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Abstract

We investigate various aspects of adaptive randomized (or stochastic) algorithms for both
constrained and unconstrained black-box continuous optimization.

The first part of this thesis focuses on step-size adaptation in unconstrained optimization.
We first present a methodology for assessing efficiently a step-size adaptation mechanism
that consists in testing a given algorithm on a minimum set of functions, each reflecting a
particular difficulty that an efficient step-size adaptation algorithm should overcome. We
then benchmark two step-size adaptation mechanisms on the well-known BBOB (black-box
optimization benchmarking) noiseless testbed and compare their performance to the one of
the state-of-the-art evolution strategy (ES), CMA-ES, with cumulative step-size adaptation.

In the second part of this thesis, we investigate linear convergence of a (1 + 1)-ES and
a general step-size adaptive randomized algorithm on a linearly constrained optimization
problem, where an adaptive augmented Lagrangian approach is used to handle the constraints.
To that end, we extend the Markov chain approach used to analyze randomized algorithms
for unconstrained optimization to the constrained case. We prove that when the augmented
Lagrangian associated to the problem, centered at the optimum and the corresponding
Lagrange multipliers, is positive homogeneous of degree 2, then for algorithms enjoying
some invariance properties, there exists an underlying homogeneous Markov chain whose
stability (typically positivity and Harris-recurrence) leads to linear convergence to both the
optimum and the corresponding Lagrange multipliers. We deduce linear convergence under
the aforementioned stability assumptions by applying a law of large numbers for Markov
chains. We also present a general framework to design an augmented-Lagrangian-based
adaptive randomized algorithm for constrained optimization, from an adaptive randomized

algorithm for unconstrained optimization.






Résumé

On étudie dans cette these différents aspects des algorithmes stochastiques adaptatifs pour
I’ optimisation numérique boite-noire, dans les cas avec et sans contraintes. On s’intéresse en
particulier a la famille des stratégies d’évolution (ES) dont I’algorithme CMA-ES (covariance
matrix adaptation evolution strategy) est reconnu comme la référence en optimisation stochas-
tique numérique. Plus précisément, on aborde deux problemes ouverts liés aux stratégies

d’évolution et formulés ci-dessous :

(1) Existe-t-il une stratégie optimale pour adapter le step-size? Et comment évaluer et

comparer efficacement des stratégies d’adaptation du step-size?

(i1) Comment gérer les constraintes efficacement? En particulier, la convergence linéaire
obtenue dans le cas sans contraintes peut-elle étre préservée sur des probleémes simples

avec contraintes?

Nos travaux pour tenter de répondre a ces questions sont présentés dans le présent
manuscrit, qui s’organise comme suit : le chapitre 1 motive les themes de recherche abordés
et résume les contributions. Le chapitre 2 introduit quelques notions importantes de la
théorie des chaines de Markov a temps discret et états continus, telles que la positivité,
I’irréductibilité, la récurrence et la loi des grands nombres généralisée aux chaines de Markov.
Ces notions sont ensuite utilisées pour analyser la convergence d’algorithmes stochastiques
adaptatifs pour I’optimisation avec contraintes.

Le chapitre 3 est consacré a I’ optimisation numérique boite-noire. Dans un premier temps,
les caractéristiques qui rendent un probleme difficile a optimiser sont discutées. Ensuite, les
principaux algorithmes d’optimisation numérique boite-noire sont rappelés; 1’accent est mis
sur les algorithmes évolutionnaires et, en particulier, sur les stratégies d’évolution, qui sont
modélisées par une séquence d’états et une fonction de transition qui donne le nouvel état a
partir de 1’état courant de 1’algorithme. Ce chapitre introduit notamment 1’importante notion
de “convergence linéaire”, et un exemple illustrant I’analyse de la convergence linéaire d’un
ES en utilisant la théorie des chaines de Markov y est donné, pour le cas sans contraintes.

Le chapitre 4 présente une vue d’ensemble des méthodes de gestion des contraintes en

optimisation mathématique et dans les algorithmes évolutionnaires. Quelques définitions



classiques telles que la faisabilité, la notion de cone critique et les conditions de faisabilité
(notamment les conditions dites de Karush-Kuhn-Tucker), y sont aussi rappelées.

Le chapitre 5 présente la premiere partie de nos contributions, qui traite de 1’adaptation
du step-size dans les ES pour I’optimisation sans contraintes (probleéme ouvert (i)). On com-
mence par présenter une méthodologie pour évaluer efficacement un mécanisme d’adaptation
du step-size qui consiste a tester un algorithme donné sur un ensemble minimal de fonctions,
dont chacune reflete une difficulté particuliere qu’un mécanisme efficace d’adaptation du step-
size doit €tre en mesure de résoudre. On compare ensuite les performances de trois méthodes
d’adaptation du step-size—dont la méthode état-de-1’art CMA-ES avec "cumulative step-size
adaptation"—sur le testbed non bruité BBOB (black-box optimization benchmarking).

Le chapitre 6 rassemble nos contributions dans le domaine de I’optimisation boite-noire
avec contraintes (probleme ouvert (ii)). On analyse la convergence linéaire d’un (1+1)-ES et
d’un algorithme général d’adaptation du step-size dans le cadre d’un probleme d’optimisation
avec contraintes linéaires, gérées par une approche Lagrangien augmenté adaptative. Pour ce
faire, on étend 1’analyse par chaines de Markov conduite dans le cas de I’optimisation sans
contraintes au cas avec contraintes. On montre que si le Lagrangien augmenté correspondant
au probleme et centré en I’optimum et en les multiplicateurs de Lagrange associés, est
positivement homogene de degré 2, alors—pour des algorithmes présentant des propriétés
d’invariance—il existe une chaine de Markov homogene dont la "stabilité" implique la
convergence linéaire de 1’algorithme vers I’optimum et les multiplicateurs de Lagrange
associés (par "stabilité", on entend positivité et Harris-récurrence). La convergence linéaire
est déduite en appliquant une loi des grands nombres pour les chaines de Markov, sous
I’hypothese de la stabilité. On présente ensuite une approche générale pour construire un
algorithme stochastique adaptatif avec une approche Lagrangien augmenté a partir d’un
algorithme stochastique adaptatif pour I’optimisation sans contraintes.

Enfin, une synthese des résultats obtenus et quelques perspectives sont présentées dans
le chapitre 7.

vi
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Notations and Acronyms

[M];; element in the ith row and the jth column of a matrix M
[x];  ith coordinate of a vector x

0 vector of all-zeros 0 = (0,---,0)T € R”
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A (m,C) multivariate normal distribution of mean m and covariance matrix C
N set of natural numbers

Ns  set of natural numbers without zero

V2, second-order derivative with respect to x

Vx derivative with respect to x

m number of constraints

X1
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Pr(X) “probability of event X”
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a.s.  almost surely

aRT average runtime
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CMA covariance matrix adaptation
CMA-ES covariance matrix adaptation evolution strategy
CSA cumulative step-size adaptation

DFO Derivative-free optimization
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ERT expected running time
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KKT Karush-Kuhn-Tucker

LICQ linear independence constraint qualification
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Chapter 1
Introduction

Black-box continuous optimization problems are often encountered in practice; they consist
in minimizing a function f defined on a search space 2" C R", without knowing any
information on f but the value f(x) for a given point x € 2". Randomized (or stochastic)
algorithms have been applied successfully to a wide range of real-world continuous problems
and a particular family of randomized algorithms, the evolution strategies (ESs) [48], have
proven to be particularly efficient as demonstrated by the performance of the state-of-the-
art ES, the covariance matrix adaptation evolution strategy (CMA-ES) [53], on practical
problems, including ill-conditioned and non-separable ones. Given the current estimate X; of
the optimum, an ES samples new candidate solutions X' 41>i=1,---,A, according to

X, =X +0.40,C) ,

where .4/(0,C;) denotes a multivariate normal distribution of mean 0 and covariance matrix
C; and o; > 0 is the step-size and determines the “width” of the distribution of X! +1- The
step-size and the covariance matrix are typically adapted so as to increase the likelihood
of “good” solutions; consequently, ESs are observed to converge linearly on a large set
of unconstrained problems, that is, the distance of the current solution X; to the optimum
of f, Xopt, decreases linearly in log-scale. The performance of an ES therefore directly
relies on how the step-size and the covariance matrix are adapted. The adaptation of the
covariance matrix in moderate dimensions seems to be a solved problem and can be achieved
with CMA-ES for example. On the other hand, the question of how to adapt the step-size
efficiently is still open, and we approach this problem in Chapter 5.

Real-world optimization problems are often constrained, and despite the ongoing research
efforts in the field of constrained optimization, the question of how to handle constraints

properly is still open. In this thesis, we aim at designing a practical randomized algorithm for
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constrained optimization with a sound theoretical background. Following [5], we argue that
an effective constraint handling algorithm should converge linearly on “simple” constrained
problems, such as convex quadratic problems subject to a single linear constraint, at a
reasonable computational cost.

Linear convergence is an important aspect in unconstrained optimization and many ran-
domized algorithms for black-box optimization are designed with the purpose of converging
linearly on the widest possible range of problems. In the unconstrained case, linear conver-
gence of adaptive randomized algorithms—and ESs in particular— is commonly analyzed
with tools from the Markov chain theory [67]; the general approach consists in constructing
a homogeneous Markov chain whose stability (usually positivity and Harris-recurrence) will
lead to linear convergence through the application of a law of large numbers for Markov
chains. Such a Markov chain typically exists for translation-invariant and scale-invariant
ESs on the class of scaling-invariant functions [10, 14]. As for constrained optimization,
a (1+ 1)-ES with an augmented Lagrangian constraint handling approach is presented in
[5] for the case of one inequality constraint; the algorithm is observed to converge linearly
on two convex quadratic functions when the constraint is linear, without the need to adapt
the covariance matrix. A part of our work consists in analyzing linear convergence of the
algorithm in [5] using the Markov chain approach described above. In the light of the
obtained results, we present a practical general step-size adaptive randomized algorithm
with augmented Lagrangian constraint handling, for m > 1 inequality constraints, and apply
the same Markov chain approach to analyze its linear convergence in the case of linear
constraints.

The rest of this thesis is organized as follows: we introduce general concepts of the
Markov chain theory in Chapter 2 in order to give a broad idea on how stability is proven
in practice. Then we present an overview of black-box continuous optimization in Chapter
3; we highlight in particular difficulties that may arise in practice and present the class of
comparison-based adaptive randomized algorithms, which includes ESs. In Chapter 4, we
present theoretical aspects of constrained optimization and review some well-known con-
straint handling approaches, with particular emphasis on augmented Lagrangian approaches.
In Chapters 5 and 6, we present our contributions which can be divided in the two following

parts:

1) Assessment of step-size adaptation mechanisms in unconstrained optimization (Chap-
ter 5). We present two papers related to step-size adaptation in unconstrained optimization.
The first paper [51] describes a methodology for assessing step-size adaptation mechanisms,
which are often evaluated on too restrictive scenarios. We propose a minimal set of test



functions for a more realistic and thorough assessment and illustrate our methodology on
three algorithms. In the second paper [6], we benchmark two relatively recent step-size
adaptation mechanisms on the BBOB testbed [52] and discuss the results.

2) Markov chain analysis of linear convergence in constrained optimization (Chapter
6). This part details the main contributions of this thesis. In Section 6.1, we present a
Markov chain analysis of the augmented-Lagrangian-based (1+ 1)-ES presented in [5] for
the case of a single linear constraint. We show that if the augmented Lagrangian associated to
the constrained problem, centered at the optimum and the corresponding Lagrange multiplier,
is positive homogeneous of degree 2, then there is an underlying homogeneous Markov chain
such that, if some stability conditions hold, the algorithm converges linearly to both the
optimum and the corresponding Lagrange multiplier. To construct this Markov chain, we
exploit the comparison-based aspect of the algorithm along with its translation-invariance
and scale-invariance. We validate the stability empirically on the sphere function and on a
moderately ill-conditioned ellipsoid function. This work was originally presented in [7]. In
Section 6.2, we present a general framework for building an adaptive randomized algorithm
with augmented Lagrangian constraint handling from an adaptive randomized algorithm for
unconstrained optimization [8]. We define this framework for the case of one inequality
constraint; however, the generalization to m constraints is straightforward. This framework is
then used to construct a (it /w, A )-CMA-ES with adaptive augmented Lagrangian constraint
handling. The algorithm is tested on a set of problems, including ill-conditioned problems,
and linear convergence is observed. In Section 6.3, we present a general step-size adaptive
randomized algorithm with an adaptive augmented Lagrangian approach to handle m > 1
inequality constraints. To adapt the penalty factors of the augmented Lagrangian, we propose
a generalized version of the update rule introduced in [5]. We then analyze this algorithm
using a Markov chain approach: similarly to the single constraint case, we show the existence
of a homogeneous Markov chain whose stability implies linear convergence on the class of
functions such that the augmented Lagrangian, centered at the optimum and the corresponding
Lagrange multipliers, is positive homogeneous of degree 2. Once again, the stability of the
constructed Markov chain is validated numerically. This work was submitted to the workshop
on Foundations of Genetic Algorithms for possible publication.
In Chapter 7, we give a general discussion and perspectives for future work.






Chapter 2

Introduction to Markov Chain Theory

Markov chain theory [67, 45] has played a central role in the analysis of linear convergence
of comparison-based randomized algorithms for unconstrained optimization [21, 10, 14, 15].
By adopting a Markov chain approach, the study of linear convergence is replaced by the
study of the stability of an underlying Markov chain. In our case, we generalize the Markov
chain approach used in the unconstrained case to the constrained case as follows: we exhibit
a class of functions on which the investigated algorithm can be modeled as a homogeneous
Markov chain that “has a chance to be stable”. If the stability of the constructed Markov
chain holds, then linear convergence follows by virtue of the law of large numbers for Markov
chains.

In this chapter, we introduce some important definitions and theorems of the Markov
chain theory. Although most of these concepts are not explicitly used in our work, they are

essential in understanding and proving the stability of a Markov chain.

2.1 Discrete-Time Markov Chains

In our context, the term Markov chain refers to a discrete-time sequence (X;);cry of random
variables taking values in an open set S C R”, equipped with a Borel o-algebra %(S), that
we call the state space. The sequence (X;);cn satisfies the Markov property, that is, the
conditional distribution of X;, | given the past states X, ---,X;, t € N, depends only on X;.
We consider time homogeneous Markov chains, where the conditional distribution of X; |
given X; is independent of 7. The probabilities specifying the conditional distribution of X, |
given X;, or transition probabilities, are given by a transition probability kernel P defined as

P(x,B) =Pr(X;+1 €B | X; =Xx) ,
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with x € S and B€ %(S) a measurable set. The probability transition kernel P satisfies the

following two conditions:
(i) The function P(x,.) for all x € § is a probability measure.
(ii) The function P(.,B) for all B € Z(S) is a measurable function.

Given X; = x, the probability P* of hitting a subset B C S in k steps (k > 2), starting from X,
is defined inductively as

PH(x.B) =Pr(X, i € B | X =x) = [ P(x,dy)P*(3.B) .
S

where P! := P.

2.2 Invariant Probability Measure

Let 7 be a probability measure on the state space S and let assume that X; ~ 7. Then, the
distribution 7P of X; | is given by

7P (B) /S 7(dx)P(x,B) .

We say that 7 is invariant if

7(B) = /S 7(dx)P(x,B) ,

that is, 7P = 7. Informally, this means that if Xy ~ 7, then X;~ 7 for all # € N. If an invariant
probability measure exists for a Markov chain, we say that this Markov chain is positive.

2.3 Irreducibility

We say that a Markov chain is @-irreducible if there exists a nonzero measure ¢ on the
state space such that for any x € S and for any measurable set B€ Z(S) such that ¢(B) > 0,
Yhen. P¥(x,B) > 0. Hence, @-irreducibility ensures that all ¢-positive sets are reachable
from anywhere in the search space. Note that ¢ is an arbitrary measure that is not necessarily
an invariant probability measure. Indeed, a Markov chain that does not admit an invariant
probability measure can still be ¢-irreducible.



2.4 Harris-Recurrence

If a Markov chain is ¢-irreducible, then there exists a maximal irreducibility measure Yy

[67, Proposition 4.2.2] that dominates any other irreducibility measure'.

2.4 Harris-Recurrence

We adopt the definition of Harris-recurrence in [67]. Consider a y-irreducible Markov chain.

We say that a measurable set B€ A(S) is Harris-recurrent if for all x € B

Pr Zl{X,EB}:wl){O:X =1 y
teNs
that is, starting from some point x € B, the Markov chain will return an infinite number of

times to B almost surely. By extension, a y-irreducible Markov chain is Harris-recurrent if

all y-positive sets are Harris-recurrent.

2.5 Law of Large Numbers for Markov Chains

The following theorem generalizes the law of large numbers (LLN) for independent iden-
tically distributed (i.i.d.) random variables to Markov chains. It states that the LLN holds
for Markov chains if some stability properties, namely positivity and Harris-recurrence, are
satisfied by the Markov chain.

Theorem 1 (Theorem 17.0.1 from [67]). Let X be a positive Harris-recurrent chain with in-
variant probability 7. Then the LLN holds for any function q such that n(|q|) = [ |q(x)|m(dx) <
oo, that is, for any initial state Xy, lim; e % Z;;BQ(X/C) = n(q) almost surely.

If Harris-recurrence holds, the mean of the sample ¢(Xp),- -+ ,q(X;), when t — oo, con-
verges almost surely to the expected value with respect to the invariant probability measure
7, given the function ¢ is integrable.

2.6 Periodicity

If a Markov chain is y-irreducible, its search space can be partitioned into sets Dy, -+ ,D ;1
and N such that [45]

(i) P(x,D;)=1,forxeDjand j=i—1 modd.

! A measure y dominates another measure ¢ if for any measurable set A, y(A) = 0 implies ¢(A) = 0.
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(i) w(N) =0.

We say that the Markov chain is aperiodic it d = 1 and periodic if d > 1.

2.7 Ergodicity

A positive Harris-recurrent Markov chain with invariant probability measure 7 is said to be

ergodic if for any initial condition Xy = x € S,
[ _
1P (x,.) =7l —=0 .

If ||P'(x,.) — || converges to 0 at a geometric rate, we say that the Markov chain in geomet-
rically ergodic. In [67], a slightly different definition is given: a positive Harris-recurrent
Markov chain with invariant probability measure 7 is geometrically ergodic if there exists a

constant r > 1 such that for any initial condition Xy = x € §,

Y AIP(x,.) =] <eo .

teNs

2.8 Small and Petite Sets

A set Ce HA(S) is a small set if there exist m € N+ and a nonzero measure V,, such that for
all x € C and for all measurable sets B € %(S),

P"(x,B) > V(B) .

A set Ce H(S) is a petite set if there exist a probability distribution o on N and a nonzero
measure Vy such that for all x € C and for all measurable sets B € H(S),

Y a(t)P'(x,B) > va(B) ,
teN

where PY(x, B) represents a Dirac distribution on {x}. In practice, compact sets are often
small sets [25].
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2.9 Feller Chains and T-Chains

A @-irreducible Markov chain is called a Feller chain if the function P(.,0) is lower semi-
continuous, for all open sets O in the search space. If a Markov chain is a 7T-chain, there

exists a distribution & on N and a kernel T'(x, B) such that
(i) forall x € S and for all B € A(S), Y,y a@(f)P'(x,B) > T(x,B),
(i) forallx € S, T(x,S) > 0.

These two notions are used to identify small and petite sets of a Markov chain.

2.10 Drift Conditions

As stated in Theorem 1, the LLN generalizes to Markov chains when positivity and Harris-
recurrence hold. Since positivity and Harris-recurrence imply irreducibility, the first step is
to verify whether the considered Markov chain is irreducible. Drift conditions come into play
to show recurrence, positivity, and ergodicity. They are expressed as a function of the drift

(or potential) function V : § — R™ and the expectation
PV(x):=E(V(Xi+1) | Xr =x) .

If the sets {x € S | V(x) < r} are petite for any real number r, we say that V is unbounded
off petite sets. The following drift condition ensures Harris-recurrence.

Theorem 2 (Theorem 9.1.8 from [67]). Let (X;);en be a Wy-irreducible Markov chain. If
there exists a petite set C € HB(S) and a non-negative function V that is unbounded off petite

sets such that
PV(x) <V(x), forallx ¢C ,

then the Markov chain is Harris-recurrent.

A stronger drift condition, the so-called geometric drift condition [67, Theorem 15.0.1],
states that given a @-irreducible aperiodic Markov chain, if there exists a functionV > 1, a
petite set C € Z(S), constants f > 0 and b < oo such that

PV(x)—V(x) < —BV(x) +bl{xeC}> Xes ,

then—among other consequences—the Markov chain is positive recurrent with invariant

probability measure 7.



Introduction to Markov Chain Theory

The drift function is often chosen as the objective function f plus some constant in

proofs.
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Chapter 3

Black-Box Continuous Optimization: an

Overview

Continuous (or numerical) optimization considers the minimization' of functions of the form
f: 2 CR"— R defined on a subset 2~ of R” called the search space, where n € N+ is the
dimension of the search space and where f is referred to as the objective function. A solution
to this optimization problem is called the optimum—or the minimum—of f>.

In black-box optimization, the objective function f is minimized in a black-box scenario,
that is, the only information on f available during the optimization process is f(x) for a given
point X € 2" (zero-order information). In particular, no higher-order information is available,
such as the gradient (first-order information) or the Hessian (second-order information) of
f. This is a common scenario in real-world applications where the f-value (also fitness
or quality) of a solution is often obtained via an executable file whose source code is not
available or by running a simulation model.

In this chapter, we discuss various aspects of black-box continuous optimization: we
highlight some difficulties that might be encountered when optimization a continuous function
in Section 3.1. Then, we present some of the best-known algorithms for black-box continuous
optimization in Sections 3.2 and 3.3. These algorithms are known generically as derivative-
[free optimization (DFO) algorithms, as opposed to algorithms exploiting derivatives such as
Newton and quasi-Newton methods [37, 39]. We distinguish deterministic algorithms and

stochastic algorithms, as well as function-value-free (FVF)—or comparison-based (CB)—

'We consider minimization w.l.0.g. Indeed, maximizing f is equivalent to minimizing — f. We may also
refer to minimization simply as optimization.

Due to the nature of the search space, practical algorithms for numerical optimization can only approximate
the optimum. In discrete optimization, however, exact solutions can be found.

11



Black-Box Continuous Optimization: an Overview

algorithms, which use f-values of the generated solutions only through comparisons, and

value-based algorithms which explicitly use f-values.

3.1 Difficulties Related to Continuous Optimization

We discuss in the following five characteristics that make an optimization problem difficult
to solve [11].

Ruggedness Informally, we say that a function is rugged if its graph is “uneven”. Rugged-
ness can be due to different reasons such as multi-modality, that is, the presence of many local
optima. Another possible reason is that the function under consideration is discontinuous,
non-differentiable, or noisy (in which case two function evaluations of the same point X return
different values). To tackle such problems, an optimization algorithm generally needs many

function evaluations to capture the structure of the function at hand.

Non-separability An objective function f(xy,---,x,) is separable if its optimal value for

each coordinate, [Xop);, i=1,- - ,n, can be obtained by optimizing f(Xy,- - - ,%i—1,%;,Xit1, - ,%n)

for any fixed values Xy, -+ ,%;_1,%i+1, - ,X;- More formally, for all i € {1,--- ,n},

[Xopt]i = afgminf(fly T ,.fi_17.x,',.fi+1, Tt 7)2?1) )
xi€R
for all xy,--- ,Xj—1,Xi+1,--- ,X, € R. This means that separable functions can be optimized
by solving n one-dimensional problems. On non-separable functions, however, an algorithms

needs to take the dependencies between variables into account.

Ill-conditioning For convex quadratic functions of the form

F(x) = 3 (x~%)TH(x %) | G.1)

with H € R™*" a symmetric positive-definite matrix and X € R”, the conditioning is given by
the condition number of the Hessian H, and its square root corresponds to the ratio between
the lengths of the largest and the smallest axis of the ellipsoidal contour lines of f. In practice,
a problem is considered ill-conditioned if its conditioning is larger than 10°. The difficulty
when dealing with ill-conditioned problems resides in the different scaling of changes in

f-values along different axes.
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3.2 Deterministic Algorithms

Remark 1. If Hin (3.1) is the identity matrix I,,»,, f corresponds to the sphere function. 1f
H is a diagonal matrix with diagonal elements o %, i=1,---,n, a>0,then f corresponds

to the ellipsoid function and « is the condition number of H.

Dimensionality The volume of the search space increases exponentially with the dimen-
sion: this is what we call the “curse of dimensionality”. Consequently, an algorithm that
performs well in small dimensions may not perform as good in large dimensions where a

more effective exploration of the search space is required.

Constraints Constrained optimization problems are very common in practice. The pres-
ence of constraints adds to the difficulty of the original problem in that an algorithm has to
find feasible solutions (i.e. solutions that satisfy the constraints) possibly while dealing with
the aforementioned difficulties. Therefore, the efficiency of an algorithm directly depends on

the one of its constraint handling mechanism.

3.2 Deterministic Algorithms

In this section, we present very briefly three deterministic algorithms for black-box continuous
optimization: the Nelder-Mead method which is also FVF, pattern search methods, and zero-
order trust-region methods. Deterministic algorithms present the advantage of being simple
to understand by the user; they are also easier to analyze compared to stochastic algorithms.
However, they typically lack the ability of exploration, which is particularly important in a

black-box context.

3.2.1 Nelder-Mead Method

The Nelder-Mead method (also known as downhill method) [72] is one of the simplest and
best-known deterministic DFO algorithms for unconstrained optimization. It is an iterative
algorithm that evolves, at each iteration ¢, n+ 1 points x/, - - X" corresponding to the
vertices of a simplex (a polytope of n+ 1 vertices in dimension n) as follows: first, the vertices
are ranked according to their f-values and the centroid x; of the best n points is computed.

The algorithm then tries to replace the worst vertex X7 1! by one of three specific points
n+1:n+1

on the line between x{ and x; sampled using reflection, expansion, or contraction
towards the centroid. If none of these points is better than x? ™! the simplex is shrunk

towards the best point X}:”“. Despite its simplicity, the Nelder-Mead method shows serious
shortcomings as shown in [66], where the algorithm fails to converge to a stationary point on

13
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a strictly convex function in dimension 2, and the best-known proof of convergence holds

only for dimension 1 on strictly convex functions [62].

3.2.2 Pattern Search Methods

Pattern search methods [58, 88, 9] are deterministic iterative DFO algorithms that date back
to the 1950s [35]. The first formal definition of these methods was presented in [38]. The
principle of pattern search methods is the following: given a function f to minimize, solutions
are sampled around the current best solution X; according to a certain pattern, that is, a set
of search directions. If the sampling is successful (a better solution is found), the current
best solution is updated and the process is repeated around the new solution. Otherwise, the
pattern is reduced and the process is repeated around x;. The performance of a pattern search
algorithm relies to a great extent on the choice of the pattern [73], which may need to be

adapted between iterations.

3.2.3 Trust-Region Methods

Trust-region methods [33, 73] are deterministic iterative algorithms that use a model for the
objective function in a neighborhood of the current solution, called the trust-region. At each
iteration ¢, the objective function f is approximated by a model (usually quadratic) within
the trust-region and this model is optimized instead of f. The trust region can be a ball of
radius r; around the current solution x; [34] and depending on the quality of the new solution,
1 1s either increased or decreased. In derivative-free trust-region methods, only zero-order
information on f is used to compute the model, as in the state-of-the-art trust-region method
NEWUOA [77] and its variants for bound constrained optimization [78, 79]. However, some
trust-region methods use higher-order information for constructing the model [34, 91]. An

overview of the most recent works on trust-region methods is presented in [92].

3.3 Randomized Algorithms

In randomized or stochastic algorithms, solutions are computed using random variables.
This makes these algorithms naturally adapted to black-box optimization where only zero-
order information on the objective function is available. Another advantage of stochastic
algorithms is that they favor the exploration of the search space. We present in this section
three randomized algorithms for black-box continuous optimization: pure random search,
particle swarm optimization, and the family of evolutionary algorithms, with a particular

focus on the latter.
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3.3 Randomized Algorithms

3.3.1 Pure Random Search

Pure random search (PRS) is the simplest stochastic algorithm. The algorithm samples a
sequence (X;);e of i.i.d. random vectors from a distribution P. The objective function f is
then evaluated on each point X,* of the sequence and the point with minimal f-value is the
solution returned by the algorithm. The sequence of solutions generated by PRS is proven to
always converge to the optimum X, of the objective function at hand [85]. Nonetheless, the
algorithm is very inefficient and needs on average 1/€" iterations to enter a ball of radius
€ > 0 around the optimum [93].

3.3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) [60, 83, 29, 74] is a comparison-based stochastic algo-
rithm inspired by the behavior of bird flocks. The algorithm evolves a swarm of particles
(candidate solutions), X!, i = 1,--- , p, by stochastically updating, at each iteration, the po-
sition (X!) and the velocity, V¢, of each particle X!, by taking into consideration the best
position visited by the particle, p!, as well as the best particle visited by the swarm so far, g,.
The updates are given by [83]

L =0Vi+2(0,0)®@(p,—X)+%(0,02)® (g, —X}) ,
X, =X+V],

where the real parameter o is called the inertia weight, % (0, ¢;) € R”" denotes a vector
of n random numbers uniformly distributed in [0, ¢;], and ® denotes the component-wise
multiplication. Despite the good performance observed on separable functions (including

ill-conditioned ones), PSO shows important limitations on non-separable functions [16, 54].

3.3.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) [90, 41] form an important family of stochastic (or ran-
domized) DFO algorithms and are at the heart of this work. As suggested by their name,
they emulate the mechanisms of biological evolution to seek the optimum of a function
[ Z CR"— R. The underlying idea behind all evolutionary algorithms consists in evolv-
ing a set of candidate solutions, called the population, using bio-inspired operators such as
mutation, selection, and recombination. More precisely, at each iteration ¢, a population &

of u points of 2", called parents, is used to create a new population & of A points, called

3The use of capital X here indicates the randomness of X;. Indeed, the solution X, at iteration ¢ is a random
variable in the case of stochastic algorithms.
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offspring, either by recombining some of the parents or by applying a random variation
(mutation) to some of them. Then, the u fittest individuals are selected either in & (non-elitist
selection) or in &'U &2 (elitist selection), where the fitness of an individual is given by its
f-value. At each iteration ¢, the EA updates the current estimate of the optimum, X, possibly
along with other internal variables.

We focus our attention on a particular class of EAs, the so-called comparison-based adap-
tive randomized algorithms [15, 14]. The comparison-based aspect is important because it
results in desired invariance properties and allows to model such algorithms as homogeneous
Markov chains on some classes of objective functions (see Section 3.4). The adaptive aspect
consists in using the information provided by the population to update internal variables, or
state variables, of the algorithm.

Following [15, 14, 11], we give a formal definition for a general comparison-based
adaptive randomized algorithm. Many EAs are comparison-based and Markovian and will
naturally fit in this definition. Some, on the other hand, might be more difficult to fit. Let
consider a general comparison-based adaptive randomized algorithm minimizing a function
f and whose state at iteration 7 is given by the vector s; € Q of all its state variables. Given
avector Uy = [Ul 4, ,U,’IH] € (R™)* of random vectors U’ | e R",i=1,---,4, such
that py is the probability distribution of each U, 1, the EA can be seen as a sequence (S;);eN

of states defined recursively via
si1 = F (s, Urs1) (3.2)

where .Z : Q x (R")* — Q is a deterministic transition function and Q is the so-called state
space. The superscript “f” indicates the objective function under consideration. Note that the
state s; typically includes the current estimate of the optimum X; and that both the sampling
of the offspring and the selection are encoded in .%. For sampling the candidate solutions
X; 11> we consider the solution function Sol :  x R" — R" such that

i1 =S0l(s;, U ), i=1,--,4 . (3.3)

The candidate solutions are then ordered according to their f-values using the operator Ord

as follows
¢ = 0rd(f(Xiy1)i=1,.1) 5 (3.4)
where ¢ is the permutation that contains the indices of the ranked candidate solutions. More
formally, for any A real numbers z1,---,z3, ¢ = Ord(z,--- ,z),) satisfies
ey < <zgay - 3.5)
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3.3 Randomized Algorithms

For a comparison-based algorithm, only the ranking of the candidate solutions matters when

computing the new state s, . In this case, the transition function .%# can be defined as
F (50, Urs1) =51, 6+ Urat) (3.6)

where the function ¢ : Q x (R")’l — € and where the operator “*” applies the permutation ¢
to U, such that

)
S U1 = U7, U]

If the algorithm under consideration is not comparison-based, the transition function .# can

be written as

'jozf(sﬁUH-l) = y(slag*UH-la [f(th—i—l)? o af(th—i-l)]) ) (37)

with .7 : Q x (RM)* xR = Q.

In the following, we present three of the best-known EAs: genetic algorithms, differential
evolution, and evolution strategies. We focus our attention on evolution strategies since all
the algorithms tested in this work are evolution strategies. In particular, we connect evolution
strategies to the general definition of a comparison-based adaptive randomized algorithm
presented above through some examples.

Genetic Algorithms

Genetic algorithms (GAs) [71, 46] constitute an important family of EAs for discrete opti-
mization. They were first introduced in [57] for problems defined on a binary search space
of the form 2" = {0,1}". GAs iteratively optimize the objective function by evolving a
population of candidate solutions and use selection, mutation, and another operator called
crossover to create new candidate solutions. In the context of discrete optimization, mutation
consists in randomly flipping some bits of a candidate solution while crossover consists
in exchanging some of the bits of two candidate solutions, thereby mimicking biological
recombination. Although originally designed for discrete optimization, adaptations of GAs

to continuous optimization problems can be found in the literature [70, 55, 89].

