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Introduction

The theoretical framework of modern cosmology is based on Einstein’s general theory of
relativity. Assuming homogeneity and isotropy of space, the solution of the general relativ-
ity equations give us the Friedmann-Lemaître cosmological models, where the geometry of
space and the evolution of the Universe depend on a limited number of parameters. The Big
Bang theory predicts an initial singularity and implies that in the past the Universe was dense
and hot. These so called cosmological parameters can be constrained by the observations of
the Universe at different ages and scales. Today the most successful model which is able to
reproduce the properties of the CMB, the large-scale structure and the accelerated expansion
of the Universe is the ΛCDM model. This model assumes that the percentage of the energy
budget of the Universe is in the form of dark matter (25%) and dark energy (70%). The na-
ture of both dark matter and the cosmological constant still remain unknown.

The first direct evidence of the accelerated expansion of the Universe came from super-
nova observations (Perlmutter et al., 1999). An explanation for this accelerated expansion is a
challenge faced by cosmologists, determining if it is due to a positive cosmological constant,
a time–varying dark energy component or a modified theory of gravity. This fundamental
question is addressed through the analysis of various complementary cosmological probes
with different systematics, as for instance weak lensing, galaxy clustering, baryon acoustic
oscillations and redshift-space distortions.

In this dissertation we will be concentrating on galaxy clusters, and analyse how they can
be used as cosmological probes. Galaxy cluster counts as a function of redshift and mass are
sensitive to dark energy through their dependence on the volume element and on the struc-
ture growth rate, and so information from cluster counts can be added with cluster-clustering
information to constrain cosmology. Recent cosmological forecasting based on galaxy clus-
ters confirms that the figure of merit significantly increases when adding cluster clustering
information (Sartoris et al., 2016). Cluster clustering can be measured through the two–point
correlation function, the Fourier transform of the power spectrum, which is one of the most
successful statistics for analysing clustering processes (Totsuji and Kihara, 1969; Peebles,
1980). In cosmology, it is a standard tool to test models of structure formation and evolution.

Major galaxy surveys are currently ongoing (DES, BOSS, KIDS, Pan-STARRS) or in
preparation (eROSITA, LSST, Euclid) and will provide cluster catalogues probing an un-
precedented range of scales, redshifts, and masses with large statistics. The wide areas cov-
ered by these surveys will give access to unprecedented statistics (∼100,000 clusters expected
with Dark Energy Survey, eROSITA and Euclid survey) that will allow us to cover the high
mass, high redshift tail of the mass distribution, to control cosmic variance, and to map the
large scales at which the BAO signature is expected (∼ 100Mpc). However, for the majority
of these surveys, redshifts of individual galaxies will be mostly estimated by multiband pho-
tometry which implies non-negligible errors on redshift resulting in potential difficulties in



recovering the real-space clustering.

We investigate to which accuracy it is possible to recover the real-space two-point cor-
relation function of galaxy clusters from cluster catalogues based on photometric redshifts,
and test our ability to detect and measure the redshift and mass evolution of the correlation
length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster
redshift estimate.

State-of-the-art weak-lensing masses will be measured for massive z ≲ 1 clusters, but it
will be necessary to rely on mass proxies to estimate the mass of the high-z and low-mass tail
of galaxy clusters. For this purpose, richness as a mass proxy will be investigated. One intrin-
sic difficulty in constraining the cosmological models with galaxy cluster counts comes from
uncertainties in cluster mass estimates and on the difficulty to calibrate related mass proxies.
One can overcome this difficulty adding the information related to the clustering properties
of clusters, due to the fact that their power spectrum amplitude depends mainly on the halo
mass. When combining the redshift-averaged cluster power spectrum and the evolution of
the number counts in a given survey, the constraints on the Dark Energy equation of state
are dramatically improved (Majumdar and Mohr, 2004). A key goal for cluster cosmology
especially from photometric catalogues is trying to reduce the scatter between the cluster
mass and richness. When the correlation between cluster richness and mass is improved, the
cluster richness can be used to infer cluster masses even out to high redshifts. We calculate
the evolution of this scatter at different redshift ranges from simulated catalogues.

Here we provide a synopsis of each chapter in this thesis.

In Chapter 1 we discuss the history of the current cosmological framework, starting with
the critical pillars of astronomy and cosmology which include the Hubble’s law, the Big Bang
Nucleosynthesis and the CMB radiation. We then review some of the theoretical foundations
of cosmology such as the Einstein’s equations and Friedmann equations along with defini-
tions of the several distance measurements used in cosmology. We also explain about the
observational evidences for the accelerated expansion of the Universe and theoretical frame-
work of large scale structure formation.

In Chapter 2 a brief introduction to galaxy clusters, physical processes inside clusters,
how to detect them and measure their masses is discussed.

In Chapter 3 the two-point correlation function is introduced along with its different es-
timators. We also revisit some of the historical studies of the galaxy and cluster correlation
functions.

In Chapter 4 a brief discussion about the several ways of using galaxy clusters as cosmo-



logical probes is addressed.

Results of our study from both observational and simulated catalogues are presented in
two parts. First we calculate the evolution of the two-point correlation function with both
mass and redshift using cosmological redshift samples.

Then we use a Gaussian probabilistic method to generate photometric redshifts with dif-
ferent uncertainties, apply the deprojection method and recover the real-space correlation
function. The evolution of the recovered real-space correlation function with mass and red-
shift is then studied. We then try to find the dependence of richness on clustering and cal-
culate the two-point correlation function of richness cut samples from both simulated and
CFHTLS detected clusters.

In Chapter 5 we show how simulations in general can be used to study galaxy clustering.
Our results obtained on the evolution of the two-point correlation function with mass and
redshift and the cluster bias is discussed.

In Chapter 6 we study the effect of photometric redshift errors on the correlation function
and how they can be addressed. We make use of a deprojection method and show that the
real-space correlation function can be recovered within a given percentage for photometric
redshift catalogues with different uncertainties.

The dependence of richness on clustering and its usage as a mass proxy is studied. We
also calculate the two-point correlation function of clusters detected from the CFHTLS sur-
vey by dividing the sample into several richness cuts.

Finally in Chapter 7 we provide the general conclusions obtained from our study. We
also give a brief outline of how this study can be extended towards a broader perspective.
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I would like to start this thesis with a chapter that is intended for a general audience giving
a brief review of modern cosmology. First we introduce the three pillars of cosmology; the
Hubble’s law, the Big Bang Nucleosynthesis and the Cosmic Microwave Background radia-
tion followed by some of the theoretical foundations of cosmology such as the Friedmann-
Robertson-Walker metric and Einstein’s equations. We then move on to distance measure-
ments in cosmology which gives the reader some basic information about how various types
of distances to extragalactic sources are measured. We also explain the various cosmological
models including the current standard ΛCDM cosmological model and how the accelerated
expansion of the Universe was discovered. We finish by introducing the theoretical models
and formalisms that have been proposed to explain the formation of the large-scale structures
in the Universe.

1.1 Astronomy before and after 1900

One of the oldest natural sciences known to man is astronomy dating back to thousands of
years. It was perhaps one of the most common subject followed all the way from India and
China in the east to prehistoric Europe and Greece in the west.

Some of the most prominent Asian astronomers of the past include Aryabhata from India,
who explicitly mentioned that the earth rotates about its axis, Gan de from China who made
one of the very first star catalogues. Some of the most prominent European astronomers of the
past include Copernicus, who described the heliocentric model of the solar system, Galileo
who used telescopes for astronomical observations and was the first to do so. Kepler was the
first to attempt to derive mathematical predictions of celestial motions from assumed physical
causes. Combining his physical insights with the observations made by Tycho Brahe, he
discovered the three laws of planetary motion. It was Isaac Newton who further developed
the relation between astronomy and physics through his laws of universal gravitation. Newton
was able to explain all know gravitational phenomenon in one theoretical framework which
laid many of the foundations of modern physics.

Before the 20th century, astronomical knowledge was limited to our planet Earth, the
Sun, the Moon, the planets of the solar system and stars of the Milky Way. People did not
know that other galaxies similar to the Milky Way existed and that we were only one among
the many galaxies in the Universe. The world had to wait for the 20th century, which is said
to have been the golden era of astronomy as we know today.
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During the 20th century, the theory of relativity and quantum mechanics, together with
the development of large telescopes and new instrumentation, led to a revolution in astron-
omy and to the birth of cosmology as a science. Here we highlight some of the major break-
throughs that happened during this epoch as far as extragalactic astronomy is concerned.

Until the 19th century people did not know about galaxy clusters or even groups of galaxy
clusters. It was William Herschel and Charles Messier who noted strange objects in the
sky which they referred to as “nebulae”, especially being common in some parts of the sky
than other and particularly in the constellation of Virgo. For a much detailed analysis of
these “nebulae” the world had to wait for the work of Wolf, who described the Virgo and
Coma clusters of galaxies (Wolf, 1924). It was still not known that these “nebulae” were
extragalactic system of stars which were very similar to our Milky Way.

Hubble made observations of these “nebulae” in 1922-1923 and had a convincing proof
that these objects were in fact too distant to be part of our Milky Way and were in fact, entire
galaxies outside our own. He went on to present his work in the form of a paper in January 1,
1925 in the meeting of the American Astronomical Society. The galaxies and galaxy clusters
were no longer “nebulae” and their mystery was revealed. Hubble went on to use the 100 inch
Hooker telescope and measured the distances and velocities to these objects. He made use
of Cepheids 1 for closer objects, and magnitude and size comparisons for the more distance
ones.

In 1927 in the Annales de la Société Scientifique de Bruxelles (Annals of the Scientific
Society of Brussels) under the title “Un Univers homogène de masse constante et de rayon
croissant rendant compte de la vitesse radiale des nébuleuses extragalactiques” (“A homo-
geneous Universe of constant mass and growing radius accounting for the radial velocity of
extragalactic nebulae”) Georges Lemaître published a report (Lemaître, 1927) . In this report,
he derived the Hubble’s law (the detailed explanation of which will be given in Section 1.2.1),
and provided the first observational estimation of the Hubble constant (Belenkiy, 2012). He
linked the redshift to cosmological expansion and to relativistic cosmological models.

The graph of velocity vs distance for these objects suggested that they were directly pro-
portional (Hubble, 1929). The gradient obtained from the graph measured 500 km s−1 Mpc−1
2. This positive gradient meant that the Universe was smaller in the past, which in other words
meant that the Universe was expanding and this came to be known as the Hubble’s law.

Fritz Zwicky applied the virial theorem to the Coma cluster of galaxies in 1937 and
found that there was a mass discrepancy. The application of the virial theorem stated that
the Coma cluster contained 400 times more mass than that indicated by the “luminous” and
visible objects. This phenomenon was explained by an unidentified type of matter called
“dark matter” which has still not been directly observed.

1A Cepheid variable is a type of star that pulsates radially, varying in both diameter and temperature and
producing changes in brightness with a well-defined stable period and amplitude.

2Parsec is a unit of length, which is used to measure distances to objects outside our Solar system. 1 Parsec
(pc) is equal to 3.26 light years and Mpc refers to Megaparsec, which is a distance of one million parsecs. Mpc
is usually used for measuring distances to galaxies and galaxy clusters.
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Thus astronomy which was restricted to the studies of the Sun, the Moon and the planets in
the Solar System extended its reach to the studies of other galaxies similar to our Milky Way
and galaxy clusters in the nearby Universe. Observational techniques could help theoretical
studies which had predicted several critical concepts such as the expansion of the Universe
and the content of the Universe in detail.

1.2 The expanding Universe

How old is the Universe? How did it began? How large is it? What will be the fate of the
Universe? These are all questions that we have been asking for several thousands of years.
Cosmology is a study that attempts to answer all these questions by making use of both the-
oretical studies (which predict certain results based on a few assumptions) and observational
studies (that are required to verify the theoretical predictions). Since Georges Lemaître first
noted in 1931 that an expanding Universe might be traced back to a single point in time and
space where it could all have begun (Lemaître, 1931), astronomers have built on the idea
of cosmic expansion. From the start of the early 20th century, scientists have been trying to
explain about the beginning of time and the formation of structures as we see them today us-
ing several cosmological models. But two theoretical perspectives namely the Steady State
theory and the Big Bang theory divided the astronomers in the mid 20th century.

The “steady state theory” was first proposed by Hoyle (1948). The main contradicting
statement of the steady state theory compared to the Big Bang theory was that there was no
beginning of the Universe. The steady state theory stated that the density of the matter in the
expanding Universe remains unchanged due to continuous creation of matter. The Universe
was said to be expanding and a homogeneous distribution of matter being created at a rate of
10−24 baryon/cm3/s, instead of a unique moment of creation as stated in the Big Bang theory.
By the end of the 1960s, the steady state theory started to loose its competitiveness as it could
not explain certain observations, such as why galaxies were younger at a higher redshift,
why there were excessive radio sources at large distances (Ryle and Clarke, 1961) and most
importantly the Cosmic Microwave Background (CMB) radiation. The Steady State theory
received a lot of appreciation until the mid 20th century after which several observational and
theoretical evidences started to favour the Big Bang theory.

It was in the 1990s that Hoyle et al. (1993) published a modified version of the steady
state theory, that was called the “quasi-steady state” (QSSC) theory. This model solved some
of the problems that were faced by the steady state theory such as why there were younger
galaxies at higher redshifts and why there were excessive radio sources at larger distances.
The QSSC model aimed to compete with the Big Bang theory but described the Universe
in a different way. Several errors were found out in the QSSC model by Wright (1995) who
concluded that the QSSC model failed to describe the many observable properties of the
Universe.

The Big Bang theory on the other hand stated that the Universe expanded from a very
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high density and high temperature scale and continues to expand rapidly. After the initial
expansion, the Universe cooled sufficiently to allow for the formation of subatomic particles
and later simple atoms. Clouds of these primordial elements later coalesced through gravity
to form stars and eventually galaxies. According to the Big Bang paradigm, the expansion
of the Universe began 13.8 billion years ago, and this is also considered as the age of the
Universe. However according to the Big Bang theory, what happened during the early times
of the Universe, approximately from 10−43 to 10−11 seconds after the Big Bang, are still
subjects of speculation. The laws of physics as we know them could not have existed during
this time and it is difficult to imagine how the Universe would have been governed.

The cosmic microwave background radiation that was discovered in 1965 favoured the
Big Bang theory, as the Big Bang theory had predicted this radiation even before it was
detected. Supernova experiments have went on to prove the accelerated expansion of the
Universe, which maybe due to a positive cosmological constant, a time–varying dark energy
component or a modified theory of gravity.

There are three pillars of Big Bang theory, namely:

• Hubble’s law

• Big Bang Nucleosynthesis

• Cosmic Microwave Background (CMB) radiation

1.2.1 Hubble’s law

The linear relationship between the redshift of galaxies and their distance is given by:

v =H0D (1.1)

where v is the recessional velocity, expressed in km s−1, H0 is the Hubble’s constant 3 ,and
D is the proper distance from the galaxy to the observer which is measured in megaparsecs
(Mpc). The value of H0 as measured by several observational methods give a value that is
close to 70 km s−1 Mpc−1. For example as measured from the WMAP observations H0 =
69.32 ± 0.80 km s−1 Mpc−1 (Bennett et al., 2013), as measured from the Planck mission,
H0 = 67.80 ± 0.77 km s−1 Mpc−1 (Planck Collaboration et al., 2014).

Equation 1.1 is only a local approximation of the relation between redshift and distance,
which depends on the adopted cosmological model.

When the value of H0 was still uncertain by a factor 2, a normalized conventional Hubble
constant h was defined as:

h = H0

100
km s−1Mpc−1 (1.2)

3It is estimated by measuring the distances to galaxies by some other method than Hubble’s law.
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and all quantities that depend on its value was expressed in terms of the reduced Hubble
constant, h.
The inverse of the Hubble constant is the Hubble time, tH given by:

tH ≡ 1

H0

= 9.78 × 109 h−1yr = 3.09 × 1017 h−1s (1.3)

and the speed of light c times the Hubble time gives us the Hubble distance DH given by:

DH ≡ c

H0

= 3000 h−1Mpc = 9.26 × 1025 h−1m (1.4)

1.2.2 Big Bang Nucleosynthesis

Big Bang Nucleosynthesis (BBN) refers to the production of nuclei heavier than hydrogen
during the first minutes after the Big Bang. During this period, helium along with lithium,
deuterium, and two unstable radioactive isotopes, the hydrogen isotope tritium and beryl-
lium isotope beryllium-7 are said to have been formed. All of the heavier elements up to
iron were created by the nuclear cores within stars. The heaviest elements, those heavier
then iron were created during supernova explosions (Copi et al., 1995). Current theory pre-
dictions and actual observed abundances of elements match very well, so well that BBN is
considered the second fundamental pillar of Big Bang theory (Longair, 2008). As we know,
the beginning of the Universe was a dense quark soup and the temperature was really high.
At this point the mean free path of any given particle was tiny and the entire Universe was
within thermodynamic equilibrium. Starting with this hot, dense quark soup and moving
forward in time the Universe started to cool and expand. However, as it cooled enough even-
tually, particles started freezing out of equilibrium when the energy density of the Universe
roughly approached their rest mass energy. The first major component to freeze out were
the neutrinos and the second major components to freeze out were the photons. When the
temperature decreased to a few thousand degrees, neutral atoms could form without being
ionized by photons, which did not have enough energy. This process is called “recombina-
tion” and radiation could freely propagate through space.

1.2.3 The Cosmic Microwave Background radiation

As the Universe expanded and cooled to the point where the formation of neutral hydrogen
was possible, the fraction of free electrons and protons decreased to a few parts as compared
to neutral hydrogen. Immediately after, photons decoupled from matter and travelled freely
through the Universe without interacting with normal matter and constitute what is observed
today as the Cosmic Microwave Background (CMB) radiation. This radiation is strongest in
the microwave region of the radio spectrum and hence the name. One of the images of the
CMB radiation observed using WMAP is shown in Figure 1.1.

These photons that existed during decoupling have been travelling throughout the Uni-
verse ever since. But due to the expansion of the Universe, their wavelengths are stretched,
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Figure 1.1: The CMB radiation as measured using WMAP which reveals the fluctuations
that correspond to the seeds that grew to became galaxies. Image Credits: WMAP CMB
radiation (2007)

the same way in which we see a shift in the red part of the spectrum for all objects that are far
away from us (Longair, 2008). The CMB radiation has a black body spectrum, which as of
today is measured at a temperature of 2.72± 0.0005K (Fixsen, 2009). The glow of the CMB
radiation is isotropic when seen on a large scale. According to the inflation theory, quantum
fluctuations were amplified to macroscopic scales during a period of fast and exponential
expansion of the Universe. These density fluctuations were responsible for the temperature
fluctuations in the CMB. The temperature fluctuations due to the primordial density fluctua-
tions were first detected in 1992 by NASA’s Cosmic Background Explorer (COBE) satellite
which detected differences in the CMB radiation temperature in directions separated on the
sky by 10○ at the level of 30µK (Smoot et al., 1992).

1.3 Theoretical foundation of cosmology

Theoretical predictions have always outpaced observational studies in explaining how the
Universe might have formed. During the 1900s, when observational techniques were limited
to observing objects at very small distances, several cosmological frameworks were being
developed, which were later proved via observational studies. One of the key assumptions
of modern physical cosmology is the cosmological principle. It is the assumption that the
distribution of matter in the Universe is homogeneous 4 and isotropic 5 when viewed on a large

4Homogeneity means that the Universe has the same properties in all locations
5Isotropy means that the Universe has the same properties in all directions
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scale. It is clear that the Universe does not obey the cosmological principle on the scale of the
Solar System, the galaxy and even on larger scales. Galaxy clusters, superclusters and voids
reveal a complex large-scale structure. However, it is assumed that the cosmological principle
holds on very large scales, and that averaging over very large volumes the statistical properties
(e.g. the mean density) are the same. Assuming the cosmological principle and its validity
at any time, one can adopt the Robertson-Walker metric which describes a homogeneous and
isotropic Universe and derive the Friedmann equations from the Einstein equations.

1.3.1 Friedmann-Lemaître-Robertson-Walker metric and Einstein’s equa-

tions

The physical distance between points in 3D space (x = (x1, x2, x3)) that has a uniform ex-
pansion and growing with time is given by:

∆s2 = a2(t) [∆x2
1 +∆x2

2 +∆x2
3] (1.5)

where a(t) is the scale factor which measures the rate of expansion and is only a function
of time t and ∆s gives us the spatial distance between the points. As the expansion of the
Universe is uniform, the real distance between the two points Ð→r and the comoving distance
(which does not change) Ð→x is given by:

Ð→r = a(t)Ð→x (1.6)

The Hubble parameter H as we have seen can be written in terms of the scale factor as:

H ≡ ȧ(t)
a(t) (1.7)

where the dot represents the first time derivative. In Equation 1.5 ∆s gives us only the
spatial distance between the two points, whereas in general relativity we are interested in the
distance between the two points in four-dimensional space, which includes time as the fourth
dimension. In that case, the separation between the points is written as:

ds2 =∑
µ,ν

gµνdx
µdxν (1.8)

where gµν is the metric and µ and ν are the indices taking the values 0, 1, 2, and 3, x0 is the
time coordinate and x1, x2 and x3 are the three spatial coordinates. The most general spatial
metric with constant curvature is written as:

ds23 =
dr2

1 − kr2 + r2 (dθ2 + sin2θdφ2) (1.9)

where ds23 refers to the spatial dimensions alone. The curvature of space is given by k and
the possibilities of k being positive, negative and zero correspond to the three different ge-
ometries of the Universe. The three common choices for k are:
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• k = 1, Universe is closed

• k = 0, Universe is flat

• k = −1, Universe is open

Adding time dependency to Equation 1.9, we get the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric which is given by:

ds2 = −c2dt2 + a2(t) [ dr2

1 − kr2 + r2 (dθ2 + sin2θdφ2)] (1.10)

where the time coordinate is given by the term dt. This metric according to Einstein’s equa-
tion which is given as:

Rµν − 1

2
gµνR = 8πG

c4
Tµν (1.11)

where Tµν is the energy-momentum tensor of any matter, Rµν and R are the Ricci tensor and
scalar which give the curvature of space-time, tell us how the presence of matter and energy
curves space-time.

1.3.2 Friedmann equations

The Friedmann equations are one of the most important equations in cosmology as it governs
the expansion of space in a homogeneous and isotropic Universe. They were first derived by
Alexander Friedmann in 1922 from Einstein’s field equations of gravitation for the FLRW
metric and a perfect fluid with a given density ρ and pressure p. This equation has different
solutions with different assumptions concerning the material content of the Universe. The
first Friedmann equation is given by:

( ȧ
a
)2 = 8πG

3
ρ − kc2

a2
+ Λ

3
(1.12)

where G is Newton’s gravitational constant, ρ is the density, c is assumed to be 1, k is a
constant throughout a particular solution, k/a2 is the spatial curvature at any time of the
Universe and Λ is the cosmological constant.

It was found out that the Universe not only expands, but at an increasing rate. In cosmo-
logical terms this would mean that the cosmic scale factor a(t) which is a function of time
has a positive second derivative, so that the velocity of a distant galaxy with respect to the
observer is increasing with time. The acceleration of the scale factor is given by the second
Friedmann equation:

ä

a
= −4πG

3
(ρ + 3p

c2
) + Λ

3
(1.13)
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where p is pressure of the material in the Universe. This equation is called as the acceler-
ation equation. A positive cosmological constant gives a positive contribution to ä and so
acts as a repulsive force to gravity. If the cosmological constant is sufficiently large, it can
overcome the gravitational attraction represented by the first term of Equation 1.13 and lead
to an Universe which is accelerating. We will see more in detail about the acceleration of the
Universe in Section 1.6.

One of the most important and often used term in extragalactic astronomy is redshift.
When light emitted from an object is increased in wavelength, or shifted to the red end of
the spectrum, redshift occurs. In other words one can also say that the frequency of the
object decreases as wavelength and frequency are inversely proportional. The wavelength of
electromagnetic waves increase proportionally with the scale factor:

λobs

λrest

= a(tobs)
a(trest) (1.14)

where a(tobs) and a(trest) refer to the scale factors now and then respectively. This implies
that the light is redshifted. Redshift can be defined as the change in this wavelength divided
by the wavelength the object would have had if it were not moving (i.e. if it were at rest):

z = λobs − λrest

λrest

(1.15)

where z is the redshift, λobs is the observed wavelength and λrest is the wavelength of the
object at rest.

Redshift does not occur explicitly due to just the expansion of the Universe, it can also
occur due to the movement of objects (galaxies and galaxy clusters) relative to each other
and also due to gravity, which happens when light is shifted due to the massive amount of
matter inside a galaxy.

The movements of objects relative to each other create “peculiar” velocities (vpec), due to
which there are differences between an objects measured redshift zobs and it’s cosmological
redshift zcos. Cosmological redshifts are those redshifts which are only due to the expansion
of the Universe. The relation between the observed redshift zobs, the cosmological redshift
zcos and the peculiar redshift (zpec, redshift caused by peculiar velocity) is given by:

1 + zobs = (1 + zcos)(1 + zpec) (1.16)

The reason redshift is one of the most important observable is because most of the distances
to extragalactic sources are measured via the redshift, and distance as we know is a primary
information that is needed to study any astronomical source.
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1.3.3 Density parameters of the Universe

It is useful to define the parameter Ω as the ratio of the density (of matter, or radiation, or
other components) over the critical density. The critical density is the density value for which
the geometry of the Universe is flat (k = 0). The critical density of the Universe is given by:

ρcritical(t) = 3H2(t)
8πG

(1.17)

and it’s value today is given by (Liddle, 2003):

ρcritical,0 =
3H2

0(t)
8πG

= 1.86 × 10−29 h2g cm−3 (1.18)

where H0 denotes the value of the Hubble constant today.
The mass density ρm of the Universe is usually written in terms of a dimensionless pa-

rameter ΩM given by:

ΩM ≡ 8πGρ0

3H2
0

(1.19)

and the cosmological constant Λ (explained in detail in Section 1.5.1) in terms of a dimen-
sionless parameter ΩΛ given by:

ΩΛ ≡ Λc2

3H2
0

(1.20)

Here the subscripted “0” indicates that the quantities (which evolve with time) are to
be taken to be at the present epoch. There is a third density parameter, which defines the
“curvature” of the Universe denoted by Ωk. Together, these three density parameters are
given by:

ΩM +ΩΛ = 1 −Ωk (1.21)

ΩM denotes the mass density including ordinary mass (baryonic mass) and dark matter,
ΩΛ denotes the effective mass density of dark energy and Ωk denotes the curvature of the
Universe. The values assessed by WMAP (Komatsu et al., 2011) for these parameters are
ΩM,0 = 0.27± 0.04 and ΩΛ,0 = 0.725± 0.016 and that assessed by Planck Collaboration et al.
(2016) are ΩM,0 = 0.31 ± 0.014 and ΩΛ,0 = 0.691 ± 0.006
1.3.4 The curvature of the Universe

As we have seen from Equation 1.9 the Universe can have three possible curvatures depend-
ing on the value of k:

• Flat – angles of a triangle add up to 180o

• Positively curved (Spherical Universe) – angles of a triangle add up to more than 180o
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Figure 1.2: The local geometry of the Universe is determined by whether the density param-
eter Ω is greater than, less than, or equal to 1. From top to bottom: a spherical Universe
with Ω > 1, a hyperbolic Universe with Ω < 1, and a flat Universe with Ω = 1. Note that
these depictions of two-dimensional surfaces are merely easily visualisable analogues to the
3-dimensional structure of (local) space. Image Credits: Curvature of the Universe (2016)

• Negatively curved (Hyperbolic Universe) – angles of a triangle add up to less than 180o

The flat curvature is what we are common with, i.e. Euclidean geometry, wherein the
angles of a triangle add up to 180o. The other two geometries are often referred to as Non-
Euclidean geometries. An example of a positively curved geometry would be the surface of
the Earth. If we were to draw a triangle starting from the equator down to two points in the
southern hemisphere, one can notice that the sides of the triangle do not look like a straight
line at that particular surface. If the angles are added up, they will be exceeding 180o. An
example of a negatively curved space is a horse saddle. The same triangle experiment if
repeated on the saddle would lead to the angles of the triangle adding up to less than 180o.

Any Universe with the critical density is said to be flat. There are three cases which lead
to different states of the Universe depending on the value of the mass density ρm with respect
to ρcritical:

• If ρm > ρcritical, then the Universe is a closed one, which will eventually stop expanding
and start collapsing in on itself.

• If ρm < ρcritical, then the Universe is a open one, which will expand forever.
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• If ρm = ρcritical, the the Universe is a flat one, and it will expand forever, but with
decrease in the rate of expansion with time.

In the case of the geometry of the Universe, general relativity explains us that space and
time can be bent by mass and energy. This bending of space and time in the Universe decides
the curvature and it can be explained via the density parameterΩ of the Universe. As we have
seen in Equation 1.21, the three density parameters add up to 1, this means that the Universe
as we know it, is said to be flat, which is the first scenario. If Ω on the other hand is greater
than 1, it means that there is positive curvature, and if Ω is less than 1, there is negative
curvature.

1.4 Distance measurements in cosmology

Due to the expansion of the Universe, the distances between comoving objects are changing,
which means that there are many ways to specify the distance between two points in space.
When we look at objects far far away we are literally looking back in time. One of the main
ingredient from which distances to far away objects are measured is the redshift of that object.

Once we have the redshift of the object, measured either using photometry or spec-
troscopy and the values of our three cosmological parameters, we can calculate the distance
to the object. Here we will explain some of the major distance measures used in cosmology,
which include the comoving distance (line-of-sight/transverse), angular diameter distance
and the luminosity distance.

1.4.1 Comoving distance (line-of-sight)

If we need to calculate the distance to an object which is stationary, we can directly do so.
The same applies to distant objects in space, i.e. if we need to calculate the distance to an
extragalactic source at a specific moment of cosmological time, which is called as proper

distance, it can be calculated. But we know that the Universe is expanding, so, the far away
an object is, the faster it expands from us. Comoving distance factors out this expansion,
and gives us a distance that does not change with time. At the present epoch, both comoving
distance and proper distance are one and the same, but at other times, they aren’t.

The total line-of-sight comoving distance DC from us to a distant object is calculated
by summing up (integrating) all the small δDC contributions in between the line-of-sight
direction. We define a function E(z) as:

E(z) ≡√ΩM(1 + z)3 +Ωk(1 + z)2 +ΩΛ (1.22)

and the total line-of-sight comoving distance is then given by:

DC =DH ∫ z

0

dz
′

E(z′) (1.23)
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where DH is the Hubble distance given by Equation 1.4. There are other distance measures
such as Luminosity distance, Parallax distance, Angular diameter distance, etc. but all the
above distances are based on the comoving distance in one way or the other (Hogg, 1999).
In other words, the fundamental distance measure in cosmology is the comoving distance.

1.4.2 Comoving distance (transverse)

The distance between two objects in the sky at the same redshift or distance but separated on
the sky by some angle δθ is DMδθ and the transverse comoving distance DM , related to the
line-of-sight comoving distance is given by:

DM =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
DH

1√
Ωk

sinh [√ΩkDC/DH] for Ωk > 0
DC for Ωk = 0
DH

1√
∣Ωk ∣

sin [√∣Ωk∣DC/DH] for Ωk < 0
(1.24)

where the functions sinh and sin account for the curvature of space. For ΩΛ = 0, there is an
analytic solution to the equations:

DM =DH

2 [2 −ΩM(1 − z) − (2 −ΩM)√1 +ΩM(z)]
Ω2

M(1 + z) for ΩΛ = 0 (1.25)

1.4.3 Angular diameter distance

The angular diameter distance DA is defined as the ratio of an object’s physical transverse
size to its angular size (in radians) (Hogg, 1999). DA does not increase indefinitely as z →∞;
it turns over at z ∼ 1 and so more distant objects actually appear larger in angular size. DA

is related to DM by:

DA = DM

1 + z (1.26)

1.4.4 Luminosity distance

The luminosity distance DL is defined as the relationship between bolometric 6 flux S and
bolometric luminosity L and is given by:

DL ≡
√

L

4πS
(1.27)

It can also be given in terms of the transverse comoving distance and angular diameter dis-
tance by:

6Any property that is integrated over all the frequencies used.
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DL = (1 + z)DM = (1 + z)2DA (1.28)

This relation follows from the fact that surface brightness of a receding object is reduced by
a factor (1 + z)−4 and the angular area is reduced by D−2A (Hogg, 1999).

1.5 Towards the standard cosmological model

The development of a standard model of cosmology has been going on for the last forty
years. The most widely accepted model is the ΛCDM model which can explain some of the
observable properties of galaxies, clusters and large-scale structures in the Universe. Pre-
dictions of the ΛCDM model on the distribution of galaxies both nearby and out to high
redshifts have been confirmed by observations (Komatsu et al., 2009; Planck Collaboration
et al., 2015), although on sub-galactic scales there are several potential problems such as
the model predicting an excess of halo substructures with respect to the observed number
of satellite galaxies. But before the ΛCDM model became the standard model, there were
several other models that were competing.

It was during the early 1980s that scientists were proposing that dark matter could be
composed of non-baryonic particles. The candidate dark matter particles were classified
into three families: hot, warm and cold dark matter (CDM), names that reflected their typi-
cal velocities during the early time of the Universe (Bond et al., 1980). Light neutrinos were
considered as the Hot Dark Matter (HDM) candidates (Ellis et al., 1984). The CDM and
HDM models with different ΩM values were compared with the spatial distribution of galax-
ies observed from the CfA survey (Efstathiou et al., 1985). The results showed that there
was discrepancy in the HDM models when compared with the results from the CfA survey
while on the other hand the CDM models gave a far better result when compared to the CfA
data. Studies on simulations based on CDM initial conditions were compared with the CfA
galaxy distribution with predictions for a high-density Einstein de Sitter (EdS) Universe and
with predictions for a low density Universe by Davis et al. (1985a). It was found out by Davis
et al. (1985a) that a ΩM ∼ 0.4 gave convincing results.

In the 1980s a flat Universe was considered as the outcome of inflation and a biased EdS
model called the “standard” Cold Dark Matter (SCDM) model became the preferred choice
for several investigations using N-body simulations (Frenk et al., 1985; White et al., 1987).
The SCDM model was characterised by: h = 0.5, ΩB = 0.05 and ΩM = 0.95 (Dodelson
et al., 1996). The SCDM model showed success at forming galaxies and cluster of galaxies,
but problems remained, as the model required a Hubble constant that was lower than that
preferred by observations. It was in the early 1990s that it had become clear that galaxy
correlations were stronger on large scales than predicted by SCDM. The transition to ΛCDM
model was finally forced by the exclusion of the EdS expansion history by supernova data
(Perlmutter et al., 1999), which showed an accelerated expansion of the Universe.
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1.5.1 ΛCDM model

The current standard model in which the Universe contains the cosmological constant Λ is
called as the ΛCDM model. It is the simplest model that can reproduce the observational
properties of the Universe such as:

1. The properties of the CMB radiation, as the existence of CMB is predicted by any Big
Bang model.

2. The large-scale structure evolution and its distribution.

3. The accelerated expansion of the Universe, as given by the term Λ (cosmological con-
stant) from ΛCDM.

The present composition of the Universe is:

• Baryonic matter: Roughly 5% of the Universe is ordinary baryonic matter Ωb, mainly
made up of Hydrogen atoms, Helium atoms and other fractions of heavier elements.

• Dark matter: Roughly 25% of the Universe is in the form of unknown dark matter,
made up of particles that interact with ordinary matter only via the force of gravity.

• Dark energy: The remaining ∼ 70% is in the form of unknown dark energy ΩΛ, which
is responsible for the acceleration of the Universe as we have observed today.

Figure 1.3: A pie-chart representing the matter-energy content of the Universe. Credits:
Matter-energy content of the Universe, Planck (2015)
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The dominant component of the Universe is the dark energy. However, there are other
possibilities, such as a new form of energy which could evolve with time (quintessence), or
a modified theory of gravity. Results from observational analysis that is model-independent
can give us the proper solution, but at the moment the observational data are not up to the
mark to take up this task. So we have to use the available data to constrain the model pa-
rameters. The most common way of discriminating between a cosmological constant and
dynamical dark energy is to make use of the dark energy equation-of-state parameter, which
in terms of the scale factor a is given as:

w(a) = w0 +wa(1 − a) (1.29)

It can be seen that at the present time (a = 1) w(a) = w0. The cosmological constant corre-
sponds to w0 = −1 and wa = 0, constant equation of state corresponds to w0 = w = constant
and wa = 0, whereas the case of dynamical dark energy corresponds to wa ≠ 0. The dif-
ference between Λ and dynamical dark energy is that the former is constant with time and
space, whereas the latter can change in time and space.

1.5.2 Modified Newtonian Dynamics: Alternative to dark matter ?

The dark matter component of the Universe was first detected using the rotation curves of
galaxies, which was found to not follow the Keplerian decline with radius. Newton’s law
predict that stellar rotation velocities should decrease with distance from the galactic cen-
tre. The very first detections were done in 1930s when Horace Babcock reported the mea-
surements of the rotation curve of the nearest Andromeda galaxy which suggested that the
mass-to-luminosity ratio increases radially (Babcock, 1939). But detailed analysis of these
measurements were done in 1970s by Vera Cooper Rubin and her team who measured the
velocity curves of several stars in edge-on spiral galaxies. One such example is given in Fig-
ure 1.4 which shows that the velocity of the spiral galaxy NGC 6503 does not decline with
radius but remains a constant. These observations showing the discrepancy in the rotational
velocity curve meant that either there existed some form of unknown excess matter in the
galaxies which boost the velocities of stars, or Newton’s law does not apply to galaxies. The
first statement lead to the dark matter hypothesis and the second statement lead to Modi-
fied Newtonian Dynamics (MOND) model, created by Milgrom (Milgrom, 1983), which is
based on a variation of the Newton’s Second Law of dynamics at low accelerations. MOND
is closer to the main characteristics of the standard model, but different in minor aspects.
According to Milgrom (1983) the discrepancy could be resolved if the gravitational force
experienced by a star in the outer regions of a galaxy was proportional to the square of its
centripetal force unlike to the centripetal force itself as given by Newton’s second law.

The basic concept of MOND was that Newton’s laws were tested in high-acceleration
environment, but have not been verified for objects with low acceleration, such as the stars
in the outer parts of a galaxy. According to MOND, the Newtonian force is given by:



18 Chapter 1. History of the current cosmological framework

Figure 1.4: Rotation curve for the spiral galaxy NGC6503. The points are the measured
circular rotation velocities as a function of distance from the center of the galaxy. The dashed
and dotted curves are the contribution to the rotational velocity due to the observed disk and
gas, respectively, and the dot-dash curve is the contribution from the dark halo. Credits:
Kamionkowski (1998)

FN =mµ( a
a0
)a (1.30)

where FN is the Newtonian force, m is the object’s gravitational mass, µ(x) is an as-yet
unspecified function (known as the “interpolating function”), a is the acceleration and a0 is a
new fundamental constant which marks the transition between Newtonian and deep-MOND
regimes. To agree with Newtonian mechanics requires µ(x) → 1 for x≫ 1 and to agree with
astronomical observations requires µ(x) → x for x≪ 1.

The strongest success of MOND is that all the rotation curves of galaxies imply a unique
universal value for acceleration; moreover, the rotation curve features feel the baryonic com-
ponent features even where dark matter is dominant; and in general the observed acceleration
is strictly correlated with the acceleration expected from baryonic matter (McGaugh et al.,
2016; Milgrom, 2016). On the other hand, MOND does not completely eliminate the need
for a dark matter component, as galaxy clusters show a residual mass discrepancy even when
analysed using MOND (McGaugh, 2015).
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1.6 The accelerated expansion of the Universe

As we discussed in Section 1.1 the discovery of a linear proportionality between velocities
and distances of galaxies along with the discovery of the CMB in 1965, paved the way to
the acceptance of an expanding Universe. In the end of 90s, physicists were convinced that
the force of gravity should be causing the expansion of the Universe to slow down. But
the first evidence to favour the accelerated expansion of the Universe came from supernova
observations. This meant that the scale factor had a positive second derivative.

There have been several observational evidences in favour of the accelerated expansion
of the Universe. One can either look at the magnitude-redshift relation of objects that are
“standard candles” 7 or use the baryon acoustic peak measurements as “standard rulers”. As
discussed above, we highlight here how the two methods paved the way towards understand-
ing the acceleration of the Universe.

1.6.1 Supernova observations

The first direct evidence of the accelerated expansion of the Universe came from supernova
observations, in particular Type Ia supernovae (SNIa). These are white dwarfs that explode
because they exceed the Chandrasekhar limit 8. The peak brightness of the supernova is
found using repeated observations from which we can infer the luminosity distance, which
is associated with the redshift of the host galaxy. The measured luminosity distance can then
be compared with theoretical predictions to constrain the values of ΩM and ΩΛ to distinguish
between several cosmological models.
Mario Hamuy (Hamuy et al., 1993) and co-workers at Cerro Tololo took a major step for-
ward by studying the light curves of many nearby supernovae. But it was in 1998 that Saul
Perlmutter heading the Supernova Cosmology Project (SCP) along with the High-z Super-
nova Search Team measured the brightness of 42 supernovae and compared their magnitude
with redshift. In Figure 1.5 we show the redshift vs magnitude diagram obtained from SNIa
observations from the Supernova Cosmology Project and the High-z Supernova Search on a
logarithmic redshift scale. Here they compared the SNIa observations to a few cosmological
models and found out that the observations do not match the Λ = 0 model and favours the
model with Λ > 0 (Perlmutter et al., 1999). This discovery was named as “Breakthrough
of the year for 1998” with Perlmutter alongside Adam Riess and Brian P.Schmidt from the
High-z team being awarded the Nobel Prize in Physics. Supernovae also provide precise
measurements of the Hubble parameter H0. One of the recent works by Riess et al. (2011)
obtained a value of H0 = 73.8 ± 2.4kms−1Mpc−1.

7Those astronomical objects that have a known brightness, so by comparing this known brightness to the
observed brightness, one can determine the distance to the object using inverse square law.

8Any white dwarf that reaches a mass above M⊙ > 1.39 will subject to gravitational collapse.
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Figure 1.5: Observed magnitude versus redshift is plotted for well-measured distant and
(in the inset) nearby type Ia supernovae. For clarity, measurements at the same redshift
are combined. At redshifts beyond z = 0.1 (distances greater than about 109 light-years),
the cosmological predictions (indicated by the curves) begin to diverge, depending on the
assumed cosmic densities of mass and vacuum energy. The red curves represent models
with zero vacuum energy and mass densities ranging from the critical density ρc down to
zero (an empty cosmos). The best fit (blue line) assumes a mass density of about ρc

3
plus a

vacuum energy density twice that large–implying an accelerating cosmic expansion. Credits:
(Perlmutter, 2003)

1.6.2 Baryon acoustic oscillations

As SNIa provide a “standard candle”, BAO clustering information can provide a “standard
ruler” for length scale in cosmology.

The early Universe consisted of a hot plasma and the photons as we know were trapped
and were not able to travel any considerable distance before interacting with this plasma.
There were over dense regions of this plasma which attracted matter towards it gravitation-
ally. This attraction lead to a high temperature region and in-turn creating a high pressure
region. The counteracting forces of gravity and pressure created oscillations, analogous to
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Figure 1.6: The two-point correlation function of a sample of SDSS luminous red galaxies
as calculated by Eisenstein et al. (2005). The BAO peak is spotted at around 105 h−1Mpc.
Credits: Eisenstein et al. (2005)

sound waves created in air by pressure differences. Photons along with protons and electrons
remained trapped in this high pressure region until the Universe expanded and cooled. When
the temperature finally reduced, the photons were set free and started moving but the elec-
trons and protons (baryonic matter) stopped moving and remained at the center of this high
pressure region. This left behind a shell of baryonic matter at a fixed radius which can be
statistically detected through the two-point correlation function ξ(r). ξ(r) decreases with in-
creasing scale, but we observe a slight increase in ξ(r) at a particular scale. This scale is the
fixed radius where the baryonic matter can be found in excess. An example of the BAO peak
measured from the two-point correlation function of LRGs from the SDSS sample by Eisen-
stein et al. (2005) is shown in Figure 1.6. It can be seen that this peak is more or less around
105 h−1Mpc. In understanding the accelerated expansion of the Universe, observations of
the sound horizon today (using clustering of galaxies) can be compared with the sound hori-
zon at the time of recombination (using CMB). BAO thus provides a “standard ruler” and a
way to understand this expansion completely independent from SNIa observations. Eisen-
stein et al. (2005) quoted the distance measurement as a combination of the line-of-sight and
transverse distance scale given by:
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Figure 1.7: The BAO distance-redshift relation. Individual measurements are of the quantity
DV (z)/rs. To yield a distance, a multiplication by the rs of the fiducial ΛCDM model has
been made. In increasing redshift, data points are from 6dFGS (Beutler et al., 2011), SDSS-II
(Padmanabhan et al., 2012), BOSS (Anderson et al., 2012) and WiggleZ (Blake et al., 2011).
Credits: Weinberg et al. (2013)

DV (z) = [DA(z)]2/3 [ cz

H(z)]
1/3

(1.31)

where DA(z) is the comoving angular diameter distance and H(z) the Hubble parameter.
The distance-redshift relation obtained from several individual measurements of the quan-
tity DV (z)/rs was compiled by Weinberg et al. (2013) and the results obtained are shown
in Figure 1.7. It can be seen from Figure 1.7 that the BAO measurements are all in good
agreement with the 1σ edge of the WMAP7 (Komatsu et al., 2011) band.

Getting information and confirming theoretical models from different studies removes
any bias that might be present if the proof were only from a single study. Several studies
based on the data from 2dFGRS (Percival et al., 2007) and SDSS (Eisenstein et al., 2005;
Percival et al., 2010; Veropalumbo et al., 2014, 2016) have been made in detecting the BAO
peak and future surveys such as LSST and Euclid, thanks to their wide coverage and depth,
will be detecting plethora of galaxies that can also be used.
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1.7 Formation of large-scale structures: Models and for-

malisms

The observed large-scale structure, showing a pattern of sheets and filaments known as the
“cosmic web”, is the result of a gravitational growth which started from primordial density
fluctuations, whose ultimate origin, according to inflation, are quantum fluctuations in the
very early Universe. Another prediction of inflation is that these primordial fluctuations were
Gaussian. Linear and high order perturbation theory descriptions of large-scale structure for-
mation from Gaussian initial fluctuations have been developed. They describe the evolution
and non-linear clustering of dark matter, but they break down when the clustering becomes
highly non-linear. Here we discuss some of the key theoretical aspects of large-scale structure
formation that have been laid down over the years.

