graph Partitioning

Before we describe what is graph partitioning and how it is used to balance the load of parallel applications, we repeat here some well-known graph definitions and notations in order to keep this document self-contained.

Notations and Definitions Definition 2.1 (Undirected Graph).

A graph is a pair G = (V, E) comprising a set of vertices V together with a set of edges E, such that E ⊆ V × V . Moreover an undirected graph is a graph in which edges have no orientation. The edge (x, y) is identical to the edge (y, x), i.e., they are not ordered pairs, but sets {x, y} (or two-multisets) of vertices.

An edge (u, v) is said to be incident to vertices u and v, and accordingly u, v are said to be adjacent to edge (u, v). Moreover, when two vertices u, v are connected directly with an edge (u, v), u and v are said to be neighbors. Definition 2.2 (Vertex degree). The degree of a vertex, denoted as deg(v), is the number of edges incident to the vertex. The maximum degree of a graph G, denoted as ∆(G), and the minimum degree of a graph, denoted as δ(G), are respectively the maximum and minimum degree of its vertices.

Note that a graph where each vertex has the same number of neighbors (same degree) is called a regular graph.

Definition 2.3 (Subgraph). A subgraph S = (U, F) of a graph G is a new graph formed from G such that: U is a subset of V , and F is the restriction of E by U , such that F = E ∩ (U × U) Definition 2.

(Hypergraph).

A hypergraph H = (V, N) is a generalization of a graph where V is a set of vertices and N is a set of non-empty subsets of V called nets or hyperedges.

While graph edges are pairs of vertices, nets are arbitrary sets of vertices. The vertices in a net are called its pins and the number of pins of a net is called the size of it. Finally, it is often desirable to study hypergraphs where all nets have the same cardinality: a k-uniform hypergraph is a hypergraph such that all its nets have size k. So a two-uniform hypergraph is a graph, a 3-uniform hypergraph is a collection of unordered triples, and so on.

The Problem of Graph Partitioning

It is known that a common approach to solve the problem of load balancing is based on graph theory and more precisely on graph partitioning [START_REF] Hendrickson | An improved spectral graph partitioning algorithm for mapping parallel computations[END_REF][START_REF] Teresco | Partitioning and dynamic load balancing for the numerical solution of partial differential equations[END_REF]. In this context, a vertex of the graph represents a basic computational task of the problem (often related to a mesh element) and an edge represents a dependency in calculations between two tasks. Besides, each vertex has a weight proportional to the task's cost while each edge has a weight representing the communication cost between two computational tasks. Therefore, in order to balance the load of a parallel application among k available processors, one may perform a graph partitioning in k parts and assign each resulting part to a processor.

The main objective of graph partitioning is to divide the given graph into k smaller parts of roughly equal weight and minimize the number of edges cut between them as seen in Figure 2.1. Thus, when graph partitioning is used for Load Balancing for Parallel Coupled Simulations 7 load balancing in a parallel environment, a balanced distribution of the workload among the available processors is obtained, while the communication costs of the application are minimized. Consecutively, graph partitioning appears as a fundamental technique for parallelization that offers high performance by substantially minimizing the total execution time. Let us consider a graph G where each vertex u ∈ V has a weight w(u) representing the computational load of a task and each edge e = (u, v) ∈ E has a weight w(e) representing the communication cost between tasks u and v.

Definition 2.5 (Graph partitioning in k parts).

A partition of a graph G is a set of k vertex subsets P = (V 1 , V 2 , . . . , V k), such that: each part V i , 1 ≤ i ≤ k, is a non-empty subset of V ; parts are pairwise disjoint (V i ∩ V j = ∅ for all 1 ≤ i < j ≤ k) and the union of the k parts is equal to V .

Given a vertex v mapped to the part V i , we note part[v] = i as its part number. Note also that when k = 2 the partition is called bipartition (or bisection) and the problem becomes the bi-partitioning problem.

Definition 2.6 (Problem of k-way graph partitioning).

Given a graph G, the problem of k-way graph partitioning can be defined as the optimization problem of dividing a graph into k parts, P = (V 1 , V 2 , . . . , V k), such that P : i. is subject to the balance constraint

W i ≤ W avg (1 +) for i = 1, . . . , k; (2.1)
ii. and optimizes the following objective min e∈F (w(e)), where

F = {(a, b) ∈ E, a ∈ V i ∧ b ∈ V j ∧ i = j} (2.2)
In the above formula, W i is the sum of the weights of all vertices in part V i and W avg = u i ∈V w(u i)/k represents the weight of each part in G under the perfect load balance. Moreover denotes the maximum imbalance tolerance as a percentage of the ideal weight where typical values are between 2%, 5%, or 10%. Note that throughout this document will be set to 5% of the ideal weight, unless stated otherwise.

The objective in definition 2.2 is to minimize the edgecut metric e∈F (w(e)) (where F is the edge separator). The edgecut of a partition is the weighted sum of all edges whose incident vertices belong to different parts. Another possible objective is to minimize the maximum communication volume metric [START_REF] Bader | Benchmarking for graph clustering and partitioning[END_REF]. For each vertex u, one determines the number of different parts V(u) in which u has neighbors, except P [u]. Then, the communication volume is given by the maximum over i, of the sum of all V for vertices u belonging to part i, i.e. max

1≤i≤k u∈V i V(u) (2.3)
In the remainder of this work, we use the edgecut metric to measure the quality of a partitioning since it is easy to compute; it is commonly used in the literature and it is known to successfully approximate the total communication volume of load balancing [START_REF] Hendrickson | Graph partitioning models for parallel computing[END_REF].

Accordingly, for hypergraph structures, the definition of a k-way hypergraph partitioning follows the one presented above, where a partition of a hypergraph is subjected to a balance constraint (defined in a similar way as for graphs) and optimizes a certain objective function. There are various objective functions that can be used as metrics for the quality of a valid hypergraph partitioning [START_REF] Catalyurek | Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication[END_REF]. For instance, a commonly used metric that is shown to accurately model the total communication volume of parallel applications is called the connectivity-1 metric. The objective function is defined as:

min n∈N (w(n)(λ n -1)) (2.4)
For a k-way partition P , a net that has at least one pin in a part is said to connect that part. The number of parts connected by a net n defines its connectivity and is denoted as λ n . A net n is said to be internal if it connects exactly one part (i.e. λ n = 1), and cut otherwise (i.e., λ n > 1). Thus w(n)(λ n -1) defines the cost of net n related to connectivity-1.

Finally, another problem which is highly related to graph partitioning and will be often mentioned throughout this manuscript is the repartitioning problem. The additional objective aims to minimize the migration time, which consists of minimizing the communication costs required in order to redistribute the data among parts.

Graph Partitioning Algorithms

Unfortunately, the graph partitioning problem and its variants fall in the category of NP-hard problem [START_REF] Garey | Computers and Intractibility: A Guide to the Theory of NP-Completeness[END_REF], so finding a balanced partition of a given graph is usually based on approximation algorithms. Exact algorithms, where the solution space is extensively explored, exist (e.g. dynamic programming) but are too expensive in terms of execution time and will not be studied in this work.

Here, we briefly present some of the most common heuristic techniques for graph partitioning that are divided into two categories based on their view of the problem: the local approach (or refinement) and the global approach.

Global Approaches Spectral Method. The spectral graph partitioning approach consists of finding the eigenvalues of the Laplacian matrix L associated with a given graph G. The Laplacian matrix is defined as L = D -A, where A is the adjacency matrix with A ij implying an edge between node i and j, and D the diagonal matrix, where each entry D ii represents the degree of the node i. Since L is a positive semi-definite matrix, its eigenvalues can be ordered as follows: λ 1 = 0 ≤ λ 2 ≤ . . . ≤ λ n . The algebraic connectivity of a graph G is the second-smallest eigenvalue of the Laplacian matrix, and yields a lower bound on the optimal cost of a bipartitioning. This eigenvalue is greater than 0 if and only if G is a connected graph, which derives from the fact that the number of times 0 appears as an eigenvalue in the Laplacian is the number of connected components in the graph. The eigenvector v 2 corresponding to λ 2 , called the Fiedler vector, bisects the graph into two parts based on the sign of the corresponding vector entry. Division into a larger number of parts is usually achieved by recursively applying the procedure to subgraphs. While this method results in partitions with good quality, it is very expensive in terms of execution time. Some graph partitioning algorithms that are based on the spectral information are found in [START_REF] Hendrickson | An improved spectral graph partitioning algorithm for mapping parallel computations[END_REF][START_REF] Leland | A multilevel algorithm for partitioning graphs[END_REF][START_REF] Leordeanu | A spectral technique for correspondence problems using pairwise constraints[END_REF][START_REF] Van Driessche | Dynamic load balancing with a spectral bisection algorithm for the constrained graph partitioning problem[END_REF] Bubble/Greedy Growing. The bubble growing algorithms is usually used as a global graph partitioning and in the most simple versions of this approach, like the algorithm of Farhat [START_REF] Farhat | A simple and efficient automatic fem domain decomposer[END_REF] or the greedy graph growing [START_REF] Battiti | Differential greedy for the 0-1 equicut problem[END_REF][START_REF] Jain | Greedy algorithms for kway graph partitioning[END_REF], initial seeds are included to guide the growing development of parts. During the partitioning procedure, the seeds are visited one after the other and so the parts are created sequentially based on the graph traversal. Since the bubble growing approach strongly depends on the selected seeds and usually produce solutions of poor quality for the lastly created parts, those methods call the partitioning routine multiple times using different initial seeds and the best partitioning result is chosen at the end.

In most advanced versions of this approach the parts are managed and developed in a simultaneous way [START_REF] Henning Meyerhenke | Accelerating shape optimizing load balancing for parallel fem simulations by algebraic multigrid[END_REF]. The main idea here is that the bubbles start to grow using the seeds as centers until they become stable and their union cover all the vertices in the graph. The partition is defined by considering the bubbles as the new parts and the center of those bubbles become the new seeds. The above procedure continues until the distance between the old and the new center of the bubble becomes small enough. Moreover, during the part growing procedure, the algorithm tries to minimize both the contact between different parts and the maximal vertex distance of a part to the bubble's center. Thus, the algorithm results in creating bubbles that are as much convex as possible, which lead to a more optimized partitioning considering the quality of the edgecut result.

Recursive Bisection. Nowadays the size of graphs deriving from parallel numerical simulations becomes larger and larger, thus the majority of modern graph partitioning methods follow a divide and conquer approach to solve the problem. The idea behind the recursive approach is to partition the graph in a number of small parts, usually two but it could be four or even eight, and to repeat the same process in each resulting part until the right number of parts is obtained. Since the number of parts is commonly set to two the recursive approach is called recursive bisection.

In Figure 2.2, one may see how a graph is partitioned in eight and five parts (in 4.3a and 4.3c respectively). As one may observe in Figure 4.3c, the graph can be easily partitioned in any number of parts k, even if it is not a power of two. The above is possible by forcing bisections that result in two unbalanced subgraphs during some recursive steps, as long as at the end of the overall procedure the proper number of balanced parts is obtained. Note that the recursive bisection can use any algorithm to compute each bisection, so different algorithms can be used to implement the actual bisection step. The recursive approach has been shown to be fast and to result in partitions of relative good quality; however some disadvantages of the method will be discussed later on this document and more specifically in chapter 3.

Local Approaches

The algorithms that are presented here are examples of the local graph partitioning approaches, that make no use of the global graph structural infor-Load Balancing for Parallel Coupled Simulations Kernighan-Lin Algorithm. The Kernighan-Lin [START_REF] Kernighan | An efficient heuristic procedure for partitioning graphs[END_REF] (KL) algorithm is an iterative algorithm, performed in several passes, that starts from an initial bipartition and repeatedly selects a pair of vertices to exchange parts. A vertex that has already changed parts will not be considered for another displacement during the same pass. The algorithm continues the vertex exchanges even if it temporarily deteriorates the edgecut that leads to exploring more solutions instead of remaining blocked in a locally optimal partition. At the end of a pass, only the displacements that led to the best edgecut improvement will be considered. The fact that vertices are exchanged in pairs helps in maintaining the balance constraint, however it restricts the edgecut minimization. Finally, multiple passes may be needed to further improve the edgecut, and the complexity of the algorithm is

O(|V | 2 log(|V |)).
Fidducia-Mattheyses Algorithm. The Fiduccia-Matthyses [START_REF] Fiduccia | A linear-time heuristic for improving network partitions[END_REF] (FM) algorithm is an improvement of the KL algorithm in terms of execution time, exhibiting an almost linear behavior that typically converges in several passes. Opposite to the KL algorithm, FM performs displacements of a vertex from one part to the other one instead of vertex pair exchanges. Naturally, this may lead to load imbalance between the parts, therefore only displacements that respect the balance constraint are allowed. The FM algorithm maintains for each vertex a gain value which represents the variation in the total edgecut when the vertex is moved to the other part. The vertices are sorted based on their gain value into a bucket structure. This is done using an array whose j th entry contains a doubly-linked list of vertices with gain currently equal to j. Additionally, another array is maintained to access the elements of the linked lists by their vertex number allowing a quick search and update of the gain values. This data structure can be seen in Figure 2.3. Throughout the algorithm, a vertex that corresponds to the maximum gain value is chosen from the bucket structure to be moved to the other part. If this displacement does not violate the balance constraint, the algorithm performs the displacement and the vertex is marked as moved. Finally FM updates the gain values in the bucket structures for the neighbors of v that have not yet been moved. Employing this simple but efficient data structure FM finds the vertices with the maximum gain faster than KL in an almost linear time.

The main drawback of the iterative algorithms described above has to do with their strictly local vision of the problem which may produce solutions that are no better than a local optimum and strongly dependent on the initial partition. However as will be explained later on, such iterative algorithms are extensively used to refine roughly good partitioning solutions.

Multilevel Framework

In the early '90s, the multilevel recursive bisection algorithm (abbreviated as mlrb) emerged as a highly effective method for computing a k-way partitioning of a graph [START_REF] Nguyen | A heuristic for reducing fill-in in sparse matrix factorization[END_REF][START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF][START_REF] Leland | A multilevel algorithm for partitioning graphs[END_REF]. A major contribution of mlrb is the introduction of the multilevel framework which is widely used nowadays in most graph partitioning algorithms. The basic structure of the multilevel framework is rather simple. The main objective here is to reduce the size of a graph with Load Balancing for Parallel Coupled Simulations 13

Background on Graph Partitioning

local optimizations, so that the solution space is reduced equally, resulting in a smaller problem where a partitioning algorithm could be applied in reasonable time. As we have mentioned before, the size of graphs (which model numerical simulations, VLSI design, etc) has become larger and larger and methods such as spectral partitioning can not be applied directly without increasing the runtime to a significant extent. Employing the multilevel framework, the size of a graph can be reduced without entirely losing its topological properties and the problem of graph partitioning can be solved much faster.

The multilevel framework consists of three phases:

i. coarsening phase, where a coarsening algorithm is performed recursively on the initial graph until a smaller structure (coarsest graph) is obtained;

ii. initial partitioning phase, during which a partition of the coarsest graph is calculated;

iii. uncoarsening phase, where the partition obtained from the previous phase is projected back to the original graph. During this phase a refinement algorithm is also applied after each projection.

Coarsening Phase

During the coarsening phase, a sequence of smaller graphs

G i = (V i , E i), is constructed from the original graph G 1 = (V 1 , E 1) such that |V i | < |V i-1 |.
In most coarsening schemes, a set of vertices of G i is combined to form a single vertex of the next level coarser graph G i+1 , called super vertex. Adding up the weights of the combined set of vertices in G i determines the weight of their corresponding super vertex v in G i+1 . The edge weight of v is calculated accordingly. This coarsening method ensures the following properties [START_REF] Leland | A multilevel algorithm for partitioning graphs[END_REF]: i) the edgecut of the partitioning in a coarser graph is equal to the edgecut of the same partition in the finer graph; ii) a balanced partition of a coarser graph leads to a balanced partition of the finer graph. This edge collapsing idea can be formally defined in terms of matchings [START_REF] Piacentini | Open-palm: an open source dynamic parallel coupler[END_REF][START_REF] Betts | Practical Methods for Optimal Control and Estimation Using Nonlinear Programming[END_REF] and more precisely maximal matching. A matching of a graph is a set of edges, no two of which are incident on the same vertex. A matching is called maximal, if it is not possible to add any other edge to it without making two edges become incident on the same vertex. The coarsening phase ends when the coarsest graph G l has a small number of vertices or if the reduction in the size of successively coarser graphs becomes too small. Among many matching algorithms like RM (random matching) [START_REF] Leland | A multilevel algorithm for partitioning graphs[END_REF], LEM (light edge matching) [START_REF] Nguyen | A heuristic for reducing fill-in in sparse matrix factorization[END_REF] and HEM * [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF], here we briefly describe the HEM (Heavy Edge Matching) algorithm which is widely used in modern partitioning tools. The HEM algorithm works as follows: the vertices are visited in a random order and each vertex u is matched with one of its adjacent unmatched vertices v, such that

Initial Partitioning Phase

The initial partitioning phase of the multilevel framework aims to calculate a partitioning of the coarsest graph G l that will later be projected back to the initial graph structure. Since the quality of the partition of G l will highly influence the quality of the final partition, the choice of the partitioning strategy in this step is important. Note that any partitioning strategy mentioned above, may be used during this step; among them the spectral approach, greedy algorithms, or even another multilevel algorithm. Since G l is small in size compared to G 1 , the multilevel framework tends to yield partitions of good quality, since a more global view of the problem is possible, and later tries to preserve them during the uncoarsening phase.

Uncoarsening Phase

The uncoarsening phase is the last step of the multilevel framework and the main objective here is to project the partition obtained on the coarsest graph G l back to the initial graph G 1 going through the sequence G l , G l-1 , . . . , G 2 , G 1 . Since a partition P i is locally optimized for graph G i and not necessarily for the graph of the next level G i+1 , a refining procedure should be applied in order to preserve the quality of each P i and eventually the quality of the very first partition P 1 . It is important to observe that graph G i-1 has more degrees of freedom compared to G i , since it unveils new vertices that may have an influence on the quality of the partition in this level. Hence local refinement algorithms are used after each projection step and are usually based on KL or Load Balancing for Parallel Coupled Simulations FM algorithms to further improve the partition.

Remember that KL or FM are iterative algorithms that have a local view of the partitioning problem and starting from a bisection, they swap vertices among the two parts in order to reduce the edgecut of the partition. Those methods along with their extensions to k-way refinement, that is refinement algorithms directly for k parts and not just for a bisection, are extensively used during the uncoarsening phase.

Multilevel Algorithms: mlrb and mlkw

As mentioned before, the first method that used the multilevel scheme is the mlrb algorithm which combines the multilevel framework with the classic recursive bisection in order to obtain a k-way partition. mlrb follows the W cycle paradigm seen in 2.5a where more that one calls to the multilevel framework are performed. Starting from the original graph, a call to the multilevel framework is made which results in a refined bipartition. That is, during the initial partitioning phase the coarsest graph is partitioned in two parts with a bisection algorithm and then it is refined using the FM algorithm. Consecutively, for each resulting part a new multilevel framework is performed and this procedure continues recursively until the desired number of parts is obtained. As we may see in Figure 2.5a, a 4-way partition is obtained with 3 calls to the multilevel framework. The complexity of the mlrb for producing a k-way partitioning of a graph G is O(|E| log(k)).

Moreover, the multilevel paradigm can also be used to construct a k-way partitioning of the graph directly during the initial partitioning phase as illustrated in 2.6. This method follows the V-cycle paradigm shown in 2.5b. In a V-cycle the multilevel framework is called just once. Again, the graph is coarsened successively to a smaller structure, but the coarsest graph is now directly partitioned into k parts. During the uncoarsening phase, this k-way partition is refined successively as the graph is projected back into the original graph.

There are a number of advantages for computing the k-way partitioning directly (rather than computing it successively via mlrb). First, the entire graph now needs to be coarsened only once, reducing the complexity of this phase to O(|E|) from O(|E| log(k)). Secondly, it is well known that recursive bisection can do arbitrarily worse than k-way partitioning [START_REF] Simon | How good is recursive bisection?[END_REF]. Thus, a method that obtains a k-way partitioning directly can potentially produce partitions of better quality. Note that the direct computation of a good k-way partitioning is harder than the computation of a good bisection in general (although both problems are NP-hard). This is because the problem of finding the best assignment of a vertex to a part among k possible parts such that the edgecut is minimized, is more complicated than choosing between just two parts. In the former case, the optimization space is increased combinatorially. However in the context of multilevel framework, we only need a rough kway partitioning of the coarsest graph, as this can be potentially refined as the graph is uncoarsened. The coarsest graph can be partitioned in k parts using any known algorithm, for instance a method is to simply coarsen the graph down to k vertices. During the refinement phase, one needs to refine a k-way partitioning, which is considerably more complicated than refining a bisection. However, algorithms that refine a direct k-way partition exist as for example in [START_REF] Sanchis | Multiple-way network partitioning[END_REF] where a generalization of FM algorithm is proposed for refining a k-way partition with a complexity of O(|E|).

