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A mathematical study on coupled multiple timescale
systems, synchronization of populations of endocrine

neurons

Abstract

This dissertation investigates synchronization properties of slow-fast oscillators in-
spired from neuroendocrinology and neuronal dynamics, focusing on the effects of
canard phenomena and dynamic bifurcations on the collective behavior.

We start from a 4-dimensional system which accounts for the qualitative and quan-
titative dynamical features of the secretion pattern of the neurohormone GnRH (go-
nadotropin releasing hormone) along a whole ovarian cycle. This model involves 2
FitzHugh-Nagumo oscillators with different timescales. Unidirectional coupling from
the slow oscillator (representing the mean-field activity of a population of regulating
neurons) to the fast oscillator (representing the mean-field activity of a population
of the secreting neurons) gives a three timescale structure. The behavior of the fast
oscillator is characterized by an alternation between a relaxation cycle and a quasi-
stationary state which introduces canard-mediated transitions in the model; these
transitions have a strong impact on the secretion pattern of the 4-dimensional system.
We make a first step forward in multiscale modeling (in space) of the GnRH system,
namely, we extend the original system to 6 dimensions by considering two distinct
subpopulations of secreting neurons receiving the same signal from the regulating neu-
rons. This step allows us to enrich further the GnRH secretion pattern while keeping
a compact dynamic framework and preserving the sequence of neurosecretory events
captured by the 4-dimensional model, both qualitatively and quantitatively.

An initial analysis of the extended 6-dimensional GnRH model is presented in
Chapter 2, where we prove using a 5D minimal model the existence of canard tra-
jectories in coupled systems with folded singularities. Coupling causes separation of
trajectories corresponding to each secretor by driving them to different sides of the
maximal canard (associated with either a folded-node or a folded-saddle singularity).
We explore the impact of the relationship between canard structures and coupling on
the collective secretion pattern of the 6-dimensional model. We identify two different
sources of canard-mediated (de)synchronization in the secretory events, which depend
on the type of underlying folded singularity.

In Chapter 3, we attempt to model complex behaviors of the GnRH secretion
not captured by the 4-dimensional model, namely, a surge with 2 bumps and partial
desynchronization before the surge, by using the 6-dimensional model previously con-
structed. Regulatory-dependent asymmetric coupling functions and heterogeneity in
the secretor subpopulations are essential for obtaining such a 2-bump surge. During
the pulsatile regime, we find that the slowly varying regulatory signal causes a dynamic
bifurcation, which is responsible for loss of synchrony in asymmetrically coupled non-
identical secretors. We introduce analytic and numerical tools to shape and quantify
the additional features embedded within the whole secretion pattern.

In order to get further understanding on the role of canards in (de)synchronization
phenomena, in Chapter 4, we extend the theory of weakly coupled (planar) oscillators
to the case of canard cycles. We find solutions of adjoint equations of singularly



ii

perturbed oscillators by using numerical continuation techniques. We identify the
role of the maximal canard as a pivotal in the transition between different modes
of synchronization. We find 2nT -periodic synchronous solutions arising in coupled
identical cycles near the maximal canard depending on the coupling strength and on
the main canard parameter.

The dynamic bifurcations and slow-fast transitions studied in this dissertation have
applications to spiking/bursting systems in neuroscience, and ideas for the extension
of our work to these dynamics are highlighted in the Conclusion chapter.

Keywords canards, synchronization, slow-fast systems, multiple timescales, folded
singularity, GnRH secretion, weakly coupled oscillators, dynamic bifurcation
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Étude mathématique de systèmes multi-échelles en temps
couplés, synchronisation de populations de neurones

endocrines

Résumé

Dans cette thèse, nous étudions les propriétés de synchronisation d’oscillateurs
lents-rapides inspirés de la neuroendocrinologie et des neurosciences, en se concen-
trant sur les effets des phénomènes de type canard et bifurcations dynamiques sur le
comportement collectif.

Nous partons d’un système de dimension 4 qui représente les caractéristiques dy-
namiques qualitatives et quantitatives du profil de sécrétion de la neurohormone GnRH
(gonadotropin releasing hormone) au cours d’un cycle ovarien. Ce modèle est consti-
tué de deux oscillateurs de FitzHugh-Nagumo avec pour chacun des échelles de temps
différentes. Le couplage unidirectionnel de l’oscillateur lent (représentant l’activité
moyenne d’une population de neurones régulateurs) vers l’oscillateur rapide (représen-
tant l’activité moyenne d’une population de neurones sécréteurs) donne une structure
à trois échelles de temps. Le comportement de l’oscillateur rapide est characterisé par
une alternance entre un régime de type cycle de relaxation et un régime de quasi-
stationnaire qui induit des transitions de type canard dans le modèle ; ces transitions
ont un fort impact sur le modèle de sécrétion du système de dimension 4. Nous pro-
posons un premier pas supplémentaire dans la modélisation multi-échelles (en espace)
du système GnRH, c’est-à-dire que nous étendons le système original à 6 dimensions en
considérant deux sous-populations distinctes de neurones sécréteurs recevant le même
signal des neurones de régulation. Cette étape nous permet de enrichir les motifs
possibles de sécrétion de GnRH tout en gardant un cadre dynamique compact et en
préservant la séquence des événements neuro-sécréteurs capturés par le modèle de di-
mension 4, à la fois qualitativement et quantitativement.

Une première analyse du modèle GnRH étendu à 6 dimensions est présentée dans le
Chapitre 2, où nous montrons à l’aide d’un système minimal de dimension 5 l’existence
de trajectoires de type canard dans des systèmes lents-rapides couplés présentant des
points pseudo-stationnaires. Le couplage provoque la séparation des trajectoires cor-
respondant à chaque sécréteur qui se retrouvent de chaque côté du canard maximal
(associé soit à un point pseudo-stationnaire de type noeud soit à un pseudo-col). Nous
explorons les rapports entre les canards en présence et le couplage, ainsi que leur im-
pact sur les motifs de sécrétion collective du modèle de dimension 6. Nous identifions
deux sources différentes de (dé)synchronisation due aux canards dans les événements
sécrétoires, qui dépendent du type de point pseudo-stationnaire sous-jacent.

Dans le Chapitre 3, nous proposons une modélisation possible des comportements
complexes de sécrétion de GnRH qui ne sont pas capturés par le modèle de dimension
4, à savoir, une décharge avec 2 “bosses” et une désynchronisation partielle avant la
décharge, en utilisant le modèle de dimension 6 précédemment construit. Pour obtenir
une décharge avec deux bosses, il est essentiel d’utiliser des fonctions de couplage
asymétriques dépendant du régulateur ainsi que d’introduire de l’hétérogénéité dans
les sous-populations de sécréteurs. Pendant le régime pulsatile, il apparaît que le
signal régulateur varie lentement et, ce faisant, provoque une bifurcation dynamique
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qui est responsable de la perte de synchronie dans le cas de sécréteurs non identiques
et asymétriquement couplés. Nous introduisons des outils analytiques et numériques
pour façonner et quantifier ces caractéristiques supplémentaires et les intégrer dans le
profil complet de sécrétion.

Afin d’obtenir une meilleure compréhension du rôle des canards dans les phénomènes
de (dé)synchronisation, nous proposons, au Chapitre 4, une extension de la théorie de
oscillateurs (du plan) faiblement couplés au cas des cycles de canard. À l’aide de tech-
niques de continuation numérique, nous calculons des solutions aux problèmes adjoints
associés à des oscillateurs singulièrement perturbés. Nous identifions le rôle pivot que
joue le canard maximal dans la transition entre les différents modes de synchroni-
sation. Nous trouvons des solutions synchrones 2nT -périodiques pour des systèmes
identiques couplés à proximité du canard maximal et nous étudions l’impact de la
force de couplage et du principal paramètre qui organise l’explosion de canards (pour
chaque oscillateur seul) sur l’existence de telles familles de solutions synchrones.

Les bifurcations dynamiques et transitions lentes-rapides étudiées dans cette thèse
se retrouvent plus généralement en neuroscience, dans les systèmes produisant des dy-
namiques de type “spiking” et/ou “bursting”. Un certain nombre de pistes concernant
l’extension de notre travail à ces dynamiques sont mises en évidence dans le chapitre
de conclusion.

Mots-clés canards, synchronisation, systèmes lents-rapides, systèmes multi-échelles
de temps, points pseudo-stationnaires, sécrétion de GnRH, oscillateurs faiblement cou-
plés, bifurcations dynamiques
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Chapter 1

Introduction

This dissertation investigates the dynamics of coupled slow-fast systems in which ca-
nard structures and slowly varying variables determine the global outputs with appli-
cations in neuroendocrinology and neuroscience. Motivation for neuroendocrinology
comes from the oscillations of the Gonadotropin Releasing Hormone (GnRH), a hor-
mone secreted from hypothalamus to pituitary portal blood and has an overwhelming
role in reproductive biology. Motivation for neuroscience aspects of this work comes
from the characteristics of the oscillations, which are classified as type-II neurons, one
being the appearance of the oscillations through a singular Hopf bifurcation.

1.1 A model for the dynamics of the gonadotropin releasing
hormone secretion

The reproductive axis, usually called the gonadotrope axis, involves the hypothalamus,
within the central nervous system, the pituitary gland, and the gonads (ovaries in
females and testes in males). GnRH is secreted by hypothalamic endocrine neurons into
the pituitary portal blood in a pulsatile manner. This pulsatility has a fundamental
role in the secretion of luteinizing hormone (LH) and follicle stimulating hormone
(FSH) by the pituitary gland. In females the pulsatile pattern is altered once over
ovarian cycle, when a massive release of GnRH, so-called surge, occurs. The steroid
signals emanating from the ovaries are conveyed by regulatory interneurons onto the
GnRH neural network; they control both the alternation between the pulsatile and
surge pattern and the frequency and amplitude of the GnRH pulses.

A mathematical model accounting for the secretion pattern of GnRH along a whole
ovarian cycle proposed in [1]. This model consists of 2 coupled FitzHugh-Nagumo
(FHN) oscillators with different timescales, corresponding respectively to a population
of regulatory interneurons and a population of secreting neurons. The populations are
defined on the macroscopic level where their activities are represented by a mean-field

1



2 Chapter 1. Introduction

approximation. The 4-dimensional (4D) model reads:

εδẋ = −y + f(x), (1.1.1)

δẏ = a0x+ a1y + a2 + cX,

δẊ = −Y + g(X),

Ẏ = X + b1Y + b2

where

f(x) = λ3x
3 + λ1x,

g(X) = µ3X
3 + µ1X,

λ3, µ3 < 0, λ1, µ1 > 0,

ai, c > 0, 0 < ε ≪ 1, 0 < δ ≪ 1.

The slow system (X,Y ) represents the population of regulating neurons (regulator),
the fast system (x, y) represents the secreting population (secretor), and the solution
component y(t), which corresponds to GnRH secretion along time, can be referred as
the output of the system (1.1.1). The unidirectional coupling between the systems via
the term cX leads to a three-timescale model, which is able to capture the periodic
back and forth transition from the pulsatile regime (corresponding to a relaxation limit
cycle in the secretor) to the surge (corresponding to a quasi-stationary equilibrium in
the secretor), as well as the increase in the pulse frequency all along the pulsatile
regime.

Figure 1.1 shows the dynamics organized according the 4 phases in the (X,Y ) relax-
ation cycle. The slow motions along the left and right branches of the Y = g(X) curve
correspond to the pulsatile regime (phase-1) and surge regime (phase-3), respectively.
The rightward (phase-2) and leftward (phase-4) fast motions organize transitions be-
tween pulsatile and surge regimes whose durations depend on the length of the slow
motions of the (X,Y ) relaxation cycle. The frequency of the relaxation limit cycle
in the (x, y) plane is regulated via the X variable and ensured to be increasing along
the pulsatile regime. Besides, the variable X controls the ascending and descending
motion during the surge and determines the surge amplitude by changing the position
of a quasi-stationary point located along the left branch of the y = f(x) curve.

From the point of view of dynamical classification, (1.1.1) is a phantom burster.
The bursting mechanism is organized by the alternation between the existence of a
(quasi-static) singular point and a limit cycle of the forced oscillator (secretor) led
by a forcing oscillator (regulator) [2]. System (1.1.1) was analyzed in [3, 4] where
authors provided constraints on the parameters ensuring the sequential behavior of
the secretor and a detailed description of parameter tuning method with respect to
biological specification (e.g. the ratio between the amplitude of the surge and the
amplitude of the pulses, the frequency of the pulses and its evolution along the pulsatile
regime). The global and local features of the model have been studied in the context
of the slow-fast dynamics and mixed-mode oscillations (MMOs) that arise due to a
generalized canard phenomena in [5] (Figure 1.2).
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Figure 1.1: (a) Attracting relaxation cycle in the (X,Y ) phase plane. Each number
represents a different dynamic phase of the periodic behavior of the secretor. 2-headed
arrows indicate an O(δ) speed, 1-headed arrows indicted an O(1) speed. (b) Position
of the nullclines on the (x, y) plane with respect to the dynamic phases in the (X,Y )
relaxation cycle. Green arrow: pulsatile phase. Red arrow: transition from pulsatility
to surge. Blue arrow: surge phase. Pink arrow: transition from surge to pulsatility
(c) Projection of a typical trajectory onto (x,y) plane. Colors represent phases and
3-headed arrows indicate an O(εδ) speed (d) Traces in time of the output variable y(t)
colored according the dynamic phases.
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1.2 Slow-fast dynamical systems and canard phenomena

Canard solutions were discovered in van der Pol (VDP) relaxation oscillator under
constant forcing [6]. The term canard refers to a class of solutions in slow-fast systems
that follows the unstable branch of the critical manifold during a considerable time
interval. In the R

2 vector field of VDP, the canard phenomenon explains the transition
from small limit cycles to large relaxation cycles, upon variations of a system parameter
in the order of the timescale separation parameter [7]. The sharp transition is called
a canard explosion [8]. Canard solutions in planar systems have been studied by
nonstandard techniques [6, 9], asymptotic expansion techniques [10] and geometric
singular perturbation theory [11, 12].

Combinations of advanced theoretical tools, such as blow-up methods [13], and
numerical methods [14] generalized the canard phenomena in R

2 to higher dimensions
(Rn, n ≥ 3). The generalized canard phenomenon has introduced a new understand-
ing of complex oscillatory systems such as MMOs [15], bursting dynamics [16, 17] with
applications to neuroscience [18, 19, 20, 21, 22, 23], chemistry [24, 25, 26, 27], and cal-
cium signaling [28, 17]. Here we recall the canard phenomenon in slow-fast dynamical
systems.
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A slow-fast vector field takes the form

ε
dx

dτ
= f(x, y, λ, ε), (1.2.1)

dy

dτ
= g(x, y, λ, ε)

where (x, y) ∈ R
m × R

n are state-space variables, λ ∈ R
p are system parameters

and ε is a small parameter 0 < ε ≪ 1 representing the ratio of time scales. f :
R

m ×R
n ×R

p ×R → R
m and g : Rm ×R

n × R
p ×R → R

n are smooth C∞ functions.
System (1.2.1) can be rescaled to

dx

dt
= f(x, y, λ, ε), (1.2.2)

dy

dt
= εg(x, y, λ, ε)

by switching from slow time scale τ to fast time scale t = τ/ε. Solutions of slow-fast
systems generally consist of slow and fast epochs, i.e. long periods of slow change
interspersed by short periods of fast change. As ε → 0, trajectories of (1.2.2) approach
the solutions of fast subsystem or layer equations

x′ = f(x, y, λ, 0), (1.2.3)

y′ = 0.

During slow epochs, trajectories of (1.2.1) converge to solutions of slow subsystem or
reduced system

0 = f(x, y, λ, 0), (1.2.4)

ẏ = g(x, y, λ, 0)

which is a differential-algebraic equation. The algebraic equation in (1.2.4) defines the
critical manifold

C := {(x, y) ∈ R
m × R

n|f(x, y, λ, 0) = 0} (1.2.5)

which is the phase space of the reduced problem (1.2.4) and set of equilibrium points
of the layer problem (1.2.3). One major goal of geometric singular perturbation theory
is to use these lower dimensional subsystems, (1.2.3) and (1.2.4), to understand the
dynamics of the full system (1.2.1) for 0 < ε ≪ 1.

Basic classification of singularly perturbed systems is given by the properties of
the layer problem (1.2.3). A compact sub-manifold Ch ⊂ C is normally hyperbolic if
all (x, y) ∈ Ch are hyperbolic equilibria of the layer problem, that is, the Jacobian
(Dyf)(x, y, 0) has no eigenvalues with zero real part. In that case, Fenichel theory [29]
guarantees the existence of a perturbed locally invariant manifold Cε called (Fenichel)
slow manifold the original system 0 < ε ≪ 1. Fenichel slow manifolds are typically
non-unique but they are exponentially close to each other (away from their boundary).
They inherit the regularity of the vector filed, they are O(ε)-close to the unperturbed
manifold Ch (for the Hausdorff distance) and the flow on them converges to the slow
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flow as ε → 0. If the unperturbed manifold Ch belongs to an attracting (resp. a
repelling) sheet of C – the real part of the eigenvalues of the Jacobian (Dyf)(x, y, 0)
being strictly negative (resp. strictly positive) — then the corresponding slow mani-
folds are called attracting (resp. repelling) slow manifolds. If Ch is normally hyperbolic
and neither attracting nor repelling, it is of saddle type, and so are the corresponding
slow manifolds.

A bifurcation of the fast subsystem is typically called dynamic bifurcation from
the viewpoint of the full system [30]. Such a bifurcation in the fast subsystem may
or may not induce a delayed transition in the full system accompanied with canard
segments; if it does, then one uses the term delayed bifurcation. It can be a bifurcation
of equilibria, in which case the bifurcation point corresponds to a change of attractivity
of the critical manifold. It can also be a bifurcation of limit cycles and have an influence
on the fast oscillatory dynamics of the full systems (as is the case for bursters).

Hyperbolicity of the layer problem is lost via a saddle-node bifurcation at the folds
p∗ (f ′(p∗, λ, 0) = 0) of Cε. Canards are a special class of solutions of singularly per-
turbed systems where normal hyperbolicity is lost. A canard solution flows from an
attracting slow manifold Ca

h to a repelling slow manifold Cr
h by passing close to a bi-

furcation point p∗ of the critical manifold, a so-called canard point. A widely used tool
to analyze the geometry of the fold regions and corresponding canard solutions is the
desingularized reduced system (DRS). The critical manifold given in (1.2.5) approxi-
mates (to zeroth order in ε) the region of the phase space where the slow dynamics
take place. The flow of the reduced system (1.2.4) can be analyzed by differentiating
the equation of C with respect to time, giving

x′ = ±(Dxf)−1(Dyf)g,

y′ = g

which is singular along the folds of Cε. It can be desingularized by scaling time by
± det(Dxf) keeping the direction of the flows

x′ = adj(Dxf)(Dyf)g, (1.2.6)

y′ = ± det(Dxf)g.

Canard solutions can appear due to the existence of the equilibria of the DRS (1.2.6),
such that det(Dxf) = 0, and they are referred as folded singularities (See Section
1.2.2).

In the next subsection we will explain the general process of desingularization in
the VDP system and focus on the canard solutions in the VDP system.

1.2.1 Canards in the van der Pol system

The van der Pol equation with constant forcing λ ∈ R is given by

εẋ = y − 1
3
x3 + x, (1.2.7)

ẏ = λ− x.
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By setting ε = 0 in (1.2.7), we obtain the reduced system

0 = y − 1
3
x3 + x,

ẏ = λ− x.

with an algebraic equation that defines the critical manifold of (1.2.7) as the cubic
curve

C = {(x, y) ∈ R
2|y =

1
3
x3 − x =: c(x)} (1.2.8)

The curve C is normally hyperbolic away from the extrema p± = (±1,±2
3), which are

the folds of C. The fold points divide the critical manifold into 3 branches,

C = Ca,− ∪ {p−} ∪ Cr ∪ {p+} ∪ Ca,+},

where Ca,− := C ∩ {x < −1}, Ca,+ := C ∩ {x > 1} and Cr := C ∩ {−1 < x < 1}.
From the sign of ∂

∂x
f(x, y, λ, 0), we conclude that Ca,− and Ca,+ are the attracting

branches, and Cr is the repelling branch. The normal hyperbolicity is lost at the fold
points p± since ∂

∂x
f(x, y, λ, 0) = −x2 + 1 is zero at p±.

To obtain the slow flow of (1.2.7), we differentiate the equation of the critical
manifold (1.2.8) with respect to time

ẏ = ẋ(x2 − 1)

and combine with the equation for ẏ, which gives

ẋ =
λ− x

x2 − 1
.

which is the equation for the slow flow. The slow flow is well defined on the attracting
and repelling branches of C but not at the fold points x = ±1 (as long as λ 6= ±1)
where the normal hyperbolicity is lost. We can desingularize the slow flow by rescaling
time with the factor (x2 − 1) and obtain the equation for the desingularized reduced
flow as ẋ = λ − x. The equilibrium x = λ is stable for all values of λ. However the
true slow flow is obtained via the time rescaling, which reverses the direction of the
flow when (x2 − 1) < 0, along the repelling branch of C. Therefore, the equilibrium of
the DRS is unstable for the slow flow when |λ| < 1. The fold points C are jump points
for λ 6= ±1 and canard points for λ = ±1 (only one of the two each time, the one that
is also an equilibrium).

At λ = λH = ±1, the VDP system (1.2.7) undergoes a supercritical Hopf bifur-
cation and when |λ| < 1, the only equilibrium point lying on Cr is surrounded by an
attracting limit cycle which is a relaxation cycle for most values of λ and for 0 < ε ≪ 1.
The relaxation cycles are periodic solutions formed by the alternation between slow
segments (well approximated by the slow flow) and fast segments (well approximated
by the layer problem).

On the other hand at λH = 1, the desingularized reduced flow continuously goes
from the attracting side of C to the repelling side. Near the Hopf bifurcation value
λH , small stable cycles exist and they are very similar to those found in a normal
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form system. However, as λ decreases, at a distance of O(ε) from λH , the canard
explosion occurs. The periodic orbits grow rapidly and a family of limit cycle solutions,
namely canards without head (also called headless canards), appears. The maximal
headless canard, so-called maximal canard, exists at a unique parameter value λc =
λH −(1/8)ε−(3/32)ε2 +O(ε3) and it has the longest period among the canard families.
The maximal canard is the solution which contains the longest repelling segment, that
is, it stays close to the repelling branch of C all the way up to the other fold point at
x = −1 as ε → 0, before jumping to the right attracting branch of C. For the values
λ < λc, the canard cycles jump from the repelling branch to the left attracting branch
of C before jumping back to the right attracting branch. These canard cycles are
referred as canards with a head. Finally the relaxation cycles appears for the λ values
O(ε) away from λH . The canard explosion of (1.2.7) and canard cycles are visualized
in Figure 1.3 and Figure 1.4, respectively.
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Figure 1.3: (a) Amplitude of the x-component versus λ and (b) period versus λ from
the Hopf bifurcation at the lower fold x = 1 to relaxation regime for ε = 0.05. (c)
Phase portrait of the VDP with selected limit cycles along the canard transition.

1.2.2 Folded singularities

The canard explosion occurs within an exponentially small parameter interval. In
higher dimensional slow-fast systems (Rn, n ≥ 3), canard solutions persists for O(1)
ranges of a parameter. Properties of the equilibria of the DRS (1.2.6) located on the
fold set of C, for instance being a saddle, a node or a focus, determine the type of the
folded singularities and related canard solutions.

If the equilibrium of DRS is a saddle, then the corresponding fold point is a folded
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Figure 1.4: Four cycles of the canard explosion at the lower fold in VDP (blue):
headless canard in panel (a), maximal canard in panel (b), canard with head in panel
(c) and relaxation oscillation in panel (d). In each panel, the left plot corresponds to
a phase plane representation of the cycle together with the fast cubic nullcline C, the
right panel shows the time trace of the the x variable during the cycle.

saddle. The eigendirections of the folded saddle (as a saddle equilibrium of the DRS)
define in the slow flow two special directions that connect attracting and repelling
sheets of the critical manifold. Their nonlinear equivalents, namely the stable and
unstable manifolds of the folded saddle, provide two special solutions of the slow flow
that travel from the attracting sheet to the repelling sheet of C, and from the repelling
sheet to the attracting sheet of C, respectively. These two solutions of the slow flow are
singular canards, the former being a “true” canard and the latter a “false” (also called
“faux”) canard (this name is given since it connects the repelling side to the attracting
side instead of the opposite as a normal canard). By perturbation, one can prove that
these persist for small ε and give a unique canard and a unique false canard in the
original system near a folded saddle. They both correspond to the only transverse
intersection of attracting and repelling slow manifolds and they are both maximal in
the sense that their repelling segment is the longest possible.

Folded-saddle singularities can be related to spiking properties of type-II neurons
where the transition from sub-threshold to spiking solutions occurs via a Hopf bifurca-
tion [31]. As showed for the VDP system (1.2.7), a canard explosion is responsible for
this transition from sub-threshold (canards without head) to spiking solutions (canards
with head and relaxation oscillations). Similar roles of folded-saddle singularities have
been identified in HH neurons [20]. In Chapter 2, a pulse adding mechanism related to
folded-saddle singularity in (1.1.1) is showed. We also relate folded-saddle singularities
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with desynchronization of mutually interacting systems. In Chapter 4, we focus on the
spiking properties of coupled VDP oscillators.

If the equilibrium of DRS is a node, then the corresponding fold point is a folded
node. In this case, attracting and repelling slow manifolds intersect transversally k ≥ 1
times near the folded node. In addition to the strong canards (related to the strong
stable manifold of the folded node), secondary canards appear in the system. The
strong canards cross one of the transversal intersection points and the secondary ca-
nards cross from the others. A trajectory entering to the region of the folded node
can make k number of turns and produces small amplitude oscillations (SAOs) and
then leaves the region. In the presence of a global return mechanism, that takes the
trajectory back to the region of the SAOs, SAOs are combined with large amplitude
oscillations (LAOs) and consequently MMOs appear in the system.

Key theoretical results on how MMOs arise in slow-fast systems with SAOs have
been detailed in [15] and example structures have been showed in a reduced HH model
and Belousov-Zhabotinsky reaction. In [5], the authors have showed SAOs due to a
folded-node singularity and the global return mechanism in (1.1.1). These mechanisms
are responsible for the presence of a plateau (which we term the “pause”) with small
oscillations in the (x, y) subsystem of (1.1.1). As shown in Chapter 2, exponentially
small variations of a regular parameter in (1.1.1) lead to canard explosions near the
folded-node singularity that change the number of SAOs and pulses, simultaneously.
Similar canard explosions near the folded-nodes (subject to the coupling) lead to a
synchronization or to a desynchronization depending on the characteristics of the in-
teracting systems [32] (See Chapter 2).

1.2.3 Numerical continuation in slow-fast systems

Extreme sensitivity to parameters and repelling slow manifolds limits the usage of
classical integration techniques in slow-fast systems to follow families of solution seg-
ments near slow manifolds. On the other hand, boundary value problem (BVP) solvers
implemented in continuation packages like auto can deal with these difficulties [14],
in particular in computing the limit cycles of Liénard systems (e.g. VDP and FHN
equations). A BVP solver and numerical continuation allow us to find and then follow
one-parameter families of orbit segments.

Essential objects determining the behavior of canard solutions are the slow mani-
folds. Computation of slow manifolds can be formulated as two-point BVP problems
and it is very straightforward in minimal systems (a system with a quadratic critical
manifold and a constantly changing bifurcation parameter), which approximate the
dynamics in the neighborhood of folds [15]. In Chapter 2, we propose a 5-dimensional
(5D) minimal model (2 subsystems with quadratic critical manifolds subject to the
same constantly changing bifurcation parameter) to approximate the dynamics in the
neighborhood of coupled folded singularities. Using this model, we compute slow man-
ifolds for coupled systems and show the presence of canard solutions in coupled systems
of higher dimensions, such as R

n and n ≥ 6.
Numerical continuation methods are widely used to compute bifurcation diagrams.

In Chapters 3 and 4 we use numerical continuation techniques to show bifurcation
structures in the synchronized solutions of the coupled secretors. In Chapter 4, we
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also propose a strategy based on numerical continuation to compute a family of limit
cycles, specifically canard orbits, and at the same time a family of periodic non-trivial
solutions to the associated adjoint problem.

1.3 Synchronization and weakly coupled oscillators theory

Collective dynamics of coupled slow-fast oscillators have a great importance in the
context of neuroscience when microscopic (individual neurons) and macroscopic (net-
works) levels can be represented as relaxation oscillators [33]. System dynamics arise
through the interaction between the intrinsic properties of the individual oscillators
(multiple timescales, canard structure), the properties of connections (inhibitory, exci-
tatory) and the network topology. Synchronization of multiple timescale systems may
involve synchrony of fast timescale dynamics, such as spikes, and/or slow timescale dy-
namics, such as bursts. The case of bursting activity, that is the alternation between
slow quasi steady-state activity and fast oscillatory dynamics, introduces the question
of the main mechanisms underlying transitions to synchronization and robustness of
synchronization [34, 35, 36, 37, 38]. In this context, the effect of canard solutions
has been considered in several aspects such as formation of clusters, synchrony, phase
dynamics and amplitude [39, 40, 41, 27, 42].

Theoretical and numerical tools have been developed to achieve a better under-
standing of synchronization in slow-fast systems in the context of neuroscience, such
as fast threshold modulation theory [43], singular perturbation methods [44, 45, 46, 47],
and phase response curves (PRC) [33, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. The (in-
finitesimal) phase response curve or (i)PRC encodes how a small perturbation affects
the phase of an oscillator when applied along the associated stable limit cycle solu-
tion. The derivation of the PRC relies on the linearization of the system along the
unperturbed (i.e. uncoupled) cycle and is closely related to the adjoint variational
equation. Solutions to the adjoint problem and PRCs give insights on the synchro-
nization properties of coupled oscillating systems [33, 49] when the coupling strength
is small enough. Such studies are gathered under the name “weakly coupled oscillator
theory” [48]. This theory has been linked with earlier studies from Malkin [58, 59] by
Izhikevich and Hoppensteadt in [48].

The weakly coupled oscillators theory has been extended to relaxation cycles in
[60, 34] by taking the singular limit approximation, considering the attracting branches
of the critical manifold in place of the slow segments of relaxation cycles, and instan-
taneous jumps in place of fast segments, but the consequence of using this setup is
that the canard regime has not been dealt with. In Chapter 4, we link earlier studies
on weakly coupled oscillators to the canard cycles both numerically and analytically.

Other interests in synchronization of systems motivated by neuronal dynamics have
been the effects of intrinsic properties, slowly varying terms on the phase dynamics
[53, 57, 61, 55] and derivation of analytic expressions for PRCs [62, 63, 64]. In Chapters
2 and 3, we study effects of canard solutions and dynamic bifurcations on the collective
dynamics of coupled bursting systems.
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1.3.1 Phase response curve and adjoints

PRCs describe the phase shifts along a stable limit cycle of a dynamical system in
response to a stimulus. Weakly coupled oscillator theory [65, 66, 48] is used to pre-
dict the phase-locking properties of coupled oscillating system with a “small enough”
coupling strength. This theory, which reduces the dynamics of oscillators to a phase
variable, implies that coupling has small effects that can accumulate over time and
lead to phase-locking behaviors. IPRCs correspond to PRCs in the limit of infinitesi-
mal stimulus. One way to compute iPRCs is by means of non-trivial solutions to the
adjoint variational equation associated to the stable limit cycle under consideration;
there are numerous other approaches, see e.g. [33, 49].

Consider a dynamical system in R
n

dX

dt
= F (X) (1.3.1)

that possesses a T -periodic asymptotically stable limit cycle γ. A phase variable φ ∈
[0, T ) is defined along the limit cycle γ parameterized by time and it is typically
normalized to 1 or to 2π. It can be associated with points on the cycle by writing
φ = Θ(x) for x ∈ γ. Then, perturbing a point x on the limit cycle with corresponding
phase φ = Θ(x) (which we can also write as x = X(φ)) by a small quantity y ∈ R

n

leads to a delay or an advance of the phase. The new phase φ′ is given by

φ′ = φ+ ∇XΘ(x).y +O(||y||2)

and the difference between the old and new phases for small perturbations are expressed
as

φ′ − φ = ∇XΘ(x).y.