1.7.1 Linear perturbation theory

The generally accepted theoretical framework for the formation of structure is that of gravi-
tational instability. The early Universe is assumed to be perfectly smooth, with the exception
of tiny density deviations with respect to the global cosmic background density. Fluctuations
are described defining the density contrast:

δ(x) = (ρ(x) − ρm)
ρm

(1.32)

where ρm refers to the mean mass density of the Universe. The primordial Gaussian den-
sity fluctuations can be fully described by the power spectrum or the two-point correlation
function (Press and Schechter, 1974).
The δ(x) in the density field can be written as a sum over Fourier modes:

δ(x) = ∫ d3k(2π)3 δ(k)exp(ik.x) (1.33)

and the two-point Fourier-space correlation is given by:

⟨δ(k1)δ(k2)⟩ = (2π)3δD(k12)P (k1) (1.34)

where P (k) is the power spectrum. The two-point correlation function ξ(r) (explained in
detail in Chapter 3) is the Fourier transform of the power spectrum P (k). A quantity related
to the power spectrum is the variance of the density contrast field (σ2(R)) smoothed over a
window of scale R given by:

σ2(R) = ∫ dk

k

k3P (k)
2π2

∣W (kR)∣2 (1.35)

where W (kR) = [3/(kR)3] (sinkR − (kR)coskR) when the window is a top-hat in real-
space. At high redshifts, when fluctuations are small, a scale R corresponds to a mass M =
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4πR3ρm(z)/3, where ρm(z) is the matter density of the Universe at redshift z. The smoothed
Gaussian density field is given by a probability distribution function:

p(δM) = 1√
2πσ(M)exp [ −δ2M

2σ2(M)] (1.36)

In the linear regime, during the earlier stages of evolution in the standard structure formation,
the initial Gaussian of the density field δ(x) is preserved and they can be characterised by
either a power spectrum or a two-point correlation function. The density fluctuations increase
with time under the action of gravity, which generates non-zero high order correlations. They
are governed by the continuity equation and the Euler equation. The continuity equation is
given by:

∂δ

∂t
+ 1

a
▽ .(1 + δ)u = 0 (1.37)

and the Euler equation is given by:

∂δ

∂t
+Hu + 1

a
[(u.▽)u +▽φ] = 0 (1.38)

where the term ‘u’ is related to the peculiar velocity via the Hubble flow and is given by:

u = v −Hv (1.39)

In the linear regime, the fluctuation δ ≪ 1 and combining the continuity and Euler equations
we have:

∂2δ

∂t2
+ 2H∂δ

∂t
− 4πGρδ = 0 (1.40)

The above equation has two solutions and corresponding to a growing and decaying mode.
The solution to the growing mode has the form:

δ(k, r) = G(r)δ(k,0) (1.41)

where G(r) is given by:

G(r) ∝ H(r)
H0
∫ ∞

z(r)
dz

′(1 + z′) [ H0

H(z′)]
3

≈ 5

2

Ωm(z)/(1 + z)
Ωm(z)4/7 −ΩΛ(z) + (1 −Ωm(z)/2)(1 +ΩΛ(z)/70) (1.42)

The above equation shows that the linear density field can be scaled in both time and redshift
via G(z). For an Einstein-de Sitter (EdS) cosmology (Ωm,0,ΩΛ,0 = (1,0)) the solutions for
the growing and decaying modes are simple: δ+ ∝ a ∝ t2/3 and δ− ∝ t−1. Also G ∝ a =(1 + z)−1 as Ωm → 1.
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1.7.2 Non-linear evolution of large-scale structures

As we have seen so far, as long as the density fluctuation is δ ≪ 1 the linear approximation
is justified. But once the amplitude of the density fluctuations reach a scale δ ≥ 1, the linear
approximation breaks down. This happens first at small scales, where further evolution at
these scales should be studied only by means of non-linear models or through numerical
simulations.

1.7.2.1 Spherical top-hat collapse

One of the simplest non-linear collapse models assumes that the density peaks are charac-
terised by a constant overdensity and spherical perturbation. The spherical collapse model
of an initially top-hat density perturbation was first proposed by Gunn and Gott (1972).

We assume a spherical region of initial comoving radiusR0 and initial density δi at time ti.
We also assume that the initial fluctuations are Gaussian with a rms value≪ 1 (within scale R0)
therefore ∣δi∣≪ 1. The mass within this region is given by:

M0 =
4πR3

0ρ(1 + δi)
3

(1.43)

where M0 ∝ (4πR3
0/3)ρ and ρ denotes the comoving background density. The radius of the

spherical region increases with the expansion of the Universe. The density inside the region
is given by:

ρ = (R0

R
)3 ≡ (1 + δ) (1.44)

For an Einstein-de Sitter Universe we have the following parametric solution:

R(z)
R0

= (1 + z)(5/3)∣δ0∣ (1 − cosθ)2
(1.45)

where 0 ≤ θ ≤ 2π, 1/(1 + z) = (3/4)2/3 [(θ − sinθ)2/3/(5/3)∣δ0∣] and δ0 denotes the initial
density δi extrapolated using linear theory to the present time t. As θ is in the range (0,2π),
the system starts with θ = 0, undergoes a “turnaround” at θ = π and collapses completely
when θ = 2π. The size of the overdense region according to Equation 1.45 evolves as:

R0

R(z) = 62/3

2

(θ − sinθ)2/3(1 − cosθ)2/3 (1.46)

At the turnaround, θ = π, so [R0/R(zta)]3 = (3π/4)2. and the average density within the
region is about 4.55 times the background density. After the turnaround, the region formally
collapses to zero radius at tcol = 2tta. However, we can assume that at tcol the region viri-
alises. From the conservation of energy law and the virial theorem it follows that the radius
at virialisation is half the maximum radius at the turnaround (in physical coordinates). In
this time, the background Universe has expanded by a factor of (1 + zta)/(1 + zcol) = 22/3 so
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that the virialised object is now eight times denser than what it was during the turnaround
phase. The background density of the Universe at the turnaround phase is (22/3)3 = 4 times
the background density at zvir. As in the EdS model (Ωm = 1,ΩΛ = 0), the background
density evolves as ρm = 1/(6πGt2), the overdensity ρvir = ρvir/ρb after virialisation is:

∆vir ≡ (9π2/16) × 8 × 4 = 18π2 = 177.65 (1.47)

One of the most important features of the spherical collapse model is that the equations
provide a relation between the actual overdensity δ and that predicted by linear theory δ0
since (1 + δ) = (R/R0)3.
At the turnaround:

δ(tta) = 9π2

16
− 1 ≃ 4.55 (Spherical Collapse model) (1.48a)

δlin(tta) = 3

20
(6π)2/3 ≃ 1.062 (Linear theory) (1.48b)

At the end of the gravitational collapse:

δ(tcol) = 176.65 (Spherical Collapse model) (1.49a)

δlin(tcol) = 3

20
(12π)2/3 ≃ 1.686 (Linear theory) (1.49b)

1.7.2.2 Peak formalism and Press-Schechter formalism: Mass function

One can assume that when the regions in the initially linear density field reach δcol = δlin(tcol) ∼
1.686, they collapse forming virialised dark matter haloes. We can now derive the halo mass
function, i.e. the comoving number density of haloes as a function of halo mass, which is an
important cosmological tool to discriminate the different cosmological models.

Let’s say δlin is the linear density field smoothed over a mass scale M , i.e. δM = δ(Ð→x ;R).
The locations where δM = δcol(t) are those locations where at a time t, a halo of mass M

condenses out of the evolving density field. Press and Schechter (1974) combined the lin-
ear growth of density fluctuations and the spherical top-hat collapse to analytically derive
a prescription for the mass function. They postulated that the probability that δM > δcol(t)
is the same as the mass fraction that at time t is contained in haloes with mass greater than
M . In other words, the fraction of space in which δM > δcol(t) corresponds to the fraction
of cosmic volume filled with haloes greater than mass M . Considering a Gaussian random
field, this probability is given by:

P (δM > δcol) = 1√
2πσM

∫ ∞

δcol

exp [− δ2M
2σ2

M

]dδM = 1

2
erfc [ δcol

2σM

] (1.50)
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where erfc(x) = 1 − erf(x) is the complimentary error function and δcol = δcol(t). Here the
mass M = 4πR3ρm/3 and σM is the square root of Equation 1.35. When the whole mass
range is considered and the limit M → 0, one should be able to account for the whole mass
range in the Universe and get ∫ ∞0 P (δM > δcol) = 1. But in reality, the Press and Schechter
formalism gives only ∫ ∞0 P (δM > δcol) = 1/2, which means that half of the mass is not
counted. To solve the cloud-in-cloud problem, Press and Schechter added a correction factor
of 2, i,e, 2P [δM > δcol(t)].

Figure 1.8: The mass function of haloes found in the Millennium run using a Friends-of-
Friends algorithm (red dots connected by black line) along with the Jenkins et al. (2001)
mass function (black solid lines) and Press and Schechter (1974) mass function (blue dashed
lines). Credits: Springel et al. (2005)

To define the halo mass function (n(M, t)dM), which is the number of haloes with
masses in the range [M,M + dM] per comoving volume, by differentiating Equation 1.50
with respect to mass M , we obtain:
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dn(M,z)
dM

= 2

V

∂P (δM > δcol)
∂M

= −
√

2

π

ρmδcol

Mσ2
M

dσM

dM
exp(− δ2col

2σ2
M

) (1.51)

where we have divided by the volume V =M/ρm to obtain a quantity with units per volume.
Equation 1.51 gives the comoving number density of haloes of mass M at redshift z, in terms
of σM and δcol and is the Press-Schechter mass function.

When we define the variable ν ≡ δcol(t)/σ(M), Equation 1.51, i.e the Press-Schechter
mass function can be written in a more compact form as:

n(M,z)dM = ρm
M2

fPS(ν) ∣ dlnν
dlnM

∣dM (1.52)

where fPS(ν) =
√

2
π
νexpν2/2 and is called as the multiplicity function (Press and Schechter,

1974) and gives the mass fraction associated with haloes in a unit range of lnν. The evolution
of the mass function is denoted through time t and it enters Equation 1.51 only through
δcol(t) ≃ 1.686/D(t).

The halo mass function was also studied by calculating the number density of the peaks
and is given by:

n(>M) = npk(δM) (1.53)

where n(>M) represents the number density of haloes with mass >M and npk(δM) repre-
sents the number density of peaks above δcol in the density field smoothed over the mass scale
M . Bardeen et al. (1986) were the first to compute this number density, clustering properties
and the density profiles of peaks in a smoothed Gaussian random, all as a function of peak
height νpk. According to Bardeen et al. (1986), the peak height νpk is given by:

νpk =
δpk⟨δ2M⟩1/2 =

δpk

σM

(1.54)

But there is a problem with the assumption given by Equation 1.53. Some of the peaks
that are part of a higher peak when smoothed with a larger filter have to be excluded when
identifying the peaks with the haloes. This is called as the cloud-in-cloud problem. It is
because of the cloud-in-cloud problem the peak formalism has largely been ruled out.

Springel et al. (2005) used the Millennium Simulation (Lemson and Virgo Consortium,
2006) which followed an evolution of 21603 particles in a box of 500h−1Mpc on a side using a
ΛCDM cosmology and calculated the mass function of haloes (identified using a Friends-of-
Friends algorithm) in the simulation and compared it with the theoretical predictions of the
Press-Schechter and Jenkins et al. (2001) mass function. The results can be seen in Figure 1.8
and it can be seen that at redshift z = 10.07, the Press Schechter mass function systematically
underpredicts haloes everywhere and at redshift z = 0 it overpredicts the abundance of low
mass haloes and underpredicts the abundance of high mass ones.
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1.7.3 Mass function of dark matter haloes

Press and Schechter (1974) assuming Gaussian density fluctuations applied linear theory to
derive the first theoretical mass function. Several studies (Mo and White, 1996; Sheth and
Tormen, 1999; Jenkins et al., 2001; Tinker et al., 2008) have improved upon the theory of
the mass function. We highlight here the theoretical mass function of Jenkins et al. (2001)
and Tinker et al. (2008).

Jenkins mass function: The mass function f(σ, z;X) is defined as:

f(σ, z;X) ≡ M

ρ0

dnX(M,z)
dlnσ−1

(1.55)

where X is a label identifying the cosmological model and halo finder under consideration,
n(M,z) is the abundance of haloes with mass less than M at redshift z, and ρ0(z) is the
mean density of the Universe at that time and σ2(M,z) = σ8 × f is the variance of the
linearly evolved density field smoother over a spherical top-hat filter that encloses the mass
M as defined in Equation 1.35. f is a function of M,z,ΩM and σ8 is the present rms mass
fluctuation on the scale of 8 h−1Mpc. Jenkins et al. (2001) found that the numerical data in
their simulations was well fitted by the following formula:

f(M) = 0.315exp(− ∣lnσ−1 + 0.61∣3.8) (1.56)

which was valid over the range −1/2 ≤ lnσ−1 ≤ 1.05.

Tinker mass function: The halo abundance has been predicted by successful theories by
using the mass fraction of matter in peaks of a given height at a scale R = (3M/4πρ̄m)1/3
given by:

ν ≡ δc

σ(M,z) (1.57)

where δc = 1.69 is a constant corresponding to the critical linear overdensity for collapse as
seen in Equation 1.49b and σ(M,z) is the rms variance of the linear density smoothed on
scale R(M). The halo abundance is given by a functional form:

dn

dM
= f(σ) ρ̄m

M

dlnσ−1

dM
(1.58)

where the function f(σ) is expected to be universal to the changes in redshift and is given
by:

f(σ) = A [(σ
b
)−a + 1] e−c/σ2

(1.59)

where
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σ = ∫ P (k)Ŵ (kR)k2dk (1.60)

where P (k) is the linear matter power spectrum which is a function of wavenumber k, Ŵ
is the Fourier transform of the real-space top-hat window function of radius R. The best-fit
values of the mass function are given by Equation 1.59 where the constant A denotes the
amplitude of the mass function, a and b the slope and amplitude of the low-mass power spec-
trum and c the cut-off scale at which the abundance of haloes decreases exponentially.

1.7.4 Density profiles of dark matter haloes

The statistical properties of the large-scale structure depend on cosmology and on the nature
of dark matter: hot dark matter is relativistic and tends to suppress small scale structure, while
cold dark matter is non-relativistic and can generate more power at small scales. Galaxies and
clusters form from gravitational accretion of dark and baryonic matter and are associated to
dark matter haloes. Therefore the comparison of the theoretical predictions for the dark halo
properties and spatial distribution with observations is an important test both for cosmology
and for structure formation scenarios.

The density of a halo increases as we go towards the center of the halo, which is called
the core. As we move outside the core, the density steadily decreases. All the masses of dark
matter haloes are measured within a virial radius. This virial radius is usually given in terms
of the critical density of the Universe. The spatial distribution of dark haloes is expected to
be biased with respect to the underlying dark matter field, as a function of their mass. The
total mass of a halo is estimated within R200, the radius within which the mean density is
200 × ρcritical:

M = 4π

3
R3

200200ρcritical (1.61)

By substituting the definition of critical density as given by Equation 1.17 in to the above
equation we get:

M = 100R3
200H

2(z)
G

(1.62)

The mass of the halo and the size of the halo are related and change with redshift via the
H2(z) parameter which is given by H2(z) =H2

0(ΩM × (1 + z)3 +ΩΛ).
The Navarro-Frenk-White profile: The density profiles of dark matter haloes can be fitted
using a universal fitting formula devised by Navarro et al. (1996) and is given by:

ρ(r) = ρcδcol(r/rs)(1 + r/rs)2 (1.63)
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Figure 1.9: Density profiles of four haloes spanning 4 orders of magnitude in mass (3 ×
1011 M⊙ to 3 × 1015 M⊙, left to right). Arrows indicate the gravitational softening, hg, of
each simulation used. Also shown are the fits from Equation 1.63. The fits are good over two
decades in radius, approximately from hg out to the virial radius of each system. Credits:
Navarro et al. (1996)

where ρc is the critical density, rs is called as the characteristic scale length and is the distance
from the centre of the halo where the density of the halo changes from ρ ∝ r−1 to ρ ∝ r−3.
The scale length is also specified by the concentration parameter c = r200/rs which is a
dimensionless parameter. The mass profile of the halo is completely defined by the mass M
and the concentration parameter c. δcol in Equation 1.63 is another dimensionless parameter
and is linked to the concentration parameter c by:

δcol = 200

3

c3[ln(1 + c) − c/(1 + c)] (1.64)

Navarro et al. (1996) refer to δcol as the characteristic overdensity of the halo. We show the
results obtained by Navarro et al. (1996) for four haloes from their simulation which span
4 orders of magnitude from 3 × 1011 M⊙ to 3 × 1015 M⊙ in Figure 1.9. It can be seen that
regardless of the mass of the haloes, the fit as done according to Equation 1.63 seems to
fit very well the density profiles of the haloes. The gravitational softening hg, shown by
the arrows in Figure 1.9 is included in the N-body equations of motion in order to suppress
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relaxation effects due to two-body encounters. hg is obtained by modifying the gravitational
potential of each particle in the simulation as:

φ = −1√
r2 + h2

g

(1.65)

On large scales numerical simulations have shown successful results and follow the pro-
file, but on smaller scales there are a few problems:

1. The cusp problem: The densities of the simulated galaxies possess a central cusp (when
ρ(r) ∝ r−1) which is not seen in observations, especially with low mass systems.
Observations of rotation curves show that there exists a flat central dark matter density
profile.

2. Simulations also give a number of low mass haloes around a main massive halo which
is much larger than expected from observations of satellites in the Milky Way.

Various mechanisms to explain these discrepancies have been suggested, such as for ex-
ample supernova feedback or self-interacting dark matter (see Weinberg et al., 2015)

1.8 Analytic approach towards studying the spatial distri-

bution of haloes

Kaiser (1984) introduced the concept of bias, by showing that dark matter haloes are biased
tracers of the underlying dark matter distribution. He went on to propose the idea that over-
dense regions contained an enhanced abundance of massive objects with respect to the mean,
so that these systems display enhanced clustering. One can visualise this concept in Figure
1.10, as it can be seen that those regions of density that lie above a threshold in density of ν
times the rms will be strongly clustered. If objects that are forming at these high peaks (dark
shaded regions, indicated by arrows), then this is a population with bias.

But to enhance the understanding of how dark haloes are distributed relative to the mass,
one can use physical models and analytic approximations. A simple and accurate analytical
model can help reconstruct the mass distribution from observations (Mo and White, 1996).
Clustering of galaxies and clusters is understood through the bias of the haloes in which
they form. Many analytical formulae have been proposed (Mo and White, 1996; Sheth and
Tormen, 1999; Sheth et al., 2001) for predicting the spatial clustering of dark matter haloes
and have been compared with results from N−body simulations.

As we have seen, Press and Schechter (1974) (PS) developed a formalism that combined
the linear growth of density fluctuations and the spherical top-hat collapse to derive analyti-
cally a prescription for the mass function. However, the Press and Schechter (1974) formal-
ism did not provide a model for the spatial clustering of dark haloes. Mo and White (1996)
used the PS formalism to define dark haloes from the initial density field and to specify how a
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Figure 1.10: A plot of the initial primordial density fluctuations. The black line in the middle
depicts the critical density of the Universe at that particular point in time. The dashed line
shows the density field as a fluctuating component. Those regions of density that lie above
a threshold in density of ν times the rms will be strongly clustered. If objects are presumed
to form at the sites of these high peaks (shaded region, indicated by arrows), then this is a
population with bias. Credits: (NED Caltech, 2016)

linear mass overdensity in a spherical region modulates the mean abundance of dark haloes
in that region. They tested their simple model against results from a variety of N−body
simulations.

It was found out that the spatial distribution of dark haloes and their relation to the un-
derlying mass distribution could be described quite accurately. It was expected that the dark
haloes were biased tracers of the underlying mass distribution and that the bias depends not
only on the mass of the haloes but also on the epoch in which they are identified. On large
scales the bias was given by the relation:

ξhh(R) = [b(M1, z1)]2ξm(R) (1.66)

where ξhh is the halo-halo correlation function, b the bias factor, M1 and z1 denote the mass
and redshift of the halo at an epoch and ξm(R) is the standard autocorrelation function for
the mass. The bias for a halo with a given mass increases with redshift and so objects that
were formed at the centres of early, relatively low-mass haloes can be more strongly clustered
than current haloes of equivalent or even larger mass.

Their model predicts that objects which form at a redshift z inside haloes with a massM =
M∗(z) will be unbiased relative to the mass at later redshifts, where M∗ is a characteristic
mass for the non-linear clustering denoted as ∆(M∗) = δc(1 + z1) where δc ≡ 1.686 as seen
in Equation 1.49b. It is the mass of the halo that is typically just collapsing at redshift z.
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But it was shown that their results could not be directly applied to galaxies because a
‘natural’ bias in the galaxy distribution could only be achieved if most galaxies formed at the
centres of haloes with mass M > M∗. Observed galaxies, did not always correspond to the
centres of the haloes present at a given epoch.

Figure 1.11: The large-scale bias factor b(m) as a function of halo mass in the GIF simula-
tions. Dashed curves show the spherical collapse prediction of Mo and White (1996), dotted
curves show the peak background split formula of Sheth and Tormen (1999), and solid curves
show the ellipsoidal collapse prediction of Sheth et al. (2001). Credits: Sheth et al. (2001)

Sheth and Tormen (1999) used the bias factor as calculated by Mo and White (1996) and
added one step to the argument, i.e. on large scales, they realised that the peak background
split 9 should be a good approximation for the bias dependence on mass. While Mo and White
(1996) computed the large scale bias factor using the ratio of the volume-averaged halo and
mass correlations, Sheth and Tormen (1999) computed the bias factor by measuring the ratio
of the power spectra of the haloes and the dark matter. They also used a spherical overdensity
group finder for measuring the mass function. They studied the halo distribution formed
in the GIF simulations (Kauffmann et al., 1999) for three choices of the initial fluctuation

9The probability of forming a halo depends on the initial density field according to the SC model. Large-
scale density field acts as a “background” enhancement of probability of forming a halo or “peak”.
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distribution belonging to the CDM family; a standard model (SCDM: Ω0 = 1, ΩΛ = 0, h =
0.5), an open model (OCDM: Ω0 = 0.3, ΩΛ = 0, h = 0.7) and the flat model with non-zero
cosmological constant (ΛCDM: Ω0 = 0.3, ΩΛ = 0.7, h = 0.7). By using a modified version
of the Press and Schechter (1974) mass function they found out that it provided a good fit to
the unconditional halo mass functions in the SCDM, OCDM and ΛCDM models. On large
scales, by using the peak background split, it was found out that the knowledge of the mass
function was sufficient to compute a good approximation for the bias.

Moscardini et al. (2000a) went on to use the relations introduced by Sheth and Tormen
(1999) to calculate the halo abundance and the bias of X-ray selected galaxy clusters. As-
suming a linear-bias model, they followed the definition of an effective bias as introduced by
Matarrese et al. (1997), given by:

beff(z) ≡ N−1(z)∫
M

dlnM−1b(M ′, z)N(z,M ′) (1.67)

where N(z) is the expected redshift distribution for the given catalogue. They compared the
bias obtained for three different X-ray catalogues with predictions for various cosmological
models such as the SCDM, OCDM and ΛCDM. They found out that the bias factor is an
increasing function of mass and that the Einstein-de Sitter models always give a smaller
correlation amplitude compared to the models with ΩM = 0.3. This test on an observational
catalogue (compared to only numerical simulations as performed) further strengthened the
analytical approach towards studying the spatial distribution of haloes.

The discrepancy between theory and simulation still existed. The models by Mo and
White (1996); Sheth and Tormen (1999) where not able to predict the mass function accu-
rately, which meant that then the other model predictions, such as the large-scale halo-to-
mass bias relation, were also inaccurate. It was Sheth et al. (2001) who proposed that if
bound structures are assumed to form from an ellipsoidal rather than a spherical collapse,
the discrepancy could be reduced. In the spherical collapse model, a region collapses if the
initial density within the region exceeds a threshold value δcol. This value is independent of
the initial size of the region, but the mass of the collapsed object is related to its initial size.
This means that δcol is independent of the final mass. Whereas, in an ellipsoidal model, Sheth
et al. (2001) showed that the collapse of a region depends on the surrounding shear field, as
well as its initial overdensity. In Gaussian random fields, the distribution of these quantities
depends on the size of the region. Since the mass of a region is related to its initial size,
there exists a relation between δcol and the mass of the final object. They provided a fitting
to the δec(m) (ec−ellipsoidal collapse) relation that simplified the inclusion of ellipsoidal
dynamics. The GIF N−body simulations (Kauffmann et al., 1999) were used by Sheth et al.
(2001) to compare their predictions of the large-scale halo bias with previous results obtained
by Mo and White (1996); Sheth and Tormen (1999) as seen in Figure 1.11. They found out
that the ellipsoidal collapse model represented an improvement on the spherical model on
an object-by-object basis and that the mass function and the large-scale halo-to-mass bias
relation, were more accurate than the standard predictions.

The first insights into the spatial clustering of dark haloes done by Mo and White (1996)
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Figure 1.12: The variation with redshift of the comoving number density of dark matter
haloes with masses exceeding specific valueM in theΛCDM model withΩ0 = 0.3, ΩΛ = 0.7,
h = 0.7 and σ8 = 0.9. Credits: Mo and White (2002)

was corrected by Jing et al. (1998); Sheth and Tormen (1999) who showed that at a given
redshift for a halo of mass below M∗, the value of σ8(M,z) varies little with the mass M
and for a halo of mass above M∗, the value of σ8(M,z) increases rapidly with M . Mo and
White (2002) went on to use these corrected formulae and used ‘concordance’ values for the
cosmological parameters to plot the halo abundance against redshift as a function of halo
mass. A number of well known properties of the ΛCDM model were illustrated from their
plots such as, the abundance of massive haloes (M ∼ 1015M⊙) dropped dramatically in the
relatively recent past (z ∼ 1.5), the decline in the abundance of haloes with mass similar to
the Milky Way (M ∼ 1012Mzodot) was gently, and there was no change in the abundance of
less massive haloes (M ∼ 107 to 108M⊙) over the redshift range 0 < z < 20. It was also
shown that the abundance of low mass haloes is declining slowly at low redshifts (z ∼ 2.0) as
members of these populations merge into massive systems much faster than new members
that are formed. The results obtained by Mo and White (2002) are shown in Figure 1.12.

It was shown by Gao et al. (2005); Tinker et al. (2005) that the bias function derived by
Sheth et al. (2001) using the peak-background split method still failed to reproduce in detail
the bias of haloes found in numerical simulations. Tinker et al. (2010) demonstrated that the
bias of massive, rare haloes was higher than that predicted by Sheth et al. (2001) using the
ellipsoidal collapse model and approached the predictions of the spherical collapse model for
the rarest haloes. Tinker et al. (2010) introduced a more flexible fitting formula for the halo
bias, which was compared with a N−body simulation which had a minimum mass resolution
of M ∼ 1010 h−1Mpc. It was concluded from their study that employing a peak-background
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Figure 1.13: Upper panel: Large-scale bias as determined by the ratio (Ph/Plin)1/2 for
∆ = 200. Results from the smaller boxes are represented by the gray circles. For these
simulations, only measurements with less than 10% error are shown to avoid crowding. The
larger volume simulations are represented by the coloured symbols. Each point type indi-
cates a different simulation. The different colors, from left to right, go in order of increasing
redshift from z = 0 to z = 2.5. Like colours between simulations imply the same redshift. For
these large-volume simulations, measurements with less than 25% errors are shown. Lower

panel: Fractional differences of the N−body results with the fitting function shown in the
upper panel. Credits: Tinker et al. (2010)

split method on the mass function derived from halo catalogues, underpredicts the bias of
high-peak haloes and overpredicts the bias of low-peak haloes. The comparison of the results
for the bias calculated by Tinker et al. (2010) with the bias calculate by Sheth et al. (2001) is
shown in Figure 1.13.
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2.1 Galaxies and galaxy clusters: A brief introduction

A collection of dust, interstellar gas, stellar remnants, stars and dark matter bound together by
gravity is what makes up a galaxy. Galaxies can vary in size, with dwarf galaxies containing
only around a thousand (103) stars and giant galaxies that can even contain close to a billion
(109) stars. Most of the galaxies we have so far found in the Universe seem to possess a black
hole in their center core. Our own Milky way’s central black hole, known as Sagittarius A*,
has a mass 4 million times the mass of our Sun (Gillessen et al., 2009). From our current
understanding, there are close to 170 billion to 200 billion galaxies in the observable Universe
(Gott et al., 2005).

Hubble developed a now classical classification of galaxies according to their shape. He
divided the galaxies into four categories, mainly, ellipticals, spirals, lenticulars and irregu-
lars. It was later came to be known as the famous Hubble “tuning fork” diagram as it can be
seen from Figure 2.1.
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Figure 2.1: Tuning-fork style diagram to classify galaxies based on their shape as used by
Hubble (Hubble sequence, 2016).

Almost all the galaxies in the observable Universe seem to be part of a group, cluster
or a large-scale structure (walls, filaments) and only about 5% of the galaxies that we know
today are found as solitary galaxies (Gott et al., 2005). Groups and clusters of galaxies are
structures that can consist anywhere from tens to thousands of galaxies. Galaxy clusters
are associated to the largest and most massive virialised dark matter haloes. The image of
Abell cluster 1689, seen in both the visible and the infrared, is shown in Figure 2.2. Three
components contribute to the mass of a cluster:

• Galaxies: They represent around 2-5% of the total mass of a galaxy cluster. They
contain the baryonic matter in the form of stars and cold gas.

• Intra-cluster medium: The ICM constitutes 11-15% of the total mass of a galaxy
cluster. It mainly consist of hydrogen and helium, the baryonic matter in ionised form
and in low density. It has very high temperatures reaching close to 108 Kelvin. The
emission from the ICM is characterised by thermal bremsstrahlung.

• Dark matter: It contains the major mass fraction of a galaxy cluster, i.e. around 80-
87%. It follows the Navarro-Frenk-White (NFW) profile (Navarro et al., 1996).

Masses of galaxy clusters range from 1013 h−1M⊙ for poor clusters to 1015 h−1M⊙ for
richest ones. The typical cluster virial radius is ∼ 1 h−2Mpc (Bahcall, 1996).

Galaxy clusters are important laboratories for studying the impact of the environment on
galaxy properties. For example, any galaxy that is freely falling towards the cluster center
can experience speeds of up to ∼1000 km s−1 with a pressure that is given by:
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Figure 2.2: Image of Abell 1689, a massive galaxy cluster, in the constellation Virgo, at a
redshift of z = 0.183. (ESA/Hubble Press Release, 2013).

P = ρv2 (2.1)

where ρ is the mass density and v is the relative velocity of the galaxy with respect to the
ICM. If this pressure is high enough to overcome the gravitational binding energy it can strip
gas that was once bound to the galaxy that is falling in leading to star formation. It has been
shown that the dense ICM in massive clusters can strip the HI disk of a galaxy and it occurs
at the cores of these massive clusters (Fujita, 1998).

Galaxies that are falling into the core of a galaxy cluster eventually undergo ICM interac-
tions. But before they can reach the ICM they interact with other galaxies inside the cluster
via gravitational attraction. These interactions transform and alter the properties of these
galaxies. At the core of galaxy clusters, the relative speeds of galaxies are extremely high
and due to this mergers at the cores of clusters are not usually possible. Instead an infalling
galaxy is likely to experience closer encounters with other galaxies at very high speeds due
to the high density of galaxies in the cluster core.
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2.2 Detecting a galaxy cluster

Observational studies of galaxy clusters in the modern era follow a multi-wavelength ap-
proach. These observations can reveal several components of galaxy clusters that cannot
be seen at a fixed wavelength. These signatures can be used for detecting a galaxy cluster,
for instance the overdensities found from optical surveys, X-ray emissions of the ICM from
X-ray surveys or the distortion of the CMB through inverse Compton scattering via the SZ
effect.

2.2.1 Optical and near-infrared

The first searches for galaxy clusters were done at optical wavelengths. The general method
was to search for overdensities in the galaxy number counts within a given radius and mag-
nitude interval.

It was Abell who constructed the first extensive cluster catalogue at optical wavelengths
(Abell, 1958) based on the visual inspection of photographic plates. This catalogue contained
2,712 clusters and was classified into several richness groups with the condition that a cluster
should contain a minimum of 50 galaxies within a magnitude range of m3 to m3 + 2 (where
m3 is the magnitude of the 3rd brightest member of the cluster). The catalogue was further
extended with an addition of 1,361 clusters in 1989 by co-authors Harold G. Corwin and
Ronald P. Olowin by examining the southern celestial hemisphere (Abell et al., 1989).

Visual inspection was quite efficient for detecting nearby clusters, but it becomes infea-
sible when searching for distant clusters on large areas of the sky. Moreover, the selection
process is subjective and difficult to quantify. Therefore with time different algorithms for
finding clusters have been developed. The now classical matched-filter galaxy cluster finder
first introduced by Postman et al. (1996) assumes a luminosity function and radial profile for
galaxy clusters, scaling them to the expected distance interval corresponding to a given range
in apparent magnitudes.

The fact that the central regions of galaxy clusters are dominated by red and early type
galaxies, which follow a line, the so-called red sequence, in the color-magnitude diagram,
has been also been used for improving cluster detection.

The red sequence selection as measured for galaxies in the “Bullet cluster” by Paraficz
et al. (2012) is shown in Figure 2.3. With this method, projection effects can be minimized
because galaxies in the field will generally fall outside the cluster red sequence.

Of course cluster selection is much easier when the galaxy redshifts are known: this
allows to identify structures in 3D and to minimise projection effects. The simplest example
is the Friend-of-Friends algorithm, first applied by Huchra and Geller (1982). Unfortunately,
even with multi-object spectroscopy they are too time-consuming for large-scale searches of
distant clusters.

It is however possible to estimate the redshifts from photometric data (see Chapter 6),
even if errors of photometric redshifts are significantly larger than those of spectroscopic
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Figure 2.3: Colour-magnitude diagrams and the selection of cluster member galaxies. The
red sequence selection is shown in the black boxes: all galaxies in this box are considered to
be cluster galaxies. [(V-I) vs. V] or [(V-z) vs. V] colour-magnitude diagrams correspond to
the main and sub-cluster components, respectively. Credits: Paraficz et al. (2012)

redshifts.
Lower redshift catalogues are comparatively easy to measure compared to high redshift

catalogues, where, multicolour photometry is required to track the intrinsic 4000Å break
feature 1. The Sloan Digital Sky Survey (SDSS) made use of five-band photometry which
enabled the detection of low redshift clusters (Eisenstein et al., 2011). Another cluster cat-
alogue of 13,823 nearby clusters has been extracted from the SDSS, applying an algorithm
which combines the detection of an overdensity of red galaxies in a red sequence with the
presence of a brightest cluster galaxy (Koester et al., 2007)

Apart from the photometric redshift uncertainties, the major challenge for optical surveys
is to get a proper richness estimate which has a lower intrinsic scatter at all mass and redshift
ranges studied. Projection effects along the line-of-sight also pose a threat by the inclusion
of false positive members and by the absence of true cluster members that go undetected.

2.2.2 X-ray wavelength detection

Galaxy clusters can be detected from satellite X-ray observations through the X-ray emission
of their hot ICM. The observables are flux, spectral hardness and spatial extent. Follow-up
observations of the same clusters can give precise measurements of density, temperature and

1The primary feature of an overall flat spectrum of the galaxy spectra is the 4000Å break which is caused
by the blanket absorption of high energy radiation from metals in stellar atmospheres and by a deficiency of
hot, blue stars.
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metallicity profiles of the ICM. Typical cluster X-ray luminosities are in the range of 1044erg
s−1 or more. The ROSAT All-Sky Survey (Voges et al., 1999) was the first X-ray survey
to cover the whole sky, allowing the detection of clusters up to a redshift of z ∼ 0.3, but
deeper observations of selected regions of the sky allowed the detection of clusters at higher
redshifts. The flux limit of the survey was in the range of 3.0 × 10−12 − 4.4 × 10−12erg cm
−2s−1.

Figure 2.4: Comparison of the Chandra image of the X-ray emission from the intraclus-
ter medium in the core of the Abell 2199 galaxy cluster against the optical emission of the
galaxies (from the DSS) Credits: (Chandra observatory and Digitised Sky Survey, 2016)

More recently, the ESA XMM-Newton satellite has made possible to carry out more
extended and deeper cluster surveys: the XMM and the XXL cluster surveys (Lloyd-Davies
et al., 2011; Pierre et al., 2016). As an example, the Abell cluster 2199 is shown in Figure
2.4 as observed both X-ray and optical wavelengths. The advantage of the X-ray surveys is
the correlation between the observed X-ray luminosity and mass across the entire flux and
redshift range. The major disadvantage of X-ray surveys is that it can only be carried out
from space satellites which makes each mission an expensive one.

2.2.3 Sunyaev-Zel’dovich effect

The radiation coming from the CMB, hit the hot electrons that are found in the intracluster-
medium and are then scattered through inverse Compton scattering. In this process, low
energy CMB photons receive an energy boost. Therefore, observing the CMB in the cluster
direction, one finds that the blackbody spectrum is distorted, with a lower intensity at low
frequencies and a higher intensity at high frequency. The critical frequency which divides
the two parts of the spectrum is 217 GHz (around 1 mm). This is the so-called thermal
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Sunyaev-Zel’dovich (SZ) effect (Sunyaev and Zeldovich, 1972), which can be used to detect
distant clusters. Its peculiar property is that its amplitude does not depend on distance. The
intensity variation ∆I/I is of the order of 10−4.

There is also a kinematic SZ (kSZ) effect, due to the peculiar motion of clusters with
respect to the CMB, the electrons in the ICM cause a Doppler shift of the photons of the
CMB, changing its intensity as a function of frequency.

Many SZ surveys are ongoing, such as at the South Pole Telescope (SPT) (Ruhl et al.,
2004) and the Atacama Cosmology Telescope (ACT) (Menanteau et al., 2010)

The Planck mission made use of the SZ effect to detect galaxy clusters and the first results
were released in 2011 Planck Collaboration et al. (2011).

2.3 Measuring the mass of a galaxy cluster: Direct mea-

surements and mass proxies

One of the key observational challenges is that the mass estimates are usually obtained from
observational properties such as:

1. Using the hot ionised intracluster medium as measured from the X-ray emission.

2. The distribution of member galaxies in a cluster, i.e. the richness estimate or using
velocity distributions.

3. Sunyaev-Zel’dovich effect.

4. Using strong and weak lensing measurements.

Different assumptions are also made when calculating the mass of a cluster which are dis-
cussed in this Section. We also discuss some of the astrophysical processes that are important
in measuring the mass and also discuss the pros and cons of each measurement technique.

2.3.1 Hydrostatic equilibrium: Galaxy clusters

One of the major assumptions inside galaxy clusters is that both the gas component and the
galaxies within the cluster are in hydrostatic equilibrium with the cluster potential (Evrard,
1990; Bahcall and Lubin, 1994). According to this framework the ICM is assumed to collapse
within the cluster dark matter halo and get heated to temperatures of around 107 - 108 K.
These physical processes are described via the Euler equation:

dv

dt
= −▽ φ − 1

ρ
▽ P (2.2)

where P is the total gas pressure, φ is the cluster potential and v is the velocity. Here the
differential dv/dt is given by:
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dv

dt
= ∂v

∂t
+ (v.▽)v (2.3)

which is the Lagrangian derivative of the velocity. In this model the gas distribution obeys:

dPgas

dr
= −GMcl(≤ r)ρgas

r2
(2.4)

where Pgas and ρgas are the gas pressure and density respectively, and Mcl(≤ r) is the total
cluster binding mass within the radius r. For the cluster to be in hydrostatic equilibrium, the
condition is given by:

dv

dt
= 0 (2.5)

X-ray observations of the ICM thermal properties provide us the so called hydrostatic
mass of the cluster by reformulating Equation 2.5 as:

0 = −▽ φ − 1

ρ
▽ P (2.6)

along with assumptions of spherical symmetry and thermal pressure support of the gas. The
assumption that the cluster is in hydrostatic equilibrium maybe true for virialised clusters
which have settled down, but the same may not be true for all galaxy clusters (clusters that
are not virialised). If any of the hypotheses in Equation 2.6 are not true, then the mass of the
galaxy cluster as measured by this method will be biased. To find out if the mass estimated
is biased or not, one can make use of observations of the same cluster via other wavelengths
apart from X-ray. Mass of the same cluster estimated from these other observational tech-
niques, such as lensing, SZ effect, etc. can point out the bias. It is because mass estimates
from optical lensing measurements are less sensitive to the non-gravitational processes that
characterise the gas present in the cluster compared to mass estimates from X-ray measure-
ments. However, optical and lensing masses are affected by other systematics and projection
effects.

A recent study by Suto et al. (2013) using the hydrodynamical simulation of Cen (2012)
calculated the mass of a galaxy cluster using the hydrostatic assumption and compared the
same with several other mass terms that directly correspond to the Euler equations. They
found out that under the hydrostatic assumption, the mass obtained is more or less biased on
the average by 10 - 20 % from the true mass for a radius r < r200. They also found out that
the hydrostatic assumption does not improve at the inner regions of the cluster.

2.3.2 Virial theorem

Galaxies and galaxy clusters are considered to be gravitationally bound systems, i.e. the ob-
jects they contain (stars in the case of galaxies and galaxies in the case of clusters) have come
into dynamical equilibrium through gravity. This assumption is supported by measuring the
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crossing time of an object within the system. This crossing time is defined as the time it takes
for the object to fully cross the system once and is given by:

tcr = R

v
(2.7)

where R is the size of the system and v is the velocity of the objects contained within the
system. For example the galaxies in the Coma cluster take a time of about one-tenth the age
of the Universe to cross the cluster once, indicating that the cluster is gravitationally bound
(Longair, 2008).

The virial theorem refers to an energy balance of a system that is under equilibrium due
to gravity. The total kinetic energy (T ) and the total potential energy (U ) of the system is
given by:

T = 1

2
∑
i

miṙ
2
i (2.8a)

U = −1
2
∑
i,j
j≠i

Gmimj∣ri − rj ∣ (2.8b)

Assuming that the system is in statistical equilibrium, then:

d2

dt2
∑
i

mir
2
i = 0 (2.9)

and therefore

T = 1

2
∣U ∣ (2.10)

This is the equality which is known as the virial theorem. It can be seen that no assumptions
about the velocity distributions of the particles of the system is made in the virial theorem.
The velocities of the particles in the system are usually in a random order for globular clusters
and elliptical galaxies and can also be in order in the case of the disc of spiral galaxies,
but in all the above cases the virial theorem must hold true. In the case of galaxy clusters
the positions of each galaxy in the cluster is not clearly distinguished, wherein assumptions
about the cluster spatial distribution has to be made. If the velocity dispersion is independent
of the masses of the galaxies in the cluster, then we can find that the total kinetic energy
T = (1/2)∑imiṙ

2
i = (3/2)M⟨v2⟩ where M is the total mass of the cluster. If the system is

said to be spherically symmetric, from the surface distribution of galaxies in the cluster one
can get the gravitational potential energy as U = GM2/Rcl. Thus the mass of the system
using the virial theorem can be found using:

M = 3⟨v2⟩Rcl/G (2.11)

The only parameters that we require to find the mass of the system is the velocity dispersion
(v) and the size of the system (Rcl).
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2.3.3 Direct methods of mass measurements: X-ray, optical and lensing

masses

1. X-ray masses: For a spherically symmetric system in hydrostatic equilibrium, the
gas density and the temperature profiles can be related to the total mass profile of the
system:

M(r) = −rkT (r)
Gµmp

[dlnn(r)
dlnr

+ dlnT
dlnr
] (2.12)

where M(r) is the mass of the cluster within radius r, T (r) is the ICM temperature,
n(r) is the gas particle density,G is the Newton’s constant, k is the Boltzmann constant
and µmp is the mean molecular weight. For small radii, these mass measurements
are fairly straightforward, but become more complicated to measure at radii larger
than r ≳ r500. This is because the X-ray emission becomes fainter at larger radii, and
also because the levels of non-thermal pressure support increase (Nagai et al., 2007).
However the hydrostatic equilibrium condition requires that the gravitational potential
remain stationary and that the forces other than gas pressure and gravity to be more or
less neglected. The hydrostatic mass estimate method cannot be applied to clusters that
are undergoing mergers or to the regions of a system that is not relaxed. X-ray mass
measurements do exhibit scatter (≲ 10%) and are biased by ∼ 10-15% due to kinetic
pressure arising from residual gas motions (Allen et al., 2011; Suto et al., 2013).

2. Optical masses: X-ray mass measurement method assumes the system to be in hydro-
static equilibrium whereas optical mass measurements are based on the assumption
that the cluster is in dynamical equilibrium and the condition of the equilibrium is
given by the Jeans equation (Binney and Tremaine, 2008). The Jeans equation can be
written as:

1

ν

∂

∂r
(νσ2

rr) + 2(σ2
rr − σ2

tl)
r

= −∂φ
∂r
= −GM(r)

r2
(2.13)

where ν(r) is the 3D galaxy number density profile, σrr and σtl are the radial and
tangential components of the velocity dispersion, φ is the smooth potential. The mass
within a radius r of a galaxy cluster based on optical measurements is given by:

M(r) = rσ2
r(r)
G

[dlnσr(r)2
dlnr

+ dlnν(r)
dlnr

+ 2β(r)] (2.14)

where σr(r) is the 3D velocity dispersion, and β = 1−σ2
tl/2σ2

rr is the velocity anisotropy
parameter defined in terms of the radial (σrr) and the tangential (σtl) velocity dispersion
components. The difficulty in Equation 2.14 is the determination of β(r) parameter.
From observations one can only measure the line of sight velocity dispersion σ2

los. Of-
ten from optical observations one simply derives the virial mass (Limber and Mathews,
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1960). Moreover, ongoing accretion of matter and the occurrence of minor and major
mergers perturb the dynamical equilibrium. Optical mass measurements may also be
affected by substructure and interlopers.

3. Lensing masses: Another approach towards measuring the mass of galaxy clusters is
by the use of gravitational lensing. The gravitational field of a cluster curves the space-
time and acts as a lens for light coming from background sources. The amount of this
distortion can be used to model the mass distribution in the cluster. A major advantage
in using lensing masses is that it does not require any assumptions about the composi-
tion or dynamical state of the object being studied. Most of the objects in the Universe
undergo weak lensing as opposed to strong lensing wherein multiple images, arcs and
Einstein rings are formed. Masses from weak lensing measurements are usually cal-
culated by fitting the observed, azimuthally averaged gravitational shear profile with a
mass model (Hoekstra, 2007). For those objects that undergo strong lensing, measure-
ments of masses are made through the regions enclosed by the gravitational arcs. If
we have both weak lensing as well as strong lensing measurements, one can improve
the calibration of projected mass maps (Meneghetti et al., 2010). The disadvantage in
lensing mass measurements come in the form of triaxiality, which for individual mass
measurements introduce a scatter at the level of 10% (Meneghetti et al., 2010).

2.3.4 Thermal structure of the ICM

Some of the very first observations did not have proper angular resolution and thus
involved the total ICM emission of clusters and provided us with the bulk tempera-
ture information of the cluster ICM (Sarazin, 1986; Sarazin and Graney, 1991). It was
known from these temperature studies that galaxy clusters form from the gravitational
collapse of overdense regions and approach equilibrium configuration which is char-
acterised by the virial theorem given by:

Ekin = −2Epot ∝ GM

R
(2.15)

where Ekin and Epot are the kinetic and potential energy respectively, and M is the
total mass of the galaxy cluster including all the mass of dark matter present. The
ICM plasma also attains a virial temperature which shows the depth of the gravitational
potential of the cluster. When collisions are taking place, the gravitational potential
energy of the ICM is converted into heat. The relation between the cluster mass the
the ICM temperature is given by:

T ∝ σ2
DM ∝ M

R
∝M2/3 (2.16)
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where σDM is the velocity dispersion of the dark matter particles. The first analysis
to confirm the trend of linear proportionality between ICM temperature with velocity
dispersion was done by Mushotzky (1984), the results of which can be seen in Figure
2.5. In the current era the spectroscopically confirmed ICM temperature are one of the
best mass proxies as a single observable parameter (Böhringer and Werner, 2010).

