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Abstract

Embedded computer vision applications demand high system computational power and
constitute one of the key drivers for application-specific multi- and many-core systems. A
number of early system design choices can impact the system’s parallel performance – among
which the parallel granularity, the number of processors and the balance between computation
and communication. Their impact in the final system performance is difficult to assess in early
design stages and there is a lack for tools that support designers in this task. The contributions
of this thesis consist in two methods and associated tools that facilitate the selection of embed-
ded multiprocessor’s architectural parameters and computer vision application parallelization
strategies. The first consists of a Design Space Exploration (DSE) methodology that relies on
Parana, a fast and accurate parallel performance estimation tool. Parana enables the evaluation
of what-if parallelization scenarios and can determine their maximum achievable performance
limits. The second contribution consists of a method for optimal 2D image tile sizing using
constraint programming within the Tilana tool. The proposed method integrates non-linear
DMA data transfer times and parallel scheduling overheads for increased accuracy.
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Résumé

Les applications de vision par ordinateur embarquées demandent une forte capacité de
calcul et poussent le développement des systèmes multi- et many-cores spécifiques à l’application.
Les choix au départ de la conception du système peuvent impacter sa performance parallèle finale
– parmi lesquelles la granularité de la parallélisation, le nombre de processeurs et l’équilibre
entre calculs et l’acheminement des données. L’impact de ces choix est difficile à estimer dans les
phases initiales de conception et il y a peu d’outils et méthodes pour aider les concepteurs dans
cette tâche. Les contributions de cette thèse consistent en deux méthodes et les outils associés
qui visent à faciliter la sélection des paramètres architecturaux d’un multiprocesseur embarqué
et les stratégies de parallélisation des applications de vision embarquée. La première est une
méthode d’exploration de l’espace de conception qui repose sur Parana, un outil fournissant une
estimation rapide et précise de la performance parallèle. Parana permet l’évaluation de différents
scénarios de parallélisation et peut déterminer la limite maximale de performance atteignable.
La seconde contribution est une méthode pour l’optimisation du dimensionnement des tuiles
d’images 2D utilisant la programmation par contraintes dans l’outil Tilana. La méthode proposée
intègre pour plus de précision des facteurs non-linéaires comme les temps des transferts DMA
et les surcoûts de l’ordonnancement parallèle.
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Résumé Étendu

Abstract

Le développement d’une plateforme multiprocesseur pour une application spécifique, néces-
site de répondre à deux questions essentielles : (i) comment tailler la plateforme multiprocesseur
pour atteindre les pré-requis de l’application avec la surface minimum et la plus faible con-
sommation ; et (ii) comment paralléliser l’application cible de façon à maximiser l’utilisation
de la plateforme. Dans ce travail, nous présentons une méthodologie originale d’estimation
de la performance parallèle et d’optimisation des transferts de données, à partir des traces
d’une exécution de l’application séquentielle et d’un modèle d’optimisation par contraintes
des transferts de données. L’estimation à la fois de la performance parallèle et du temps des
transferts de données doit être rapide car elle est au coeur du processus d’exploration de l’espace
de conception de la plateforme multiprocesseur. Cette méthodologie est implémentée dans les
outils Parana, un simulateur abstrait très rapide, basé sur des traces, et Tilana, un outil pour
optimisation des transferts de données selon une modélisation analytique dans le cadre d’une
optimisation par contraintes. Les outils ciblent des applications OpenMP sur la plateforme
STxP70 Application-Specific Multiprocessor (ASMP) de STMicroelectronics. Les résultats pour
un benchmark du NAS Parallel Benchmark et une application de vision embarquée démontrent
une marge d’erreur de l’estimation de performance inférieur à 10% en comparaison aux simula-
teur ISS cycle-approximate de référence et à un prototype FGPA, avec un effort de modélisation
réduit. Tilana permet de trouver des paramètres de transferts de données qui optimisent le
temps de transferts de tuiles d’images pour une application donnée.
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R.1 Introduction

Grâce à leur flexibilité et leur puissance de calcul potentielle, les architectures multicoeurs
massivement parallèles devraient être les supports de choix pour de nombreuses applications
embarquées. Cependant, concevoir de tels systèmes efficaces nécessite de lever un certain
nombres d’obstacles [29]. La difficulté de leur programmation efficace, qui maximise la puissance
de calcul effective pour bien utiliser les ressources matérielles, réside non seulement dans la
gestion des communications et synchronisations [83], mais aussi dans la prise en compte des
ressources matérielles de mémorisation et de calcul de chaque noeud [183]. Dans le domaine de
la vision embarquée sur plateforme multiprocesseur, les grandes quantités de données en jeu, la
diversité des traitements et les dépendances des calculs aux données poussent ces systèmes à
leurs limites.

Dans un système hétérogène multicoeurs, il est envisagé d’intégrer des clusters multicoeurs
adaptés aux besoins spécifiques des utilisateurs. Chaqu’un de ces accélérateur multicoeurs est
taillé sur mesure pour la gamme d’applications ciblées. Définir les paramètres d’architecture tels
que le nombre de coeurs, la topologie des communications et les ressources de mémorisation,
nécessite de prédire les performances de l’accélérateur multicoeur au plus tôt lors du processus
de conception, et ceci pour les applications typiques envisagées.

La difficulté à estimer les performances d’une architecture multicoeurs exécutant un pro-
gramme complexe, dont le déroulement dépend des données, provient de phénomènes d’attentes
difficiles à prédire car ils sont d’une part liés aux communications et synchronisations des
différentes tâches et d’autre part sont aussi dus au comportement de la plateforme matérielle.
Ces surcoûts doivent être pris en compte lors de l’estimation de performance de l’application
car, sinon, ils peuvent conduire à une sous-évaluation des performances réelles d’un circuit.
Par exemple, un simulateur qui ne permet pas de mesurer assez finement certains phénomènes
temporels peut conduire à de graves erreurs d’appréciation des performances [183]. Un outil
d’estimation de performance doit aussi être suffisamment précis afin de préserver l’ordre des
solutions de l’espace de conception. C’est-à-dire que si deux paramétrages de l’architecture et de
la parallélisation conduisent à deux estimations de performance, alors l’ordre des performances
réelles sur le système doit être le même que celui des estimations.

Pour les applications à parallélisme de données qui nécessitent de transférer d’importantes
quantités de données, le logiciel doit être conçu afin de compenser les surcoûts en choisissant des
stratégies de parallélisation adaptées. Parmi les options offertes, les politiques d’ordonnancement,
les mécanismes de transfert de données ou encore la granularité du parallélisme, liée à la
granularité des communications, ont un impact qu’il est nécessaire d’évaluer au plus tôt du
processus de conception. Il est nécessaire de pouvoir les évaluer rapidement, avant même que le
circuit ne soit disponible.

Les techniques d’estimation de performance disponible offrent différents compromis entre
la précision et la vitesse. A l’opposé de la technique la plus lente, la simulation précise au niveau
transfert de registre (RTL), les simulations basées sur des instruction-set simulators (ISS) ou bien
sur de la dynamic binary translation(DBT)(§R.7.2), sont les plus rapides mais en contrepartie
d’une perte de précision qui peut être dommageable. En tant que solution intermédiaire, le
prototypage permet un compromis vitesse/qualité intéressant mais n’est pas toujours possible
et nécessite malgré tout une conception RTL poussée. Toutes ces stratégies nécessitent une
plateforme de simulation du parallélisme ainsi qu’une version parallèle de l’application qui
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R.1 Introduction

l’exploite. Selon le modèle de calcul, il peut aussi être nécessaire de disposer d’un système
d’exploitation et d’un environnement d’exécution, qui doivent être simulés aussi. Dans le
domaine des serveurs de calcul, il existe également des outils d’estimation de performance
qui permettent au concepteur d’obtenir des mesures impossibles à obtenir sur le processeur
lui-même. Ces outils, comme Kismet [105], Parallel Prophet [119], et Intel Advisor XE [97], ne
sont pas adaptés à l’exploration de l’espace de conception d’accélérateurs multicoeurs.

Dans cette thèse, je propose une méthodologie d’exploration précoce de l’espace de con-
ception basée sur des outils rapides d’estimation de performance à partir d’un code séquentiel
(§ R.2). L’objectif est de permettre au concepteur :

• D’estimer le potentiel d’accélération de l’application

• De comparer différentes stratégies de parallélisation

• D’identifier l’origine des surcoûts et des points bloquants

• De paramétrer la plateforme multiprocesseur

La méthodologie est dite « précoce » dans le sens où elle concerne l’estimation du potentiel
de parallélisation et non pas la parallélisation proprement dite. Aussi, le premier point est
déterminant car il permet au concepteur de rapidement savoir s’il est intéressant de se consacrer
à la conception d’une application parallèle plus poussée ou s’il y a des point bloquants à résoudre
avant.

Cette méthodologie, implantée dans les outils Parana et Tilana, se décompose en trois
grandes phases :

• Caractériser numériquement une plateforme réelle (ou simulée) et son modèle de program-
mation en mesurant les surcoûts et différentes caractéristiques ;

• Acquérir des mesures sur une application séquentielle, à l’aide des trace issues d’un
simulateur (ISS ou cycle-true) ;

• Estimer les performances de l’application par simulation abstraite, à partir des caractéris-
tiques et mesures précédentes ;

• Optimiser les transferts de données selon un modèle d’optimisation par contraintes.

L’étape de simulation abstraite est très rapide car le code de l’application n’est pas exécuté à
proprement parler, comme détaille la section R.3. La simulation abstraite est en cela assez proche
d’un calcul mathématique des performances, mais avec une vitesse de simulation supérieure
celle d’un simulateur de processeur qui doit interpréter ou exécuter chaque instruction de
l’application. À la seconde étape, la mesure de performance du code séquentielle à partir d’un
simulateur au cycle près (cycle-true) permet d’obtenir des mesures de temps bien plus précises
que celles d’un simulateur DBT, et ce quel que soit l’implémentation de l’instruction-set archi-
tecture(ISA) – pipeline, instruction-level parallelism(ILP) – ou même en présence d’instructions
spécifiques.

