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Abstract 

The current PhD work emphasizes on various aspects of membrane distillation for approaching zero 

liquid discharge in seawater desalination. In broader sense, two themes have been discussed in detail: 

(i) correlation between membrane features and their performance in MD (ii) understanding and control 

of thermal polarization in MD. Introduction and state-of-the-art studies of MD including progress in 

membrane development, understanding the transport phenomenon, recent developments in module 

fabrication, fouling and related phenomenon and innovative applications have been discussed in 

introductory part of the thesis. The effect of operating conditions and dope compositions on membrane 

characteristics and correlation between membrane features and their performance has been discussed 

in subsequent section. It has been established that membrane morphology plays a crucial role in 

performance of the membrane for real applications. Furthermore, it has been demonstrated that the 

effect of membrane morphology is different for direct contact and vacuum configurations. 

Theoretical and experimental aspects of thermal polarization in direct contact membrane distillation 

have also been investigated. Thermal polarization phenomenon in a flat sheet membrane has been 

studied by using a specifically designed cell. The effect of operating conditions and solution 

concentration on thermal polarization has been explored experimentally. It has been observed that 

increased solution concentration favors the thermal polarization due to resulting poor hydrodynamic at 

the membrane surface and increase in diffusion resistance to the water vapors migrating from bulk 

feed phase to the membrane surface. Some active and passive techniques to decrease thermal 

polarization and possible fouling in membrane distillation have also been discussed in the current 

study. Thermal polarization can be greatly reduced by inducing secondary flows in the fluid flowing 

inside the fiber. The induction of secondary flows in the current study has been realized by using the 

fibers twisted in helical and wavy configurations. Due to improvement of thermal polarization 

coefficient on up and downstream, the undulating fiber geometries provide high flux and superior 

performance ratio. Application of intermittent and pulsatile flow to control thermal polarization in MD 

has also been discussed. It has been inferred that these flows have positive impact on performance 

ratio and volume based enhancement factors without compromising on packing density of the system. 

The application of MD for treatment of produced water has also been studied. The effect of membrane 

features on their performance for the treatment of this complex solution has been discussed. The 

desirable membrane features for successful application of MD for such treatment have been 

distinguished. It has been inferred that MD possesses the capability to produce a distillate of excellent 

quality and is an interesting candidate to recover the minerals present in the produced water. The 

fouling tendency of the membranes with different characteristics towards different types of feed 

solutions has also been discussed in this study. It has been shown that the porosity enhanced through 

the introduction of macrovoids in non-solvent induced phase separation technique creates problems 
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related with wetting and pore scaling during practical application of such membranes. The fouling 

related issues are less severe in the membranes with sponge like microstructure but the overall 

porosity of such membranes is relatively less.  Thus it has been concluded that there should be an 

optimum between the high throughput and stable performance of the membranes synthesized through 

phase inversion techniques. Conclusions of the study and future perspectives have been discussed in 

the last section of the study. 
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  CHAPTER 1

Introduction 

1. Membrane operations and modern process industry 

Separation, concentration and purification of molecular mixtures are the key requirements in process 

industry, underlying the importance of efficient separation in this sector. The state-of-the-art norms to 

achieve these objectives include distillation, extraction, crystallization, adsorption and ion exchange 

technology. These technologies are energy intensive in nature and generally mark a large footprint. 

For instance, it has been estimated that 60-70% of the energy requirement in petrochemical industry is 

anticipated in particular field of separation and purification. Thus the basic characteristics features of 

the conventional separation processes are contradictory to the basis of process intensification strategy 

[1]. Consequently, improvement or replacement of traditional separation techniques can offer a 

substantial impact on the process feasibility.  

Contrary to the practice of the conventional process industry, depleting resources of energy and raw 

materials combined with environmental issues emphasize on sustainable industrial growth across the 

globe. The sustainable growth can be realized by using the material and energy resources more 

efficiently and rationally while at the same time, eliminating or minimizing the hazards associated 

with processes. Modern membrane engineering represents one of the possible and the most interesting 

way for developing processes in accordance with the guidelines provided by process intensification 

strategy to meet the challenges of the modern world [2]. Membrane engineering appears as a powerful 

discipline with characteristic features of efficient molecular separation, compatibility between 

different membrane operations in integrated systems to achieve the specific separation requirements, 

easy control and scale-up, chemical transformation and mass and energy transfer between different 

phases to realize the objectives of process intensification strategy.  

Membrane engineering, at present, is providing interesting solutions to some of the major problems of 

our modern industrialized society for decreasing energy consumption, resolving environmental 

concerns and exploring the potential of many processes in a better and improved way. For instance, in 

many regions in the world conventional thermal desalination plants have been replaced with 

membrane process due to their 10-fold more energy efficient nature than thermal options; conventional 

activated sludge plants have been turned into membrane bioreactors due to their compactness (up to 5 

times more compact than conventional plants), reduced sludge production and considerable level of 

physical disinfection [3]. In food industry, the membrane operations are availing interesting 

opportunities of concentrating the products and treating the wastewater streams. The use of membrane 

technology in energy production sector has opened the innovative gateways to produce electricity by 

using the concept of blue energy and fuel cells. 

In addition to the conventional traditional pressure driven membrane processes, numerous new 

membrane operations have emerged recently with significant potential in various area. The new 

operations differ from the conventional ones mainly in terms of driving force and/or separation 

mechanism. The driving force for majority of the conventional membrane operations including 

microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) is the pressure 

gradient. The processes such as electrodilaysis (ED), electrodilaysis reversal (EDR) and 

electrodeionization are driven by the electrochemical potential whereas temperature gradient is the 
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driving force for the membrane distillation (MD) and membrane dryers. The separation ranges for the 

conventional pressure driven processes have been provided  in Figure 1.1 while a summary of the 

driving forces, mode of separation and permeating and retaining species for conventional and some 

new processes has been provided in Table 1.1. Size exclusion is the main governing separation 

mechanism for conventional pressure driven processes, however, chemical nature of the species also 

plays an important role in NF and RO.   

 

Figure 1.1: Separation ranges for various membrane processes 

Table 1.1: An overview of various membrane operations 

Process Driving Force 
Mode of 

transport 
Species Passed Species Retained 

Microfiltration 

(MF) 

Pressure difference 

100 - 500 kpa 

Size 

exclusion 

convection 

Solvent (water) 

and dissolved 

solutes 

Suspended 

solids, fine 

particulates, 

some colloids 

Ultrafiltration 

(UF) 

Pressure difference 

100 - 800 kpa 

Size 

exclusion 

convection 

Solvent (water) 

and low 

molecular 

weight solutes 

(<1000 da) 

Macrosolutes 

and colloids 

Nanofiltration 

(NF) 

Pressure 

difference 

0.3 - 3 mpa 

Size 

exclusion 

solution 

diffusion 

Donnan 

exclusion 

Solvent (water), 

low molecular, 

weight solutes, 

monovalent ions 

Molecular 

weight compounds 

> 200 da 

multivalent ions 

Reverse 

osmosis 

(RO) 

Pressure 

difference 

1 - 10 mpa 

Solution 

diffution 

mechanism 

Solvent (water) 
Dissolved and 

suspended solids 
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Gas 

Separation 

(GS) 

Pressure 

difference 

0.1 – 10 mpa 

Solution 

diffusion 

mechanism 

Gas molecules 

having low 

molecular weight 

or high 

solubility-

diffusivity 

Gas molecules having 

high molecular weight 

or low solubility-

diffusivity 

Pervaporation 

(PV) 

Chemical potential or 

concentration difference 

Solution 

diffusion 

mechanism 

High permeable 

solute or solvents 

Less permeable solute 

or solvents 

Electrodialysis 

(ED) 

Electrical potential 

difference,1 – 2 v / cell pair 

Donnan 

exclusion 

Solutes (ions) 

small quantity of 

solvent 

Non-ionic and 

macromolecular 

species 

Dialysis 

(D) 
Concentration difference Diffusion 

Solute (ions and 

low mw 

organics) 

small solvent 

quantity 

Dissolved and 

suspended solids with 

mw > 1000 da 

Membrane 

contactors 

(MC) 

Chemical potential, 

concentration difference; 

temperature difference 

Diffusion 

Compounds 

soluble in the 

extraction 

solvent; 

volatiles 

Compounds non 

soluble in the 

extraction solvent; 

non volatiles 

Membrane 

based solvent 

extraction 

(MBSX) 

Chemical potential or 

concentration difference 

Diffusion 

partition 

Compounds 

soluble in the 

extraction 

solvent 

Compounds non 

soluble in the 

extraction solvent 

Membrane 

distillation 

(MD) 

Temperature difference Diffusion Volatiles Non volatiles 

Supported 

liquid 

membranes 

(SLM) 

Concentration difference Diffusion 

Ions, 

low MW 

organics 

Ions, less permeable 

organics 

Membrane 

reactors 

(MR) 

Various Various 
Permeable 

product 

Non permeable 

reagents 

Membrane 

crystallization 
Temperature difference Diffusion Volatiles Non volatiles 

Forward 

osmosis 
Osmotic gradient 

Solution 

diffusion 
Solvent 

Dissolved and 

suspended solids 

Membrane 

emulsification Pressure gradient Convection Dispersed phase 
 

Membrane 

dryers 
Vapor pressure gradient Diffusion Volatile Non volatiles 

 

In many parts of the world, the dependence on seawater for industrial, drinking and household 

purposes has greatly increased. Conventionally, seawater desalination is carried out through state-of-

the-art pressure driven membrane based processes due to their significant advantages compared to 

thermal processes. However, the pressure driven processes face some challenges that need to be 
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addressed, operation at high pressure and disposal of brine being the most significant obstacles that 

negatively affect the process economy and cause environmental problems. New membrane based 

operations offer promising solutions to desalination problems. The use of new processes in integration 

with the traditional ones can not only resolve the problem of waste handling but also provides the 

opportunity to boost the overall recovery factor and economy of the process. Integrated approach takes 

into account energy saving, water rationalization, minimization of resource utilization and waste 

production [4]. Therefore, integrated systems can contribute significantly to the solution of strategic 

aspects of industrial productions. Different membrane operations can be coupled in integrated systems 

for approaching the ambitious objective of “zero liquid discharge”. For instance, in seawater 

desalination conventional pressure driven membrane operations can be combined with other 

innovative membrane processes such as membrane distillation (MD) or  membrane crystallization 

(MCr) for achieving the aspiring objective of reaching very high recovery factor (around 85-90%) [5] 

(Figure 1.2). 

 

Figure 1.2: Integrated membrane systems for desalination proposed in MEDINA project [5] 

2. Membrane Distillation  

Membrane distillation (MD) is one of the innovative membrane based processes that was documented 

for the first time in 1963 [6]. However, only recently, it gained significant popularity among the 

scientific and engineering community. Different terminologies have been used for the process till the 

‘‘Workshop on Membrane Distillation’’ held in Rom during May, 1986. The definition of MD was 

confined in the workshop to the process utilizing the hydrophobic, porous membrane with the pores 

allowing the transport of vapors without capillary condensation. It was also acclimatized that 

membranes must not alter the vapor liquid equilibrium, at least one side of the membrane must be in 

contact with liquid feed and the necessary driving force is provided by vapor pressure gradient across 

the membrane. The process finds promising applications in various areas of membrane engineering 

including water desalination, treatment of industrial effluent, pharmaceutical industry, food industry, 

removal of organic compounds from aqueous streams and in a number of other applications. The 

process is based on temperature gradient created across a microporous membrane that separates vapor-

liquid phases in equilibrium as illustrated in Figure 1.3 and therefore the process performance is 

relatively insensitive to the feed concentration. The hydrophobic nature of the membranes ensures the 

passage of only vapor phase through the membrane. The process possesses some unique advantages in 

comparison to conventional distillation or pressure driven membrane based processes: theoretically 

complete rejection of all non-volatile components, lower operating temperatures and pressures, 
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possibility to use waste grade heat or energy, less stringent requirements in terms of mechanical 

strength of membranes and possibility to concentrate the solutions to their saturation level [7].  

MD has the capability to replace reverse osmosis process if cheap or low grade waste energy is 

available [8]. Substantial potential of practical application of MD in processes such as water 

desalination exists in the areas with relatively hot climate. In Middle East, half of the domestic oil 

consumption is associated with water purification every year. MD can play a crucial role in decreasing 

this proportion significantly due to the abundant solar energy available in Middle East. However, it is 

worthy to note that in most of the cases, MD should be considered as an optimum compromise 

between its energy intensive nature and healthy impact on environment.  

MD can be easily adapted to other systems. It can be coupled with the solar energy systems to utilize 

the low grade energy; it can be used separately or in integration with other processes such as 

membrane bioreactors (MBRs), forward osmosis (FO), microfiltration (MF), ultrafiltration (UF), 

nanofiltration (NF) and RO to improve the efficiency of the process in terms of purity and recovery 

factor. In case of seawater desalination, MBR and UF/MF can improve the pre-treatment whereas MD 

can be used to recover the water from the residual brine. Moreover, the use of MD as membrane 

crystallization unit allows to extract not only further water but also the minerals contained in the brine 

streams (e.g., sodium, chlorine, magnesium, sulphate, calcium, potassium, bicarbonate, and eventually 

also lithium, bromine, and many more) [9][10]. MD based processes, such as membrane 

crystallization and osmotic membrane distillation, have opened innovative gateway to obtain the 

crystals from salt solutions and to concentrate various solutions to the limits which are not achievable 

through conventional pressure driven processes. Another interesting application of MD is its potential 

to recover toxic or/and useful compounds and heavy metals from various sorts of industrial effluents 

which can be reused in the process or can be separated from the effluent to avoid their adverse 

environmental impact [11][12]. Hence, MD can provide an innovative, cost effective and easy-to-

adopt pathway with significant impact in terms of benefits obtained to achieve the goals of green 

chemistry. 

 

 

Figure 1.3: Schematic of basic MD process  
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2.1 Main challenges for MD 

2.1.1 Inappropriate membranes 

The unavailability of the membranes specifically designed for MD is the biggest obstacle for 

widespread applications of MD. Traditionally, the membranes prepared for ultrafiltration and 

microfiltration through phase inversion processes have been utilized for MD applications. These 

membranes generally have low porosity, limited hydrophobicity, broader pore size distribution and 

pore size not engineered for MD requirements. The thickness of these membranes has been design to 

withstand relatively high pressure of UF and MF which is not encountered in MD. Accordingly, MD 

flux for such membranes is low and at the same time conductive losses are high. 

2.1.2. Thermal polarization  

Thermal losses associated with the thermal polarization (also referred as temperature polarization) is 

another issue that suppresses the process performance. In direct contact membrane distillation 

(DCMD), a hot feed and a cold permeate are in direct contact with the opposite sides of the membrane.  

The transport of heat across the membrane takes place through conduction and transport of the hot 

vapors through the membrane (Figure 1.4). Consequently, the temperatures at the membrane surfaces 

are different from their values in the bulk. Temperature or thermal polarization coefficient is used to 

describe the thermal efficiency of the process. It is defined as the ratio of the difference of feed and 

distillate temperatures at membrane surfaces to the corresponding difference in the bulk.  

fm pm

f p

T T
TPC

T T





 

The value of temperature polarization coefficient approaching to unity describes a thermally efficient 

process. In poorly designed system, significant heat is lost due to thermal polarization.   

 

Figure 1.4: Illustration of heat transfer and thermal polarization in MD process 
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2.1.3 Nontraditional fouling 

Due to different transport phenomenon and operating mechanism, generally rigorous feed 

characteristics and use of hydrophobic membranes, the nature of fouling in MD is different from other 

low pressure membrane processes. Scale formation at membrane surface is the most common form of 

fouling observed in MD process when applied to concentrated salt solutions. Wetting of pores has the 

similar effect as that of the fouling in conventional pressure driven membrane operations. With the 

advent of novel applications of MD, other types of fouling can also be seen in various studies. For 

example, the fouling phenomenon becomes more significant and sever while treating the solutions rich 

in organic contents [13] [14]. The thickness of the fouling layer can play a decisive role in controlling 

the heat and mass transfer across the membrane [15]. 

2.1.4 Loss of membrane hydrophobicity 

MD process essentially relies on the hydrophobic nature of the membranes to retain the liquid on one 

side of the membrane while allowing the passage of only vapors. The intrusion of liquid inside the 

membrane pores is referred to as pore wetting. The successful application of the membrane distillation 

has been associated with the fulfilment of non-wettability criteria of membrane pores. When the 

hydraulic pressure exceeds the liquid entry pressure, the membranes are prone to wetting. The effect of 

wetting is not only possible reduction in flux and degradation of permeate quality but also a severe 

fouling inside the pores caused by the precipitated/adsorbed materials. Certain components from 

aggressive feed solutions can interact with the membrane material to alter its hydrophobic nature. 

Similarly, low surface additives present in the feed can penetrate through the pores and can damage 

the hydrophobic character of the pores. Biofouling can also play a role in decreasing the 

hydrophobicity of the membranes. 

2.1.5 Large scale applications 

Traditionally, MD has been utilized for desalination purposes as an alternative to RO or to overcome 

limited recovery of RO and other thermal desalination techniques [16]. Moreover, MD has been 

considered as a viable candidate in arid areas which lie in the region with abundant solar energy 

available, thus further confining its application mostly for desalination [17]. However, a lot of other 

interesting applications of MD have been explored due to less fouling tendency of the process, the 

potential to treat the complex feed solutions and due to the fact that the separation is driven by the 

temperature induced phase equilibrium establish at a particular temperature. The temperature gradient 

base nature of the process also opens new novel opportunities to use it for vapor/gas separation 

applications where the equilibrium composition at any temperature is enriched with the more volatile 

component. Consequently, the sphere of applications of the process has extended beyond the 

traditional use of desalination. However, most of these studies have been carried out at lab scale and 

require more pilot scale studies to bridge the gap between lab scale testing and commercial scale 

application. 

3. Thesis statement 

The aim of this thesis is to further enhance the understanding of fundamental identified constraints of 

MD, specifically thermal polarization and membrane characteristics required for MD. The qualitative 

application of the conclusions drawn is believed to be applicable for practical applications of MD, 

though the carried out research and mentioned results are based on laboratory work. A brief overview 

of each chapter included into the thesis has been described below. 
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A general overview of state-of-the-art of MD has been provided in chapter 2. The chapter elaborates 

different conventional and emerging configurations of MD, recent trends in membrane synthesis and 

module fabrication, new attempts to elaborate heat and mass transport mechanism in MD, fouling in 

MD and novel applications of the process. 

There is a strong need to understand the correlation between membrane features including 

morphology, porosity, mean pore size, pore size distribution and their performance in MD. On one 

hand, it is well established that the membranes with high overall porosity and large pore size favor the 

mass transport of vapors from feed to the permeate side while on the other hand, the presence of large 

pores in the membrane can make the membranes more prone to wetting. Furthermore, it is not only the 

overall porosity that favors the high flux but the microstructure of the membrane also plays a key role 

in dictating the membrane performance. Chapter 3 describes the relationship between the membrane 

properties and their performance against different solutions. The lab made membranes have been 

tested in vacuum and direct contact configurations for different feed solutions and the relationships 

between the membrane characteristics and performance has been explored. 

As stated previously, thermal polarization severely affect MD process in an environment characterized 

by poor hydrodynamic and high feed temperature. There are several correlations in the literature 

relating the hydrodynamic of the system with thermal polarization, yet still literature suffers from the 

lack of direct experimental realization of temperature polarization based on the experimentally 

measured temperatures at membrane surface. The experimental study of temperature polarization 

carried out by using a cell specifically designed for this purpose has been described in chapter 4.  

Various approaches have been used in the literature to minimize the temperature polarization in MD. 

Module designing and flow patterns can play a significant role in decreasing the thermal polarization 

in MD. Chapter 5 describes the effect of wavy and helical shaped fibers on temperature polarization 

on MD process. The effect of pulsatile and intermittent flow patterns has also been described in this 

chapter. 

The sphere of potential applications of MD is growing rapidly. The process has been tested for the 

applications ranging from the separation of volatile aroma components to the recovery of organic and 

inorganic crystals from various solutions. One growing field of potential interest is the oil and gas 

industry. With exhausting oil reserves and discovery of the non-conventional reservoirs of natural gas, 

the handling and treatment of produced water is becoming increasingly important. Produced water is 

characterized with the presence of very high salt content and small fractions of oil and greases. The 

treatment of such complex water is challenging for the conventional membranes based processes. MD 

is considered as an appropriate candidate for the treatment of this complex solution. Chapter 6 

discusses the feasibility of MD process for the treatment of gas field produced water by using 

membranes with different characteristics. Initial studies to recover crystals from produced water have 

also been discussed in this chapter. 

Fouling is a major operational problem in all pressure driven membrane processes. The nature of 

fouling in MD is different from traditional pressure driven processes. Nontraditional fouling in MD 

has been discussed in chapter 7. MD has been operated on various feed solutions including whey 

solution, MBR effluent from a hospital industry, RO brine and produced water to study the fouling 

tendency of various membranes. The possible concept of critical flux in MD has also been described 

in this chapter. 
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The main conclusions of the work and future directions have been highlighted in chapter 8. The 

potential directions for the membrane preparation, fouling and temperature polarization control have 

been discussed in this chapter.  
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  CHAPTER 2

Membrane Distillation-an overview 

Recently, numerous studies have been carries out with the aim to develop the appropriate membranes for 

MD, to improve the process understanding, appropriate module fabrication and to confirm the feasibility of 

the process for several applications. In order to improve the process efficiency, some new configurations 

have also been investigated. An overview of recent state-of-the-art developments in various aspects of MD 

has been provided in current chapter.  

1. MD configurations 

Depending on the methods to induce vapor pressure gradient across the membrane and to collect the 

transported vapors from the permeate side, MD processes can be classified into four basic configurations 

(Figure 2.1a). A common feature of all the configurations is the direct exposure of one side of the membrane 

to the feed solution used. DCMD has been the most studied mode due to its inherent simplicity [1]. On the 

other hand, vacuum membrane distillation (VMD) can be used for high output while air gap membrane 

distillation (AGMD) and sweep gas membrane distillation (SGMD) enjoy the benefit of low energy losses 

and high performance ratio [2][3][4]. Some new configurations with improved energy efficiency, better 

permeation flux or smaller foot print have been proposed such as material gap membrane distillation 

(MGMD) [5], multi effect membrane distillation (MEMD) [6], vacuum-multi effect membrane distillation 

(V-MEMD) [7] and permeate gap membrane distillation (PGMD) shown in Figure 2.1b [8]. A pros and cons 

analysis of conventional configurations has been provided in Table 2.1.  

 

 

 

  

 

Figure 2.1: (a) Conventional MD configurations (b) Module arrangement for PGMD [9] (c) Schematic 

illustration of streams in V-MEMD module [7]. 

 

(b) 

(a) (c) 
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Table 2.1: Advantages and disadvantages of the four main MD configurations. 

Configuration Pros Cons 

DCMD 

The easiest and simplest configuration 

to realize practically, flux is more 

stable than VMD for the feeds with 

fouling tendency, high gained output 

ratio [2],  it might be the most 

appropriate configuration for removal 

of volatile components [4]. 

Flux obtained is relatively lower than 

vacuum configurations under the identical 

thermal conditions, thermal polarization is 

highest among all the configurations, flux is 

relatively more sensitive to feed 

concentration, the permeate quality is 

sensitive to membrane wetting, suitable 

mainly for aqueous solutions. 

VMD 

High flux, can be used for recovery of 

aroma compounds and related 

substances, the permeate quality is 

stable despite of some wetting; no 

possibility of wetting from distillate 

side, thermal polarization is very low. 

Higher probability of pore wetting, higher 

fouling, minimum selectivity of volatile 

components [4], require vacuum pump and 

external condenser. 

AGMD 

Relatively high flux than SGMD, low 

thermal losses, no wetting on 

permeate side, less fouling tendency. 

Air gap provides an additional resistance to 

vapors, difficult module designing, difficult 

to model due to the involvement of too many 

variables, lowest gained output ratio[2]. 

SGMD 

Thermal polarization is lower, no 

wetting from permeate side, permeate 

quality independent of membrane 

wetting. 

Additional complexity due to the extra 

equipment involved, heat recovery is 

difficult, low flux, pretreatment of sweep gas 

might be needed. 

 

Recently, Memsys have applied a patented concept of integrating vacuum with multi effects in their module 

designing for MD. V-MEMD is a modified form of VMD that integrates the concept of state-of-the-art multi 

effect distillation into the VMD. As a general principle of the process, the vapors produced in each stage are 

condensed during the subsequent stage. Vapors are generated in steam raiser working under vacuum by 

exchanging the heat provided by external source. The vapors are condensed by exchanging the heat with feed 

separated with a foil. The vapors generated in 1st stage are transported through the membrane and collected 

on the foil in the 2nd stage. The flow of different streams in a single stage has been illustrated in Figure 2.1c. 

It has been claimed that these modules has excellent gained to output ratio which is crucial parameter for 

industrial applications [7]. A condenser is used to condense the vapors generated in final stage. The vapor 

pressure in each stage is less than its preceding stage.  

2. Membranes for MD 

As briefly discussed in Chapter 1, traditionally the membranes prepared for low pressure membranes 

processes have been utilized for MD applications. There are several aspects of these membranes that need 

further improvement for successful application in MD. For example, the thickness of the conventional 

membranes for MD has been designed for MF/UF requirements. While considering such membranes for 

MD, on one side, low thickness offers less resistance to the mass transfer, while on the other hand, 
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membranes with low thickness suffer from more energy losses due to heat flux flowing through conduction 

across the membranes [10]. In order to address the thickness issue, dual and even triple layer membranes 

have been introduced [11]. These membranes contain a hydrophobic active layer and a hydrophilic support 

layer. The support layer provides thermal insulation and ensures the required mechanical robustness of the 

membrane while the active layer retains the liquid. Care must be taken in selection of thickness of the active 

layer as too less thickness can allow the passage of the liquid through the pores and may not be sufficient to 

resist the chemical attack from the feed side during long term operations. According to Laganà et al [12] 

optimum thickness of active layer is 30-60 um. However, a broad look at thickness effect on MD 

performance reveals that the literature lacks of clear and conclusive statements. For example, for 

concentrated salt solutions, Gosteli et al [13] have observed that the performance of thin membrane is more 

sensitivity towards concentration, however, no further investigations have addressed this issue. Wu et al [14] 

have demonstrated that the optimal thickness for electro spun PVDF based membrane increases with reduced 

heat transfer coefficient, decreased feed inlet temperature and increased permeability and salinity level. 

Contrary to this, Jansen et al [15] have found that conduction losses are directly related with the temperature 

gradient at the membranes surfaces and inversely related with the membranes thickness. 

For what concerns pore size, the utilized porous membranes don't show a single pore size; rather they exhibit 

a range of pore size distribution (PSD). A membrane with good PSD shows a Guassian distribution curve 

with a sharp peak and very narrow width. As evident from Table 2.2, the membranes used for UF show quite 

a broad range of minimum and maximum pore sizes which is somehow acceptable for UF applications. On 

the other hand, both mean pore size and pore size distributions are crucial for MD process. Although higher 

flux has been reported for the membranes with bigger pores, yet the large pore dimensions make the 

membrane vulnerable to wetting. The presence of even a few oversized pores can kill the efficiency of the 

entire process by allowing the passage of liquid through the pores. Therefore, for pore size, an optimization 

is required between the stable performance and high flux [16]. The commonly used pore size for MD is in 

the range of 100 nm to 1um [17]. The sensitivity of process performance towards pore size is different for 

different configurations of MD. The hydrophobicity of the membrane material and surface tension of the 

feed solution used will play a decisive role in deciding the pore size. The presence of pores with different 

dimensions gives rise to the involvement of different mass transport mechanisms in a single membrane [18]. 

Regarding the membrane material, it has to be hydrophobic to ensure the retention of liquid and the passage 

of only vapor phase through the membrane pores. PVDF, PP and PTFE are the most commonly used 

polymeric materials used for membrane preparation for MD applications. Among these, PTFE exhibits the 

best hydrophobic characteristics, yet the most research on membrane preparation has been carried out by 

using PVDF membranes due to its easy processability. PTFE is not soluble in any solvents and therefore, 

poses serious issues with processing. In order to render/improve the hydrophobic character, various 

techniques have been applied including the coating of different low energy flouro polymers at the membrane 

surface [19], plasma modification [20], formation of various hierarchical structures [21], incorporation of 

nano particles into the dope solution during membrane synthesis [22], making the surface rough [23] etc. 

Surface roughness is an interesting technique to render the super hydrophobicity to the membrane surface; 

however, its further effects on surface scaling/fouling and thermal polarization still need to be addressed. 

 



 

14 

Table 2.2: Characteristic features of some state-of-the-art UF membranes mentioned in literature (For 

details of abbreviation used to describe the membranes, please consult the corresponding reference) 

Membrane type rmin(nm) rmin(nm) rav(nm) 𝜀 (%) Ref. 

XM 100A 5 12 9 0.75 [24] 

XM 300 6 19 12.5 0.3 [24] 

Milipre PTSG 1 15 3 7-12 [25] 

PVDF 3 4 - 10 [26] 

Polyimide UF 1.5 6 - 0.7-0.9 [27] 

PCTE 10 134 258 181 6 [28] 

PCTE 50 553 821 657 14 [28] 

PCTE 100 98 5 1233 113 3 45 [28] 

PTHK 16 8 33 6 22 1 34 [28] 

YM 6.3 18 11.3 - [29] 

PM30 16.7 62.7 30.6 - [29] 

GVHP - - 283.2 70.1 [16] 

PVHP - - 463.9 71.3 [16] 

 

In addition to the above all parameters, membrane porosity plays a crucial role in dictating the flux. More 

porous membranes offer more diffusion surface for the vapors and at the same time decrease the thermal 

conductivity of the membrane as the air trapped inside the pores has conductivity 10 times less than typical 

polymeric materials used. Overall porosity also dictates the mechanical stability of the membrane. However, 

it must be highlighted that it is not only the overall porosity that is important for the successful application 

but also the mechanism of achieving the porosity. The membranes having macro voids usually show very 

good porosity or void fraction but on the other hand are more prone to the wetting [30]. Related to the 

porosity is the tortuosity of the pores which indicates the effective length that vapors have to travel to move 

from feed side to the permeate side. The commonly used value for tortuosity factor  is close to 2, though 

some studies have taken the tortuosity factor as the inverse of porosity [16]. 

Properties of some commercial membranes used for MD applications have been provided in Table 2.3. 

Comparison of Table 2.2 and Table 2.3 indicates that the membranes properties required for two applications 

are very different. The second significant conclusion is that the required MD membrane properties have been 

incorporates to some extent in some commercial membranes (for example see the rav, rmin, rmax, and porosity 

for TF1000, TF450 ,TF200, GVHP), however, the optimization of these features, further ‘’engineering’’ of 

the membranes and additional improvement in module design can make them further attractive. 
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Table 2.3: Some features of the commercial membranes used for MD 

Membrane 

type 
Manufacturer Material 

rmin 

(nm) 

rmax 

(nm) 

rav 

(nm) 

δ 

(µm) 

LEP 

(bar) 
𝜀 (%) Ref. 

TF1000 Gelman PTFE/PP 280 420 325 178 282 80 

[18], 

[127] 
TF450 Gelman PTFE/PP 180 300 235 178 138 80 

TF200 Gelman PTFE/PP 120 210 155 178 48 80 

PV22 Millipore PVDF - - 220 126 2.29 62 

[128] PTS20 Gore PTFE/PP - - 200 184 4.63 44 

PT45 Gore PTFE/PP - - 450 77 2.88 89 

Accurel® S6/2 AkzoNobel PP - 600 200 450 1.4 70 [129] 

HVHP Millipore PVDF 280 680 451.23  105 33.64 
[129] 

GVHP Millipore PVDF 200 350 265.53  204 32.74 

MD080CO2N Enka Microdyn PP - - 200 650  70 

[18] 
Accurel® Enka A.G PP  600  400  74 

Celgard X-20 Hoechst Celanese Co PP - 70 50 25  35 

EHF270FA-16 Mitsubishi PE - - 100 55  70 

 

Besides optimizing the features (pore size, pore size distribution, overall porosity etc.), some efforts have 

also been devoted to engineer the structure of membrane. Wang and Chang [31] have fabricated multi bore 

PVDF hollow fiber membranes by using especially designed spinneret. The membranes are claimed to have 

better mechanical strength and provide easy module fabrication. Edwie and Chung [32] have investigated the 

‘‘layer effects’’ on performance of MD process. The authors have prepared and compared the performance 

of single layer PVDF membrane, dual layer hydrophilic/hydrophobic PVDF membrane and dual layer 

hydrophobic/hydrophilic PVDF/PAN membrane. The most stable performance was achieved by using the 

single layer membrane with small pore size having cellular morphology.   