Figure 2.5: Correlation of the ICM temperature with the velocity dispersion of the galaxies in
clusters (Mushotzky, 1984). The temperatures have been derived from X-ray spectra taken
with the HEAO-1 satellite A-2 experiment. The dots are data for non-cD clusters and the
open symbols for cD clusters (clusters with a central dominant, cD type galaxy). The lines
show predictions of polytropic models with various indices (see Mushotzky (1984))

. Credits: Böhringer and Werner (2010)

2.3.5 Mass proxies: Mass observable relations

The direct methods we have discussed have some limitations and also require time-consuming
observations. In order to use cluster masses as a cosmological tool, one needs large samples
of clusters. Hence the importance of finding observational quantities relatively easy to mea-
sure which are correlated with mass, which are called mass proxies, is required. A good
mass proxy should be easily measurable and should also have a low scatter across the mass
and redshift range studied (Rozo et al., 2009; Pratt et al., 2009; Rozo et al., 2011; Rykoff
et al., 2012, and references therein). Different observables of clusters are obtained at differ-
ent wavelengths which can then be compared with one another to find the best possible mass
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(a) (b)

Figure 2.6: Left: Richness-mass scaling of clusters from Rines and Diaferio (2006). The
solid line marks the mean fitted regression line of log(M200) on log(n200), while the dashed
line shows this mean plus or minus the intrinsic scatter σ . The shaded region marks the 68%
highest posterior credible interval for the regression. Error bars on the data points represent
observed errors for both variables. The distances between the data and the regression line is
due in part to the measurement error and in part to the intrinsic scatter. Credits Andreon and
Hurn (2010) Right: Scaling relations using masses estimated for individual clusters. Weak
lensing masses versus intracluster medium temperature for an X-ray-selected sample imaged
by the Canada-France-Hawaii Telescope from Hoekstra (2007). Credits: Allen et al. (2011)

proxy. One of the main aspects that should be taken in to account when comparing scaling
relations from the different observables is that the analysis should account for the survey se-
lection function and the cluster mass function properly. If the above properties are not taken
in to account properly when two different observables from two different surveys are being
compared, the result obtained on the amplitude and slope of the scaling relation may not give
us the uncertainties that are expected, i.e. they will be biased.

1. For X-ray surveys, the X-ray temperature (TX) and luminosity (LX) and gas mass
(Mgas) are used as mass proxies. For some of the most massive clusters, it has been
found that the X-ray emitting gas mass is correlated with the total mass of the clus-
ter, with the scatter being < 10% at a fixed mass (Allen et al., 2011). However for
most X-ray surveys, the assumption of hydrostatic equilibrium is applied regardless
of whether the cluster is relaxed or not and this can introduce a scatter in the scaling
relations (Nagai et al., 2007). The product of the two, i.e. YX =MgasTX is also used
as a proxy and it was shown by Kravtsov et al. (2006) that YX is a good mass proxy
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with a remarkably low scatter of only ≈ 5− 7% in M500 for a fixed YX , at both low and
high redshifts and regardless of whether clusters are relaxed or not.

2. In the case of optical surveys, richness is the main mass proxy, which is defined as the
number of cluster members above a given luminosity and within a given radius. The
advantage of richness as a mass proxy is that it can be computed for any optical/near-
infrared survey in the whole range of masses and redshift studied. But at the same time,
measurement of richness of a galaxy cluster is hampered by background subtraction;
in the case of maxBCG clusters, the scatter at a fixed mass has been estimated at ∼ 40%
(Rozo et al., 2009, and references therein).

In Figure 2.6a we show the scaling relation between richness N200 (number of cluster
members within the virial radius R200, where R200 refers to the radius within which the
mean density of a cluster is 200 × ρcritical) and mass M200 (mass within the virial radius)
performed by Andreon and Hurn (2010) for clusters taken from Rines and Diaferio (2006).
It can be seen that on the whole there exists a correlation between richness and mass even
though the ±1 intrinsic scatter band does not contain 68% of the data points which is because
of the presence of measurement errors (refer to Andreon and Hurn (2010) for more details).
In Figure 2.6b we plot the scaling relation between X-ray temperature TX and mass M2500

for clusters observed using the Canada-France-Hawaii Telescope from Hoekstra (2007). The
selection bias is relatively unimportant here because the detectability of cluster is only weakly
affected by X-ray temperature. It can be seen that there exists a scatter between temperature
and mass, but on the whole there exists a positive correlation between the two parameters.
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3.1 Methodology: Quantifying structures

It was during the late 1980s that more and more galaxies were discovered using larger tele-
scopes, and thus the path towards the statistical analysis of these galaxies opened. One of
the earliest catalogues to study more than a million galaxies was the Lick galaxy catalogue
(Shane, 1964). They were observed using photographic plates at the Lick Observatory. The
maps of the counts of these galaxies were published by Seldner et al. (1977), which were a
projected map of galaxies. These maps showed clearly that the distribution of galaxies on
the projected sky were not uniform and that the number of galaxies per cluster were varying
widely from a few pairs to several hundreds. A much deeper photographic survey was made
using the 48-inch Palomar Schmidt telescope, which was used by Zwicky (Zwicky et al.,
1961) who compiled a catalogue of galaxies and clusters of galaxies. It was noticed that
clusters of galaxies also show a tendency of clustering similar to galaxies.

3.1.1 Definition of the correlation function

In order to measure the clustering of a distribution of objects, one of the most commonly
used quantitative measure is the two-point correlation function (Totsuji and Kihara, 1969;
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Davis and Peebles, 1983). The two-point correlation function ξ is defined by the joint prob-
ability δP of finding an object in each volume elements dV1, dV2 separated by a distance r12
(Peebles, 1980) and is given by:

δP = n2[1 + ξ(r12)]dV1dV2 (3.1)

where n is the mean density. Considering homogeneity and isotropy ξ(r12) depends on the
magnitude of separation vector but not on its direction (Efstathiou, 1996). The n2 factor
makes ξ(r) dimensionless. In a uniform random Poisson process, the probability of finding
objects in volume elements dV1, dV2 are independent, so the joint probability is the product
of the single point probabilities:

δP = n2δV1δV2 (3.2)

Comparing the above equation to Equation 3.1, it can be seen that for a uniform Poisson
process, the value of ξ = 0. If there is clustering at a distance r, then ξ(r) > 0. If points
are anti-correlated, then ξ(r) < 0. ξ(r) is a first order measure of clustering, giving us an
analytical view of how much our dataset deviates from a uniform distribution. In the case of
galaxy clusters, ξ(r) is usually greater than 0 within a given range (1 − 200 h−1Mpc).

3.1.2 Different estimators of the correlation function

The role of the two-point correlation function is central in calculating the clustering distri-
bution of objects, but several estimators exist in the literature for extracting ξ from a set of
spatial points. The difference between all the estimators of ξ lies in their respective method
of edge correction. To measure ξ(r) we need to consider the fact that one cannot complete
spheres of radius r everywhere in our survey. For example, at the edges of the survey, the
sphere will not be complete. We need to perform edge correction so that we do not loose
pairs of objects. To do so, we construct a random catalogue within the same geometry as the
data catalogue. We discuss here the three major estimators that have been used extensively
in clustering studies.

One of the earliest estimators widely used was the Davis and Peebles (1983) (DP) esti-
mator which was given by:

ξDP (r) = NR

ND

DD(r)
DR(r) − 1 (3.3)

where NR refers to the number of points in the random catalogue, ND refers to the number
of points in the data catalogue, DD refers to the data-data pairs and DR refers to the data-
random pairs.

Hamilton (1993) (HAM) came with an improved estimator that had smaller statistical
errors, it was given by:
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ξHAM(r) = DD(r) ×RR(r)[DR(r)]2 − 1 (3.4)

where DD refers to the data-data pairs and RR refers to the random-random pairs.
It was during the same year that Landy and Szalay (1993) (LS) proposed another estima-

tor that is given by:

ξLS(r) = 1 + N2
R

N2
D

DD(r)
RR(r) − 2NR

ND

DR(r)
RR(r) (3.5)

where NR refers to the number of points in the random catalogue, ND refers to the number
of points in the data catalogue, DD is the number of object pairs counted within a spherical
shell within r and r+dr, DR refers to the number of data-random pairs and RR refers to the
random-random pairs.

Kerscher et al. (2000) compared various estimators that were available in calculating
the two-point correlation function and found out that at small scales all the estimators were
comparable with one another. But at large scales, the Landy and Szalay (1993) and the
Hamilton (1993) estimators significantly outperformed all the other estimators showing small
deviations for a given cumulative probability. It was also shown by Kerscher et al. (2000)
that the LS estimator was considerably less sensitive to the number of random points used
and also handled edge corrections well, which can affect clustering measurements on large
scales, compared to the HAM estimator. So the LS estimator is preferred from a practical
point of view.

3.1.3 Power spectrum

An overdensity at point x is given by δ(x). Assuming that the Universe is periodic in a space
of volume V and defining the Fourier transform pair as:

δ(x) =∑
k

δke
−ik.x (3.6)

where δk is given as:

δk = 1

V
∫ δeik.xd3x (3.7)

The relation between the ξ(r) and δk is:

ξ(r) =∑
k

⟨∣δk∣2⟩e−ik.r (3.8)

i.e. the two-point correlation function is the Fourier transform of the power spectrum P (k) =⟨∣δk∣2⟩.
The relation between P (k) and ξ(r) is given by:

ξ(r) = 1

2π2 ∫ dkk2P (k)sin(kr)
kr

(3.9)
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where k is the wavenumber which is given by k = 2π/λ (λ is the wavelength of a fluctuation).
It is predicted from inflation that the power spectrum of the primordial density fluctuations
was nearly scale independent, i.e. following a power-law given by:

P (k) ∝ kn (3.10)

where n denotes the spectral index (also known as the Harrison-Zeldovich spectrum). CMB
observations confirm this prediction and show that n is very near but not exactly equal to 1
(0.968 ± 0.006 according to the results of Planck Collaboration et al. (2015)).

The usual approach in quantifying galaxy clustering at large scales is by measuring ξ(r)
or P (k) and applying statistics to detect departures from a Gaussian distribution (Efstathiou,
1996). In the case of a density field in which the fluctuations are drawn from a Gaussian
distribution, the power spectrum gives a complete statistical description of the fluctuations
(Baugh, 2000).

3.1.4 Angular two-point correlation function

There were a number of surveys that sampled large volumes of space (Zwicky et al., 1961;
Shane, 1964; Maddox et al., 1990) but most of the surveys only gave two-dimensional infor-
mation of the galaxy distribution. So angular correlation function to these catalogues were
measured. The angular two-point correlation function which can be defined by means of
the conditional probability δP of finding two clusters within solid angles dΩ1 and dΩ2 and
separated by an angle θ:

δP = N2[1 +w(θ)]dΩ1dΩ2 (3.11)

where N refers to the mean surface density of galaxies per unit area in the catalogue and
w(θ) is the angular correlation function.

However, the spatial correlation function ξ(r) can be inferred from w(θ) by means of
the Limber equation (Limber, 1954) which provides an integral relation between the angular
correlation function w(θ) and ξ(r) for small angles:

w(θ) = ∫ ∞

0
y4φ2(y)dy∫ ∞

0
ξ(√x2 + (yθ)2)dx (3.12)

where y is the comoving distance, φ(y) is the radial selection function normalised such that∫ φ(y)y2dy = 1.
The real-space correlation function measured from several studies of both galaxy and

cluster catalogues (Totsuji and Kihara, 1969; Peebles, 1980; Davis and Peebles, 1983; Bah-
call and Soneira, 1983; Bahcall and West, 1992) was quite well approximated by a power-law
of the form:

ξ(r) = ( r
r0
)−γ for scales r ≤ 150 h−1 Mpc (3.13)
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where r0 is the correlation length and γ is the slope. The so called correlation length measures
the amplitude of the clustering process. In other words, it is the scale at which ξ(r) = 1. The
larger the correlation length for a given sub-sample, the stronger is the clustering. It was
shown by Peebles (1980) that if ξ(r) followed a power-law model, so does w(θ) and is given
by:

w(θ) = Aθ1−γ (3.14)

where A is an amplitude which depends on the survey selection function and the Gamma
function Γ.

3.2 Redshift-space distortions: Effect on the correlation func-

tion

On small scales (≤ 1 h−1Mpc), galaxies that reside within groups and clusters have large
random motions relative to each other. These interactions can give rise to a velocity of more
than 1000 km/s to a galaxy in a random direction. If the direction of this velocity is towards
or away from us, then one needs to add or subtract this to the radial velocity respectively that
we would expect from the Hubble flow:

vtotal =H0 ×D + vpeculiar (3.15)

where H0 is the Hubble constant, D is the distance to the cluster and vpeculiar is the peculiar
velocity.

Therefore while all of the galaxies in the group or cluster have a similar physical distance
from the observer, they have somewhat different redshifts. This causes an elongation in
redshift space maps along the line-of-sight within overdense regions and is referred to as
the “Fingers of God” effect. The result is that groups and clusters appear to be radially
extended along the line-of-sight towards the observer as seen in Figure 3.1. The lower left
panel of Figure 3.1 shows the galaxies in redshift-space with “Fingers of God” pointing back
to the observer, while in the lower right panel, the “Fingers of God” have been modelled and
removed.

Redshift-space distortions are also seen on larger scales (≥ 1 h−1Mpc) due to streaming
motions of galaxies that are falling in to structures that are still collapsing. Adjacent galaxies
moving in the same direction lead to a coherent motion and cause an apparent contraction
of structures along the line-of-sight in redshift-space, and is also called as the Kaiser effect
(Kaiser, 1987).

While calculating the two-point correlation function, redshift-space distortions can com-
plicate these measurements. Instead of the real-space correlation function ξ(r), what we
measure is the redshift-space correlation function ξ(s), where s is the redshift-space sepa-
ration between a pair of galaxies. ξ(s) also does not a follow the power-law as mentioned in
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Figure 3.1: An illustration of the “Fingers of God” , or elongation of virialised structures
along the line-of-sight, from Tegmark et al. (2004). Shown are galaxies from a slice of the
SDSS sample (projected here through the declination direction) in two dimensional comov-
ing space. The top row shows all galaxies in this slice (67,626 galaxies in total), while the
bottom row shows galaxies that have been identified as having “Fingers of God”. The right
column shows the position of these galaxies in this space after modelling and removing the
effects of the “Fingers of God”. The observer is located at (x,y = 0,0), and the “Fingers of
God” effect can be seen in the lower left panel as the positions of galaxies being radially
smeared along the line of sight toward the observer. Credits: Coil (2013)

Equation 3.13 over the same range of scales as ξ(r), because redshift-space distortions on
both small and large scales decrease the amplitude of the clustering relative to intermediate
scales (Coil, 2013). ξ(r) measures the physical clustering of galaxies, independent of pecu-
liar velocities. In order to recover the real-space correlation function, ξ is therefore measured
in two dimensions, both along (π) and perpendicular (rp) to the line-of-sight.

Given a pair of galaxies with redshift positions x1 and x2, the separation of the pair in
redshift-space is given by s ≡ x2 − x1 and the line of sight separation is l = 1

2
(x1 + x2). The

parallel and perpendicular distances to the pair are given by:

π = s.l(1 + z̄)∣l∣ (3.16a)
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rp =
√∣s∣2 − π2

1 + z̄ (3.16b)

where z̄ = 1
2
(z1 + z2). Counting pairs in both (rp, π) dimensions will then provide the

anisotropic correlation function ξ(rp, π). Projected correlation function wp(rp) can be de-
rived from ξ(rp, π) by integrating along rp, which can be related to the real-space correlation
function.

3.3 Galaxy correlation function, a brief review: Angular

and spatial correlations

As we have seen in Section 3.1, in the mid 1950s, redshift information was not available for
all galaxies. Astronomers had to calculate the angular correlation function as given by Equa-
tion 3.11. They were however able to invert the angular correlation function using Limber’s
equation to get the spatial correlation function ξ(r) as seen in Equation 3.12. This inver-
sion however was not a very stable process (Simon, 2007). To obtain the angular correlation
function, one has to count the number of distinct galaxy pairs within a given separation θ and
compare the same with the number of similar pairs found in the random catalogue.

Figure 3.2: A projected plot of North Galactic Cap part of the Lick catalogue. Credits: Coles
and Plionis (1991)

Totsuji and Kihara (1969) made use of the galaxy catalogue from Shane and Wirtanen
(1967) to calculate the angular two-point correlation function w(θ) and were the first to
derive a power-law model for ξ(r) on the basis of w(θ). They obtained values of r0 = 4.7
Mpc and γ = 1.8. Peebles (1975) also made use of these set of galaxies and calculated the
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so called angular two-point correlation function. In Figure 3.2 the projected distribution of
the galaxies detected in the North Galactic Cap in the Lick catalogue is shown.

Figure 3.3: The redshift-space correlation function ξ(s) is displayed in various panels, each
corresponding to a given luminosity class: (a) −19.5 <M < −18.5, (b) −20.5 <M < −19.5,
and (c) −21.5 <M < −20.5. Within each panel, ξ(s) is presented for three different volumes.
Symbols vary from open triangles to open squares and filled squares with decreasing size of
the sample. Credits: Benoist et al. (1996)

The CfA survey (Davis et al., 1982) was started in 1977 and produced the first large area
and moderately deep maps of large scale structure in the nearby Universe. It also gave the
first crude but truly quantitative measurements of the 3D clustering properties of galaxies. de
Lapparent et al. (1988) calculated the spatial two-point correlation function for the galaxies
observed from the CfA redshift survey (Geller and Huchra, 1983) which contained a data of
around 2,200 galaxies. They found out that ξ(r) had a slope of γ ≈ 1.6 and a correlation
length of r0 ≈ 7.5 h−1Mpc. The correlation length obtained was larger than the “standard”
value matched to the theoretical models.

Measurements of the correlation function of galaxies from the CfA survey was followed
by the measurements of the samples obtained by the APM galaxy survey (Maddox et al.,
1990) which was derived from the APM Galaxy Survey of the UK Schmidt Telescope plates.
The real-space correlation function of the APM galaxy samples was calculated by Baugh
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et al. (1995) and was also compared with the results obtained from the Stromlo-APM survey
(Loveday et al., 1996). Baugh et al. (1995) found out that for Ω = 1 and clustering that
was fixed in comoving coordinates, the ξ(r) on scales r ≤ 4 h−1Mpc was well fitted by a
power-law model ξ(r) = (r/4.1)−1.7.

Figure 3.4: Left: Projected galaxy correlation functions wp(rp) for volume-limited samples
with the indicated absolute magnitude and redshift ranges. Lines show power-law fits to each
set of data points, using the full covariance matrix. Right: Same as the left panel, but now
the samples contain all galaxies brighter than the indicated absolute magnitude; i.e., they are
defined by luminosity thresholds rather than luminosity ranges. Credits: Zehavi et al. (2005)

The APM survey was complete to a magnitude limit of bJ = 17.15, which was succeeded
by the Southern Sky Redshift Survey 2 (SSRS2) catalogue (da Costa et al., 1994) which
included redshifts of around 3,600 objects found in sky coverage of 5500 deg2 with a mag-
nitude limit of mB ≤ 15.5. The survey was also 99% complete to the mB = 15.5 magnitude
limit. Benoist et al. (1996) investigated the variation of galaxy clustering with luminosity us-
ing the SSRS2 catalogue. It was found out that clustering measurements based on ξ(s) and
the variance of counts in cells revealed a strong dependence of clustering on luminosities for
galaxies brighter thanL∗, while no significant variation was detected for fainter galaxies, as it
is seen in Figure 3.3. The variation of ξ(s)with luminosity was calculated for three different
volumes as seen in Figure 3.3 and it was found out that galaxies brighter than a magnitude of−20.5 were significantly more clustered than those in the range −20.5 <M < −19.5. It was
inferred from these results that galaxy clustering was dependent on luminosity.

The Las Campanas Redshift Survey (LCRS) (Shectman et al., 1996) was a survey with
a sky coverage of 700 deg2 that measured redshifts for 26418 galaxies. The galaxies were
selected from a CCD-based catalogue measured in the R-band. The ξ(r) for the LCRS
galaxy samples was determined by Tucker et al. (1997) who obtained a correlation length of
r0 = 6.3 h−1Mpc and also by Jing et al. (1998) who obtained a value of r0 = 5.1 h−1Mpc.
Several small scale surveys followed the LCRS survey but the Sloan Digital Sky Survey
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(SDSS) was the first survey that created the most detailed 3D map of the Universe.

The first batch of data obtained from SDSS was analysed by Zehavi et al. (2002), who
made use of 29300 galaxies observed within a sky coverage of 690 deg2. They made up
a number of long narrow segments (2.5 - 5 degrees) and arrived at an average real-space
correlation function of:

ξ(r) = ( r

6.1 ± 0.2 h−1Mpc
)−1.75±0.03 (3.17)

within the range 0.1 < r(h−1Mpc) < 16. This value of r0 was similar to the value obtained
from the LCRS result of Tucker et al. (1997). Zehavi et al. (2002) then used an updated
catalogue from SDSS which contained 118,149 galaxies to calculate the real-space two-point
correlation function and obtained a value of:

ξ(r) = ( r

5.77 h−1Mpc
)−1.80 (3.18)

Thus the main discovery from the analysis of the galaxy-galaxy two-point correlation
function was that it described the deviation of the galaxy distribution from homogeneity and
that it scales as a simple power-law over certain range of scales.

The luminosity dependence of the galaxy correlation as shown by Benoist et al. (1996)
using the galaxies from the SSRS2 sample was tested by Zehavi et al. (2005) on the SDSS
catalogue using a sample of ∼200,000 galaxies observed over 2500 deg2. Zehavi et al. (2005)
studied the luminosity and colour dependence of the galaxy two-point correlation function.
Volume-limited samples of specified luminosity ranges were used for which the projected
correlation function wp(rp) (directly related to the real-space correlation function ξ(r) as
we will see in detail in Chapter 6) was calculated. It was found out that the amplitude of
wp(rp) increased continuously with luminosity form Mr ≈ −17.5 to Mr ≈ −22.5 with the
most rapid increase occurring above the characteristic luminosity L∗(Mr ≈ −20.5) as seen
in Figure 3.4. ξ(r) was approximated by a power-law (ξ(r) = (r/r0)γ) over the scales 0.1 <
rp(h−1Mpc) < 10 for the samples with Mr > −22 and they obtained values of γ ≈ 1.8 and
r0(L∗) ≈ 5.0 h−1Mpc.

Zehavi et al. (2005) divided the galaxies by colour and found out that red galaxies have
stronger clustering, steeper correlation functions at small scales, and much stronger “Fingers
of God” redshift-space distortions. The correlation functions for the red galaxies were found
to follow closely a power-law with γ ≈ 1.8. The blue galaxies on the other hand in luminosity-
bin samples had correlation functions close to a power-law with γ ≈ 1.7, with amplitudes that
increased with luminosity. The findings of Zehavi et al. (2005) that clustering increases with
luminosity most markedly above L∗, agreed with previous studies by Loveday et al. (1995);
Benoist et al. (1996).
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Figure 3.5: On top: The angular correlation function of a sub-sample (D≤ 4) of Abell clusters
and Bottom: the same for the D = 5+6 sub-sample as calculated by Bahcall and Soneira
(Bahcall and Soneira, 1983). It can be seen that the angular correlation function reaches
unity at θ ∼ 3○ in the top plot and at θ ∼ 0.8○ in the bottom plot.

3.4 Cluster correlation function, a brief review: Angular

and spatial correlations

One of the prominent studies of angular clustering of Abell clusters was done by Bahcall and
Soneira (1983) and Klypin and Kopylov (1983). The angular two-point correlation function
was measured for a total of 104 clusters that were determined from a complete redshift sample
to distance class D ≤ 4 (z ≲ 0.1) and were tested against a deeper and larger sample at
D = 5 + 6 (1574 clusters). One of the results obtained by Bahcall and Soneira (1983) is
shown in Figure 3.5, where it can be seen that the angular correlation function reaches unity
at θ ∼ 3○ extending with weaker correlations at θ ∼ 25○.

As more and more redshift information were becoming available, for the first time it
became possible to calculate the distances to galaxy clusters (although they had errors asso-
ciated) and in turn, measure directly the spatial correlation function instead of inverting the



64 Chapter 3. Galaxy and cluster clustering

Figure 3.6: The spatial correlation function of a sub-sample (D≤ 4) of Abell clusters as
calculated by Bahcall and Soneira (Bahcall and Soneira, 1983). It can be seen that the spatial
correlation function reaches unity at r ≈ 25 h−1Mpc. Strong correlations are observed at all
separations below r ≤ 25 h−1Mpc and above r > 50 h−1Mpc, they weaken.

angular correlation function by using the Limber’s equation. Bahcall and Soneira (1983) and
Klypin and Kopylov (1983) used the redshift information available for the Abell clusters and
estimated the spatial correlation function. To get ξ(r) they made use of the Davis and Peebles
estimator. An ensemble average of 1000 random catalogues were constructed, each contain-
ing 104 clusters. The results obtained by Bahcall and Soneira (1983) are shown in Figure
3.6. Strong spatial clustering was observed for all separations below r ≤ 25 h−1Mpc and
the correlation length obtained from the power-law fit was around 25 h−1Mpc. The best-fit
power-law relation obtained was:

ξ(r) = ( r

25 h−1Mpc
)−1.8 , 5 ≲ r ≲ 150h−1Mpc (3.19)

This correlation length of 25 h−1Mpc and the slope of γ = 1.8 is considered to be the standard
value that is obtained for galaxy cluster catalogues compared to 5-10 h−1Mpc and a slope of
γ = 1.8 for galaxy catalogues. We will see in the forthcoming Sections, that the values we get
for our best-fit parameters obtained for the simulated cluster catalogue and also for observed
catalogues falls within this range. It can be seen from Figure 3.6 that up to a separation of
50 h−1Mpc, the correlation function followed a smooth power-law distribution above which
it starts to deviate from it. Bahcall and Soniera concluded that if these weak correlations
at larger separations were real, they should also be found in future large redshift sample of
clusters and this is exactly what we see today. But there still remained several important
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questions with regard to cluster-cluster correlation function that needed answering.

Figure 3.7: The two-point correlation function for the X-ray selected clusters from the RE-
FLEX survey (circles) and for the Las Campanas Galaxy Redshift survey (squares). The
solid and dashed lines are the expected results for an X-ray similar survey in a ΛCDM model
with different values for the cosmological parameters. Credits: Borgani and Guzzo (2001)

1. The Abell catalogue which was used for the analyses was a catalogue in which clusters
were identified by eye. So there was question as to whether the catalogue was free
from systematic biases.

2. If some of the less rich clusters were excluded from the sample, would we obtain a
different result for the correlation function?

The analogy between galaxy-galaxy clustering and cluster-cluster clustering is that both
their correlation functions follow a power-law of the same form (ξ(r) = (r/r0)−γ) with the
same slope γ ≈ 1.8. Borgani and Guzzo (2001) calculated and compared the correlation
function obtained from X-ray clusters and optically identified galaxies, the results of the same
are shown in Figure 3.7. The similarity in the slope for both the galaxy catalogue and the
cluster catalogue can be clearly seen up to scale of ≈ 50 h−1Mpc. The reason for the higher
amplitude of the cluster correlation function compared to the galaxy correlation function
was inferred as a consequence of the fact that more massive haloes correspond to higher and
rarer density fluctuations, which have a higher correlation amplitude (Kaiser, 1984). Galaxy
clusters are associated to the most massive virialised dark matter haloes and as a consequence
their correlation function is strongly amplified.
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Figure 3.8: The spatial two-point correlation function (filled circles) in red- shift space for
the Abell R = 0 richness sample (right-hand panel) and APM richness sample (left-hand
panel) as measured by Basilakos and Plionis (2004). The error bars are estimated using the
bootstrap procedure. The dashed lines represent the best-fitting power law as mentioned in
Equation 3.13. Credits: Basilakos and Plionis (2004)

A good alternative to the Abell cluster catalogue was not available until the early 1990s.
There were several cluster surveys such as the APM cluster catalogue and 2dFGRS (Colless
et al., 2001) which provided possible alternatives. But it was after the advent of the SDSS
(Koester et al., 2007), and more measurements of the two-point correlation function of galaxy
clusters were measured. Here we highlight some of the prominent studies made on cluster-
clustering in the recent years.

One of the first studies of the clustering properties of the SDSS clusters using the two-
point correlation function was done by Basilakos and Plionis (2004). They made use of the
SDSS Cut and Enhance (CE) cluster catalogue (Goto et al., 2002), limited to a redshift range
of z < 0.3 and divided the sample into two richness subsamples corresponding to Abell R ≥ 0
and Automated Plate Measuring (APM) clusters respectively. They used the power-law as
mentioned in Equation 3.13 to model the correlation function and calculated it using the
Hamilton estimator. The ξ(r) as calculated by them is shown in Figure 3.8, and the best-fit
parameters obtained for the two subsamples were r0 = 20.7+4.0−3.8 h

−1Mpc with γ = 1.6+0.4−0.4 and
r0 = 9.7+1.2−1.2 h

−1Mpc with γ = 2.0+0.7−0.5 respectively. The results obtained were consistent with
the dependence of the cluster richness on the correlation length.
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Figure 3.9: Data points show the cluster correlation function in photo-z space measured for
the four richness samples in bins of width ∆r = 5 h−1Mpc, with jackknife errors. Dotted red
curves show inferred power-law ξcc(r) in real-space, assuming σz = 0.01. Solid red curves
show best-fit power-law models convolved with the photo-z error distribution, ξ̃cc(r), which
should match the data. Dashed blue curves show power-law fits to the data assuming no
photo-z error correction, σz = 0. Credits: Estrada et al. (2009)

They also went on to compare the correlation function with the predictions of three spa-
tially flat quintessence models (ΩM = 0.3) and estimated the cluster redshift-space distortion
parameter K(β) (refer to Basilakos and Plionis (2004) for more details). They concluded
that the amplitude of the cluster redshift correlation function increases by ∼12-26%.

A similar study of the two-point correlation function of optically selected galaxy clusters
in the SDSS was made by Estrada et al. (2009). They made use of the clusters selected from
the MaxBCG cluster catalogue, within a redshift range of 0.1 < z < 0.3 and divided the
sample into several richness cuts. A similar modelling of the correlation function as done
by Basilakos and Plionis (2004) was used. Since the clusters redshifts in the sample selected
were estimated photometrically, a model of the observed correlation function to include the
impact of photo-z errors was proposed. Specifically they found out that a geometric smearing
approach (refer to Estrada et al. (2009) for more details) removed significantly the impact of
the photo-z errors. We show in Figure 3.9 the ξ(r) obtained for four arbitrary richness cut
samples along with the best-fit performed by Estrada et al. (2009). The values of the best-fit
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Table 3.1: Power-law fits to the cluster correlation function on scales r = 20−60 h−2Mpc for
thee values of photo-z error variance, σz = 0.01,0.007 and 0. Credits: Estrada et al. (2009)

parameters obtained for the richness cut samples with different photometric uncertainties is
given in Table 3.1.

The r0 − d relation of the cluster samples from the MaxBCG cluster catalogue was also
calculated by Estrada et al. (2009) and they found out that the results obtained were consis-
tent with that predicted in N -body simulations of ΛCDM (Younger et al., 2005), but with a
slightly higher value (10-15%) of r0 at a fixed d.

Using the photometric data of the SDSS DR6 and clusters identified by Wen et al. (2009),
Hong et al. (2012) went on to calculate the two-point correlation function of 13,904 clusters
selected from the catalogue within z ≤ 0.4. Hong et al. (2012) used the same power-law as
used by Estrada et al. (2009) to fit the correlation function within scales of 10h−1 Mpc ≤ r ≤
50h−1 Mpc. They obtained values of r0 = 18.84 ± 0.27 h−1Mpc for clusters with a richness
cut of R ≥ 15 and a smaller value of r0 = 16.15 ± 0.13 h−1Mpc for clusters with a richness
cut of R ≥ 5. The slope of γ = 2.1 was obtained for both the samples.

More recently, Sereno et al. (2015), used the data from SDSS-III DR8 by (Wen et al.,
2012) containing 132684 clusters that were optically selected. Richness samples defined
using the total r−band luminosity within R200 were used to calculate the dependence of the
two-point correlation function on richness. Sereno et al. (2015) find a clear increase in the
correlation function with increasing richness.

It can be seen that there has been significant improvement in the cluster catalogues used
from 2004 until now. The number of clusters detected, the sky coverage of the survey, the
depth of the survey in terms of redshift and also in terms of magnitude limits has increased.
Future cluster surveys such as LSST and Euclid are aimed at detecting large number of clus-
ters with a large sky coverage and it has been shown by Sartoris et al. (2016) that the figure
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of merit significantly increases when adding cluster clustering information.





Chapter 4

Cosmology using galaxy clusters
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Galaxy clusters are the latest objects to have been formed in the formation of cosmologi-
cal structures and provide information on the growth history of structures and the underlying
cosmological models in many ways (see Allen et al., 2011; Hong et al., 2012; Sartoris et al.,
2016, and references therein). The number counts and the spatial distribution of these objects
have a strong dependence on many cosmological parameters, especially the matter density
parameter ΩM and the amplitude of the mass power spectrum. By studying the redshift evo-
lution of the number counts of clusters and the two-point correlation function one can obtain
constraints on the Cold Dark Matter (CDM) and Dark Energy density parameters (Allen
et al., 2011; Sartoris et al., 2016). Here we briefly explain the several ways in which clusters
on the whole can be utilised for cosmological parameter studies.

4.1 Using the brightest central galaxies as standard candles

In the past, brightest cluster galaxies have been used as “standard candles” to measure H0

and also the traditionally called “deceleration” parameter q0. It was named deceleration pa-
rameter because at the time of definition it was thought that the Universe was slowing down
and q0 was believed to be positive. But it has been found to be negative, which implies that
the Universe is accelerating. It is defined as:

q0 = − äa
ȧ2

(4.1)

where a is the scale factor which is a function of time, i.e a(t). This gives us ȧ to be the
first derivative of the scale factor and ä to be the second derivative of the scale factor. The
deceleration parameter can also be written in terms of ΩM and ΩΛ as:
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Figure 4.1: Hubble diagram for the data from Abell clusters with the x-axis denoting apparent
magnitude and the y-axis denoting redshift, both in logarithmic scales. A formal value of
q0 = −0.55 was obtained with an error of σq0 = 0.45. Credits: Hoessel et al. (1980).

q0 = ΩM

2
−ΩΛ (4.2)

Hoessel et al. (1980) analysed Abell clusters using photometric observations in the green
and red passbands of the photometric system of Thuan and Gunn (1976). They obtained the
redshifts and the apparent magnitudes for each cluster and derived the redshift-apparent mag-
nitude diagram (shown in Figure 4.1) from which they inferred the value of the deceleration
parameter (q0).

From their studies they obtained a value of q0 = −0.55, which implied that the Universe
is accelerating and that ΩΛ = ΩM/2+ 0.55, a positive value for ΩΛ. Their result is consistent
with what has been discovered with the Supernovae Ia, but as the authors themselves noted,
the result was affected by uncertainties related to the luminosity evolution of BCGs, and
therefore it was not considered as a robust evidence for acceleration.

The global Hubble flow linearity was demonstrated later by Lauer and Postman (1992)
using 114 BCGs from a full-sky sample of all Abell clusters within 15,000 km s−1. They
found out that the BCG Hubble diagram was consistent with a uniform Hubble flow over the
redshift range 0.01 ≤ z ≤ 0.05. But it was shown by Strauss et al. (1995) that none of the
leading models of structure formation that were consistent with other measures of large-scale
power could reproduce the result obtained by Lauer and Postman (1992).

Later the studies by Riess et al. (1995) (using SNIa) and Giovanelli et al. (1996) (using
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the Tully-Fisher relation) suggested that the bulk motion on smaller scales that probed by the
BCGs was inconsistent with the bulk flow as measured by Lauer and Postman (1992) at high
levels. Thus the usage of BCGs as a distance indicator does not provide tight constraints and
so remains controversial.

4.2 Mass function of galaxy clusters

Figure 4.2: The mass function of galaxy clusters observed in both optical and X-ray, com-
pared with CDM simulations with different values for the ΩM parameter, as performed by
Bahcall and Cen (1992).

The mass function of galaxy clusters, which is given by the number density of clusters
as a function of their mass and a given redshift, can also be studied and compared with the
different models of the ΛCDM framework to constrain the different cosmological parameters
(Bahcall and Cen, 1992). If we can get a precise estimate of the cluster mass function and
the evolution with redshift, tight constraints on cosmology can be performed.

One of the first studies that calculated the cluster mass function from observations (both
in optical and X-ray) and compared them to CDM simulations was done by Bahcall and Cen
(1992) and their results are shown in Figure 4.2. The optically selected cluster masses were
derived from richness, velocity and luminosity whereas the X-ray selected cluster masses
were derived from temperature. The mass function for the CDM simulations for different
cosmological parameters were then compared with the observed mass function and the ΩM =
1 model failed to reproduce it. On the other hand, the low-density ΩM = 0.25,0.35 models
were consistent with the observations quite well. and fitted the observations quite well.

More recently the mass function of galaxy clusters was analysed by Vikhlinin et al.
(2009) for the Chandra observations of clusters detected in the X-ray wavelength by ROSAT.
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Figure 4.3: Illustration of the sensitivity of the cluster mass function to the cosmological
model. The left panel shows the measured mass function and model predictions (with nor-
malization at z = 0) computed for a cosmology which is close to the best-fit model is shown.
For the high-z cluster only the most distant sub-sample (z > 0.55) is shown to better illustrate
the effects. In the right panel, both the data and the models are computed for a cosmology
with ΩΛ = 0. In this case, the predicted number density of z > 0.55 clusters is in strong
disagreement with the data. Credits: Vikhlinin et al. (2009)

Vikhlinin et al. (2009) used a low-redshift sample that included 49 high-flux clusters at Galac-
tic latitudes ∣b∣ > 20○ and z > 0.025 (effective depth of the sample being z < 0.15) and a
high-redshift sample that included 37 z > 0.35 clusters with a redshift depth of z ≈ 0.9. The
estimated mass function was then compared with different cosmological models with vary-
ing ΩΛ parameter as shown in Figure 4.3. They made used of the Tinker et al. (2008) mass
function to obtain the corresponding best-fit line. The results obtained from their analysis
confirmed the high ΩΛ model. It can be seen from the right panel of the figure that when ΩΛ

is set to 0, the theoretical model significantly underpredicts the evolution of the mass func-
tion. Larger samples of clusters at different redshift and more precise measurements of their
mass have been proving to be an important tool for cosmology (Hong et al., 2012; Sartoris
et al., 2016).

4.3 Galaxy cluster counts

Theoretical approach: The abundance of clusters and their evolution are sensitive toΩM , σ8

and the dark energy equation of state parameterw. Large scale surveys detect several millions
of galaxies at different redshifts. We show a plot of the sample size of clusters detected in
several completed and ongoing surveys in Figure 4.4, and the sample size is expected to
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Figure 4.4: Yields from modern surveys of clusters used for cosmological studies are shown,
with symbol size proportional to median redshift. Samples selected at optical (gray filled
circles), X-ray (red squares), and millimeter (blue triangles) wavelengths. Stars and horizon-
tal lines (purple) show full sky counts of haloes expected in the reference CDM cosmology
with masses above 1015 and 1014 M⊙. Such halo samples have median redshifts of 0.4 and
0.8, respectively. Credits: Allen et al. (2011)

increase in the upcoming cluster surveys.
The comoving number of clusters within a redshift interval [z1, z2] with a mass cut of

M >M0 is given by:

N = ∫ z2

z1

dz
dV (z)
dz

N(M >M0, z) (4.3)

where the volume element is:

V (z) = 4π∫ z

0
dz

′ d2L(z′)(1 + z′)2H(z′) (4.4)

and dL is the luminosity distance:

dL(z) = (1 + z)∫ z

0

dz
′

H(z′) (4.5)

where H(z) is the Hubble parameter and so can be compared with different values of the
cosmological parameters.
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Optical surveys make use of the richness mass proxy as we have described in Section
2.1. Predictions of the number of observed galaxies can be made given an observed richness
N obs

gal using probability distributions. The average number density of a cluster within a given
richness range [N obs

gal,1,N
obs
gal,2] is given by:

ni = ∫ Nobs
gal,2

Nobs
gal,1

dlnN obs
gal ∫ dlnNgal

dn

dlnNgal

p (N obs
gal ∣Ngal) (4.6)

where p (N obs
gal ∣Ngal) refers to the probability of N obs

gal given the richness Ngal.
As we have seen in Equation 1.58, the mass function depends on the mean matter density

of the Universe and also on the σ parameter which is the variance of the linear matter density
field. Similar to Equation 1.58 where the differential was in terms of massM , we can re-write
it in terms of richness Ngal as:

dn

dlnNgal

= dn

dlnM
dlnM
dlnNgal

= αN

dn

dlnM
(4.7)

Figure 4.5: MaxBCG cluster counts data (black points) as function of richness and theoretical
predictions according to the prescriptions of Equations 4.6 to 4.8 for a choice of different
cosmologies (without primordial non-Gaussianity). The red line represents the best-fitting
model to the full data set (counts, total masses and power spectrum) Credits: Mana et al.
(2013)

The total number of predicted galaxies within a given richness bin can be calculated as:

∆Ni =∆Ω∫ zmax

zmin

dz
d2V

dzdΩ
ni (4.8)
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Figure 4.6: Comparison of constraints from the CMB to those from the cluster counts in the
(ΩM − σ8 )-plane. Credits: Planck Collaboration et al. (2015)

where ∆Ω is the sky coverage and d2V /dzdΩ is the volume element and the cosmology
dependence is given by this comoving volume element.
Observations on cluster surveys: We show an example of the MaxBCG cluster counts and
their corresponding theoretical predictions of Tinker et al. (2008) with different cosmological
models as obtained by Mana et al. (2013) in Figure 4.5. It can be seen from Figure 4.5 that
the theoretical mass function of Tinker et al. (2008) follows the observed cluster counts.

Another approach towards galaxy cluster counts comes via observing a catalogue of clus-
ters detected using the SZ effect. The Planck Collaboration et al. (2015) used a dataset of
493 clusters and made use of both the redshift information and the signal-to-noise ratio to
constrain the cosmological parameters from cluster counts. The constraints on the ΩM − σ8

plane obtained by Planck Collaboration et al. (2015) is shown in Figure 4.6. The green, blue
and violet contours give the cluster constraints (two-dimensional likelihood) at 1 and 2σ for
the WtG, CCCP, and CMB lensing mass calibrations, respectively. Constraints from the
Planck TT, TE, EE+lowP CMB likelihood (Planck primary CMB) are shown as the dashed
contours enclosing 1 and 2σ confidence regions, while the grey shaded region also include
BAO. The red contours give results from a joint analysis of the cluster counts, primary CMB
and the Planck lensing power spectrum (Planck Collaboration XV 2015), leaving the mass
bias parameter free and α constrained by the X-ray prior. It can be seen from Figure 4.6
that depending on the mass bias 1 prior, there is varying degrees of tension with the primary

1Here the mass bias parameter is the bias on the mass which comes based on the assumption of hydrostatic
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Figure 4.7: Constraints at the 68% confidence limits on the parametersΩM and σ8 (left panel)
and on the parametersw0 andwa for the dark energy equation-of-state evolution (right panel).
In each panel, forecasts for theN500,c/σfield ≥ 3 Euclid photometric cluster selection obtained
by (i) number counts (NC), the fisher matrix number counts (red dash-dotted contours), (ii)
number counts + power-spectrum, the combination of fisher matrix number counts and power
spectrum (PS) information (blue dotted contours), (iii) NC+PS+known scaling relation (SR),
i.e. by additionally assuming a perfect knowledge of the nuisance parameters (green dash-
dotted contours), and (iv) NC+PS+known SR+Planck prior, i.e. by also adding information
from Planck CMB data (magenta solid contours). With cyan solid lines we show forecasts
for the N500,c/σfield ≥ 5 (M200 > 8 × 1013) Euclid photometric cluster selection in the case
NC+PS+known SR+Planck prior (labelled 5σ). Planck information includes prior onΛCDM
parameters and the dark energy equation-of-state parameters. Credits: Sartoris et al. (2016)

CMB. The mass bias required for the cluster counts to agree with the CMB is larger than
indicated by any of the three priors. The WtG prior is in close agreement with the CMB,
but both the CCCP and CMB lensing priors remain in noticeable tension. So as we have
seen from Equations 4.3 to 4.5 the dependence of the volume element on the redshift and in
turn on H(z) via the luminosity distance can be made use of to constrain the cosmological
parameters.

Future surveys such as LSST (LSST Dark Energy Science Collaboration, 2012) and Eu-
clid (Laureijs et al., 2011) will not only be probing high redshift ranges but will also be
detecting a large number of objects at these redshifts. For example the Euclid survey will be
detecting ∼ 4 × 105 clusters with a mass cut of M200 > 8 × 1013 h−1M⊙ at redshifts z ≥ 1

and the number rises to ∼ 2 × 106 clusters at all redshifts (Sartoris et al., 2016). Euclid is

equilibrium of the intra cluster gas. The bias parameter has been varied in the range of 0-30% with a baseline
value of 20% (Planck Collaboration et al., 2015)
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expected to be on the top right corner of Figure 4.4 in terms of sample size. Sartoris et al.
(2016) predicted the constraints that can be expected from the Euclid survey on theΩM ,σ8,w0

and wa parameters using the number counts, power-spectrum and scaling relations of galaxy
clusters. We show in Figure 4.7 the 1σ error ellipse for the above four parameters as obtained
by Sartoris et al. (2016). It can be seen that just by using the number counts alone, one can
get values of ΩM = 0.32 ± 0.015, σ8 = 0.83 ± 0.01, w0 = −1 ± 0.01 and wa = 0 ± 1. When
the information from power spectrum along with the known scaling relations are added, the
error on the parameters reduce drastically.

4.4 Combining clustering with number counts: Self-

calibration approach

The potential of using galaxy clusters to constrain cosmology can only be realised if we know
information about the redshift distribution and also the estimate of the cluster masses. Cluster
masses are not directly observed, and one has to rely on observational quantities such as X-
ray temperature, weak-lensing shear or other such signals. Relying on these observable mass
tracers introduces systematic errors in the analysis (Rozo et al., 2010). To overcome these
difficulties, one can either reduce these systematic errors through follow-up observations of
a few clusters or use the information from the clustering of clusters and cluster abundance.
The latter is a self-calibration approach, i.e. the survey containing enough information to
solve for the mass-observable relation at every redshift (Majumdar and Mohr, 2004).