The vector function Z defined by Z(φ) = ∇XΘ(X(φ))) is the gradient of the phase map
describing how infinitesimal perturbations on any system variable along the limit cycle
changes its phase. The function Z (which depends on φ or equivalently on t ∈ [0, T ])
is the solution of the adjoint variational equation

dZ(t)
dt

+A(t)TZ(t) = 0 (1.3.2)

which satisfies the normalization condition

Z(t)
dX0(t)
dt

= 1, (1.3.3)

where
A(t) = DXF (X)|γ

is the linearization of system (1.3.1) around the limit cycle γ. The adjoint equation
should be integrated backwards in time to eliminate all the transient components
except the periodic one, which gives the solution. An algorithm to compute solutions
to adjoint equations, based on backward integration, is embedded in software packages
such as xppaut [67] or matlab.
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1.3.2 Interaction function

The behavior of the adjoint solutions (or equivalently, of the iPRCs) provides predic-
tions on the collective behavior in the weak coupling regime via the interaction function
which is the convolution of the adjoint solutions and coupling function [66, 58, 59, 49,
48]. In identical systems the interaction function of the i-th oscillator reads:

Hi(φj − φi) =
1
T

∫ T

0
Z(t)Ui(γ(t), γ(t+ φj − φi))dt. (1.3.4)

where φj − φi (i = (1, 2), j = 3 − i) is the phase difference between the two oscillators
and U is the coupling function. The dynamics of the phase difference, φ = φj − φi, is
described by the following equation

dφ

dt
= α[H2(−φ) −H1(φ)] = αG(φ). (1.3.5)

where α is the coupling strength. Equation (1.3.5) has a stable solution at φ∗ if
G′(φ∗) < 0, meaning that the two oscillators will synchronize with a phase difference φ∗.
The solution φ∗ = 0 corresponds to in-phase synchronization, φ∗ = π (or equivalently
φ∗ = 0.5 if the phase is rescaled to [0,1]) to anti-phase synchronization, and any other
value of φ∗ corresponds to out-of-phase synchronization of coupled oscillators.

1.4 Contributions and outline of the dissertation

This dissertation investigates synchronization properties of slow-fast oscillators in-
spired from neuronal dynamics, focusing on the effects of canard phenomena and dy-
namic bifurcations on the collective behavior. The starting point is the 4D system
in (1.1.1), which accounts for the secretion pattern of the GnRH.

The 4D model provides a mean-field approximation to the dynamics of GnRH
secreting neurons. In the first two chapters of this dissertation, we introduce het-
erogeneity in the initial model by considering 2 distinct subpopulations of secretory
neurons. This can be considered as the first step of a multiscale top-down approach,
going from a macroscopic scale to a more mesoscopic approach. We extend (1.1.1) to
6-dimension (6D) by adding one more secretor modeled as a FHN oscillator receiving
the same regulatory signal. The general form of the new system with the coupling
terms I(1),(2) reads:

εδẋ1 = −y1 + f(x1), (1.4.1)

δẏ1 = a
(1)
0 x1 + a

(1)
1 y1 + a

(1)
2 + c(1)X + I(1)(x1, x2, y1, y2, X, Y ),

εδẋ2 = −y2 + f(x2),

δẏ2 = a
(2)
0 x2 + a

(2)
1 y2 + a

(2)
2 + c(2)X + I(2)(x1, x2, y1, y2, X, Y ),

δẊ = −Y +G(X),

Ẏ = b0X + b1Y + b2.
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In the second chapter, we consider a parameter set ensuring the periodic alternation
between the pulsatile and surge regime without aiming at any biological interpretation.
We first study effects of local variations near the folded singularities of an uncoupled
one secretor and one regulator configuration (the original 4D model) on the secretion
pattern. We show that exponentially small variations of a regular parameter can lead
to change in the number of pulses and SAOs via canard explosions. We prove that
existing folded singularities in the original model persist under coupling using numerical
continuation techniques. We then focus on the effects of the slow-fast transitions in
the presence of a linear coupling between the secretors in (1.4.1). In particular, we
explore the impact of the relationship between the canard structures and the coupling
on patterns of synchronization and desynchronization of the collective dynamics of
the resulting 6D system. We identified two sources of (de)synchronization induced by
canards belonging to different types of folded singularities. We show that small and
local differences can apply O(1) differences in the global output.

In the third chapter, we consider (1.4.1) with a parameter set satisfying the quan-
titative behavior of the GnRH secretion. We cope with long duration of the pulsatile
regime, progressive increase in pulse frequency and ratio between pulse and surge am-
plitudes. We aim at modeling complex behaviors of the GnRH secretion not captured
by the 4D model; a surge with two bumps, so-called a camel surge, and partial desyn-
chronization before the surge. We model the camel surge by introducing a regulator-
dependent asymmetric coupling function between the secretors. We reveal the impact
of slowly varying system variables on the pulsatile dynamics which leads to dynamic
bifurcation and causes desynchronization. We combine numerical and analytic tools
to assess quantitative information on camel surge and partial desynchronization. We
reproduce two experimental instances of camel surges with or without partial desyn-
chronization present in the GnRH literature.

In the fourth chapter, with the motivation of canard-mediated variations in the
collective behavior of (1.4.1) studied in the second chapter, we focus on the relation
between canards and coupling in the simplest systems with canard cycles, that is
mutually coupled VDP systems which evolve on the same time scales. We extend
previous results on PRCs and weakly coupled slow-fast oscillators to the case of canard
cycles by bridging the gap between the Hopf oscillators and slow-fast cycles. We use
numerical continuation techniques to solve the adjoint equations. We also propose
an implicit formula for computing the adjoint solutions of the linearized limit cycles
of Liénard type systems. We show that synchronization properties of canard cycles
are different than those of classical relaxation cycles. In particular, we show that
maximal canards separate two distinct synchronization regimes: the Hopf regime and
the relaxation regime. Phase plane analysis of slow-fast oscillators undergoing a canard
explosion provides an explanation for this change of synchronization properties across
the maximal canard. We detail effects of homogeneous coupling strengths and question
the limit of PRCs in canard cycles.
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Abstract

In this work, we study canard-mediated transitions in mutually coupled phantom
bursters. We extend a multiple-timescale model which provides a sequence of dynamic
events, i.e. transition from a frequency modulated relaxation cycle to a quasi-steady
state and resumption of the relaxation regime through small amplitude oscillations.
Folded singularities and associated canard solutions have a particular impact on the
dynamics of the original system, which consists of two feedforward coupled FitzHugh-
Nagumo oscillators, where the slow subsystem (regulator) controls the periodic behav-
ior of the fast subsystem (secretor). We first investigate the variability in the dynamics
depending on the canard mechanism that occurs near the folded singularities of the
4D secretor-regulator configuration. Then, we introduce a second secretor and focus
on the slow-fast transitions in the presence of a linear coupling between the secretors.
In particular, we explore the impact of the relationship between the canard struc-
tures and the coupling on patterns of synchronization and desynchronization of the
collective dynamics of the resulting 6D system. We identify two different sources of
desynchronization induced by canards, near a folded-saddle singularity and a folded-
node singularity, respectively.
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2.1 Introduction

Physiological rhythms, such as the activity patterns of neurons or the release of hor-
mones, evolve on multiple timescales and can be modeled by using singularly perturbed,
so-called slow-fast, dynamical systems [33, 68]. Complex behaviors of such systems re-
sult from the multiple timescales and they are often organized by underlying canard
phenomena [6]. In this work, we study canard-induced slow-fast transitions due to the
presence of so-called folded singularities in coupled phantom bursters such as those
that were initially introduced to represent the secretion dynamics of the Gonadotropin
Releasing Hormone (GnRH) [1]. In particular, we study the relation between the ca-
nard structures and the coupling, and we intend to investigate their effects on the
collective dynamics of the resulting coupled system.

The term canard refers to a class of limit cycles first described in the van der Pol
equation which stay close to an unstable slow manifold. Canards occur in singularly
perturbed dynamical systems in regions of the phase space where normal hyperbolicity
(i.e., loosely speaking, hyperbolicity in the fast direction) of the critical manifold (fast
nullsurface) is lost. Such events happen due to a bifurcation of the fast dynamics, that
is, the subsystem obtained when “freezing” the slow variables, hence considered as
parameters. In this context, a solution is called canard if it follows an attracting slow
manifold, passes close to a bifurcation point of the fast subsystem — a so-called canard
point, also referred to as folded singularity in systems with at least two slow variables—
and then follows a repelling slow manifold —also referred to as canard segment. In
planar systems, canard cycles exist in a very narrow range of control parameters —
an interval that is exponentially small in the timescale separation parameter ε — and
these sharp transitions upon parameter variation through the canard regime are called
canard explosions. In higher-dimensional systems, the canard phenomenon can be
more “robust”, that is, canards can exist for O(1) parameter intervals. In particular,
this is the case in three-dimensional systems with one fast variable and two slow vari-
ables, where canard-induced mixed-mode oscillations (MMOs) can occur. MMOs are
trajectories which consist of noticeable large and small amplitude oscillations, reap-
pearing recurrently (periodically or not), and that can be observed in models used in
various application areas. There is a recent interest in MMOs in the context of the
generalized canard phenomenon in slow-fast systems, since the underlying dynamics
are due to the existence of a canard structure [15]. This argument has contributed
to explain the complex rhythms in neuron dynamics, e.g. excitability threshold in
Hodgkin-Huxley formalism [22], firing mechanism in dopaminergic neurons [19] and
subthreshold oscillations in stellate cells [21].
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Collective dynamics of coupled slow-fast oscillators have a great importance in the
context of physiology when microscopic and macroscopic levels can be represented as
relaxation oscillators [33]. System dynamics arise through the interaction between
the intrinsic properties of the individual oscillators (multiple timescales, canard struc-
ture), the properties of connections (inhibitory, excitatory) and the network topology.
Synchronization of multiple timescale systems may involve synchrony of fast timescale
dynamics, such as spikes, and/or slow timescale dynamics, such as bursts. The case of
bursting activity, that is the alternation between slow quasi steady-state activity and
fast oscillatory dynamics, introduces the question of the main mechanisms underlying
transitions to synchronization and robustness of synchronization [34]. In this context,
the effect of canard solutions has been considered in several aspects such as formation
of clusters, synchrony and phase dynamics [40, 60].

Since the intrinsic properties of relaxation oscillators differ from those of harmonic
oscillators, dedicated tools have been required to understand the synchronization prop-
erties of such systems. Yet some concepts can still be transferred without loss of gen-
erality, for instance two mutually coupled slow-fast oscillators are called synchronous
if their respective pulses are generated at the same time (in-phase) or with a con-
stant phase shift (anti-phase for a π-phase shift and out-of-phase for any other phase
value). Somers and Kopell [43] have presented a theory on anti-phase synchronization
of coupled relaxation oscillators, namely fast threshold modulation. In this work, the
interaction has been provided by a heaviside coupling function that acts to modify the
position of the fast nullcline. Possibility of canard solutions in such a coupling scheme
has been showed numerically in [14]. Izhikevich [60] has extended phase models to
relaxation oscillators and applied to weakly coupled oscillators under the assumption
that the coupling strength is less than the timescale parameters of each individual os-
cillator. In his paper the canard regime is not considered since the phase equations are
singular at the canard point. More recently, the importance of the underlying canard
structure together with the weak coupling in the formation of clusters and synchro-
nization in a network of slow-fast systems has been investigated by Ermentrout and
Wechselberger. In [40], they pointed out the effect of MMOs on the phase-resetting
curves (PRC).

In the present work, we focus on the effect of canards on collective dynamics of an
extended version of a neuroendocrine model which accounts for the alternating pulse
and surge pattern of GnRH secretion introduced in [1]. The model is formed by two
FitzHugh-Nagumo oscillators that evolve on different timescales, with a feedforward
coupling from the slow one (regulating system) to the fast one (secreting system).
The resulting 4D model involves three different timescales. So far, global and local
features of the model have been studied in the context of slow-fast dynamics and
MMOs where folded singularities and associated canard trajectories have a particular
importance [5]. For instance, so-called secondary canards due to a folded node have
been shown in [5] to be responsible for the presence of a plateau (which we term
the “pause”) with small oscillations in the model output, after the surge and before
the pulsatility resumption. Here, we extend the model to 6D by adding one more
secretor and focus on the slow-fast transitions in the presence of coupling. We explore
the influence of the relationship between canard structures and coupling on patterns
of synchronization and desynchronization. We choose a simple linear coupling as a
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first attempt to investigate a modulation of the secreting activity of two populations
that can influence each other without aiming at any biophysical interpretation. Such
a phenomenological approach to determine the mathematical mechanism underlying
neural dynamics has been recently adopted in [69]. We propose two different sources
of desynchronization, induced by canards near a folded node (folded-node singularity)
and canards near a folded saddle (folded-saddle singularity), respectively. Our work
differs from [60] by two key aspects: there is no global phase reduction available for our
model since we mostly focus on the fold regions, and the isochrons are very complicated
due to the presence of canards.

This chapter is organized as follows: In Section 2.2 we revisit the 4D GnRH secre-
tion model and show the variability induced by canard mechanisms in the dynamics,
adding to [5] the link between the presence of a folded-saddle singularity at the lower
fold of the critical manifold, and the canard-induced variability before the surge. In
Section 2.3 we present the extended 6D model, justify the existence of canard struc-
tures in coupled systems using a minimal model, and show the influence of the canard
solutions on the collective dynamics of the coupled system. Finally, we conclude in
Section 2.4.

2.2 4D model

The model (1.1.1) (and rewritten in (2.2.1) to remind it to the reader) proposed and
studied in [1, 3, 4] captures the complex dynamics of the populations interacting within
the GnRH neural network. This model, which can be classified as a phantom burster,
consists of 2 coupled FitzHugh-Nagumo oscillators with different timescales. The slow
system (X,Y ) stands as the regulating population, so-called regulator, whereas the fast
system (x, y) represents the secreting population, so-called secretor, and the solution
component y(t), which corresponds to the GnRH secretion along time, can be referred
as the output of the system. The coupling between both systems leads to a three-
timescale model which is able to capture not only the periodic transition between the
pulsatile and surge patterns of the GnRH secretion but also other biological features
such as the changes in the frequency during the pulse regime. The model reads

εδẋ = −y + f(x), (2.2.1)

δẏ = a0x+ a1y + a2 + cX,

δẊ = −Y + g(X),

Ẏ = X + b1Y + b2,

where

f(x) = λ3x
3 + λ1x,

g(X) = µ3X
3 + µ1X,

λ3, µ3 < 0, λ1, µ1 > 0,

ai, c > 0, 0 < ε ≪ 1, 0 < δ ≪ 1.
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This model has been previously analyzed in [3] and [5] where conditions on the
parameters were obtained in order to guarantee the sequential behavior of the secretor.
The critical points of the X-nullcline (Y = g(X)) are denoted by (±γ, g(±γ)), where
γ > 0 and g′(±γ) = 0. These points split the X-nullcline into 3 parts: left, right
(g′ < 0) and middle branch (g′ > 0). The regulator, (X,Y ), has a relaxation limit
cycle whose slow parts follow the branches of the cubic function g(X) if some specific
conditions are respected by (b1, b2) ensuring that the stationary point on the middle
branch is an unstable focus (see Fig. 2.1 (a)). We also denote the minimum and
maximum values of X on this cycle by Xmin and Xmax, respectively.

The regulator dynamics influence the secretor system via the coupling term cX.
The x-nullcline (y = f(x)) is a cubic function with 2 fold points (xf± , f(xf±)) where
f ′(xf±) = 0. These fold points divide the x-nullcline into 3 branches, i.e. left, right
(f ′ < 0) and middle (f ′ > 0), as in the (X,Y ) system. The y-nullcline driven by
X (a0x + a1y + a2 + cX = 0) moves in the secretor phase plane and consequently
the number and position of the singular points (of the (x, y) fast system parametrized
by X) with respect to the folds of the x-nullcline change. In our framework, the
repertoire of phase plane configurations in system (x, y) is limited due to a restriction
of the parameter space by appropriate constraints detailed in [3, 5], and the dynamics
can be organized according to the 4 phases in the (X,Y ) relaxation cycle (Fig. 2.1):

• Phase-1: pulsatile regime; during the slow increase in X from X = Xmin to
X ≃ −γ, the y-nullcline intersects the x-nullcline in such a way that the (x, y)-
system possesses an unstable equilibrium surrounded by a stable relaxation cycle.
The motion of (X,Y ) with O(1)-speed drives the y-nullcline to the left. The
velocity in the neighborhood of the relaxation cycle is on the order of O(1/δ)
along the branches of the cubic y = f(x) and O(1/εδ) during the jumps from
one branch to another. Depending on the parameter values, hence on the exact
location of the y-nullcine for X ≈ Xmin, the pulsatile regime can be preceded by
a “pause” with small amplitude oscillations.

• Phase-2: transition from the pulsatile regime to surge; during the right-
wards jump in X from X ≃ −γ to X = Xmax, the y-nullcline moves to the left
branch of y = f(x). The stable limit cycle of the (x, y)-system disappears via a
Hopf bifurcation in the fast system in the neighborhood of the local minimum of
y = f(x). Depending on the parameters, the y-nullcline may either intersect the
left branch of y = f(x) or lie on the left of the cubic y = f(x) at X = Xmax.
The two systems (X,Y ) and (x, y) change with O(1/δ)-speed.

• Phase-3: surge; during the slow decrease in X from X = Xmax to X ≃ γ, (x, y)
moves along the left branch of y = f(x) with an O(1/δ)-speed, which corresponds
to both the ascending and descending parts of the surge. The maximal amplitude
reached during the surge is defined by the subtle interplay between the location
of the current (x, y) point and the ordinate of the leftmost intersection point
between the x and y nullclines, that is the highest at the very beginning of the
surge, when X jumps to its maximal value Xmax, before decreasing slowly. As
long as the the current (x, y) point is below the quasi-stationary point (whose
existence is guaranteed by constraints 3 and 4 in Table 2.1), it tracks it and
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keeps on climbing the left branch (ascending part of the surge). Thereafter, it
goes down the branch (descending part of the surge).

• Phase-4: transition from the surge to pulsatile regime; during the left-
wards jump in X from X ≃ γ to Xmin, the y-nullcline moves to the vicinity
of the local maximum of y = f(x) with O(1/δ)-speed and the relaxation cycle
appears again. The output signal y(t) decreases since (x, y) is attracted by the
limit cycle.

In the regions near the fold points of the (x, y) fast nullcline, interesting dynamics
may occur due to the presence of underlying canard solutions, and this happens both
when X is slower than y (upper fold point) and when X has the same speed as y
(lower fold point). The possibility of a Hopf bifurcation near the upper fold of the
x-nullcline, (xf+ , f(xf+)), in the early stages of Phase-1 and the existence of canard
solutions have been the main focus of [5]. Although canard explosions near the lower
fold (xf− , f(xf−)) during Phase-2 has been mentioned, a detailed study was not pro-
vided. In the following subsections, we examine the geometry of the fold regions,
corresponding canard solutions and their effects on the output variable y(t). Before
going further, we recall a widely used method to analyze the canard phenomenon, the
so-called desingularized reduced system.

Desingularized reduced system Let us consider a general slow-fast system with
one fast variable x and two slow variables (y, z)

εẋ = f(x, y, z, ε), (2.2.2)

ẏ = g(x, y, z, ε),

ż = h(x, y, z, ε).

The critical manifold C0 = {(x, y, z); f(x, y, z, 0) = 0} is defined as the nullcline for
the fast variable (and for ε = 0). It approximates (to zeroth order in ε) the region of
the phase space where the slow dynamics take place. The reduced system is obtained
by setting ε = 0 in (2.2.2), which gives a differential-algebraic system whose flow can
be analyzed by differentiating the equation of C0 with respect to time, giving (after
projection onto the (x, z)-plane)

−fx(x, y, z, 0)ẋ = fy(x, y, z, 0)g(x, y, z, 0) + fz(x, y, z, 0)h(x, y, z, 0),

ż = h(x, y, z, 0),

where z = z(x, y) on the critical manifold. The resulting system is singular along the
folds of C0 with respect to the x-variable (that is, when fx = 0). Desingularizing
the reduced system by means of the time rescaling t = −fx(x, y, 0)τ allows one to
understand the slow flow up to the fold curve(s) of C0. This is where canard solutions
can appear due to the existence of equilibria of the desingularized reduced systems.
Such points are not equilibria of the reduced systems and they are referred to as folded
singularities. Note that rescaling factor t = −fx(x, y, 0)τ changes the orientation of
the vector field when fx(x, y, z) < 0.
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Figure 2.1: 4 phase dependent dynamic behavior obtained with the parameter set
given in Table 2.2. (a) Attracting relaxation cycle in the (X,Y ) phase plane. Each
number represents a different phase of the periodic behavior. 2-headed arrows indicate
an O(1/δ) speed, 1-headed arrows indicate an O(1) speed. (b) Position of the nullclines
on the (x, y) phase plane with respect to the 4 phases in the (X,Y ) limit cycle. Green
arrow: direction of y-nullcline during the pulsatile phase. Red arrow: transition from
pulsatility to surge. Blue arrow: surge phase. Pink arrow: transition from surge
to pulsatility. (c) Projection of a trajectory onto (x, y) plane. Colors represent the
phases and 3-headed arrows represent O(1/εδ)-speed motion. (d) Traces in time of
the output variable y(t) colored with respect to the phases. Note that, for the sake of
numerical continuation feasibility, the respective durations of the slow phases are not
realistic from a biological viewpoint; the relative duration of the surge is exaggerated,
while the total number of pulses in Phase-1 is drastically reduced. This change in the
quantitative features of the model is made without loss of generality in the study of
the transition phases that are rather the focus of this work.

The general process of desingularization can be used to understand the dynamics in
the neighborhood of the fold regions. In the following subsections, we will reduce (2.2.1)
to analyze the dynamics in Phase-1 and Phase-2 where canard solutions introduce
variations in the output signal y(t).

2.2.1 Variability after the surge

The location of the y-nullcline at the very beginning of Phase-1 and the existence of
singularities on the critical manifold play a role in the variability after the surge. If the
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y-nullcline passes (from right to left) through the right fold point of the cubic y = f(x),
then a delayed transition is expected before pulsatility resumption. This pause is
underlain by a supercritical Hopf bifurcation at the upper fold and characterized by
the existence of small amplitude oscillations (SAOs). The slow-fast dynamics during
this passage, therefore the canard phenomenon, can be studied via the desingularized
reduced system [5].

In Phase-1 the dynamics can be reduced to a three dimensional system. Along
the left branch of Y = g(X) curve, in the region (Xmin < X < −γ), the current
(X,Y ) point remains in O(δ) neighborhood of the Y = g(X) cubic. Hence, it is
convenient to assume that Y = hδ(X), where (X, δ) 7→ hδ(X) is an analytic function
on ] − ∞,−γ[×R

∗
+ and h0(X) = g(X).

Y = hδ(X) = g(X) +O(δ), (2.2.3)

Ẏ = Ẋh′
δ(X) = Ẋ(g′(X) +O(δ)).

By replacing (2.2.3) in (2.2.1), one obtains a three dimensional system with three
different timescales, that represents approximately the dynamics during the pulsatile
phase:

εδẋ = −y + f(x), (2.2.4)

δẏ = a0x+ a1y + a2 + cX,

Ẋ =
X + b1(g(X) +O(δ)) + b2

g′(X) +O(δ)
.

The folded singularity at the upper fold point (xf+ , f(xf+), Xf+) on the critical man-
ifold surface C0 = {y = f(x)} can be analyzed via the desingularized reduced system:

ẋ = −(a0x+ a1f(x) + a2 + cX), (2.2.5)

Ẋ = −δf ′(x)
(

X + b1(g(X) +O(δ)) + b2

g′(X) +O(δ)

)

,

which is singular along the fold set of C0. The equilibrium of (2.2.5) reads

f ′(xf+) = 0

Xf+ = −1
c

(

a0xf+ + a1f(xf+) + a2

)

,

where xf+ =
√

−λ1
3λ3

. The Jacobian matrix at the equilibrium point of interest reads

J =





−a0 −c
−6δλ3xf+

(

X
f+ +b1(g(X

f+ )+O(δ))+b2

g′(X
f+ )+O(δ)

)

0



 .
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The eigenvalues of the matrix are given by

ξ± =
1
2

(

−a0 ±
√

a2
0 + 24cλ3xf+δ

Xf+ + b1(g(Xf+) +O(δ)) + b2

g′(Xf+) +O(δ)

)

.

In [5] it has been shown that for δ ≪ 1 the equilibrium point of (2.2.5) is a node,
so that the corresponding folded singularity of (2.2.4) is a folded node. Near a folded
node, trajectories are expected to make SAOs while passing from an attracting slow
manifold to a repelling slow manifold; therefore, these solutions are canards. The
number of SAOs is related to the number of intersection points between the repelling
and attracting slow manifolds near the fold point. These canard solutions are called
kth secondary canards where k refers to the number of slow manifold intersections. In
conjunction with a global return mechanism, this leads to canard-mediated MMOs.
As a result, the passage of the y-nullcline through the folded node generates MMO-
type periodic solutions; i.e. solutions combining large-amplitude and small-amplitude
oscillations in the secretor output with a post-surge pause (Fig. 2.2).

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

0 2 4 6 8

0

2

4

6

8

10

t (days)

y
(t

)

0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

x

y

5.2 5.4 5.6 5.8

0.2

0.4

0.6

0.8

t (days)

y
(t

)

(a) (b)

Figure 2.2: Canard solutions near the upper fold and variability after surge. (a)
Projection of a MMO-type trajectory with canard cycles near the upper fold onto
the (x, y) plane. (b) Corresponding small oscillations superimposed on the post-surge
pause.

2.2.2 Variability before the surge

In this section, we extend the work presented in [5] by analyzing the possibility for
canard-induced variability before the surge. The position of the y-nullcline during
Phase-2 and the presence of singularities on the lower fold may also introduce canard
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transitions that impact the pre-surge pattern of the output variable. While X moves
from −γ to Xmax, point (x, y) may move down along the left branch of y = f(x)
towards the lower fold point (xf− , f(xf−)). Subsequently, point (x, y) might either
turn back on the left branch and go to the surge, if the x- and y-nullclines’ intersection
point lies already on the left branch of f(x), or pass through the fold and make another
pulse before moving up to the left branch of the cubic, if the intersection point changes
its stability after the passage of (x, y) through the lower fold (Fig. 2.3). Having a
canard explosion between these two cases is possible due to the existence of a folded
singularity. In order to use the desingularization tool for investigating this folded
singularity, we need to obtain a system of equations describing only the corresponding
dynamics in Phase-2. During Phase-2 transition, (X,Y ) evolves according to the X’s
timescale and variable Y remains almost constant, such that Y = g(−γ) +O(δ), with
an error in O(δ) which goes to 0 as δ → 0. The corresponding dynamics can be reduced
to the system:

εẋ = −y + f(x),

ẏ = a0x+ a1y + a2 + cX,

Ẋ = −(g(−γ) +O(δ)) + g(X).

The folded singularity at the lower fold point (xf− , yf− , Xf−) of C0 surface can also
be analyzed via the desingularized reduced system defined locally by

ẋ = −(a0x+ a1f(x) + a2 + cX),

Ẋ = −f ′(x)(−(g(−γ) +O(δ)) + g(X)).

Once again the system is singular since f ′(xf−) = 0 for xf− = −
√

−λ1
3λ3

. The singularity
at the lower fold can be analyzed by using the equilibrium point of desingularized
reduced system; which is:

xf− = −
√

−λ1

3λ3

Xf− = −a0xf− + a1f(xf−) + a2

c
.

The Jacobian at the equilibrium point reads

J =

[

−a0 −c
−6λ3xf−(−(g(−γ) +O(δ)) + g(Xf−)) 0

]

.

Eigenvalues of the Jacobian matrix are

ξ± =
1
2

(

−a0 ±
√

a2
0 + 24cλ3xf−(−(g(−γ) +O(δ)) + g(Xf−))

)

.

In our setting c > 0, λ3 < 0 and xf− < 0, hence cλ3xf− > 0. Therefore the equilibrium
point is a saddle and the singularity at the lower fold is a folded saddle where a unique
maximal canard solution —a solution which remains on the repelling slow manifold—
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Figure 2.3: Location of point (x, y) (red asterisk), y-nullcline (cyan), x-nullcline (black)
and the corresponding trajectory (red line) for different values of a2 in Phase-2. De-
pending on the relative locations of the singular point and current (x, y), different
types of pre-surge behavior may occur. (a1-b2) Passage of the y-nullcline through the
lower knee before (x, y) drives the trajectory to move along the left branch. (c1-d2)
Passage of the y-nullcline through the lower knee after (x, y) results in either a canard
explosion or jump to the right branch.

exists [70]. Near a folded-saddle singularity, the attracting and repelling slow manifolds
intersect only once, therefore, a rotating mechanism like in the folded node case is not
possible.

In a two-dimensional (2D) slow-fast system with a cubic critical manifold, canard
cycles are divided into two families; canards without head and canard with head [6].
Canards without head start close to one attracting branch, pass through the fold,
continue close to the repelling branch and then jump back to the same attracting
branch where they started from. They correspond to curves surrounding a convex
region in the phase plane. On the other hand, canards with head escape to the other
attracting branch after following the repelling branch and they surround a non-convex
region in the phase plane [31]. The maximal canard follows the entire repelling branch
from the lower fold point to the upper one. Transition from one family of solutions
to other one, via the maximal canard, occurs in an exponentially small parameter
variation.

The location of the y-nullcline in (2.2.1) near the folded saddle controls the pre-
surge behavior of the solution in several manners. In particular, it determines from
which region the surge is triggered (departure region), it affects the departure velocity
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Figure 2.4: Canard solutions near the lower fold and variability before surge. (a)
Projection of a bunch of canard solutions near the lower fold onto the (x, y) plane. (b)
Corresponding trajectories and effect on the surge timing. If a solution encloses the
convex region (blue and green curves for instance), the departure to surge is slow and
delayed compared to the non-convex solutions (cyan and purple curves). The maximal
canard (red curve) can be considered as a boundary between the slow and fast surge
transitions.

and time of surge triggering (surge timing). Figure 2.4 shows canard solutions in (2.2.1)
near the lower fold at the beginning of the surge regime and their effects on the outputs.
Convex solution segments reach the attracting branch earlier than non-convex solution
segments and start to follow the dynamic stable point with an O(1/δ) speed. On
the contrary, non-convex solutions remains in the O(1/εδ) regime in a wider band of
the phase plane, thus, they reach an amplitude greater than the pulse quicker than
the convex solutions. As a result, a faster change in the y(t) signal is generated by
the canards with head, consequently, the surge transition from the non-convex region
occurs earlier than the surge transition from the convex region. Finally, the maximal
canard as being a boundary between canards without head and canards with head, is
also a boundary between slow and fast surge transitions.

As mentioned above, the sequence of dynamic events from Phase-1 to Phase-4
in (2.2.1) is constrained by a reduction of the parameter space. These constraints
(summarized in Table 2.1 and presented in [3, 5]) restrict the repertoire of phase plane
configurations and tune the order in the sequence of dynamic events by coordinating
the slow motion in (X,Y ) with the current dynamics of (x, y). They also guarantee
the existence of a unique, stable (p, s)-type limit cycle of (2.2.1) consisting of s SAOs,
p pulses and one surge. Condition-1 ensures the occurrence of a Hopf bifurcation
and rotating canard solutions, thus s SAOs, as explained in Section 2.2.1. Condition-
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Table 2.1: List of the conditions needed to obtain a (p, s)-type limit cycle with one
surge.

1. The y-nullcline should pass through the upper fold of f(x) to generate s number of
SAOs.

2. The relaxation cycle in (x, y) which appears after the passage of y-nullcline through
the upper fold should persist all along the descending motion of X to generate p

number of pulses.

3. From the beginning of the surge phase, the subsystem (x, y) should admit an attract-
ing node and a saddle on the left branch of f(x).

4. Until the end of the surge phase, the attracting node and saddle on the left branch of
f(x) should persist.

5. The return map around the (p, s)-type limit cycle should be contracting.

2 ensures the presence of the relaxation cycle in (x, y) during the pulsatile regime.
Condition-3 together with Condition-4 guarantee that sufficient contraction is present
during the surge, ascending and descending motions, respectively. Finally, Condition-5
gives the uniqueness and stability of the (p, s)-type limit cycle. Requirements on the
parameters can be found in [5].