Thermal induced phase separation (TIPS) is another interesting technique to synthesize the membranes with 

narrow and controlled pore size distribution. Recently, some investigations have been performed to fabricate 

and analyze the performance of PP membranes prepared through TIPS. Tang et al [33] have prepared 

isotactic polypropylene based membranes with narrow pore size distribution by using TIPS. The factors 

affecting the structure and performance of these membranes were studied. The method seems to be very 

promising to fabricate the membranes with specific features for MD applications.  
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 (a) (b) 

 

Figure 2.2: (a) A schematic diagram of the electrospinning process [34] (b) SEM image of electrospun 

membranes [30] 

Recent trends in membrane synthesis process for MD incorporate the use of innovative technologies such as 

nanotechnology having a significantly potential role in membrane based desalination techniques including 

MD. For instance, electrospun nano fiber membranes have been reported in many studies recently and have 

shown very interesting results. In electrospinning process, the fibers are spun under the pressure and electric 

field applied and form non-woven mat at the grounded rotating collectors (Figure 2.2). The mat formed 

shows very high porosity, excellent hydrophobicity, very good interconnectivity and very high surface to 

volume ratio making them interesting candidates for desalination applications. Eletrospinning can be 

performed with polymer solution or melt and the properties of the mat can be tuned by changing the process 

parameters, material used and the post treatment step applied [34][35][36]. Due to the possibility to use 

polymer melt, instead of solution, electrospinning provides opportunities to make the membranes with vast 

variety of polymers. Different functional materials can be incorporated into the nano fibers during or after 

their spinning thus incorporating multi functionality into the fibers. Some lab scale applications of 

electrospun nano fiber membranes have also been reported in recent literature [35][36] [37].   

Graphene is an interesting material with several applications due to its very high strength to weight ratio. In 

addition to its use in various fields (foldable electronics, biological engineering, composite materials, energy 

storage), the new research has shown that it exhibits amazing selective permeability towards various 

components. For example, a sub-micron thin graphene oxide membrane can retain all gases and liquids 

except water molecules [38]. The separation of water from organic mixtures has been demonstrated 

excellently by these membranes [39]. Similarly, graphene membranes can selectively permeate some metals 

ions present into a solution containing different types of ions [40]. Graphene membrane with thickness about 

1 nm has shown excellent selectivity towards various gases [41]. Due to these facts combined with their high 

strength, it is possible to tremendously reduce the thickness of the graphene based membranes that can open 

broad opportunities for these membranes in desalination applications including MD. The applications of 

graphene membranes in water treatment sections are being tested by different researchers [42], [43], [44].  

Nanofibrous mat 

Whipping instabilities 

Polymer solution or melt 
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Biomimic membranes like aquaporin have shown a great potential for desalination applications due to their 

high permeability and selectivity towards water molecules. Under the right conditions, aquaporin membranes 

form the water channels allowing the passage of only water molecules and exclusion of all ions. It has been 

postulated that aquaporin based membranes can achieve a water flux as high as 601 Lm-2h-1bar-1 which is an 

order of magnitude higher than conventional RO process [45]. The commercial application of such 

membranes for water desalination is however still far away due to insufficient stability of the membranes, 

difficulties associated with commercial scale production and limited rejection of salts exhibited by the 

existing membranes [46]. 

The use of carbon nanotubes (CNTs) in water desalination is also emerging in lab scale investigations. CNTs 

comprise of rolled up cylinder of graphene with nano scale dimensions. Their exceptional mechanical 

strength, chemical resistance and thermal properties are well known. As illustrated in Figure 2.3, very high 

transport of water molecules inside the CNTs and their potential to change the water-membrane interaction 

to stop the permeation of liquid water molecules while favoring the preferential transport of  vapors through 

the pores have encouraged their incorporation into the membrane matrix [47] [48]. On the other hand, for 

desalination through MD, CNTs based membranes provide excellent porosity and hydrophobicity. The initial 

studies to demonstrate the potential of CNTs membranes for desalination through MD have been provided in 

references [49] and [50]. The application of CNT based membranes in MD has caused considerable increase 

in flux enhancement for salt solution [48]. 

 

Figure 2.3: MD mechanism for the membranes containing CNTs in their matrix [47] 

3. Process understanding and modeling  

Numerous recent publications aim to address the understanding of heat and mass transport phenomenon in 

MD from different perspectives. Like past, the most of the studies are based on theoretical approaches. New 
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modeling tools and computational software such as CFD, ASPEN, MATLAB etc. have also been introduced 

to better elucidate the phenomenon. The most published literature discusses the heat and mass transfer in 

DCMD and VMD with some evolving significance devoted to AGMD. The main challenge is to incorporate 

quantitatively thermal polarization and concentration affect in heat and mass transport analysis. 

In order to overcome the problems associated with the determination of heat transfer coefficients by the 

conventional approaches, the use of different numerical approaches have been introduced. By applying the 

heat, mass and momentum balance under the given boundary conditions, the temperature at the membrane 

surfaces can be predicted. Al-Sharif et al [51] have modeled the effect of three different spacers types on heat 

and mass transport in DCMD by using open source computational fluid dynamic (CFD) code. Yu et al [52] 

have investigated local heat flux, membrane surface temperature, thermal polarization and thermal efficiency 

of DCMD system in counter current configuration. The effect of hollow fiber microstructures on 

hydrodynamic, thermal polarization and flux for wavy and geared shaped geometries by using CFD analysis 

has been provided by Yang et al [53]. Manawi et al have developed a predictive model for MD incorporating 

the effect of various operating parameters including feed and permeate temperatures and flow rates, flow 

configurations and flow regimes [54]. The membrane has been divided into n control volumes on each hot 

and cold side, exchanging heat and mass transfer with each other. The experimental results have been 

claimed in good agreement with the models predictions. Kurdian et al [55] have used mass and energy 

balance to model the flux behavior of GVHP hydrophobic membranes operating on aqueous solution of 

sodium chloride and sodium sulphate. 

Recently some ambitious attempts have been observed in measuring the membrane surface temperature 

directly by using different techniques. Tamburini et al [56] have used a technique based on thermochromic 

liquid crystals and digital image analysis tool to investigate the thermal polarization in spaced filled channels 

used in MD studies. The hot and cold channels were fabricated between plexi glass chambers and a 

polycarbonate thin sheet that mimics the membrane. Thermochromic Liquid Crystals was incorporated at the 

hot feed side adhering with the polycarbonate sheet by using silicon grease. The surface of TLC was 

illuminated and images were recorded at various experimental conditions for further analysis of temperature 

distribution along and across the channels by using Matlab image processing toolbox. On the basis of 

experimental results obtained, a correlation between Nusselt number and Re and Pr was proposed for the 

system.  Ali et al [57]have used a cell equipped with 16 temperature sensors to measure the temperature 

profiles on feed and permeate side in DCMD. The effect of different parameters on thermal polarization has 

been investigated by directly monitoring the bulk and interfacial temperatures. The authors have concluded 

that heat transfer coefficient can be predicted under certain assumptions by using the relationship predicted 

by Gryta el al. [58] under certain assumptions. 

Various activities can be seen in recent literature to optimize and understand the AGMD process. The effect 

of removal of air from the membrane pores and feed water deaeration has been discussed by Winter et al. [9]. 

The air entrapped in the pore and air gap can significantly reduce the mass transfer in AGMD. The use of 

deaerated water has been claimed to increase the flux and reduce the thermal energy demand. It was further 

claimed that the additional energy consumed in deaeration can be compensated by the additional product 

obtained. The concept of directly heating the composite membrane for desalination purposes through AGMD 

has been introduced in reference [59]. The top surface of the composite membrane can absorb the solar 

energy while the underneath hydrophobic surface ensures the required non wettability.  The important of 

reducing the pressure in air gap has also been highlighted in the same study. Geng et al [60] have used the 

energy recovery hollow fiber to directly heat the feed by using the latent heat of vapors condensed at the 

surface of heat exchanger hollow fiber. Alsaadi et al [61] have used the mathematical equations applied to 
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explain heat and mas transfer phenomenon in single stage AGMD to develop a one dimensional AGMD 

model. The model was validated for various operating conditions, process parameters and membrane 

features. It was also claimed that the model can predict the upscale AGMD installation. 

Zhang et al [62] have proposed a new method based on gas permeability data to measure the properties of 

hollow fiber membranes to be used in modeling of VMD. The modeling predictions agree well with the 

experimental flux, although the difference diverged at high temperatures. Zuo et al [63] have built and solved 

a two dimensional model with finite element method for VMD by using hollow fibers. The model 

incorporates the effect of feed inlet temperature, feed flow rate, fiber length and degree of vacuum applied on 

temperature, velocity and pressure distribution along and across the fiber. It has been predicted that water 

production cost through VMD can be reduced to ~38% by using the optimized design and conditions. 

Similarly, Lee and Kim [64] have proposed a one dimensional model to predict the performance of hollow 

fibers in VMD by simultaneously solving the energy, mass and momentum conservation equations. Kim [65] 

has modeled temperature distribution across the feed and permeate channels by using perturbation theory and 

method of separation of variables. 

Lovineh et al [66] have developed a simultaneous heat and mass transport model to predict the effect of 

operating conditions and membrane characteristics on the performance of VMD process. The authors have 

concluded the insensitiveness of the process performance towards membrane materials when the pore size is 

tiny. Shim et al [108] have proposed a one-dimensional model to predict the performance of multi vacuum 

membrane distillation modules connected with each other’s. The optimum number of modules connected in 

series was calculated on the basis of variation in hydraulic pressure and feed temperature. 

4. Module designing for MD 

After the availability of appropriate membranes for any application, the next most important step is to 

assemble these membranes in a particular configuration to ensure the required membrane area enclosed in a 

particular module volume. In addition to provide compactness, an appropriate module design can reduce the 

thermal/concentration polarization, fouling and energy consumption of the process. These advantages can be 

realized by disturbing the normal flow pattern that develops along the fiber. Adequate module design can 

improve the hydrodynamic on shell and lumen side, thus imparting a positive impact on the process. In this 

context, the module designing provides an economical alternative of the active techniques to change the 

hydrodynamic conditions in the membrane. Despite of these benefits, the investigations on module design 

are limited in number generally for membrane operations and particularly for MD. 

Similar to the other membrane based processes, module design for MD is crucial to use the process more 

rationally. An appropriate module design for MD applications should take into consideration the 

minimization of thermal polarization on up and down stream, appropriate packing density to ensure the 

module compactness, robustness, achievement of high energy efficiency, suitable length, high volume based 

enhancement factor and relatively easy fabrication with the flexibility to apply for the maximum 

configurations. In addition, the material implied for module fabrication must ensure the minimum thermal 

losses and must be heat resistance. There are several different industrial sectors looking at MD with different 

demands that further underline the importance of flexibility in module design. In MD, several possibilities 

have been considered to design an appropriate module: 

 Use of appropriate flow scheme to maximize the temperature gradient along the membrane (counter 

flow, cross flow, concurrent) 
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 Use of baffles and spacers (Figure 2.4) to homogenize the temperature distribution within a stream 

 Use of different fiber geometries to ensure the uniform heat distribution within the module 

 Use of heat recovery devices 

He et al [67] have provided the concept of heat recovery by interstate heating of the cold feed by using the 

permeate of previous stage in a cascade of modules. A schematic of the concept used by the author has been 

shown in Figure 2.5. The authors have provided a theoretical analysis of countercurrent cascade of cross 

flow DCMD modules. Such cascades can be useful in improving the recovery and energy efficiency of the 

system. The authors have claimed a recovery of 60% and gain output ratio of more than 60% for appropriate 

configurations and temperature difference. Yang et al [68] have investigated the effect of various fiber 

geometries (Figure 2.6) on performance of DCMD both experimentally and theoretically. The flux 

enhancement as high as 300% has been claimed due to reduced thermal boundary layer resistance.  

Experimental and theoretical feasibility of roughened surface for DCMD process has been demonstrated by 

Ho et al [69].  

 
 

Figure 2.4: Space filled channels used to improve the hydrodynamic conditions at the membrane surface in 

MD [70] 

Rotational and tangential to the membrane surface flow has been proven very affective in increasing the 

performance of the AGMD [71]. Such flow combined with the partial contact of membrane with condensing 

surface in AGMD has caused synergetic effects. The authors have claimed the permeate flux as high as 119 

kg/m2.h at feed inlet temperature of 77oC. The claimed flux is ~2.5 times higher than the flow observed in 

traditional AGMD studies carried out under the identical conditions. The authors have associated the 

improvement with improved heat and mass transfer due to the specific flow patter generated and due to the 

contact of membrane with the cooling plate. AGMD module designing involves bulky modules in order to 

incorporate the air gap, condensing plate and cooling channel. In their proposed configuration as illustrated 
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in Figure 2.7, Singh and Sirkar [72] have introduced porous and non-porous hollow fibers in the same lab 

scale modules to compact the module volume. The vapors from hot feed passing through the porous fibers 

are condensed at the outer wall of non-porous fiber which has been cooled by the circulation of a cold fluid 

inside the fiber. On the similar lines, Geng et al [73] have designed a module with the heat exchanging 

hollow fibers that collect the latent heat of vapors and transfer to the cold feed. The authors have claimed a 

thermal efficiency of 80% or higher in all the studied cases. 

 

Figure 2.5: Cascade module design used by He et al. [67] 

Zhao et al [8] have explored the performance of a V-MEMD module introduced by Memsys under solar and 

diesel heating arrangements. The authors have identified the number of stages and the size of each stage as 

the key parameter for optimizing the module performance for large scale applications. The module efficiency 

is mainly controlled by the hot and cooling fluid temperatures. Form optimization results, it was concluded 

that the module has a very attractive gain output ratio. Zhang et al [74] have explored the effect of fiber 

packing density and module length on their performance in VMD. The initial flux decay under constant 

operating conditions was attributed to the membrane compression that took place due to the hydraulic 

pressure. The shorter modules with compact packing have been recommended by the authors for a high yield 

per unit module volume. The authors have also pointed out that increase in flux at high feed flow rate is due 
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to increased average temperature instead of enhanced thermal polarization coefficient. The effect of liquid 

distributor on the performance of VMD process has been investigated theoretically by Wang et al [75]. The 

authors have claimed that the appropriate design of distributor plays a significant role in optimizing the 

performance of VMD process. The liquid distribution in dome-like and pyramidal distributor was better than 

plate-like distributor. 

 

 

Figure 2.6: Various hollow fiber configurations used by Yang et al  [68] 

 

 
 

Figure 2.7: Conceptual mechanism of hollow and heat recovery fibers reported by Singh and Sirkar [72] 

5. Fouling in MD 

As discussed in Chapter 1, the fouling in MD differs in nature from low pressure membrane processes. A 

summary of various types of fouling observed in MD has been provided in Table 2.4. The salt solutions such 

as brine mainly induce surface scaling and pore wetting and precipitation inside the pores in certain cases. 

Fouling and wetting caused by organics and macromolecules such as protein has been observed in other 
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studies [76 ] [77]. Protein-type macromolecules have special tendency to adsorb at the membrane surface. 

The initial fouling layer in such cases can be associated with the adsorption of molecules at the hydrophobic 

surface. Once built, such layer will tend to accumulate more solute molecules at the membrane surface and 

ultimately, a thick cake layer can establish under high convective flux conditions. The initial adsorption at 

the membrane surface followed by the further buildup of fouling cake layer can decrease the flux due to 

increase in net resistance to heat and mass transfer [78]. 

In addition to the typical fouling, some other parameters also affect the MD performance. The mass transfer 

rate across microporous hydrophobic membrane in MD is driven by the temperature gradient across the 

membrane surfaces. The heat losses attributed to the conduction through the membrane and convection 

associated with the vapor transport reduce the surface temperature at the feed side and increase the 

corresponding temperature at the permeate side, thus inducing the thermal polarization at both sides. The 

effect of temperature polarization on flux reduction in membrane distillation has been well acknowledged in 

several studies [79] [80] [81]. For a well-designed system, the value of thermal polarization coefficient has 

been indicated in the range of 0.4 to 0.7 [79]. 

The scale formation at the membrane surface has been observed in the studies addressing the MD applied to 

solutions containing salts. Gryta [82] has investigated the membrane distillation performance in treating the 

spent solution from heparin production. The rapid flux declined was reported due to the fouling and scaling. 

The presence of salts deposits on distillate side confirms the occurrence of wetting as well. The removal of 

foulants by boiling the feed followed by the separation of the deposits was found to be an affective 

pretreatment to reduce the fouling during the membrane distillation process. The problem of scale formation 

at the distribution channel of the membrane modules and at the membrane surface was observed in a study 

conducted by Kullab and Martin [83] for production of water for cogeneration power plants. The permeate 

quality and the operation stability was dependent upon the nature of the feedstock. Ca and Mg were 

identified as the main scale forming salts. In another study, Gryta [84] has analyzed the performance of MD 

against several different types of feed solutions including brine, bilge water and water containing protein. 

The strength and nature of fouling was dependent upon the feed and operating conditions used. The 

formation of Ca and protein based deposits on the membrane surface was detected. The scale formation in 

MD was pointed out as one of the major responsible factors for wetting, flux reduction and damage to the 

membrane structure. The formation of porous deposits decreases the flux by lowering the heat transferred to 

the membrane surface while the non-porous deposits increase the resistance to the mass transfer. The scaling 

occurred at membrane surface and in distribution channels observed in various studies has been shown in 

Figure 2.8. 

More recently, some further focus has been devoted for deeper understanding of scaling in MD process. 

Burrieza et al [85] have studied the effect of intermittent MD operation at the surface scaling. The 

intermittent operation has been simulated by exposing the PTFE and PVDF membranes to wet/dry cycles. A 

decrease in contact angle and scaling inside the pores was observed. The scaling inside the pores was more 

prominent for PVDF based membranes due to their low contact angle. The scaling reduced the surface 

roughness and promoted the calcium carbonate adhesion with the surface. The effect of coating on surface 

scaling of heat exchanger has been investigated by Al-Janabi et al [86]. The authors have developed and 

applied various coating at the surface of heat exchanger to be used in MD to minimize the surface energy and 

to impart anti scaling properties. The electron donor coating materials have shown the best performance. Ge 

et al [87] have investigated the surface scaling and wetting behavior of PVDF membrane under different 

operating conditions. The authors have observed that scaling and wetting increases with temperature. Chen et 

al [88] have demonstrated the efficacy of gas bubbling in controlling the surface scaling in DCMD process. 
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A significant increase in flux and delayed flux decline was observed under the gas bubbling conditions. 

Similarly, the use of polyphosphate has been proven effective in decreasing the CaCO3 scaling at membrane 

surface in another study [89].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Scale formation observed at the membrane surfaces and in distribution channels (a, b  and c 

respectively, taken from [139], [140], [137]). 
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Table 2.4: Different types of fouling observed in MD studies 

Feed type Membrane used Type of fouling observed Reference 

Wastewater from 

heparin production 

PP capillary 

membranes 

Wetting, deposition, 

scaling, biofouling 
[82] 

NaCl solution 
Accurel PP S6/2 

membrane 
Wetting, surface scaling [90] 

Synthetic wastewater 

PVDF flat sheet 

MILLIPORE® 

Durapore GVHP) 

Wetting, thick layer of 

biofouling 
[91] 

Bilge water, saline 

water from meat 

processing industry, 

tap water 

Accurel S6/2 PP, 

Membrana, Germany 

Deposit layer formation at 

the surface, bio fouling, 

surface and internal 

crystallization 

[84] 

Skim milk and whey 

solution 

PTFE flat sheet 

membranes with woven 

PP support, GE 

Osmonics, 

Minneapolis, MN, 

USA 

Layer of deposits at the 

membrane surface 
[92] 

Municipal water and 

flu gas condensate 

PTFE flat sheet, 

SCARAB AB. 

Scale formation at the 

membrane surface 
[83] 

 

Due to the emerging use of MD process in membrane bio reactors, the importance of understanding and 

control of bio fouling in MD has gained more focus. Goh et al [76] have highlighted the importance of bio 

processes in controlling the membrane wetting of MD present at downstream. The authors have shown that 

biofouling formed at the membrane surface does not only cause membrane wetting but can also increase the 

resistance to heat and mass transfer. MD integrated at downstream of bioreactor is less prone to wetting and 

fouling due to removal of nutrient in the bioreactor. The effect of sludge hydrophilicity on biofouling and 

transport characteristics in membrane has been studied by Goh et al [93]. The microporous structure of the 

biofilm has been held responsible for vapor pressure depression and further addition of resistance to heat and 

mass transport. The membrane with high thermal resistance and a hydrophilic layer facing to the feed can 

mitigate the vapor pressure reduction. A detailed understanding of fouling of dairy products on hydrophobic 

membranes applied in MD can be found in work by Hausmann [77][92] (Figure 2.9). 
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Figure 2.9: Fouling caused by skim milk (top) and whey solution (bottom) as function of time [77] 

Recently, Gilron et al [94] have investigated the effect of silica scaling and membrane pore wetting on MD 

process. In case of partial wetting, it has been shown by the authors that the temperature at the pore mouth 

can be significantly less than that at the membrane surface and can decrease the temperature polarization 

coefficient. For a given feed and membrane combination, the wetting can be controlled by selecting the 

appropriate conditions of temperature and flow rate (hydraulic pressure). More comprehensively, feed 

temperature, feed composition, pore size and hydrophobic character of the membrane combined with the 

hydraulic pressure applied at the membrane surface will dictate the wetting phenomenon in MD. 

6. Innovative and large scale applications 

In addition to the traditional membrane based processes, new interesting applications of MD have been tried 

recently. MD has potential for temperature sensitive products such as pharmaceutical compounds, juices, 

dairy products, natural aromatic compounds and solutions of several chemicals. The process can be applied 

in the fields where a very high rejection of certain nonvolatile component is required such as the treatment of 

nuclear waste or radioactive water and water for semiconductor industry. In oil and gas sector, shale gas has 

been identified as the game changer due to its abundant availability in various regions across the world [95]. 

However, the detrimental environment impacts of shale gas exploration are big hindrance in its wide spread 

adaptation. The fracturing or produced water is one of the major causes responsible for the hazardous 

environmental impact of exploring shale gas. Produced water contains very high level of salts, various 

hydrocarbons and production chemicals. Treatment of such complex steam through state-of-the-practice 

processes is really challenging [96]. Moreover, high pressure and temperature of the produced water during 
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the production process provides additional complexity for its immediate treatment. MD has proven a feasible 

candidate for the treatment of this water after certain physical processes that remove hydrocarbons from the 

stream [30]. Similarly traditional MBRs suffer from the major fouling issues. MD as standalone process or in 

integration with some other processes (such as FO) has provided very interesting results [97]. Likewise the 

removal of heavy metals that acts as a micropollutant is challenging for existing RO plants. For example, due 

to its existence as boric acid under normal pH conditions, the boron can diffuse through the RO membrane 

and thus traditional RO cannot meet the required removal criteria (0.5-2.5 ppm). The current alternative 

techniques are either costly or not robust as the operating conditions change. MD has been applied 

successfully to remove the boron well below the set limits. Similarly, the removal of chromium has been 

successfully achieved to the desired level by using MD.  

Another potentially interesting field for MD is the recovery/removal of phosphorous from agricultural, 

household and industrial runoffs. The presence of phosphorous in soil is essential for growth of crops. On the 

other hand, the access of phosphorous gives rise to the condition known as eutrophication, characterized by 

the excessive growth of algae inside the water thus reducing the oxygen level and causing an adverse effect 

on marine life. As the phosphorous reservoirs are limited, MD as standalone process or in integration with  

other membrane based processes can be utilized not only to control the level of phosphorous in water runoffs 

but also to recover phosphorous crystals from the phosphorous rich-streams [98]. Similarly, during protein 

crystallization and crystallization of pharmaceutical compounds via membrane crystallization, the level and 

rate of supersaturation can be finely tuned and membrane surface creates heterogeneous nucleation providing 

the opportunity to selectively crystalize various polymorphs [99]. Similarly, the recovery of various valuable 

components from waste streams and RO brine has been reported in several studies [100] [101] [102].The 

crystals recovered through MD process show better quality in terms of crystal size, crystal size distribution, 

coefficient of variance and nucleation kinetics. A list of innovative and potential uses of MD for various 

applications mentioned in the recent literature has been provided in Table 2.5.  

Besides the lab scale applications, various activities can be seen at the commercial scales too. Jensen et al 

[15] have demonstrated the potential of membrane distillation modules at large scales for desalination 

purposes. The authors have used a total membrane area of 300m2 and have observed no problem of scaling 

or biofouling over a period of 4-14 months. Burrieza et al [103] have compared the performance of two pilot 

scale  AGMD modules over a period of two years for NaCl solution of 1 and 35 g/L. The modules have 

produced excellent and constant quality distillate throughout the process. On the similar lines, Raluy et al 

[104] have compiled the 5 years’ experience and data analysis of a solar collector MD unit installed in 

Instituto Tecnológico de Canarias (ITC) in Playa de Pozo Izquierdo (Gran Canary Island-Spain). The authors 

have reported a specific thermal energy consumption in the range of 140–350 kWh/m3 while the distillate 

quality was very good (20-200 µs/cm). Asadi et al [105] have demonstrated desalination of deoiled stream 

coming from the oil refinery by using a MD module with an area of 40 m2. The water produced fulfills the 

loca irrigation standards. 
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Table 2.5: Applications of MD mentioned in different recent studies 

Feed Target Membranes used Configuration Ref 

Seawater Boron removal PVDF DCMD [106] 

Simulated water Chromium removal PTFE DCMD [107] 

Produced water Desalination PTFE DCMD [108] 

Aqueous solution of N-

methyl-2-pyrrolidone 

concentration of N-methyl-

2-pyrrolidone solution 
PP VMD [109] 

Cooling tower blow down 

water 
Desalination FS PP DCMD [110] 

Aqueous ammonia solution Removal of Ammonia PVDF capillary 
DCMD and 

MDCMD 
[111] 

Olive oil waste mill water 
Concetration of phenolic 

compounds 
FS PTEF DCMD [97] 

Produced water Desalination FS PTFE AGMD [112] 

Model lactose solution Ethanol production 
PP capillary 

membrane 
DCMD [113] 

Synthetic solution of trace 

OC 

Removal of complex trace 

organic compounds 
FS PTFE DCMD [114] 

Aqueous H2SO4 solution 
Concentration of H2SO4 

solution 
PP hollow fiber 

Multi effect 

MD 
[115] 

Retentate of NF and RO 
Improvement of water RF 

and salt crystallization 
PVDF hollow fibers DCMD [116] 

Water from great salty lake Recovery of minerals FS PTFE and PP DCMD [117] 

Zabłocka Thermal Brine Brine concentration 
PP hollow fiber 

Accrual 
DCMD [118] 

Glycerol fermentation 

broth 

Separation of acetic acid 

from the broth 

Acuurel PP hollow 

fiber 
DCMD [119] 

Synthetic radioactive 

wastewater 

Removal of radioactive 

elements 

Hydrophobic ally 

modified FS PS or 

PES 

DCMD [120] 

Wastewater containing 

arsenic in different 

concentrations 

Removal of arsenic PP and FS PVDF VMD [121] 

Dilute glycerol wastewater Concentration of glycerol FS PTFE SGMD [122] 

Ethanol-water mixture Ethanol separation FS PTFE SGMD [123] 
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7. Recent commercial activities 

The slow progress of membrane distillation has been related with the unavailability of appropriate 

membranes for MD applications, high energy consumption with respect to RO that boost the overall energy 

demand, membrane wetting, low flux and limited investigations carried out on module designing. However, 

thanks to the recent and growing extensive research activities carried out in various areas of MD, the process 

has become much more attractive due to the availability of better membranes, possibility to utilize alternative 

energy sources and uncertainty about the sustainability of fossil fuel. Furthermore, new rigorous separation 

requirements driven by the new regulations and needs have further highlighted the importance of the field. 

As a result, a ‘’research boom’’ has been observed in various aspects of MD since last one decade or so. 

Recently, some companies have been involved in commercialization efforts for MD (Table 2.6). Aquaver 

Company is an example that has recently commissioned the world’s first seawater MD based desalination 

plant in Maldives. The plant uses the waste grade heat available from a local power plant and has the 

capacity of 10,000L/day (http://www.aquaver.com).                                                                     

Table 2.6: Main companies involved in commercialization efforts for MD 

Membrane Trade 

Name/  Manufacturer 
Material Application Web address 

Fraunhofer Institute 

for Solar Energy 

Systems (ISE) 

  

Fraunhofer Institute for Solar 

Energy Systems (ISE), 

Heidenhofstr.2, D 79110 

Freiburg, Germany 

OEM GE Nylon - 

Hydrophobic 

Membranes 

Hydrophobic 

Nylon 

supported on 

an inert 

polyester 

web. 

 

-Bag vents  

-Bioreactor venting 

applications  

-CO2 monitors  

-Fermentation air applications  

-Filtering gasses to remove 

particulate  

-Insufflation filters  

-Lyophilizer venting or inlet 

air  

 

Donaldson Company 

Inc., Microelectronics 

Group 

PTFE  

e-mail: 

LeuvenRD@mail.donaldson.c

om  

Tetratec-

Europe@mail.donaldson.com  

Website: www.donaldson.com 

Liqui-Cel®  Degasification and deaeration http://www.liqui-cel.com/ 

TNO   info-beno@tno.nl  

Scarab Development  Development of Technology  

http://www.aquaver.com/
mailto:LeuvenRD@mail.donaldson.com
mailto:LeuvenRD@mail.donaldson.com
mailto:Tetratec-Europe@mail.donaldson.com
mailto:Tetratec-Europe@mail.donaldson.com
http://www.donaldson.com/
http://www.liqui-cel.com/
mailto:info-beno@tno.nl
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AB for Water Purification, Solar 

Power, Poly-Generation, 

Recycling and Sustainable 

Systems 

S6/2 MD020CP2N/ 

AkzoNobel Microdyn 
PP 

Water and wastewater 

treatment, food and 

pharmaceutical industry. 

e-mail: sales@microdyn-

nadir.de  

Web site: www.microdyn-

nadir.de 

Membranes from PP 

(Membrana 

GmbH, Germany) 

with microfiltration 

properties. 

PP,PE, PES 

Generally for gas-liquid 

contactors 

 

info@membrana.de 

http://www.membrana.com 

Pall-Microza PVDF 

fibres 
PVDF VMD for water desalination. 

http://www.pall.com/microe.a

sp 

Celgard Inc. – 

Membrana 

Underlining 

Performance 

Industrial Separations 

(a Division of 

Celgard)  

 
Membrane contactors 

SuperPhobic® e Liquicel® 

Jschneid@celgard.net 

 www.liquicell.com 

www.membrane.com 

Memsys/MemDist 

module 
PP 

-Desalination  

-Wastewater treatment  

-Process water (Semi 

conductor , Boiler feed water, 

Food & beverage )    

-Aircon – desiccant cooling  

-Process engineering (Alcohol 

destillation  ) 

-Cooling towers 

 

Aquaver PTFE 

Seawater desalination 

Cogeneration 

Brine treatment 

Landfill leachate 

Industrial wastewater 

Difficult-to-treat waters 

Aquaver 

info@aquaver.com  

 

Aquastill   
http://www.aquastill.nl/index.

html 

mailto:sales@microdyn-nadir.de
mailto:sales@microdyn-nadir.de
http://www.microdyn-nadir.de/
http://www.microdyn-nadir.de/
mailto:info@membrana.de
http://www.membrana.com/
mailto:Jschneid@celgard.net
http://www.liquicell.com/
http://www.membrane.com/
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SolarSpring  

Drinking water 

Process and industry 

Research 

E-mail: 

contact@solarspring.de  

www.solarspring.de 

 

Starting from the first article by Bodell in 1963, substantial growth in the field has been observed over time. 