Overall methods that follow the above approach are called mlkw (for multilevel k-way partitioning) and the best known algorithms have a time complexity of O(|E|) and produce partitions that are comparable or of better quality that mlrb in substantially less time. In the literature many integrated software for graph or hypergraph partitioning exist, that often use mlrb or mlkw such as Scotch, kMetis or PaToH (a detailed list of tools is presented in Chapter 3). Finally, there are some partitioning tools that use parallel algorithms like ParMetis [START_REF] Karypis | PARMETIS[END_REF], which extends its functionalities under an MPI-based parallel environment, and PT-Scotch [START_REF] Pellegrini | SCOTCH[END_REF] that proposes a multi-threaded and multi-processor graph partitioning.

Coupled Simulations

Introduction

A new challenge emerging in scientific computing involves the understanding and systematic modeling of more complex physical phenomena that are found in many academic fields such as plasma physics, climate and weather, hydrology and material science.

In such complex systems, several phenomena are considered at the same time which results in an increased complexity of the underlying numerical models and tools. The reason is that each phenomenon is described by at least one mathematical equation and these equations rarely have the same mathematical properties.

One approach to address such problems is to solve all different equations at once, thus creating a standalone simulation, ensuring the coupling between different physical equations. However, even though this approach ensures the continuity of all variables, it has a few drawbacks. First of all, as mentioned above, different equations may require different numerical methods. It can become quite difficult to implement all of these methods in one code and to solve all of them together in an efficient way.

Secondly, the configurations to be studied are often unsteady, adding to the global complexity. The unsteady nature leads to another issue: the different phenomena have different time scales. For instance, when comparing the heat conduction in a wall with a reactive flow, the time scale of the former model is often two to three orders of magnitude higher than the time scale of the latter. Hence, solving both equations at once, implies using the same integration time step which is limited by the fastest physics, leading to a waste of computational resources.

Finally, an important disadvantage of using standalone simulations to model such systems is that re-usability of existing models is not possible. In other words, legacy codes cannot be integrated directly inside the simulation, instead, they have to be re-implemented in order to be compatible with the code. Additionally, standalone simulations may be hard to maintain. For instance, if at some point a better tool is available for a certain phenomenon, it cannot easily replace an existing one without having to modify the overall simulation.

Given the above reasons, an efficient approach to address such complex phenomena is to develop modern simulations that combine distinct numerical models, plugged in together under a coupling framework. In this section, we give an overview of such simulations and we refer to them as coupled simulations.

Examples of coupled simulations often follow the multi-physics or multiscale modeling approaches. To simulate real-word conditions under the multiphysics model, one must consider the impact of a number of different physics that occur concurrently. Typically, in such simulations, effects from one physical phenomenon influence the behavior of an object in the computational domain of another physical phenomenon. Understanding multi-physics behavior is therefore a major challenge to accurately predict the performance of such simulations. In addition, a broad range of scientific problems involve multiple scales. Indeed in applications such as the simulation of crack propagation [START_REF] Anciaux | High performance multiscale simulation or crack propagation[END_REF], traditional mono-scale approaches have proven to be inadequate, even if a parallel machine is used. This is due to the range of scales and the prohibitively large number of variables being involved in the simulation. Thus, there is a growing need to develop systematic modeling and simulation approaches for multi-scale problems.

Consequently, the potential benefits of using coupled simulations are more important than those of using standalone simulations. However different challenges still exist. Indeed, combining such diverse numerical models in massively parallel coupled simulations, is not an easy task, neither in terms of the architecture of the coupled simulation nor in terms of data processing during the coupling.

To support the successful execution of coupled simulations, software tools (called couplers) have been developed and provide the necessary functionalities to plug in together multiple standalone solvers (called components in the following). In general, coupling frameworks are responsible for two main operations: to manage the execution of the components within a coupled simulation and to perform the exchange of information at the coupling interfaces. For the first one, coupling frameworks need to specify the sequencing, synchronization and coupling frequency among components while for the second one, they need to manage the communication infrastructure. Note that different components may have completely different internal characteristics (e.g. space resolution, domain decomposition etc) making the exchange of data more complicated. Therefore, the coupling framework performs the data transfers between components and provide all the necessary coupling facilities such as mapping between different component grids (interpolation) or computing fluxes between components. Depending on the overall design of the coupling architecture, the above functionalities may be performed at different levels of the coupling framework. Some designs may include both a high-level driver and a coupler, whereas others may only include a coupler or may perform direct coupling Load Balancing for Parallel Coupled Simulations from within the components using a dedicated coupling library.

We may generalize the above coupling designs into two main categories, the couplers that have a centralized communication scheme (CCS) and the ones that follow a fully distributed communication scheme (DCS). The CCS is the most straightforward scheme that follows a many-to-one and one-to-many communication design as it is shown in Figure 2.7a. In this scheme, the coupler is sequential and, thus, runs on one processor. Furthermore, a variant of the CCS is shown in Figure 2.7b that employs a parallel coupler running on a set of processors S. On the other hand, the DCS corresponds to a fully distributed, direct communication scheme, where only one level of communication is needed, enabled directly inside the components. In Figure 2.7c, we illustrate the above scheme, where one may see that the coupling processes are performed directly by the processor sets assigned to each component (P and

Q respectively).
Some examples of parallel couplers that follow the CCS are the CPL7 [START_REF] Anthony P Craig | A new flexible coupler for earth system modeling developed for ccsm4 and cesm1[END_REF] coupler, found in the latest version of the Community Climate System Model [START_REF] Boville | The ncar climate system model, version one*[END_REF] (CCSM4) and the coupler of the Parallel Climate Model (PCM) [START_REF] Washington | Parallel climate model (pcm) control and transient simulations[END_REF]. More precisely, the coupler of the CCSM4 (CPL7) runs on a distinct subset of all the processors as if it was a separate component and thus performs the coupling operations in parallel. In this version of the CCSM4 the sequencing and hub attributes are migrated in a top-level driver. Finally, note that both couplers mentioned above, offer ad-hoc solutions designed for the specific problem of climate modeling. On the other hand, examples that follow the DCS are the OpenPALM [START_REF] Piacentini | Open-palm: an open source dynamic parallel coupler[END_REF], the MCT [START_REF] Larson | The model coupling toolkit: A new fortran90 toolkit for building multiphysics parallel coupled models[END_REF] and the MPCCI [START_REF] Joppich | Mpcci -a tool for the simulation of coupled applications[END_REF] coupling frameworks which are more suitable for generic solvers. Finally, OASIS [START_REF] Valcke | The oasis3 coupler: a european climate modelling community software[END_REF] is another generic coupler that supports both CCS and DCS using the MCT coupling library (in the OASIS3-MCT version).

Examples

Understanding the global climate, how it has changed in the past centuries and how it is likely to change in the future, is a very important challenge that requires the systematic development of high-end climate models. Climate modeling is a typical example of coupled simulations following the multi-physics and multi-scale paradigm that requires huge amounts of computational power and may run for long periods of time. Nowadays, many climate models exist that simulate the earth's climate, including the CCSM4, the Coupled General Circulation Models (CGCMs) [START_REF] Gualdi | Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model[END_REF] or the PCM. Climate modeling is generally implemented as a coupled simulation and has been developed by different research groups for over decades, resulting in several software tools. These models usually consist of a coupling framework and four fundamental physical components: an atmosphere model, a surface land model, an ocean model, and a sea-ice model. Recent versions of the climate models have the ability to better support new science adding new components to the basic model such as atmospheric chemistry models or new land-ice components. As explained before, this is an advantage of the coupled simulation paradigm compared to a standalone simulation since it allows the re-usability of legacy codes with minimum modifications. Furthermore, following the coupled paradigm, individual models continue to be usable as single executables in the research groups where they have been initially developed, an important requirement in the climate modeling community.

To improve the understanding of the climate processes, the components are coupled by exchanging quantities in a consistent way across typical surfaces. Examples are the flux of energy and fresh water. This is a natural approach, because each component can be considered to evolve independently, while at the same time it is driven by the interactions with other components at the coupling interfaces. In other words, components periodically exchange twodimensional boundary data, communicating via the coupling framework that is responsible for remapping the boundary-exchange data in space and time. In Figure 2.8 we illustrate an example of coupling between two components with different space resolutions, the atmospheric and the ocean one, performed by a coupler that follows the CCS design. Nevertheless, the accurate simulation of the global climate at high resolution and at a reasonable time is still a challenge despite the current advances in climate modeling. This is mainly due to technological or financial limitations. Under this context, as stated in [START_REF] Dennis | Computational performance of ultra-high-resolution capability in the community earth system model[END_REF], the next generation of climate model should have the ability to significantly increase the spatial resolution, to include new components, and to improve the representations of sub-grid scale processes in order to produce regionally improved simulations of climate.

Another example of coupled simulations which appears in the field of computational biology, aims to model the highly complex process of thrombus formation in intra-cranial aneurysms1 Note that thrombosis is a problem that depends on a large number of interactive biochemical agents and until today, there is no full understanding of the detailed process that leads to its creation. More precisely, thrombosis requires the concurrent simulation of both blood flow in complex geometries and biological processes such as blood coagulation under the influence of local flow properties. The main difficulty when coupling the above components is that they occur in highly different spatial and temporal scales, which prevents the application of classic simulation techniques and imposes the use of a multi-scale approach. In Figure 2.9, we illustrate the scale separation map that is typically used to describe the formation of a thrombus in intra-cranial aneurysms. A scale separation map is defined as a two dimensional map with the temporal scales on the x-and the spatial scales on the y-axis. Here, we illustrate the map of a reduced complexity as it is presented in [START_REF] Zimny | A multiscale approach for the coupled simulation of blood flow and thrombus formation in intracranial aneurysms[END_REF], since a full implementation of a multi-scale simulation for the thrombus formation is beyond reach at the moment. The simplified version presents different components of the coupled simulation as well as their spatial and temporal scales spanning over several orders of magnitude. In Figure 2.10, one may see the required interactions among the components and the data that are exchanged during the simulation of a thrombus formation. Finally the authors of [START_REF] Zimny | A multiscale approach for the coupled simulation of blood flow and thrombus formation in intracranial aneurysms[END_REF] state that the results obtained from the multiscale simulation match in quality the expected process of thrombus growth after comparing them with clinical observations. The use of the multi-scale modeling approach for such a complex problem is highly crucial since without considering this solution, the simulation would not be feasible even on very large super-computers. It is important to note that the authors believe that the use of a distributed coupling framework (e.g. MAPPER2) might be extremely helpful to achieve the ambitious task of a realistic simulation of thrombus formation.

Other examples of coupled simulations can be found in the astrophysics domain where highly complex problems like the evolution of planetary systems, dense stellar clusters, and galactic nuclei can be simulated as multi-physics or multi-scale processes. For instance, in order to accurately model the formation of stellar clusters, the simulation should include a large range of physical components such as self-gravity, supersonic turbulence, hydrodynamics, outflows, radiation and magnetic fields. Also most astronomic problems are generally multi-scale with different spatial and temporal scales. For instance time may range from 10 4 minutes and 10 -3 seconds to 10 20 minutes and 10 17 seconds. In [START_REF] Portegies Zwart | A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems[END_REF] the authors present a software framework for combining existing computational tools for different astrophysical domains into a single multi-physics, multi-scale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module, as seen in Figure 2.11. Finally, another example of coupled simulations, that will be later reviewed in more details (in Chapter 4), emerges in the field of aeronautic propulsion where the behavior of hot components is impacted by complex interactions between different physics such as turbulent combustion, radiation and heat conduction [START_REF] Amaya | Coupling LES, radiation and structure in gas turbine simulations[END_REF].

Load Balancing

Reaching high performance within a coupled simulation is a challenging task since it is constrained by many factors such as the size of the problem, its complexity and its multi-component nature. Furthermore, within each component there is an internal imbalance that contributes in the overall performance of the coupled simulation. In this context, the term internal imbalance refers to the load imbalance of a component as if it was executed in a standalone simulation. As expected, the internal imbalance of a component depends on the underlying domain decomposition and is governed by internal communication costs (among the processors of the same component).

As mentioned before, a coupling framework provides two main functionalities; it enables the coupling between different components and it facilitates their execution throughout the coupled simulation. Regarding the latter, most coupling frameworks improve the load balancing of the coupled simulation through efficient sequencing of components.

In a standalone simulation, different computational tasks may run in parallel on an independent set of processors to achieve high performance. In practice, this is more difficult to achieve within a coupled simulation, since coupled simulations are governed by scientific requirements that impose limitations to the coupling. For instance, in the coupled simulation of earth's climate, the atmosphere component should wait for the ice and land components to finish before it starts executing. Because of that, existing sequencing techniques for coupled simulations are mainly not generic and highly depend on the underlying problem. Finally, since couplings invoke a large number of data dependencies among components, communication costs are often important and not easy to minimize. Nevertheless, efficient scheduling techniques exist and contribute in the minimization of the total execution time.

Earlier, we divided the architecture of coupling frameworks into two categories, based on their underlying communication scheme CCS (sequential or parallel) and DCS. Following, we give an overview of the load balancing issues as they appear in each category.

Let us start considering a coupled simulation with two parallel components (C 0 , C 1) and a sequential coupler that follows the CCS. An example of such a sequential coupler is OASIS3 3 . Before presenting the load balancing problem, it is important to explain the operations that take place during coupling and demonstrate the additional overhead. For this reason, we assume that the components are executed sequentially in time in respect to one another and in Figure 2.12 we depict one iteration of this execution. Note that the sequential (in time) execution is not preferred in real coupled simulations but sometimes, constraints on the sequencing of certain components may impose it. Finally, we consider that coupling happens bidirectionally, from C 0 to C 1 and from C 1 to C 0 . Therefore, the operations that take place during one coupling are the following: both components send to the coupler at different times their coupling interfaces (at t 0 and τ 0 for C 0 and C 1 respectively). Then the coupler gathers the data from the interfaces, performs any essential computations such 3 Do not confuse with the OASIS3-MCT or OASIS4 versions that uses the DCS.

as flux calculations or interpolations (at t 1 and τ 1) and finally sends the data to the second component (at t 2 and τ 2). As a result, the coupling overhead accounts for the exchange of data among different components (inter-component communication) and the computations performed by the coupler. Now, for concurrent executions of parallel components, the coupling overhead depends on the sequencing of components and their internal load balancing. Assuming a platform with a set Π of processors, in Figure 2.13 we illustrate two different configurations of a fully concurrent execution for (C 0 , C 1) within the sequential CCS. Note that in similar figures throughout this section, white boxes are representative of the time spent in internal computation of the components while gray boxes correspond to their idle times. Finally, red boxes represent the time spent during coupling. In Figure 2.13a, the components run on processor sets P and Q respectively, such that Π = P Q, while the coupler runs on one processor, as expected. In this configuration we assume that C 1 is not perfectly balanced and hence slower than C 0 . In this case, C 0 waits for C 1 and the coupler can perform its work, or part of it, during this waiting time. The coupling overhead can therefore be totally or partially hidden by the internal imbalance of the slower component. However, for scalable components, it is expected that their elapsed run time will decrease with an increased number of processors. Therefore, for an actual coupled system, it is most likely that the time spent in the coupler becomes proportionally more important when the parallel efficiency of the components increases. In this case, the coupler may become a bottleneck for the simulation. Indeed, for high-resolution components running on a high number of processors, the time spent in the coupler becomes relatively more important when the elapsed time spent in the components decreases. An illustration of this problem is presented in Figure 2.13b where coupling overhead is important due to lack of load balancing at the coupling. In this configuration, we assume Load Balancing for Parallel Coupled Simulations that the components are scalable, thus increasing the number of processors to P and Q results in minimizing their elapsed time. As expected the coupling overhead is not minimized, since the coupler is sequential, and it is now less hidden.

A natural way to solve the above load balancing problem would be to employ a parallel coupler that follows the parallel CCS. In this model, communications are still centralized via a coupler but the latter is executed in parallel. Following, we examine the load balancing problem that appears in a parallel coupler, based on the CPL7 coupler of CCSM4 climate modeling. Under this context, CPL7 offers a flexible component layout across processors in an attempt to optimize both parallel efficiency and component throughput. First, Figure 2.14a illustrates the fully concurrent layout of components (in both time and computational resources). In this layout, the set Π of processors is divided into independent subsets (X , Z, R, P, Q). Each component is mapped onto one separate subset. For instance, the ATM component is mapped on subset P, while OCN is mapped on subset Q. In the parallel CCS, the coupler must also be mapped on processors, here CPL is mapped onto subset X . On the opposite side of the spectrum, Figure 2.14b represents the fully sequential layout. Here, each component is distributed to all processors but components are executed sequentially with respect to each other.

In general, the effectiveness of running components concurrently is a trade- off between the idle time created by concurrent execution versus the generally sub-linear scaling of components as processor counts are increased. Additionally, the optimal layout and processor count depend heavily on the application and the type of coupling between components. The scaling performance and spatial resolution of each component are also essential in determining an efficient layout. In this example, the fully concurrent layout does not optimize the idle time because of sequencing limitations (ATM can not start before ICE or LD) and the relatively small number of processors assigned to the whole coupled simulation (i.e. Π = 128). However, in general terms, the fully concurrent layout is better than the fully sequential one, since it has higher performance potentials as the number of processors increases. Indeed, this is not the case for the fully sequential layout that is limited by poor time and memory scalability of the components. As a result, for this example, more efficient layouts include mixed sequential and concurrent solutions as depicted in Figures 2.14c and 2.14d. Those layouts combine the benefits of both sequential and concurrent executions. More precisely, through sequential execution, the idle time of components with sequencing limitations is minimized (e.g ATM and ICE), while the scalability of the coupled simulation is increased with the concurrent execution of other components (e.g. ATM and OCN).

Note that in this communication scheme (parallel CCS), the coupler is viewed as a separate component and it is attributed a number of processors. Under this context, the load balancing of the coupler should also be considered. Remember that the number of processors that are attributed to the coupler in CCSM4 is often determined based on the load balancing and optimization of the other components first. The above solution suggests that the components share with the coupler additional information about their internal partition and processor count that corresponds to the coupling data. As a result, the coupler maintains the same partition of the coupling interfaces placed on the same processor count for each component that participates in the coupling. For scalable components this may lead to a load imbalance of the coupled simulation during the coupling process. Additionally, within the coupler, the communication costs that correspond to data exchanges among different components are not optimized. This is not surprising since the data distribution of each component is performed independently from one another, thus the inter-component communications are not minimized during the partitioning procedure.

Finally, we discuss the load balancing problem, when the DCS is used, where components are mainly executed in fully concurrent layout as shown in Figure 2.15. This scheme is very promising since there is no explicit coupler and the components directly communicate with each other. An example of a coupling framework that uses the DCS scheme is OpenPALM. Here, coupling is performed exclusively by the processors of each component that participate in the coupling process and own parts on the coupling interface. Again, as in the parallel CCS, each component uses its internal partition and processor subset when exchanging data with another component which may lead to load imbalance during the coupling process. Additionally, in the DCS, components exchange data directly on their mesh structures without the use of a coupler. Again, since the partition of the coupling data is done independently for each component, the inter-component communication may not be optimized.

To conclude, we notice that current coupling architectures try to minimize the imbalance of a coupled simulation by providing efficient processor layout and sequencing but do not address the load imbalance that appears during the coupling process. Indeed, even when the parallel CCS or the DCS are employed as communication schemes, the data distribution related to the coupling data is not well balanced. Moreover the inter-component communication may not be optimized. More precisely, when components are executed in the non-coupling mode (similarly to the standalone execution), their execution is governed by computational operations and their load is balanced due to an internal partitioning. However, when components enter a coupling process their operations change, due to data exchanges, and lead to a communicationintensive execution. This change on the type of operations between coupling and non-coupling modes is not reflected in the internal partition of each components and results in imbalanced couplings. In the next section, we explain in more details the above problem, providing illustrative examples.