Du point de vue du concepteur qui utilise ces outils, l’exploration d’architecture consiste
donc soit à caractériser la plateforme en intégrant des paramètres d’architecture au modèle
numérique (par exemple le nombre de processeurs), soit à faire une caractérisation pour chaque
plateforme étudiée, puis à passer à l’estimation de performance par simulation abstraite, ce qui
est plus rapide que de simuler l’application sur chaque plateforme. Cette méthodologie devrait
permettre d’obtenir la précision d’un simulateur au cycle-près avec une vitesse d’un ordre de
grandeur supérieure aux simulateurs d’instruction.
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Figure R.1: Aperçu des quatre pas du flot proposé pour l’estimation de la performance parallèle d’une
application et l’exploration de l’espace de conception avec Parana.

Cette méthodologie et les outils Parana et Tilana ont été validés sur la plateforme Application
Specific MultiProcessor (ASMP) de STMicroelectronics. La plateforme est composée de grappes
de processeurs STxP70 et le modèle de programmation choisi est OpenMP. La méthodologie
et l’outil pourraient être généralisés pour d’autres plateformes. L’outil Parana a été validé en
comparant les performances estimées aussi bien aux mesures issues d’un simulateur qu’à un
prototype FPGA de la plateforme. Comme détaillé en section R.6, les résultats montrent que
Parana donne une très grande précision de l’estimation, avec une erreur de 10% par rapport à la
plateforme réelle, et ceci avec une vitesse de simulation supérieure à un simulateur de type ISS
d’un ordre de grandeur.

R.2 Flot de conception proposé

La méthode de simulation rapide proposée repose sur un simulateur abstrait calculant
les performances de l’application sur la plateforme parallèle à partir de traces de l’application
séquentielle et de mesures de caractérisation des surcoûts induits par la plateforme et son
environnement de parallélisation. Ainsi, il devient très rapide d’explorer les performances
de configurations logicielles et matérielles à partir de traces et caractéristiques préparées par
pré-traitement. Dans ces travaux, la cible consiste à une plateforme multicoeur intégrée STxP70
ASMP (§R.5.1) gérée par l’environnement d’exécution OpenMP. La figure R.1 décrit les quatre
étapes de cette méthode, détaillées par la suite :

Etape 1 : Caractérisation de la plateforme. La première étape consiste à évaluer numérique-
ment les différentes caractéristiques de la plateforme multicoeur et de son environnement qui
ont le plus d’impact sur les surcoût de performance. La base de données des caractéristiques
contient des informations statistiques mesurées sur des applications de référence instrumen-
tées. Les informations concernent aussi bien les différents temps de calcul en surplus induits
par l’environnement OpenMP et les différentes directives afférentes que des caractéristiques
spécifiques à la plateforme matérielle telles que les débits et latences d’accès aux différents
niveaux de mémoire et de cache. Les mesures sont réalisées à partir d’une version étendue du
micro-benchmark EPCC OpenMP [43]. Les informations temporelles peuvent être extraites à
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R.2 Flot de conception proposé

Listing R.1: Exemple d’un code source instrumenté pour parallélisation avec l’outil Parana (c.f.
directives dans Listing R.2).

1 void vAdd(int *r, int *a, int *b, int n) {
2 int i;
3 //PA_START_TASK(<var>, <label>)
4 PA_START_TASK(_parallel0_, "parallel0");
5 for(i=0; i < n; i++) {
6 PA_START_TASK(_for0_, "for0");
7 r[i] = a[i] + b[i];
8 PA_END_TASK(_for0_);
9 }

10 //PA_END_TASK(<var>)
11 PA_END_TASK(_parallel0_);
12 }

Listing R.2: Exemple de fichier de propriétés avec des directives de parallélisation pour la fonction
vAdd (c.f. code source dans Listing R.1).

1 vAdd = #define NUM_THREADS 8
2 vAdd = #define CHUNK_SIZE 1
3 vAdd.parallel0 = #pragma omp parallel num_threads(NUM_THREADS)
4 vAdd.for0 = #pragma omp for schedule(static, CHUNK_SIZE)

partir d’un simulateur (de préférence au cycle-près) ou même d’un émulateur matériel. Les
mesures sont traitées par notre outil de caractérisation qui en déduit une base de données
spécifique à chaque version de l’architecture ciblée. Cette base de données servira pour générer
rapidement des estimations de performance.

Etape 2 : Caractérisation de l’application. À partir du profilage d’un code séquentiel,
cette seconde étape extrait les informations spécifiques à l’application. L’objectif est de déduire
de l’exécution séquentielle un graphe de tâches à paralléliser par la suite. L’extraction du
parallélisme est faite de façon soit implicite soit explicitée par l’utilisateur. Dans la version
implicite, l’hypothèse est que, dans l’environnement OpenMP, les tâches sont liées aux appels de
fonctions dans les boucles et à la présence de commande OpenMP de parallélisation (pragmas).
L’utilisateur peut également indiquer des zones parallèles explicites en insérant des commandes
dans le code source à l’aide de macros spécifiques. Le profilage mesure également des statistiques
des accès mémoires dans chacune des tâches identifiées afin d’estimer les temps d’accès et
collisions aux mémoires partagées. L’utilisateur peut également ajouter divers informations
sémantiques pour affiner son analyse. Listing R.1 montre un exemple d’instrumentation d’une
fonction de somme vectorielle vAdd.

Etape 3 : Spécification des scénarios de parallélisation. L’utilisateur peut définir un
ensemble de scénarios de parallélisation qui correspondent chacun à une configuration de
l’espace de conception. Un scénario de parallélisation comporte un groupe de paramètres
spécifiques à la plateforme matérielle (nombre de processeurs, mémoires, etc.) et un second
spécifique à l’application. Ce dernier groupe est en fait le jeu de paramètres qui décrit la stratégie
de parallélisation choisie (ordonnancement statique/dynamique, nombre de tâches, etc.) et
correspond aux directives OpenMP associées à chaque zone de parallélisme identifiée à l’étape
2. Listing R.2 montre le fichier de propriétés pour un possible scénario de parallélisation de la
fonction vAdd dans Listing R.1.

Etape 4 : Estimation de performance de la parallélisation. Cette dernière étape consiste
à estimer les temps de calcul de l’application parallélisée selon les directives indiquées, et ceci à
partir de la base de données de caractéristiques et des mesures obtenues par le profilage. Cette
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Résumé Étendu

étape produit une analyse détaillée de l’origine des surcoûts induits par l’environnement de
parallélisation, l’équilibrage de charge, les zones séquentielles, les accès mémoires et autres
phénomènes difficiles à estimer analytiquement. Cette étape est extrêmement rapide car le code
de l’application n’est pas exécuté et la plateforme matérielle n’est pas simulée dans le détail, ceci
ayant été fait une fois pour toutes à l’étape 1.

La boucle de conception peut se focaliser sur les étapes 3 et 4, et, en quelques secondes,
l’utilisateur peut analyser des dizaines de configuration et éliminer les plus aberrantes. Les per-
formances des configurations retenues peuvent alors être validées par une simulation classique.
L’avantage de la méthode est qu’elle permet d’éviter d’implanter chaque configuration matérielle
et chaque version parallèle du logiciel en partant d’un code séquentiel et de passer au crible
rapidement de nombreuses stratégies de parallélisation.

R.2.1 Caractérisation de la plateforme

R.2.2 Instrumentation de l’application

Notre infra-structure d’acquisition de traces d’instruction est capable de générer une trace
de tâches automatiquement aux appels de fonctions. Accessoirement, nous fournissons une
librairie d’instrumentation qui permet à l’utilisateur de agrémenter ces traces avec des tâches
labellisées. Ces dernières sont définies de façon explicite par moyen d’un ensemble de macros
d’instrumentation qui enserrent la section de code appartenant à chaque tâche. Les tâches
explicites créent un niveau hiérarchique supplémentaire dans l’arbre de tâches, ce qui permet
de regrouper toutes les sous-tâches à l’intérieur de sa section de code. Listing R.1 montre un
exemple d’une fonction de somme vectorielle vAdd instrumenté avec deux tâches labellisées :
parallel0 et for0.

R.2.3 Spécification des scénarios de parallélisation

Lors de la définition d’un scénario de parallélisation, des directives OpenMP peuvent être
attachées aux tâches tracés – qu’elles relèvent des appels de fonctions ou de l’instrumentation
explicite –, leur ajoutant une sémantique de parallélisme, ordonnancement et/ou synchronisa-
tion. Nous utilisons un fichier de propriétés pour spécifier les directives de parallélisation et les
relier aux tâches. Un fichier de propriétés consiste à une série de combinaisons clés-valeurs, où
les clés sont les noms des tâches (noms des fonctions ou labels utilisateurs), et les valeurs sont
les directives OpenMP. Un deuxième fichier de propriétés définit les valeurs des paramètres de la
plateforme multiprocesseur.

Listing R.1 montre les directives d’une possible parallélisation pour la fonction vAdd
(c.f. § R.2.2) qui ouvre une région parallèle avec 8 threads contenant une boucle for avec
ordonnancement statique et un bloc de taille 1. Des multiples fichiers de propriétés peuvent être
crées pour décrire les différents scénarios de parallélisation à explorer.

R.3 Parana

Parana utilise les données de la caractérisation de la plateforme multiprocesseur, les traces
de l’application et le fichier de spécification des scénarios de parallélisation, pour estimer et
analyser la performance parallèle de l’application. Initialement, il construit un graphe de tâches
à partir des traces de l’application. Puis, pour chaque scénario de parallélisation, un nouveau
graphe est obtenu en attachant aux tâches les directives de parallélisation. Finalement, un
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R.3 Parana

scénario de parallélisation produit un calcul de l’ordonnancement parallèle correspondant. Cet
ordonnancement prend en compte les surcoûts liés à l’environnement OpenMP et au modèle
mémoire de la plateforme. Finalement, un rapport de parallélisation détaillé est généré.

R.3.1 Construction du graphe de tâches

La représentation interne des traces de tâche consiste en un graphe de tâches hiérarchique
– un graphe orienté acyclique (DAG) où les sommets sont des tâches et les arcs représentent
des relations père-fils. Du fait du profiling à partir du code séquentiel, il y a un recouvrement
temporel entre les tâches pères et les tâches fils, ce qui nécessite un pré-traitement sur le graphe
pour procéder à l’ordonnancement car nous n’avons besoin que des tâches feuilles. Cette étape
d’insertion de tâches feuilles aux intervalles où il n’y a pas de recouvrement père-fils et de
suppression des parties recouvrantes est dénommée segmentation et produit un graphe de tâche
hiérarchique.