The progress and advancements have been reviewed in different review articles [17][124][99][125][18][79]. 

The number of scientists and researchers working on MD has increased tremendously in the recent years and 

a lot of research articles are coming out each year. Advent of commercialization era for the process has also 

contributed significantly in fueling the research in MD. DCMD is still dominant field for recent research, 

despite the fact that most commercializing companies are adopting VMD or AGMD for their plants.  

From the first MD patent in 1963, additional 12 more have been registered till the end of 2011, as 

documented by Drioli et al [126]. The total number of patents shows slow progress of MD. Nevertheless, the 

research momentum gained by the technology can be realized by the 8 patents published during 2013 and 

2014. These patents cover membrane preparation methods, application of MD in integration with other 

processes to achieve complex separations, module designing, configurational modifications to improve 

process efficiency, oleophobic membranes, use of the process in steam production etc. A list of the patents 

published recently has been provided in Table 2.7.  

Table 2.7: Recent patents in MD 

Patent Inventor/s Remarks 

Combined membrane-distillation-

forward-osmosis systems and 

methods of use 

Publication number: US 8029671 

B2 

Publication date: Oct 4, 2011 

T. Y. Cath,  

A.E. Childress,  

C.R. Martinetti 

Embodiments of the present 

disclosure provide combined 

membrane-distillation/forward-

osmosis systems and methods for 

purifying a liquid, such as 

reducing its solute or suspended 

solids load. 

Membrane Distillation Apparatus 

and Methods 

Publication number: US 

20110272354 A1 

Publication date: Nov 10, 2011 

S. Mitra,  

K. Gethard 

Methods based on MD for solvent 

removal, sample preconcentration 

and desalination employing 

hollow fiber porous hydrophobic 

membranes with carbon 

nanotubes are disclosed 

Composite membranes for 

membrane distillation and related 

methods of manufacture. 

Publication number: WO 

2012100318 A1 

Publication date: Aug 2, 2012 

Applicant: Membrane Distillation 

Desalination Ltd. Co. 

M. Khayet,  

T. Matsuura,  

M. R. Qtaishat 

The present invention provides 

composite membranes for 

membrane distillation and related 

methods of manufacture. 

MEMBRANE AND METHOD 

PRODUCING THE SAME 

Publication number: 

M. M. TEOH,  

N. PENG,  

T.-S. Chung 

The present disclosure relates to a 

membrane comprising a porous 

polymer body with a plurality of 

channels extending through the 

http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Tzahi+Y.+Cath%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Amy+E.+Childress%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Christopher+R.+Martinetti%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Somenath+Mitra%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Ken+Gethard%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=inassignee:%22Membrane+Distillation+Desalination+Ltd.+Co.%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=inassignee:%22Membrane+Distillation+Desalination+Ltd.+Co.%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Mohamed+Khayet%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Takeshi+Matsuura%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Moh%27d+Rasool+Qtaishat%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22May+May+TEOH%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Na+PENG%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Tai-Shung+Chung%22
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US20120285882 A1 

Publication date: Nov 15, 2012 

polymer body, a method of 

producing the same and a water 

treatment system comprising the 

membrane 

Forward osmotic desalination 

device using membrane 

distillation method 

Publication number: US 

20130112603 A1 

Publication date: May 9, 2013 

S. M. Koo,  

S. Jin Lee,  

S. M. Shim 

The present invention relates to a 

fresh water separator using a 

membrane distillation method and 

a forward osmotic desalination 

device comprising the fresh water 

separator 

Solar membrane distillation 

system and method of use 

Publication number: US 

8,460,551 B2 

Publication date: Jun. 11, 2013 

I. A. Al-Arifi,  

H.T.A. El-Dessouky 

The invention relates to 

distillation systems and, more 

particularly, to a solar driven 

membrane distillation system and 

method of use. 

Forward osmosis system 

comprising solvent separation by 

means of membrane distillation 

Publication number: US 

20130264260 A1 

Publication date: Oct 10, 2013 

W. Heinzl 

The invention relates to a system 

for separating a product contained 

as solvent in a solution to be 

processed, comprising at least one 

forward osmosis device through 

which the solution to be processed 

and a draw solution flow, and a 

device connected downstream 

thereof for obtaining the product. 

Polyazole membrane for water 

purification 

Publication number: EPA 

13155093.1 

Publication date: 14.08.2013 

P.S. Nunes,  

H. Maab,  

L. Francis 

 

The method describes a 

membrane prepared for fluid 

purification comprising a 

polyazole polymer. 

Method of converting thermal 

energy into mechanical energy, 

and an apparatus therefor 

Publication number: US 

20140014583 A1 

Publication date: Jan 16, 2014 

J. H. Hanemaaijer 

The invention relates to a method 

of converting thermal energy into 

mechanical energy wherein a 

working liquid such as is 

evaporated to generate a stream of 

a working fluid 

Membrane distillation apparatus 

Publication number: US 

20140138299 A1 

Publication date: May 22, 2014 

P. Nijskens,  

B. Kregersman,  

S. Puttemans,  

C. Dotremont,  

B. Cools 

The present invention relates to 

membrane distillation apparatus 

and is more particularly, although 

not exclusively, concerned with 

the production of desalinated 

water from seawater 

Membrane distillation modules 

using oleophobically and 

antimicrobially treated 

microporous membranes 

Publication number: US 

20130068689 A1 

V. Bansal,  

C. Keller 

The present invention provides a 

system for liquid distillation 

which includes a vapor 

permeable-liquid impermeable 

microporous membrane having 

structures defining a plurality of 

http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Sung+Mo+Koo%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Sang+Jin+Lee%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Sung+Min+Shim%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Ibrahim+A.+AL-ARIFI%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Hisham+Taha+Abdulla+El-Dessouky%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Wolfgang+Heinzl%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Jan+Hendrik+Hanemaaijer%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Pieter+Nijskens%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Bart+Kregersman%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Sam+Puttemans%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Chris+Dotremont%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Brecht+Cools%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Vishal+Bansal%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Christopher+Keller%22
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Publication date: Mar 21, 2013 pores, an oleophobic material that 

is applied to the structures of the 

vapor permeable-liquid 

impermeable microporous 

membrane 

Membrane Distillation Device 

Publication number: 

20140216916 

Publication date: 2014-08-07 

W. Heinzl 

 

The invention describes a method 

to improve the efficiency of MD 

process by using the latent heat of 

condensation of the vapors to heat 

the feed during various stages. 
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  CHAPTER 3

Membranes for membrane distillation 

1. Introduction 

One of the most crucial aspects of the membrane distillation is to have at disposal membranes with well 

controlled properties. Moreover, the final performance of a process is a direct consequence of the 

structural and physicochemical parameters of the utilized membranes. This aspect gains relevance when 

the proposed membrane technology is based on advanced systems where the use of well-structured and 

functionalized membranes becomes an imperative. Membrane distillation performance is intrinsically 

affected by the structure of the film in terms of thickness, porosity, mean pore size, pore distribution and 

geometry. Thus, the successful outcome of the process is reasonably expected to be depending upon the 

capability of the membrane to interface two media without dispersing one phase into another and to 

combine high volumetric mass transfer with high resistance to liquid intrusion in the pores. The 

membranes for membrane contactor application have to be porous, hydrophobic, with good thermal 

stability and excellent chemical resistance to feed solutions. In particular, the characteristics needed for 

membranes are as follows: 

1. High liquid entry pressure (LEP), the minimum hydrostatic pressure that must be applied onto 

the feed solution before it overcomes the hydrophobic forces of the membrane and penetrates 

into the membrane pores. LEP is characteristic of each membrane and permits to prevent wetting 

of the membrane pores. High LEP may be achieved using a membrane material with high 

hydrophobicity and a small maximum pore size (see Equation 1)  

max

L
w

d

cosθ γ  B 
LEP       (1) 

where B is a geometric factor determined by pore structure, γL the liquid surface tension and θ is 

the liquid/solid contact angle. 

However, as the maximum pore size decreases, the mean pore size of the membrane decreases 

and the permeability of the membrane becomes low. 

2. High permeability. The flux will “increase” with an increase in the membrane pore size and 

porosity, and with a decrease of the membrane thickness and pore tortuosity. In fact, molar flux 

through a pore is related to the membrane’s average pore size and other characteristic parameters 

by: 

N  
δτ

εrα




     (2) 

where ε is the membrane porosity, τ is the membrane tortuosity, δ is the membrane thickness, 

 αr  is the average pore size (for Knudsen diffusion α=1 or the average squared pore size for 

viscous flux α=2). 

Eq. (2) illustrates the importance (in terms of molar flux) of maximizing the membrane porosity 

and pore size, while minimizing the transport path length through the membrane, (τ δ). In other 

words, to obtain a high permeability, the surface layer that governs the membrane transport must 

be as thin as possible and its surface porosity as well as pore size must be as large as possible. 

However, a conflict exists between the requirements of high mass transfer associated with 

thinner membranes and low conductive heat losses achievable by using thicker membranes. In 

fact, as described in the following sections, thermal efficiency in MD increases gradually with 
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the growing of membrane thickness and on optimization between the two requirements has to be 

found. 

3. Low fouling problem. Fouling is one of the major problems in the application of porous 

membranes. Fortunately, in the gas–liquid contactor applications, the contactors are less sensitive 

to fouling since there is no convection flow through the membrane pores. However, in industrial 

applications, gas and liquid streams with large content of suspended particles can cause plugging 

due to the small hollow fiber diameter. Pre-filtration is necessary in such a case [51]. 

4. High chemical stability. The chemical stability of the membrane material has a significant effect 

on its long-term stability. Any reaction between the solvent and membrane material could 

possibly affect the membrane matrix and surface structure. Liquid with high load of acid gases 

are corrosive in the nature, which make the membrane material less resistance to chemical attack. 

5. High thermal stability. Under high temperatures, the membrane material may not be able to resist 

to degradation or decomposition. Changing in the nature of membrane depends on the glass 

transition temperature Tg for morphous polymers or the melting point Tm for crystalline 

polymers. Over these temperatures, the properties of the polymers change dramatically. In Table 

3.1, the Tg for the polymers commonly used in membrane contactors is reported. 

 

Table 3.1: Glass Transition temperature Tg of polymers [1][2] 

Polymer Tg [°C] 

Polyethylene (PE) −120 

Polypropylene (PP) −15 

Polytetrafluoroethylene (PTFE) 126 

Polysulfone 190 

Polyether sulfone 230 

Polyimide (Kapton) 300 

 

The transition temperature of a polymer is determined largely by its chemical structure, which includes 

mainly the chain flexibility and chain interaction. As it can be seen from Table 3.1, 

polytetrafluoroethylene has a much higher Tg compared to polyethylene and polypropylene. This 

contributes to the higher stability and less flexible polyvinyl chain of PTFE with respect to PE and PP. In 

general, the factors that increase the Tg/Tm or the crystallinity of a membrane can enhance both its 

chemical and thermal stability. Therefore, in terms of long term stability membrane material with 

suitable Tg needs to be applied. For operations at high temperatures, fluorinated polymers are good 

candidates due to their high hydrophobicity and chemical stability [2]. 

As pointed out in chapter 1, the membranes prepared for MF/UF do not meet the exact requirements for 

MD. Limited porosity, broader pore size distribution, generally high thickness, and often unsufficient 

hydrophobicity need to be further addressed to make these membranes suitable for MD applications. Non 

solvent induced phase separation (NIPS) has appeared as the widely adopted technique for synthesizing 

the membranes for MD applications. PVDF is the most common polymer used for this purpose due to its 

easy processassibility during membrane synthesis process. There are several variables that affect the 

properties of membrane produced through NIPS. Both the composition-related variables and operating 

conditions affect the membrane properties greatly. It is important to understand the relationship between 

the various parameters that influence the membrane properties and then to further investigate the 
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correlation between membrane properties and their performance in MD. Furthermore, the membrane 

properties required for optimum performance in different configurations can be different. 

The focus of the study presented in this chapter is to understand the effect of operating conditions and 

dope composition on membrane properties (morphology, pore size distribution, porosity, and mechanical 

strength) and to correlate the membrane features with their performance in direct contact and VMD. In 

particular, the effect of air gap, bore fluid, coagulation bath and dope composition on membrane 

properties has been further investigated. Two fiber types were obtained using water and high percentage 

of PVP in the dope, since their synergistic effect ensures reduction of macrovoids, porosity and pore 

sizes suitable for MD as observed in a previous work [3]. A third fiber type was obtained introducing 

another additive, maleic anhydride. The use of this additive, in combination with PVP (high 

Mw=1,300,000), for preparation of microfiltration PVDF hollow fibre membranes, was already reported 

in literature [4]. However, in this work, maleic anhydride was used in combination with low Mw PVP in 

order to facilitate PVP leaching by treatment with sodium hypochlorite, as suggested in literature [5] [6] 

[7] [8] [9], thus ensuring fibres hydrophobicity. Our aim was to obtain the fibers having very different 

properties and morphology, in order to compare different morphologies in different MD configurations. 

The prepared membranes were used for carrying out both DCMD and VMD tests, to make a comparison 

of their performance in the two MD configurations. The obtained results were also compared to those 

obtained using commercial polypropylene (PP) hollow fiber membranes tested both in DCMD and VMD 

under the same conditions.   

2. Experimental 

2.1. Hollow fiber preparation 

For preparation of polymeric dopes, the polymer poly(vinylidene fluoride) (PVDF Solef® 6012 or 1015 

from Solvay chemical company) was dissolved in N-methyl pyrrolidone (NMP) or N,N-

dimethylformamide (DMF) in concentration ranging from 15 to 18 wt.%. Double distilled water, 

Polyvinyl Pyrrolidone (PVP K-17) and Maleic Anhydride (AMAL) were used as pore forming additives, 

according to the compositions reported in Table 3.2. The solution was stirred at selected temperature (60-

85°C) until a homogeneous dope was obtained. The dope was allowed to degas overnight before being 

transferred to the pressurized reservoir of the spinning set-up. Hollow fibers were spun by the dry/wet 

technique described elsewhere [3][10]. The most significant fiber-spinning-conditions are summarized in 

Table 3.2; further details on fibers preparation method can be found in [3].  

2.2. Hollow fiber post treatment 

The produced PVDF hollow fibers were rinsed completely with abundant water to ensure complete 

coagulation and total removal of residual solvent. PVP was leached out as suggested in literature [5] [6] 

[7] [8] [9] by washing the fibers with a solution of sodium hypochlorite 4000 ppm buffered to pH 7. 

Fibers were washed again and soaked in an aqueous solution of glycerol (30%) for 3-4 hours before 

drying to avoid collapse of their porous structure.  
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Table 3.2: The compositions and operating conditions applied in spinning experiments 

Fiber Polymer Additives Solvent T 
Air 

gap 

Spinning 

rate 
Bore fluid 

 PVDF   (°C) (cm) (g/min)  

M1 
6012-

18% 
PVP(K-17) 14%, H2O 6% 

NMP 

62% 
85 14 11 NMP 30%, 10 ml/min 

M2 
6012-

18% 
PVP(K-17) 14%, H2O 6% 

NMP 

62% 
85 25,5 11 

H2O 100%, 10 

ml/min 

M3 
1015-

15% 

PVP(K-17) 15%, AMAL 

10% 

DMF 

60% 
60 25,5 11 IPA 30%, 17 ml/min 

*Note: Fibers type M1 was prepared using Ethanol 30% as coagulation bath. In the other cases, tap water was used as other 

coagulant. 

Abbreviations list: PVDF = poly(vinylidene fluoride); PVP = poly (vinyl pyrrolidone); AMAL = maleic anhydride; NMP = N-

methyl pyrrolidone; DMF = N,N-dimethyl formamide; IPA = isopropanol. 

2.3. Hollow fiber modules 

Hollow fiber modules were prepared in the lab, by coaxially inserting three hollow fibers in a glass 

device (length 20 cm). Both sides were potted by epoxy glue. Fibers part covered with glue was not 

considered in the calculation of active membrane area. 

In order to remove glycerol, prior to use, modules were washed using double distilled water at 50°C and 

trans-membrane pressure of ~1 bar for at least 2 hours. 

2.4. Scanning electron microscopy (SEM) characterization 

The morphology of the PVDF hollow fibers prepared in this work was analyzed by SEM (Quanta FENG 

200, FEI Company). For the cross sectional study, the samples were prepared by freeze fracturing the 

selected fibers into liquid nitrogen. 

2.5. Mechanical properties 

The mechanical properties of the produced fibers were measured by using ZWICK/ROELL Z 2.5 test 

unit. The stretching rate was adjusted at 5mm/min while maintaining the unidirectional stretching. The 

initial distance between the clamps was adjusted at 50 mm. For each type of fiber, 5 tests were performed 

and the results were reported as the average values of these tests. 

2.6. Bubble point and pore size distribution 

Fibers bubble points, largest pore size and pore size distribution were determined using a PMI Capillary 

Flow Porometer (CFP 1500 AEXL, Porous Materials Inc., USA). By this technique, only active pores are 

measured, that means pores interconnected and open on both surfaces. For each test, fiber samples not 

treated with glycerol were fully wetted using Porewick (16 dyne/cm). Samples were connected to the 

instrument and tests were performed according to the wet-up/dry-up mode using the software Capwin. 

The measurement of bubble point, largest pore size and pore size distribution is based on the Laplace’s 

equation: 

dP = 4γLcosθ/P 

where dP is the pore diameter, γL is the surface tension of the liquid, θ is the contact angle of the liquid 

(assumed to be 0 in case of full wetting, which means cos θ = 1) and P is the external pressure.   

The results of each test were imported as an excel file using the software Caprep for further processing. 
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2.7. Porosity measurement 

The porosity of the fibers was measured according to the procedure described elsewhere [3]. The 

gravimetric method was used, which is based on measuring the weight of the liquid entrapped within the 

membrane pores. The overall porosity was calculated according to the following formula: 

εm(%) = [(w1 −w2)/Dk]/[(w1 −w2)/Dk + w2/Dpol]×100 

Where  

w1 Weight of the wet membrane 

w2 Weight of the dry membrane 

Dk Density of kerosene oil (0.82 g/cm3) 

Dpol Density of PVDF (1.78 g/cm3) 

For each fiber type, five measurements were carried out; then, average and standard deviation were 

calculated.  

2.8. Trans-membrane flux 

Membrane characterization in terms of trans-membrane flux was carried out in vacuum and direct 

contact configuration. 

2.8.1 Vacuum membrane distillation 

The procedure and the set-up used for vacuum membrane distillation are described elsewhere [3] and 

shown in Figure 3.1a. Briefly, the feed is introduced in the lumen side of the fibers by using a peristaltic 

pump after heating. Vacuum is applied on the outer side (module shell side) by using a vacuum pump. 

The vapors transported through the membrane are condensed in the condensate tank by using liquid 

nitrogen. Double distilled water was used as feed. The feed temperature and flow-rate were adjusted at 

50°C and 6 L/h, respectively, while the vacuum pressure applied was 40 mbar. The distillate collected 

(m) after specific interval of time was weighted and the flux was calculated according to the following 

relation. 

J =
m

A.t
 

Where J is the trans-membrane flux, A is the active membrane surface area calculated on the basis of 

membrane inner diameter, length of each fiber and the total number of fiber, and t is the time. 
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Figure 3.1: a) VMD set-up and b) DCMD set-up used in this work. 
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2.8.2 Direct contact membrane distillation 

The set-up used for DCMD is shown in Figure 3.1b. Double distilled water was used on both feed and 

permeate sides. The feed is heated before entering into the membrane module and is introduced on the 

lumen side of the fibers while the distillate stream is sent at the shell side. The feed and permeate flow 

rates are controlled by using peristaltic pumps. The distillate tank was placed on a balance that 

registered the mass of permeate produced during the experiments. The trans-membrane flux was 

calculated as for the VMD operation. 

DCMD tests were performed by varying temperature conditions on the feed side, while keeping the 

permeate temperature constant. The permeate temperature and flow-rate were fixed at 25°C and 6 L/h, 

respectively, while the feed temperature was changed from 50°C to 70°C with an interval of 10°C 

each. For each temperature condition, four different flow rates were applied, ranging from 6 L/h to 

11.4 L/h, with an interval of 1.8 L/h each.  

2.9. Commercial hollow fiber membranes 

Commercial poly propylene hollow fiber membranes type ACCUREL® PP S6/2 were purchased from 

Membrana GmbH. The commercial hollow fibers were characterized using the same methods 

described for lab-produced PVDF hollow fibers. The results are reported in Table 3.3. The 

commercial PP fibers were assembled in modules and tested in both VMD and DCMD set-ups 

described in section 2.7. 

3. Results and discussion 

3.1. Membrane morphology 

The scanning electron microscopy pictures of the fibers produced in the present work are shown in 

Figure 3.2 - Figure 3.4. Figure 3.2 reveals that the morphology of the fibers type M1 is dominated by 

sponge-like structure. In Figure 3.3, it can be noticed that fibers type M2 shows finger like 

macrovoids at both the inner and outer surface. Fibers type M3 shows tear-drop macrovoids at the 

inner surface and a thin sponge-like layer at the outer surface, as shown in Figure 3.4. 

The morphology, properties and, subsequently, MD performance of hollow fiber membranes arise 

from interplay between different factors. For fibers produced by Non-solvent or Diffusion Induced 

Phase Separation (NIPS or DIPS) the main factors are: polymer molecular weight and concentration; 

type of solvent; temperature and viscosity of polymeric dope[11][12]; temperature and composition of 

outer coagulation bath [13] [14]; eventual use of additives such as polymers (PVP, PEG), small 

molecules (Glycerol, Ethanol, Water) or salts (LiCl, LiClO4) [15][16]; mutual affinity  between 

solvent and nonsolvent (Hildebrand solubility parameters) [16]; composition and injection rate of 

inner coagulant [17] [18]; typical spinning parameters such as dope extrusion rate, air gap and fiber 

take-up speed [17] [18].  

In this study, the attention has been focused on the combined effect of dope composition (PVDF Mw 

and concentration, use of pore forming additives) and operating conditions used in the spinning 

experiments, i.e. the composition of the used bore fluid, the air gap and the composition of the outer 

coagulant. Indeed, coagulation media are among the most important factors affecting the final 

morphology of hollow fiber membranes prepared by NIPS, since they directly influence the 

coagulation rate. In general, while large finger-like macrovoids and cavities-like structures are usually 

produced by fast coagulation rate, slower coagulation gives rise to porous sponge-like structures, as 

reported in literature [12].  

For fibers type M1, the presence of water and NMP, in both solvent and bore fluid, decreases the 

difference between the solubility parameters of solvent and coagulant and, thus, attributes a “soft” 
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character to the inner coagulant. Consequently, de-mixing between polymer rich and polymer lean 

phases is delayed and a dominant sponge-like structure is obtained. Formation of sponge-like 

structure is also promoted by the use of ethanol 30% as outer coagulant instead of tap water, in 

agreement to what reported in literature. Deshmukh and Li [19] examined the effect of coagulation 

bath composition on morphology of polyvinylidene fluoride (PVDF) hollow fiber membranes using 

ethanol and water mixtures with different ratio (from 10/90 to 50/50). They found that fibers 

morphology near the outer wall was changed from long finger-like structure, to short finger-like 

structure and, finally, to a sponge-like structure, by increasing ethanol concentration in outer 

coagulation medium.  

Fibers morphology also depends on the pore forming additive used in the dope solution (PVP K-17). 

It has been observed in the previous studies [3] that the addition of PVP as pore forming additive 

interferes with thermodynamic stability of the solution and influences the de-mixing behavior of the 

solution during phase separation. At low concentration, the de-mixing is accelerated in presence of 

PVP. However, due to the compatibility of PVP with PVDF, dope viscosity increases and de-mixing 

is delayed at higher concentration of PVP into the solution; this leads towards the formation of a 

dominant macrovoids free, sponge like structure, as observed in case of fiber type M1. 

The morphology of fiber type M2 is strongly affected by the use of water as both internal and external 

coagulant, which generates finger like macrovoids on both surfaces of the fiber. As widely accepted in 

literature [13][20][19][21], water is a non-solvent for PVDF. It causes instantaneous liquid-liquid de-

mixing and leaves a structure containing finger-like macrovoids. The morphology of the inner surface 

seems to be more sensitive towards the composition of the bore fluid as compared to the dependence 

of outer surface on the composition of coagulant. In fact, as it can be noticed in Figure 3.2, finger-like 

structures are much more evident at the fiber inner wall. This is due to the different coagulation 

dynamics of fibers inner and outer walls. Coagulation of the inner layer starts immediately, due to the 

contact of the nascent fiber inner wall with the bore fluid, while the nascent fiber passes through an air 

gap of 25 cm before entering in the coagulation bath.  

 

 

 

. 

 

 

 

 

(a)                                            (b)     (c) 

Figure 3.2: SEM pictures of fibers M1. a) Cross section (54X); b) Enlarged cross section (300X); c) Inner 

surface (10800X). 
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(a)                                            (b)     (c) 

Figure 3.3: SEM pictures of fibers M2. a) Cross section (54X); b) Enlarged cross section (300X); c) 

Inner surface (10800X). 

 

 

 

 

 

 

 

 

 

 

 

(a)                                            (b)     (c) 

Figure 3.4: SEM pictures of fibers M3. a) Cross section (54X); b) Enlarged cross section 

(300X); c) Inner surface (10800X). 

 

Fibers type M3 were produced using a different PVDF type (Solef 1015, which has higher Mw with 

respect to Solef 6012), lower polymer concentration (15 wt.%), and different additives (PVP K-17 and 

AMAL), with respect to fibers M1 and M2, as reported in Table 3.2. However, we added also this 

type of fibers in our analysis, to discuss the effect of different membrane structures on the membrane 

distillation performance. Regarding the fibers outer surface, also in this case, the used air gap distance 

of 25 cm resulted in reduction of macrovoids similarly to what observed for fibers type M2. 

Regarding fibers inner surface, even if IPA 30% is a softer coagulant for PVDF with respect to pure 

water [6][21], tear-drop macrovoids can be noticed. The development of this structure can be 

connected to the low polymer concentration in the dope (15%), in agreement to what reported by 

Smolders et al [22]. 

3.2. Mechanical properties 

The mechanical properties of the PVDF hollow fibers produced are reported in Table 3.3. The fiber 

type M1 shows the best mechanical properties among the tested ones, in terms of Young’s 

modulus/tensile strength and elongation at break. Fibers type M2 show the lowest Young’s Modulus; 

while, fibers type M3 are characterized by lower tensile strength and elongation at break. 

M2 M2 M2 

M3 M3 M3 
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It is well known that the mechanical properties are strongly related with the microstructure developed 

during the fiber formation. Therefore, fibers mechanical properties can be explained taking into 

account the dope composition and coagulations conditions employed during spinning experiments.  

Fibers M1 are characterized by sponge-like structure, which is consequence of dope and coagulants 

composition, as explained in Section 3.1. This structure imparts superior mechanical properties to the 

fibers. 

Table 3.3: Properties of the PVDF hollow fibers produced in this work and commercial PP 

membrane used 

Fiber 

type 
O.D. I.D. Thickness Emod Rm ɛbreak W Bubble point 

Largest 

pore 

size 

Average 

pore size 
Porosity 

 (mm) (mm) (mm) N/mm² N/mm² % Nm (bar) (µm) (µm) (%) 

M1 1.80 1.04 0.38 70.34 3.43 251.97 0.60 2.093 0.219 0.191 80.90 

M2 1.59 0.70 0.45 57.15 2.84 192.88 0.30 2.789 0.164 0.121 79.11 

M3 1.60 1.15 0.23 63.71 2.62 163.82 0.19 1.267 0.362 0.318 83.39 

PP 

Accurel® 
2.70 1.80 0.45 103.75 4.16 174.40 1.11 0.672 0.682 0.2 70.00 

Note: The relative standard error is less than 5% in all cases. 

 

On the other hand, finger-like macrovoids represent weak points in the structure and, hence, the 

corresponding fibers show mediocre mechanical properties. The increased porosity also generates the 

fibers with weaker mechanical properties. Relatively substandard mechanical properties exhibited by 

M2 can be related with the application of water as both inner and outer coagulant, which produces a 

structure containing finger-like macrovoids at both the faces due to instantaneous de-mixing. The low 

graded mechanical character of M3 can be associated with the lower polymeric composition in the 

dope and, consequently, the higher porosity achieved. 

 

3.3. Porosity 

As shown in Table 3.3, the porosity of all the membranes obtained in current work is quite high, and 

ranges from 79% to 83%. As also observed in section 3.2, fibers properties can be explained taking 

into account dope composition and coagulation conditions, which influence de-mixing rate during 

coagulation and, hence, final fibers morphology. The porosity of fibers types M1 and M2 is similar. 

Therefore, in this case, fibers void fraction is mostly affected by dope composition, which is the same 

in the two cases; while, the bore fluid composition has less effect. Surprisingly, the finger-like 

macrovoids observed in fibers M2 structure do not contribute to increase the overall fibers void 

fraction. This let us to conclude that the sponge-like structure sandwiched between the two finger-like 

layers in fiber M2 (Figure 3.3) should be tighter, with respect to fibers type M1.  

The higher porosity observed for M3 can be related to the reduced amount of polymer and the 

additional pore forming additive into the dope solution, which affect fibers morphology as explained 

in Section 3.1. Fibers porosity is enhanced by the presence of finger-like macrovoids, which are 

predominant with respect to the thin sponge-like layer in fibers structure, as shown in Figure 3.4.  
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3.4. Bubble point and pore size distribution  

The results of the characterization procedures are reported in Table 3.3. In general, fibers pore size 

distributions are sharp, with bubble points ranging from 1.3 (Fiber M3) to 2.8 (Fiber M2) bar, 

corresponding to largest pore size of 0.36 and 0.16 μm respectively.  

For fibers M1, the average pore size is about 0.2 μm. Fibers type M2 shows lower average pore size 

(about 0.12 μm). The observed average pore size values of fibers M1 and M2 can be explained taking 

into account the preparation procedure. For fiber M1, the use of “soft” coagulants, both as bore fluid 

and coagulation bath, delayed liquid/liquid demixing during coagulation and promoted the formation 

of larger pores with respect to M2. In agreement with what observed by Liu et al. [23], when only 

water is used as bore liquid, as for M2, fast solvent/nonsolvent exchange could result in small pores. 

Also in [17] it is observed that the rapid phase inversion and polymer solidification in the case of 

strong nonsolvents, such as water, does not allow a significant pore growth. 

Fibers type M3 show larger average pore size, with respect to M1 and M2, and pore size distribution 

located between 0.36 and 0.32 μm.  

The use of lower polymer concentration in the dope, together with two pore forming additives (PVP 

and Maleic anhydride), and, also, use of “soft” inner coagulant (IPA 30%) resulted in the 

development of porous structure. As widely accepted, lower polymer concentration results, in general, 

in enhanced coalescence of the polymer lean phase during phase inversion. Moreover, Liu et al. [23] 

observed that, when solvent/non solvent exchange takes place with slower rate, the initiated nuclei get 

the chance to grow before phase separation occurs. Therefore, the dope composition and the 

coagulation conditions used during fibers M3 spinning resulted in larger pore size. 

3.5. Membrane distillation 

The PVDF hollow fibers produced in this study were assembled in modules to be tested in MD 

working both under vacuum and direct contact mode. In this section, the results obtained in both 

configurations will be illustrated and discussed. 

Before any VMD test, fibers were checked to verify that, after vacuum application, no liquid water 

passed from the fibers lumen (feed side) to the shell side of the module. For all the tested modules, no 

liquid droplets were evidenced on fibers outer surface, therefore all fibers were used for VMD 

experiments.  

3.5.1 VMD results  

Looking at the results reported in Table 3.4, it can be noticed that fibers type M1 shows lower trans-

membrane water vapor flux with respect to fibers M2 (15.06 kg/m2h vs. 22.37 kg/m2h) and that fibers 

type M3 shows the highest fluxes 41.78 kg/m2h. 