Differential Evolution

Differential evolution (DE) is a comparison-based EA first introduced in [86]. A population
of candidate solutions is evolved and at each iteration, new individuals are added to the
population by using a particular mutation operator. In its simplest form, one iteration of DE

can be described as follows:
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(1) Sample p candidate solutions.

(i1) For each candidate solution Xi, choose randomly three different points A;, B;, and C;
in the population and compute Z, | = A, + F (B, — C;), where F € [0,2].

(iii)) With a certain probability, perform a crossover between X; and Z; 41, i.e. [Z;41]; =

[X];, for chosen indices i.

(iv) If f(Z,41) < f(X!), replace X! by Z, | in the population (f is the objective function

to minimize).

The crossover relies on the coordinate system; therefore—unless the crossover is not used—
DE is not rotational-invariant. Additionally, DE suffers from stagnation. This problem is
discussed in [63].

Evolution Strategies

Evolution strategies (ESs) [48, 20, 19] are comparison-based evolutionary algorithms for
continuous black-box optimization problems that were first introduced in [81]. One iteration

of a general ES can be summarized in the following steps:

(i) First, A i.i.d. random vectors U! 1 are sampled from a multivariate normal distribution

of mean 0 € R" and covariance matrix C, € R"*", and we denote U! 41~ A(0,C).

(ii) The vectors Uﬁ 4 are then used to create A candidate solutions X; 41 by applying a

mutation to the current solution X; according to
X;_’_l:Xt‘f—GtU;_i_l,l‘:l,"‘,k y (38)

where o; > 0 is called the step-size and determines the length of the step taken away from
X;. Notice that (3.8) can also be interpreted as sampling A candidate solutions X; o, from
a normal distribution of mean X, and covariance matrix 67°C; (i.e. X\, | ~ 4 (X;,07C,)),
where o; determines the “width” of the distribution and C; determines its “shape”. By
analogy with the general definition of a comparison-based randomized algorithm presented

in Subsection 3.3.3, the probability distribution py in this case is defined as

1

pu(u',- u*)y=p ') py ()

; (3.9)
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where p_y is the probability distribution of the multivariate normal distribution ./ (0, C;).
Additionally, the solution function Sol (see (3.3)) is defined as

Sol((x,0),u) =x+ou , (3.10)

for an ES whose state is given by (X;, 0;).

(iii) Depending on the selection scheme, tt individuals (parents) are selected according to
their fitness to create the new solution X, (a) from the new population {X/ ;- ,XZLH} in
the case of non-elitist selection or (b) from the new population and the t best individuals of

the previous population in the case of elitist selection. We denote
* (u,A)-ES: an ES using non-elitist (or comma) selection.

* (L+A)-ES: an ES using elitist (or plus) selection.

(iv) The new solution X, | is obtained via recombination, that is, by computing a weighted
sum of the u selected individuals. We distinguish between weighted recombination—denoted
(u/uwTA)— where the weights are different and intermediate recombination—denoted
(u/prtA)—where all the weights are equal [48]. Equation (3.11) below gives the recombi-
nation formula in the case of a (i /uw,A)-ES.

X,H_Zw, ,+1_Xt+o,2wl r+1 : (3.11)
i=1 i=1
where we used (3.8) and where ¢ is the permutation that contains the indices of ranked
offspring defined in (3.4). The weights 0 <w; < 1,i=1,---, u, satisfy Zf‘zl wi = 1.
An important aspect of ESs is the control of the parameters o; and C; of the mutation: an
ES should choose the step-size o; and the covariance matrix C; depending on the “context”,
that is, on the currently explored region of the search space, in order to converge to an optimal
solution.

Step-Size Control

It is well-established that the convergence of an ES directly depends on how it controls the
step-size. Moreover, the step-size control influences to a large extent the rate at which an ES
approaches the optimum. It has been shown that the optimal convergence rate on the sphere
function is achieved by choosing a step-size proportional to the distance to the optimum

at each iteration [13, Theorem 2]. In the following, we present four step-size adaptation
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mechanisms: one-fifth (1/5th) success rule, cumulative step-size adaptation, two-point step-
size adaptation, and median success rule. The last three mechanisms are implemented in
the state-of-the-art ES, the covariance matrix adaptation evolution strategy (CMA-ES) [53].
These step-size adaptation mechanisms are all based on the idea that the smaller the step-size,
the higher the probability of sampling “good solutions”. In the algorithms we present in

Chapters 5 and 6, either of these mechanisms is implemented.

One-fifth success rule The one-fifth (also 1/5th) success rule is one of the earliest step-
size adaptation mechanisms. It was introduced for the first time in [81] for a (1 4 1)-ES. The
idea is to maintain a probability of 1/5 to sample a successful offspring, that is, an offspring
whose fitness is better than the one of the current solution. To that end, o; is multiplied by
2'/7 in case of a success and by 2-1/(4) otherwise. Consequently, if one successful solution
is sampled every 5 iterations, the step-size remains unchanged. The transition function of a
(14 1)-ES with 1/5th success rule is given by

G2 dntan Lyl 20}

%/sm«x,o),y):( X Fobl )

where we assume the state s, = (X;, 0;) and where [y]; is the the first element of the vector y
(more generally, [y]; denotes the ith element of some vector y).

Cumulative step-size adaptation Cumulative step-size adaptation (CSA) [53] is the de-
fault step-size adaptation mechanism in the state-of-the-art ES, CMA-ES. The (normalized)

steps taken by the algorithm in the search space are recorded by computing the so-called

evolution path p? according to

_ X
Pro+1:(1—cG)Pf+\/ Z w2C, 1/2( t+16t )

=(1—cs)p° + \/ 2—¢o /Zw2c ‘/ZZ wU) (3.12)

for a (u/uw,A)-ES, where 0 < ¢s < 1, p§ =0, and ¢ is defined in (3.4). The coefficient

\/ co(2—cs)/ i w? is chosen such that if p¢ ~ .#(0,1,x,) and if the  best individuals
are selected randomly, then p?. | ~ 47(0,L,x,) [48, 50]. The length of the evolution path
|py. ;| is then investigated: if ||p7, ;|| is “too large”, this means that many successive steps

are made in the same direction and, therefore, that the progress is too slow. Consequently, o;

is increased. In contrast, if || p, || is “too small”, this suggests that the steps taken by the
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algorithm are in opposite directions and that the algorithm may be overshooting the optimum.

In this case, oy is reduced. This is formally translated by the following adaptation rule

clzoexpfzi‘r< 17 —1) (3.13)
e E[|A(0,Lixy) | ’ '

where || p?, || is compared to the expected length of a multivariate standard normal vector in

s . (12 . . (12 . .
practlge. if the ratio ETA 0L > 1, oy is increased; if ETA 0L < 1, o; is decreased; if
% = 1, o; is unchanged. The positive constant dg > 1 is a damping factor whose

< yAnXn

role is to attenuate the variations of o;. The transition function of an ES with CSA and with

a fixed covariance matrix C; = I« is given by
X‘f’GZ,H:JY]i
Gesa((x,p,0),y) = | (1 —co)p+1/ca(2—co)/ Tl Wi wilyli =P/
CSA X7p7 7y o p o (o i=1"1i i=1"1 yl p )

24 1P|
oo (et —1)

where we consider that s, = (X, p?, 7).

Two-point step-size adaptation Two-point step-size adaptation (TPA) is a relatively new
step-size adaptation mechanism. We present here the implementation in [51], which is based
on [49, 82]. First, two offspring th 1 and th 1 are sampled as a mirrored pair along the line

connecting the current solution X; to the previous one X;_1, and symmetric to X; as follows

12 12 X — X1
XH_l:Xt:l:GtX HUt-HH Xm , (3.14)
where Utljrz1 ~ A (0,I,x,). Notice that X,2 1 lies between X;_1 and X;. If th 1 s fitter than

X2 1> one can assume that better solutions are available in the direction of the last solution
shift and the step-size is increased. Otherwise, it is decreased. Formally, this update is given
by the equations below:

rank(X?, ;) —rank(X/, ;)
A—1 ’

Gri1 = Oyexp (S;i> , (3.15)
(o2

siv1 = (1 —cg)st +co

where the function rank (X' +1) returns the rank of the individual X! 41 1n the population,
50=0,0<cs <1,and ds > 1 is a damping factor to moderate the changes of 6;. The A —2
remaining offspring are sampled as in (3.8). In the case of TPA, the solution function differs
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slightly from the general solution function Sol defined in (3.10) since the first two offspring
are sampled differently from the remaining A — 2 offspring. Therefore, this algorithm is not
captured by the general definition we present in Subsection 3.3.3.

Median success rule Another recent step-size adaptation mechanism is the so-called
median success rule (MSR) [1]. It generalizes the 1/5th success rule introduced previously

to the case of non-elitist ESs by redefining the notion of “success” as the median individual
m(A)
t+1

(in terms of f-value), denoted X
population, denoted X/ :l, where j is fixed. In practice, we set j to the 30th percentile; for

being better than the jth best individual in the previous
this value, the median success probability is roughly 1/2 on the sphere function with optimal
step-size* [1]. Similarly to the 1 /5th success rule, the step-size is increased in case of success
and decreased otherwise in order to increase the probability of sampling successful offspring.

The exact adaptation rule is given by equations below.

2 2
i = I (Ksucc - I) ) (3.16)
g1 =1 —co)qi +cozr (3.17)
Gri1 = Grexp (q’“) : (3.18)
dg

The success in measured by computing z; in (3.16), where Ky is the number of offspring
better than X/  Notice that Kgyee > 2 /2 is equivalent to X:'ﬁ) being better than X/ N
results that z; > 0 if and only if X:i(f“) is successful. In (3.17), z; is cumulated in g;4 1, where
0 < cg < 1. The step-size oy is updated in (3.18): it is increased if g;11 > 0 (success) and

decreased otherwise. The transition function for MSR is given by the following equation:

X+ GZ?; yli
(1=coda+cad (Eh Lsixromzron —3) =4
v+oy/
cexp(q’)

/

g]\]/ISR((X7Q7V7 G)vY) =

where we consider that the state s; = (Xt,q,,th :)“, o;). Note that for MSR, the objective
function f is used in the transition function since computing the success implies comparing
f-values of the current population to the f-value of the jth best individual of the previous

iteration. However, these f-values are only used through comparison.

4The optimal step-size adaptation strategy on the sphere function is to choose a step-size proportional to the
distance to the optimum at each iteration. Notice however that this is an artificial algorithm since the optimum
is usually unknown.
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Covariance Matrix Adaptation

As mentioned previously in this section, the covariance matrix C; determines the shape of
the sampling distribution. The rationale behind the adaptation of the covariance matrix is to
maximize the likelihood of “good” solutions. This is particularly relevant on ill-conditioned
and non-separable functions. In [53], the first covariance matrix adaptation evolution strategy
(CMA-ES) is presented. Similarly to CSA, CMA-ES uses an evolution path p, to adapt the
covariance matrix as follows:

Pra=(1- )pt\/ _CC/Z (XM X’)

=(1—cc>pt+\/ —cc/szxw, @ (3.19)

where 0 < ¢, < 1. Compared to pt‘irl (3.12), the information provided by C; is used in p, ;.
The covariance matrix is then updated as follows:

Lo xR X\ (XA X\ T
Crrt=(1—ci—cu)Cit c1piploy +eu Y wi | =) [ =2 , (3.20)
—— i=1 O; O;

rank-one update

rank-u update

where 0 < ¢; < 1and 0 < ¢y < 1. This update combines the so-called rank-one and rank-u
updates: the former is associated to ¢ and reshapes C; in the direction of p,, and the latter
is associated to ¢y, and reshapes C; in the direction of the best offspring of the current
population.

CMA-ES has become the state-of-the-art ES thanks to its efficiency on a wide range of

optimization problems including ill-conditioned and non-separable problems [16].

3.4 Invariance

Invariance is an important property in optimization because it reflects the robustness of an
algorithm. Typically, when an algorithm is invariant, the performance observed on a particular
problem can be generalized to an entire class of problems [15]. We distinguish between
invariance to transformations of the objective function and invariance to transformations
of the search space. By definition, comparison-based algorithms are invariant to strictly

monotonic transformations of the objective function f. Indeed, if g : R — R is a strictly
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increasing function, i.e. for all x,y € R such that x <y, g(x) < g(y), then

Ord(f(X;)i=1,. p) = Ord(go f(Xi)i=1. p)

that is, the ranking of p candidate solutions x; according to their f-values and according to
their g o f-values is the same.

As for invariance to transformations of the search space, a general definition that includes
translation-invariance, scale-invariance, affine-invariance, and rotational-invariance is pre-
sented in [11], as well as a proof of affine-invariance of CMA-ES with a modified version of
CSA. We will focus here on translation-invariance and scale-invariance as they are key for
proving the convergence of many comparison-based randomized adaptive algorithms [15].
We start by giving the definition of group homomorphism and introducing some notations
that will help us define translation-invariance and scale-invariance in the case of a randomized
algorithm for unconstrained optimization. These definitions are taken from [15] and will be

extended to the case of constrained optimization in Chapter 6.

Definition 1. Let (Gy,.) and (G», x) be two groups. The mapping ® : G; — G is a group
homomorphism if for all x,y € Gy, ®(x.y) = D(x) x D(y).

We denote by .(Q) the set of all bijective transformations from a set Q to itself and
by Homo((R",+), (.7 (Q),0)) (respectively Homo((RZ,.),(.#(€),0))) the set of group
homomorphisms from (R”, +) (respectively from (RZ,.)) to (7 (Q),0).

If an algorithm is translation-invariant, this means that it performs similarly on x — f(x)
and X — f(x —Xg) for any x¢ and, therefore, that the choice of the initial solution does
not affect the performance of the algorithm. The following definition formally defines
translation-invariance. It states that translation-invariance holds if there exists a state space
transformation—here a group homomorphism from (R”, +) to . (Q)—for which optimiz-
ing x — f(x) in the original state space is equivalent to optimizing X — f(x — Xq) in the
transformed state space.

Definition 2. A randomized algorithm with transition function .Z/ : Q x (R")* — Q, where
f 1is the objective function to minimize, is translation-invariant if there exists a group homo-
morphism ® € Homo((R",+), (-#(),0)) such that for any objective function f, for any
xg € R”, for any state s € Q, and for any u € (]R")’l,

10 (s, 1) = B(—x0) <ﬁf("’x°)(<b(xo)(s),u)>

Analogously to translation-invariance, scale-invariance holds if there exists a search space

transformation such that minimizing x — f(x) in the original state space is equivalent to

24



3.4 Invariance

minimizing x — f(ax) for any @ > 0 in the transformed search space. The formal definition

is given below.

Definition 3. A randomized algorithm with transition function .7/ : Q x (R")* — Q, where
f 1is the objective function to minimize, is scale-invariant if there exists a group homomor-
phism @ € Homo((RZ,.), (.#(€),0)) such that for any objective function £, for any o > 0,
for any state s € Q, and for any u € (R”)l,

T (s,u) = ®(1/a) (71 (@(00)(5),u))

In [15, 14], the authors prove translation-invariance and scale-invariance of a general
comparison-based step-size adaptive randomized algorithm with state s; = (X, 0;), given

the following sufficient conditions are satisfied by its transition function ¥4((x,0),y) =

(%((x,0),y),9%(0,y)):

(i) forall x,xy € R”, forall o >0, forally € (]R”))L

gx((X—f-Xo,G),y) :gX((X76)7y)+XO ) (321)

(i) for all x € R, for all ., > 0, for all y € (R")*

X O
%((x,0),y) = a%((a,a),y) : (3.22)
(iii) for all o, > 0, forall y € (R")*
(0}
Ys(0,y) = 09 (a,y) : (3.23)

where % (respectively ¥;) is the update function for the current solution (respectively the
step-size). Conditions (i) and (ii) are naturally satisfied for evolution strategies (see (3.11)).
Condition (iii), on the other hand, is satisfied for evolution strategies with multiplicative
step-size adaptation rules similar to the ones presented above (1/5th success rule, CSA, TPA,
and MSR).

As mentioned previously in this section, translation-invariance and scale-invariance
are key elements in proving linear convergence of comparison-based adaptive randomized
algorithms for unconstrained optimization via Markov chain theory [15, 14]. As shown in
[15, Proposition 4.1], if conditions (3.21), (3.22), and (3.23) hold, then the sequence (Y;);eN

X —Xo

of random variables Y; = Tpt is a homogeneous Markov chain on the class of scaling-
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invariant objective functions, where X is the optimal solution. This result is exploited to

deduce linear convergence of the algorithm, as we will illustrate in Subsection 3.5.2.

3.5 Evaluating the Performance

In this section, we discuss various aspects related to the evaluation of the performance of
algorithms for black-box continuous optimization.

In real-world applications, the evaluation of an objective function can be computationally
costly. Therefore, a black-box optimization algorithm is usually allocated a budget consisting
in a fixed number of function evaluations to try to find the optimum. A natural way to
compare two algorithms would be to compare the f-values of their respective solutions. This
measure however is not quantitative. Indeed, having a function value two times smaller
than another, for instance, does not give much information on the actual performance of
the algorithms. Instead, the so-called average runtime (aRT), is commonly used in practice,
particularly in one of the best-known benchmarking platforms for continuous optimization,
the COCO (comparing continuous optimizers) platform [52]. The convergence rate of an
algorithm, i.e. the speed at which it reaches the optimum, can also be investigated. We
focus on linear convergence in this work since it is the fastest possible convergence for a
comparison-based algorithm.

In the following, we define the aRT and discuss linear convergence and how it can be

investigated using the Markov chain theory.

3.5.1 Average Runtime

The average runtime (aRT) was originally introduced in [80]. Let us consider a randomized
algorithm minimizing a function f : 2  C R" — R. Given a budget of b function evaluations
and a target f-value, fiareer, We run different instances of the algorithm on f. A run is said to
be “successful” if the target value fiarge: is reached within the given budget 5. The aRT is an
estimate of the average runtime RT (in terms of the number function evaluations) needed by

an algorithm to reach a given target value and defined as [12]

— Ps
Ds

E(RT) = E(RT’) + 1 E(RT*) |
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where RT? (respectively RT*®) is the runtime of a successful (respectively unsuccessful) run
of the algorithm and where p; is the probability of a successful run. The aRT is defined as

1 1—p, 1
aRT = — Y RT} + — X Y RT%

ns 5 Ds  Tus ™5
_ LRT;+Y;RT}  #FEs
B ng oong

where ng (respectively n,;) is the number of successful (unsuccessful) runs, ps here is the
ratio of successful runs, and #FEs is the number of total function evaluations over all runs
[52].

The aRT allows a quantitative comparison of algorithms and is used as a performance
measure in the COCO benchmarking platform [52], which provides different testbeds for
evaluating continuous optimization algorithms (a noiseless testbed, a noisy testbed, and a bi-
objective testbed) and interfaces to use these testbeds with different programming languages.
COCO also provides a tool for processing and visualizing the data related to an algorithm
automatically. The BBOB noiseless testbed of COCO consists in 24 functions that can
be classified into five categories (separable functions, moderate functions, ill-conditioned
functions, multi-modal functions, and weakly structured multi-modal functions) depending
on their features and the difficulty they reflect for an optimization algorithm. A thorough
description of the BBOB testbed is provided in [52].

3.5.2 Linear Convergence

Linear convergence is the fastest possible convergence rate for a comparison-based algorithm.
It is a highly desirable property for an algorithm and many randomized algorithms for
unconstrained optimization are designed with the purpose of converging linearly on simple
optimization problems, such as the sphere function or the linear function’. Let us consider

the following definition of linear convergence.

Definition 4. A sequence (X ),cn of random vectors X; is said to converge linearly almost
surely (a.s.) to some vector Xqp if there exists CR > 0 such that
X = Xoptl| _

1
lim —1n

= —CR a.s.
1=t || Xo — Xopt|

The constant CR gives the convergence rate.

50n the linear function, linear divergence is desirable.
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Informally, the previous definition states that linear convergence holds if the distance
t0 Xopt» || X¢ — Xopt||, decreases linearly in log-scale. Some of the most efficient randomized
algorithms, such as CMA-ES, are empirically observed to converge linearly on a wide range
of problems . In constrained optimization, the work of [5] was the first to explicitly consider
linear convergence: the authors presented a (1 + 1)-ES for constraint optimization for the
case of one inequality constraint. Their algorithm was empirically observed to converge
linearly on two linearly constrained convex quadratic functions (the sphere function and a
moderately ill-conditioned ellipsoid function).

In the case of unconstrained optimization, linear convergence can be proven for random-
ized algorithms with proper invariance properties using tools form the Markov chain theory
[10, 15, 21]. For the sake of illustration, let us consider a randomized adaptive algorithm
with state variables (X;, o) (the current estimate of the optimum and the step-size respec-
tively) minimizing a sphere function x — f(x) = %XTX with optimum in zero without loss
of generality. The sphere function is scaling-invariant®; therefore, if translation-invariance
and scale-invariance hold (see sufficient conditions (3.21), (3.22), and (3.23)), the sequence
(Y¢)ren, with Y, =X, /oy, is a homogeneous Markov chain defined independently of (X;, o),

given Yy = X()/G(), as
%((Y1,1),6%Up11)

Y 1= ’
T (154U
where U1y = U, ... Uz+1] ., i=1,---,A, are i.id. random vectors and ¢ =
Ord(f(Y, + Ul )iy ). Considering the previous definition of linear convergence, we

2.9

can express ¢ 11n %] (Xopt 0) as a function of the Markov chain Y; as in the following:

L X 1’21 X1 [l 1ti1 [ Xs1ll 0k (1,6 % Urr1)

1ol tE Xl Xkl Okt 1
11_1 NWecrlly () oty . Gog)
1/ hal

where we successively used the property of the logarithm then artificially introduced
Ok+1 = Gkgc(l,g *Uk—H) and used Yk = Xk/Gk and Yk+1 = Xk+1/6k+1. If (Yt)teN sat-
isfies sufficient stability conditions (see for instance Theorem 1), then a LLN for Markov

%We distinguish between scaling-invariance (of a function) and scale-invariance (of an algorithm). A
function f : R” — R is scaling-invariant with respect to x* € R”" [15, Definition 3.1] if for all & > 0, x,y € R”",
f(X+x) S f(X"+y) & f(X" +ox) < f(X* +ay).
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chains can be applied to the right-hand side of (3.24). It follows that

Xl . 'S Y]]
lim — ln In
A A

= [lyl(dy) = [ yIx(@y)+ | Bvp (n(o(1,5+ V)Y = )(dy) |

J/

Go(1,6+Upyy)

—CR

where 7 is the invariant probability measure of the Markov chain (Y;);cy and py is the
probability distribution of U, (see (3.9)). Therefore, assuming the Markov chain (Y;);en
is stable, the randomized algorithm described here will converge to Xopt = 0 (on any scaling-
invariant function) at a speed given by the expected log step-size change with respect to the
stationary distribution of Y;.

As illustrated with the previous example, the analysis of linear convergence with a

Markov chain approach consists in two steps:

(1) First, identify a class of functions on which a homogeneous Markov chain can be
constructed from the state variables of the algorithm at hand and such that its stability

leads to linear convergence of the algorithm.
(i) Then, prove the stability of the constructed Markov chain.

The second step is the most difficult in practice and is outside the scope of this work. For
further reading, we point to [10, 14, 26] where stability is proven for self-adaptive algorithms,
for the (1+ 1)-ES with one-fifth success rule, and for a (1,4 )-ES with CSA respectively,
in the case of unconstrained optimization. In [27], stability is proven for a (1,4)-ES on
the linearly constrained linear function and in [28], the authors study a (1,4)-ES with a
general sampling distribution on the linearly constrained linear function and give sufficient
conditions on the sampling distribution for positivity, Harris-recurrence, and ergodicity of
the studied Markov chain. The first step of the analysis, which was achieved for comparison-
based randomized step-size adaptive algorithms on scaling-invariant functions in [15], is the
focus of this work. In particular, we generalize the approach presented above to the case of
constrained optimization where the constraints are linear and identify a Markov chain for (1)
the (1 + 1)-ES with one-fifth success rule in the case of a single linear constraint and (ii) a
general comparison-based step-size adaptive algorithm in the case of m linear constraints.
Both algorithms handle the constraints with an augmented Lagrangian approach and are

presented in Chapter 6.
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Chapter 4
Constrained Optimization

Numerical optimization problems encountered in practice are often constrained, that is, given
an objective function f: 2" C R"” — R to minimize, a solution must belong to a feasible
set Zr C 2 determined by a set of equality and inequality constraints. In its most general

form, a constrained optimization problem is formulated as

min f(x)
subject to g;(x) =0, i€ &
gi(x) <0, ies | 4.1)

where g;: Z, CR" = R, i € &, are the equality constraints, g; : Z,, CR" =R, i€ .7, are
the inequality constraints, and & and .# are two finite sets of indices that satisfy &N .7 = 0.
Problem (4.1) can also be written as

Jmin f (x)

where ZF is the feasible set which we formally define later on in this chapter. We refer to
points in ZF as feasible points and to points in 2"\ ZF as unfeasible points.

We talk about (i) linear programming when the objective function f and all the constraints
g; are linear functions, (i1) nonlinear programming when some of the constraints or the
objective function are nonlinear and (iii) quadratic programming, as a particular case, when
f is a quadratic function of the form x — f(x) = %XTGX +xTv (with G € R™" a symmetric
matrix and v € R") and the constraints g; are linear. In a black-box context, no information
about the nature of the objective function is available—although the constraints might
sometimes be known [3]. For this reason, we focus our attention on algorithms for the more

general case of nonlinear programming in the sequel.
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This chapter is intended as a general introduction to numerical constrained optimization.
In Section 4.1, we recall some fundamental definitions as well as optimality conditions
characterizing a solution to the problem in (4.1). In Section 4.2, we review some of the most
famous nonlinear programming methods as well as some constraint handling techniques for

evolutionary algorithms. We finish with a discussion in Section 4.3.

4.1 Theory of Constrained Optimization

We start this section by some basic yet important definitions. Most of these definitions can
be found in [73, 44, 18].

Definition 5 (Feasible Set). The feasible set ZF of points satisfying the constraints in (4.1)

is formally defined as
Zr={x]gi(x)=0,i€&; gi(x)<0,iec I} . 4.2)

Definition 6 (Local Optimum). A point X* is a local optimum of the optimization problem
(4.1) if x* € ZF and there exists a neighborhood .4 of x* such that for all x € 4" N ZF,

f(x*) < f(x).

Definition 7 (Strict Local Optimum). A point X* is a strict local optimum of the optimization
problem (4.1) if x* € ZF and there exists a neighborhood .#” of x* such that for all x €

AN ZE\X} f(XF) < f(x).

Definition 8 (Global Optimum). A point x* is a global optimum of the optimization problem
(4.1) if for any neighborhood .4 of x*, x* is a local optimum.

Definition 9 (Active Set and Active Constraint). We call active set at some feasible point x €
Zr the set <7 (x) of indices of all equality constraints and indices i of inequality constraints
satisfying g;(x) = 0. That is

d(x)=EUfie S | gi(x) =0} . 4.3)

An inequality constraint whose index i is in .7 (X) is said to be active at x.

The following definition introduces the linearized feasible direction set [73] which
contains the feasible directions at a feasible point x, obtained by approximating linearly the

constraint functions g; at X.

32



4.1 Theory of Constrained Optimization

Definition 10 (Linearized Feasible Direction Set). Assume the constraint functions g; are
differentiable. Given a feasible point x and the active set .7 (x), the set of linearized feasible
directions .% (x) is defined as

F(x) ={d | Vxgi(x)!d =0, i € & Vygi(x)d <0, i€ I} .

Assuming the optimization problem in (4.1) admits at least a solution, optimality con-
ditions describe the relation between the objective function f and the constraint functions
gi at a local minimum x* of (4.1). They are generally expressed as necessary conditions
on x* and assume the functions f and g; to be smooth, that is, their second derivatives
exist and are continuous [73]. They also assume some regularity conditions—or constraint
qualifications—are satisfied by the constraint functions at x*. Two main constraint qualifica-
tions are used in the mathematical programming literature, namely the linear independence
constraint qualification (LICQ) and the Mangasarian-Fromovitz constraint qualification
(MFCQ), which are defined in Definitions 11 and 12 below.

Definition 11 (LICQ). The linear independence constraint qualification (LICQ) holds at a
point X € ZF if the gradients of all active constraints at X, Vxg;(X), i € o/ (X), are linearly

independent.

Definition 12 (MFCQ). The Mangasarian-Fromovitz constraint qualification (MFCQ) holds
at a point X € 2 if the gradients of all equality constraints, Vyg;(X), i € &, are linearly
independent and if there exists a vector v € R" such that

Vigi(X)v <0, i€ A (X)NI
Vigi(X)V=0, i€ A (X)NE .

Constraint qualifications are sufficient conditions that ensure that the linearized feasible
direction set at some point X, % (X), is a good approximation of the feasible set ZF [73]. It
naturally follows that when the constraint functions are linear, i.e. of the form x — g;(x) =
bl-TX +c¢j, bj € R", ¢; € R, no constraint qualification is required.

Optimality conditions are usually formulated on the Lagrangian (or Lagrange function)

which is defined as follows

Zxy=rx)+ Y Max) , (4.4)

€U

'We consider that gradients are row vectors.
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where x € 2" and 7 is the vector of Lagrange factors [y]; ER,i € £U.Z.

Remark 2. The vector of Lagrange factors is usually denoted A in the literature. However,
to avoid confusion with the population size parameter A of evolutionary algorithms (see

Chapter 3), we denote it y here.

The following theorem states first-order necessary conditions of optimality. These
conditions are often referred to as Karush-Kuhn-Tucker (KKT) conditions.

Theorem 3 (First-Order Necessary Conditions). Assume that x* is a local optimum of
the optimization problem in (4.1), that the functions f and g; in (4.1) are continuously
differentiable, and that some constraint qualification is satisfied at x*. Then, there exists a
vector Y* of Lagrange multipliers [y*];, i € & U ¥, such that [x*,y*| satisfies the following

conditions:

Ve Z(x",7") =0, (4.5a)
gi(x*)=0,i€&, (4.5b)
gi(x") <0,iec .7, (4.5¢)

v >0,i€.7, (4.5d)
Yigi(x*)=0,ic EUS . (4.5¢)

The first condition (4.5a) can be written as Vx f(X*) = — Y iceu.# [V']i Vxgi(X¥). It states
that the gradient of the objective function at a local optimum, Vy f(x*), must be parallel to
a linear combination of the constraint normals at x*, Vxg;(x*). Conditions (4.5¢), called
complementary conditions, imply either that a constraint is active or that the corresponding
Lagrange multiplier [y*]; = 0. Consequently, Lagrange multipliers corresponding to inactive
constraints are always zero. Theorem 3 ensures the existence of a vector of Lagrange
multipliers y* at a local optimum x*. If the LICQ holds, ¥* is unique [73]. It is also worth
mentioning that if the objective function f is convex quadratic and the constraint functions
are linear, the KKT necessary conditions are sufficient conditions for optimality [73, Theorem
16.4].

Before giving second-order optimality conditions, we introduce the notion of critical
cone [73].

Definition 13 (Critical Cone). Let x* be a local optimum of the problem in (4.1) and let the

KKT conditions be satisfied for some vector y* of Lagrange multipliers. Given the set .# (x*)

34



4.1 Theory of Constrained Optimization

of linearized feasible directions at x*, the critical cone € (x*) is defined as
E(x")={d e F(x")| Vxgi(x")d =0, forall i € &/ (x") N .# such that [y*]; > 0} ,

or equivalently as

Vxgi(x*)d =0, foralli e &,
E(x*) =< d|Vxgi(x*)d =0, forallie€ «(x*)N.# such that [y*]; >0,
Vxgi(x*)d <0, forallie o/ (x*)N.# such that [y*]; = 0.

From Definition 13 and the first KKT condition (4.5a), we have

de?(x)= Y [¥]iVxgi(x)d=Vyf(x)d=0 .
ic&US
Therefore, the critical cone % (x*) contains those directions in .% (x*) for which one cannot
decide whether the first-order approximation of the objective function f will increase or

decrease. The following theorem gives second-order necessary conditions of optimality.

Theorem 4 (Second-Order Necessary Conditions). Assume that x* is a local optimum of the
optimization problem in (4.1), that the functions f and g; are twice continuously differentiable,
and that the LICQ holds at x*. Let Y* be a Lagrange vector satisfying the KKT conditions in
(4.5). Then

dV2. Z(x*,y)d >0, foralld € €(x*) .

The following theorem gives a second-order sufficient condition which—if satisfied—

ensures that a given feasible point is a strict local optimum of (4.1).

Theorem S (Second-Order Sufficient Conditions). Assume that the functions f and g; are
twice continuously differentiable and that the KKT conditions in (4.5) are satisfied for some

point x* and for some vector Y* of Lagrange multipliers. If
dV2. Z(x*,y)d >0, foralld e €(x*),d#0 |

then x* is a strict local optimum for (4.1).

Notice that no constraint qualification is required in Theorem 5. Also, the inequality is
strict compared to Theorem 4.
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Remark 3. All the necessary and sufficient conditions of optimality presented above hold
if the objective function f and the constraint functions g; are continuously differentiable in
just an open set that contains the local optimum x* [18]. Optimality conditions can also be
expressed in the case of non-smooth functions which are continuous but non-differentiable
everywhere. In such cases, the notion of gradient is replaced by those of subgradient or

generalized gradient [44].

Duality

Duality is an important principle in mathematical optimization. Given an optimization
problem, referred to as the primal problem (or simply primal), duality theory aims at (i)
constructing an alternative optimization problem, the dual problem (or dual), from the primal
problem, as well as (ii) relating the solutions of the primal and dual problems. In nonlinear
programming, duality has given birth to some important algorithms as augmented Lagrangian
approaches which we present later in this chapter. Most results of duality theory are expressed
for the specific case of a convex objective function f and convex constraint functions g;.
Restricting ourselves to an optimization problem with only inequality constraints, we briefly
present some of the main results in duality theory.