R.3.2 Ordonnancement des tâches

Un ordonnancement est à son tour représenté comme un DAG où les sommets sont des tâches
dites ordonnançables et les arcs représentent des relations de précédence entre de telles tâches. Les
tâches ordonnançables sont annotées d’informations supplémentaires liées à l’ordonnancement,
telles que la date initiale dans l’ordonnancement et l’identifiant du processeur cible.

Initialement, Parana construit un ordonnancement sur un seul coeur qui sera la référence
pour le calcul de l’accélération et de l’efficacité parallèle. La génération de l’ordonnancement se
fait en parcourant l’arbre de tâches hiérarchique en profondeur et, à chaque tâche feuille trouvée,
une tâche ordonnançable est ajoutée dans le DAG de l’ordonnancement.

Ensuite, l’ordonnancement parallèle est effectué pour chaque scénario de parallélisation
défini par l’utilisateur. Pour réaliser l’ordonnancement parallèle, le DAG hiérarchique est par-
couru et lorsqu’une tâche possédant une directive OpenMP est trouvée, l’ordonnanceur émule
l’ordonnancement qui serait effectué par l’environnement d’exécution OpenMP. C’est à ce mo-
ment que le simulateur introduit des tâches supplémentaires pour modéliser les surcoûts liés
au lancement, à la synchronisation et au rassemblement des sous-tâches, entre autres, dont les
temps ont été estimés selon la caractérisation de la plateforme.

R.3.3 Analyse de la parallélisation

Un rapport détaillé est généré à la suite de chaque ordonnancement, incluant notamment
: le temps total d’exécution estimé de l’application ; l’accélération vis-à-vis de la référence
séquentielle ; l’efficacité de la parallélisation. Ce rapport note également les statistiques pour les
portions séquentielles et parallèles de l’ordonnancement. Toutes les mesures sont décomposées
en temps de calcul, temps d’inactivité et surcoûts. Ces informations sont utilisées pour créer
des cycle-stacks, un type de graphe qui permet de visualiser la décomposition des facteurs qui
contribuent au temps d’exécution dans un ordonnancement donné.

En outre, Parana est capable de générer des rapports pour chaque région parallèle de
l’application. Dans ce cas, il fournit aussi la localisation de la région parallèle dans l’arbre
d’appels et, pour chaque tâche, le nombre de cycles moyen par exécution. Cela permet au
concepteur de retrouver sur un seul rapport les statistiques nécessaires pour analyser les gains
et les goulot d’étranglement potentiels.
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Résumé Étendu

R.4 Tilana

Les applications de traitement d’image embarquées utilisent souvent des buffers d’entrée
et sortie placés dans une mémoire externe. Ces buffers de données sont utilisés soit comme
un moyen d’échanger des données entre les différents sous-systèmes, ou simplement car la
quantité de données est trop importante pour tenir dans la mémoire locale réduite d’un système
embarqué. Etant donné que le temps d’accès à la mémoire externe est beaucoup supérieur à celui
de la mémoire interne, les données doivent d’abord être transférées à la mémoire locale avant
d’être traitées par les unités de calcul. Sur les systèmes avec mémoire gérée explicitement, sans
cache de données, il est la responsabilité du programmeur de gérer les transferts de données
entre les espaces mémoires interne et externe. Une solution courante consiste à utiliser le tuilage,
qui consiste à subdiviser les données en plus petites zones, les tuiles, qui sont assez petites pour
rentrer dans la mémoire interne et qui peuvent être traitées de façon indépendante.

Pour mieux utiliser les ressources disponibles, le tuilage est implémenté comme un pipeline
logiciel de trois étapes qui consistent à : (i) lire les données d’entrée depuis la mémoire externe
et les écrire dans la mémoire interne ; (ii) processer les données localement ; et (iii) écrire
les données de sortie sur la mémoire externe. La Figure 6.1 illustre ce pipeline de calcul de
trois étapes. Les avantages du tuilage incluent la réduction de l’empreinte de données dans
la mémoire locale et la réduction de la latence de l’application grâce au chevauchement entre
transferts de données et calcul.

La question est comment sélectionner les dimensions optimales de tuilage ? La taille
et la forme des tuiles ont d’importante conséquences sur le temps et la quantité de données
transferts. Ces divers facteurs et leur impact sont difficiles à estimer tôt dans le flot de conception,
empêchant les programmeurs de trouver une solution optimale.

Pour relâcher la contrainte sur les programmeurs, certains compilateurs intègrent le support
au tuilage automatique, via des techniques récentes de compilation polyédrique. Des exemples
de tels compilateurs sont PLuTO [40] et PolyMage [153], les deux par Bondhugula et al., bien
comme le compilateur commercial R-Stream [184, 14] par Reservoir Labs. Ces compilateurs
performent des transformations affines de boucle qui visent à augmenter la localité des données
et la bande passante mémoire sur les architectures avec cache de données. Darte et al. ont prouvé
en [58] que les techniques de compilation polyédriques peuvent produire ordonnancements
asymptotiquement optimales pour des cas avec dépendances uniformes. Leur optimalité n’est
donc pas garantie pour ordonnancements à faible nombre d’itérations (ou tuiles). Même si un
nombre élevé d’itérations est une contrainte plausible pour un système de haute performance,
cela n’est pas le cas pour des systèmes embarqués de temps-réel. Par ailleurs, les techniques
de compilation polyédriques ne peuvent pas intégrer des non-linéarités dans le model, qui
comme démontré à la Section 4.7.5, sont nécessaires pour obtenir une bonne précision. D’autres
méthodes se basent sur le tuilage pour obtenir un ordonnancement à gros grain sur les systèmes
parallèles [111, 152]. Aucune de ces méthodes n’est capable de modéliser des transferts de
données explicites avec des caractéristiques non-linéaires.

Dans un travail récent, Saïdi et al. [177] proposent un modèle analytique pour l’optimisation
d’algorithmes de traitement de tableaux sur des systèmes avec de la mémoire gérée explicitement
et l’expriment en termes d’un modèle pour optimisation par contraintes. Néanmoins, leur
travaux repose sur un modèle de régression linéaire des temps de transfert de données du
DMA qui, comme démontré en section 4.7.5, peuvent amener à des résultats trop imprécis sur
certaines architectures. Par ailleurs, cette méthode assume que les dimensions de l’image sont
des multiples entiers de la dimension des tuiles, une contrainte que je juge trop contraignante et
que si surmontée pourrait amener à des solutions plus optimales.

Le chapitre 6 présente donc une méthode pour sélectionner les paramètres de tuilage qui
minimisent le temps d’exécution d’un noyau d’application parallèle sur un multiprocesseur
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R.5 Configuration des expériences
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Figure R.2: Aperçu du concept de pipeline de tuilage d’image proposé par Ievgen [91]. Cela consiste
à décomposer l’image en une série de tuiles d’image qui sont : (i) lues depuis la mémoire externe,
(ii) traitées localement, et les résultats (iii) réécrits sur la mémoire externe pour recomposer l’image de
sortie.

embarqué. Premièrement, un nouveau modèle analytique est présenté. Ce modèle est alors
converti en un problème d’optimisation par contraintes implémenté dans l’outil Tilana utilisant
le framework d’optimisation par contraintes Choco3 [200].

Les contributions principales du chapitre 6 sont :

1. proposer un nouveau modèle analytique pour estimer le temps d’exécution d’un noyau
d’application parallèle qui implémente le tuilage, pour toutes les dimensions valides de
tuiles ;

2. intégrer un modèle non-linéaire de la performance du DMA, décrit en section 4.7.5, pour
un meilleure précision sur les estimations du temps de transferts du DMA ;

3. dériver et intégrer un modèle des surcoûts d’ordonnancement parallèle et ses dépendances
sur une plateforme multiprocesseur ;

4. définir et implémenter un modèle d’optimisation par contraintes basé sur des contraintes
non-linéaires qui permettent déterminer les dimensions optimales qui minimisent le temps
d’exécution du noyau d’application parallèle.

R.5 Configuration des expériences

R.5.1 Architecture de la plateforme

Notre plateforme cible est le STxP70 Application-Specific Multiprocessor (ASMP) de STMi-
croelectronics. Cette plateforme est très similaire à un cluster STHORM [149]. Le STxP70 ASMP
possède une architecture SMP configurable comptant jusqu’à 16 coeurs STxP70 – des CPUs RISC
32-bit dual-issue. La Figure 5.8 illustre son gabarit architectural. L’ASMP possède une mémoire
L1 partagée, organisée en bancs, et accessible en un cycle via l’« interconnect », ce qui permet
l’accès simultané à plusieurs bancs mémoire. En cas de conflit d’accès sur un banc mémoire, les
processeurs sont bloqués et l’accès au banc en question est géré de façon équitable par un arbitre
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CPUD$0 CPUD$1 CPUD... CPUD$N

MémoireDPartagéeD(L1)

CoeursDSTxP70

BancD$0 BancD$1 BancD$M

DMA

BancD...

Interconnection

I$ I$ I$ I$

Figure R.3: Gabarit de l’architecture du STxP70 ASMP.

round-robin. En outre, chaque processeur compte 16KB de cache programme, mais pas de cache
de données. Pour les expériences, une configuration avec 512KB de mémoire partagée, organisée
en 32 bancs mémoire est utilisée.

R.5.2 Outils d’exécution

Simulateur Gepop. Gepop est un simulateur cycle-approximate pour la plateforme STxP70
ASMP et est notre simulateur de référence pour la caractérisation de la plateforme dans le
flot proposé. Il est basée sur des simulateurs STxP70 monocoeurs ISS et intègre des modèles
des autres composants de la plateforme, tels que le DMA, les mémoires, et l’interconnect. Sa
précision est évalué à moins de 10% de marge d’erreur par rapport à un circuit physique.

Prototype FPGA. Un prototype du STxP70 ASMP sur le FPGA Xilinx VC707 est utilisé pour
comparaison. En raison des contraintes d’occupation, le nombre de coeurs et la mémoire L1 sont
limités à 8 coeurs et 512KB, respectivement. Le temps d’exécution sur FPGA est utilisé pour
valider les temps d’exécution obtenus avec Gepop et Parana.