Positioning

Nowadays, most coupled simulations use a straightforward approach to address the data distribution problem which simply treats each component as Load Balancing for Parallel Coupled Simulations a completely independent simulation. As a result, the data decomposition is done independently and each computational domain is partitioned separately with a classic partitioning algorithm.

As explained before, the coupling framework determines how many processors will be assigned to each component, following a specific processor layout that optimizes the efficient execution among components (component throughput). Here, we assume a fully concurrent layout, where N components are mapped to distinct sets of processors. Therefore, one obtains N independent partitions, each of which divides the mesh of the corresponding component into the desired number of parts. As a final step, all parts from the N partitions are assigned to the processors of the parallel machine.

The above approach to partition coupled simulations, which we call naive approach, is the most commonly used method regarding the data distribution of a coupled simulation. Additionally, as far as we know, little work has been done to understand and address this problem in a more systematic way. While the naive approach is obviously easy to use and solves the partitioning problem for each component separately, it does not address the major challenges of coupled simulations, that is, the load imbalance during the coupling process and the inter-component communication costs. Indeed, for the non-coupling execution the internal load of each component is balanced and the internal communication costs are minimized. However, if we focus just on the coupling interface, we observe that the load might be highly imbalanced.

To illustrate the potential load imbalance, we consider in Figure 2.16 a coupled simulation with two components (C 0 , C 1) and two different partitioning results obtained on the computational domain of C 0 . C 1 is also depicted here, but its data distribution is not important for the purpose of this example. Note that both partitions in 2.16a and 2.16b equally balance the load of C 0 that corresponds to the entire computational domain (dividing it in three parts) and both minimize the internal communication costs (same edgecut). As a consequence, they are optimal from the point of view of the naive approach. However in Figure 2.16b, one may observe that the load related to the coupling interface is highly imbalanced as opposed to the load of the coupling interface in Figure 2.16a. More precisely, the latter (Figure 2.16a) is equally balanced both on the entire domain and the coupling interface. In Figure 2.16c, we illustrate the execution time and processor layout of the coupled simulation that corresponds to the data distribution of C 0 , shown in Figure 2.16a. In a similar way, Figure 2.16d corresponds to Figure 2.16b. Note that for C 1 we assume a balanced load distribution during the coupling, so that we can focus on C 0 . As one may see in Figure 2.16d, the time spent in the coupling process for C 0 may be significantly higher because of the load imbalance among the processors involved in the coupling. We also remark that two out of three processors of C 0 are (almost) idle during the coupling. Consequently, the above example shows in a simple way that the naive approach does not consider the coupling as a different phase and hence does not guarantee explicit load balancing throughout coupling. In addition, within a coupled simulation the inter-component communication costs are often not optimized. This is not surprising if we consider that the data of different components have been partitioned completely independently from one another. Note that the total volume of inter-component communications remains rather constant since it corresponds to essential data exchanges that are imposed by the coupling dependencies between components. As a result, our objective here is to minimize the maximum volume of communication per processor and to minimize the number of messages exchanged among components. Let us consider an example of a coupled simulation with two components (C 0 , C 1) that exchange data on their coupling interfaces, as shown in 2.17. In Figure 2.17a, we show the data distribution on the computational domain of each component as it is computed by the naive approach. Let us assume that the partition of both components is balanced in eight and twelve parts, respectively, and that the internal communication costs are minimized. However, we may see that the processors of C 0 that have data on the coupling interface (four processors here) are not "well-aligned" with the processors of C 1 that also have data on that interface (five processors). As a result, the number of messages that are exchanged between the two components is not optimal (8 inter-component messages). Ideally, if we use a partitioning algorithm that takes the coupling process into account, the number of inter-component messages may be reduced. In Figure 2.17b, one may see such a partitioning result, where the data of each component are distributed in such a way, that the number of inter-component messages is reduced to 4 with an optimized communication scheme. As a conclusion, in this work, we address the problem of data distribution for coupled simulations where two (or more) components are combined together in order to solve highly complex physical systems. In this context, we observe that there are still challenges concerning the load balancing of the whole simulation.

In Chapter 4, we propose new graph partitioning algorithms that address this problem. Our objective is to efficiently decompose the data of a coupled simulation as part of an interactive system and not just as part of independent components. In this way, the load is balanced both during internal computations for each component and during couplings while the inter-component communications may be reduced. Additionally, with a partitioning method that is aware of the coupling process, one may explicitly control the number of processors allocated in the coupling for each component. This offers an additional flexibility to the architecture of coupled simulations and is important for components with highly different load characteristics. We call the procedure of finding such data distributions the co-partitioning.

Moreover, in Chapter 3 we address the problem of graph partitioning with initially fixed vertices. We believe that an algorithm that supports such graph structures may improve the quality of our co-partitioning solutions. In both Chapters 3 and 4, we evaluate the results of our work with a series of experiments. Finally, in Chapter 5 we give our conclusions on this work along with some future prospectives.

Chapter 3

Graph Partitioning with Initial Fixed Vertices

Introduction

In this chapter, we study a variant of the classic graph partitioning problem, that is, the graph partitioning problem with initially fixed vertices. In general, this modified instance of graph partitioning typically appears when the underlying application imposes additional constraints on the assignment of computations to specific processors. For instance, an application may have an a priori knowledge on data locality for certain computations. This information can be modeled with the presence of fixed vertices in the initial graph and may guide the partitioning procedure into reaching solutions of better quality. In particular, a fixed vertex is a vertex whose partition assignment is predetermined as part of the input description and shall not be moved throughout the partitioning. Note that in the remainder of this chapter, we refer to the other vertices, that may move to any part, as free.

The work presented in this chapter is motivated by our interest in solving the load balancing problem of coupled simulations. More precisely, we believe that graph partitioning algorithms for problems with initially fixed vertices may be part of this solution. As explained in Chapter 2, classic graph partitioning strategies may fail to guarantee load balancing throughout the entire execution of coupled simulations. This is because different components do not just run as standalone simulations, but also interact with each other through dedicated coupling periods. Indeed, when components interact with each other and exchange data on their coupling interfaces, the operations involved in the process may not be well balanced. In this case more advanced partitioning algorithms should be considered. In this work, we propose load balancing solutions for such simulations and we introduce fixed vertices in order to influence the partitioning results between different components or different types of operations (computationally intensive or communication intensive). In other words, the presence of fixed vertices may help the partitioning to successfully balance the load throughout the overall execution of such simulations and ultimately improve their makespan.

In the literature, other problems that use the fixed vertex paradigm are drawn from various areas, such as dynamic load balancing or integrated circuit design (VLSI). Here, we briefly present these examples. In scientific computing, a well-known example where the fixed vertex paradigm occurs is the load balancing of adaptive scientific computations [START_REF] Hendrickson | Dynamic load balancing in computational mechanics[END_REF]. In such applications, the discretization of the computational domain changes irregularly over time, leading to imbalanced load even for initially well-balanced simulations. The above feature gives rise to the repartitioning problem that addresses the difficulties of maintaining a dynamically changing load at runtime [START_REF] Catalyurek | Hypergraph-based dynamic load balancing for adaptive scientific computations[END_REF].

Note that the repartitioning problem is often modeled with graph or hypergraph structures and assumes an initially balanced partition. The additional requirement of repartitioning is to minimize the migration volume that appears when moving data among processors following a new partition. Under this context, a common approach to solve the repartitioning problem is to enrich the initial graph (or hypergraph) with one fixed vertex per part. Additional edges should be used in order to connect each fixed vertex to all free vertices of its respective part. These edges are called migration edges since they represent the cost of migrating data from the former partition to the new one. As a result, fixed vertices along with migration edges successfully model the additional constraint of repartitioning. Thus a good approach to solve the repartitioning problem is to perform a biased partitioning of the enriched graph, that accounts for minimizing the migration costs (in addition to minimizing the regular communication costs).

Graph partitioning with initial fixed vertices may be also used for nonnumerical applications, such as the top-down placement technique [START_REF] Caldwell | Hypergraph partitioning for VLSI CAD: Methodology for heuristic development, experimentation and reporting[END_REF] used in the integrated circuit design. Related studies [START_REF] Caldwell | Hypergraph partitioning for VLSI CAD: Methodology for heuristic development, experimentation and reporting[END_REF][START_REF] Dunlop | A procedure for placement of standard-cell VLSI circuits[END_REF] demonstrate the importance of modeling the above problem with fixed vertices, proposing new partitioning approaches that account for extra constraints. The authors suggest that the presence of fixed vertices represents more accurately any positioning information, such as the locations of external pin connections, or the potential locations of certain cells in the final placement. In this context, the number of fixed vertices can reach up to 50% of the total number of vertices.

The main contribution of this chapter is a new algorithm, named kgggp, that finds a direct k-way graph partitioning, extending a classic greedy approach for bipartitioning. Though kgggp addresses the general problem of graph partitioning, its best results appear mainly when fixed vertices are used during the partitioning procedure. To complete our study we present a systematic comparison of different partitioning algorithms that address the above problem. What we observe is that for the graph partitioning problem with initial fixed vertices, kgggp exhibits better partitioning results compared to state-of-the-art partitioning tools, which use Recursive Bisection (RB) based techniques. This is an interesting result that motivates us to understand what happens when RB is used to partition a graph with fixed vertices.

Issues of Recursive Bisection

The motivation behind our study comes from the observation that RB based algorithms produce partitions of lower quality when the fixed vertex paradigm is involved, a remark initially shared in [START_REF] Cevdet Aykanat | Multi-level direct k-way hypergraph partitioning with multiple constraints and fixed vertices[END_REF]. Here, we attempt to further explain this behavior.

More precisely, RB based methods follow a divide & conquer strategy: the original graph is first split in two parts (bisection) and this procedure is recursively repeated independently on the two resulting subgraphs, until the desired number of parts is obtained. Thus, it is possible to represent this procedure with a bisection tree (Figure 3.1) which illustrates the implicit part numbering scheme used by RB.

Let us now assume that the number of desired parts at the end of the partitioning is k. Note that at each bisection step, RB selects half of the available part numbers and assigns them to one of the two resulting subgraphs. This step has a complexity of O(k!) since there are combinatorially many part numbering selections for each bisection step. Therefore, in order to avoid choosing among k! combinations, RB decides to blindly group together parts with consecutive part indices. For instance in the first bisection, RB will try to assign the first half of all the part indices, [1, k/2], to one subgraph and the second half, [k/2 + 1, k], to the other. At each level of the bisection tree, the same methodology is applied. In Figure 3.2, we illustrate a simple but compelling example that exhibits the partitioning issues emerging when a RB algorithm partitions a graph with Load Balancing for Parallel Coupled Simulations

Issues of Recursive Bisection

fixed vertices. More precisely, as one may see in 3.2a, we use a grid graph (of dimensions 1000 × 1000) with an initial part numbering of fixed vertices such that vertices near the corners are assigned accordingly to 4 different parts. We consider the rest of the vertices as free (part -1). Following, we partition the whole graph in 4 parts. We compare two different methods implemented within the same multilevel framework and tuned with the same parameters. To make the analysis easier, the refinement algorithms have been disabled. In Figure 3.2b, we present the result obtained by the RB method (implemented by Scotch), while in 3.2c, we present the same result obtained by our kgggp method, which will be described later in this chapter. Here, one may clearly see that during the first recursion level of RB it is not possible to select a good bisection between parts [START_REF] Zoltan | Parallel partitioning, load balancing and data-management services[END_REF][START_REF] Piacentini | Open-palm: an open source dynamic parallel coupler[END_REF] and [START_REF] Amaya | Coupling LES, radiation and structure in gas turbine simulations[END_REF][START_REF] Anciaux | High performance multiscale simulation or crack propagation[END_REF] which respects the constraint of initial fixed vertices. Thus, the final partition quality is considerably poor for the RB based method. Indeed, when the part numbering of fixed vertices conflicts with the inherent numbering constraint of RB, the method can not successfully respect both constraints, leading to largely disjoint parts and bad edgecut. To better understand what goes wrong in this case, let us consider the Figure 3.3 that reproduces the same experiment on a smaller 10 × 10 grid graph. Here, we realize the same 4-way partitioning under the constraint of fixed vertices depicted in Figure 3.3a. Following a similar methodology as Simon and Teng [START_REF] Simon | How good is recursive bisection?[END_REF], one may clearly see that RB does not succeed in finding the optimal solution under the constraint of fixed vertices. This is because RB tries at each step to find the optimal local solution, and in this case the first optimal bisection involves disconnected components as shown in Figure 3.3b (i.e. vertices fixed to 3 are disconnected from the part containing vertices fixed to 4 and the same happens for vertices fixed to parts 2 and 1). Note that RB cannot find a better bisection that puts fixed vertices of parts 1 and 2 in a single connected component. Another possible solution for the first bisection would give edgecut of higher cost (not optimal). Therefore, the first "bad" bisection of RB is maintained in the final solution, which is clearly not optimal: the best solution of RB is presented in Figure 3.3c compared to the optimal solution shown in Figure 3.3d.

Note that the above examples are just an illustration of the problematic behavior of RB methods with initial fixed vertices. Further experiments that confirm our observations follow in Section 3.5.

Graph Partitioning Algorithms with Fixed Vertices

In Table 3.1, we present some useful information about common graph and hypergraph partitioning tools, such as Scotch, Metis or PaToH. First, we note that most partitioning tools use the widely adopted RB heuristic combined with the multilevel framework (MLRB or MLKW with RB for the initial partitioning phase). The above observation is not surprising, since these methods have been proven to be very efficient for the classic graph partitioning problem and are viewed as the state-of-the-art. Another interesting remark is that, despite the research interest on the partitioning problem with initial fixed vertices, more than half of the given tools do not handle at all this specific problem. Note that this is especially true for graph partitioning tools. More importantly, after testing some of the tools which actually provide solutions for graph/hypergraph partitioning with fixed vertices, we observed that they do not successfully minimize the edgecut, resulting most of the times in lower quality partitions. Following the explanation in Section 3.2, we credit the above behavior to the use of the RB heuristic, which provides great results for the classic graph partitioning problem but may fail to properly handle the presence of initial fixed vertices. Nevertheless, there are some interesting studies about partitioning algorithms that successfully handle initial fixed vertices and we review them here.

An algorithm that addresses graph problems which involve initially fixed vertices is the one proposed in RM-Metis, where the adaptive object space decomposition is modeled as a graph instance [START_REF] Cevdet Aykanat | Adaptive decomposition and remapping algorithms for object-spaceparallel direct volume rendering of unstructured grids[END_REF]. However, the proposed algorithm addresses only the k-way repartitioning problem and requires an existing partition of a graph that has become imbalanced. The main idea of the algorithm is to apply greedy growing techniques, selecting k -1 growing parts and a shrinking one, until the load of every part drops below the maximum allowed part size. As mentioned before, in such re-balancing problems fixed vertices help the repartitioning procedure to re-distribute the load more efficiently. Note that RM-Metis has limitations to the number of initial fixed vertices that may be used during the repartitioning, namely one per part, whereas kgggp has no such restrictions. Finally this algorithm is implemented inside the multilevel framework of Metis but unfortunately, as far as we know, its implementation is not publicly available.

Following we describe in detail the two alternative methods that solve the partitioning problem with initial fixed vertices. In the next section, we review the rbbgm algorithm that was first introduced in kPaToH and then, we review the kgggp method in Section 3.4.

Recursive Bisection with Bipartite Graph

Matching (rbbgm)

An algorithm for hypergraph partitioning is introduced in [START_REF] Cevdet Aykanat | Multi-level direct k-way hypergraph partitioning with multiple constraints and fixed vertices[END_REF] that successfully handles problems with initially fixed vertices. In this work, the authors identify the inferior performance of RB when fixed vertices are involved in the process, mentioning its inability to explore the combinatorially many part labelings that correspond to a given fixed vertex configuration. To correct the above For the coarsening phase of kPaToH, a modified Heavy Connectivity Matching1 is proposed such that no two fixed vertices are matched together at any coarsening level. However, a fixed vertex can be matched with any free vertex, forming a fixed super-vertex for the next level. Therefore, the number of fixed super-vertices in the coarsest level is equal to the number of initially fixed vertices of the hypergraph. As always, free vertices are matched together according to the chosen heuristic.

During the initial partitioning phase of kPaToH, fixed vertices are temporarily removed from the coarsest hypergraph and a partitioning of the resulting hypergraph is performed with a classic RB-based algorithm. Once the partition is computed, fixed vertices are re-introduced in the hypergraph according to a relabeling strategy. Note that if no relabeling is used, fixed vertices are simply re-assigned to the parts based on their initial part numbering. In this case, the final partition may not be optimized in terms of net cost minimization, since nets incident to fixed vertices are not considered during RB. In other words, a relabeling strategy that minimizes the net cost contribution of re-introduced fixed vertices is necessary to obtain an optimized partition for the coarsest hypergraph.

The problem of relabeling fixed vertices is formulated in kPaToH as a maximum weighted bipartite graph matching problem, that represents the minimum increase of edgecut. In the proposed formulation, sets of fixed vertices and resulting parts form the two node sets of the bipartite graph B = (X, Y). More precisely, each vertex X i in B represents fixed vertices, initially assigned to part i, while each vertex Y i represents vertices that belong to part i after the partitioning. Additionally, the bipartite graph contains all possible edges (X i , Y j) between fixed vertices and ordinary ones with a weight that corresponds to the sum of weights for edges with incident vertices in both X i and Y j . Following, we give an example of the initial partition phase of kPaToH on a graph structure rather than on a hypergraph for reasons of consistency with the focus of this work. Figure 3.4 shows the partitioning result of a graph with fixed vertices using kPaToH and no relabeling strategy is used to reassign fixed vertices. That is, the modified graph which contains only free vertices has been partitioned in four parts with RB while fixed vertices have been simply re-introduced in the graph after the partitioning, maintaining their initial part assignment. Note that fixed vertices are represented in the figure as squares while free vertices as circles. Additionally, for ease of presentation, unit edge weights are assumed and only edges connecting fixed vertices and free ones are displayed, since any additional edgecut contribution may be due to such edges.

In this partitioning example, the upper bound of edgecut contribution after fixed vertices are re-introduced in the graph is 14 (edges). In Figure 3.5, we present two instances of the bipartite graph that models the re-assignment of fixed vertices for this example, one (3.5a) that corresponds to no relabeling and a second one (3.5b) which follows a relabeling strategy. Finally, note that sets of fixed and (previously) free vertices that are assigned to the same part are drawn in both figures with the same color.

Therefore, in the case of no relabeling, the edgecut increase is 10 and implies an edgecut saving of four (colored edges). However, it is easy to see that there is an assignment of fixed vertices that leads to higher egdecut saving and is the solution of the maximum-weight bipartite graph, illustrated in 3.5b. This relabeling obtains the highest saving of edgecut which leads to the minimum cost increase of 14-7 = 7, instead of 10. Experiments on hypergraphs with fixed vertices performed by kPaToH show a net cost improvement of overall average between 17% and 21% compared to the multilevel RB-based method used in PaToH. Unfortunately, as it is mentioned in Table 3.1 kPaToH is not available; therefore we decide to implement our own version of rbbgm for graph structures described below.

Discussion on Graph Implementation of rbbgm

We choose to implement rbbgm inside the multilevel framework of Scotch for two main reasons. First, Scotch is one of the most widely used graph partitioning tools, with a fast implementation of the multilevel framework and an easy programming interface. But more importantly, Scotch already includes a RB-based method that addresses the problem of graph partitioning with initially fixed vertices that can be used as a reference method. Remember that the multilevel framework consists of multiple heuristics and each partitioning tool has different parameters for the coarsening, initial partitioning and uncoarsening phase, that may heavily influence the quality or execution time of the final solution. Therefore, in order to conduct a reliable comparison of different methods used for the initial partitioning phase (such as rbbgm and kgggp), one shall implement them all inside the same multilevel framework. Finally, note that in order to solve the maximum weighted bipartite graph matching problem that appears in rbbgm, we use an implementation of the Hungurian algorithm [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF] which finds an exact solution and has a complexity of O(k 3).

The kgggp Algorithm

In this section, we describe a direct k-way graph partitioning algorithm, called kgggp (k-way greedy graph growing partitioning), which can be easily integrated in a multilevel framework and that successfully handles any number of initially fixed vertices.