Given the optimization problem (4.1) where we only consider inequality constraints, a

dual problem is given by

max (1)

subjectto [y]; >0,i€ .7 | (4.6)

where ¢ : Y+ miny 2 (X, ) and .Z is the Lagrangian corresponding to our primal problem.
It can easily be shown that the function g is concave [73]. Additionally, the dual (4.6) gives a
lower bound on the optimal f-value of the primal, as stated in the following theorem.

Theorem 6 (Weak Duality). For any feasible point ¥ and any vector ¥ such that [y]; > 0,
i€ .7, we have q(7) < f(¥).

The next two results strongly rely on the convexity of the objective function and the

constraint functions to define the relations between solutions of the primal and the dual.

Theorem 7. Let X be an optimum of the primal problem in (4.1) with only inequality
constraints and assume that f and g;, i € .#, are convex and differentiable at X. Then, any
vector ¥ such that [%,7] satisfies the KKT conditions in (4.5) (with & = 0) is an optimum of
the dual problem in (4.6).
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The following theorem shows how the optimum of the dual problem can be used to

deduce the optimum of the primal problem [73].

Theorem 8. Assume that f and g;, i € .7, are convex and continuously differentiable and
that X is an optimum of the primal problem (4.1) (where we consider & = () at which the
LICQ holds. If 7 is an optimum of the dual problem (4.6) such that the minimum of £ (x,7)
is attained for some %, then ¥ = % and f(¥) = £ (%, 7).

4.2 Constraint Handling Methods

Depending on the community, different classifications of constraint handling methods exist.
In the first part of this section, we present four well-known constraint handling approaches
in the community of mathematical nonlinear programming. Although powerful methods
have been developed for the specific cases of linear and quadratic programming, we focus on
nonlinear programming methods since they are more compatible with the black-box scenario.
In the second part, we briefly review some constraint handling approaches for evolutionary

algorithms.

4.2.1 Methods for Nonlinear Programming

We present in the sequel four families of constraint handling algorithms for nonlinear
constrained optimization, namely penalty function methods, augmented Lagrangian meth-
ods—which can be seen as a particular case of the former family, sequential quadratic

programming, and interior-point methods.

Penalty Methods

Penalty methods [73, 44, 18, 84] date back to the 1950s. They transform a constrained opti-
mization problem into a sequence of unconstrained optimization problems by constructing a
new objective function, the penalty function, as the sum of the original objective function and

positive terms”

corresponding to constraint violations, weighted by a positive penalty factor.
An example of penalty functions is the quadratic penalty function used for optimization

problems with only equality constraints, and defined as

pix.0) = f(x)+5 ¥ si(0)? | @7
S

2We consider a constrained minimization problem.

37



Constrained Optimization

for objective function f and equality constraints g;(x) =0, i € &. The parameter ® > 0
is the penalty factor and the penalization is quadratic and corresponds to g;(x)? for each
constraint. That way, each point x such that g;(x) # 0, for some i € &, is penalized. Note
that a different penalty factor can be used for each constraint function. Convergence of
the quadratic penalty method to the global optimum of the constrained problem is proven
under the assumption that the penalty parameter @ goes to infinity [44, 73]; therefore, ®
is typically increased at each iteration in practice. Increasing the penalty factor, however,
results in an ill-conditioned—therefore difficult—unconstrained optimization problem. A
recent review of update rules for the penalty parameter is provided in [17]. Other penalty
methods aim at constructing an exact penalty function, that is, for certain values of the penalty
factor, the optimum of the constructed penalty function corresponds to the optimum of the
constrained optimization problem [73, 47, 43, 40]. Such methods often use the derivatives of
the objective function and the constraint functions.

Augmented Lagrangian Methods

Augmented Lagrangian methods [73, 44] are at the heart of this work. They were first intro-
duced in [56, 76] as an alternative to penalty functions which suffer from ill-conditioning.
Similarly to penalty function methods, augmented Lagrangian methods transform a con-
strained optimization problem into a sequence of unconstrained optimization problems. For
the sake of illustration, let us consider the optimization problem in (4.1) where we consider
only equality constraints, and the quadratic penalty function in (4.7). The idea of augmented
Lagrangian methods is to reformulate the penalty function p by introducing a new parameter

Y that emulates the vector of Lagrange multipliers, according to

h(x,7,0) = f(x)+ Z Yigi(x) + = Zgl ) (4.8)

€& 166”
where 4 is called the augmented Lagrangian and is a combination of the Lagrangian in (4.4)
(considering that .# = @) and quadratic penalty terms. The parameter v is the vector of

Lagrange factors [y];, i € &. Under differentiability assumptions, we have

<h(x,7,@ x)+ Y ([7]i + 08i(x)) Vxgi(x) - (4.9)

ief
It is easy to see from (4.9) that for a point x* satisfying the KKT conditions and for the
corresponding vector y* of Lagrange multipliers, Vyh(x*, 7*, ®) = 0, for all @ > 0; that is,
x* is a stationary point for A(x,y", ®). Let us now consider an algorithm that iteratively

minimizes the augmented Lagrangian with respect to x for fixed values of y and ®. Assuming
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X; 1s an approximate minimum for (4.8) at iteration ¢, the following holds [73]:

Vxh(xla )2 a)t) = fo(xt) + Z ([%]l + a)tgi(xl))vxgi(xt) ~0 .
i€é
Therefore, if x; satisfies the KKT conditions and if y* is the corresponding vector of Lagrange
multipliers, then

)~ [+ rgi(xe) © gilx) ~ %m ~ ) .

for all i € &. This relation intuitively suggests that if [y]; — [y*];, for all i € &, then
gi(x;) — 0, without the need for @y to go to infinity [44, 73].

We consider in this work adaptive augmented Lagrangian approaches where the Lagrange
factors are updated to converge to actual Lagrange multipliers and where penalty factors
are updated to guide the search towards feasible solutions, ideally without unnecessarily
increasing the conditioning of the problem at hand. The classical update rule for y used with
the augmented Lagrangian in (4.8) is given by [73, 44]

(V1] = [nli + 01gi(xp41), forallie & .

A broader discussion on augmented Lagrangian formulations and update rules for Lagrange
factors is given in [73].

Augmented Lagrangian methods have drawn increasing attention since their introduction
in the 1960s: in [32, 65, 22], the convergence of different augmented-Lagrangian-based
algorithms for nonlinear programming is investigated and in [23], augmented Lagrangian

methods for practical optimization problems are discussed.

Sequential Quadratic Programming

Sequential quadratic programming (SQP) [24, 73] is an approach for solving nonlinear con-
strained optimization problems that consists in iteratively solving quadratic approximations
of the original problem. The solution of the current quadratic model is used to construct a
more accurate model at the next iteration. The performance of a SQP method relies on the
accuracy of the quadratic approximations as well as on the efficiency of the algorithm used
to solve the quadratic subproblems. SQP can be combined with other methods for nonlinear
programming, such as interior-point methods and active set methods presented below.
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Interior-Point Methods

Modern interior-point (or barrier) methods [42, 75, 73] date back to 1984 when a polynomial
time interior-point algorithm for linear programming was presented in [59]. They have
been since largely studied in theory and extended to nonlinear programming. The idea of
interior-point methods is to generate solutions that satisfy strict inequality constraints. More
precisely, given the constrained optimization problem in (4.1), inequality constraints are
transformed into equality constraints by introducing a vector s of slack variables as follows
[73]:

gi(x)—[sli=0,ie.s
[S],'ZO,iEf .

The objective function miny s f(X) — U Yjc_~ In[s]; is considered instead of f and the original

constrained problem (4.1) is replaced with

min f(x) = }_ Ins]

ics
subject to g;(x) =0, i € &
gi(x)—[s]i=0,ies | (4.10)

where p > 0 and where the term —Y ;. ~In[s]; prevents [s]; from getting too close to 0.
Interior-point methods iteratively compute steps by solving the system of equations given
by the KKT conditions for (4.10) (see (4.5)) with Newton’s method. To avoid computing

derivatives, some interior-point methods construct a quadratic model of (4.10).

Active Set Methods

Active set methods [44, 73] were first described for quadratic programming, as an extension
of Dantzig’s simplex method [73] for linear programming. They try to estimate the active
set 7 (x*) (see Definition 9) at an optimum x* of the constrained problem in (4.1); the idea
is that if .7 (x*) is known beforehand, one can simply consider the following optimization
problem:

min £(x)

subject to g;(x) =0, i € & (x") .
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Given the current estimate of x* at iteration 7, x;, and the corresponding active set .27 (x;), the

algorithm tries to find a better feasible solution for the optimization problem

min f(x)

subject to g;(x) =0, i € & (x;) , (4.11)

where active inequality constraints are regarded as equality constraints and where the remain-
ing non-active constraints are ignored. If no better solution is found and x; satisfies the KKT
conditions corresponding to (4.11), the algorithm stops and returns x,. If negative Lagrange
multipliers are computed, active inequality constraints corresponding to them are removed
from the active set. If a better solution than x; is found, the active set is updated by adding
active constraints at the new solution and the process is repeated [73]. A popular class of
active set methods, the so-called active set sequential quadratic programming methods [73],

compute the Lagrange multipliers of a quadratic model of (4.11).

4.2.2 Constraint Handling In Evolutionary Algorithms

An overview of most recent constraint handling techniques for evolutionary algorithms is
provided in [69, 30]. Following the classification in [30], a constraint handling method falls
into one of the following four categories:

Penalty Functions

Penalty functions (or methods) are described in Subsection 4.2.1. The simplest penalty
function is the so-called death penalty, or resampling, where unfeasible solutions are rejected
and generated again. In [2, 27, 28], the behavior of different (1,A)-ESs with resampling is
investigated on the linear function subject to one linear constraint. Despite its simplicity,
resampling can be very costly in practice. Moreover, it cannot handle equality constraints
properly. We also distinguish between static penalty functions which keep the penalty param-
eter fixed, dynamic penalty functions which update the penalty parameter at every iteration,
and adaptive penalty functions which update the penalty parameter using information from
sampled candidate solutions. In [31], the authors present an adaptive-penalty-based constraint
handling mechanism for CMA-ES [53] for the problem of designing a space launcher. A
multiplicative update is used to adapt the penalty factors, where a factor is increased if the
ratio of feasible solutions in the corresponding constraint is smaller than a target probability
and decreased otherwise. Results indicate an increasing ratio of feasible solutions as the

optimization progresses.
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Augmented Lagrangian methods (see Subsection 4.2.1) are particular penalty functions.
In [87], the authors present a coevolutionary algorithm for solving the dual problem expressed
as a function of the augmented Lagrangian; to that end, two populations—one for the
parameter vector and one for Lagrange factors—are evolved using an evolution strategy with
self-adaptation. In [36], an augmented-Lagrangian-based genetic algorithm for constrained
optimization is described. To converge to an optimal solution, a local search procedure is used
to improve the current best solution. In [5], an adaptive augmented Lagrangian constraint
handling approach is implemented for a (1 4 1)-ES for the case of one inequality constraint,
and an adaptation rule for the penalty factor is presented. Numerical tests on the sphere
function and on a moderately ill-conditioned ellipsoid function show linear convergence of
the algorithm.

Special Representations and Operators

Methods that fall into this category try to preserve feasibility of a solution either by mapping
unfeasible solutions into the feasible domain, or by mapping the entire feasible domain
into a different space that is easier to explore. In [61], a homomorphous mapping between
the feasible domain and a n-dimensional cube is presented. The implementation of special

representations and operators, however, is often difficult in practice [69].

Separation of Constraints and Objectives

These methods handle the objective function and the constraints separately. For instance,
some methods apply a multi-objective approach to solve a constrained problem by minimizing

the objective function along with constraint violations [68].

Other Methods

The classification presented above is not exhaustive and other approaches exist in the literature.
In [64], an evolutionary algorithm for solving the dual problem is presented as well as an exact
penalty function. In [4], the authors design a constraint handling mechanism for CMA-ES:
the idea is to estimate the normal vectors of the local constraints using unfeasible solutions,
then to use this information to update the covariance matrix by reducing the variance in these
directions. More recently, a (1+ 1)-ES with an active set constraint handling approach has
been described in [3].
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4.3 Discussion

An important part of this work is dedicated to the analysis of linear convergence of adaptive
randomized algorithms for constrained optimization (see Chapter 6). Among the constraint
handling methods presented in Section 4.2, we choose to investigate (adaptive) augmented
Lagrangian methods. Besides their solid theoretical background [32, 65, 22], augmented
Lagrangian methods optimize a sequence of unconstrained problems instead of the original
constrained one. Therefore, it is possible to take advantage of the numerous efficient ran-
domized algorithms for unconstrained optimization to solve a constrained problem. Another
reason for this choice is the work of Arnold and Porter in [5] that features an augmented-
Lagrangian-based (14 1)-ES that is observed to converge linearly on two simple convex
quadratic functions with one linear inequality constraint. Their results encouraged us to

investigate the observed linear convergence via Markov chain theory.
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Chapter 5

Evaluating Step-Size Adaptation
Mechanisms

In this chapter, we present our contributions related to the evaluation of step-size adaptation
mechanisms in randomized algorithms for unconstrained optimization.
We recall that candidate solutions are sampled by an evolutionary algorithm as follows

Xi., =Sol((X;,0,), U, y), i=1,---, 4, (5.1)

where the deterministic function Sol : R” x RZ x R” — R" computes a candidate solution
X 1 using the current solution X;, the step-size oy, and the random vector U 1 1- In practice,
Sol 1s often defined as

Sol((x,0),u) =x+ou . (5.2)

It is then easy to see that the step-size o; controls the distance of a candidate solution from the
current one, and therefore, the diversity within the population. Depending on the situation, an
algorithm should maintain a large diversity (step-size) to efficiently explore the search space
or quickly decrease the step-size in order to quickly converge to an optimum. Therefore,
having a proper step-size adaptation mechanism is crucial for the performance of a practical
algorithm.

A common practice in the literature is to assess step-size adaptation mechanisms on the
sphere function, the motivation being that the sphere function is reasonably easy to study and
that most functions can be approximated locally by a sphere. However, considering only the
sphere function can be misleading as illustrated in Section 5.1 where we present a minimal
methodology to assess a step-size adaptation algorithm more thoroughly. In Section 5.2,
we present the results of benchmarking two step-size adaptation algorithms on the BBOB
unconstrained testbed of the COCO test platform [52].

45



Evaluating Step-Size Adaptation Mechanisms

5.1 How to Assess Step-Size Adaptation Mechanisms in

Randomised Search

In the following paper [51], we present a methodology for assessing step-size adaptation
mechanisms in the case of unconstrained optimization. Our methodology consists in testing
a given algorithm on a minimal set of functions, each representing a practical difficulty and,
therefore, evaluating a particular feature of the algorithm. This work was published in the
proceedings of the Parallel Problem Solving from Nature conference of 2014. The notations
are slightly different from the ones adopted in the rest of this thesis (for instance, the current
estimate of the optimum is denoted x) in the paper instead of the usual X).
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How to Assess Step-Size Adaptation Mechanisms in
Randomised Search

Nikolaus Hansen, Asma Atamna, and Anne Auger

Inria*
LRI (UMR 8623), University of Paris-Sud (UPSud), France

Abstract

Step-size adaptation for randomised search algorithms like evolution strategies is
a crucial feature for their performance. The adaptation must, depending on the situ-
ation, sustain a large diversity or entertain fast convergence to the desired optimum.
The assessment of step-size adaptation mechanisms is therefore non-trivial and often
done in too restricted scenarios, possibly only on the sphere function. This paper in-
troduces a (minimal) methodology combined with a practical procedure to conduct a
more thorough assessment of the overall population diversity of a randomised search
algorithm in different scenarios. We illustrate the methodology on evolution strategies
with o-self-adaptation, cumulative step-size adaptation and two-point adaptation. For
the latter, we introduce a variant that abstains from additional samples by construct-
ing two particular individuals within the given population to decide on the step-size
change. We find that results on the sphere function alone can be rather misleading to
assess mechanisms to control overall population diversity. The most striking flaws we
observe for self-adaptation: on the linear function, the step-size increments are rather
small, and on a moderately conditioned ellipsoid function, the adapted step-size is 20
times smaller than optimal.

1 Introduction

In this paper we consider a fitness or objective function, f : R” — R, to be minimised in
a black-box optimisation scenario, and an evolutionary algorithm, or randomised search
method, generating A offspring according to

A =x0 160 %2 k=1, 4, (D

*Research centre Saclay—ile—de—France, TAO team, lastname @lri.fr

47



Evaluating Step-Size Adaptation Mechanisms

where x(!) € R” denotes the incumbent solution at iteration # and z,(f) € R" are i.i.d. random

vectors. The “overall variance” of the offspring population in (1) is determined by the
diversity parameter o). More generally, we rely on two assumptions: (i) we have a valid
measurement for the “global diversity” of the offspring population, denoted as o™, and (ii)

the shape of the offspring population (determined by the distribution of z,(f) in (1)) does not
change remarkably during the investigated time range of ¢.

Controlling the overall diversity in the population plays a crucial role in randomised
search and has been typically approached by step-size adaptation. Two conflicting objec-
tives are in place. On the one hand, diversity should be as large as possible to prevent pre-
mature convergence or convergence to the very next local optimum. On the other hand, fast
convergence to a global (or a good local) optimum is desired which is usually accompanied
and facilitated by a fast decrease of diversity.

While adaptation of the shape of the sample distribution appears to be a solved problem
in moderate dimension [6, 10, 11] (e.g. by CMA), the effective adaptation of the overall
population diversity seems yet to pose open questions, in particular with recombination
or without entire control over the realised distribution. For example, cumulative step-size
adaptation is prone to fail when repair or rejection sampling is used.

In this context, we propose a basic assessment procedure to evaluate the capability of
step-size control, or the entire search algorithm for that matter, to keep the overall diversity,
or step-size o!"), within reasonable limits. This procedure might be used during an algo-
rithm designing process, however we like to remind the general scientific principle that a
procedure used to systematically fune parameters of an algorithm is forfeited to assess the
resulting algorithm.

In the next section we introduce the assessment methodology. Section 3 introduces the
algorithms used in the case study in Section 4. We also introduce a simplified two-point
adaptation and tune its damping parameter on the sphere function in Section 3. Section 5
provides a short discussion and summary.

2 Step-Size Evaluation Methodology

General demands on the behaviour of evolutionary algorithms were suggested previously,
e.g. in [4, 11]. Here, we propose a methodology to specifically investigate and assess the
overall population diversity, or step-size, towards meeting reasonable demands via the fol-
lowing scenarios:

Random fitness (and flat fitness). On the random fitness, all f-values, f(x), are i.i.d.,
independently of x as a continuous random variable. For algorithms invariant under order-
preserving transformations of f, i.e., algorithms based on f-rankings only (as those inves-
tigated in this paper), testing a single continuous f-distribution is sufficient. Generally, we
desire stationarity or unbiasedness of parameters under random fitness [11] and here we ex-
pect to see an unbiased random walk in log-scale. For the flat fitness, where f is constant,
we expect the same behaviour. In contrast, [4] argues for an exponentially increasing step-
size on the flat fitness which, however, involves the risk of divergence when the selection
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pressure is weak [7].

The linear function, where f : x — xj is the prototypical instantiation (see paragraph In-
variance below). A linear function tests whether and how quickly the diversity can increase.
With step-size to zero, any smooth function appears to be an instantiation of the linear func-
tion (unless at a local optimum or saddle point) and the diversity should increase in this
case. We demand a fast exponential increase, that is, a linear increase on the log-scale [4].
The rate should be at least comparable to the rate of decrease on the sphere function or at
least a factor of 1.1 within n evaluations or at least a factor of 2 in n iterations.

The sphere function, f:x+— Y x> = |x|?, is the most simple quadratic function, de-
manding a rapid decrease of the step-size. Arguably, no other function requires a faster
step-size decrement. Step-size control should not reduce the fastest possible (optimal) con-
vergence rate on the sphere function by more than a factor of about three.

To achieve linear (i.e. fast) convergence on the sphere function we need to have, at least
approximately, o) o f (x(t))l/ 2, implying that ¢ and f 1/2 converge at the same rate. More
specifically, on the sphere function with isotropic sample distribution, there is a constant

Ogpt (1) such that the step-size

o) = 2P o p(x(1)1/2 )

achieves optimal convergence speed and Oy, (n) = ®(n°) = ®(1). When running a real
algorithm, the proportionality can only be satisfied in a stochastic sense, i.e. the random
variable ) / f(x())1/2 is stable (for example when x) /(") is an irreducible, recurrent
and ergodic Markov Chain [3]).

A similar reasoning on c") holds true on the ellipsoid function, where the direct link
between ¢) and f (x(’))l/ 2 is less obvious, however presumed in the following to obtain
the optimal convergence rates to compare with.

The ellipsoid function, f:x— Y ali=1/ (”_l)xiz, is arguably the most basic function
where, for o # 1, an isotropic distribution of the new offspring is not optimal. The parameter
o represents the condition number of the Hessian matrix of f.

With isotropic sample distribution in (1) and o > 10, the realised convergence rates
are roughly proportional to 10/c [12]. Recalling that f'/2(x(*)) and the optimal value for
o"), are linked to each other (Eq. (2)), we observe that with larger ¢, when approaching
the optimum, the optimal step-size changes more slowly (because the realised convergence
rate is small). The task to estimate the optimal step-size becomes more relevant than the
task to follow the change of the optimal step-size. In this paper, experiments are done for
o =1,10,100.

The stationary sphere is an artificial model, resembling the sphere function in that an
isotropic sample distribution is optimal, but with stationary optimal step-size. While the
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sphere function tests the ability to decrease the step-size quickly, the stationary sphere func-
tion tests the ability to adapt the step-size close to the optimal step-size in the same sphere-
like topography without approaching the optimum. With global intermediate or weighted
recombination, as used below, the stationary sphere is simulated by setting the norm of
the resulting recombination vector (super-parent) to one and re-normalisation of all other
individuals or solutions in the algorithm’s state by the same factor (see, e.g., lines 5—6 in
Algorithm 3). When the population is never reduced to a single point, an appropriate nor-
malisation factor needs to be identified (omitted due to space restrictions). The stationary
sphere model is arguably the easiest model for step-size adaptation and we expect to observe
close to the optimal step-sizes.

Convergence rate and optimal step-size. On the last three functions, we compute from
a single run with 7 iterations the consistent estimator

. 1 =1 f(x(s+1))

s=t—T

for the convergence rate [2, Eq. (24)], where x(8) € R” is the solution proposed at time step s,
and the burn-in time # — 7" diminishes the possible bias due to initialisation. In this paper we
use T = [t/2], i.e. half of the overall time steps for aggregated measurements. If necessary
(e.g., when we terminate due to numerical precision, but want more data), we average ¢ over
several runs.

We obtain the values for the optimal step-size and convergence rate empirically by mea-
suring the convergence rate with o(*) set according to (2) and sweeping through different
values for og,. Generally, we demand the “real” algorithm to perform within a factor of
three of this optimal convergence rate, and we prefer larger step-sizes to smaller ones, given
the same performance is observed.

Invariance is an important concept in the assessment of algorithms. For example, all
linear functions are identical for the below assessed algorithms, because the algorithms
are invariant under affine transformations of f and under rotations of the search space. In
the case where algorithms do not exhibit certain invariances (e.g. rotation invariance), it
is advisable to test different instantiations (e.g. different rotations) of the above scenarios.
Scale invariance on the other hand is a prerequisite to measure (3) independently of initial
step-size or the distance to the optimum.

We now apply our methodology to three step-size adaptation methods. Due to the space
limits, we do not always display single runs, but we consider investigating the evolution of f
and o (both displayed in the log scale) in single runs in all scenarios part of the assessment
procedure [15].

3 Considered Step-Size Adaptation Methods

In the following, we consider the (u/u,A)-ES with weighted recombination [11]. The
offspring are generated as in (1) where the i.i.d. z,(f) follow the standard multivariate normal
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Algorithm 1 The (u/u,A)-0SA-ES Algorithm 2 The (u/u,1)-CSA-ES
Ogivennc N, A, i, w, T=1/v2n Ogivenne N, A, u, wy, cs, d

1 initialize x© € R", ¢(¥ ¢ R, 1 initialize x© ¢ R", 60 c R, p¥ =0
2 while not happy 2 while not happy
3 if stationary_sphere : 3 if stationary_sphere :

4 R0 =200 4 =)

5 forke{l,...,A} 5 forke{l,...,A}

6 &Y =1A(0,1) 6 2" =.4,(0,1)

7 z,(:) = A x(0,1) 7 x,(;) — x4 60 x z,(;)
8 8
9

o) =) xexp(") Py =(1-co)pl +
xl(ct) :x(t) + Glgt) X zl(ct) \/CG( — CG /Zg Z Wi Zkk
u
10 6=y wioy) (o)
=, 9 o) = o) xexpF[ NPs_I__
u E[[.47(0,1)]]
11 xU+D = Z wkx(t_)
k=1 kA 10 x+) — 0 (1) o (t)
X =x"'"+0 szk'l
12 t=t+1 k=1 '
11 t=¢t+1

distributions, i.e., z,(:) = A 1(0,I). They are sorted according to their fitness such that

f("%) Sf("g;)z) <. Sf()f%) , (4)

thereby defining the index k: A used in the following. The p best individuals are then
recombined according to

X+ Zwkx,)A , (5)

where wy’s are chosen to be optimal on the infinite-dimensional sphere function [1]. We set
= |A/2] and therefore have only positive weights while A =4+ [31nn]|.
We consider here three ways to adapt the step-size in (1). Self-Adaptation (SA) [14]
and Cumulative Step-size Adaptation (CSA) [11] are given in Algorithm | and 2. The
used default parameter settings for the latter are taken from [9] as c¢s = 2 g

1 + 2 max <0, ‘23:11 — 1) + co. The third method considered for step-size adaptation is

presented in the following.

Two-Point Step-Size Adaptation (TPA). We consider a tidied version of Two-Point Step-
Size Adaptation (TPA) based on [8, 13]. Conceptually, TPA implements a very coarse line
search along the direction of the latest mean shift from x’ —D to x). In our version, we
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Algorithm 3 The (u/u, A)-ES with TPA

Ogivenn e Ny, A, U, cc =0.3, ds = +/n, wy 11 iftr>0andk=2:
1initx? e R, 6@ eR,, =0, 50 =0 12 2=
2 while not happy 13 x,(:) —x0 L 50 « Zl(ct)
3 if stationary_sphere : u
4 ifr>0: 14 20 = ¥ wexl)
_ _ k=1
5 xD =/ 15 ifr>0:
6 =20 16 50— (1-co)s
7 forke{l,...,A} rank(xg))_rank(ng))
8 g =00 A
9  iftr>0andk=1: 17 6t — 6 xexp st
10 z(,) — (1A(0,1)]| x (x(t) —x(t—l)) do
o [x(t) —xt=D]] 18 r=1+1

sample the first two offspring of the next iteration along this line. These two offspring are
generated as a mirrored pair, symmetric about the current mean vector x0),

x(t) _x(tfl)

FREral

(1)

x\), =2 & 6 x||4(0.1)

(6)

instead of (1). Their ranking according to the fitness is used to adapt the step-size: if x(lt)

(1)

is better than x,’ the step-size is increased, because there are better points in the direc-
tion of the mean shift vector, beyond of where the mean has been moved. Otherwise,
the step-size is decreased. By using individuals that are likely to be sampled by the cur-
rent distribution, information on the “signal strength” is available, because we can com-
pare their fitness to the fitness of the remaining population. Accordingly, we take the dif-

(1 0 “) D e,

ference between the f-ranks of x;’ and x,” in the population, rank(x, )—rank(x,
This normalised rank difference is averaged in s\ and used to finally update the step-size

A—1

ol =) xexp (s(’ )/ d(;) , where the damping, ds, moderates the step-size changes. The

details are shown in Algorithm 3.
The constant for which ¢ in (2) achieves optimal convergence rate depends on the
sampling. For TPA-like sampling, we denote it Ggpt TPA-

The Damping Factor. Here we identify a default value for the damping ds. To this aim,
we follow a standard procedure: dg is tuned on the sphere function. For each value of dg,
the algorithm is run 101 times with target f-value 1078 (the f-value that stops the algo-
rithm when reached), and if all runs reached the target within 10°n evaluations., the average
number of f-evaluations is recorded, see Figure 1, left. We observe a steep incline to the
left (small values of dy), where missing points indicate the failure of at least one run to
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Figure 1: Left: number of function evaluations versus damping ds for TPA, averaged
over 101 runs with target f-value 103, Right: solid lines depict, from bottom to top, (i)
the smallest damping where all runs reached the target value; (ii) the smallest and largest
“reasonable” damping with a performance not worse than three times the best (lowest) value
in the respective graph on the left; (iii) the damping with best performance, dj; (iv) the
smallest and largest damping with performance no more than two times worse than the best
value in the respective graph on the left, all plotted against dimension. The dashed line
depicts y/n. The filled area corresponds to damping values with at most 20% performance
loss compared to the optimal damping.

reach the target after 10°n evaluations. To the right, the number of f-evaluations increases
linearly with the damping and no failures are observed. We extract four damping values
per dimension as shown and described in Figure 1, right. We then choose the damping to
be (a) more than three times larger than the smallest “reasonable” value and (b) larger than
the optimal value such that (c¢) reducing ds by a factor of two leads to a better performance
than increasing it by a factor of two without (d) loosing more than a factor of two in perfor-
mance compared to the best damping (see also [5]). The default choice becomes dg = /1.
Note that we identified the damping only for the given default population size. The same
procedure needs to be repeated to identify a damping parameter for different population
sizes.

4 A Case Study

Experiments are conducted in dimensions between 2 and 100. The algorithms are run with
the default parameter settings (Section 3) and initial x0) = (1,0,...,0)T. Onrandom, linear,
and ellipsoid function we have c® =1, onthe sphere and stationary sphere we have c©
Ogpt/ 1 (respectively O, tps /1) for SA and CSA (respectively TPA). Interquartile ranges
are depicted as notched bars with the median at the notch.

Random Fitness. Figure 2 displays the evolution of o for 5000 iterations in 4- and 40-
D, five runs for each algorithm. As expected by design, CSA and TPA show an unbiased
random walk of log o, where TPA reveals a larger variance. In contrast, due to the com-
bination of geometric mutation and arithmetic recombination of the step-sizes, the random
walk of SA is biased [7] and log o increases linearly with a rate of a little above (below)
10297 2 1.17 in n iterations for n = 40 (n = 4, respectively).
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frand’ n=4, /1':47 A=8

1080 t{-—CSA
1084} — TPA
= 10%p — SA
b1032
1016
10°
107'¢ 10
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iterations iterations

Figure 2: Evolution of o) on the random fitness for 5 runs of SA (green), CSA (blue), and
TPA (red) in 4-D (left) and 40-D (right).
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Figure 3: Step-size change after n evaluations, (G(’“) / G(’))"/ A on the linear (red), the
sphere (green), and the random function (blue).

Linear Function. On the linear function, the algorithms are run 100 times for 400 itera-
tions. Figure 3 shows geometric average and quartiles of the step-size change realised after
n evaluations, (G(t +)/ ol ))”/ %, compared to results obtained on the random and the sphere
function.

For CSA and TPA, the step-size increases by at least a factor of 1.14 within n evalua-
tions. This factor increases slowly with increasing dimension (but never exceeds a factor
of two) and the increment on the linear function is at least about three times faster than the
decrement on the sphere function.

Self-Adaptation realises only an increment of a factor between 1.03 and 1.05 within n
function evaluations, where also decrements appears frequently. The step-size grows faster
than on the random function but up to four times slower than it shrinks on the sphere func-
tion. This latter observation, together with the observed slow changes rates, fails to meet
our original demand.

Sphere. On the sphere function, the target f-value is 107!%. Figure 4 shows nine single
runs (left) with 6(©) = 1073, the step-size as geometric average (middle), and the conver-
gence rate ¢ X n/A (right, see (3)), both averaged over 100 runs.

All algorithms realise a too large step-size. In small dimensions, this leads to a loss
in performance by about a factor of five, thereby failing our original demand. Fortunately,
with increasing dimension the effect diminishes. For n = 100, TPA and SA reveal close to
optimal convergence rates, whereas CSA is about two times slower.

Supposedly, we observe larger-than-optimal step-sizes, because the optimal step-size
changes during the run and is therefore a moving target. Indeed, decreasing the damping
parameters d or ds in CSA or TPA by a factor of two or increasing 7 in SA improves the
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Figure 4: Single runs (left), step-size (middle) and convergence rate (right) on the sphere
function, for SA (green), CSA (blue), and TPA (red) and the respective optimal values.
Filled areas correspond to step-size values with at most 20% performance loss compared to
Oopt (OT Ogpt TPA, respectively).
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Figure 5: Results on the ellipsoid with condition number 10 (left) and 100 (right). Top:
normalised step-size. Shaded areas depict the step-size range with at most 20% loss in
convergence rate. Bottom: convergence rate according to (3).

convergence speeds thereby meeting just about the original demand. However for SA, this
impairs the performance on the ellipsoid function with o = 10.

Ellipsoid. Complementing the observations on the sphere function, which coincides with
the ellipsoid function with o = 1, the algorithms are investigated on the ellipsoid function
with @ € {10,100}. These are very moderate condition numbers, where an isotropic dis-
tribution can still realise comparatively high convergence rates. We conduct 100 runs with
target f-value' of 107", Figure 5 shows the step-size as geometric average and the con-
vergence rate ¢ from (3). With increasing condition number the realised step-sizes become
across the board smaller (compared to the optimal step-size). For o = 10, the step-size is
still slightly too large with CSA and TPA, while SA shows already too small step-sizes.
With a = 100, SA realises a 20 times smaller than optimal step-size. Then, for n > 10,
SA performs four to six times slower than optimal, while the other two methods reveal

'In general, we can use such a small target f-value only because the optimum is located at zero and because
the distribution shape does not change over the iterations (see Section 1).
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Figure 6: Step-size (left) and convergence rate (right) of SA (green), CSA (blue), and TPA
(red) on the stationary sphere together with the respective optimal values. Shaded areas
reflect step-sizes with no more than 20% loss in the achieved convergence rate.

close-to-optimal convergence rates.