As widely accepted in literature, the MD trans-membrane water vapor flux is strongly associated with 

the membranes porosity and thickness [24]. The amount of vapor transported through the membrane 

increases by increasing the membrane porosity. Similarly, reduced membrane thickness offers less 

resistance to the vapor transport through the membrane.  
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Table 3.4: Results of the VMD tests performed using double distilled water as feed (Pvacuum 40 

mbar, Tf 50°C, Qf 6 L/h). 

Fiber 
VMD flux (H2O) 

(kg/h·m2) 

M1 15.06 

M2 22.37 

M3 41.78 

PP 22.00 

 

The morphology of fibers M1 is dominated by the sponge-like structure with an average pore size of 

0.19 μm. The limited flux is connected to both its thickness (0.38 mm) and structure. Fibers type M2 

have an average pore size of 0.12 μm and are thicker (0.45 mm), but present a sponge-like structure 

only 0.1 mm thick, and have finger-like layers (which can be noticed in Figure 3.3) that offer a 

reduced resistance to the transport. Therefore, these fibers show higher VMD flux.   

Fibers M3 show typical dual layer structure, with reduced thickness (0.23 mm) and a very thin 

sponge-like layer (about 0.055 mm) at the outer surface, and finger-like elements close to the inner 

surface, as evidenced in Figure 3.4. As pointed out in Section 3.3, this morphology results in higher 

porosity with respect to the other fibers and, as also discussed above, finger-like structures offer 

reduced resistance to transport. Both factors, together with the reduced thickness and higher average 

pore size (of about 0.32 μm), lead to a high trans-membrane flux. 

3.5.2 DCMD results  

The results obtained in the DCMD tests performed using fibers type M1-M3 are shown in Figure 

3.5a-c, respectively. 

In all cases, it can be noticed that the trans-membrane flux increases by increasing feed flow rates for 

all the temperatures investigated. The increase in flow rate decreases the boundary layer thickness and 

thus the flux increases due to more effective heat transfer from the bulk to the membrane surface. For 

each flow rate, trans-membrane flux increases when increasing the temperature at the feed side. This 

behavior can be related to the higher vapor pressure at the feed side that leads to higher partial 

pressure gradient between the two phases (higher driving force).  

As discussed in Section 3.1, the structure of fibers M1 is dominated by the sponge-like morphology, 

which offers more resistance to the mass transfer and, hence, limits the vapor transport across the 

membrane. Additionally, Table 3.3 indicates that fiber type M1 possesses high thickness, which also 

contributes in decreasing the value of the trans-membrane flux. Moreover, the presence of some 

fingers at the outer surface could lead to a partial wetting by the distillate stream that flows at the shell 

side. This would imply that not all the membrane cross section is available for the vapor transport and 

that the overall membrane resistance increases. The maximum flux attained reached the value of 14 

kg/m2h. 
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Figure 3.5: Asymptotic flux obtained at various temperatures and flow-rates for fibers type 

(a) M1, (b) M2, (c) M3 

 

Fibers type M2 show trans-membrane water vapor fluxes higher than that for M1. As discussed in 

Section 3.1, and evidenced in MD tests carried out under vacuum, these fibers have finger-like 

structures on both inner and outer surface. The presence of finger-like structure reduces the resistance 

to vapor transport and effective tortuosity along the membrane thickness, as well as the heat loss by 

conduction. However, significant increase of the trans-membrane flux with respect to fibers 

dominated by the sponge-like structure was not observed when working under the direct contact 

mode, on the contrary of what observed during VMD tests. This result could be probably due to the 

partial wetting of the finger-like structure at the outer surface of the fibers, present in both membrane 

types (M1 and M2). As reported above, in partially wetted membranes, the cross section dry and 

available for the vapor transport is reduced and the overall resistance offered by the membrane 

increases. Therefore, the gain in membrane flux, that could be obtained with fibers type M2 thanks to 

the presence of the finger-like structure (characterized by a lower membrane resistance), is, in fact, 

reduced because of the higher resistance offered by the wetted portion of the membrane.  

Similarly to what observed in VMD tests, the obtained flux is the maximum for fibers type M3 among 

all the tested ones. As already explained above, this can be related with the higher porosity and pore 

size, presence of the fingers and the lowest thickness of these fibers among all the used ones. In this 

case, a spongy structure is observed on the outer surface and, thus, no wetting phenomena by the 

distillate stream can occur. The maximum flux achieved approaches the value of 22 kg/m2h, as shown 

in Figure 3.5c. Again, the gain in flux is not as high as for VMD, due to the increase of the heat loss 

by conduction at lower membrane thickness.  

As discussed in literature [16], sponge-like structure narrows down the difference between DCMD 

and VMD flux. As the structure changes from spongy to the one containing macrovoids, the 

difference in flux becomes more and more significant.  

The results obtained for all the investigated fibers and that for commercial polypropylene (PP 

Accurel® S6/2) are compared in Figure 3.6, which shows the average flux obtained for each fiber at 
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different feed temperatures.  The flux obtained for each type of fiber at various flow rates and at a 

specific temperature was averaged. It can be noticed that the maximum flux is obtained with the fibers 

type M3 at all the tested temperatures.  
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Figure 3.6: Average asymptotic flux obtained for various types of fibers at different 

temperatures  

 

3.5.3 Comparison between VMD and DCMD 

Looking at the results obtained in VMD and DCMD experiments, it can be noticed that the trend of 

trans-membrane flux for various types of fibers is same in both configurations i.e. the highest flux is 

exhibited by fiber type M3 while M1 shows the limited values of flux, flux for M2 lays between M3 

and M1.  

The heat transferred through the membrane is governed by the following equation 

                                                         Q
m

= k
m

/d(T
Fm

-T
Pm

)+ Jl   

Where km is the thermal conductivity of the membrane, δ is the membrane thickness and λ is the latent 

heat of vaporization. Hot and cold phases separated by thin membranes in DCMD cause the thermal 

losses through the membrane. Moreover, the vapors transported from the hot to the cold side produce 

the local increase in temperature at the distillate side. Consequently, the effective vapor pressure 

gradient between the two phases decreases. In VMD, the conductive losses can be neglected due to 

the high vacuum applied at the other side of the membrane. Thus, no temperature profile is present at 

the permeate side. 

As already reported, the mass transfer flux through the membrane is proportional to the vapor 

pressure gradient across the membrane, which is a function of the membrane surface temperatures. 

exp expm

Fm Pm

B B
P A A

T C T C

   
       

    
          (1) 
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In case of vacuum membrane distillation, the second term in above equation equals the vacuum 

pressure applied and therefore, the effective pressure gradient across the membrane increases. Due to 

the lower driving force and the heat loss by conduction, trans-membrane water vapor fluxes obtained 

while working in the direct contact mode are lower with respect to those obtained working under 

vacuum for the same feed temperature and flow-rate.  

The comparison of the fluxes obtained for the two configurations at the same feed inlet temperatures 

and flow rates (50°C and 6L/h) is given in Figure 3.7. The general trend observed for trans-membrane 

water vapor flux among the tested fibers is the same working under both MD configuration, i.e. 

M3>M2>M1. However, the difference between the VMD and DCMD performance becomes much 

more evident going from M1 to M3. As already discussed, this could be attributed to the different 

fibers morphology and properties (M1 mainly characterized by a sponge-like structure; M2 and M3 

asymmetric type: M2, sponge structure “sandwiched” between finger-type structures at inner and 

outer surfaces; M3, thin sponge layer at the outer surface and finger elements at the inner surface, 

together with higher porosity and pore size and lower thickness than M1 and M2). In the case of M1, 

the high thickness of the dominant sponge-like structure increases the resistance to the vapor transport 

while reducing the heat loss across the membrane. Therefore, the difference between VMD and 

DCMD fluxes is reduced. Due to the same reasons, when reducing the membrane thickness and 

increasing the percentage of macrovoids in the fibers structure, i.e. going to M2 and, especially, to 

M3, the difference between DCMD and VMD performance becomes much more evident. The highest 

difference observed between the two MD configurations, achieved for fibers type M3, can be 

explained taking into account that, due to the fibers reduced thickness, the heat losses by conduction 

increase and affect the DCMD flux, whereas the VMD flux benefits of the reduced resistance to the 

transport. 

 

 

Figure 3.7: Comparison of flux obtained at the same feed conditions (50°C, 6 L/h) for 

different types of membranes used in DCMD and VMD tests 

 

3.5.4. Comparison of VMD performance with literature data 

As described in the Introduction, the aim of the present work was to investigate the behaviour of 

different fiber morphologies in membrane distillation. PVDF hollow fibers were produced changing 
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dope composition and spinning conditions on the basis of what already obtained in a previous work 

[3]. In order to facilitate comparison between fiber properties and VMD performance we resume here 

the similarities and differences between the preparation conditions of fibers produced in this and in 

the previous work. The comparison with previous results is shown in Figure 3.8.  

1) The dope composition of fibers M1 and M2 contains water and high percentage of PVP K-17 as 

reported in the previous work [3].  

2) For Fiber M1: NMP 30% was used as bore fluid. Since dope and bore fluid compositions were 

already optimized in the previous work, we changed the coagulation bath composition (from pure 

water to ethanol 30%). Consequently to this change and connected to the use of a different 

coagulation bath tank in the hollow fiber spinning plant, it was necessary to change also the air gap 

(from 25 to 14 cm). 

 

Figure 3.8: Comparison of VMD fluxes of fibers produced in this work and in [3]. Fibers 

morphologies are highlighted 

 

3) For Fiber M2: The dope composition and spinning conditions are similar to that of M1 and were 

already optimized [3]. The coagulation bath was H2O 100% as also in a previous work [3]. Therefore, 

we have chosen to investigate the effect of H2O 100% as a bore fluid (not used in [3]) in order to 

obtain different fiber morphology. 

4) For Fiber M3: A further additive, maleic anhydride, was tested as pore former. As described in the 

Introduction, this additive was already used, in combination with high Mw PVP, for preparation of 

microfiltration PVDF hollow fibre membranes [4]. This additive was, then, selected and used in the 

dope composition, since, as reported by many authors, fibers with microfiltration properties can be 

used in MD. High Mw PVP was replaced by PVP K-17 (with the same concentration used in [3]) in 

order to facilitate its removal by sodium hypoclorite, as suggested in literature [20-24]. The PVDF 
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type Solef 1015 and its concentration (15%) were chosen on the basis of what reported in literature, as 

well as the dope temperature [4]. The bore fluid composition and all the other spinning parameters 

were also chosen on the basis of our experience [3]. 

The Comparison of the morphology, properties and performance of the fibers produced in the present 

work and the reported in [3] is shown in Figure 3.8.  

4. Conclusions 

In this work, microporous hydrophobic PVDF hollow fibers were produced by the phase inversion 

method, varying polymer MW and concentration, type and concentration of different additives (H2O, 

PVP and AMAL) in the polymeric dope, composition of inner and outer coagulants.  

The effect of all these parameters on the morphology of the produced hollow fiber membranes was 

analyzed. A correlation between the developed morphology, fibers characteristics in terms of 

thickness and porosity, and the trans-membrane water vapor flux in MD was observed.  

In general, fibers showing macrovoids in the structure possess higher porosity, reduced mechanical 

strength and enhanced flux. The best mechanical properties are obtained when a weak non-solvent, 

like NMP or EtOH solution, is used as the bore fluid and external coagulant.  

It has been shown that the introduction of further pore forming additive (AMAL), combined with the 

relatively lower composition of polymer into the dope solution (Fiber type M3), leads to the structures 

exhibiting maximum trans-membrane flux working under both MD configurations (JVMD (50°C)= 

41.78 kg/m2h, JDCMD (70°C)= 21.78 kg/m2h). Furthermore, the fluxes obtained are higher or 

comparable to that mentioned in literature. In particular, the VMD flux is 90% higher than that 

obtained with the commercial membranes (PP Accurel) when using the M3 membrane. This 

interesting result can be attributed to the asymmetric structure of the produced (M3) membrane where 

the spongy layer has a reduced thickness and is supported by a very open finger type structure.  
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  CHAPTER 4

Experimental and theoretical evaluation of 

temperature polarization coefficient in 

direct contact membrane distillation 

1. Introduction 

A significant amount of heat is wasted in MD process due to thermal polarization associated with 

conduction and convection of heat from feed to the permeate side. The problem of thermal 

polarization becomes worse in DCMD due to direct contact of hot feed and cold distillate with 

opposite sides of the membrane. Under inappropriate operating conditions and for membrane with 

high thermal conductivity, the major contribution to heat transfer comes from the conduction through 

the membrane. The vapors transported from hot feed to the cold distillate side also play their role in 

inducing thermal polarization. Thermal polarization coefficient (TPC) defined by equation (a) has 

been established to quantify the thermal losses in MD. 

fm pm

f p

T T
TPC

T T





                                          (a) 

Where Tf and Tp are the feed and permeate temperature, respectively in the bulk and subscript m 

denotes their corresponding values at the membrane surface. The value of temperature polarization 

coefficient approaching to unity describes a thermally efficient process. 

Temperature polarization plays a key role in correctly elaborating heat and mass transfer analysis in 

DCMD and a lot of studies have been carried out in this context. The significance of temperature 

polarization was initially underlined quantitatively by Schofield et al [1]. They developed the basic 

equations to describe heat and mass transfer in MD and highlighted the importance of temperature 

polarization in designing and operation of large scale MD modules. Martinez-Diez and Vázquez-

González [2] proposed a method to evaluate  heat and mass transfer coefficients of membrane and the 

boundary layer heat transfer coefficients on the basis of the measurements of mass flux and  

evaporation efficiency. The effect of concentration and temperature polarization on the effective 

pressure gradient across the membrane was quantified by using an overall coefficient that coincides 

with thermal polarization coefficient when pure water is used as feed. Phattaranawik et al [3] analyzed 

the effect of spacers on mass flux enhancement in direct contact membrane distillation. It was 

observed that in presence of spacers, the value of temperature polarization approaches to unity and 

thus the flux increases.  

Effect of operational parameters including the hydrodynamic and thermal conditions and feed 

concentration on heat and mass transport in MD has been interesting to investigate. Yun et al [4] 

studied the effect of feed concentration, feed temperature and feed flow rates on mass transfer by using 

highly concentrated NaCl solutions as feed in DCMD.  The authors proved that the increase of NaCl in 

solution results in flux decline due to decrease in driving force. However, another phenomenon has to 

be taken into account: during the process, the concentration of the solution changes continuously due 
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to the migration of the solvent from feed to the permeate side. The concentration affects not only the 

vapor pressure of the feed (i.e., the driving force) but also the solution properties including viscosity, 

density, thermal conductivity etc. These properties consequently affect the other key parameters 

including solution hydrodynamic and diffusion properties. The changes in hydrodynamic of the 

solution and diffusion of the solvent can affect the temperature polarization coefficient and mass 

transfer coefficient.  

In this work, heat and mass transfer in direct contact membrane distillation has been analyzed by using 

a cell specifically designed for this purpose. The effect of hydrodynamic and thermal conditions on 

heat and mass transport phenomenon in DCMD using pure water as feed solution has been 

investigated. Finally, the effect of NaCl solution concentration on heat and mass transfer has also been 

incorporated in the analysis. 

2. Theory 

Flux in membrane distillation is proportional to the vapor pressure gradient created across a 

microporous hydrophobic membrane. The Antoine equation can be applied to calculate the vapor 

pressure P at any temperature T. 

                          exp
B

P A
T C

 
  

 
                                                                (1) 

where 23.238, 3841.273 and 42 have been used as the values of the constants A, B, C respectively, for 

water [5].  

The theoretical flux (J) can be calculated by the following relation [4].       

                     
( ) ( ) ( )

fm pm

m f c

P P
J

R t R t R t




 
                 (2)  

where Pfm and Ppm are the vapor pressures at the membrane surface on feed and permeate side 

respectively, Rm, Rc and Rf are the resistances due to the membrane, solution concentration and fouling, 

respectively. For a clean membrane using distilled water as feed and permeate, Rc and Rf are zero. Rm 

can be estimated by Knudsen and molecular diffusion model or the combination of both. If the 

Knudsen model is utilized, Rm can be described according to Mart and Rodr [6]. 

         ( )m

w kA

RT
R t

M D




                                                               (3) 

where δ is the membrane thickness, τ is the tortuosity factor, ԑ is the porosity, T is the absolute 

temperature, Mw is the molecular weight of water and DKA is the Knudsen diffusion coefficient. 

DKA can be calculated by the following expression [4]. 
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97KA
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T
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M
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                                                              (4) 

where r is the mean pore size.   

For molecular diffusion model, the following representative expression is used [4].   
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                                                      ln( )m

w WA
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R t
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
                                                           (5) 

where Yln is the log mean partial  pressure of air, P is total pressure  and DWA is the molecular diffusion 

coefficient which can be calculated by using the following expression. 
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                                                      (6) 

The resistance to the mass transport can also be expressed in terms of combined Knudsen and 

molecular diffusion model. 
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Experimentally, feed side boundary layers resistances and membrane resistance to mass transfer can 

be calculated by the following expressions [7].          

                                   fm fb
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            (8) 
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where Rfb and RPb are the feed and permeate boundary layer resistances, respectively. 

The heat transfer in membrane distillation takes place in three steps: the heat transfer from the bulk 

feed side to the membrane surface, the transfer of the heat through the membrane and heat transferred 

from the membrane surface to the bulk of the permeate. These steps can be expressed by the following 

relations.  

                                      ( )f f f fmQ h T T                                                    (11) 

                                     ( )p p pm pQ h T T                                                                                     (12) 

                                  ( ) { }m
m fm pm

K
Q T T JH T


                                          (13) 

where hf and hp represent the heat transfer coefficients for the feed and permeate side respectively, Km 

is the thermal conductivity of the membrane and H is the enthalpy at temperature T. 

Km has been calculated by using the widely accepted isostrain model. 

                                (1 )m g pK K K                                                     (14) 

where Kg and Kp are the thermal conductivities of air and  membrane material (polymer), respectively. 

At steady state, 
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Theoretically, heat transfer coefficients can be calculated by the following general expression. 

                                /i i hhi Nu K D            (17) 

where  

Nu Nusselt  number 

Dh hydraulic diameter 

K  Thermal conductivity 

Nusselt number can be calculated according to the type of the flow (laminar or turbulent). 

Different expressions are available in literature for determination of Nusselt number for both laminar 

and turbulent flow conditions. A list of the commonly used relationships for laminar flow has been 

provided in Table 4.1.  

Table 4.1: Heat transfer correlations used in the literature for laminar flow 

1/3
RePr

1.86
/

Nu
L D

 
  

 
                                   (18) [8]  

0.8

0.036RePr( / )
4.36

1 0.0011(RePr( / )

D L
Nu

D L
 


                                        (19) [9] 

0.23 0.511.5(RePr) ( / )coolingNu D L                   (20) [5]

  

0.23 0.515(RePr) ( / )heatingNu D L                    (21)  [5]

  

0.64 0.380.13(Re) (Pr)Nu                     (22) [5]

  

1/3
RePr

1.95
/

Nu
L D

 
  

 
                  (23) [10]

  

0.73 0.130.097(Re) (Pr)Nu                    (24) [5]

  

0.8

0.104RePr( / )
3.66

1 0.0106(RePr( / ))

D L
Nu

D L
 


                                              (25)      [10] 



 

67 

Re and Pr in Table 4.1 are the Reynolds and Prandtl numbers respectively, D is the diameter and L is 

the length of the channel. 

Once heat transfer coefficients (hi) are known, the corresponding temperatures at the membrane 

surfaces can be calculated by the following equations [11]. 
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where 
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where Hv is the vapor enthalpy and can be calculated by using the following thermodynamic 

relationship at any temperature T. 

                                         { } 1.7535 2024.3vH T T                    (28) [12]  

where T is in K and Hv is in kJ/kg. 

For theoretical analysis, equations (26) and (27) were solved by using iterative method. 

Thermal efficiency (TE) can be defined as the ratio between the heat transported with the vapors to the 

total heat transported across the membrane. 

                            

 

{ }
(%) 100

{ }

v

m
v fm pm

JH T
TE

K
JH T T T



 

 

          (29)       

3. Experimental 

The experimentation was performed by using a specifically designed cell that contains the sensors 

positioned at specific locations within the cell to measure the bulk and surface temperatures at both 

feed and permeate sides. The detailed cell description is given in Figure 4.1. The cell consists of two 

halves made of Teflon with the temperature sensors located at specific points. Two halves can be 

clamped together to hold the flat sheet membrane between them. An aluminum mesh has been 

incorporated on distillate side to support the membrane. There are eight sensors on each side of the 

cell. Four sensors on each side are located on the membrane surface and the remaining four are 

devoted to measure the bulk temperature. For simplicity, the average of the temperatures measured at 

the membrane surface and in the bulk phases has been taken as the representative temperature of the 

corresponding phases. Temperatures were monitored by platinum thermocouples (Pt100) with 

sensitivity ±0.1 °C. The local interruption in flow dynamic caused by the sensors within the cell has 

been neglected due to very small diameter of the sensors as compared to the active dimensions of the 

cell. 

The microporous hydrophobic PVDF commercial membranes used (M09G002OH500E) were kindly 

supplied by GVS S.P.A. The membranes have 0.2 µm as mean pore size, 192 µm as thickness and 

56% as overall porosity. The porosity measurements were carried out by using the gravimetric method 

according to the procedure described by Simone et al [13]. The method relies on measuring the weight 
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of liquid entrapped within the membrane pores. Porosity measurements were performed twice; each 

time on 3 pieces of membrane with different dimensions and the average of the six specimens was 

considered as the final value. The effective area of the membrane clamped between two halves of the 

cell is 24.9 x 9.85 cm2 while the depth of the channel on each side is 1.3 cm. The temperature 

measured by the sensors at different locations can be recorded and displayed in real time in the form of 

graphs with the aid of Lab view software. The software allows importing of data in some other 

software like MS Excel for the further data processing.   

 

Figure 4.1: (a) Insight of the cell. Sensors1-4 are located in the bulk whereas sensors 5-8 measure the 

temperature at the membrane surface on the feed side. Sensors 13-16 are located at membrane surface 

whereas sensors 9-12 measure the bulk temperature on permeate side. (b) Front view of the cell (c) 

side view of the cell (d) geometrical features of one half of the cell 

During the first phase, the experimentation has been performed by using double distilled water as feed 

and permeate. The experimentation has been performed at various hydrodynamic conditions varying 

the feed flow rate from 30 L/h to 150 L/h (corresponding to Re of 272 to 1360) while keeping the 
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permeate flow rate constant at 50L/h. The feed inlet temperature has been kept constant at 55+0.5 oC 

while the permeate inlet temperature has been set at 10oC. Schematic of the set-up used for MD has 

been given in Figure 4.2. The effect of feed inlet temperature has been explored by using the fixed 

feed flow rate of 70L/h and feed inlet temperature ranging from 45oC to 75oC with an interval of 10oC 

each. In second phase, the effect of solution concentration has been explored by using NaCl solution 

with initial concentration of 1 M and feed flow rate of 70L/h. 

 

Figure 4.2: Set-up used in the experimentation 

4. Results and discussion 

4.1 Effect of hydrodynamic conditions 

The trans-membrane flux measured at various Re and the corresponding feed side boundary layer 

resistance (Rfb) calculated according to equation 8 are shown in Figure 4.3. The figure indicates that 

the trans-membrane flux increases by increasing the Re. By increasing the Re, the resistance to the 

mass transfer offered by the feed side boundary layer decreases and the heat transfer from the bulk to 

the membrane surface becomes more efficient. Consequently, the trans-membrane flux increases.  
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Figure 4.3: Flux and feed side boundary layer resistance as function of Re 

The flux observed during the experimentation is also dependent on the resistance offered by the 

membrane. The experimental feed side boundary layer and membrane resistance determined 

experimentally and calculated theoretically under the hydrodynamic conditions studied are compared 

in Table 4.2. It is apparent from the table that at Re of 272, the resistance to mass transfer offered by 

the feed side boundary layer is similar to that for the membrane. However, Rfb drops dramatically when 

the feed flow rate is increased. The membrane resistances shown in the table indicate that the 

molecular diffusion model and the transition model describe the resistance realistically well while the 

resistance predicted by Knudsen diffusion model is too low than the experimental value. 

The theoretical value of the membrane resistance for various hydrodynamic conditions was calculated 

by using the Knudsen diffusion model, molecular diffusion model and the combined Knudsen and 

molecular diffusion model. It is widely accepted in the literature that the mode of vapor transport 

through the membrane depends upon the pore size and feed temperature. If the mean free path of the 

water vapors is greater than the pore diameter, the collision of the vapors with the pore wall would be 

dominant and the mass transfer would be described by Knudsen diffusion model. On the other hand, 

when the mean free path of water vapors is shorter than the pore size, the collision of vapors with each 

other would be dominant and molecular diffusion model would characterize the mass transport 

through the membrane. However, in most cases of the practical interest, the pore size of the membrane 

is comparable to the mean free path of water molecules and the mass transport is described by the 

combined Knudsen and molecular diffusion model. The flux calculated on the basis of Knudsen 

diffusion model is greater than that for the other two models. 

The value of membrane resistances calculated on the basis of various models have also been illustrated 

in Table 4.2 and compared to those obtained experimentally. It is evident from the table that Knudsen 

diffusion model predicts the values of the resistance much lower than the ones obtained 

experimentally under all the hydrodynamic conditions investigated. However, at lower Reynolds 
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number the both molecular and combined Knudsen and molecular diffusion models are adequate to 

describe the mass transport through the membrane. As the Reynolds number increases, the 

experimentally determined resistance follows more closely to the prediction of combined Knudsen and 

molecular diffusion model. 

Table 4.2: Feed side boundary layer resistance and membrane resistance to the mass transfer 

measured experimentally and calculated on the basis of different models 

Re Rfb(eq. 8) Rmexp  (eq.9) Rmk(eq.3) Dmk(%) Rmm(eq.5) Dmm(%) Rmcom(eq.7) Dmcom(%) 

272 2498 2225 22.6 98.98 2165 2.68 2269 -1.98 

453 1298 2404 22.7 98.98 2233 -0.38 2249 -1.08 

635 970 2355 22.8 98.98 2256 -1.40 2241 -0.74 

816 845 2327 22.8 98.98 2233 -0.38 2246 -0.97 

997 379 2262 22.9 98.97 2302 -3.47 2228 -0.13 

1179 223 2218 23 98.97 2334 -4.89 2219 0.24 

1360 95 2183 23 98.97 2363 -6.20 2212 0.57 

Maximum standard deviation for Rmexp 10.12% 

               

 

 

Among all the membrane characteristics, tortuosity is the most controversial in the sense that its 

different values have been used by the researchers to predict the flux. Lower value of tortuosity factor 

favors the high mass transfer flux through the membrane. The value of the tortuosity factor for the 

membranes prepared through the phase inversion can be determined by the following relationship 

[14]. 

             

2(2 )





                 (30)     

For overall porosity of 56% of the membrane used in the current study, the value of τ comes out to be 

3.7. Many researchers used 2 as the value of the tortuosity factor [15], [16].  Khayet et al [17] 

performed the gas permeation tests to calculate the value of tortuosity factor of 2.1. In the current 

study, both 2.1 and 3.7 have been used as values of τ to calculate the theoretical flux. 

The values of the flux obtained by using Knudsen diffusion model (Jk), molecular diffusion model (Jm) 

and the combined Knudsen and molecular diffusion model (Jcom) for  tortuosity factors applied are 

given in Table 4.3. It can be observed that the experimental data follows closely to the molecular 

diffusion model and the combined Knudsen and molecular diffusion model when the value of τ is 

equal to 3.7 and 2.1, respectively. 

Rfb  Feed side boundary layer resistance (experimental)                                        

Rmexp       Experimental membrane resistance                                                                                            

Rmk        Membrane resistance calculated by using Knudsen diffusion model                     

Rmm Membrane resistance calculated by using molecular diffusion model               

Rmcom Membrane resistance predicted by combined Knudsen-molecular diffusion model    

D Difference from experimental value 
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Table 4.3: Experimental and theoretical flux for various values of τ by using Knudsen diffusion model, 

molecular diffusion model and the combined Knudsen and molecular diffusion model 

 

Re 

 

Jexp 

τ=2.1 τ=3.7 

Jk Jm Jcom Jk Jm Jcom 

272 
3.91 21.59 7.21 5.40 9.45 3.15 2.36 

453 
5.01 27.33 9.17 6.87 11.96 4.01 3.00 

635 
5.38 27.82 9.42 7.04 12.17 4.12 3.08 

816 
6.12 29.73 9.97 7.47 13.01 4.36 3.27 

997 
6.36 35.25 11.91 8.90 15.42 5.21 3.89 

1179 
7.09 38.46 13.03 9.73 16.83 5.70 4.26 

1360 
7.83 41.36 13.92 10.42 18.09 6.09 4.56 

  

Temperature polarization coefficient can be quantified by equation (a) and describes the effective 

temperature gradient across the membrane. The transfer of heat from the hot feed side through  

conduction and latent heat of vaporization associated with the transport of vapors causes a decrease in 

temperature at the membrane surface on feed side and increases the corresponding temperature at 

permeate side. Thus the effective driving force between the two phases reduces.  When the fluid 

velocity at the fluid-membrane interface is low, the transfer of heat from the bulk to the membrane 

surface is hindered by the boundary layer and favors the reduction in temperature polarization 

coefficient. On the other hand, an increase in fluid velocity improves the Reynolds number of the fluid 

and decreases the thickness of the boundary layer. Consequently, the difference between the 

temperature at the membrane surface and the bulk decreases and imparts a positive impact to 

temperature polarization coefficient. 

When the heat transfer coefficients, bulk temperatures for feed and permeate sides and overall trans-

membrane flux are known, the corresponding temperature polarization coefficient can be calculated by 

using the following relation [3].  

              
{( ) / 2} 1 1

1
v fm pm

f p f p

JH T T
TPC

T T h h

  
         

                      (31) 

The experimentally measured flux and bulk temperature and theoretically calculated heat transfer 

coefficients were used in equation (31) to estimate the theoretical value of TPC at different conditions. 

The values of temperature polarization coefficients determined experimentally and those obtained by 

using equation (31) under various hydrodynamic conditions have been shown in Figure 4.4. The figure 

indicates that the increase in TPC with Re is quite significant at low values of Re. With further 

increase in Re, the temperature polarization coefficient increases but the slope of the curve decreases. 

The increase in temperature polarization coefficient with Re is quite rational as the flow pattern 

developed within the cell by increasing Re favors the mixing of the fluid present at the membrane 

surface and in the bulk. Consequently, the temperature distribution within the cell becomes more 
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homogeneous and attributes a positive impact to TPC. The effect is more pronounced at low Re, as 

smaller increase will enhance the mixing significantly. Significantly different values of experimental 

and theoretical TPC can be attributed with higher uncertainty in experimental temperature at high Re. 

At high Re, the membrane support starts to bend and temperature sensors do not measure the surface 

temperature accurately. Furthermore, the disturbance caused by the sensors start to interfere with the 

normal flow patterns. 

 

Figure 4.4: Theoretical and experimental temperature polarization coefficient as function of Re 

Thermal efficiency (eq. 29) can be used as an indicator of the efficient utilization of the heat in the 

process. The dependence of thermal efficiency on hydrodynamic conditions is illustrated in Figure 4.5 

along with feed side heat transfer coefficient. Thermal efficiency improves from ~13.5% to ~19.5% as 

the Reynolds number increases from 272 to 1360. This observation is essentially coherent with the 

trend observed for trans-membrane flux (Figure 4.3). The increased trans-membrane flux implies 

higher fraction of heat transported through the membrane via convection and as a result, the thermal 

efficiency of the system improves. The same trend can be seen for heat transfer coefficient which 

indicates the efficiency of heat transfer from bulk to the membrane surface. The resistance to the mass 

and associated heat transfer decreases sharply as the feed flow rate is increased. Consequently, the heat 

transferred from the bulk to the membrane surface becomes more efficient and a higher value of heat 

transfer coefficient is observed.   
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Figure 4.5: Effect of Reynolds number on thermal efficiency and heat transfer coefficient 

The dependence of trans-membrane flux on feed side heat transfer coefficient has been shown in 

Figure 4.6. Flux shows a strong dependence on heat transfer coefficient for low Re ranges and starts to 

be level off at high Re. 