2.2.3 Effect of canard-induced transitions on the global behavior

For a parameter set which satisfies the conditions in Table 2.1, there exists a unique,
stable (p, s)-type limit cycle of (2.2.1) consisting of s number of SAOs, p number of
pulses and one surge. Exponentially small variations of a regular parameter can lead
to a change in the number of pulses and SAOs via canard explosions [5]. We can
identify two types of changes in the periodic limit cycle due to the canard phenomena
described in Subsections 2.2.1 and 2.2.2. The first canard-mediated change, post-
surge transition, occurs near the upper fold and yields a conversion between SAOs
and pulses ((p, s) → (p ± 1, s ∓ 1)). The second canard-mediated change, pre-surge
transition, arises near the lower fold and causes an addition or subtraction of a pulse
((p, s) → (p ± 1, s)). These variations also influence the timing of the pulsatility
resumption and surge triggering.

In order to display the effects of the canard mediated transitions on the secretion
pattern, we consider the parameter set in Table 2.2, which guarantees a 4-phased
periodic behavior and fulfills the singularity conditions to obtain a folded node on the
upper fold and a folded saddle on the lower fold of the x-nullcline. This parameter
set satisfies the qualitative sequence in GnRH secretory events of the experimental
pattern of GnRH secretion, but not the quantitative features, such as, the respective
durations of the surge and pulse regime (hence of the total number of pulses) and the
ratio between the surge and pulse amplitudes [3]. Choosing a2 as a control parameter
allows us to generate canard-mediated transitions on the (p, s)−orbit. Figure 2.5 shows
a chain of canard-induced transitions occurring in an O(1) range of a2. The first
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Table 2.2: Nominal parameter values used for the simulations. a2 is considered as
a control parameter for fold dynamics. Note that even if the qualitative sequence
of secretory events is preserved, the quantitative features, and mostly the respective
durations of the surge and pulse regime (hence of the total number of pulses) have
moved away from the biological specifications by considering the parameter set here.
The choice of the set comes from the constraints imposed by the numerical continuation
of the system [5].

ε 0.1 δ 0.05
a0 1 a1 0.02
c 0.69 a2 0.985
b1 0 b2 -0.8
λ3 -1 λ1 1.5
µ3 -1 µ1 4
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Figure 2.5: Canard-mediated transitions in an O(1) range of a2. Trajectories are
colored with respect to the color code used for the phases in Figure 2.1. (a1-b2)
(p, s) → (p − 1, s + 1) post-surge transition. (c1-d2) (p, s) → (p + 1, s) pre-surge
transition. The compete transition from Panel (a1) to Panel (d2) adds one more small
oscillation to the pause ((p, s) → (p, s + 1)). Each peak rising during the pause is
counted as a SAO.
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Figure 2.6: Introduction and compensation of surge delay. a2 acts as a control parame-
ter and determines the number of small oscillations on the upper fold which is a folded
node. An increase in a2 causes the loss of one small oscillation in the post-surge pause,
which advances the resumption of the relaxation cycle but delays the subsequent de-
parture to the surge (from the blue trajectory to the green trajectory). The pre-surge
transition (from the green trajectory to the magenta) compensate for the delay in the
surge triggering. In Panel (b), the red dashed segment labeled ∆t represents the time
delay between the green and blue line, while the black dashed segment labeled ∆y(t)
illustrates the difference in amplitude in y at the time of the surge triggering for the
magenta trajectory.

transition adds one SAO to the pause via a (p, s) → (p − 1, s + 1) type of post-surge
transition, which corresponds to a loss of one pulse after the pause. The next transition,
which is a (p, s) → (p+1, s) type of pre-surge transition, adds a pulse before the surge.
The complete organization can be described as (p, s) → (p, s+ 1) variation in the limit
cycle.

This canard-mediated organization affects the time profile of the secretor output.
The post-surge transition has a global effect on the secretion pattern in such a way
that it may advance/delay the resumption of pulses and triggering of the surge. On the
other hand, the pre-surge transition has a local effect and only affects the surge timing.
Figure 2.6 shows a chain of two canard-mediated transitions in an O(1) range of a2

alternating pulse and surge timings. The first change, which is a (p, s) → (p+ 1, s− 1)
post-surge transition, advances the resumption of the relaxation oscillation after the
pause but delays the surge triggering. The second canard-mediated change is a pre-
surge transition and compensates for the delay in the surge introduced by the post-
surge transition.

In [5] the authors have illustrated a similar (p, s) → (p, s + 1) transition arising
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within an exponentially small a2-range where post and pre-surge changes occur simul-
taneously. The sensitivity of canard solutions to the changes in parameter values and
their impacts on the secretion pattern of the 4D system have motivated us to examine
the canard-induced transitions in the case of interacting fast subsystems. In the next
section, we present an extended 6D model where an additional secretor system, subject
to the forcing of the regulating system, is coupled symmetrically with the other se-
cretor system. We explore how the canard-mediated transitions impact the respective
behavior of the secretor systems.

2.3 6D model

εδẋ1 = −y1 + f(x1), (2.3.1)

δẏ1 = a0x1 + a1y1 + a
(1)
2 + cX + α1(x1 − x2),

εδẋ2 = −y2 + f(x2),

δẏ2 = a0x2 + a1y2 + a
(2)
2 + cX + α2(x2 − x1),

δẊ = −Y + g(X),

Ẏ = X + b1Y + b2.

The extended model (2.3.1) consists of 2 linearly coupled secretors, S1 (x1, y1) and
S2 (x2, y2), subject to the same regulator (X,Y ). The resulting system of equations
is still a three-timescale model. In this chapter, we always assume that ε ≪ δ. The
secretors interact via fast to slow connections, that is to say, the coupling term is a
function of the fast variables (x1, x2) and acts on the slow variables (y1, y2) with the
coupling strength αi > 0. The coupling can be considered as a perturbation of the
global control signal X(t) received by a secretor with respect to the basic uncoupled
situation. The perturbation of slow equations in coupled relaxation cycles is opposed
to the general approach where slow-fast systems are coupled via fast to fast connections
[33, 50, 34, 71, 43, 72]. We have chosen for simplicity to use a linear coupling in the
slow equations. However, the transversality argument we present below applies to any
kind of weak coupling.

The existence of canard solutions in coupled systems with folded singularities is
not immediate, and proving it analytically is certainly very hard. In Section 2.3.1,
we consider a 5D reduction of (2.3.1) near the fold points to examine the existence of
canard solutions by taking advantage of a transversality argument that is classical in
canard theory: slow manifolds intersect transversally along maximal canard solutions,
hence these transversal intersections and associated maximal canards persist for small
values of a perturbation parameter, in our case α. Our aim is to emphasize that
the coupling can act as a perturbation which separates trajectories with same initial
conditions by driving them to different sides of maximal canards. This observation
is key to desynchronization as the variables of mutually coupled sub-systems of a
nearly synchronous solution are almost equal. In Section 2.3.2, we will come back to
model (2.3.1) to explore the effect of coupling on the canard-mediated transitions and
consequences on development of the collective dynamics of the two-secretor network.
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2.3.1 5D model

The folded singularities of the 4D model have been analyzed in [5]. So far, we have
made a general review of this analysis and detailed the dynamical consequences. In this
section, we will focus on minimal models of dimension 5 approximating the 6D model
near the fold points and investigate the presence of canard solutions in these minimal
models. To do so, we consider a minimal 5D model where we replace the periodic
forcing of the original model by a constant drift of speed µ > ε. We simplify the
cubic nonlinearity of critical manifolds (y = λ3x

3 + λ1x) into a quadratic nonlinearity
(y = x2) since we want to focus on the dynamics near only one of the fold points. This
minimal 5D model takes the following form:

εẋ = −y + x2 + . . . , (2.3.2)

ẏ = x− z + α(x− u) + . . . ,

εu̇ = −v + u2 + . . . ,

v̇ = u− z + α(u− x) + . . . ,

ż = µ+ . . . ,

where the dots denote higher-order terms in the variables and in ε. In particular, the
higher-order terms in the fast equations of the 5D model (2.3.2) include quadratic cou-
pling terms of the form O(αxu, αu2), which vanish in the limit α = 0. System (2.3.2)
has 3 slow variables and 2 fast variables. The (x, y) and (u, v) subsystems interact
via their fast variables fed to the slow equations with a weak linear coupling term of
strength α > 0. For α = 0, (2.3.2) consists of two identical copies of the minimal
folded node system that receives the same input from the common forcing variable z.
The critical manifold of system (2.3.2) in this uncoupled limit is the set

C0 =
{

(x, y, u, v, z) ∈ R
5| y = x2, v = u2

}

,

and its geometry persists in the small coupling regime. Similarly, the overall fold set
of this 5D slow-fast system for α = 0 is defined as a product of the fold sets of each
individual folded singular system:

F =
{

(x, y, u, v, z) ∈ R
5| xu = 0

}

.

Note that this fold set is non-degenerate, and that its structure persists for small
coupling. In a small neighborhood of F , one can rescale (2.3.2) so that the rescaled
system is not singularly perturbed anymore but instead becomes regularly perturbed.
To do so, one introduces the following rescaled variables and time:

x =
√
εx̄

y = εȳ

u =
√
εū

v = εv̄

z =
√
εz̄

t =
√
ετ
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After dropping the bars, the rescaled system which describes the dynamics in the
neighborhood of the folded singularity reads

x′ = −y + x2 + . . . , (2.3.3)

y′ = x− z + α(x− u) + . . . ,

u′ = −v + u2 + . . . ,

v′ = u− z + α(u− x) + . . . ,

z′ = µ+ . . . .

The rescaled system (2.3.3) is now regularly perturbed in ε. For ε = 0, transversality
holds, hence it persists for small positive ε. This way of analyzing slow-fast dynam-
ical systems near a nondegenerate quadratic fold was introduced by Benoît [73]; see
also [70]. Moreover, α also appears as a regular perturbation parameter in (2.3.3).
Therefore the same persistence argument applies and we can conclude that transver-
sality holds for small enough ε > 0 and α > 0. Below, we give more details on the
transversality of slow manifolds in the unperturbed system.

The presence of canard solutions in the 5D model for small α 6= 0 can be deduced
from the 3D (x, y, z)-subsystem (or equivalently (u, v, z)) of (2.3.3) for α = 0 using the
transversality argument. This 3D minimal system, (x, y, z), possesses a folded-saddle
singularity at the origin for µ < 0 and a folded-node singularity for 0 < µ < 0.125;
therefore, it has two-dimensional attracting and repelling slow manifolds. Transversal
intersections of these slow manifolds in the cross-section Σf = {z = 0}, along maximal
(e.g. weak, strong and secondary) canards, has been shown in [70], [74] for folded node
and folded saddle.

In (2.3.2), the slow manifolds are three-dimensional and their intersections with
the cross-section Σf are two-dimensional. This cross-section has actually a product
structure

Σf =
{

(x, y, u, v, z) ∈ R
5| z = 0

}

=
{

(x, y) ∈ R
2
}

×
{

(u, v) ∈ R
2
}

.

For α = 0, due to the decoupling, the intersections of the slow manifolds with Σf also
have a Cartesian product structure. In other words, they can be seen as a Cartesian
product of two one-dimensional manifolds. Since transversality is proven in each factor
of this product space (by applying classical theory for folded node and folded saddle)
for the 3D system, we have transversality in Σf . Transversality being a persistent
property, the intersections that exist in each factor, and exist globally in Σf for α = 0,
will persist for small α > 0. Consequently, this argument is also valid in (2.3.2) for
small ε > 0.

In the folded saddle case, the transversal intersections in the coupled 5D system
correspond to three different dynamical scenarios when the system passes near the fold
of the critical manifold. In the first scenario, both subsystems (x, y, z) and (u, v, z)
follow the strong maximal canard. In the second scenario, only one of the two sub-
systems follow the canard, and none in the third scenario. In the next paragraph,
we describe in detail the numerical strategy used to compute the boundary between
these different regimes, using the computation of slow manifolds and canard orbits in
the 3D subsystems and 5D (un)coupled system. Note that the boundaries in question
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correspond to the situation where one subsystem follows a maximal canard while the
other does not. These two boundaries intersect when both subsystems follow maximal
canards, and any trajectory in between corresponds to the third scenario. Our nu-
merical approach to compute these boundaries relies on the numerical continuation of
parametrized families of boundary-value problems (BVP) [15]. The software package
AUTO, whose algorithms combine numerical continuation with a BVP solver, allows
us to find relevant separating orbits (maximal canards) by following one-parameter
families of orbit segments with suitable boundary conditions at both ends.

Computation of slow manifolds for coupled systems Computation of the at-
tracting (Sa

ε ) and repelling (Sr
ε) slow manifolds requires computing parametrized fam-

ilies of orbit segments which lie along the slow manifolds. The problem can be defined
as a boundary value problem where each such orbit segment is chosen so as to have
one end point on the critical manifold and the other in a cross-section transverse to
the flow near the fold. We consider two-point BVPs of the scaled from

ṡ = Tg(s, λ),

s(0) ∈ L,

s(1) ∈ Σ,

where T rescales time so that the solution is computed on the fixed time interval [0, 1],
while the actual integration time comes as a parameter that is solved for during the
continuation procedure. The smooth function g : Rn ×R

p → R
n represents the system

equations with system variables s. λ ∈ R
p is the continuation parameter set, and L and

Σ are submanifolds of Rn. In a well posed case, the number of boundary conditions
should be equal to n + p plus an extra free parameter which is chosen to be T in
general. L is chosen to be on the attracting sheet of the critical manifold away from
the fold curve to compute Sa

ε and to be on the repelling sheet for Sr
ε , respectively La

and Lr. Σ is common for both manifolds.
Thanks to the decoupled structure of the model (2.3.3), we start by computing

slow manifolds of the 3D minimal folded singularity system in the folded saddle case;
we fix µ = −0.025. Detailed description of the process can be found in [15]. Basically,
the boundary conditions are imposed as

Σf := {(x, y, z) ∈ R
3|z = 0},

La := {y = x2 ∩ {x = xa}},
Lr := {y = x2 ∩ {x = xr}}.

Due to the (x, y, z, t) → (−x, y,−z,−t) symmetry of the minimal system, the repelling
slow manifold can be acquired by rotating the attracting one by π about the y-axis.
The only intersection point of two-dimensional slow manifolds Sa

ε and Sr
ε on Σf satisfies

xΣf
= 0 and it corresponds to the maximal canard solution near the folded saddle,

that is, the strong maximal canard (Fig. 2.7). Using the computed canard solution
for the 3D system, we easily obtain a canard solution of the 5D system for α = 0 by
appending two columns to the computed solution and taking u = x and v = y. This
orbit segment is a good starting solution for the next step, which consists in computing
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an approximate canard solution for the 5D system with small α 6= 0. This second step
can be made by imposing that both subsystems hit section Σf at points with the fast
coordinate being 0, while allowing the initial z-coordinate to be free. In this way, we
obtain a maximal canard solution of the 5D system for a small α > 0, which gives the
first scenario (canard-canard configuration) mentioned above.
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Figure 2.7: Invariant slow manifolds of 3D minimal system with µ = −0.025 obtained
for the initial values on the line segments xa = −0.2, xr = 0.2. Attracting slow manifold
Sa

ε (black) and repelling slow manifold Sr
ε (red) intersect transversally on the plane

Σf := z = 0 orthogonal to the fold curve at xΣf
= 0 which corresponds to the maximal

canard solution near the folded saddle.

In the second configuration for α 6= 0, one of the subsystems is forced to be on
the canard orbit while the other is free. Thus, we start with a canard-canard solution
obtained for the small α > 0, that is, at the intersection between the boundaries that
we wish to compute. Then, freeing the initial condition for one of the subsytems takes
it away from the canard orbit while the other one is forced to follow it. This yields the
computation of one boundary. For instance, having (x, y) on the canard but not (u, v)
requires continuation in u(0) by imposing the starting point on the critical manifold
and the end point on Σf := {(x, y, u, v, z) ∈ R

5|z = 0, x = 0} which frees u(1). To find
a family of such solutions, one can continue in z(0) in the same setting. Figure 2.8
shows a boundary of different dynamical scenarios. If the system starts on a trajectory
which crosses Σf on the curves, (x, y) stays on a canard orbit while (u, v) follows
a non-canard solution. The intersection point of (u, v) slow manifolds represents the
maximal canard solution of (u, v) where both systems undergo canards. Any trajectory
that crosses Σf outside of these curves corresponds to the solutions where none of the
systems follows the canard orbits.

As visualized in Figures 2.8, transversal intersections exist in coupled systems with
a folded-saddle singularity. This proves that the 5D minimal model (2.3.2) admits as
many canards as the individual folded-node systems as function of µ for 0 < α ≪ 1.
That number might change when α is not “small enough” anymore, where more com-
plex and more interesting dynamics can arise. Even though the analysis considers
identical systems where fast variables are fed back to slow variables, transversality
would persist in non-identical systems of folded singularities coupled in other config-
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Figure 2.8: Continuation on the configuration where (x, y) subsystem is on the canard
and (u, v) is free to move. Panels (a) and (b) are projections of intersection points
on the Σf plane. (x, y) subsystem intersects xΣf

= 0 for the whole set of solutions
whereas (u, v) generates non-canard solutions except for the transversal intersection
on uΣf

= 0. Panel (c) shows an example orbit segment where (x, y) goes though the
maximal canard by crossing (x, z) = (0, 0) line while (u, v) does not. Equivalent results
can be obtained for the case where (u, v) subsystem is on the canard and (x, y) is free
to move.
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urations. Hence, our justification and well-posedness of our computation would be
valid.

2.3.2 Back to 6D model

The 5D model offers a caricature of the 6D model near each fold. Indeed, in these two
regions of phase space, (2.3.1) behaves like two minimal canard oscillators forced by
the same external input. Therefore, studying (2.3.2) allows us to explain the existence
of canard solutions in (2.3.1) as well as the strong sensitivity to initial conditions, due
to the presence of canards, which can lead to desynchronization in coupled identical
oscillators. Furthermore, without loss of generality, we can deduce that canard solu-
tions persist also in coupled slightly nonidentical systems and lead to the collective
behavior.

As it has been presented for the 4D system, the folded singularities, together with
the position of the y-nullcline, generate canard-mediated transitions in the secretors.
The interaction via the linear connection from fast to slow variables in (2.3.1) perturbs
the yi-equations, and thus directly affects the evolution of the dynamics near the fold
regions. Ensuing canard-mediated transitions might have global or local impacts on
the output signal yi(t) depending on near which fold point they occur. Pre-surge
transitions near the lower fold point may have only a local effect on the surge timing
(Fig. 2.9). On the other hand, post-surge transitions near the upper fold point may
have a relatively global effect; they change both the phase difference in the pulsatile
regime and surge timing (Fig. 2.10). Since the periodic behavior of a secretor can be
divided into 4 phases, we examine the effects of canard transitions on the evolution of
collective dynamics based on these dynamical phases, in particular, during the pulsatile
regime (Phase-1) and transition from pulsatility to surge (Phase-2).

In this subsection, we will present examples of recurrent synchronization and desyn-
chronization controlled by canards occurring in (2.3.1). We restrict ourselves to the
parameter set in Table 2.2 and vary a

(i)
2 to distinguish the secretors. First, we will

show how the lower fold canards are responsible for desynchronization even in the case
of identical secretors. Then, we will continue with coupled nonidentical oscillators
where both the upper and lower fold transitions, controlled by the gradual increase in
the coupling strengths, result in the decrease or increase in the difference between the
oscillators. We believe that the discrepancy between the quantitative features, mostly
the respective durations of the surge and pulse regime, and the biological specifications
does not alter the generality of the study.

a Coupled identical secretors

Weakly coupled identical non-chaotic oscillators are expected to reach synchronized
state in finite time even if they start from different initial conditions [75]. However,
canard explosions are very sensitive to slight differences in initial conditions, and di-
vergence of states may give rise to desynchronization by driving solutions to different
canard sectors.

To illustrate the effect of folded-saddle canards on the output dynamics, we consider
two identical secretors, S1 and S2, with a(1)

2 = a
(2)
2 = 0.7953531 for which two different
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Figure 2.9: A zoom on the possible effect of the canard transition near the lower fold of
one of the coupled nonidentical secretors. (a) Time trace of the S1’s output. (b) Pre-
surge orbit segment projected onto (x1, y1)-plane. Canard transitions near the lower
fold have a local effect on the output, specifically, on the pre-surge dynamics. Canards
with head are earlier in surge transition than headless canards, thus, a passage from
the non-convex region to the convex region introduces a pre-surge delay. Depending
on the region from where the other secretor goes to surge, canards may generate or
compensate for a great pre-surge ripple in the (y1(t) − y2(t)) difference.

types of passage through the lower fold appear sequentially before going to the surge;
the first is a canard without head and the second is a canard with head. Figure 2.11
illustrates how canard solutions during the pre-surge phase affect the output dynamics
by separating nearby orbits. S1 and S2 follow opposite sequences, undergo a different
type of canard passage at each surge occurrence, so that surge triggering occurs at dif-
ferent moments along the repetition of the sequence. This separation and the resulting
pre-surge ripples in the output difference (y1(t) − y2(t)) persist when the coupling is
introduced. Folded-saddle canard solutions continue to preserve the pre-surge desyn-
chronization for an interval of values of the coupling strength 0 < α1 = α2 < α0 (Fig.
2.12). Strong enough coupling eventually drives the secretors to the same rotation
sector and leads to the pre-surge synchronization (or complete synchronization).

b Coupled nonidentical secretors

The linear interaction between slightly nonidentical oscillators via the fast to slow con-
nections controls the behavior near the fold regions depending on the coupling strength.
The coupling develops the collective behavior via the canard-mediated transitions near
the fold regions. These transitions lead to a decrease or an increase in the difference
in the output signals depending on the characteristics of the subsystems. As it will
be illustrated by an example, the effect of gradually increasing the coupling strength
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Figure 2.10: A zoom on the possible effects of the canard transition occurring near
the upper fold in one of the coupled nonidentical secretors. (a) Time trace of the S2’s
output. (b) Post-surge orbit segment projected onto (x2, y2)-plane. (c) Pre-surge orbit
segment projected onto (x2, y2)-plane. Canard transitions near the upper fold have a
global effect on the output. For instance, the loss of one SAO from the upper fold
changes the timing of the pulsatile regime, affects the phase of the relaxation cycle,
changes the number of pulses, and ultimately impacts the surge timing.

on the canard-mediated transitions continues until a threshold value for which the
secretors get fully synchronized.

We consider two nonidentical secretors, with a value of parameter a(i)
2 of order 1, so

that they differ in the number of SAOs (post-surge dynamics), number of pulses and
transition to surge (pre-surge dynamics) in the absence of coupling. More specifically,
uncoupled S1 and S2, with the parameters a(1)

2 = 0.792075, a(2)
2 = 0.784, yield (8, 4)-

type and (7, 5)-type limit cycles, respectively. As Figure 2.13 illustrates, the difference
in the post-surge dynamics causes time shifts the resumption of the relaxation cycles,
hence, introduces a phase difference between the pulses. Also, while S1 departs for
surge via a folded-saddle canard, S2 does not. Regardless of the distinct pre-surge
dynamics, the surge is triggered at the same time in both secretors.

The very first effect of coupling is visible on the lower fold passages of S1 (Fig.
2.14). Slight changes in the coupling strength distort the pre-surge canard solutions
of S1 by shortening the time spent on the unstable branch and forcing the trajectory
to jump to the right branch. S1 undergoes this fast transition for a wide range of
α1 = α2 > 0.001. We will see later on how it comes back to the convex region before
surge.

The next effect of increasing coupling strength is observed on the upper fold dynam-
ics of S2. Initially, S1 and S2 exhibit different number of SAOs on the upper fold of the
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Figure 2.11: Uncoupled identical secretors S1 and S2. (a) Projections on (xi, yi) planes.
(b) Difference in the secretor outputs. Identical systems starting from different ini-
tial conditions pass through different canard sectors at each departure to surge, and,
consequently, produce ripples in the (y1(t) − y2(t)) occurring before surge.

critical manifold. The one extra SAO of S2’s post-surge pause causes an obvious phase
difference (almost an half-cycle (π) lag) in the pulsatile regime because S2 resumes
its relaxation cycle later than S1. This difference remains for 0 ≤ α1 = α2 < 0.005
and once the coupling strength exceeds a threshold, (p, s) → (p + 1, s − 1) transition
occurs in S2 which equalizes the number of SAOs, reduces the phase difference and,
eventually, the oscillators cycle with a phase lag less than π (Fig. 2.15). On the other
hand, this upper fold transition introduces an explicit difference in the surge departure
by giving birth to an additional pulse in S2. Due to the fact that S2 departs for surge
by following the left branch of f(x2) whereas S1 follows the right branch of f(x1), the
surge is triggered later in S2 than S1. Consequently, a pre-surge desynchronization is
introduced into the collective dynamics.

Further increase in the coupling strength continues to reduce the difference in the
upper fold dynamics, hence, phase differences and leads to pre-surge canard-mediated
transitions in secretors. For instance, the next transition occurs near the lower fold of
S2 for α1 = α2 ≈ 0.08229 (Fig. 2.16). This (p, s) → (p + 1, s) transition changes the
departure region of S2 from the convex to non-convex one. Alternations between the
convex and non-convex solutions appear for α1 = α2 ≈ 0.12278 in S2 and α1 = α2 ≈
0.3417 in S1. The latter drives S1 to the convex region in the phase space, consequently,
both secretors undergo canards without head and reach pre-surge synchronization once
more. Further increase in α1 = α2 does not cause any other transition but decreases
the phase differences between the pulses.

Table 2.3 summarizes the impact of canard-mediated transitions driven by the
coupling term on the individual and coupled dynamics. Pre-surge transitions have a
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Figure 2.12: Effect of coupling on the canard solutions of identical secretors S1 and
S2. (a1,b1) Projections on (xi, yi) planes. (a2, b2) Difference in the secretors’ out-
puts. Identical secretors starting from different initial conditions preserve the opposite
sequential behavior for 0 ≤ α1 = α2 < 0.0675, in other words, they desynchronize
just before the surge ((a1, a2) α1 = α2 = 0.06). For strong enough coupling, they
synchronize and start to follow the same sequence after a transient response ((b1, b2)
α1 = α2 = 0.09).

local effect on the collective dynamics by changing the surge departure region. We
observe that if the secretors are driven to the same family of folded-saddle canards,
they reach pre-surge synchronization by departing to surge almost simultaneously.
The global effect of the post-surge canards comes from the fact that they both change
the phase difference between the pulses and the type of the pre-surge solutions. If
the folded-node solutions lie on different rotation sectors, the post-surge transition
can change the numbers of SAOs, which affects the pulsatility resumption, hence,
the phase difference between the pulses. The impact on the pre-surge solutions is
similar to the folded-saddle canards. These observations can be generalized to other
combinations of an O(1) or less nonidentical secretors. Further more the transitions
can arise simultaneously both in individual level and collective level.

2.3.3 Remark on synchronization studies using the phase resetting curve

Synchronization has been studied extensively in the context of weakly coupled oscil-
lators [51, 76, 65, 77, 50, 48, 60, 52, 72, 49] using the so-called phase resetting curve
(PRC) which measures how a change of the phase of one oscillator resets the phase of
another one. The derivation of the PRC relies on the linearization of the system along
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Figure 2.13: Uncoupled nonidentical secretors S1 and S2. (a) Phase planes of S1 (blue
line) and S2 (green line); S1 remains in the convex region before surge and S2 moves
to the non-convex region. (b) Large amplitude ripples in output difference. (c) S1

and S2 resume relaxation cycles at different times and oscillate with and almost π-lag.
Anti-phase oscillation compensates for the difference in the surge timing.

Table 2.3: Effects of canard-mediated transitions in (2.3.1) on secretor’s individual and
collective dynamics.

Effect on the individual dy-
namics

Effect on the collective dy-
namics

Pre-surge canard
transitions:

(p, s) → (p ± 1, s) transition,
surge timing

Pre-surge synchronization/
desynchronization

Post-surge canard
transitions:

(p, s) → (p ± 1, s ∓ 1) tran-
sition, pulsatile resumption,
surge timing

Change in the phase differ-
ence in pulsatile regime, pre-
surge synchronization/ desyn-
chronization

the unperturbed (uncoupled) oscillation and makes use of the adjoint equation. In
[48, 60] this approach was linked to the work of Malkin [58, 59]. In [60], this approach
has been extended to relaxation oscillators and synchronization conditions under the
weak coupling, leading to a criterion for the existence of synchronous solutions. The
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Figure 2.14: Effect of coupling on the canard solutions of S1 near its lower fold. Slight
changes in the coupling strength alter the meeting point between (x1, y1) and the y1-
nullcline and force S1 to undergo, first, canards with head, and then, to jump to the
right branch of y1 = f(x1).

analysis in [60] relies on the fact that the slow nullcline does not intersect the fast null-
cline near fold regions. In the context of weakly coupled FitzHugh-Nagumo oscillators
this approach leads to a proof of the existence of a stable synchronous state under
the assumption of a fixed slow manifold away from the folds, thus, canard regions.
On the contrary, moving the slow nullcline from one fold region to another in (2.3.1)
distinguishes our problem on the collective dynamics from that in [60] by several fea-
tures. Firstly, the passage of the slow nullcline through the singular points of the
critical manifold introduces canard solutions. Since the adjoint equation involves a
term that vanishes in the canard case, the construction of the solution to the adjoint
equation needs to be adapted. Secondly, shifting the slow nullcline increases the cy-
cling frequency, so that a unique cycling period is not definable. Finally, the periodic
transition between the surge and pulsatile regime can be considered as a “reset” to
phase dynamics of the relaxation cycle in the pulsatile regime, whose duration might
be too short to reach a synchronous state. Therefore, it is not possible to comment on
the evolution of the synchronization in the coupled secretors (2.3.1) by using classical
approaches.

2.4 Discussion

In this chapter, we have studied the effects of canard-mediated transitions in a 6D
system, which consists of two fast and one slow FitzHugh-Nagumo oscillators. Our
system is an extension of the four-dimensional (4D) model from [1] accounting for
the alternating pulse and surge generation in GnRH secretion pattern where the fast
subsystems, secretors (the sub-populations of secreting neurons), are modulated by
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Figure 2.15: Effect of coupling on the canard solutions of S2 near its upper fold. (a1,
a2) Phase plane of S2 for α1 = α2 = 0.004 and α1 = α2 = 0.005, respectively. S2 loses
one small oscillation near the upper fold for 0.004 < α1 = α2 < 0.005. The last SAO of
S2 disappears via a canard trajectory (Panels (a1, a2)) and the number of post-surge
SAO of the two secretors are equalized. Both the phase difference and amplitude of the
output difference diminish immediately when the SAO is lost (Panels (b1, b2)). On
the contrary, pre-surge peaks appear as a result of the different surge timings (Panels
(c1, c2)).

the slow subsystem, regulator (the population of regulating neurons). Each secretor-
regulator combination can be classified as a phantom burster, hence, the 6D system
is interpreted as two coupled phantom bursters sharing the same forcing. The linear
interaction between the secretors controls the canard-mediated transitions occurring
during different dynamical phases of the GnRH secretion.

We have identified two types of canard-mediated transition in a 4D phantom
burster: post-surge transition and pre-surge transition. The former causes a con-
version between a SAOs and a pulse whereas the latter affects the last pulse before the
surge. In a small range of a control parameter, post and pre-surge transitions occurring
sequentially add one more SAO to the post-surge pause. Then, we have proven the
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Figure 2.16: Effect of coupling on the canard solutions S2 near its lower fold. (a)
Phase plane of S2. (b) Difference in the secretors’ outputs. (c) Output of S2 for
various coupling strengths. When the number of SAOs is equalized (Fig. 2.15), the
increase in the coupling strength make S2 get closer to the lower fold canard sectors
and reduces the phase difference in the pulsatile regime. For α1 = α2 ≈ 0.08229, S2

undergoes a maximal canard and passes to the non-convex region where S1 also goes
by before surge. This change reduces the pre-surge difference in timing and amplitude.

presence of canard solutions in such coupled slow-fast systems by using a 5D minimal
model, which approximates the dynamics in the neighborhood of folds of the critical
manifold. We have obtained the existence of canard solutions in a 5D minimal model
with non-zero coupling, by using a transversality argument. Then, we have used nu-
merical continuation to show that the coupling drives trajectories of identical systems
to different sides of the maximal canard in the folded-saddle case; similar techniques
can be used to provide numerical evidence that maximal canards near a folded node
also separate nearby trajectories in this 5D minimal model. Extension of our conclu-
sion on the minimal model to the coupled nonidentical systems of folded singularities
relies on the transversality argument.