Stationary Sphere. On the stationary sphere model, the algorithms are run for ¢t = 5000
iterations. The convergence rate ¢ from (3) is estimated from 100 runs.

Figure 6 shows step-sizes (as geometric average) and convergence rates. The CSA
achieves close to optimal step-sizes and convergence rates in all dimensions. The TPA re-
veals very similar step-sizes in larger dimensions, however for TPA they are somewhat too
large, because the optimal step-size is somewhat smaller. Yet, only in smaller dimensions a
(moderate) performance loss is observed.

In contrast, SA adapts always a too small step-size. The gap to the optimal step-size is
a factor of two in 2-D and increases to a factor of 6 in 100-D. The loss in convergence rate
is (slightly) above a factor of three only in 100-D. These observations are (qualitatively)
similar to those on the ellipsoid function with condition number 100.

Compared to the sphere function, the observed step-sizes are in all cases considerably
smaller, again supporting the hypothesis that too large step-sizes are observed on the sphere
function mainly because the optimal step-size is a moving target.”

5 Discussion and Summary

We have introduced a methodology to assess the overall population diversity, for example
determined via step-size adaptation, by describing the desired outcomes on basic scenarios.
We conducted a case study assessing evolution strategies with weighted recombination and
three different step-size adaptation mechanisms.

Despite the small number of investigated algorithms, we find in each test scenario, ar-
guably with exception of the random function, limitations of at least one method: a (too)
slow step-size increase on the linear function; a (too) slow step-size decrease on the sphere
function in small dimensions; adaptation of a far too small step-size on the ellipsoid and sta-
tionary sphere. The results suggest that both, design and assessment of step-size adaptation
methods is more intricate than one would have hoped for.

2Experiments with varying damping- or t-values give additional strong support. Increasing damping im-
pairs the performance on the sphere function (cp. Fig. 1) by reducing the change rate of the step-size, while it
(slightly) improves the performance on the stationary sphere.
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5.2 Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA -
ES-MSR on the BBOB Noiseless Testbed

With this paper [6], we illustrate how step-size adaptation can be assessed in practice. We
benchmark for the first time two step-size adaptation algorithms on the BBOB noiseless
testbed of the COCO platform [52]. The investigated algorithms are two-point step-size
adaptation (TPA) [49] and median success rule (MSR) [1], paired with CMA-ES and the
so-called IPOP (increasing population size) restart mechanism. This work was presented
in the BBOB 2015 workshop. A former version of COCO was used for this work and the
average runtime to reach a target value (aRT, see Subsection 3.5.1) was called the “expected

running time” (ERT) at the time this work was conducted.
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Abstract

We benchmark IPOP-CMA-ES, a restart Covariance Matrix Adaptation Evolution
Strategy with increasing population size, with two step-size adaptation mechanisms,
Two-Point Step-Size Adapation (TPA) and Median Success Rule (MSR), on the BBOB
noiseless testbed. We then compare IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR to
IPOP-CMA-ES with the standard step-size adaptation mechanism, Cumulative Step-
size Adaptation (CSA). We conduct experiments for a budget of 10° times the dimen-
sion of the search space. As expected, the algorithms perform alike on most func-
tions. However, we observe some relevant differences, the most significant being on
the attractive sector function where IPOP-CMA-TPA and IPOP-CMA-CSA outperform
IPOP-CMA-MSR, and on the Rastrigin function where IPOP-CMA-MSR is the only
algorithm to solve the function in all tested dimensions. We also observe that at least
one of the three algorithms is comparable to the best BBOB-09 artificial algorithm on
13 functions.

1 Introduction

This paper compares three step-size adaptation methods coupled with IPOP-CMA-ES [2],
a restarted version of the state-of-the-art Evolution Strategy (ES), the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [8], where the population size is increased for
each restart, on the BBOB noiseless testbed [3, 7]. The step-size adaptation algorithms
under consideration are Two-Point Step-Size Adaptation (TPA) [5], Median Success Rule
(MSR) [1], and Cumulative Step-Size Adaptation (CSA) [8], the latter being the default
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step-size adaptation method in CMA-ES. We first recall the general principle of the con-
sidered ES, we then describe the studied step-size adaptation algorithms, with a particular
focus on TPA and MSR, and evaluate them empirically.

2 The (u/u,A)-ES

In this paper, we consider the (u/u,A)-ES with weighted recombination, where A is the
population size, ( is the number of parents, and ,; denotes non-elitist selection [4]. At
iteration 7, A offspring, th yee ,X;I, are sampled independently from a multivariate normal
distribution according to

X =X, +0,N:(0,C;) ,i=1,.... (1)

where N;(0,C;) is the multivariate normal distribution with mean 0 and covariance ma-
trix C;, oy is the step-size and defines the width of the sampling distribution. The u best
offspring are recombined to form the new solution

H 2
Xi+1= Z wi X; (2)
i=1

where Xf)L is the ith best offspring fitness-wise, w; > 0 and Zl‘.i (wi = 1. In adaptive ES, o;
and C; are updated during the search process in order to achieve fast convergence.

3 IPOP-CMA-ES

I[POP-CMA-ES consists in launching independent restarts of CMA-ES by increasing the
population size by a factor of two for each restart. Increasing the population size allows
for a better covering of the search space and improves the performance of CMA-ES on
multimodal functions [2]. The principle of the algorithm can be summed up in two steps:

1. run CMA-ES

2. if CMA-ES stops before reaching the target value and before exceeding the budget,
double the population size and go to step 1

For a detailed description of the algorithm, see [2].

CMA-ES In this paper, we consider the (u/u, A )-CMA-ES with weighted recombination,
fully described in [8].

4 Step-Size Adaptation Methods

This section describes the three step-size adaptation methods under investigation.
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41 TPA

In Two-Point Step-Size Adaptation, the first two offspring are sampled along the shift vector
from the previous solution, X;_1, to the current solution X;, as a mirrored pair, symmetric
to X;.

X X1
X = X1

where I is the identity matrix. We decide whether to increase or decrease the step-size
o; depending on the fitness of th and Xt2: if th is better than X,z, o; 1s increased as this
indicates that there are better solutions in the direction of the latest solution shift. Otherwise,
it is decreased. The following equations give the step-size update.

X,” =X, £ 0, x [N (0,1)] 3)

rank(X?) —rank(X})

1 “4)

S = (l_Co-)St,I +Co

S
Oi41 = Gtexp(d—t) )
(o2

where rank(X!) is the fitness ranking of the ith individual among the entire population,
s0=0, ¢ =0.3, and dgs = /D where D is the dimension of the search space. A more
thorough description of the algorithm can be found in [5].

42 MSR

The Median Success Rule Step-Size Adaptation can be seen as a generalization of the 1/5th
success rule [10] to the case of (i/u,A)-ES. The success is defined as the median individual

(fitness-wise) of the current population, X:n(l), being better than the jth best individual

of the previous population, Xt]_)L1 In practice, j is chosen such that the median success
probability is approximately 1/2 with optimal step-size on the sphere function [1]; this

value corresponds to the 30th percentile. The idea is then to increase the step-size if X:n(l)
is fitter than Xt]_’l1 and decrease it otherwise. The step-size oy is updated as

2 A
Sl:(I_CG)St—l"'CO'I(KsuCC_E) (6)
St
O;+1 = O7€Xp (d_) (N
c

where Kgycc is the number of successful individuals, s =0, ¢s = 0.3, and d =2-2/D.

43 CSA

The Cumulative Step-Size Adaptation is the standard step-size adaptation method in CMA-
ES. A detailed description of the method can be found in [8].
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S Experimental Procedure

We ran the algorithms with a budget of 10° x D on the BBOB noiseless functions in six
different dimensions. We used the python implementation of CMA-ES, cma 1.1.06. The
source code can be found at [11]. TPA, MSR, and CSA are implemented in cma 1.1.06
as well as the IPOP restart strategy. For each run of the algorithms, the initial solution X
is sampled uniformly in [-4,4]P and the initial step-size oy is set to 2.5. The maximum
number of restarts is set to 9. For all other parameters, default values are used (for instance,
the population size A =4+ |31nD| and the number of parents y = 1/2).

6 Results

Results from experiments according to [6] on the benchmark functions given in [3, 7] are
presented in Figures 1, 3 and 4 and in Tables 1 and 2. The expected running time (ERT),
used in the figures and tables, depends on a given target function value, f; = fop +Af, and
is computed over all relevant trials as the number of function evaluations executed during
each trial while the best function value did not reach f;, summed over all trials and divided
by the number of trials that actually reached f; [6, 9]. Statistical significance is tested with
the rank-sum test for a given target Af; using, for each trial, either the number of needed
function evaluations to reach Af; (inverted and multiplied by —1), or, if the target was not
reached, the best Af-value achieved, measured only up to the smallest number of overall
function evaluations for any unsuccessful trial under consideration.

For the sake of simplicity, we will refer to [POP-CMA-ES-TPA, IPOP-CMA-ES-MSR,
and [IPOP-CMA-ES-CSA as TPA, MSR, and CSA respectively in the following.

ERT versus dimension Figure |1 shows that in 5-D (respectively 20-D), TPA, MSR, and
CSA solve 22 (respectively 19), 20 (respectively 20), and 22 (respectively 20) out of 24
functions. For unsolved functions (mainly multi-modal and weakly structured multi-modal
functions), a larger budget is required (at least 10° x D function evaluations). The algorithms
have a comparable performance on most of the functions and scale similarly with the di-
mension. This corresponds to our expectations, as the three algorithms are very similar. On
some functions, however, we observe relevant differences in the performance: on function
1 (sphere), TPA performs significantly better than MSR and CSA in at least one dimension.
We also observe a significant difference on function 6 (attractive sector) where TPA and
CSA outperform MSR in large dimensions. Single runs on function 6 show that MSR gen-
erates smaller step-sizes than TPA and CSA, which leads to its larger ERT. Figure 2 displays
single runs of MSR (left) and CSA (right) in 20-D (due to space limitations, results for TPA
are not presented). On function 3 (separable Rastrigin), MSR has the best performance. Our
explanation is that having larger step-sizes than CSA and TPA on function 3 avoids getting
stuck in local optima. On functions 16 (Weierstrass) and 19 (Griewank-Rosenbrock), TPA
and CSA perform very similarly and better than MSR. On function 20 (Schwefel), CSA
performs slightly better than TPA in small dimensions. The gap we see in 10-D between
TPA and CSA is due to insufficient budget and should disappear by increasing the budget.
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Another significant difference is observed on function 23 (Katsuuras) where MSR solves the
function within the maximum budget and performs better than TPA and CSA. On function
21 (Gallagher 101 peaks), a larger budget is necessary to decide whether the observed differ-
ence is significant, since the ERTs are close to the maximum budget. Another observation is
that each algorithm performs similarly on the original/rotated ellipsoid and Rosenbrock due
to their rotational invariance. On Rastrigin functions, however, this is not the case, likely
because the rotated function does not correspond to the original one.

Empirical cumulative distribution functions Figures 3 and 4 show the empirical cumu-
lative distribution functions (ECDFs) of the number of function evaluations for 50 targets in
dimensions 5 and 20 respectively. In 5-D, the ECDFs are quite similar for moderate and ill-
conditioned functions. On separable functions, MSR solves about 82% of the problems for
the fixed budget (10° x D) while TPA and CSA solve about 73%. On multi-modal functions,
TPA and CSA manage to solve all problems while MSR solves about 88% of the problems.
While no algorithm solves all weakly structured multi-modal problems, TPA and CSA solve
up to 76% of the problems for the maximum budget while MSR only solves about 56%. On
the overall set of functions, TPA, MSR, and CSA solve roughly the same proportion of
problems up to 10* x D function evaluations. For the maximum budget, however, TPA and
CSA solve about 90% of the problems while MSR only solves about 84%. In 20-D, two
main differences are observed: firstly, TPA and CSA solve about 8% (respectively 10%)
less separable (respectively multi-modal) problems than in 5-D (none of them managed to
solve function 3 in 20-D). Secondly, CSA is better than MSR and TPA on weakly structured
multi-modal problems and solves about 50% of the problems, being 10% more than MSR
and 13% more than TPA.

7 Discussion

We evaluated IPOP-CMA-ES with two different and relatively new step-size adaptation
schemes, TPA and MSR, on the BBOB noiseless continuous functions. We then compared
them to [IPOP-CMA-ES with the standard step-size adaptation method, CSA. As expected,
empirical results showed that the three algorithms need nearly the same number of function
evaluations in average to solve the target f; = fop + 1078 on a large number of functions.
However, significant differences were observed, the most notable were on the attractive sec-
tor function where TPA and CSA outperformed MSR in large dimensions and on Rastrigin
where MSR was the best. 16 functions out of 24 were solved by all the algorithms in all
dimensions while some multi-modal and weakly structured multi-modal functions remained
unsolved because the chosen budget (10° x D function evaluations) was insufficient. On the
other hand, the performance was comparable to the best BBOB-09 results on 13 functions
for at least one algorithm, generally in large dimensions.
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Figure 1: Expected running time (ERT in number of f-evaluations as log; value), divided
by dimension for target function value 10~8 versus dimension. Slanted grid lines indicate
quadratic scaling with the dimension. Different symbols correspond to different algorithms
given in the legend of f] and f>4. Light symbols give the maximum number of function eval-
uations from the longest trial divided by dimension. Black stars indicate a statistically better
result compared to all other algorithms with p < 0.01 and Bonferroni correction number of
dimensions (six). Legend: o:CMA-TPA, v:CMA-MSR, :CMA-CSA
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CMA-MSR(12(3) 13(2) 14(2) 15(3) 16(2) 18(2) 20(1) 15/15 CMA-MSRR.5(1)  3.4(2) 4.7(0.7) 5.0(1) 4.4(0.9) 4.1(04) 3.1(0.3) [15/15
CMA-CSA|11(2) 13(2) 14(1) 14(2) 15(1) 16(1) 17(2) 15/15 CMA-CSA[L.7(2)  2.7(1)  3.6(0.8) 3.7(0.8) 3.8(0.7) 3.9(0.6) 3.0(0.3) [15/15
Afopt |lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt _|lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
3 716 1622 1637 1642 1646 1650 1654  [15/15 f15 511 9310 19369 19743 20073 20769 21359 |15/15
CMA-TPA (0.81(0.7) 9.3(10) 632(925) 630(1153) 629(926) 628(766) 627(458) | 5/15 CMA-TPA [1.9(2)  0.90(0.5) 0.87(0.6) 0.88(0.6) 0.88(0.7) 0.88(0.6) 0.89(0.5) |15/15
CMA-MSR|1.7(2)  5.7(2) 36(86)  36(154) 36(155) 37(164) 38(12) [14/15 CMA-MSR[1.9(2)  0.95(0.8) 0.89(0.7) 0.89(0.6) 0.91(0.6) 0.93(0.6) 0.95(0.8) |15/15
CMA-CSA|L.4(1) 32(82) 623(1075)622(460) 621(837) 619(840) 618(607) | 5/15 CMA-CSA[1.1(0.9) 1.1(0.8) 0.91(0.3) 0.92(0.4) 0.92(0.2) 0.92(0.5) 0.92(0.3) |15/15
Afopt |lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt_|lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
4 809 1633 1688 1758 1817 1886 1903 [15/15 f16 120 612 2662 10163 10449 11644 12095 |15/15
CMA-TPA 2.7(4) ) =) oo o oo oo 5e5 | 0/15 CMA-TPA [1.7(1)  3.1(3) 1.8(1)  0.56(0.3) 0.62(0.8) 0.62(0.6) 0.65(0.3) [15/15
CMA-MSR2.2(1) oo =) oo o oo oo 5e5 | 0/15 CMA-MSRS5.9(7)  58(5) 4.7(4) 1.6(1) 1.6(1) 1.5(2) 1.5(2) 15/15
CMA-CSAR.2(3) ) =) oo o oo oo 5e5 | 0/15 CMA-CSAR.2(1)  1.9(1) 1.4(1)  0.49(0.3) 0.54(0.2) 0.55(0.3) 0.56(0.3) [15/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
5 10 10 10 10 10 10 10 [15/15 17 52 215 899 2861 3669 6351 7934 |15/15
CMA-TPA 4.0(2) 5.02) 5122 5122 5122 512 5102 15/15 CMA-TPA 24(3) 2.6(2) 1.6(2)  0.97(0.4) 0.94(0.3) 0.88(0.3) 1.0(0.6) [15/15
CMA-MSR4.2(2)  5.8(3) 59(2) 593) 592) 592 592 15/15 CMA-MSR| 4.2(2)  0.93(0.2) 0.97(0.6) 0.83(0.6) 0.82(0.5) 0.96(0.8) 1.1(0.5) [15/15
CMA-CSAB.6(0.9) 5.02) 52(2) 522 522) 523) 522 15/15 CMA-CSA| 4.2(6)  0.98(0.3) 0.53(0.3) 1.0(0.2) 1.2(0.5) 1.1(0.6) 1.3(0.4) [15/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel le0 le-1 le-2 le-3 le-5 le-7 #succ
f6 114 214 281 404 580 1038 1332 [15/15 f18 103 378 3968 8451 9280 10905 12469 |15/15
CMA-TPA 2.2(0.9) 1.9(0.2) 1.9(0.7) 1.7(0.5) 1.4(0.3) 1.0(0.2) 1.0(0.1) [15/15 CMA-TPA 0.92(0.5) 1.8(2)  0.67(1) 0.59(0.4) 0.69(0.4) 0.70(0.3) 0.85(0.3) |15/15
CMA-MSR22.5(0.6) 2.0(0.5) 2.1(0.4) 1.9(0.3) 1.6(0.1) 1.2(0.1) 1.2(0.2) [15/15 CMA-MSR(1.1(0.7) 5.0(6) 1.02)  0.70(0.3) 1.0(0.8) 1.2(0.8) 1.3(1) 15/15
CMA-CSAR.0(0.9) 1.9(0.3) 2.0(0.4) 1.8(0.1) 1.5(0.3) 1.2(0.2) 1.1(0.2) [15/15 CMA-CSA[1.3(2)  2.4(0.1) 0.61(0.4) 0.54(0.6) 0.74(0.5) 0.77(0.4) 0.90(0.8) |15/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel le0 le-1 le-2 le-3 le-5 le-7 #succ
7 24 324 1171 1451 1572 1572 1597 [15/15 f19 1 1 242 1.0e5 1.2e5 1.2e5 1.2¢5 [15/15
CMA-TPA 4.1(2)  0.98(1) 0.93(0.5) 0.86(0.4) 0.82(0.3) 0.82(0.3) 0.83(0.7) [15/15 CMA-TPA 25(21) 959(777)  84(62) 0.68(0.7)0.78(0.5)0.80(0.7)0.80(0.6)(15/15
CMA-MSR}5.3(5) 1.1(0.7)  0.94(0.4) 0.90(0.4) 0.90(0.6) 0.90(0.6) 0.92(0.5) [15/15 CMA-MSRB1(60)  2573(3243) 306(78)  67(63) oo oo oo 5e5 | 0/15
CMA-CSA4.8(2) 1.3(1)  0.87(0.8) 0.80(0.9) 0.80(0.8) 0.80(0.7) 0.86(0.6) [15/15 CMA-CSA[19(12)  2971(3103) 153(107)  0.86(0.7)0.83(0.7)0.83(0.7)0.84(0.6)[15/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
8 73 273 336 372 391 410 422 [15/15 20 16 851 38111 51362 54470 54861 55313 |[I5/15
CMA-TPA 4.02)  6.04) 6.1(3) 62120 633) 653) 6.703) 15/15 CMA-TPA 3.9(2) 17(17)  2.0(0.5) 1.5(0.5) 1.5(0.5) 1.5(0.7) 1.5(0.9) |15/15
CMA-MSR4.6(3)  3.6(2) 4.1(1) 4.3(1) 43(1) 4.70.7) 5.1(0.5) [15/15 CMA-MSR@.8(0.8) 1666(2186) oo oo oo =) oo 5e5 | 0/15
CMA-CSAB.0(0.8) 5.1(5) 534) 544 553) 5720 604 15/15 CMA-CSAB.7(1) 9.29) 1.1(0.5) 0.83(0.4) 0.80(0.6) 0.82(0.5) 0.84(0.5) [15/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
9 35 127 214 263 300 335 369 [15/15 21 41 1157 1674 1692 1705 1729 1757 |14/15
CMA-TPA [5.4(2) 58(3) 52(2) 5.001) 48(1) 49() 4.8(0.9) [15/15 CMA-TPA 2.2(0.5) 88(75) 116(213) 115(425) 114(216) 113(332) 112(177) |10/15
CMA-MSR7.2(0.7)  94(7) 7.5(2) 68(6) 6.3(3) 6305 64(5 15/15 CMA-MSR[5.3(23) 206(6)  388(196) 384(439) 382(577) 377(491) 371(430) | 6/15
CMA-CSA|[5.7(0.7) 10(11) 777 7.1(4)  6.7(0.5) 6.5(5) 6.4(4) 15/15 CMA-CSA[L9(1)  55(150) 119(226) 148(319) 147(155) 145(278) 143(207) | 9/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel le0 le-1 le-2 le-3 le-5 le-7 #succ
10 349 500 574 607 626 829 880 [15/15 122 71 386 938 980 1008 1040 1068  [14/15
CMA-TPA 2.5(0.4) 2.2(0.2) 2.1(0.2) 2.1(0.2) 2.2(0.1) 1.8(0.1) 1.8(0.1) [15/15 CMA-TPA | 2.5(6) 223(4)  323(820) 310(534) 301(348) 292(409) 285(305) | 8/15
CMA-MSR2.6(0.6) 2.1(0.5) 2.1(0.3) 2.2(0.2) 2.3(0.2) 2.0(0.2) 2.2(0.1) [15/15 CMA-MSR[14(13) 457(1052)531(574) 508(663) 494(951) 479(519) 467(1081)| 7/15
CMA-CSA.5(0.4) 2.1(0.2) 2.000.2) 2.0(0.1) 2.1(0.2) 1.8(0.1) 1.8(0.1) [15/15 CMA-CSA| 4.1(1) 135(138) 345(479) 426(534) 535(782) 519(629) 507(413) | 6/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel le0 le-1 le-2 le-3 le-5 le-7 #succ
11 143 202 763 977 1177 1467 1673 [15/15 23 3.0 518 14249 27800 31654 33030 34256 [15/15
CMA-TPA [5.1(0.9) 4.6(0.7) 1.3(0.1) 1.1(0.1) 1.0(0.1) 0.91(0.1) 0.89(0.1) [15/15 CMA-TPA 3.2(2)  16(23) 8.1(4) 422 38(5) 3.88 3.7(18) |13/15
CMA-MSR[5.9(0.7) 5.0(0.3) 1.5(0.2) 1.3(0.2) 1.2(0.1) 1.1(0.1) 1.1(0.1) [15/15 CMA-MSRR.5(2) 3.2(6)F  0.91(0.6) 0.52(0.6) 0.48(0.4) 0.51(0.5) 0.53(0.6) [15/15
CMA-CSA4.9(1.0) 4.3(0.6) 1.3(0.2) 1.1(0.2) 1.00(0.1) 0.91(0.1) 0.88(0.1) [15/15 CMA-CSAR.3(3)  13(15) 47(0.8) 2.52) 22(2) 2212) 2.1 15/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
f12 108 268 371 413 461 1303 1494 |15/15 24 1622 2.2e5 6.4e6 9.6e6  9.6e6 1.3e7 1.3e7 [3/15
CMA-TPA | 83(5) 6.1(8) 6.03) 62(08) 62(1) 273) 29(3) 15/15 CMA-TPA [L.3(2)  10(20) =) oo =) oo oo 5e5  [0/15
CMA-MSR| 7.7(4)  54(6) 5.5(2) 583) 6.04) 2.7(1) 28(1) 15/15 CMA-MSR|L.3(1)  33(42) 1.1(1) oo ) oo oo 5e5  [0/15
CMA-CSA|10(12) 7T 6909) 728 747  35(1) 355 15/15 CMA-CSA.0(2) =3 ) ) ) oo oo 5e5  [0/15
Table 1: Expected running time (ERT in number of function evaluations) divided by the

respective best ERT measured during BBOB-2009 in dimension 5. The ERT and in braces,
as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run
lengths appear for each algorithm and target, the corresponding best ERT in the first row.
The different target A f-values are shown in the top row. #succ is the number of trials that
reached the (final) target fop + 108, The median number of conducted function evaluations
is additionally given in italics, if the target in the last column was never reached. Entries,
succeeded by a star, are statistically significantly better (according to the rank-sum test)
when compared to all other algorithms of the table, with p = 0.05 or p = 107% when the
number k following the star is larger than 1, with Bonferroni correction by the number of

instan

CeES.
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5.2 Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB

Noiseless Testbed

Afopt |lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt[lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
1 3 3 13 3 3 43 43 [I5/15 13 652 2021 2751 3507 18749 24455 30201 [15/15
CMA-TPA [6.4(D)* 11()*3 152)*3 19()** 242)** 320** 412** |15/15 CMA-TPAKT(S)  473) 503) 542) L100.7) 1.3(0.6) 1.50.5) [I15/15
CMA-MSRP.2(1) 16(1.0) 233)  30(3)  383) 53(3)  68(4)  [15/15 CMA-MSRWA4(4) 334) 493) 42(2) 0.87(0.4) 1.0(0.4) 1.50.8) [I5/15
CMA-CSA[77(1)  142)  20(1)  26(2)  32(2) 453)  57(4)  |15/15 CMA-CSAB.2(4) 42(3) 4.0(3) 45(1) 09304) 1.1(0.6) 1.30.7) [I5/15
Afopt_|lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt |lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
2 385 386 387 388 390 391 393 [15/15 14 75 239 304 451 932 1648 15661 [15/15
CMA-TPAPS(3)  302)  33(2)  35(1)  36(1) 372)  37(1)  [I5/15 CMA-TPAB.5(1)  2.3(0.6) 2.8(0.8)*23.1(0.4)* 2.8(0.3) 3.8(0.4) 0.71(0.1) [15/15
CMA-MSRR7(4)  32(4)  352) 36(2) 37(2) 38(3)  392) |I5/15 CMA-MSRK.2(1)  2.8(0.5) 3.4(0.5) 3.6(0.2) 2.9(02) 3.9(0.4) 0.73(0.0) [15/15
CMA-CSAR3(2)  272*  290.9*330(1)*3 31(1.0)*332)*3 33()*> |15/15 CMA-CSAK2(1)  2.9(0.5) 3.7(0.2) 4.1(0.3) 3.3(03) 3.9(0.3) 0.67(0.1) [15/15
Afopt_|lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt _|lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
3 5066 7626 7635 7637 7643 7646 7651 |15/15 f15 30378  1.5¢5 3.1e5 3.2¢5 3.2¢5 4.5¢5 4.6e5 [15/15
CMA-TPA | 8.8(5) 1756(2177) oo oo oo o c02¢6 | 0/15 CMA-TPA [0.94(0.2) 1.1(0.2) 0.63(0.1) 0.64(0.2) 0.64(0.2) 0.48(0.0) 0.49(0.2) [15/15
CMA-MSR| 6.4(1) 38(20)*3 70(45)** 73(56)** 76(41)** 81(36)** 86(68)** |15/15 CMA-MSR(0.98(0.3) 0.95(0.2) 0.54(0.5) 0.55(0.1) 0.56(0.3) 0.43(0.2) 0.45(0.3) |15/15
CMA-CSA[108) oo oo 0o 0o o 002¢6 | 0/15 CMA-CSA [0.83(0.6) 0.99(0.3) 0.64(0.2) 0.65(0.1) 0.65(0.2) 0.49(0.2) 0.49(0.2) [15/15
Afopt|lel 1e0 le-1 le2  le-3 le-5 le-7  #suce _ Dfopt |lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
4 4722 7628 7666 7636 7700 7758 T4e5 19715 f16 1384 27265 77015 1.4e5 1.9¢5 2.0e5 2.2e5 |15/15
CMA-TPA | 0o 0o 0o 0o 0o 0o 00266 |0/15 CMA-TPA [1.2(0.4) 0.78(0.4) 0.80(0.4) 0.67(0.4) 0.63(0.5) 0.66(0.4) 0.62(0.2) [15/15
CMA-MSR[5792(3817) oo ) o oo oo 002¢6 |0/15 CMA-MSR0.80(0.1)*0.84(0.6) 1.1(0.4) 13(1) 33(6) 47(4) 43(5) [12/15
CMA-CSA | oo o0 oo oo oo o 002¢6 [0/15 CMA-CSA[1.9(0.5) 0.64(0.6) 0.84(0.4) 1.2(1)  1.4(0.6) 1.5(1)  1.4(1)  [15/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel le0 le-1 le-2 le-3 le-5 le-7 #succ
5 41 41 41 41 41 41 a1 [15/15 17 63 1030 4005 12242 30677 56288 80472 |15/15
CMA-TPA [4.3(0.9) 4.9(2) 49(1) 49(0.8) 4.9(1) 4.9(0.9) 4.90.8) [15/15 CMA-TPARZ(1)  1.4(0.6) 1.5(0.9) 0.94(0.6) 0.74(0.6) 0.71(0.4) 0.80(0.3) |15/15
CMA-MSR5.0(1)  5.5(2) 5.6(0.6) 56(1) 56(1) 5.6(1) 56(0.8) [1515 CMA-MSRR.7(0.5) 6.53) 3.52) 1.92)  0.97(0.4) 0.88(0.2) 0.81(0.3) |15/15
CMA-CSAM9(1) 5809 60(1) 60(1) 60(1) 6.009) 6.0(1) [I5/15 CMA-CSAB.0Q2)  1.00.2) 14(2)  1.2(0.7) 0.74(0.4) 0.88(0.3) 0.88(0.2) |15/15
Afopt_|lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt |lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
f6 1296 2343 3413 4255 5220 6728 8400 [15/15 f18 621 3972 19561 28555 67569  13e5  1.5e5 [15/15
CMA-TPA [1.6(0.4) 13(0.2) 1.2(0.3) 1.3(0.3) 1.4(0.3) 1.5(04) 1.6(0.5) [15/15 CMA-TPA[1.6(3)  1.3(0.8) 0.77(0.4) 0.96(0.2) 0.57(0.3) 0.58(0.5) 0.74(0.3) |15/15
CMA-MSR[L5(0.7) 1.92) 24(2) 3.9(4) 574 116) 13(1) 15/15 CMA-MSRR2.8(14) 2.8(2)  1.4(04) 2.0(0.8) 1.2(0.5) 0.83(0.3) 0.87(0.3) [15/15
CMA-CSA[1.6(03) 13(02) 1.1(02) 1.1(02) L10.D* 1.1(0.1)*2 1.1(0.1)*q15/15 CMA-CSA[0.96(0.3) 0.72(0.1) 0.81(0.4) 1.1(0.6) 0.83(0.4) 1.1(2)  1.0(0.3) [15/15
Afopt |lel 1e0 le-1 le-2 le-3 le-5 le-7  #succ __ Afopr |lel 1e0 le-1 le-2 le-3 le-5 le-7  #suce
7 1351 4274 9503 16523 16524 16524 16969 [15/15 (19 1 1 34e5  47¢6  6.2¢6  6.7e6  6.7e6 [I5/15
CMA-TPA 2.1(1)  2.7(0.7) 1.6(0.6) 1.000.4) 1.000.4) 1.0(0.4) 1.00.4) [15/15 CMA-TPA [177(45) 1.9e4(84266(0.8) 1.2(1)  4.7(6) 4.3(5) 4.3(4) 1115
CMA-MSRR.1(0.7) 42(1)  24(1) 16005 1.6(2) 1.6(03) 1.50.6) [15/15 CMA-MSRR12(72) 3.5e4(2e4).2(0.4) oo oo oo o0 2e6 | 0/15
CMA-CSA[L7(1)  23(1)  1.7(0.6) 1.100.4) 1.1(0.3) 1.1(04) 1.00.3) [15/15 CMA-CSAR21(81) 3.3¢4(92082(0.4) 0.56(0.4) 2.42)  4.5(3) 4.5(3) 1/15
Afopt |lel 1e0 le-1 le-2 le-3 le-5 le-7  #succ __ Afopr |lel 1e0 le-1 le-2 le-3 le-5 le-7  #succ
18 2039 3871 2040 4148 4219 4371 4484 [15/15 120 82 46150 3.1e6 5.5¢6 5.5¢6 5.6e6 5.6e6 [15/15
CMA-TPA 3.1(0.7) 3.5(0.1) 3.8(1) 39(1) 3.9(02) 39(1) 3.9(04) [15/15 CMA-TPAR0(0.7) oo eo oo oo oo 00 2¢6 | 0/15
CMA-MSRB.6(0.8) 4.6(3) 4.8(3) 48(3) 48(04) 48(0.5) 4.93) [15/15 CMA-MSRS.1(1) oo oo oo oo o 00 2¢6 | 0/15
CMA-CSA[3.4(0.7) 3.4(04) 3.6002) 3.7(03) 3.80.5) 3.8(0.2) 3.8(02) [15/15 CMA-CSAB.O(1)  2.50.2)*40.35(0.1)*6.29(9¢-3)0:29(0.0)*0.29(4¢-3)0:30(0.1) [t 5/15
Afopt lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt lel le0 le-1 le-2 le-3 le-5 le-7 #succ
] 1716 3102 3277 3379 3455 3594 3727 |i5/15 21 561 6541 14103 14318 14643 15567 17589 [15/15
CMA-TPA 3.8(0.7) 55(8) 5.8(04) 588) 582 58(7) 58(1) [15/15 CMA-TPA | 63(187) 248(674) 115(240) 114(95) 111(133) 105(157) 93(165) | 6/15
CMA-MSRB.8(0.9) 45(0.5) 4.8(3) 4.8(04) 4.8(2) 4.8(03) 4.8(2) [15/15 CMA-MSR| 24(86) 278(305) 449(364) 442(533) 433(508) 407(453) 360(361) | 3/15
CMA-CSAPB.8(0.4) 4.1(0.3) 4.3(0.3) 4.4(02) 4.4(02) 4.502) 4.504) [15/15 CMA-CSA[113(403) 159(110) 95(61)  94(182) 92(59) 87(89) 77(110) | 7/15
Afopt_|lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ Afopt _|lel 1e0 le-1 le-2 le-3 le-5 le-7 #succ
10 7413 8661 10735 13641 14920 17073 17476 [I5/15 22 467 5580 23491 24163 24948 26847 1.3e5 |12/15
CMA-TPA [1.4(0.1) 1.4(0.1) 1.2(0.1) 1.0(0.1) 0.95(0.1) 0.86(0.0) 0.86(0.0) [15/15 CMA-TPA [162(11) ~ 216(94) oo oo oo oo oo le6 | 0/15
CMA-MSR[1.3(0.2) 1.3(0.1) 1.2(0.1) 0.99(0.1) 0.93(0.1) 0.86(0.0) 0.88(0.0) [15/15 CMA-MSR254(876)  249(632) oo o0 oo oo 00 2e6 | 0/15
CMA-CSA[1.2(0.2) 1.2(0.1)  1.00.1)*20.86(0.0)*0.81(0.0)*0.74(0.0)*0.76(0.0)*[15/15 CMA-CSA| 22(26)  145(279) oo oo o0 oo oo Je6 | 0/15
Afopt |lel 1e0 le-1 le-2 le-3 le-5 le-7  #succ _ Afopr |lel 1e0 le-1 le-2 le-3 le-5 le-7 #suce
11 1002 2228 6278 8586 9762 12285 14831 [15/15 23 3.2 1614 67457 3.7e5  49e5  8.Ie5  B.de5 [I5/15
CMA-TPA [4.5(0.3) 2.3(0.1) 0.89(0.0) 0.69(0.0) 0.65(0.0) 0.57(0.0) 0.51(0.0) [15/15 CMA-TPA6.5(5) 23(25) ~ 4.8(12) 3.03)  93(10) 5.6(13) 5505) |5/15
CMA-MSR4.7(0.5) 2.6(02) 1.0(0.1) 0.80(0.0) 0.74(0.0) 0.65(0.0) 0.58(0.0) [I15/15 CMA-MSRE.8(5)  2.0)*? 0.79(0.5)*0.74(0.3) 0.73(0.2)*6.49(0.2)*8.51(0.)[15/15
CMA-CSAW.6(0.2) 2.3(0.1) 0.86(0.0) 0.67(0.0) 0.63(0.0)*0.55(0.0) 0.50(0.0) |15/15 CMA-CSA|6.1(5) 93(33) 13(13) 16(18)  58(59) 35(27)  34(53) /15
Afopt_|lel 1e0 le-1 le-2 le-3 le-5 le-7 #suce _ Afopt |lel le0 le-1 le-2 le-3 le-5 le-7 #succ
f12 1042 1938 2740 3156 4140 12407 13827 [15/15 f24 136 7.5¢6  5.2¢7 5.2e7 5.2e7 5.2e7 5.2e7 |15/15
CMA-TPA[3.8(3) 4.1(2) 3.8(2) 39(1) 3312 140.3) 14(0.5) [15/15 CMA-TPA|6.2(8) 3.93) oo oo oo oo c02e6 | 0/15
CMA-MSRB7(4)  33(2) 35(1) 3.602) 322) 1305 1404) [1515 CMA-MSRUIGS)  182)  0.55(0.7) 0.550.4) 0.55(1) 0.55(0.6) 0.550.5) | 1/15
CMA-CSAB.6(2) 352 382 39(1) 3.5(1) 1.403) 1.504) [1515 CMA-CSA[6.0(7) oo oo oo o oo o02e6 | 0/15