 

Figure 4.6: Dependence of trans-membrane flux on heat transfer coefficient of feed side 
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As illustrated by equation (16), at steady state the heat transferred from bulk of feed to the membrane 

surface is equal to the heat transferred through the membrane through convection and conduction and 

the heat transferred from the membrane to the permeate. This assumption allows calculating the feed 

and permeating heat transfer coefficients, once the bulk and interfacial temperatures are known (eq. 

16). At steady state, neglecting the conductive heat flux, equation (16) can be written as [3]. 

                                     hp(Tpm-Tp) = hf(Tf-Tfm ) = JH{T}                              (32) 

While equation (32) has been used to calculate experimental heat transfer coefficient, in literature, 

different expressions are available to calculate theoretical heat transfer coefficient based on the fluid 

properties and the geometry of the system. The heat transfer correlations for laminar flow are 

described by equations 18-25. The values of theoretically calculated heat transfer coefficients were in 

similar rages of those calculated experimentally for weak hydrodynamic conditions applied as shown 

in Table 4.4. However, experimental heat transfer coefficient deviates more strongly from theoretical 

predictions at high Re.  The most probable reason for this behavior can be the geometry of the cell. As 

shown in Figure 4.1, the cell has three entrance and exit channels. At high Re, the entrance and exit 

effects can interrupt the normal flow pattern developed at low Re. Secondly, the membrane has been 

supported by using an aluminum mesh. At high Re, aluminum mesh can bend and contact of thermal 

sensors with the membrane may not remain very precise. Both these factors are the possible 

responsible for high deviation of experimental heat transfer coefficient from the experimental one at 

Re. 

Table 4.4: Experimental and theoretical feed side heat transfer coefficients calculated for various 

hydrodynamic conditions 

Re Eq. 21 Eq. 23 Eq. 18 Eq. 19 Eq. 22 Eq.24 Eq. 25 Exp. 

272 472 241 229 205 210 190 284 193 

453 531 285 272 258 291 277 369 398 

634 575 319 304 310 361 354 439 583 

816 609 347 331 360 424 425 497 920 

997 638 371 354 408 482 492 549 1185 

1178 664 392 374 456 537 556 594 1782 

1360 686 412 393 502 588 617 634 1838 

 

4.2 Effect of feed inlet temperature 

The effect of feed temperature on heat and mass transfer has been scrutinized by varying the feed inlet 

temperature from 45oC to 75oC with an interval of 10oC each. The experimental flux compared with 

theoretical predictions has been shown in Figure 4.7. The flux increases exponentially by increasing 

the feed inlet temperature, as commonly accepted in the literature. The figure discloses that the 

experimental flux can be simulated reasonably well by using combined Knudsen and molecular 

diffusion model. 
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Figure 4.7: Effect of feed inlet temperature on trans-membrane flux. Jexp, Jk, Jm and Jcom represent the 

experimental flux and that calculated on the basis of Knudsen diffusion model, molecular diffusion 

model and combined Knudsen and molecular diffusion models, respectively. 

The feed side boundary layer resistance calculated at temperature conditions investigated has been 

shown in Table 4.5. The table shows that the feed side boundary layer resistance increases with rise in 

temperature. It can be related with increased convective and conductive heat flux through the 

membrane at higher temperature which induces a higher temperature gradient between the bulk and 

the membrane surface. Additionally, the increased evaporation at the membrane surface at high 

temperature induces a cooling effect, leading towards increased boundary layer resistance. 

Table 4.5: Resistance to mass transfer offered by feed side boundary layer at various feed inlet 

temperatures 

Temperature (oC) Rf (eq.8) Experimental S.D% 

45 401 6.9 

55 450 9.4 

65 505 8.4 

75 534 11.2 

 

Temperature polarization coefficient as function of feed inlet temperature has been shown in Figure 

4.8. In the same figure, the total heat flux transported across the membrane and the Reynolds numbers 

corresponding to each temperature condition applied have been shown. The figure indicates that 

temperature polarization coefficient decreases when feed inlet temperature increases from 45oC to 

75oC. As said in the above paragraph, rise in feed temperature increases the rate of heat transport from 

the feed to the permeate side and decreases the temperature at the membrane surface on feed side. The 
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transfer of heat from feed to the permeate side causes an increase of the surface temperature on the 

permeate side, as compared to its value in the bulk. The net result of the increased transport of heat via 

convection and conduction through membrane combined with the cooling effect caused by the 

evaporation at the feed side on membrane surface appears as a decrease in the observed TPC. On the 

other hand, the increase in temperature at the feed side improves the hydrodynamic of the system and 

Re increases. Contrary to the effect of increased heat transfer, the increase in Re tends to increase the 

temperature polarization coefficient. However, the impact of heat transfer plays the decisive role in 

dictating the overall trend of temperature polarization coefficient with respect to feed temperature.  

 

Figure 4.8: Total heat flux, Reynolds number and temperature polarization coefficient as function of 

feed inlet temperatures 

The total heat flux, convective heat flux across the membrane and thermal efficiency for various feed 

inlet temperatures have been shown in Figure 4.9 which points out that thermal efficiency increases 

linearly with feed inlet temperature. The conductive heat flux increases linearly with temperature 

while the increase in convective flux with temperature is exponential. The net effect is an increase in 

thermal efficiency with feed inlet temperature. The relatively low values of thermal efficiency 

observed in this study are due to low overall porosity of the membrane that favors the conductive heat 

transfer across the membrane while limits the transport of vapors. 

The theoretical heat transfer coefficients calculated according to the heat transfer models proposed by 

[5] are compared with those based on experimental data in Table 4.6. Generally a good agreement 

between experimental and theoretical values can be observed. Similarly, the corresponding 

temperatures calculated according to equation (26) are shown in Table 4.7 and agree well with the 

experimental values. However, similar to the observation made in section 4.1, no single correlation 

was found to fit the results well. 
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Figure 4.9: Total heat transfer flux (Q), convective heat transfer flux (Qv) and thermal efficiency as 

function of feed inlet temperature 

Table 4.6: Theoretical and experimental heat transfer coefficients for feed side 

Temperature (oC) 

hf (W/m2.K) 

On the basis of [5] 

(equation 24) 
Exp. S.D (%) 

45 756.6 679 8 

55 855.9 774 9 

65 912.8 846 6 

75 920.5 886 10 
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Table 4.7: Feed side membrane surface temperatures calculated by using heat transfer coefficients 

given in Table 4.6 

Feed inlet 

temperature (oC) 

Tfm (oC) 

On the basis of [5] Exp. S.D (%) 

45 42.2 42.0 2.4 

55 51.4 50.1 3.5 

65 57.8 57.5 1.2 

75 63.9 65.2 2.8 

 

4.3 Effect of feed concentration 

The effect of feed concentration on mass and heat transfer has been investigated at various feed inlet 

temperatures by using the initial feed concentration of 1M. The flux obtained at applied feed inlet 

temperature as function of concentration is shown in Figure 4.10. The figure indicates a decreasing 

trend of flux with increase in concentration for all the temperatures investigated. It has been well 

accredited that the flux in membrane distillation is a function of both feed temperature and its 

concentration. The former has the exponential effect on the flux while the later changes the flux 

marginally, especially at lower concentrations. The effect of feed concentration on vapor pressure of 

the solution can be determined by using the relationship [4]. 

                               (1 )(1 0.5 10 )oP P x x x                                   (33) 

where P is the partial pressure of the solvent in the solution, Po is the vapor pressure of pure solvent 

and x is the mole fraction of solute in the solution.  
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Figure 4.10: The effect of feed solution concentration on trans-membrane flux observed at different 

feed inlet temperatures                                            

The effect of temperature polarization on flux has been realized by considering the difference in 

measured temperatures in the bulk phases and at the membrane surfaces and is shown in Figure 4.11. 

The quantitative role of solution concentration in flux reduction has been illustrated in the same figure. 

It can be noticed from the figure that the major contribution in flux reduction comes from thermal 

polarization effect (~24-29%, as the feed concentration rises from 1 M to 2.85 M) while the effect of 

feed concentration becomes prominent only at higher feed concentrations (~1.5-6% for the 

concentration of 1M to 2.85 M). 

An important observation that can be made from the Figure 4.11 is the dependence of flux reduction 

due to thermal polarization effects on the feed concentration. This effect can be attributed towards the 

increase in solution viscosity and density with concentration. The increased solution viscosity hinders 

diffusion of vapors and associated heat transfer from the bulk of the feed to the membrane surface 

while both viscosity and density also negatively influence the Re which further decreases the heat and 

mass transfer from bulk to the membrane-solution interface. The change in solution concentration and 

the corresponding Reynolds number as function of experimental time for different solution 

temperature has been shown in Figure 4.12. Re decreases due to increase in solution viscosity and 

density as the concentration increases. 



 

81 

1.0 1.5 2.0 2.5 3.0

12

15

18

21
F

lu
x 

(k
g/

m
2
.h

)

Concentration (mol/L)

 J
b

 J
M

 J
exp

 J
sol

 

Figure 4.11: Flux calculated on the basis of different considerations and the effect of feed solution 

concentration and temperature polarization on reduction in flux. Jb, JM, Jsol and Jexp represent the flux 

calculated on the basis of bulk temperatures, temperature at the membrane surface, on the basis of 

bulk temperatures combined with solution concentration effects and experimental flux, 

respectively.Feed inlet temperature was 77oC 

Concentration effect 
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Figure 4.12: Change in feed solution concentration and the corresponding Reynolds number with 

experimental time 

The effect of feed concentration on heat transfer coefficient has been illustrated in Figure 4.13 which 

shows a reduction in heat transfer coefficient and the corresponding Reynolds number as the solution 

concentration rises. It is attributed towards the retarded heat and mass flux from bulk to the membrane 

surface. This argument is further supported by Figure 4.14 that shows the temperature difference 

between the bulk and membrane surface as a function of feed concentration for various feed inlet 

temperatures. The figure clearly designates that the difference increases with feed concentration, thus 

indicating the coupling of thermal polarization with solution concentration. 
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Figure 4.13: Dependence of heat transfer coefficient and Re on feed solution concentration 

 

 

Figure 4.14: Temperature gradient between bulk and membrane surface on feed side as function of 

feed solution concentration at different temperatures 
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5. Conclusions 

The effect of hydrodynamic conditions and feed inlet temperature on heat and mass transfer in DCMD 

has been investigated by using a specifically designed cell. It has been concluded that boundary layer 

resistance to the mass transfer is similar in magnitude to the membrane resistance at low feed flow 

rates (Re=272) while it decreases drastically by increasing the feed flow rate. The temperature 

polarization coefficient increases by increasing the feed flow rate. The membrane resistance at 

different hydrodynamic conditions can be described well by using either combined Knudsen diffusion 

and molecular diffusion models or simple molecular diffusion model. The temperature polarization 

coefficient increased from ~0.68 to ~0.89, value of heat transfer coefficient changed from ~200 

W/m2.K to ~1500 W/m2.K, while the thermal efficiency of the system improved from ~13 to 20% 

when the Reynolds number was increased from 272 to 1360.  Experimental heat transfer coefficient 

lays within the range of theoretical predictions at low feed flow rates, though the values cannot be 

represented precisely with a single existing theoretical correlation.  

At various feed inlet temperatures, the mass transfer can be best explained by using combined 

Knudsen and molecular diffusion model. The temperature polarization coefficient decreases as the 

feed inlet temperature is increased from 45oC to 75oC. On the other hand, the boundary layer 

resistance to the mass transfer shows opposite trend. Thermal efficiency is the maximum at the highest 

temperature used in the experiment.  

The increased solution concentration decreases the transfer of heat and mass from the bulk feed side to 

the membrane surface due to increase in solution viscosity and density which adversely affect the Re 

and heat transfer coefficient. The net effect is an increase in temperature gradient between the bulk 

feed phase and the membrane surface on feed side with solution concentration. The solution 

concentration has very limited role in flux reduction as compared to thermal polarization (1.5:24) at 

low feed concentration while the flux reduction due to concentration becomes important only at high 

feed concentration (6:29). Thermal polarization becomes worse at high solution concentrations, 

indicating a coupling of heat and mass transfer with the solution concentration. 

Nomenclature 

Dh Hydraulic diameter (m) 

DKA Knudsen diffusion coefficient 

DWA Molecular diffusion coefficient 

hf Feed side heat transfer coefficient (W/m2.K) 

Hv Enthalpy of vapor 

J  Flux (kg/m2.h) 

K Thermal conductivity (W/m.K) 

L Length (m) 

Mw Molecular weight (kg/mol) 

Nu Nusselt  number 

P Pressure (Pa) 
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Pr Prandtl number 

Q Heat flux (J/s) 

R Universal gas constant (8.3143 J/K.mol) 

Rc Resistance due to concentration 

Re Reynolds number 

Rf Resistance due to fouling 

Rfb Feed side boundary layer resistance 

Rm Resistance due to membrane 

Rpb Permeate side boundary layer resistance 

Tf Feed side bulk temperature (oC)  

Tfm Feed side membrane surface temperature (oC) 

Tp Permeate side bulk temperature (oC) 

TPC Temperature polarization coefficient 

Tpm Permeate/distillate side membrane surface temperature (oC) 

r             Mean pore size 

Yln Log mean average pressure (Pa) 

x  Mole fraction of NaCl 

ԑ Porosity 

τ Tortuosity 

δ Membrane thickness (m) 
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  CHAPTER 5

Active and passive techniques for 

controlling thermal polarization in 

membrane distillation 

1. Introduction 

Fouling has been indicated as a big hindrance in application of membrane based processes for several 

potential applications. For low pressure processes, several techniques have been practiced including 

the use of cross flow instead of dead end filtration, application of turbulent promoters (spacers or 

screens), implementation of periodic pulsing of the permeate, back washing etc.  During last three 

decades or so, the application of rotating equipment and the induction of controlled secondary flows 

have gained popularity [1]. However, most of these techniques suffer from many drawbacks including 

the blockage of the screens due to suspended aggregates, cleaning difficulties and problem of sealing 

due to moving parts. Besides that, the relatively high energy consumption and scale-up might be the 

additional problems [2]. 

In membrane distillation (MD), the process performance is less altered by fouling or concentration 

polarization than thermal polarization characterized by the difference in temperatures at the membrane 

surfaces and in bulk phases [3]. While these observations about fouling and very less effect of 

concentration polarization are very much true for conventional salt solutions, the former can have 

significant effect on process performance for the solution containing macromolecules such as dairy 

streams and other solutions containing proteins [4]. For certain types of feed solutions, the initial 

fouling layer can be associated with the adsorption of molecules at the hydrophobic surface of the 

membrane. Once built, such layer may tend to accumulate more solute molecules at the membrane 

surface and ultimately, a thick cake layer can establish under high convection and low shear 

conditions. The formation of cake layer can hinder both heat and mass transfer to the membrane 

surface. The thickness of the fouling layer can play a decisive role in controlling the heat and mass 

transfer across the membrane. In addition to the fouling, flux reduction in MD can also be attributed to 

temperature polarization as well acknowledged in the numerous investigations:[5][6][7].  

Membrane distillation can benefit from solutions developed by process engineers for increasing heat 

transfer in heat exchanging application and to mitigate fouling in conventional membrane operations. 

However, due to different nature and time scale of fouling in MD, most of the conventional techniques 

applied for fouling and concentration polarization reduction in pressure driven membrane processes 

may not be appropriate for MD. Moreover, due to limited flux (and therefore products), the techniques 

that consume too much energy may not be suitable for MD. After considering these factors, the most 

interesting techniques for MD are limited to only a few candidates. A pros and cons comparison of 

different state-of-the-art hydraulic techniques practiced for conventional membrane processes with 

application potential for MD has been provided in Table 5.1. Most of these techniques cannot only 

reduce the fouling in MD but they can also improve temperature distribution within the membrane 

module. The techniques can also have ‘’wash away’’ effect on surface scales/crystals. 
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Table 5.1 : A brief analysis of possible hydraulic techniques for fouling and thermal polarization 

reduction in MD 

Technique Potential benefits Potential challenges 

Induction of 

secondary flow 

No extra equipment required, easy to 

adopt, strong effect on temperature 

polarization on up and down stream 

sides, high shear  acting on the 

surface can remove the attached 

particles and fouling layer built up, 

the performance can be tuned simply 

by changing the coil diameter and 

pitch. 

Although for heat exchangers and low 

pressure membrane processes, the process 

has been well studied yet further studies 

are required to establish the effects for 

MD 

Pulsation flow 

Reduction in concentration and 

thermal polarization, relatively 

simple to incorporate 

Additional operational and capital cost 

associated with pulsating generating 

equipment 

Air sparging 
Can reduce the fouling in MD when 

treating complex mixtures 

Additional cost related with air sparging 

equipment, air can occupy the part of 

membrane modules thus reducing the 

contact area, the pores can be occupied by 

the injected air leading towards reduced 

vapor pressure [8] 

Backwashing 

The crystallization, scaling and 

deposits partially wetting the pores 

can be removed 

The pore wetting will occur leading to the 

post drying requirement, the effectiveness 

of the technique will be limited to remove 

deposition, scaling occurred within the 

pore or at pore mouth, no effect on 

thermal polarization 

Rotating 

membranes 

Reduction in concentration and 

thermal polarization, 

High energy consumption, design 

modification for MD can be complicated, 

may not be suitable for hollow fibers 

 

Some more potential techniques appropriate for reduction of fouling and/or thermal polarization 

phenomenon in MD have been given below. Most of these techniques are well known in process 

engineering to increase heat transfer coefficient of different systems. 

1. Surface treatment: It can be applied to incorporate a continuous or discontinuous fine scale 

alteration or modification to the surface to enhance the turbulence.  

2. Displace enhancement devices: The application of such insert to the forced convection makes 

the temperature distribution more homogenous. The technique can be suitable for flat sheet 

membranes. 

3. External additives: Such technique are based on addition of trace of soluble additives, solid 

particles and gas bubbles to decrease the surface tension of the liquid and thus increasing the 

volatility of the liquid. 

4. Swirl flow: Such flow pattern can be induced by twisted tapes, tube inserts and cored screw 

type tube inserts to introduce swirl flow superimposing the axial flow. 

5. Mechanical aids: One application of this technique includes rotating tube heat exchanger. The 

background idea is to stir the fluid by mechanical means or by rotating surface. 

6. Surface or fluid vibration: Such techniques are well known for increasing heat transfer 

coefficient. 

 

As pointed out in Table 5.1 one passive approach for improving heat transfer and reducing fouling in 

MD can be based on inducing the secondary flows. The generation of secondary flows can be 

conveniently realized by using the undulating geometries. When a fluid flows in such channels, the 

centrifugal force caused by the geometry of the channel forces the fluid to flow toward the outer wall, 
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thus creating a secondary flow or counter rotating vortices also referred as Dean Vortices. The 

phenomenon was first studied systematically by Dean [9] and was applied to pressure driven 

membrane operations by some groups later on. A good review of the concept as applied to the 

membrane processes can be found in [10]. Helically coiled membrane modules have been effectively 

used to create such vortices inside the hollow fiber membranes to reduce the fouling in pressure driven 

processes [11][12][13][14]. The secondary flows direct the foulants away from the membrane surface. 

While the benefits of helical geometries have been relatively less explored for membrane processes, 

the use of such geometries has been adopted well to increase the performance of heat exchangers 

[15][16]. The approach can be very promising for membrane distillation, not only to reduce the 

fouling but also to improve the temperature polarization coefficient of the process both at upstream 

and downstream. Similar to helical geometries, crimped or wavy fibers have been used in membrane 

contactor and heat exchanger applications to increase mass and heat transfer coefficients [17][18]. The 

use of such geometries for MD applications, however, still needs further investigation. 

An interesting active approach to reduce concentration and thermal polarization can be realized by 

changing the flow pattern of the fluid flowing in a channel. Intermittent flow and pulsating flow are 

two common approaches used to realize this objective. The use of intermittent flow has been proven 

effective in increasing heat and mass transfer for separation and heat transfer applications [19][20]. On 

the other hand, pulsatile flow has gained more attention for medical and biological applications 

[21][22]. Some studies have shown an improved heat transfer for pulsating flow [23][24][25]. 

Moreover, significant improvement in performance of ultrafiltration has been claimed in some other 

investigations [26]. 

The objective of the present study is to investigate the effect of secondary flows induced through 

helical and wavy shaped modules and flow patterns including intermittent and pulsatile flows on 

performance of direct contact membrane distillation process. In first part, the effective ranges of flow 

rate and heat transfer coefficient for applied systems have been simulated by using the simple existing 

relations. The parametric analysis of heat transfer in helical modules has also been performed. Helical 

and wavy shaped fibers have been tested experimentally under different hydrodynamic conditions. The 

pulsatile and intermittent flows have been generated by using simple mechanical modifications of the 

conventional set-ups for MD. The comparative performance analysis for each scheme has been 

provided.  

 

2. Mathematical background and modelling 

The state-of-the-art mathematical calculations for secondary flow induced through helical geometries 

have been based on a tube (which can be considered as a hollow fiber membrane) wrapped around a 

rod as shown in Figure 5.1. The geometrical terminologies of the system have been described in the 

same figure. 
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Figure 5.1: A tube helically wrapped around a rod 

 

Dean [16] showed that flow in the coiled channels can be characterized by a dynamic parameter 

(named Dean number) defined as  

 Re
c

a
De

r
  (1)   

For a helical tube, a modified Dean number is used to incorporate the torsional effects. 
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Where Re, a and rc represent the Reynolds number, tube radius and radius of curvature, respectively. rc 

can be defined as following  

2 2

c

r p
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r


   (4) 

Where r is the radius of curvature of the tube coiled in a single plane and p is the pitch defined as  

 (5) 

Where do denotes the outer diameter of the tube and m is the number of tubes lying next to each other, 

r can be defined as 

 (6) 

Where drod is the diameter of the rod and t is the tube thickness. 
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As evident from equation 2, for a given tube (membrane) diameter, Dean flow in helical tubes can be 

characterized by three main parameters including Re, coil diameter and pitch of the helical coil. For a 

constant Dean number, the effect of any of the above parameters can be compensated by adjusting the 

other two. 

 

Table 5.2: Parameters used for the calculation and module fabrication 

Membrane used PP Accrual 

Inner diameter of the fiber (mm) 1.8 

Outer diameter of the fiber (mm) 2.25 

Thickness of the membrane (mm) 0.225 

Diameter of the rod (mm) 10 

Length of the fiber (mm) 200 

Pitch (mm) 40 

No. of fibers in one module 4 

No. of turn 4.5 

 

As far as the heat transfer in straight fibers is concerned, several correlations exist in the literature to 

determine the Nusselt number under both laminar and turbulent conditions for MD using simple 

modules [27][28][29]. 

For the flow characterized with the presence of Dean vortices, several expressions have been proposed 

to calculate the Nusselt number of the system, however, most of the correlations do not hold true for 

the flow conditions applied and the fluid used in the present work. A summary of various correlations 

used by different authors have been described in Table 5.3. In present study, the expression used by 

Dravid et al [30] and Kalb and Seader [31] have been applied due to their close proximity with the 

conditions used in the current study.  

Once the Nusselt number is known, the corresponding heat transfer coefficient can be calculated by 

using the relation. 

h

Nuk
h

D
  (15) 

Where k is the thermal conductivity of the fluid and Dh is the hydraulic diameter of the channel.  

The heat transfer coefficients calculated for straight and coiled fiber modules for different Reynolds 

numbers according to relations proposed by different authors have been shown in Figure 5.2. The 

effect of Re on heat transfer coefficients according to the correlations defined by Kalb and Dravid et al 

is more sensitive to flow rate at low Re. Heat transfer coefficient increases by 41.4% when Re is 

increased from 50 to 100 while further increase of 50 in Re incorporates only 22.47% increase in heat 

transfer coefficient. Furthermore, as it would be explained in subsequent discussion, the decrease in 

boundary layer resistance is more effective in increasing the flux only at low Re where the role of 

membrane resistance in dictating flux is less significant than the boundary layer resistance.      
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Figure 5.2: Nusselt number as function of Reynolds number for straight fibers (SF) and coiled fibers 

(CF) according to different correlations 

 

In order to establish effective and feasible ranges of heat transfer coefficients and corresponding Re, a 

simple modeling was performed. The membrane temperatures at the feed side were assumed and the 

corresponding temperature at the membrane surface at permeate side was calculated according to the 

algorithm given in Figure 5.3. Re, feed side heat transfer coefficient and flux corresponding to each Re 

were calculated. The following main assumptions have been made during the calculations. 

1. The flux can be described using the Knudsen molecular diffusion (transition) model. 

2. The heat transfer on distillate side follows the correlations proposed by [31]. 

3. At steady state, heat transferred through the membrane is equal to the heat transferred from the 

bulk feed phase to the membrane surface. 

 

Table 5.3: Heat transfer correlations for helical channels 

0.175(0.65 0.76)PrNu De   [30] 

0.864 0.40.0551 PrNu De   [32] 

0.643 0.177(2.153 0.318 )PrNu De      [33] 

0.13 0.5 0.210.67 Re PrNu    [34] 

0.5 0.10.83 PrNu De   [31] 

0.85 0.4 0.10.023Re PrNu   [35] 
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Figure 5.3: Algorithm used to calculate Tpm for a known Tfm 

 

Re calculated according to different correlations to achieve a particular temperature at the membrane 

surface corresponding to a bulk feed temperatureof 55oC and bulk permeate temperature of 25oC has 

been shown in Figure 5.4. It can be seen from the figure that for all correlations mentioned, the 

membrane surface temperature of 52-53oC can be reached at moderate values of Re, however, after 

that even to achieve a minor increase in surface temperature, Re has to be increased tremendously. 

Mathematically, it is due to the fractional power of Re involved in all correlations predicting the 

dependence of heat transfer coefficent on Re while physically, it is due to very high feed flow rate 

required in order to immediately mitigate the cooling effects arising due to the heat conduction 

through the membrane and evaporation taking place at the membrane surface. It somehow gives an 

indication of optimum Re value that should not be exceeded to achieve an optimum process 

performance. It should be noted however that such analysis does not apply if the membrane features 

such as thickness and pore wetting change due to the increase in hydraulic pressure. 

 

 

End 
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Figure 5.4: Re required to achieve a particular membrane surface temperature at feed side under the 

assumption 1-3 mentioned above 

 

Dependence of flux on heat transfer coefficient has been illustrated in Figure 5.5. It can be infered 

from the figure that heat transfer coefficient exceeding ~1500W/m2.K is not significantly important in 

increasing the performance of this particular system. After a certain value of heat transfer coefficient, 

the flux stays almost constant as the major resistance to mass transfer arises from the membrane itself 

instead of the feed side boundary layer. Also beyond this point, it becomes practically unfeasible to 

increase further the value of TPC as even a minor change in temperature at the membrane surface 

requires a huge increase in Re. Effective upper limit of heat transfer coefficent increases with increase 

in feed temperature. The heat transfer coefficient as function of Re has been shown in Figure 5.6. The 

figure indicates that upper limit of effective heat transfer coefficient can be reached at Re of ~600 for 

this particular system.  
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Figure 5.5: Variation of flux with heat transfer coefficient 

 

 

 
 

Figure 5.6: Heat transfer coefficient as function of Re according to different correlations 

 

The dependence of various resistances on Re for feed bulk temperature of 54oC has been shown in 

Figure 5.7.  It can be seen that the feed side boundary layer resistance (Rf) is higher than the membrane 

resistance (Rm) below heat transfer coefficient of ~500 W/m2.K. Below these conditions, the process is 
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dominanatly controlled by the heat transfer through the feed side boundary layer and beyond this 

point, the membrane resistance becomes higher than the boundary layer resistance and further 

decrease in feed side boundary layer resistance does not remain as effective as before this point. The 

conditions applied in the current study also indicate that at high heat transfer coefficent, the permeate 

side boundary layer resistance increases slightly by increasing the heat transfer coefficient that has 

been realized by increasing feed flow flow rate. This is a direct consequence of more heat transferred 

across the membrane through conduction and convection as the membrane surface temperature at feed 

side increases due to reduction in thermal polarization at high feed flow rates. At heat transfer 

coefficient ~2000 W/m2.K, the permeate side boundary layer resistance becomes almost equal to the 

membrane resistance. In summary, the reduction in resistance offered by feed side boundary layer is 

useful only at low heat transfer coefficients (corresponding to low Re) as at high heat transfer 

coefficients, membrane and permeate side bonndary layer resistances dominate the process. 

The results described above combined with Figure 5.2  indicate that the helically coiled modules are 

expected to give superior performance than their straight counterpart at low feed flow rates and high 

temperatures. 

 

 
Rf feed side boundary layer resistance 

Rp Permeate side boundary layer resistance 

Rm Membrane resistance 

 

Figure 5.7: Resistance analysis as function of heat transfer coefficient 

 

3. Parametric analysis 

For a given tube (membrane) diameter, Dean flow in helical tubes can be characterized by three main 

parameters including Reynolds number (Re), coil diameter and pitch of the helical coil.  

The effect of Re on heat transfer coefficients according to the correlations defined by Kalb and Dravid 

et al has been illustrated in Figure 5.8. The figure indicates that the increase in heat transfer coefficient 
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is the most significant at low Re. The heat transfer coefficient increases by almost 144% when Re is 

increased from 50 to 250 while only a 41% increase can be noticed when the Re is further increased 

from 300 to 600. Further increase in flow rate might not be very fruitful due to membrane resistance 

dominating the mass transfer mechanism (see Figure 5.7). 

 
Figure 5.8: Effect of Re on heat transfer coefficient according to various correlations 

 

The heat transfer in a helical coil is influenced by the coil diameter too. The coil diameter is a 

determining factor for the centrifugal forces acting on the moving fluid which influence the secondary 

flow along the cross section of the tube. With increase in coil diameter, the influence of curvature on 

flow characteristics (secondary flow) becomes weaker and therefore, the heat transfer coefficient 

decreases. The entrance effect prevails to a longer distance for the smaller coil diameter. The 

difference between inner and outer wall Nusselts number narrows down with increase in coil diameter 

[36]. The smaller diameter coil improves the heat transfer under the same conditions as compared to 

the larger diameter. The effect has been shown in Figure 5.9.  

The effect of pitch on heat transfer coefficient has been illustrated in Figure 5.10. It can be seen from 

the figure that coil pitch does not affect the heat transfer coefficient significantly. With an 8 fold 

increase in pitch, the heat transfer coefficient decreases only by 6.16%. It could be particularly good 

news for polymeric membranes with relatively high elastic modulus as bending the membranes for a 

very small pitch could damage their structure at the bent points.  However, the other studies indicate 

that the difference in Nu between the top and bottom points of the tube periphery increases with 

increase in coil pitch [36].    
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Figure 5.9: Effect of coil diameter on feed side heat transfer coefficient at Re=444 and pitch of 4mm 

 

 

 
Figure 5.10: The effect of pitch on Nusselts number inside the membrane at Re of 444 and coil 

diameter of 16 mm 
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4. Experimental  

4.1 Membrane applied 

The membrane used in the experimentation was a hollow fiber PP membrane (Acuurel S6/2 PP, 

Membrana, Germany). The membrane has internal and external diameters of 1.80 mm and 2.25 mm, 

respectively. The porosity of the membrane has been reported as 73% by the manufacturer. 

4.2 Formation of helical and wavy fibers 

The helical fibers used in the study were prepared by simply winding the fibers around a rod of 

particular diameter as shown in Figure 5.11. The coil used had outer diameter of 10 mm while the 

pitch was adjusted at 40 mm. The supports were provided at four different locations on the rod in 

order to avoid the contact of fiber with the pipe, as the contact area can reduce the flux. The wrapped 

fibers were enclosed in a glass module and the ends of the module were sealed so that the feed can 

pass only through the fibers. In parallel to the helical module, a wavy fiber module was also prepared 

by using the same PP membrane. The formation of wavy fiber was realized by heat treatment of the 

twisted fibers. After knitting the fibers in wave type pattern, the heat treatment process was carried out 

in an oven at a temperature of 80oC for 30 min. The heat treatment sets the membranes in their knitted 

configuration even after removing the knitting supports. Wave length and amplitude of the fiber were 

set at 40 mm and 5 mm, respectively. A further decrease in wave length at this amplitude was not 

possible due to rigidity of the membrane. The fibers were assembled in glass modules for further 

testing. 