Next, we have investigated numerically the effects of canard-mediated transitions
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controlled by the coupling term on the collective dynamics of both identical and non-
identical systems. Pre-surge canard transitions introduce or compensate for a sep-
aration of the trajectories passing through the lower fold during the transition from
pulsatile to surge by changing the departure region. Separation of the departure regions
results in pre-surge desynchronization. Post-surge canard transitions tend to decrease
the difference in the dynamics of the upper fold by changing the number of SAOs and,
consequently, affect both the phase difference in the pulsatile regimes and pre-surge
solutions simultaneously. Our observations on the canard-mediated transitions can be
generalized to other combinations of at most O(1) nonidentical secretors.

Phase models and their extension to weakly coupled oscillators provide powerful
tools to study synchronization. Yet, the slow modulation of the fast variables by the
slow ones and the singularity of the adjoint equation introduced by canard solutions
remain as open questions. In this context, including higher order terms to the phase
models and extending PRC approach to canard case is an interesting question for
future work.

In this chapter, we have coupled two sub-populations of GnRH neurons, which do
satisfy only the qualitative behavior of the GnRH secretion (as explained earlier, for the
sake of numerical continuation, the duration of the pulsatile regime has been shorten),
via fast to slow connections. The sub-populations are defined on the macroscopic level
that corresponds to the network-emergent character of GnRH secretion encoding on
a time horizon of several days. Other models have been interested in the electrical
activity of individual GnRH neurons, on the microscopic level (see e.g. [78], on a
time horizon of several minutes), or in the coordinated ionic (calcic) activity in tens of
neurons, on the mesoscopic scale (see [79] on a time horizon of several hours). We have
reported here that small (local) differences in trajectories lying on different sides of a
maximal canard can apply O(1) differences in the output, e.g. one secretor produces
one more pulse than the other. This could potentially happen where more populations
of neurons (GnRH or other types) are coupled in the way we have considered here. In
the GnRH framework, repeated events of this type could be at the source of a partial
desynchronization before the surge, which has been observed experimentally in time
series of portal blood GnRH [80] (and corroborated by the silencing observed in MUA
(Multi-Unit Activity) recording as the surge approaches [81]). It is worth noting that
the pulses do not really disappear (they are not replaced by a baseline or constant level),
so that one might speculate that partial synchronization may persist within distinct
subsets of GnRH neurons, which may be formed by underlying canard solutions. In
the model we have considered, the number of pulses can vary from one secretor to
the other according to possible passages through canard solutions; in another neuronal
context, that could be the number of spikes during a burst that could vary from one
population to the other, and this discrepancy may carry some level of “information”.
As it induces trajectory separations, alternation in the number of MMOs and phase
differences, canard-mediated variability gives promising results to address issues on
synchronization, desynchronization and clustering dynamics of neural networks.
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Coupled multiple timescale dynam-
ics in populations of endocrine neu-
rons: Pulsatile and surge patterns of
GnRH secretion
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Abstract

The gonadotropin releasing hormone (GnRH) is secreted by hypothalamic neurons
into the pituitary portal blood in a pulsatile manner. The alternation between a
frequency-modulated pulsatile regime and the ovulatory surge is the hallmark of the
GnRH secretion pattern in ovarian cycles of female mammals. In this work, we aim at
modeling additional features of the GnRH secretion pattern: the possible occurrence
of a two-bump surge (“camel surge”) and an episode of partial desynchronization be-
fore the surge. We propose a six-dimensional extension of a former four-dimensional
model with three timescale and introduce two mutually-coupled, slightly heterogenous
GnRH subpopulations (secretors) regulated by the same slow oscillator (regulator).
We consider two types of coupling functions between the secretors, including dynamic
state-dependent coupling, and we use numerical and analytic tools to characterize the
coupling parameter values leading to the generation of a two-bump surge in both cou-
pling cases. We reveal the impact of the slowly varying control exerted by the regulator
onto the pulsatile dynamics of the secretors, which leads to dynamic bifurcations and
gives rise to desynchronization. To assess the occurrence time of desynchronization
during the pulsatile phase, we introduce asymptotic tools based on quasi-static and
geometric approaches, as well as analytic tools based on the H-function derived from
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phase equation and numerical tracking of period-doubling bifurcations. We discuss
the role of coupling parameters in the two-bump surge generation and the speed of
desynchronization.

Keywords

multiple timescale systems, dynamic coupling, GnRH secretion pattern, heterogeneity,
synchronization, quasi-stationary approximations, period doubling, interaction func-
tion

3.1 Biological and modeling motivation

Endocrine neurons have the uncommon ability of secreting hormones into the blood
stream. Neuroendocrine networks are characterized by the emergence of very slow
secretion rhythms with remarkable dynamics. The hypothalamic neurohormone GnRH
(gonadotropin-releasing hormone) is the master hormone in the hypothalamo-pituitary
gonadal axis controlling the reproductive function. GnRH is secreted in a pulsatile
manner and the pulsatility has a fundamental role in the differential control of the
secretion of both gonadotropins by the pituitary gland: LH (luteinizing hormone) and
FSH (follicle stimulating hormone). In females, the pulsatile pattern is tremendously
altered once per ovarian cycle into a massive and prolonged release, the GnRH surge,
which triggers in turn the LH surge leading to ovulation.

In previous works, we have introduced and studied both qualitatively and quanti-
tatively a compact (four-dimensional (4D)) model with three timescales accounting for
the alternating pulse and surge regime as well as for the varying frequency of GnRH
pulses [1, 3, 4, 5]. The outputs of this phantom-burster model reproduce the proper
sequence of secretory events and meet species-dependent quantitative specifications
dealing with the frequency, duration and amplitude of these events.

The modeling motivation underlying the current work comes from additional fea-
tures observed experimentally in the secretion pattern of GnRH. When looking finely
at GnRH time series sampled from the pituitary portal blood (the most, not to say
unique, reliable marker of the neurosecretory activity of the GnRH network), one can
see that, on the one hand, the surge may in some cases be composed of two main
bumps (instead of a single) [82, 83, 84, 85, 86], and on the other hand, the increase in
GnRH pulse frequency at the end of the follicular phase, that is inseparable from the
ability of the network to mount a GnRH surge, is accompanied at the very end of the
follicular phase by a degradation in pulsatility and appearance of noise that blurs the
GnRH pulses [80]. Another witness of desynchronization within the GnRH network
as the surge approaches is the silencing observed in recordings of MUA (Multi-Unit
Activity), a macroscopic marker of electric activity at the level of the median eminence
that is otherwise well correlated with GnRH-induced LH pulses [87]. Interestingly, in
case of a 2-bump surge (which we will refer as “camel surge” from now on), the first
bump coincides with the LH ovulatory surge, while the second bump corresponds to
the part of the surge that extends much beyond the duration of the LH surge [88, 89]
and whose biological signification is unclear, even if it seems to be involved in estrous
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behavior in some species [90, 91].
In Chapter 2, we have proposed a 6-dimensional (6D) extension of the original 4D

system, by adding a second secretory system interacting with the first one, and subject
to the same forcing from the regulating system. We have thus introduced a first level
of heterogeneity within the GnRH population, by considering two distinct subpopula-
tions. We tackled the question of synchronization between the secretory systems from
the dynamical viewpoint, to study the impact of coupling on the slow-fast transitions
arising in the fast subsystems. Yet, we considered a simple coupling function and de-
parted from the quantitative properties of the model, even if its qualitative sequential
behavior was preserved. In contrast, in the current study, we intend to adapt such an
extended 6D model to manage to reproduce the additional GnRH secretion features
without altering any of the quantitative features of the model output. As a conse-
quence, we focus our attention on the proper formulation of the coupling function with
respect to the desired outputs, which results in a complicated model with both asym-
metric and dynamic coupling terms. We also investigate how to control quantitatively
the newly added features: timing, ordering and amplitude of the surge bumps, as well
as time occurrence of desynchronization.

The collective dynamics of slow-fast oscillators coupled on different timescales have
a great importance in the context of physiology when microscopic and macroscopic
levels can be represented with similar dynamics, especially in excitable systems for
neuronal activity [33, 49]. Such dynamics result naturally from the mass modeling
approach, that consists in focusing on the average behavior of neuron assemblies con-
sidered to behave jointly. Using this paradigm, the specific features of the individual
cells’ activities, and the microscopic dynamic interactions are no longer taken into
account. Yet, a large panel of dynamic behaviors can be generated by such models,
even if they are designed to reproduce activities at the mesoscopic scale. Therefore,
the identification of the main mechanisms involved in the synchronization of complex
oscillations (for instance bursting oscillations [34, 35, 36, 37, 38]) and the robustness
of the synchronization features are key points for the analysis of neural population
activities.

Extensive efforts have been dedicated to the understanding of synchronization in
slow-fast systems in the context of neuroscience and have led to the development of
theoretical and numerical tools, such as the fast threshold modulation theory [43],
singular perturbation methods [44, 45, 46, 47], theory of weakly coupled oscillators
and phase response curves (PRC) [72, 50, 51, 52, 54, 33, 48, 49]. The weakly coupled
oscillator theory has been extended to relaxation cycles in [60]. The questions mainly
tackled in the framework of synchronization in neural systems are the effects of intrinsic
properties, slowly varying terms, heterogeneity [53, 57, 61, 55, 56, 92, 93] and the
derivation of analytic expressions for PRCs [62, 63, 64].

This chapter is organized as follows: In Section 2, we consider a biologically rel-
evant secretion pattern generated by the 4D GnRH secretion model (1.1.1) and we
reformulate the 6D extended model introduced in Chapter 2. We introduce more
elaborate coupling functions. In Section 3, we perform quantitative studies based on
numerical simulations and analytic expressions to derive information on the parameter
set compatible with a camel surge. In Section 4, we introduce asymptotic approaches
to investigate the occurrence of a desynchronization episode in the pulsatile regime
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and assess the chronology of desynchronization. In Section 5, we apply our results to
mimic specific experimental instances of a camel surge. In Section 6, using numerical
continuation, we discuss the possible mechanisms underlying desynchronization in the
framework of weakly coupled oscillators theory. A final conclusion and discussion are
provided in Section 7.

3.2 GnRH secretion model and subpopulation

3.2.1 Review of the 4D GnRH secretion model

In Chapter 2, we have reviewed the general pattern of the 4D model (1.1.1) with a
parameter set respecting only the qualitative features of the GnRH secretion. In [3],
constraints on the parameters were obtained from dynamical principles to guarantee
not only the proper qualitative sequence of secretory events, but also quantitative
features subject to biological specifications and dealing with the duration, amplitude
and frequency of the GnRH signal. Since, in this chapter, we rather focus quantitative
features needed to meet biological specifications, we prefer to consider the model output
as following:

yout(t) = y(t)χ{y(t)>yT H}, (3.2.1)

χA being the indicator function (χ = 1 on A, 0 elsewhere). This thresholded solution
component yout(t) corresponds to the amount of secreted GnRH. Figure 3.1 shows
the output (3.2.1) profile of (1.1.1) obtained by using a parameter set given in [3]
respecting the secretion pattern in the ovine species, whereas Figure 1.1 shows the
qualitative profile.

One of the salient features of system (1.1.1), which plays a critical role in the
current framework, is the frequency increase occurring during the pulsatile regime.
This increase ensues from the changing location of the unstable stationary point lying
on the middle branch of f(x). At the beginning of the pulsatile regime, this point is
close to the upper fold of f(x). As a consequence, the current point (x, y) running on
the limit cycle is slowed down in the vicinity of the stationary point, hence the period
of the cycle is rather long (this low frequency pattern corresponds to the so-called
luteal phase of the ovarian cycle). As X increases, the y-nullcline moves leftwards, so
that the stationary point moves away from the right fold; the current point escapes
from the influence of the stationary point and the period gets smaller and smaller,
up to the surge triggering (this high frequency pattern corresponds to the so-called
follicular phase of the ovarian cycle).
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Figure 3.1: Phase-dependent dynamic behavior and reproduction of the GnRH secre-
tion pattern. Panel (a): attracting relaxation cycle followed by the regulator in the
(X,Y ) phase plane. The abscissas of the upper and lower fold points of the cubic
nullcline are labeled as γ and −γ, respectively. Each number represents a different
phase of the periodic behavior. 2-headed arrows: O(ε) speed, 1-headed arrows: O(1)
speed. Panel (b): position of the nullclines of the secretor on the (x, y) phase plane
with respect to the 4 phases in the (X,Y ) limit cycle. Green arrow: direction of
the y-nullcline during the pulsatile phase. Red arrows: transition from pulsatility to
surge. Blue arrow: surge phase. Pink arrows: transition from surge to pulsatility. The
leftwards motion of the y-nullcline during the pulsatile phase results in an increasing
pulse frequency. The increase in the pulse frequency is emphasized by the decrease
in the interpulse interval (IPI), as seen on the middle inset of Panel (d). Panel (c):
projection of a trajectory onto the (x, y) plane. The phases are colored as in Panel (a).
3-headed arrows: O(εδ)-speed motion. Panel (d): GnRH pattern along the ovarian
cycle using the same color code to highlight the different phases (the fastest transitions
are embedded within the surge phase). The quantitative specifications were derived
for the ovine species. Whole cycle duration: 16.5 days. Luteal phase duration: 13
days. Follicular phase duration (surge excluded): 2.5 days. Surge duration: 1 day.
Pulse to surge amplitude ratio: 1/60. Frequency increase ratio: 1/4.
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3.2.2 Introduction of a generic 6D model

To be more generic, we prefer to re-write the 6D model given in (1.4.1) in a more
general form as follows:

εδẋ1 = −y1 + f(x1), (3.2.2a)

δẏ1 = a
(1)
0 x1 + a

(1)
1 y1 + V (1)(x1, x2, y1, y2, X, Y ), (3.2.2b)

εδẋ2 = −y2 + f(x2), (3.2.2c)

δẏ2 = a
(2)
0 x2 + a

(2)
1 y2 + V (2)(x1, x2, y1, y2, X, Y ), (3.2.2d)

δẊ = −Y + g(X), (3.2.2e)

Ẏ = b0X + b1Y + b2, (3.2.2f)

and

yout
1 (t) = y1(t)χ{y1(t)>yT H}, (3.2.3a)

yout
2 (t) = y2(t)χ{y2(t)>yT H}, (3.2.3b)

z(t) = yout
1 (t) + yout

2 (t). (3.2.3c)

We will refer to subsystems (3.2.2a)-(3.2.2b) and (3.2.2c)-(3.2.2d) as Secretor 1 and 2
(S1 and S2), respectively. The global output of the model is z(t) given by (3.2.3c) as the
sum of thresholded y1(t) and y2(t) signals in (3.2.3a) and (3.2.3b), respectively. The
coupling in (3.2.2b) and (3.2.2d) can be considered as a modulation of the secretor
sensitivity to the control exerted by the regulator. The nonidentical V (i) functions
read:

V (1)(x1, x2, y1, y2, X, Y ) = a
(1)
2 + c(1)X + I(1)(x1, x2, y1, y2, X)

V (2)(x1, x2, y1, y2, X, Y ) = a
(2)
2 + c(2)X + I(2)(x1, x2, y1, y2, X)

where the mutual interaction between the secretors is provided via the coupling
functions I(1) and I(2).

Table 3.1: Nominal parameter values of the 6D GnRH secretion model (3.2.2) used for
the numerical simulations. In this study, we consider a(1)

0 = a
(2)
0 = a0, a

(1)
1 = a

(2)
1 = a1

and yT H = 1.4.

a0 = 0.52 a1 = 0.011
a

(1)
2 = 0.7 a

(2)
2 = 1.14

c(1) = 0.5113 c(2) = 0.70012
b1 = 0.246 b2 = 1.5103
λ3 = −1 λ1 = 2.5
µ3 = −1 µ1 = 4
δ = 0.02 ε = 0.0125

Figure 3.2 shows signals y1(t) and y2(t) with the parameter set in Table 3.1, in the
absence of mutual interaction between the secretors, i.e. I(1) ≡ I(2) ≡ 0. Since both
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Figure 3.2: Panel (a): signals yout
1 (t) (blue) and yout

2 (t) (red) in the absence of coupling.
The differences in the IPIi patterns (upper inner panel), surge amplitudes and the
presence of a pause before pulsatility resumption in S1 (lower inner panel) are visible.
Panel (b): global output z(t) of the uncoupled system. The pause in S1 is embedded
within the whole duration of the surge in S2 and contributes to the global surge (inner
panel).

secretors are controlled by the same regulatory signal, X(t), they share the same dura-
tion for the pulsatile and surge regimes, yet, due to the heterogeneity in the parameter
values, there exist differences in (i) the pulse frequency, (ii) the surge amplitude and
(iii) the way to resume pulses after the surge, with S1 exhibiting a pause while S2 does
not. The pause in S1 contributes to the global surge pattern visible in the right panel
of Figure 3.2, yet it does not interfere with neither the global features of the coupled
system behavior nor our analysis. In contrast, the difference in frequency is essential
for the blurring of pulses while the difference in surge amplitude is needed to obtain a
camel surge.

Difference in the pulsatile regime The shift in the location of the unstable nodes
on the middle branches of the xi-nullclines (i ∈ {1, 2}) results in different pulse fre-
quencies hence, IPIi patterns. Such a difference, together with the formulation of z(t)
in (3.2.3c), leads to a variation in the pulse amplitudes.

In the uncoupled situation, the times of pulse onset, t(n)
i (where n stands for the n-th

pulse occurring since the latest surge in z(t)), are given by yi(t
(n)
i ) = yT H , xi(t

(n)
i ) > 0,

while the times of pulse ending, t(∗n)
i , are such that yi(t

(∗n)
i ) = yT H , xi(t

(∗n)
i ) < 0.

The pulse width is obtained from the delay between the onset and ending times,
tnpulse,i = t

(∗n)
i − t

(n)
i . The series of IPIi is the sequence of consecutive times of pulse
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Figure 3.3: Output signals generated by the 6D model : y1(t) (blue curve), y2(t) (red
curve), global output z(t) (yellow curve), compared to yT H (black dashed line). Panel
(a): overlapping pulses in y1(t) and y2(t) leading to a synchronized pulse z(t), with
z(t) > 2yT H (t(n)

2 ∈ [t(n)
1 , t

(∗n)
1 ]). Panel (b): separated pulses in y1(t) and y2(t) leading

to desynchronized pulses in z(t), with z(t) < 2yT H (t(n)
2 /∈ [t(n)

1 , t
(∗n)
1 ]).

onset IPI(n)
i = t

(n+1)
i − t

(n)
i .

In the coupled case, the widths of the closest pulses generated by S1 and S2 can be
more or less overlapping, and the level of overlapping can be assessed by the difference
between the closest onset times in each secretor t(n)

j − t
(n)
i (j = 3 − i).

A shift in the onset times is compatible with a long enough overlapping episode
and a z(t)-generated pulse as long as z(t) > 2yT H . More precisely, let us assume that
the n-th pulse of S1 starts before the n-th pulse of S2 so that t(n)

1 < t
(n)
2 . If t(n)

2 lies in
the interval [t(n)

1 , t
(∗n)
1 ], there is a time window during which both signals exceed the

yT H threshold, so that an overlapped pulse appears in z(t) (Figure 3.3-a). In contrast,
when t

(n)
2 occurs after y1 is back below the threshold, then a separated pulse appears

(Figure 3.3-b).

Since the IPIi and width of pulses change during the pulsatile regime in each secre-
tor, the occurrence of overlapped pulses results from an interplay between the mutual
coupling and intrinsic properties of the secretors. We will refer to the overlapped pulses
as “synchronized” pulses associated with episodes of synchronization

zsync(t) = z(t)χ{(yout
1 +yout

2 )>2yT H}. (3.2.5)

Similarly, separated pulses will be referred as “desynchronized” pulses associated with
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desynchronization in the global output

zdesync(t) = z(t)χ{(yout
1 +yout

2 )<2yT H}.

Difference in the surge regime: With the nominal parameter values, the location
of the y2-nullcline with respect to f(x2) is leftmost compared to the relative positions
of the y1-nullcline and f(x1). As a consequence, the surge amplitude in S1 is lower
than in S2. In the presence of a suitable coupling, this initial difference affects the
surge shaping.

In the next section we describe different appropriate forms of V (i) to reproduce a
camel surge.

3.2.3 Choice of the coupling for reproducing a camel surge

To reproduce a camel surge, we implement functions of V (i) and I(i) in (3.2.4) as:

V (1)(x1, x2, y1, y2, X, Y ) = a
(1)
2 + c(1)X + α(1)(x1, y1)(x1 − x2)ψ(Xsync, X)

V (2)(x1, x2, y1, y2, X, Y ) = a
(2)
2 + c(2)X + α(2)(x2, y2)(x2 − x1)ψ(Xsync, X)

where ψ(Xsync, X) is an activation function and Xsync a threshold parameter, such
that the coupling is active if X ≤ Xsync and inactive otherwise. On a practical ground,
we will use a sigmoid function with a stiff enough slope (typically ρ = 30), rather than
a Heaviside function:

ψ(X −Xsync) =
1

1 + exp(ρ(X −Xsync))
(3.2.7)

Functions V (i) combine coupling and heterogeneity terms. The heterogeneity in V (i)

comes from the differences in the intrinsic parameters a(i)
2 and c(i), as well as the asym-

metric nonnegative coupling strengths α(i)(x, y) in which the fast variables (x1, x2) act
on the slow variables (y1, y2). In the sequel, we will consider two cases for α(i)(x, y):
constant functions (constant coupling case) and yout

i -dependent functions (dynamic
coupling case). Our motivation to consider different coupling functions, and especially
to introduce a dynamic coupling, is to avoid the use of strong coupling strengths while
managing to reproduce both the camel surge and the desynchronization at the end of
the pulsatile regime.

a Constant coupling

With α(i)(x, y) ≡ α, the coupling terms in V (i) read

α(i)(xi, yi)(xi − xj)ψ(X −Xsync) = α(xi − xj)
1

1 + exp(ρ(X −Xsync))
. (3.2.8)

Choosing a value of Xsync such that the point (Xsync, g(Xsync)) lies on the middle of
the right branch of g(X) (see Figure 3.4(a1, a2)) leads to a deactivation of the coupling
function during the first part of the surge, as long as X(t) > Xsync. If the difference
between the parameters of the secretors is sufficient, the 4-phased behavior of secretors
interacting via (3.2.8) can be summarized in the following way:



56 Chapter 3. Coupled dynamics in endocrine neuron populations

1. Pulsatile regime X(t) < 0 < Xsync The coupling is active, S1 and S2 stay
synchronized for either the whole pulsatile regime, or a part of it, depending on
the parameter values of S1 and S2 and the coupling strengths in (3.2.8).

2. Surge triggering X(t) increases rapidly and overcomes Xsync, which deactivates
the coupling. S1 and S2 follow their motion along the left branches of f(x1) and
f(x2) independently.

3. Surge regime In the first part of the surge, as long as Xmax > X(t) > Xsync,
X(t) decreases slowly, S1 and S2 move along the left branch of f(x1) and f(x2),
respectively. In the second part of the surge, the coupling is activated as long as
Xsync > X(t) > γ, the secretors get closer to each other as variable yi decreases
in the secretor with greater amplitude while it increases in the other.
If this two-part regime generates a non-monotonic pattern in z(t), with an initial
increase followed by a decrease, a camel surge is obtained (see for instance,
the curves corresponding to Xsync = {1.8, 1.9, 2} in Figure 3.4(b), and further
explanations in Section 3).

4. Resumption of pulsatility X(t) decreases rapidly and triggers the descending
parts of the surges followed by the resumption of pulses.

b Dynamic coupling

The coupling term with an alternative coupling function reads:

α(i)(xi, yi)(xi − xj)ψ(X −Xsync) = α̂i y
out
i (xi − xj)

1
1 + exp(ρ(X −Xsync))

(3.2.9)

where the coupling strength α̂i is multiplied by the output signal yout
i (t). In this case,

the coupling depends on the state of the system not only during the surge, but also
during the pulsatile regime; it is active when both X(t) < Xsync and yi(t) > yT H .

With the dynamic coupling function (3.2.9), synchronization in the pulsatile regime
(which is not guaranteed) occurs in the following way: Assume that (x1, y1) and (x2, y2)
are lying respectively on the right branch of f(x1) and f(x2), with and S1 ahead of S2.
The dynamics of S1 starts to be influenced by S2 when y1(t) ≥ yT H . At that time S1

is slowed down by the coupling since α̂1 y
out
1 (x1 − x2) < 0. Meanwhile, y2 continues to

climb up along f(x2) without being affected by S1, until it reaches yT H . If y1 is still
high enough and yout

1 (t) > 0 when y2(t) ≥ yT H , then the pulses of S1 and S2 overlap,
and the systems are synchronized.

During the surge phase, a similar principle as for the constant coupling operates,
where the activation of the coupling with X(t) < Xsync tends to reduce the differences
between the secreting systems. As in the example in Figure 3.5, camel surge can be
obtained with dynamic coupling function.

The main difference between constant and dynamic coupling lies in the values of the
coupling strengths needed to obtain a camel surge. The constant coupling requires re-
ally strong coupling strengths, such that |αi| > |yi(t)|, which may be questionable both
from the biological and mathematical viewpoints. In the next section we investigate
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Figure 3.4: Activation function ψ(Xsync, X) in (3.2.7) and shaping of a camel surge
using constant coupling function (3.2.8) with α1 = 2 and α2 = 10. Panel (a1) Location
of the activation valueXsync = 2 on the (X,Y ) plane. The coordinate (Xsync, g(Xsync))
is located on the middle of the right branch of g(X). Panel (a2) Activation signal as
a function of time (Xsync = 2), with initial time chosen at the very beginning of the
surge, and change in X(t) starting from its maximal value X = Xmax and decreasing
progressively to reach Xsync during the surge. Panel (b) Global output z(t) during
the surge according to different values of Xsync. Panels (c1-c3) Signals yi(t) generated
with three different values of Xsync (1.5, 1.9, 2.1).

the efficiency of both coupling formulations in the surge regime, where |αi| < |yi(t)|,
to obtain a camel surge. In Sections 4 and 6, we will focus on the desynchronization
time within the pulsatile regime, in either the constant or dynamic coupling case. In
Section 5, we will consider jointly the issues of camel surge and desynchronization, and
give instances of application of our results within an experimental context.

3.3 Quantitative analysis of the camel surge: constraints on
the coupling terms

In the previous section, we have shown that the camel surge can be reproduced by
means of two different X-dependent coupling functions. Here, we derive quantitative
information on the sets of parameter values compatible with the appearance of a camel
surge, as well as on the parameter-dependent surge shaping.
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Figure 3.5: Generation of a camel surge with dynamic coupling (3.2.9) for α̂1 =
0.02, α̂2 = 0.1. Panel (a): the value of Xsync should be chosen in the correct range to
let S1 and S2 resynchronize and climb up along f(xi) within the surge regime. Panels
(b1-b3): signals yi(t) generated with three different values of Xsync (1.5, 1.9, 2.1).

3.3.1 Conditions to get a camel surge: appropriate choice of Xsync and
coupling strengths

A camel surge may arise only if the value of Xsync lies in a proper interval, hence,
if the coupling is switched on at the right time. Xsync should be both small enough
so that a significant difference between S1 and S2 can occur to create the first bump,
and large enough so that S1 and S2 can have the time to resynchronize thanks to the
coupling and climb up along the left branch of f(x1) and f(x2) respectively, as the
second bump is built (see Figure 3.4 where α1 and α2 are kept constant while Xsync

takes different values).
In the case of constant coupling, the effect of the coupling strengths is illustrated

in Figure 3.6 (left panel), from which we can see that α1 and α2 should be nonidentical
and the condition α1 < α2 should be satisfied for any appropriate Xsync value. The
latter condition is required to force y2(t) to decrease steeply (by moving down along
the left branch of f(x2)) and catch up S1 within a sufficiently narrow time interval. On
the contrary, if α1 ≥ α2, S1 increases and catches up S2 quite rapidly, and consequently
both secretors go on climbing up simultaneously along f(x1) and f(x2), which results
in a single-bump surge.

In the case of dynamic coupling, in addition to the effect of Xsync (see Figure 3.5),
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Figure 3.8: Bump ordering and surge amplitude in the case of dynamic coupling, for
different values of Xsync, α̂1, α̂2.

the generation of a camel surge is facilitated by the dependency on the outputs yout
1 (t)

and yout
2 (t), which makes variables yi come closer to each other more easily, since the

relation αi < α̂i y
out
i is preserved during the surge (in our parameter range). The range

of α̂1, α̂2 and Xsync values suitable for a camel surge is thus larger. As can be seen in
Figure 3.6 (right panel), the α̂1 < α̂2 condition holds for Xsync = 1.9, 2.0, or 2.1, yet a
camel surge can occur for α̂1 ≥ α̂2 if for instance Xsync = 1.8. Indeed, the asymmetry
in the coupling, which is essential to generate a camel surge, persists even if α̂1 = α̂2,
due to the multiplication with yout

i as long as yout
1 6= yout

2 . Note that the ranges of
both (α1, α2) and (α̂1, α̂2) values compatible with a camel surge get narrower as Xsync

increases.

a Influence of Xsync and coupling strengths on the surge shaping

The shape of the surge, and especially the rank of the higher bump, can be determined
according to the values of Xsync and coupling strengths.

In the case of constant coupling (3.2.8), the second bump is the higher if the
activation occurs early in the surge, with Xsync values such that Xsync > 1.95. When
the coupling gets activated before the difference between y1 and y2 has become too
high, the secretors move up simultaneously along the left branch of f(x1) and f(x2) for
a long enough time. If the activation occurs late in the surge, with Xsync values such
that as Xsync < 1.8, the motions of the secretors are first independent, which generates
the first bump, and then the duration of the simultaneous motions along f(x1) and
f(x2) is too short for the second bump to overcome the first one. For intermediate
Xsync values, the relation between α1 and α2 tunes the rank of the greater bump rather
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finely. For instance, we have observed numerically that an approximate ratio such as
α1
α2

≈ 0.25 for Xsync = 1.9 acts as a threshold to determine the order of the bumps:
α1
α2
< 0.25 leads to a higher first bump due to a quick and sharp decrease in y2, whereas

the ratio α1
α2
> 0.25 allows S1 to catch up S2 and build a higher second bump.

The rank of the bump with the greater amplitude can also be reversed depending
on the values Xsync, for a same combination of coupling strengths α1 and α2. In
the center panels of Figure 3.7, we can see that secretors coupled with α1 = 2 and
α2 = 8.5 lead to two distinct bumps with similar amplitudes for Xsync = 1.9, whereas
the first bump is lower than the second for Xsync = 2. Alternatively, changing one of
the coupling strengths, as in the case of the leftmost and center left panels of Figure
3.7, alters the order of the highest bump.

In the case of dynamic coupling, the order of the higher bump is also determined by
the values of Xsync and the coupling strengths’ ratio, k = α̂1

α̂2
. Panel (b) of Figure 3.8

illustrates what happens for 3 values of α̂2 when we keep Xsync = 1.8 and α̂1 = 0.1.
Increasing the value of α̂2 from α̂2 = 0; a camel surge is obtained with α̂2 = 0.1,
the second bump is the highest until α̂2 = 0.18, for which the amplitudes of both
bumps are similar, and finally the first bump becomes the highest for α̂2 > 0.18.
The surge shape is also affected by the activation threshold Xsync and by the slope
ρ of the activation function (3.2.7) (a first bump occurs more easily as the slope gets
steeper). For instance, with α̂1 = 0.1 and α̂2 = 0.18, the highest bump is the first
when Xsync = 1.7, while when Xsync = 1.8 both bumps have a comparable amplitude.