To begin with, we briefly describe here the standard greedy approach for bipartitioning [START_REF] Jr | On the validity of a front-oriented approach to partitioning large sparse graphs with a connectivity constraint[END_REF][START_REF] Battiti | Differential greedy for the 0-1 equicut problem[END_REF] that has served as key idea for many partitioning algorithms and particularly for kgggp. This greedy approach starts by placing a random seed vertex into each of the two parts and then the remaining vertices are iteratively added into the parts according to a minimization criterion.

Algorithmic description of kgggp

The kgggp algorithm is an extension of the standard greedy bipartitioning algorithm for a k-way graph partitioning, where a partitioning of k parts (instead of just two) is directly computed. In a certain way, kgggp can be seen as a variation of the FM algorithm [START_REF] Fiduccia | A linear-time heuristic for improving network partitions[END_REF] with k growing parts and a free part, denoted as -1, which initially contains all free vertices and becomes empty at the end of the procedure. A detailed description of kgggp is given in Algorithm 1 that will be discussed below.

As we mentioned above, greedy algorithms often use seeds to initiate the partitioning procedure, usually based on BFS (breadth first search) [START_REF] Diekmann | Shape-optimized mesh partitioning and load balancing for parallel adaptive FEM[END_REF]; however in kgggp, the use of seeds is optional. As an alternative, the selected minimization criterion determines the first vertex displacement for each part.

At each step of the main loop, the kgggp algorithm selects the best global displacement (v, p), among all free vertices and all possible parts. Note that we initially consider all free vertices in part -1 as candidates to move to any of the k parts and we choose the best displacement, based on an edgecut minimization criterion (gain), subject to the balance constraint. Additionally to the above criteria, the algorithm enforces the selection of a displacement (v, p), such that v is connected with vertices already assigned to the part p (connectivity constraint). In other words, one prefers to select a vertex v in the neighborhood of the growing part p, as far as possible.

In order to quickly locate the best displacement, we use a similar data structure as in FM adapted here for k parts. This structure, called gain bucket data structure, maintains a sorted list of displacement gains. To implement the bucket, we use an array whose i th entry contains a doubly-linked list of all displacements with gain currently equal to g = max gain -i (Figure 3.6). Additionally, an array containing references of all displacements is used to perform quick gain updates in the same way as in FM. More precisely, in kgggp, a two dimensional array is employed which can be accessed by vertex and part numbering (v, p) allowing the updates of neighbor vertices after a displacement in constant time. The kgggp algorithm uses three instances of the gain bucket structure to store and select displacements: H REG initially contains all possible regular displacements (line 2), while H N CC and H N BC store displacements that do not respect the connectivity and balance constraint respectively. Note that at first, H N CC and H N BC are both empty (lines 3-4). In the main loop of the algorithm, the best displacement is selected initially from H REG and if it respects all constraints, the chosen displacement will be applied. However, each time we encounter a displacement that violates the connectivity or the balance constraint, we move it to the appropriate bucket (H N CC and H N BC respectively). It is expected that at a given time, bucket H REG will become empty while buckets H N CC and H N BC will contain the rest of possible displacements. In this case, until the algorithm terminates, we repeat the above procedure searching for displacements in H N CC and if they do not respect the balance constraint, we move them into bucket H N BC . Finally, when H N CC becomes empty, the only displacements left for selection are included in H N BC .

Once a displacement (v, p) is chosen (line 29), v is moved to the corresponding part p (line 31) and then (v, p) is removed from the respective bucket (line 33). Additionally, we remove from any bucket all possible displacements of the same vertex to other parts (line 34) and we update the selection criterion of its neighbors as in the FM algorithm (line 37). Finally, each time a vertex v is moved to a part p, the algorithm checks if displacements (v , p) in the neighborhood of v that previously violate the connectivity constraint, respect it once again. In this case, such displacements become "regular" and are moved from H N CC back to H REG (line 42), as explained in Figure 3.8. In Figure 3.7, we illustrate the evolution of the part growing when a simple 100 × 100 grid graph is partitioned into 4 parts using the kgggp algorithm without a multilevel framework. As one may see, the algorithm aims to respect both the balance and the connectivity constraints leading to a rather balanced and connected partition even with no refinements.

Fixed Vertex Management

Note that it is very straightforward to handle initial fixed vertices within kgggp. More precisely, fixed vertices are directly placed in their respective parts before the algorithm starts and are simply not considered as candidates for any displacement. Obviously, these vertices are not ignored: they influence the balance among parts and are taken into account in the gain calculation of free vertices in the neighborhood.

kgggp in a Multilevel Framework

The kgggp algorithm can be easily integrated in any multilevel framework with some simple adjustments regarding the initial fixed vertices. Firstly, during the coarsening phase, an extra constraint is added, so that fixed vertices which belong to different parts can not be matched together, while they may be matched with free vertices. Following, we partition the coarsest graph with kgggp as it is described above and we continue with the uncoarsening phase, where refinements for k-way partitioning are performed to further improve the final result. Note that during this phase, we maintain all fixed vertices locked, forcing them to remain in place.

Gain Formulas for Minimization Criterion

As we mentioned above, there exist multiple minimization criteria to determine displacement selection. Here, we present three of them: the classic gain minimization as it is presented in FM algorithm, the diff gain proposed by Battiti and Bertossi [START_REF] Battiti | Differential greedy for the 0-1 equicut problem[END_REF] and finally a hybrid minimization criterion.

Assuming that a vertex v moves into part p, we divide its incident edges (v, v) in three categories: the internal edges such that part[v] = p, the external edges such that part[v] = p, and the free edges such that part[v] = -1. Let N int (v) be the number of internal edges, N ext (v) the number of external edges and N f ree (v) the number of free edges, for v. Clearly, N int (v) measures how strongly v is connected to the part p, while N ext (v) measures how strongly it is attracted to other parts (except -1). The parameter α is an integer constant that is used to enforce the part connectivity once again; more precisely, it favors internal edges compared to other edges. Typical values of α are in the range 1 to 10.

Table 3.2: Description of minimization criteria. Criterion Gain Formula

classic G = α.N int (v) -N f ree (v) diff G = α.N int (v) -N ext (v) hybrid G = α.N int (v) -N ext (v) -N f ree (v)
Based on the above definitions, the Table 3.2 presents the gain formulas of the different criteria. The main difference between those formulas is due to the free edges, depending on whether they are considered as external or not.

Time and Space Complexity

The main steps of the kgggp algorithm consist of initializing displacements, selecting displacements and updating the bucket structures after a displacement is performed. The initialization step needs to compute the gain for all possible displacements (v, p) of any free vertices v to any parts p. As the gain calculation depends on the neighborhood of each vertex v, the time complexity is O(k|E|). Then, during the main loop, we select at each iteration the "best" displacement using the three bucket structures. In Figure 3.8, we illustrate a diagram of all possible moves of a displacement between the three buckets during the selection phase. Each transition may happen exactly once for each displacement. In the worst case, a displacement (v, p) may be considered up to three times before being selected. This is the case when (v, p) is initially in H REG but does not respect the connectivity constraint, so it moves to bucket H N CC . However, due to a possible displacement of a neighbor vertex to p, vertex v becomes connected to the part and (v, p) moves back to bucket H REG (lines [START_REF] Karypis | Multilevel algorithms for multi-constraint graph partitioning[END_REF][START_REF] Karypis | Multilevel k-way partitioning scheme for irregular graphs[END_REF]. Note that this is an update step (dashed arrow) and is not considered in the complexity of the selection phase. Moreover, (v, p) may move to H N BC if the balance constraint is not respected, before being finally selected as the best displacement. As a consequence, the time complexity of the selection phase is equal to O(|V |). Note that the actual displacement of a vertex has constant time complexity. Furthermore, during the update phase, displacements that correspond to already assigned vertices should be removed from all buckets and then the gain of neighbors should be updated. That is, for each neighbor of a newly assigned vertex, it is necessary to update its gains regarding all k parts, leading to a complexity of O(k|E|) for this step.

Therefore, the total complexity of kgggp is O(k|E|), considering that |V | is dominated by |E|. As a reminder, the time complexity of RB is O(log(k)|E|). As concerns the space complexity, it is mainly due to storing all possible displacements in the gain bucket data structure, which is O(k|V |).

SELECTION

Optimization: Local Greedy Approach

In order to reduce the total time complexity of kgggp, we implement a second version of the method, where we enforce local selection of displacements instead of the global selection described above. The key idea here is to search for upcoming displacements only in the neighborhood of vertices that belong already to a part. This approach is similar to the one used in kMetis to optimize the k-way FM refinement heuristic [START_REF] Karypis | Multilevel k-way partitioning scheme for irregular graphs[END_REF]. As a result, we do not need to initialize the H REG bucket structure by computing a priori the gain value Load Balancing for Parallel Coupled Simulations for all possible displacements. Instead, after a displacement (v, k) is chosen, we dynamically insert in H REG new displacements (v , k) for all neighboring vertices v of v, that remain free. If H REG becomes empty while the partition is not complete, the method switches back to the global approach for the remaining free vertices, giving a time complexity of O(k|E|) in the worst case and O(|E|) in the best case.

Experiments

In this section, we present the experimental results on the partitioning quality and time performance of different algorithms that solve the graph partitioning problem with initially fixed vertices. Our main goal is to analyze the performance of kgggp and compare it to existing solutions.

For our experiments, we implement two versions of the kgggp algorithm, one that follows the global greedy approach (kgggp g) and one that follows the local approach (kgggp l) as described in Section 3.4. Following, we compare the two versions of kgggp with our rbbgm implementation of kPaToH (explained in 3.4) and the default RB-based method of Scotch. Both codes of kgggp and the one of rbbgm are publicly available in the MetaPart library at http://metapart.gforge.inria.fr.

Note that we implement the above methods inside the same multilevel framework (that of Scotch), as part of the initial partitioning phase of a MLKW algorithm. Moreover, all methods are tuned with exactly the same partitioning parameters: imbalance factor of 5%, HEM for coarsening, maximum coarsest graph size equal to 30 × k, FM refinement with 10 passes and a maximum number of negative moves allowed set to 100 for each refinement pass. As a result, the above configuration allows us to fairly compare the impact of rbbgm, kgggp and RB algorithm on the final partitioning solution. In the remainder of this section, we will refer to the default RB method of Scotch as "Scotch", and it will serve as a reference for the relative comparisons in the following experiments.

To perform the experiments, we use graphs that come from different scientific domains (numerical simulations, clustering problems and road networking) available in the public DIMACS'10 collection [START_REF] Bader | Benchmarking for graph clustering and partitioning[END_REF], for experimentation on graph partitioning and graph clustering. One may find in Table 3.4 the different graph categories that are used in our experiments along with some useful information, such as the total number of vertices or edges, for each graph.

For the sake of brevity and readability of our experimental results, we include here two different types of figure. In Figures 3.11, 3.14 and 3.16 for each graph category we present normalized results relative to Scotch on the average values over all included graphs (within that category). Besides, each experiment is performed 5 times for every graph. In these figures, the x-axis represents the edgecut and the y-axis represents the execution time, while the number of desired parts increases from 10 to 500. Moreover, to analyze our experiments in a global perspective, we include figures that demonstrate average values of the obtained results (either the edgecut or the execution time) over the entire graph collection or over significant groups of categories. Note that the error bars in those latter figures indicate the standard deviation for each method. Finally, whenever a method fails to compute a valid partition, its results are not taken into account in the average calculations. Obviously by doing so, we may favor methods that fail to respect the balance constraint. To address this problem, we carefully examine the success rate of each partitioning tool in addition to the main metrics (edgecut and execution time).

In this study, we perform three different experiments. The first one aims to evaluate the behavior of kgggp algorithms for the classic graph partitioning problem, while the second one evaluates kgggp and other existing algorithms for the graph partitioning with initially fixed vertices. Finally, since most tools that support fixed vertices are designed for hypergraphs, we include a last experiment that compares kgggp with hypergraph tools.

Tuning of kgggp without Multilevel Framework

The goal of this preliminary experiment is to tune some important parameters of the kgggp method. More precisely, we want to evaluate the best gain formula (classic, diff or hybrid) and the impact of the local optimization (kgggp l) vs the global approach (kgggp g) on both quality and performance. Those parameters have been previously described in Sections 3.4.4 and 3.4.6.

To enable an easier analysis, we disable the multilevel framework for every method and we perform the experiment only on the Walshaw collection, that contains graphs of smaller size. The results are presented in Figure 3.9 relative to Scotch. Here we see that the local approach, tuned with the classic or hybrid gain formulas and α = 1, provides the best results for both edgecut and execution time. More precisely, for kgggp l the classic formula gives a slightly better edgecut than the hybrid, while the hybrid one slightly improves the runtime performance.

Besides as concerns the performance results, one may see that the local approach kgggp l is around two times faster than the global one for almost the same edgecut, while the memory footprint (not presented here) is considerably reduced. As a conclusion, in the following experiments, we will use the classic gain formula with α = 1 for both global and local methods, and we expect that kgggp l outperforms kgggp g for runtime performance.

Load Balancing for Parallel Coupled Simulations

Experiment without Fixed Vertices

In this experiment, we compare both versions of kgggp (kgggp g and kgggp l) to Scotch and kMetis on graphs that do not contain any initially fixed vertices. The purpose of this experiment is to evaluate the overall performance of kgggp compared to two of the best partitioning tools. Clearly we do not expect that kgggp will outperform Scotch or kMetis for any metric (edgecut or runtime). This is because both kMetis and Scotch use the RB paradigm which is globally recognized as the best approach for the classic graph partitioning. What we aim to find out through this experiment is the relative increase of edgecut obtained by kgggp algorithms for problems with no fixed vertices.

In Figure 3.10a we present the edgecut results after average calculations over the entire DIMACS'10 collection, as the number of parts increases. Here, we clearly see that kMetis provides the best partitioning quality followed by Scotch with an average edgecut increase of 9%. This confirms that RB based methods perform better than the greedy ones for the classic graph partitioning problem. Following, the edgecut increase of kgggp l is on average 4% compared to Scotch and thus 13% compared to kMetis. Finally, kgggp g has an average edgecut increase of 10% compared to Scotch and thus 19% compared to kMetis (the average here is assumed over the different number of parts). Moreover, in Figure 3.10b we present the average execution time of each method over the entire collection, as the number of parts increases. Here, one may see that Scotch has the best performance followed by kMetis or kgggp l depending on the number of parts. Additionally, we observe that the execution time of both kgggp g and kgggp l become worse as the number of parts increases. This is not surprising if we recall their time complexity compared to RB based algorithms. However, it is important to remark that kgggp l manages to reduce the execution time compared to kgggp g and is two times faster than the latter. To complete the analysis of this experiment, in Figure 3.11 we present the same results but we depict them separately for each group of graphs. Here we may see that for certain collections of graphs (Matrix, Numerical, dynframe and Walshaw), the edgecut of kgggp l and kgggp g is almost the same as that of Scotch. More precisely, if we focus just on the results of kgggp l, we see that the edgecut for these groups is on average 7% more than that of kMetis and 2% more than that of Scotch. Note that these groups include either graphs that derive from numerical simulations (Matrix, Numerical and dynframe) or graphs that are deliberately chosen to test partitioning methods (Walshaw). In the remainder of this chapter, we will refer to this group of graphs as group1. On the other hand, graphs from Clustering or Streets collections appear to be more difficult to partition. Note that these graphs have a particular structure with vertices of highly varying degrees (Clustering) or many vertices that are connected to only one vertex (Streets). This group of graphs is denoted as group2. To conclude, we believe that the optimized version of kgggp (kgggp l) may be a fine partitioning choice even for classic graph partitioning problem, depending on the characterists of the graph in use. q 0 5 10

Experiments with Fixed Vertices

Following, we present results with fixed vertices from two experimental cases, each one representing a different way to distribute the initial fixed vertices to the graph before the partitioning. We believe that the two proposed experiments represent configurations of fixed vertices that may appear in real life problems in areas such as circuit design or dynamic load balancing. We denote these schemes bubble and repart.

In this section, we compare graph partitioning methods that support initially fixed vertices such as kgggp, rbbgm and the RB-based method of Scotch. Note that kMetis does not support fixed vertices so it is not part of the following experiments. Also, based on the previous experiment, we decide to present results only for the kgggp l method and not for kgggp g. Indeed kgggp l has been proven to be faster than kgggp g while it produces partitions with similar quality.

Bubble Scheme

In the bubble scheme, we simply compute k initial seeds based on a BFS [START_REF] Diekmann | Shape-optimized mesh partitioning and load balancing for parallel adaptive FEM[END_REF] technique and we use each one as the center of a bubble of fixed vertices. In particular, each bubble is a group of fixed vertices initially assigned to the same part that grows until it reaches a certain percentage of ideal vertex weight. In this scheme, we allow different weights among the bubbles that vary linearly from 5% to 20% of the ideal part size.

In Figure 3.12a, we depict the average edgecut results over the entire DI-MACS'10 collection for all methods involved in this experiment. Here, one may see that both kgggp l and rbbgm reduce the edgecut compared to Scotch with an average gain of 19% and 16% respectively. Let us now examine the above results in respect to group1 and group2 separately. In Figure 3.13a we depict the average edgecut results just over the graphs that belong to group1. Here, we see that both kgggp l and rbbgm equally minimize the edgecut with an average gain of 19%. Now if we focus on the edgecut results obtained for group2 in Figure 3.13b, we may see that kgggp l provides better results with an average gain of 20% followed by rbbgm with a gain of 10%.

To measure the performance results of this experiment, in 3.12b we present the average execution time of each method over the entire collection. In this figure we see that kgggp l and rbbgm perform sightly better than Scotch until the number of parts reaches 200, but become worse than Scotch when the number of parts is 500. If we focus on the performance results of group1 and group2 separately (in Figures 3.13c and 3.13d), we may see that the overhead of kgggp l is due to group1. More precisely in Figure 3.14, it is clear that the poor performance of kgggp l comes mainly from the Walshaw collection where kgggp l is 2.5 times worse than Scotch when the number of parts is 500.

This overhead is related to the fact the kgggp l fails to find a balanced partition in 10% of the total executions for the Walshaw collection. Note also that both Scotch and rbbgm have difficulties finding a partitioning solution and often exhibit a large number of failures. In Table 3.3 we demonstrate the percentage of failures for each method when the number of parts is 500. In this context, we may say that kgggp l is more robust since it fails only for the Walshaw group.

Repartitioning Scheme

For the repart scheme, we follow the repartitioning method proposed by Zoltan in [START_REF] Umit | A repartitioning hypergraph model for dynamic load balancing[END_REF] (and described in Section 3.1), where an initial partition is used and its total vertex weight is randomly modified in order to obtain 50% of load imbalance. Based on the above imbalanced partition, we build an enriched graph adding one single fixed vertex per part along with the migration edges that connect it with its respective part. Note that the enriched graphs are larger in size compared to the original ones, thus we test our algorithms on a sub-collection of the graph set in Table 3.4 omitting the large collections dynframe and Streets. For this experiment, global results on the edgecut and execution time are presented in Figures 3.15a separately for each group of graphs in 3.16. In Figure 3.15a, we see that kgggp l obtains minimized edgecut results for the entire collection with an average gain of 11% compared to Scotch and 18% compared to rbbgm.

More precisely, if we examine the results of each group of graphs separately, we notice that kgggp performs very well for graphs that come from numerical simulations. For instance, kgggp l exhibits an edgecut minimization of up to 30% compared to Scotch and up to 36% compared to rbbgm for the Numerical group, as seen in Figure 3.16. Additionally, we observe that rbbgm does not produce partitions of high quality and thus may not be a suitable solu-10 20 50 100 200 500 q 0.6 0.8 tion for the repart scheme. A possible explanation is that, in this experiment, fixed vertices are connected through migration edges to all vertices of their respective part. As a result, the maximum-weight graph matching problem that should be solved during this method is more complicated. As a result the additional edgecut of re-introducing fixed vertices to the graph is rather significant.

Finally, regarding the runtime performance of this experiment, in Figure 3.15b one may see that Scotch is often the fastest method along with kgggp l while rbbgm is always the slowest one. Even though kgggp is not much slower than Scotch, these results confirm the poor performance of kgggp l as the number of parts increases. However for certain groups of graphs like Numerical and Matrix, we may see in Figure 3.16 that kgggp l is the fastest method for all number of parts.

Experiments with Hypergraph Tools

Finally, in order to further evaluate our results, we add a last comparison between the above methods and two well-known hypergraph tools, PaToH and Zoltan. We choose these hypergraph tools because they are quite efficient and they support problems with initially fixed vertices (as seen in Table 3.1). Note that partitioning a graph structure with hypergraph tools may be somewhat unfair. This is due to the fact that hypergraph tools are designed for more complicated structures and an additional overhead is introduced when they partition a graph. However it is still interesting to compare the results especially in terms of edgecut minimization.