Cosmological constraints on the dark energy equation-of-state parameter w, mass den-
sity parameter ΩM and the σ8 parameter along with the uncertainties expected on them when
measured using a self-calibration approach was first shown by Majumdar and Mohr (2004).
They made use of the redshift-averaged power spectrum P cl(k) (the two-point correlation
function ξ(r) is the Fourier transform of the power spectrum), derived from the correlated
positions of galaxy clusters to tighten the constraints on these cosmological parameters. As
constraints obtained from power spectrum alone are weaker when compared to the constraints
obtained from the cluster redshift distribution (dN/dz), they combined the two along with
follow-up observations and showed that the uncertainties on the three cosmological param-
eters (w, ΩM and σ8) could be reduced. Their results were based on models for the DUET
X-ray survey (Jahoda and DUET Collaboration, 2003) and two SZ effect surveys, i.e. the
SPT (Ruhl et al., 2004) and Planck (Planck Collaboration et al., 2011).

For the X-ray survey, the mass-observable relation was taken to be the flux-mass relation
(refer to Majumdar and Mohr (2004) for a detailed description) and for the SZ survey, the
mass-observable relation was taken to be the SZ flux-mass relation. As clusters are highly
biased tracers of the underlying matter distribution, the cluster power spectrum is given by:

Pcl(k, z) = b2effP (k, z) (4.9)

where P (k, z) is the matter power spectrum and beff is the effective bias. The cluster mass
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function dn/dM was obtained from N−body simulations based on the approach of Sheth
and Tormen (1999) and Jenkins et al. (2001). The cluster power spectrum over a wide range
of redshift (zmin-zmax) is given by:

P cl(k) = ∫ zmax

zmin
dz(dV /dz)n2(z)Pcl(k, z)
∫ zmax

zmin
dz(dV /dz)n2(z) (4.10)

Thus P cl(k) depends not only on cosmology but also on the specific survey that determines
the redshift dependence of the clusters. Majumdar and Mohr (2004) made use of a Fisher
matrix technique to probe the relative sensitivities of cluster surveys to different cosmological
and structural parameters. According to Tegmark (1997) the Fisher matrix information for a
data set is defined as:

Fij = −⟨(∂2lnL /∂pi∂pj)⟩ (4.11)

where L is the likelihood for an observable and pi describes the parameter set. The inverse
of Fij , i.e. F −1ij describes the covariance matrix Cij and the uncertainties on each of the
parameters are given by the diagonal elements ofCij . Majumdar and Mohr (2004) calculated
the final Fisher matrix taking into account the cluster redshift distribution (F s

ij), the cluster

power spectrum F
p
ij and the follow-up observations (F f

ij) and the priors. For the follow-up
information, they made use of deep X-ray studies of clusters by summing up over 100 clusters
within the redshift range 0.3 < z < 1.2 and mass range 1014 − 1015 h−1M⊙. Majumdar and
Mohr (2004) used a fiducial cosmological model adopted from Spergel et al. (2003) and this
model resulted in ∼22,000 detected clusters for the DUET X-ray survey, ∼29,000 clusters for
SPT and ∼21,000 clusters for the Planck survey.

The power-spectrum was calculated by dividing the survey into three redshift bins, with
equal number of clusters in each bin and they categorised their estimates based on two ap-
proaches. Those cluster surveys that assumed full knowledge of the structure evolution and
only addressed the sensitivity of the cluster survey to the cosmological parameters were
named “Only Cosmology”. Those surveys that did not assume knowledge of structure and let
the survey solve for both cosmology and cluster scaling parameters were named “Standard
Evolution”. The results obtained by Majumdar and Mohr (2004) are shown in Table 4.1 and
Figure 4.8.

They concluded that by adding information from the redshift-averaged cluster power
spectrum with cluster counts would help in reducing the constraints by up to a factor of
∼4. Mass follow-up observations of more than 100 clusters could help tighten the constraints
along with the combination of P cl(k) and dN/dz. They achieved a ∼4% constraint on the
dark energy equation-of-state parameter w for the two SZ surveys used. This was a factor of
2.5 better than the constraints given by Spergel et al. (2003) and they emphasised that it was
because of the self-calibration approach, in which the cluster mass-observable relation and
its evolution are taken directly from the survey, along with follow-up observations.

The self-calibration approach was later used by Wang et al. (2004), who also followed a
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Table 4.1: The 1σ parameter uncertainty on w, ΩM and σ8 estimated separately using the
P cl(k) and dN/dz along with the same by combining them with follow-up observations.
Credits: Majumdar and Mohr (2004)

similar Fished matrix approach. They included constraints possible from LSST-like surveys
along with SPT. They concluded that dN/dz alone could provide constraints that were bet-
ter than those obtained from a high precision CMB survey such as Planck. They however
assumed perfect knowledge of the mass-observable relation, i.e. used the clusters as “stan-
dard candles”. But they showed that even after allowing for uncertainty in cluster evolution
and structure, and using the self-calibration approach, the errors on w were still comparably
respectable with Planck. The combination of the power spectrum along with cluster counts
(dN/dz) derived from a LSST-like survey reduced the uncertainty on w by a factor of ∼2.

After the advent of SDSS, and the announcement of surveys like DES and LSST, there
were works using the self-calibration approach on cluster surveys to also find out the ef-
fects of combining cluster counts with shear-shear correlations from weak lensing (Fang and
Haiman, 2007), halo bias in cluster surveys (Wu et al., 2008) and cluster counts as a probe of
primordial Non-Gaussianity (Oguri, 2009). More recently, Lacasa and Rosenfeld (2016) em-
ployed the Halo Occupation Distribution (HOD) model and used the Fisher matrix technique
to examine the prospects of combining cluster number counts with angular power spectrum.
They found out that the combination gave improvements of the order ∼20% on cosmologi-
cal parameters compared to the single cosmological probe and also better improvements on
HOD parameters.
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Figure 4.8: Constraints on w and ΩM for an SPT SZE survey (top), a Planck SZE survey
(middle) and a DUET X-ray survey (bottom). Contours denote joint 1σ constraints in five
scenarios: (1) dN/dz for the only-cosmology case (dotted line), (2) dN/dz for the self-
calibration case (long-dashed line), (3) dN/dz + P cl(k) (dot-dashed line), (4) dN/dz + 100
cluster follow-up (short-dashed line), and (5) dN/dz +P cl(k) + 100 cluster follow-up (solid
line). A flat Universe is assumed for all cases. Credits: Majumdar and Mohr (2004)

4.5 Cosmology using baryon acoustic oscillations (BAO)

Clusters are not just massive and rare objects in the Universe, but are also excellent trac-
ers of the large-scale structure. Thus by studying their clustering properties one can derive
more constraints on cosmological parameters as it has been demonstrated by many recent
studies (Governato et al., 1999; Bahcall et al., 2003; Estrada et al., 2009; Hong et al., 2012;
Veropalumbo et al., 2014). Specifically in calculating the two-point correlation function in
large scale surveys, we can detect the Baryon Acoustic Oscillation (BAO) peak. As baryons
represent only a small fraction of the total Universe, to detect the BAO feature we not only
need precision but also coverage of large area of the sky so that we can detect large abun-
dances of clusters. One of the primary advantages of using BAO to constrain cosmological
parameters is that at the low-redshift regime it is not affected by systematic uncertainties, it’s
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Table 4.2: Summary of the cosmological parameters obtained by fitting the calibrated BAO
distance DV and the uncalibrated BAO distance dz. Priors used in the fitting procedures are
also reported. Credits: Veropalumbo et al. (2016)

affected only by statistical uncertainties (Weinberg et al., 2013). The sound horizon of the
BAO oscillation is given by:

rs = ∫ ∞

zdrag

cs(z)
H(z)dz (4.12)

where zdrag is the redshift at which the influence of the Compton drag from photons no
longer affects the baryons and cs = c/√3(1 +R) is the sound speed where R = 3ρb/4ργ
(ρb →baryon momentum density and ργ →photon momentum density). This typical length
scale of the sound horizon is around rs = 150Mpc, i.e. the maximum distance a sound wave
can travel before decoupling 2 given its sound speed. Eisenstein et al. (2005) first detected the
BAO signal (∼ 3.4σ) at a scale of r ∼ 100 h−1Mpc by calculating the two-point correlation
function of Luminous Red Galaxies (LRGs) detected in the SDSS.

To get the exact best-fit parameters, the two-point correlation function is fitted through
the following approximation as followed by Anderson et al. (2012):

ξ(r) = B2ξDM(αr) +A0 + A1

r
+ A2

r2
(4.13)

where ξDM(r) is the dark matter two-point correlation function, B is the bias (described in
detail in Section 1.8), α is the main parameter that contains the distance information, A0,A1

and A2 are the parameters of an additive polynomial that are used to overcome systematics
coming from signals that are not fully taken into account. The distance constraint is entirely
given by the α parameter seen in Equation 4.13 and it can be written in terms of the volume
distance DV (z) as:

DV (z̄) = αDfid
V (z̄)( rs

r
fid
s

) Mpc (4.14)

2It refers to the period when all the different types of particles fall out of thermal equilibrium as a result of
the expansion of the Universe.
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Figure 4.9: Likelihood contours for the best fit as ΩMh2 = 0.093 and Dν(0.276) = 1077Mpc
as a function ofDν(zm = 0.276) andΩMh2 (left), and the likelihood contours for h andΩMh2

(right). From the inner to the outer, contours corresponding to 1σ, 2σ and 3σ respectively.
Credits: Hong et al. (2012)

where DV (z̄) is the isotropic volume distance at the mean redshift z̄, Dfid
V (z̄) is the volume

distance at the given fiducial cosmology, rs and r
fid
s are the true and fiducial sound horizon

respectively. The volume distance DV (z̄) can be written as:

DV (z) = [(1 + z)2D2
A(z) cz

H(z)] (4.15)

where DA(z) is the angular diameter distance, c is the speed of light, H(z) is the Hubble
parameter at redshift z. These distance measurements described above can be used to derive
constraints on cosmological parameters as DV is a function of DA(z) and H(z) which in
turn depend on the comoving distance DC(z) = ∫ z

0
dz

′/H(z′) as seen from Equation 4.15.
Estrada et al. (2009) analysed cluster samples (13,823 clusters) derived from the SDSS

MaxBCG catalogue (Koester et al., 2007) which had a redshift range of 0.1 < z < 0.3. Since
the catalogue covered range of 7500 deg2 they also modelled the large-scale correlation func-
tion on scales r = 20 − 195 h−1Mpc using a non-linear model of the ΛCDM power spectrum
that included the effects of non-linear damping of the BAO peak. Non-linear damping was
combined along with the photo-z errors and so the detection of the BAO peak was not robust.
For the sample with richness cut N200 ≥ 10, the significance for the best-fit BAO model was
about 1.4 − 1.7σ.

Wen et al. (2009) published a cluster catalogue that had a total of 39,668 clusters detected
within the redshift range 0.05 < z < 0.6. Hong et al. (2012) made use of the cluster catalogue
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Figure 4.10: The redshift-space 2PCF of galaxy clusters, respectively Main-GCS (left panel),
LOWZ-CGS (central panel) and CMASS-CGS (right panel). The errorbars are computed
with the lognormal mock method. The dashed line shows the best-fit model from Eq. 6. The
shaded area represents the 68% posterior uncertainties provided by the MCMC analysis.
Credits: Veropalumbo et al. (2016)

of Wen et al. (2009), and from the entire sample, clusters with at least one member galaxy
for which the spectroscopic redshift was available were selected. Using the 3D spatial dis-
tribution of the clusters, ξ(r) was calculated for a final sample of 13,904 clusters in a sky
area of ∼7100 deg2. They made use of the Landy and Szalay estimator and modelled the
correlation function on small scales using the power-law mentioned in Equation 3.13. The
best-fit parameters obtained for fitting the ξ(r) within the range 10 ≤ r ≤ 50 h−1Mpc were
r0 = 18.84±0.27 h−1Mpc and γ = 2.08±0.07 (richness cutR ≥ 15); r0 = 16.58±0.13 h−1Mpc
and γ = 2.14 ± 0.04 (richness cut R ≥ 10) and r0 = 16.15 ± 0.13 h−1Mpc and γ = 2.11 ± 0.04
(richness cut R ≥ 5). The results obtained were consistent with previous works (Basilakos
and Plionis, 2004; Estrada et al., 2009).

The BAO peak was measured at r ∼ 110 h−1Mpc (1.9σ) which was then fitted with a
parametrised theoretical curve, determined by the physical matter density parameter ΩMh2,
the stretch factor s (refer to Hong et al. (2012) for more details) and the galaxy bias. Con-
straints were obtained with the values ΩMh2 = 0.093 ± 0.0077 (1σ), Dν(0.276) = 1077 ± 55
(1σ) which is the reduced distance at the mean redshift of the sample (similar to the volume
distance mentioned in Equation 4.15 , but without the (1 + z)2 term) and h = 0.73 ± 0.039
(1σ). We show the constraints obtained by Hong et al. (2012) on the parameters in Figure
4.9.

More recently Veropalumbo et al. (2016) made use of the largest spectroscopic samples
of galaxy clusters extracted from the SDSS at three median redshifts of z = 0.2 (Main GCS),
z = 0.3 (LOWZ GCS) and z = 0.5 (CMASS CGS) with 12910, 42215 and 11816 being the
number of objects respectively. The parent catalogue from which the clusters were extracted
was from Wen et al. (2012) which covered a sky area of 15000 deg2 in a redshift range of
0.05 < z < 0.8. The cluster identification was based on the friends-of-friends algorithm. To
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Figure 4.11: Comparison of the 1 − 2σ confidence contours in the ΩM −H0 plane between
our work (blue filled contours) and previous measurements from galaxy samples - WiggleZ
(red dot-dashed contours) and MGS+BOSS (green dashed contours). Credits: Veropalumbo
et al. (2016)

fit the BAO peak, the model as mentioned in Equation 4.13 was used, where the parameter
α contains the distance information. For extracting cosmological parameters from the BAO
peak, the BAO distance constraint as explained in Section 4.5, i.e. Equations 4.14 and 4.15
were used. Theα parameter obtained from the fit is dependant on the volume distanceDV (z)
which is dependant on the angular diameter distance DA(z) and H(z) which in turn depend
on the comoving distance DC(z). We show in Figure 4.10 the redshift-space ξ(s) for the
galaxy clusters in the three median redshifts. The constraints obtained on the parameters H0,
ΩM is shown in Figure 4.11 where a comparison is made with previous measurements from
WiggleZ galaxy sample and MGS+BOSS samples (refer to Veropalumbo et al. (2016) for
details about WiggleZ and MGS+BOSS BAO measurements).

The framework of next generation cluster surveys such as LSST (LSST Dark Energy
Science Collaboration, 2012) and Euclid (Laureijs et al., 2011) are aimed at detecting large
number of clusters with a sky coverage that will be large enough for the BAO feature to be
detected. Hence tight constraints on parameters such as ΩM , ΩΛ, H0 and w the dark en-
ergy equation of state parameter can be placed. We show in Table 4.2 the recent work done
by Veropalumbo et al. (2016) in placing constraints on these parameters using the study of
the BAO detection. It can be seen that the BAO-only constraints on ΩM and w are reason-
ably accurate enough to be directly compared with those from SNIa measurements, without
requiring an external constraint on the standard ruler scale rs from CMB anisotropy.
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5.1 Cosmological simulations

Alongside the observational surveys that were being prepared to understand the large-scale
structure formation, there were several attempts to create detailed simulations from the early
1970s and 1980s (Peebles, 1970; White, 1976) and were instrumental in testing the general
idea of gravitational instability as the driving process of cluster formation. The first simula-
tions of galaxy clusters which were following both the dark matter and baryon process were
carried out during the late 80s and early 90s (Evrard, 1988; Katz and White, 1993; Kang
et al., 1994; Navarro et al., 1995), which provided a means of understanding these complex
processes which occur on times scales which can span several billions of years. These simu-
lations were also used to study phenomena as small as galaxy collisions and galaxy evolution
and as large as the entire large-scale structure evolution of the Universe.

One of the most famous simulations that depicted the entire evolution of the Universe
was the Millennium Run (Lemson and Virgo Consortium, 2006) which adopted the ΛCDM
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cosmology. 1010 particles were used to follow the dark matter distribution in a cubic region
of 500 h−1Mpc on a side. The spatial resolution 1 of the simulation was 5 h−1kpc and around
107 galaxies more luminous than the Small Magellanic Cloud with detailed physics were
generated.

Figure 5.1: Time evolution of the formation of the most massive halo. From left to right:

100, 40, and 15 h−1Mpc (all in comoving units). From top to bottom: z = 6.2, 2.07, 0.99,
and 0.

Image credits: Millennium II simulation (2016)

1This meant that the simulation could clearly distinguish objects smaller than the Milky Way which has a
size of about 30 kpc.
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The Millennium simulation was run a second time in 2008, with the same cosmology
and same number of particles as the first run, but in a box which was 5 times smaller. By
reducing the size of the box, a resolution that was 125 times better compared to the first one
was achieved. This meant that by having simulations with different resolutions allowed one
to analyse a broader range of galaxy mass and redshift. One of the evolutions of the most
massive halo from the Millennium II run is shown in Figure 5.1. Starting from a redshift of
z = 6.2 the evolution is followed in redshift snapshots up to z = 0. It is clearly evident how
the initial density perturbations contribute to the gradual clustering of the haloes .

Observational probes such as the Cosmic Microwave Background, Type Ia supernovae,
gravitational lensing effects, quasars have provided tight constraints on the cosmological
model (Komatsu et al., 2009). This implies that the initial conditions which are needed for
cosmological simulations can be fixed more accurately compared to what was being done
several years ago. The main challenge however for cosmological simulations is to follow
both the dynamics of matter which is driven by the gravitational instability and also the
gas-dynamical processes affecting the evolution of cosmic baryons (Borgani and Kravtsov,
2011).

There is another aspect of a simulation that needs further discussion. It is whether the
simulation is dark matter only (DM-only) or whether the complex physical processes of
baryons and gas are taken into account. DM-only simulations have reached very large scales
including on the order of 1 trillion particles and the Millennium run is one such example.
In this thesis we use a DM-only N−body simulation to analyse the evolution of dark matter
haloes with mass and redshift. Current simulations like the Bolshoi (Klypin et al., 2011) and
Illustris (Vogelsberger et al., 2014) take into account also these components so that the sim-
ulations can provide a much detailed description of the evolution of the large-scale structure
of the Universe.

There can be many insights that one can infer from cosmological simulations depending
on the analysis being performed. For example, the evolution of large-scale structure with
both mass and redshift can be studied in detail. Precise knowledge of the evolution of galaxy
clusters directly denotes the constrain of cosmology as they are the most virialised structures
in the Universe. If the simulation spans a wide range of redshift along with more spatial
resolution, massive objects that are rare at high redshifts and also contribute to the evolution
of large-scale structure can be studied. Future observational surveys are going to reach a
redshift limit of z ≈ 2.0 and beyond with a sky coverage of around 10,000-15,000 deg2. So
results from these simulations can be directly compared with future observational data.

5.2 The simulation used in this thesis

We use a public light-cone constructed using a semi-analytic model of galaxy formation
(Merson et al., 2013) onto theN -body dark matter halo merger trees of the Millennium Simu-
lation, based on aΛCDM cosmological model with the following parameters: ΩM ,ΩΛ,Ωb, h =
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0.25,0.75,0.045,0.73 (Springel et al., 2005), corresponding to the first year results from the
Wilkinson Microwave Anisotropy Probe (Spergel et al., 2007). The Millennium simulation
was carried out using a modified version of the GADGET2 code (Springel, 2005). Haloes
in the simulation were resolved with a minimum of 20 particles, with a resolution of Mhalo

= 1.72×1010h−1M⊙. The groups of dark matter particles in each snapshot were identified
through a Friends-Of-Friends algorithm (FOF) following the method introduced by Davis
et al. (1985b). However, the algorithm was improved with respect to the original FOF, to
avoid those cases where the FOF algorithm merge groups connected for example by a bridge,
while they should be considered instead as separated haloes (Merson et al., 2013). A com-
parison between the masses obtained with this improved D-TREES algorithm, Mhalo, and
the classical MFOF , and their relation with M200, was done by Jiang et al. (2014), where it
is shown that at redshift z = 0 on average, Mhalo overestimates M200, but by a lower factor
with respect to MFOF : they found that only 5% of haloes have Mhalo/M200 > 1.5.

Figure 5.2: Schematic of a light-cone geometry. The Ẑ ′ axis defines the line-of-sight vector
of the observer. The angle θ

′

r defines the angular size of the field-of-view of the light-cone.
Any galaxy whose position vector, r⃗′(X,Y,Z) is offset from the Ẑ

′ axis by an angle θ′ > θ′r
is excluded from the light-cone. Image credits: Merson et al. (2013).

The results obtained by Jiang et al. (2014) on the masses are shown in Figure 5.3. How-
ever, when comparing the halo mass function of the simulation with that expected from the
Tinker et al. (2008) approximation, it appears that there is a dependence on redshift, and
beyond z ≈ 0.3 the Mhalo/M200 ratio becomes less than 1 (Mauro Roncarelli, private com-
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munication). This has to be taken into account in further analysis using the masses.

Figure 5.3: On left: Median percentiles 1,5,20,80 and 95 of the distribution of the mass
ratios between FoF halo mass, MFoF and virial mass M200 as a function of FoF halo mass.
On right: Same percentiles for the distribution of mass ratio between Dhalo mass, MDhalo

and M200 as a function of Dhalo mass. Image credits: (Jiang et al., 2014)

Galaxies were introduced in the light-cone using the Lagos 12 GALFORM model (Lagos
et al., 2012). The GALFORM model populates dark matter haloes with galaxies using a set of
differential equations to determine how the baryonic components are regulated by "subgrid"
physics. These physical processes are explained in detail in a series of papers: (Bower et al.,
2006; Font et al., 2008; Lagos et al., 2012; Merson et al., 2013; Guo et al., 2013; Gonzalez-
Perez et al., 2014). The area covered by the light-cone is 500 deg2; the final mock catalogue is
magnitude–limited to H = 24 (to mimic the Euclid completeness) with a maximum redshift
at z = 3. with halo masses in the range 13.0 < log10(Mhalo) < 15.0 ( h−1 M⊙).

For each galaxy the mock catalogue provides different quantities, such as the identifier
of the halo in which it resides, the magnitude in various passbands, right ascension and
declination, and the redshift, both cosmological and including peculiar velocities. For each
halo in the cluster mass range, the redshift was estimated as the mean of the redshifts of its
galaxies, while the central right ascension and declination were estimated as those of the
brightest cluster galaxy (BCG). We show the cosmological redshift distribution of all our
haloes (above the minimum mass cut of Mhalo > 1 × 1013 h−1M⊙ in Figure 5.4. It can be
seen that the distribution peaks at z ≃ 1.0 and the abundance of haloes decreases at z > 2.0.
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Figure 5.4: The cosmological redshift distribution of all the haloes in the simulation (above
the minimum mass cut of Mhalo > 1×1013 h−1M⊙). It can be seen that the distribution peaks
at z ≃ 1.0 and haloes are less abundant above z > 2.0.

.

5.3 Calculating the two-point correlation function: Cos-

mological redshift sample

When we have a simulated cluster catalogue, we are given with cosmological and “observed”
redshifts, i.e. including the peculiar velocities. We will also be identifying clusters to haloes
in this Chapter. In our case wherein simulated data is used, Equation 3.1 can be used to
compute the real-space correlation function as distances are calculated using the cosmo-
logical redshift. To measure the two-point correlation function for all our samples, we use
CosmoBolognaLib (Marulli et al., 2016), a large set of Open Source C++ libraries for cos-
mological calculations. 2

5.3.1 Creating the random catalogue

To measure the two-point correlation function ξ(r) we need to create a random catalogue 3.
There are two aspects of creating the random catalogue, i.e. the angular positions (RA and
DEC) and the redshift (z). To generate the RA and DEC, we simply generate random points
in the sky, but within the same geometrical limits as the data (cluster) catalogue.

For the redshift distribution, we generate a distribution that reproduces the data redshift

2More information about CosmoBolognaLib can be found at http://apps.difa.unibo.it/files/
people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html

3This is random in the sense that the points we create inside this catalogue have random right ascension and
declination, yet they follow the same redshift distribution as the data catalogue.

http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html
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Figure 5.5: The entire data redshift distribution (0.0 < z < 3.0) shown by the histogram
with the blue line specifying the distribution of the random catalogue we will be using for
calculating the two-point correlation function.

distribution, but does not follow the clustering fluctuations that exist. The random redshifts
follow only the global shape of the data distribution so that the real physical correlations of
pairs are washed out. We estimate it by smoothing the cluster redshift distribution through a
kernel density estimation method. The bandwidth of the kernel is carefully adjusted in order
to follow the global shape but not the clustering fluctuations in the redshift distribution. To
this aim we use a Gaussian kernel twice larger than the bin size, and sample the data in 30
redshift bins. Figure 5.5 shows the redshift distributions of the simulation and of the random
catalogue for the whole sample. The random catalogue is 10 times denser than the simulated
sample in order to minimize the effect of shot noise. This also makes sure that we do not
introduce any Poisson error in the estimate.

Each time, random catalogues following the same footprint and redshift selection func-
tion as the sub-sample to be analysed is generated and used to compute the correlation func-
tion.

Once we have our random RA, DEC and redshift, we convert it to Cartesian (X,Y,Z)
co-ordinates.

5.3.2 Error estimation

Errors are calculated from the covariance matrices using the jackknife resampling method
(see e.g. Zehavi et al. (2005); Norberg et al. (2011)). To perform a jackknife estimate we
divide the data into N equal subsamples and we calculate the two-point correlation function
omitting one sub-sample at a time. For k jackknife samples and i bins, the covariance matrix
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is then given by:

Cij = N − 1
N

N∑
k=1
(ξki − ξ̄i)(ξkj − ξ̄j) (5.1)

where ξ̄i is the average of the values obtained for bin i. We make use of N = 9 subsamples
in our calculation.

One can use Poisson errors, which are given by:

errPoisson = 1 + ξ(r)i
DD(i) (5.2)

where ξ(r)i is the two-point correlation function obtained in the ith bin and DD are the data-
data pairs in the ith bin. Poisson errors in general are easier to obtain compared to jackknife
errors as you can see that it is a straightforward process. But, Poisson errors tend to under
predict the errors in the case of the correlation function. This plays a major role when it
comes to the final fitting of the correlation function using Equation 3.13. If the errors are
under predicted then the best-fit parameters (r0 and γ) will be under predicted as well.

Another approach of dealing with error estimation is by using a Bayesian analysis, but
for this thesis all the errors computed have been done using jackknife resampling.

5.4 Redshift evolution of the correlation function

The spatial distribution of galaxy clusters and its evolution can be a first test of the cosmo-
logical model. In fact, the results obtained by Bahcall and Soneira (1983) about the strong
cluster correlations were one of the first evidences against the then standard ΩM = 1 SCDM
model. In this section we shall study the redshift evolution of ξ(r).

The redshift evolution of the cluster correlation function has been studied both obser-
vationally (Bahcall and Soneira, 1983; Huchra et al., 1990; Peacock and West, 1992; Croft
et al., 1997; Borgani et al., 1999), numerically (Bahcall et al., 2004; Younger et al., 2005) and
theoretically (Mo and White, 1996; Governato et al., 1999; Moscardini et al., 2000b; Sheth
et al., 2001). Two main results are prominent from these works, i.e.

1. The cluster correlation amplitude increases with redshift for both low- and high-mass
clusters.

2. The increase with redshift of the correlation amplitude is stronger for more massive
clusters compared to low mass ones.

Although the numerical and theoretical studies of galaxy clusters probe high redshift
ranges (even z ≈ 3.0), the observational surveys have not yet reached such progress. From
the SDSS data release III for example (Wen et al., 2012) clusters within the redshift range
0.05 < z < 0.8were identified and studied. Future large surveys are expected to probe the high
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Figure 5.6: The correlation functions for clusters with Mhalo > 5×1013 h−1 M⊙ in 6 different
redshift slices. The dashed lines show the corresponding power-law best-fits. The parameter
values for the fits can be found in Table 5.1.

redshift domain with good statistics. This will enable us to study the redshift evolution of
clustering on a large range of redshifts and provide independent cosmological tests (Younger
et al., 2005). In this section, we investigate the expected redshift evolution of the cluster
correlation function in the redshift range [0,2], assuming a concordant ΛCDM model and
using the light-cone catalogue detailed in Section 5.2.

The light-cone catalogue we have contains 443,726 clusters with a redshift range 0.0 <
z < 3.0 as seen from Figure 5.4 and a mass range of 1 × 1013 < Mhalo < 2 × 1015 h−1 M⊙.
For this particular analyses we will make a common mass cut of Mhalo > 5 × 1013 h−1M⊙
and split our samples into 6 redshift slices, 0.1 < zc < 0.4, 0.4 < zc < 0.7, up to 1.6 < zc <
2.1 (where zc refers to the cosmological redshift). Typical cluster masses are in the range
Mhalo ≈ 1 × 1013 h−1M⊙ to Mhalo ≈ 1 × 1015 h−1M⊙ (Bahcall, 1996). So by choosing an
intermediate mass cut of Mhalo > 5 × 1013 h−1M⊙, we allow ourselves to sample the redshift
range in several redshift bins with a sufficient number of clusters per bin. The reason we are
not probing beyond this redshift range although the redshift limit of the light-cone being 3.0
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is because of the number of clusters we have. With the given mass cut, the number of clusters
above zc > 2.1 is only 463 and errors become larger beyond zc > 2.1. The correlation function
starts to deviate from a power-law because of the poor statistics we have above zc > 2.1.

We apply Equation 3.5 for each of our samples and obtain the two-point correlation func-
tion at difference separations. We split the separations into 20 bins within a range of 5-50
Mpc and calculate ξ(r).

For each sub-sample, the correlation function is fitted by a power-law as mentioned in
Equation 3.13 leaving both r0 and γ as free parameters. The results of the fits can be vi-
sualised in Figure 5.6 and can be numerically seen in the second panel of Table 5.1 . The
number of objects, the values of the best-fit parameters obtained for the mass and redshift
limit of each sub-sample are given in the four panels of Table 5.1. A non-linear least squares
analysis is used to fit the set of observations with a model that is non-linear in n = 2 unknown
parameters (r0 and γ). The fit is performed in the range 5−50h−1 Mpc and the error bars are
obtained using the jackknife estimate method (see Section 5.3.2).
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Figure 5.7: The evolution of r0 and γ for clusters observed in different redshift slices and
with mass Mhalo > 5 × 1013 h−1 M⊙. The parameter values for the fits can be found in Table
5.1.
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Mass (h−1 M⊙) zc r0 γ r0 (γ = 2.0) Nclusters bias
Mhalo > 2 × 10

13
0.1 < zc < 0.4 9.89±0.20 1.76±0.05 9.53±0.29 10492 1.81±0.03

0.4 < zc < 0.7 10.22±0.14 1.84±0.04 10.01±0.17 27224 2.00±0.03

0.7 < zc < 1.0 11.10±0.15 1.87±0.04 10.85±0.17 35133 2.52±0.02

1.0 < zc < 1.3 11.62±0.23 1.98±0.05 11.58±0.19 31815 3.01±0.06

1.3 < zc < 1.6 12.41±0.42 2.13±0.09 12.49±0.52 22978 3.37±0.19

1.6 < zc < 2.1 14.78±0.21 2.06±0.05 14.78±0.22 18931 4.65±0.23

Mhalo > 5 × 10
13

0.1 < zc < 0.4 12.22±0.26 1.90±0.05 11.97±0.25 3210 2.21±0.05

0.4 < zc < 0.7 13.20±0.23 1.98±0.05 13.16±0.17 7301 2.62±0.13

0.7 < zc < 1.0 14.86±0.33 1.97±0.05 14.52±0.28 8128 3.38±0.22

1.0 < zc < 1.3 17.00±0.48 2.00±0.07 17.00±0.38 5963 4.38±0.19

1.3 < zc < 1.6 18.26±0.62 2.15±0.06 19.73±0.43 3365 5.29±0.31

1.6 < zc < 2.1 19.18±1.41 2.23±0.21 20.05±1.13 2258 6.21±0.62

Mhalo > 1 × 10
14

0.1 < zc < 0.4 14.60±0.35 1.93±0.06 14.33±0.24 1119 2.67±0.19

0.4 < zc < 0.7 17.26±0.96 1.90±0.08 16.35±0.42 2228 3.45±0.23

0.7 < zc < 1.0 18.93±1.18 2.08±0.12 19.55±0.75 2072 4.64±0.37

1.0 < zc < 1.3 22.36±1.90 2.11±0.17 23.33±1.30 1221 6.15±0.82

1.3 < zc < 1.6 26.09±4.10 2.28±0.30 28.96±3.17 590 7.64±2.50

Mhalo > 2 × 10
14

0.1 < zc < 0.4 19.98±1.92 1.95±0.22 19.73±1.22 322 3.98±0.38

0.4 < zc < 0.7 22.23±1.54 2.16±0.18 22.27±1.17 538 4.57±0.45

0.7 < zc < 1.0 24.65±1.89 2.19±0.29 25.28±1.68 407 6.01±1.63

Table 5.1: The best-fit values of the parameters of the real-space correlation function ξ(r)
for the light-cone at different (1) mass thresholds and (2) redshift ranges. For each sample
we quote (3) the correlation length r0, (4) slope γ, (5) correlation length r0 at fixed slope
γ = 2.0, (6) number of clusters Nclusters and (7) the bias b obtained.
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It can be seen that, starting from the low redshift sample (0.1 < zc < 0.4) the cluster
correlation amplitude increases up to the highest redshift sample (1.6 < zc < 2.1). The
power-law has a relatively stable slope varying between 1.9 and 2.1 between the 6 samples.
In the two highest redshift slices, however, the slope appears to be slightly higher, but the
variation is at the ∼ 2σ level for the 1.3 < zc < 1.6 sub-sample and at the ∼ 1σ level for
the 1.6 < zc < 2.1 sub-sample. On the average, γ ≈ 2.0, is close to the measured value for
both galaxy and cluster catalogues (Borgani and Guzzo, 2001) and our values are within this
limit. There is however a slight redshift dependence for γ as it can be seen that the last three
redshift samples have γ > 2.0 compared to the first three samples which have γ < 2.0 (see
Table 5.1).

The above effect can be visually seen in Figure 5.7 wherein we plot the two-best fit pa-
rameters. The correlation length starts to increase from 12.22 ± 0.26 to 14.86 ± 0.33 for the
0.1 < zc < 0.4 and 0.7 < zc < 1.0 sample which is an increase of 17.7%. The same increases
from 17.00±0.48 to 19.18±1.41 for the 1.0 < zc < 1.3 and 1.6 < zc < 2.1 sample respectively,
which is only a 12.8% increase.

On the contrary, the increase in the correlation length is systematic and statistically sig-
nificant. When we fix the slope at γ = 2.0, r0 is shown to increase from 11.97±0.25 h−1 Mpc
for the lowest redshift slice (0.1 < zc < 0.4), to 20.05 ± 1.13 h−1 Mpc for the highest redshift
slice (1.6 < zc < 2.1). Our results can be compared to Younger et al. (2005)(see their Figure
5), who obtained similar results for clusters identified in the high-resolution simulations of
Hopkins et al. (2005).

Using our simulations we have studied the redshift evolution of clusters with a mass
Mhalo > 5 × 1013 h−1M⊙ up to a redshift of z ≈ 2.1. Future surveys such as Euclid (Laureijs
et al., 2011) and LSST (LSST Dark Energy Science Collaboration, 2012) will be probing up
to these high redshifts and the ξ(r) calculated from the data gathered from these surveys can
be directly compared with our results.

5.5 Mass evolution of the correlation function

The clustering properties of clusters are not only expected to vary with redshift, but are also
expected to vary with mass. One has to rely on cluster mass proxies such as number counts,
cluster richness and other observables. Using cluster richness as a probable mass proxy in
particular will be dealt in in later sections.

Several studies were made to study this evolution of clustering with respect to mass (Gov-
ernato et al., 1999; Bahcall et al., 2004; Younger et al., 2005) and two main results are promi-
nent from the studies:

1. Cluster correlation amplitude increases with mass, both for low redshift and high red-
shift clusters

2. The increase with redshift of the correlation amplitude is stronger for more massive
clusters compared to less massive ones.
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Figure 5.8: The correlation functions for clusters with 0.4 < zc < 0.7 in 4 different mass
thresholds. The dashed lines show the corresponding power-law best-fits. The parameter
values for the fits can be found in Table 5.1.

All the above studies were primarily done using cosmological simulations. Future cluster
surveys such as LSST (LSST Dark Energy Science Collaboration, 2012) and EUCLID (Lau-
reijs et al., 2011) will be having the advantage of calculating the mass from weak-lensing
measurements and other methods. So a calculation of the mass evolution of the two-point
correlation function (also with redshift) is an important aspect of this study. Our results can
be directly compared with the results that will be obtained from the cluster samples these
surveys will be detecting.

In this section we investigate how much of an effect mass variation plays in the clustering
strength of galaxy clusters. For this purpose, we considered 4 different mass thresholds:
Mhalo > 2 × 1013 h−1 M⊙, Mhalo > 5 × 1013 h−1 M⊙, Mhalo > 1 × 1014 h−1 M⊙ and Mhalo >
2 × 1014 h−1 M⊙. As a first test, we fix the redshift range to 0.4 < zc < 0.7 (arbitrary)
and calculate ξ(r) for the above 4 mass cuts. The plot of the correlation function at different
separations r is seen in Figure 5.8. It can be seen that the amplitude of the correlation function
increases with limiting mass. The values of the best-fit parameters can be found in Table 5.1.
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Figure 5.9: The evolution of r0 with redshift for different limiting masses. The filled sym-
bols connected by solid lines correspond to the free slope fits, while the the open symbols
connected by dashed lines correspond to a fixed slope γ = 2.0. The different limiting masses
are colour coded as shown in the figure. The values of r0 and γ for all the samples can be
found in Table 5.1.

We know now that the correlation strength of galaxy cluster increases separately with
both mass and redshift, but we would also like to know what the evolution is like when both
the parameters are varied. The analysis is performed in the same redshift slices previously
defined. The correlation function is fitted with a power-law (as in Equation 3.13), both with
a free slope and with a fixed slope γ = 2.0.

In both cases, the correlation length r0 increases with the limiting mass at any redshift
and increases with redshift at any limiting mass, as shown in Figure 5.9. The higher the
mass threshold, the larger is the increase of r0 with redshift. For example, the ratio of the
correlation lengths for the [1.3-1.6] and the [0.1-0.4] redshift slices is 1.25 with Mhalo >
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Figure 5.10: Top panel:The evolution of γ with redshift for different limiting mass thresholds
and Bottom panel: the evolution of r0 with redshift for different limiting mass thresholds as
obtained by Younger et al. (2005)

2 × 1013 h−1 M⊙, while it reaches 1.8 with Mhalo > 1 × 1014 h−1 M⊙. For the largest limiting
mass (Mhalo > 2 × 1014 h−1 M⊙), the number of clusters becomes small at high z and the
analysis must be limited to z = 1.

We can compare our results with the analysis of Younger et al. (2005). Younger et al.
(2005) used a Tree Particle Mesh (TPM) code (Bode and Ostriker, 2003) to evolve N =
12603 particles in a box of 1500 h−1Mpc, reaching a redshift z ≈ 3.0. while we use a simu-
lation extracted from the Millennium simulation (Springel, 2005), a 21603 particle N-body
simulation in a cubic volume of 500h−1Mpc2 which extends up to a redshift of z ≈ 3.0. We
find a good agreement with the analysis of Younger et al. (2005) as it can be seen from Figure
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5.10 for the masses and redshift ranges we can compare; our analysis probes the correlation
function of Mhalo > 1 × 1014 h−1 M⊙ clusters up to z ≈ 1.6 , and of Mhalo > 2 × 1014 h−1 M⊙
clusters up to z ≈ 0.8, thus extending the r0(z) evolution shown by Younger et al. (2005) to
higher redshifts.

Given the redshift depth of the simulation we use, we dwell deeper close to z ≈ 1.5 for
clusters with a mass cut Mhalo > 5 × 1013 h−1 M⊙ and Mhalo > 1 × 1014 h−1 M⊙ whereas
Younger et al. (2005) restrict their analysis for the same mass clusters at z ≈ 1.0.

5.6 Bias: Evolution with mass and redshift

Starting from the initial matter density fluctuations, structures grow with time under the
effect of gravity. This means that galaxy clusters at the current epoch (z ≈ 0) should depict a
stronger clustering amplitude when compared with galaxy clusters at a distant epoch (z >> 0).
We have seen so far that this is not the case. From Section 5.4 and 5.5 we see that the opposite
holds true, i.e. high redshift and high massive haloes are more strongly clustered compared
to the low redshift and low massive ones. This implies that the distribution of haloes, hence
of galaxies and clusters, is biased with respect to the underlying matter distribution.

On large scales it is expected that the bias is linear and is given by:

(∆ρ

ρ
)
light

= b × (∆ρ

ρ
)
mass

(5.3)

where b is the bias factor and ρ is the density. The higher the halo mass, the higher the bias.
The amplitude of the halo correlation function is amplified by a b2 factor with respect to

the matter correlation function:

ξ(r)CL = b2 × ξ(r)DM (5.4)

this bias is a function of both mass and redshift, i.e. b(M,z) and the above describes the
bias in a linear regime which is sufficient to describe the clustering on large scale. Here
the ξ(r)DM is the Fourier transform of the dark matter power spectrum and ξ(r)CL denotes
the cluster two-point correlation function. To calculate ξDM(r) we adopt the de-wiggled
template for the dark matter power spectrum:

PDM(k) = [Plin(k) − Pnw(k)] e−k2Σ2

NL/2 + Pnw(k) (5.5)

where Plin is the linear power spectrum (we use CAMB (Lewis and Bridle, 2002) to calculate
it), Pnw is the power spectrum without the BAO feature as obtained by Eisenstein and Hu
(1998), ΣNL controls the smearing effect of the BAO. The power-spectrum is then Fourier
transformed to obtain ξDM(r):

ξDM(r) = 1

2π2 ∫ dkk2PDM(k)sin(kr)
kr

(5.6)
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Fry (1996) and Tegmark et al. (1998) calculated the redshift evolution of the bias and
found out that the bias is larger at earlier epochs of structure formation as the first structures
formed will eventually collapse into the most over-dense regions in space. They also went
on to prove that with time, eventually these structures will be unbiased tracers of the mass
distribution. The amplitude of the matter correlation function increases with time and de-
creases with redshift, but the halo bias decreases with time and increases with redshift. The
cluster correlation amplitude increases with redshift, as it is clear from Figure 5.7.

If one utilises cluster clustering to constrain cosmology, then one should have precise
knowledge of the cluster bias. The same way in which we calculated the mass and redshift
evolution of the two-point correlation function, here we calculate the evolution for the bias
of the haloes present in our simulation. First we need to calculate the evolution of the dark
matter two-point correlation function. To do so we follow Equation 5.6 and we make use of
the function xi_DM inside the class Cosmology from CosmoBolognaLib. The comparison
is not straightforward because, as we have previously noticed, in the simulation halo masses
are not M200, but the so–called Dhalo masses Mhalo.

To visually compare the change in ξ(r) between the dark matter and our haloes, we com-
pare in Figure 5.11 the calculated ξDM(r) for a given mass cut of Mhalo > 5 × 1013 h−1M⊙
and in the redshift range 0.1 < z < 0.4 with that of ξ(r) calculated for our haloes in the same
redshift and mass range. It can be seen from Figure 5.11 that the amplitude of the correlation
function of our haloes (given by the red line) is higher compared to the same obtained for
dark matter (given by the blue line). The fraction of the two, i.e. ξ(r)CL/ξ(r)DM is given
in the sub-panel of the Figure. The bias for this particular mass and redshift range for our
haloes is calculated using Equation 5.4 and is given in Table 5.1.

For each sub-sample we calculate the bias only within the range where ξ(r) follows a
power-law. For most of our samples this range is 5-50 Mpc, but in cases where we don’t have
enough clusters we restrict ourselves within 5-30 Mpc or 5-20 Mpc depending on power-law
approximation. This exercise is then performed for all our mass cut and redshift cut samples
(the same as defined in Sections 5.5 and 5.4). The values of the bias calculated for each
sub-sample is given in the last column of Table 5.1.

There are several theoretical predictions for the evolution of the halo bias (Mo and White,
1996; Sheth et al., 2001; Tinker et al., 2010), but before we compare our results to these
predictions, as a first order approximation we fit the bias obtained using a simple power law
defined as:

b(M,z) = b0(1 + z)b1 + b2 (5.7)

where the three parameters b0, b1 and b2 are function of mass. We show the results of the fit
for our first three mass cut samples, i.e. Mhalo > 2×1013,5×1013,1×1014 h−1 M⊙ in Figure
5.12. The values of the three best-fit parameters is given in Table 5.2.

There were several halo bias theoretical models developed wherein the bias of the haloes
were determined by the relative abundance of haloes in large-scale environments. They were
all derived from the mass function obtained for the haloes using the peak-background split
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Figure 5.11: The two-point correlation function of our haloes above the mass cut of Mhalo >
5 × 1013 h−1M⊙ within the redshift range 0.1 < z < 0.4 (given by the red line) and the two-
point correlation function for dark matter in the same mass and redshift cut (given by the
blue line). The sub-panel shows the fraction ξ(r)CL

ξ(r)DM
. The error bars plotted for the cluster

correlation function has been obtained from the jackknife resampling method as mentioned
in Section 5.3.2.

(Mo and White, 1996; Sheth et al., 2001). These studies made use of the friends-of-friends
(FOF) halo finding algorithm which was found to group distinct haloes together into one
object (Tinker et al., 2010). Although these theoretical models reproduced the evolution of
the bias fairly accurately, they failed to do so with numerical simulations (Tinker et al., 2010).
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Figure 5.12: The bias obtained for our haloes with different mass and redshift cut samples
given by the dotted points along with the fit done using Equation 5.7 given by the solid line.
The different mass cut samples are colour coded as mentioned in the Figure.

It was shown by Manera et al. (2010) that using the peak-background split method to calculate
the bias of massive haloes from their mass function results in a bias which is not accurate.
So we compare the bias obtained from our haloes to those of Tinker et al. (2010) who have
identified haloes using the spherical overdensity algorithm which finds mass around peaks
in the density field such that the mean density is ∆ times the background density. In our case
we will be using ∆ = 200. To compare the halo bias of our sample of dark matter haloes, we
calculate the effective bias, i.e. the halo bias convolved with the halo mass function defined
as:

b(z) = ∫ Mmax

Mmin
n(M,z)bT inker(M,z)dM
∫ Mmax

Mmin
n(M,z)dM (5.8)

where Mmin and Mmax are the minimum and maximum masses up to which we integrate.
The comparison of this effective bias to our bias values is shown in Figure 5.13. The error
bars for the bias are calculated by fitting the fraction ξCL(r)/ξDM(r) using a simple power-
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Figure 5.13: The bias as a function of redshift for different limiting masses where the solid
lines just connect the points. The dashed line is the theoretical expectation of the bias as
given by Tinker et al. (2010) for the same limiting masses and evolving redshift. The different
limiting masses are colour coded as shown in the figure. The bias values for all the samples
can be found in Table 5.1.

law (within the range where ξCL(r) follows a power-law) of the form b = rA +B, where the
best-fit parameter B gives us the bias and the error on parameter B is the error on the bias
obtained.