Table 2: Expected running time (ERT in number of function evaluations) divided by the
respective best ERT measured during BBOB-2009 in dimension 20. The ERT and in braces,
as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run
lengths appear for each algorithm and target, the corresponding best ERT in the first row.
The different target Af-values are shown in the top row. #succ is the number of trials that
reached the (final) target fop;+ 10~8. The median number of conducted function evaluations
is additionally given in italics, if the target in the last column was never reached. Entries,
succeeded by a star, are statistically significantly better (according to the rank-sum test)
when compared to all other algorithms of the table, with p = 0.05 or p = 10% when the
number k following the star is larger than 1, with Bonferroni correction by the number of
instances.
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Figure 2: Single runs of [IPOP-CMA-MSR (left) and IPOP-CMA-CSA (right) on one in-
stance of the attractive sector function in 20-D. x-axis shows function evaluations. Line
with dots (blue): best f-value of the iteration in absolute value, median and worst displayed
in thin black lines; cyan line: difference between current f-value and fqp; green line: step-
size oy, largest and smallest coordinate-wise standard deviation of the sample distribution
in purple; red line: square root of the condition number of the covariance matrix.
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5.2 Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB
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Figure 3: Bootstrapped empirical cumulative distribution of the number of objective func-
tion evaluations divided by dimension (FEvals/DIM) for 50 targets in 10[-8-2] for all func-
tions and subgroups in 5-D. The “best 2009 line corresponds to the best ERT observed

during BBOB 20009 for each single target.
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Figure 4: Bootstrapped empirical cumulative distribution of the number of objective func-
tion evaluations divided by dimension (FEvals/DIM) for 50 targets in 10[-8-2] for all func-
tions and subgroups in 20-D. The “best 2009 line corresponds to the best ERT observed
during BBOB 20009 for each single target.
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Chapter 6

Markov Chain Analysis of Linear
Convergence in Constrained

Optimization

We consider in the sequel the following constrained optimization problem:

min f(x)
X
subjectto g;(x) <0,i=1,---,m , (6.1)

where f : R" — R is the objective function, g; : R” — R is a linear constraint function of the
form g;(x) =b/x+c¢;, b; € R", ¢; € R, and m € N is the number of constraints. Without
loss of generality, we consider only inequality constraints; indeed, an equality constraint
gi(x) = 0 can be expressed as two inequality constraints g;(x) < 0 and g;(x) > 0. We denote
Xopt the global optimum of (6.1).

To handle the constraints, we use an adaptive augmented Lagrangian approach (see
Subsection 4.2.1) where the Lagrange factors and the penalty factors are adapted. In this

work, we use one of the following two augmented Lagrangians:

by ) & Pl Hal? it al=0
Zw, otherwise
a0 ’
h(x,y,0) = +Zafg, %lgl(x)z, (63)
P
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Fig. 6.1 Left: 9;(gi(x),7,®’) for j =1 (blue) and j = 2 (red), as a function of g;. Right:

Augmented Lagrangians, f(x) + Y7, 9;(gi(x),7, @'), for j =1 (blue) and j =2 (red), in
n=1withm=1. f(x) = %xz, g1(x) =x—1, and xop = 1.

where y = (y!,---,7™")T € R™ is the vector of Lagrange factors ¥ and ® = (@',--- ,@™)T €
(R)™ is the vector of penalty factors @'
Equation (6.2) defines a practical augmented Lagrangian for the problem in (6.1). The
i2

quality of a solution x is computed by adding either (i) a negative constant —% to f(x) if

Y

, T
in (6.2)) or (ii) y’ gi(x)+ “’7’ gi(x)2 if x is “too close” from the constraint boundary (first line

the solution is “feasible enough” with respect to the constraint g; (g;(x) < second line
in (6.2)), for each constraint g;. Notice that when the constraints are active at the optimum
Xopt, the penalization at Xop¢ is 0. This formulation is the recommended choice in practice.

In (6.3), Ygi(x) + %igi(x)z is added to the f-value of each individual x. This amounts
to considering the case of active constraints. We focus in this work on the case where all
the constraints are active, which is the most difficult case in practice. Therefore, we use the
augmented Lagrangian in (6.3) in our analysis of convergence. Additionally, this formulation
allows us to define a homogeneous Markov chain with the desired properties to deduce linear
convergence.

Figure 6.1 shows ¢;(gi(x),7, "), j = 1,2, as a function of g; (left) and h(x,7y,®) in
n =1 with f(x) = %xz (sphere function) and m = 1 (right). It can be seen that the two
augmented Lagrangians in (6.2) and (6.3) are equivalent in the vicinity of the optimum.

To update the Lagrange factors, we use two standard rules given by the literature of

augmented Lagrangian methods and presented below:

i

; o,
Y1 = max(0,% + d_tgi(XH—l ) (6.4)
Y
. Y
T =%+ 8iXe) (6.5)
Y
fori=1,---,m. We introduce a damping parameter d, > 0 to moderate the changes in

}/f. Equation (6.4) (respectively (6.5)) is used with the augmented Lagrangian in (6.2)
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(respectively (6.3)). The update in (6.5) is presented in Subsection 4.2.1. For a detailed
discussion on how these updates are derived, see [73].

As for the penalty factors, we use the update originally introduced in [5] for the case of a
single constraint and generalize it for the case of multiple constraints.

wfiJrl = or ka|gi(Xr+1) — gi(Xs)| < |&i(Xy)| yi=1-,m, (6.6)

o} x /4o otherwise

where x,dg,k1,k; € RE. Similarly to the update of the Lagrange factors, we introduce
a damping dg > 0 to moderate the changes in ;. This update presents the advantage
of increasing the penalty factor only when needed, thereby avoiding an unnecessary ill-
conditioning of the problem. As illustrated in (6.6), a penalty factor @ is increased either if
(i) the change in h-value due to the changes in ¥ and @/ is smaller than the change in h-value

due to the change in X; (first inequality in (6.6)). Indeed, we have

@/ gi(Xe1)* = [h(Xp i1, % + A Y, 0+ A@) — h(Xp i1, %, @)

where A;y = (0,--- ,Ay,---,0)T and A;0 = (0,--- ,A®’,---,0)T, and where Ay’ and Aw' are
proportional to @'g;(X;+1). This aims at preventing premature stagnation [5]. The penalty
parameter @/ is also increased if (ii) the change in the constraint value |g;(X;11) — g:(X/)| is
significantly smaller than |g;(X;)| (second inequality in (6.6)). By increasing the penalization,
we favor solutions near the constraint boundary (g;(x) = 0). In all other cases, @/ is decreased
(second case in (6.6)).

Let us consider a comparison-based adaptive randomized algorithm for unconstrained

optimization defined according to (3.2), which we recall below.
St+1 = yf(SnUtH) ) (6.7)

where .Z : Q x (R”yL — Q is the transition function of the algorithm, s; its state at iteration ¢,
and U, a set of A i.i.d. random vectors. The superscript f indicates the objective function.
Based on this definition, we can easily define an adaptive randomized algorithm with adaptive
augmented Lagrangian constraint handling approach from an adaptive randomized algorithm
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for unconstrained optimization by taking

Sl/ — [Sla%7wt] ) (68)
h(y,(o) (X) = /’l(X, Y, (O) . (6.9)

The new state s, 1’ is therefore given by
i1 = FMmo(s/ Uy . (6.10)

In this chapter, we present our contributions to constrained optimization. We consider
adaptive randomized algorithms defined as in (6.10) where the constraints are handled with
an adaptive augmented Lagrangian approach. In Section 6.1, we analyze linear convergence
of a (14 1)-ES in the case of a single inequality linear constraint using a Markov chain
approach. In Section 6.3, we generalize this study to the case of m linear inequality constraints
and non-elitist algorithms. In both cases, we show that if the function Zhz 7. : (X,7) —
h(x,7,®) —h(X,7,), with X € R" and ¥ € R™, is positive homogeneous of degree 2 with
respect to [X, 7], then &, = (Y,,I;, @) is a homogeneous Markov chain, where

X, — % _
Y= (X andl“,zyl ,
oy o;

<

for any X € R” satisfying g;(X) =0,i=1,--- ,m, and for any ¥ € R™. In particular, if the KKT
conditions are satisfied for some Yopc = ('yépt, L Yop) T € (RT)™, then ®;, with X = Xop and
Y = Yopt» is a homogeneous Markov chain. We deduce linear convergence under the stability
of this Markov chain. In Section 6.2, we show how an adaptive randomized algorithm with
an adaptive augmented Lagrangian constraint handling approach can be built from a general
adaptive randomized algorithm for unconstrained optimization, in the case of one inequality
constraint, and illustrate the proposed methodology on a (i /uw,A)-CMA-ES.

6.1 Analysis of Linear Convergence of a (1 + 1)-ES with

Augmented Lagrangian Constraint Handling

In this work, we analyze linear convergence of an ES for constrained optimization. The
algorithm under investigation was introduced in [5] for the case of one inequality constraint.
It consists in a (1 + 1)-ES with an augmented Lagrangian constraint handling approach and
was—to the best of our knowledge—the first adaptive randomized algorithm observed to
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Constraint Handling

converge linearly on linearly constrained convex quadratic functions (sphere and moderately
ill-conditioned ellipsoid), without the need to adapt the covariance matrix.

In an attempt to explain theoretically the observed linear convergence, we use a Markov
chain approach to exhibit a homogeneous Markov chain whose stability leads to linear
convergence. To obtain the desired Markov chain, we make two modifications to the original
algorithm in [5] thereby restricting our analysis to the most interesting case of an active
constraint, that is, when the optimum lies on the boundary of the feasible space.

We present in the sequel a slightly modified version of the original paper [7] published
in the proceedings of the Genetic and Evolutionary Computation Conference of 2016. We
address a minor error in Algorithm 1 (Lines 11, 12, and 13 were originally missing) and
improve the writing of the proof of Theorem 2. In this paper, the Lagrange factor and the

penalty factor are denoted A, and y, respectively.
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Analysis of Linear Convergence of a (1 4 1)-ES
with Augmented Lagrangian Constraint Handling

Asma Atamna, Anne Auger, and Nikolaus Hansen
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LRI, Université Paris-Saclay

Abstract

We address the question of linear convergence of evolution strategies on constrained
optimization problems. In particular, we analyze a (1 + 1)-ES with an augmented La-
grangian constraint handling approach on functions defined on a continuous domain,
subject to a single linear inequality constraint. We identify a class of functions for
which it is possible to construct a homogeneous Markov chain whose stability im-
plies linear convergence. This class includes all functions such that the augmented
Lagrangian of the problem, centered with respect to its value at the optimum and the
corresponding Lagrange multiplier, is positive homogeneous of degree 2 (thus includ-
ing convex quadratic functions as a particular case). The stability of the constructed
Markov chain is empirically investigated on the sphere function and on a moderately
ill-conditioned ellipsoid function.

1 Introduction

Linear convergence is central in the study of evolution strategies (ESs). Ideally, we want
an ES to converge linearly on the widest possible range of optimization problems. As illus-
trated in [6] for unconstrained optimization, linear convergence can be derived on scaling-
invariant functions by exploiting invariance properties of the algorithm at hand on this class
of functions: invariance allows to exhibit a Markov chain whose stability leads to linear
convergence. In this context, stability is defined as positivity and Harris-recurrence, and is
usually obtained by proving ¢-irreducibility, aperiodicity, and the existence of a drift func-
tion on a small set [ 10, 6]. Linear convergence then follows from the application of a Law of
Large Numbers (LLN). To see how this methodology is applied in practice, one can refer to
[4] where linear convergence is proven for the (1,4 )-ES with self-adaptation on the sphere

*lastname @1ri.fr
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function, or [5] where the authors show linear convergence of the (14 1)-ES with 1/5th
success rule on the class of positive homogeneous functions. Stability is generally difficult
to prove “manually”. In an attempt to reduce this difficulty, the authors in [7] propose a set
of sufficient conditions for a Markov chain to be irreducible and aperiodic.

Linear convergence is also desired on constrained optimization problems [3]. However,
little is known about how it can be achieved. Most theoretical works on ESs in the con-
strained case deal with linear problems with a single linear constraint, as in [2, 1] where the
single-step behavior of the (1+1)-ES and the (1,4)-0SA-ES is analyzed on the linear func-
tion with a single linear constraint. In [3], linearly constrained convex quadratic problems
are studied for the first time. The authors present an inequality constraint handling method
for the (14 1)-ES based on augmented Lagrangian and analyze the single-step behavior of
the algorithm on the sphere function with one linear inequality constraint. Based on this
analysis, they design an update rule for the penalty parameter of the augmented Lagrangian
so that the algorithm is empirically observed to converge linearly on sphere and moderately
ill-conditioned ellipsoid problems.

In this work, we go one step further into understanding theoretically how linear conver-
gence can be achieved for ESs implementing an augmented Lagrangian constraint handling
approach. We introduce a variant of the algorithm presented in [3] and analyze its behavior
on the problem of minimizing a function defined on a continuous domain, subject to a single
linear inequality constraint. We show that for objective functions such that the correspond-
ing augmented Lagrangian minus its value at the optimum and the corresponding Lagrange
multiplier is positive homogeneous of degree 2, one can construct a homogeneous Markov
chain and prove linear convergence assuming its stability. Similarly to the unconstrained
case, invariance is a key element for constructing the Markov chain. However, invariance
alone is not sufficient and another key element is how the parameters of the augmented La-
grangian are updated. Assuming the Markov chain is stable, we prove linear convergence
of the solution at a given iteration towards the optimum of the problem, as well as linear
convergence of both the Lagrange factor and the step-size towards the Lagrange multiplier
associated to the optimum and zero respectively. Then, we empirically investigate the sta-
bility of the constructed Markov chain.

The rest of this paper is organized as follows: we formally define the optimization prob-
lem we consider in Section 2 and discuss the augmented Lagrangian method in Section 3.
We present our algorithm and discuss its invariance properties in Section 4. In Section 5, we
present the Markov chain and prove linear convergence assuming its stability. We present
our empirical results in Section 6 and conclude with a discussion on the main result of this
paper in Section 7.
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1.1 Notations

We define here all the notations which are not explicitly presented in the paper. We denote
R the set of positive real numbers and RY the set of strictly positive real numbers. x € R"
is a column vector, x” is its transpose, and 0 € R” is the zero vector. ||x|| denotes the
Euclidean norm of x, ~ equality in distribution, and o the function composition operator.
The notation (1 + 1) represents the “one-plus-one” selection scheme. I, € R"*"denotes
the identity matrix and .4 (0,1,x,) the multivariate standard normal distribution. [x]; is the
ith component of vector x and [M];; is the element in the ith row and jth column of matrix
M. The derivative with respect to x is denoted Vy and the expectation of a random variable
X ~ 7 is denoted Ey. Finally, 1,4, returns 1 if A is true and 0 otherwise.

2 Optimization Problem

We consider the problem of minimizing a function f : R” — R, n is the dimension of the
search space, subject to one linear constraint g(x) < 0, where g : R” — R. More formally,
we write

mxinf(x) subject to g(x) =b x+¢ <0 , (1)

where b € R" and ¢ € R. We assume the problem to admit a unique global minimum X
and the constraint to be active at X,p;, that is, g(Xopt) = 0.

We consider throughout this paper an ES based on the so-called augmented Lagrangian
approach for handling constraints to seek the minimum of this problem. In the next section,
we give general notions about the augmented Lagrangian approach.

Since we consider only minimization problems, we will sometimes refer to the minimum
as the optimum in the rest of this paper.

3 Augmented Lagrangian Approach

The augmented Lagrangian approach for handling constraints is a combination of the Karush-
Kuhn-Tucker (KKT) and penalty function methods. It was introduced for the first time in
[8] and [12]. The KKT method defines first-order optimality conditions, referred to as KKT
conditions. It introduces the Lagrangian % : R"*! — R defined as

f(x,?t) :f(X) +lg(x) ) ()

x € R", A € R, for an objective function f subject to one inequality constraint g(x) < 0.
Given some regularity conditions - or constraint qualifications - are satisfied, if x* € R" is a
local minimum of the constrained problem such that f and g are continuously differentiable
at x*, then there exists a non-negative constant A*, called the Lagrange multiplier, such that
Vi Z (x*,A1%) =0, that is, X" is a stationary point for .Z(x,A*) (stationarity KKT condition).
Put differently, given the “right” A, the optimum of the constrained problem is a stationary
point of the Lagrangian.
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Considering the optimization problem in (1) and ellipsoid functions f(x) = %XTHX ,

i—1
where H € R"*" is a diagonal matrix with diagonal elements [H]; = a1, a > 0, KKT
conditions are satisfied for the unique minimum of the problem

¢ ~1

_ _ 3
b ’H b ©)

Xopt =

and the Lagrange multiplier
c

Aot = ST T

In augmented Lagrangian approaches, the Lagrangian in (2) is combined with a penalty
term, resulting in the augmented Lagrangian function 4. The motivation for using the aug-
mented Lagrangian is to overcome the shortcomings of quadratic penalty function methods,
where the penalty factor needs to tend to infinity to achieve convergence [11]. This results
in an ill-conditioned problem.

Different formulations of the augmented Lagrangian are possible depending on the op-
timization problem at hand. A broader discussion on augmented Lagrangians is provided in
[11]. In our optimization problem, the constraint is active at the optimum X,p. Therefore,
we use the following augmented Lagrangian

“4)

hx, 2 0) = £(x) +Ag(x) + S8°(x) . ®)
where a quadratic penalty term % g%(x) is added to penalize points lying outside the bound-
ary of the constraint, ( is a positive penalty factor. At each iteration, /& is minimized with
respect to X. The parameters A and u are updated in such a way that A approaches the La-
grange multiplier while u guides the search towards solutions on the constraint boundary.
Note that the optimum Xp; (Which is also a KKT point) satisfies Vy/1(Xopt, Aopt, 1) = 0, for
all u € RZ, where Aopt is the Lagrange multiplier associated to Xop.

Figure 1 shows graphs of the penalty function % g, the Lagrangian .#, and the aug-

mented Lagrangian / associated to the sphere function f(x) = 1x? in dimension n = 1, with
g(x) = —x+ 1. KKT conditions are satisfied for the optimum xo,c = 1 and the Lagrange
multiplier Aope = 1. £ and h are plotted for A = 10, Agp, and p = 10. For A = Agp, the
minimum of both .#” and & (dashed green and blue graphs) correspond to x,,c. However, for
A = 10, the minimum of & is different (green graph). By adding a penalty term (red graph)
to the Lagrangian, the minimum of the augmented Lagrangian (blue graph) moves closer to
Xopt-
Remark 1. The augmented Lagrangian in (5) is designed for the very specific case of an ac-
tive constraint (g(xopt) = 0). This choice is motivated by theoretical considerations—mainly
the construction of a homogeneous Markov chain. Note that for problems where Xop 18
inside the feasible domain, i.e. g(Xopt) 7 0 and Agpr = 0, Vxh(Xopt, Aopt, 4) 7 0. Hence,
in practice where such an information about the optimum is not provided, the augmented
Lagrangian used in [3] is the appropriate choice.
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Figure 1: Graphs of £ (x,A) (green), £ (x, Aopt) (dashed green), 5g2(x) (red), h(x,A, )
(blue), and A(x, Aop, i) (dashed blue) for A =10 and u =10inn=1. f(x) = %xz and
g(x) = —x+1. xopt = 1 and Agp = 1.

4 Algorithm

In this section, we present a (1 + 1)-ES for solving the optimization problem described in
(1), based on the augmented Lagrangian approach described above. The algorithm, sum-
marized in Algorithm 1, iteratively minimizes the augmented Lagrangian function % (5) and
adapts the Lagrange and penalty factors A and u. It is largely based on the (1 + 1)-ES pre-
sented in [3]. Indeed, we use the same update for p. For A, however, we modify the update
used in [3]. This modification indeed seems to be necessary to be able to exhibit a Markov
chain whose stability leads to linear convergence.

Algorithm 1 is a randomized adaptive algorithm. A general randomized adaptive algo-
rithm optimizing a function f : R” — R subject to a constraint g(x) <0, g: R" — R, is
a sequence (8;);en of states, where s, € Q is the state of the algorithm at iteration 7. The
sequence is defined recursively as

siv1=FV(s,,Up11) (6)

where .Z (/) : Q x UP — Q is the transition function of the algorithm and (U4 {);en is a
sequence of independent identically distributed (i.i.d.) random vectors U; € U? [6]. For
Algorithm 1, the state at iteration ¢ is given by (X, 0;, A, ;) where X; € R” is the cur-
rent solution, 6; € R is the current step-size, A, € R is the current Lagrange factor, and
t; € R is the current penalty factor. In fact, Algorithm 1 is based on the (1 + 1)-ES with
1/5th success rule designed for unconstrained optimization where two additional state vari-
ables, A, and L, are added to the original state (X;, o;). Indeed, the fitness (the augmented
Lagrangian here) in the constrained case is dynamic and is determined by A, and p,;, which
are adapted besides X; and o;.

Given the current state (X;, oy, A, iy ), a standard normally distributed vector Z,,| € R”"
is sampled. It is then multiplied by the step-size o; and added to the current solution X; to
create the first candidate solution Xt] 1» according to Line 3 of Algorithm 1. The second
candidate solution is X;. th 1 and X; are then ranked according to their fitness values,
where the fitness at iteration 7 is defined by h(x, 4, 1t;) for a given x € R". The best point
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becomes the solution X; | at the next iteration. This is done in Lines 4 and 8 by computing
the fitness difference Ah.

The step-size o; is adapted with the 1/5th success rule [9]. It is multiplied by 21/
when X,1 1 18 better than X; fitness-wise (Line 9) and by 2-1/(4n) otherwise (Line 11). The
idea behind this update is to increase (respectively decrease) the step-size if the success
probability is larger (respectively smaller) than 1/5.

The Lagrange factor A, is updated (Line 6) if Xt 4118 accepted: it increases (implying a
higher penalization of unfeasible candidate solutions) when X; 1 1s unfeasible and decreases
otherwise. Our update of the Lagrange factor differs from the one in [3] in that it does not
restrict A, to positive values. This modification appeared to be necessary for us to construct
a homogeneous Markov chain whose stability implies linear convergence of the algorithm.

Similarly to the Lagrange factor, the penalty factor i is updated when X, 1 18 accepted
(Line 7), where x,ki,k, € RL. The factor is increased when (i) the penalty term corre-
sponding to th 41 18 smaller than the change in & value (first inequality in Line 7). This
corresponds to the situation where the Lagrangian part, f(x) + Ag(xX), appears to dominate
h(x). In this case we increase the penalization so that also the augmenting part, y,g*(x)/2,
becomes visible to selection. The other situation where the penalty factor is increased is
(ii) when the change in the distance to the constraint boundary |Ag| (Line 4) is significantly
smaller than the distance to the constraint boundary of the current solution |g(X;)| (second
inequality in Line 7). In this case, the penalization is increased to avoid premature stag-
nation when the search process is still far from the constraint boundary, as large values of
U, guide the search more quickly towards g(x) = 0. When conditions (i) and (ii) are not
satisfied, y; is decreased to avoid an unnecessary ill-conditioning of the problem.

The updates of X; and o; depend only on the ranking of & values of the candidate solu-
tions. For A, and u, however, the algorithm explicitly uses 4 and g values of X; and X, ;.

Referring to (6), the transition function .# (£:8) of Algorithm 1 can be expressed as

ﬁ(f’g)((Xt,Gt,ﬂ,,,,u,),UtH) = (%((XnGz)7€*Ut+1)7g2(6t,€*Ut+1>y
& s, X0, 4 (X0,0), 6 Ui 1), 20 (w0, 4, X0, % (X0, 01), 6+ Unh))) ()
where U, = (Z,41,0) € R"? and

§ = Ord(h(X; + 61 [Usy1)i, Ay 1s)im1 2) ®)

is the permutation of indices of candidate solutions ordered according to 4. Where rele-
vant, we will explicitly write the dependence of ¢ on the variables used to compute can-
didate solutions and the fitness used to rank them (here, this would read g( hix l““ ). The
operator * applies the permutation ¢ to U;;; and returns the ranked Vector g * Upyp =
([Ut+1lig),» [Ur41](g),)- Functions ¢4, 4%, 43, and ¢, compute the new state variables of
the algorithm by updating the current state variables X;, o;, A;, and p, respectively. They
are given by

X1 =%(Xs,00),6%Ui1) =Xs +0: 6 x U1, )
1 5
0i+1 =% (01,6xUppy) = Gtg_HJrﬂl{[g*U[“h#O}, ) (10)
n*(xUry1)
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Algorithm 1 The (1 + 1)-ES with Augmented Lagrangian Constraint Handling
0givenn € N-, x,ki,ky € RE
1 initialize Xo € R", 6p e R, H€R, o eRE, 1 =0
2 while not happy
3 Compute X,IH =X, +06;Z; 1, where Z;1 ~ N (0,1,5p)
4  Compute Ag = g(X}H) —g(X;) and Ah = h(X}+1,A¢,/,L,) —h(X¢, A, 1)
5 if Ah<0 then
6 A1 = Ao+ 18Xy 1)
it g (X] ) <k 2 or kalag] < |g(X))]
7 M1 =

wx~ ' otherwise
X1 = Xt1+1
o1 = 621"
10 else
1 =4
12 ey =

3 X=X,
14 Ot11 = Gtzil/(ém)
I5 t=t+1

where n*(g xU,4) is the step-size change (we will sometimes omit the dependence on
¢ * U; 4 for the sake of simplicity),

Mt = D8 D 1, X0, Xi1) = Ao+ g (Xes1) X Liean, 1,200 » (1)
if [cxU 0
e =937 (20, X X 41) = {“fﬁ’ 6 Usrils 7 (12)
Uy otherwise
with
x1/4 if ,utgz(XH—l) < kl |h(Xt+1Jvryl»ltzl—h(xtﬂnﬂt)‘
B = or ko[ g(X41) — 8(Xs)| < |g(Xy)] (13)

-1 otherwise .

X

4.1 Invariance

We discuss here invariance with respect to transformations of the search space. We distin-
guish translation-invariance and scale-invariance.

Before giving the formal definitions of translation and scale-invariance, we remind the
definition of a group homomorphism.
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Definition 1. Let (G,.) and (H,*) be two groups. A function ® : G — H is a group homo-
morphism if for all x,y € G, ®(x.y) = P(x) * D(y).

Let .(Q) be the set of all bijective transformations from the state space Q to itself and
let Homo((R", +), (-7 (Q),0)) (respectively Homo((RZ,.), (-#(Q),0))) be the set of group
homomorphisms from (R, +) (respectively from (RZ,.)) to (.#(Q),0).

Definition 2. A randomized adaptive algorithm with transition function .Z (/%) where f
is the objective function being minimized and g is the constraint function, is translation-
invariant if there exists a group homomorphism ® € Homo((R",+), (- (£2),0)) such that
for any objective function f, for any constraint g, for any xy € R”, for any state s € Q, and
for any u € U?,

g(f(x),g(x))(&u) = D(—x0) (y(f(xfxo),g(xfxo))((I)(XO)(S),u)>

Informally, the previous definition means that if we transform the current state s; of the
algorithm via ®(xo), perform one iteration to optimize f(Xx —Xp) subject to g(x —xp) <0,
and apply the inverse transformation ®(—xg) to the resulting state, then we will recover the
same state s;;; as when starting from s; and performing one iteration of the algorithm to
optimize f(x) subject to g(x).

Definition 3. A randomized adaptive algorithm with transition function .Z (/)| where f
is the objective function being minimized and g is the constraint, is scale-invariant if there
exists a group homomorphism ® € Homo((RZ,.), (.7 (£),0)) such that for any objective
function f, for any constraint g, for any o > 0, for any state s € Q, and for any u € U?,

g;(f(x),g(x))(s, u) — CI)(I/OC) <g(f(ax)7g(ax)) (q)((x)(s),u)>

In the sequel, we prove that Algorithm 1 is translation and scale-invariant.

Proposition 1. Algorithm [ is translation-invariant and the associated group homomor-
phism ® is defined as

D(x0)(x,0,4, 1) = (x+x0,0,A,1) , (14)
for all xo,x € R" and for all 6,A,u € R.

Proof. Consider the homomorphism defined in (14) and lets; = (X;, 6;, A, ;) and D (x¢)(s;)
(X;7 tha ltla ‘Ll[,) We have

h(Xt + Gt[Ut—H]i;Ata.ut) = h(X; + GII[UH-l]i _Xo,lt/hu“t/) 5

where U;; = (Z;+1,0). Consequently, the same permutation ¢ is obtained when ranking
candidate solutions X} + o, [U;+1];, i = 1,2, on h(x —Xq, A, 1) as when ranking candidate
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solutions X; + 6;[U;41];, i = 1,2, on h(x, A, it). Therefore, according to (7),
G (x=%0).8(x=%0)) (B (x¢) (s;), Up41 ) writes

X1 =%(X},0/),6%Ur11) = %((X1,01),6 % Ur1) +%0 (15)
0111 =%(0/,6+Us11) =% (01,6 Up11)

)Lt/—H _ 3(f(X*X0)78(X*X0))(;Lt/7ut/’X;7 ;+1) _ g3(f(x)7g(x))<ﬂft7I»LzaXt,XtJrl) :

I'l’l‘/+1 = gif(X7X0)7g(X7XO))<nut/’ A’t/5X;7X;—|—1> = gél(f(X)’g(X))(.u'l?A'TaXl?Xl‘-l-l) .