To convert the graphs to hypergraphs, we transform each edge of the graph to an hyperedge of size two. In order to conduct the above experiment, we use a small collection, for instance the Walshaw collection. Again, we perform experiments with fixed vertices following the bubble and repart schemes. For the hypergraph tools we use the connectivity-1 metric (mentioned in Section 2.2) to measure communications because it can directly be compared to the classic edgecut metric for graphs. Note that in hypergraph partitioning, other metrics may be more important such as the total or maximum communication volume. q 1.0 However since graph partitioning algorithms primarily minimize the edgecut metric, we continue to use it as the main metric for these experiments.

The edgecut results for these experiments are depicted in Figures 3.5.4 and Figure 3.5.4 for the bubble and repart schemes respectively. For the bubble scheme, Zoltan produces partitions of slightly better quality compared to Scotch with an edgecut gain of 2%. For the repart scheme the edgecut results of Zoltan are almost the same as that of Scotch. Finally, PaToH does not manage to minimize the edgecut in these experiments.

Here we choose not to show the performance results of the hypergraph tools, since such a comparison would be unfair. During both experiments (bubble and repart), PaToH and Zoltan were the slowest tools. This result is expected, since PaToH and Zoltan use complicated structures designed for hypergraphs that are treated by more time consuming partitioning algorithms. Also Zoltan is meant to be a parallel partitioner, thus using it here as a sequential tool introduces a huge overhead. However, we may remark that PaToH scaled better than the other methods as the number of parts increases.

Conclusion

This work is driven from our interest in graph partitioning with initially fixed vertices that appear in many scientific problems such as the dynamic load balancing of large-scale applications. We strongly believe that the above problem plays an important role in solving the load balancing of coupled simulations. Under this model, additional constraints of the underlying problem are represented in the graph with initially fixed vertices. In this case, we notice that the state-of-the-art algorithm (RB), often does not produce partitions of good Load Balancing for Parallel Coupled Simulations quality. Here, we investigate the behavior of RB methods under this constraint and we present a comparison between RB and the two main alternative algorithms for such problems. More precisely, the first alternative is kgggp, a new greedy graph growing algorithm and the method proposed in kPaToH.

In this chapter we compare the optimized version of kgggp (kgggp l) and an implementation of kPaToH for graphs, named rbbgm with an RB-based algorithm (Scotch). This implementation was necessary since kPaToH is not publicly available and allows a fair comparison of the algorithms that support problems with fixed vertices. In this study, kgggp l and rbbgm are tested on two different configurations of fixed vertices and their results in terms of edgecut minimization and runtime performance indicate that they handle graphs with fixed vertices better than RB. More precisely, in the first experiment both methods exhibit an up to 25% edgecut minimization, while in the second one kgggp performs better than rbbgm and Scotch, with a maximum gain of 36% and 30% respectively. Note finally that kgggp remains robust to different graph structures compared to rbbgm and Scotch but is amenable to a high number of Chapter 4

Partitioning for Coupled Simulations

In this chapter, we focus on the problem of load balancing for coupled simulations, as presented earlier in this work (Chapter 2). Remember that when coupling operations are executed in parallel (following the parallel CCS or the DCS), the computational load during couplings is unevenly distributed among processors and the inter-component communications are not minimized. Under this context, the currently used method that includes classic graph partitioning techniques that balance each component separately, is not sufficient.

In this chapter, we propose new graph partitioning algorithms that address this problem. The idea here is to efficiently partition the data of the coupled simulation as part of an interactive system and not just as part of independent components. In this way, the load is balanced both during internal computations of each component and during the coupling. Additionally, with a partitioning method that is aware of the coupling process, the communication costs between processors of different components may be reduced in terms of the number of exchanged messages. We call the procedure of finding such data distributions the co-partitioning. Finally, note that solving the problem of graph partitioning with initially fixed vertices (as studied in Chapter 3) is a crucial step in designing efficient co-partitioning algorithms.

In the remainder of this chapter, we first describe the general model of coupled simulations and then, we formally introduce the co-partitioning problem, extending the classic definition. Furthermore, we propose new co-partitioning techniques that explicitly take into consideration the coupling process and perform a coupling-aware partitioning of the entire simulation. Finally, we validate the proposed methods with a series of experiments on synthetically generated and real-life data.

Model of Coupled Simulations

In this section, we introduce a new model that describes the general execution of coupled simulations following the organizing principles for coupling in multiphysics and multi-scale simulations, in [START_REF] Walter | Ten organising principles for coupling in multiphysics and multiscale models[END_REF].

A coupled model consists of a number of component models (or simply components), namely C i , i = 1, . . . , N , that collectively represent a complex system through their evolution and mutual interactions, under a coupling environment. A component C i represents a model that solves an individual system defined in a computational domain Γ i . Two components C i , C j interact, and thus are coupled, when parts of their entire computational domains overlap, imposing data dependencies on their models. The overlapping creates a common coupling interface Ω ij = Γ i ∩ Γ j = ∅. In addition, solutions on the domain of C i may serve (directly or after computations) as input data for C j and/or vice versa. Note that the type of domain overlapping may range from the simplest case of a lower dimension surface coupling (in Figure 4.1) to partially volumetric coupling (in Figure 4.1) or to full volume coupling, where Γ i = Γ j . In principle, three or more domains can intersect forming high order coupling interfaces, but in this work we assume that each coupling involves exactly two components. In some simulations, coupling between components may occur regularly in time with a certain coupling period related to the physical timestep of the coupled simulation. Therefore, depending on the frequency of the coupling, the potential improvement introduced by a co-partitioning algorithm may result in a significant minimization of the total elapsed time. On the other hand, when the coupling is sporadic or highly unpredictable the performance gain may be insignificant or even negative due to the overhead of the co-partitioning.

In Figure 4.2, we illustrate the model of a coupled simulation taken on one iteration with two components running concurrently. This model may be extended to N components, but for ease of presentation we depict it here just for two components, C 1 and C 2 . As one can see, a coupled model evolves iteratively in time, entering a sequence of regular and coupling phases. Note that, we assume the presence of synchronization in our model, that occur before and after entering a coupling phase. A regular phase occurs when components compute solutions independently, on their own computational domain. In this case, all data associated with each component participate in the computations. The number of processors assigned to each component C i in the regular phase is k i . During a regular phase, each component uses a different time and space discretization, so the number of processors required by each solver may vary, and therefore k i = k j for i = j. That usually leads to differences in execution time between components at the end of the regular phase, which results in an idle time T idle for each coupling (C i ∧ C j). As explained in Chapter 2, T idle denotes the time the fastest component waits in the synchronization step until the slower component finishes calculations on its computational domain and enters a coupling phase.

Besides, a coupling phase occurs when components interact with each other, exchanging data on the coupling interface Ω ij for i = j. Note that we refer to this type of communication as inter-component communication since data are exchanged between processors that belong to different components. Additionally, during this phase the coupling framework drives the overall application, ensuring synchronization among the components, locating data through distributed geometries and performing the interpolation step between different Load Balancing for Parallel Coupled Simulations meshes. Note that the number of active processors for each component during the coupling phase (k i) is often lower, namely k i ≤ k i and depends on the size of coupling interface. Observe that these are the processors of each component that own data on Ω ij .

Algorithm 2 Algorithmic description of a coupled simulation. In Algorithm 2, the algorithmic description of a coupled simulation with N components (C i , i = 1, . . . , N) is illustrated. We assume that for each component an independent data distribution of the computational domain has been computed, as part of a preprocessing step. The data are then distributed in the proper number of processors, that is k i for i = 1, . . . , N . The processors that are active during the regular phase of C i are denoted as k i while its processors that are active during the coupling phase (C i ∧ C j) as k i .

Let us now analyze the total execution time of a coupled simulation with two components under the following expression. Again, this expression could be extended to include N components but for simplicity we focus here on just two:

T total = max(α 1 * T (C 1), α 2 * T (C 2)) + T (C 1 ∧ C 2) (4.1) = min(α 1 * T (C 1), α 2 * T (C 2)) + T idle + T (C 1 ∧ C 2) (4.2)
where:

• α i is the number of iterations performed during the regular phase for C i , where i = 1, 2;

• T (C i) is the time spent by C i during the regular phase;

• T idle is the time the fast component has to wait before entering a coupling phase;

• T (C i ∧ C j) is the time spent during the coupling phase between C i and C j .

More precisely, since there is an independent data distribution for each component that assigns the computations of each domain to a number of processors, T (C i) may be written as following:

T (C i) = (T comp (k i) + T comm (k i)) (4.3)
where:

• T comp (k i) is the time required for C i to execute one iteration of computations during the regular phase, taken on the slowest processor;

• T comm (k i) is the communication time of exchanging data among the processors of C i during the regular phase.

Therefore, in order to minimize the total execution time of a coupled simulation under a parallel environment, one should minimize each factor of the equation 4.2. Now if we consider that the load balancing of C 1 and C 2 is solved independently with a graph partitioning for each component, the factors T (C 1) and T (C 2) are minimized. In other words, the computations during the regular phase are equally distributed among the available processors for each component and the internal communication costs are minimized based on the edgecut criterion. However, using such a load balancing approach (naive co-partitioning), the T idle is not minimized and neither is the time spent during the coupled phase (T (C 1 ∧ C 2)).

Therefore, in order to minimize the total execution time of a coupled application, we identify two important subproblems: i. The resource distribution problem: Here, the problem is to find a good distribution of the total number of available processors among the components, in order to minimize T idle . The main idea is to assign less processor resources to the fastest component following an empiric approach based on performance studies, as they do for instance in [START_REF] Jauré | Comparisons of coupling strategies for massively parallel conjugate heat transfer with large eddy simulation[END_REF]. That way, T idle is minimized and the load balancing of the regular phase for the whole coupled simulation is optimized.

ii. The data distribution problem: Assuming a given number of processors for each component (by solving the previous problem), the goal here is to find a good data distribution that minimizes the execution time during the coupling phase. Employing a classic load balancing algorithm for each component separately does not minimize the total execution time of a coupled simulation 4.2, but only the time of each component spent during the regular phase (T (C i)).

Load Balancing for Parallel Coupled Simulations 71

More precisely, the time spent during the coupling phase follows the expression below:

T (C 1 ∧ C 2) = max(T (C 1), T (C 2)) + T inter-comm (k 1 ∧ k 2) (4.4)
where

T (C i) = T comp (k i) + T comm (k i)
and

T inter-comm (k 1 ∧k 2) represents the inter-component communications. Note that T comp (k i), T comm (k i) and T inter-comm (k 1 ∧ k 2)
are not minimized by a classic load balancing algorithm since neither the computations nor the communications required during the coupled phase have been explicitly considered during the load balancing. Remember that k i is the number of processors that own data belonging to C i and are active during the coupling phase. Note that under a naive co-partitioning, there is no control on this number since a classic partitioning algorithm ignores the additional requirements (in terms of computations or communications) of each component during the coupled phase.

In this work, we assume that the resource distribution problem is already addressed, and thus T idle is minimized. As a result, we focus on the data distribution problem and we propose algorithms that aim at minimizing the time spent during the coupling phase. Note that there is a trade-off between the minimization of the coupling phase and the minimization of the regular phase which is imposed by the additional requirements of the co-partitioning problem.

Related Work

In this section, we discuss existing work that is related to the load balancing problem for coupled simulations. Remember that in Chapter 2, we reviewed existing load balancing techniques regarding the resource distribution problem. However note, that as far as we know, partitioning solutions that address the data distribution problem have not been yet proposed in the literature. Nevertheless, in this section, we briefly review studies that address a similar problem, that is, the graph partitioning for multi-phase computations.

A multi-phase simulation is a single-constraint code with N distinct computational phases, each separated by an explicit synchronization step. In general, the amount of computations performed for each element of the mesh is different for different phases. In order to effectively solve such multi-phase computations in parallel, one must partition the mesh such that the computation in each phase is balanced, and the amount of interactions among the different processors in each phase is minimized. Note that the traditional graph partitioning model is not effective in such computations. For example, if we assign to each vertex a weight that corresponds to the total amount of computations performed by all phases, we will get a partitioning that is not necessarily balanced during each computational phase (due to the explicit synchronization steps).

Such an example is the scientific simulations in which the mesh elements come in contact with each other and are routinely performed in the context of simulations that study vehicle crashes, material deformations, and projectiletarget penetration. Typically, the simulation involves localized stress-strain finite element calculations over the entire mesh together with a much more complex contact detection phase over the restricted areas of possible penetration. Most of the existing partitioning algorithms cannot effectively decompose these types of simulations as they ignore the underlying geometry and produce subdomains that result in high-communication overheads during the contactsearch phase of the computation. In Figure 4.3 one may see various stages of a compact-impact simulation. A first approach to balance contact-impact simulations is proposed in [START_REF] Plimpton | Transient dynamics simulations: Parallel algorithms for contact detection and smoothed particle hydrodynamics[END_REF] and uses two different partitions of the mesh, one for the contact phase and another one for the finite element calculation. In the first partitioning, a traditional multilevel graph partitioning algorithm is used to evenly distribute the entire mesh, whereas in the second partitioning, a recursive coordinate bisection (RCB) algorithm is used to evenly distribute only the surface elements. As a result, these two different decompositions ensure that the overall computation is balanced throughout the entire simulation. The main disadvantage of this approach is that data must be redistributed between the two partitions at every time-step and that some memory is duplicated. However, the authors report that the advantage of achieving load-balance in both phases greatly outweighs the cost of maintaining two partitions.

Another approach to solve such problems is based on the multi-constraints partitioning algorithm, initially proposed in [START_REF] Karypis | Multilevel algorithms for multi-constraint graph partitioning[END_REF]. The multi-constraint partitioning method extends the classic graph partitioning problem formulation, by assigning a vector of weights to each vertex, that represents the different computational load of the vertex in every phase. The problem now becomes that of finding a partitioning that minimizes the communication costs and is balanced for each weight constraint.

However, even though this multi-constraint based approach achieves the desired load balance, care must be taken to ensure that the overall approach does not lead to excessive communication overheads during the contact-impact phase for contact detection. To overcome the above problem, in [START_REF] Karypis | Multi-constraint mesh partitioning for contact/impact computations[END_REF] the authors develop multi-constraint graph partitioning algorithms that take into account the underlying geometry. Additionally, they propose better parallel search algorithms specifically designed for locating detections, that reduce the number of excessive communication. Finally, a last approach that employs the model of the multi-constraint method is presented in [START_REF] Walshaw | Multiphase mesh partitioning[END_REF] and aims to find a partition for the compact-impact simulations that treats each phase separately, using results obtained from previous phases.

At first glance, one could consider the co-partitioning problem as several multi-phase problems, each one representing a different component. However this representation is not adequate, since it does not include the coupling communications between components which indicate external dependencies between different multi-phase simulations. Moreover, since this approach has no control on the number of processors in each phase, it would impose the use of all available processors in the coupling phase, that may degrade the global edgecut. This is especially true if the coupling interface is small compared to the whole computation domain.

The Co-Partitioning Problem

In this section, we first give a formal definition of the co-partitioning problem, equivalent to the classic partitioning one. Then we introduce some graph operators based upon which we describe our co-partitioning algorithms, called Aware, ProjRepart and ProjSubpart. For reasons of consistency, we also describe the state-of-the-art method called Naive as a sequence of graph operators.

Definition of Co-Partitioning

Here, we explain how we propose to enrich the classic graph model to take into account the coupling phase of a coupled simulation explicitly and we formally define the co-partitioning problem. In the remainder of this chapter, we assume coupled simulations with two components represented by subscript letters A, B while the exponent notation denotes the coupling phase.

Let us consider that each individual component involved in the simulation, is represented by a graph, that is

G A = (V A , E A)
G AB = (V A ∪ V B , E A ∪ E B ∪ I AB)
, where I AB is the set of weighted edges that interconnect some vertices of V A and V B . We call those edges interedges1 (as they connect vertices from different graphs), and they represent the communication costs of exchanging data that belong to different components during the coupling phase (inter-component communications). In practice, these interedges are located thanks to geometric intersection between mesh cells of A and B. In this context, we aim to find a partitioning of the global graph that is aware of the coupled subgraph. We call this problem the co-partitioning problem. More precisely, a K-way partition P AB of the global graph G AB is said to be a (k A , k B , k A , k B)-way co-partition, if the following conditions hold:

• P A is a k A -way balanced partition of G A , • P B is a k B -way balanced partition of G B , • P A is a k A -way balanced partition of G A , • P B is a k B -way balanced partition of G B , • P A = P A \ V A , • P B = P B \ V B , • P AB = P A ∪ P B , • K = k A + k B , • k A ≤ k A and k B ≤ k B .
Following the above definition, we expect that such a co-partition will provide a good load balancing for both the regular phase and the coupling phase, and for both components A and B, since it explicitly finds a partition for the graphs that participate in the regular phase (G A and G B) and their subgraphs involved in the coupling phase (G A and G B). As an additional criterion, we aim to minimize the inter-component communication cost (represented by the weighted interedges), by minimizing the total number of messages (totZ) and the maximum volume of communication per processor that participate in the coupling phase (maxV). Note that the total volume of communication (totV) remains rather constant in the coupling phase.

C =     0 0 0 1 1 0 0 0 0 0 1 1    
Based on C, it is easy to define the coupling metrics: an initial balanced k-way partition of the same graph (under an imbalance factor). It just subdivides each part of P into l/k subparts to obtain a final partition P into l parts. This method is straitghforward, as it just requires to apply the partition operator k times using an imbalance tolerance of /2.

Restriction. The restriction operator can be expressed as Rest(G, V) → G , and returns a subgraph G , that is the restriction of G = (V, E) to vertex set V ⊂ V . Given the interedges I AB and the graph G A , we will use this operator to compute the coupled subgraph G A as Rest(G A , Dom(I AB)) where Dom(I AB) = {u a ∈ V A , (u a , u b) ∈ I AB } is the departure domain of I AB . The Figure 4.14 illustrates this operator on two cubic meshes with a surface coupling.

Extension. Next, we define the extension operator Ext(G, G , P , k, l) → P , which returns a l-way partition of a graph G using a given k-way partition P of a subgraph G ⊂ G, where l ≥ k. The idea behind this operator is to extend a given partition P A of the coupled subgraph G A to the graph G A , such that vertices already assigned to a part in P A remain fixed in the new partition P A , as shown in Figure 4.7. Projection. Finally, we define the projection operator, P roj(G, G , I, P, k) → P , that finds a k-way partition of a graph G , using a given k-way partition of a graph G and the interedges

I ⊂ V × V , with G = (V, E) and G = (V , E).
The key idea of the projection operator is to compute a similar partition of G on G using the relation provided by interedges I, that map vertices from V to V . More precisely, lets consider a vertex u ∈ V and the vertex set S(u) = {u ∈ V, (u, u) ∈ I}. In the case where all the vertices of S(u) are mapped to the same part p in P , then u is trivially assigned to this part p in P . In the case where the vertices of S(u) are mapped to different parts, the situation is ambiguous, and one must select a part for u according to a second criterion, like the edgecut optimization. In practice, this operator is used to compute a similar partition between the two coupled subgraphs G A and G B , connected through interedges I AB , as shown in Figure 4.8. In this example, the projection is trivial for interedges (a, e) and (d, g), that are respectively mapped to part 1 and 2. But, it is clearly ambiguous for vertex f , that is shared by interedges (b, f) and (c, f), since b and c are already mapped to different parts. As the edgecut criterion in G AB gives the same result for this vertex, one chooses randomly to assign f in part 1.

To implement this operation, we just perform a graph partitioning of G AB in k parts, where the vertex weight of G AB is set to zero such that all vertices of G A are fixed to their own part according to P A , with a vertex weight set to zero. As an optimization, one collapses all vertices of G A into k fixed super-vertices that represent each part. By minimizing the edgecut of such an enriched graph, the partitioning routine will compute the desired projection as a balanced partition P B , assuming P A is initially well-balanced.

Note that the repartition, projection and restriction operators use initially fixed vertices in order to model additional constraints on the graph structures. For that, we implement the above operators with a graph partitioning algorithm that supports fixed vertices, as for instance rbbgm or kgggp as explained in Chapter 3.