It can be seen that for all our mass cut samples, the redshift evolution of the bias is
clearly traced by the theoretical Tinker et al. (2010) bias function. For the first two mass cut
samples, i.e. Mhalo > 2 × 1013,5 × 1013 h−1 M⊙, since we have abundant clusters (as can
be seen in Table 5.1) even at high redshifts (z ≈ 2.0) we calculate the bias up to z ≈ 1.8,
which is the median redshift of our redshift cut sample (1.6 < z < 2.1). It is also due to the
abundance of clusters that the ξ(r) even at these high redshifts, for the two samples, does
not deviate from a power-law out to ≈ 50 Mpc. But for our remaining two mass cut samples,
i.e. Mhalo > 1 × 1014,2 × 1014 h−1 M⊙ we restrict our calculations to lower redshifts.

The ξ(r)CL from Equation 5.4 can be denoted as b2eff × ξ(r)DM . Just as an added confir-
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Figure 5.14: The two-point correlation function of our haloes above the mass cut of Mhalo >
5 × 1013 h−1 M⊙ within the redshift range 0.1 < z < 0.4 (given by the red line) and the
two-point correlation function for dark matter in the same mass and redshift cut (given by
the blue line) multiplied by the effective bias obtained for this particular sub-sample. The
sub-panel shows the fraction ξ(r)CL/b2eff × ξ(r)DM .

mation, we multiply the dark matter correlation function obtained for one of our sub-sample
with the effective bias obtained to see if the amplitude of the dark matter correlation function
matches with that of the amplitude of the correlation function of our haloes. The result is
shown in Figure 5.14 for the mass cut sample Mhalo > 5 × 1013 h−1 M⊙ in the redshift range
0.1 < z < 0.4 wherein the bias calculated is beff = 2.33. It can be seen that we do get con-
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Figure 5.15: The redshift evolution of the Tinker et al. (2010) bias function calculated for a
common mass cut of Mhalo > 2×1013 h−1 M⊙ by varying the σ8 parameter. The samples are
colour coded as mentioned in the figure.

vergence of the amplitudes of the correlation functions as expected. One can also see that
above 40 Mpc, the comparison is not so accurate and that the fraction deviates to 2.0.

The cluster bias of a given observational sample is often inferred by comparing the ob-
served clustering of clusters with that of the clustering of dark matter measured in simula-
tions. So the bias depends very much on the cosmological model used in the simulation.
One of the most important cosmological parameter for calculating the bias is the σ8 param-
eter which measures the amplitude of the (linear) power spectrum on the scale of 8h−1Mpc.
In other words it is the standard deviation of cluster count fluctuations in a sphere of radius
8h−1Mpc. The variance of linearly evolved CDM fluctuations on a mass scale M is given
by Equation 1.35 when it is smoothed with a top-hat filter of scale R = 8 h−1Mpc. Equation
1.35 in this context can be written as:

σ2(M,a) = ∫ d3k(2π)3W 2(kR)Pm(k, a) (5.9)

where the function W (y) is a filter function given by W (y) = 3[sin(y)/y3 − cos(y)/y2] for
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Figure 5.16: Top left: The redshift evolution of the Tinker et al. (2010) bias function calcu-
lated for a common mass cut of Mhalo > 2×1013 h−1 M⊙ by varying the ΩM parameter (for a
fixed σ8 = 0.8) and also by varying the σ8 parameter (for a fixed ΩM = 0.25). Top right: The
same as the left plot, but for a fixed σ8 = 0.9. Bottom panel: The same as the top two panels,
but for a fixed σ8 = 1.0. The samples are colour coded as mentioned in the figure.

spatial filtering within a radius R. When we calculate Equation 5.9 at a distance of 8h−1Mpc
with a = 1, we get the often used amplitude of the power spectrum σ8.

As we have mentioned in Section 5.2, our simulation uses a value of 0.9 for the σ8 param-
eter which also happens to be value calculated from WMAP and SDSS data (Seljak et al.,
2005). By changing the value of σ8 in calculating the bias, the results obtained will differ by
a large margin. To show an example, we calculate the redshift evolution of the Tinker et al.
(2010) bias function for a common mass cut of Mhalo > 2×1013 h−1 M⊙ by altering the value
of σ8 from 0.8 to 1.0, the results are shown in Figure 5.15. It can be seen that the amplitude
of the bias decreases as σ8 increases. This is an important behaviour to notice, as using the
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Mass cut ( h−1M⊙) b0 b1 b2
2 × 1013 0.37±0.19 2.15±0.48 0.90±0.29

5 × 1013 0.85±0.46 1.84±0.47 1.05±0.30

1 × 1014 0.79±0.17 2.43±0.23 1.16±0.24

Table 5.2: The table with the best-fit parameters obtained using Equation 5.7 for the different
mass cut samples.

wrong σ8 value in calculating the bias can lead to incorrect comparisons to both simulations
and observations.

Another important parameter that has an effect on the theoretical bias obtained is ΩM . To
show the effect of ΩM on the bias, we plot in Figures 5.16a, 5.16b and 5.16, the redshift evo-
lution of the theoretical bias of Tinker et al. (2010) for a mass cut of Mhalo > 2×1013 h−1 M⊙
for four values of ΩM = 0.21,0.23,0.25,0.27, fixing σ8 each time. It can be seen that from
Figure 5.16a that for a fixed value of sigma8 = 0.8, the amplitude of the bias decreases with
increase in ΩM . But it also be seen from Figure 5.16a that the change in the amplitude of the
bias is stronger when σ8 is changed from 0.8 to 0.9 and 1.0. The difference in the amplitude
of the bias obtained for ΩM = 0.21 compared to ΩM = 0.27 is much less compared to the
difference in the bias obtained for σ8 = 0.9 and σ8 = 1.0.

5.7 The r0 vs d relation

As we have seen from Section 5.6 the dependence of the bias on the cluster mass is based on
theory. A complementary and empirical characterization of the cluster correlation function
is the dependence of the correlation length r0 as a function of the mean cluster comoving
separation d (Bahcall and Soneira, 1983; Governato et al., 1999; Croft et al., 1997; Bahcall
et al., 2003), defined as:

d = 3

√
1
ρ

(5.10)

where ρ is the mean number density of the cluster catalogue for a given mass threshold.
As we have seen from Section 5.6 that according to theory, more massive clusters have

a higher bias, which in turn means that they have a higher r0. Massive clusters also tend to
be more rare objects which means that they have also a larger mean separation d. Therefore
it is expected that r0 increases with d. To visualise the above, we show a 3D density plot
of X,Y,Z cartesian coordinates for two mass cut samples (Mhalo > 5 × 1013 h−1 M⊙ and
Mhalo > 1 × 1014 h−1 M⊙) in Figure 5.17. It is clearly evident from the Figure that the
less massive cluster sample is more denser as well as more abundant compared to the more
massive one. So the larger the density the lesser the mean intercluster comoving separation
and vice versa.
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Figure 5.17: On top: The XYZ 3D cartesian coordinate density plot for the sample with a
mass cut of Mhalo > 5 × 1013 h−1 M⊙. Bottom: The XYZ 3D cartesian coordinate density
plot for the sample with a mass cut of Mhalo > 1 × 1014 h−1 M⊙. Red regions denote more
density and blue regions denote less density.

This relation has been investigated both in observational data (Bahcall and West, 1992;
Estrada et al., 2009) and in numerical simulations (Bahcall et al., 2003; Younger et al., 2005).
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Figure 5.18: The evolution of r0 with d for clusters [of different masses] in different redshift
slices. The red dashed line shows the overall fit obtained for the data points considering a
free slope and the green dashed line shows the fit when γ = 2.0. The analytic approximation
in the ΛCDM case obtained by Younger et al. (2005) is shown by the dashed black line. The
different redshift slices are colour coded as mentioned in the figure, and all the points plotted
are for the fixed slope γ = 2.0.

Younger et al. (2005) give an analytic approximation in the ΛCDM case in the redshift range
z = 0-0.3 for 20 ≤ d ≤ 60h−1Mpc:

r0 = 1.7(d)0.6 h−1 Mpc (5.11)

We determine the r0 dependence with d for the various subsamples previously defined.
The results obtained for a free γ along with the best fit obtained for both free and fixed γ = 2
are shown in Figure 5.18.

The best-fit r0 - d relation in the redshift range 0 ≤ z ≤ 2.1 and for the cluster mean
separation range 20 ≤ d ≤ 140h−1Mpc is given by:

r0 = 1.77 ± 0.08(d)0.58±0.01 h−1 Mpc (5.12)
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Figure 5.19: The evolution of r0 with d for clusters [of different masses] in different redshift
slices from observational cluster samples. The red dashed line and the green dashed line
show the overall fit obtained from simulations considering a free slope and when γ = 2.0 re-
spectively. The analytic approximation in the ΛCDM case obtained by Younger et al. (2005)
is shown by the dashed black line. The different redshift slices are colour coded as mentioned
in the figure, and all the points plotted are for the fixed slope γ = 2.0.

The r0 - d relation which appears to be scale–invariant with redshift, is consistent with
what was found by Younger et al. (2005) and is also consistent with the theoretical predictions
of Estrada et al. (2009) (see their figure 7).

The scale invariance of the r0−d relation up to a redshift z ≈ 2.0 implies that the increase
of the cluster correlation strength with redshift is matched by the increase of the mean cluster
separation d. It suggests that the cluster mass hierarchy does not evolve significantly in the
tested redshift range: for example, the most massive clusters at an earlier epoch will still be
among the most massive at the current epoch.

There have also been calculations of both r0 and d from observations to which we can
directly compare the results obtained for our ΛCDM simulations. We make use of data from
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Abell clusters, SDSS, APM, 2dFGRS groups, all of which has been compiled by Bahcall
et al. (2003). Some of the samples are optically selected, whereas some are X-ray selected
clusters. We convert all our correlation lengths and mean intercluster comoving separations
to comoving scales in a ΛCDM cosmology. The r0 − d from simulations is compared with
the r0 − d obtained from observations along with the best-fit and is shown in Figure 5.19.
The results show a general agreement between the ΛCDM model and the observations. The
optically selected clusters are more or less in agreement with the fit within 1σ. There is a
wide scatter at large d scales (d > 70h−1Mpc). It is because of this large scatter, this relation
cannot be comprehensively used to constrain cosmological parameters.

As we expect to observe more clusters at higher redshifts, the r0 − d relation can be used
for direct comparison with observations. This comparison will prove an important test of
the current ΛCDM cosmology. All the bias models we know so far are based on theory,
this relation however is an empirical characterisation and will still hold true, even if all the
theoretical bias predictions are proven wrong.

5.8 Conclusions from this chapter

We have used the light-cone simulations of Merson et al. (2013) and have studied the redshift
and mass evolution of the two-point correlation function of haloes corresponding to galaxy
clusters up to z ≈ 2.1.

• Redshift evolution was studied using the clusters from the simulations. A common
mass cut of Mhalo > 5 × 1013 h−1 M⊙ was made for the clusters from the simulations.
From the best-fit parameters obtained, we find an increasing clustering strength with
redshift, all the way up to z ≈ 2.1. Results were compared with Younger et al. (2005)
and we found the same evolutionary trend up to a redshift of z ≈ 1.0 for the above
samples. For our samples we find that the same evolutionary trend continues up to
z ∼ 2.

• The mass evolution of clusters with redshift was also studied by slicing the samples
into four mass threshold ranges (see Section 5.5). A clear trend of increasing clustering
strength with redshift was seen for all the above mass cut samples, both for γ = 2.0

(fixed) and γ set as a free parameter. In particular, we find a stronger evolutionary
trend for more massive clusters as compared to the less massive ones. For example,
clusters with Mhalo > 2 × 1013 h−1 M⊙ have a r0 = 9.89 ± 0.20 h−1Mpc at z = 0.25,
r0 = 11.10 ± 0.15 h−1Mpc at z = 0.85 and r0 = 12.41 ± 0.42 h−1Mpc at z = 1.45; while
clusters with Mhalo > 1 × 1014 h−1 M⊙ have a r0 = 14.60 ± 0.35 h−1Mpc at z = 0.25,
r0 = 18.93 ± 1.18 h−1Mpc at z = 0.85 and r0 = 26.09 ± 4.10 h−1Mpc at z = 1.45.

• The bias parameter was calculated for the zc sample with increasing mass cuts and we
find a strong increase of the bias with redshift. The increase is stronger for more mas-
sive clusters compared to the less massive ones. Our bias evolution was also compared
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with the theoretical expectation of Tinker et al. (2010) and we find the evolution for
all our mass samples to be within 1σ of the theoretical values. The bias evolution is
stronger for larger σ8 values. This is to be taken into account every time one wants to
compare the bias obtained from either simulations or from observations to theoretical
predictions.

• The r0 − d relation was studied up to a redshift of z = 2.1. Positive correlation was
found all the way up to z = 1.6. We find that the scatter at larger redshift is somewhat
higher compared to the low redshifts. The overall relation obtained for the best-fit was
found to be 1.77 ± 0.08(d)0.58±0.01 h−1Mpc compared to 1.70(d)0.60 h−1Mpc obtained
by Younger et al. (2005). Our results are consistent with those of Estrada et al. (2009).
We also compared the fit obtained for the r0 − d relation with values obtained from
observational surveys of clusters such as Abell, 2dGFRS, SDSS etc and found that the
results show a consistency between the ΛCDM model and the observations.
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6.1 Introduction

The results we have obtained so far have been on the clustering of haloes, whose position
and redshift were perfectly known. But for a real observational survey, we will be detecting
galaxy clusters, associated with a number of uncertainties in their position, redshift etc. Ob-
servational surveys in the modern era follow a multi-wavelength approach and galaxy clusters
are detected either in the optical/near-infrared, X-ray or radio wavelengths. For the study of
this thesis, we will focus our attention towards optically selected galaxy clusters.

The angular position of galaxy clusters are defined in several ways, such as the position of
the brightest central galaxy (BCG) in the sample or the centroid positions of peaks identified
in weak lensing mass maps etc. But the positions derived from these methods are usually
associated with an error of around a few hundred kilo parsecs (Dietrich et al., 2012). This
can also be due to projection effects that arise in the case of observational surveys. However,
in the case of galaxy clusters, when one counts pairs of clusters to study clustering, the effect
of this error is minimal and can be ignored.

Distance to galaxy clusters are inferred from redshift which is measured either spectro-
scopically or photometrically. Spectroscopic redshift measurements of galaxies is a hard
task, and are fairly accurate. Photometric redshifts on the other hand have large errors asso-
ciated with them. This in turn leads to errors on the distances measured to galaxy clusters.

The fact that cluster mass is not a direct observable also complicates matters. Mass esti-
mates are commonly inferred adopting scaling relations between independent weak-lensing
masses and mass proxies such as richness (defined as the number of galaxies in a cluster
within a given radius). The mass-observable relation usually depict a scatter that varies with
redshift and must be constrained using additional data. Theoretical predictions and numerical
estimates for cluster clustering depends on the mass (as we have seen in the previous chapter).
From cluster catalogues, one can measure the richness dependence of cluster clustering. To
compare an observational richness evolution of cluster clustering to the theoretical/numerical
mass evolution of cluster clustering, one has to address the mass-richness relation.

Another difficulty in observational catalogues is that several clusters along the line-of-
sight can be misidentified as a single massive galaxy cluster, which can lead to errors in
number counts and mass estimates. Clusters that can be distinguished in spectroscopic sur-
veys can be merged as a single cluster in photometric surveys, if the difference in the redshift
of the two clusters (∆z) is similar to the associated photometric uncertainty. Although this
systematic effect has been drastically suppressed in modern surveys with multi-band photom-
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etry, one still expects 5%-20% of photometrically selected clusters to suffer from projection
effects (Cohn et al., 2007; Rozo et al., 2011). Observational cluster samples also suffer in
terms of purity and completeness. Not all clusters above a given mass and redshift limit are
detected and false positive sources are also wrongly included in the sample.

All the above effects need to be taken into account when analysing data obtained from
observational cluster catalogues. However, in this thesis, we restrict ourselves to study, how
in particular, the impact of redshift errors affect the two-point correlation function and pro-
vide a solution to our simplistic scenario. We analyse how the two-point correlation function
evolves with the true richness (all members of the cluster being true members) and also try to
find out if we can derive ξ(> mass) from ξ(> richness). We make use of the deprojection
method, and as a preliminary test, study the evolution of the two-point correlation function
of clusters detected in the CFHTLS survey.

6.2 Impact of redshift errors on the correlation function

6.2.1 Modelling of the errors associated with cluster redshifts

Redshift as we have seen can be measured from spectroscopic and photometric techniques.
Spectroscopic information of all or at least a few galaxies is a difficult task since it is enor-
mously time consuming and also challenging for samples with redshift z ≳ 1.

While galaxy clustering in real-space is statistically isotropic, it is not the same in redshift-
space. This is because the spatial distribution of galaxies appear squashed and distorted when
their positions are plotted in redshift-space due to the line-of-sight components of the galaxy
peculiar velocities. This effect as we have seen before is called as the “Fingers-of-God” effect.
Galaxy clusters themselves interact with each other producing peculiar velocities, which are
of the order of ∼ 300kms−1 (Bahcall and Oh, 1996), but the effects of peculiar velocities of
clusters compared to galaxies are relatively smaller. The peculiar velocities of galaxy clus-
ters are dependent on the mass, distance of separation etc., and the effect is dominant only
on small scales (a few Mpc).

Large-scale surveys are usually performed using photometric techniques. Photometric
redshifts are estimated by using multi-band photometry as inputs to one or more different
techniques that map galaxy photometric properties into a redshift. By using multi-band pho-
tometry we can crudely measure the redshift of all objects in a field simultaneously. Using
deep multi-band information spanning all of the visible and the near-IR range we can even
measure redshifts of extremely faint objects, for example reaching to AB mag ≃ 29 for the
Hubble deep field objects (Fernández-Soto et al., 2001). Since these objects are so faint it is
nearly impossible to obtain spectra for the bulk of detected objects. There are mainly two ap-
proaches in measuring photometric redshifts: the first is known as template-based methods
(Benítez, 2000; Csabai et al., 2000; Blanton et al., 2003; Feldmann et al., 2006; Ilbert et al.,
2009, and references therein), in which a set of calibrated galaxy spectral energy distributions
(SEDs) is fit to the photometric data to find the one that best represents the observed fluxes.
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To obtain accurate results, the filter set is chosen in order to bracket some of the prominent
features such as the 4000Å break or the Lyman Alpha break. The second approach towards
measuring photometric redshifts is to use a spectroscopic training set and machine learning
algorithms, such as artificial neural networks (Firth et al., 2003; Collister and Lahav, 2004;
Li et al., 2006, and references therein).

Although photometric surveys can provide us with large samples of galaxy clusters, the
uncertainty in the determination of redshifts by using photometry is larger compared to
spectroscopy (Connolly et al., 1995; Fernández-Soto et al., 2001; Blake and Bridle, 2005;
Arnalte-Mur et al., 2009). The precision of photometric redshifts are also dependent on mag-
nitude and spectral type. However it is a common notion to provide photometric redshift er-
rors as a function of redshift only, through a relation like σz = σ(z=0)×(1+z). The photometric
redshift uncertainties in upcoming surveys are expected to be within 0.03< σz/(1+ z) <0.05
for galaxies and within 0.01< σz/(1+ z) <0.03 for clusters (Ascaso et al., 2015). Ideally, the
error on the cluster redshift should scale proportionally to Nmem

−1/2 (where Nmem refers to
the members of the cluster), therefore for clusters with 10 detected members the error would
be reduced approximately by a factor of 3; but of course contamination from non-member
galaxies will affect the redshift estimate and practically the photometric uncertainty becomes
σz ∼ σ(z=0)

2
× (1 + z).

In a realistic observational scenario, we expect to have catastrophic failures as it happens
for galaxy samples. Catastrophic failures are those redshifts that are found well outside the
scatter existing between zspec and zphot, i.e. they usually have photometric redshifts that are
> 3σ away from zspec. An example of catastrophic failures from photometric redshifts of
galaxies is shown in Figure 6.1. All those redshifts that lie outside the two grey lines denote
the catastrophic failures, and they can arise either due to false photometric results or even
due to false spectroscopic results. Fernández-Soto et al. (2001) explained in detail about the
possible occurrence of incorrect redshift measurements from spectroscopy which can also
lead to catastrophic failures. But in the case of galaxy clusters, we do not expect to have
catastrophic failures, as all galaxies of the cluster are not expected to have the same redshift
deviation and we will therefore not consider this point.

In this thesis we would like to analyse how photometric redshift errors, in particular, affect
the two-point correlation function, and to what extent it can be recovered. For this study, we
generate photometric redshifts typical of what we expect from photometric redshift galaxy
catalogues from our simulated cluster catalogue assuming a Gaussian distribution with a
known dispersion, ignoring the dependence on mass.

For example, the ongoing Dark Energy Survey aims to have a sky coverage of 5000 deg2

of the southern sky in five different optical filters to get detailed information about each and
every individual galaxy. The survey aims to cover galaxies with a photometric accuracy of
σz/(1+z) = 0.07 out to z = 1 (The Dark Energy Survey Collaboration, 2005), which roughly
translates into a photometric accuracy of σz/(1 + z) = 0.02 for clusters. Future surveys
such as LSST (Ivezic et al., 2008; LSST Dark Energy Science Collaboration, 2012) and
Euclid (Laureijs et al., 2011, 2014) are expected to provide accurate photometric redshifts
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Figure 6.1: Spectroscopic redshifts vs photometric redshifts of galaxies taken from LePhare
simulations with a 9-filter set. The grey lines show the borders within which the relation∣zspec − zphot∣ < 1 holds true, all those redshifts samples outside these lines denote the catas-
trophic failures. Image credits: Sun et al. (2009)

on an extended redshift range. The Euclid Wide Survey requirement for galaxy photometric
redshifts are σz/(1 + z) < 0.05 and goals are σz/(1 + z) < 0.03 (Laureijs et al., 2011). For
comparison, σz/(1+ z) = 0.001 corresponds to the requirement for the Euclid spectroscopic
redshift error.

Thus, to span the typical uncertainties on cluster redshift estimates expected in the context
of upcoming large surveys, we build five mock samples with errors σ(z=0) = σz/(1 + zc) =
0.001,0.005,0.010,0.030,0.050. From the original light-cone catalogue, we extract mock
cluster samples with cosmological redshifts in a given range of masses and redshifts and
use them to generate out photometric redshifts; these are assigned to each cluster by random
extraction from a Gaussian distribution with mean equal to the cluster cosmological redshift
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and standard deviation equal to the assumed photometric redshift error of the sample.

6.2.2 Recovering the real-space correlation function: Deprojection method

The use of photometric redshifts affects the two-point correlation in two ways:

1. The derived distances have large errors that cause a damping of the clustering strength.

2. The errors only affect the line of sight distance (π) and not the transverse plane (rp).
So correlation is lost only in one direction, which destroys isotropy.

To show an example of the degree of uncertainty that will exist in the determination of
distances from photometric redshifts we plot in Figure 6.2 a projected plot of clusters from
our simulations. Distances are separated into two planes, i.e. the line of sight plane (π)
and the across the line of sight plane (rp). We first plot them with distances inferred from
cosmological redshifts and then do so for distances inferred from photometric redshifts. It
can be seen from Figure 6.2 that clustering seen in real-space diminishes in photo-z space.
One can also notice that as the error on the photometric redshift increases, the more the
clustering is diminished. Here we have to keep in mind that the number of clusters seen in
each panel are the same and that the degradation in clustering gives us the look as though we
have lost a few clusters.

So the Landy & Szalay estimator as defined by equation 3.5 can no longer be used. So
to recover the real-space correlation function from photometric redshifts we will take into
account separately the line of sight π and the transverse rp components of the two-point
correlation function and apply the deprojection method (Arnalte-Mur et al., 2009; Marulli
et al., 2012). The method is based on Davis and Peebles (1983) and Saunders et al. (1992).
Pairs are counted at different separations parallel (π) and perpendicular (rp) to the line of sight
and what we calculate is ξ(rp, π) as we have seen in Section 3.2. The projected correlation
function can be derived from ξ(rp, π) by:

wp(rp) = ∫ +∞

−∞
ξ(rp, π)dπ (6.1)

The projected correlation functionwp(rp) (Farrow et al., 2015) is related to the real-space
correlation function ξ(r) by Equation 6.2:

wp(rp) = 2∫ ∞

rp

rdrξ(r)(r2 − r2p)−1/2 (6.2)

which can be inverted to obtain the real-space correlation function:

ξ(r) = −1
π
∫ ∞

r
w′(rp)(r2p − r2)−1/2drp (6.3)

Theoretically, the upper limits of integration are infinite, but in practice we need to choose
finite values both in Equation 6.1 and Equation 6.3 which then become:
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wp(rp, πmax) = ∫ πmax

0
ξ(rp, π)dπ (6.4)

and

ξ(r) = −1
π
∫ rpmax

r
w′(rp)(r2p − r2)−1/2drp (6.5)

where πmax and rpmax
refer respectively to the maximum line of sight separation and the

maximum transverse separation.
Given that above a certain value of π, pairs are uncorrelated and ξ(rp, π) drops to zero,

it is possible to find an optimal choice for πmax. This will be explained in detail in Section
6.2.5.1. We estimate the real-space correlation function following the method of Saunders
et al. (1992). We use a step function to calculate wp(rp), where wp(rp) = wp(i) in the loga-
rithmic interval centred on rp(i), and we sum up in steps using the equation:

ξ(rp(i)) = −1
π
∑
j≥i

wp(j+1) −wp(j)

rp(j+1) − rp(j)
ln
⎛⎜⎝
rp(j+1) +√r2

p(j+1) − r2p(i)
rp(j) +√r2

p(j) − r2p(i)
⎞⎟⎠

(6.6)

Assuming that the correlation function follows a perfect power–law, wp(rp) is given by
the formula:

wp(rp) = rp (r0
rp
)γ Γ(12)Γ(γ−12 )

Γ(γ
2
) (6.7)

where Γ is the Euler’s gamma function.
Once we have used the deprojection method to recover the real-space two-point corre-

lation function, we then fit it using the power-law as defined by equation 3.13. We also fit
the projected correlation function obtained, using equation 6.7. The results of the fit and the
values obtained will be discussed in forthcoming sections.

In Figure 6.3 we plot the photometric redshifts we have generated with different uncer-
tainties along with the cosmological redshifts. It can be seen that as we increase the redshift
uncertainty, the scatter increases.

6.2.3 Photo-z selection

The mean relation between photometric and cosmological redshift and its dispersion is known
and we will compare the catalogues in photometric and cosmological redshift-space respec-
tively. As mentioned in Crocce et al. (2011), doing the selection in a top-hat photometric
redshift window and in a top-hat cosmological redshift window with the same boundaries is
not equivalent. Figure 6.4 compares the distribution in cosmological redshift of the clusters
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Figure 6.4: Distribution of clusters selected in the top-hat cosmological redshift window
compared with the clusters selected in the top-hat photometric redshift window. Filled his-
tograms correspond to distribution of clusters as a function of cosmological redshift when
the top-hat selection is done using the cosmological redshift within the range 0.4 < z < 0.7.
Solid blue lines correspond to distribution of clusters as a function of cosmological redshift
when the top-hat selection is done using the different photometric uncertainties we have used
(σz/(1+zc) = 0.005,0.010,0.030 and 0.050) with the range 0.4 < z < 0.7 and the dashed blue
lines correspond to the outliers, i.e. distribution of clusters as a function of cosmological
redshift when the top-hat selection is done using photometric redshifts outside the range
0.4 < z < 0.7
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selected in the top-hat cosmological redshift window 0.4 < zc < 0.7 (given by the filled his-
togram), the clusters selected by the top hat photometric redshift window 0.4 < zphot < 0.7
(given by the solid blue line) and the clusters for which the photometric redshifts are outside
the slice limits [0.4,0.7] (outliers, given by the dashed blue line) for four of our photometric
samples. The distribution in cosmological redshift N(zc) of the objects selected by the top-
hat zphot window is broader than that selected by the top-hat zc window. When performing
the selection in zphot window rather than in zc window, a fraction of clusters with zc will
be included outside these slice limits but with zphot within the slice limits [0.4,0.7]. Thus
they result as contaminants. A fraction of clusters with zc within the slice limits [0.4,0.7]
but zphot outside [0.4,0.7] will be lost. This effect increases with the photometric redshift
uncertainty. The fraction of contaminating and missing clusters depends on the photometric
redshift uncertainty and also on the N(z) distribution.

We calculate the fraction of common objects between the top hat zphot and zc selections
for the different σz and redshift windows considered. It varies from 99% to 70% for samples
with σz/(1+zc) = 0.001 (at z ≈ 0.1) to σz/(1+zc) = 0.050 (at z ≈ 1.3) respectively. Only the
samples with σz/(1 + zc) = 0.050 and above a redshift of z > 0.7 have less than 80% objects
in common, as we know that the photo-z error scales as σz = σ(z=0) × (1 + zc). In our case
there are four samples that fall in this category (can be seen numerically in the fourth panel
of Table 6.1). For all the other samples we choose, the average fraction of common clusters
is more than 80%. To calculate the effect of N(z) on contaminated and missing clusters, we
calculate both the mean and median redshift for the photometric redshift samples we have. It
can be seen from Table 6.4 that both the mean and the median redshift do not vary much when
compared to the same of the cosmological redshift sample. The percentage of contaminants
for each redshift slice and given photometric uncertainty along with the Nclusters in zc and
zphot window and the number of common clusters is mentioned in Table 6.1. From Table
6.1, it can be seen that the average fraction of common clusters is more than 80% for all the
samples considered.

6.2.4 Weighting scheme for photometric redshifts

To overcome this effect of the top-hat photo-z redshift selection we tried to adopt a weighting
scheme. To calculate the correlation function of these objects with photometric redshifts,
each object is assigned a weight. This weight W (zphot) is assigned according to the formula:

W (zphot) = ∫ p(zphot∣zc)dzc = ∫ zcmax

zcmin

e
−(zc−zphot)

2

2σ2(1+zc)2√
2πσ(1 + zc)dzc ×N(z) (6.8)

where σ → uncertainty and N(z) → the redshift distribution.
The weight assigned is defined as the probability for this object to have a photometric

redshift with a given uncertainty, given the cosmological redshift. The integral is performed
within the minimum and maximum limits of the cosmological redshift sample considered. It
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Redshift range Clusters in
zc window

Clusters in
zphot window

Common Uncommon % contaminants

σz = 0.005 × (1 + zc)
0.1< z <0.4 3210 3214 3160 50 1.55

0.4< z <0.7 7301 7310 7162 139 1.90

0.7< z <1.0 8128 8088 7933 195 2.39

1.0< z <1.3 5963 6001 5842 121 2.02

1.3< z <1.6 3365 3356 3252 113 3.35

1.6< z <2.1 2258 2251 2197 61 2.70
σz = 0.010 × (1 + zc)

0.1< z <0.4 3210 3216 3115 95 2.95

0.4< z <0.7 7301 7338 7042 259 3.54

0.7< z <1.0 8128 8095 7745 383 4.71

1.0< z <1.3 5963 5973 5676 287 4.81

1.3< z <1.6 3365 3350 3144 221 6.56

1.6< z <2.1 2258 2239 2133 125 5.53
σz = 0.030 × (1 + zc)

0.1< z <0.4 3210 3196 2884 326 10.15

0.4< z <0.7 7301 7396 6492 809 11.08

0.7< z <1.0 8128 8053 6972 1156 14.22

1.0< z <1.3 5963 5880 4958 1005 16.85

1.3< z <1.6 3365 3388 2712 653 19.40

1.6< z <2.1 2258 2251 1922 336 14.88
σz = 0.050 × (1 + zc)

0.1< z <0.4 3210 3205 2647 563 17.53

0.4< z <0.7 7301 7433 5906 1395 19.10

0.7< z <1.0 8128 7937 6153 1975 24.29

1.0< z <1.3 5963 5859 4294 1669 27.98

1.3< z <1.6 3365 3352 2248 1117 33.19

1.6< z <2.1 2258 2277 1717 541 23.95

Table 6.1: The number of clusters in a given redshift range for zc and zphot with mass cut
Mhalo > 5 × 1013 h−1 M⊙. The zphot uncertainties are σz/(1 + zc) = 0.005,0.010,0.030 and
0.050. (1) Redshift range, (2) number of clusters in zc window, (3) number of clusters in zphot
window, (4) common clusters, (5) uncommon clusters and (6) the percentage of contaminants
are quoted.
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Figure 6.5: The fit made to the redshift distribution of the sample with a photometric uncer-
tainty of 0.01 × (1 + zc)

can be seen that the redshift distribution N(z) is present in Equation 6.8. So before we can
calculate the above integral to get the weights, we fit the N(z) distribution to get the best-fit
parameters, which are then used in calculating the PDF. The fit of the N(z) distribution done
for the photometric redshift sample with an uncertainty of 0.01 × (1 + zc) is seen in Figure
6.5. Also shown in Figure 6.6 is the final weights that are assigned to our reference sample
with σz = 0.01 × (1 + zc) within the arbitrary redshift range 0.4 < zc < 0.7.

It can be seen from Figure 6.6 that clusters with a zphot within 0.4 < zphot < 0.7 are
assigned weight ∼ 1.0 and clusters that are outside this limit are assigned a weight that is
< 1.0, which gradually decreases to zero. Once the weights have been assigned to all our
clusters according to their respective photometric uncertainties, we perform several tests to
check if the weights have been assigned correctly (explained in Section 6.2.4.1) and then
calculate the two-point correlation function using these “weighted” clusters.
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Figure 6.6: Weights assigned to photometric redshifts with an uncertainty of 0.01 × (1 + zc)
within the redshift range 0.4 < z < 0.7. It can be seen that all the redshifts between 0.4 and
0.7 are assigned a weight which is ∼ 1.0 and all those outside are assigned a much lesser
weight.

6.2.4.1 Tests performed before calculating the two-point correlation function using

weights

Before we go ahead in calculating the two-point correlation function, we test if the weights
have been assigned properly to each photometric redshift. The test includes the comparison
of the N(z) distribution of both zspec and zphot within given minimum and maximum limits.

The method followed is:

1. Plot the N(zc) distribution for zmin < zc < zmax.

2. Plot the N(zphot) distribution for zmin < zphot < zmax (with zmin and zmax being the
same as above).

3. Plot the N(zc) distribution for zmin < zphot < zmax (with zmin and zmax being the same
as above).
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Figure 6.7: N(z) of zc and zphot distributions for the data catalogue. Photometric redshifts
have an uncertainty of 0.01 × (1 + zc)

4. Plot the N(zphot) distribution for zmin < zc < zmax (with zmin and zmax being the same
as above).

5. Plot the N(zphot)weighted distribution, with each bin containing the sum of W (zphot)
of the objects, and compare the same with the above N(zphot) distribution for zmin <
zc < zmax.

The above test is repeated for the random catalogue constructed. The results of the above
test for σz = 0.01 × (1 + zc) within 0.4 < zc < 0.7 is seen in Figure 6.7 for the data cata-
logue. Now we would like to analyse each sub-plot of Figure 6.7 one at a time. Plotted are
the N(zc) and N(zphot) distributions in the top panel of Figure 6.7. Then we consider all
those cosmological redshifts for which the corresponding photometric redshift is within the
minimum and maximum limit tested (0.4 < z < 0.7 in this case) and plot the N(zc) distri-
bution which is shown in the first sub-plot of the second panel. Then we consider all those
photometric redshifts for which the cosmological redshift is within the minimum and maxi-
mum limit tested and plot the N(zphot) distribution (shown as the red line), along which we
plot the sum of the weights assigned to our photometric redshift sample (shown in blue). It
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Figure 6.8: Left: The real-space correlation function (shown in red) along with the recovered
deprojected correlation function (shown in blue) for the sample with a mass cut of Mhalo >
5 × 1013 and within the redshift range 0.4 < z < 0.7. Right: The power-law fit performed on
the correlation function using Equation 3.13.

can be seen that the sum of the weights closely resembles the N(zphot) distribution of those
clusters for which zc is within 0.4 < zc < 0.7. Using this test we can confirm that the weights
are properly assigned to each photometric redshift.

6.2.4.2 Two-point correlation function from weighted photometric redshifts

We calculate the two-point correlation function by including the weights given to each photo-
metric redshift as defined by Equation 6.8. For our tests, we choose an arbitrary redshift range
0.4 < z < 0.7 and a mass cut of Mhalo > 5× 1013 h−1M⊙ to ensure that we have enough clus-
ters to be statistically significant. The recovered correlation function using weights is then
compared with the real-space correlation function obtained from the cosmological redshift
sample. The results of the same is shown in Figure 6.8 and it can be seen that by using weights
defined in Equation 6.8, the recovered two-point correlation function is overestimated. The
slope obtained from the recovered correlation function along with the correlation length is
mentioned in the figure. We make use of Poisson error bars for the test, which more or less
underestimate the errors on the ξ(r) obtained. But we can clearly see that it still cannot
explain the higher amplitude obtained for the recovered correlation function with weights.

As we have seen in Section 6.2.4.1, even though the sum of the weights for each photo-
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metric redshift bin is similar to the N(zzphot) for which zc is within 0.4 < zc < 0.7 (as seen in
Figure 6.7) the final result is overestimated. This we believe is due to the way in which the
weights are taken into account when counting the pairs. The redshift range we are consider-
ing here is 0.4 < z < 0.7, but as we can see from Figure 6.6 when assigning the weights, we
are including clusters from outside this redshift range. There are a handful of clusters that
are both less than 0.4 and greater than 0.7 that are coming into the final sample considered as
it can be seen from Figure 6.6. We repeated the same analysis for other redshift slices along
with different photometric redshift uncertainties. The final correlation function obtained us-
ing the weights always has an amplitude that is higher than the real-space correlation function
obtained using cosmological redshift sample.

6.2.5 Real-space correlation function obtained from the deprojection

method

As discussed in Section 6.2.3, doing the selection in a top-hat photometric redshift window
and in a top-hat cosmological redshift window with the same boundaries is not equivalent.
But at the same time as we can see from Table 6.1, the percentage of contaminants for each
photometric redshift uncertainty considered varies from 1.5% to 25%. Only the samples with
σz/(1 + zc) = 0.050 and above a redshift of z > 0.7 have less than 80% objects in common.
By choosing the same redshift boundaries in both the cosmological redshift sample and the
photometric redshift sample, we believe that the final recovered clustering should not be
affected by a huge margin. So we recover the real-space correlation function from all our
photometric redshift samples using the method of deprojection as mentioned in Section 6.2.2
within the same redshift limits as used for our cosmological redshift sample.

For the test of the deprojection method, the parent sample we use is within the redshift
range 0.4 < z < 0.7 and with a mass cut above Mhalo > 5 × 1013 h−1M⊙ to include enough
objects to be statistically significant.

6.2.5.1 Selecting the integration limits

As we have seen in Section 6.2.2, to recover the real-space correlation function from photo-
metric redshifts, ξ(rp, π) is calculated on a grid with logarithmically spaced bins both in rp
and π. Theoretically the integral limits in Equation 6.1 and 6.2 are infinity, but while calcu-
lating the function we need fix a maximum value for both rp and π. The maximum value of rp
depends on the survey dimension in the transverse plane. In the redshift range 0.4 < z < 0.7,
the maximum separation across the line of sight direction in our light-cone is ≈ 500 h−1Mpc.
For the upper limit of integration in Equation 6.5 we fix a value rp(max) = 400 h−1Mpc, cor-
responding to 80% of the maximum transversal separation. For higher redshift samples we
are aware that the maximum separation across the line of sight increases, but we find that the
value of 400 h−1Mpc includes almost all correlated pairs without adding any noise. In the
case of clusters where we have low statistics as compared to galaxy catalogues, the choice of
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Table 6.2: Main parameters used for the analysis of the original catalogue and the 5 mock
photometric redshift catalogues: (1) the redshift uncertainty, (2) the maximum values of
πmax and (3) rp(max), (4) the values of ∆ξ, (5) ∆̂ξ. The range of scales r used for the fit is
fixed at 5-50 Mpc.

Redshift
uncertainty( σz

1+zc )
πmax(h−1Mpc) rp(max)(h−1Mpc) ∆ξ ∆̂ξ

0.000 50 400 0.028 0.031

0.001 60 400 0.042 0.052

0.005 130 400 0.055 0.055

0.010 300 400 0.065 0.063

0.030 400 400 0.091 0.080

0.050 550 400 0.148 0.109

the bin width must be taken into account, if not the Poisson noise will dominate.
For choosing the maximum line of sight distance we make use of a convergence test for

each photometric redshift sample. Since higher photometric errors produce larger redshift-
space distortions, a different value of πmax has to be fixed for each photometric redshift mock.
We determine its value in the following way. We recover the real-space correlation function
with the method described in Section 6.2.2, using increasing values of πmax. Initially the
amplitude of ξdep(r) is underestimated (when the πmax chosen is less than the convergence
value) because many correlated pairs are not taken into account; it increases with increasing
πmax up to a maximum value, beyond which it starts to fluctuate and noise starts to dominate.
Applying this convergence test to each mock, we select the πmax value corresponding to the
maximum recovered amplitude. For a larger photometric redshift uncertainty, the conver-
gence value of πmax is larger compared to a lower photometric redshift uncertainty, so as to
include all the correlated pairs along the line of sight direction. The value of πmax used for
our parent sample is given in Table 6.2 along with ∆ξ and ∆̂ξ which are parameters that
denote the quality of the recovery, which will be explained in the next section. It can be seen
that πmax increases with the photometric redshift uncertainty, starting from 50h−1Mpc for the
ideal zero-error sample and reaching 550 h−1Mpc for the sample with σz = 0.050 × (1 + zc).
We have checked that by applying this method to the original light-cone with cosmological
redshifts we recover its real-space correlation function.

6.2.5.2 The quality of the recovery

We use the deprojection method on all the five mock photometric samples we have created
to obtain the deprojected correlation function (ξdep(r)) and then compare it with the results
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obtained for the real-space correlation function ξ(r) which is estimated directly from the
ideal zero error simulation (cosmological redshifts used). The results of the comparison are
shown in Figure 6.9.

It is clear that ξdep(r) reproduces quite well ξ(r), but shows increasing fluctuations with
increasing σz. The ratio ξdep(r)/ξ(r) is slightly smaller than 1 but within 1σ at all scales for
all the mocks up to σz/(1 + zc) = 0.05 indicating that ξdep(r) is not biased

The quality of the recovery is determined using ∆ξ, an “average normalised residual”
defined by Arnalte-Mur et al. (2009) as:

∆ξ = 1

N
∑
i

∣ξdep(ri) − ξ(ri)
ξ(ri) ∣ (6.9)

where ri refers to the values in the ith bin considered and ξ(ri) is the real-space correlation
function.

In the case of real data, where zc is not available, one can still calculate the quality of the
recovery using the covariance matrix and is defined as:

∆̂ξ = 1

N
∑
i

√
Cii∣ξdep(ri)∣ (6.10)

wherein we use the covariance matrix that we have obtained using the jackknife resampling
method mentioned in Equation 5.1.The values of ∆ξ and ∆̂ξ estimated in the range 5-50
h−1Mpc, are listed in Table 6.2. The reason for choosing the lower limit of 5 h−1Mpc is
because the typical size of clusters range from 2-4 h−1Mpc (Bahcall, 1996).

One can see from Table 6.2 that for the lowest photometric error considered, σz/(1+zc) =
0.001, the real-space correlation function is recovered within 5%. For σz/(1 + zc) = 0.005

and σz/(1 + zc) = 0.010 it is recovered within 7%, within 9% for σz/(1 + zc) = 0.030 and
finally within 15% for σz/(1 + zc) = 0.05.

One has to stress that the previous errors investigated are on the mean photometric redshift
of the cluster, which is expected to be significantly lower than that of individual galaxies as it
scales as 1/√N , where N is the number of cluster members. When the redshift uncertainty on
individual galaxies is σz ≈ 0.050×(1+zc), the redshift uncertainty on the cluster will become
σz ≈ 0.01× (1+ zc) for a poor cluster with ≈ 10− 15 members and σz ≈ 0.005× (1+ zc), for
a rich cluster with ≈ 100 members. This uncertainty will be reduced to σz ≈ 0.001× (1+ zc),
when spectroscopic redshifts will be measured for even a small number of cluster members
(which will hopefully be the case for Euclid and LSST). We are therefore more likely in the
case of the lowest uncertainties tested in this analysis in which the correlation function will
be recovered well within ≈ 10% .

The best-fit parameters of the deprojected correlation functions are shown in Table 6.3.
The fitting is performed with both a free and fixed slope γ = 2.0. The correlation length
obtained for our 5 mock photometric samples is consistent within ∼ 1σ with the real-space
correlation length r0 = 13.20±0.23 h−1Mpc and r0 = 13.16±0.17 h−1Mpc obtained for the zc
sample for ξ(r) (free slope) and ξ(r) (fixed slope) respectively. The best-fit r0 obtained for
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Figure 6.9: The recovered correlation function (green line) compared with the real-space
correlation function (red line) for 5 mock photometric samples in the redshift range 0.4 <
z < 0.7, with increasing redshift uncertainty. Values of the best-fit parameters obtained are
given in Table 6.2 and the quality of the recovery for each sample is given in Table 6.3.
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Figure 6.10: The 1 σ (shaded brown) and 3 σ (shaded green) error ellipses for the parameters
r0 and γ. Top panel: The original catalogue with cosmological redshifts Central and bottom

panels: Mock catalogues with increasing photometric redshift errors. The solid star repre-
sents the center of the ellipse for the original catalogue, while the cross denotes the centres
of the other ellipses.

this particular sample (0.4 < zc < 0.7) seems to have a value that is always lower, regardless
of the photometric uncertainty, when compared to the r0 obtained for the true zc sample.
This is just a coincidence and is not always the case, as it can be seen for other samples with
different redshift limits in the next section. When the slope is set free, direct comparison
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Table 6.3: The best-fit parameters obtained for the real-space correlation function ξ(r) of
the original sample and the recovered deprojected correlation function ξdep(r) for the mock
photometric redshift samples. We quote the (1) redshift uncertainty, (2) the correlation length
r0, (3) slope γ. The mass cut used is Mhalo > 5 × 1013 h−1 M⊙ and the fit range is fixed at
5-50 Mpc. The fits have been performed both with fixed (γ = 2.0) and free slope.

Redshift
uncertainty( σz

1+zc )
r0(h−1Mpc) γ

zc 13.16±0.17 2.0 (fixed)

13.20±0.23 1.97±0.05

0.001 12.82±0.17 2.0 (fixed)

12.91±0.22 2.02±0.05

0.005 12.52±0.22 2.0 (fixed)

12.89±0.26 1.94±0.06

0.010 12.33±0.28 2.0 (fixed)

12.84±0.63 1.93±0.08

0.030 12.29±0.30 2.0 (fixed)

12.91±0.72 2.02±0.12

0.050 11.73±0.65 2.0 (fixed)

12.88±0.76 1.90±0.14

of r0 between the samples cannot be made and so in Figure 6.10 we plot the 3 sigma error
ellipses around the best-fit values of r0 and γ for all the mocks. As expected, the errors on
both r0 and γ increase with the photometric uncertainty, but are always within ∼ 1σ with
respect to the real space values.