Due to the dimension and highly nonlinear character of the 6D model, it is very
difficult to go beyond a numerical study of the surge features. In the next section, we
nevertheless derive more analytical expressions to describe the time of occurrence of
each surge bump with respect to the dynamics of X(t).

b Timing of the first and second bumps

Besides determining the ordering of the bumps, we are also interested in assessing a
priori the times of occurrence of each bump. There is a very simple way to assess the
time of the first bump, t1st bump, since it almost coincides with the time of activation
of the coupling, tsync, as can be checked on Figures 3.4 and 3.5. Indeed, the camel
surge is shaped by a local minimum in z(t) that clearly separates the bumps. This
minimum is caused by the drop in z(t) following the activation, which itself is due to
the decrease in the output variable yi in one of the oscillators which is ahead of the
other (yi > yj).

As a result, the value of t1st bump can be controlled by tuning the value of the
activation threshold, Xsync, hence of tsync. To do so, we look for a tractable expression
of X(t) during the surge regime, from (3.2.2e)-(3.2.2f). At that time, (X,Y ) follows
the slowest time scale and the current point (X,Y ) remains in an O(δ) neighborhood
of the g(X) cubic. Noting Y = hδ(X), where (X, δ) 7→ hδ is an analytic function on
] − ∞, γ[×R

∗
+ and h0(X) = g(X), we get as a reduced system Ẏ = Ẋh′

δ(X), where
h′

δ(X) = g′(X) +O(δ):

Ẋ =
X + b1(g(X) +O(δ)) + b2

g′(X) +O(δ)
.
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In the limit δ = 0, X(t) is the solution of

∫

dt =
∫

g′(X)
X + b1g(X) + b2

dX =
∫

3µ3X
2 + µ1

X + b1(µ3X3 + µ1X) + b2
dX (3.3.1)

This integral can not be computed explicitly because of the nonlinearity. In order
to obtain a more tractable formula for Xsync, we linearize the nonlinear expression
g(X) = (µ3X

3 + µ1X) on the right branch, between the points (Xmax, g(Xmax)) and
(Xsync, g(Xsync)), to get a linear approximation:

g∗(X) = PX +R,

where P = (µ3(X2
max + XmaxXsync + X2

sync) + µ1) and R = −µ3XmaxXsync(Xmax +
Xsync). Substituting g∗(X) to g(x) in (3.3.1), we finally obtain:

tsync =
∫ Xsycn

Xmax

P

X + b1(PX +R) + b2
dX (3.3.2)

=
P

1 + b1P
log((1 + b1P )X(t) + b1R+ b2)|Xsycn

Xmax
,

Xsync =
(1 + b1P + b1R+ b2)Xmax exp( (1+b1P )

P
tsync) − (b1R+ b2)

1 + b1P
.

The occurrence of the second bump t2nd bump can also be simply assessed as the
time when variable X jump leftwards (phase-4 in panel (a) of Figure 3.1), which occurs
approximately for X(t = tγ) = γ. A similar approximate expression as (3.3.2) for tsync

cannot be derived for tγ , since extending the upper bound of integral (3.3.1) leads to
too inaccurate estimations. Yet we can note that the value of tγ only depends on the
parameters entering system (3.2.2e)-(3.2.2f), and is not affected by the coupling terms.

3.3.2 Link between the camel surge and desynchronization during the pul-
satile phase

The properties of the synchronous solutions depend on the differences between the
intrinsic frequencies, coupling functions and coupling strengths. The difference in fre-
quencies as well as the changes in individual frequencies is crucial in the dynamics
of the 6D system. The series of IPIi differ from oscillator S1 to oscillator S2, even
in the uncoupled case, and in addition the shift in the IPIi values change with X(t).
At the beginning of the pulsatile regime, the frequency difference is small enough
to preserve synchronized pulses for a while, even with very small coupling strengths.
As X(t) increases, it eventually reaches a given value from which the effect of cou-
pling is eventually overcome by the increasing frequency difference, and the secre-
tors desynchronize. We note this critical value of X as the desynchronization value,
X6D

desync = X(t6D
desycn), where t6D

desycn is the desynchronization time (computed from the
beginning of the current pulsatile regime). Figure 3.9 illustrates the effect of frequency
difference on desynchronization during the pulsatile regime in the case of constant cou-
pling (α1 = α2 = 0.1). After a transient regime where the order of spiking is reversed
several times, one oscillator gets ahead of the other. For a while, the series of both
pulse widths IPIi in the coupled oscillators remain enveloped by their counterparts in
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Figure 3.9: Frequency difference and desynchronization. Series of pulse widths, PWi,
(Panel (a)) and series of IPIi (Panel (b)) in uncoupled (solid lines) and coupled (dashed
lines) secretors. Panel (c): differences in the onset times of pulses, normalized by the
pulse width ((t1 − t2)/PW2). Panel (d): differences in the onset times of pulses,
normalized by the IPI ((t1 − t2)/IPI2). Pink dashed lines help to locate the desyn-
chronization time. Depending on the coupling strengths, the order of spiking can be
transiently reversed several times, and then one the oscillators (S2 here) gets ahead of
the other. Panel (e): global output z(t) for α1 = α2 = 0.1 during the pulsatile regime.

uncoupled oscillators, and they are almost superimposed, meaning that the frequency
difference is attenuated in the coupled oscillators. Close to the desynchronization time,
(t6D

desycn = 14.7), the IPIis of coupled systems get out of the envelope.
The pattern followed by PW1 during the pulsatile regime can be explained as

following: after the transient response, S2 is ahead of S1. With the effect of the (x2−x1)
difference, S2 slows down, and consequently widens PW2 compared the uncoupled case.
On the other hand, the (x1−x2) difference accelerates S1 and narrows PW1. Especially
when S2 undergoes a leftward jump, the steep increase in the (x1−x2) difference results
a sharp peak in the pulse of S1.

For small coupling strengths, the effect of the frequency difference is similar with
constant or dynamic coupling, yet the associated surge patterns are quite different, as
illustrated in Figure 3.10. In the constant coupling case, systems coupled with small
αi values do not generate a camel surge, yet, they can undergo desynchronization. On
the contrary, systems coupled with strong αi values can generate a camel surge, yet
they do not undergo desynchronization. In contrast, in the dynamic coupling case, the
systems both generate a camel surge and undergo desynchronization.

In Section 4, we will focus on assessing the values of X6D
desync and t6D

desync in the
case of dynamic coupling. Since this coupling involves both asymmetric and nonlinear
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Figure 3.10: Signal z(t) for Xsync = 2. Panel (a): constant coupling with small
coupling strengths α1 = 0.02, α2 = 1; there is no camel surge and the oscillators get
desynchronized at the end of the pulsatile regime. Panel (b): constant coupling with
strong coupling strengths α1 = 2, α2 = 10: a camel surge occurs and the oscillators
remain synchronized all along the pulsatile regime. Panel (c): dynamic coupling with
small coupling strengths α̂1 = 0.02, α̂2 = 0.1: a camel surge occurs and the oscillators
get desynchronized at the end of the pulsatile regime.

coupling terms, we cannot use standard tools and we introduce asymptotic tools in the
next section.

3.4 Asymptotic tools for assessing the desynchronization time

in the case of dynamic coupling

The time during which pulses remain synchronized depends on the strength of the
coupling and increases as both the coupling strengths and their ratio, k = α̂1

α̂2
, increase

(Figure 3.11). In this section, we introduce two different asymptotic approaches, one
based on a 4D quasi-static approximation, and the other based on geometric consid-
erations, to assess X6D

desync and t6D
desync .

For the 4D quasi-static approach, we take advantage of the timescale separation
of the 6D slow-fast system (3.2.2). During the pulsatile regime, X(t) ∈ [Xmin,−γ]
(see phase-1 in Figure 3.1) and (X,Y ) follows the left branch of g(X) with the slowest
timescale, O(1), while xi(t) and yi(t) change at speeds O(εδ) and O(δ), respectively.
Since the change in X(t) is very slow compared to the motion of (xi, yi), we can freeze
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X(t) as a constant and consider it as a parameter in the following system:

εẋ1 = −y1 + f(x1), (3.4.1)

ẏ1 = a0x1 + a1y1 + a
(1)
2 + c(1)X + α̂1 y

out
1 (x1 − x2),

εẋ2 = −y2 + f(x2),

ẏ2 = a0x2 + a1y2 + a
(2)
2 + c(2)X + α̂2 y

out
2 (x2 − x1)

For fixed values of α̂1,and α̂2, we first simulate system (3.4.1) with X in the range
[Xmin,−γ] with a |0.00125| resolution in X to find for which value, denoted by X4D

desync,
the synchronized pulses disappear. We then deduce the desynchronization time t4D

desync,
such that X4D

desync = X(t4D
desync), from the simulation of (3.2.2e)-(3.2.2f).

The geometric approach is based on our definition of synchronization. The secretors
interact via variables yi, so that the coupling terms directly affect the locations of the
yi-nullclines. Assume that both S1 and S2 are on the right branch of the xi-nullclines
and S2 is ahead (x2 < x1, y2 > y1). The coupling may lead to a recurrent bifurcation in
S2 according to the following scenario: when the coupling is switched on, the unstable
equilibrium point (x∗

2, y
∗
2) lying on the middle branch of f(x2) moves rightwards and

crosses the upper fold. Then, a quasi-stationary equilibrium point appears on the right
branch of f(x2) and slows down the motion of (x2(t), y2(t)), since

(a0x2 + a1y2 + a
(2)
2 + c(2)X) > (a0x2 + a1y2 + a

(2)
2 + c(2)X + α̂2 y

out
2 (x2 − x1))
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with α̂2 y
out
2 (x2 − x1) < 0. Once the (x2 − x1) difference starts to decrease, the quasi-

equilibrium (x∗
2, y

∗
2) moves leftwards, crosses the upper fold again and goes back to the

middle branch, so that a relaxation limit cycle reappears. This sequence occurs under
the condition that a quasi-equilibrium point, (x∗

2, y
∗
2), appears on the right branch when

the coupling is switched on, which slows down the motion of S2 and delays the time
when it reaches the upper fold and undergoes the leftwards jump. A synchronized pulse
can thus occur if y1 reaches yT H before the leftwards jump of S2. Such a condition can
be guaranteed if the quasi-stationary point (x∗

2, y
∗
2) has not yet crossed the upper fold

of the x2-nullcline, (xf+ , f(xf+)), at the time when (x1, y1) = (xT H , yT H) with yT H =
f(xT H), xT H > 0. This assumption can be expressed from identifying (x∗

2, y
∗
2) with

(xf+ , f(xf+)), from which we get the maximal X value compatible with synchronized
pulses:

Xsing
desync =

−f(xf+)(a1 + α̂2(xf+ − xT H)) − a0xf+ − a
(2)
2

c(2)
. (3.4.2)

Note that Xsing
desync only depends on α̂2. As in the 4D approach, the corresponding

desynchronization time tsing
desync, such that Xsing

desync = X(tsing
desync) is computed from the

simulation of (3.2.2e)-(3.2.2f).
Figure 3.12 allows one to compare the desynchronization values and corresponding

desynchronization times obtained with different approaches, for several pairs of α̂1 and
α̂2. The values obtained with the 4D approach match well those obtained from the
simulation of (3.2.2) and the accuracy of the approximation increases with α̂2 and
k. The geometric approach leads to poorer results, since the assessed values of both
Xsing

desync and tsing
desync clearly underestimate the proper values. The effect of α̂2 in the

geometric approach is contrasted: the error in tsing
desync values diminishes as α̂2 increases,

whereas the error in Xsing
desync increases. This difference is due to the fact that the change

in X(t) becomes faster as X(t) approaches −γ, so that a small time step results in a
greater change in X(t) than when X(t) is far from the left fold.

Even if there is some discrepancy with the simulation of the 6D model, the values
assessed by these approaches, especially with the 4D quasi-static approach, can be
used as an initial guess to select the parameter values given a priori specifications on
the time of desynchronization, as we will comment further on in the next session.

3.5 Gathering information on camel surge and desynchroniza-

tion

From the previous sections, we know that we need to make use of a nonlinear and
asymmetric coupling to guarantee the proper qualitative sequence in the 6D secretion
model (3.2.2). We also have means of finding appropriate parameter values subject to
quantitative specifications, such as the rank of the higher bump, the bump occurrence
times, and the desynchronization time. In this section, we combine these information
with the results exposed in [3] dealing with the quantitative study of the 4D model
(1.1.1) and allowing one to set other features such as the relative duration and ampli-
tude of the surge with respect to the pulsatile regime, and the pulse frequency increase.
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Figure 3.12: Assessment of the desynchronization time. Relative duration of synchro-
nization in the pulsatile regime (t6D

desync/Tpulsatile, Panel(a)) and associated values of
Xdesync (Panel (b)) observed by numerical simulations (solid lines) or assessed by the
4D approximation (dotted-dashed lines) or nullcline-based approximation (solid blue
lines), as a function of coupling strength α̂2 and for different ratios k = α̂1/α̂2. Orange
lines: k = 0.1, purple lines: k = 0.25, green lines: k = 0.50, cyan lines: k = 0.75,
magenta lines: k = 1.

More specifically, we describe how to select proper parameter values so as to mimic
specific experimental data sets.

The shape of the GnRH surge can be examined from time series of GnRH levels
assessed through direct sampling into the pituitary portal blood, thanks to a surgical
technique which has been settled in the ovine species. Several instances of camel
surges are documented in the literature, either on individual time series [82, 83, 86]
or on average time series pooling data sets obtained from several ewes [84, 85]. In
most cases, the first bump (which coincides with the LH surge on the pituitary level)
is higher or almost equal to the second one. We have picked up two specific instances
of individual camel surges.

The first instance corresponds to the bottommost left panel of Figure 4 in [82]
(see the schematic drawing in panel (a) of Figure 3.13). After normalizing the surge
duration (≈ 12 h) to one time unit, we can read from the data the bump occurrence
times: t1st bump ≈ 0.3 and t2nd bump ≈ 0.66, and the ratio of amplitude in the second
bump with respect to the first bump: 0.4. Since the experimental time series is focused
on the surge period and does not encompass a large enough part of the pulsatile regime
to assess the desynchronization time accurately, we just intend to reproduce the camel
surge, and we can do so using either the constant or dynamic coupling function.

We first choose S2 as the secretor that will generates the highest bump, whose
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Figure 3.13: Mimicking an experimental camel surge. Panel (a) Schematic drawing of
the experimental data, inspired from Figure 4 in [82]. Panel (b) Surge shape obtained
from uncoupled secretors with c(1) = 0.29, a(1)

2 = 0.4. Panel (b) Surge shape obtained
from constant coupling, with α1 = 5, α2 = 25, Xsync = 2.07, ρ = 40. Panel (d) Surge
shape obtained from dynamic coupling with α̂1 = 0.15, α̂2 = 0.6, Xsync = 2.07, ρ =
40. The time unit on the horizontal axis is rescaled with respect to the whole surge
duration. In panels (b) to (d), both the global output variable z(t) (yellow curve) and
the individual outputs yout

1 (blue curve) and yout
2 (red curve) are displayed.

amplitude is set by the nominal parameter values in Table 3.1. Since there is a great
contrast in the magnitude of the bumps, we select c(1) = 0.29, a(1)

2 = 0.4 to get a
significantly lower intrinsic surge amplitude in S1. From the constraints imposed on
the bump ranking and amplitude, we get α̂1 < α̂2 and α1 < α2. To match the sharp
increase in the first bump, we set ρ (the slope of the activation function in (3.2.7)) to
a high value (ρ = 40). Finally, we compute the activation value from (3.3.2), which
results in Xsync = 2.07.

Figure 3.13 shows the resulting surge patterns in the case of constant coupling
(Panel (c), with α1 = 5.0 and α2 = 25.0) and dynamic coupling (Panel (d) with
α̂1 = 0.15, α̂2 = 0.6). The dynamic coupling approach leads to a much better quan-
titative match between the experimental and simulated values, with estimated values
t1st bump = 0.3, t2nd bump = 0.72 and an amplitude ratio close to 0.405.

The second instance corresponds to the left panel of Figure 2 in [83] (see the
schematic drawing in panel (a) of Figure 3.14). In addition to the surge period, from
which we can see a reverse pattern with a higher second bump, the time series encom-
passes an almost 30h long pre-surge period, from which we can infer a desynchroniza-
tion duration of 16h (the complete time window amounting to as long as 48h). After
normalizing again the surge duration (≈ 18h) to one time unit, we can read from the
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data the bump occurrence times: t1st bump ≈ 0.44 and t2nd bump ≈ 0.66, and the ampli-
tude ratio : ≈ 1.15 (greater than 1 since the second bump is higher), and, following
[3] and [4] to set the ratio of the duration of the pulsatile regime with respect to the
surge (15.5), we can also get the normalized desynchronization time (0.94).

We derive the corresponding parameter set in the framework of dynamic coupling,
since we cope here with both the camel surge and desynchronization issues. The long
synchronized duration added to the amplitude ratio require slightly different, yet quite
strong coupling strengths (as can be seen on Figure 3.12). We thus set as initial guess
α̂1 = 0.5, α̂2 = 0.7, compute Xsync = 1.92 from (3.3.2), keep a steep slope ρ = 40 and
combine these values with the nominal values of the other parameters (Table 3.1). The
resulting z(t) output is displayed on Panel (c) of Figure 3.14. The bump occurrence
times are met properly (t1st bump = 0.44, t2nd bump = 0.67), but there remains some
discrepancy between the simulated and raw data as far as the desynchronization time
(tdesync = 0.67) and amplitude of the surge are concerned. The maximal amplitude
overcomes 100, which it is twice greater than the experimental maximum. In addition,
the contrast between the amplitudes of the bumps is not pronounced enough. To
improve the fit, we cannot just tune separately the surge amplitude since this would
alter too much the duration of the pulsatile regime with respect to the surge duration.
As a consequence, in addition to decreasing the surge amplitudes by taking c(1) = 0.35,
a

(1)
2 = 0.325, c(2) = 0.502, a(2)

2 = 0.6805, we have to alter the nominal parameter values
of the regulator in order to preserve the balance between the durations of the pulsatile
regime and surge. This amounts to controlling the time during which X(t) < 0 along
the relaxation cycle, as described in [3], and to lengthening it with a slightly decreased
b2 value (b2 = 1.503).

The effect of the duty cycle (the proportion of a cycle period in which the oscillators
remains active), as well as of frequency and synaptic decay, has been studied exten-
sively in the literature dealing with synaptically coupled relaxation oscillators (see for
instance [94, 95, 43]). We can make an analogy between our dynamic coupling function
and the synaptic coupling functions since in both cases the cycles interact during their
active phase. We have already discussed the effect of the intrinsic frequencies of the
secretors on synchronization. It is worth noting here that the threshold parameter
yT H tunes the duty cycle (the higher yT H , the lower the duty cycle) and it affects
the synchronized duration. Hence, to get closer to the experimental desynchronization
time, we also modify slightly the value of yT H and set it to yT H = 1.392.

Endowed with these modified values of b2 and yT H , we can further take advantage
of the asymptotic approaches exposed in the former section to select the corresponding
coupling strengths, by going through the following steps:

1. Determine X6D
desync = X(tdesync) by simulating the 6D model with the current

parameter values;

2. Specify the leading oscillator, Si, for X6D
desync and compute an initial guess for α̂i

from the geometric approach (3.4.2);

3. Simulate the 4D model with X = X6D
desync and the guessed α̂i, and determine α̂i

and α̂j more precisely;

4. Update α̂i and α̂j with respect to the surge specifications.
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3.6 Analytic tools for assessing desynchronization time in the

case of constant coupling

As we have discussed in the previous sections, both types of coupling function promote
synchronization in the pulsatile regime, as the secretors follow a relaxation cycle. The
ability of the coupling to synchronize the oscillator activities depends on the coupling
strength, intrinsic properties and pulse frequency. In this section, we consider the
constant coupling function and make use of results from the weakly coupled oscillators
theory to investigate systematically the basic mechanisms leading to desynchronization.
We apply the constant coupling in a parameter configuration which is compatible
with desynchronization but not a camel surge (as in Panel (a) of Figure 3.10, see
also the secretion pattern along a whole ovarian cycle in Figure 3.15). Then, we
establish a link between period doubling bifurcations occurring in the presence of
both weak (constant) coupling and weak heterogeneity, and the desynchronization
time in the original 6D model. It appears that both weakly coupled oscillator theory
and bifurcation analysis using numerical continuation provide reasonable estimations
of X6D

desync values of constantly coupled systems yielding outputs with a single surge
(Figure 3.15). Note that the use of the weakly coupled oscillator theory and bifurcation
analysis are quite restricted in the dynamic coupling framework due to the asymmetric
and nonlinear characteristic of this setting (see Section 7 for a detailed discussion).

3.6.1 Application of weakly coupled oscillators theory to symmetric con-
stant coupling

Phase equations and the interaction function have been studied extensively in the
framework of weakly coupled oscillator theory [49, 48]. The change in the phase dif-
ference φ along one period, under the assumption of weak coupling and weak hetero-
geneity, can be expressed as:

dφ

dt
= ∆ω + αG(φ) (3.6.1)

where ∆ω is the weak heterogeneity in the intrinsic frequencies, α is the weak coupling
strength and G(φ) is the “cell pair coupling function” or more generally G-function.
Briefly, a stationary phase difference φ∗ defined by −∆ω = αG(φ∗) is stable if G′(φ∗) <
0 (See Appendix 3.8 for the G-function).

In order to derive phase equations in the pulsatile regime, we use the 4D reduction
of the 6D model (similarly as in Section 4 to derive system (3.4.1)) with constant
coupling:

εẋ1 = −y1 + f(x1), (3.6.2)

ẏ1 = a0x1 + a1y1 + a
(1)
2 + c(1)X + α1(x1 − x2),

εẋ2 = −y2 + f(x2),

ẏ2 = a0x2 + a1y2 + a
(2)
2 + c(2)X + α2(x2 − x1).

If tpulse,i = t∗i − ti is the constant pulse width (since X is a parameter) generated by
the i-th oscillator in system (3.6.2) and Ti(= IPIi) is the period, then φpulse,i = tpulse,i

Ti
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refers to the phase window in which the pulse appears (duty cycle). Phase φpulse,i can
be approximated with an O(ε) error by φ#

pulse,i computed in the limit ε = 0.
Let us assume that (3.6.1) has a synchronous solution with phase difference φ =

φ∗ > 0. To obtain synchronized (i.e. overlapped) pulses we need

φ∗ < φ#
pulse, (3.6.3)

meaning that the steady phase difference φ∗ is less than the maximum pulse width

φ#
pulse = max(φ#

pulse,i, φ
#
pulse,j).

Since φ#
pulse is the upper limit of the phase differences suitable for a synchronized

pulse, ∆ω#
pulse = −αG(φ#

pulse) is the limiting frequency difference giving φ#
pulse phase-

locked solutions. We can link condition (3.6.3) with the intrinsic frequency difference
as follows:

|∆ω#
pulse| > |∆ω∗|

given that αG(φ∗) = −∆ω∗. Since the intrinsic frequency and pulse width of (3.6.2)
depend on parameter X, conditions above can be re-expressed as:

φ∗(X) < φ#
pulse(X),

|∆ω#
pulse(X)| > |∆ω∗(X)|.

To compute the heterogeneity term ∆ω explicitly by following [56] and [49] (see
Appendix 3.8 ), equation (3.6.2) is rewritten as:

S1 :

[

εẋ1

ẏ1

]

=

[

−y1 + f(x1)
a0x1 + a1y1

]

+

[

0
a

(1)
2 +a

(2)
2

2 + a
(1)
2 −a

(2)
2

2 + c(1)+c(2)

2 X + c(1)−c(2)

2 X

]

+

[

0
α(x1 − x2)

]

,

S2 :

[

εẋ2

ẏ2

]

=

[

−y2 + f(x2)
a0x2 + a1y2

]

+

[

0
a

(1)
2 +a

(2)
2

2 − a
(1)
2 −a

(2)
2

2 + c(1)+c(2)

2 X − c(1)−c(2)

2 X

]

+

[

0
α(x2 − x1)

]

.

Noting

F (x, y) =

[

−y1 + f(x1)
a0x1 + a1y1

]

+

[

0
a

(1)
2 +a

(2)
2

2 + c(1)+c(2)

2 X

]

,

∆(x, y) =

[

0
(a(1)

2 − a
(2)
2 ) + (c(1) − c(2))X

]

,

symmetrically coupled S1 and S2 dynamics reads:

Ṡ1 = F (x, y) +
∆(x, y)

2
+ α

[

0
(x1 − x2)

]

, (3.6.4)

Ṡ2 = F (x, y) − ∆(x, y)
2

+ α

[

0
(x2 − x1)

]

.
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Figure 3.16: G-function (3.6.1) for α1 = α2 = α = 0.1. Red line: G(∆ω∗). Yellow line:
G(∆ω#

pulse).

Noting that the adjoint solution is given by Z(t), the phase difference dynamics read:

dφ

dt
= ∆ω + αG(φ) = ∆(x, y)

1
T

∫ T

0
Z(t̃)dt̃+ αG(φ).

Figure 3.16 shows how the level of heterogeneity, which increases with X, alters
the phase-locking properties of the subsystems (3.6.4) and results in the loss of syn-
chronized pulses defined in (3.2.5). For instance, while (x1, y1) and (x2, y2) oscillate
with a phase difference φ∗ = 0.18 for X = −2.05, synchronized pulses are not visible
in the global output of system (3.6.2) (Figure 3.17 top right panel).

The weakly coupled oscillator theory applied to the quasi-static 4D approximation
in the case of constant coupling provides us with a reasonable approximation of the
desynchronization value for symmetrically coupled secretors, in a parameter configu-
ration generating a single bump surge (Figure 3.15-a).

In our original framework, we need nonidentical oscillators and asymmetric cou-
pling strengths to reproduce a camel surge. In such a framework the G-function is
not expected to be valid any more. Yet, in [57] and [61], the authors have shown
that heterogeneity combined with stronger coupling can lead to period doubling (PD)
bifurcations. Similar bifurcations have also been studied in e. g. [96, 97] in relaxation
cycles subject to periodic perturbation. Hence, we find it worth investigating the pos-
sible bifurcations affecting the phase difference as a function of X, which may affect
in turn the global output of the 4D and 6D systems.
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Figure 3.17: Outputs (upper panels) of (3.6.2) and synchronized pulses (3.2.5) (lower
panels) for X = −2.15 (left panels) and X = −2.05 (right panels).

3.6.2 Effect of heterogeneity in asymmetric constant coupling

According to standard results, the analysis of the G-function reveals that out-of-phase
synchronization (i.e. φ 6= {0, π}) arises in weakly heterogeneous networks. To give an
insight of a possible bifurcation structure in φ, we re-parameterize some parameters in
system (3.6.2) for the sake of numerical continuation with auto:

a
(1)
2 = a

(2)
2 = a2, c(2) = hc(1), α1 = kα2.

We keep h ≤ 1 to ensure the existence of a relaxation cycle in each uncoupled oscillator
and k < 1 to satisfy the general requirement for obtaining a camel surge, even though
we restrict ourselves to the pulsatile regime and cannot obtain a camel surge with
such weak coupling strengths. The left panel of Figure 3.18 shows PD bifurcations
depending on h in an asymmetrically coupled oscillators and Table 3.2 summarizes
the bifurcation values with some k and α2. We see that increasing heterogeneity
(decreasing h) generates a cascade of PD bifurcations in the coupled system.

We can take the value of X instead of h as the bifurcation parameter ; we fix
different values to h, α2 and k and perform the numerical continuation with respect
to X. The bifurcation values corresponding to the first two or three period doublings
are gathered in Table 3.3. The corresponding bifurcation cascade is illustrated on the
right panel of Figure 3.18. The PD bifurcations occur when the X-induced increase
in the phase difference gets high enough, for instance at φ2T = 0.235 in Figure 3.18.
It appears that XP D, the value X for which the first PD bifurcation occurs in system
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Table 3.2: Values of the bifurcation parameter h corresponding to the first three period
doublings observed in asymmetrically coupled nonidentical oscillators, with fixed X
and coupling strengths. The corresponding bifurcation diagram (φ vs h) is plotted on
the left panel of Figure 3.18.

Bifurcation X α2 h-bifurcation k

2T-per bifurcation -2.3294839376 0.1 0.98599842068 0.1
4T-per bifurcation -2.3294839376 0.1 0.98580725151 0.1
8T-per bifurcation -2.3294839376 0.1 0.98578593371 0.1

(3.6.2), is fairly close to X6D
desync (Table 3.3), the desynchronization time assessed from

numerical simulations.
We can further increase the heterogeneity level by coming back to the nominal

parameter set of Table 3.1, in which a(1)
2 and a(2)

2 take different values, and perform a
new continuation study of the PD cascades with X as the bifurcation parameter. The
results are gathered in Table 3.4 and a specific instance is illustrated in Figure 3.19,
with α1 = 0.01 and α2 = 0.1. The PD cascade starts when the phase difference of
the stable solution has become high enough ; in particular, the transition from stable
T-periodic solutions to 2T-periodic solutions occurs at φ2T (XP D) = 0.183.

In both Figure 3.19 and the right panel of Figure 3.18, the change in φ#
pulse(X)

is superimposed on the bifurcation diagram. We can observe that φ#
pulse(XP D) <

φ2T (XP D), so that the condition to get synchronized pulses is violated at the first PD
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Table 3.3: Values of the bifurcation parameter X corresponding to period doublings
observed in asymmetrically coupled nonidentical oscillators, for different values of with
h and α2 and k = 0.1. X6D

desync values are obtained from the numerical simulations of
the 6D model within the same parameter setting. An example of bifurcation diagram
(φ vs X) is given in the right panel of Figure 3.18

Bifurcation X-PD α2 h X6D
desync

2T-per bifurcation -2.3267594383 0.05 0.9915 −2.324864
4T-per bifurcation -2.3257944812 0.05 0.9915
8T-per bifurcation -2.3256662786 0.05 0.9915

2T-per bifurcation -2.3066259724 0.05 0.995 −2.308406
4T-per bifurcation -2.3060085116 0.05 0.995
8T-per bifurcation -2.3059060617 0.05 0.995

2T-per bifurcation -2.3172488467 0.07 0.99 −2.318249
4T-per bifurcation -2.3164597243 0.07 0.99

2T-per bifurcation -2.2901528327 0.07 0.995 −2.288059
4T-per bifurcation -2.2894907062 0.07 0.995

2T-per bifurcation -2.3004092512 0.09 0.99 −2.30804
4T-per bifurcation -2.2997282056 0.09 0.99
8T-per bifurcation -2.2996274569 0.09 0.99

2T-per bifurcation -2.2748697231 0.09 0.995 −2.266649
4T-per bifurcation -2.2742695134 0.09 0.995
8T-per bifurcation -2.2741717471 0.09 0.995

2T-per bifurcation -2.2925375876 0.1 0.99 −2.300774
4T-per bifurcation -2.2918305299 0.1 0.99
8T-per bifurcation -2.2917254798 0.1 0.99

Table 3.4: X-dependent PD bifurcations in (3.6.2) with the parameter set of Table
3.1, and corresponding X6D

desync values. An example of bifurcation diagram (φ vs X) is
plotted on the right panel of Figure 3.19.

k α2 XP D X6D
desync

0.1 0.05 -2.30245 -2.2966
0.1 -2.2826 -2.2787
0.2 -2.23483 -2.2423
0.3 -2.100 -2.205

0.25 0.05 -2.2956 -2.2742
0.1 -2.26449 -2.2452
0.2 -2.19011 -2.1926

1 0.05 -2.2461199 -2.18727

bifurcation.
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Figure 3.19: Phase difference as a function of X in (3.6.2) with the parameter set
of Table 3.1, and k = 0.1, α2 = 0.1. Yellow line: φ#

pulse(X). See the corresponding
secretion pattern along a whole ovarian cycle in Figure 3.15.

3.7 Discussion

In this chapter, we have reproduced additional features observed experimentally in the
complex secretion pattern of the neurohormone GnRH, namely a two-bump surge and
a desynchronization period occurring before the surge triggering. To do so, we have
based ourselves on former studies dealing with (i) the quantitative analysis of a 4D,
multiple timescale model capturing the main neurosecretory events in GnRH secretion
(alternation between a surge and pulsatile regime, together with a time varying pulse
frequency), on both the qualitative and quantitative grounds [3], and (ii) a recent work
proposing an extended 6D version of this model that was intended to study canard-
induced recurrent (de)synchronization in a framework where biological constraints were
relaxed in Chapter 2.