Co-Partitioning Algorithms

We will now present our co-partitioning algorithms, called Aware, Proj-Repart and ProjSubpart, and the Naive method used as the state-of-theart solution. All these algorithms are precisely described as a sequence of the graph operators previously defined.

For these algorithms, we use as an input the graphs G A and G B , the interedges I AB (or I -1 AB = I BA) and the number of processors k A and k B used for both components. Besides, as we do not address the problem of resource distribution (introduced in Section 4.1), we assume that the number of processors used in the coupling phase for both components (i.e., k A and k B) are also provided as an input). Nevertheless, in section 4.4, we will give a simple heuristic to compute these inputs. All our algorithms solve the co-partitioning problem (defined in Section. 4.3.1) and compute the output partitions P A and P B . Let us now give some explanations about our three co-partitioning algorithms:

Naive. As described in Figure 4.9, the Naive method just computes a partition for each graph (G A and G B) independently, without taking into account the interedges, as it is currently done in complex coupled simulations. This simple algorithm is clearly not aware of the coupling phase. It will be used as a standard to compare against other methods in the experimental study (Sec. 4.4). In this method, the parameters k A and k B are not managed, and the coupled partitions P A and P B are not controlled. Aware. This method is divided in three main steps, symmetrically applied to graphs G A and G B (Fig. 4.10). It starts by computing the coupled subgraphs (G A and G B) based on the interedges, using the restriction operator. Then, one partitions each subgraph independently into k A and k B parts respectively. Finally, the obtained partitions are stretched to the global graphs using the extension operator.

Inputs: G A , G B , k A , k B Outputs: P A , P B i. P art(G A , k A) → P A ii. P art(G B , k B) → P B
ProjRepart. This method works as the Aware method, except it replaces the "naive" partition of G B by the projection & repartition steps (Fig. 4.11). Here, the key idea is to improve the communication scheme during the coupling phase, by minimizing both the maximum volume of communications per processor (maxV) and the number of messages (totZ). First, the projection operator tries to keep the parts of P A face-to-face with those of P B (Fig. 4.13a and 4.13b). Then, the repartitioning operator computes the partition P B in a way to maintain maxV and totZ quite low (Fig. 4.13c). In practice, it injects the newer parts (in the case where k A < k B) and tries to keep the former ones in place as far as it is possible (minimization of migration volume). Finally, we extend the partitions obtained for G A and G B to the global graph as we do also in Aware. ProjSubpart. This method is a variant of the ProjRepart method in the particular case, where k A and k B are multiples. One simply replaces the repartition operator by the subpartition operator to compute P B from P B . Other steps are not changed (Fig. 4.12).

Inputs: G A , G B , I AB , k A , k B , k A , k B Outputs: P A , P B i. Rest(G A , Dom(I AB)) → G A ii. Rest(G B , Dom(I -1 AB)) → G B iii. P art(G A , k A) → P A iv. P art(G B , k B) → P B v. Ext(G A , G A , P A , k A , k A) → P A vi. Ext(G B , G B , P B , k B , k B) → P B
Inputs: G A , G B , I AB , k A , k B , k A , k B Outputs: P A , P B i. Rest(G A , Dom(I AB)) → G A ii. Rest(G B , Dom(I -1 AB)) → G B iii. P art(G A , k A) → P A iv. P roj(G A , G B , I AB , P A , k A) → P B v. Repart(G B , P B , k A , k B) → P B vi. Ext(G A , G A , P A , k A , k A) → P A vii. Ext(G B , G B , P B , k B , k B) → P B
Inputs: G A , G B , I AB , k A , k B , k A , k B Outputs: P A , P B i. Rest(G A , Dom(I AB)) → G A ii. Rest(G B , Dom(I -1 AB)) → G B iii. P art(G A , k A) → P A iv. P roj(G A , G B , I AB , P A , k A) → P B v. Subpart(G B , P B , k A , k B) → P B vi. Ext(G A , G A , P A , k A , k A) → P A vii. Ext(G B , G B , P B , k B , k B) → P B

Experiments

In this section we present the experimental results performed on two sets of data; synthetically generated and real-life coupled simulations.

Results on Synthetically Generated Meshes

In this section, we present some experimental results on a synthetically generated data set for the co-partitioning problem. Remember that Naive is our implementation of the most commonly employed method for partitioning a coupled simulation used in industrial and research context. More precisely, Naive partitions each component as an independent problem with any partitioning algorithm (for instance Metis or Scotch). In the remainder of this study, we consider Naive as the reference approach and we compare its quality and performance results to our co-partitioning methods: Aware, ProjRepart and ProjSubpart. A small analysis over the use of a multi-constraint algorithm as a solution to the co-partitioning problem is also included.

As explained before, we model the repartition, projection and extension operators using initially fixed vertices, so that we need to implement these steps with a partitioning tool that supports such structures. Therefore, in these experiments we consider Scotch, kgggp and rbbgm (presented in Chapter 3) as possible partitioning options. Remember that the above partitioning Load Balancing for Parallel Coupled Simulations algorithms are all implemented inside the same multilevel framework and have exactly the same partitioning parameters (coarsening, refinement, imbalance factor, etc).

In our experiments, we also include a version of the multi-constraint algorithm presented in [START_REF] Karypis | Multilevel algorithms for multi-constraint graph partitioning[END_REF], as an alternative solution to the co-partitioning problems. As said before, this method is used for a similar problem, the multi-phase graph partitioning and addresses simulations where computations of different phases have different load characteristics. Here, we implement the Multiconst method that applies a multi-constraint partitioning for each component separately. Even though the co-partitioning and the multi-phase problem are not equal, in this work, we include results of the Multiconst approach since it is still an interesting alternative. In the following experiments, we use synthetically generated graphs that correspond to mesh structures, and their characteristics are described in Table 4.1. The coupling that we perform in these experiments is a simple surface coupling between two components A and B with cubic domains, and hexahedral or tetrahedral mesh discretization as explained in Figure 4.14. Besides, we assume that all graphs have vertex/edge weigth of 1. In the remainder of this section, we present the results of four experimental setups, named setup1, setup2, setup3 and setup4, as illustrated in Table 4.2. Finally, we repeat each experiment 5 times in order to compute average values for our results. Graph A Graph B setup1 hexa-25x25x25 hexa-100x100x100 setup2 hexa-25x25x25 hexa-70x70x70 setup3 tetra-40630 hexa-100x100x100 setup4 tetra-40630 tetra-928984

To measure the overall partitioning quality, we initially compare the obtained results against the main objectives of partitioning, that is, the global edgecut and partition imbalance for graphs G A and G B . In order to measure the co-partitioning quality, we introduce here some additional metrics that give us an insight on the quality of the partitioning during the coupling phase. Thus, an obvious yet important metric in this context is the partition imbalance of the coupled subgraphs G A and G B . Finally, we are interested in measuring the inter-component communication, so we also compare our results in terms of the number of messages exchanged between the components (totZ) and the maximum volume of communication per processor in the coupling phase (maxV). Note that, we divide the number of messages exchanged between components into two different types, the major (totZM) and minor ones. The minor messages correspond to messages with size equal or less than 5% of the largest message and represent the latency in the network.

First Experiment

In the first experiment, we evaluate the behavior of co-partitioning methods as the number of processors assigned to G B (k B) increases. Therefore, we keep the number of processors assigned to G A (k A) fixed to a value [START_REF] Caldwell | Hypergraph partitioning for VLSI CAD: Methodology for heuristic development, experimentation and reporting[END_REF] and for k B we choose values that are multiples of k A . Note that an important aspect of our co-partitioning algorithms is that they control the number of processors that are assigned to the coupling phase for both components, k A and k B . Therefore, for each pair of (k A ,k B), we find a pair (k A ,k B) where again k B is a multiple of k A . This is not required by our methods, except for ProjSubpart which is only applicable when k B is a multiple of k A . Finally, in this first experiment, we include results for different partitioning tools that handle fixed vertices, that is Scotch, kgggp and rbbgm (see Chapter 3).

In Figures 4.15a and 4.15b, we present the average edgecut results over all four setups for G A and G B respectively. The results are normalized to the values obtained by the Naive method with Scotch as the partitioning routine. Note that the edgecut results are quite similar among the different setups, so we do not include details on the behavior of our methods for each setup individually. In Figure 4.15a, we see that the edgecut of G A for Aware, ProjRepart and ProjSubpart is not significantly increased compared to the results of the Naive approach (less than 5% in average). This increase is conditioned by the partitioning tool that implements the graph operators, and here we see that kgggp has a minimum increase of 3% followed by rbbgm and Scotch with an increase of 4% and 9% respectively. In Figure 4.15b, we notice a relative increase on the edgecut results of G B for all methods compared to those of G A . This is mainly due to the fact that our co-partitioning methods are asymmetric and impose more constrains on the partitioning of G B through the use of different operators.

Concerning the internal partitioning routine, one may see that here, rbbgm and kgggp are better than RB with rbbgm being slightly better than kgggp (for the chosen graphs). Since the edgecut of G B is more critical, in the remainder of our experiments, we prefer to use the rbbgm method for the implementation of the graph operators for all co-partitioning methods. (Naive still uses Scotch since Scotch is the best partitioning solution for problems without fixed vertices). Finally, we observe that the Multiconst method has an edgecut overhead of 23% for G A and 15% for G B .

Additionally in Figures 4.16a and 4.16b, we present the imbalance results during the coupling phase for both graphs, G A and G B . Remember that we measure the imbalance explicitly for the coupling phase following the definition of the co-partitioning and we allow a tolerance of 5% on the average part weight. As one may see, all methods respect the balance constraint for both graphs, except Naive, whose imbalance may reach in average 44% for G A and 50% for G B (not shown in the figures). Remember that we should always make sure that the imbalance constraint during the regular phase is equally respected for both graphs. In this experiment, this is true for all methods except Multiconst. Indeed, Multiconst fails to respect the classic load balancing constraint in 31% of the cases. Even though, in this experiment, it slightly overpasses the imbalance tolerance for G B or G A , this observation is very important and reveals the main limitation of this method. More precisely, Multiconst does not control the number of processors during the coupling and, as a result, assigns almost all of the available processors of each component to their coupling interface. This problem becomes highly important when the number of processors for each component increases and leads to increased inter-component communications.

Finally, in Figure 4.17, one may see the total number of messages exchanged between the two components (totZ) for Aware, ProjRepart and ProjSubpart. We present these results for each setup separately. Note that here we distinguish the number of major and minor messages, coloring the latter with Comparison of co-partitioning algorithms with RBBGM method: mean imbalance in coupling phase, over all setups (imbalance tolerance fixed to 5%). a yellow shade. Additionally, the dashed red line represents the optimal number of messages that may be exchanged during the coupling phase among the Load Balancing for Parallel Coupled Simulations processors of the two components. The calculation of the optimal totZ follows the formula: totZ ≥ k A + k B -gcd (k A , k B), presented in [START_REF] Vuchener | Dynamic Load-Balancing with Variable Number of Processors based on Graph Repartitioning[END_REF]. From the above formula, it is easy to see that the total number of messages depends on the number of active processors in the coupling interfaces of both components, k A and k B . In this experiment, we compare the results of our copartitioning methods to the optimal number of messages and not to the results of Naive. We do that since the number of processors during the coupling phase may be different between Naive and our co-partitioning methods. Remember that Naive does not control k A or k B , so these values may be different and would lead to an unfair comparison with other methods where k A and k B are imposed. More precisely, Naive assigns almost the same number of processors for k A compared to Aware, ProjRepart and ProjSubpart, but k B highly differs from that of Aware, ProjRepart and ProjSubpart as the total number of processors for component B increases and does not allow us to draw clear conclusions. Results for the Multiconst are also omitted for the same reasons. Remember that Multiconst assigns many processors in the coupling phase leading to a large number of messages during coupling.

setup1
Due to the differences in the mesh discretization between component A and B, the problem of minimizing the communication costs in the coupling interface is more complex for the setups setup2, setup3 and setup4 than for setup1. Indeed, for setup1 we use similar mesh discretization (with hexaedral elements well aligned), unlike for setup2, setup3 or setup4, where we use misaligned elements (hexaedral or tetraedral). In Figure 4.18, we illustrate two examples of mesh alignment in the coupling interface along with the messages to be exchanged in each case. In 4.18a, there is an exact correspondence of one element in mesh A to several elements in mesh B, like for setup1. On the contrary, in 4.18b, a bad alignment between the two meshes creates possible additional messages, denoted with the dashed lines, like for setup2, setup3 and setup4. These latter messages correspond to minor messages that, as said before, may represent the latency in a network. Therefore, in Figure 4.17, we see that for setup1, where the mesh structures of A and B are well aligned, the number of messages is minimized for both ProjRepart and ProjSubpart, but not for Aware. This is expected since Aware does not minimize the number of messages and does not take into consideration the intersection of different mesh elements on the coupling interfaces (as do ProjRepart and ProjSubpart). For the other setups, we see that ProjRepart and ProjSubpart do not minimize the total number of messages exchanged between components (totZ), but they do minimize the number of major messages, which is often equal to the optimal value. Note, that is an interesting result since, under a fast network the minor messages may be ignored. Additionally, in Figure 4.19, we present results on the maximum volume of inter-component communications (maxV) for each setup separately. By Load Balancing for Parallel Coupled Simulations definition, we calculate maxV for the component with the smaller number of processors on the coupling interface, since the maximum volume per processor is greater when the number of processors is smaller. Remember that we take k A ≤ k B , so we calculate the maxV for component A. In this experiment, for Aware, ProjRepart and ProjSubpart k A is set to 6, while the number of processors that are active in the coupling interface of component A for Naive is between 6 and 8. Considering that k A is almost equal for all methods, we may include the results of Naive in the comparison of maxV (with a slight advantage for Naive). As a result in Figure 4.19, we may confirm that our co-partitioning al-gorithms manage to minimize the inter-component communication costs of the coupling phase, since maxV is minimized compared to the results of the Naive method (up to 26%). To conclude the analysis of this experiment, in 4.20, we present the average execution time for each co-partitioning algorithm relative to the Naive method. As one may observe the relative results of Aware, ProjRepart and ProjSubpart are, in the worst case, 16% slower that Naive which is expected to be faster since it is a more straightforward solution.

Second Experiment

The second experiment that we present here studies the behavior of the copartitioning algorithms as the number of processors in the coupling interfaces for component B (k B) increases. In order to perform this experiment, we focus on one setup case (setup4) and we fix the number of processors for G A and G B , such that k A = 16 and k B = 48. Additionally, we also fix k A to 6 and we vary the values of k B in a range of [k A , k B] (with a step of two). Since in this Load Balancing for Parallel Coupled Simulations q 0.8 0.9 nb parts in Bcpl relative cut in B q q q q NAIVE AWARE PROJREPART PROJSUBPART experiment we test the behavior of our co-partitioning methods for the most critical component B, results on component A (edgecut and load imbalance) are omitted but they follow the analysis of the first experiment.

In Figure 4.21, we present the edgecut results of G B for our co-partitioning methods normalized to the results of Naive. Note that since ProjSubpart may be applied only when k B is a multiple value of k A , consequently some results are missing for this method. In this experiment, we observe that the edgecut results of G B increase for all methods as the number of processors in the coupling phase increases.

The method with the best relative edgecut results is Aware and the one with the worst results is ProjRepart, which is expected if we consider the additional constraints of ProjRepart compared to Aware. Note that the edgecut increases for the Aware method in the range of 1% to 17% compared to Naive, while for ProjRepart is on average 4% more than Aware. It is interesting to see that the best edgecut results of all methods appear when the number of processors in the coupling phase is close to the the geometric ratio 94 Maria Predari q 25 50 75 100 10 20 30 40 50 nb parts in Bcpl totZM & totZ q q q q q q q q NAIVE AWARE PROJREPART PROJSUBPART between the coupling surface and the entire cubic domain, i.e., k X = k X 2/3 and here k B = 48 2/3 = 13.2.

Again for this experiment, all methods except Naive manage to balance the additional constraint of load balance in the coupling phase for both components A and B, that explain this edgecut overhead. On the other hand, Naive has a huge imbalance factor of 68% for G B .

In Figure 4.22, we present the total number of messages, major and minor, exchanged during the coupling phase for this experiment. The total number of messages (totZ) for each method is represented with dashed lines, while the number of major messages (totZM) is represented with plain ones. Here, we compare our results with the optimal number of messages represented with a red dashed line. First, we observe that the total number of messages increases linearly with the increase of k B for all methods, which is expected. Additionally, we see that both ProjRepart and ProjSubpart minimize the number of major massages compared to Aware, when k B remains relatively small. q 1.0 nb parts in Bcpl relative execution time q q q q NAIVE AWARE PROJREPART PROJSUBPART However, since in this setup (setup4) the mesh elements between the two components are not well aligned, there is a large number of minor messages. As said before, under a fast network, those minor messages may be ignored as they represent negligible volume (< 5%) compared to major messages. Finally, in Figure 4.23, we present results for the runtime performance of the co-partitioning algorithms compared to Naive. We observe that our algorithms are getting slower as k B increases since the problem becomes more complicated regarding the additional constraints. Note that since Aware has less constraints to optimize, it is in general faster that the other two methods.

Third Experiment

The final experiment that we present here aims to determine the quality of the co-partitioning methods as the coupling interfaces increase, from a surface overlap to a fully volumetric one. This experiment is only performed in the setup2 and the overlap may be in the surface (0% of overlap), at 25% of the whole volume, at 50% and at 100%, full overlap. In the following figures the overlap is denoted as 0,25,50 and 100 respectively.

In Figure 4.24, we illustrate the edgecut results for G A and G B relatively to the Naive method for different combinations of k A , k B and k A , k B . The number of k A and k B change proportionally to the volume of overlap. Here, we see that the results are rather good for all methods and as the overlap becomes larger (in volume), we notice that the edgecut minimization increases for both components. We remark that when the coupling interface is small, the co-partitioning algorithm has not enough information on the entire domain. So a good partition of a small surface may lead to a bad partition of the entire domain due to lack of global view in the extension operator.

For the load imbalance of G A and G B during the coupling phase, we note that our co-partitioning algorithms respect this constraint as opposed to Naive, but sometimes fail to respect the imbalance factor for the entire graphs G A and G B . This leads us to believe that our co-partitioning methods are not yet robust enough to handle larger coupling overlaps, and more care should be taken, due to the large number of interdeges involved in these cases.

Moreover, in Figure 4.25, one may see the number of major and minor messages during coupling as the overlap increases. In this experiment, we confirm the observation from previous experiments that ProjRepart and ProjSubpart minimize the number of major messages compared to Aware. Additionally, as the overlap becomes larger, the number of major messages becomes smaller. However, note that there is a large increase of minor messages that correspond to a bad alignment among mesh elements of different types. This is rather expected under a volumetric overlap. Finally, we notice (but do not depict here) that the execution time of ProjRepart and ProjSubpart becomes many times slower than Naive or Aware as the overlap increases.

Overview of a Real Application

In this section, we present in detail an example of a coupled simulation (provided by CERFACS) that is used in real industrial configurations in order to optimize the design of gas turbines [START_REF] Cuenot | Coupling les, radiation and structure in gas turbine simulation[END_REF][START_REF] Jauré | Comparisons of coupling strategies for massively parallel conjugate heat transfer with large eddy simulation[END_REF][START_REF] Tessé | Monte carlo modeling of radiative transfer in a turbulent sooty flame[END_REF][START_REF] Wu | Direct numerical simulation of turbulence/radiation interaction in premixed combustion systems[END_REF][START_REF] Zhang | Physical study of radiation effects on the boundary layer structure in a turbulent channel flow[END_REF]. Later we will present experimental results for our co-partitioning algorithms on a data set related to the above simulation. Experts in the field of computational physics agree that multi-physics modeling approach is an encouraging alternative in reducing the costs and the duration of the optimization of gas turbines. In this context, an essential part of the problem is to study the temperature field in a turbine blade placed in the high pressure distributor of a helicopter.