Parana. L’outil proposé, un simulateur basé sur des traces. Il estime la performance parallèle
de l’application à partir des traces d’une exécution séquentielle de l’application et d’un ensemble
de directives OpenMP pour de différents scénarios de parallélisation. Les traces Gepop sont
utilisées à la fois pour la caractérisation de la plateforme et comme base pour les estimations de
la performance parallèle.

R.5.3 Applications

Integer Sort (IS). J’ai sélectionné le benchmark IS parmi ceux de la suite NAS Parallel
Benchmarks (NPB) [108], car une implémentation OpenMP en C est disponible. Deux adap-
tations furent nécessaires : (i) du fait des limitations des ressources mémoire, une classe de
données plus petite que celle fournie avec le benchmark a été créée, et a été nommée Tiny (T) ;
(ii) le runtime OpenMP pour ASMP ne supporte pas la directive threadprivate, utilisée dans la
fonction qui génère les valeurs aléatoires à trier, et donc cette dernière a été remplacée par la
fonction rand_r.

Détecteur de points caractéristiques FAST. J’ai porté l’algorithme de détection de points
caractéristiques FAST 9-16 sur une cible STxP70 Application-Specific Multiprocessor (ASMP). Cet
algorithme est couramment utilisé dans le domaine de la vision par ordinateur pour sélectionner
les points caractéristiques dans des nombreuses applications de détection et de suivi. La référence
est l’algorithme FAST fourni dans OpenCV version 2.4.6, lequel a été transcrit en C pour le
STxP70 ASMP et parallélisé avec OpenMP. J’ai évalué deux scénarios de parallélisation distincts,
le premier avec un ordonnancement de boucles statique et le deuxième avec un ordonnancement
de boucles dynamique.
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R.6 Résultats

NASA Advanced Supercomputing Division (NAS) Parallel Benchmark (NPB)
Integer Sort (IS) classe ’T’
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FAST — Scénario 1 : Ordonnancement statique
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FAST — Scénario 2 : Ordonnancement dynamique

●●

●

●

●
●

●
●

●

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Processors

S
pe

ed
up

 o
ve

r 
S

eq
ue

nt
ia

l

● Amdahl
FPGA
Gepop
Parana

−40%

−30%

−20%

−10%

0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8
Processors

S
pe

ed
up

 E
rr

or

FPGA
Gepop
Parana

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8
Processors

C
yc

le
 S

ta
ck

Sequential
Parallel Processing
Load Imbalance
Runtime Overheads
Idle Time

Figure R.4: Comparaison du facteur d’accélération obtenu avec Parana, le simulateur cycle-
approximate Gepop (référence pour l’acquisition de traces pour Parana) et un prototype FPGA, pour
le benchmark NPB Integer Sort(IS) et le détecteur de points caractéristiques FAST. Gauche : facteurs
d’accélération pour 1 à 8 coeurs. Centre : erreur relative au facteur d’accélération obtenu avec Gepop.
Droite : Cycle stacks qui montrent la répartition par catégorie des cycles de l’application.

R.6 Résultats

R.6.1 Estimations du facteur d’accélération

Les résultats sur les facteurs d’accélération pour les applications sélectionnées, ainsi que
les erreurs relatives à la plateforme de simulation de référence (Gepop), sont présentés sur la
Figure R.4. L’erreur moyenne de l’estimation du facteur d’accélération de l’outil Parana est de
3.8% avec une erreur maximum de 9.5% pour les scénarios testés.

Avec le noyau de référence « tri d’entier » NPB-IS l’erreur de l’estimation augmente avec
le nombre de threads. C’est principalement dû à une opération de réduction qui dépend du
nombre de threads. Cette opération de réduction n’est pas exécutée dans la version séquentielle
de l’application et, par conséquent, n’est pas comptabilisée dans les traces exploitées par l’outil
Parana.

Pour l’algorithme de détection de coins FAST, la représentation sous forme de graphique
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Résumé Étendu

Outil Type Entrées Design + Config. DSE
Application Instr. Temps Effort Temps d’-

exécution
Productivité Erreur Précision

FPGA Prototype Matériel Parallèle Non Jours Important 60.0s Basse <5% Haute
— Sim. C-Accurate Parallèle Non Heures Important — Basse <5% Haute
Gepop Sim. C-Approximate Parallèle Non Heures Moyenne 24.3s Moyenne <10% Moyenne
Kismet Chemin Critique Séquentiel Non Seconds Bas — Basse >10% Basse
Parallel
Prophet

Modèle Analytique Séquentiel Oui Minutes Moyen — Basse <10% Moyenne

Parana Modèle Analytique Séquentiel Oui Minutes Bas 1.6s Haute <10% Moyenne

Table R.1: Comparaison des méthodes de simulation et outils semblables pour l’estimation de la
performance parallèle. Effort de mise en oeuvre : temps nécessaire pour préparer le code et la plateforme
pour chaque point de l’espace de conception (faible : aucune modification au code original ; moyen :
légères modifications du code ; important : modifications significatives du code source). Productivité :
liée au temps pour configurer et évaluer de multiples points de conception (basse : long ; haute : rapide).
Précision : précision relative à la performance du système physique (basse : >10% d’erreur ; moyenne :
<10% d’erreur ; haute : <5% d’erreur).

cumulé des cycles extrait par l’outil Parana met en évidence que l’équilibrage de charge est la
principale cause de baisse d’efficacité pour un ordonnancement statique alors que pour un or-
donnancement dynamique les pénalités ont plutôt pour origine les surcoûts de l’environnement
d’exécution d’OpenMP. Cette analyse permet aussi de conclure que les irrégularités sur le facteur
d’accélération avec un ordonnancement statique proviennent du déséquilibre de charge entre les
différents threads, dont le nombre varie en fonction du nombre de coeurs. Enfin l’estimation de
l’outil Parana est encore plus précise sur cette application avec une erreur moyenne de 3% dans
les 2 scénarios (ordonnancement statique ou dynamique des tâches).

En conclusion, la précision de Parana est suffisante pour pourvoir observer les effets des
changements de politique de parallélisation et préserve l’ordre des performances.

Les résultats pour les expériences sur l’outil Tilana sont présentés et discutés à la Section 6.6.

R.6.2 Temps d’exécution

Le tableau R.1 liste les moyennes de temps de simulation sur la machine hôte pour chaque
configuration évaluée lors de nos expérimentations avec les plateformes Gepop, le prototype
FPGA et l’outil Parana. Le temps de simulation avec Parana est en moyenne 15.9 fois plus
rapide que le temps de simulation de la plateforme avec le simulateur Gepop, et jusqu’à 20 fois
plus rapide dans certains cas. La plateforme FPGA est encore plus lente à cause du temps de
chargement de l’application et des interactions avec le PC hôte pour les appels système. Dans ce
cas la simulation avec Parana est 36.7 fois plus rapide que la simulation FPGA.

R.7 Travaux connexes

R.7.1 Modélisation de la performance parallèle

La loi d’Amdhal [25] a été l’un des premiers essais de modélisation de la performance des
applications parallèles. De nombreux modèles dérivés ont été proposés, y compris certains
modèles récents introduisant des multiprocesseurs hétérogènes [85]. D’autres outils, comme
Kismet [105], utilisent une analyse hiérarchique du chemin critique pour estimer le facteur
d’accélération potentiel d’une application séquentielle. Ces approches ne demandent que peu
d’effort de développement et fournissent une estimation haute et souvent très optimiste.
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R.7 Travaux connexes

L’outil Intel Advisor XE [97] estime les performances sur une architecture x86 qui repose
sur une instrumentation utilisateur des régions parallèles et des boucles. Il manque à cette
approche la modélisation des bandes passantes ainsi que les pénalités de cache. L’outil Parallel
Prophet [119] repose aussi sur une instrumentation pour construire un graphe de tâches de
l’application et estimer son facteur d’accélération avec différentes politiques d’ordonnancement.
D’autres méthodes se concentrent sur le partitionnement et l’assignement de parties de l’application
sur un système multiprocesseur [20], mais ne couvrent pas le parallélisme de données. Aucun
des outils cités ne s’intéresse à la prédiction de performances pour du parallélisme de données
sur des plateformes multiprocesseur spécifiques embarquées. De plus notre outil supporte la
définition de différents scénarios de parallélisme avec des stratégies différentes et plusieurs
configurations multiprocesseur, ce qui autorise une exploration rapide de l’espace de conception.

R.7.2 Techniques de Simulations Multiprocesseurs

Le tableau R.1 compare l’outil Parana avec d’autres outils de simulations, prototypes et
outils de prédiction de performance. Les prototypes physiques et les simulateurs au cycle-près
(cycle-accurate) sont très précis. Cependant les prototypes prennent du temps à mettre en
oeuvre et ont des ressources limitées, alors que les simulations cycle-accurate sont lentes, ce
qui limite l’exploration de l’espace de conception. La traduction binaire dynamique (DBT)
ou les simulateurs de jeu d’instruction, tel que la plateforme de simulation Gepop, ont une
précision de la mesure de cycle plus faible au profit d’une vitesse de simulation plus rapide. Des
travaux récents sur des simulateurs au niveau code source (qui annotent le code source avec des
informations temporelles et le simulent ensuite avec SystemC [188]) et des simulateurs basés sur
l’échantillonnage [47], présentent une précision plus grande et une vitesse de simulation plus
grande. Cependant, toutes ces approches nécessitent de travailler sur les versions parallèles de
l’application pour chaque point de l’espace de conception. En tant que simulateur analytique,
Parana associe une vitesse de simulation rapide, avec une bonne précision, à la possibilité de mod-
éliser différents scénarios d’ordonnancement OpenMP à partir d’une application séquentielle,
pour explorer l’espace de conception.

R.7.3 Principaux avantages

La méthodologie proposée fourni une estimation précise très tôt dans le flot de conception.
Avant même d’avoir une version parallèle fonctionnelle de l’application. Ceci permet une
exploration rapide de l’espace de conception à la fois pour les scénarios de parallélisation et
pour la configuration du système multiprocesseur.

La méthode est extrapolable à d’autres familles de processeur et permet aussi d’évaluer
l’impact de l’ajoût d’instructions spéciales. En effet, l’estimation de l’ajout d’une extension du
jeu d’instruction du processeur ne nécessite que de produire une nouvelle trace d’exécution de
l’application séquentielle recompilée avec l’utilisation de ces instructions.