   
 

 

Figure 5.11: Schematic diagram of the helical module prepared in the lab 

 

4.3 Induction of intermittent and pulsating flow 

The flow generated through peristaltic pump is intermittent at very low rotational speed; however the 

degree of intermittency is low if a large number (>4) of cylindrical rollers to squeeze the flexible 

plastic tube are used. An easy way to generate an intermittent flow is to modify the head structure of 

peristaltic pumps according to the explanation provided in Figure 5.12. The flow generated according 

to this procedure also follows forward and backward flow pattern that can be very useful in reducing 

concentration and thermal polarization in membrane processes. The relative magnitude of forward and 

backward components can be controlled by adjusting the frequency through rotational speed of the 

pump. At very low speed, the magnitude of both components is equal and no net flow is observed 

(pure oscillatory flow). With increase in rotational speed, the magnitude of forward component 

increase and a net flow is observed. Under intermittent-oscillatory condition with net flow, a better 

mixing of boundary layer and bulk fluid takes place that can be utilized to mitigate thermal or 

concentration polarization in membrane operations. A simple arrangement was used to create the 

pulsating flow in the current study by applying two pumps: the one that can deliver a constant flow 
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and the other one that delivers an intermittent flow as described above. Both these flows were 

combined in a tube to get the exact pulsating flow according to the scheme illustrated in Figure 5.13.  

Re for pulsatile flow was changed by changing the flow rate of intermittent component while keeping 

the steady component at a fixed value. 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Simple procedure of inducing intermittent flow through a peristaltic pump and flow 

pattern created (a) Normal arrangement of cylindrical rollers present in a peristaltic pump (b) Two 

opposite sided rollers have been removed to generate intermittent flow (c) Oscillations of flow 

generated within the tube after removing two rollers  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: A simple arrangement applied to create pulsating flow 

 

4.4 MD tests 

MD tests were performed at different feed flow rates and at fixed feed temperature of 54±0.3oC, 

except in one case where the experimentation was performed at 45oC and feed side Re of ~860-3900 to 

test the behavior of the system under the conditions of low thermal polarization. For helical, wavy and 

straight fibers, the minimum feed side Re was 152 while for the intermittent flows, it was possible to 

use an average Re as low as ~76. Re for pulsating and intermittent flow was based on time average 

value of flow. The performance of helical module was also tested with the whey solution.  

(c)  

Direction of rotation 

Cylindrical rollers 

Flexible plastic tube 

Steady flow 

Intermittent flow 

Pulsating flow 
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 (b) 

Removal of two rollers 
from opposite sides 
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5. Results and discussion 

5.1 Helical modules 

(a) Pure water as feed 

The flux of helical module under low thermal polarization conditions characterized by Re=1086 to 

3908 that corresponds to a Dean number of 339 to 1219 and feed temperature of 45°C is shown in 

Figure 5.14. It is clear from the figure that flux is not significantly sensitive to the flow rate. Increased 

feed flow rate reduces the residence time of the fluid in the membrane and therefore the average 

temperature gradient between the feed and permeate sides along the membrane tends to rise causing an 

improvement in temperature polarization coefficient that enhances the flux under most of the 

circumstances. Very marginal increase in flux can be associated with the corresponding increase in 

temperature polarization coefficient as explained in section 2.1. At high Reynolds number, the process 

is not limited by the boundary layer resistance on the feed side, rather by the temperature of the feed 

stream. This observation is qualitatively consistent with the explanations given in section 2.1. The 

presence of secondary flows makes the temperature homogeneous even at lower Reynolds number due 

to better mixing of the fluid present in the bulk and at the membrane surface. Therefore, in case of 

helical modules the flux remains almost insensitive towards feed velocity.  

 

 
Figure 5.14: Comparison of flux observed for the module with straight fiber (SF) and coiled fibers 

(CF) 

 

Figure 5.14 also illustrates a comparison of the flux observed for the straight fiber module and coiled 

fiber module under the same thermal and flow conditions. The observed flux varies slightly with flow 

rate. The dependence of the flux on flow rate for the modules with straight fibers is the common trend 

observed in the literature. Generally, the dependence of heat transfer coefficient on Re has been 

represented with a power law with an exponent of 1/3. The maximum difference observed in the flux 
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of straight and coiled fibers is 10% which is expected to raise at lower feed flow rates. This 

observation is qualitatively consistent with Figure 5.5 and Figure 5.7, which show that beyond a 

certain range of heat transfer coefficient or Re, the further increase in feed side flow rate is not 

effective in increasing the flux of the system, as membrane and permeate side resistances become the 

bottle necking. The difference in flux observed for the two configurations considered can be attributed 

mainly to improvement of heat transfer coefficient on permeates side for helical modules. 

 

(b) Whey solution as feed 

The performance of helical and straight fiber was also compared by using whey solution as feed. The 

experimentation was carried out at feed temperature of 54oC and feed side Re of ~880. Due to its rapid 

fouling nature, whey was used as the feed solution. The flux obtained and the corresponding 

concentrations for inside-out configuration for helical and straight fiber modules have been shown in 

Figure 5.15. As illustrated in the figure, the flux exhibited by the coiled modules is higher than its 

straight counterpart throughout the experimental run.   

Another interesting results obtained through the helically coiled module is the high flux even at high 

feed concentration. As shown in Figure 5.15, the concentrations achieved with helical and straight 

modules are 18.6% and 13.7%, respectively. The solute present in the feed can affect the MD flux in 

several possible ways: by building up the fouling layer at the membrane surface that offers an 

additional resistance to mass and heat transfer, by lowering the vapor pressure of feed solution, by 

adsorbing on the membrane surface and by introducing concentration polarization if the convective 

flux is high. Relatively higher flux for helical module can be associated with decreased thermal 

polarization for this module.  

When comparing the flux obtained through straight and coiled fiber modules, it should also be noted 

that residence time of the solution inside the coiled module is high as compared to straight modules 

due to more resistance offered to the fluid flowing inside the module and total length of the fiber 

which is almost 21% longer than that of the straight one. Higher residence time combined with the 

relatively longer dimension tend to reduce more the overall driving force along the helical module 

under the same thermal and hydrodynamic conditions applied at inlet of the two module 

configurations used. The comparative results can be further attractive if the length of fibers in both 

modules is kept equal. 
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Figure 5.15: Flux achieved for straight (FS) and helical coiled (FC) modules with whey solution as 

feed 

5.2 Wavy and helical fibers  

In order to establish the performance of helical module under low Re and relatively high feed 

temperature, the experimentation was carried out at Re~180-1680 at feed inlet temperature of 54oC. 

The results are shown in Figure 5.16 in form of normalized flux defined as the ratio of flux for 

helical/wavy module to the flux for their straight counterpart under the same hydrodynamic and 

thermal conditions. The figure confirms that the normalized flux is highest at low feed flow rates. At 

feed side Re of ~180, the flux for helical fibers is ~47 % more than straight fibers and this number 

decreases to ~11% at high feed flow rate. For wavy fibers, the highest value of normalized flux 

observed is 1.52 indicating a 52% increase in flux over its straight counterpart. The increase in flux for 

helical and wavy fibers can be associated with improvement in thermal polarization at both feed and 

permeate side. Again the relative insensitiveness of the flux at high Re is consistent with the modeling 

results presented in section 2.1. 
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Figure 5.16: Normalized flux for wavy (WF) and helical fibers (HF) as function of feed side Re 

 

5.3 Intermittent and pulsatile flow 

The flux for intermittent and pulsatile flow has been compared with that obtained by using steady flow 

in Figure 5.17 and shows very interesting pattern. Even at very low Re (76), the flux obtained for 

intermittent flow is significantly higher than that observed for the steady flow. The maximum 

difference in flux between intermittent and steady flow is 28%. The pulsation frequency (more 

precisely back and forth flow frequency) is very low at lower flow rates but still it is effective to 

improve the mixing of fluid present at the membrane surface with the bulk. Moreover, due to high 

amplitude of back and forth movement at low frequencies, the residence time of the fluid in the 

module becomes high, leading towards more cooling. More increase in frequency further improves 

mixing and at the same time, decreases the residence time of fluid in the module. As the flow rate is 

increased further, the forward component of back and forth flow increases and the effectiveness of 

pulsatile flow starts to diminish. At high Re, the flux behavior resembles with that of steady flow.  
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Figure 5.17: Flux for intermittent (IF), pulsatile (PF) and steady flow (SF) under the same thermal 

conditions 

 

5.4 Performance ratio analysis 

Performance ratio (PR) is an important parameter to assess the effectiveness of utilized energy for a 

module. Generally, the process performance in MD is based on the energy associated with its 

convective and conductive components transported through the membrane. In the present study, the 

total energy transported through the system is calculated by applying the enthalpy balance on entrance 

and exit of feed stream. PR has been calculated by using the following expression.  

p

m

J
PR

mC T
J

A











 (16) 

Where Am is the active membrane area through which heat transfer takes place while is latent heat of 

vaporization of water.  

The flux data mentioned in Figure 5.16 and Figure 5.17 was used to calculate PR. A comparison of PR 

for helical and wavy modules with straight fiber modules has been provided in Figure 5.18 which 

indicates that PR for helical modules is ~64% higher than the module containing straight fibers at 

intermediate flow rates. At high feed flow rates, however, the difference in PR for both modules 

narrows down to 32%. With initial small increase in flow rate, the flux for helical fibers increases 

rapidly and then reaches a steady state range abruptly. At high feed flow rates, the flux does not 

increase significantly and overall impact reduces the PR of the system. Similarly for wavy fiber, a 

maximum increase of 90% in PR has been observed which reduces at high flow rates. 
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Figure 5.18: Performance ratio for helical (HM), wavy (WM) and straight fiber (SM) modules as 

function of feed side Re 

 

 
Figure 5.19: Comparison of PR for steady, intermittent and pulsatile flows 
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Similarly, a comparison of PR for intermittent and pulsatile flows with steady flow has been provided 

in Figure 5.19. It is evident from the figure that the highest PR is achieved for intermittent flow mode 

within the experimental flow conditions studied. The maximum difference observed between the PR 

of steady and intermittent flow is 175% (even at much low Re of intermittent flow) and it starts to 

approach to that of the steady flow with increase in flow. As evident from Figure 5.17, a significantly 

high value of flux is achieved at very low feed flow rates for intermittent flow which causes a high PR 

for this flow pattern. PR for pulsatile flow follows the similar trend to that of intermittent flow. 

However, it was not possible to operate the system used in present study below a certain value of Re 

for pulsatile flow, therefore, PR for pulsatile flow at low Re has not been mentioned in the current 

study. 

 

5.5 Packing density 

One of the major advantages of the membrane operations is their very high surface to volume ratio that 

is dictated by the high packing density of the module. Packing density for hexagonal lattice of straight 

module is 90.7% [37], although very high values can negatively disturb the heat and mass transfer on 

the shell side. For helical and wavy configurations, packing density varies with membrane outer 

diameter and coil diameter of the helix. In case of helical fiber, the space present inside the helix 

restricts the further increase in packing density. In case of wavy fibers, for a given membrane, it is 

function of wave length and outer diameter of the membrane. Packing density for different 

configurations has been calculated according to the correlation provided in [37]. The packing density 

plays a crucial role in dictating the overall module volume which can be important for certain 

applications. On the other hand, an area based enhancement factor (ABEF) gives an indication of the 

membrane area in comparison to the straight configuration to achieve a particular separation 

volume[37]. ABEF affects both membrane cost and operational cost. Similarly, VBEF gives an 

indication of the improvement in flux per unit change in module volume with respect to straight fibers.   

Packing densities along with ABEF and VBEF for different configurations applied have been shown 

in Figure 5.20. Obviously, the best packing density can be expected for straight module. Since the 

straight fibers have been used for intermittent and pulsatile flow experimentation, their packing 

density is the same as that for the straight fiber in steady flow. The packing densities are significantly 

lower for helical and wavy configurations (59% and 57%, respectively). ABEF and VBEF were 

calculated at Re~230 for all flow pattern and module configurations used according to correlations 

used in [37]. ABEF is maximum for wavy shaped geometries which somehow indicates a lower 

operational and capital cost for such modules, although the low packing density and VBEF [37] are 

the drawback of this configuration. Similarly, EBEF for helical geometry is attractive (1.28) but 

packing density and VBEF are lower. Intermittent and pulsatile flow modes seem to be the best 

optimum due to their reasonable ABEF (1.32), high packing density and VBEF.  
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Figure 5.20: Packing density (PD), area based enhancement factor (ABEF) and volume based 

enhancement factor (VBEF) for different configurations and flow patterns 

 

6. Conclusions 

The performance of MD by using traditional straight fibers and steady flow is severely affected due to 

temperature polarization, especially at low feed flow rates. Active and passive techniques used to 

augment heat transfer in heat exchanger applications and to reduce concentration polarization in 

traditional membrane processes are promising candidates to reduce thermal polarization in MD. In 

current work, the effect of different module designs and flow pattern on performance of membrane 

distillation process has been investigated. The improvement in performance through both the 

techniques can be realized only at low feed flow rate where the system is controlled by the boundary 

layer resistance. At low feed flow rates, the highest mass transfer rate has been observed for wavy 

shaped fibers followed by the helically wounded fibers. On the other hand, intermittent flow shows the 

best performance ratio. In terms of surface and volume based enhancement factor and packing density, 

intermittent and pulsatile flows displayed most optimal performance. Further investigation to explore 

the effect of membrane features, configurational parameters of fibers and optimization of steady and 

unsteady components of pulsatile flow can be interesting to explore. 
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  CHAPTER 6

Membrane based processes for treatment 

of produced water: application of MD 

1. Introduction 

The role of oil and gas industry in progress of modern civilization cannot be challenged. Despite of the 

increasing emphasis on the use of alternative and renewable resources for energy, the demand of oil 

and gas has even accelerated. It has been estimated that the daily consumption of petroleum would 

increase to 106.6 million barrels by 2030.  However, likewise all other industrial activities, production 

of oil and gas is also associated with the generation of waste streams mainly entailing waste water that 

accounts for 80% of the wastes for newly drilled oilfield wells and up to 95% for the mature wells [1]. 

The waste water produced by oil and gas industry is referred as oilfield water or produced water (the 

modified terminology for co-produced water). The main sources of its production in petroleum 

exploration processes have been highlighted in Figure 6.1.  

In US, the main contribution to increased production of natural gas is coming from unconventional 

sources including coal bed methane gas, shale gas, mine gas and tight gas. It has been estimated that 

technically recoverable gas reservoirs have increased by 48% from 2006 to 2010 [2]. Inspired from 

these figures, International Energy Agency (IEA) has speculated about ‘’Golden Age of Gas’’ that will 

be described by the abundant availability of natural gas at very economical cost in the urban regions 

with high energy demands. According to the predictions of U.S. Energy Information Administration 

(EIA), shale gas and CBM will contribute 34% to the total production by 2034 [3], [4]. Moreover, EIA 

also claims that global shale gas resources are approximately 716 trillion cubic meters which are 

sufficient to fulfill the energy demand for next 100 years. Significant developments in shale gas 

exploration are being carried out in Argentina, Canada, China, Poland and many new players. 

Therefore, in the case of shale gas, the production of produced water is obvious to increase even more 

swiftly and has become the main argument against the further developments in the field. 

Hydraulic fracture is the main technique behind the rapid increase in production of the shale gas.   

During hydraulic fracture, in order to liberate the shale gas, huge amounts of produced water or flow 

back water are produced and brought to the surface (15-80%). This water can contain as much TDS as 

5 times of the seawater. Besides that, elevated concentrations of heavy metals including beryllium, 

cadmium, chromium, copper, iron, lead, nickel, silver and zinc along with the natural radioactive 

radionuclides and until several hundred ppm of organic matters speak fairly about the toxic nature of 

the produced water.  Treatment of this water is of particular importance for onshore shale gas 

reservoirs. The most practiced method for handling this type of wastewater is injection into deep 

wells, however, this methodology does not solve the problem in the area with ample shale gas 

production [5]. Besides the formation water, the water condensed from the gas is also a constituent of 

the produced water. Increasingly stringent regulations on the produced water disposal and eventual 

shrinking opportunities to reuse within the shale gas facilities will compel the industry to desalinate 

the produced water. Besides the increase in demand of energy from natural gas and oil, in future the 

oil supply will come mostly from the mature wells that will further boost the production of produced 
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water. Sustainable production of shale gas and oil, therefore, is associated with the technological 

advancements in desalination. 

The enhanced production of the produced water forces to compromise either on the production 

volumes or the regulations about controlling the quality of the discharge.  The generally accepted 

figure for oil to produced water ratio during initial stages of production activities is 1:3 [6] and its 

daily production volume is 240 million barrels. In United States (US), the reported average production 

of produced water is 10bbl/bbl of oil [7]. By 2030, an investment of 1trillion dollar will be required to 

maintain the production of oil and major part of this investment will be spent on handling the 

produced water [8]. 

 

 

 

 

 

 

 

 

Figure 6.1: Main sources of produced water 

The state-of-the-art practice for wastewater treatment includes gravity-based separation followed by 

discharge into the environment. However, these techniques suffer from several demerits mainly related 

with environmental issues; the discharge of the produced water can pollute the soil water, fresh water 

and underground water. The more severe affects can be attributed to the dissolved organic compounds, 

heavy metals present in the produced water and the production chemicals; however, their long term 

effects on the environment are not fully documented and understood so far. On the other hand, the new 

stringent rules and regulations put emphasis on more effective treatment.  Both for the reuse and 

treatment, there are certain critical parameters that have to be considered and analyzed in order to 

proceed in anyway. TDS is crucial not only to determine the treatment technique but also to adjust the 

blending ratio with the fresh water, as excessive TDS create undesirable high friction during hydraulic 

fracturing process. Similarly the removal of suspended solids is important prior to reuse because high 

solids can plug the well. On the other hand, their characterization determines the filter characteristics 

required for the treatment. Likewise, the presence of hardness creating species, the amount of sulphate, 

barium, iron and bacteria needs to be characterized.  

2. Membrane based treatments for produced water 

The conventional treatment methods employed for the produced water treatment have certain 

limitations including the usage of toxic chemicals, high cost of treatment, large footprint and the 

creation of secondary pollution. Moreover, the conventional treatment methods may not sufficient to 

fulfill the new tight environment regulations.  Due to these problems, membrane based operations 

have been declared the promising candidates for wastewater treatment in 21st century. A summary of 

membrane based treatment options has been provided in Figure 6.2. 

Produced water 

Oil production Natural gas production 

Conventional Nonconventional 

Shale gas Coal bed gas Tight gas 
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Figure 6.2: Schematic of membrane processes for produced water treatment 

2.1 Pressure driven membrane processes  

Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) are well-

established membrane based operations and can be applied for the removal of the species with specific 

range of sizes. MF is generally applied for the removal of suspended solids and to reduce the turbidity 

while UF can be used to remove color, odor, viruses and colloidal organic matters. The effectiveness 

of UF in removing oil from the produced water is well established in comparison with traditional 

methods. Both ceramic and polymeric membranes can be used for MF and UF. All these processes can 

be used either as pretreatment or as the final treatment step. 

Reverse osmosis and nanofiltration are high-pressure driven processes and can be used to remove the 

dissolved salts and other species with the size as small as 0.0001 µm. However, in case of RO, there 

are certain challenges which limit the efficiency of the process: the fouling and scaling of the 

membrane, the inability to operate the process at high solution concentrations and the problem of brine 

disposal. These problems can be minimized by using appropriate pre-treatment and post-treatment for 

the process. An integration of the different processes can be an efficient tool to deal with these 

problems. 

A membrane operation suitable both as NF/RO pre-treatment and for produced water treatment is the 

membrane bioreactor (MBR). It combines the properties of a membrane with that of a biological 

catalyst providing a considerable high level of physical disinfection. This makes MBR especially 

suitable for reuse and recycling of wastewater. 

2.2 Electrochemical processes 

Besides the pressure driven membrane based processes, electrochemical membrane based processes 

have been applied to treat the produced water. Electrodialysis and electrodialysis reversal are two main 

examples in this context which involve the separation of ions by using an ion permeable membrane to 

separate the dissolved ions under the influence of an electrical potential gradient. The ion exchange 

membranes have the ability to selectively transport positively or negatively charged ions while 

restricting the passage of the opposite ones. Thus in an elecrodialysis stack consisting the arrays of 

alternating negatively and positively charged membranes, the density of charged ions in one 

compartment increases while dilution occurs in the consecutive one. In electrodialysis reversal, the 

polarity of the membranes can be changed to control the membrane fouling and scaling [9]. The 

critical factors affecting the efficiency of electrodialysis or electrodialysis reversal process for the 
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treatment of brackish water or desalination include the current density of the membrane, the ionic 

concentration of the solution, membrane fouling, counter effects due to the transport of co-ions, 

diffusion and osmosis. The laboratory scale testing of electrodialysis systems for the treatment of 

produced water indicates that treatment cost is highly dependent upon the solution concentration and 

difference can be as high as 23 times. The main drawbacks of the process include high treatment cost, 

fouling and the limitation to treat relatively high salinity water [10].  The membrane must be cleaned 

by using dilute acidic and alkali solutions to restore its performance. 

2.3 Non-pressure driven membrane based processes 

2.3.1 Forward osmosis 

Forward osmosis or natural osmosis utilizes a semi-permeable membrane to separate two solutions 

with different concentrations. The water from low concentrated solution migrates to the high 

concentrated solution due to the osmotic pressure gradient across the membrane. The solvent moves 

due to its natural tendency to migrate from the solution of high osmotic pressure to the lower one, 

eliminating the need to apply hydraulic pressure. The elimination of applied hydraulic pressure 

attributes far less fouling in FO than its counterpart RO. Moreover, the developed fouling can be 

removed by hydraulic washing or chemical cleaning. FO possesses the ability to remove all the 

particulates matters and almost all the dissolved matters. The theoretical recovery factor obtainable is 

quite high and, at the same time, the associated energy consumption and chemical demand is very low. 

The processes based on the osmotic energy have not been practiced yet for the treatment of produced 

water. However, the lab scale and pilot plant studies of this process for numerous applications have 

shown a good potential to treat the water with different levels of salinity gradient  [11] [12] [13] [14]. 

2.3.2 Membrane distillation 

Membrane distillation is an emerging thermal based membrane process with the potential to be 

operated on waste or low grade energy. The process owns several advantages over the state-of-the-art 

thermal and pressure gradient based processes. For membrane distillation process, the possibility to go 

beyond the concentrations achievable through conventional techniques and the waste grade heat 

available with the produced water can be very attractive opportunities to treat the produced water 

[15][16]. Moreover, the produced water coming from the steam assisted gravity drainage may have the 

temperature even higher than 100oC. The treatment of water with such a high temperature by using RO 

requires cooling as prerequisite step that adds the additional cost to the process and at the same time 

causes the waste of the energy associated with this water. Several studies have revealed the potential 

of membrane distillation to achieve high recovery factor from various types of brine and other 

concentrated solutions. Similarly, it has been demonstrated through several investigations that 

membrane distillation has the potential to compete with RO process if the source of waste grade heat 

or energy is available. In the case of produced water, membrane distillation can be used to achieve the 

water of very high purity, due to the capability of MD to reject all the salts, metals and other 

nonvolatile components. MD as an interesting candidate for produced water treatment has been 

analyzed by Shaffer et al [17]. 

A few current studies have investigated the potential of membrane distillation to treat the produced 

water. Singh and Kamlesh [18] have used porous PTFE flat sheet membranes to treat the simulated 

produced water with temperature raging from 80oC to 130oC corresponding to the feed pressure of 2-3 

atm. The salinity level of the water is 10,000 ppm and phenol, cresol and naphthenic acid have also 

been added to simulate the produced water composition closely. It was found that the water vapor flux 

remains unchanged with respect to the presence of phenol, cresol and naphthenic acid, however, the 
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quantity of these compounds in the permeate increases as the feed temperature is increased. It was 

concluded that the membrane implied maintained its hydrophobic character throughout the 

experimentation as no sodium traces of sodium chloride were found in the permeate. The quantity of 

phenol and cresol in distillate was assumed due to the volatile nature of these compounds. The highest 

flux achieved was as high as 195 kg/m2.h. Alkhudhiri et al [19] have also proved the feasibility of air 

gap MD for the treatment of produced water. Recently developed thermally rearranged 

polybenzoxazole membranes, initially developed for gas separation application with extraordinary gas 

permeability of small gas molecules due to biomodal cavities, exhibited very hydrophobic 

characteristics showing the flux of about 65 l/m2.hr and virtually no sodium chloride in the permeate of 

direct contact MD, expected to be feasible for direct contact MD or air gap MD application for 

produced water treatment. This membrane maintained the hydrophobicity for a prolonged period of 

time.  

A comparison of some desalination techniques on the basis of energy consumption, the handable and 

achievable salinity level has been shown in Figure 6.3. 

 

Figure 6.3: A comparison of desalination technologies on the basis of energy consumption, feed 

concentration and maximum achievable salinity level 

The ability of MD to treat the solution beyond their saturation level has been well explored in 

membrane crystallization (MCr) which is an innovative crystallization concept to carry out finely 

controlled nucleation and crystal growth. The principles of membrane crystallization can be 

considered as an extension of the membrane distillation concept, thus providing all the advantages 

found in MD. The transformation from MD to MCr occurs when the treated solution reaches super-

saturation level, thus allowing precipitating and separating the crystals. The advantages of membrane 

crystallization can be clarified by comparing this technique with a conventional crystallization unit, 

such as the forced circulation crystallizer. In this type of crystallizer the solvent evaporation and solute 

crystallization take place in the same location. The temperature gradient and hence the supersaturation 

is different at different locations in the crystallizer, causing a lower uniformity of the solid products 

[20]. In MCr a well-controlled nucleation and crystal growth is achieved through uniform evaporation 

rate through the pores of the membrane. Therefore, MCr produces crystals of much higher quality in 

MVC Evaporator 
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terms of purity, narrow size distribution, etc. with respect to conventional industrial crystallizers. 

Moreover, MCr is capable to target the polymorphic structure as seen from the crystallization of 

Na2SO4 as Thenardite (anhydrous) from wastewater [21], [22], MgSO4 as Epsomite (heptahydrate) 

from seawater NF retentate [23], [24] and crystallization of various biomolecules [25]–[27] .     

The thermodynamic driving force for the crystallization process is the difference in chemical potential 

of the crystallizing substance and the solution from where the crystals are formed also referred to as 

super-saturation. In a crystallization process first nucleation and then crystal growth takes place and 

agglomeration might occur. The nucleation process is divided into primary and secondary nucleation 

(Figure 6.4). 

 

Figure 6.4: Principles of nucleation theory Adapted from [28]  

Primary nucleation is new phase formation from a clear liquid or solution. It can be divided into 

homogeneous and heterogeneous nucleation. The homogeneous nucleation is caused by local 

fluctuations in concentration which induce formation of clusters. In under-saturated solutions the 

clusters falls apart, whereas in supersaturated solutions the clusters above a critical size are growing 

out [28]. The clusters are formed by attachment of single solute entities. Heterogeneous nucleation 

occurs when the nuclei is formed on already existing surfaces e.g. dust particles. The heterogeneous 

nucleation requires less energy than a homogeneous nucleation, because the nucleation energy barrier 

is reduced as no new surfaces have to be created. Hence homogeneous nucleation is rare in practical 

applications [28]. Secondary nucleation results from the presence of crystals of the crystallizing 

material that are already present in the solution [28]. Secondary nucleation is dominant in a membrane 

crystallizer [20]. When the nucleus is formed it can grow and form larger crystals. When the crystal is 

grown from solution the crystal growth process can be divided in to two main steps: (1) diffusion of 

growth units towards the crystal-solution interface and (2) subsequent the integration of the growth 

units into the crystal surface. Impurities in the solution can have a negative effect on the growth rate, 

due to adsorption on the crystal surface and inhibit the possibility to grow [28]. 

The current investigation has been carried out with the objective to determine the potentialities of 

membrane distillation for the purification and reuse of produced water. DCMD configuration has been 

applied as the first trial. Different membranes with various characteristics and materials of production 

have been realized for the treatment. The effect of feed temperature and hydrodynamic conditions on 

the separation achieved has been investigated. Initial studies to check the potential of MCr for 

recovery of salts from produced water have also been reported.  
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3. Experimental 

3.1 Basic characterization  

 Produced water for the investigation was kindly provided by Kuwait Institute of Scientific Research 

(KISR). The water was initially characterized for some basic characteristics including solids present, 

carbon contents, conductivity and pH. Total carbon (TC), total organic carbon (TOC) and total 

inorganic carbon (TIC) measurements were carried out using a TOC-V CSN analyzer (Shimadzu). The 

dissolved solids are those that are not retained by filtration to 0.45 micron. A water sample was 

filtered through a filter of 0.45 micron, and then 1 g of the filtrate was dried by a thermo-balance 

(OHAUS MB 45) at a temperature of 105°C to obtain a constant weight. To find out the organic 

compound present into the water, the gas chromatography-mass spectrometry (GC-MS QP2010S, 

from Shimadzu) using an Equity 5 column was used.  The analysis was carried out using the solid 

phase micro extraction (SPME) technique, in which the analytes establish equilibrium among the 

sample matrix and the polymer-coated fused fiber. Then the analytes are desorbed from the fiber to a 

chromatography column of the GC-MS.  

3.2 Membrane used 

Two different types of each poly vinyledene fluoride (PVDF) and polypropylene (PP) based hollow 

fiber membranes were used in the experimentation. The performance of ceramic membranes was also 

investigated. PVDF membranes were prepared in the laboratory and were assembled into glass module 

to use them for the experimentation. The polypropylene membranes used were commercial and one 

was purchased from Microdyn-Nadir (MD020CP2N) in the form of already assembled module while 

the fibers for other were provided by Membrana (PP Accurel® S6/2) and were assembled in the lab 

scale glass module.  The detailed characteristics of the membranes used in the experimentation are 

provided in Table 6.1. 

Table 6.1: Some basic characteristics of the membrane applied in the study  

Fiber 

type 

Thickness Emod Rm break W PMI bubble point PMI Pore size Porosity 

(mm) N/mm² N/mm² % Nm (bar) (µm) (%) 

PP1 0.45 103.75 4.16 174.40 1.11 0.76 0.2 73 

PP2 0.45 103.75 4.16 174.40 1.11 0.76 0.2 70 

PVDF1 0.19 150.53 4.49 223.30 0.34 0.93 0.29 65.44 

PVDF2 0.40 65.76 3.86 259.95 0.71 0.87 0.23 80.77 

Ceramic       0.2  

 

3.3 MD experimentation 

For the MD tests, for the lab scale module, the initial experimentation was performed with double 

distilled water as feed and permeate at feed flow rate of 7.4 L/h in lumen side and feed inlet 

temperature of 50oC. For produced water, the feed was introduced at the inner side of the fiber while 

the double distilled water was introduced on the shell side of the module. The experimentation has 

been performed with feed temperature ranging from 50-70 oC with an interval of 10oC each. Feed flow 
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rates were varied from 7.4 L/h to 11.4 L/h with an interval of 1.8 L/h. The distillate flow rate and 

temperature were kept constant at 6 L/h and 25oC, respectively throughout the above experimentation. 

For the commercial PP hollow fiber module from Microdyn-Nadir, hydrodynamic conditions were 

varied from feed flow rates of 50L/h to 150L/h with an interval of 50L/h keeping the feed and 

permeate temperatures at 50oC and 25oC, respectively. For detailed investigation of thermal effects on 

trans-membrane flux, feed flow rate of 50 L/h was selected and experimentation was accomplished at 

different feed inlet temperatures of 30oC, 50oC and 60oC, keeping the permeate temperature constant at 

25oC.  