We also applied the deprojection method for higher photometric redshift errors to test
how far the method could be applied. It was found that from σz/(1 + zc) = 0.1, the error on
the recovery is very large and the recovered correlation function becomes biased.
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Figure 6.11: The evolution of r0 and γ with redshift for clusters with a mass cut Mhalo >
5×1013 h−1 M⊙ for samples with increasing redshift uncertainty (σz/(1+zc) = 0.005, 0.010,
0.030 and 0.050). The cosmological redshift sample is denoted with☆ and the photometric
redshift samples are denoted with ○. Red (0.1 < z < 0.4), Green (0.4 < z < 0.7), Blue(0.7 < z < 1.0), Indigo (1.0 < z < 1.3), Gold (1.3 < z < 1.6), Magenta (1.6 < z < 2.1).
6.2.5.3 Recovering the redshift evolution of the correlation function from sub-samples

selected using photometric redshifts

We check how accurately we can follow the redshift evolution of the cluster real-space cor-
relation function when using photometric redshifts and the deprojection method to recover
the real-space correlation function. We have previously shown the redshift evolution of ξ(r)
for the samples with cosmological redshifts in Figure 5.7.
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Table 6.4: The parameters obtained from the fit for the real-space correlation function ξ(r) on
the ideal zero-error simulation for the different redshift cut catalogues and the same obtained
from the photometric redshift catalogues with σz/(1 + zc) = 0.005,0.010,0.030 and 0.050.
(1) redshift cut used, (2) photometric uncertainty σz/(1 + zc), (3) correlation length r0, (4)
slope γ and (5) the number of clusters Nclusters, (6) median redshift and (7) mean redshift.

Redshift range σz/(1 + zc) r0 h−1Mpc γ Nclusters Median z Mean z

0.1 < z < 0.4 zc 12.22±0.26 1.90±0.05 3210 0.30 0.29

0.005 11.99±0.44 2.01±0.09 3214 0.30 0.29

0.010 12.47±0.51 1.80±0.10 3216 0.30 0.29

0.030 12.57±0.64 1.97±0.13 3196 0.30 0.28

0.050 12.48±0.61 1.99±0.12 3205 0.29 0.28

0.4 < z < 0.7 zc 13.20±0.23 1.98±0.05 7301 0.56 0.55

0.005 12.89±0.26 1.94±0.06 7310 0.56 0.55

0.010 12.84±0.63 1.93±0.08 7338 0.56 0.56

0.030 12.91±0.72 2.02±0.12 7396 0.56 0.55

0.050 12.88±0.76 1.90±0.14 7433 0.56 0.55

0.7 < z < 1.0 zc 14.86±0.33 1.97±0.05 8128 0.84 0.84

0.005 15.07±0.49 1.87±0.07 8088 0.84 0.84

0.010 14.99±1.00 1.90±0.18 8095 0.84 0.84

0.030 14.06±0.63 2.05±0.19 8053 0.84 0.84

0.050 14.36±0.83 1.91±0.16 7937 0.84 0.84

1.0 < z < 1.3 zc 17.00±0.48 2.00±0.07 5963 1.13 1.13

0.005 17.29±0.64 2.06±0.08 6001 1.13 1.13

0.010 16.90±0.87 2.08±0.12 5973 1.13 1.14

0.030 17.45±1.14 1.88±0.16 5880 1.13 1.14

0.050 17.43±0.92 1.90±0.13 5859 1.13 1.14

1.3 < z < 1.6 zc 18.26±0.62 2.15±0.06 3365 1.43 1.43

0.005 18.31±0.51 2.09±0.08 3356 1.43 1.43

0.010 18.31±0.75 2.26±0.21 3350 1.43 1.43

0.030 19.22±1.16 2.16±0.17 3388 1.42 1.43
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0.050 18.78±1.35 2.11±0.18 3352 1.43 1.43

1.6 < z < 2.1 zc 19.48±1.41 2.23±0.21 2258 1.76 1.79

0.005 18.86±0.88 2.16±0.23 2251 1.77 1.79

0.010 18.76±0.85 2.32±0.27 2239 1.77 1.79

0.030 18.74±1.89 2.15±0.17 2251 1.77 1.79

0.050 19.62±2.16 2.15±0.26 2277 1.77 1.79

For this purpose, we analyse 4 mocks with redshift uncertainties ofσz/(1+zc) = 0.005,0.010,0.030
and 0.050 respectively, in 5 redshift slices, from 0.1 < z < 0.4 to 1.6 < z < 2.1 with the same
mass cut Mhalo > 5 × 1013 h−1 M⊙ as done in Section 5.4. The results are shown in Figure
6.11 and the values of the best-fit parameters for all the 4 photometric samples are given in
Table 6.4 along with the number of clusters (Nclusters) and the mean and median redshift for
each sample.

Figure 6.11 shows the evolution of the best-fit parameters r0 and γ for the different redshift
slices. The four panels correspond to the different photometric redshift errors tested. It
can be compared to Figure 5.7 which shows the values of r0 and γ estimated for the same
redshift slices but using cosmological redshifts. The fits are performed in the range within
which ξ(r) can be described using a power-law. As in Figure 5.7, r0 and γ are shown to
increase with redshift but the errors on their estimates become larger as the photometric
redshift error increases. As a result, the error bars on the r0 estimates for consecutive redshift
slices tested tend to superimpose when considering large values of σz. The increase of r0
with redshift remains detectable, but a larger binning in redshift is requested to detect this
effect significantly when working with large σz. One can note that the parameters estimated
from the deprojected correlation function are within 1σ from the ones estimated directly in
real-space, and that remains true even for high redshifts and for high values of the photometric
errors. The large error bars for the last two redshift slices (1.3 < z < 1.6 and 1.6 < z < 2.1) are
both due to the small number of clusters at high redshift (see the histogram shown in Figure
5.5) and the scaling of the photometric error σz = σ(z=0) × (1 + zc). However, it can be seen
that the low number of clusters makes the correlation function hard to measure even using
cosmological redshifts. From our tests we can conclude that the correlation function can be
recovered from photometric redshift surveys using the deprojection method up to a redshift
of z ≈ 2.0 within 10% percent with a photometric redshift error of σz/(1+zc) = 0.030. In this
sense, the recovery performed with this method can be considered as successful. Even in the
last redshift slice chosen (1.6 < z < 2.1), the correlation function can be recovered within 1σ

for all the four photometric redshift uncertainties tested. It can be numerically visualised in
the last panel of Table 6.4. This point is of particular importance as the 1.5 < z < 2.0 redshift
range has been shown to be very discriminant for constraining cosmological parameters with
clusters (Sartoris et al., 2016) because future surveys as we have mentioned will be probing
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up to these redshift ranges.
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Figure 6.12: The evolution of bias with redshift and mass (with units h−1 M⊙) for the zc
sample (solid lines) compared with the photometric samples (dashed lines) with redshift
uncertainties of σz/(1 + zc) = 0.005,0.010,0.030 and σz/(1 + zc) = 0.050.

6.2.5.4 Calculating the bias for the photometric redshift samples

We have already stressed in Section 5.6 the fact that galaxy clusters are highly biased tracers
of mass, and that, precise information of the bias is needed if we are to use galaxy clusters
to constrain cosmology. As we have to calculate the bias, we need two parameters, i.e. the



6.2. Impact of redshift errors on the correlation function 143

dark matter correlation function and the cluster correlation function. If we are provided
only with photometric information, we have shown in the previous chapter that by using
the deprojection method we can recover the real-space correlation function within a few
percent. In this section we try to estimate the bias as defined for samples with σz/(1 + zc) =
0.005,0.010,0.030 and 0.050.

The calculated bias values are given in Tables 6.5 and 6.6 along with the number of
clusters(Nclusters) in each sample. The results can be seen in Figure 6.12. The bias values ob-
tained for the photo-z samples are consistent with the values obtained for the reference sample
and are within 1σ error bars. For the first two mass cut samples (Mhalo > 2 × 1013 h−1 M⊙
and 5 × 1013 h−1 M⊙), the calculated bias from the photometric samples are within 1σ even
up to a median redshift of z ≈ 1.8. Up to a mass cut of Mhalo > 1 × 1014 h−1 M⊙ one can see
that the redshift evolution of the bias can be traced very well (even up to redshifts of z ≈ 1.5).

However we notice that for the highest mass cut sample (Mhalo > 2×1014 h−1 M⊙) chosen,
only the bias values obtained for the photometric sample with σz/(1+zc) = 0.005 seem to be
similar to that obtained by the reference sample. The remaining three photometric samples
depict a much higher bias (even though they fall within 1σ) when compared to the reference
sample. One reason for this behaviour and also for the large error bars for this mass cut
sample is due to the smaller abundance of clusters at this mass threshold cut as it can be seen
from Table 6.5 and 6.6. We also believe that it can be due to the percentage of contaminants
that are present in this mass cut sample for three different photometric uncertainties. We have
calculated the contaminants for this mass cut sample and they seem to be higher at certain
redshifts when compared to the contaminants at the same redshifts found for the low mass
cut samples.

However up to a mass cut of Mhalo > 5×1013 h−1 M⊙, the evolution in redshift and mass
of the bias is clearly distinguished up to the highest redshift z ≈ 2.1, and up to a mass cut of
Mhalo > 1 × 1014 h−1 M⊙, it is clearly distinguished up to z ≈ 1.5.

σz/(1 + zc) Mass
(h−1 M⊙)

Redshift range Bias Nclusters

0.005 2 × 1013 0.1 < z < 0.4 1.71±0.13 10521

0.4 < z < 0.7 1.97±0.06 27224

0.7 < z < 1.0 2.46±0.06 35045

1.0 < z < 1.3 2.86±0.23 31845

1.3 < z < 1.6 3.31±0.30 23017

1.6 < z < 2.1 4.23±0.57 18904

5 × 1013 0.1 < z < 0.4 2.17±0.23 3214

0.4 < z < 0.7 2.78±0.19 7310
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0.7 < z < 1.0 3.34±0.26 8088

1.0 < z < 1.3 4.17±0.06 6001

1.3 < z < 1.6 6.10±0.81 3356

1.6 < z < 2.1 5.75±0.81 2251

1 × 1014 0.1 < z < 0.4 2.72±0.27 1116

0.4 < z < 0.7 3.86±0.37 2231

0.7 < z < 1.0 5.07±0.41 2065

1.0 < z < 1.3 6.35±1.29 1218

1.3 < z < 1.6 8.12±0.98 594

2 × 1014 0.1 < z < 0.4 3.78±1.48 316

0.4 < z < 0.7 4.88±1.07 544

0.7 < z < 1.0 5.45±1.38 399

0.010 2 × 1013 0.1 < z < 0.4 1.76±0.08 10536

0.4 < z < 0.7 1.91±0.14 27283

0.7 < z < 1.0 2.48±0.09 35022

1.0 < z < 1.3 2.96±0.19 31763

1.3 < z < 1.6 3.39±0.32 23021

1.6 < z < 2.1 4.10±0.47 18898

5 × 1013 0.1 < z < 0.4 2.23±0.12 3216

0.4 < z < 0.7 2.80±0.13 7338

0.7 < z < 1.0 3.31±0.37 8095

1.0 < z < 1.3 4.07±0.59 5973

1.3 < z < 1.6 5.76±0.56 3350

1.6 < z < 2.1 6.01±0.96 2239

1 × 1014 0.1 < z < 0.4 2.86±0.33 1124

0.4 < z < 0.7 3.58±0.53 2235

0.7 < z < 1.0 4.96±0.75 2069

1.0 < z < 1.3 5.57±2.36 1210

1.3 < z < 1.6 7.81±3.12 587
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2 × 1014 0.1 < z < 0.4 4.56±0.74 318

0.4 < z < 0.7 5.47±2.3 547

0.7 < z < 1.0 7.16±1.31 394

Table 6.5: The bias values obtained for the first 2 photometric redshift catalogues (σz/(1 +
zc) = 0.005 and 0.010) with the 4 mass threshold cuts in the 5 redshift bins used. (1) Pho-
tometric uncertainty σz/(1 + zc), (2) mass cut Mhalo cut, (3) redshift range, (4) the bias and
(5) the number of clusters Nclusters are given.

σz/(1 + zc) Mass
(h−1 M⊙)

Redshift range Bias Nclusters

0.030 2 × 1013 0.1 < z < 0.4 1.77±0.15 10581

0.4 < z < 0.7 2.05±0.14 27475

0.7 < z < 1.0 2.36±0.20 34849

1.0 < z < 1.3 3.13±0.36 31457

1.3 < z < 1.6 3.67±0.49 23028

1.6 < z < 2.1 5.14±0.38 18863

5 × 1013 0.1 < z < 0.4 2.38±0.45 3196

0.4 < z < 0.7 2.97±0.07 7396

0.7 < z < 1.0 3.48±0.51 8053

1.0 < z < 1.3 4.33±0.83 5880

1.3 < z < 1.6 4.99±1.02 3388

1.6 < z < 2.1 6.66±0.93 2251

1 × 1014 0.1 < z < 0.4 2.83±0.43 1115

0.4 < z < 0.7 3.70±0.49 2253

0.7 < z < 1.0 4.63±2.05 2041

1.0 < z < 1.3 5.93±2.24 1228

1.3 < z < 1.6 7.54±1.74 580

2 × 1014 0.1 < z < 0.4 4.74±0.61 317

0.4 < z < 0.7 5.37±1.50 554

0.7 < z < 1.0 6.53±2.30 383
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0.050 2 × 1013 0.1 < z < 0.4 1.71±0.28 10835

0.4 < z < 0.7 2.05±0.19 27570

0.7 < z < 1.0 2.71±0.28 34575

1.0 < z < 1.3 3.34±0.29 31168

1.3 < z < 1.6 4.20±0.86 22733

1.6 < z < 2.1 5.01±0.63 18889

5 × 1013 0.1 < z < 0.4 2.40±0.18 3205

0.4 < z < 0.7 2.62±0.21 7443

0.7 < z < 1.0 3.06±0.29 7937

1.0 < z < 1.3 4.21±0.24 5859

1.3 < z < 1.6 6.31±1.01 3352

1.6 < z < 2.1 7.02±0.63 2277

1 × 1014 0.1 < z < 0.4 2.98±0.61 1109

0.4 < z < 0.7 3.37±1.20 2258

0.7 < z < 1.0 4.89±0.86 1992

1.0 < z < 1.3 5.75±2.30 1257

1.3 < z < 1.6 9.75±2.79 562

2 × 1014 0.1 < z < 0.4 5.12±1.08 311

0.4 < z < 0.7 5.57±2.40 560

0.7 < z < 1.0 6.91±2.97 370

Table 6.6: The bias values obtained for the last 2 photometric redshift catalogues (σz/(1 +
zc) = 0.030 and 0.050) with the 4 mass threshold cuts in the 5 redshift bins used. (1) Pho-
tometric uncertainty σz/(1 + zc), (2) mass cut Mhalo cut, (3) redshift range, (4) the bias and
(5) the number of clusters Nclusters are given.

6.2.6 Effects of Purity and Completeness on the two-point correlation

function

Observational cluster samples suffer in terms of purity and completeness, which affects the
recovered correlation function. Not all clusters above a given mass and redshift range are
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Figure 6.13: Left column: The real-space correlation function (red dotted line), the recovered
correlation function for the photometric redshift sample (green line) along with the recovered
correlation function for the photometric redshift sample with varying completeness values
(coloured as indicated in the figure). Right column: The real-space correlation function (red

dotted line), the recovered correlation function for the photometric redshift sample (green

line) along with the recovered correlation function for the photometric redshift sample with
varying purity values (coloured as indicated in the figure). The quality of the recovery for
each completeness and purity sample is given in Table 6.7 and 6.8 .
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Table 6.7: The quality of recovery obtained for the three completeness samples. It can be seen
that the quality of the recovery starts to diminish for samples with increasing incompleteness
compared to the sample that is 100% complete. The columns indicate: (1) Completeness, (2)
the values of ∆ξ and (3) ∆̂ξ for the sample with a photometric uncertainty of 0.010×(1+zc).
The range of scales r used for the fit is fixed at 5-50 Mpc.

Completeness ∆ξ ∆̂ξ

100% 0.065 0.063

90% 0.097 0.101

70% 0.113 0.111

50% 0.166 0.162

detected, which means that the sample is not always 100% complete. At the same time,
there will be certain clusters that are detected as false positives, which means that the sam-
ple is not always 100% pure. So far, we have shown that by using the deprojection method,
the correlation function can be recovered within a given percentage for samples with differ-
ent photometric uncertainties (not taking into account any purity and completeness issue).
As a preliminary test, we add to the photometric redshift uncertainty, different purity and
completeness values and separately investigate the effect of completeness and purity on the
recovered real-space correlation function.

For the analysis several completeness and purity samples are generated from the origi-
nal light-cone catalogue. For the preliminary test, we take into account samples within the
redshift range 0.4 < zphot < 0.7 with a photometric uncertainty of σz = 0.010 × (1 + zc).

For generating different completeness samples, we remove randomly a given percentage
of objects from the original catalogue so that it mimics different completeness values. We
generate six realisations for each of the samples that are 90%, 70% and 50% complete and
investigate its effect on the final recovered correlation function (for which we take the average
over the recovered correlation function obtained for each of the six realisations).

With regard to the effect of purity, we randomly include a given percentage of objects
from the original catalogue so that it mimics different purity values. We use the same number
of realisations for our purity samples, i.e. we generate six realisations for each of the samples
that are 90%, 70% and 50% pure and investigate its effect on the final recovered correlation
function (for which we take the average over the recovered correlation function obtained for
each of the six realisations).

The results of the same are seen in Figure 6.13 and the values obtained for the quality of
the recovery are given in Table 6.7 and 6.8. Considering the sample that is 90% complete,
the correlation function is recovered within 90%, whereas for the same sample (with 0.010×(1+zc)) that is 100% complete, we see that the correlation function is recovered within 95%
as seen from Figure 6.9 and Table 6.7. The same can be seen for the sample that is 90% pure,
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Table 6.8: The quality of recovery obtained for the three purity samples. It can be seen that
the quality of the recovery starts to diminish for samples with increasing impurity compared
to the sample that is 100% pure. The columns indicate: (1) Purity, (2) the values of ∆ξ and
(3) ∆̂ξ for the sample with a photometric uncertainty of 0.010×(1+zc). The range of scales
r used for the fit is fixed at 5-50 Mpc.

Purity ∆ξ ∆̂ξ

100% 0.065 0.063

90% 0.108 0.104

70% 0.127 0.127

50% 0.152 0.160

i.e. the correlation function is recovered within 89% compared to a recovery within 95% for
the sample that is 100% pure. This indicates that the recovery of the real-space correlation
function is affected when we use incomplete and impure samples and that the quality of the
recovery starts to diminish with decreasing completeness and purity.

However, for this preliminary test, we have only investigated the effect of purity and com-
pleteness separately on the recovered correlation function and we can see that the recovery
starts to decrease with increasing impurity and incompleteness for the chosen photometric
sample as expected. The result of combining the two effects on the recovery of the correlation
function will be addressed in a future work.

6.2.7 Towards the usage of more realistic photo-z errors

The photometric redshifts used so far have been drawn from a Gaussian distribution centred
at the cosmological redshift (zc) of each cluster and with a standard deviation σzc = σ(z=0)(1+
zc) which is equal to the assumed photometric redshift error of the sample. We have used
values of σ(z=0) = 0.001,0.005,0.010, up to 0.050 and tested the effect these errors have
on the recovery of the correlation function. In a more realistic scenario, we expect to have
catastrophic failures, as it can happen for galaxy samples and the photometric redshifts are
also dependent on mass. We have not taken into account both these issues so far.

Cluster finding algorithms that are applied on realistic data/simulations, do take into ac-
count these issues and so the photometric redshifts calculated by them are more realistic
compared to the Gaussian approximation method we have used so far. As a preliminary
test, we would like to compare the distribution of (zphot − zc) (with zphot generated using the
Gaussian approximation method) for the sample with an uncertainty of 0.010 × (1 + zc) to
the distribution of (zphot − zc) with zphot obtained from the cluster finder algorithm applied
on the simulated cluster catalogue. To do so, the cluster finder we use is WAZP (Benoist et
al. in prep) which uses a wavelet adaptive technique, and is applied on the simulated cluster
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Figure 6.14: Left: The blue histogram shows the distribution of (zphot − zc) for the pho-
tometric sample with a redshift uncertainty of 0.010 × (1 + zc) obtained directly from the
simulated cluster catalogue and the red solid line shows the fitted distribution for the data.
Right: The blue histogram shows the distribution of (zphot − zc) for the photometric sample
obtained from the cluster finder algorithm applied on the simulated cluster catalogue, and
the red solid line shows the fitted distribution for the data. It can be seen that the photometric
redshift distribution obtained from the cluster finder algorithm (on the right) is close to a
Gaussian distribution and also closer to the photometric redshift distribution that we have
generated using the Gaussian approximation method (on the left).
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catalogue. The distributions (zphot − zc) of both the redshifts, i.e. the one generated via the
Gaussian approximation technique and the one calculated via the cluster finder can be seen
in Figure 6.14. It can be seen from Figure 6.14 that the redshift distribution obtained from
the cluster finder is closer to a Gaussian distribution.

As we have discussed, photometric redshift distributions calculated from cluster finding
algorithms are more closer to reality and so will be the recovery of the correlation functions
calculated from them. Due to the similarity in the photometric redshift distributions as seen
from Figure 6.14 the Gaussian approximation technique we have used so far to generate
the photometric redshifts is a reasonable one. The results obtained on the recovery of the
two-point correlation function (with the photometric redshifts generated from the Gaussian
approximation method) so far are thus not far away from what we expect when we apply the
deprojection method on cluster catalogues obtained from cluster finding algorithms, either
on simulations or on real data.

6.3 Impact of selecting in Richness on the two-point corre-

lation function

Optical cluster finder algorithms in general do not produce mass estimates, but instead pro-
duce a quantity that we refer to as ‘Richness’. For photometric surveys, optical richness is
the primary mass proxy. Richness refers to the number of galaxies in a cluster within a given
radius and so can be directly estimated from an optical survey.

Cluster mass estimates are commonly inferred from independent weak-lensing studies
or adopting scaling relations between weak-lensing masses and mass proxies. Weak-lensing
mass estimates are unfortunately limited to the high mass, intermediate redshift tail of the(M,z) distribution. Richnesses are in principle available for the whole set of clusters de-
tected. However, richness estimates are expected to be noisy tracers of the underlying mass
(Rykoff et al., 2012) and there exists an intrinsic scatter between the mass-observable rela-
tion. This intrinsic scatter varies with redshift and the evolution of the scaling relation gives
us information on the mass dependence. From studies based on numerical simulations it
has been argued that the intrinsic scatter of the mass-richness relation at the cluster scale is
around σM ∣N = 0.20 − 0.25 at a mass M200 ∼ 2 × 1014 (Rozo et al., 2011; Rykoff et al., 2012,
and references therein).

Extrinsic sources of scatter can impact the observed scatter in the mass-richness relation
(Rozo et al., 2011). Source of noise for a photometric cluster catalogue comes from the
density of background galaxies within which a cluster is fixed. Due to galaxy clustering, this
background exhibits large cluster-to-cluster fluctuations, and so a small percentage of galaxy
clusters end up fixed in very large galaxy overdensities. Thus the richness estimates obtained
are usually overestimated, i.e. projection onto correlated structures. Improper estimates of
galaxy cluster centres on the other hand can lead to underestimates of the richness (Rykoff
et al., 2012).
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A key goal for cluster cosmology especially from photometric catalogues is trying to
reduce the scatter between the cluster mass and richness. There have been several studies
(Berlind et al., 2003; Kravtsov et al., 2004; Zheng et al., 2005; Rozo et al., 2009; Rykoff et al.,
2012) that have been made previously both on catalogues from observations and simulations.
On the whole, an ideal mass proxy should be characterised by a low scatter with mass. When
the correlation between cluster richness and mass is improved, the cluster richness can be
used to infer cluster masses even out to high redshifts. However, the source of intrinsic
scatter will still exist.

In this thesis, as a preliminary test, we make use of the true richness, taking into account
only the intrinsic scatter and test if we can recover the two-point correlation function of a
mass cut sample ξ(> mass) from the two-point correlation function of a true richness cut
sample ξ(> richness). We also calculate the cluster bias for arbitrary richness cut samples
and compare the same with mass cut samples, for which the mass is obtained by fitting the
mass-richness relation using a simple power-law. Provided the two cluster samples depict a
similar evolution of the bias with redshift, i.e. trace the underlying dark matter distribution
in a similar way, we can combine the result with the ξ(r) obtained for the two samples to
compare mass and richness.

6.3.1 Richness definition

There are several ways in which one can define richness. We explain here the richness def-
inition we have used, i.e N200(H∗ + 2). Galaxies brighter than 0.4L∗ is a common choice
used, where L∗ is the luminosity of a galaxy at the knee of the galaxy luminosity function
(Rykoff et al., 2012). H∗ is the apparent H-band magnitude an L∗ galaxy would have if lo-
cated at redshift z and has been derived from the evolution of the SED of an elliptical galaxy
taken from the PEGASE2 SED library (Fioc and Rocca-Volmerange, 1997) and calibrated
with Coma cluster (de Propris et al., 1998). The richness N200(H∗ + 2) is defined to be all
those galaxies within a radius R200 which have an apparent magnitude that is brighter than
H∗ + 2. The choice of such a richness is consistent with that adopted for richness estimates
with galaxies brighter than 0.4L∗. HereR200 refers to a radius within which the mean density
of a cluster is 200 times the critical density of the Universe:

R200 = 3

√
3M200

4πρc
(6.11)

where ρc ≡ 3H(z)2/8πG. The H∗ is a characteristic magnitude that evolves with redshift so
that derived richness at different redshift intervals can be compared. The luminosity function
provides us the clusters with a given luminosity range. Usually we work with magnitudes
and not luminosities, so the luminosity function is converted from the absolute luminosities
L to apparent magnitudes m as and is written as:

φ(M)dM = 0.4ln(10)φ∗100.4(H∗−m)(α+1)exp−10
0.4(H∗−m)

dM (6.12)
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where H∗ is the characteristic magnitude. From now on we refer to N200(H∗ + 2) as just
N200 and refer to the richness with all those galaxies within R200 and without a magnitude
cut as N200(total).
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Figure 6.15: Left panel: N200(total) richness vs Mhalo mass plotted for the entire sample of
clusters. The sample is divided into four redshift ranges and are colour coded as mentioned
in the figure. Right panel: N200 richness vs Mhalo mass plotted for the entire sample of
clusters. The sample is divided into four redshift ranges and are colour coded as mentioned
in the figure.

If absolute magnitudes are available in the catalogue, one can directly make a cut at a
specific absolute magnitude with the galaxies within R200 to get their richness estimate. In
a real observational catalogue, apparent magnitudes are what we will be using. As we are
using a simulated catalogue, the richness we are using is the true richness, i.e. contains all
true members of the cluster. In a real observational scenario, this will not be the case due to
several observational disabilities.

We have explained before in Section 5.2 that the Mhalo masses provided in the simulation
are close to M200 values and so using N200 should be a good compromise. We show in
Figure 6.15a and 6.15b the plot of N200(total) vs Mhalo and N200 vs Mhalo for all the cluster
samples binned in redshift slices. It can be seen that the overall scatter between N200(total)
and Mhalo is larger compared to the overall scatter between N200 and Mhalo. This is because
of the evolution of the characteristic magnitude with redshift for richness N200, whereas for
richness N200(total), we include all the galaxies within the virial radii regardless of the
survey magnitude cut. It can also be seen from Figures 6.15a and 6.15b that the low redshift
cut samples (0.0 < z < 0.5 and 0.5 < z < 1.0) depict different slopes. But it can be seen that as
we reach a higher redshift range (z ≳ 1.0) it can be seen that the N200 values and N200(total)
values depict a similar slope and become comparable.
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log10(Mhalo) = a + b × log10(N200)
Redshift range a b

0.1< z <0.4 12.46 ± 0.005 1.12 ± 0.004
0.4< z <0.7 12.40 ± 0.003 1.14 ± 0.003
0.7< z <1.0 12.35 ± 0.003 1.15 ± 0.002
1.0< z <1.3 12.31 ± 0.003 1.14 ± 0.002
1.3< z <1.6 12.28 ± 0.003 1.13 ± 0.003

Table 6.9: The parameters obtained by fitting the scaling relation between mass and rich-
ness for the 5 different redshift slices chosen. The generic form is log10(Mhalo) = a + b ×
log10(N200)
6.3.2 Scatter in the mass-richness relation
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Figure 6.17: The distribution of those clusters within an arbitrary redshift range of 0.1 < z <
0.4 and above a richness cut of N200 > 20. The best-fit line to the distribution is given by the
dashed line and is made using Equation 6.13.

We will be analysing the scatter that exists between the mass-richness relation, the evo-
lution of the two-point correlation function with both richness and redshift, along with the
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Figure 6.18: Left panel: The scatter in mass at a fixed richness cut. The scatter is estimated
using all clusters above a given richness and not by using narrowly binned samples. Right

panel: The scatter in mass at fixed richness estimated using all clusters above a given richness
as calculated by Rykoff et al. (2012) for the maxBCG cluster sample. The dashed lines
illustrate how the scatter changes as the correlation coefficient is varied between LX and
richness λ at fixed mass.

redshift evolution of bias obtained for our richness cut samples. To do so, the sample is split
into 5 redshift slices, each of width 0.3 starting from 0.1 < z < 0.4 up to 1.3 < z < 1.6. The
mass-richness plot is shown in Figure 6.16 for the first three redshift samples. It can be seen
that mass and richness have a positive correlation, but we need to take into account the scat-
ter that exists. This scatter as it can be seen from Figure 6.16 is larger at low mass/richness
range and decreases at high mass/richness range.

To find the scaling relation of richness with mass, we fit the relation using a simple power-
law (using the generic equation as mentioned in Table 6.9) for all the five redshift samples.
The values obtained are given in Table 6.9.

To calculate the scatter at a given richness, we assume a lognormal distribution of Mhalo

as a function of N200, which is given by the equation

p(Mhalo∣N200) = 1√
2πσ2

log(Mhalo)

exp[(log(Mhalo) − µ)2
2σ2

log(Mhalo)
] (6.13)

where µ is the mean and σ is the scatter.
So once we have the fit made to the mass-richness relation, the scatter at any arbitrary

richness/mass can be found. We show the fit to the Gaussian distribution for an arbitrary
richness cut sample (N200 > 20) within the redshift range 0.1 < z < 0.4 in Figure 6.17. It can
be seen that Equation 6.13 is a good approximation for the distribution seen in Figure 6.17
and that the scatter at this richness cut is σlogM = 0.16.
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Figure 6.19: The two-point correlation function calculated for the redshift slice 0.4 < zc < 0.7
with increasing richness cuts. The points are colour coded as mentioned in the figure.

Another interesting feature of the scatter is to find out how the scatter in mass at a fixed
richness cut evolves with richness. To do so we use an arbitrary subsample in the redshift
range 0.4 < z < 0.7 and calculate the scatter at a given richness cut using Equation 6.13. It
can be found out that the scatter in mass at a fixed redshift slice appears to decrease with
increasing richness cuts. The scatter (σ) appears to decrease at a much faster rate from a
richness cut of N200 > 10 up to N200 > 50, beyond which the rate of the decrease in the scatter
drops as it can be seen from Figure 6.18a. A similar study of the variation of the scatter in
mass at a fixed richness cut has been performed by Rykoff et al. (2012) on the maxBCG
cluster samples. The result obtained by Rykoff et al. (2012) is given in Figure 6.18b. It can
be seen that a similar decline of the scatter with increasing richness is seen for their samples
and above a richness cut of λ > 60, the decline in the scatter becomes less prominent. This
behaviour according to Rykoff et al. (2012) is possible because the miscentering properties
of the maxBCG clusters is expected to become important at λ ≈ 60.

6.3.3 Two-point correlation function of richness cut samples

We calculate the two-point correlation function for samples with increasing richness cuts to
see how they evolve. Although it can be seen from Figure 6.16 that mass and richness are
positively correlated, we compare the evolution of ξ(r) of our mass and richness cut samples.
We choose 4 arbitrary richness cuts to find the evolution of the two-point correlation function
with richness in an arbitrary redshift range 0.4 < zc < 0.7. It can be seen from Figure 6.19 how
ξ(r) evolves with increasing richness cuts in a given redshift slice. The best-fit parameters
obtained for the fit are mentioned in Table 6.10. The evolution of ξ(r) for our richness cut
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Figure 6.20: The best-fit parameters obtained for the richness cut samples and the mass cut
samples within the redshift range 0.4 < zc < 0.7.

samples can be compared with the evolution of ξ(r) obtained in Chapter 3 for our mass cut
samples. It can be seen from Figure 6.20 that the evolution in richness is similar to what
we obtained with increasing mass cut samples. But due to the scatter that exists between the
mass-richness relation, a direct comparison between a richness cut sample and a mass cut
sample cannot be made.

To find out how well richness in general can be used as a mass proxy, we calculate the
bias for the four arbitrary richness cuts (N200 > 10,15,30 and 45) chosen at each of the 5
redshift bins (the same as in Section 5.4) and compare the same with the bias calculated
for corresponding Mhalo values obtained from the fit where Mhalo is the mean mass obtained
from the fit performed to the mass vs richness sample (the values for the fit are given in Table

N200 r0 γ

N200 > 10 10.39 ± 0.15 1.92 ± 0.13
N200 > 15 13.48 ± 0.33 2.03 ± 0.11
N200 > 30 16.86 ± 0.63 1.98 ± 0.15
N200 > 45 23.84 ± 1.38 2.17 ± 0.19

Table 6.10: The best-fit parameters obtained by fitting ξ(r) for the four richness cut samples
in the redshift range 0.4 < zc < 0.7.
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Figure 6.21: On top: The evolution of bias with redshift for clusters observed in the four
richness cut samples. The dotted lines correspond to the bias of mean mass Mhalo obtained
from the fit of N200 vs Mhalo relation. The error bars plotted for the bias of Mhalo are the
errors without considering the scatter in the richness vs mass relation. Bottom: The same
as seen in the left plot, except that the error bars on the bias of Mhalo are those when the 1σ

scatter is considered. The median redshift of the mass samples have been shifted by 0.02 for
visual clarity of the error bars.
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z N200 bias (N200) Mhalo (h−1 M⊙) σlogMhalo
bias (Mhalo) Ngal(N200 cut) Ngal(Mhalo cut)

0.1 < zcosmo < 0.4 N200 > 10 2.85±0.04 4.06 × 1013 0.127 2.87+0.30−0.20 3668 4490

N200 > 15 3.11±0.05 6.16 × 1013 0.102 3.21+0.24−0.11 1994 2432

N200 > 30 3.71±0.35 1.31 × 1014 0.127 3.88+0.15−0.21 582 743

N200 > 45 4.97±0.48 2.04 × 1014 0.127 4.46+0.21−0.55 256 334

0.4 < zcosmo < 0.7 N200 > 10 3.57±0.02 3.54 × 1013 0.126 3.44+0.26−0.29 10075 12743

N200 > 15 4.33±0.21 5.49 × 1013 0.127 3.86+0.47−0.25 5066 6467

N200 > 30 4.34±0.65 1.23 × 1014 0.127 4.92+0.39−0.08 1321 1517

N200 > 45 8.00±0.61 1.94 × 1014 0.127 7.38+2.26−0.39 528 605

0.7 < zcosmo < 1.0 N200 > 10 4.17±0.09 3.19 × 1013 0.130 4.01+0.49−0.31 14053 17760

N200 > 15 4.96±0.17 5.01 × 1013 0.127 4.70+0.44−0.29 6568 8250

N200 > 30 6.56±0.56 1.09 × 1014 0.127 6.57+0.58−0.52 1401 1789

N200 > 45 13.50±0.54 1.77 × 1014 0.127 11.74+3.45−1.19 480 576

1.0 < zcosmo < 1.3 N200 > 10 5.12±0.15 2.81 × 1013 0.125 4.99+0.64−0.56 13714 18191

N200 > 15 6.26±0.23 4.46 × 1013 0.127 5.99+0.49−0.54 5838 7681

N200 > 30 9.14±0.92 1.00 × 1014 0.127 8.66+0.57−0.42 1029 1246

1.3 < zcosmo < 1.6 N200 > 10 6.10±0.23 2.57 × 1013 0.125 6.12+0.81−0.60 10621 14701

N200 > 15 7.62±0.34 4.07 × 1013 0.127 7.46+0.44−0.66 3850 5580

N200 > 30 12.21±4.82 8.91 × 1013 0.127 11.79+5.40−2.68 600 853

Table 6.11: The bias values obtained for the mass observable (richness cuts) and those ob-
tained for the corresponding mass cuts taken from the mean mass (Mhalo) of the N200 vs
Mhalo plot considering the ± 1σ scatter. Ngal refers to the number of haloes above the corre-
sponding richness/mass cuts considered.

6.9). The method we follow is:

1. Consider the N200 vs Mhalo plot separately for all the 5 redshift slices (the same as
chosen in Section 5.4) and perform the fit assuming a simple power-law form which
gives us a mean fit line (as given by the magenta line in Figure 6.16).

2. Calculate the 1σ scatter at the four richness cuts used using Equation 6.13.

3. Add/subtract the above scatter from the mean fit line (passing through the N200 vs
Mhalo plot) to get the corresponding ±1σ Mhalo values.

Once we have done the above procedure, we calculate the bias (b) as defined by Equation
5.4 for all the Mhalo samples along with their ±1σ Mhalo samples (the values of the same
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are mentioned in Table 6.11). It can be seen from Figure 6.21a that the bias of all our Mhalo

cut samples follow exactly the same trend as their corresponding N200 cuts and are within±1σ uncertainty. But due to the large scatter that exists in the relation between mass and
richness, the errors on the bias values obtained for the mass cut samples (as seen in Figure
6.21a) cannot be used if we want to compare it with the bias of the richness cut samples.

To compare the bias of the mean mass (Mhalo) corresponding to a specific richness, we
use the ±1σ Mhalo bias values obtained from the scatter σlogMhalo

as defined in Equation 6.13.
As the scatter decreases with increasing mass/richness (see Table 6.11), we expect the errors
on the bias of Mhalo to follow a similar pattern. One can see from Figure 6.21b (also from
Table 6.11) that it is not clearly evident for all the samples at all the redshift ranges. The
reason for this behaviour is partly due to the statistical noise that affects the values of ξ(r)
for certain samples, i.e. there are lesser number of clusters at both z < 0.4 and z > 1.3 as it can
be seen from Figure 5.5. The ξ(r) values obtained for these samples are not clearly consistent
and tend to fluctuate, i.e. deviate from a power-law, within the 5-50 Mpc range in which we
calculate the bias. It is also due to the above factor, that the bias values calculated for the
N200 > 45 sample have been done only in those ranges wherein ξ(r) follows a power-law
instead of the 5-50 Mpc as used for the other three richness cuts.

On the other hand, we can see that for the redshift range (0.4 < z < 1.3) the error on the
bias obtained from the observable (i.e. the bias of, Mhalo obtained from N200) does decrease
as expected with increase in mass. It can be visualised in Figure 6.21b and also from Table
6.11. Overall we see that the bias values calculated for a specific richness cut sample when
compared with the corresponding Mhalo sample taking into account the scatter that exists
seem to fall within a 1σ precision for all the samples we have studied. The large error bars
at lower (z < 0.4) and higher (z > 1.3) redshifts are due to the very few number of clusters
available.

From the above studies, we can see that cluster mass and richness are tightly correlated.
The best-fit parameters that we have obtained for our particular richness cut and mass cut
samples are very similar. The bias of the richness cut samples also depict a similar evolution
in richness (within 1σ) compared to the mass cut samples. But however, due to the scatter that
exists in the mass-richness relation, we still cannot conclude whether a specific richness cut
sample corresponds to a specific mass cut sample. There are also other complications such
as projection effects, false positives etc., that arise in a real observational scenario that were
not taken into account which needs to be addressed. Application of the above exercise on
clusters detected from cluster finding algorithms needs to be addressed and will be pursued
in a future work.

6.3.4 Combined effect of richness and photometric redshift errors on

the two-point correlation function

So far we have only studied the evolution of the two-point correlation function with richness
(N200) cuts in cosmological redshift space and have recovered the correlation function from
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Figure 6.22: A subset of the RA and DEC of a random catalogue. The masked coordinates
are plotted by the green crosses and the random coordinates are plotted by the blue dots.

photometric redshift catalogues that have been generated using the Gaussian approximation
technique. In this section, we study the combined effect of the photometric redshift errors
and richness cut on the two-point correlation function. It has been shown in Section 6.2.5
that by using the deprojection method, the two-point correlation function of mass cut cluster
samples can be recovered within a given percentage depending on the photometric redshift
uncertainty.

As a preliminary test, to evaluate the combined effect of photometric redshift errors and
richness on the two-point correlation function, we select two richness cut samples (N200 > 10
and N200 > 15) with a photometric redshift uncertainty of 0.010× (1+ zc), the same redshift
uncertainty as used to test the effect of purity and completeness on the correlation function.
We apply the deprojection method as explained in Section 6.2.2 to the richness cut samples
and find out to which accuracy do we recover the real-space correlation function. The results
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(a)

(b)

Figure 6.23: On top: The two-point correlation in real-space for the N200 > 10 richness
cut sample within the redshift range 0.4 < zc < 0.7 as given by the red line along with the
recovered real-space correlation function using the deprojection method for the same richness
cut sample as given by the green line. Bottom: The two-point correlation in real-space for
the N200 > 15 richness cut sample within the redshift range 0.4 < zc < 0.7 as given by the red

line along with the recovered real-space correlation function using the deprojection method
for the same richness cut sample as given by the green line. The lower panels in both the
figures indicate the ratio ξdep(r)/ξ(r). Error bars have been calculated using the jackknife-
resampling method.
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Table 6.12: The quality of recovery obtained for the two richness cut samples. The columns
indicate: (1) Richness cut, (2) the values of ∆ξ and (3) ∆̂ξ for the sample with a photometric
uncertainty of 0.010 × (1 + zc). The range of scales r used for the fit is fixed at 5-50 Mpc.

Richness ∆ξ ∆̂ξ

N200 > 10 0.069 0.065

N200 > 15 0.071 0.071

of the same can be seen in Figures 6.23a and 6.23b and the quality of the recovery as given
by the averaged normalised residual ∆ξ and ∆̂ξ is given in Table 6.12.

It can be seen from the lower panels of Figures 6.23a and 6.23b that the ratio ξdep(r)/ξ(r)
fluctuates around 1 and is within 1σ at all scales for both the richness cut samples indicating
that ξdep(r) is not biased. One can also see from Table 6.12 that the real-space correlation
function is recovered within 7% for the N200 > 10 sample and within 8% for the N200 > 15
sample.

For this preliminary test, we have restricted ourselves to a photometric redshift uncer-
tainty of 0.010×(1+zc) and two richness cut samples N200 > 10 and N200 > 15. With regard
to the redshift evolution of ξ(r) for the richness cut samples with varying photometric red-
shift errors, we expect the recovery of the correlation function to follow a similar trend as
obtained for the mass cut samples as seen in Section 6.2.5 and Figure 6.11.

6.4 Application on observational catalogues: CFHTLS sur-

vey

All the tests performed so far on the recovery of the correlation function have been done on
simulated cluster catalogues. In Section 6.2.2 we have tested the effects of redshift errors on
the correlation function and have shown that they can be recovered using the deprojection
method up to photometric uncertainties of σz = 0.05 × (1 + z). We have also calculated
the redshift evolution of the two-point correlation function for richness cut samples from
the simulated catalogue along with the redshift evolution of the bias. In Section 6.2.6 and
6.3.4 we have shown the effects of purity and completeness separately on the recovery of
the correlation function and also the combined effects of richness and photometric redshift
errors on the recovery. These are effects that have to be taken into account when one applies
the method on real cluster catalogues. We make use of the data from Canada-France-Hawaii-
Telescope Legacy Survey (CFHTLS) and apply the deprojection method on the observational
cluster catalogue for which clusters have been detecting using a cluster finding algorithm.

The CFHTLS is composed of four separate Wide fields, divided into 171 individual point-
ings, covering a total area of 155 deg2. We use the T0007 (7th and final release) produced
by Terapix, based on the data collected from MegaCam (Cuillandre et al., 2012). With a



6.4. Application on observational catalogues: CFHTLS survey 165

Number of clusters 8,806
Redshift range 0.02 < zphot < 1.26
Area [deg2] ∼ 65

z̄ 0.536

Table 6.13: Properties of the CFHTLS galaxy cluster sample used in this work.

total sky coverage of 8.5×7.5 deg2 extending up to a redshift of z ∼ 1.3 (Cuillandre et al.,
2012), the W1 field (largest of the 4 fields covered by the CFHTLS survey) is used for the
cluster selection. The deprojection method is then applied to estimate the correlation func-
tion on CFHTLS detected galaxy cluster samples using WAZP (Benoist et al. in prep). The
main properties of the clusters used in this work is mentioned in Table 6.13. The data release
T0007 catalogue of clusters makes use of u∗, g′ , r′ , i′ , z′ photometry and zphot computed with
LePhare (Ilbert et al., 2009).
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Figure 6.24: Redshift distribution of the entire CFHTLS W1 field clusters within 0.02 <
zphot < 1.26.

6.4.1 Creating the random catalogue

Some regions of the sky are assumed to be “bad” because they are at close proximity with
stars or border areas of the survey. These regions are usually “masked” to remove the noise
from these sources, but on the other hand we loose data detected at these regions. It is usually
better to remove them completely than including them for our final analyses. These masks
are in the regions needed to be masked are usually not in a particular position of the survey
coverage, and so do not bias the projected cluster distribution. The CFHTLS T0007 release
makes use of Terapix masks generated on all the four wide fields and the details of the same
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can be found in Cuillandre et al. (2012). We however add a few more masks to certain regions
according to our scientific goals.
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Figure 6.25: The correlation function for the CFHTLS clusters with a given richness cut
Ngal > 10 in 3 different redshift ranges. The dashed lines show the corresponding power-law
best fits. The parameter values for the fits can be found in Table 6.14.

For the random catalogue the RA and DEC are first assigned randomly within the survey
limits. We then remove those points that fall inside the masks (in our case the masks are in the
form of polygons). For the final random catalogue used to calculate the two-point correlation
function, we only include those points that fall outside the masked regions. In Figure 6.22
we plot a subset of RA and DEC for one of our random catalogues. Here the masked regions
(which are polygons) are given by the green crosses and the blue points represent our random
coordinates.
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Figure 6.26: The r0 vs γ as obtained from the fit to the ξ(r) for the clusters with a richness
cut Ngal > 10. The parameter values for the fits can be found in Table 6.14.
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Mass z r0 γ Number of objects

Ngal > 10 0.1 < z < 0.4 8.35±0.33 1.95±0.09 1119

0.4 < z < 0.7 12.17±0.29 1.92±0.05 1501

0.7 < z < 1.2 15.31±0.47 2.09±0.10 761

Table 6.14: The parameters obtained from the fit for the correlation function ξ(r) for the
CFHTLS cluster sample with Ngal > 10.