Finalement, la production de documents d’analyse sous forme de « cycle-stacks » aide signi-
ficativement l’architecte système à identifier les points bloquants et le potentiel de parallélisation
de l’application.

R.7.4 Limitations connues

La limitation principale de notre méthode est qu’elle ne modélise pas correctement les
applications qui contournent les constructions OpenMP standard pour implanter d’autres types
de distributions parallèles (statiques ou dynamiques). Les contentions mémoire et les transferts
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Résumé Étendu

DMA ne sont pas encore modélisés et seront adressés dans un futur proche. Les applications de
nos expérimentations n’utilisent pas le DMA et ne semblent pas souffrir de dégradations dues
aux contentions mémoires. Les appels aux APIs du DMA peuvent aisément être interceptés avec
notre méthodologie et ordonnancés sur une ressource dédiée dans le modèle d’ordonnancement
de l’outil Parana pour modéliser le DMA. Les contentions mémoires peuvent être estimées en
utilisant des histogrammes du nombre d’accès par banc mémoire pour en dériver un modèle
statistique des surcoûts associés aux contentions.

R.8 Conclusion

Ce travail présente une méthodologie et l’outil Parana pour accélérer l’exploration conjointe
de l’espace de conception des stratégies de parallélisation et de la configuration d’une plateforme
multiprocesseur. L’estimation se fait à partir d’une trace d’exécution de l’application séquentielle
et de directives de parallélisation. Les résultats de la méthodologie proposée ont été comparés
aux mesures réalisées sur trois scénarios d’applications OpenMP, chacun ayant été mesuré sur
une plateforme de simulation de jeu d’instruction (Gepop) et sur un prototype FPGA de la
plateforme STxP70 ASMP. Il a été démontré que la précision de Parana dans l’estimation du
facteur d’accélération parallèle est supérieure à 90% par rapport au simulateur de référence. Une
telle précision montre ainsi son intérêt dans l’identification des facteurs limitant la performance
parallèle via l’analyse détaillée des temps d’exécution. Cette précision est atteinte avec un temps
de simulation 15 fois plus rapide que le simulateur de référence. Ainsi, cette simulation très
rapide et précise peut être intégrée dans une boucle de conception pour parcourir l’espace de
conception.
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Chapter 1

Introduction

Abstract

This introductory chapter establishes the context and highlights the motivations of the work
presented in this thesis. The chapter provides a brief introduction to the embedded computer
vision domain. It discusses the main challenges for efficient parallel implementation of computer
vision algorithms in embedded multiprocessor architectures. A brief overview of existing design
aid tools is provided next. Finally, the problems this thesis addresses are presented, followed by
a description of the contributions and the outline of the dissertation.
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Introduction

1.1 Embedded Computer Vision

The growing utilization of embedded cameras in portable devices led to the miniaturization
and a significant reduction of production costs. These two factors have in turn opened the
possibility to use these cameras in many other application domains. Furthermore, the computing
power of embedded devices keeps increasing thanks to the shift towards more energy efficient
multi- and many-core architectures and to continued advances in related technologies such as
compilers and parallel programming models. As such, more sophisticated vision processing
algorithms can be embedded in these systems. The combination of the sensing capability
provided by the camera, along with the intelligence of the vision algorithms, led to what are
known as smart camera systems. Smart cameras not only image the environment, but are able to
extract information from the captured scenes and possibly make automated decisions based on
this information.

Computer vision is being increasingly used in a number of different application domains.
It is seen as a differentiation factor in a new wave of smart appliances and has the potential
to increase traffic safety. Some of the application domains where embedded vision is gaining
traction are:

Smart Objects and the Internet of Things (IoT). Vision-based gesture recognition has been
incorporated to video game consoles since 2010 [221], with the launch of the first Microsoft
Kinect, and to high-end television sets from Samsung in 2012 [110]. New smart home surveil-
lance cameras, such as the Nest Cam [156] can detect motion in the video and automatically send
remote alerts to the homeowner’s smartphone. Netatmo’s Welcome camera [157, 158] further
integrates face recognition technology for monitoring presence, useful to know when children
arrive from school or be warned of the presence of a stranger in the house.

Intelligent Video Surveillance Systems (IVSS) and Smart Traffic Control. As the number of con-
nected surveillance cameras grows and cameras become “smarter”, new distributed architectures
are emerging with local video processing in the camera heads [173]. Cameras in IVSS [205] can
then detect events directly and notify the central in case of “abnormal” activities. Smart traffic
control [33, 22] systems rely on embedded vision processing to provide information for adaptive
traffic light control in Intelligent Transportation Systems (ITS), as well as to collect statistics about
parking lot occupancy and traffic flow.

Advanced Driver Assistance Systems (ADAS). Several automotive constructors are embedding
ADAS features in their vehicles for increased safety. Toyota introduced passenger facing cameras
for driver attention monitoring in some of its models in 2006 [24]. Since 2010, Volvo S60 and
V60 models integrate camera and radar based collision avoidance features, including pedestrian
collision warning from Mobileye [144]. In October 2015, Tesla Motors has introduced steering
autopilot via a software update to its Model S line [196].

Embedded vision technology is gaining traction and becoming the rule in all of the afore-
mentioned applications. J. Bier president of the Embedded Vision Alliance (EVA) and of BDTI, a
consulting firm on embedded signal processing, enumerates in [39] the reasons why embedded
vision is proliferating:

1. It has the potential to create significant value in several application domains.
2. Consumers will increasingly expect it in new products.
3. It’s now made possible by sufficiently powerful, low-cost and energy-efficient processors.

Computer vision algorithms can indeed be very computationally intensive. But not all vision
processing is alike. First, the computational requirements often vary with the precision required
by the target application and its complexity. Second, different stages of a vision processing
pipeline present distinguishable characteristics. They can in fact be grouped into layers which
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share common features. Classifications proposed by Dipert et al. in [63] and by Chitnis et al.
in [48] identify the following basic levels:

1. Low-Level Processing or Pixel Processing.
2. Intermediate Level Processing or Object Processing.
3. High Level Processing or Object Recognition.
4. Control Logic or Decision Making and Application Control.

Vision algorithms in each of these levels present different computational and data transfer
requirements. It is important thus to consider the characteristics of each level when designing an
application-specific embedded vision system, as different levels might require different processor
architecture trade-offs. As pointed by Chitnis et al. in [48], lower level vision functions typically
present more available parallelism and are more suited to architectures with a high number of
small processing cores, while higher level functions tend to show more control flow dependencies
and perform better on fewer more powerful processors.

Vision algorithms are typically initially developed on PCs with general-purpose CPUs, as
they are easier to program and have broader tool support. When targeting an embedded solution
the algorithms then need to be ported to a suitable embedded architecture. Application-specific
multiprocessors have the advantage of providing a machine architecture that can be easily tuned
and extended to match the application’s requirements, and on which applications can be directly
ported.

1.2 Application-Specific Multiprocessor Systems Design

For many years, the computational performance improvements expected from House’s [109,
155] derivation of Moore’s Law [147] have been achieved through a combination of device,
architecture and compiler advances. In the race to scale single-core processor performance,
architects have crashed into the so-called power wall [29], which hindered Dennard scaling [61]
in recent years. Profiting from transistor count increases, the shift to more energy efficient multi-
and many-core designs aims to continue the proportional scaling of performance within a fixed
power envelope [134]. This trend is also observed on embedded processors for battery powered
mobile devices – where low power consumption is key – and ITRS predicts that the core count
for multiprocessor systems will continue to increase in the near future by 1.4x per year [102].

According to the ITRS [102], applications are the driving force that push the limits of
existing platforms and lead to the development of new devices. Wolf et al. state in [215] that
embedded computer vision is an emerging domain that will continue to drive the development
of new multiprocessor architectures. Embedded vision algorithms require vast amounts of
computational power and possess a high degree of available parallelism that can be exploited to
achieve high performance in multi- and many-core architectures.

When designing an application-specific multiprocessor system and developing the parallel
application the designers needs to make a series of design choices. They must both size the
multiprocessor to ensure enough resources are available to the application, while also selecting
the most appropriate parallelization strategies to ensure the application makes efficient use of
the available resources. As the architecture is customizable, a physical prototype often comes
too late in the flow, when architects have already committed to a particular configuration. As the
design grows more and more complex, it is thus important to provide the designers with tools
that enable them to analyze a target application early in the design flow and quickly evaluate
design configurations and parallelization strategies to select the ones which will render the best
results.

A critical point in order to achieve high parallel efficiency, and thus, high system utilization,
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is the load balancing. Some computer vision applications present very data-dependent behavior
which can negatively impact their performance on parallel devices. Stefanizzi et al. [189]
evaluated the performance of a face detection application written in OpenCL on a General-
Purpose computing on Graphics Processing Units (GPGPU) system. Their experiments showed that
the parallel performance on the GPU was highly impacted by the data-dependent behavior of
the application which caused load imbalance.

Furthermore, although recent many-core parallel architectures such as GPU architectures
have a high number of processing elements, their compute units are typically Single Instruction
Multiple Thread (SIMT). The processing elements in such architectures can only execute one
same instruction per cycle. As threads in data-dependent algorithms take different control flow
paths, branch divergence penalties arise. Many-core architectures such as Kalray’s Multi-Purpose
Processor Array (MPPA) [59] and STMicroelectronics’s STHORM [149] are composed of Multiple
Instruction Multiple Data (MIMD) processor clusters that better cope with data-dependent
algorithms [141].

As discussed by Czechowski et al. in [56], another important point is finding the right
balance between communication and computation. As the core count increases and the memory
bandwidth usage becomes higher, algorithms which are originally compute-bound on single-
core architectures can eventually become memory-bound when ported to multi- and many-core
architectures. Embedded vision algorithms are susceptible to this effect as well, as they process
video streams in real-time and require significant memory bandwidth.

1.3 Parallel Design Aid Tools

Given the number of possibilities, parallelizing and tuning a parallel application to a
particular multiprocessor architecture can be very time-consuming. Recent work on design aid
tools that help in the parallelization process – described in Section 3.4 – focus primarily on
desktop-class machines with a predetermined system configuration.