More precisely, the configuration of an helicopter combustion chamber is presented in figure 4.26a. The function of the combustion chamber is to provide an enclosure in which large quantities of fuel, supplied through the fuel spray nozzles (B), are burnt with extensive volumes of air provided from the secondary air flow (A). This is achieved by means of a flame tube (C) which Comparison of co-partitioning algorithms with RBBGM method: edgecut results for setup2 as the coupling overlap increases from 0 to 100. contains a high pressure distributor with a blade of the downstream stator (D) that controls the airflow along the chamber. Finally uniformly heated gas is totZM , totZ for setup2 as the coupling overlap increases from 0 to 100. The optimal value for totZM is given by the red dashed line.

released as required by the turbine. Chamber cooling is achieved by cold air films along the walls. The main thermal problem here is linked to the blade 4.26b, which does not hold the high temperatures produced by the flame in the combustor. In order to decrease their temperature, the burnt gases are therefore mixed with cold air in the dilution zone of the combustion chamber. The challenge is to reach an homogeneous mixture at the chamber exit and guarantee the absence of hot spots that could damage the blade. Recently, researchers use Large Eddy Simulation (LES)3 in order to model realistic combustors. However, if it is not coupled with other physical phenomena, its applicability remains limited for thermal aspects [START_REF] Berger | On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads[END_REF]. For instance, when flames interact with the walls of a chamber, a simultaneous resolution of the temperature may be required within the solid and around it. Therefore, in order to improve the quality of the simulation, additional distinct numerical models that account for radiation and heat transfer should be introduced in the process. In other words, the objective is to evaluate the impact of heat conduction and radiation on the thermal behavior of the blade in the combustion chamber.

More precisely, in this particular study performed by CERFACS, three different solvers that represent distinct physical properties are coupled together to simulate a realistic combustion chamber provided by Turbomeca. The LES in this implementation is performed with the CFD code AVBP which is developed at CERFACS and solves the Navier-Stokes equations together with the energy and chemical species conservation equations. The calculation of thermal diffusion in solids is performed with the code AVTP, which is also developed at CERFACS and solves the classic heat equation. Finally, the radiation solver, called PRISSMA, has been specifically designed for combustion applications and uses discrete-ordinates-method (DOM) with different angular discretizations and spectral models. DOM allows the use of the same kind of mesh as used in LES, which is a great advantage for the coupling. The interactions of the three physical phenomena, i.e. combustion, heat conduction and radiation are illustrated in figure 4.27. Couplings occur between AVBP and AVTP, PRISSMA and AVTP and finally PRISSMA and AVBP. Note that the first two are surface couplings and data are exchanged at the boundaries of the flow/solid domain, while the last one is volumetric. More details on the data that are exchanged and the underlying physical interpretation during the coupling can be found in [START_REF] Cuenot | Coupling les, radiation and structure in gas turbine simulation[END_REF]. Therefore, the problem of gas turbine optimization is governed by two distinct coupled simulations, the first one couples the LES with the heat conduction (denoted AA) and involves AVBP and AVTP, while the second one couples the LES with heat conduction and radiation simulation (AAP) and involves all three solvers. The strong differences in time scales between the three physical phenomena requires a coupling strategy. More precisely, the coupling between AVBP and AVTP is not synchronized in physical time, since each model has a different characteristic time, implying different time steps. Also the radiation source exchanged between AVBP and PRISSMA must be updated at time intervals corresponding to the characteristic time scale of the temperature and mass fractions, imposing dependencies.

All three solvers used here are efficiently parallelized; they use subdomain decomposition, and in the case of PRISSMA, the calculation is also parallelized using a spectral and angular discretization. However, the three solvers have very different execution times. Typically, AVTP is very fast (0.96 Load Balancing for Parallel Coupled Simulations s/iteration/processor), as it involves a simple equation for only one variable, whereas PRISSMA is very long (3000 s/iteration/processor), mainly owing to the spectral complexity and the non-local character of the integration (optical paths go through the whole domain). AVBP is in between, with 95.2 s/iteration/processor, but requires many iterations. As already explained before, a coupling framework is necessary in most coupled simulations as it enables the communication of the components at their coupling interfaces. In this application, the OpenPALM coupler is used which follows a fully distributed, direct communication scheme (DCS). Table 4.3 gives the processor distribution as well as CPU times for the different solvers in the two coupled simulations (AA and AAP), as extracted from [START_REF] Cuenot | Coupling les, radiation and structure in gas turbine simulation[END_REF]. Note that AVBP and AVTP run on half of the processors in the AAP simulation compared with the AA simulation. Because PRISSMA reaches a speedup limit at 48 processors, load balancing and synchronization imply a limitation of processors on the two other codes.

Researchers working on this problem confirm that an efficient coupling of the above simulations may be achieved with better resource allocation strategy. Moreover, they believe that a solution to the data distribution for a coupled simulations may be an important step towards a high performance. As they state in [START_REF] Jauré | Comparisons of coupling strategies for massively parallel conjugate heat transfer with large eddy simulation[END_REF], the time spent during the inter-component synchronizations in AA may reach approximately up to 30% of the total execution time.

Results on a Real-life Application

Finally, in this section we present experimental results on a test case for the AA coupling simulation between AVBP and AVTP for the problem of gas turbine optimization, as presented in the previous section. The meshes that are used to describe the two components along with some characteristic values can be found in Table 4.4. Additionally, in Figure 4.28, we give an illustrative overview of the two meshes and the coupling interface of this simulation. As one may see in the figures, the coupling interface in this configuration is rather small compared to the domains of both mesh structures. Nevertheless the above example is sufficient considering that this is a first evaluation of the copartitioning techniques for real applications. For these experiments we choose AVTP to represent component A and AVBP to represent component B.

In order to evaluate the behavior of our co-partitioning methods in a real coupling configuration, we perform here similar experiments as the ones per-the edgecut of G A is highly dependent on the number of processor assigned in the coupling phase and can be many times worse than that of Naive. It is interesting to see that the best edgecut result for all co-partitioning methods has a minimal overhead of 1% and is achieved when k A = k A . A series of tests on different input values k A and k B and varying k A confirm the above results but are not shown here, since they follow a similar pattern. Additionally, if we consider the mesh of component A (in Figure 4.28a), we remark that its geometric structure favors a partitioning where k A = k A , due to the cylindric form. Finally, in Figure 4.29b we see that the edgecut of component B for ProjRepart and ProjSubpart remains relatively unaffected as k A increases. This indicates that the projection operator between component A and B does not introduce an edgecut overhead whatever the value of k A . Indeed, the edgecut remains rather constant at a maximum increase of 6% relative to Naive. q q q q q q q q q q q q q q q q q q q 1 2 3 4 2 3 4 5 6 nb parts in Acpl relative cut in A q q q q NAIVE AWARE PROJREPART PROJSUBPART (a) Relative edgecut in G A . q q q q q q q q q q q q q q q q q q q 0.75 In Figure 4.30, one may see the edgecut results for component B as the number of k B varies while k A is fixed to k A (following the results of the previous experiment). Note that, the edgecut of component B is not heavily affected by the different values of k B and the maximum edgecut increase is only 8% relative to Naive. More precisely, the worst results are obtained when k B = k A , while the best results are obtained when k B = k A = 6. This means that component B is not as critical as component A regarding the partitioning overhead introduced in the co-partitioning.

104

Maria Predari 4. Partitioning for Coupled Simulations q 0.8 0.9 Moreover, we compare the totZ and maxV of our co-partitioning methods to the results of Naive. Remember that for a fair comparison of the above metrics, all methods should have the same values of k A and k B . Therefore, we set the above values for our co-partitioning methods equal to the values indicated by Naive, that is 6 and 5 respectively. As we may see in Figure 4.31a, all methods (including the Naive) exchange the same number of total messages where the number of major messages is equal to the optimal value for all methods. Additionally in Figure 4.31b one may see that the maximum volume of communication is minimized for Aware and ProjRepart as opposed to Naive that has an increased maxV of 30% (ProjSubpart is not included since k B is not a multiple of k A).

Following, we perform a final experiment with random number of k A and k B where k A and k B are carefully chosen as indicated by the two first experiments. In Figures 4. [START_REF] Hendrickson | Graph partitioning models for parallel computing[END_REF], one may see the edgecut results for components A and B respective where the maximum edgecut increase is only 7% compared to Naive. As we mentioned before, an edgecut increase for G A or G B is rather expected due to the additional constraints imposed by the co-partitioning problem. Here, we see that if the number of k A and k B are carefully selected, this increase may be minimised. Finally, in Figures 4. [START_REF] Hendrickson | An improved spectral graph partitioning algorithm for mapping parallel computations[END_REF] we present the imbalance results during the coupling interface for both meshes, where, as expected, our co-partitioning algorithms respect the additional balance constraint, while Naive does not.

To conclude, we present performance results of the cylinder case, executed on a the Neptune cluster at CERFACS. The cluster includes 2,528 cores distributed in 158 computational nodes each having 2 processors Intel with together 8 cores SandyBridge running at 2.6 GHz with 32 GB of DDR3 memory. The network of the cluster is an Infiniband QDR non blocking network. In these preliminary experiments we compare the ProjRepart method with the Naive for the test cases presented in the experiment presented just before (4.32 and 4.33). More precisely, k A × k B take the following values: 10 × 105, 20 × 230, 6 × 26 and 8 × 64 respectively and for ProjRepart the additional k A × k B parameters are chosen as 10 × 10, 20 × 20, 6 × 6, 8 × 16. The partitions computed for ProjRepart are loaded in each solver at runtime. In Table 4.5, we present the average time per iteration of the regular phase taken on the slower component and the average time per coupling iteration for the cylinder case. Note that the time spent in the regular phase is not degraded when the ProjRepart is used, which reflects the minimum edgecut increase presented in 4.32. As one may see here, the results indicate that a minimization of the coupling time may be achieved but further investigation should be made in order to analyze the performance of the co-partitioning algorithms.

Since in this experiment, k A and k B are rather small the overall coupling time is not significant and reaches up to 5% of the time spent in the regular phase. Because of that, the total execution time of the coupled simulation does not substantially change between Naive and ProjRepart and thus it is not shown here. Remember that we stated before that the coupling time may be up to 30% of the total execution time. This may occur when the number of phase is minimized while the time in the coupling phase remains the same (or even increases). Note that in this study we did not explore very large values

Conclusion

In this chapter, we introduce the data distribution problem for coupled simulations, following the classic definition of the graph partitioning problem.

To do so, we propose to enrich the classic graph model with fixed vertices, in order to influence the partitioning results between different components or different phases (regular and coupling).

In this context, we present three new co-partitioning algorithms, Aware, ProjRepart and ProjSubpart and we compare them to the currently used approaches Naive and Multiconst. Remember that Naive addresses the load balancing of coupled simulations without considering the coupling between components while Multiconst attempts to simultaneously balance both phases, within each component, using a multi-criteria graph partitioning. Note that neither approach takes into account the inter-component communications.

In this chapter, we evaluate the proposed algorithms in a series of experiments on synthetically generated and real-life data. We divide our experiments in 3 categories, one that determines internal tuning, one that evaluates the scalability as the number of processors increases and one that tests different sizes of coupling interface (from surface to fully volumetric coupling).

We note that our co-partitioning algorithms succeed to balance the computational load in the coupling phase in every case for the surface coupling while Naive and Multiconst fail to do so. However, when the coupling overlap becomes larger, the multiple objectives of the co-partitioning become harder to satisfy. Surprisingly, we see that our algorithms do not highly degrade the global graph edgecut for either component, despite the additional constraints that are imposed to the problem as opposed to the Multiconst approach. We also remark that ProjRepart and ProjSubpart manage to minimize the number of inter-component messages. Regarding the real-life coupled simulation, the obtained results are quit similar. In more details, we notice that the number of processors that are assigned during the coupling phase may highly condition the final partitioning results. Therefore, one may carefully choose the above values in order to not increase the global edgecut, especially for components where the ratio between the coupling interface and the entire domain is high. Finally, preliminary results lead us to believe that such co-partitioning algorithms may result in a minimized execution time during the inter-component communications of a coupled simulation, but further investigation should be made.

Chapter 5 Conclusion and Future Work Conclusion

In this work, we study the problem of load balancing for modern coupled simulations that arise in various domains such as computational physics, material science and climate science. Coupled simulations represent complex physical phenomena and consist of a number of different component models, plugged in together under a coupling environment. Typically, within a coupled simulation, different components interact with each other exchanging data on their coupling interfaces. As a result, the computational load of each component changes throughout the execution leading to load imbalance for the coupled simulation. In this context, one should obtain a better data distribution that takes explicitly into account the coupling process and balances the load for the entire coupled application.

In this work, we propose new graph partitioning algorithms that address the above problem, denoted as co-partitioning (Chapter 4). The goal here is to efficiently decompose the data of a coupled simulation as part of an interactive system and not just as part of independent components. Our co-partitioning algorithms are designed as a generic approach that could be applied in different coupled problems and potentially be extended in a large number of components. We propose three different algorithms Aware, ProjRepart and ProjSubpart and we compared our results in terms of partitioning quality and runtime performance to the currently used approaches, Naive and Multiconst. Moreover, we performed experiments on synthetically generated data and on a real-life application developed at CERFACS for the optimization of gas turbines. The obtained results on the quality of our co-partitioning methods are encouraging even though further experimental investigation on a larger number of real-life coupled simulations should be included. More precisely, we manage to balance the load during the coupling phase, as opposed to the currently used Naive method that is highly imbalance during coupling and Multiconst that often fails to guarantee balance. As a result the maximum volume of inter-component communication is equally minimized. An important remark concerning the co-partitioning problem is that there is a trade-off between the minimization of the coupling phase and the internal execution of each component.

Surprisingly, we observe that our proposed algorithms do not highly degrade the global edgecut for either component and thus the internal communication among processors of the same component is still minimized. This is not the case for the Multiconst method especially as the number of processors increases. Regarding the coupled simulation for the real application, we noticed that one may carefully decide the parameters of the co-partitioning algorithms in order not to increase the global edgecut. More precisely, the number of processors assigned in the coupling interface is an important factor that needs to be determined based on the geometry of the problem and the ratio of the coupling interface compared to the entire domain. Again, we remark that our work on co-partitioning is still theoretical and further investigation should be conducted with different geometries and more coupled simulations that are more or less coupling-intensive.

Finally in this work (Chapter 3), we proposed graph partitioning algorithms that support initially fixed vertices. The motivation behind this work is our belief that partitioning solutions for problems with initially fixed vertices may be part of the load balancing for coupled simulations. Under this context, we explained why methods that are based on RB do not provide the best solution for partitioning with initially fixed vertices, and we proposed a new graph partitioning method, named kgggp, that successfully handles such problems.

In more details, kgggp is based on a greedy graph growing technique and use the fixed vertices that are present in the graph in order to guide the partitioning procedure. Experimental results on two different configurations of fixed vertices showed that kgggp handles problems with initially fixed vertices better than the commonly used RB methods. Finally note that kgggp is proposed as a solution for the variant problem with fixed vertices and RB-based methods are still the most efficient solutions for the classic graph partitioning problem.

Future Work

Since the problem of load balancing for coupled simulations is a rather new research topic, there are many different directions to explore as future work. Our first remark is that the load balancing of coupled simulations is a complicated problem and a more systematic experimental study on different configurations of coupled simulations should be performed. It is interesting to explore the scalability of our co-partitioning algorithms in terms of number of processors but also in terms of number of components. In Chapter 2, we gave some examples of multi-component coupled simulations that use three or more com- ponents, such as the coupled simulation of earth's climate. Under this context, the data distribution problem of such simulation is more complicated. A question that naturally arises here is whether a many-component coupling can be modeled as a many two-component coupling.

Moreover, a parallel implementation of the co-partitioning algorithms could be an interesting perspective for the future. In this context, an important subproblem is the parallel implementation of kgggp, where an interesting direction is to apply similar strategies as the ones followed in the parallel BFS schemes [START_REF] Buluç | Parallel breadth-first search on distributed memory systems[END_REF].

Finally, the resource allocation problem is rather important when a coupled simulation consists of many components. This is critical for the global coupling efficiency, because each component involved in the coupling can be more or less computationally intensive. Consequently, there is an effective trade-off to find between resources assigned to each code in order to avoid that one of them wait for the others at each coupling stage. Another question is what happens if one component becomes more computationally intensive at runtime.

For instance, let us consider a coupled simulation with two components A and B initially running on processors k A and k B respectively such that K = k A + k B . Assuming that one component (say A) becomes highly imbalanced at runtime, it could be convenient to dynamically adapt the number of processors used for each component. Therefore one may perform a repartitioning of the coupled simulation as illustrated on figure 5.1.

Load Balancing for Parallel Coupled Simulations 113

Figure 2 . 1 :

 21 Figure 2.1: Example of a graph partitioned in three parts. We consider that the vertex and edge weights are equal to 1.

Definition 2 . 7 (

 27 Problem of k-way graph repartitioning). Given a weighted graph G and an unbalanced partition P in M parts, the classic repartitioning problem aims to compute a new partition P of G (in M Load Balancing for Parallel Coupled Simulations parts) that satisfies the balance constraint and minimizes 1) the edgecut, and 2) the migration volume.

 (a) in 8 parts (b) in 5 parts

Figure 2 . 2 :

 22 Figure 2.2: Illustration of recursive bisection approach in three bisection levels.

Figure 2 . 3 :

 23 Figure 2.3: Gain bucket structure introduced in FM algorithm. s p (v) defines the gain function of moving vertex v into part p

 (a) Vertex pairs of G i coarsening level. (b) Vertices of G i+1 level after contraction.

Figure 2 . 4 :

 24 Figure 2.4: Contraction of egdes in HEM. Note how the edge weights are updated after the contraction of vertices. Vertex weights are not illustrated

 (a) W cycle scheme.(b) V cycle scheme.

Figure 2 . 5 :

 25 Figure 2.5: Illustration of the multilevel framework.

Figure 2 . 6 :

 26 Figure 2.6: Representation of a 4-way direct partitioning using the multilevel framework.

 (a) CCS (sequential coupler). (b) CCS (parallel coupler on a set S of processors). (c) DCS.

Figure 2 . 7 :

 27 Figure 2.7: Different communication schemes for coupling component models with different mesh resolutions and different partitions on sets P, Q respectively.

Figure 2 . 8 :

 28 Figure 2.8: Coupling between atmospheric and ocean model.

Figure 2 . 9 :

 29 Figure 2.9: Reduced separation map of the spatial and temporal scales, (extracted from [76]).

Figure 2 . 10 :

 210 Figure 2.10: Interaction scheme with the data dependencies among components, (extracted from [76]).

Figure 2 . 11 :

 211 Figure 2.11: Basic structure design of the framework MUSE used for astrophysical applications (extracted from [56]).

Figure 2 . 12 :

 212 Figure 2.12: Coupling overhead within the CCS when components run sequentially in time. Example of one iteration.

(a) C 1

 1 dominates elapsed time. (b) Coupler dominates elapsed time.

Figure 2 . 13 :

 213 Figure 2.13: Two examples of the fully concurrent execution of components for the sequential CCS (where P = P , Q = Q). In 2.13a the coupling overhead is partially hidden, as opposed to 2.13b.

 Figure 2.14 presents some of the potential component layout available in CCSM4 for the classic climate model, running on a total of 128 processors ([22]) (again boxes are indicative of the elapsed time of one iteration of the coupled simulation). Here ICE stands for ice component, ATM for atmosphere, LD for land and OCN for ocean. Couplings occur between ATM-LD, ATM-ICE and ATM-OCN.

(a)

 a Fully concurrent. (b) Fully sequential. (c) Sequential with concurrent ocean. (d) Mixed sequential/concurent.

Figure 2 . 14 :

 214 Figure 2.14: Four different processor layouts for the coupled simulation of earth's climate. Each figure is an example of one iteration for the coupled simulation.

Figure 2 . 15 :

 215 Figure 2.15: Fully concurrent execution of two components within the DSC.

 (a) Balanced partition on coupling. (b) Imbalanced partition on coupling. (c) Execution time of one iteration for the coupled simulation corresponding to Figure 2.16a. (d) Execution time of one iteration for the coupled simulation corresponding to Figure 2.16b.

Figure 2 . 16 :

 216 Figure 2.16: Example of load balancing problem of coupled simulations.

 (a) Naive approach.(b) Optimized approach.

Figure 2 . 17 :

 217 Figure 2.17: Number of inter-component messages of a coupled simulation with two different partitioning strategies. The coupling surfaces for both components are noted with the red dashed square line (1D coupling).

Figure 3 . 1 :

 31 Figure 3.1: Illustration of the RB method: bisection tree and its implicit part numbering (in red) for a 8-way partition.

 (a) Initial fixed vertices. (b) RB.(c) kgggp.

Figure 3 . 2 :

 32 Figure 3.2: Given initial fixed vertices, comparison of two different partitioning methods (RB and kgggp). Results of a 4-way partition of a 1000 × 1000 grid graph: the RB method fails to extend an initial partition while the kgggp method succeeds.

 (a) Initial fixed vertices. (b) Optimal first bisection. (c) Best solution for RB. (d) Optimal solution.