We recover .7 (/():¢) ((X,, 67, 44, 1), U; 1) by applying the inverse transformation ®(—xq)
t0 (X741, 0415 A 1o e )- u
Proposition 2. Algorithm [ is scale-invariant and the associated group homomorphism ®

is defined as

Q(a)(x,0,A,1) = (x/a,0/c, A, ) (16)
for all a € RZ, for all x € R", and for all 6, A, € R.
Proof. Lets; = (X;,01, A, 1) and @ () (s;) = (X], 07,4/, /). We use the same idea as in
the previous proof to show that the same permutation ¢ is obtained when ranking candidate
solutions X} + 0/ [U;41];, i = 1,2, on h(ox, A, 1) than when ranking candidate solutions X, +

6:[U;+1]i, i = 1,2, on h(x,A, ). Therefore, according to (7), ﬁ(f(“")7g(°‘x))(<I>(s,),Ut+1)
writes

1
i1 =%(X,0/),6%U1) = a%((xt,o'z%G*Uzﬂ) ; (17)

1
Gz/+1 = gZ(GzIaQ*UtH) = agZ(Gtag*UH-l) ) (18)
z/+1 _ %(f(OCX),g(OCX))()Lt/7“[/’X;7 ;+1) _ %(f(x)’g(x))(ﬁm.Ur,Xt,XzH) ,
nut/-i-l _ 544(10(05")>g(0”‘))(‘u[/,kt/’X;7 ;+1) _ %(f(X)’g(X))(MW,XnX:H) )

We recover .# (/(¥):8(X) (s, U, ) by applying the inverse transformation ®(1/a) to
(Xta1: 071 Ay 1 4y )- N

5 Analysis

In this section, we investigate the behavior of Algorithm 1 on the augmented Lagrangian
h. We start by showing that given a particular condition is satisfied by /4, we can construct
a homogeneous Markov chain from the state variables of the algorithm, by exploiting its
invariance properties as well as the updates of A, and u;. In the second part, we illustrate
how the stability of the constructed Markov chain results in linear convergence of X, towards
the optimum Xy, as well as linear convergence of 4, and o; towards A, and O respectively.
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5.1 Homogeneous Markov Chain

Before presenting the Markov chain, we extend the definition of positive homogeneity with
respect to zero to any vector xX*.

Definition 4. A function p : X — Y is positive homogeneous of degree k > 0 with respect
tox* € X if for all & > 0 and for all x € X,

p(x* 4 ax) = a*p(x* +x) . (19)

By taking x* = 0, we recover the standard definition of positive homogeneity.

Example 1. Our linear constraint function g(x) = b’ x + ¢ is positive homogeneous of de-
gree 1 with respect to any x* € R” such that g(x*) = 0. The sphere function pgppere(X) =
(x —x*)T(x —x*) is also positive homogeneous of degree 2 with respect to x*.

We will now define two random variables, Y; and A;, and prove that if the augmented
Lagrangian h satisfies the condition stated below in (21), then (Y,, A, W );en is a Markov
chain. For the proof, we use transition and scale-invariance along with the updates of A, and

M.

Proposition 3. Consider the (1 + 1)-ES with augmented Lagrangian constraint handling
optimizing the augmented Lagrangian h defined in (5). Let (X,, 0y, A, W );en be the Markov
chain associated to this ES and let (U;),c be the sequence of i.i.d. random vectors where
U= (Z11,0) ER™? and Z; | ~ N (0,1,x,,). Let

Y s I
V=X g p =M A (20)
Oy O;
Then, if the function Phy, 5 E R — R defined as follows
Dhe 5% A) = h(x, A, 1) —h(Z, A, 1) 1)

where x,% € R", A,A € R, and g(%) = 0, is positive homogeneous of degree 2 with re-

spect to (X,A), then (Y;,As, W )ien is a homogeneous Markov chain defined independently
of (Xt,01, A, ly) as

Y1 =%((Y,1),6xU1)/n" (22)
A1 = (gg(f(ﬁng(xﬁ))(/\t + i,ﬂn Y, n'Y ) — jL)/77* ) (23)
fypy = G (4 AL DY Y (24)

where N* =N* (¢« U1 ) and

¢ =O0rd(W(Y; +[U1]i +%, M +Z7I~Lt)i:l,2) . (25)
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Proof. We show that Y,.1, As+1, and W+ only depend on Y;, A;, U; and i.i.d. random
variables U, 1, and therefore that (Y,, A, Ly );cry is @ homogeneous Markov chain.
Given the definitions of Y, and A; in Proposition 3, we can write

h(X; + 61 [Ur1]is Aey tie) = 1(01 (Y1 + [Ur1]i) + X, 6 A + A, 1)
Consider ranking the elements of the set
{h(0(Y; + [Ur1)) + %, 0A + A, ) bic1 2 -
We obtain the same permutation when ranking the elements of
{Phy 5, (0:(Yi + [Up1]i) + %, 0, +)}im12

where Zh 3 1 is defined in (21). Zhg 3 it being positive homogeneous with respect to

(X, 1), the ranking is the same on
{ghi717“t (Yt + [Ul‘+1]i +)_(7Al‘ ‘I‘Z)}i:l,Z
and, consequently, on )
(Y 4+ Ui + X, A +A4) Fim12

Therefore, the same permutation ¢ defined in (25) is obtained when ranking the candidate
solutions X; + 6;[U;41];, i = 1,2, on h(X,A;, ;) as when ranking the candidate solutions
Y+ [Usit1)i on h(x+X,A; + A, ). It follows that

Xi41—X _ 91((X,07),6%Usp1) — X
Ot 41 (01,6 % Usi1)
=9 ((Yr,1),6%xUs1)/n" (26)

Y1 =

where we used scale-invariance properties of ¢ and % ((17) and (18)) and translation-
invariance property of ¢ in (15).
On the other hand, we have

N M) e, X, Xi1) — A o
" Or+1 % (01,6 Ury1) ,

where ¢ is given in (11). Using scale-invariance of ¢, and positive homogeneity of g with
respect to X, it follows that

g¢3(JC(X)7g(X))()L’tv.l'LIa)(la)(l‘-l-l) - Z’ =0 (géf(x+i)7g(x+i))(/\t + Z”:u“t?Yl’ n*YH‘1> o Z) :

Replacing in (27), we obtain (23).

Remark 2. With the update of A, used in [3] (A4, = max (0,4 + w,g(X; + 6;Z;+1) if AL <0,
A; otherwise), A,y cannot be written as a function of (Y;, A, it;). Indeed, because of the
max function, one cannot get rid of o;.
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U1 1s given in (24). thl " is positive homogeneous of degree 2 with respect to

(X, 2). Therefore, according to Definition 4 and for @ = o,

Dhg 5 Xer1, ) = 07 Dh 5 (M Y1 +%, A+ 1) (28)

and
Dhez 0 Xish) = 6 Dh 5, (Vi +%,A+2) (29)

where we used (20). Subtracting (29) from (28), we get

h(Xirts Ay i) = h(Xp A 1) = 07 (R(N*Y g1 + X, A+ A, 1)
—h(Y, + %A+ A ) (30)

Using (30) and positive homogeneity of g with respect to X, we get

%1/4 if ulgz(n*Yl+1 +X) < kl ‘h(rl*YH*l+X7At+Avuf)_h(Yf+iaAt+A‘nut)‘

B = orka|g(n*Y 1 +%) — g(Y, +%)| < |g(Y, +%)|
~1
X

otherwise |,

therefore, (24) follows. L]

The result in Proposition 3 is particularly interesting if X and A correspond to the opti-
mum of the constrained problem, Xop, and to the Lagrange multiplier, ),Opt, respectively. In
this case, one can express the convergence rate of the algorithm towards Xp; as a function of

the homogeneous Markov chain (Y, As, W )ren, Where Y, = X’%"p‘ and A; = A’%’“‘” The
LLN can then be applied to prove linear convergence if the Markov chain satisfies some

stability conditions, which are further discussed in Section 5.

Corollary 1. Let (X;,0;,A, l;);en be the Markov chain associated to Algorithm 1 opti-
mizing the augmented Lagrangian h in (5), where f is a convex quadratic function defined
as

1
flx)= ExTHx , (31)
with H € R"™" a symmetric positive-definite matrix. Let Y; = X’_Tf”’” and Ay = A«I_?/;Lom, where

Xopt IS the optimum and Aoy is the associated Lagrange multiplier. Then (Y;, A, Wy )ien is a
homogeneous Markov chain defined independently of (Xt, 01, As, 1) as in Equations 22, 23,
24, and 25, where X = X gp; and A = Agpy.

Before moving to the proof, we remind that for f convex quadratic and g linear, KKT
conditions are also sufficient conditions of optimality, that is, a point satisfying KKT condi-
tions is also an optimum of the constrained problem (see Theorem 16.4 in [11]). Since the
problem is unimodal, KKT conditions are satisfied only for X,pc and Aopi, and we have

fo(xopt) + loptvxg<xopt) =0 . (32)
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Proof. We show that for f(x) = %XTHX, Dhy gy Ao 10 (21) is positive homogeneous of de-

gree 2 with respect to (Xopt, Aopt) € R"*+! and therefore, by virtue of Proposition 3, (Y;, Ar, ts )sen
is a homogeneous Markov chain. We have by definition of &

h(Xopt + Oox, }Lopt +ai ) .u) = f(Xopt + OCX)/‘*’\()«opt + ‘Xl)g(xopt + OCX)/ % 2(Xopt + OCX) .

Given Vyf(y) = y'H and V,g(y) = b, it follows that

A= azf(xopt +X> + (1 - az)f(xopt) + 06(1 - a)vxf(xopt)x ’
B = az(kopt + }‘)g<xopt +X> + 06(1 - a))toptvxg(xopox )

C = aZ%gz(xopt—i—x) )

Therefore

h(Xopt + 00X, Aopt + QA 1) = & h(Xopt + X, Aopt + A, 1) + (1 — ) f (Xopt)
+ (1 — a) (VxS (Xopt) + Aopt Vx&(Xopt) )X -

Using (32) and the fact that the constraint g is active at Xop, implying that h(xopt, QLopt, u) =
f(Xopt), we get

Dh Aopt; 1 (Xopt +oX, )Lopt + OM’) = az‘@hx()pt,kopt,ll <X0Pt +X, ;LOPt + 2’) .

Xopt,
[

Figure 2 shows contour lines of @h-xopty Aopth (x,4) (21), where the augmented Lagrangian

h is defined for a particular convex quadratic function, the sphere f(x) = %xz, x € R, and
the constraint function g(x) = —x+ 1. The penalty factor p = 1. In this setting, xop = 1
and Aop; = 1. We can see from the figure that the function is scaling-invariant with respect
to (Xopt, Aopt): if we zoom in around the point (xopt, Aopt), We will still see the same contour
lines. Algorithm 1 optimizes the function whose values correspond to a horizontal cut in the
graph, that is, to a fixed value of A. The intersection between the horizontal line A = A; and
the blue line corresponds to miny Zh, 3. (X, Ai, ) where argmin, Zh 5 u(x, 4i, 1)
can be read on the x-axis. For A = Aqp, the intersection happens in 0 and the corresponding
value on the x-axis is xopt = 1.

5.2 Sufficient Conditions for Linear Convergence

Let us consider Algorithm 1 optimizing the augmented Lagrangian 4 from (5) such that the
function ‘@hxoph Aoptsbl defined in (21) is positive homogeneous of degree 2 with respect to
(Xopt, lopt), where Xqp is the optimum of the problem and /'Lopt is the associated Lagrange
multiplier. Let (X, 07,4, 1 );en be the Markov chain generated by the algorithm. Under
these assumptions, let (D;);cn, with @, = (Y, A, 1), be the homogeneous Markov chain
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Figure 2: Contour lines of Zh, 3 u for f(x) = 3x%, g(x) = —x+1,and u = 1. The
vertical (respectively horizontal) dotted black line shows xop = 1 (respectively Aop = 1).
Points where the solid blue line intersects the contour lines represent minge Zh, 1. 1 (x,A)
for the corresponding A.

1Xi+1 _X0pt||

defined in Proposition 3. The log-progress In X, —opt]

can be expressed as a function of
&, as follows

1 X 41 — Xopt| ) ey
X — Xopt|| Y]]

where ¢ and n* are defined in (25) and (10) respectively. By taking the sum then the limit
of the average, we obtain the convergence rate

N (¢*Us1) , (33)

’Xk+1 X0pt|| li k+1||
lim — Y In k1 = Xoptll In “(cxUpsy) - (34)
Jim 2 Z X x| A Z L6 Ui

If the Markov chain (®; )¢y is @-irreducible and positive Harris-recurrent, then a LLN can
be applied to the left-hand side of (34) to show almost sure linear convergence.

Before stating our theorem, we define Z(¢), ¢ = (¢1, 9, ¢3), as the expectation of

In n (g( (X+)Xopt ¢2+%pt»¢%) % U) for U ~ pU.

%(‘P) <ln n (g( (X+)x(>pu¢2+/10pu¢2) U))

— /lnn (P1X7+Xopl>¢2+)«)pl ¢3) u) pu(u)du ) (35)

We also recall Theorem 17.0.1 from [10], which gives sufficient conditions for the applica-
tion of the LLN.

Theorem 1 (Theorem 17.0.1 from [10]). Assume that X is a positive Harris-recurrent
chain with invariant probability m. Then, the LLN holds for any q such that 7t(|q|) =
[lq(x)|m(dx) < oo, that is, for any initial state Xo, limy_e - Y1 q(Xi) = 7(q) almost
surely.

Theorem 2. Let (X;,0;, A, W )reN be the Markov chain associated to Algorithm 1 optimiz-
ing the augmented Lagrangian h such that the function @hxom’ Aopt s defined in (21) is pos-
itive homogeneous of degree 2 with respect to (Xopt, Aopt) (the optimum and the Lagrange
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multiplier respectively). Let (®;);en, with ®; = (Y;, Ay, ), be the Markov chain defined
in Proposition 3 and assume that it is positive Harris-recurrent with invariant probability
measure T, that Ex(|In||[@]1]||) < o0, Ex(|(In|[¢]2])]) < oo, and Ex(Z(¢)) < oo. Then, for
all Xy, for all oy, for all Ay, and for all ly, linear convergence holds asymptotically almost
surely (a.s.), that is

1 X, —x, A 1
fim i X =Xl g Ty Ao Lo s Ge)
tmeot || Xo—Xope|| 1ot [Ag—Aopl] 1ot Op
where
~ CR=Ex(#(9)) = [ #(9)n(d9) . (37

Proof. Using the property of the logarithm, we have

1
lim —1n

”Xt Xopt” 1i Zl |Xk+1_XoptH
t—oo f HXO — XoptH l%“’

[ Xk = Xope|

Then, using (34), we obtain

11X — Xopd| I k+1H
lim-In-——— = tﬁw Zln (6*Ugt1)

1=voo t HXo—XoptH |YkH
1 C C C *
= lim | — ZlnllYk+1|| —- ZlnHYkll 41 Zlnn (6*Urs1) | - (38)
=\ 1= ! =0 ! =0

(®;);ey is positive Harris-recurrent with an invariant probability measure 7w and we have

that Ez(|1n||[@]1]|]) < oo, Ez(|(In][@]2])]) < e, and Ez(Z#(¢)) < oo. Therefore, we can
apply Theorem 1 to the right-hand side of (38). Knowing that ¢ = g(‘({jﬁ)x opts - op i) , it

follows

tim Lin XXy 9] (a0) — b lintag)+ [ #(9)m(a0) = ~CR

=1 |[Xo — Xopt|

The same reasoning applies for lim; . 7 Ln &’) i’;"d‘ and for lim; e ¢ 1 ln Usmg the prop-

erty of the logarithm again, we obtain

=] (1]
}L“; Ro— Aol 1 Zl“’AkH’——ZlanH Zlnn (6+Ukn) | 39

and
1 Ok+1 _
tlgg;lngo = tlgg ; [1590 Z Inn*(¢*Upyr) - (40)
By applying the LLN to the nght—hand sides of (39) and (40), it follows
A
hm I TN SN A

|)-() )Lopt‘ t—oo f (0))
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6 Empirical Results

By virtue of Corollary 1, all convex quadratic functions satisfy the assumptions in Theo-
rem 1. We consider two of them in our experiments: the sphere function (fsppere) and the
ellipsoid function (feyipsoia), defined in (31) where (i) H = I,;x, for fyppere and (i) H is a

diagonal matrix with diagonal elements [H|;; = a%,i = 1,--,n, for felipsoid, With con-
dition number @ = 10. We choose b = (—1,0, - ,O)T and ¢ = 1 for the linear constraint
g(x) =b x+4¢ < 0. According to (3) and (4), KKT conditions are satisfied for the optimum
Xopt = (1,0,---,0) and the Lagrange factor Aop = 1 for both problems.

We run Algorithm 1 and simulate the Markov chain on each problem for different pa-
rameter settings in dimensions 10, 50, and 100. We choose k; =3, k =5, and y = 21/n,
For space constraints, we only discuss results obtained in n = 10.

6.1 Single Runs

Figure 3 shows single runs of Algorithm I on constrained fyphere (left column) and con-
strained fejipsoid (right column) for a moderate initial value of the penalty parameter py = 1
(first row), a large value uy = 103 (second row), and a small value Uo = 1073 (third row).
For all runs, Xg = (1,---,1), 0o = 1, and A9 = 2. Displayed are the distance to the optimum
|| X; —Xopt||, the distance to the Lagrange multiplier |A; — Aoy, the penalty factor y;, and the
step-size o; in log-scale, plotted against the number of iterations.

We observe that the algorithm converges linearly on both fiphere and feniipsoia after a
certain number of iterations, independently of ty. The convergence on fepjipsoid 1 slower
than on fyphere- In the first case, the initial value ty = 1 is already close to the “stable” value
of the penalty parameter and linear convergence of X;, A;, and o; towards Xopt %pt, and 0
occurs immediately. In the second case, the initial value iy = 10° is too large. However, it
decreases and converges to a stable value after some iterations. The algorithm then starts to
converge linearly. For a too small initial value po = 1073, the distance to the optimum (and
to the Lagrange multiplier) first decreases, then the algorithm stagnates. The reason is that
for small values of L, the Lagrange factor A, varies very little (see Line 6 in Algorithm 1),
therefore the augmented Lagrangian does not change much between iterations, resulting in
stagnation. After some iterations, however, U, increases again and eventually converges to
a stationary value. Once L, is stationary, || X; — Xopt||, |4 — Aopt|, and o start to decrease
linearly.

6.2 Simulations of the Markov Chain

Figure 4 shows simulations of the Markov chain (Y;, A, i );en defined in Proposition 3
on constrained fyphere (left column) and constrained fejiipsoid (right column), for different
initial values of the penalty parameter (ty = 1,103,107 in first, second, and third row
respectively). The figure shows the evolution of the normalized distance to Xqp, || Y ||, the
normalized distance to Aop, |A;|, and the penalty factor, p,. We choose Yo = (1,---,1) and
Ag = 1 in all simulations.
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Figure 3: Single runs of the (14 1)-ES with augmented Lagrangian constraint handling on
constrained fyphere (left column) and constrained feyiipsoid (right column) for different initial
values of g, in n = 10. Parameters of the constraint g are b= (—1,0,---,0)7 and ¢ = 1.
Xo=(1,---,1)T and Ay = 2.

It can be seen from the graphs that the variables of the Markov chain seem to converge
to a stationary distribution, even for too small or too large initial values of y;. The bump
in ||Y;|| and |A;| graphs we observe on the third row, for both fiphere and ferripsoid, can be
explained by looking at the third row in Figure 3: when p; is too small, ||X; —Xop|| and
|A+ — Aopt| stagnate while the step-size o; decreases, resulting in an increase of ||Y;|| and
|A;|. We observe that p; oscillates around about 0.1 on constrained Jfsphere and around about
0.3 for constrained feyiipsoid- These values are comparable to the ones we observe on single
runs in Figure 3.

The stability of the Markov chain depends, however, on the parameters of the algorithm.
In simulations not shown due to space limitations, we observe instability of the Markov
chain, as well as divergence of the algorithm, for ¥ = 2 with large values of py in n = 100.
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Figure 4: Simulations of the Markov chain (Y, A;, li;);en on constrained fiphere (left col-
umn) and constrained fepipsoia (right column) for different initial values of ; in n = 10.
Parameters of the constraint g are b = (—1,0,---,0)" and c = 1. Yo = (1,---,1)T and
ANp=1.

7 Discussion

We studied the problem of minimizing a function subject to a single linear constraint. Taking
the work of [3] as a starting point, we proposed a (14 1)-ES with an augmented Lagrangian
constraint handling approach and proved its linear convergence on problems where the asso-
ciated augmented Lagrangian, minus its value at the optimum and the Lagrange multiplier,
is positive homogeneous of degree 2, using a Markov chains approach, and given the sta-
bility of the considered Markov chain. To construct the Markov chain, we had to modify
the update of the Lagrange factor used in [3] and consider a simpler augmented Lagrangian.
Indeed, invariance alone is not sufficient, as the algorithm in [3] is translation and scale-
invariant yet we could not find an underlying Markov chain.

Experiments on the constrained sphere and on the moderately ill-conditioned constrained
ellipsoid showed stability of the Markov chain, as well as linear convergence of the algo-
rithm, for the discussed parameter settings.
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6.2 Augmented Lagrangian Constraint Handling for CMA

ES—Case of a Single Linear Constraint

The following paper [8] presents a general framework for constructing an adaptive random-
ized algorithm for constrained optimization from an existing adaptive randomized algorithm
for unconstrained optimization. We consider the case of a single inequality constraint han-
dled with the adaptive augmented Lagrangian mechanism presented in [5]. To illustrate
this general framework, we present a (u /y, A )-CMA-ES with median success rule (MSR)
step-size adaptation and adaptive augmented Lagrangian constraint handling. The presented
algorithm extends the original (1 + 1)-ES in [5] to non-elitist ESs. It can also be modeled as
a Markov chain by following a similar approach to the one presented in [7] (see Section 6.1);
therefore, its linear convergence can be investigated using the tools from the Markov chain
theory. This work was published in the proceedings of the Parallel Problem Solving from
Nature conference of 2016.
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Augmented Lagrangian Constraint Handling for
CMA-ES—Case of a Single Linear Constraint

Asma Atamna, Anne Auger, Nikolaus Hansen
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LRI (UMR 8623), University of Paris-Saclay, France

Abstract

We consider the problem of minimizing a function f subject to a single inequality
constraint g(x) < 0, in a black-box scenario. We present a covariance matrix adap-
tation evolution strategy using an adaptive augmented Lagrangian method to handle
the constraint. We show that our algorithm is an instance of a general framework that
allows to build an adaptive constraint handling algorithm from a general randomized
adaptive algorithm for unconstrained optimization. We assess the performance of our
algorithm on a set of linearly constrained functions, including convex quadratic and
ill-conditioned functions, and observe linear convergence to the optimum.

1 Introduction

Evolution strategies (ESs) are derivative-free continuous optimization algorithms that are
now well-established to solve unconstrained optimization problems of the form miny f(x),
f:R" — R, where n is the dimension of the search space. The state-of-the-art ES, the co-
variance matrix adaptation evolution strategy (CMA-ES) [7], is especially powerful at solv-
ing a wide range of problems and particularly ill-conditioned problems [8, 5]. It typically
exhibits linear convergence. The default CMA-ES algorithm implements comma selection
where the best solution is not preserved from one iteration to the next one (contrary to plus
selection). Comma selection is an important feature of CMA-ES that entails robustness of
the algorithm to various types of ruggedness including noise.

Linear convergence being a central aspect of an ES in the unconstrained case, a (1 +1)-
ES using an adaptive augmented Lagrangian constraint handing—to deal with a single in-
equality constraint—has been introduced in [3] with the motivation to obtain a linearly con-
verging algorithm. Empirical results show the linear convergence of the algorithm on the
sphere and moderately ill-conditioned ellipsoid functions, subject to one linear constraint.

*Research centre Saclay—ile-de-France, TAO team, lastname @Iri.fr
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Linear Constraint

In [4], the authors present a variant of the previous (1 + 1)-ES with augmented Lagrangian
constraint handling and study theoretically its linear convergence using a Markov chain ap-
proach. In both mentioned works, the step-size is adapted using the 1/5th success rule [10]
while the covariance matrix is fixed to the identity. On ill-conditioned problems, however,
adapting the covariance matrix is crucial. It is hence natural to wonder whether it is pos-
sible to design a CMA-ES variant with augmented Lagrangian constraint handling. The
algorithms presented in [3, 4], however, use plus selection and can thus a priori not be used
directly to design such a variant.

In this context, we consider the constrained problem of minimizing f : R” — R subject
to a single inequality constraint g(x) <0, g : R” — R. More formally, we write

mxinf(x) subjectto  g(x) <O . (1)

We bring to light that the algorithms previously presented in [3, 4] derive from a more gen-
eral framework that seamlessly allows to build an adaptive constraint handling algorithm
from a general adaptive stochastic search method. We then naturally apply this finding to
build a (u/pw,A)-CMA-ES variant with adaptive augmented Lagrangian constraint han-
dling. We opted for using the median success rule step-size adaptation (MSR) [2] because
it is an extension of the 1/5th success rule algorithm used in [3, 4]. We then test the re-
sulting algorithm—the (i /uw,A)-MSR-CMA-ES with augmented Lagrangian constraint
handling—on a set of functions, including convex quadratic as well as ill-conditioned func-
tions, subject to one linear inequality constraint.

The rest of this paper is organized as follows: we introduce some basics about aug-
mented Lagrangian in Section 2. Then, we define the general framework and apply it to the
(u/uw,A)-MSR-CMA-ES in Section 3. We present our empirical results in Section 4 and
conclude with a discussion in Section 5.

Notations We introduce here the notations that are not explicitly defined in the rest of the
paper. We denote R™ the set of positive real numbers and R the set of strictly positive
real numbers. N is the set of natural numbers without 0. x € R" is a column vector, xT
is its transpose, and 0 € R” is the zero vector. |x|| denotes the Euclidean norm of x and ~
equality in distribution. (u/uw,A) denotes comma selection with weighted recombination
and (14 1) denotes plus selection with one parent and one offspring. I,,», € R"" is the
identity matrix. x; is the ith component of vector x. The derivative with respect to X is
denoted Vy. Finally, 1 (A} Teturns 1 if A is true and O otherwise.

2 Augmented Lagrangian Methods

Augmented Lagrangian methods are constraint handling approaches that transform the con-
strained optimization problem into an unconstrained one where an augmented Lagrangian
is optimized [9, 12].

The augmented Lagrangian consists of a Lagrangian . and a penalty function, with
& :R"™! — R defined as

Z(x,7) = f(x) +r8(x) 2)
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for the objective function f subject to one constraint g(x) < 0, where y € R is the Lagrange
factor. The Lagrangian encodes the KKT stationarity condition which states that, given
some regularity conditions are satisfied (constraint qualifications), if x* € R” is a local min-
imum of the constrained problem, then there exists a constant ¥* € R™, called the Lagrange
multiplier, such that

Vx/(x") +7" Vxg(x") =0,

'

VX‘Z(X*',W)

where we assume here that f and g are differentiable at x*.

A penalty function is combined with the Lagrangian .Z to create the augmented La-
grangian h. There exist different ways to construct the augmented Lagrangian and we refer
to [11] for a deeper discussion about this topic. In this work, we use the following aug-
mented Lagrangian

h(x,7,0) = f(x)+ {Ygg) +9¢%(x) if y+og(x) >0

" 20

; 3)

otherwise

where @ > 0 is a penalty factor. The same augmented Lagrangian was used for the first
time within an ES in [3]. The function /4 is minimized successively with respect to x, and
Y and w are updated so that y approaches the Lagrange multiplier ¥* and @ favors feasible
solutions. By adapting 7, the penalty factor @ does not have to grow to infinity to achieve
convergence, unlike with quadratic penalty function methods [11].

Let X,p¢ be the optimum of the constrained problem in (1) and let Yo be the correspond-
ing Lagrange multiplier. If f and g are differentiable at X,p, then for all @ > 0,

VXh<X0pt7 Yopt; (D) = fo<Xopt) + maX(07 Yopt + a)g(xopt))vxg(xopt) =0 .

3 A General Framework for Adaptive Augmented Lagrangian
Constraint Handling

In [3] and [4], the authors present two (1+ 1)-ESs with an augmented Lagrangian constraint
handling approach for the optimization problem in (1). The algorithms derive from a general
framework for building a constraint handling adaptive algorithm. This framework starts with
a randomized adaptive algorithm for minimizing an unconstrained function f : R” — R: the
randomized adaptive algorithm can be identified by the sequence of its states s; at iteration
t that are iteratively computed from an update function .# such that

s =F (s, Ui11) (4)

where the superscript indicates the function being minimized and where (U, );cn. is a se-
quence of independent identically distributed (i.i.d.) random vectors. For instance, in the
case of a (1+ 1)-ES in [3, 4], the state is a vector of the search space (current estimate of
the optimum) and a step-size.
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We assume that the state s; of the algorithm includes a vector X; € R" which typically
encodes the current estimate of the optimum at iteration z. Note that the transition function
Z above includes a step where candidate solutions are sampled from the current state s, and
the random vector U, 1, and evaluated on the objective function f.

From the adaptive algorithm above, we construct an algorithm with adaptive constraint
handling to take into account a single constraint in the following way: we add to the state
of the algorithm two scalars % and @; that correspond respectively to the Lagrange factor
and the penalty factor of the augmented Lagrangian £ at iteration ¢. Therefore, the state
at iteration ¢ is s,/ = [s;, %, @]. The objective function used at each iteration to evaluate a
candidate solution X; 41 1S now

hiy.o)(Xip1) ==h(X{, 1 0) (5)

where £ is the augmented Lagrangian defined in (3). Finally, the update of the state s,” of
the adaptive algorithm with augmented Lagrangian constraint handling takes place in two
steps: first, s; is updated via

S = F 000 (8, Uppr) (©)
where candidate solutions are now evaluated on hy, ,) instead of f. Then, the parameters
¥ and @, of h are updated. In [3], ¥ is updated according to

Y1 :max(07%+a)tg(xt+l)) s (7

while in [4], the authors use the following update

Y1 =Y+ og(Xey1) - 3)
For @y, the following update is used in both [3] and [4]

wtxl/4 lf a)tgz(Xt+1> < kl ‘h(xt+l7%7wlzl_h(xl7%70)f)|

W1 = or ka|g(Xe+1) —g(Xp)| < |g(X)] ’ ©)
oy

otherwise

for some constants y > 1, kj,k, € R™.
Based on these examples, we introduce some general update functions ¢, and %, for
the updates of ¥ and @, defined implicitly via

Y1 =95 (% @), Xr41) (10)
o =95 (Xm0, Xep1) (11)

The superscript in ¢y and %, indicates that the function value is used in the update.

3.1 The (u/uw,A)-MSR-CMA-ES with Adaptive Augmented Lagrangian

We now apply the general framework sketched above to the covariance matrix adaptation
evolution strategy (CMA-ES) with median success rule step-size adaptation (MSR). We
start by presenting the algorithm for the unconstrained case then we give the updates of the
augmented Lagrangian parameters ¥ and @y.
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The (unconstrained) CMA-ES with MSR The original CMA-ES with MSR is given in
Algorithm 1, without the highlighted parts. The algorithm proceeds iteratively: at each
iteration ¢, 7L candidate solutions (offspring) Xt 41> i=1,---,A, are sampled according to
Line 5, where X; € R" is the current estimate of the optimum (mean vector), o; € R™ is the
step-size, and U’ i+1 ER" i=1,--- A, are ii.d. random vectors sampled from the normal
distribution .#"(0,C;), with mean 0 € R” and covariance matrix C, € R"*". The offspring
are ordered according to their fitness (f-value in the unconstrained case) in Line 6, where
i : A is the index of the ith best offspring. The u best offspring (parents) are then recombined
(Line 7) to create the new mean vector X;, 1, where the weights w; > 0,i=1,---, u, satisfy
wy > >wyand Yoo wi = L.

The step-sized o; is adapted in Lines 8 to 11 using the MSR step-size adaptation [2].
MSR is a success-based step-size adaptation method which extends the well-known 1/5th
success rule step-size adaptation [10], used with plus selection, to comma selection. The
step-size is adapted depending on “success”, where the success is defined as the median off-

m(1)

141
Xj of the previous population. In practice, we choose j to be the 30th percentile—the value
for which the median success probability is roughly 1/2 on the sphere function with optimal

sprmg X" (fitness-wise) of the current population being better than the jth best offspring

step-size [2]. The number K. of offspring better than X] is computed in Line 8. Note

that Kguecc > A /2 is equivalent to A(X +(1 ) VY ) < h(XJ ,%, @ ). Therefore, we define the
m(d) .

success measure 7, in Line 9 such that z; > 0 if and only if X 1 1s successful. z; 1S cumu-
lated in g;+ (Line 10) and, finally, o; is updated in Line 11: it increases in the presence of
success (g;+1 > 0) and decreases otherwise in order to increase the probability of success.

The covariance matrix C; is adapted with CMA [7] in Lines 12 and 13. The update is a
combination of the so-called rank-one update and rank-u update. A detailed discussion on
CMA can be found in [6].

Finally, the jth best offspring is updated in Line 17. Therefore, the state of the algorithm
in the unconstrained case is

j:A
S = (Xt,GzaC]thCtath ) .

The constrained (i /uw,A)-MSR-CMA-ES with adaptive augmented Lagrangian As
explained in the general framework, the fitness f is replaced with the augmented Lagrangian
h in the constrained case. The parameters ¥ and @; are adapted in Lines 15 and 16 in
Algorithm 1, where changes in comparison to the unconstrained case are highlighted in
gray.

The Lagrange factor 7; is adapted in Line 15. It is increased when the new solution X,
is unfeasible and decreased otherwise, unless it is zero. The derivation of this update is
discussed in details in [11].