In order to account for dynamic data-dependent application behavior, the tools need runtime
application profiling data. The ompP [75] tool, a parallel profiling tool and library, can generate
runtime profiling reports of parallel code execution. It is certainly useful in that it helps in
determining the time spent in each parallel section of the application, but it is intrusive and
does not monitor important characteristics such as the memory accesses and data transfers.
Furthermore, profiling tools and simulators require a working parallel version of the application
for each execution run, resulting in an increased design and validation effort by developers.

Existing parallel performance prediction tools such as Intel’s Parallel Advisor [97] focus
on desktop-class machines with known system configurations. Parkour [106] and Kismet [105]
are parallel performance prediction tools based on critical path analysis but, while they require
less user intervention and can provide estimates of the maximum attainable speedup, they are
often overoptimistic and lack the accuracy of mechanistic models. Parallel Prophet [119] is
performance estimation tool based on a mechanistic model that includes cache effects, but do
not include explicit support for embedded multiprocessors or for exploration of application
parallelization scenarios.

1.4 Objectives

The objective of this thesis is to develop new tools and methods to aid in the parallelization
of embedded computer vision applications on application-specific multiprocessor systems. More
particularly, the work in this thesis targets STMicroelectronics multi- and many-core platforms
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STHORM, and its successor STxP70 Application-Specific Multiprocessor (ASMP). As these are
customizable application-specific platforms, the methods and tools proposed need to support
the exploration and selection of both application parallelization options and multiprocessor
platform’s parameters.

Given an initially sequential application, the user should be able to analyze its hot-spots and
test different configurations. The goal is to quickly and accurately evaluate different trade-offs
in terms of an application’s:

1. parallel granularity (image, tile, line or pixel);
2. data-parallel scheduling/workload distribution (static or dynamic);
3. working data placement; and
4. data transfer strategy:

• individual/collaborative;
• tiling.

1.5 Contributions

The selected approach consists in characterizing (i) the multiprocessor platform and (ii)
target applications, and then combining these two information to help the developers choose the
proper system configurations quickly and before committing to a particular implementation.

Characterization relies on the Trace Filter tool for automatic application task trace collection
from simulator instruction traces. A profiler tool generates application call tree profiles from
the collected task traces. An instrumentation library allows the control of the trace acquisition
infra-structure and the explicit definition of tasks in the source code. Platform characterization
is based on the Edinburgh Parallel Computing Center (EPCC) OpenMP microbenchmark suite,
which was extended with new memory and DMA benchmarks. Collected microbenchmark
task traces are processed by a characterization module embedded in the Parana tool, which
can automatically produce a platform characterization database. Based on the platform and
application characterization information, two design aid methods and associated tools were
developed.

The first is a method for fast parallel performance estimation and Design Space Explo-
ration (DSE) from sequential application traces for the STxP70 ASMP using the Parana tool.
Parana is a trace-driven simulator that uses a mechanistic model of the STxP70 ASMP’s OpenMP
runtime to estimate the parallel performance of an application. It relies on platform character-
ization data and application traces to predict the performance of user defined parallelization
scenarios. It produces a detailed report indicating not only the estimated runtime for a range of
multiprocessor configurations, but a break-down of the execution time in cycle stacks.

The second method targets the optimization of 2D image tiling parameters in the STxP70
ASMP using the Tilana tool. First an analytical model is created to estimate the execution
time of an image processing kernel on the STxP70 ASMP. The analytical model is used to
define a constraint optimization problem. A constraint solver is then applied to find the tiling
parameters that minimize the execution time for a given application kernel. The proposed
method integrates non-linear constraints to model DMA data transfers and the OpenMP parallel
runtime parameters for increased accuracy.

The following list summarizes the contributions of this thesis:

1. Extension of the EPCC OpenMP microbenchmarks with DMA and memory microbench-
marks for platform characterization and development of a trace collection framework and
a characterization tool to automatically extract platform and parallel runtime characteriza-
tion parameters from the microbenchmark traces.
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2. A method for fast and accurate parallel performance prediction and early DSE of embedded
multiprocessor architectural parameters and application parallelization strategies from
sequential code;

3. A method for optimal tiling parameter selection that relies on non-linear constraints to
minimize the execution time of an image processing application kernel.

1.6 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2 presents the problems addressed in this thesis. A critical case study consisting of
porting and parallelizing a face detection application on the STHORM many-core platform is
presented. This case study allows to identify the main problems and difficulties in the design
flow from a practical standpoint.

Chapter 3 reviews the background and the state of art in the domains of embedded computer
vision applications, embedded multiprocessor systems and parallel design aid tools.

Chapter 4 presents the application trace collection and processing infra-structure and the
details the characterization of the STxP70 ASMP multiprocessor platform, its OpenMP parallel
runtime, its memory access latencies and its DMA data transfer times.

Chapter 5 presents the method for fast parallel performance estimation and DSE from
sequential code and the associated Parana tool.

Chapter 6 presents the method for computing optimal tile dimensions via constraint pro-
gramming and the associated Tilana tool.

Chapter 7 concludes this thesis and presents possible future research directions.
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Chapter 2

Problem Definition

Abstract

The goal of this thesis is to design methods and tools that facilitate the selection of
application-specific multiprocessor’s architectural parameters and the development of efficient
parallel computer vision applications on such systems. Embedded computer vision applications
demand high system computational power and need flexibility to address different market
segments. They constitute one of the key drivers of embedded application-specific multi- and
many-core architectures, which provide the necessary computational power and flexibility. It is
known, however, that a number of early system design choices can impact the final performance
– among which the parallel granularity, the number of processors and the balance between
computation and communication. The impact of these choices in the final system performance is
not easy to assess early in the design cycle and there is a lack for tools that support designers in
this task. This chapter introduces the central issues addressed in this thesis. A critical case study
highlights the problems found when porting and optimizing an embedded vision application
onto the STHORM many-core platform. These issues are recast as design challenges that support
the need for fast and precise application-level performance estimation tools.
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Problem Definition

2.1 Introduction

This chapter introduces and defines the central problems addressed in this thesis. The goal
of this thesis is that of providing practical tools and methods to help designers to parallelize their
applications on an embedded application-specific multiprocessor system and quickly explore
different implementation trade-offs. The central problems of the thesis are introduced by means
of a practical critical case study, whose objective is to highlight the relevance of identified issues
and discuss how addressing these points could improve existing development flows.

The chapter starts by presenting the critical case study in which a face detection application
is ported and parallelized on the STHORM [149] many core accelerator using the C language
and the OpenCL programming model. A methodology for application performance optimization
is applied to determine the best trade-offs in the parallel design process. The development
tools used are the STHORM Software Development Kit (SDK) and the included STHORM cycle-
approximate Gepop simulation platform. Simulation results are compared against those of a
physical prototype. Based on the experiments, the main limiting factors for application-level
performance optimization are identified and discussed. Such factors are broken down into
three categories: those inherent to the application behavior, those due to the OpenCL parallel
programming model, and those arising from the STHORM environment. This critical case study
is used to identify the central problems with the existing tools and introduce the investigations
and contributions of this thesis.

The remainder of this chapter is structured as follows. Section 2.2 presents the STMicro-
electronics’ multiprocessor architectures targeted in this thesis and provides an overview of the
parallel runtimes they support, as well as of the available development tools. In the sequence,
Section 2.3 details the face detection case study. It starts with a brief description of the face
detection application in Subsection 2.3.1, and then outlines the methodology followed in Subsec-
tion 2.3.2. Subsection 2.3.3 describes the hot-spot analysis and the selection of the parallelization
candidate code sections. The parallel implementation is discussed in Subsection 2.3.4, with the
ensuing results presented in Subsection 2.3.6. Section 2.4 discusses the main issues observed,
while Section 2.5 highlights the design challenges identified in the process. Finally, Section 2.6
summarizes and concludes this chapter.

2.2 STMicroelectronics’s Multiprocessor Architectures

2.2.1 STxP70 Processor

STMicroelectronics’ STxP70 processor is an extensible processor for embedded and real-
time applications. This processor is the base processing element in both STHORM and STxP70
Application-Specific Multiprocessor (ASMP). It has an in-order 32-bit Reduced Instruction Set
Computer (RISC) architecture with seven pipeline stages. It can be configured as either a single-
issue or dual-issue processor, for a theoretical maximum Instructions per Cycle (IPC) of 2. As the
processor has a single data memory port, load/store instructions are always executed on the first
lane.

The STxP70’s Instruction Set Architecture (ISA) has a variable length encoding for compact-
ness and allows manipulation of 32-bit, 16-bit or 8-bit data. Its ISA can be further enriched via
so-called instruction-set extensions. The latter consist of tightly coupled hardware accelerators
that group a set of custom instructions and an independent register file. Extensions are modular
and can be easily shared among projects. Moreover, they can be used to seamlessly add new
capabilities to the STxP70 processor, such as adding hardware floating point support via the
FPx extension, or 256-bit Single Instruction Multiple Data (SIMD) vector operations via the VECx
extension.
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Figure 2.1: STHORM many-core architecture block diagram in a programmable accelerator configura-
tion paired to a dual-core ARM host processor.

2.2.2 STHORM Many-Core Processor

STHORM [149] is a many-core processor designed by STMicroelectronics to handle compute
intensive embedded applications. It is derived from Platform2012 [36], a joint effort between
STMicroelectronics and CEA (Atomic Energy and Alternative Energies Commission), and can be
used either as a stand-alone processor or as an accelerator coupled to a host processor. STMi-
croelectronics discontinued the STHORM platform in 2013, with the STxP70 ASMP platform
becoming its follow-up standard embedded multiprocessing solution.

2.2.2.1 STHORM Architecture

STHORM has a scalable architecture, organized as clusters of processing elements(PEs),
configurable from 1 to 4 clusters with up to 16 processing elements each [149]. Figure 2.1 shows
a high-level block diagram of the STHORM architecture. The cluster’s processing elements are
dual-issue STxP70 processors with a floating point extension. The clusters are interconnected
via a Network On Chip (NoC) and have integrated Digital Voltage and Frequency Scaling (DVFS)
capabilities that can be controlled on a per-cluster granularity. STHORM counts with one
additional STxP70 processor that acts as a chip-level fabric controller (FC) that controls the
communication infra-structure. Additionally, each cluster also counts with one extra STxP70
processor that acts as a dedicated cluster controller (CC) responsible for controlling cluster-level
features such as DVFS.