We have introduced specific choices of coupling functions and performed a nu-
merical study combined with more analytically-based approaches to assess and tune
the quantitative properties of the additional features. Depending on the coupling
strengths, a combination of events can be observed, as long as the coupled systems are
nonidentical and the coupling terms asymmetric. With constant coupling, either the
camel surge (in case of rather strong coupling strengths, see section 2) alone, or desyn-
chronization (in case of weaker coupling strengths, see section 6) alone may occur. We
have rather focused on the dynamic coupling, since both events can occur jointly for
rather moderate coupling strengths.

In both cases, compared to the initial 4D or 6D models, the direct forcing exerted
by the regulatory system (which represents in a compact way the multi-type regulatory
neurons conveying the gonadal steroid signal to the GnRH neurons) is completed with
an indirect term modulating the interaction term between the secreting systems. This
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X-dependent modulation can be further subject to a time varying (state-dependent)
sensitivity of the target systems in the case of dynamic coupling. Interestingly enough,
such a varying sensitivity has already been used in the context of the modeling of
episodic synchronization in individual GnRH neuron activities within a network [79].
Although the model timescale (on the order of the GnRH interpulse interval) in this
latter study differs from that of the model considered here (on the order of an ovarian
cycle), both dynamics share common features such as the excitability of the elementary
systems, the multiple timescale coupling the systems with one another, and the switch
induced by a global control exerted onto the secretory systems. We therefore note that
the alternation between synchronized and desynchronized regimes resulting from time
varying coupling is a key question in both studies.

Inspired from the approach followed in [3], we have intended to delimit proper
parameter sets subject to specific quantitative specifications regarding (i) the timing
and shape of the camel surge, and (ii) the relative duration of the desynchronized state
along the whole ovarian cycle. We have first specified, from the notion of overlapping
of individual pulses generated by each secreting system, how we can assess the level of
synchronization in our neuroendocrine context, and then deployed a strategy to assess
a priori the desynchronization time. This strategy is based on either a 4D quasi-static
approach taking advantage of timescale separations in the 6D model or a geometric
nullcline-based approach. The former is the more accurate, yet it requires numerical
simulations. We have also proposed a simple estimation for the surge timing (and more
specifically for the timing of the first bump) and exhibited numerical relations between
the activation threshold parameter Xsync and the coupling strengths, which participate
in shaping the surge (ranking of the highest bump). Putting all these pieces together,
we have managed to mimic two specific experimental instances of a camel surge, one
strictly limited to the surge period, the other encompassing a long pre-surge period
including a desynchronization period.

In this study, the systems under study are generally beyond the scope of the weakly
coupled oscillator theory. Nevertheless, the situation of constant coupling with sym-
metric weak coupling strengths, in which we can observe the desynchronization process
(in the absence of a camel surge) does not depart much from this framework. Recent
works have attempted to extend this theory to systems with slowly varying parame-
ters [63, 64] and they might be adapted to our own system in future work. We have
also explored, through numerical continuation with auto, the bifurcations induced by
the intrinsic, or X-induced heterogeneity in the phase difference dynamics. We have
observed the interesting result that the bifurcation point corresponding to the first
period doubling provides us with a good approximation of the desynchronization time.

The use of the weakly coupled oscillator theory and numerical continuation are
quite restricted in our dynamic coupling framework. The main requirement of this
theory is the persistence of the limit cycles under coupling, which is not guaranteed for
dynamically coupled secretors which can undergo recurrent bifurcations for large sets
of X and coupling strengths. Yet, if the situation is favorable, the H-function analysis
can predict the loss of X-dependent phase-locked solutions.

The nonlinear characteristics of the dynamic coupling function, combined with the
thresholding of the outputs, restricts the applicability of the numerical continuation. If
the steepness of the output signals is decreased, the loss of stability of the synchronized
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solutions can be detected via PD bifurcations in appropriate settings corresponding
to the 4D quasi-static model. However, it remains difficult to link these bifurcation
points to values of desynchronization times. Detailed investigation of these bifurcation
structures can also be an interesting research track.

Finally, in this work, we have modeled camel surges and pulse desynchronization
by extending both the dimension of the system (and considering subpopulations of
secreting neurons, hence some level of heterogeneity in the GnRH network) and the
impact of the regulatory signal, while keeping the compact modeling approach of the
4D system initially designed on the macroscopic level. Our choices of specification-
oriented coupling functions have not only the advantage of enabling the model to
reproduce additional features of the GnRH secretion, but they also raise interesting
mathematical questions, such as the issue of dynamic bifurcations in coupled bursters,
and give some insight on them.

3.8 Appendix: Weakly coupled heterogenous oscillators

Consider the following system

dXi

dt
= F (Xi) +

∆fi(Xi)
2

+ αI(Xj , Xi)

involving two coupled oscillators,i = {1, 2} and j = 3 − i, with weak heterogeneity
∆fi(Xi)

2 and weak coupling αI(Xj , Xi). In the absence of coupling, homogeneous sys-
tems each follow a limit cycle XLC with T-period. The phase shift from XLC induced
by weak heterogeneity and coupling over a T period is given by

dθj

dt
=

1
T

∫ T

0
Z(t̃)

{

α
[

I(XLC(t̃), XLC(t̃+ θk − θj))
]

+ (−1)j ∆fj(Xj(t̃))
2

}

dt̃(3.8.1)

where Z(t̃) corresponds to the infinitesimal phase response curve (iPRC), solution of
adjoint equation:

dZ(t)
dt

+A(t)TZ(t) = 0

which satisfies a normalization condition Z(t)dXLC(t)
dt

= 1, whereA(t) = DXF (X)|XLC(t)

is the linearization of F (Xj) around the limit cycle XLC .
Given the phase difference between oscillators φ = 1

T
(θk − θj), the interaction

function for the i-th oscillator, Hi(φ) can be extracted from (3.8.1) as

Hi(φ) =
1
T

∫ T

0
Z(t̃)

{[

I(XLC(t̃), XLC(t̃+ θk − θj))
]}

dt̃.

Finally, the phase difference dynamics reads

dφ

dt
= α(Hj(−φ) −Hi(φ)) +

1
T

∫ T

0
Z(t̃)∆fj(Xj(t̃))dt̃ = αG(φ) + ∆wQ.

where Q is the averaged iPRC over the period T and ∆w is the intrinsic frequency
difference.
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Abstract

Synchronization has been studied extensively in the context of weakly coupled oscilla-
tors using the so-called phase response curve (PRC) which measures how a change of
the phase of an oscillator is affected a small perturbation. This approach was linked to
the work of Malkin, and it has been extended to relaxation oscillators. Namely, syn-
chronization conditions were established under the weak coupling assumption, leading
to a criterion for the existence of synchronous solutions of weakly coupled relaxation
oscillators. Previous analysis relies on the fact that the slow nullcline does not inter-
sect the fast nullcline near one of its fold points, where canard solutions can arise. In
the present study we use numerical continuation techniques to solve the adjoint equa-
tions and we show that synchronization properties of canard cycles are different than
those of classical relaxation cycles. In particular, we show that maximal canards sepa-
rates two distinct synchronization regimes: the Hopf regime and the relaxation regime.
Phase plane analysis of slow-fast oscillators undergoing a canard explosion provides an
explanation for this change of synchronization properties across the maximal canard.
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4.1 Introduction

Synchronization is a research topic of its own, which has produced a large body of
knowledge in particular for so-called weakly coupled oscillators [51, 76, 65, 72, 33, 77,
50, 52, 48, 49]. A classical object of interest in this context is the (infinitesimal) phase
response curve or (i)PRC which encodes how a small perturbation affects the phase
of an oscillator when applied all along the associated stable limit cycle solution. The
derivation of the PRC relies on the linearization of the system along the unperturbed
(i.e. uncoupled) cycle and is closely related to the adjoint variational equation. Solu-
tions to the adjoint problem and PRCs give insights on the synchronization properties
of coupled oscillating systems [33, 49] when the coupling strength is small enough.
Such studies are gathered under the name “weakly coupled oscillator theory” [48].
This theory has been linked with earlier studies from Malkin [58, 59] by Izhikevich and
Hoppensteadt in [60, 48]; an explicit proof was given in [98] by connecting it the work
of Roseau [99, 100].

Weakly coupled oscillator theory has been used in many studies, especially to inves-
tigate the effects of slowly-varying parameters, underlying bifurcations and coupling
strengths on collective dynamics. In one of the pioneer papers on this topic [72], out-of-
phase (OP) synchronization (intermediate modes between in-phase (IP) and anti-phase
(AP) solutions) was shown to emerge from a pitchfork bifurcation in the phase differ-
ence as a function of the coupling parameter. A similar bifurcation structure has been
found in type-I spiking neuron models, see e.g. [101, 102, 52]. Another recent study
related to type-I membranes [103] focused on the transition from IP to OP synchronous
states in chains of Wang-Buszaki models coupled by gap junctions. This transition was
investigated both analytically and numerically as a function of intrinsic system proper-
ties by using phase models and interaction function. In the framework of type-II neuron
models, the impact of the Hopf bifurcation on the possible synchronization patterns
has been studied, e.g., in [96, 104, 105, 51, 50]. Furthermore, variations of the PRC
across a Hopf bifurcation were analyzed in cortical excitatory neuron models in [55].
Qualitative changes in the behavior of the PRC were also looked at directly from ex-
perimental data in [106] and [107] where the interaction functions were analyzed during
the transition from Hopf and relaxation oscillators. The existence of different synchro-
nization modes and of bistable regions in weakly coupled slow-fast systems interacting
via gap junctions has been underlined in [108, 109, 110, 111, 112, 102, 71, 46, 113, 56].

Slow-fast oscillators are an important source of complicated dynamics, in particular
in relation to the canard phenomenon (detailed in Chapter I). In (weakly) coupled
slow-fast systems, the effect of canard solutions has been considered in several aspects
such as the formation of clusters, synchrony, phase and amplitude dynamics [39, 40,
41, 27, 42]. In Chapter 2, we have investigated canard-mediated variability in coupled
phantom bursting systems addressing issues on synchronization and desynchronization.

In this chapter we extend previous results on adjoint solutions and weakly coupled
slow-fast oscillators to the case of canard cycles. Analytical formulations of adjoints
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and interaction functions were studied in [54], which also provides a review of the be-
havior near bifurcation points. In the framework of relaxation cycles, an expression for
the adjoints could be obtained in [60] by taking the singular limit approximation, con-
sidering the attracting branches of the critical manifold in place of the slow segments of
relaxation cycles, and instantaneous jumps in place of fast segments. The consequence
of using this setup is that the canard regime has not been dealt with. In the present
study, we propose an alternative numerical strategy, based on numerical continuation,
for the computation of solutions to the adjoint variational equation associated with
planar slow-fast systems along a canard explosion.
In parameter space, canards organize the transition between the Hopf regime and the
relaxation regime. Therefore we may expect to link the synchronous behavior between
these two families [106, 107] by computing adjoints for canard solutions. When per-
forming such computations, we observe a qualitative change in the sign and shape of
the adjoint (or equivalently, of the iPRC) near the maximal canard (the cycle with the
longest repelling segment). This phenomenon occurs in both canard-explosive systems
that we consider here, namely the van der Pol (VDP) oscillator and a two-dimensional
(2D) reduction of the Hodgkin-Huxley (HH) model. We propose an explanation to
this qualitative change through the period function of the canard family which has a
non-monotonic behavior across the explosion, namely, it increases during the headless-
canard regime and it decreases during the canard-with-head regime. Similar depen-
dence of the frequency upon a bifurcation parameter has been studied in [114] in the
context of “escape-release” mechanisms of central patterns generators. The authors
of [115] have then linked this dependency to transitions in PRCs and phase-locking
properties occurring in the low-frequency region.

In the second half of this work, we explore the dependency of the phase difference
between the two weakly coupled identical VDP systems on system parameters. By
investigating effect of the main parameter displaying the canard explosion, we observe
that the transition in synchronization properties occurring at the maximal canard of
the coupled system manifests itself as the AP synchronization state loses its stability
through a pitchfork bifurcation in the phase difference. Furthermore, we reveal the
presence of 2nT -periodic synchronous states in the maximal canard neighborhood due
to the presence of multiple period-doubling (PD) bifurcations. Finally, we consider
the effect of the coupling strength on the synchronous states in the maximal canard
regime. We give numerical evidence of the presence of PD cascades not predicted by
the theory of weakly coupled oscillators (which is valid for moderate coupling strengths
in various systems [52, 116]) but that can be justified using phase plane analysis of the
single canard oscillators under scrutiny. We also propose in an analytical formula to
compute adjoints associated with limit cycles of slow-fast systems in Liénard systems,
which gives satisfactory yet improvable results.

This chapter is organized as follows. In Section 4.2, we introduce the main objects
required to compute adjoint solutions along a limit cycle and we present our numerical
strategy to do so along families of canard cycles. In Section 4.3, we analyze numerically
the effect of the main parameter c on the synchronous states of the coupled VDP system
and report a qualitative change occurring near the maximal canard solution. We then
explain this change by invoking the properties of the period function associated with
such a canard-explosive branch of limit cycles. In Section 4.4, we focus on the effect of
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the coupling strength parameter α on the synchronous structure in the coupled VDP
system near a maximal canard. After concluding and proposing a few perspectives
to this work, we present in Appendix 4.6 an analytical formula to compute adjoint
solutions for the type of systems we investigated here and test this formula numerically.

4.2 Computations of adjoint solutions along a family of cycles

Canard explosions occur in slow-fast systems in a very narrow parameter range which
is exponentially small in the timescale separation parameter 0 < ε ≪ 1. Naturally,
this parameter range gets narrower as ε tends to 0, and limits the usage of classical
tools to compute family of canard orbits and their adjoint solutions. Thus, in addition
to the existing methods, such as backward integration, we propose an alternative
strategy based on numerical continuation and performed using the software package
auto [117]. We formulate a periodic continuation problem which allows us to compute
rapidly and reliably a family of cycles with associated non-trivial periodic solution of
the adjoint equation. Note that a boundary-value problem (BVP) approach has been
proposed in [118], outside a continuation setup given that the system was with reset.
Here, for simplicity, we avoid dealing specifically with boundary conditions and opt
for the most natural periodic setting of this numerical problem. An extension of the
analytic approach for solving adjoint variational equations in slow-fast systems is given
in Appendix 4.6.

4.2.1 Numerical continuation alternative for adjoints

The numerical continuation approach proposed in the present work allows us to com-
pute limit cycles and associated adjoint solutions along a canard-explosive branch. One
of the main advantages of the continuation is the possibility to find solutions in the
limit ε → 0. We extend the continuation setting of the original system (1.3.1), solved
in order to find limit cycles, by including equation (1.3.2) (once written in first-order
form) to find periodic solutions of the adjoint problem along these cycles. In order
to compute a limit cycle γ together with a periodic solution of the associated adjoint
problem along γ, one needs to solve the following system of equations

Ẋ = F (X),

Ż = −DXF (X)T
|γ Z.

(4.2.1)

Our numerical continuation strategy requires two steps: first, to find a non-trivial
solution of the adjoint problem along the (initial) cycle γ, and second, to follow the
extended system (4.2.1) (as a periodic continuation problem) in a bifurcation parameter
in order to find a branch of such solutions. In the following section we describe these
steps by considering two examples of coupled slow-fast systems in the canard regime,
namely, the VDP system and and a two-dimensional reduction of the HH model for
action potential generation whose slow-fast structure and associated canard dynamics
were analyzed in [23].
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Figure 4.1: Top left panel: Canard orbits of the VDP system in the phase plane,
for ε = 0.1. Panels 1-7: time profile of the first component of the adjoint solution
associated with each canard cycle shown in the phase plane (together with the critical
manifold S0 := {y= f(x)}), keeping the same color coding with the cycles in the top
left panel. A qualitative change in the adjoint solution occurs in between Orbit 4 and
Orbit 5, corresponding to the passage through the maximal canard cycle.

a Adjoint solutions of the VDP system

In the case of the VDP system, the extended continuation setting (4.2.1) reads

x′ = y − f(x)

y′ = ε(c− x)

z′
1 = f ′(γ1(t))z1 + εz2

z′
2 = −z1,

(4.2.2)

with f(x) = x3/3 − x, 0 < ε ≪ 1 and c is the bifurcation parameter displaying the
canard explosion. That is, we consider the original VDP system with the adjoint
equation appended to it. As hinted at above, the continuation procedure is divided
into two steps.
In the first step, we initialize system (4.2.2) with the limit cycle γ for the first two
equations, and the trivial solution for the remaining two (which is trivially periodic).
We need to obtain a non-trivial periodic solution of the adjoint equation, and we can
find this solution by continuing system (4.2.2) in an extra parameter. Indeed, given
that the trivial solution to the adjoint equation exists for all values of parameters c and
ε, by continuing in any of these we can only hope to find a branch point and switch
at this bifurcation to the non-trivial solution branch. An alternative is to introduce a
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dummy parameter µ, such that system (4.2.2) becomes

x′ = y − f(x)

y′ = ε(c− x)

z′
1 = f ′(γ1(t))z1 + εz2

z′
2 = −z1 + µ,

(4.2.3)

and to continue the starting solution in µ along a very small interval, as small as pos-
sible. It turns out that we can compute a branch in µ and stop at µ = 10−8, which
is indeed very small but sufficient to find a non-trivial solution of the extended prob-
lem (4.2.3).
Given that µ is very small, we can, in the second step, impose back µ = 0 and run
a simple Newton iteration so as to converge to a non-trivial solution of the original
extended problem (4.2.2). The advantage of using numerical continuation to compute
a non-trivial solution to the adjoint equation along a canard cycle is that we can then
continue the extended problem (4.2.2) in parameter c and follow both the cycle and the
associated periodic solution of the adjoint equation along the entire canard explosion.
Finally, the normalization condition (1.3.3) is required to close to the linear problem
corresponding to the adjoint equation. Implementing this condition as part of our
numerical continuation procedure can be a little delicate for small values of ε, there-
fore we decided to use a periodic continuation in auto and apply the scaling that
corresponds to (1.3.3) as a post-processing step. Note that we refrain from computing
the Floquet bundle to obtain the non-trivial solution of the adjoint equation for this
numerical problem since we only need any non-trivial solution to the adjoint equation,
which we can then normalize appropriately.
Starting from the Hopf bifurcation all the way to the relaxation regime, we can there-
fore follow the canard cycles by varying c together with their associated adjoint so-
lutions. Figure 4.1 shows some of the orbits lying in the headless canard and in the
canard with head regimes. We observe a qualitative change in the adjoint solution as
the limit cycle γ passes through the maximal canard.

In order to see whether or not the transitions that we observe in coupled VDP
oscillators are system dependent, we next compute adjoint solutions associated with
canards in a planar reduction of the HH model.

b Adjoints of canard cycles in a reduced Hodgkin-Huxley model

A reduction of the classical HH model to two variables was analyzed from the viewpoint
of canard dynamics in [23]; the planar system has the form

V̇ = (I − ḡNa[m∞(V )]3(0.8 − n)(V − VNa) − ḡKn
4(V − VK) − gL(V − VL))/C

ṅ = αn(V )(1 − n) − βn(V )n,
(4.2.4)

where αn(V ) = (0.01(V + 55))/(1 − exp[−(V + 55)/10]), βn(V ) = 0.125 exp[−(V +
65)/80], m∞(V ) = αm/(αm+βm) with αm = (0.1(V+40))/(1−exp[−(V+40)/10]), βm =
0.4 exp[−(V + 65)/18]). Moehlis showed in [23] that system (4.2.4) displays a canard
explosion when parameter I is varied, for the following fixed values of the other pa-
rameters: ḡNa = 120, ḡK = 36, ḡL = 0.3, VNa = 50, VK = −77, VL = −54.4, C = 1.
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Moehlis verified numerically that the dynamics of V are much faster than the dy-
namics of n. Given that the system plays slow-fast dynamics, a formal asymptotic
analysis was performed in ε which appeared in the re-written form of the slow equa-
tion (ṅ = ε(αn(V )(1 − n) − βn(V )n)) in [23]. After treating ε as a small parameter
in asymptotic analysis, ε = 1 was plugged in the final formula. In particular, an
ε-expansion of the I-value at which the canard explosion occurs was obtained.

Despite the instability of part of the canard branch in system (4.2.4), the continua-
tion strategy allows to find solutions to adjoint equations. Since we are interested in the
shape of the adjoints of the canard cycles lying on different sides of the repelling slow
manifold, we can ignore the stability issue. Following the same continuation procedure
described above, we compute adjoints of the 2D reduced HH system. Canard cycles
and corresponding adjoint solutions are visualized in Figure 4.2. As in the VDP sys-
tem, the transition from headless canards to canards with head changes qualitatively
the adjoint solution.

4.2.2 Consequences of a non-monotonic period function on the iPRC

As shown in Figure 4.3, the period function is non-monotonic along the canard explo-
sion. Starting from the Hopf bifurcation point cHopf = 1, it increases in the headless
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Figure 4.2: Top left panel: Canard orbits of the reduced HH system in the phase
plane. Panels 1-7: time profile of the first component of the adjoint solution associated
with each canard cycle shown in the phase plane (together with the critical manifold
S0 := {V̇ = 0}), keeping the same color coding with the cycles shown in the top left
panel. A qualitative change in the adjoint solution occurs in between Orbit 4 and
Orbit 5, corresponding to the passage through the maximal canard cycle.
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Figure 4.3: (a) Period of limit cycles along the canard explosion in the VDP system
for ε = 0.1; the parameter that varies is c in a decreasing fashion. The period is
increasing along the headless canard part of the branch, it reaches its maximum at
the maximal canard and then decreases along the canard-with-head cycles. (b) Three
headless canard cycles and their periods marked on the period curve. Smaller cycles
have smaller periods. (c) Three cycles in the neighborhood of the maximal canard,
together with their periods marked on the period curve. Canards with head and
headless canards have very close periods in this vicinity. (d) Three canards with head
and their periods marked on the period curve. Larger cycles have smaller periods. Also
shown on panels (b) to (d) is the critical manifold S0, on which solid (resp. dashed)
parts represent stable (resp. unstable) branches.

canard regime, reaches its maximum at the maximal canard and then decreases in
the canard-with-head regime as c parameter decreases. The non-monotonicity of the
period function along the explosive branch of canard cycles is one key aspect of the
canard phenomenon in VDP-type systems, and the maximum of the period function
can be used to detect numerically the maximal canard [119]. The shape of this period
function is sufficient to understand the effect of a perturbation of a canard cycle close
enough to the lower fold of the critical manifold S0. Indeed, O(1) away from this fold
point, a sufficiently small perturbation from the slow manifold takes the perturbed tra-
jectory back to it very rapidly and therefore the effect of this perturbation is largely
attenuated. This justifies that the solution to the adjoint equation along a canard
cycle is close to zero for most of the cycle apart from the time interval corresponding
to when the cycle is close to the lower fold (where the canard point is). On the other
hand, near the lower fold of the critical manifold, the attraction to the slow manifold
associated to the chosen canard cycle is weaker and the effect of the perturbation be-
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comes large; see Figure 4.4(a2),(b2) for an illustration of this point. This effect can be
understood by invoking the period function of the branch of canard cycles.
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Figure 4.4: (a1, b1) Transient effect (dashed curves) of a small perturbation of the
canard cycles (red solid curves) in the positive x-direction. (a2)-(b2) time profile of
the first component of the adjoint solution associated with the red canard cycles and
(inset) (x(t), y(t)) during one cycle. Perturbing a headless canard (resp. a canard with
head) away from the attracting slow manifold (perturbation in the positive direction
shown by the yellow asterisk) advances (resp. delays) its phase by driving it to a larger
yet slower (resp. faster) yellow dashed cycle. Perturbing a headless canard (resp. a
canard with head) away from the repelling slow manifold (perturbation in the positive
direction shown by blue asterisk) delays (resp. advances) its phase by driving it to a
smaller yet faster (resp. slower) blue dashed cycle.

First, consider headless canard cycles as represented in Figure 4.3(b). If we denote
the period of the red cycle by Tred, then smaller canard cycles than the red one, like
the blue cycle, have smaller periods whereas larger headless canard cycles, like the
yellow one, have greater periods. Hence we have: Tblue < Tred < Tyellow. Therefore, an
infinitesimal kick in the x direction applied on the slow attracting segment of the red
headless canard cycle near the fold (yellow dot in Figure 4.4(a1)) has the effect that
the perturbed trajectory follows transiently a larger headless canard cycle (like the
yellow one) before converging back to the red cycle. Given that the yellow cycle has a
larger period, the perturbed trajectory’s phase is delayed compared to the unperturbed
one. Applying such a kick on the slow repelling side of the red headless canard (blue
dot in Figure 4.4(a1)) has the opposite effect given that in this case the perturbed
trajectory first follows a smaller canard and, hence, has an advanced phase compared
to the unperturbed one. Consequently, this qualitative argument justifies the sign of
the adjoint solution along a headless canard cycle as shown in Figure 4.4(a2). As
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it can be followed from the (x(t), y(t)) flow given in the inset of Figure 4.4(a2), the
negative part of the adjoint corresponds to the flow towards the fold point. The sign
of the adjoint solution changes at the fold (x = 1), then the positive part appears as
(x(t), y(t)) flows away from the fold. The situation for canards with head is entirely
reversed: the period function is decreasing along the family of canards-with-head,
hence three canards-with-head as shown in Figure 4.3(d) (blue, red, and yellow) have
their periods satisfying the inequalities Tblue > Tred > Tyellow. Consequently, a similar
phase plane argument as given above justifies that an infinitesimal kick on a canard
with head on its slow attracting segment near the fold leads to a phase advance of the
perturbed trajectory, whereas on the slow repelling segment it leads to a phase delay.
This agrees with the adjoint solution computed along a canard with head and plotted
in Figure 4.4(b2). Solutions (x(t), y(t)) given the inner panel of Figure 4.4(b2) confirms
that, indeed, the solution of adjoint takes positive values along the flow towards the
fold, changes its sign at (x = 1), then becomes negative as (x(t), y(t)) move away
from the fold region. Note that invoking the period function to explain a change of
shape and sign of the adjoint solution has been used in [115] in the context of so-called
escape-release mechanism for the synchronization of half-center oscillators. Here we
show that it also applies in the context of coupled canard oscillators.

4.3 Synchronization properties of weakly coupled canard os-
cillators

The behavior of the adjoint solutions (or equivalently, of the iPRCs) provides one with
predictions on the collective behavior in the weak coupling regime via the interaction
function (1.3.4). The dynamics of the phase difference are described in (1.3.5).

IP synchronization of two identical relaxation cycles (coming from oscillators with
cubic-shaped fast nullclines) that are weakly coupled via fast to fast (FF) connections
has been shown in [43, 71, 60, 46, 47, 111], outside the canard regime. In addition to
FF coupling —which is the coupling function generally considered since it acts as a
prototype for the electrical interaction between neuronal systems— we consider fast
to slow (FS) coupling, which is not physiologically realistic but provides insight into
understanding the interactions between perturbation and canards. The FF-coupled
VDP oscillators read:

εẋi = yi + xi − x3
i

3
+ α(xj − xi),

ẏi = (c− xi),
(4.3.1)

and the FS-coupled system is given by

εẋi = yi + xi − x3
i

3
,

ẏi = c− xi + α(xi − xj).
(4.3.2)

The effect of a small perturbation on the canard cycles in the neighborhood of the
lower fold of the critical manifold S0, is different for canards with head than for headless
canard cycles, as revealed by the corresponding adjoint solutions; see Figure 4.1. This



4.3. Synchronization properties of weakly coupled canard oscillators91

-1000

1000

0

25 500 t

(a)

3000

-3000

0

25 500 t

(b)

Hi Hi

Figure 4.5: Time profile of the functions Hi in the maximal canard neighborhood
given in Figure 4.3 (c) for FF (panel (a)) and FS (panel (b)) coupling functions. The
properties of Hi reflect what is found for the solutions of the adjoint equation, i.e. the
transition occurs in the neighborhood of the maximal canard.

qualitative change occurs at the maximal canard. Figure 4.5 shows the interaction
functions Hi (depending on t ∈ [0, T ] with φ = t/T ) associated with the cycles in
the neighborhood of the maximal canard (shown in Figure 4.3 (c)) interacting via
FF (panel (a)) and FS (panel (b)) connections. Given that a headless canard cycle
resembles more the maximal canard (the maximal canard being a maximal headless
canard), the amplitude of the corresponding function Hi decreases while the number of
zeros, t∗, and the sign of H ′

i(t
∗) remain the same. The sign of H ′

i(t
∗) changes when the

cycle moves to the canard-with-head regime, while the number of zeros t∗ is preserved.

The function G (depending on φ ∈ [0, 1], see Figure 4.6) is computed for the
cycles (whose adjoints are presented in Figure 4.1) interacting via FF coupling and
its behavior is in consistency with the qualitative changes we observe in the solution
of adjoints. The location of the zeros φ∗ of G, and the sign of its derivative at such
points, determine the type and stability of synchronized state of the coupled system.
The IP synchronized solution which exists for the Hopf cycles (not shown on this figure)
loses stability along the canard explosion (due to the high sensitivity to perturbation
resulting from the passage near the fold of the critical manifold S0) and a stable OP
solution appears for the headless canard cycles (orbits 1-4). The phase difference of
the stable OP solution increases as the cycle approaches the maximal canard (Panels
1-4, φ∗ = 0.18 for orbit-1 and φ∗ = 0.32 for orbit-4). Bistability appears for the



92 Chapter 4. Synchronization of weakly coupled canards

1

2

3

4

5

6

7

0.2 0.4 0.6 0.8 10 φ

0.2 0.4 0.6 0.8 10 φ

0.2 0.4 0.6 0.8 10 φ

0.2 0.4 0.6 0.8 10 φ

0.2 0.4 0.6 0.8 10 φ

0.2 0.4 0.6 0.8 10 φ

0.2 0.4 0.6 0.8 10 φ

x

y S0

-2 -1 0 1 2 3
-1

0.5

2
1

2 3

4 5

6 7

G(φ)

-1

1

0

×104

-3

3

0

G(φ)

×104

-20

20

0

G(φ)

-30

30

0

G(φ)

-6

6

0

G(φ)

×104

-300

300

0

G(φ)

-4

4

0

G(φ)

Figure 4.6: Selection of canard cycles of the VDP oscillator in the phase plane (x, y)
(top left panel) together with the corresponding G functions (panels 1 to 7; the phase
φ is rescaled to [0,1]).

canards-with-head (orbits 5-7), where IP and AP solutions are the stable synchronous
solutions and the OP is the unstable solution (Panels 5-7).

The information obtained with the function G about synchronized states of the
weakly coupled VDP system with FF coupling, can be confirmed by a numerical bi-
furcation analysis of the coupled system in question. We have performed this analysis
by continuing synchronous states of system (4.3.1) (including the ones which are not
visualized in Figure 4.6) in parameter c. The result is presented in Figure 4.7 where
the chosen solution measure is the difference between the x-component of each oscil-
lator at time t = 0, x2(0) − x1(0), regardless of its varying amplitude as a function of
c. That measure has the same interpretation as the phase difference for these simple
orbits and it is often used in the analysis of weakly coupled oscillators [72]. Panels (b)
to (d) are successive zooms of panel (a) in the region corresponding to maximal ca-
nards for each oscillator. The properties of the synchronized states of the FF-coupled
cycles are tracked starting from the double Hopf bifurcation point at c = cHopf = 1
down to the relaxation regime near c ≈ 0.615. We consider a fixed coupling strength
α = 10−5 for which the weakly coupled oscillators theory is expected to be valid; a
detailed discussion on the effect of α is presented in Section 4.4. One stable and two
(symmetric) unstable branches, which correspond to IP and AP solutions, respectively,
appear at c=cHopf . The IP solution undergoes a pitchfork bifurcation through which
it loses its stability as a stable OP solution appears (Panel (b)). The OP branches be-
come unstable at a PD bifurcation which is followed by a PD cascade corresponding to
2nT -periodic stable synchronous solutions (Panel (d)), where the interaction function
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Figure 4.8: Coexisting stable IP (a), AP (b) OP (c) solutions for c= 0.986267 from
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solution for c= 0.9863137635 (e), and 4T -periodic solution for c= 0.98631334783 (f),
from Figure 4.7 (d).

vestigation of the function G, are well identified through the continuation analysis,
in particular the coexisting stable IP and stable AP states (canards with head and
relaxation cycles) born near the maximal canard solutions. This intricate bifurcation
structure unveils a main connection between the stable IP and the AP states through
the double Hopf point at c=cHopf , which gives rise to both the IP stable state and a
branch of unstable AP states. Decreasing c further, additional bifurcations occur, in
particular pitchfork bifurcation points (black dots in Figure 4.7 (a) to (c)) which cor-
respond to events where the synchronous state loses some symmetry. Indeed, on both
the IP and the AP branches these bifurcations lead to additional solution branches
along which the two canard oscillators do not follow identical cycles; in each case, the
synchronous state becomes identical again through fold bifurcations. Note that these
non-identical branches emanating from both the IP and the AP states come close to
each other (near a second pair of fold bifurcations) forming a structure that seem to be
a broken transcritical bifurcation. This perturbed bifurcation is only conjectured here;
a more detailed analysis of the ε-dependence of the synchronous states goes beyond the
scope of this chapter and will be a question for future work. We simply remark that
this structure seems to perturb from an additional connection between the stable IP
and stable AP coupled canard states. Finally we note the presence of several sequences
of PD bifurcations (colored dots in Figure 4.7 (d)) which are likely to indicated small
zones of chaotic dynamics in this region of parameter space.