For the penalty parameter @y, we use the original update proposed in [3] for the (1+ 1)-
ES with augmented Lagrangian. The update rule is given in Line 16. @) is increased either
when (i) the augmented Lagrangian 4 does not change “enough” after %, and @, are updated
to avoid stagnation. This is translated by the first inequality where

0 g* (Xe1) = [h(Xii1, ¥ + A%, @ +A@y) — h(Xp i1, %, 0)|
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Name Definition Name | Definition
1 n 2 @ i—
) fdiff,pow (X) ‘ \/Z 1 |X ’2+4

s%here(x) (7 i= lxz
Jeni(X) ZZn lan 1X2 frosen(X) ‘ Zn 1(102(X —X,+1)2+(X,—1)2)

Table 1: Definitions of the tested functions, where fphere := fslphere.

is compared to the change in % due to the change in X;, |h(X;+1,%, @) — h(Xe, %, @ )| @
is also increased when (ii) the change in the value of the constraint function is not large
enough (second inequality in Line 16). To prevent an unnecessary ill-conditioning of the
problem, @y is decreased whenever conditions (i) and (ii) are not satisfied.

4 Empirical Results

We evaluate Algorithm 1 on the sphere function (fsphere)> two ellipsoid functions (fep;) with
condition numbers o = 1()2 100, f sphere” f sphere® the different powers function (fgitf pow)-
and the Rosenbrock function (frosen), With one linear inequality constraint. The functions
are defined in Table 1. We consider the case where the constraint is active at the optimum
Xopts 1-€. g(Xopt) = 0. We choose the optimum to be at Xop = (10,---,10)T and construct
the constraint function, g(x) = bTx+ ¢, so that the KKT stationarity condition is satisfied at
Xopt With Ype = 1. Therefore,

b= —Vf (Xopt)T and ¢ = Vxf. (Xopt)Xopt )

for each function. Note that all considered functions are differentiable at X, = (10, ---,10)T.

For the step-size and the covariance matrix adaptation, we use the Python implementa-
tion of CMA-ES whose source code can be found at [1], with the default parameter setting
detailed in [6]. We run the algorithm 11 times in n = 10, with Xy sampled uniformly in
[—5,5]", 60 =1, % =5, and @y = 1. The results are presented for one run in Figures I
(f; sphere>s f sphere? and f phere) and 2 (fer; with a = 1027 106’ i diff_pow> and frosen). On the left
column of each figure are graphs of the evolution of the distance to the optimum || X, —
the step-size o;, the distance to the Lagrange multiplier |% — Yopt|, and the penalty factor
in log-scale. On the right column of the figures are graphs representing the evolution of the
coordinates of the mean vector X;.

Graphs on the right column of Figures 1 and 2 show the overall convergence of the algo-
rithm to Xop;. We also observe linear convergence of X; to Xopt, as well as linear convergence
of ¥ to Yopt and o; to O (left column of Figures 1 and 2). Moreover, || X; — Xopt, |7 —
and o; decrease at the same rate. On the other hand, the penalty factor @; is observed to
converge to a stationary value after a certain number of iterations. We sometimes observe a
stagnation in graphs of ||X; — X,p(|| due to numerical precision.

The largest convergence rate (when excluding the initial adaptation phase) is observed on

Jfsphere and the smallest one on Sp"flere, where there is a factor of approximately 1.5 between
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Algorithm 1 (u/py,A)-MSR-CMA-ES with Augmented Lagrangian Constraint Handling

u
OgivenneN., x =2"" k=3, ky =5, u,A €N, j=034,0<w; <1, Y wi =1,
i=1

4+ Uegr/n
n+4+ z.ueff/n
2 or — min (l—c .Ueff—2+1/ueff)
(n+1.3)2 4+ ey’ b (n42)% + Uegr
1 initialize Xy € R", oy € ]R;“, Co=1Ixn,t =0,90 =0, py =0, constrained_problem

u
Hetr=1/Y W}, c6=03,d6 =2—-2/n,cc =

i=1

cl =

2 if constrained_problem // true if the problem is constrained, false otherwise

3 initialize 1 € R, @y € RE

4 while stopping criteria not met

5 X, =X,+0U_,, U, ~A4(0,C)i=1,--,A //sample candidate solutions
6 Extractindices {1:A,---,A : A} of ordered candidate solutions such that

{h(Xt1 +)le%, ) <...<h(X] +1’7f7 @) if constrained_problem

FXEAY < < F(XA ’1) otherwise

l+1 t+1

7 X = Z wiXﬁl =X;+0o; Z wiUﬁl // recombine u best candidate solutions
i=1 i=1

i if constrained_problem
Zl : {h( t+l’7tv )<h(th~xv7’t7(0t)} p

8 Ksucc = h .
Zl | {j XL, )< <P otherwise
2 A
9 z= 1 Kauce — > // compute success measure
10 g1 = (1 - Cc)% + ot

qr+1
ds

11 op41 = Orexp ( ) // update step-size

X;11—X
12 popy=(1—co)p+Vee(2—ce) et (%) // cumulation path for CMA
t

u Xl)L X X i X T
13 Cro1=(1—c1—cu)Cr+e1pa Py +eu Y, wi ( Hi’ l) ( tﬂc :
i=1 t t

// update covariance matrix

14 if constrained_problem

15 %i+1 = max(0,% + ag(X;+1)) // update Lagrange factor

@%1/4 if (l)zgz(Xz+l) < ki |h(Xt+1,?’t7wrzl—h(XnYt7wt)|

16 W = or ka|g(Xit1) —g(Xp)| < |g(Xp)| // update penalty factor
o x~'  otherwise

17 X/ +)L1 =X; + o U, +)L1 // update jth best solution

18 r=1r+1 104
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the two convergence rates. However, there is some variance in the empirical convergence
rate. In particular, on 11 performed runs we observe the highest variance in the empirical
convergence rate for f;; with @ = 106, Jdiff_pow»> and frosen-

On fop with a = 10°, Jdiff pow»> and frosen, We Observe a stagnation of X, in the early
stages of the algorithm (left column in Figure 2). The reason is that the adaptation of the
covariance matrix takes longer on ill-conditioned problems. This explains the slow con-
vergence of some coordinates of X; to 10 (right column in Figure 2). Once the covariance
matrix is adapted, the convergence occurs.

When comparing 11 single runs of Algorithm 1 to the (1 4 1)-ESs with augmented
Lagrangian in [3, 4] (not shown for space reasons) on constrained fsphere, feri (in n = 10),
it appears that on fyyhere, Algorithm 1 needs approximately up to 1.5 times more function
evaluations than algorithms in [3, 4] to reach a distance to the optimum of 1074. On Jeni with
o = 102, however, Algorithm 1 is faster and needs approximately 1.3 times less function
evaluations to reach the same distance, with o = 10°, Algorithm 1 is around 167 times
faster to reach a target of 15 (this large difference is due to the adaptation of the covariance
matrix).

5 Discussion

Linear convergence is a key aspect of ESs in both unconstrained and constrained optimiza-
tion scenarios. As stated in [3], the minimum requirement for a constraint handling ES is to
converge linearly on convex quadratic functions with a single linear constraint. On the other
hand, an algorithm for constrained optimization should be able to tackle ill-conditioned
problems. Having that in mind, we proposed a (u/uw,A)-CMA-ES with an augmented
Lagrangian approach for handling one inequality constraint, where the choice of the aug-
mented Lagrangian constraint handling was motivated by the promising results of its im-
plementation for the (1 -+ 1)-ESs with 1/5th success rule in [3, 4]. Moreover, we showed
that our algorithm—as well as (14 1)-ESs with augmented Lagrangian constraint handling
in [3, 4]—is an instance of a more general framework for building an adaptive constraint
handling algorithm from a general adaptive algorithm for unconstrained optimization.
Experiments on linearly constrained convex quadratic functions, as well as ill-conditioned

functions (including the ellipsoid and Rosenbrock functions), showed linear convergence of
our algorithm to the unique optimum of the constrained problem.
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6.3 Linearly Convergent Evolution Strategies via Augmented

Lagrangian Constraint Handling

The following paper is our latest contribution. An earlier version was submitted recently to
the Foundations of Genetic Algorithms workshop. It extends the analysis we conducted in
[7] with one linear constraint to the case of multiple linear constraints.

Considering a constrained optimization problem with multiple active linear inequality
constraints, we present a practical adaptive augmented Lagrangian constraint handling
approach. In particular, we generalize the update of the penalty parameter presented in [5]
for one constraint to the case of multiple constraints. Then, using a Markov chain approach,
we analyze linear convergence of a (i /w,A)-ES with a general step-size adaptation rule
on a modified version of the proposed practical augmented Lagrangian. By doing so, we
focus the analysis on the case where all the constraints are active and manage to construct a
homogeneous Markov chain which, if stable, allows to deduce linear convergence.
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Linearly Convergent Evolution Strategies via
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Asma Atamna, Anne Auger, Nikolaus Hansen
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Abstract

We analyze linear convergence of an evolution strategy for constrained optimiza-
tion with an augmented Lagrangian constraint handling approach. We study the case of
multiple active linear constraints and use a Markov chain approach—used to analyze
randomized optimization algorithms in the unconstrained case—to establish linear con-
vergence under sufficient conditions. More specifically, we exhibit a class of functions
on which a homogeneous Markov chain (defined from the state variables of the algo-
rithm) exists and whose stability implies linear convergence. This class of functions is
defined such that the augmented Lagrangian, centered in its value at the optimum and
the associated Lagrange multipliers, is positive homogeneous of degree 2, and includes
convex quadratic functions. Simulations of the Markov chain are conducted on linearly
constrained sphere and ellipsoid functions to validate numerically the stability of the
constructed Markov chain.

1 Introduction

Randomized (or stochastic) optimization algorithms are robust methods widely used in in-
dustry for solving continuous real-world problems. Among them, the covariance matrix
adaptation (CMA) evolution strategy (ES) [12] is nowadays recognized as the state-of-the
art method. It exhibits linear convergence on wide classes of functions when solving uncon-
strained optimization problems. However, many practical problems come with constraints
and the question of how to handle them properly to particularly preserve the linear con-
vergence is an important one [2]. Recently, an augmented Lagrangian approach to handle
constraints within ES algorithms was proposed with the motivation to design an algorithm
converging linearly [2]. The algorithm was analyzed theoretically and sufficient conditions

*lastname @1ri.fr
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for linear convergence, posed in terms of stability conditions of an underlying Markov chain,
were formulated [3]. In those works, however, only the case of a single linear constraint was
considered.

Markov chain theory [14] provides useful tools to analyze the linear convergence of
adaptive randomized optimization algorithms and particularly evolution strategies. In a nut-
shell, for the case of unconstrained optimization, on scaling-invariant functions—a class
of functions that includes all convex-quadratic functions—for adaptive ESs satisfying cer-
tain invariance properties (typically translation and scale-invariance), the stability analysis
of an appropriate Markov chain can lead to linear convergence proofs of the original al-
gorithm [7]. This general approach was exploited in [5] to prove the linear convergence
of the (1,A)-ES with self-adaptation on the sphere function and in [6] to prove the linear
convergence of the (1+ 1)-ES with 1/5th success rule. This general methodology to prove
linear convergence in the case of unconstrained optimization was generalized to constrained
optimization, in the case where a single constraint is handled via an adaptive augmented
Lagrangian approach [3]. The underlying algorithm being a (1 + 1)-ES.

In this work, we generalize the study in [3] to the case of multiple linear inequality
constraints. We analyze a (1 /uw, A )-ES with an augmented Lagrangian constraint handling
approach in the case of active constraints. The analyzed algorithm is an extension of the one
analyzed in [3], where we generalize the original update rule for the penalty factor in [2] to
the case of multiple constraints. We construct a homogeneous Markov chain for problems
such that the corresponding augmented Lagrangian, centered at the optimum of the problem
and the corresponding Lagrange multipliers, is positive homogeneous of degree 2, given
some invariance properties are satisfied by the algorithm. Then, we give sufficient stability
conditions on the Markov chain such that the algorithm converges to the optimum of the
constrained problem as well as to the associated Lagrange multipliers. Finally, the stability
of the constructed Markov chain is investigated empirically.

The rest of this paper is organized as it follows: we present augmented Lagrangian meth-
ods in Section 2 and give an overview on how the Markov chain approach is used to prove
linear convergence in the unconstrained case in Section 3. We formally define the studied
optimization problem, as well as the considered augmented Lagrangian in Sections 4 and 5
respectively. In Section 6, we present the studied algorithm and discuss its invariance prop-
erties. In Section 7, we present the constructed Markov chain and deduce linear convergence
given its stability. Finally, we present our empirical results in Section 8 and conclude with
a discussion in Section 9.

Notations

The notations that are not explicitly defined in the paper are presented here. We denote R
the set of positive real numbers, RY the set of strictly positive real numbers, and N~ the set
of natural numbers without 0. x € R” is a column vector, xT is its transpose, and 0 € R”
is the zero vector. ||x|| denotes the Euclidean norm of x, [x|; its ith element, and [M];;
the element in the ith row and jth column of matrix M. I,,x, € R"*" denotes the identity
matrix, .4 (0,I,x,) the multivariate standard normal distribution, and ~ the equality in
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distribution. The symbol o is the function composition operator. The derivative with respect
to x is denoted Vy and the expectation of a random variable X ~ 7 is denoted E.

2 Augmented Lagrangian Methods

Augmented Lagrangian methods are constraint handling approaches that combine penalty
function methods with the Karush-Kuhn-Tucker (KKT) necessary conditions of optimal-
ity. They were first introduced in [13, 16] to overcome the limitations of penalty function
methods—in particular quadratic penalty methods—which suffer from ill-conditioning as
the penalty parameters need to tend to infinity in order to converge [15].

Similarly to penalty methods, augmented Lagrangian methods transform the constrained
problem into one or more unconstrained problems where an augmented Lagrangian, con-
sisting in a Lagrangian part and a penalty function part, is optimized. The Lagrangian is a
function .Z : R" x R™ — R defined as

Lx7) = F0)+ Y Valx) . (1)
=1

for a function f subject to m constraints g;(x) < 0. The vector y = (y!,---,¥™")T € R™ rep-
resents the Lagrange factors. An important property of .Z is the so-called KKT stationarity
condition which states that, given some regularity conditions (constraint qualifications) are
satisfied, if x* € R" is a local optimum of the constrained problem, then there exists a vector
y = (v, ,y"™)T € (RT)" of Lagrange multipliers y*, i = 1,--- ,m, such that

m

VL (x*,7") = Vi f(X") + Z Y'Vgi(x*)=0 ,
i=1

if we assume f and g;, i = 1,--- ,m, are differentiable at x*.

Remark 1. Given the gradients Vy f(x*) and Vxg;(x*),i=1,--- ,m, exist, the first-order nec-
essary conditions of optimality (KKT conditions) ensure the existence of at least one vector
Y* of Lagrange multipliers. However, if the constraints satisfy the linear independence con-

straint qualification (LICQ), that is, the set of constraint normals is linearly independent, the
vector ¥* of Lagrange multipliers is unique [15].

The Lagrangian . is combined to a penalty function, which is a function of the con-
straints g;, to construct the augmented Lagrangian 4. Examples of augmented Lagrangians
are given in (9) and (10), where @ = (®',---,@™)T € (RI)™ is the vector of the penalty
factors @'. More generally, the augmented Lagrangian can be defined as

hx,7,0) = £(x) + fl 0(si(x). 7. 0) . )

where ¢ is chosen such that a local optimum x* of the constrained problem is a stationary
point of A, that is for all y € (RZ)™,

Vih(x*, 7", 0) =0 ,
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assuming the gradients at x* are defined. The augmented Lagrangian % is minimized for
given values of y and ® instead of the initial objective function f.

In adaptive augmented Lagrangian approaches, ¥ is adapted to approach the Lagrange
multipliers and @ is adapted to guide the search towards feasible solutions. A proper adap-
tation mechanism for @ helps preventing ill-conditioning since, with an augmented La-
grangian approach, the penalty factors @' do not need to tend to infinity to achieve conver-
gence [15].

There exist in the literature some examples where augmented Lagrangian approaches are
used in the context of evolutionary algorithms. In [17], the authors present a coevolutionary
method for constrained optimization with an augmented Lagrangian approach, where two
populations (one for the parameter vector and one for Lagrange factors) are evolved in
parallel, using an evolution strategy with self-adaptation. The approach is tested on four
non-linear constrained problems, with a fixed value for the penalty parameter.

In [9], the authors present an augmented-Lagrangian-based genetic algorithm for con-
strained optimization. Their algorithm requires a local search procedure for improving the
current best solution in order to converge to the optimal solution and to the associated La-
grange multipliers.

More recently, an augmented Lagrangian approach was combined with a (1+ 1)-ES for
the case of a single linear constraint [2]. An update rule was presented for the penalty param-
eter and the algorithm was observed to converge on the sphere function and on a moderately
ill-condition ellipsoid function, with one linear constraint. This algorithm was analyzed
in [3] using tools from the Markov chain theory. The authors constructed a homogeneous
Markov chain and deduced linear convergence under the stability of this Markov chain. In
[4], the augmented Lagrangian constraint handling mechanism in [2] is implemented for
CMA-ES and a general framework for building a general augmented Lagrangian based ran-
domized algorithm for constrained optimization in the case of one constraint is presented.

3 Markov Chain Analysis and Linear Convergence

Randomized or stochastic optimization algorithms are iterative methods where—most often—
the state of the algorithm is a Markov chain. For a certain class of algorithms obeying
proper invariance properties, Markov chain theory can provide powerful tools to prove the
linear convergence of the algorithms [8, 7, 5]. We illustrate here on a simple case the gen-
eral methodology to prove linear convergence of an adaptive randomized algorithm using
Markov chain theory. We assume for the sake of simplicity the minimization of the sphere
function x — f(x) = %XTX with, without loss of generality, the optimum in zero. We as-
sume that the state of the algorithm at iteration 7 is given by the current estimate X; of the
optimum and a positive factor, the step-size o;. From this state, A new candidate solutions

are sampled according to
;+1 :X[+GZU;+1, l: 1,...,& ,

where U; 1 are independent identically distributed (i.i.d.) standard multivariate normal dis-
tributions (with mean zero and covariance matrix identity). The state of the algorithm is
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then updated via two deterministic update functions % and ¥, according to

Xi+1=%((X1,01),6%Up11) 3)
0111 =9 (01,6*Urt1) 4)
where U, = (U}, ,U;IH] is the vector of i.i.d. random vectors Ul ; and

¢ = 0rd(f(X; + 01U, 1) i1, 1)

is the permutation that contains the indices of the candidate solutions X; + o;Ui | ranked

1+1
according to their f-value. That is, the ordering is done using the operator Ord such that,
given A real numbers z1,---,z), ¢ = Ord(z1,--- ,7;,) satisfies
() S Sy - (5)

In (3) and (4), the operator ‘*’ applies the permutation ¢ to U,;; and

¢+ Uy = [UE) . s 6)

It has been shown that if the update functions % and ¥ satisfy the following conditions

[71:
(i) for all x,xo € R”, for all ¢ > 0, for all y € (R")*

%((x+x0,0),y) = %((x,0),y) +X0o ,

(i) for all x € R", for all at, ¢ > 0, for all y € (R")*

(i11) forall or,0 >0, forally € (R"YL
o
gG((y?y) = agﬁ <aa3’> )

then the algorithm is translation-invariant and scale-invariant. As a consequence, (Y;);en,
with Y, = %’, is a homogeneous Markov chain that can be defined independently of (X;, o;),

. o XO
given Yo = o as

gx«Yt? 1)7Q*Uz+1)

Y/ = ,
ak gc(lug*Ut-H)

where ¢ = Ord(f(Y,+U! +1)i=1,--2) [7, Proposition 4.1] (this result is true for the sphere
function but more generally for a scaling-invariant objective function). Let consider now
the following definition of linear convergence:
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Definition 1. We say that a sequence (X );cn of random vectors X; converges linearly al-
most surely (a.s.) to Xqp 1f there exists CR > 0 such that

X = Xopel|

lim — ln = —CR a.s.

i=e 1 |[Xo — Xopt|

The constant CR is called the convergence rate.

Using the property of the logarithm, the quantity ; 11n I‘I‘Xf‘l‘\ (Xopt = 0 here) can be ex-

pressed as a function of Y, according to

IXell 1N Xkl 1S Xkl 660 (1,6 % Ugir)
t

1 In In
[1Xoll kz’ Xkl ¢ Z HXkH Ok+1
1[ LYl
Zl Y% (1,6xUyy) (7
Y]]

where we have successively artificially introduced oy = 6,95 (1,6 * Ui 1) and then used
that Yy = X; /o and Yy | = Xy 1/0ks1- In (7), we have expressed the term whose limit
we are interested in as the empirical average of a function of a Markov chain. However,
we know from Markov chain theory that if some sufficient stability conditions—given for
instance in Theorem 17.0.1 from [14]—are satisfied by (Y;),cn, then a law of large numbers
(LLN) for Markov chains can be applied to the right-hand side of the previous equation.
Consequently,

X 1’ )
hm—ln H tH ' Zl | k+1H
et [ Xol Ry 1Y

— [Inlylatay) - [n]lyla(dy) + [ En(o(1,¢x Vi)Y =y)(dy)

—CR

Go(1,6*Upyp)

where 7 is the invariant probability measure of the Markov chain (Y;);cn. Hence, assuming
that a law of large number holds for the Markov chain (Y;);cn, the algorithm described by
the iterative sequence (X, 0y);cn Will converge linearly at the rate expressed as minus the
expected log step-size change (where the expectation is taken with respect to the invari-
ant probability measure of (Y;);cn). This methodology to prove the linear convergence of
adaptive algorithms (including many evolution strategies) in the unconstrained case holds
on scaling-invariant functions (that include particularly functions that write g o f, where
g is a 1-D strictly increasing function and f is positively homogeneous, typically f can
be a convex-quadratic function). It provides the exact expression of the convergence rate
that equals the expected log step-size change with respect to the stationary distribution of
a Markov chain. This illustrates that Markov chains are central tools for the analysis of
convergence of adaptive randomized optimization algorithms. Remark that the convergence
rate can be easily simulated to obtain quantitative estimates and dependencies with respect
to internal parameters of the algorithm or of the objective functions.
We see that there are two distinct steps for the analysis of the linear convergence:
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(i) Identify on which class of functions the algorithms we study can exhibit a Markov
chain whose stability will lead to the linear convergence of the underlying algorithm
(in the example above, the Markov chain equals Y, = X;/o;).

(i) Prove the stability of the identified Markov chain.

The second step is arguably the most complex one. So far, it has been successfully achieved
for the analysis of the linear convergence of self-adaptive evolution strategies [5] and for
the (14 1)-ES with one-fifth success rule [6] in the unconstrained case. The main tools to
prove the stability rely on Foster-Lyapunov drift conditions [14]. In this paper, we will focus
on the first step. Particularly, the Markov chain for step-size adaptive randomized search
optimizing scaling-invariant functions (i.e. unconstrained optimization) was identified in
[7]. In addition, in the constrained case, the Markov chain has been identified for the (14 1)-
ES with an augmented Lagrangian constraint handling in the case of one linear inequality
constraint [3]. We consider here the extension to more than one constraint and a more
general algorithm framework.

4 Optimization Problem

We consider throughout this work the problem of minimizing a function f subject to m

linear inequality constraints g;(x) <0, i = 1,---,m. Formally, this writes
min f(x)
X
subject to g;(x) <0, i=1,---,m , (8)

where f: R" - R, g; : R" — R, and g;(x) =b;Tx+¢;, b; € R", ¢; € R.

We assume this problem to have a unique global optimum X,,.. We also assume the
constraints to be active at Xop, that is, gi(xopt) =0,i=1,---,m. This constitutes the most
difficult case. Indeed, if the constraint is not active, when close enough to the optimum, the
algorithm will typically not see the constraint such that it will behave as in the unconstrained
case. In terms of theoretical analysis, the unconstrained case—for a general class of step-
size adaptive algorithms—is well understood in the case of scaling-invariant functions [7].
Additionally, we assume that the gradients at Xopt, Vxf(Xopt) and Vxgi(Xopt), i =1,---,m,
are defined and that the constraints satisfy the linear independence constraint qualification
(LICQ) [15] at xopr. We denote Yope the (unique) vector of Lagrange multipliers associated
tO Xopt-
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S Considered Augmented Lagrangian

A practical augmented Lagrangian for the optimization problem in (8) is given in the fol-
lowing equation

h(x,7,®) = +i

i=1

i i i 2 f + ii 20
{Vg +%gi(x)? if Y+ 0'gi(x) | ©

—a otherwise

[\ J/

01 (i(%).7,0)

The use of a different penalty factor for each constraint is motivated by the fact that the
penalization should depend on the constraint violation—which might be different for dif-
ferent constraints. The quality of a solution x is evaluated by adding f(x) and either (i)

Y'gi(x) + 2g1< x)? if g;(x) is larger than —7’4
function g;.

The augmented Lagrangian in (9) is constructed such that (i) the fitness function remains
unchanged when far in the feasible domain and (ii) 4 is “smooth” in that it is differentiable
with respect to g;. Therefore, (9) is the recommended augmented Lagrangian in practice.
For the analysis, however, we consider a simpler augmented Lagrangian (equation below)
so that we can construct a Markov chain.

2
or (ii) —# otherwise, for each constraint

h(x,7,0) = +Zafg, + 2 aix)? (10)

P2(5i(x).7.0)

The difference is that in the previous formulation the penalization is a constant and hence
inconsequential for g;(x) < —y/®'. Since we focus in our study on problems where the
constraints are active at the optimum, the augmented Lagrangians in (9) and (10) are equiv-
alent in the vicinity of Xop, as illustrated in Figure 1 for one constraint. Inactive constraints
are covered in that the analysis remains valid when these constraints are removed, in which
case we recover the original equation (9) up to adding a constant to the f-value. There-
fore, conducting the analysis with (10) gives insight into how a practical algorithm using (9)
would perform close to the optimum.

6 Algorithm

In this section, we present a general ES (Algorithm 1) with comma-selection and weighted
recombination (denoted (it /pw, A)-ES) for constrained optimization, where the constraints
are handled using an augmented Lagrangian approach.

First, A i.i.d. vectors U! i+ are sampled in Line 3 of Algorithm 1 according to a nor-
mal distribution of mean 0 and covariance matrix the identity. They are used to create A
candidate solutions X' t+1 according to

Xll;+1 :X[+GtUll:+1 5 (11)
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Figure 1: Left: @;(gi(x),7,®') for j =1 (blue) and j = 2 (red), as a function of g;. Right:
Augmented Lagrangians, f(x) + Y, ¢;(gi(x),7,®"), for j =1 (blue) and j = 2 (red), in
n=1withm=1. f(x) = 3x% g1(x) =x— 1, and xop; = 1.

where X; is the current estimate of the optimum and o; is the step-size. The candidate
solutions are then ranked according to their fitness, determined by their s-value. This is
done in Line 4 with the operator Ord defined in (5), where ¢ is the permutation that contains
the indices of the ordered candidate solutions.

Later on, we will make explicit the dependency of ¢ on the objective function, the current

solution, and the current step-size, where needed (this would read g(h)glﬁr;o’) here). The solu-
tion X, at the next iteration is computed by recombining the u best candidate solutions—
or parents—in a weighted sum according to Line 5, where w;, i = 1,--- , u, are the weights
associated to the parents and the operator ‘*’ applies the permutation ¢ to the vector Uy |
of the sampled vectors Ui 41 as defined in (6).

The step-size is adapted in Line 6 using a general update function ¢;. For the sake of
simplicity, we consider that ¢ is a function of the current step-size o; and the ranked vector
¢ * U,y of the sampled vectors U; i1

The Lagrange factors are adapted in Line 7. As a result of this update rule, a Lagrange
factor 7 is increased if g;(X;11) is positive and decreased otherwise. A damping factor dy
is used to attenuate the change in the value of 7.

Each penalty factor @/ is adapted according to Line 8. This update is a generalization to
the case of many constraints of the original update proposed in [2] for the case of a single
constraint. A penalty factor @' is increased in two cases: the first one is given by the first
inequality in Line 8 and corresponds to the case where (i) the change in A-value due to

changes in 7/ and @/ is smaller than the change in h-value due to the change in X;. Indeed

@/ gi(Xe41)* = [h(Xe i1, % + A, 0 +A@) — h(Xp i1, %, )|

where A;y = (0,--- ,A¥,---,0)T and A, = (0,--- ,A®',---,0)T. By increasing the penal-
ization, we prevent premature stagnation [2]. The parameter @' is also increased if (ii)
the change in the corresponding constraint value |g;(X;+1) — gi(X;)| is significantly smaller
than |g;(X;)| (second inequality in Line 8). In this case, increasing the penalization al-
lows approaching the constraint boundary (g;(x) = 0) more quickly. However, increasing
a)f increases the ill-conditioning of the problem at hand, therefore, in all other cases, a)ti 1S
decreased (second case in Line 8). Similarly to the update of the Lagrange factors, we use a
damping factor dg to moderate the changes in @
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Algorithm 1 (u/pw,A)-ES with Augmented Lagrangian Constraint Handling

u
Ogivenn € N>, x,ki,ky,dy,do ERE, A, U ENS,0<w; <1, Y wi=1
i=1

1 initialize X) € R", 0o € RE, 1 € R™, ap € (RL)", t=0
2 while stopping criterion not met
3 ;+l:r/V(OaInxn)vi:17"'7)L
4 ¢=0rd(h(X;+ Ul 1, % O)it,... 1)
u
5 X1 =Xit+0 ZWi[Q*UtH]i,UtH = (U}, 7U;)L+1]
i=1
6 011 =%(01,6%U11)
7 ’yl‘l+1:’yll+d_tgi<xl+l)a l:17"'7m
Y

8 wti+1 = or k2|gi(X,+1) _gi(Xz)| < |gi(Xt)|
wfx‘l/dw otherwise, i=1,---,m

9 t=t+1

Algorithm 1 is a randomized adaptive algorithm that can be defined in an abstract man-
ner as follows: given the state variables (X;, 0y, %, @) at iteration 7, a transition function
F (FAgiti=1--m) and the vector U,y = Uy, ,Uﬁrl] of i.i.d. normal vectors Uj |, com-
pute the state at iteration 7 + 1 according to

(XH-] yOr+1, Yi+1, wl—H) = ‘g\('f’{gi}i:]#w’m)((X17 O:, %5 (Ot)7Ul+1)a

where the superscript indicates the objective function to minimize, f, and the constraint
functions, g;. The deterministic transition function .% (fA8iti=1.-m) is defined by the follow-
ing general update rules for X;, o;, ¥, and @:

Xit1 =% ((Xs,061),6%Urp1) (12)
Or+1=Y(01,6xUry1) (13)
Yot = A5, 0 Xep1), i= 1,00 m (14)
o, = A (0 Y X X ), i= 1, m (15)

where ¢, %, 7, and J; are given in Lines 4, 5, 7, and 8 of Algorithm 1 respectively.
These notations are particularly useful for defining the notions of translation and scale-
invariance in the next subsection. They also make the connection between the constructed
homogeneous Markov chain and the original algorithm clearer.

Comparing (12), (13), (14), and (15) to (3) and (4), it is easy to see that Algorithm 1
is built by taking an adaptive algorithm for unconstrained optimization and changing its
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objective function to an adaptive one—the augmented Lagrangian—where the parameters
of the augmented Lagrangian are additionally adapted every iteration. This idea was already
put forward in [4] for the case of a single constraint, and we generalize it here to the case of
m constraints.

6.1 Invariance

Invariance with respect to transformations of the search space is a central property in ran-
domized adaptive algorithms. In the unconstrained case, it is exploited to demonstrate
linear convergence [7, 6]. In this subsection, we discuss translation-invariance and scale-
invariance of Algorithm 1. We first recall the definition of a group homomorphism and
introduce some notations.

Definition 2. Let (Gy,.) and (G,*) be two groups. A function ® : G; — G, is a group
homomorphism if for all x,y € Gy, ®(x.y) = P(x) * D(y).

We denote . (Q) the set of all bijective transformations from a set Q to itself and
Homo((R",+), (.#(Q),0)) (respectively Homo((RZ,.),(.7(Q),0))) the set of group ho-
momorphisms from (R”,+) (respectively from (RZ,.)) to (.#(Q),0).

Translation-invariance informally translates the non-sensitivity of an algorithm with re-
spect to the choice of its initial point, that is the algorithm will exhibit the same behavior
when optimizing x — f(x) or X — f(x —Xg) for any xo. More formally, an algorithm
is translation-invariant if we can find a state-space transformation such that optimizing
X — f(x) or x — f(X—Xp) is the same up to the state-space transformation. In the next
definition, which is a generalization to the constrained case of the definition given in [7],
we ask that the set of state-space transformations is given via a group homomorphism from
the group acting on the function to transform the functions, that is (R”,+), to the group of
bijective state-space transformations. Indeed this group homomorphism naturally emerges
when attempting to prove invariance. More formally, we have the following definition of
translation-invariance.

Definition 3. A randomized adaptive algorithm with transition function .7/ Asiti=tm)
Q x U* — Q, where f is the objective function to minimize and g; are the constraint func-
tions, is translation-invariant if there exists a group homomorphism ® &

Homo((R",+), (.7 (L), 0)) such that for any objective function f, for any constraint g;, for
any X € R”, for any state s € Q, and for any u € U?,

{0/\(f(X)v{gi(X)}i:l,....m) (S, u) — CD(—X()) (g (f(xfxo)a{gi(XfX())}izlf..’m) (CI)(X()) (S) 7 u))
Similarly for scale-invariance, the set of state-space transformations comes from a group
homomorphism between the group where the scaling factors acting to transform the objec-

tive functions are taken from, that is the group (RZ,.) and the group of bijective state-space
transformations.
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Definition 4. A randomized adaptive algorithm with transition function .7/ Asibi=tm)

Q x U* = Q, where f 1s the objective function to minimize and g; are the constraint func-

tions, is scale-invariant if there exists a group homomorphism ® € Homo((RZ,.), (.#(),0))
such that for any objective function f, for any constraint g;, for any o > 0, for any state

s € Q, and for any u € U)“,

Z(F){8i(X) izt m) (s,u) = (1 /at) <gf(f(0€X)’{g;(O€X)}i:1,u,m) (@(a)(s), u))

The next proposition states translation-invariance of Algorithm 1.