Internally, each cluster counts with 256KB of shared memory accessible by all processors
in the cluster. In order to reduce the probability of conflict, the memory is organized in 32
banks with address interleaving. The logarithmic interconnect, with a mesh-of-trees (MoT) [171]
topology, provides concurrent single-cycle memory access. In case of conflict – when two or
more processors access a same bank simultaneously –, a single request is serviced per cycle,
while the remaining requests keep pending. Although processors block until their request is
serviced, a round-robin mechanism ensures fair access to the contended resources.

The STHORM architecture has three memory levels: L1, L2 and L3. All memory zones
are directly accessible by each processor via a single global addressing space. The platform
has no data cache, only instruction caches. It consists thus of an explicitly managed memory
system, where data transfers must be explicitly handled by the programmer. A cluster’s local
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shared data memory is refereed to as the L1 memory. The next memory level, the L2 memory,
consists of an intermediate capacity integrated data memory shared by all clusters and accessed
via the NoC. Finally, the L3 memory is an external DDR memory with a larger capacity, but
much higher access latency. Processors can access each memory level via direct memory load
and store operations, albeit with consequent latency penalties, or by explicit use of the DMAs.
Each cluster has a dedicated DMA, shared by all of its processing elements, which can be used
for transferring data between the L1 and L2/L3 memories. An additional centralized DMA is
used for transfers between L2 and L3 memories.

2.2.2.2 STHORM Programming Models

The standard parallel programming model supported by the STHORM architecture is the
OpenCL 1.1 [114] programming model. The OpenCL programming model is described in details
in Section 3.4.4.2. A dedicated STHORM SDK based on the Eclipse Integrated Development
Environment (IDE) included an OpenCL compiler, the STHORM Gepop simulator, a cycle-
approximate simulator of the STHORM platform, as well as analysis tools such as a OpenCL
kernel-level profiler and a timeline visualization plugin. Tentative support for OpenMP at
cluster level has been investigated, but was never included in an official STHORM SDK and was
only made officially available in its successor platform, the STxP70 ASMP (see Section 2.2.3.2).

Although not officially supported in the STHORM SDK, some of the programming models
adopted in the Platform 2012 project, from which STHORM is derived, were still used with
STHORM. Although these programming models were not officially supported, a list of said
programming models is provided for completeness. These programming models, as listed
in [163], are:

1. Standards-based programming models, namely the OpenCL 1.1 [114] programming model.
2. Native programming models, such as:

(a) Parallel Programming Patterns (PPP), a model consisting of a set of parallel program-
ming patterns implemented in a component framework.

(b) Predicated Execution Synchronous Dataflow (PEDF) model, a streaming-oriented
programming model targeted at applications that made use of in-cluster hardware
accelerator engines.

(c) Dynamic Task Dispatching (DTD), a model for fine-grain task scheduling on a single
cluster.

3. Native programming layer (NPL), consisting of a low-level Application Programming Inter-
face (API) for directly accessing platform resources, but which lacked portability across
different variants of the platform.

2.2.3 STxP70 ASMP

The STxP70 ASMP is an embedded multiprocessor with an explicitly managed, shared
memory architecture, and a centralized DMA. By explicitly managed memory, we mean a system
with no data cache and that relies on explicit DMA calls to move data across the memory
hierarchy. The STxP70 ASMP is analogue to a single cluster of the STHORM many-core platform
described in Section 2.2.2.

2.2.3.1 STxP70 ASMP Architecture

The STxP70 ASMP is a configurable SMP architecture with up to 16 STxP70 cores in a
dual-issue configuration. Figure 2.2 depicts the architectural template of the STxP70 ASMP.
It counts with a one cycle access shared L1 data memory, organized in several banks with
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Figure 2.2: Architectural template of the STxP70 ASMP.

interleaved addressing, all of which can be accessed simultaneously. In case of bank access
conflict, processors block until access is granted by a round-robin arbiter that ensures fair access
for all processors. Additionally, each processor has 16KB of program cache (I$), but no data
cache. The physical prototype for the STxP70 ASMP platform is based on an Field Programmable
Gate Array (FPGA) implementation whose configuration is limited to 8 STxP70 cores and 512 KB
of shared data memory, organized into 32 memory banks. Although the effective clock frequency
in the FPGA implementation is of 40 MHz, timing figures used in experiments are computed
from cycle counts and reported considering a clock frequency of 500 MHz for all implementation
platforms. Support for user-defined instruction set extensions is envisaged, although it is not yet
supported by the development tools.

2.2.3.2 STxP70 ASMP Programming Model

The standard parallel programming model supported by STMicroelectronics’s STxP70
ASMP is the OpenMP 2.5 [159] programming model. In the OpenMP programming model, the
application code is annotated with a series of pragmas that are interpreted by a compiler to
produce parallel code. An OpenMP runtime is linked with the application and is responsible
for thread creation, dispatching, parallel scheduling, synchronization and thread termination,
among others. Upon compiling code with OpenMP pragmas, the compiler automatically applies
the necessary transformations and adds calls to the OpenMP runtime. The user can also
explicitly call OpenMP runtime functions in application code. If parallel code generation is
disabled in the compiler options, the OpenMP pragmas in the user code are ignored producing
a sequential executable. This is especially useful for debugging purposes, for evaluating the
actual parallelization benefits over the sequential version of the application, and for ensuring
portability between sequential and parallel systems. A more detailed description of the OpenMP
programming model is provided in Section 3.4.4.1.

2.3 Critical Case Study: Parallelization of a Face Detection Ap-
plication on STHORM

This critical case study’s interest is to evaluate the process of porting and parallelizing
a representative embedded vision application on STMicroelectronics’s STHORM architecture.
Flyvbjerg states in [71] that “a critical case can be defined as having strategic importance in
relation to the general problem” and supports the use of case studies as an important tool for in-
depth analysis of a research problem. This case study is thus used as a tool to first map the issues
arising from the parallelization process and from STHORM’s own development environment
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Figure 2.3: Face detection algorithm’s main steps. The detection cascade’s inner structure is composed
of a series of stages, each with an increasing number of features.

and then cast them in the form of design challenges that represent research opportunities for
the work in this thesis.

The critical case study starts from an existing sequential face detection application and
defines the main steps necessary to derive a parallel implementation. Experiments are done in
order to determine the application’s final performance on the STHORM architecture. Compar-
isons are done between a set of implementation choices to try to select the most efficient one.
The results indicate that existing tools do not allow the acquisition of precise application-level
performance metrics prior to a functional physical prototype implementation. Moreover, the
mismatch observed between simulation and physical prototype results further limit the useful-
ness of the simulation as a means of evaluating different parallelization alternatives early in the
design cycle.

2.3.1 Application Description

This section describes the sequential face detection algorithm used as a starting point for
this study. The algorithm used is based on the approach originally proposed by Viola and Jones
in [210]. In this approach, the detector is structured as a cascaded classifier based on Haar-like
features, and trained offline using AdaBoost [74, 179]. Figure 2.3 depicts the main steps in the
face detection application which will be the detailed next.

The detector is applied to an integral image, an image representation where the value of
each pixel corresponds to the sum of all pixels above it and to its left on the original image.
Figure 2.4(a) shows an integral image containing a region of interest and its four corner points.
The integral image representation allows to compute the sum of the pixel values in the region
of interest d by means of simple arithmetic operations on four points of the integral image, as
follows: d = p3−p2−p1 +p0. Such an integral image can be constructed either using a raster scan
or a wavefront scan, shown in Figure 2.4(b).

The classifier is evaluated at regular intervals using a scanning window technique over an
image pyramid to achieve scale invariance. Figure 2.5 illustrates this multiscale detection process,
where a detector is scanned over a set of decreasing resolution versions of a same input image.
More precisely, unlike the original Viola and Jones approach in [210] which scales the detector,
in this particular implementation multiscale detection is achieved by scaling the image while
keeping detector size constant. This approach is more suited to memory constrained embedded
systems, as it presents a lower local memory footprint. For more details, refer to [182].
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Figure 2.4: Integral image and a region of interest with four corner points in Figure 2.4(a). Represen-
tation of the wavefront scan order for building an integral image in Figure 2.4(b).

Figure 2.5: Multiscale processing via a series of lower resolution images forming an image pyramid.
For faces to be detected, their dimensions need to be similar to the detector size. In order to detect faces
at any distance from the camera, the 20x20 pixel detection window is scanned over all possible image
pyramid locations.

The complete face detection algorithm pipeline consists of the following four main steps:

1. Scaling: produces a lower-resolution image pyramid level from the original input image.

2. Integral Image: computes the integral image of the down-scaled pyramid image.

3. Detection Cascade: runs the face detection cascade on the integral image and reports positive
detection locations.

4. Detection Merging: consists in fusing multiple overlapping detections by averaging the
coordinate values of their corner points.

The first three steps are executed for every image pyramid level, while the final step is
executed once at the end of each frame. Figure 2.5 depicts these four main steps and details the
detection cascade structure.

The classifier cascade is organised as a series of stages with the goal of rejecting non-face
locations as early as possible. Stages have a set of features from which a response is computed
and tested against bounds defined at training time. If the stage response falls within bounds, the
classifier proceeds to evaluate the next stage, otherwise, the detection is aborted and the current
window is rejected.

The first stages execute more often and have very few features. Each new stage is more
selective, checking for finer details with a growing number of features to evaluate. Finally, if all
stages in the classifier cascade are successful, the window is accepted and a positive detection
result is reported at that location. At the final detection merging step, neighboring detections are
fused based on a distance metric and assigned a score. Solutions with a low score are discarded.
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Notice that while a cascaded execution results in a reduced overall execution time, its
behavior is highly data-dependent. The amplitude of the difference in execution time of detection
cascades for different windows presents a real challenge for parallelization of the code. This
is especially true on vector-thread architectures such as GPUs, as discussed by Stefanizzi et al.
in [189].

2.3.2 Methodology

It is known from Amdahl’s law [25] that the speed-up of a parallel application is limited
by the execution time of its sequential portion. As such, the rationale used is to parallelize the
portions or steps of the application which contribute the most to the execution time first, as
these have the highest potential for application-level acceleration.