6.4.2 Two-point correlation function: Richness cut photometric red-

shift samples

We have clusters within a richness range 5 < Ngal < 95, but the richness peaks close to
Ngal ∼ 10. For the redshift evolution of the cluster correlation function, we use a richness
cut of Ngal > 10 so that we are sure that we will have enough clusters to account for statistics
and that the contamination by false detections is limited. We separate the clusters into three
redshift bins (0.1 < z < 0.4, 0.4 < z < 0.7 and 0.7 < z < 1.2). The width of the redshift
bins are chosen similar to that of the simulations as done in Chapter 3. For the final bin, we
choose a much larger bin width (0.7 < zphot < 1.2) as one can see from Figure 6.24 that we
fall short of clusters above a redshift zphot ∼ 0.8. Once we have separated our samples into
redshift slices, we calculate the deprojected correlation function (see Section 6.2.2) for these
samples and estimate the best fit parameters r0 and γ.

The photometric redshift uncertainty for galaxies observed from the CFHTLS T0007
release is close to σz = 0.03 × (1 + z). We have seen in Section 6.2.5 that ξ(r) can be
recovered within 10% errors for a photometric uncertainty of σz = 0.030×(1+ z) (also seen
in Figure 6.9).

It can be seen from Figure 6.25 and Figure 6.26 that the evolution of the clustering
strength with redshift for a fixed richness threshold cut (Ngal > 10) is significantly detected.
The slope obtained from the best-fit for all the three redshift ranges is close to γ = 1.8, which
is the universal value expected for galaxy clusters (Bahcall and West, 1992; Governato et al.,
1999; Basilakos and Plionis, 2004; Estrada et al., 2009; Hong et al., 2012, and references
therein). We would like to understand the richness evolution of the correlation function in
terms of mass. Scaling of richness with other mass proxies such as weak-lensing masses
from CFHT-Lens or X-ray proxies from XXL can be analysed to understand it.

6.5 Conclusions from this chapter

1. Photometric redshift errors affect only the line of sight distance and not the transverse
plane, so correlation is lost only in one direction which destroys isotropy. These er-



6.5. Conclusions from this chapter 169

rors increase with redshift according to σz = σ(z=0) × (1 + zc). We create photometric
redshifts based on Gaussian distribution with known dispersion and mean and try to
recover the real-space correlation function.
Weighting all the clusters according to the method mentioned in Section 6.2.4 to over-
come the effect of the top-hat distribution of cluster selection in a photometric redshift
window does not seem to work very well, i.e. ξ(r) is overestimated. The results of the
same are mentioned in Section 6.2.4.2. So we make use the deprojection method as
mentioned in Section 6.2.2 with the same cut in the photometric redshift window as
compared to the cosmological redshift window.
The recovery of the real-space correlation function using the deprojection method for
galaxy clusters seems to work even for high redshift uncertainties. We recover ξ(r)
well within 7% on the average for scales 5 < r < 50 h−1Mpc even for a cluster cata-
logue with a redshift uncertainty of σ(z=0) = 0.010 and well within 9% on the average
for samples with σ(z=0) = 0.030. We also fitted both the real-space correlation function
and the projected correlation function using their corresponding fitting equations. The
parameters obtained from the fit for the mock photometric samples were then com-
pared with the same obtained for the zc parent sample with Mhalo > 5 × 1013 h−1M⊙.
We find that for almost all of our mock photometric samples, the correlation length is
close to r0 = 13.16 ± 0.17 (fixed slope γ = 2.0) and r0 = 13.20 ± 0.23 (free slope), the
values obtained for the zc sample.

2. By applying the deprojection method to calculate ξdep(r) for the catalogues with a
redshift uncertainty of σ(z=0) = 0.005,0.010,0.030 and 0.050, the redshift evolution of
the correlation function was studied and compared with the zc sample. We find that the
best-fit parameters obtained for all the photo-z samples are within the 1σ uncertainty
of the best-fit parameters obtained for the zc sample in all the redshift ranges studied
up to z ≈ 2.1.

3. The redshift and mass evolution of the bias obtained for all the photometric redshift
samples is compared with the redshift and mass evolution obtained for the cosmo-
logical redshift samples with the same redshift and mass cut. Up to a mass cut of
Mhalo > 5×1013 h−1M⊙ the bias is recovered within 1σ even for samples with a photo-
metric redshift uncertainty of σz = 0.050×(1+zc) and up to a median redshift of z̄ ∼ 1.8.
For the sample with a mass cut of Mhalo > 1×1014 h−1M⊙ the same trend is seen up to
a median redshift of z̄ ∼ 1.5. For the maximum mass cut Mhalo > 2× 1014 h−1M⊙, the
bias is recovered within 1σ, but the amplitude of the bias for the photometric samples
above 0.005 × (1 + zc) increase when compared to the bias for the zc sample. This
we believe is due to the number of clusters that exists at this mass cut, which causes
the two-point correlation function to deviate from a power-law at a very short distance
scale. We also believe it can be due to the percentage of contaminants that are present
in this mass cut sample for the three different photometric uncertainties.
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4. We have compared the two richness definitions N200(total) and N200 with mass Mhalo

in different redshift slices. We find that the overall scatter between N200(total) and
Mhalo is larger compared to the overall scatter between N200 and Mhalo. This is be-
cause of the evolution of the characteristic magnitude with redshift for N200 and for
N200(total) we include all the galaxies within a virial radii regardless of the redshift.
We also notice that this scatter becomes similar at high redshifts as both the richness
definitions at high redshifts include almost the same galaxies.

5. There exists scatter in the mass-richness relation and this scatter increases with de-
creasing richness/mass cut. To calculate the scatter at a given richness, we assume a
lognormal distribution of Mhalo as a function of N200. We find that the above approxi-
mation seems to be a good fit for the mass distribution above a given richness cut. We
also find that the scatter in mass at a given richness cut decreases at a much faster rate
from a richness cut of N200 > 10 up to N200 > 50, beyond which the rate of the decrease
of the scatter drops. A similar result is obtained by Rykoff et al. (2012) for the richness
cut samples from the maxBCG catalogue.

6. We calculate the two-point correlation function for samples with increasing richness
cuts to see how they evolve. We find out that the evolution in richness is similar to that
obtained for our mass cut samples and we also get similar best-fit parameters from the
fit to ξ(r) assuming the power-law approximation as mentioned in Equation 3.13.

7. Due to the scatter that exists between the mass-richness relation, one cannot directly
compare a given mass cut sample and richness cut sample. To do so, we calculate
the bias for four arbitrary richness cut samples chosen at each of the 5 redshift bins
and compare the same with the bias calculated for the corresponding Mhalo samples,
with Mhalo being the mean mass obtained from the fit performed to the mass-richness
sample using the generic equation as mentioned in Table 6.9.
We find out that the bias values calculated for a specific richness cut sample when
compared with the corresponding Mhalo sample taking into account the scatter that
exists seem to fall within a 1σ precision for all the samples we study.

8. We calculate ξ(r) for optically selected clusters detected from the CFHTLS survey.
The clusters are detected using wavelet adaptive method (Benoist et al. in prep) and
we choose different richness cut samples from the catalogue. We find that by applying
the deprojection method to these photometric cluster catalogues, we are able to recover
the real-space correlation function and get best-fit parameters that are comparable to
that expected for a cluster catalogue.
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General conclusions and future prospects
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7.1 Summary of this thesis

In this thesis we have focused on galaxy clusters and their usage towards constraining cos-
mological parameters.

In Chapter 1, we discussed the the history of the current cosmological framework, re-
viewed some of the theoretical foundations of cosmology and also the theoretical framework
of large-scale structure formation.

In Chapter 2, we discussed some of the key issues related to galaxy clusters, i.e. how
they are detected and how their masses are measured.

In Chapter 3, we introduced the two-point correlation function, and revisited some of the
historical studies of the galaxy and cluster two-point correlation function.

In Chapter 4, a brief introduction towards utilising galaxy clusters as cosmological probes
was discussed.

These four chapters have laid the foundation towards understanding some of the core
concepts of large-scale structure formation, cosmology using galaxy clusters and also some
of the concepts used in this thesis. The results obtained in this thesis have been divided into
two chapters.

In Chapter 5, the two-point correlation function and its evolution with both mass and
redshift were studied. To do so we made use of a simulated cluster catalogue provided by
Merson et al. (2013). We have verified that the amplitude of ξ(r) increases with both mass
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and redshift. The cluster bias was calculated for our samples and we found out that it closely
followed the theoretical bias function of Tinker et al. (2010). We also fitted the r0−d relation
for our redshift samples using a simple power-law model and found out that it matches with
the relation obtained by Younger et al. (2005) for another set of simulated clusters (following
a similar cosmology).

In Chapter 6, the evolution of ξ(r) with both mass and redshift was studied, but for ideal
samples derived from photometric redshifts (created using a Gaussian approximation). We
have shown that we could recover the real-space correlation function based on a deprojec-
tion method with different uncertainties and found out that the real-space two-point corre-
lation function could be recovered within 10% for a photometric redshift sample with an
uncertainty of σz = 0.030 × (1 + zc). The redshift and mass evolution of ξdep(r) (recovered
real-space correlation funciton) was compared with ξ(r) (correlation function of the cosmo-
logical redshift sample) and we found out that the best-fit parameter obtained were within
1σ uncertainty even up to a redshift of z ≈ 2.0 for all the photometric redshift samples with
different uncertainties considered.

The evolution of the cluster bias (with both mass and redshift) obtained from our pho-
tometric cluster catalogues were compared with the bias obtained from our cosmological
cluster catalogue. We found out that up to a mass cut of Mhalo > 5 × 1013 h−1M⊙ the bias
was recovered within 1σ even for the sample affected by the largest photometric redshift
errors (σz = 0.050 × (1 + zc)) up to a median redshift of z̃ ∼ 1.8. For the sample with
Mhalo > 1× 1014 h−1M⊙ the same trend was found up to a median redshift of z̃ ∼ 1.4 and for
the sample with Mhalo > 2×1014 h−1M⊙, the bias was recovered within 1σ but the amplitude
of the bias for the photometric samples above 0.005 × (1 + zc) increase when compared to
the bias obtained for the zc sample due to less statistics.

We calculated ξ(r) in bins of richness N200 to calculate the evolution of the two-point
correlation function and tried to recover ξ(>mass) by exploiting the mass-richness relation.
The mean scatter in the mass-richness relation was calculated assuming a lognormal distri-
bution of Mhalo as a function of N200. The ξ(r) for four arbitrary richness cut samples was
calculated and compared with the same obtained for the mass cut samples for which the mass
was obtained from the fit of the Mhalo −N200 relation. By comparing the best-fit parameters
obtained we found out that the evolution in richness is similar to that obtained for our mass
cut samples.

To compare our richness and mass cut samples, we calculated the bias for our richness
cut samples and compared the same with the bias calculated for the corresponding M200

samples. The bias for a specific richness cut was found to fall within 1σ precision for all the
samples we studied.

As a preliminary attempt towards working with real observational data, we applied the
deprojection method and calculated the ξ(r) for a sample of optically selected clusters from
the CFHTLS survey. We found out that the best-fit parameters obtained follows the general
trend expected from galaxy cluster catalogues (Bahcall and Soneira, 1983; Basilakos and
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Plionis, 2004; Estrada et al., 2009, and references therein).

Below, we present extensions of this work, which, as an ultimate goal, is to constrain
cosmological parameters using galaxy cluster information.

7.2 Future perspectives

The aim of this thesis was to specifically find out how redshift errors affect the two-point cor-
relation function and to what extent can they be recovered and how. The results obtained are
just one piece of the “puzzle”. Our study should be extended towards a broader perspective
so that constraints on cosmological parameters can be obtained.

Galaxy cluster counts obtained from cluster catalogues have been used to constrain cos-
mological parameters (Fang and Haiman, 2007; Mana et al., 2013; Planck Collaboration
et al., 2015, and references therein). But it has been shown that by combining the cluster
two-point correlation information with cluster counts, constraints obtained on the cosmolog-
ical parameters are improved (Majumdar and Mohr, 2004; Sartoris et al., 2016; Lacasa and
Rosenfeld, 2016, and references therein). In addition to the above, it has been shown that
cluster mass observables can be connected with the bias of the two-point correlation func-
tion to do a self calibrated cosmological analysis. (Majumdar and Mohr, 2003; Lima and Hu,
2004). More recently, Baxter et al. (2016) have measured the clustering biases of clusters
selected from the redMaPPer catalogue (Rykoff et al., 2014) and by using the measured cor-
relation functions along with the predicted bias b(M), calibrated the mass richness relation.
Baxter et al. (2016) mention that although their constraints (on the amplitude of the mass-
richness relation) are affected by systematic uncertainties, the constraints on some of their
parameters such as the slope of the mass richness relation are strongly affected by statistical
rather than systematic uncertainties. Ongoing and future large-scale surveys such as DES
(The Dark Energy Survey Collaboration, 2005), KIDS (de Jong et al., 2013), VIKING (Edge
et al., 2013), LSST (LSST Dark Energy Science Collaboration, 2012) and Euclid (Laureijs
et al., 2011, 2014) probe large volumes (reducing the cosmic variance) and observe high
redshift galaxies. The larger the volume probed by a survey, the larger is the statistical in-
formation, and thus lower are the errors. Thus, studies similar to those done by Baxter et al.
(2016) can be performed on these large surveys, by expecting the errors on the parameters
obtained to be comparatively lesser.

But for most of these large-scale surveys, the majority of the redshifts measured will
be via photometry. Our exercise has shown that the two-point correlation function can be
recovered within 10% for photometric cluster catalogues with an uncertainty of σz = 0.03 ×(1+z) even up to a redshift of z ∼ 2.0. The cluster counts along with the two-point correlation
function measured from these surveys should thus indicate the level of precision with which
we can recover the cosmological parameters.

However, for observational catalogues, there exist several intricacies that need to be taken
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into account. We describe below some of the major points that should be addressed if one
wants to make use of ξCL(r) to constrain cosmology.

Application on the output of cluster finders: Cluster finding algorithms (within the Euclid
consortium) based on different approaches have been performed on simulated catalogues.
These algorithms (having different definitions of the richness) provide as output a realistic
richness estimate, and cluster catalogues with varying purity and completeness, which should
be incorporated along with the photometric redshift uncertainties to measure ξ(r). We can
try to find out if the ξ(> Ngal, zphot,SF) (where SF is the selection function) measured from
the output of the cluster finders can be used to derive ξ(M,zc) (zc is the cosmological red-
shift) and thus constrain the mass.

Application on larger simulations: As cosmological probes require simulations with large
volumes, experiments can be repeated on other cosmological simulations with a better mass
resolution, more volume, a different way of identifying dark matter particles (other than the
Friends-Of-Friends algorithm used in our simulation) and different ways in which galaxies
are included. This test can be utilised to find if the results obtained follow the same general
trend irrespective of the differences in the simulations and also to find whether an increase
in the mass resolution and volume of the simulation decreases the errors associated with the
results. Simulations such as MICE (Crocce et al., 2010), Euclid flagship “full sky” simula-
tions etc. exist, that can be utilised for these tests.

Baryon acoustic oscillations: As tracers of the biggest collapsed structures, galaxy clusters
are more strongly clustered than galaxies. The spatial clustering signal of galaxy clusters is
strongly amplified with respect to the underlying matter distribution, with the bias parameter
b reaching values of ∼ 3 and above as we have seen in Section 5.6. Measurements of ξ(r) of
galaxy clusters have recently provided detections of the BAO peak (Estrada et al., 2009; Hütsi,
2010; Hong et al., 2012). In order to observe these relatively small fluctuations, surveys with
large volumes (to reduce cosmic variance) are required, and these large volumes will be
fulfilled by ongoing and future surveys in the upcoming years. But for most of these surveys,
the majority of redshifts measured will be via photometry, which will have a larger error
associated with them compared to their spectroscopic counterparts.

It has been shown by Veropalumbo et al. (2014) that photometric redshift errors can have
a significant impact at the BAO scales, i.e. they broaden the BAO feature, causing a loss
of information at scales where the BAO peak is measured. We would like to try to use the
deprojection method to recover the real-space correlation function from photometric redshift
surveys, and make an attempt to detect the BAO feature from the measurements of ξ(r) from
these cluster surveys. However, all the issues that real observational catalogues face must be
taken into account.



Appendix A

NFW profiles of the haloes in the

simulation

A.1 Selecting individual clusters from the data

The data used here is a 100 deg2 catalogue extracted from the 500 deg2 simulated cluster
catalogue (Merson et al., 2013) as described in Section 5.2. The data contains details (RA,
DEC, redshift, etc.) of all the galaxies present. The details of all the properties of the galaxies
are mentioned in Table A.1. Each galaxy has it’s own specific idrep (the simulation "box" in
which the galaxy is present) and DHaloID (the ID of the dark matter halo in which the galaxy
is present). To extract individual cluster members, we need to match all those galaxies with
the same idrep and DHaloID. By doing so we make sure that we do not repeat (add) the
same galaxies in different clusters.

Property Description

DHaloID ID of the dark matter halo in the simulation

GalaxyID ID of the galaxy in the simulation

idrep ID of the simulation "box"

is_central 0 or 1 according to whether the galaxy is central or not

r line of sight comoving distance to the galaxy

zcosmo cosmological redshift of galaxy

RA right ascension of galaxy

DEC declination of galaxy

mhhalo mass of the host halo

Table A.1: The properties of the galaxies in the catalogue

A.2 Calculating the distance to the central galaxy

After extracting the halos and their corresponding galaxy members, we find out the central
galaxy of each halo using the property is_central. If a galaxy has is_central == 1, then
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it is the central galaxy in the dark matter halo and all the other galaxies in the halo have
is_central == 0 and are the satellite galaxies.

In order to calculate the density profiles, we find the distance of all the satellite galaxies
to the central galaxy in the halo. The distance to the center is given by the equation

r = θ ×DL

1 + z (A.1)

whereDL → line of sight comoving distance, z → redshift, θ → angular separation in radians.
Angular separation is given by:

θ = cos−1 [(cos(α1 − α2) × cos(δ1 − δ2)) + (sin(δ1) × sin(δ2)) [1 − cos(α1 − α2)]] (A.2)

where α1, δ1 are the RA, DEC of the central galaxy of the halo respectively. α2, δ2 are the
RA and DEC of the satellite galaxies respectively.

A.3 The mass bins and density profiles

A.3.1 The mass bin selection

The mass of the host halo (M⊙h−1) is provided in the column mhhalo. For this analysis we
make use of M200, which is the mass of the halo contained within R200. R200 is the distance
from the center of the halo at which the density of the halo is equal to 200 times the critical
density ρc. The critical density evolves with redshift and is given by:

ρc(z) = 3H2
0

8πG
× (Ωλ +Ω0(1 + z)3) (A.3)

where G is the gravitational constant = 4.29×10−9(km/s)2MpcM−1⊙ The value of M200 can be
inferred from the radius through:

M200 = 4

3
πR3

200 ρ200 (A.4)

where ρ200 = 200ρc(z) (i.e, 200 times the critical density). We have selected 4 mass bin
samples in varying mass ranges and the details of the same are given in Table A.2. By
selecting varying mass ranges we can spot the differences in the density profiles more easily.

A.3.2 The projected NFW profiles

Now we have calculated the R200, the distance to central galaxy in the halo r and M200. To
calculate the projected number density (Σ) profiles of the haloes, the number of galaxies
is counted and binned by their projected radial distance from the central galaxy. We make
several bins in evenly spaced annuli (the region bounded by two concentric circles) and count
the number of galaxies in each bin (N ). The number density is given by,
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Figure A.1: The projected NFW density profiles for the four mass bins and their correspond-
ing fits in a log-log plot. The redshift range considered is 0.2 < z < 0.3. The fits here are
made by equation A.7. The best fitting NFW profiles are shown by the cyan coloured lines
and the dotted red line indicates the region from which the fit has been performed. The final
mass range (in log10) has been widened to 14.2 < log10(M200) < 15.0 so as to include more
haloes. The best fitting concentrations (c) are listed in Table A.2. Poisson error bars have
been used.

Σ = N

A
(N/Mpc2) (A.5)

where A → area of the annuli, N → number of galaxies within the area. The NFW density
profile (Navarro et al., 1996) is given by,

ρ(r) = δcρc(r/rs)(1 + r/rs)2 (A.6)
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where ρc → critical density, δc → characteristic over-density of the halo and rs → characteris-
tic scale length. rs is the distance from the center of the halo where the density of the halo (ρ)
changes from ρ ∝ r−1 to ρ ∝ r−3. The scale length rs is also specified by the concentration

parameter, and defined as c = r200

rs
. To find out the projected density, we integrate along the

line of sight and the integral can be analytically solved (Bartelmann, 1996) and expressed as:

Σ(x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2δcρcrs
x2−1 [1 − 2√

1−x2
tan h−1

√
1−x
1+x ] x < 1,

2δcρcrs
3

x = 1,

2δcρcrs
x2−1 [1 − 2√

x2−1 tan−1
√

x−1
x+1 ] x > 1,

(A.7)

where x = r

rs
. By using the above equation, we can find the best fitting amplitudes and

concentrations for the projected NFW profiles.
To perform our fit, we consider three samples in different redshift ranges and varying mass

ranges as previously mentioned. From Figure A.1 we can see that the NFW profile does seem
to fit quite well the density profiles of the haloes irrespective of the mass. At smaller scales
0.1 < r/r200 < 1.6 Mpc, the fit seems to be good and at larger scales r/r200 > 1.6 Mpc the fit
seems to overestimate the density. This is partly because of the very few number of haloes
that exist at these distance scales (see Table A.2). This also has an effect on the error bars
that exist at larger scales. It is also wise to note that the final mass range has been widened
to 14.2 < log10(M200) < 15.0 as we don’t find many haloes in the range 14.2 < log10(M200) <
14.3, and by doing so we make sure our sample is statistically significant. The fit performed
has not been done from the centre of the halo but from a distance r/r200 > 0.19. This is
because the fit tends to over-predict the concentrations by a huge margin if performed from
the centre.

The fit has also been performed for two more redshift ranges (0.3 < z < 0.5 and 0.5 < z <
0.7) and we note that the NFW profile does seem to fit well. The fit can be seen in Figure
A.2.

The error bars used here are Poisson error bars, which are given by:

σ =
√
N

A
(A.8)

For the first sample in the range 0.2 < z < 0.3 (red line in Figure A.3) we find that there seems
to be a decrease in the concentration with increasing mass, (i.e c∝m−1). This tells us that the
most massive haloes ( log10(M200) > 14.0 ) seem to be less centrally populated compared
to the less massive ones ( log10(M200) < 14.0 ). Whereas for the other two samples in range
0.3 < z < 0.5 (green line in Figure A.3) and 0.5 < z < 0.7 (blue line in Figure A.3) we find a
slight increase of concentration with increasing mass, but is not a continuous trend.
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Mass Bin (log10(M200)) Redshift range Number of haloes concentration (c)

13.6< log10(M200) <13.7 0.2 < z < 0.3 84 13.61±3.68

13.8< log10(M200) <13.9 0.2 < z < 0.3 36 9.99±3.16

14.0< log10(M200) <14.1 0.2 < z < 0.3 23 5.10±2.25

14.2< log10(M200) <15.0 0.2 < z < 0.3 8 5.44±2.33

13.6< log10(M200) <13.7 0.3 < z < 0.5 312 5.70±2.38

13.8< log10(M200) <13.9 0.3 < z < 0.5 142 8.17±2.85

14.0< log10(M200) <14.1 0.3 < z < 0.5 77 6.76±2.60

14.2< log10(M200) <15.0 0.3 < z < 0.5 105 7.90±2.81

13.6< log10(M200) <13.7 0.5 < z < 0.7 456 5.02±2.24

13.8< log10(M200) <13.9 0.5 < z < 0.7 257 4.20±2.04

14.0< log10(M200) <14.1 0.5 < z < 0.7 125 5.71±2.38

14.2< log10(M200) <15.0 0.5 < z < 0.7 127 8.27±2.87

Table A.2: The properties of the haloes and their corresponding concentrations obtained
from the fit.



180 Appendix A. NFW profiles of the haloes in the simulation

Figure A.2: On top: The projected NFW density profiles for the redshift range 0.3 < z < 0.5,
Bottom: the projected NFW density profiles for the redshift range 0.5 < z < 0.7. The best
fitting NFW profiles are shown by the cyan coloured lines and the dotted red line indicates
the region from which the fit has been performed. The best fitting concentrations (c) are
listed in Table A.2. Poisson error bars have been used.
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Figure A.3: The variation of the concentration with mass for the three redshift ranges consid-
ered. It is wise to note that the x-axis is mass and all the numbers shown are to be multiplied
by 1014.
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Luminosity function & selection effects:

Malmquist bias, K-correction

Large scale structure surveys are designed to observe structures at a very high redshift. At
these large distances the number of structures that are observed decreases drastically because
of the way in which most of the surveys are built, i.e. they are flux limited so that only bright
objects are observed at larger distances. This introduces a selection bias called the Malmquist
bias as objects below a certain brightness are not observed. To account for this incomplete-
ness, one needs to know the selection function ϕ(r) which provides the probability that an
object at a given distance r is included in the sample. This is called as the radial selection
function that is estimated from the luminosity function φ(L).

B.1 Luminosity function

Luminosity functions, φ(L), measure the comoving number density of galaxies per lumi-
nosity bin:

dN = φ(L)dLdV (B.1)

where dN denotes the number of observed galaxies in a volume dV within the luminosity
range [L,L + dL]. There are several ways in which φ(L) can be estimated, but the most
common way of estimating it is through the Schechter function (Schechter, 1976):

φ(L)dL = φ∗ ( L
L∗
)α exp(−L

L∗
) dL
L∗

(B.2)

where φ∗ (with units of h3Mpc−3) is a normalisation factor that defines the overall density of
galaxies and L∗ is the characteristic luminosity that separates the faint galaxy range where
the power-law with exponent α dominates. α defines the faint-end slope that is seen in the
luminosity function when plotted and is usually negative, which implies that there are more
galaxies with faint luminosities in the sample. The luminosity function varies with mor-
phological type, environmental properties and redshift because of the galactic evolution. In
Figure B.1 we show the best-fit analytic expression to observed composite cluster luminosity
distribution as obtained by Schechter (1976) for 13 rich clusters as studied by Oemler (1974).
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The open circles show the composite constructed excluding four possible cD galaxies 1 and
the filled black circles show the effect if they were included in the plot.

Figure B.1: Best-fit analytic expression to the observed composite cluster galaxy distribution.
The filled black circles show the effect of including the cD type galaxies in the composite.
Credits: Schechter (1976)

B.2 Eliminating the Malmquist bias

There are a few ways in which one can avoid the Malmquist bias. The first method is to limit
the sample, often called as volume limited sample, where only those objects that are within
the limiting magnitude at a given distance are included, the remaining objects are removed.
This sub-sample selected should be free of the Malmquist bias. The major disadvantage of

1It is a subtype of the type-D giant elliptical galaxy and has a large halo of stars. They are usually found
near the centres of rich galaxy clusters and are known popularly as supergiant ellipticals or central dominant
galaxies.
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this method is that many objects are lost and this results in the sample being less statistically
significant. Another method is to make use of a weighted mean to account for the relative
contribution at each magnitude. Each object’s contribution to the average absolute magnitude
can be weighted by 1/Vmax where Vmax is the maximum volume over which the objects could
have been seen. Bright objects which have a lower absolute magnitude will be given a lesser
weight compared to the less bright objects with a higher absolute magnitude so that the
overall effect can be nullified.

There are other selection effects that affect cluster samples, such as construction of masks
in a given field, fibre collisions in spectrograph’s etc. The sky is not equally transparent in
all directions, as we know that the Milky way contains dust that obscures our view in several
directions. Also since the shape of the Milky way is flat, objects that lie in a low galactic lat-
itude plane are more obscured compared to other objects. This effect needs to be considered
when we are computing the real brightness of a cluster, which depends on the direction of
the line of sight.

B.3 K-correction

For very deep samples when magnitude needs to be calculated, K-correction is often made.

M =m − 5(log10DL − 1)Kcorr (B.3)

where M is the absolute magnitude, m is the apparent magnitude, DL is the luminosity
distance as in Equation 1.27 and 1.28 and Kcorr is the K-correction. This allows the mea-
surement of the magnitude from the object at a redshift z to be converted to an equivalent
measurement in the rest frame 2 of the object as the observed wavelength of the object mea-
sured is always greater than the emitted wavelength. If objects are measured at all wave-
lengths, there would be no need for K-correction, but objects are measured through a single
filter which sees only one part of the entire spectrum redshifted into the frame of the observer.
K-correction needs to be made for comparing objects at different redshifts through the same
filter.

2It is the frame in which the particle is at rest. Whenever an object in the Universe is measured, due to the
expansion of space, the object is constantly moving.
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ABSTRACT

Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts,
and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy
and derive tighter constraints on the cosmological parameters and the Dark Energy equation of state. However, for the majority of these
surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors on
redshift resulting in potential difficulties in recovering the real-space clustering.
Aims. In this paper, we investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy
clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass
evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate.
Methods. We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2

light-cone limited to H<24 (Merson et al. 2013). In order to simulate the distribution of clusters in photometric redshift space, we assign
to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and
a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=

σz

1+zc
= 0.005, 0.010, 0.030 and 0.050, in order to cover the typical

values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of
wp(rp), following the method proposed for galaxies by Arnalte-Mur et al. (2009). Four mass ranges (from Mhalo > 2 × 1013 h−1 M⊙ to
Mhalo > 2 × 1014 h−1 M⊙) and six redshift slices covering the redshift range [0,2] are investigated, first using cosmological redshifts and
then for the four photometric redshift configurations.
Results. From the analysis of the light-cone in cosmological redshifts we find a clear increase of the correlation amplitude as a function
of redshift and mass. The evolution of the derived bias parameter b(M,z) is in fair agreement with the theoretical expectation by Tinker
et al. (2010). We also confirm the existence of the r0 − d relation shown by Younger et al. (2005) up to our highest mass, highest redshift
sample tested (z = 2,Mhalo > 2 × 1014 h−1 M⊙). From our pilot sample limited to Mhalo > 5 × 1013 h−1 M⊙(0.4 < z < 0.7), we find that
the real-space correlation function can be recovered by deprojection of wp(rp) within an accuracy of 5% for σz = 0.001 × (1 + zc) and
within 10% for σz = 0.03 × (1 + zc). For higher dispersions (besides σz > 0.05 × (1 + zc)), the recovery becomes noisy and difficult.
The evolution of the correlation in redshift and mass is clearly detected for all σz tested, but requires a large binning in redshift to
be detected significantly between individual redshift slices when increasing σz. The best-fit parameters (r0 and γ) as well as the bias
obtained from the deprojection method for all σz are within the 1σ uncertainty of the zc sample.

Key words. galaxies: clusters: general – (cosmology:) large-scale structure of Universe – techniques: photometric – methods:
statistical

1. Introduction

One of the major challenges in modern cosmology is to explain
the observed acceleration of the cosmic expansion, determining
if it is due to a positive cosmological constant, a time–varying
dark energy component or a modified theory of gravity. Major
galaxy surveys are currently ongoing or in preparation in order to
address this fundamental question through the analysis of various
complementary cosmological probes with different systematics,
as for instance weak lensing, galaxy clustering (baryon acoustic
oscillations, redshift-space distortions) and galaxy clusters. In
fact galaxy cluster counts as a function of redshift and mass are
sensitive to dark energy through their dependence on the volume

⋆ email:ssridhar@oca.eu

element and on the structure growth rate. One intrinsic diffi-
culty in constraining the cosmological models with galaxy cluster
counts comes from uncertainties in cluster mass estimates and on
the difficulty to calibrate related mass proxies. One can overcome
this difficulty adding the information related to the clustering
properties of clusters, due to the fact that their power spectrum
amplitude depends mainly on the halo mass. When combining
the redshift-averaged cluster power spectrum and the evolution of
the number counts in a given survey, the constraints on the dark
energy equation of state are dramatically improved (Majumdar &
Mohr 2004). Recent cosmological forecasting based on galaxy
clusters confirms that the figure of merit significantly increases
when adding cluster clustering information (Sartoris et al. 2016).
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Fig. 1: Redshift distribution of the entire catalogue with 0.0 <
zc < 3.0. The data distribution is shown as the histogram along
with the blue line specifying the distribution of the random cata-
logue we use for calculating the two-point correlation function.

Cluster clustering can be measured through the two–point
correlation function, the Fourier transform of the power spec-
trum, which is one of the most successful statistics for analysing
clustering processes (Totsuji & Kihara 1969; Peebles 1980). In
cosmology, it is a standard tool to test models of structure for-
mation and evolution. The cluster correlation function is much
higher than that of galaxies, as first shown by Bahcall & Soneira
(1983) and Klypin & Kopylov (1983). This is a consequence of
the fact that more massive haloes correspond to higher and rarer
density fluctuations, which have a higher correlation amplitude
(Kaiser 1984). Galaxy clusters are associated to the most massive
virialised dark matter haloes, and as a consequence their correla-
tion function is strongly amplified. The evolution of the cluster
halo mass, bias and clustering has been addressed analytically
(Mo & White 1996; Moscardini et al. 2000; Sheth et al. 2001),
and also numerically (Governato et al. 1999; Angulo et al. 2005;
Estrada et al. 2009). The increase of the correlation length with
cluster mass and redshift has been used to constrain the cosmo-
logical model and the bias (Colberg et al. 2000; Bahcall et al.
2004; Younger et al. 2005)

The first large local surveys such as the SDSS (Eisenstein et al.
2011) have led to a significant progress in this field. Clustering
properties of cluster catalogues derived from SDSS were done
by Estrada et al. (2009), Hütsi (2010) and Hong et al. (2012).
More recently, Veropalumbo et al. (2014) have shown the first
unambiguous detection of the BAO peak in a spectroscopic sam-
ple of 25000 clusters selected from the SDSS, and measured
the peak location at 104 ± 7 h−1Mpc . Large surveys at higher
redshifts which are ongoing (DES, BOSS, KIDS, Pan-STARRS)
or in preparation (eROSITA, LSST, Euclid) open a new window
for the analysis of cluster clustering. The wide areas covered
will give access to unprecedented statistics (∼100,000 clusters
expected with Dark Energy Survey, eROSITA and Euclid survey)
that will allow us to cover the high mass, high redshift tail of
the mass distribution, to control cosmic variance, and to map the
large scales at which the BAO signature is expected (∼ 100Mpc).

However, to use clusters as cosmological probes, among the
several difficulties to be overcome is the impact of photometric
redshift errors. While some of these surveys have (in general par-
tially) a spectroscopic follow up, many forthcoming large galaxy

surveys will have only the photometric information in multiple
bands, so that their cluster catalogues will be built on the basis
of state-of-the-art photometric redshifts. Using those instead of
real redshifts will cause a positional uncertainty along the line
of sight inducing a damping of clustering at small scales and a
smearing of the acoustic peak (Estrada et al. 2009). It is there-
fore of major interest to check the impact of this effect on the
recovery of the real-space correlation function. Our objective is
to optimize the analysis of cluster clustering from forthcoming
cluster catalogues that will be issued from the ongoing/future
large multiband photometric surveys. Here we focus on the deter-
mination of the two-point correlation function, and the aim of our
paper is i) to determine the clustering properties of galaxy clus-
ters from state-of-the-art simulations where galaxy properties are
derived from semi-analytical modelling (Merson et al. 2013), and
ii) to test how much the clustering properties evidenced on ideal
mock catalogues can be recovered when degrading the redshift
information to reproduce the photometric uncertainty on redshift
expected in future cluster experiments.

The paper is organised as follows. In Section 2 we describe
the simulation we work with. In Section 3 we investigate the
two-point correlation function evolution with redshift and mass
without any error on the redshift to check consistency with the-
ory. The bias is calculated for different mass cut samples along
with the evaluation of clustering strength with mass at different
redshift and compared with the theoretical expectation of Tinker
et al. (2010). We also calculate the mean intercluster comoving
separation (d) and compare it with r0 and perform an analytic
fit to this r0 vs d relation. Section 4 presents the deprojection
method we use to recover the real-space correlation function
from mock photometric catalogues generated using a Gaussian
approximation technique. The results obtained from the depro-
jection method along with the redshift evolution of the samples
with redshift uncertainty are presented. In Section 5, the overall
results obtained from our study are summarized and discussed.

2. Simulations

We use a public light-cone catalogue constructed using a semi-
analytic model of galaxy formation (Merson et al. 2013) onto
the N-body dark matter halo merger trees of the Millennium
Simulation, based on a ΛCDM cosmological model with the
following parameters: ΩM ,ΩΛ,Ωb, h = 0.25, 0.75, 0.045, 0.73
(Springel et al. 2005), corresponding to the first year results from
the Wilkinson Microwave Anisotropy Probe (Spergel et al. 2007).
The Millennium simulation was carried out using a modified
version of the GADGET2 code (Springel 2005). Haloes in the
simulation were resolved with a minimum of 20 particles, with
a resolution of Mhalo = 1.72×1010h−1M⊙ (M⊙ represent the mass
of the Sun). The groups of dark matter particles in each snapshot
were identified through a Friends-Of-Friends algorithm (FOF)
following the method introduced by Davis et al. (1985).

However, the algorithm was improved with respect to the
original FOF, to avoid those cases where the FOF algorithm
merge groups connected for example by a bridge, while they
should be considered instead as separated haloes (Merson et al.
2013).

The linking length parameter for the initial FOF haloes is
b = 0.2. Notice however that haloes were identified with a method
different from the standard FOF. The FOF algorithm was initially
applied to find the haloes, but then their substructures were iden-
tified using the so-called SUBFIND algorithm: depending on the
evolution of the substructures and their merging, a new final halo
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Fig. 2: Left panel: The correlation functions for clusters with Mhalo > 5 × 1013 h−1 M⊙ in 6 different redshift slices. The dashed lines
show the corresponding power-law best-fits. The parameter values for the fits can be found in Table 1. Right panel: The correlation
functions in the redshift slice 0.4 < zc < 0.7 for 4 different mass cuts (with units h−1 M⊙). The dashed lines show the corresponding
power-law best-fits. The parameter values for the fits can be found in Table 1. Error bars are the square root of the diagonal values of
the covariance matrix calculated from the jackknife resampling method.

catalogue was built. The details of this method are described by
Jiang et al. (2014).

A comparison between the masses obtained with this im-
proved D-TREES algorithm, Mhalo, and the classical MFOF , and
their relation with M200, was done by Jiang et al. (2014), where
it is shown that at redshift z = 0 on average, Mhalo overestimates
M200, but by a lower factor with respect to MFOF : they found
that only 5% of haloes have Mhalo/M200 > 1.5. However, when
comparing the halo mass function of the simulation with that
expected from the Tinker et al. (2010) approximation, it appears
that there is a dependence on redshift, and beyond z ≈ 0.3 the
Mhalo/M200 ratio becomes less than 1 (Mauro Roncarelli, private
communication). This has to be taken into account in further
analysis using the masses.

Galaxies were introduced in the light-cone using the Lagos 12
GALFORM model (Lagos et al. 2012). The GALFORM model
populates dark matter haloes with galaxies using a set of dif-
ferential equations to determine how the baryonic components
are regulated by "subgrid" physics. These physical processes are
explained in detail in a series of papers (Bower et al. 2006; Font
et al. 2008; Lagos et al. 2012; Merson et al. 2013; Guo et al. 2013;
Gonzalez-Perez et al. 2014). The area covered by the light-cone
is 500 deg2; the final mock catalogue is magnitude–limited to
H = 24 (to mimic the Euclid completeness) with a maximum
redshift at z = 3.

For each galaxy the mock catalogue provides different quan-
tities, such as the identifier of the halo in which it resides, the
magnitude in various passbands, right ascension and declination,
and the redshift, both cosmological and including peculiar ve-
locities. For each halo in the cluster mass range (see below),
the redshift was estimated as the mean of the redshifts of its
galaxies, while the central right ascension and declination were
estimated as those of the brightest cluster galaxy (BCG), and by
construction, the BCG is the centre of mass of the halo.

3. Evolution of the real-space two-point
correlation function in the simulations

3.1. Estimation of the two-point correlation function

In order to measure the clustering properties of a distribution of
objects, one of the most commonly used quantitative measure
is the two-point correlation function (Totsuji & Kihara 1969;
Davis & Peebles 1983). We can express the probability dP12(r)
of finding two objects at the infinitesimal volumes dV1 and dV2

separated by a vector distance r (assuming homogeneity and
isotropy on large scales, r = |r|):

dP12 = n2[1 + ξ(r)]dV1dV2 (1)

where n is the mean number density and the two–point cor-
relation function ξ(r) measures the excess probability of finding
the pair relative to a Poisson distribution.

Among the various estimators of the correlation function
discussed in the literature we use the Landy & Szalay (1993)
estimator, which has the best performance (comparable to the
Hamilton (1993) estimator) and is the most popular, being less
sensitive to the size of the random catalogue and better in handling
edge corrections (Kerscher et al. 2000):

ξ(r) =
DD(r) − 2DR(r) + RR(r)

RR(r)
(2)

where DD is the number of data-data pairs counted within a
spherical shell of radius r and r + dr, DR refers to the number of
data-random pairs and RR refers to the random-random pairs.

The peculiar motions of galaxies produce redshift-space dis-
tortions that have to be taken into account in order to recover the
real-space clustering (Kaiser 1987); this means that Equation 2
cannot be used directly to estimate the 3D real-space correlation
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function when distances are derived from redshifts. We will use
it only for the analysis of simulations, where the cosmological
redshift is available.

The real-space correlation function is expected to follow a
power-law as a function of the separation r (Peebles 1980):

ξ(r) =

(
r

r0

)−γ
(3)

where r0 is the correlation length and γ is the slope.
The random catalogues we use reproduce the cluster redshift

selection function, estimated by smoothing the cluster redshift
distribution through a kernel density estimation method. The
bandwidth of the kernel is carefully adjusted in order to follow
the global shape but not the clustering fluctuations in the redshift
distribution. To ensure that we use a Gaussian kernel two times
larger than the bin size, and sample the data in 30 redshift bins.
Figure 1 shows the redshift distributions of the simulation and
of the random catalogue for the whole sample. The random cat-
alogue is 10 times denser than the simulated sample in order to
minimize the effect of shot noise.

In the following, we estimate the correlation functions for
different sub-samples of the original catalogue with different cuts
in redshift and limiting mass.

Errors are calculated from the covariance matrices using the
jackknife resampling method (Zehavi et al. 2005; Norberg et al.
2011). To perform a jackknife estimate we divide the data into
N equal sub-samples and we calculate the two-point correlation
function omitting one sub-sample at a time. For k jackknife sam-
ples and i bins, the covariance matrix is then given by:

Ci j =
N − 1

N

N∑

k=1

(ξki − ξ̄i)(ξ
k
j − ξ̄ j) (4)

where ξ̄i is the average of the values obtained for bin i. We make
use of N = 9 sub-samples in our calculation.

To measure the two-point correlation function for all our sam-
ples, we use CosmoBolognaLib (Marulli et al. 2016), a large
set of Open Source C++ libraries for cosmological calculations. 1

3.2. Redshift evolution of the cluster correlation function

The redshift evolution of the cluster correlation function has been
studied both observationally (Bahcall & Soneira 1983; Huchra
et al. 1990; Peacock & West 1992; Croft et al. 1997; Borgani et al.
1999; Veropalumbo et al. 2016), numerically (Bahcall et al. 2004;
Younger et al. 2005; Marulli et al. 2015) and theoretically (Mo &
White 1996; Governato et al. 1999; Moscardini et al. 2000; Sheth
et al. 2001). Two main results are prominent from these works:

– The cluster correlation amplitude increases with redshift for
both low- and high-mass clusters.

– The increase of the correlation amplitude with redshift is
stronger for more massive clusters compared to low mass
ones.

Future large surveys are expected to probe the high redshift
domain with good statistics. This will enable us to study the
redshift evolution of clustering on a large range of redshifts and

1 More information about CosmoBolognaLib can be found at
http://apps.difa.unibo.it/files/people/federico.

marulli3/CosmoBolognaLib/Doc/html/index.html
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Fig. 3: The evolution of r0 and γ for clusters observed in different
redshift slices and with mass Mhalo > 5 × 1013 h−1 M⊙. The
values of r0 and γ can be found in the second panel of Table 1.

provide independent cosmological tests (Younger et al. 2005). In
this section, we investigate the expected redshift evolution of the
cluster correlation function in the redshift range [0,2], assuming
a concordant ΛCDM model and using the light cone catalogue
detailed in Section 2.

The correlation functions for clusters with a mass cut of
Mhalo > 5 × 1013 h−1 M⊙ are estimated in six redshift slices,
from 0.1 < zc < 0.4 to 1.6 < zc < 2.1 (where zc refers to the
cosmological redshift), and are shown in Figure 2a. The figure
shows that, as expected, the amplitude of the cluster correlation
function increases with redshift.

For each sub-sample, the correlation function is fitted by a
power-law (Equation 3) leaving both r0 and γ as free parameters.
The results of the fits can be visualised in Figure 3. The redshift
range, the values of the best-fit parameters, the number of clusters,
and the bias (discussed in Section 3.4) for each sub-sample are
given in the second panel of Table 1. The fit is performed in the
range 5 − 50h−1 Mpc and the error bars are obtained using the
jackknife estimate method (see Section 3.1).

The power-law has a relatively stable slope varying between
1.9 and 2.1. In the two highest redshift slices, however, the slope
appears to be slightly higher, but the variation is at the ∼ 2σ level
for the 1.3 < zc < 1.6 sub-sample and at the ∼ 1σ level for the
1.6 < zc < 2.1 sub-sample. On the average, γ ≈ 2.0, is close
to the measured value for galaxy clusters as done by Totsuji &
Kihara (1969) and Bahcall & West (1992) on observed galaxy
clusters.

On the contrary, the increase in the correlation length is sys-
tematic and statistically significant. When we fix the slope at
γ = 2.0, r0 is shown to increase from 11.97 ± 0.25 h−1 Mpc for
the lowest redshift slice (0.1 < zc < 0.4), to 20.05 ± 1.13 h−1

Mpc for the highest redshift slice (1.6 < zc < 2.1). Our results
can be compared to Younger et al. (2005)(see their Figure 5) and
are in good agreement with their analysis of the high-resolution
simulations of Hopkins et al. (2005).
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Fig. 4: The evolution of r0 with redshift for different limiting
masses (with units h−1 M⊙). The filled symbols connected by
solid lines correspond to the free slope fits, while the the open
symbols connected by dashed lines correspond to a fixed slope
γ = 2.0. The different limiting masses are colour coded as shown
in the figure. The values of r0 and γ for all the samples can be
found in Table 1.

3.3. The redshift evolution of clustering as a function of
mass

In this section we investigate the redshift evolution of clus-
tering as a function of mass. For this purpose, 4 different
mass thresholds are considered: Mhalo > 2 × 1013 h−1 M⊙,
Mhalo > 5 × 1013 h−1 M⊙, Mhalo > 1 × 1014 h−1 M⊙ and
Mhalo > 2 × 1014 h−1 M⊙. The analysis is performed in the
same redshift slices previously defined. The correlation function
is fitted with a power-law as it can be seen from Figure 2b, both
with a free slope and with a fixed slope γ = 2.0. The mass range,
the values of the best-fit parameters, the number of clusters, and
the bias for each sub-sample are given in the four panels of Table
1. Each panel corresponds to a different selection in mass. In
both cases, the correlation length r0 increases with the limiting
mass at any redshift and increases with redshift at any limiting
mass, as shown in Figure 4. The higher the mass threshold, the
larger is the increase of r0 with redshift. For example, the ratio of
the correlation lengths for the [1.3-1.6] and the [0.1-0.4] redshift
slices is 1.25 with Mhalo > 2 × 1013 h−1 M⊙, while it reaches
1.8 with Mhalo > 1 × 1014 h−1 M⊙. For the largest limiting mass
(Mhalo > 2× 1014 h−1 M⊙), the number of clusters becomes small
at high z and the analysis must be limited to z = 1.