Proposition 1. Algorithm [ is translation-invariant and the associated group homomor-
phism ® is given by
P(x0)(x,0,7,0) = (x+x0,0,7,0) , (16)

forall xyg,x € R", for all o € R, and for all y,w € R™.

The proof of this proposition is given in Appendix A.l. In the next proposition we state
the scale-invariance of Algorithm 1 under scale-invariance of the transition function %.

Proposition 2. If the update function 95 of the step-size satisfies the following condition
Y5(01,6xUps1) = 095 (0 /A, 6 * Upy1) (17)

for all o > 0, then Algorithm 1 is scale-invariant and the associated group homomorphism
® is defined as
P(a)(x,0,7,0)=(x/a,0/a,y,0) , (18)

forall o > 0, for all x € R", for all o € R, and for all y,® € R™.

The proof of the proposition is given in Appendix A.2.
In the next section, we illustrate how translation and scale-invariance induce the exis-
tence of a homogeneous Markov chain whose stability implies linear convergence.

7 Analysis

In this section, we demonstrate the existence of an underlying homogeneous Markov chain
to Algorithm 1, given the augmented Lagrangian in (10) satisfies a particular condition. To
construct the Markov chain, we exploit invariance properties of Algorithm 1, as well as the
updates of the Lagrange factors and the penalty factors.

As stated in Section 4, we assume that the optimization problem admits a unique global
optimum X,y and that the constraints g;, i = 1,--- ,m, satisfy the LICQ at X,p, hence that the
vector Yopt of Lagrange multipliers is unique. Once we have the Markov chain, we show how
its stability leads to linear convergence of (i) the current solution X; towards the optimum
Xopt» (i1) the vector of Lagrange factors y; towards the vector of Lagrange multipliers Yopt,
and (iii) the step-size o; towards O.
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7.1 Homogeneous Markov Chain
We start by recalling the definition of positive homogeneity.

Definition 5. [Definition 4 from [3]] A function p : X — Y is positive homogeneous of
degree k > 0 with respect to x* € X if for all & > 0 and for all x € X,

p(x* + oax) = afp(x* +x) . (19)

Example 1. Our linear constraint functions, g;(x) = b]x + ¢;, are positive homogeneous of
degree 1 with respect to any x* € R” that satisfies g;(x*) = 0. Indeed,

gi(x" 4+ ox) = bl (x* + ax) +¢; = o(b]x* +¢;) + ab] x
=oagi(x*+x) , forall a > 0. (20)

The following theorem gives sufficient conditions under which the sequence (®;);cn,
with @, = (Y;,I;, @), is a homogeneous Markov chain, where the random variables Y; and
I'; are defined in (21) below.

Theorem 1. Consider the (1/Uw,A)-ES with augmented Lagrangian constraint handling
minimizing the augmented Lagrangian h in (10), such that the step-size update function Y
satisfies the condition in (17). Let (X, 0, %, )en be the Markov chain associated to this
ES and let (U,);en be a sequence of i.i.d. normal vectors. Let ¥ € R" such that g;(¥) =0
foralli=1,...,m, and let y € R™. Let

X _3 e
Y, =2 g, =17 Q1)
O; O;
Then, if the function Phg 3, : R"™" — R defined as

is positive homogeneous of degree 2 with respect to [%,7], then the sequence (®;);cr, where
&, = (Y,,I;, o), is a homogeneous Markov chain that can be defined independently of

(X1, 01, %, o) as Yo = (Xo —X) /00, Lo = (Yo — 7)/ 00 and for all t

Yii1 =% ((Yi,1),6%Ui1)/% (1,6 % Uy 1) (23)
. :%ﬂygi('ﬁ)(riaa’tiaf'tﬂ)/gcr(lag*Ut+1) : (24)
oy = Ay T (@ T+ V) (25)
with
= O0rd(h(Y, + U +% T+ 7,01, 1) (26)
Yiir =%((Y,1),6%Upt) (27)

where the Ord operator extracts the permutation of ordered candidate solutions (see (5)).
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The proof of Theorem 1 is given in Appendix A.3. The key idea in the proof is that when
Dhs 3,@, 18 positive homogeneous of degree 2 with respect to [X, 7], the same permutation ¢
is obtained when ranking candidate solutions X; + G,Ui 41 on A(-, %, @) than when ranking
candidate solutions Y; + UfH onh(-+x,I;+7,@),ie.,

h(-%,0) _ _h(AX+7,00)
g(X,,o-,) - g(Y,,I))( =6

Scale-invariance of Algorithm 1, induced by the property of ¥ in (17), is also used explic-
itly in the proof while translation-invariance is used implicitly.

Theorem [ holds for any X € R” such that g;(X) =0, for all i € {1,--- ,m}, and for any
Y € R™. In particular, it holds for the optimum Xy of our constrained problem and the
associated vector Y, of Lagrange multipliers.

The following corollary states that on convex quadratic functions, (®;),c (defined in
Theorem 1) is a homogeneous Markov chain for X = Xop and ¥ = Yop.

Corollary 1. Let (X;,0;,%,@;)cny be the Markov chain associated to the (W/w,A)-ES
in [ optimizing the augmented Lagrangian h in (10), with f convex quadratic defined as

flx)= %xTHx , (28)

where H € R"™" is a symmetric positive-definite matrix. Let Y; = X’_TT"’” and 'y = %_?2/0‘”,
where Xop, is the optimum of the constrained problem and Yo is the vector of the associated
Lagrange multipliers. Then (®;)cn, with ®, = (Y;,I;, @), is a homogeneous Markov chain
defined independently of (X;,01,%, @) as in (23), (24), (25), (26), and (27) by taking ¥ =

Xopt and y = Yopt-

We prove the corollary by showing that the function Zh o defined in (22) 1s pos-

itive homogeneous of degree 2 with respect to [Xopt, Yopt] for f(x) = %XTHX. For the proof

(see Appendix A.4), we use the following elements:

Xopt, Yopt s

e The definitions of the gradients of f and g;, Vxf(y) = y"H and Vyg;(y) = b], respec-
tively.

e The KKT stationarity condition at the optimum Xopt

fo(xopt) + Z '}’ivxgi(xopt) =0 . (29)
i=1

Remark 2. For a convex quadratic objective function f and linear constraints g;, i =1,--- ,m,
KKT conditions are sufficient conditions for optimality. That is, a point that satisfies KKT
conditions is also an optimum of the constrained problem (see [15, Theorem 16.4]). The
optimization problem we consider is unimodal, therefore X is the only point satisfying the
KKT conditions.
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7.2 Sufficient Conditions for Linear Convergence

In the sequel, we investigate linear convergence of Algorithm 1. There exist many definitions—
not always equivalent—of linear convergence. We consider here the almost sure linear con-

vergence whose definition is given in Definition 1. We will also briefly discuss another
(X141 —Xopt|
- . o . X ~Xopd]| -

We start by giving the definitions of an invariant probability measure and positivity [14].
We consider a Markov chain (X;);cny that takes its values in a set 2~ C R” equipped with its
Borel o-algebra Z(.2"). The transition probabilities are given by the transition probability

kernel P such that forx € 2" and B € #(2")

definition of linear convergence that considers the expected log-progress In

P(x,B) =Pr(X;+1 €B | X; =X) .

Definition 6. Let 7 be a probability measure on .2 and let X; ~ . We say that 7 is invariant
if

7(B) = /f 7(dx)P(x,B) .

We say that a Markov chain is positive if there exists an invariant probability measure for
this Markov chain.

Harris-recurrence [14] is related to the notion of irreducibility. Informally, a Markov
chain is @-irreducible if there exists a nonzero measure @ on 2~ such that all @-positive sets
(that is, sets B € (.2Z") such that ¢(B) > 0) are reachable from anywhere in 2. In such
a case, there exists a maximal irreducibility measure y that dominates other irreducibility
measures [14].

Definition 7. Let (X;),cry be a y-irreducible Markov chain. A measurable set B € #(Z")
is Harris-recurrent if
PI‘( Z I{X;GB} — | X():X) =1 )
teNs
for all x € B. By extension, we say that (X, ),y is Harris-recurrent if all y-positive sets are
Harris-recurrent.

We can now recall Theorem 17.0.1 from [14] that gives sufficient conditions for the
application of a LLN for Markov chains.

Theorem 2 (Theorem 17.0.1 from [14]). Let Z be a positive Harris-recurrent chain with in-
variant probability Tt. Then the LLN holds for any function q such that ©(|q|) = [ |q(z)|n(dz)
< oo, that is, for any initial state Zg, lim; ;. % ZZ_:BCI(Z;() = n(q) almost surely.

Consider now Algorithm 1 minimizing the augmented Lagrangian /4 in (10) correspond-
ing to the optimization problem in (8), such that the function Phx, v, defined in (22)
is positive homogeneous of degree 2 with respect to [Xopt, Yopt|- By virtue of Theorem 1,
(®;);ery is a homogeneous Markov chain. The following theorem gives sufficient condi-
tions under which Algorithm 1 converges to the optimum X, of the constrained problem,
as well as to the corresponding Lagrange multiplier Yopt.
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Theorem 3. Let (X;,0;,%,);en be the Markov chain associated to Algorithm 1 opti-
mizing the augmented Lagrangian h such that the function Dhy,, v« defined in (22) is
positive homogeneous of degree 2 with respect to [Xop;, Yopt|, Where Xop; is the optimum of
the constrained problem (8) and Yop is the corresponding Lagrange multiplier. Let (®;);cn
be the Markov chain defined in Theorem 1 and assume that it is positive Harris-recurrent
with invariant probability measure @, that Ez(|In||[@]1]||) < o, Ex(|In]|[@]2]|]]) < oo, and
Ex(Z(9)) < oo, where

Z(9) = E(In(Gs(1,6%Up11))| P = 9) . (30)
Then for all Xy, for all oy, for all Y, and for all ay,

X — 1 _ 1 o
fim L WX ol g Ly = ol g T o
=t || Xo—Xop|| ot [ —TYoptl| et 0

where

~CR= [ #($)m(d9) .

The proof idea is similar to the one discussed in Section 3 for the unconstrained case,
HXI—XOPIH 1 H%_YoptH

—1In
Xo—xoptll> £ 7 10— Yoptll*

the Markov chain ®,. The detailed proof of Theorem 1 is given in Appendix A.5.

While in the previous theorem we have presented sufficient conditions on the Markov
chain ®; for the almost sure linear convergence of the algorithm, other sufficient conditions
can allow to derive the geometric convergence of the expected log-progress. Typically, as-
suming we have proven a so-called geometric drift for the chain ®;, plus some assumptions
ensuring that the conditional log-progress is dominated by the drift function (see for instance
[7, Theorem 5.4]), then

where the quantities %ln and %ln (% are expressed as a function of

Xi+1—X
Y[y in Xl o)) < gy () (31)
; X = Xopel|
where r > 1, R is a positive constant and V' > 1 is the drift function. Equation (31) also
. HXZJrl_XoptH ||%+1_y0pl|| %
holds when replacing In X, —opt| by In = and In o -

8 Empirical Results

We describe here our experimental setting and discuss the obtained results.

8.1 Step-Size Adaptation Mechanism

We test Algorithm 1 with cumulative step-size adaptation (CSA) [12]. The idea of CSA
consists in keeping track of the successive steps taken by the algorithm in the search space.
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This is done by computing an evolution path, p?, according to

P = (1—co)p? + Z weUs) (32)
Zk 1Wk
where 0 < ¢ <1 and pg = 0. The constant % 18 a normalization factor that is
k=1 k

chosen such that under random selection, if p? is normally distributed (pf ~ A (0,L,xn)),
then p7 | is identically distributed [10, 11]. The evolution path is used to adapt the step-size
o; according to the following rule.

O 1 = O, exp% ( ||P,6+1|| — 1) (33)
e E[[A(0,Lxn) || '

The norm of the evolution path is compared to the expected norm of a standard normal

) . P74l
r mputing the ratio =—p
vector by computing the ratio g—7g —y

% > 1, oy is increased as this suggests that the progress is too slow.
Otherwise, o; is decreased. ds is a damping factor whose role is to moderate the changes in
o; values.

In order for this adaptation mechanism to be compliant with our general adaptation rule

Ys(0r,6%Ustq) (see (13)), we take cq = 1, that is, we consider CSA without cumulation.

In this case, (32) becomes
(o2
Pt = Z WkUt+1
\/ Zk IWE S

For the damping factor, we use

/YY" w2—1
— 2 +2max 0’\//2‘%;”%_1 ;
n+1

and the step-size is updated depending on this

ratio: if

which is the default value recommended in [11] with ¢ = 1.

8.2 Simulations of the Markov Chain and Single Runs

We test Algorithm 1 on two convex quadratic functions, as a particular case of Corollary 1:
the sphere function, fphere, and the ellipsoid function, fepiipsoid, With a moderate condition
number. They are defined according to (28) by taking (i) H = L,x, for fiphere and (i) H

i—1
diagonal with diagonal elements [H]; = a¢»-1,i=1,--- ,n, for Jellipsoid and with a condition
number & = 10.
We choose Xop to be at (10, ---,10)T and construct the (active) constraints following the

steps below:
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e For the first constraint, by = —Vy f(Xopt)T and ¢; = —b] Xopt,

e For the m — 1 remaining constraints, we choose the constraint normal b; as a standard
normal vector (b; ~ .4(0,1,x,)) and ¢; = —b] Xop. We choose the point Vy f(Xopi) T =
—b; to be feasible, along with Xp. Therefore, if g;(Vxf(Xopt)T) > 0, we modify b;
and ¢; according to: b; = —b; and ¢; = —c;.

With the construction above, the constraints satisfy the LICQ (see Remark 1) with proba-
bility one. In such a case, the unique vector of Lagrange multipliers associated to Xopt is
Yopt = (1,0,--+,0)T,

As for the parameters of Algorithm 1, we choose the default values in [11] for both A
and u. We set the weights w;, i = 1,---, i, according to [1], where they are chosen to be
optimal on the sphere function in infinite dimension. We take dy =dp =5, ¥ = 21/ k=3,
and k, = 5.

We run Algorithm | and simulate the Markov chain (®;);cn (defined in Theorem 1)
in n =10 on fiphere and feliipsoid With m = 1,2,5,9 constraints. For each problem, we
test three different initial values of the penalty vector @y = (1,---,1)T, (103,---,10%)T,
(1073,---,1073)T. In all the tests, Xy and Y, are sampled uniformly in [—5,5]", 6y = 1,
and Yo = I'p= (5,-~- ,S)T.

Figures 2-5 show simulations of the Markov chain on fgyhere (left column) and fepiipsoid
(right column) subject to 1, 2, 5, and 9 constraints respectively. Displayed are the normal-
ized distance to Xop, || Y/|| (red), the normalized distance to Yp, | I|| (green), and the norm
of the vector of penalty factors, ||a|| (blue) in log-scale, for g = (1,---,1)T (first row),
@y = (10°,---,10%)T (second row), and @y = (1073, ---,1073)T (third row). We observe an
overall convergence to a stationary distribution, independently of @y, after a certain number
of iterations. For @y = (103, e 103)T, the adaptation phase before reaching the stationary
state is longer than with @y = (1,---,1)T or @y = (1073,---,1073)T on both fsphere and
JSeltipsoid- It also increases with increasing m: it takes approximately 4 x 103 iterations on
JSsphere and feliipsoia With m =1 (Figure 2) and approximately 6 x 103 iterations with m =9
(Figure 5). Indeed, the problem becomes more difficult for large m (as shown below with
single runs). We also observe from Figures 2-5 that | || stabilizes around a larger value as
m increases (approximately 4 x 10~* and 6 x 107> on JSsphere and feriipsoid respectively with
m = 1 versus approximately 1 and 4 with m =9).

Figures 6-9 show single runs of Algorithm 1 on the same constrained problems described
previously. Results on constrained fsppere and constrained feyiipsoid are displayed in left and
right columns respectively. The displayed quantities are (i) the distance to the optimum,
1 X; — Xopt|| (red), (ii) the distance to the Lagrange multipliers, || — Yopt|| (green), (iii) the
norm of the penalty vector, ||| (blue), and (iv) the step-size, o; (purple), in log-scale. Lin-
ear convergence occurs after an adaptation phase whose length depends on the accuracy of
the choice of the initial parameters: for m = 1 and @y = (1073,---,1073)T (Figure 6, third
row), linear convergence occurs after only around 30 iterations because @y is already close
to a stationary value (see Figure 2). On fgphere With m = 2 (Figure 7, left column), the algo-
rithm reaches a distance to Xqp Of 10~* after around 750 iterations with @y = (1,---,1)T,
compared to around 2500 iterations with @y = (10°,---,10°)T and around 1300 iterations
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Figure 2: Simulations of the Markov chain on fphere (left) and fepiipsoia (right) with m =1
in n = 10.

with @y = (1073,--- | 1073)T. The reason is that @y = (1,---,1)T is closer to the stationary
value in this case (Figure 3, left column). As the number of constraints increases (Figures 8
and 9), the number of iterations needed to reach a given precision increases: it takes more
than 2 times longer to reach a distance from the optimum of 10~ on both JSsphere and feltipsoid
withm =9 and @y = (1,---,1)T (Figure 9, first row) than with m = 1 (Figure 6, first row).
These results are consistent with the simulations of the Markov chain in that the observed
stability of the Markov chain leads to linear convergence of the algorithm—as stated in
Theorem 3.

9 Discussion

In this work, we investigated linear convergence of a (u/uw,A)-ES with an augmented
Lagrangian constraint handling on the linearly constrained problem where all the constraints
are active. We adopted a Markov chain approach and exhibited a homogeneous Markov
chain on problems where the associated augmented Lagrangian, centered in the optimum

128



6.3 Linearly Convergent Evolution Strategies via Augmented Lagrangian Constraint
Handling

» =10, m=2, [wy]. =1

4f 175

10Yetlipsoid? =)

10°G— 1000 2000 3000 4000 5000 10°5— 1000 2000 3000 4000 5000
iterations Iiterations
1 fspheres- =10, m =2, [wy]; =1000 Sotipsoiar- =10, m =2, [ws]; =1000
106 A
10°
10*
10°
107§
10t :
10° N
: 107 b i |
10701000 2000 3000 4000 5000 6000 10°0— 2000 4000 6000 8000 10000
iterations iterations

EE7

Bipherer 1 =10, m =2, [wy], =0.001 fotiipsoiar- =10, m =2, [wy], =0.001

Uit

PSSOt

102 ="

-3 -3
10701000 2000 3000 4000 5000 10701000 2000 3000 4000 5000
iterations Iiterations

Figure 3: Simulations of the Markov chain on fphere (left) and fepiipsoia (right) with m = 2
inn=10.

and the corresponding Lagrange multipliers, is positive homogeneous of degree 2. We gave
sufficient stability conditions which, when satisfied by the Markov chain, lead to linear
convergence to the optimum as well as to the Lagrange multipliers. Simulations of the
Markov chain on linearly constrained convex quadratic functions (as a particular case of the
exhibited class of functions) show empirical evidence of stability for the tested parameter
setting. We draw attention, however, to the fact that the observed stability may depend on
the chosen parameter setting—in particular the damping factors for the Lagrange factors
and the penalty factors—and proper parameter values are necessary to observe stability,
especially in larger dimensions and for large numbers of constraints.

The conducted analysis gives insight into the behavior of the practical (u/uw,A)-ES
obtained when optimizing the augmented Lagrangian presented in (9). Indeed, we focus
our study on the most difficult case in practice, where all the constraints are active at the
optimum.

Finally, this work illustrates how the Markov chain approach—which is already applied
to prove linear convergence of randomized optimization algorithms in the unconstrained
case—can be extended to the constrained case.
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A

A.l

Proofs

Proof of Proposition 1

For Algorithm 1, the state s, = (X;, 07, %, @y ). Let

(X;-i-l’Gt/-i—l’yt,-l-l?wt/—O—l) = 9(f('_x())’{gi('_x())}izl"""")(q)(XO)(XtaO'taYtawt)aUtH) .

Given the definition of ®(x¢) in (16) and the update functions %, ¥, %, and 7, in (12),
(13), (14), and (15) respectively, we have

;—H = gX((Xl —J’_XO?Gt)’ S

:Xt+XO+GtZ

/
Oy = 9s(01,6

1
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Figure 9: Single runs on fiphere (Ieft) and fepiipsoia (right) with m =9 in n = 10, with three
different values of ay.

On the other hand, we have

h(-— Iy (%) i h Y (2]
Q()EZJ:;%L[?) = Ord(h(Xt +Xo+ GIUH_] — X0, %, a)t)i:L-n,l) = Q(y&t;?»)

It follows that

1 =%((Xs,01), G(h)gtjc/tn?) *Up1) +x0 = X1 +X0 (34)
h(- 1)

/
Ory1 = go-(Gt,g(tht) ) =0r11 -

Using (34), we obtain

. (o o !
Wiy = A5 (o o, ) = X %)

:%/gi(%awjaxt%—l) = ’yti+17 = 17 ,ym .,
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ol | = %agf(~—xO),gi(-*Xo)) (o, ¥, X, +%0,X], 1)

wlixl/(étdw) ifwfgi(X§+1—Xo) <k (X741 —X0, %, @) — (XI+XO X0, %)

= or ka|gi(X}, | —Xo) — &i(X; +X0 —Xo)| < |8i(X; +x0 —X0)|
@'y~ otherwise, i=1,---,m
= %agf7gi)(a)ti7}/;7xl7xt+l) = wzi+17 = 17 ym.
Therefore,

(XI—H +X0, 0t +1, Yi+1, wt—H) = ﬁ(f('*xo),{gi('*Xo)}i:l,...,m) (CI)(XO) (Xt7 O, w[)7Ut+1) .
(35)
By applying the inverse transformation ®(—xg) to (35), we recover .# (f{8ibiz1,m) (X, 00, %, ).

A.2  Proof of Proposition 2
The state at iteration ¢ is s, = (X;, 0y, %, @ ). Let

( ;+17Gt/+17?{+17w;+1):9(“0")’{3’"(0")}":1""=”’)(CP(OC)(X;,Gz,%,a)z),Uz+1) )

By definition, we have

h(o-, ks h RN (2]
Sy = Ord(h(@(X,/ 0+ 61/ QUL 1), Y @) ) = S 0
Using the definition of ® (o) in (18), (12), (13), (14), (15), and the equation above, it follows

u
S ftyWr h Sty Wr
o = (X /o 0/a), g B Unn) = T Y il T < U

1
= (X0, gy ¥ V) = =t (36)

t76)

and o/ | =9 (0 /a, g i

we obtain

o) ) xU41). Using the scale-invariance property of ¥4 (see (17)),

1 h(- O;
! — 7%>w1) . [+1
Or1 = a%(@,g(xm) *Upy1) = a

Finally, using (36) we get
gz ) j i !/ [ (1); /
V= (0l X)) =% + d_ygi(axﬂrl)

- %/gi(yliuwtiuxﬁkl) - Ytiﬁ»]a = 17 ,ym .,
and
offy = A" (] o X @, X )

4d(D) kl |h(aX;+1f)é,@)*h(“X[/(X,’}’ha)t)‘

iy if 0gi(aX], ;)< -
= or kalgi(aXq, 1) — gi(aXe/a)| < [gi(aX;/a)|
a)fx_]/dw otherwise, i=1,---,m

= %agfvgi)(a);7’}/ti7xt,X[+l) = (U[i+1, 1= 1’ ,m .
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Therefore,
X (o7 odoi(a )}
(P2 @ ) = FV @D ) (@(@) (X, 0,9, 01), Upsr) - (37)

By applying the inverse transformation ®(1/¢) to (37), we obtain .Z (/- {8iti=1.-m) (X, 67, 11, 00;).

A.3 Proof of Theorem 1

We have

Y, = Xir1—X _ % ((Xt,07),6%Upy1) — X
o Ot +1 Y5(01,6%xUry1)

Using translation-invariance and scale-invariance of Algorithm 1, it follows

gX((Yh 1),Q*Uz+1)
gﬁ(lvg*Ul+l) ’

Y1 =

with

(')/t, )_ h(O't-+)_(,’}/[,(Dz)_ h(o-t'+ivctrf+77wf)
S = 5x,,0:) (Yo,1) = S(Y,.1)

= Ord(h(o;(Y; + [Us1]i) +X, 0.1, + 7, wz)i:l,---,/l)
= 0rd(Phs 7,0,(0: (Y1 + [Ury1]i) + X, 6T +7)izr 1)

where Zhs 7,0, is defined in (22) and Y, and I'; in (21). By positive homogeneity of Zhx 7,0,
it follows

¢ = 0rd(6;* Dhs g0, (Yi + [Ure1]i + X, Ty + 9)icr . 2)

= 0rd(Phs 3,0,(Yi + Ui + %, Tt +¥)i=1,. 1)
= Ord(h(Y +[Ut+l]i+?_(,rt+}7,(0t),-:17...,;t)
__h(4RTA47.0)

= S(Y,,1) :

On the other hand, we have
. » L . o -
;a7 AL X) -7 Nt g giKe) -7
e+ Or+1 95(0r,6*Ury1) 695 (1,6 U 11)
B F§+%gi(xt+l)
ggo‘(lag*ljt-ﬁ-l)

Using positive homogeneity of g; with respect to X (see (20)) and the definition of Y,
in (27), we have

8i(Xi+1) = 8i(Gr+1 Y1 +X) = Gtgi(?c(lag*Uz+l)Yt+L+i) . (38)

gg}(((th)vg*Ul-ﬁ-l ):?Z-H
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Therefore,
r I+ dy Y gi(Yrs1 +X) %gi('+i)(F§,wf,Yt+l)
T TG 1,6k Ui1)  Doe(LcxUy)
fori=1,--- ,m. Finally,

o, = %agf’gi)(wtiﬂ’tivx“xt“)
rngl/(4dw) if 0'gi(X;41)? <

= or kp|gi(X+1) — &i(Xr)| < [8i(Xr)]
| @jx~ /4o otherwise, i=1,---,m

kl ‘h(Xt+17/}/t7wf)_h(Xt7/yf7a)[)‘
n

Yii1+%, FH‘%wf) (Y 4%+,

Wiyl 4do) if @igi(Yi1 +X)? < ky 2L
= or k2|gi(Yir1+X) —gi(Y, +X)| < |81(Yz+X)\
@iy~ otherwise

:%agf( +X)7gl( ))((D,,F’+}/ Yt,Y[+1) ’

fori=1,---,m, where we used (20), along with (38), and positive homogeneity of Zhx 7,q,
with respect to [X, 7] to deduce that

h(Xt+1,%7a)t) _h(Xt7%7wt) = Gtz(ghi,}_’,wr(?t—kl +i7 GIFI +’}_,)
_-@hif’w;(YtH‘*'i Gtrt+7))
=0/ (MY 1 +X,T +7,0) = (Y, + X, T+ 7, @)

D, 1 = (Y41,T441,041) is a function of only Y, I';, @, and i.i.d. vectors U, . There-
fore, (®;);cn is a homogeneous Markov chain.

A.4 Proof of Corollary 1

By definition, we have

m i

m
: Q]
h<X0pt + OX, Yopt + QY, ) = f(Xopt +ax) + Z Vlgi(xopt +ox)+ Z Tgi(xopt + OCX)z
— =l i=1

A (. (. /

B c
By developing A, B, and C, we obtain

A= azf(xopt +x) + (1 — az)f(xopt) +a(l-a) XgptH X,

——
fo(xopl)

B = Z (%pt+7/)gz(X0pt+X)+a( )y(l)pt )
i=1 ngt(xopt)

m Cl)i 5
C = (X2 Z 7gi(Xopt +X)
i=1
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6.3 Linearly Convergent Evolution Strategies via Augmented Lagrangian Constraint
Handling

The constraints being active at Xopt, £ (Xopt; Yopt; @) = f(Xopt) for all @ € (RE)™. It follows
that

m
D Fopr,0 Xopt + OX, Yopt + AY) = @ < S (Xopt +%) + Y (Yope + V) 8i (Xopt +X)
i=1
i
+ S 8i(Xop %) = f(xopt) ) + (1 - @)

VRS

fo(xopt) + Z ngi(xopt) )X
=1

0

The KKT stationarity condition in (29) is satisfied for Xop and Yopt. Therefore,

‘@hxopt/yoptaw (XOPt +OX, yopt + a’}/) = az‘@hxoplﬂophw(XOpt +X, ’}/Opt + ’}/) :

Consequently, (®;);cn is a homogeneous Markov chain with f convex quadratic.

A.5 Proof of Theorem 3

X —Xopt|| 17, [1%—Yoptll
_ HXO—XOp.tH’ 1 1—Yoptl? ]
chain (®;),cy defined in Theorem 1. Using the property of the logarithm, we have

We express % In and % In % as a function of the homogeneous Markov

(|1 X — Xopt| 17 (1 X541 — Xopt || 1 | Y]]
l - = In——— = In % 1§ Uk+1)
Xo—xonl 2" X w1 2" il

1=l t—1
1
=- Z In [ Yigr]l == Y In|[ Y| it Z In%s(1,6%Ur1) . (39)
=) = =)

(®),cn is positive Harris-recurrent with an invariant probability measure 7 and
Ez(|In||[@]1]|]) < oo, Ex(|In]|[@]2]||) < oo, and Ez(Z(¢)) < eo. Therefore, we can apply
Theorem 2 to the right-hand side of (39). We obtain

1 X, —
hm—lnM lim — ZlnHYkHH—hm ZlnHYkH—Hlm Zln%glg*UHl)

et || Xo = Xopel| 10

= [ gl n(de)~ [m][o}|x(6)+ [ #(9)(a) = —CR .

We proceed similarly with +1n ““;:’):7}21;"" and }1n %’)
1% —Yoprll 10
1 Zlnllrk+1||——21n Tl + Zln% (Lg*U1) ,  (40)

||YO_YOPt|| I =0

im - Zln% (1,6%Upyy) - (41)

Oy c5k+1
—ln— = — E
t

By applying Theorem 2 to the nght—hand side of (40) and (41), we obtain

1
tim L = Yopdl L0
1=y f H’}/O_’}/optH Al N )
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Chapter 7
Discussion

We approached two questions related to two different aspects of black-box continuous
optimization and adaptive randomized algorithms in this thesis. Our work consists in two
parts; in the first one, we tried to address the non-trivial question of how to adapt the step-size
efficiently. To that end, we presented a minimal methodology to assess step-size adaptation
algorithms in the case of unconstrained optimization. In particular, we presented a realistic
test scenario motivated by practical questions that one might consider when designing a new
step-size adaptation mechanism.

The second part of our work is the more important and addresses the question of linear
convergence of adaptive randomized algorithms for constrained optimization. The context is
the following: given an optimization problem with m active linear constraints, we considered
an adaptive augmented Lagrangian constraint handling approach that transforms the original

constrained problem into a sequence of unconstrained optimization problems of the form
mxinh(x, Y, @)

where £ is the augmented Lagrangian, ¥ is the vector of Lagrange factors, and @ is the vector
of penalty factors, and where % and @, are adapted throughout the optimization process.
First, we conducted a Markov chain analysis of a (1+ 1)-ES with augmented Lagrangian
constraint handling [5] when m = 1. This analysis shed light on how linear convergence can
be achieved in the more realistic case of m > 1 linear constraints. In particular, it allowed
us to define a practical (i /uw,A)-ES with augmented Lagrangian constraint handling for
m > 1 constraints, which we analyzed by generalizing the Markov chain analysis conducted
previously for m = 1. For both studied algorithms, we showed that if the function Zhx 7,6
defined as

gh)_gf)_/?a)(X, Y) = h(x7 Y7 w) - h(i7 77 w) b
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is positive homogeneous of degree 2 with respect to [X, 7] for any 7, @, and for any X that

satisfies g;(X) = O for all the constraints g;, then (Y;,I';, @ );cn is a homogeneous Markov

X, X _ %7
(o7} Oy

distance to y. This holds in particular when X is the optimum X, of the problem and ¥ is

chain, where Y; = is the normalized distance to X and I is the normalized

the corresponding vector of Lagrange multipliers Yop. A key element in constructing the
Markov chain was the comparison-based aspect of the studied algorithms and their invariance
properties, as well as the updates used for % and @;. Linear convergence to Xope and Yopt 18
deduced under stability assumptions on (Y;,I;, @ );en. These assumptions seem reasonable
and were validated empirically by simulations of the Markov chain on the sphere function
and a moderately ill-conditioned ellipsoid function. The algorithms we investigated are
in fact instances of a more general adaptive augmented Lagrangian approach, where the
algorithm iteratively performs one iteration to minimize the augmented Lagrangian, then
uses the newly computed solution X, | to adapt the parameters 9; and @, of the augmented
Lagrangian. Based on this observation, we defined a general framework for building an
adaptive randomized algorithm for constrained optimization from another adaptive random-
ized algorithm for unconstrained optimization, then applied it to a (i /uw,A)-CMA-ES with
median success rule step-size adaptation. This framework was described for one inequality
constraint; however, the generalization to m constraints is straightforward.

Our work shows that the Markov chain approach used to analyze linear convergence
in the unconstrained case can be extended to the constrained case when considering linear
constraints and an augmented Lagrangian approach for handling them. As mentioned above,
we only assume the stability of the Markov chain to deduce linear convergence. Therefore,
an interesting extension for our analysis would be to prove the stability (positivity and Harris-
recurrence) of the chain (Y;,I;, @ );c in order to have a complete proof of convergence.
Another possible extension would be to consider general update rules for 3 and @y in the
analysis and give sufficient conditions on these update rules such that a homogeneous Markov
chain with the desired stability properties exists. Finally, the general (u/uw,A)-ES with
adaptive augmented Lagrangian we present for handling m constraints can be seen as a
prototype. Indeed, although the preliminary results are interesting, in that linear convergence
can be achieved on a class of problems when the constraints are linear, a more thorough
empirical validation is required. In particular, the algorithm needs to be tested on different

test scenarios, in higher dimensions, and with a larger number of constraints.
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