One striking element about the bifurcation diagram described above is the fact that
most of the connecting branches between the IP and the AP synchronous states are
organized near solutions that correspond to maximal canards. It is therefore natural to
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ask about the effect of the coupling strength α on such synchronous states containing
maximal canard segments; we focus on this aspect in the next section.

4.4 Effect of the coupling strength α

The interaction function analysis reveals the existence and stability of synchronous
states for weakly coupled oscillators, although how “weak” the coupling should be
in order that the theory applies is questionable. For instance, it was shown in [52]
that for leakly integrate-and-fire type of oscillators the H function analysis is valid for
moderate coupling strengths, whereas other papers (see e.g. [61, 57]) have mentioned
a loss of 1:1 phase locking estimated by the interaction function analysis. In the case
of coupled canard-explosive systems where the properties of the underlying oscillators
vary brutally in parameter ranges that are exponentially small in time-scale parame-
ter ε, the notion of weak coupling can be even more vague. For instance the region
with cascades of PD bifurcations, highlighted in Figure 4.7 (d) and corresponding to
cycles that are close to the maximal canard regime (under weak coupling of strength
α = 10−5), gives a good numerical evidence that canard orbits are very sensitive to
perturbations and that the validity of the interaction function analysis is limited in
such cases.
In order to investigate this aspect further, we next consider the phase difference dy-
namics of two coupled identical headless canard cycles for a c-value in the neighborhood
of the maximal canard, as a function of the coupling strength α > 0. This numerical
continuation study will focus both FF and FS interactions. The aim is to identify
what range of the perturbation strength can give rise to interesting canard-mediated
dynamics that are not predicted by the interaction function analysis but can still be
analyzed using slow-fast arguments.

4.4.1 Fast-to-Fast (FF) coupling

The bifurcation structure in α for this case in presented in Figures 4.9 and 4.10 (zoomed
views); associated solution profiles are shown in Figures 4.11 and 4.12. A stable OP
synchronous state with a phase difference φ∗ = 0.34 is predicted by the interaction
function analysis for the case of two headless canard cycles with FF-coupling, that is,
for system (4.3.1); see Figure 4.5 (a) and Figure 4.6 panel 4. Using the bifurcation
diagram presented in Figure 4.9, we can conclude that this OP regime persists for
α ∈ (0, 6.63371×10−5]. It loses its stability at α≈6.63371×10−5 via a PD bifurcation
where the interaction function result is violated, and consequently, not valid for greater
coupling strengths. Switching branch at this PD point reveals the presence of a PD
cascade, for which we compute only a few subsequent branches. Among the stable
part of these branches of period-2nT synchronous solutions (near which chaotic orbits
surely exist too), that is, for a coupling strength α ∈ (6.63371 × 10−5, 0.0083195],
there exists a family of solutions displaying what we call “spike suppression”. This
scenario corresponds to when one of the oscillators spikes by following a canard with
head while the other always remain in the headless canard regime. Regarding the
IP solution branch, it becomes stable at α ≈ 0.0085633416545 and coexists, for α ∈
[0.0085633416545, 0.289498], with the 2nT -periodic headless canard solution branch.
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Figure 4.11: Period 2T (top panels) and period 4T (bottom panels) non-identical OP
synchronous states for the FF-coupled system in the maximal canard regime, illustrat-
ing the spike suppression scenario. Values of the coupling strength α are 2.86959×10−4

in panels (a1)-(a2) and 2.85359 × 10−4 in panels (b1)-(b2).

4.4.2 Fast-to-Slow (FS) coupling

The bifurcation structure in α for system (4.3.2); in presented in Figure 4.13; as-
sociated solution profiles are shown in Figure 4.14. The stable IP synchronization
state predicted by the interaction function analysis for the FS-coupling (Figure 4.5
(b)) becomes unstable at α≈ 0.007498445 (Figure 4.13 (a)) via a subcritical PD bi-
furcation that introduces an unstable 2T -periodic branch which becomes stable at
α≈8.74785268 × 10−5, where the interaction function analysis loses its validity. Con-
tinuing that branch leads to the detection of further PD bifurcations organized in a
cascade, which we compute only the beginning of; see Figure 4.13 (b). These 2nT -
periodic branches correspond to families of solutions displaying what we call “spike
alternation”, that is, a scenario for which both oscillators of the FS-coupled system
follow subsequently a headless canard segment and then a canard-with-head segment,
hence performing an MMO [15]; see Figure 4.14 for an illustration on such MMO cy-
cles with period T , 2T and 4T on (a), (b) and (c) panels, respectively. Depending on
the value of the coupling strength α, the oscillators may follow the same or different
canard trajectories.

The difference between the synchronization properties of headless canards and ca-
nards with head is also visible in the α continuation: bifurcation diagrams of canard
with head cycles are qualitatively different than the ones of maximal canards and head-
less canards (close to the maximal canard). For instance, FF-coupled identical canard
with head cycles (yellow cycle in Figure 4.3-(c)) do not yield any interesting bifurcation
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Figure 4.12: Period T (top panels, identical), period 2T (middle panels, non-identical)
and period 4T (bottom panels, non-identical) stable OP synchronous states of the
FF-coupled VDP system in the maximal canard regime. The phase differences for
these states are coherent with the interaction function analysis. Values of the coupling
strength α are 6.63371 × 10−5 in panels (a1)-(a2), 7.04717 × 10−5 in panels (b1)-(b2)
and 7.13322 × 10−5 in panels (c1)-(c2). Left panels: Trajectories projected onto the
(xi, yi) planes. Right panels: Time series of the xi coordinates.

structure like the one in Figure 4.9 and the shape of the bifurcation diagram of FS cou-
pled cycles in Figure 4.15 is quite different than Figure 4.13. Yet, we again obtain 2nT -
periodic branches: the (almost) IP synchronous solution predicted by the interaction
function analysis becomes unstable via a PD bifurcation at α = 2.0664925081 × 10−3.
Further PD bifurcations are visible for α ∈ [2.0664925081×10−3, 2.2182827269×10−2].
Figure 4.16 shows the example period T , 2T and 4T solutions.

On both FF- and FS-coupled canard systems, we have observed using a numerical
bifurcation analysis the proximity of several stable solution branches with compli-
cated oscillatory patterns mixing passages along headless canards and along canards
with head. Among these complex patterns, the regions where spike-suppression and
spike-alternation states exist should be underlined. In FF-coupled systems, the spike-
suppression solutions are the only stable synchronous states of the system and they
appear under very weak interaction, which indicates that weak interaction between
non-spiking oscillators can change the spiking pattern by forcing only one oscillator
to spike. Whereas in FS-coupling, the spike-alternation solutions lie in a bi-stable re-
gion with IP states. Depending on the initial conditions or presence of a noise, these
MMO-type synchronous states can appear. In the context of neuronal systems, these
complicated oscillatory solutions alternate subthreshold oscillations and spikes. These
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Figure 4.14: Period T (top panels), 2T (middle panels) and 4T (bottom panels)
stable non-identical OP synchronous states displaying spike alternation for the FS-
coupled system near the maximal canard regime. Values of the coupling strength α
are 2.8502655978 × 10−3 in panels (a1)-(a2), 2.8939484985 × 10−3 in panels (b1)-(b2)
and 2.9039987077 × 10−3 in panels (c1)-(c2). Left panels: Trajectories projected onto
the (xi, yi) planes. Right panels: Time series of the xi coordinates.
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Figure 4.16: Period T (top panels), 2T (middle panels) and 4T (bottom panels) stable
(almost) IP synchronous states displaying spike alternation for the FS-coupled canard
with head cycles the maximal canard regime. Values of the coupling strength α are
2.0664925081 × 10−3 in panels (a1)-(a2), 2.6385701837 × 10−3 in panels (b1)-(b2) and
2.6388141075 × 10−3 in panels (c1)-(c2). Left panels: Trajectories projected onto the
(xi, yi) planes. Right panels: Time series of the xi coordinates.
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solutions are not predicted by the interaction function analysis typically employed in
weakly coupled oscillator studies. However, one can justify there existence by invoking
the presence in such systems of repelling (Fenichel) slow manifolds, which are known to
be exponentially close to each other (in the timescale separation parameter ε). There-
fore, the presence of these manifolds near the middle branch of the critical manifold S0

of each individual slow-fast oscillator can allow to justify that, for values of the cou-
pling strength α that are larger that such exponentially small quantities, synchronized
states of the coupled system may follow these manifolds on one side (subthreshold
regime) or the other (spiking regime) while staying very close to the boundary (well
approximated by maximal canards).

4.5 Discussion

In this chapter, we have extended previous results on weakly coupled slow-fast oscilla-
tors to the canard regime, both from a theoretical and numerical perspective. Our main
finding is that the behavior of adjoint solutions (or equivalently, of iPRCs) changes
qualitatively when the canard cycle under consideration is moving (as the canard pa-
rameter is varied) along the associated explosive branch. Indeed, the sign and shape of
the adjoint solutions flip as the underlying canard cycle goes from the headless canard
regime to the canard-with-head regime, the transition taking place at the maximal
canard cycle. This change of behavior of adjoints of canard cycles upon infinitesimal
perturbations can be explained by the peculiar known property of the period function
of a canard-explosive branch, which can be summarized as follows: larger headless
canards are greater periods, whereas larger canards-with-head have smaller periods.
As explained in Section 4.3, this argument is fully applicable when the perturbation is
applied near the fold point of the critical manifold corresponding to the canard point,
and its validity is weakened as the perturbation is applied further away from this fold
point, where the contraction towards the unperturbed cycle rapidly annihilates the ef-
fect of the perturbation. This justifies that adjoints computed along canard cycles are
very close to zero during most of the cycle except along a time interval corresponding
to when the canard cycle passes near the fold (canard) point of the critical manifold
S0. Nevertheless, the explanation that we provide is valid for the most informative
part of the adjoint solutions and bears consequences on the synchronized solutions of
coupled canard systems.
We have shown this mechanism for a prototypical canard oscillator, namely the VDP
system, but it is clearly applicable to all excitable systems of this form, in particular,
to slow-fast type-II neuron models such as the reduced HH studied in [23] model. This
opens the way to a renewed understanding of iPRCs in such neuron models, from the
Hopf cycles (whose adjoint solutions will qualitatively look like those associated with
small headless canard cycles) to the spiking cycles (whose adjoint solutions will quali-
tatively look like those associated with canards with head). In particular, our findings
can be related to recent work on isochrones since PRC analysis originates in the study
of phase models and isochrones [120]. Recently the isochrones of canard cycles were
investigated numerically in [121] where evidence was given that their properties change
in the vicinity of the maximal canard neighborhood; this is likely to be closely linked
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with the results presented here. While a full comparison of these two aspects of canard
cycles’ phase properties goes beyond the scope of the present work, it is certainly an
interesting topic for future work.

While studying adjoint solutions along canard cycles, we have also proposed a
numerical strategy based on numerical continuation to compute these objects as a
system parameter is varied, that is, to reliably compute a family of limit cycles and at
the same time a family periodic solutions to the associated adjoint problem. Making
profit of the boundary-value solver of auto, we could easily identify the flip in the
solution to the adjoint problem as the cycle goes through the maximal canard.

In Section 4.3, we looked at the bifurcation structure of the synchronous states
of the weakly coupled identical VDP systems when varying the main system param-
eter, which in this case controls the position of the slow nullcline but would likely
be an applied current in the neuronal context. We found an intricate structure of
solution branches of IP, AP and OP states, connected through both PD and pitch-
fork bifurcations, which are organized around the maximal canard solution. While the
synchronization properties of relaxation cycles were already known, we believe that
the bifurcation structure of the weakly coupled canard regime is by-and-large novel, in
particular the role of the maximal canard as an organizing center for the IP, AP and
OP families.

In Section 4.4, we focused on the bifurcation structure of synchronous states of
coupled identical VDP systems in the maximal canard regime, depending on α. PD
bifurcations and chaotic trajectories in VDP-like systems under periodic perturbation
have been studied in e.g. [122, 96, 97]. In the present study, we unveiled a complex web
of period-2nT branches suggestive of the presence of nearby chaotic attractors, which
we chose not to investigate. Instead, we highlighted these further synchronous states,
all existing close to maximal canard solutions but not all predicted by standard inter-
action function analysis. Being close to a maximal canard, hence to threshold, these
solutions may contain both passages near headless canards and near canards-with-head,
therefore an alternation between subthreshold oscillations and spikes. Even when the
classical weakly coupled theory may not apply, the slow-fast phase plane structure of
the underlying single canard oscillator enables to understand why such mixed-mode
oscillatory synchronous states can arise for small to moderate coupling strength, ow-
ing to the geometry and proximity between families of repelling slow manifolds. As
a question for future work, we plan to investigate the relevance of these complicated
synchronous states in the context of neuron models, where canards-with-head may
be considered as not so rare events but rather as spikes with a slow activation or
in the context of after-hyperpolarization-potential phenomenon where neurons do not
necessarily spike while overcoming the spiking threshold after hyperpolarisation.

Control of canard cycles has been studied in [123] where the authors have obtained
MMOs, cascades of PD bifurcations and chaotic behavior in a FHN-type relaxation
oscillator depending on the control setup. Developing control strategies for reach-
ing desired spiking behavior in coupled canard systems can be an interesting future
direction of study.

Finally, as an appendix, we also provided an analytical formula for the adjoint
solutions associated with limit cycles of Liénard systems, which gives reasonable yet
perfectible numerical results for canard cycles.
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This work is only a first step towards extending canard studies to the realm of
weakly coupled oscillators and, more generally, to weakly connected networks. It is
not rigorous yet but we have identified the main geometrical structures that play a
pivotal role in shaping the main family of synchronous solutions to coupled planar
slow-fast systems in the canard regime. Moreover, we have highlighted the central role
of the maximal canard in organizing the synchronization properties of such systems.
Beyond the effect of canard-explosive dynamics on synchronization, we plan in the
near future to investigate similar effects in (at least three-dimensional) systems with
canards organized by folded singularities [124] as well as in systems with slowly varying
quantities, such as bursting systems where spike-adding canard explosions will be likely
to have a dramatic effect on the synchronization properties of coupled bursters [125, 16].

4.6 Appendix: Analytical expression for adjoints of canard cy-
cles

Here we use classical results from the theory of linear differential equations [126] as
well as unpublished results by Schecter [127] in order to derive an expression for the
periodic solution of the adjoint problem associated with a limit cycle of a Liénard
system. This extends the approach taken by Izhikevich in [60], who considered the
case of relaxation cycles by taking the limit ε = 0. Izhikevich’s formulation is not
applicable to canard cycles due to the presence of the folds of the critical manifold S0

which gives rise to canard dynamics and requires to have ε 6= 0 in the computation of
the adjoints.

We consider the following VDP type slow-fast system written in Liénard form

x′ = y − f(x) := F (x, y) (4.6.1)

y′ = ε(c− x) := εG(x, y),

where f(x) = x3/3 − x is a cubic function and the prime denotes differentiation with
respect to the fast time t. We consider a canard cycle solution of system (4.6.1), that
is, a periodic solution γ(t) = (x(εt), y(εt)).
The linearized system associated with (4.6.1) along γ is given by

v′ = −f ′(γ1(t))v + w

w′ = −εv,
(4.6.2)

which we can recast as a second-order linear differential equation

v′′(t) + f ′(γ1(t))v′(t) + (f ′′(γ1(t)) + ε)v(t) = 0. (4.6.3)

An obvious solution of (4.6.3) is (γ′
1(t), γ′

2(t)). Recall that if one knows a particular
solution y∗ of the second-order linear differential

y′′(t) + p(t)y′(t) + q(t)y(t) = 0,

then one can obtain another solution y# , non-proportional to the first one — hence
forming a basis of the space of solutions together with the first one — using a variation
of constant type formula, that is,

y#(t) = u(t)y∗(t),
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with u given in general integral form by

u(t) =
∫ t

0

exp
(

−
∫ s

0
p(σ)dσ

)

y2(s)
ds. (4.6.4)

Therefore, knowing the solution (γ′
1(t), γ′

2(t)) of the linearized system written as a
second-order equation (4.6.3), a non-proportional solution is given by (v(t), w(t)) with

v(t) = u(t)γ′
1(t) = γ′

1(t)
∫ t

0

exp
(

−
∫ s

0
f ′(γ1(σ))dσ

)

γ′
1

2(s)
ds

w(t) = v′(t) + f ′(γ1(t))v(t)

Hence we have

w(t) = u′(t)γ′
1(t) + u(t)

(

γ′′
1 (t) + f ′(γ1(t))γ′

1(t)
)

=
exp

(

−
∫ t

0
f ′(γ1(s))ds

)

γ′
1(t)

+ u(t)γ′
2(t).

The adjoint equation associated with system (4.6.1) along the limit cycle γ is given by

Ż = −J(γ(t))T Z, (4.6.5)

where Z is a two-dimensional real vector and J(γ(t)) is the Jacobian matrix evaluated
along the solution γ. Following [127], we write the solution to equation (4.6.5) under
the form

ZT (t) = exp
(
∫ t

0
f ′(γ1(s))ds

)

[

−s2 s1

]

, (4.6.6)

where s = (s1, s2) is a solution to the linearized equation (4.6.3). We apply this
formula to the two solutions (γ′

1(t), γ′
2(t)) and (v(t), w(t)) of the linearized equation,

which gives us two solutions of the adjoint equation. What we wish to get is a periodic
solution of the adjoint; to get it, we will find a suitable linear combination of the two
solutions obtained using Schecter’s strategy, imposing periodicity. Namely, we will find
scalars α and β such that

αZγ′(T ) + βZs(T ) = αZγ′(0) + βZs(0), (4.6.7)

where α and β are reals, Zγ′ and Zs being obtained using formula (4.6.6) from the lin-
earization of the limit cycle γ and the solution (v(t), w(t)) described above, respectively.
Therefore, focusing on the second component only, the periodicity condition (4.6.7) be-
comes

α exp

(

∫ T

0
f ′(γ1(s))ds

)

γ′
1(T ) + . . .

β exp

(

∫ T

0
f ′(γ1(s))ds

)

γ′
1(T )

∫ T

0

exp
(

−
∫ s

0
f ′(γ1(σ))dσ

)

γ′
1

2(s)
ds = αγ′

1(0).
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Given that γ′ is itself periodic, we can simplify the above equality and obtain α as a
function of β:

α =

−β exp

(

∫ T

0
f ′(γ1(s))ds

)

∫ T

0

exp
(

−
∫ s

0
f ′(γ1(σ))dσ

)

γ′
1

2(s)
ds

exp

(

∫ T

0
p(s)ds

)

− 1

. (4.6.8)

Condition (4.6.8) gives a one-parameter family of suitable linear combinations, one
can apply a normalization to obtain a uniquely defined periodic solution to the adjoint
equation.

4.6.1 Simulations of the analytical results
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Figure 4.17: Adjoint solutions for the headless canard cycles shown in Figure 4.1
computed analytically using formula (4.6.6).

In order to compute the solutions of the adjoint equation given by (4.6.6) with the
two different solutions to the linearized equation (4.6.2), namely γ′ and (v, w), we need
to evaluate numerically the function u given by the integral formula (4.6.4), and we
also need to evaluate the prefactor

Pf (t) = exp
(
∫ t

0
f ′(γ1(s))ds

)

.
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To do so, a simple way is to write u as the solution of a second-order differential
equation, and Pf as the solution of a first-order differential equation, and solve these
equations numerically with, e.g., an Euler scheme. More precisely, we have

u′(t) =
exp

(

−
∫ t

0
f ′(γ1(s))ds

)

γ′
1(t)2

:= h(t) (4.6.9)

h′(t) = −
(

f ′(γ1(t)) + 2
γ′′

1 (t)
γ′

1(t)

)

h(t).

Similarly, we have

P ′
f (t) = f ′(γ1(t))Pf (t).

Results computed for the headless canard cycles are given in Figure 4.17.

4.6.2 Limits of the formula

The strategy we proposed overcomes the singularities due to the presence of folds on
the critical manifold, however it has limitations. First, the approximation of adjoint
solutions of canard cycles with this formula can be considered as successful for head-
less canards (see Figure 4.17), yet a lot of care in the numerical simulations used is
required. However, even with such care we have been unable to compute adjoints
associated with large canards using this formula. The reason for this can be under-
stood by looking the expression in (4.6.9) which is singular when γ′

1(t) = 0, that is, at
extrema of γ1. We can try to integrate these equations by splitting the solution into
two branches excluding the extrema. With this strategy, our formula can be used to
compute adjoints for all canard cycles and, hence, extend Izhikevich’s approach. The
second drawback of formula (4.6.6) is that it assumes a Liénard form for the system
under consideration. Hence, it is not directly applicable to more general planar slow-
fast systems, in particular, to biophysical neuron models such as the two-dimensional
reduction of the Hodgkin-Huxley system that we considered in Section b.
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Conclusion and perspectives

In this dissertation, we have studied canard solutions and dynamic bifurcations in
coupled multiple timescale systems inspired from neuronal dynamics.

We have started from a 4D system with 2 coupled FHN oscillators evolving on dif-
ferent timescales. This model was originally introduced to account for the dynamics of
GnRH secretion and each subsystem represents the mean-field activity of different pop-
ulations of neurons, which are the populations of secreting and regulating neurons. We
have taken a direction from a macroscopic scale to a mesocopic scale motivated by ad-
ditional features in the secretion patten of GnRH: a surge with 2 bumps (camel surge)
and a partial desynchronization before the surge (pulse degradation). In Chapters 2
and 3, we have worked on the 6D extension of the model which consists of 2 mutually
interacting secretors (fast FHN oscillators) receiving the same signal from the regulator
(a slow FHN oscillator). In Chapter 2, we have identified (de)synchronization mech-
anisms arising from the relation between the canard transitions and a linear mutual
coupling. In Chapter 3, we have attempted to model a camel surge and pulse degrada-
tion embedded the whole secretion pattern by considering regulatory-dependent asym-
metric coupling functions. In Chapter 4, we have studied synchronization of coupled
identical VDP systems in the canard regime and we have generalized previous studies
on weakly coupled slow-fast systems to canard regime. We have mainly used numerical
continuation to compute slow manifolds, bifurcation diagrams and solutions to adjoint
equations.

In this thesis, we have shown the existence of canard transitions in slow-fast cou-
pled systems. The element of proof that we are giving is based on the transversality
argument of the classical canard theory. The 5D minimal model introduced in Chap-
ter 2 to compute slow manifolds of coupled systems with folded-saddle singularities is
quite general and can also be used to investigate the dynamics of coupled slow-fast os-
cillators near folded-node singularities. Using the 5D minimal model, we have showed
that trajectories of identical systems with folded-saddle singularities can be driven to
different sides of the maximal canards under weak coupling. This separation near a
folded saddle determines the surge timing and can cause desynchronization before the
surge in identical secretors of the 6D extension of the GnRH model. The separation of
trajectories near a folded node of nonidentical systems impacts the number of SAOs,
number of pulses and phase dynamics. In larger networks, the canard transition near
a folded node can be responsible for the formation of clusters in which oscillators
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with similar canard trajectories are grouped; locally, exponentially small differences in
trajectories can induce O(1) differences in the output.

The effects of maximal canards on the separation of trajectories in coupled oscil-
lators are studied in more detail in Chapter 4. We have shown that under (weak to
moderate) coupling MMO type solutions can arise in mutually interacting identical
VDP oscillators in canard regime. They are formed by the alternation between sub-
threshold oscillations and spikes, and they correspond to 2nT -periodic synchronous
solutions of the coupled system. In other neuronal models with a slow activation gen-
erating spikes (e.g. late spiking neocortical neurons), maximal canards can have more
significant effects on synchronization dynamics by separating resting and spiking states
of individual cells.

One of the open questions of Chapter 2 was generalization of the phase models and
weakly coupled oscillators to coupled canard cycles. In Chapter 4 we have provided an
extension of weakly coupled theory on relaxation oscillators to canard cycles. Benefit-
ing from the BVP solvers and numerical continuation methods embedded in auto, we
have computed limit cycle families of singularly perturbed planar systems and associ-
ated adjoint solutions, which encode the synchronization properties of weakly coupled
oscillators. We have unveiled a qualitative change in the behavior of the adjoint solu-
tions across the maximal canard. This change has been interpreted as a property of the
period function of the canard explosion: the period function increases from the Hopf
bifurcation to the maximal canard, then it decreases from the maximal canard to the
relaxation regime. When we focus on the adjoint solutions of the canard cycles lying
the neighborhood maximal canard, we observe that the adjoint solutions decreases as
the canard cycle approaches to the maximal canard. In the ε → 0 limit, we can expect
to obtain a flat adjoint on the maximal canard. Hence, we conjecture that weakly cou-
pled maximal canard cycles in the singular limit can synchronize at any phase-locking
state.

In singularly perturbed planar systems, canard cycles are very sensitive to param-
eter variations and, therefore, difficult to compute by means of numerical integration.
As the timescale separation parameter ε decreases, it becomes increasingly difficult (if
possible at all) to use classical integration methods in the context of initial value prob-
lem, whereas the numerical continuation methods and BVP solvers give much better
results regardless of stability of the cycles. The methods we have used to compute
the adjoint solutions of the canard cycles can be improved in two ways. The first one
can be embedding normalization condition of the adjoint equations by redefining the
computation setting as a 2 point BVP problem. The second improvement can be in
the way to find a starting non-trivial solution to the adjoint equation. For the method-
ology we have introduced, any non-trivial solution is sufficient. However, computing
the Floquet bundle to find the non-trivial solution of the adjoint equation is another
option. This requires more delicate techniques but can improve the performance in
the singular limit.

In Chapter 4, we have developed an analytic expression for the adjoint solutions
to systems with canard points. The method we have used relies on the linearization
of the flow. This expression has limits on extreme points of the fast component of the
flow which introduce discontinuity that can be eliminated by using delicate integration
methods. The second drawback is the assumption of having a Liénard form for the
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system under consideration. Hence, it cannot be directly applied to more general planar
slow-fast systems. As a future aspect, the asymptotic theory of the relaxation cycles
displaying canard solutions can be studied for finding solutions to adjoint equations.

What “weak” means practically for coupled oscillators is particularly striking when
considering the canard regime. Along the canard explosion of coupled VDP oscilla-
tors, there are period-2nT branches not estimated by the standard interaction function
analysis. The bifurcation structure of the phase difference depending on the coupling
strengths indicates the narrowness of the range of the coupling strength available for
standard analysis based on averaging. This range depends on the canard cycle under
consideration and on the timescale parameter ε. The relation between the timescale
parameter and the coupling strength suitable for using averaging methods is an in-
teresting topic for future work. PD-cascades and MMOs are considered as beginning
of chaotic dynamics, thus beyond the weak limit, the coupling can lead to “canard
chaos”, which is worth to investigate.

Another open question emanating from Chapter 2, aside the phase dynamics of
canard solutions, was to consider a biologically oriented parameter set for the 6D
model, which meets quantitative features of the GnRH secretion pattern. In Chapter
3, we have focused on additional features of the GnRH secretion pattern not captured
by the 4D “1 secretor/1 regulator” configuration, such as a camel surge and pulse
degradation. We have interpreted the occurrence of a camel surge as a possible loss
of mutual interaction between the secretors for some episodes of the surge. We have
modeled this possibility by considering regulatory-dependent coupling functions. The
switch mechanism in the coupling depending on the regulatory signal can produce a
camel surge in asymmetrically coupled nonidentical secretors.

Defining the global output of the 6D system as the sum of the thresholded outputs
of the individual secretors transformed the concept of synchronization to pulse overlap-
ping. The pulse overlapping disappears due to two natural properties of the 6D model:
slowly varying regulator signal which increases the pulse frequency, and nonidentical
secretors which have different pulse frequencies. The continuous slow motion of the
regulatory signal during the pulsatile regime prevents the oscillators from settling at a
stable synchronous state even if such these synchronous states do not necessarily allow
the pulses to overlap. The regulatory signal also changes the stability of synchronous
solutions via PD bifurcations in the phase dynamics of heterogenous ensembles. This
type of dynamic bifurcations was also observed in relaxation cycles in lasers under
periodic perturbation. We have shown numerically that the pulse degradation can be
related to the PD bifurcations in nonidentical secretors under asymmetric and constant
coupling.

The problem we have faced was to obtain a camel surge and a pulse degradation
with the same coupling function reasonable for both biological viewpoints and numeri-
cal studies. Hence, we needed to introduce a coupling function which remains dynamic
during the pulsatile regime. With this dynamic coupling function, we were able to re-
produce both a camel surge and degraded pulses in the same setting. On the other
hand, the dynamic coupling function brought constraints to this study in quantifying
the global output of the 6D system during the pulsatile regime. Thus, we needed to
develop asymptotic tools. Even though many theoretical tools have been developed in
the field of synchronization of oscillating systems, biologically realistic setups which
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include heterogeneity in both interacting systems and interaction modes may oblige us
to rely on numerical studies.

The dynamic coupling function introduced in Chapter 3 couples the secretors in
a thresholded rather than smooth manner; the secretors interact only when they are
active (when they produce individual pulses). Therefore, the dynamically coupled se-
cretors can be compared to pulse-coupled oscillators. One of the methods to analyze
synchronization of pulse-coupled oscillators is constructing phase return maps describ-
ing the phase dynamics. We did not have time to go into that domain but analyzing
the dynamically coupled secretors map models can be a future direction.

Following the GnRH framework in Chapter 2, we mainly considered diffusive cou-
pling functions where the difference between the fast variables perturbs the system
dynamics. In Chapter 3, which focuses on the interacting populations of endocrine
neurons, the dynamic coupling function is already an application oriented extension of
the diffusive formulation. In the context of coupled neurons, synaptically coupled sys-
tems have been studied where the oscillator frequencies and time constants of synaptic
decay have critical roles in synchronization dynamics. The effect of oscillator frequen-
cies we have identified for the diffusively coupled canard cycles can hold under synaptic
coupling. Besides, a slow time scale introduced by the synaptic signal can impact the
collective activity of the coupled canard oscillators, for instance, by causing slow-fast
transitions near the fold regions like the pause mechanism examined in Chapter 2 or
similar dynamic bifurcations in synchronous states identified in Chapter 3.

In this dissertation, variations in collective dynamics, such as spiking regimes, num-
ber of pulses, (de)synchronization or phase differences, essentially arose from dynamic
bifurcations caused by slowly varying parameters or system variables. In another
context, variations can be caused by a dynamic medium which hosts neurons. The
transitions we observed give birth to different modes in a 2-oscillator network of mul-
tiple timescale systems but there can be more complex outputs in larger networks of
planar systems or bursters. Another aspect can be developing control strategies over
transitions between different modes of collective dynamics arising in these networks.

There is a recent effort on generalizing the theory of weakly coupled oscillators to
the systems with slowly varying variables, inputs or parameters and finding explicit
expressions. Slow-fast systems with folded singularities require a special focus in that
direction. For instance, the formula we have introduced which overcomes the problem
of folds on the critical manifolds can be taken into account.