We can again compare our results with the analysis of
Younger et al. (2005). who used a Tree Particle Mesh (TPM)
code (Bode & Ostriker 2003) to evolve N = 12603 particles in
a box of 1500 h−1Mpc, reaching a redshift z ≈ 3.0. We find a
good agreement (see their Figure 5) for the common masses and
redshift ranges tested; our analysis probes the correlation func-
tion of Mhalo > 1 × 1014 h−1 M⊙ clusters up to z ≈ 1.6 , and of
Mhalo > 2×1014 h−1 M⊙ clusters up to z ≈ 0.8, thus extending the
r0(z) evolution shown by Younger et al. (2005) to higher redshifts
for these high mass clusters.
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Fig. 5: The bias as a function of redshift for different limiting
masses (with units h−1 M⊙) where the solid lines just connect the
points. The dashed line is the theoretical expectation of the bias
as given by Tinker et al. (2010) for the same limiting masses and
evolving redshift. The different limiting masses are colour coded
as shown in the figure. The bias values for all the samples can be
found in Table 1.

3.4. Bias evolution

Starting from the initial matter density fluctuations, structures
grow with time under the effect of gravity. The distribution of
haloes, hence of galaxies and clusters, is biased with respect to the
underlying matter distribution, and on large scales it is expected
that the bias is linear:

(
∆ρ

ρ

)

light

= b ×
(
∆ρ

ρ

)

mass

(5a)

where b is the bias factor and ρ is the density. The higher the
halo mass, the higher the bias.

The amplitude of the halo correlation function is amplified by
a b2 factor with respect to the matter correlation function:

ξ(r)light = b2 × ξ(r)mass (5b)

The amplitude of the matter correlation function increases
with time and decreases with redshift, but the halo bias decreases
with time and increases with redshift. As a result, the cluster
correlation amplitude increases with redshift, as it is clear in
Figure 3.

We estimate the cluster bias through Equation 5b. The power
spectrum of the dark matter distribution is calculated with the
cosmological parameters of the light-cone we use and we obtain
its Fourier transform ξ(r). We use the function xi_DM from the
class Cosmology from CosmoBolognaLib. The comparison
is not straightforward because, as we have previously noticed, in
the simulation halo masses are not M200, but the so–called Dhalos
masses Mhalo.

The evolution of bias with redshift for the 4 sub-samples
with different limiting masses is shown in Figure 5 along with
the theoretical predictions of Tinker et al. (2010) for the same
limiting masses used. The values of the bias for the different
sub-samples are provided in Table 1. It can be seen that at fixed
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Table 1: The best-fit values of the parameters of the real-space correlation function ξ(r) for the light-cone at different (1) mass
thresholds and (2) redshift ranges. For each sample we quote (3) the correlation length r0, (4) slope γ, (5) correlation length r0 at
fixed slope γ = 2.0, (6) number of clusters Nclusters and (7) the bias b obtained.

Mass
(h−1 M⊙)

z r0 (h−1Mpc) γ r0 (γ = 2.0)
(h−1Mpc)

Nclusters bias

Mhalo > 2 × 1013

0.1 < zc < 0.4 9.89±0.20 1.76±0.05 9.53±0.29 10492 1.81±0.03

0.4 < zc < 0.7 10.22±0.14 1.84±0.04 10.01±0.17 27224 2.00±0.03

0.7 < zc < 1.0 11.10±0.15 1.87±0.04 10.85±0.17 35133 2.52±0.02

1.0 < zc < 1.3 11.62±0.23 1.98±0.05 11.58±0.19 31815 3.01±0.06

1.3 < zc < 1.6 12.41±0.42 2.13±0.09 12.49±0.52 22978 3.37±0.19

1.6 < zc < 2.1 14.78±0.21 2.06±0.05 14.78±0.22 18931 4.65±0.23

Mhalo > 5 × 1013

0.1 < zc < 0.4 12.22±0.26 1.90±0.05 11.97±0.25 3210 2.21±0.05

0.4 < zc < 0.7 13.20±0.23 1.98±0.05 13.16±0.17 7301 2.62±0.13

0.7 < zc < 1.0 14.86±0.33 1.97±0.05 14.52±0.28 8128 3.38±0.22

1.0 < zc < 1.3 17.00±0.48 2.00±0.07 17.00±0.38 5963 4.38±0.19

1.3 < zc < 1.6 18.26±0.62 2.15±0.06 19.73±0.43 3365 5.29±0.31

1.6 < zc < 2.1 19.18±1.41 2.23±0.21 20.05±1.13 2258 6.21±0.62

Mhalo > 1 × 1014

0.1 < zc < 0.4 14.60±0.35 1.93±0.06 14.33±0.24 1119 2.67±0.19

0.4 < zc < 0.7 17.26±0.96 1.90±0.08 16.35±0.42 2228 3.45±0.23

0.7 < zc < 1.0 18.93±1.18 2.08±0.12 19.55±0.75 2072 4.64±0.37

1.0 < zc < 1.3 22.36±1.90 2.11±0.17 23.33±1.30 1221 6.15±0.82

1.3 < zc < 1.6 26.09±4.10 2.28±0.30 28.96±3.17 590 7.64±2.50

Mhalo > 2 × 1014
0.1 < zc < 0.4 19.98±1.92 1.95±0.22 19.73±1.22 322 3.98±0.38

0.4 < zc < 0.7 22.23±1.54 2.16±0.18 22.27±1.17 538 4.57±0.45

0.7 < zc < 1.0 24.65±1.89 2.19±0.29 25.28±1.68 407 6.01±1.63

redshifts more massive clusters have a higher bias; at fixed mass
threshold the bias increases with redshift, and evolves faster at
higher redshifts. It can also be seen clearly that the bias obtained
for the haloes from the simulations are in good agreement with
the predictions by Tinker et al. (2010).

At high redshifts (z > 0.8) the bias recovered from the simu-
lations seems to slightly diverge from the theoretical predictions,
especially for the Mhalo > 1 × 1014 h−1 M⊙ sample, but this can
be explained by the dependence on redshift for the Mhalo/M200

ratio which becomes smaller than 1 at these redshifts as previ-
ously mentioned. The discrepancy is not significant as our bias
measurements are well within 1σ precision from the theoretical
expectations.

3.5. The r0 - d relation

The dependence of the bias on the cluster mass is based on theory.
A complementary and empirical characterization of the cluster
correlation function is the dependence of the correlation length r0

as a function of the mean cluster comoving separation d (Bahcall
& Soneira 1983; Croft et al. 1997; Governato et al. 1999; Bahcall
et al. 2003), where:

d = 3

√
1
ρ

(6)

and ρ is the mean number density of the cluster catalogue on
a given mass threshold.

According to the theory, more massive clusters have a higher
bias, therefore a higher r0; as they are also more rare, they have
also a larger mean separation: therefore it is expected that r0

increases with d, i.e. r0 = α d β.

This relation has been investigated both in observational data
(Bahcall & West 1992; Estrada et al. 2009) and in numerical
simulations (Bahcall et al. 2003; Younger et al. 2005). Younger
et al. (2005) gave an analytic approximation in the ΛCDM case
in the redshift range z = 0-0.3 for 20 ≤ d ≤ 60 h−1Mpc, with
α = 1.7 and β = 0.6.

We determine the r0 dependence with d for the various sub-
samples previously defined. The results obtained for a free γ
along with the best fit obtained for both free and fixed γ = 2 are
shown in Figure 6.

The best-fit parameters for the r0 - d relation in the redshift
range 0 ≤ z ≤ 2.1 and for the cluster mean separation range
20 ≤ d ≤ 140h−1Mpc are, α = 1.77 ± 0.08 and β = 0.58 ± 0.01.

The r0 - d relation which appears to be scale–invariant with
redshift, is consistent with what was found by Younger et al.
(2005) and is also consistent with the theoretical predictions of
Estrada et al. (2009) (see their figure 7).

The scale invariance of the r0 − d relation up to a redshift
z ≈ 2.0 implies that the increase of the cluster correlation strength
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Fig. 6: The evolution of r0 with d for clusters of different masses
in different redshift slices. The points plotted are for the fixed
slope γ = 2.0. The green dashed line shows the fit when γ = 2.0
and the red dashed line shows the overall fit obtained for the data
points considering a free slope. The analytic approximation in the
ΛCDM case obtained by Younger et al. (2005) is shown by the
dashed black line. The different redshift slices are colour coded
as mentioned in the figure.

with redshift is matched by the increase of the mean cluster
separation d. It suggests that the cluster mass hierarchy does not
evolve significantly in the tested redshift range: for example, the
most massive clusters at an earlier epoch will still be among the
most massive at the current epoch.

4. Estimating the correlation function with
photometric redshifts

Large redshift surveys such as the Sloan Digital Sky Survey
(Eisenstein et al. 2011), VVDS (Le Fèvre et al. 2005), VIPERS
(Garilli et al. 2014; Guzzo et al. 2014) have revolutionized our
tridimensional vision of the Universe. However, as spectroscopic
follow up is a very time consuming task, priority has been given
either to the sky coverage or to the depth of the survey. An alter-
native way of recovering the redshift information is to derive it
from imaging in multiple bands when available, using the tech-
nique of photometry (Ilbert et al. 2006, 2009) While the accuracy
of spectroscopic redshifts cannot be reached, this method can
be successfully used for several purposes as for instance cluster
detection. Several major surveys that will provide imaging in mul-
tiple bands and thereby photometric redshifts are in progress or in
preparation. For instance, the ongoing Dark Energy Survey aims
to cover about 5000 deg2 on the sky with a photometric accuracy
of σz ≈ 0.08 out to z ≈ 1 (Sánchez et al. 2014). Future surveys
such as LSST (Ivezic et al. 2008; LSST Science Collaboration
et al. 2009) and Euclid (Laureijs et al. 2011) are expected to make
a significant leap forward. For instance, the Euclid Wide Survey,
planned to cover 15000 deg2, is expected to deliver photometric
redshifts with uncertainties lower than σz/(1 + z) < 0.05 (and
possibly σz/(1+ z) < 0.03) (Laureijs et al. 2011) over the redshift
range [0,2]. The performances of photometric redshift measure-
ments have significantly increased over the last decade, making it
possible to perform different kinds of clustering analysis which

were previously the exclusive domain of spectroscopic surveys.
In this section we investigate how well we can recover the cluster
correlation function for a sample of clusters with photometric
redshifts and test the impact of the photometric redshift errors in
redshift and mass bins.

4.1. Generation of the photometric redshift distribution of
haloes

From the original light-cone we extract mock cluster samples
with photometric redshifts; these are assigned to each cluster by
random extraction from a Gaussian distribution with mean equal
to the cluster cosmological redshift and standard deviation equal
to the assumed photometric redshift error of the sample.

In this way we build five mock samples with errors σ(z=0) =

σz/(1 + zc) = 0.001, 0.005, 0.010, 0.030, 0.050. These values
have been chosen to span the typical uncertainties expected in the
context of upcoming large surveys.

The photometric redshift uncertainties in upcoming surveys
are expected to be within 0.03< σz/(1 + z) <0.05 for galaxies
and within 0.01< σz/(1 + z) <0.03 for clusters (Ascaso et al.
2015). Ideally, the error on the cluster redshift should scale pro-
portionally to Nmem

−1/2 (where Nmem is the number of cluster
members), therefore for clusters with 10 detected members the
error would be reduced by a factor 3; but of course contamination
from non-member galaxies will affect the redshift estimate.

4.2. Recovering the real-space correlation function: the
method

In the following we will take into account separately the line
of sight π and the transverse rp components of the two–point
correlation function. Photometric redshifts affect only the line
of sight component, introducing an anisotropy in the π-rp plane:
the redshift–space correlation function will have a lower ampli-
tude and steeper slope with respect to the real-space correlation
function (Arnalte-Mur et al. 2009).

In order to recover the real-space correlation function of the
photometric redshift mocks, we apply the deprojection method
(Arnalte-Mur et al. 2009; Marulli et al. 2012). The method is
based on Davis & Peebles (1983) and Saunders et al. (1992). Pairs
are counted at different separations parallel (π) and perpendicular
(rp) to the line of sight.

The comoving redshift space separation of the pair is defined
as s ≡ x2 − x1 and the line of sight vector is l =

1

2
(x1 + x2) (Fisher

et al. 1994). The parallel and perpendicular distances to the pair
are given by:

π =
s.l

|l|
(7a)

rp =

√
|s|2 − π2 (7b)

where z̄ = 1
2
(z1+z2). Counting pairs in both (rp, π) dimensions

will then provide the anisotropic correlation function ξ(rp, π) .
The projected correlation function can be derived from ξ(rp, π)
by:

wp(rp) =

∫
+∞

−∞
ξ(rp, π)dπ (8)
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Fig. 7: Distribution of clusters selected in the top-hat cosmological redshift window compared with the clusters selected in the top-hat
photometric redshift window. Filled histograms correspond to distribution of clusters as a function of cosmological redshift when the
top-hat selection is done using the cosmological redshift within the range 0.4 < z < 0.7. Solid blue lines correspond to distribution
of clusters as a function of cosmological redshift when the top-hat selection is done using the different photometric uncertainties
we have used (σz/(1 + zc) = 0.005,0.010,0.030 and 0.050) with the range 0.4 < z < 0.7 and the dashed blue lines correspond to the
distribution of clusters as a function of cosmological redshift when the top-hat selection is done using photometric redshifts outside
the range 0.4 < z < 0.7.

Table 2: Main parameters used for the analysis of the original catalogue and the 5 mock photometric redshift catalogues: (1) the

redshift uncertainty, (2) the maximum values of πmax and (3) rp(max), (4) the values of ∆ξ, (5) ∆̂ξ. The range of scales r used for the fit
is fixed at 5-50 Mpc.

Redshift
uncertainty(

σz

1+zc

)
πmax

(h−1Mpc)
rp(max)

(h−1Mpc)

∆ξ ∆̂ξ

0.000 50 400 0.028 0.031

0.001 60 400 0.042 0.052

0.005 130 400 0.055 0.055

0.010 300 400 0.065 0.063

0.030 400 400 0.091 0.080

0.050 550 400 0.148 0.109
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Fig. 8: The recovered correlation function (green line) compared with the real-space correlation function (red line) for 5 mock
photometric samples in the redshift range 0.4 < z < 0.7, with increasing redshift uncertainty. Values of the best-fit parameters
obtained are given in Table 2 and the quality of the recovery for each sample is given in Table 3.
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Fig. 9: The 1 σ (shaded brown) and 3 σ (shaded green) error ellipses for the parameters r0 and γ. Top panel: The original catalogue
with cosmological redshifts Central and bottom panels: Mock catalogues with increasing photometric redshift errors. The solid star
represents the center of the ellipse for the original catalogue, while the cross denotes the centres of the other ellipses.

The projected correlation function wp(rp) (Farrow et al. 2015)
is related to the real-space correlation function ξ(r) by Equation
9:

wp(rp) = 2

∫ ∞

rp

rdrξ(r)(r2 − r2
p)−1/2 (9)

which can be inverted to obtain the real-space correlation
function:

ξ(r) =
−1

π

∫ ∞

r

w′(rp)(r2
p − r2)−1/2drp (10)

Theoretically, the upper limits of integration are infinite, but
in practice we need to choose finite values both in Equation 8 and
Equation 10 which then become:

wp(rp, πmax) =

∫ πmax

0

ξ(rp, π)dπ (11)

and

ξ(r) =
−1

π

∫ rpmax

r

w′(rp)(r2
p − r2)−1/2drp (12)

where πmax and rpmax
refer respectively to the maximum line

of sight separation and the maximum transverse separation.
Given that above a certain value of π, pairs are uncorrelated

and ξ(rp, π) drops to zero, it is possible to find an optimal choice
for πmax. This will be explained in detail in Section 4.3.2. We
estimate the real-space correlation function following the method
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Table 3: The best-fit parameters obtained for the real-space cor-
relation function ξ(r) of the original sample and the recovered
deprojected correlation function ξdep(r) for the mock photomet-
ric redshift samples. We quote the (1) redshift uncertainty, (2)
the correlation length r0, (3) slope γ. The mass cut used is
Mhalo > 5 × 1013 h−1 M⊙ and the fit range is fixed at 5-50
Mpc. The fits have been performed both with fixed (γ = 2.0) and
free slope.

Redshift
uncertainty(

σz

1+zc

)
r0

(h−1Mpc)
γ

zc
13.16±0.17 2.0 (fixed)

13.20±0.23 1.97±0.05

0.001
12.82±0.17 2.0 (fixed)

12.91±0.22 2.02±0.05

0.005
12.52±0.22 2.0 (fixed)

12.89±0.26 1.94±0.06

0.010
12.33±0.28 2.0 (fixed)

12.84±0.63 1.93±0.08

0.030
12.29±0.30 2.0 (fixed)

12.91±0.72 2.02±0.12

0.050
11.73±0.65 2.0 (fixed)

12.88±0.76 1.90±0.14

of Saunders et al. (1992). We use a step function to calculate
wp(rp), where wp(rp) = wp(i) in the logarithmic interval centred
on rp(i), and we sum up in steps using the equation:

ξ(rp(i)) =
−1

π

∑

j≥i

wp( j+1) − wp( j)

rp( j+1) − rp( j)

ln



rp( j+1) +

√
r2

p( j+1)
− r2

p(i)

rp( j) +

√
r2

p( j)
− r2

p(i)


(13)

Assuming that the correlation function follows a perfect
power–law, wp(rp) is given by the formula:

wp(rp) = rp

(
r0

rp

)γ
Γ( 1

2
)Γ(
γ−1

2
)

Γ(
γ

2
)

(14)

where Γ is the Euler’s gamma function.

We compare the values of r0 (with fixed slope) obtained from
the fit of the recovered deprojected correlation function ξdep(r)
using Equation 3. We also compared the values from the fit of
wp(rp) with the same fixed slope using Equation 14 and found
it to be similar to what we obtain for the recovered deprojected
correlation function ξdep(r).

4.3. Application to a cluster mock catalogue

4.3.1. Photo-z catalogue selection

As a first test, we apply the formalism described in the previous
section to a mock cluster sample within the fixed redshift slice
0.4 < z < 0.7.

For each cluster, we assign a photometric redshift zphot

following the probability P(zphot |zc) = G(zc, σz) where σz =

σ(z=0) × (1 + zc). As mentioned in Crocce et al. (2011), doing
the selection in a top-hat photometric redshift window and in a
top-hat cosmological redshift window with the same boundaries
is not equivalent. Figure 7 compares the distribution in cosmolog-
ical redshift of the clusters selected in the top-hat cosmological
redshift window 0.4 < zc < 0.7 (given by the filled histogram),
the clusters selected by the top hat photometric redshift window
0.4 < zphot < 0.7 (given by the solid blue line) and the clusters
for which the photometric redshifts are outside the slice limits
[0.4,0.7] (given by the dashed blue line) for four of our photomet-
ric samples. The distribution in cosmological redshift N(zc) of the
objects selected by the top-hat zphot window is broader than that
selected by the top-hat zc window, and this effect increases with
increasing σz. When performing the selection in zphot window
rather than in zc window, a fraction of clusters with zc outside
these slice limits but with zphot within the slice limits [0.4,0.7]
are included, resulting then as contaminants. The distribution of
clusters with zphot outside the window [0.4,0.7] is also shown as
a dashed blue line. It shows that a fraction of clusters with zphot

outside [0.4,0.7] have zc within the slice limits [0.4,0.7]. These
objets are then lost by the top-hat photometric redshift selection.

The fraction of contaminating and missing clusters depends
on the photometric redshift uncertainty and also on the N(z)
distribution. We calculate the fraction of common objects between
the top hat zphot and zc selections for the different σz and redshift
windows considered. It varies from 99% to 70% for samples with
σz/(1+ zc) = 0.001 (at z ≈ 0.1) to σz/(1+ zc) = 0.050 (at z ≈ 1.3)
respectively. Only the samples with σz/(1+zc) = 0.050 and above
a redshift of z > 0.7 have less than 80% objects in common, as
we know that the photo-z error scales as σz = σ(z=0) × (1 + zc). In
our case there are four samples that fall in this category (fourth
panel of Table A.1). For all the other samples we choose, the
average fraction of common clusters is more than 80% and so
by choosing a direct cut in photo-z space, we expect that the
final clustering is not affected by a huge margin. To calculate the
effect of N(z) on contaminated and missing clusters, we calculate
both the mean and median redshift for the photometric redshift
samples we have. It can be seen from Table A.2 that both the
mean and the median redshift do not vary much when compared
to the same of the cosmological redshift sample. The percentage
of contaminants for each redshift slice and given photometric
uncertainty along with the Nclusters in zc and zphot window and the
number of common clusters is mentioned in Table A.1.

4.3.2. Selecting the integration limits

ξ(rp, π) is calculated on a grid with logarithmically spaced bins
both in rp and π. The maximum value of rp depends on the
survey dimension in the transverse plane. In the redshift range
0.4 < z < 0.7, the maximum separation across the line of sight di-
rection in our light-cone is ≈ 500 h−1Mpc. For the upper limit of
integration in Equation 12 we fixed a value rp(max) = 400 h−1Mpc,
corresponding to 80 percent of the maximum transversal separa-
tion. For higher redshift samples we are aware that the maximum
separation across the line of sight increases, but we find that the
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Fig. 10: The evolution of r0 and γ with redshift for clusters with a mass cut Mhalo > 5 × 1013 h−1 M⊙ for samples with increasing
redshift uncertainty (σz/(1 + zc) = 0.005, 0.010, 0.030 and 0.050). Red (0.1 < z < 0.4), Green (0.4 < z < 0.7), Blue (0.7 < z < 1.0),
Indigo (1.0 < z < 1.3), Gold (1.3 < z < 1.6), Magenta (1.6 < z < 2.1).

value of 400 h−1Mpc includes almost all correlated pairs without
adding any noise.

In the case of clusters where we have low statistics as com-
pared to galaxy catalogues, the choice of the bin width must be
taken into account, if not the Poisson noise will dominate. A
convergence test is performed for choosing the number and the
width of bins in rp and πmax.

Since higher photometric errors produce larger redshift space
distortions, a different value of πmax has to be fixed for each
photometric redshift mock. We determine its value in the follow-
ing way. We recover the real-space correlation function with the
method described in Section 4.2, using increasing values of πmax.
Initially the amplitude of ξdep(r) is underestimated because many
correlated pairs are not taken into account; it increases when
increasing πmax up to a maximum value, beyond which it starts to
fluctuate and noise starts to dominate. Applying this test to each

mock, we select the πmax value corresponding to the maximum
recovered amplitude.

We show an example of the πmax test for the photometric
sample with σz = 0.010 × (1 + zc). It can be seen from Figure
11 that the amplitude of the correlation function increases with
increasing πmax, but only up to a certain value, which we call as
the maximum recovered amplitude. It can be seen that integrating
the function above this value of πmax only results in noise.

It is clear from our tests on simulations (see Figure 11) that
there is an optimal πmax value; integrating beyond that limit in-
creases the noise. In future work on observed cluster samples,
using the data themselves, we can examine the value of the ob-
served correlation amplitude as a function of πmax, choosing the
πmax value providing the maximum correlation amplitude.

We have checked that by applying this method to the original
light-cone with cosmological redshifts we correctly recover its
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Fig. 11: The recovered correlation function with different values
of πmax (as colour coded in the figure) for the sample with σz =

0.010× (1+ zc) in the redshift range 0.4 < z < 0.7. The black line
joining the diamonds in both the plots is the real-space correlation
function calculated for the cosmological redshift sample (same
as the red line in Figure 8). Poisson error bars are plotted just for
convenience.

real-space correlation function. The values of πmax used for our
reference sample (0.4 < z < 0.7) are given in Table 2.

4.3.3. The quality of the recovery

In Figure 8 we compare ξdep(r) of our five mocks with the real-
space correlation function ξ(r). It is clear that ξdep(r) reproduces
quite well ξ(r), but shows increasing fluctuations with increasing
σz. The ratio ξdep(r)/ξ(r) is slightly smaller than 1 but within 1σ
at all scales for all the mocks up to σz/(1 + zc) = 0.05.

The quality of the recovery is determined using ∆ξ, an “av-
erage normalised residual” defined by Arnalte-Mur et al. (2009)
as:

∆ξ =
1

N

∑

i

∣∣∣∣∣
ξdep(ri) − ξ(ri)

ξ(ri)

∣∣∣∣∣ (15)

where ri refers to the values in the ith bin considered and ξ(ri) is
the real-space correlation function.

In the case of real data, where zc is not available, one can still
calculate the quality of the recovery using the covariance matrix
and is defined as:

∆̂ξ =
1

N

∑

i

√
Cii

|ξdep(ri)|
(16)

wherein we use the covariance matrix that we have obtained using
the jackknife resampling method mentioned in Equation 4. The

values of ∆ξ and ∆̂ξ estimated in the range 5-50 h−1Mpc, are
listed in Table 2.

One can see from Table 2 that for the lowest photometric
error considered, σz/(1 + zc) = 0.001, the real-space correlation
function is recovered within 5%. For σz/(1 + zc) = 0.005 and
σz/(1 + zc) = 0.010 it is recovered within 7%, within 9% for
σz/(1+zc) = 0.030 and finally within 15% for σz/(1+zc) = 0.05.

The best-fit parameters of the deprojected correlation func-
tions are shown in Table 3. The fitting is performed with both a
free and fixed slope γ = 2.0. The correlation length obtained for
our 5 mock photometric samples is consistent within ∼ 1σ with
the real-space correlation length r0 = 13.20 ± 0.23 h−1Mpc and
r0 = 13.16±0.17 h−1Mpc obtained for the zc sample for ξ(r) (free
slope) and ξ(r) (fixed slope) respectively. The best-fit r0 obtained
for this particular sample (0.4 < zc < 0.7) seems to have a value
that is always lower, regardless of the photometric uncertainty,
when compared to the r0 obtained for the true zc sample. This is
just a coincidence and is not always the case, as it can be seen
for other samples with different redshift limits. When the slope is
set free, direct comparison of r0 between the samples cannot be
made and so in Figure 9 we plot the 3 sigma error ellipses around
the best-fit values of r0 and γ for all the mocks. As expected, the
errors on both r0 and γ increase with the photometric error, but
are always within ∼ 1σ with respect to the real space values.

We also applied the deprojection method for higher photomet-
ric redshift errors to test how far the method could be applied. It
was found that from σz/(1+ zc) = 0.1, the error on the recovery is
very large and the recovered correlation function becomes biased.

4.3.4. Recovering the redshift evolution of the correlation
function from sub-samples selected using
photometric redshifts

We check how accurately we can follow the redshift evolution of
the cluster real-space correlation function when using photometric
redshifts and the deprojection method to retrieve the real-space
correlation function. We have previously shown this for the light-
cone with cosmological redshifts in Figure 3.

For this purpose, we analyse 4 mocks with redshift uncertain-
ties of σz/(1 + zc) = 0.005, 0.010, 0.030 and 0.050 respectively,
in 5 redshift slices, from 0.1 < z < 0.4 to 1.6 < z < 2.1 with the
same mass cut Mhalo > 5 × 1013 h−1 M⊙ as done in Section 3.2.
The results are shown in Figure 10 and the values of the best-fit
parameters for all the 4 photometric samples are given in Table
A.2 in the Appendix section along with the number of clusters
(Nclusters) and the mean and median redshift for each sample.

Figure 10 shows the evolution of the best-fit parameters r0

and γ for the different redshift slices. The four panels correspond
to the different photometric redshift errors tested. It can be com-
pared to Figure 3 which shows the values of r0 and γ estimated
for the same redshift slices but using cosmological redshifts. The
fits are performed in the range within which ξ(r) can be described
using a power-law. As in Figure 3, r0 and γ are shown to increase
with redshift but the errors on their estimates become larger as
the photometric redshift error increases. As a result, the error bars
on the r0 estimates for consecutive redshift slices tested tend to
superimpose when considering large values of σz. The increase
of r0 with redshift remains detectable, but a larger binning in red-
shift is requested to detect this effect significantly when working
with large σz. One can note that the parameters estimated from
the deprojected correlation function are within 1σ from the ones
estimated directly in real-space, and that remains true even for
high redshifts and for high values of the photometric errors. The
large error bars for the last two redshift slices (1.3 < z < 1.6
and 1.6 < z < 2.1) are both due to the small number of clusters
at high redshift (see the histogram shown in Figure 1) and the
scaling of the photometric error σz = σ(z=0) × (1 + zc). How-
ever, it can be seen that the low number of clusters makes the
correlation function hard to measure even using cosmological
redshifts. From our tests we can conclude that the correlation
function can be recovered from photometric redshift surveys us-
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Fig. 12: The evolution of bias with redshift and mass (with units h−1 M⊙) for the zc sample (solid lines) compared with the photometric
samples (dashed lines) with redshift uncertainties of σz/(1 + zc) = 0.005, 0.010, 0.030 and σz/(1 + zc) = 0.050.

ing the deprojection method up to a redshift of z ≈ 2.0 within 10%
percent with a photometric redshift error of σz/(1 + zc) = 0.030.
In this sense, the recovery performed with this method can be
considered as successful. Even in the last redshift slice chosen
(1.6 < z < 2.1), the correlation function can be recovered within
1σ for all the four photometric redshift uncertainties tested. It
can be numerically visualised in the last panel of Table A.2. This
point is of particular importance as the 1.5 < z < 2.0 redshift
range has been shown to be very discriminant for constraining
cosmological parameters with clusters (Sartoris et al. 2016).

We also estimate the bias as defined in Section 3.4 for σz/(1+
zc) = 0.005, 0.010, 0.030 and 0.050. Our values are given in
Tables A.3 and A.4 in the Appendix section along with the number
of clusters (Nclusters) in each sample. The results can be seen in
Figure 12. The bias values obtained for the photo-z samples
are consistent with the values obtained for the reference sample
and are within 1σ error bars. For the first two mass cut samples
(Mhalo > 2 × 1013 h−1 M⊙ and 5 × 1013 h−1 M⊙), the calculated

bias from the photometric samples are within 1σ even up to a
median redshift of z ≈ 1.8. Up to a mass cut of Mhalo > 1 ×
1014 h−1 M⊙ one can see that the redshift evolution of the bias
can be traced very well (even up to redshifts of z ≈ 1.5).

However we notice that for the highest mass cut sample
(Mhalo > 2 × 1014 h−1 M⊙) chosen, only the bias values ob-
tained for the photometric sample with σz/(1 + zc) = 0.005 seem
to be similar to that obtained by the reference sample. The re-
maining three photometric samples depict a much higher bias
(even though they fall within 1σ) when compared to the reference
sample. One reason for this behaviour and also for the large error
bars for this mass cut sample is due to the smaller abundance of
clusters at this mass threshold cut as it can be seen from Table
A.3 and A.4. We also believe that it can be due to the percentage
of contaminants that are present in this mass cut sample for three
different photometric uncertainties. We have calculated the con-
taminants for this mass cut sample and they seem to be higher at
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certain redshifts when compared to the contaminants at the same
redshifts found for the low mass cut samples.

However up to mass cut of Mhalo > 5 × 1013 h−1 M⊙, the
evolution in redshift and mass of the bias is clearly distinguished,
that too up to the highest redshift tested (z ≈ 2.1).

5. Discussion and conclusions

In future, most of the cluster detections in large galaxy surveys
will be based on photometric catalogues Therefore the main aim
of this work was to apply a method for recovering the spatial two–
point correlation function ξ(r) of clusters using only photometric
redshifts and assess its performance.

In order to estimate the real-space correlation function ξ(r),
we applied a method originally developed to correct for pecu-
liar velocity distortions, first estimating the projected correlation
function wp(rp), then applying Equation 12 to deproject it.

For our analysis we used the 500 deg2 light-cone of Mer-
son et al. (2013). Mock photometric redshifts were generated
from the cosmological redshifts assuming a Gaussian error
σz = σ(z=0) × (1 + zc) (as described in Section 4.1). This repre-
sents a first approximation, sufficient for the scope of the present
work; a more realistic approach will have to include real photo-z
distributions and catastrophic failures.

Here are our main results.

1. We directly estimate the cluster correlation function in real-
space (i.e. using cosmological redshifts) for sub-samples of
the light-cone in different redshift intervals and with differ-
ent mass thresholds (see Section 3.2 and 3.3). As expected,
we find an increasing clustering strength with both redshift
and mass threshold. At a fixed mass threshold, the correla-
tion amplitude increases with redshift, while at a fixed red-
shift the correlation amplitude increases with mass thresh-
old. The increase of the correlation amplitude with red-
shift is larger for more massive haloes: for example, for
Mhalo > 2 × 1013 h−1 M⊙, r0 = 9.89 ± 0.20 at z = 0.25 and
r0 = 12.41 ± 0.42 at z = 1.45; for Mhalo > 1 × 1014 h−1 M⊙,
r0 = 14.60 ± 0.35 at z = 0.25 and r0 = 26.09 ± 4.10 at
z = 1.45.

2. We fit the relation between the clustering length r0 and the
mean intercluster distance d in the redshift interval 0.1 ≤ z ≤
2.1 up to z ≈ 2.0, finding r0 = 1.77 ± 0.08(d)0.58±0.01 h−1Mpc,
which is consistent with the relation r0 = 1.70(d)0.60 h−1Mpc
obtained by Younger et al. (2005) for the local redshift range
0 ≤ z ≤ 0.3.

3. We estimate the bias parameter directly in real-space (using
cosmological redshifts), with different mass thresholds. Anal-
ogously to the correlation amplitude, the bias increases with
redshift, and the increase is larger for more massive clusters.
Our results are consistent with Estrada et al. (2009) and with
the theoretical prediction of Tinker et al. (2010).

4. We finally apply the deprojection method to recover the real-
space correlation function ξ(r) of different sub-samples using
photometric redshifts. We recover ξ(r) within ∼ 7% on scales
5 < r < 50 h−1Mpc with a photometric error of σz/(1 +
zc) = 0.010 and within ∼ 9% for samples with σz/(1 + zc) =
0.030; the best–fit parameters of the recovered real–space
correlation function, as well as the bias, are within 1σ of the
corresponding values for the direct estimate in real-space, up
to z ∼ 2.

Our results are promising in view of future surveys such as
Euclid and LSST that will provide state-of-the-art photometric

redshifts over an unprecedented range of redshift scales. This
work represents the first step towards a more complete analysis
taking into account the different observational problems to be
faced when determining cluster clustering from real data. We are
planning to extend this study to the use of more realistic photo-z
errors. We are also planning to apply the deprojection method to
cluster catalogues produced by cluster detection algorithms. This
implies taking into account the selection function of the cluster
catalogue, and investigate the impact of purity and completeness
on clustering. Another important issue to be faced is that mass in
general is not available for cluster catalogues derived from data so
that a proxy of mass such as richness has to be used. The fact that
the scatter of the relation between mass and richness introduces
another uncertainty has to be taken into account when using
clusters for constraining the cosmological parameters (see e.g.
(Berlind et al. 2003; Kravtsov et al. 2004; Zheng et al. 2005; Rozo
et al. 2009; Rykoff et al. 2012)). Another important constraint
for cosmological parameters is given by the BAO feature in the
two-point correlation function (Veropalumbo et al. 2014, 2016).
As we have pointed out in Section 2, the size of the light-cone
we used (500 deg2) is not large enough to detect the BAO feature.
It will be interesting to extend this analysis to forthcoming all-
sky simulations to test if the BAO feature can be detected using
photometric redshifts, and if so with which accuracy, in next
generation surveys.
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Appendix A: Values of best-fit parameters from
the two-point correlation fit and bias values
for photometric redshift catalogues

Table A.2 shows the values of the best-fit parameters (as shown
in Figure 10) for the two-point correlation function of the four
sub-samples with redshift errors σz/(1+ zc) = 0.005, 0.010, 0.030
and 0.050, and the corresponding values obtained for the parent
catalogue with cosmological redshift (zc).

For the same four sub-samples and the parent sample with
cosmological redshift (zc), tables A.3 and A.4 show the bias
values (see also Figure 12).
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Table A.1: The number of clusters in a given redshift range for zc and zphot with mass cut Mhalo > 5 × 1013 h−1 M⊙. The zphot

uncertainties are σz/(1 + zc) = 0.005, 0.010, 0.030 and 0.050. (1) Redshift range, (2) number of clusters in zc window, (3) number of
clusters in zphot window, (4) common clusters, (5) uncommon clusters and (6) the percentage of contaminants are quoted.

Redshift range Clusters in
zc window

Clusters in
zphot window

Common Uncommon % contaminants

σz = 0.005 × (1 + zc)

0.1< z <0.4 3210 3214 3160 50 1.55

0.4< z <0.7 7301 7310 7162 139 1.90

0.7< z <1.0 8128 8088 7933 195 2.39

1.0< z <1.3 5963 6001 5842 121 2.02

1.3< z <1.6 3365 3356 3252 113 3.35

1.6< z <2.1 2258 2251 2197 61 2.70

σz = 0.010 × (1 + zc)

0.1< z <0.4 3210 3216 3115 95 2.95

0.4< z <0.7 7301 7338 7042 259 3.54

0.7< z <1.0 8128 8095 7745 383 4.71

1.0< z <1.3 5963 5973 5676 287 4.81

1.3< z <1.6 3365 3350 3144 221 6.56

1.6< z <2.1 2258 2239 2133 125 5.53

σz = 0.030 × (1 + zc)

0.1< z <0.4 3210 3196 2884 326 10.15

0.4< z <0.7 7301 7396 6492 809 11.08

0.7< z <1.0 8128 8053 6972 1156 14.22

1.0< z <1.3 5963 5880 4958 1005 16.85

1.3< z <1.6 3365 3388 2712 653 19.40

1.6< z <2.1 2258 2251 1922 336 14.88

σz = 0.050 × (1 + zc)

0.1< z <0.4 3210 3205 2647 563 17.53

0.4< z <0.7 7301 7433 5906 1395 19.10

0.7< z <1.0 8128 7937 6153 1975 24.29

1.0< z <1.3 5963 5859 4294 1669 27.98

1.3< z <1.6 3365 3352 2248 1117 33.19

1.6< z <2.1 2258 2277 1717 541 23.95
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Table A.2: The parameters obtained from the fit for the real-space correlation function ξ(r) on the ideal zero-error simulation for the
different redshift cut catalogues and the same obtained from the photometric redshift catalogues with σz/(1+ zc) = 0.005, 0.010, 0.030
and 0.050. (1) redshift cut used, (2) photometric uncertainty σz/(1 + zc), (3) correlation length r0, (4) slope γ and (5) the number of
clusters Nclusters, (6) median redshift and (7) mean redshift.

Redshift range σz/(1 + zc) r0 h−1Mpc γ Nclusters Median z Mean z

0.1 < z < 0.4

zc 12.22±0.26 1.90±0.05 3210 0.30 0.29

0.005 11.99±0.44 2.01±0.09 3214 0.30 0.29

0.010 12.47±0.51 1.80±0.10 3216 0.30 0.29

0.030 12.57±0.64 1.97±0.13 3196 0.30 0.28

0.050 12.48±0.61 1.99±0.12 3205 0.29 0.28

0.4 < z < 0.7

zc 13.20±0.23 1.98±0.05 7301 0.56 0.55

0.005 12.89±0.26 1.94±0.06 7310 0.56 0.55

0.010 12.84±0.63 1.93±0.08 7338 0.56 0.56

0.030 12.91±0.72 2.02±0.12 7396 0.56 0.55

0.050 12.88±0.76 1.90±0.14 7433 0.56 0.55

0.7 < z < 1.0

zc 14.86±0.33 1.97±0.05 8128 0.84 0.84

0.005 15.07±0.49 1.87±0.07 8088 0.84 0.84

0.010 14.99±1.00 1.90±0.18 8095 0.84 0.84

0.030 14.06±0.63 2.05±0.19 8053 0.84 0.84

0.050 14.36±0.83 1.91±0.16 7937 0.84 0.84

1.0 < z < 1.3

zc 17.00±0.48 2.00±0.07 5963 1.13 1.13

0.005 17.29±0.64 2.06±0.08 6001 1.13 1.13

0.010 16.90±0.87 2.08±0.12 5973 1.13 1.14

0.030 17.45±1.14 1.88±0.16 5880 1.13 1.14

0.050 17.43±0.92 1.90±0.13 5859 1.13 1.14

1.3 < z < 1.6

zc 18.26±0.62 2.15±0.06 3365 1.43 1.43

0.005 18.31±0.51 2.09±0.08 3356 1.43 1.43

0.010 18.31±0.75 2.26±0.21 3350 1.43 1.43

0.030 19.22±1.16 2.16±0.17 3388 1.42 1.43

0.050 18.78±1.35 2.11±0.18 3352 1.43 1.43

1.6 < z < 2.1

zc 19.48±1.41 2.23±0.21 2258 1.76 1.79

0.005 18.86±0.88 2.16±0.23 2251 1.77 1.79

0.010 18.76±0.85 2.32±0.27 2239 1.77 1.79

0.030 18.74±1.89 2.15±0.17 2251 1.77 1.79

0.050 19.62±2.16 2.15±0.26 2277 1.77 1.79
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Table A.3: The bias values obtained for the first 2 photometric redshift catalogues (σz/(1 + zc) = 0.005 and 0.010) with the 4 mass
threshold cuts in the 5 redshift bins used. (1) Photometric uncertainty σz/(1 + zc), (2) mass cut Mhalo cut, (3) redshift range, (4) the
bias and (5) the number of clusters Nclusters are given.

σz/(1 + zc) Mass
(h−1 M⊙)

Redshift range Bias Nclusters

0.005

2 × 1013

0.1 < z < 0.4 1.71±0.13 10521

0.4 < z < 0.7 1.97±0.06 27224

0.7 < z < 1.0 2.46±0.06 35045

1.0 < z < 1.3 2.86±0.23 31845

1.3 < z < 1.6 3.31±0.30 23017

1.6 < z < 2.1 4.23±0.57 18904

5 × 1013

0.1 < z < 0.4 2.17±0.23 3214

0.4 < z < 0.7 2.78±0.19 7310

0.7 < z < 1.0 3.34±0.26 8088

1.0 < z < 1.3 4.17±0.06 6001

1.3 < z < 1.6 6.10±0.81 3356

1.6 < z < 2.1 5.75±0.81 2251

1 × 1014

0.1 < z < 0.4 2.72±0.27 1116

0.4 < z < 0.7 3.86±0.37 2231

0.7 < z < 1.0 5.07±0.41 2065

1.0 < z < 1.3 6.35±1.29 1218

1.3 < z < 1.6 8.12±0.98 594

2 × 1014
0.1 < z < 0.4 3.78±1.48 316

0.4 < z < 0.7 4.88±1.07 544

0.7 < z < 1.0 5.45±1.38 399

0.010

2 × 1013

0.1 < z < 0.4 1.76±0.08 10536

0.4 < z < 0.7 1.91±0.14 27283

0.7 < z < 1.0 2.48±0.09 35022

1.0 < z < 1.3 2.96±0.19 31763

1.3 < z < 1.6 3.39±0.32 23021

1.6 < z < 2.1 4.10±0.47 18898

5 × 1013

0.1 < z < 0.4 2.23±0.12 3216

0.4 < z < 0.7 2.80±0.13 7338

0.7 < z < 1.0 3.31±0.37 8095

1.0 < z < 1.3 4.07±0.59 5973

1.3 < z < 1.6 5.76±0.56 3350

1.6 < z < 2.1 6.01±0.96 2239

1 × 1014

0.1 < z < 0.4 2.86±0.33 1124

0.4 < z < 0.7 3.58±0.53 2235

0.7 < z < 1.0 4.96±0.75 2069

1.0 < z < 1.3 5.57±2.36 1210

1.3 < z < 1.6 7.81±3.12 587

2 × 1014
0.1 < z < 0.4 4.56±0.74 318

0.4 < z < 0.7 5.47±2.3 547

0.7 < z < 1.0 7.16±1.31 394
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Table A.4: The bias values obtained for the last 2 photometric redshift catalogues (σz/(1 + zc) = 0.030 and 0.050) with the 4 mass
threshold cuts in the 5 redshift bins used. (1) Photometric uncertainty σz/(1 + zc), (2) mass cut Mhalo cut, (3) redshift range, (4) the
bias and (5) the number of clusters Nclusters are given.

σz/(1 + zc) Mass
(h−1 M⊙)

Redshift range Bias Nclusters

0.030

2 × 1013

0.1 < z < 0.4 1.77±0.15 10581

0.4 < z < 0.7 2.05±0.14 27475

0.7 < z < 1.0 2.36±0.20 34849

1.0 < z < 1.3 3.13±0.36 31457

1.3 < z < 1.6 3.67±0.49 23028

1.6 < z < 2.1 5.14±0.38 18863

5 × 1013

0.1 < z < 0.4 2.38±0.45 3196

0.4 < z < 0.7 2.97±0.07 7396

0.7 < z < 1.0 3.48±0.51 8053

1.0 < z < 1.3 4.33±0.83 5880

1.3 < z < 1.6 4.99±1.02 3388

1.6 < z < 2.1 6.66±0.93 2251

1 × 1014

0.1 < z < 0.4 2.83±0.43 1115

0.4 < z < 0.7 3.70±0.49 2253

0.7 < z < 1.0 4.63±2.05 2041

1.0 < z < 1.3 5.93±2.24 1228

1.3 < z < 1.6 7.54±1.74 580

2 × 1014
0.1 < z < 0.4 4.74±0.61 317

0.4 < z < 0.7 5.37±1.50 554

0.7 < z < 1.0 6.53±2.30 383

0.050

2 × 1013

0.1 < z < 0.4 1.71±0.28 10835

0.4 < z < 0.7 2.05±0.19 27570

0.7 < z < 1.0 2.71±0.28 34575

1.0 < z < 1.3 3.34±0.29 31168

1.3 < z < 1.6 4.20±0.86 22733

1.6 < z < 2.1 5.01±0.63 18889

5 × 1013

0.1 < z < 0.4 2.40±0.18 3205

0.4 < z < 0.7 2.62±0.21 7443

0.7 < z < 1.0 3.06±0.29 7937

1.0 < z < 1.3 4.21±0.24 5859

1.3 < z < 1.6 6.31±1.01 3352

1.6 < z < 2.1 7.02±0.63 2277

1 × 1014

0.1 < z < 0.4 2.98±0.61 1109

0.4 < z < 0.7 3.37±1.20 2258

0.7 < z < 1.0 4.89±0.86 1992

1.0 < z < 1.3 5.75±2.30 1257

1.3 < z < 1.6 9.75±2.79 562

2 × 1014
0.1 < z < 0.4 5.12±1.08 311

0.4 < z < 0.7 5.57±2.40 560

0.7 < z < 1.0 6.91±2.97 370
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