Figure 3 . 3 :

 33 Figure 3.3: Issues of the RB method under the constraint of initial fixed vertices. While finding the optimal first bisection, the best solution of RB to the 4-way partitioning problem will not be optimal, showing an additional cost of 8 edges cut.

Figure 3 . 4 :

 34 Figure 3.4: Example of coarsest graph where each color corresponds to a different part. Fixed vertices are represented as squares and free ones as circles.

 (a) No relabeling. (b) Relabeling strategy of minimized cost contribution.

Figure 3 . 5 :

 35 Figure 3.5: The bipartite graph used for the reassignment of fixed vertices in the example 3.4. A square vertex represents a set of fixed vertices X i , while a circle vertex represents a part i

Figure 3 . 6 :

 36 Figure 3.6: Bucket data structure (inspired from FM algorithm), illustrating two displacements (v,p) and (v ,p) having the same gain g that is currently the best possible gain.

Figure 3 . 7 :

 37 Figure 3.7: Steps of kgggp while partitioning a 100 × 100 grid graph in 4 parts. The free part is colored in blue. This part becomes empty at the final step (10000) showing a 4-way partition.

Figure 3 . 8 :

 38 Figure 3.8: Diagram of all possible moves of a displacement during the selection phase.

Figure 3 . 9 :

 39 Figure 3.9: kgggp evaluation on the Walshaw collection relatively to Scotch, without multilevel framework. Comparison of the three gain formulas (classic, diff and hybrid) for a parameter α equal to 1 or 10, and comparison of the global and local version of kgggp.

Figure 3 . 10 :

 310 Figure 3.10: Average results over the entire DIMACS'10 collection for graphs without fixed vertices.

Figure 3 . 11 :

 311 Figure 3.11: Average results on the edgecut quality and time execution for each group in the DIMACS'10 collection (without fixed vertices).

Figure 3 . 12 :

 312 Figure 3.12: Average results over the entire DIMACS'10 collection (bubble scheme).

 and 3.15b while the same results are also depicted

Figure 3 . 13 :

 313 Figure 3.13: Average results over group1 and group2 (bubble scheme).

Figure 3 . 14 :

 314 Figure 3.14: Average results on the edgecut quality and time execution for each group in the DIMACS'10 collection (bubble scheme).

Figure 3 . 15 :

 315 Figure 3.15: Average results over the entire DIMACS'10 collection (repart scheme).

Figure 3 . 16 :

 316 Figure 3.16: Average results on the edgecut quality and time execution for each group in the DIMACS'10 collection (repart scheme).

Figure 3 . 17 :

 317 Figure 3.17: Average edgecut results over the Walshaw collection, comparing graph algorithms to hypergraph tools for the bubble scheme.

Figure 3 . 18 :

 318 Figure 3.18: Average edgecut results over the Walshaw collection, comparing graph algorithms to hypergraph tools for the repart scheme.

Figure 4 . 1 :

 41 Figure 4.1: Example of coupling interface for two rectangular computational domains.

Figure 4 . 2 :

 42 Figure 4.2: General model of a complex simulation with two coupled components C 1 and C 2 .

Figure 4 . 3 :

 43 Figure 4.3: Example of contact-impact simulation (extracted from [41]).

 for model A and G B = (V B , E B) for B. As shown in Figure 4.4, we represent the coupled model with the global graph,

Figure 4 . 4 :

 44 Figure 4.4: Example of a global graph G AB based on two graphs G A and G B and interedges I AB (in dashed red), showing the coupled subgraphs G A and G B (circled in blue).

Figure 4 . 5 :

 45 Figure 4.5: Example of (4, 6, 2, 3)-way co-partition of G AB .

Figure 4 .

 4 Figure 4.5 depicts a (4, 6, 2, 3)-way co-partition. Assuming all vertex/edge weights are 1, we see that the balance criterion is perfectly respected in the regular phase for both P A and P B (k A = 4 and k B = 6), with an edgecut respectively equal to 8 and 12. As for the coupling phase (red vertices), P A and P B are perfectly balanced as well (k A = 2 and k B = 3), with an edgecut equal to 1 and 2 respectively. Considering the coupling communication, totV = 6, maxV = 2 and totZ = 4, corresponding to the following processor pairs assigned to different components: (1, 5), (1, 6), (2, 6), (2, 7). The following communication matrix C = (C i,j) k A ×k B represents the coupling exchange from A to B:

Figure 4 . 6 :

 46 Figure 4.6: Sample of a 5 × 7 repartitioning of a 2D grid of dimensions 10 × 10. The migration matrix C explains how vertices will migrate from the 5 former parts to the 7 newer. It is chosen to minimize both totZ and totV . On the enriched graph G, the square vertices represents the l fixed vertices, connected to former parts according to C. The final partition obtained is well balanced and respects the communication scheme imposed by C.

Figure 4 . 7 :

 47 Figure 4.7: Given the k A -way partition P A of G A in Figure 4.7a, the extension operator computes a k A -way partition P A of G A in Figure 4.7b, with k A = 2 and k A = 4.

Figure 4 . 8 :

 48 Figure 4.8: Illustration of the projection operator from graph G A to G B . Given the k A -way partition P A (in blue), one aims to find a k A -way partition of G B (in dashed blue), with k A = 2.

Figure 4 . 9 :

 49 Figure 4.9: Description of the Naive co-partitioning algorithm.

Figure 4 . 10 :

 410 Figure 4.10: Description of the Aware co-partitioning algorithm.

Figure 4 . 11 :

 411 Figure 4.11: Description of the ProjRepart co-partitioning algorithm.

Figure 4 . 12 :

 412 Figure 4.12: Description of the ProjSubpart co-partitioning algorithm.

 (a) Partition of G A in k A = 2. (b) Projection to G B . (c) Repartition of G B in k B = 3. (d) Overview of partitions for G A (left) and G B (right) after extension (k A = 4 and k B = 6).

Figure 4 . 13 :

 413 Figure 4.13: Example of the PROJREPART co-partitioning for a test case similar to setup3 (see Sec. 4.4).

Figure 4 . 14 :

 414 Figure 4.14: Overview of the surface coupling between two mesh domains A (left) and B (right) showing the restriction to the coupled subdomains (in red) and interedges between cells. It corresponds to the setup3 test case described in section 4.4.

Figure 4 . 15 :

 415 Figure 4.15: Comparison of co-partitioning algorithms and partitioning methods: relative edgecut mean over all setups.

 Imbalance in G B .

Figure 4

 4 Figure 4.16:Comparison of co-partitioning algorithms with RBBGM method: mean imbalance in coupling phase, over all setups (imbalance tolerance fixed to 5%).

Figure 4 . 17 :

 417 Figure 4.17: Comparison of co-partitioning algorithms with RBBGM method: total number of major messages totZM and total number of messages totZ for each setup separately.

Figure 4 . 18 :

 418 Figure 4.18: Examples of different mesh alignment in the coupling interface.

Figure 4 . 19 :

 419 Figure 4.19:Comparison of co-partitioning algorithms with RBBGM method: maximum volume of inter-components communication for each setup separately.

Figure 4 . 20 :

 420 Figure 4.20: Comparison of co-partitioning algorithms with RBBGM method: relative time, mean over all setups.

Figure 4 . 21 :

 421 Figure 4.21: Comparison of co-partitioning algorithms with RBBGM method: edgecut of G B as k B increases. Results for setup4 when k A = 16, k A = 6, k B = 48.

Figure 4 . 22 :

 422 Figure 4.22: Comparison of co-partitioning algorithms with RBBGM method: totZ,totZM as k B increases. Results for setup4 when k A = 16, k A = 6, k B = 48.

Figure 4 . 23 :

 423 Figure 4.23: Comparison of co-partitioning algorithms with RBBGM method: relative time as k B increases. Results for setup4 when k A = 16, k A = 6, k B = 48.

Figure 4

 4 Figure 4.24:Comparison of co-partitioning algorithms with RBBGM method: edgecut results for setup2 as the coupling overlap increases from 0 to 100.

Figure 4 . 25 :

 425 Figure 4.25: Comparison of co-partitioning algorithms with RBBGM method:totZM , totZ for setup2 as the coupling overlap increases from 0 to 100. The optimal value for totZM is given by the red dashed line.

 (a) Sections of a combustion chamber. (b) Blade.

Figure 4 . 26 :

 426 Figure 4.26: Presentation of geometric configuration inside a combustion chamber.

Figure 4 . 27 :

 427 Figure 4.27: Interactions between combustion, radiation and heat conduction in solids.(modified version of figure in [34]).

 Relative edgecut in G B .

Figure 4 . 29 :

 429 Figure 4.29: Comparison of co-partitioning algorithms with RBBGM method: edgecut of G B and G A as k A increases. Results for cylinder when k A = 6, k B = 26 and k B = 12.

Figure 4 . 30 :

 430 Figure 4.30: Comparison of co-partitioning algorithms with RBBGM method: edgecut of G B and G A as k B increases. Results for cylinder with k A = 6, k B = 26 and k B = 6.

Figure 4 . 31 :

 431 Figure 4.31: Comparison of co-partitioning algorithms with RBBGM method: inter-component communication costs for Naive, Aware and Proj-Repart for same values of k A , k B , k A , k B . Results for cylinder.

Figure 4 . 32 :

 432 Figure 4.32: Comparison of co-partitioning algorithms with RBBGM method: edgecut results for Naive, Aware and ProjRepart on different values of k A , k B . Results for cylinder.

Figure 4 . 33 :

 433 Figure 4.33: Comparison of co-partitioning algorithms with RBBGM method: imbalance results during the coupling phase for Naive, Aware and Proj-Repart on different values of k A , k B . Results for cylinder.

Figure 5 . 1 :

 51 Figure 5.1: Dynamic processor allocation for two components A and B whose relative load A/B increases.

Table 3 .

 3 1: Graph and hypergraph partitioning tools.

	Tools	Type	Fixed Parallel Scheme Initial Part. Available
	Metis [40]	graph	no	no	MLRB	-	source
	kMetis [39]	graph	no	no	MLKW	RB	source
	ParMetis [40]	graph	no	yes	MLKW	RB	source
	Scotch [53]	graph	yes	no	MLKW	RB	source
	PT-Scotch [53]	graph	no	yes	MLRB	-	source
	RM-Metis [5]	graph	only k	no	MLKW	greedy	no
	KaFFPa [59]	graph	no	no	MLKW	RB	source
	Chaco [48]	graph	no	no	MLRB	spectral	source
	HMetis [40]	hypergraph	yes	no	MLRB	-	binary
	KHMetis [40]	hypergraph	no	no	MLKW	RB	binary
	PaToH [77]	hypergraph	yes	no	MLRB	-	binary
	kPaToH [6]	hypergraph	yes	no	MLKW	rbbgm	no
	Zoltan (PHG) [1] hypergraph	yes	yes	MLRB	-	source
	Mondriaan [68]	hypergraph	no	no	MLRB	-	source

deficiency, they propose a new multilevel direct k-way hypergraph partitioning that uses a RB-based algorithm and an additional post-processing technique to relabel the resulting parts such that the edgecut remains minimized. They refer to the above algorithm as rbbgm and they provide an implementation called kPaToH based on modifications of the multilevel framework of PaToH.

Table 3 . 3

 33

	method streets matrix numerical clustering dynframe walshaw
	Scotch 88%	2.5%	32%	33%	10%	62%
	rbbgm	97%	7.5%	45%	40%	5%	60%
	kgggp l 0%	0%	0%	0%	0%	10%

: Failure percentages of each method when the number of parts is 500 (bubble experiment).

Table 3 .

 3 4: List of graphs used for experiments from the popular DIMACS'10 collection.

	group collection graph	# vtx # edges avg d • min d • max d •
	1	walshaw	144	144,649 1,074,393	14.86	4
	1	walshaw	4elt	15,606	45,878	5.88	3
	1	walshaw	cs4	22,499	43,858	3.90	2
	1	walshaw	cti	16,840	48,232	5.73	3
	1	walshaw	fe 4elt2	11,143	32,818	5.89	3
	1	walshaw	fe ocean	143,437	409,593	5.71	1
	1	walshaw	fe sphere	16,386	49,152	6.00	4
	1	walshaw	whitaker3	9,800	28,989	5.92	3
	1	walshaw	wing	62,032	121,544	3.92	2
	1	walshaw	auto	448,695 3,314,611	14.77	4
	1	matrix	audikw1	943,695 38,354,076	81.28	20
	1	matrix	ecology1	1,000,000 1,998,000	4.00	2
	1	matrix	thermal2	1,227,087 3,676,134	5.99	2
	1	matrix	af shell10	1,508,065 25,582,130	33.93	14
	1	matrix	G3 circuit	1,585,478 3,037,674	3.83	1
	1	matrix	nlpkkt120	3,542,400 46,651,696	26.34	4
	1	matrix	ldoor	952,203 22,785,136	47.86	27
	1	matrix	cage15	5,154,859 47,022,346	18.24	2
	1	numerical NACA0015	1,039,183 3,114,818	5.99	3
	1	numerical 333SP	3,712,815 11,108,633	5.98	2
	1	numerical NLR	4,163,763 12,487,976	6.00	3
	1	numerical adaptive	6,815,744 13,624,320	4	2
	1	numerical AS365	3,799,275 11,368,076	5.98	2
	1	numerical M6	3,501,776 10,501,936	6.00	3
	1	numerical channel-b050	4,802,000 42,681,372	17.78	6
	1	numerical venturiLevel3	4,026,819 8,054,237	4.00	2
	1	dynframe	hugebubbles-00000 18,318,143 27,470,081	3.00	2
	1	dynframe	hugebubbles-00010 19,458,087 29,179,764	3.00	2
	1	dynframe	hugebubbles-00020 21,198,119 31,790,179	3.00	2
	1	dymframe hugetrace-00000	4,588,484 6,879,133	3.00	2
	1	dymframe hugetrace-00010	12,057,441 18,082,179	3.00	2
	1	dynframe	hugetrace-00020	16,002,413 23,998,813	3.00	2
	1	dynframe	hugetric-00000	5,824,554 8,733,523	3.00	2
	1	dynframe	hugetric-00010	6,592,765 9,885,854	3.00	2
	2	clustering	citationCiteseer	268,495 1,156,647	8.62	1
	2	clustering	coAuthorsCiteseer	227,320	814,134	7.16	1
	2	clustering	coAuthorsDBLP	299,067	977,676	6.54	1
	2	clustering	coPapersCiteseer	434,102 16,036,720	73.88	1
	2	clustering	coPapersDBLP	540,486 15,245,729	56.41	1
	2	clustering	as-22july06	22,963	48,436	4.22	1
	2	streets	asia	11,950,757 12,711,603	2.13	1
	2	streets	belgium	1,441,295 1,549,970	2.15	1
	2	streets	germany	11,548,845 12,369,181	2.14	1
	2	streets	great-britain	7733822	8156517	2.11	1
	2	streets	italy	6,686,493 7,013,978	2.10	1
	2	streets	netherlands	2,216,688 2,441,238	2.20	1
	2	streets	luxembourg	114,599	119,666	2.09	1

Table 4 . 1 :

 41 Description of the meshes used in the experiments.

	Graph	Elements	|V |	|E|
	hexa-25x25x25	hexa	15,625	45,000
	hexa-70x70x70	hexa	343,000 1,014,300
	hexa-100x100x100 hexa	1,000,000 2,970,000
	tetra-40630	tetra	40,630	78,131
	tetra-928984	tetra	928,984 1,822,323
	Table 4.2: Description of the experiments.	
	Exp.			

Table 4 . 3 :

 43 Processor distribution and CPU time. The quantity CPU 0.5 is the CPU time needed to compute 0.5ms of physical time.

	simulation AVBP AVTP PRISSMA CPU 0.5
	case AA	230	24	-	1hr
	case AAP	105	12	48	3hr

Table 4 .

 4 5: Results on the execution time of the AA simulation with different input size for the two components (cylinder case).

			6 × 26		8 × 64		10 × 105		20 × 230
		Naive ProjRepart Naive ProjRepart Naive ProjRepart Naive ProjRepart
	t reg (ms)	190	190	370	370	310	310	50	40
	t cpl (ms)	0.836	0.598	2.102	1.884	2.453	2.175	2.208	2.067
	relative gain -	(29%)	-	(11%)	-	(12%)	-	(7%)

of k A and k B .

http://cerfacs.fr viii Maria Predari

http://cerfacs.fr

An intra-cranial aneurysm is a cerebrovascular disorder in which weakness in the wall of a cerebral artery causes a localized dilation or ballooning of the blood vessel (thrombosis).

http://www.mapper-project.eu

Maria Predari

HCM is the equivalent algorithm of HEM for hypergraph partitioningLoad Balancing for Parallel Coupled Simulations

In other words, the interedges I AB just represent a binary relation fromV A to V B .Load Balancing for Parallel Coupled Simulations

A migration matrix C = (C i,j) of dimension k × l represents the amount of data that migrates from a former part i to a newer part j (if i = j) or the amount of data that remains in place (if i = j).

LES is a mathematical model for turbulence simulation, where a low-pass filtering of the Navier-Stokes equations is used to reduce the computational cost.

Remerciements

First of all I would like to thank my supervisors Jean Roman and Aurélien Esnard for their support and guidance during the three years of this thesis. Both of them helped me in different ways and gave me the proper education for a potential future in the research. More precisely I would like to thank Aurelien for his enormous help during those years and his devotion to me and the subject. I would also like to thank the jury of my thesis and more precisely my two referees (Rob Bisseling and Umit Catalyurek) whose comments and reviews highly improved the quality of this manuscript. Also, I thank Florent Duchaine for his help on coupled simulations.

Following, I would like to thank my teammates at Hiepacs for the great times we shared together, our discussions and our common (and long) breaks. I would like to thank Abdou for his valuable advise and Meropi for her support. Finally, I thank my family for always being there for me and Emmanuel for his support, his solid help and for making my life happier.

Graph Operators

Subsequently, we describe in detail the basic steps of the proposed algorithms. To facilitate this description, we introduce some graph operators as building blocks that produce new graph structures or partitions. Namely, we use the following operators: partition, repartition, subpartition, restriction, extension and projection.

Partition. First, we define the partition operator as P art(G, k) → P which simply returns a k-way balanced partition of the graph G with respect to an imbalance tolerance (see Chapter 2 for the definition).

Repartition. Then, the repartition operator is defined as Repart(G, P, k, l) → P . This operator computes a new l-way balanced partition of a graph G using a former (possibly unbalanced) k-way partition of the same graph, such that the migration volume is minimized as an additional criterion. This repartition operator uses the k × l repartitioning algorithm presented in [70], that contrarily to classic repartitioning algorithms (scratch-remap [START_REF] Oliker | Plum: parallel load balancing for adaptive unstructured meshes[END_REF], diffusion [START_REF] Schloegel | Multilevel diffusion schemes for repartitioning of adaptive meshes[END_REF][START_REF] Kirk | Wavefront diffusion and LMSR: Algorithms for dynamic repartitioning of adaptive meshes[END_REF] or biased partitioning [START_REF] Cevdet Aykanat | Adaptive decomposition and remapping algorithms for object-spaceparallel direct volume rendering of unstructured grids[END_REF][START_REF] Umit | A repartitioning hypergraph model for dynamic load balancing[END_REF]) enables to change the target number of parts (i.e., l = k). The k × l repartitioning algorithm constructs, with a greedy strategy, a good migration matrix 2 C, that minimizes both the total migration volume (totV) and the total number of messages exchanged during migration (totZ). Then it performs a biased partitioning of the graph G, enriched with l additional fixed vertices connected to the k former parts based on the migration matrix C (Fig. 4.6). More details on this operator and its implementation can be found in [START_REF] Vuchener | Dynamic Load-Balancing with Variable Number of Processors based on Graph Repartitioning[END_REF]70].

Subpartition. The subpartition operator is defined as Subpart(G, P, k, l) → P . Assuming that P is well-balanced, this operator is a simple alternative to the repartition operator, in the particular case where k and l are multiples with k ≤ l. This operator computes a l-way balanced partition of a graph G using formed for the synthetically generated test cases in section 4.4.1. After these experiments we will be able to determine the best parameters for the reallife coupled simulations and we will have an insight on the limitations of our methods.

First, we study the behavior of our methods as the number of processors assigned in the coupling interface of each component increases. We perform the experiment for both components A and B in order to evaluate the best values of k A and k B for our co-partitioning methods. To start, we randomly choose