In this study, we have kept the compact modeling approach of the 4D system
designed on the macroscopic level. This compact modeling approach is not intended
to have a direct biophysical meaning, yet, the combination of biological and long-term
modeling motivations have encouraged us to go further in reproducing the complex
patterns of the GnRH secretion. The mechanisms underlying the complex behaviors
of this neuroendocrine system have raised challenging questions on the mathematical
ground. Our choices of rather simple coupling functions have not only the advantage
of revealing possible structures especially in the multiscale modeling framework and
extending the capacity of the system to generate complex patterns, but also they bring
interesting insight on mathematical questions, such as canard solutions and dynamic
bifurcations.
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1.1 (a) Attracting relaxation cycle in the (X,Y ) phase plane. Each num-
ber represents a different dynamic phase of the periodic behavior of
the secretor. 2-headed arrows indicate an O(δ) speed, 1-headed ar-
rows indicted an O(1) speed. (b) Position of the nullclines on the (x, y)
plane with respect to the dynamic phases in the (X,Y ) relaxation cycle.
Green arrow: pulsatile phase. Red arrow: transition from pulsatility to
surge. Blue arrow: surge phase. Pink arrow: transition from surge to
pulsatility (c) Projection of a typical trajectory onto (x,y) plane. Col-
ors represent phases and 3-headed arrows indicate an O(εδ) speed (d)
Traces in time of the output variable y(t) colored according the dynamic
phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Left panel: Traces in time of the regulator signal X(t) (red) and output
variable y(t). Right panel: Traces in time of the regulator signal X(t)
(red) and output variable y(t) involving a “pause” with small amplitude
oscillations (inner panel). . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 (a) Amplitude of the x-component versus λ and (b) period versus λ
from the Hopf bifurcation at the lower fold x = 1 to relaxation regime
for ε = 0.05. (c) Phase portrait of the VDP with selected limit cycles
along the canard transition. . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Four cycles of the canard explosion at the lower fold in VDP (blue):
headless canard in panel (a), maximal canard in panel (b), canard with
head in panel (c) and relaxation oscillation in panel (d). In each panel,
the left plot corresponds to a phase plane representation of the cycle
together with the fast cubic nullcline C, the right panel shows the time
trace of the the x variable during the cycle. . . . . . . . . . . . . . . . . 9
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2.1 4 phase dependent dynamic behavior obtained with the parameter set
given in Table 2.2. (a) Attracting relaxation cycle in the (X,Y ) phase
plane. Each number represents a different phase of the periodic behav-
ior. 2-headed arrows indicate an O(1/δ) speed, 1-headed arrows indicate
an O(1) speed. (b) Position of the nullclines on the (x, y) phase plane
with respect to the 4 phases in the (X,Y ) limit cycle. Green arrow:
direction of y-nullcline during the pulsatile phase. Red arrow: transi-
tion from pulsatility to surge. Blue arrow: surge phase. Pink arrow:
transition from surge to pulsatility. (c) Projection of a trajectory onto
(x, y) plane. Colors represent the phases and 3-headed arrows represent
O(1/εδ)-speed motion. (d) Traces in time of the output variable y(t)
colored with respect to the phases. Note that, for the sake of numeri-
cal continuation feasibility, the respective durations of the slow phases
are not realistic from a biological viewpoint; the relative duration of
the surge is exaggerated, while the total number of pulses in Phase-1
is drastically reduced. This change in the quantitative features of the
model is made without loss of generality in the study of the transition
phases that are rather the focus of this work. . . . . . . . . . . . . . . . 21

2.2 Canard solutions near the upper fold and variability after surge. (a)
Projection of a MMO-type trajectory with canard cycles near the upper
fold onto the (x, y) plane. (b) Corresponding small oscillations super-
imposed on the post-surge pause. . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Location of point (x, y) (red asterisk), y-nullcline (cyan), x-nullcline
(black) and the corresponding trajectory (red line) for different values
of a2 in Phase-2. Depending on the relative locations of the singular
point and current (x, y), different types of pre-surge behavior may occur.
(a1-b2) Passage of the y-nullcline through the lower knee before (x, y)
drives the trajectory to move along the left branch. (c1-d2) Passage
of the y-nullcline through the lower knee after (x, y) results in either a
canard explosion or jump to the right branch. . . . . . . . . . . . . . . . 25

2.4 Canard solutions near the lower fold and variability before surge. (a)
Projection of a bunch of canard solutions near the lower fold onto the
(x, y) plane. (b) Corresponding trajectories and effect on the surge
timing. If a solution encloses the convex region (blue and green curves
for instance), the departure to surge is slow and delayed compared to
the non-convex solutions (cyan and purple curves). The maximal canard
(red curve) can be considered as a boundary between the slow and fast
surge transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Canard-mediated transitions in an O(1) range of a2. Trajectories are
colored with respect to the color code used for the phases in Figure 2.1.
(a1-b2) (p, s) → (p − 1, s + 1) post-surge transition. (c1-d2) (p, s) →
(p+ 1, s) pre-surge transition. The compete transition from Panel (a1)
to Panel (d2) adds one more small oscillation to the pause ((p, s) →
(p, s+ 1)). Each peak rising during the pause is counted as a SAO. . . . 28
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2.6 Introduction and compensation of surge delay. a2 acts as a control pa-
rameter and determines the number of small oscillations on the upper
fold which is a folded node. An increase in a2 causes the loss of one
small oscillation in the post-surge pause, which advances the resump-
tion of the relaxation cycle but delays the subsequent departure to the
surge (from the blue trajectory to the green trajectory). The pre-surge
transition (from the green trajectory to the magenta) compensate for
the delay in the surge triggering. In Panel (b), the red dashed segment
labeled ∆t represents the time delay between the green and blue line,
while the black dashed segment labeled ∆y(t) illustrates the difference
in amplitude in y at the time of the surge triggering for the magenta
trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Invariant slow manifolds of 3D minimal system with µ = −0.025 ob-
tained for the initial values on the line segments xa = −0.2, xr = 0.2.
Attracting slow manifold Sa

ε (black) and repelling slow manifold Sr
ε (red)

intersect transversally on the plane Σf := z = 0 orthogonal to the fold
curve at xΣf

= 0 which corresponds to the maximal canard solution
near the folded saddle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Continuation on the configuration where (x, y) subsystem is on the ca-
nard and (u, v) is free to move. Panels (a) and (b) are projections of
intersection points on the Σf plane. (x, y) subsystem intersects xΣf

= 0
for the whole set of solutions whereas (u, v) generates non-canard solu-
tions except for the transversal intersection on uΣf

= 0. Panel (c) shows
an example orbit segment where (x, y) goes though the maximal canard
by crossing (x, z) = (0, 0) line while (u, v) does not. Equivalent results
can be obtained for the case where (u, v) subsystem is on the canard
and (x, y) is free to move. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 A zoom on the possible effect of the canard transition near the lower
fold of one of the coupled nonidentical secretors. (a) Time trace of
the S1’s output. (b) Pre-surge orbit segment projected onto (x1, y1)-
plane. Canard transitions near the lower fold have a local effect on the
output, specifically, on the pre-surge dynamics. Canards with head are
earlier in surge transition than headless canards, thus, a passage from
the non-convex region to the convex region introduces a pre-surge delay.
Depending on the region from where the other secretor goes to surge,
canards may generate or compensate for a great pre-surge ripple in the
(y1(t) − y2(t)) difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 A zoom on the possible effects of the canard transition occurring near
the upper fold in one of the coupled nonidentical secretors. (a) Time
trace of the S2’s output. (b) Post-surge orbit segment projected onto
(x2, y2)-plane. (c) Pre-surge orbit segment projected onto (x2, y2)-plane.
Canard transitions near the upper fold have a global effect on the output.
For instance, the loss of one SAO from the upper fold changes the timing
of the pulsatile regime, affects the phase of the relaxation cycle, changes
the number of pulses, and ultimately impacts the surge timing. . . . . . 38



114 LIST OF FIGURES

2.11 Uncoupled identical secretors S1 and S2. (a) Projections on (xi, yi)
planes. (b) Difference in the secretor outputs. Identical systems starting
from different initial conditions pass through different canard sectors
at each departure to surge, and, consequently, produce ripples in the
(y1(t) − y2(t)) occurring before surge. . . . . . . . . . . . . . . . . . . . 39

2.12 Effect of coupling on the canard solutions of identical secretors S1 and
S2. (a1,b1) Projections on (xi, yi) planes. (a2, b2) Difference in the
secretors’ outputs. Identical secretors starting from different initial con-
ditions preserve the opposite sequential behavior for 0 ≤ α1 = α2 <
0.0675, in other words, they desynchronize just before the surge ((a1,
a2) α1 = α2 = 0.06). For strong enough coupling, they synchronize and
start to follow the same sequence after a transient response ((b1, b2)
α1 = α2 = 0.09). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.13 Uncoupled nonidentical secretors S1 and S2. (a) Phase planes of S1 (blue
line) and S2 (green line); S1 remains in the convex region before surge
and S2 moves to the non-convex region. (b) Large amplitude ripples
in output difference. (c) S1 and S2 resume relaxation cycles at differ-
ent times and oscillate with and almost π-lag. Anti-phase oscillation
compensates for the difference in the surge timing. . . . . . . . . . . . . 41

2.14 Effect of coupling on the canard solutions of S1 near its lower fold.
Slight changes in the coupling strength alter the meeting point between
(x1, y1) and the y1-nullcline and force S1 to undergo, first, canards with
head, and then, to jump to the right branch of y1 = f(x1). . . . . . . . . 42

2.15 Effect of coupling on the canard solutions of S2 near its upper fold. (a1,
a2) Phase plane of S2 for α1 = α2 = 0.004 and α1 = α2 = 0.005,
respectively. S2 loses one small oscillation near the upper fold for
0.004 < α1 = α2 < 0.005. The last SAO of S2 disappears via a ca-
nard trajectory (Panels (a1, a2)) and the number of post-surge SAO of
the two secretors are equalized. Both the phase difference and ampli-
tude of the output difference diminish immediately when the SAO is
lost (Panels (b1, b2)). On the contrary, pre-surge peaks appear as a
result of the different surge timings (Panels (c1, c2)). . . . . . . . . . . . 43

2.16 Effect of coupling on the canard solutions S2 near its lower fold. (a)
Phase plane of S2. (b) Difference in the secretors’ outputs. (c) Out-
put of S2 for various coupling strengths. When the number of SAOs is
equalized (Fig. 2.15), the increase in the coupling strength make S2 get
closer to the lower fold canard sectors and reduces the phase difference
in the pulsatile regime. For α1 = α2 ≈ 0.08229, S2 undergoes a maxi-
mal canard and passes to the non-convex region where S1 also goes by
before surge. This change reduces the pre-surge difference in timing and
amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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3.1 Phase-dependent dynamic behavior and reproduction of the GnRH se-
cretion pattern. Panel (a): attracting relaxation cycle followed by the
regulator in the (X,Y ) phase plane. The abscissas of the upper and
lower fold points of the cubic nullcline are labeled as γ and −γ, re-
spectively. Each number represents a different phase of the periodic
behavior. 2-headed arrows: O(ε) speed, 1-headed arrows: O(1) speed.
Panel (b): position of the nullclines of the secretor on the (x, y) phase
plane with respect to the 4 phases in the (X,Y ) limit cycle. Green ar-
row: direction of the y-nullcline during the pulsatile phase. Red arrows:
transition from pulsatility to surge. Blue arrow: surge phase. Pink
arrows: transition from surge to pulsatility. The leftwards motion of
the y-nullcline during the pulsatile phase results in an increasing pulse
frequency. The increase in the pulse frequency is emphasized by the
decrease in the interpulse interval (IPI), as seen on the middle inset of
Panel (d). Panel (c): projection of a trajectory onto the (x, y) plane.
The phases are colored as in Panel (a). 3-headed arrows: O(εδ)-speed
motion. Panel (d): GnRH pattern along the ovarian cycle using the
same color code to highlight the different phases (the fastest transitions
are embedded within the surge phase). The quantitative specifications
were derived for the ovine species. Whole cycle duration: 16.5 days.
Luteal phase duration: 13 days. Follicular phase duration (surge ex-
cluded): 2.5 days. Surge duration: 1 day. Pulse to surge amplitude
ratio: 1/60. Frequency increase ratio: 1/4. . . . . . . . . . . . . . . . . . 51

3.2 Panel (a): signals yout
1 (t) (blue) and yout

2 (t) (red) in the absence of cou-
pling. The differences in the IPIi patterns (upper inner panel), surge
amplitudes and the presence of a pause before pulsatility resumption
in S1 (lower inner panel) are visible. Panel (b): global output z(t) of
the uncoupled system. The pause in S1 is embedded within the whole
duration of the surge in S2 and contributes to the global surge (inner
panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Output signals generated by the 6D model : y1(t) (blue curve), y2(t)
(red curve), global output z(t) (yellow curve), compared to yT H (black
dashed line). Panel (a): overlapping pulses in y1(t) and y2(t) leading to
a synchronized pulse z(t), with z(t) > 2yT H (t(n)

2 ∈ [t(n)
1 , t

(∗n)
1 ]). Panel

(b): separated pulses in y1(t) and y2(t) leading to desynchronized pulses
in z(t), with z(t) < 2yT H (t(n)

2 /∈ [t(n)
1 , t

(∗n)
1 ]). . . . . . . . . . . . . . . . . 54
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3.4 Activation function ψ(Xsync, X) in (3.2.7) and shaping of a camel surge
using constant coupling function (3.2.8) with α1 = 2 and α2 = 10.
Panel (a1) Location of the activation value Xsync = 2 on the (X,Y )
plane. The coordinate (Xsync, g(Xsync)) is located on the middle of
the right branch of g(X). Panel (a2) Activation signal as a function of
time (Xsync = 2), with initial time chosen at the very beginning of the
surge, and change in X(t) starting from its maximal value X = Xmax

and decreasing progressively to reach Xsync during the surge. Panel
(b) Global output z(t) during the surge according to different values of
Xsync. Panels (c1-c3) Signals yi(t) generated with three different values
of Xsync (1.5, 1.9, 2.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Generation of a camel surge with dynamic coupling (3.2.9) for α̂1 =
0.02, α̂2 = 0.1. Panel (a): the value of Xsync should be chosen in the
correct range to let S1 and S2 resynchronize and climb up along f(xi)
within the surge regime. Panels (b1-b3): signals yi(t) generated with
three different values of Xsync (1.5, 1.9, 2.1). . . . . . . . . . . . . . . . . 58

3.6 Coupling strengths compatible with a camel surge. The color-filled ar-
eas delimit the sets of coupling strengths (α1, α2) (left panel, constant
coupling) or (α̂1, α̂2) (right panel, dynamic coupling) compatible with a
camel surge for different values of Xsync = {1.8, 1.9, 2.0, 2.1}. The white
area corresponds to parameter values leading to a single bump surge. . . 59

3.7 Bump ordering and surge amplitude in the case of constant coupling,
for different values of Xsync, α1, α2. . . . . . . . . . . . . . . . . . . . . 59

3.8 Bump ordering and surge amplitude in the case of dynamic coupling,
for different values of Xsync, α̂1, α̂2. . . . . . . . . . . . . . . . . . . . . . 60

3.9 Frequency difference and desynchronization. Series of pulse widths,
PWi, (Panel (a)) and series of IPIi (Panel (b)) in uncoupled (solid lines)
and coupled (dashed lines) secretors. Panel (c): differences in the onset
times of pulses, normalized by the pulse width ((t1 − t2)/PW2). Panel
(d): differences in the onset times of pulses, normalized by the IPI
((t1 − t2)/IPI2). Pink dashed lines help to locate the desynchronization
time. Depending on the coupling strengths, the order of spiking can be
transiently reversed several times, and then one the oscillators (S2 here)
gets ahead of the other. Panel (e): global output z(t) for α1 = α2 = 0.1
during the pulsatile regime. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Signal z(t) for Xsync = 2. Panel (a): constant coupling with small
coupling strengths α1 = 0.02, α2 = 1; there is no camel surge and the
oscillators get desynchronized at the end of the pulsatile regime. Panel
(b): constant coupling with strong coupling strengths α1 = 2, α2 = 10:
a camel surge occurs and the oscillators remain synchronized all along
the pulsatile regime. Panel (c): dynamic coupling with small coupling
strengths α̂1 = 0.02, α̂2 = 0.1: a camel surge occurs and the oscillators
get desynchronized at the end of the pulsatile regime. . . . . . . . . . . 64
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3.11 Assessment of the desynchronization time. Panel (a) Relative duration
of synchronization in the pulsatile regime (t6D

desync/Tpulsatile) as a function
of coupling strength α̂2, for different ratios k = α̂1/α̂2. Panels(b1-b2)
zsync(t) (3.2.5) along the pulsatile regime together with the values of
X6D

desync (green circle), X4D
desync (red asterisk) and Xsing

desync (cyan asterisk),
superimposed on X(t) for α̂1 = 0.005, α̂2 = 0.05 (b1) or α̂1 = 0.5,
α̂2 = 0.5 (b2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.12 Assessment of the desynchronization time. Relative duration of syn-
chronization in the pulsatile regime (t6D

desync/Tpulsatile, Panel(a)) and as-
sociated values of Xdesync (Panel (b)) observed by numerical simulations
(solid lines) or assessed by the 4D approximation (dotted-dashed lines)
or nullcline-based approximation (solid blue lines), as a function of cou-
pling strength α̂2 and for different ratios k = α̂1/α̂2. Orange lines:
k = 0.1, purple lines: k = 0.25, green lines: k = 0.50, cyan lines:
k = 0.75, magenta lines: k = 1. . . . . . . . . . . . . . . . . . . . . . . . 67

3.13 Mimicking an experimental camel surge. Panel (a) Schematic drawing of
the experimental data, inspired from Figure 4 in [82]. Panel (b) Surge
shape obtained from uncoupled secretors with c(1) = 0.29, a(1)

2 = 0.4.
Panel (b) Surge shape obtained from constant coupling, with α1 = 5,
α2 = 25, Xsync = 2.07, ρ = 40. Panel (d) Surge shape obtained from
dynamic coupling with α̂1 = 0.15, α̂2 = 0.6, Xsync = 2.07, ρ = 40. The
time unit on the horizontal axis is rescaled with respect to the whole
surge duration. In panels (b) to (d), both the global output variable z(t)
(yellow curve) and the individual outputs yout

1 (blue curve) and yout
2 (red

curve) are displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.14 Mimicking an experimental camel surge. Panel (a) Schematic drawing
of the experimental data, inspired from Figure 2 in [83]. (b) Surge
shape obtained from uncoupled secretors with the alternative parameter
values c(1) = 0.35, a(1)

2 = 0.325, c(2) = 0.502, a(2)
2 = 0.6805, b2 = 1.503.

Panel (c) Surge shape obtained from dynamic coupling with the nominal
parameter values of Table 3.1, and Xsync = 1.92, α̂1,= 0.5,α̂2 = 0.7,
ρ = 40. (d) Surge shape obtained from dynamic coupling with the
alternative values of a(i), c(i), b2, yT H = 1.392 and Xsync = 1.92, α̂1 =
0.5, α̂2 = 1.0. The time unit on the horizontal axis is rescaled with
respect to the whole surge duration. In panels (b) to (d), both the
global output variable z(t) (yellow curve) and the individual outputs
yout

1 (blue curve) and yout
2 (red curve) are displayed. . . . . . . . . . . . 70

3.15 Signals yout
1 (t) (blue), yout

2 (t) (red) and z(t) in the case of constant cou-
pling (1.4.1) for Xsync = 2. Panel (a) α1 = 0.1, α2 = 0.1. Desynchro-
nization occurs at X6D

desync = −2.11 (t6D
desync = 14.53). Disappearance of

overlapping estimated by the weakly coupled oscillator theory occurs at
X = −2.07 (tφdesync = 14.81). Panel (b) α1 = 0.01, α2 = 0.1. Desynchro-
nization occurs at X6D

desync = −2.2787 (t6D
desync = 11.7). PD bifurcation

occurs at X = −2.2826 (tP D
desync = 11.53). . . . . . . . . . . . . . . . . . . 72
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3.16 G-function (3.6.1) for α1 = α2 = α = 0.1. Red line: G(∆ω∗). Yellow
line: G(∆ω#

pulse). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.17 Outputs (upper panels) of (3.6.2) and synchronized pulses (3.2.5) (lower
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3.18 Left panel: Phase difference as a function of h for X = −2.32948, k =
0.1, α2 = 0.1. Right panel: Phase difference increases a function of X.
k = 0.1, α2 = 0.05, h = 0.995. Yellow line: φ#

pulse(X). . . . . . . . . . . . 76

3.19 Phase difference as a function of X in (3.6.2) with the parameter set
of Table 3.1, and k = 0.1, α2 = 0.1. Yellow line: φ#

pulse(X). See the
corresponding secretion pattern along a whole ovarian cycle in Figure
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4.1 Top left panel: Canard orbits of the VDP system in the phase plane,
for ε = 0.1. Panels 1-7: time profile of the first component of the
adjoint solution associated with each canard cycle shown in the phase
plane (together with the critical manifold S0 :={y=f(x)}), keeping the
same color coding with the cycles in the top left panel. A qualitative
change in the adjoint solution occurs in between Orbit 4 and Orbit 5,
corresponding to the passage through the maximal canard cycle. . . . . 85

4.2 Top left panel: Canard orbits of the reduced HH system in the phase
plane. Panels 1-7: time profile of the first component of the adjoint
solution associated with each canard cycle shown in the phase plane
(together with the critical manifold S0 := {V̇ = 0}), keeping the same
color coding with the cycles shown in the top left panel. A qualitative
change in the adjoint solution occurs in between Orbit 4 and Orbit 5,
corresponding to the passage through the maximal canard cycle. . . . . 87

4.3 (a) Period of limit cycles along the canard explosion in the VDP system
for ε = 0.1; the parameter that varies is c in a decreasing fashion. The
period is increasing along the headless canard part of the branch, it
reaches its maximum at the maximal canard and then decreases along
the canard-with-head cycles. (b) Three headless canard cycles and their
periods marked on the period curve. Smaller cycles have smaller periods.
(c) Three cycles in the neighborhood of the maximal canard, together
with their periods marked on the period curve. Canards with head
and headless canards have very close periods in this vicinity. (d) Three
canards with head and their periods marked on the period curve. Larger
cycles have smaller periods. Also shown on panels (b) to (d) is the
critical manifold S0, on which solid (resp. dashed) parts represent stable
(resp. unstable) branches. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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4.4 (a1, b1) Transient effect (dashed curves) of a small perturbation of the
canard cycles (red solid curves) in the positive x-direction. (a2)-(b2)
time profile of the first component of the adjoint solution associated
with the red canard cycles and (inset) (x(t), y(t)) during one cycle. Per-
turbing a headless canard (resp. a canard with head) away from the
attracting slow manifold (perturbation in the positive direction shown
by the yellow asterisk) advances (resp. delays) its phase by driving it
to a larger yet slower (resp. faster) yellow dashed cycle. Perturbing a
headless canard (resp. a canard with head) away from the repelling slow
manifold (perturbation in the positive direction shown by blue asterisk)
delays (resp. advances) its phase by driving it to a smaller yet faster
(resp. slower) blue dashed cycle. . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Time profile of the functions Hi in the maximal canard neighborhood
given in Figure 4.3 (c) for FF (panel (a)) and FS (panel (b)) coupling
functions. The properties of Hi reflect what is found for the solutions
of the adjoint equation, i.e. the transition occurs in the neighborhood
of the maximal canard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Selection of canard cycles of the VDP oscillator in the phase plane (x, y)
(top left panel) together with the corresponding G functions (panels 1
to 7; the phase φ is rescaled to [0,1]). . . . . . . . . . . . . . . . . . . . . 92

4.7 Bifurcation diagram of system (4.3.1) with respect to variations of c for
α = 10−5, from the Hopf regime to the relaxation regime. The output
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Sujet : Étude mathématique de systèmes multi-échelles en temps
couplés, synchronisation de populations de neurones endocrines

Résumé : Dans cette thèse, nous étudions les propriétés de synchronisation d’oscillateurs
lents-rapides inspirés de la neuroendocrinologie et des neurosciences, en se concentrant sur
les effets des phénomènes de type canard et bifurcations dynamiques sur le comportement
collectif.

Nous partons d’un système de dimension 4 qui représente les caractéristiques dynamiques
qualitatives et quantitatives du profil de sécrétion de la neurohormone GnRH (gonadotropin
releasing hormone) au cours d’un cycle ovarien. Ce modèle est constitué de deux oscilla-
teurs de FitzHugh-Nagumo avec pour chacun des échelles de temps différentes. Le couplage
unidirectionnel de l’oscillateur lent (représentant l’activité moyenne d’une population de
neurones régulateurs) vers l’oscillateur rapide (représentant l’activité moyenne d’une pop-
ulation de neurones sécréteurs) donne une structure à trois échelles de temps. Le com-
portement de l’oscillateur rapide est characterisé par une alternance entre un régime de
type cycle de relaxation et un régime de quasi-stationnaire qui induit des transitions de
type canard dans le modèle ; ces transitions ont un fort impact sur le modèle de sécré-
tion du système de dimension 4. Nous proposons un premier pas supplémentaire dans la
modélisation multi-échelles (en espace) du système GnRH, c’est-à-dire que nous étendons
le système original à 6 dimensions en considérant deux sous-populations distinctes de neu-
rones sécréteurs recevant le même signal des neurones de régulation. Cette étape nous
permet de enrichir les motifs possibles de sécrétion de GnRH tout en gardant un cadre
dynamique compact et en préservant la séquence des événements neuro-sécréteurs capturés
par le modèle de dimension 4, à la fois qualitativement et quantitativement.

Une première analyse du modèle GnRH étendu à 6 dimensions est présentée dans le
Chapitre 2, où nous montrons à l’aide d’un système minimal de dimension 5 l’existence de
trajectoires de type canard dans des systèmes lents-rapides couplés présentant des points
pseudo-stationnaires. Le couplage provoque la séparation des trajectoires correspondant à
chaque sécréteur qui se retrouvent de chaque côté du canard maximal (associé soit à un
point pseudo-stationnaire de type noeud soit à un pseudo-col). Nous explorons les rap-
ports entre les canards en présence et le couplage, ainsi que leur impact sur les motifs de
sécrétion collective du modèle de dimension 6. Nous identifions deux sources différentes
de (dé)synchronisation due aux canards dans les événements sécrétoires, qui dépendent du
type de point pseudo-stationnaire sous-jacent.

Dans le Chapitre 3, nous proposons une modélisation possible des comportements com-
plexes de sécrétion de GnRH qui ne sont pas capturés par le modèle de dimension 4, à
savoir, une décharge avec 2 “bosses” et une désynchronisation partielle avant la décharge,
en utilisant le modèle de dimension 6 précédemment construit. Pour obtenir une décharge
avec deux bosses, il est essentiel d’utiliser des fonctions de couplage asymétriques dépen-
dant du régulateur ainsi que d’introduire de l’hétérogénéité dans les sous-populations de
sécréteurs. Pendant le régime pulsatile, il apparaît que le signal régulateur varie lente-
ment et, ce faisant, provoque une bifurcation dynamique qui est responsable de la perte
de synchronie dans le cas de sécréteurs non identiques et asymétriquement couplés. Nous
introduisons des outils analytiques et numériques pour façonner et quantifier ces carac-
téristiques supplémentaires et les intégrer dans le profil complet de sécrétion.

Afin d’obtenir une meilleure compréhension du rôle des canards dans les phénomènes de
(dé)synchronisation, nous proposons, au Chapitre 4, une extension de la théorie de oscil-



lateurs (du plan) faiblement couplés au cas des cycles de canard. À l’aide de techniques
de continuation numérique, nous calculons des solutions aux problèmes adjoints associés à
des oscillateurs singulièrement perturbés. Nous identifions le rôle pivot que joue le canard
maximal dans la transition entre les différents modes de synchronisation. Nous trouvons
des solutions synchrones 2nT -périodiques pour des systèmes identiques couplés à proxim-
ité du canard maximal et nous étudions l’impact de la force de couplage et du principal
paramètre qui organise l’explosion de canards (pour chaque oscillateur seul) sur l’existence
de telles familles de solutions synchrones.

Les bifurcations dynamiques et transitions lentes-rapides étudiées dans cette thèse se
retrouvent plus généralement en neuroscience, dans les systèmes produisant des dynamiques
de type “spiking” et/ou “bursting”. Un certain nombre de pistes concernant l’extension de
notre travail à ces dynamiques sont mises en évidence dans le chapitre de conclusion.

Mots clés : canards, synchronisation, systèmes lents-rapides, systèmes multi-échelles de
temps, points pseudo-stationnaires, sécrétion de GnRH, oscillateurs faiblement couplés,
bifurcations dynamiques



Subject : A mathematical study on coupled multiple timescale
systems, synchronization of populations of endocrine neurons

Abstract: This dissertation investigates synchronization properties of slow-fast oscillators
inspired from neuroendocrinology and neuronal dynamics, focusing on the effects of canard
phenomena and dynamic bifurcations on the collective behavior.

We start from a 4-dimensional system which accounts for the qualitative and quantitative
dynamical features of the secretion pattern of the neurohormone GnRH (gonadotropin re-
leasing hormone) along a whole ovarian cycle. This model involves 2 FitzHugh-Nagumo
oscillators with different timescales. Unidirectional coupling from the slow oscillator (rep-
resenting the mean-field activity of a population of regulating neurons) to the fast oscillator
(representing the mean-field activity of a population of the secreting neurons) gives a three
timescale structure. The behavior of the fast oscillator is characterized by an alternation
between a relaxation cycle and a quasi-stationary state which introduces canard-mediated
transitions in the model; these transitions have a strong impact on the secretion pattern of
the 4-dimensional system. We make a first step forward in multiscale modeling (in space)
of the GnRH system, namely, we extend the original system to 6 dimensions by con-
sidering two distinct subpopulations of secreting neurons receiving the same signal from
the regulating neurons. This step allows us to enrich further the GnRH secretion pattern
while keeping a compact dynamic framework and preserving the sequence of neurosecretory
events captured by the 4-dimensional model, both qualitatively and quantitatively.

An initial analysis of the extended 6-dimensional GnRH model is presented in Chap-
ter 2, where we prove using a 5D minimal model the existence of canard trajectories
in coupled systems with folded singularities. Coupling causes separation of trajectories
corresponding to each secretor by driving them to different sides of the maximal canard
(associated with either a folded-node or a folded-saddle singularity). We explore the im-
pact of the relationship between canard structures and coupling on the collective secretion
pattern of the 6-dimensional model. We identify two different sources of canard-mediated
(de)synchronization in the secretory events, which depend on the type of underlying folded
singularity.

In Chapter 3, we attempt to model complex behaviors of the GnRH secretion not captured
by the 4-dimensional model, namely, a surge with 2 bumps and partial desynchronization
before the surge, by using the 6-dimensional model previously constructed. Regulatory-
dependent asymmetric coupling functions and heterogeneity in the secretor subpopulations
are essential for obtaining such a 2-bump surge. During the pulsatile regime, we find that
the slowly varying regulatory signal causes a dynamic bifurcation, which is responsible for
loss of synchrony in asymmetrically coupled nonidentical secretors. We introduce analytic
and numerical tools to shape and quantify the additional features embedded within the
whole secretion pattern.

In order to get further understanding on the role of canards in (de)synchronization phe-
nomena, in Chapter 4, we extend the theory of weakly coupled (planar) oscillators to the
case of canard cycles. We find solutions of adjoint equations of singularly perturbed os-
cillators by using numerical continuation techniques. We identify the role of the maximal
canard as a pivotal in the transition between different modes of synchronization. We find
2nT -periodic synchronous solutions arising in coupled identical cycles near the maximal
canard depending on the coupling strength and on the main canard parameter.

The dynamic bifurcations and slow-fast transitions studied in this dissertation have ap-
plications to spiking/bursting systems in neuroscience, and ideas for the extension of our



work to these dynamics are highlighted in the Conclusion chapter.

Keywords : canards, synchronization, slow-fast systems, multiple timescales, folded sin-
gularity, GnRH secretion, weakly coupled oscillators, dynamic bifurcation