The experimentation was carried out over an extended period of time for each type of module. The 

distillate weight was monitored during the experimentation. The possibility of using ceramic 

membranes for the saline water treatment was also analyzed. For ceramic membranes, the feed 

temperature was kept at 70oC due to very low flux observed at the lower temperature ranges. For each 

membrane tested, the flux has been shown over experimental period of time to see the operational 

stability of the membrane. 

3.3.1 MD set-up description 

A schematic diagram of the set-up used for the DCMD experimental tests is shown in Figure 6.5. The 

feed solution is transported to the membrane module (H) from feed tank (F) by using a centrifugal 

pump (A). The feed is heated by heater (G) before entering into the membrane module. The feed flow 

rate is monitored by using the flow meter (B). Feed inlet temperature and pressure can be followed by 

using sensor (T) and monometer (P). Another temperature sensor is devoted to monitor and control the 

feed-temperature within the tank. Distillate is introduced into the module from distillate tank (D). 

Transport mechanism, temperature, pressure and flow on the permeate side is essentially similar to 

that described for the feed side. The distillate weight is scrutinized through a balance (C). Distillate 

and feed are in counter-flow configuration to ensure a better heat transfer between two streams. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Schematic diagram of the set-up used for membrane distillation. 
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4. Results and discussion 

4.1 Basic characterization 

The initial experimentation was performed with the intention to characterize the saline water in terms 

of some basic characteristics. The results of the basic characterization including total carbon, total 

organic carbon, total solids, total dissolved solids, conductivity and pH obtained according to the 

procedure described in section 3.1 are given in Table 6.2. The comparison of table with the standard 

values given in the literature [2,23] indicates that the total organic content of the sample are quite low 

as compared to the maximum limit (~1700 mg/L) while the level of total solids and total dissolved 

solids are in medium range. The pH value is approaching to the upper limit mentioned in the literature, 

indicating very slight acidic nature of the solution. The value of conductivity also lies in intermediate 

ranges. 

Table 6.2: Some basic characteristics of the sample 

Total 

carbon 

(mg/L) 

Total organic 

carbon (mg/L) 
Total solids (g/L) 

Total dissolved 

solids (g/L) 

Conductivity 

(ms) 
pH 

50.62 41.072 248.2 247.9 228.2 6.15 

 

Gas chromatography-mass spectrometry analyses of the samples are given in Figure 6.6 a and b which 

are indicating the presence of 1,2-diethoxy ethane in the sample. 

 

(a) 
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(b) 

Figure 6.6: (a) Chromatograph and (b) Mass spectrum confirming the existence of 1,2-diethoxy 

ethane in the water.  

4.2 MD tests 

 MD tests performed during the first phase aim to provide an indication of the stability of the operation 

and the comparison of the flux with that for the double distilled water. This objective has been realized 

by obtaining the flux under constant conditions of temperature and flow rate and monitoring the flux 

as a function of time. The MD flux for PP1 membrane is shown in Figure 6.7. The results performed 

by using the double distilled water are also presented for the comparison. Conductivity, ph and total 

dissolved solids in permeate were measured at the completion of each test and are provided in Table 

6.3. The flux for distilled and saline water stays constant during the experimentation. The stable flux 

combined with the permeate characteristics reported in Table 6.3 indicates that the membrane shows 

stable behavior during the operation. 
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Figure 6.7: Flux obtained by using PP1 based hollow fiber membrane. 

Table 6.3: Properties of the permeate obtained 

Membrane 

type 

Conductivity 

(µs) 

Total 

dissolved 

solids (ppm) 

Total 

carbon 

(mg/L) 

Total 

inorganic 

carbon 

(mg/L) 

Total 

organic 

carbon 

(mg/L) 

pH 
Rejection 

Factor 

PP1 817 543 67.55 34.13 33.42 7.15 0.995 

PVDF1 650 415 43.17 3.01 40.16 7.21 0.995 

PVDF2 614 308 91.36 48.46 42.9 7.15 0.996 

 

The results for the same experimentation carried out by using PVDF based hollow fiber membrane 

module are expressed in Figure 6.8 and Figure 6.9 (for PVDF1 and PVDF2). The flux for both types 

of PVDF fibers remains steady during the experimentation. The flux trend combined with the 

permeate characteristics listed in Table 6.3 implies the suitability of the fibers to treat the saline water.  
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Figure 6.8: Trans-membrane flux obtained by using lab-made PVDF1 based hollow fiber membrane. 

 

Figure 6.9: Flux obtained by using fiber type PVDF2 

Another observation that can be readily made by looking at the Figure 6.7-Figure 6.9 is the lowest 

value of the flux for both distilled and saline water achieved for PP1 membranes. For PVDF1 

membranes, trans-membrane flux is higher than PP and it further increases for PVDF2 membranes. 

The different flux observed for these membranes can be explained by using the membrane 
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characteristics provided in Table 6.1. The dependence of flux on membrane characteristics in MD can 

be expressed by the following relationship. 

ar
J




  

Where J is trans-membrane flux, ԑ is the overall porosity of the membrane, r is the mean pore size, τ is 

the tortuosity factor and δ is the membrane thickness. For cylindrical pores, the value of ‘a’ is unity. 

As evident from Table 6.1, the porosity of PP1 membranes is less than that for PVDF2 and greater 

than PVDF1. On the other side, PVDF based membranes have less wall thickness than PP1 while their 

mean pore size is larger than that of PP. The net result is the lower flux observed in the case of PP1 

membranes. While comparing the values of flux for PVDF1 and PVDF2 membranes, it can be noticed 

that the higher porosity observed for PVDF2 membranes play the decisive role in its higher flux than 

that for PVDF1 though the wall thickness of PVDF1 membrane is lower than that of PVDF2, 

however, it might have more thermal polarization that suppresses the flux. 

The second observation that can be readily made from Figure 6.7-Figure 6.9 is the difference in trans-

membrane flux between distilled water and the saline water. As well acknowledged, the flux in MD is 

dependent upon the partial pressure gradient created across a microporous, hydrophobic membrane. 

The dissolved salts present into the produced water reduce the partial pressure of the water as 

predicted by Raoult’s law given below. The consequence is that the flux of saline water is lower than 

that for the distilled water. 

                                                                   (1 ) oP x P   

Where P is the actual vapor pressure, γ is the activity coefficient and, x is the mole fraction of the 

solute in the solution and Po is the vapor pressure of pure solvent (water). 

The permeate properties summarized in Table 6.3 indicate that all three types of membranes are highly 

efficient in rejecting the total solids present into the feed and overall rejection factor is greater than 

99% in all cases. The comparison of feed and permeate quality listed in Table 6.2 and Table 6.3, 

respectively designates that MD is not helpful in reducing the organic carbon present into the feed. 

Most probably, some volatile organic components present into the feed go through the membranes. 

The experimentation was also carried out by changing the feed inlet temperature and feed flow rates 

for both PVDF and PP membranes. The effect of various feed inlet temperatures on trans-membrane 

flux has been shown in Figure 6.10. The flux increases exponentially by increasing the feed 

temperature. 
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Figure 6.10: Effect of feed temperature on flux for different membranes 

In membrane distillation, the flux is proportional to the vapor pressure gradient created across the 

microporous hydrophobic membrane. 

J c P   

Where J is the flux, c is a constant depending upon the membrane characteristics and ΔP is the vapor 

pressure gradient across the membrane.   

The vapor pressure is related with temperature by the Antoine’s equation given by the following 

expression. 

exp
B

P A
T C

 
  

 
 

Where A, B and C are constants which depend upon the type of solvent. 

By increasing the feed inlet temperature, the vapor pressure gradient across the membrane increases 

exponentially and consequently we observe a proportional increase in trans-membrane flux. 

The effect of feed flow rate for different types of membranes applied in the study is shown in Figure 

6.11. It is evident from the figure that by increasing feed flow rate, the flux increase slightly for all the 

membranes, however, the effect is very low as compared to temperature. Increased feed flow rate 

favors the mixing of the feed present into the bulk and at the membrane interface. Consequently, the 

temperature difference between the bulk and the membrane surface decreases and the temperature 

polarization coefficient goes up. The overall impact is an increase in observed flux, as shown in the 

Figure 6.11.  

40 50 60 70 80
1

3

5

7

9

11

13

15

17

Temperature(oC)

F
lu

x
(k

g
/m

2
.h

)

 

 

PP1

PVDF2

PVDF1



 

126 

 

Figure 6.11: Effect of feed flow rates on flux 

For detailed investigation of thermal effects on trans-membrane flux by using the commercial module 

from Microdyn-Nadir (MD020CP2N), feed flow rate of 50 L/h was selected and experimentation was 

accomplished at different feed inlet temperatures. The trans-membrane flux obtained at various 

temperatures is shown in Figure 6.12. The observed flux follows the same trend as observed for the 

other types of the membranes applied in the current study. However, the amount of flux obtained is 

quite low as compared to the previous results obtained at the same temperature by using other 

membranes. The comparison of the properties of two types of the PP membrane given Table 6.1 shows 

that these have essentially similar properties, however, the flux for both types under the same 

conditions of temperature is quite different. This discrepancy in the flux can be associated with 

different hydrodynamic conditions to which the membranes are subjected. For the commercial PP 

modules, two membrane modules were connected in parallel during the operation. Each module 

contains 40 fibers with length much higher than that for the lab-made PP1 module. Thus the Reynolds 

number for solution in each fiber would be much lower than that observed for PP1. Secondly, the 

higher length of the fiber would decrease the effective temperature gradient along the fiber greatly as 

the feed moves towards the exit point. Another reason that explains the less flux observed in case of 

PP2 is the fact that this module had been utilized in the past for some desalination related test which 

possibly has created some irreversible fouling on the membrane surface.  All these factors contribute 

in decreasing the value of the flux. The amount of carbon present in the permeate was considerable at 

high temperatures and flow rates, the experimentation was also carried out at lower feed flow rates 

with the expectation of getting less carbon in permeate at lower feed inlet temperatures. 
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Figure 6.12: Flux obtained at different feed inlet temperatures for feed flow rate of 50L/h 

The trans-membrane flux observed at different feed flow rates for feed inlet temperature of 50oC is 

shown in Figure 6.13. The figure indicates that the trans-membrane flux increase significantly by 

increasing the feed flow rate which favors the argument raised in the above paragraph to explain the 

lower flux observed in PP2 than that for PP1. i.e. the hydrodynamic conditions in the commercial 

module are very poor and retard the flux of the process at the temperatures similar to those used for 

PP1. It is also clear from the figure that the trans-membrane flux decreases with the passage of time. 

This reduction can be related with increase in feed concentration as the process goes on. For PP1, 

PVDF1 and PVDF2, the reduction in flux has not been observed as the permeate collected within the 

experimental period of time was much less than that for PP2, due to the less surface area of the 

membranes. 
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Figure 6.13: Trans-membrane flux obtained at different feed flow rates for feed inlet temperature of 

50oC 

The properties of the permeate obtained for PP2 are shown in Table 6.4. The table shows that the 

value of the total dissolved solids decreases slightly by increasing the feed temperature at a particular 

flow rate while the overall value of total solids increases marginally by increasing the feed flow rate. 

Total inorganic carbon present into the permeate for all the conditions also shows the same trend. On 

the other hand, total organic carbon shows the opposite trend i.e. its value decreases by increasing the 

feed inlet temperature. As explained before, the organic carbon detected in the distillate is most 

probably due to the presence of volatile that go through the membrane. At high feed temperatures, it is 

possible that some volatiles are removed when the feed is still in the feed tank. An excellent rejection 

factor of greater than 99% for solids was observed under all the conditions. 
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Table 6.4: Properties of permeate obtained by using Mycrodyn-Nadir PP based module  

 (*) Data not available 

The experimentation was also performed with ceramic membranes. The flux observed at feed 

temperatures of 50oC and 60oC was very low, hence, feed temperature of 70oC was selected for the 

further experimentation. Preliminary experimentation was performed by using distilled water for the 

calibration purposes. For both liquids (distilled water and produced water), the feed flow rate was 

adjusted at 50L/h while the permeate flow rate was kept at 30L/h.  

The flux obtained is shown in Figure 6.14. It was observed that the flux decreases as the 

experimentation goes on. The permeate quality was followed by constantly monitoring the 

conductivity of the distillate after regular intervals of time. It was seen that with decrease in flux, the 

conductivity of the distillate goes on increasing. For the new membrane, the flux drops to negligible 

value after almost 3 hours of operation. The membranes were washed with distilled water and dried 

and were put into the operation again. The flux was even lower this time and the reduction in flux was 

observed even earlier which leads to the negligible value of the flux. The properties of the distillate 

obtained by using ceramic membranes are shown in Table 6.5 which indicates a higher value of 

conductivity and total solids present into the distillate which is strong evidence of wetting of the 

membrane. 

Flow 

rates 

(L/h) 

Temperature 

(oC) 

Conductivity 

(µs) 

Total 

dissolved 

solids(ppm) 

NaCl 

(%) 

Total 

carbon 

(mg/L) 

Total 

inorganic 

carbon 

(mg/L) 

Total 

organic 

carbon 

(mg/L) 

pH 
Rejection 

Factor 

50 

30 72.5 36.1 0.1 55.299 20.955 34.325 7.13 0.994 

50 85 63 0.6 (*) (*) (*) 7.14 0.993 

70 142 70.6 0.1 56.713 42.886 13.926 7.13 0.995 

100 

40 51.2 88 0.1 42.509 21.342 21.167 7.12 0.997 

50 57.2 112.8 0.2 47.006 37.191 9.815 7.1 0.996 

150 

40 44.5 44 0.1 59.302 42.1 17.202 7.1 0.998 

50 96.7 189 0.2 61.572 49.691 11.881 7.14 0.995 
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Figure 6.14: Flux obtained by using ceramic membranes. SW1 and SW2 indicate the flux obtained 

with new membranes and washed membranes after wetting, respectively 

Table 6.5: Properties of distillate collected by using ceramic membranes 

Membrane 

type 

Conductivity 

(ms) 

Total 

dissolved 

solids(g/L) 

NaCl 

(%) 

Total 

carbon 

(mg/L) 

Total 

inorganic 

carbon 

(mg/L) 

Total 

organic 

carbon 

(mg/L) 

pH 
Rejection 

Factor 

Ceramic 7.45 3.70 - (*) (*) (*) 7.12 - 

 (*) Data not available 

After completion of the first cycle of experimentation with different membranes, the membranes were 

washed with double distilled water and stored over a period of two months and their reproducibility 

was tested by putting the membranes in operation under the same  initial operating conditions of feed 

inlet temperature 50oC and feed flow rate of 7.4L/h. The results are illustrated in Figure 6.15 for 

various membranes used in the study. It was observed that membranes show really reproducible 

performance even after storage. Flux obtained and the permeate quality remains essentially the same. 

The comparison of the trans-membrane flux obtained during the first and second cycles is shown in 

Figure 6.16 while the corresponding properties of the permeate are provided in Table 6.6. 
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Figure 6.15: Flux obtained for PP1, PVDF1 and PVDF2 membranes after 8 weeks of storage 

On the basis of the best performance, PVDF2 membranes were set to operation to see the performance 

for long term runs. The operation was carried out continuously for 7 hours. The flux obtained is shown 

in Figure 6.17 while the properties of the corresponding permeate are given in Table 6.7 which clearly 

points out a stable performance of the membrane throughout the operation. It can also be noted from 

Figure 6.17 that the flux remains stable during the operational time. The slight decrease in flux is due 

to the increasing concentration of feed in the feed tank. 

 

Figure 6.16: Comparison of flux for two cycles of data for different membranes tested 
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Figure 6.17: Flux obtained by using PVDF2 membranes for 7hours of operation 

Table 6.6: Properties of the permeate obtained during reproducibility assessment tests 

Membrane 

type 

Conductivity 

(µs) 

Total 

dissolved 

solids(ppm) 

NaCl 

(%) 

Total 

carbon 

(mg/L) 

Total 

inorganic 

carbon 

(mg/L) 

Total 

organic 

carbon 

(mg/L) 

pH 
Rejection 

Factor 

PP1 750 512 1.3 (*) (*) (*) 7.12 0.996 

PVDF1 735 532 1.6 (*) (*) (*) 7.14 0.992 

PVDF2 685 367 1.3 (*) (*) (*) 7.13 0.994 

All the values are averaged         

  (*) Data not available  

Table 6.7: Properties of the permeate obtained after 7 hours of continuous operation 

Membrane 

type 

Conductivity 

(µs) 

Total 

dissolved 

solids(ppm) 

NaCl 

(%) 

Total 

carbon 

(mg/L) 

Total 

inorganic 

carbon 

(mg/L) 

Total 

organic 

carbon 

(mg/L) 

pH 
Rejection 

Factor 

PVDF 2 450 212 1 42.26 3.15 41.11 7.10 0.998 

 

0 100 200 300 400 500
0

2

4

6

8

Time(min)

F
lu

x
 (

k
g
/m

2
.h

)

 

 

Saline water



 

133 

The results obtained in the currents study have been compared with some other state-of-the-art 

techniques mentioned in the literature and the results have been described in Table 6.8. The table 

indicates that the TDS removal achieved in this study is much higher than the conventional methods 

applied for treatment of produced water, except that for RSE which is applicable to only the solution 

with low salinity level. BTP and EDR are much more effective in removing the organics on the other 

hand. On contrary, MD is able to purify the produced water to the level of drinking quality in terms of 

TDS (for drinking water, the allowable TDS is 500 ppm while for the agricultural uses, it is 1000 

ppm). The only point of concern for MD is to bring the TOC down to the required level. 

Table 6.8: Comparison of some of the techniques used to treat produced water 

Technique 
TDS removed 

% 

TOC 

removed 

% 

Limitation/drawback Ref. 

BTP 9 90 Limited recovery of TDS [24] 

EDR 88.9 93.04 

Requires regeneration, 

Concentration dependent 

performance 

[25] 

CDT >61.9 - 
High cost of electrodes, 

susceptible to fouling 
[26] 

RSE 99.6 - 

Maximum feed 

concentration<16%, High 

heating cost 

[27] 

MD 99.5 93 
Removal of volatile organics 

demands further attention 
Current study 

(-) Data not provided 

BTP Bio treatment process                                      

EDR Electrodialysis reversal                    

CDT Capacitive deionization technology                                     

RSE Rapid spray evaporation 

5. Membrane crystallization of produced water 

MCr has been employed for treatment of produced water to recover the contained salts and 

simultaneously to increase the fresh water production. Analysis of the cations present in the produced 

water has been carried out by ionic chromatography (Table 6.9). The high amount of sodium might 

predict in precipitation of sodium chloride crystals. However, the low solubility of calcium in the form 

of calcium sulphate (gypsum etc.) and calcium carbonate risks to create scaling on the membrane 

surface. In membrane crystallization, calcium is often removed by chemical treatment to avoid the 

dangerous phenomena of scaling [29], [30]. Nevertheless, in this study the produced water has not 

been treated chemically prior to MD and MCr in order to evaluate the behaviour of direct treatment 

with respect to trans-membrane flux, crystal quality and eventual scaling phenomena.  
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Table 6.9: Cationic composition of produced water 

Component Concentration [ppm] 

Sodium Na 76,646 

Calcium Ca 6,065 

Magnesium 

Mg 
8,361 

Potassium K 1,396 

 

The utilized membranes applied in MCr are PP1 and PVDF2 with the operative conditions reported in 

Table 6.10. 

Table 6.10: Operative conditions for MCr of produced water 

Membrane 
Temperature [°C] Flow rate [ml/min] 

Feed inlet Permeate Feed Permeate 

PP1 49 20 70 50 

PP1 59 20 70 50 

PVDF2 49 20 70 50 

 

The produced water has been treated until super-saturation and the time when crystals have been 

detected in the feed tank, suspension samples have been withdrawn from the tank and again after 60 

minutes. The crystals in the mother liquid have been examined visually by optical microscope. The 

crystal images obtained from the microscope has been processed by the software ImageJ to determine 

crystal shape, dimension, crystal size distribution (CSD), coefficient of variation (CV), growth rate 

(G) and nucleation rate (B0).  

Coefficient of variation (CV) has been estimated through equation 1, whereas growth and nucleation 

rate has been estimated on the basis of the Randolp-Larson model (equation 2 and 3, respectively):  

%50

%16%84

2 F

FF
CV




    (1) 

0ln( ) ln( )
L

n n
Gt


     (2) 

0 0B n G     (3) 

where F is the cumulative percent function given by the crystal length at the indicated percentage, n is 

the crystal population density, L is crystal size, G  is growth rate, t is retention time and n0 is 

population density at L equal to zero.  
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Narrow CSD (Figure 6.18) and the low CV (Table 6.11), characterizing the membrane crystallizer, are 

also obtained in the treatment of produced water. CSD and CV-values suggests a small increase in the 

size difference of the produced crystals. Nevertheless, CV for all the sample are below 50 % which is 

the value, in general, obtainable from industrial crystallizers [31]. The lowest CV (26.40 %) and the 

highest CV (49.07 %) is obtained under the same operative conditions, i.e. PP1 at feed temperature of 

59 °C. These results indicate that the small crystals initially produced are getting dissolved due to the 

higher temperature of the mother liquid, thus the mean diameter and growth rate are also higher for 

this sample. Nevertheless, the subsequent sample (taken after 60 minutes), the growth rate is depressed 

and nucleation seems to be the defining parameter, causing a decrease in mean diameter and higher 

CV because of the many small and fine crystals produced. Noticed by the sample taking time (Table 

6.11) for PP1 (Tfeed: 59 °C), the crystals are detected before due to the fact that the membrane module 

containing PP1 fibers consist of 4 fibers, making the volume reduction factor higher together with the 

higher feed temperature causing a  higher flux. These factors influence the super-saturation rate and 

level, therefore the results indicate that these operative conditions might be more uncontrollable in 

particular with respect to a lower feed temperature.  

Crystallization is detected last for the PVDF2 membrane where the module only consists of three 

fibers. The lowest mean diameter and the lowest growth rate are also obtained for the PVDF2 (Table 

6.11). However, the slow crystallization process has a positive effect on CV and in achieving a relative 

steady nucleation and growth rate with only slight decrease in nucleation and increase in growth rate. 

Therefore, the crystal size has increased in the sample taken after 60 min, whereas for the PP1 

membrane for both the utilized feed temperatures mean diameter, growth rate are decreasing and the 

nucleation rate is increasing. The results indicate that the PVDF2 membrane is producing crystals of 

higher quality by a better controllable crystallization process.  

 

Figure 6.18: Crystal size distribution (CSD) achieved during crystallization of produced water (a) 

PVDF2, (b) PP1-Tfeed: 49°C, (c) PP1-Tfeed: 59°C. 
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Table 6.11: Crystal characteristics achieved in the crystallization of produced water 

 PVDF2 PP1 (Tfeed: 49°C) PP1 (Tfeed: 59°C) 

Sample 1 3 1 3 1 3 

Sampling time [min]  553 616 304 383 230 310 

Number of crystal analyzed 201 164 191 166 207 306 

Mean diameter (dm) [µm] 15.70 25.38 51.00 33.47 46.40 23.71 

CV [%] 32.07 40.34 36.89 43.34 26.40 49.07 

Growth rate (G) [µm/min] 0,0114 0,0184 0,180 0,0795 0,156 0,0415 

Nucleation rate (B0) [no./(L·min)] 2,31E+05 1,90E+05 9,30E+04 1,13E+05 1,43E+05 2,00E+05 

 

Analysis of the characteristics of the produced water by means of ionic chromatography suggested that 

the high amount of sodium could precipitate as NaCl crystals. The images obtained from the analysis 

by optical microscope supports the precipitation of NaCl, where the crystals exhibit the conventional 

cubic habit characterized by NaCl (Figure 6.19). The cubic habit of the produced crystals has been 

determined by evaluating the length to width (LW) ratio as shown in Figure 6.20. The majority of the 

crystals are within the cubic structure (LW < 1.3) also supporting that few or no impurities are 

incorporated into the crystal lattice, as impurities suppress the cubic structure of NaCl. 

 

Figure 6.19: Sodium chloride precipitated from produced water. 
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Figure 6.20: Length to width ratio of the obtained crystals. 

The recovered crystals from produced water have been analyzed with SEM and energy dispersive x-

ray (EDX). SEM images shown in Figure 6.21 at different magnifications are confirming the 

microscope images of the cubic structure. To analyze the composition of the crystals and to check if 

any impurities are present, EDX analysis has been performed. The EDX analysis given in Figure 6.22 

clearly shows that only sodium chloride without impurities is crystallized from the produced water.   

     

(a)                                                              (b) 

Figure 6.21: SEM images of the crystals precipitated from produced water (a) Area of crystal sample 

– magnification: 100x, (b) Single crystal – magnification: 5000x 
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Figure 6.22: Example of EDX spectra obtained for the crystals precipitated from produced water. 

6. Conclusions  

The stability of PVDF and PP membranes for membrane distillation of the produced water has been 

confirmed. Membrane distillation tests carried out show an excellent rejection of the total solids 

present into the feed. The rejection of carbon, however, still needs further investigation. The overall 

rejection of total solids is greater than 99% in all the cases, however, the chemical analysis of 

permeate indicates that some volatiles (1,2-diethoxy ethane) go through the membranes. The 

reproducibility of the membranes has been confirmed by storing the membranes for 8 weeks and then 

putting into operation again. The best membranes in terms of performance were selected to check their 

performance stability over longer period of time and it was observed that membranes show quite 

stable performance even after 7 hours of continuous operation. Ceramic membranes used in the study 

lose hydrophobic character easily and get wetted. 

The produced water contains valuable components including many metals such as lithium, barium, 

magnesium, aluminum, copper etc. with quite high concentration. The initial results of MCr 

experimentation show that feasibility of the process. The recovered crystals show very high purity and 

good quality of the crystals obtained. 
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  CHAPTER 7

Fouling in membrane distillation 

1. Introduction 

In a broader sense fouling is defined as the process of deposition of particles or solute at the membrane 

surface or inside the pores such that the membrane performance is deteriorated [1]. It has been 

considered as a major obstacle in wide spread use of membrane technology for a number of 

applications. Intensive fouling may require rigorous chemical cleaning or membrane replacement, thus 

contributing to the overall operational cost of a treatment plant. There are several types of foulants 

encountered in conventional pressure driven processes such as colloidal, biological, organic and 

scaling. The fouling reduces the permeation of the membrane due to increase in resistance to mass 

transfer. Figure 7.1 describes the typical resistances that occur during the mass transport in low 

pressure membrane processes.  

 

Figure 7.1: Possible resistances to solvent transport encountered in low pressure membrane 

processes 

Due to relatively less convective flux encountered in MD, the effect of concentration polarization is 

supposed to be very marginal. On the other hand, due to rigorous nature of the salt solutions generally 

used for MD, the surface scaling can be an additional problem. Moreover as explained in Chapter 2, 

there are certain other phenomena in MD that have the similar effect as that of the fouling on process 

performance. Thermal polarization is one of those which can be regarded as the counterpart of 

concentration polarization in low pressure driven processes. In case of partial wetting, the temperature 

at the pore mouth can be significantly less than that at the surface and can decrease the temperature 

polarization coefficient [2]. The possible flux decline parameters for MD have been shown in Figure 
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7.2. The hydrophobic nature of the membranes used for MD makes the membranes especially 

vulnerable for attack from organics such as macromolecules present into dairy streams [3].  

 

Figure 7.2: Parameters limiting the flux in MD under given process conditions 

Similar to the conventional low pressure driven processes, fouling in MD depends upon the feed 

characteristics, membrane features and the operating conditions used. In current chapter, the fouling 

tendency of various feeds for membranes with different features has been tested under short 

experimental time period. The solutions tested include gas field produced water, RO brine; permeate 

from an MBR plant and whey solution. For first three solutions, lab made PVDF and commercially 

available PP based hollow fiber membranes have been used while for the whey solution, 

hydrophilically modified and unmodified PP membrane has been used. Introductory discussion on 

critical flux has also been included. 

2. Theoretical background 

2.1. Effect of liquid intrusion (wetting) 

The effect of liquid intrusion has been analyzed by using the wetting model proposed by Gilron et al 

[2]. The details of the analysis can be found in the same reference. The basic heat transfer equation for 

MD can be written as 

( )o f pQ U T T    (1) 

Where Uo is the overall heat transfer coefficient and can be represented as following. 

1 2 1

oU h H
               (2) 

 

 

Flux in MD 

Pore wetting 

 

Surface accumulation 

 

Biofouling 

 

Scaling 

 

Thermal  polarisation 

 



 

143 

Where 

                                                 v m

dP
H C H h

dT
                    (3) 

C represents the effective membrane permeability and can be found by using the flux and vapor 

pressures at the interfaces for clean membrane and pure water, hm is the membrane heat transfer 

coefficient. 

Depending upon the characteristics of feed solution and the membrane used, the membranes for MD 

can prone to wetting. In case of wetting, the effective pore length of the membrane decreases and 

therefore effective heat transfer coefficient must be corrected based on the length of the wetted pore. 

1 2 plm
v m

o m pl wt

dP
C H h

U h dT K



  

 
     

  
  (4) 

Where, δm , δpl, Kwt represent the membrane thickness, the wetted pore length and thermal conductivity 

of the water, respectively. 

 

Figure 7.3: Schematic of dry and wet pore in MD (left and right respectively) 

The pore wetting (Figure 7.3) plays important role in dictating the heat and mass transfer across the 

membrane. Due to the wetted portion of the pores, the effective membrane thickness for the mass 

transfer decreases, however, temperature at pore mouth drops even lower than that at the membrane 

surface. The cooling caused by evaporation combined with poor hydrodynamic inside the pore can 

increase the degree of saturation at pore mouth and can cause the scaling within the pores, thus 

blocking the membrane pores. 

The total heat transferred can be found out by applying heat balance on entering and exiting enthalpies 

of the streams. The heat transfer coefficient for feed and distillate sides can be calculated by using 

some appropriate relationship. For the current study, the following relationship has been used for 

determination of h. 
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Once the total heat transferred, Q, and heat transfer coefficients, h, are known, the temperature at the 

membrane interface can be calculated by the following expression. 

( )f f fmQ h T T    (6) 

2.2. Effect of physical properties of solution 

During the concentration of feed solution in MD/MCr, the physical properties of the solution including 

viscosity, density and thermal conductivity change. These properties in turn change the hydrodynamic 

conditions within the membrane fiber that influence the temperature at the membrane surface. 

Moreover, the increased solution viscosity reduces the diffusion of water molecules from the bulk to 

the pore mouth where the evaporation takes place, thus contributing negatively to the pure water flux. 

In order to simplify the calculations, in current analysis, viscosity, density and thermal conductivity of 

produced water have been assumed equal to that of pure NaCl solution with the same concentration 

and under the same temperature conditions.  

The viscosity of NaCl solution can be related with its mass fraction in the solution at any time by 

using the following Vogel-Tammann-Fulcher relationship [4]. 

9

0

( . ) 10 exp( )
B

Pa s A T
T T

 


  (7) 

Where   is the solution viscosity, A, B and To are parameters which depend upon the solution 

concentration according to the following relationships. 

24219.6 2995.2 991.72A x x     (8) 

6 5 4 3 2300834 525458 348368 106051 14531 967.34 644.92B x x x x x x        (9) 

229.088 15.881 134.68oT x x     (10) 

The density of the solution as function of concentration can be determined by using the least square 

fitted parameters provided in [4]. 

1 1( 273.15)a b T        (11) 

Where 

2

1 421.37 629.7 1012.6a x x     (12) 

And 

5 4 3 2

1 168.16 206.79 89.845 17.308 0.6854 0.4789b x x x x x        (13) 

Thermal conductivity of the solution as a function of concentration can be determined by using the 

Yusufova relationship [5]. 
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3 6 8 2 5 8 10 2 21 (2.3434 10 7.924 10 3.924 10 ) (1.06 10 2 10 1.210 )
w

T T S T T S




                  (14) 

Where   is the thermal conductivity of NaCl solution and w  is the thermal conductivity of pure 

water. T is the temperature and S is related with the molality of the solution by following relationship. 

5844.3

1000 58.443

m
S

m




 
  (15) 

The values of density, viscosity Re and Pr calculated on the basis of above equations have been shown 

in Figure 7.4 and Figure 7.5. Re drops from ~400 to ~200 as the solution concentration increases from 

~250 g/L to ~500 g/L. Similarly, for the same change in concentration, the solution density changes 

from ~1160 kg/m3 to 1380 kg/m3 while viscosity increases from 0.0008 kg/ms to 0.0018 kg/ms. All 

these parameters can affect heat and mass transfer during MD process. 

 

Figure 7.4: Effect of concentration on density and viscosity of solution 
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Figure 7.5: Effect of solution concentration on Pr and Re 

3. Membrane distillation experimentation 

Membrane distillation has been performed at feed and distillate inlet temperatures of 50oC and 10oC, 

respectively unless otherwise specified. The feed and permeate flow rates were kept constant at 50 

ml/min and 30 ml/min, respectively. The detailed set-up description for MD has been shown in Figure 

7.6. Three different types of feeds including synthetic brine, produced water and MBR effluent were 

used in the experimentation. The results achieved by using membranes entitled M3 and PP in Chapter3 

have been reported here. 

In order to mimic the behavior of most of the solar operated MD plants, the experimentation with 

produced water and MBR effluent was also performed in intermittent mode: 6-8 hours of operation 

and then the set-up was left as such overnight before starting up the experimentation for the next day.  

3.1 Reverse osmosis brine as feed 

The performance of both the membrane was tested against synthetic reverse osmosis brine solution. 

The composition of the brine used has been provided in Table 7.1. In order to see the effect of humic 

substances on the operation, 200 ppm of humic acid was also added into the brine solution. 



 

147 

T

Membrane module

Feed pump  Permeate pump

Feed tank

Heater Graduated cylinder

Cooling tank

 

Figure 7.6: Schematic diagram of membrane distillation set-up used 

Table 7.1: Composition of synthetic brine 

Salt 
Composition 

(g/L) 

MgCL2
.6H2O 25.94 

CaCL2
.2H2O 3.67 

NaHCO3 0.42 

NaCl 57.18 

Na2SO4 9.62 

Humic acid 0.2 
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Figure 7.7: Flux as function of concentration for M3 and PP membranes 

The flux for both membranes calculated for various brine compositions has been shown in Figure 7.7. 

The flux decreases with concentration. The most probable causes for flux reduction include reduction 

in vapor pressure due to increase in concentration, scaling and crystallization at the membrane surface 

and change in physical properties of solution with increase in concentration that affects the solution 

hydrodynamic as shown in Figure 7.4 and Figure 7.5. Humic substances present into the solution have 

tendency to interact with the membrane, and thus can create the fouling at the membrane surface. 

Relatively more reduction in flux for M3 can be attributed to the presence of macrovoids and 

relatively less hydrophobicity of PVDF than PP. There is slight increase in the conductivity of the 

permeate as shown in Table 7.2 which indicates that the wetting mechanism explained in section 2.2 is 

also partly responsible for observed decrease in flux.  

Table 7.2: Properties of permeate from reverse osmosis brine 

Membrane type Conductivity (µS) TDS (ppm) 

PP 324 668 

PVDF 638 1238 

 

3.2 MBR effluent as feed  

The experimentation has also been carried out by using MBR effluent obtained from a local industry 

treating effluent from a local hospital as the feed. The experiment was run for three days with 

operation carried out only during day time and plant was shut down during night and all the 

components were left in as-it-is state.  The flux obtained for PP membrane has been shown in Figure 
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7.8. The figure indicates that contrary to RO brine, the flux remains quite stable throughout the 

operation for the entire period of experimental run. The trend confirms the operational stability of the 

process. The electrical conductivity and total dissolved solids (TDS) of the distillate were monitored at 

the end of each run. The properties of feed and average properties of distillate have been given in 

Table 7.3 which further confirms the operational stability of the process. 

 

Figure 7.8: Flux obtained for MBR effluent as function of time by using PP membrane 

Table 7.3: Properties of MBR effluent feed and distillate 

Stream TDS (ppm) 
Condutivity 

(µS) 
TC (ppm) TIC (ppm) TOC (ppm) 

Feed 380 761 12.98 12.55 0.43 

Permeate 4.86 9.78 5.82 5.1 0.72 

 

As shown in Figure 7.9, the trend observed for M3 membrane is the same as that for PP, however, the 

value of flux obtained in this case is much higher than that for PP. This effect can be attributed to the 

lower thickness, high overall porosity and larger mean pore size of M3 membrane as explained in 

Chapter 3. 
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Figure 7.9: Flux obtained for MBR effluent as function of time by using M3 membrane 

3.3 Produced water as feed 

The experimentation has also been performed by using produced water as feed. Produced water used 

represents a complex mixture of various fractions. The main characteristics of the water have been 

provided in Chapter 6 Table 6.2. 

3.3.1 Intermittent operation 

Membrane distillation has been performed at feed and distillate inlet temperatures of 50oC and 10oC, 

respectively. The feed flow rate was varied between 50 ml/min to 100 ml/min while the permeate flow 

rate was kept constant at 30 ml/min. After two days run, the membranes were washed with double 

distilled water for one hour and at flow rate of 50 ml/min before putting into the next experimental 

run. 

The flux behavior of membrane type M3 before and after washing has been illustrated in Figure 7.10. 

The flux decreases steeply from ~9 L/m2.h to ~5 L/m2.h before achieving a steady value in before 

washing test. There was no significant increase in solution concentration over the experimental period 

of time (<5%), thus the effect of solution physical properties discussed in section 2.3 can be neglected. 

The main reduction in flux can be attributed to the possible wetting of membrane pores that decrease 

the effective driving force across the membrane. The effect of wetting on different resistances to heat 

transfer calculated according to the model proposed by Gilron et al [2] has been shown in Figure 7.11. 

The figure discloses that the resistance offered by the membrane decreases linearly as the wetted 

length increases. It is due to reduction in effective thickness of the membrane as wetting proceeds. The 

resistance offered by the wetted pore length rises while the resistance offered by the feed side 

boundary layer stays constant with rise in wetted pore length. The most interesting observation from 

the heat transfer point of view is the reduction in temperature at the pore mouth with increase in 



 

151 

wetted pore length. This effect will decrease the effective value of temperature polarization coefficient 

based on bulk and temperature at the pore mouth and will affect the flux negatively.    

The membrane module was left as such overnight without any cleaning or the removal of the feed 

from the membrane.  This is the common practice for most of the solar energy driven membrane 

distillation pilot plants. It was found out that the flux observed at the start of the next day was 

significantly lower than the previous one. This behavior can be related with the salt 

scaling/crystallization occurring at the membrane surface or inside the pores under quiescent 

conditions maintained overnight.  After washing, the flux obtained follows the similar trend as for the 

first cycle. 

 

Figure 7.10: Flux as function of time for M3 membrane for produced water as feed 
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Figure 7.11: Effect of wetted pore length on various resistances to mass transfer 

The scaling occurred at the membrane surface of M3 under quiescent conditions maintained over a 

period of three hours has been shown in Figure 7.12 which confirms the hypothesis of association of 

flux decline with surface scaling. 

 

Figure 7.12: SEM images of scaling present at surface of M3 at different magnifications 

Flux achieved for commercial PP membrane has been shown in Figure 7.13.  It is clear from the figure 

that flux shows almost constant trend over the entire experimental time period for the first day. 

However, at the start of day 2, similar to M3, the initial flux is much lower than its value for the first 

day. However, the flux approaches to its steady state value for the first day as the experiment 

proceeds. The flux is fully recovered after washing the membranes with double distilled water 

according to the set procedure. This behavior can be attributed to macro-void free structure of PP. Due 

Rm   Membrane resistance        

Rwp   Resistence offered by the wetted pore length                                                 

Rf  boundary layer resistance                                                  

Tpore mouth  Temperature at pore mouth 
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to sponge like structure of PP membrane; the scaling is not penetrated deep into the structure and can 

be washed away relatively easily. 

 

Figure 7.13: Flux as function of time for PP commercial membranes for produced water as feed 

The fouling behavior of the membranes investigated can be related with their morphology developed 

under the operating conditions and dope composition used during the synthesis process. PVDF based 

membrane (M3) has been prepared by using non-solvent induced phase inversions technique. As 

explained in Chapter 3, for formation of M3 membrane, relatively low amount of polymer has been 

used in dope solution. Additionally, maleic anhydride has been applied as a co-pore forming additive 

into the dope. These factors give rise to the structure containing macro-voids, as evident from Figure 

7.14. Such structures may be required from high flux point of view as the resistance to mass transfer 

offered by such structures would be low. However, for practical application of desalination, the 

structures with macrovoids are more susceptible to wetting. Moreover, the probability of scaling and 

crystal formation within the macrovoids is comparatively high. The difference between steady state 

and unsteady flux for such membrane is quite high and washing does not seem to be very effective for 

such membranes. 
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Figure 7.14: SEM picture of fiber type M3 

3.3.2 Effect of membrane washing 

In order to test the performance of the membrane during crystallization test, the experimentation was 

carried out by using PP membrane at feed inlet temperature of 50oC. The flux observed has been 

shown in Figure 7.15.  

 

Figure 7.15: Flux for produced water during crystallization and the corresponding concentration 

along with pure water flux before and after crystallization.   

After completing the 1st day experimentation, the membrane was washed with double distilled water. 

It can be observed from the figure that the starting 2nd day flux (at~350 min) is not affected by the 1st 

day operation that confirms the efficiency of immediate membrane washing. The pure water fluxes 

before and after experimentation with produced water has also been provided in the same figure. The 

figure shows that the flux stays steady throughout the experimental period of time. The similar values 

of pure water flux before and after the crystallization experiments confirm no residual fouling left on 

the membrane surface. It is interesting to note that concentration rises almost to double during the 

experimental time period. The insensitiveness of flux towards increased concentration can be 
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explained by the high conductivity value at the end of the test (9 mS). Very high conductivity shows 

that some fraction of the total pore became wet. The passage of pure solution through the wetted pores 

apparently suppresses the reduction in overall volume on permeate side.  

3.4 Whey solution as feed 

Comparative study of modules with different characteristics 

In order to study the effect of module characteristics on heat and mass transport through the 

membrane, three different types of modules were used. The first type was fabricated by using simple 

PP fibers in straight configuration. PP membranes applied in Chapter 5 were used here too. The outer 

surface of the fibers for the second modules was modified with styrene based monomers prepared by 

another group according to the procedure described elsewhere [6]. The modification was incorporated 

in order to render the hydrophilic character to the outer surface of the fiber. The idea was to reduce the 

protein interactions with the fiber surface and thus to decrease the fouling tendency of the fibers when 

used for the solutions containing proteins. In third type, the helical configuration was used. The 

characteristics of the modules used have been shown in Table 7.4. 

 

Table 7.4: Main characteristics of the modules used in the study 

Module configuration Fibers length (cm) No of fibers 
Operating 

configuration 

Straight fibers 20.2 5 Outside-in, Inside-out 

Modified straight 

fibers 
21 5 Outside-in 

Helically coiled 25.5 6 Inside-out 

 

The pitch of helical module was 4 cm. 

Due to the fact that the outer surface of the fibers was modified for hydrophilic character while the 

benefits of the helical module can be achieved when feed is introduced inside the fibers, both inside-

out and outside-in configurations were used for straight fibers for the comparative analysis. Feed 

temperature was adjusted at 55oC for all the tests. For inside-out configuration, experimentation was 

carried out at feed Reynolds number of ~880. Due to its rapid fouling nature, whey solution was used 

as the feed solution.  

The flux obtained and the corresponding concentrations for inside-out configuration have been shown 

in Figure 7.16. As illustrated in the figure, the flux exhibited by the coiled modules is higher than its 

straight counterpart throughout the experimental run. The improvement can be attributed to reduction 

in both temperature and concentration polarization achieved in helical modules. The secondary flow 

induced by the helical structure improves the mixing between the fluid in bulk and boundary layer by 

forcing the later in lateral direction. The recorded flux for helical modules is up to 25% higher than its 

straight counterpart.  

Another interesting results obtained through the helically coiled module is the high flux even at high 

feed concentration. The concentrations achieved in helical and straight modules are 18.6% and 13.7%, 

respectively. The higher concentration does not only cause the concentration polarization and 

subsequent fouling but also reduces the partial pressure of the solution. All these factors argue in favor 

of reduced flux. The higher flux for the helical module is due to its superior protagonist to reduce 

concentration and temperature polarization. 

As shown in Figure 7.17, the flux obtained with modified module is significantly less than the both 

above mentioned modules. The reduction can be ascribed to poor hydrodynamics applied and different 

configuration (outside-in) used. The feed is introduced on shell side of the module and corresponds to 
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a Reynolds number of ~810. The figure indicates a sudden decrease in flux for unmodified module 

which can be probably due to the protein attacked to the hydrophobic surface of the membrane. The 

flux decreases slightly with time after that. The reduction can be attributed to both the increase in 

concentration and building up of the fouling layer. On the other hand, the flux for the modified fiber 

stays almost constant and only a minor drop with time can be observed for the experimentation carried 

out during the first day. Even after leaving the membrane in contact with the feed overnight, the there 

is no decrease in starting flux on the next day which indicates no buildup of fouling even under 

quiescent conditions. The steep decrease in flux can be attributed to increase in overall solution 

concentration. The modified membranes were tested with pure water immediately after using against 

whey solution. The results indicated in the same figure reveal quite high flux as compared to that 

obtained for the solution. It clearly indicates that increased solution concentration over time plays an 

important role in reduction in flux over time. Furthermore, the recovery of flux with pure water can be 

attributed to the removal of loosely attached fouling layer on the membrane surface. 

 
Figure 7.16: Flux and concentration achieved for straight and helical modules with inside-out 

configuration 

When comparing the flux obtained through straight and coiled fiber modules, it should also be noted 

that residence time of the solution inside the coiled module is high as compared to straight modules 

due to more resistance offered to the fluid flowing inside the module. Furthermore, the total length of 

the fiber for helical module used is almost 21% longer than that of the straight one. Higher residence 

time combined with the relatively longer dimension tend to reduce the overall driving force along the 

module. The comparative results can be further attractive if the length of fibers in both modules is kept 

the equal. 
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Figure 7.17: Flux achieved for straight fiber modified and unmodified modules with outside-in 

configuration 

4. Critical flux in MD 

In case of membrane distillation (MD), the definition of critical flux is much more complex, as the 

traditional fouling caused by the transfer of liquid through the membrane, encountered in the UF/MF 

process, is not present. The adsorption phenomenon occurring in subcritical region of the traditional 

low pressure processes, the crystallization occurring at the membrane surface under saturation 

conditions, temperature polarization and membrane wetting are the main flux-limiting parameters in 

case of MD. 

If the feed contains organics, the adsorption of organics on hydrophobic membrane surface would be 

inevitable and it will affect the MD flux considerably. The effect of rate of adsorption on flux depends 

upon the characteristics of feed and membranes and can be drastic in case of organics-containing feed. 

Adsorption effect can be divided into two stages for MD: short term or rapid adsorption and a long 

term adsorption that induces the fouling/scaling which affects the flux. In case of feed containing 

organics or large molecules, even the short term adsorption can affect the flux significantly, however 

for salt solutions; the adsorption below saturation level can be negligible. One possibility way of 

defining critical flux in MD can be based on second stage of adsorption. The effects of true fouling 

will be prominent only for long term adsorption. This is particularly true for the feed treating the 

inorganic salts with low adsorption tendency. It is assumed that the salt precipitation at the membrane 

surface is a result of adsorption of nascent nuclei that grow at the membrane surface or the salt crystals 

grown in the solution and then adsorbed at the membrane surface.   

When the hydraulic pressure exceeds the liquid entry pressure, the membranes are prone to wetting. 

The effect of wetting is not only possible reduction in flux and degradation of permeate quality but 

also a severe fouling inside the pores caused by the precipitated/adsorbed materials. For a given feed 
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and membrane combination, the wetting can be controlled by selecting the appropriate conditions of 

temperature and flow rate (hydraulic pressure). More comprehensively, feed temperature, feed 

composition, pore size and hydrophobic character of the membrane combined with the hydraulic 

pressure applied at the membrane surface will dictate the wetting phenomenon in MD. 

2 cos
entP

r

 
    (16) 

To avoid the wetting, MD operation should always be carried out under sub-wetting-conditions 

defined by all the features mentioned above. For critical flux, both adsorption and wetting should be 

avoided (Figure 7.18). 

 

Figure 7.18: Parameters defining the windows for critical flux at a fixed level of thermal polarization 

For MD, besides the fouling, temperature polarization also limits the efficiency of the process. Thus in 

case of MD, the critical flux should be defined for a specific flow rate condition, as the velocity affects 

the thermal polarization boundary layer. Therefore  
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Where Δp is the vapor pressure of the fluid calculated at the bulk temperature after including the 

concentration effect and Δᴨ is the osmotic pressure of the solution that tends to reduce the flux and RTP 

is the net resistances caused by the boundary layers at both feed and permeate sides. 

The weak form of the critical flux can be written in the following way. 

,
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Here Rads,s represents the short term adsorption. It is valuable to note that in MD, adsorption can lead to 

continuous buildup of reversible and/or irreversible fouling. On contrary, in low pressure driven 

processes the filtered volume through the membrane is mainly responsible for the buildup of reversible 

or irreversible fouling.  
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4.1 Proposed protocol  

The critical flux experimentation for MD may follow the similar steps as described for low pressure 

membrane processes and RO. For a given combination of feed, membrane and feed inlet temperature, 

the following step can be carried out. 

1. Calculation/determination of the liquid entry pressure measurement/calculation to ensure that 

the process is always run below the LEP. 

2. Circulation of the solution in the set-up to achieve the equilibrium salt adsorption. 

3. The flux measurement at constant temperature and flow rate condition under the complete 

recirculation of the permeate over an extended period of time. 

4. Periodic monitoring of solution concentration in the feed tank to see the kinetics of the 

deposition, if any. 

5.  Stepwise increase of temperature with a new membrane module and repetition of step 3 and 

4. 

6. The temperature at which flux start to show decrease with time will be noted, the 

corresponding flux will be the critical flux under those conditions. 

7. The effect of feed flow rate, concentration and membrane characteristics on critical flux can 

be further explored. 

4.2 Kinetics 

The ions near the membrane surface will inclined to be spread uniformly into the solution by the 

diffusion mechanism, whereas, the lateral convection caused by the flux will tend to bring the ions at 

the membrane surface. The convective axial flow of the solution will direct the ions in axial direction. 

The interactions among the ions with the membrane surface will also play the role in ionic distribution 

and therefore, in inducing the concentration polarization and consequently fouling. The condition of 

critical flux will be achieved under the circumstances where the forces directing the ions towards the 

membrane (convective flux, interactions between the ions and membranes, interactions between the 

ions and any absorbed species at the membrane surface) will be balanced by the forces directing the 

ions away from the membrane (diffusion, repulsion between the particles). Low convective flux 

combined with the high diffusion coefficient of ions is another element responsible for low fouling in 

MD during desalination. 

The movement of particles or ions towards or away from the membrane will be the results of mainly 

following factors. 

1. The convective flux of vapors will tend to create concentration polarization and thus 

consequently fouling. 

2. The diffusion forces will tend to reduce the effect of concentration polarization. A Peclet 

number can be defined to see the net effect of each of these parameters. 

3. The hydrodynamic conditions applied will drag the particles in axial direction and can interact 

with the diffusion of the ions. 

Convective flux of solute is related with the permeate flux of the solvent and transports the solute to 

the membrane surface. 

The diffusive flux relies on the concentration polarization and tends to transport the solute on the basis 

of concentration difference. 

( )dif b mJ k C C   (19) 
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Where k is the solutes mass transfer coefficient and Cb and Cm represent the solute concentration in 

bulk and at membrane surface, respectively. 

k can be calculated by mass transfer analogy of Graetz–Lévêque equation[7]. 

0.33

1.86 Re
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Sh Sc
L
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  

 
 (20) 

Where Sh and Sc are Sherwood and Schmidt numbers, respectively. 
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D is the diffusion coefficient of the solvent. 

The concentration at the membrane surface can be calculated by [8] 
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 (23) 

The convective flux of the solute can be calculated by the following equation. 

conv bJ JC   (24) 

The degree of concentration polarization and thickness of concentration boundary layer is expected to 

be smaller in MD than the conventional pressure driven processes. The scale formation at the 

membrane surface in NF and RO can be due to bulk crystallization and/or surface crystallization. In 

first mechanism, the crystals are formed in bulk under superasaturation level followed by the 

attachment at the membrane surface while according to second mechanism; crystals initiate and grow 

at the membrane surface. In MD, at low concentration, the crystallization at membrane surface is more 

probable while at high salt concentration, both mechanisms can be significant. 

4.3 Factors affecting CF in MD 

4.3.1 Feed temperature 

A basic parameter of interest for critical flux in MD would be the feed temperature. While a high 

temperature may be desired to achieve high flux, thermal efficiency and performance ratio, it may 

boost membrane fouling at the same time. Feed temperature will affect the flux and therefore the 

convective force towards the membrane surface and the cooling effect caused at the membrane surface 

will be stimulated. On the other hand, crystallization at membrane surface can be lowered by 

increasing overall feed temperature so that the temperature at the membrane surface moves 

corresponds to sub-saturation conditions. The situation can be relatively simple for the salts exhibiting 

a negative solubility with temperature. For multicomponent solutions, the saturation level of the first 

precipitating salt will dictate the conditions achieved for critical flux. To ensure a smooth operation 

over a longer period of time, the negative impact of temperature must be overcome. 
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4.3.2 Thermal polarization 

Another important factor to be considered is the local increase in superasaturation caused by the 

temperature polarization induced by the evaporation at the membrane surface and the conductive 

transfer of heat through the membrane. The salts which have positive solubility with temperature will 

tend to crystallize if the degree of saturation is achieved under the conditions acquired at the 

membrane surface. For a given degree of saturation, the effect can be reduced by taking the measures 

that intend to reduce temperature polarization including feed velocity. 

4.3.3 Feed flow rate 

The feed flow rate can influence the scale formation in two ways. The concentration boundary layer 

will be negatively affected due to high feed flow rate and any formed nuclei will be taken away from 

the membrane. On the other hand, it will decrease thermal boundary layer and thus will lead towards 

high flux, bringing more ions to the membrane surface. However, it is expected that the first effect will 

dominate the process and critical flux will increase with feed flow rate. If the salt is prone to suffer 

shear induced crystallization, then the situation will become more complex. 

4.3.4 MD configuration 

Under the same operating conditions and membrane features, flux in various configurations of MD 

can be different. It will change the proportion of diffusional and convective forces. However, the 

crystallization will occur at the same saturation level for all configurations. Thermal polarization 

coefficient and therefore, membrane surface temperature might be different for different 

configurations which imply that saturation level will reach at different values of flux. Thus, critical 

flux will be different in different configurations, depending upon thermal polarization. 

4.3.5 Feed characteristics 

The composition of the feed dictates the type of fouling (simple adsorption or crystal adsorption) and 

the rate of fouling. The feed enriched with proteins and other organics compound is susceptible to 

induce both short term and long term adsorption on the membrane surface. As evident from many 

studies, the rate of fouling in MD increases dramatically with feeds congaing organic foulnats in 

significant quantities. Some studies performed on pressure drive processes indicate the acceleration of 

organic fouling in presence of salts in the solution. The feeds comprising of easily precipitating salts 

will lower down the value of critical flux. Moreover, the concentration of solution will dictate the 

saturation level of the feed and will affect the critical flux. 

4.3.6 Feed tank 

The structure and conditions imposed inside feed tank can be considerably helpful in controlling the 

fouling in MD system. The temperature of the feed tank, its structure and area in contact with the feed 

should be adjusted in such a way that the conditions for crystallization in the feed tank are friendlier 

than those at the membrane surface. The structure of the feed tank will play an important role in 

inducing the crystallization process within the feed tank because the interfacial energy between 

nucleus and a substrate is lower than that of the nucleus and solution. Complex or rougher surfaces can 

enhance the heterogeneous crystallization. In addition to the appropriate structure, the geometrical 

design of the tank should emphasis on higher contact area between the solution and the tank surface.   
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5. Conclusions  

The fouling tendency of polymeric membranes towards various types of feeds depends both upon the 

feed and membrane characteristics. The membrane with macrovoids structure may be attractive to 

achieve high flux in membrane distillation process; however, the presence of macro-voids deteriorates 

the performance when the solution to be treated creates some scale forming components. Most of the 

scaling seems to appear under the quiescent conditions. Temperature polarization becomes worse in 

case of pore wetting. The helical modules improve the temperature distribution inside the fiber but are 

not affective in alleviating the protein attack. The hydrophilic modification with the monomers used 

provides an effective way to reduce the protein fouling at the membrane surface. Some basic 

discussion on critical flux in MD has also been provided, however, the topic still needs further 

experimental and theoretical investigations. 

References 

[1] R. Field, “Fundamentals of Fouling,” in in Membranes for Water Treatment, vol. 4, K.-V. P. 

Nunes and S. Pereira, Eds. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

[2] J. Gilron, Y. Ladizansky, and E. Korin, “Silica Fouling in Direct Contact Membrane 

Distillation,” Ind. Eng. Chem. Res., vol. 52, pp. 10521–10529, 2013. 

[3] A. Hausmann, P. Sanciolo, T. Vasiljevic, M. Weeks, K. Schroën, S. Gray, and M. Duke, 

“Fouling mechanisms of dairy streams during membrane distillation,” J. Memb. Sci., vol. 441, 

pp. 102–111, 2013. 

[4] G. Colin, L. F. Castillo, and P. Goldstein, “Theoretical basis for the Vogel-Fulcher-Tammann 

equation,” Phys. Rev. B, vol. 40, no. 10, pp. 7040–7044, 1989. 

[5] H. Ozbek and S. L. P. h i l l i p S, “THERMAL CONDUCTIVITY OF AQUEOUS NaCl 

SOLUTIONS,” Lawrence Barkeley Laboratory, University of California,   

[6] Y. Chiag, Y. Chang, W. Chen, and R. Ruaan, “Biofouling Resistance of Ultrafiltration 

Membranes Controlled by Surface Self-Assembled Coating with PEGylated Copolymers,” 

Langmuir, 28 (2012) pp. 1399-1407. 

[7] M. MartõÂnez-DõÂez, L, VaÂzquez-GonzaÂlez, “Temperature and concentration polarization 

in membrane distillation of aqueous salt solutions,” J. Memb. Sci., vol. 156, pp. 265–273, 1999. 

[8] R. W. Schofield, a. G. Fane, C. J. D. Fell, and R. Macoun, “Factors affecting flux in membrane 

distillation,” Desalination, vol. 77, pp. 279–294, Mar. 1990.  

 

 

 

 



 

163 

  CHAPTER 8

Conclusions and perspectives 

The growth and progress in MD have greatly accelerated recently. The increasing interest in this 

technology has been observed at lab as well as commercial scale. Theoretical and experimental 

considerations presented in this study clarifies that the availability of appropriate membranes for MD 

is still an issue. The membranes used in the current study reveal that the membranes prepared through 

NIPS with structure engineered to increase trans-membrane flux (high porosity and large average pore 

size) are not appropriate for practical applications of MD. These membranes are prone to wetting and 

scaling. On the other hand, the membranes with sponge like morphology and relatively narrow pore 

size exhibit relatively lower flux but stable performance. Thus there exists an optimum between the 

membrane features suitable for high flux and stable membrane performance. Optimum membrane 

features can be different for various configurations. There is a requisite to make comparative analysis 

of membranes performance in various configurations. 

New emerging technologies or materials can provide the solution to this problem. The use of 

nanotechnology to synthesize the membranes comprising of nanofibers is an interesting opportunity to 

address the challenge of unavailability of appropriate membranes for MD. Incorporation of carbon 

nanotubes in the membrane structure to enhance the water transport through the membrane is another 

interesting possibility being investigated. In addition to improving the long term performance, new 

materials with improved hydrophobicity and mechanical strength can extend the limit of maximum 

pore size and overall porosity. The use of new high strength/weight ratio material such as graphene 

can be useful to tune the thickness of the membrane. Similarly, there is possibility to reduce the 

membrane cost by using the techniques developed in the field of textile to increase the stable 

hydrophobicity of the fabrics. Similarly, biomimic membranes may become interesting in future for 

desalination in general. Multilayer (dual or triple layer) membranes with thickness specifically 

engineered for MD applications are also an interesting emerging candidate. In order to achieve the 

objective of sustainability, the materials and solvents used for membrane synthesis must also be 

‘’green’’. 

A significant amount of heat is lost due to thermal polarization, especially in DCMD. It has been 

shown in present study that the effect of thermal polarization prevails the concentration effects in all 

practical situations. There is not a single correlation that can be generalized to describe temperature 

polarization effect in MD. At low Re, the experimental heat transfer coefficient falls in the range of 

theoretical predictions, though no single correlation can predict the results precisely. High deviation of 

experimental data from theoretical predictions at high Re observed in this study can possibly be 

reduced by further improving the designing of the cell used. There is a strong requisite to extend the 

thermal polarization analysis further to the membranes with different features and physical 

configurations. Moreover, appropriate correlations need to be investigated for other configurations of 

MD too. The effect of membranes characteristics such as surface roughness, overall porosity, pore size 

distribution etc. on thermal polarization needs to be addressed.   

MD has a lot to adopt from active and passive techniques practiced to decrease concentration 

polarization and fouling in conventional low pressure membrane based processes, and to augment heat 

transfer in heat transfer applications. The use of these techniques can be helpful in controlling thermal 

polarization in MD and to decrease the surface fouling/scaling problem. The studies carried out in this 
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work show that the use of helical and wavy shaped fibers increases the process efficiency and 

performance ratio. The use of undulating geometries is helpful in decreasing thermal polarization at 

both up and down stream. However, this technique still needs to be further investigated for membranes 

with different features and by changing the parameters of helical or wavy fibers. The use of various 

flow patterns has also been interesting to control thermal polarization in MD. The initial and simple 

studies carried out in this work show that intermittent and pulsatile flows have significant potential to 

decrease thermal polarization and to increase the process efficiency without decreasing the overall 

packing density of the module.  

The increased interest of MD for various applications has been seen recently. Besides the conventional 

attentiveness for seawater desalination, a lot of new interesting applications have been tested. 

Produced water is an interesting example in this context. This water is characterized generally with 

presence of very high salt content and small fraction of various hydrocarbons. The treatment of such 

streams is very challenging for the conventional treatment techniques. The performance of MD to treat 

gasfield produced water has also been tested during the current PhD. Various operating conditions and 

membranes have been applied. It has been seen that the membranes in general show excellent 

performance in terms of quality of the distillate obtained. However, it has been observed that some 

organic volatiles pass through the membrane pores. However, there is still need to explore the long 

term performance of various membranes for treatment of this water. It would be interesting to see the 

performance of other MD configurations for this particular application. 

Produced water is enriched with various minerals with concentration much higher than seawater. The 

use of MD as membrane crystallizer cannot only solve its disposal problem but it can provide an 

interesting opportunity to further increase the recovery of fresh water and minerals from this waste 

stream. Initial attempts show that some salts can be recovered from this solution with moderately 

concentrating it. The recovered salts show very good quality in terms of crystal size, shape and crystal 

size distribution. Further studies are needed on these lines to characterize the complete spectrum of 

recoverable salts from this solution. 

Pore wetting and scaling are two prominent forms of nontraditional fouling observed in MD. The 

former depends mainly upon the hydrophobicity of the membrane material, membrane pore size and 

nature of feed. It has been shown that potential of pore wetting is more for the membranes with pores 

designed to increase the flux. In current study, produced water characterized with the presence of very 

high salt and small fractions of petroleum causes the most wetting problem. PP membranes are least 

susceptible to wetting from brine due to their sponge-like morphology and small pore size. The 

intrusion of the liquid inside the pores does not only deteriorate the permeate quality but also reduces 

the process performance. It has been shown that in case of wetting, the temperature of the liquid at 

pore mouth can be significantly low than its value in the bulk or even at membrane surface. 

Furthermore, if a wetted membrane is not properly clean, the salts and other contaminants present into 

the feed can cause surface or internal scaling of the membrane. The membrane scaling and fouling can 

be decreased by rational operation of the plant. In event of shut down, the membranes must be washed 

with clean water in order to avoid the surface scaling.  
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