The initial step is to profile the application to identify its hotspots. The profiled functions are
then ranked in descending order of their cumulative execution time. The top ranked functions
are the initial candidates for parallelization. These functions are refactored into OpenCL kernels
with clear inputs and outputs.

The following step is to define the parallelization strategy. Some key parallel implementation
decisions must be made at this point, as they will impact the parallel performance. Important
points to consider at this stage are the overlap of computation and communication and the load
balance. Some of the key levers for application and system designers are:

• the parallel granularity, e.g.: image frame, line, window, or pixel;
• the workload distribution strategy: static or dynamic workload distribution;
• the working data placement: global, local or private spaces;
• the data transfer strategy: individualistic or collaborative.

Besides the aforementioned points, the STHORM OpenCL simulator and runtime can also
be parameterized with different configurations in terms of the number of physical clusters and
processing elements of the target platform. Furthermore, when launching an OpenCL kernel, its
local and global work-group dimensions also need to be tuned.

This performance optimization flow is iterative, with simulations done to estimate the
impact of different design choices in the execution time. Its goal is to determine the best
architectural parameters and algorithm parallelization strategy in order to meet the functional
and non-functional requirements of the application. The number of design points can be
consequent. Therefore, the simulator needs to be fast enough to allow iterative design space
exploration, and precise enough to allow comparison of different alternatives and to ensure that
the final implementation will meet the application requirements.

2.3.3 Hot-Spot Analysis

The goal of the application hot-spot analysis is to determine the code sections which
contribute the most to the execution time. The first difficulty found for performing this analysis
on STHORM, in the host-accelerator configuration, is that the sequential application executes
on the ARM host processor, but the STHORM SDK does not include any profiling or tracing
support for the host. This host-accelerator configuration, depicted in Figure 2.1, is however the
only configuration supported by the STHORM SDK.

Alternatively, the reference sequential application was profiled on a cycle-approximate
simulator of the STxP70 processor, in the same configuration as that of a STHORM’s Processing
Element (PE). The analysis presented in this section is based on the worst-case QVGA image in
STMicroelectronics’ internal face detection test database, an image with 24 faces, designated
herein simply as the test image.
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Table 2.1: Profiling results for the sequential face detection application on the worst-case image (24
faces) in ST’s face detection test database. The results are obtained on a cycle-approximate STxP70
500 MHz.

Application Phase Cycles Time (ms) % of Total
Detection Cascade 61,879,829 123.8 56.8%
Integral Image 27,159,728 54.3 24.9%
Scaler 14,627,913 29.3 13.4%
Other 5,196,975 10.4 4.8%
Total 108,864,445 217.7 100.0%

Table 2.1 reports the profiling results for the test image, grouped by algorithmic phase and
ranked according to their cumulative execution cycles. Note that, while these figures cannot
be directly compared to the global application-level performance on STHORM, they represent
reference times for the parallel kernels. The three hotspots identified are: the classifier cascade,
the integral image generation, and the scaler. These three phases together account for ∼ 95% of
the execution time, and were thus selected as candidates for parallelization in this critical case
study.

2.3.4 Parallel Implementation on STHORM

2.3.4.1 Partitioning into OpenCL Kernels

Once the parallelization candidates were determined from the hot-spot analysis, they were
refactored into OpenCL kernels. The goal of this methodology step is to refine the functionalities
covered by each kernel, and possibly either fusion them or break them apart. In this case study,
each kernel execution processes a single image pyramid iteration, with multiscale detection
requiring successive executions of the kernels. Figures 2.5 and 2.3 depict the application flow.

Since OpenCL allows no local or private data-persistence between kernel executions, an
important factor to consider is the memory bandwidth required to stream data in and out
of the cluster’s shared memory for each kernel. In order to exploit data locality, the integral
image generation was fused into the classifier kernel, allowing to keep the integral image in the
cluster’s local memory at all times. This results in a factor four external memory bandwidth
reduction, as the integral image data is 32-bit, while the input image data is only 8-bit. This is
thus a trade-off between having to recalculate integral image data for overlapping zones, versus
transferring more data. The important point to note is that this represents a trade-off that would
need to be evaluated by the user in a more in-depth evaluation and the tools should provide the
needed support to evaluate this trade-off. Regarding the remaining functionalities, no sensible
advantage was identified in re-partitioning scaler or detection merging functionalities and thus
they were kept as independent kernels.

2.3.4.2 Scaler Kernel

The scaler kernel implements a bilinear scaler and, as such, produces an output pixel by
interpolating four input pixels. An outer loop processes each line of the output image, whereas
an inner loop processes each pixel of a line. As the computation is well balanced and not data-
dependent, a simple static workload allocation scheme is used in which a set of lines is allocated
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(a) First pass: horizontal accu-
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Figure 2.6: Representation of the scan order in a two-pass approach for building an integral image.

to work-items1. In this scheme, a work-item is assigned a number of consecutive lines to process
based on its global ID and the total number of available global work-items. This scheme also
advantages scalability, since it seamlessly partitions the load across processing elements in all
clusters.

On each outer loop iteration, a processing element will:

1. fetch the input image lines from global memory,
2. compute the output line in the local memory, and
3. write-back the resulting output image line to global memory.

In order to hide the data transfer latency, double buffering is implemented for both input and
output image data transfers. This scheme essentially results in a software pipeline with three
stages – fetch, process and write-back.

2.3.4.3 Classifier Kernel

The classifier kernel encompasses the integral image generation and classifier cascade
execution. Experiments were done with two different data transfer strategies, collaborative and
individualistic, which are detailed in the next section.

Integral image generation. Similarly to the scaler phase, the integral image generation is not
data-dependent and thus well-balanced. Many methods to compute the integral image exist,
but a two-pass approach can reduce the number of operations [120] and is amenable to parallel
implementation [219]. Figure 2.6 depicts the selected two-pass approach where the first pass
consists of an horizontal scan that accumulates the elements in each line, while the second pass
consists in a vertical scan that accumulates the elements in each column. On the parallel version,
a static allocation of lines and columns to processing elements is used for the first and second
pass, respectively, with barriers after each pass to ensure correct synchronization.

Classifier cascade. In this phase the classifier is applied to integral image windows. Figure 2.3
depicts the internal structure of the classifier cascade. Since this computation is very data-
dependent and presents a highly variable execution time for different windows, a dynamic
workload allocation scheme is used where work-items increment an atomic counter to determine
the next window to process. In case of a positive detection result, the work-item adds an entry
with the coordinates of the window to a list residing in the global memory. A global atomic

1Work-item: OpenCL’s terminology for a charge of work submitted to one processing element as part of a work-group
executing on a compute unit. It represents one element in a collection of parallel executions of a kernel invoked on a
device by a command, and is distinguished from other executions within the collection by global and local IDs.
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Figure 2.7: Representation of the stripe and window concepts. A stripe is an full horizontal band of the
image. A window is a smaller region of interest to which the detector is applied. The latter is typically
square and it might be contained inside a stripe.

counter determines the next available position in the list. Scalability is achieved by partitioning
the input image in horizontal image stripes allocated to different work-groups.

2.3.4.4 Data Management

The classifier cascade constant data placement is also critical. The STHORM OpenCL
runtime places cascade data in STHORM’s L2 memory by default. Since it has higher latency
and the cascades are frequently accessed, cascade data is explicitly copied to the local memory
at the start of a work-group execution. This is true for both the collaborative and individualistic
data transfer approaches for the Classifier Kernel.

Figure 2.7 depicts the representation of the image stripe and window concepts. A stripe is a
full horizontal band in the image, while a window delimits a zone to which a detector is applied.
The latter is typically square and might be located inside a stripe.

Collaborative approach. In the collaborative approach, work-groups load entire horizontal
image stripes via a work-group copy call2, with double buffering on input to hide the latency of
loading subsequent stripes. Figure 2.7 depicts the stripe and window concepts. Allocation of
image stripes to work-groups is static. The integral of the entire image stripe is then computed
in parallel by local work-items. A barrier call synchronizes work-items prior to starting the
classifier phase, with dynamic allocation of windows in an image stripe to work-items. A second
barrier call ensures all work-items finished executing the classifier cascade on the current stripe
prior to moving to the next stripe.

Individualistic approach. In the individualistic approach, each work-item fetches and pro-
cesses an image window autonomously. Work-items obtain the index of the next window to
process dynamically and load the window into local memory via a work-item copy call. Once
the transfer is complete, the work-item generates the integral image for the window on a private
buffer. Then the classifier evaluates the window and reports any successful detection. Barriers
are not needed in this case, since work-items are completely autonomous. With the dependency
among work-items removed, load balancing can be improved at the expense of increased data
transfer and computation.

2.3.5 Experimental Setup

The experiments in this case study are designed to compare the performance of the two
parallel implementation strategies detailed previously, both on a simulator and on a physical

2OpenCL’s API call for transferring data at work-group level.
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Table 2.2: Cumulative execution time for the OpenCL kernels of the face detection application on the
STHORM simulator and prototype, in a configuration comprising 4 clusters of 16 processing elements
clocked at 500 MHz. % are relative to the total time.

Simulator Prototype
Data Transfer Strategy Collaborative Individualistic Collaborative Individualistic
Kernel Processing Time 6.9 ms 21.5% 7.8 ms 34.7% 44.9 ms 26.3% 12.4 ms 13.9%
Kernel Prolog & Epilog 13.6 ms 42.2% 14.1 ms 62.4% 47.9 ms 28.0% 32.4 ms 36.1%
Time Spent in Runtime 11.7 ms 36.3% 0.7 ms 2.9% 78.0 ms 45.6% 44.8 ms 50.0%
– Asynchronous Copies 0.3 ms 0.9% 0.3 ms 1.2% 0.0 ms 0.0% 1.6 ms 1.8%
– Waiting for Events 0.4 ms 1.1% 0.3 ms 1.2% 30.2 ms 17.7% 43.2 ms 48.2%
– Waiting on Barriers 11.1 ms 34.3% 0.1 ms 0.5% 48.3 ms 28.3% 0.0 ms 0.0%
Total Time in Kernels 32.2 ms 100.0% 22.7 ms 100.0% 170.9 ms 100.0% 89.7 ms 100.0%

prototype. The goal is to identify the main problems found when porting and, parallelizing an
application onto the STHORM platform from practical experiments.

Experiments take the form of simulation runs with the Gepop simulator in the STHORM
SDK version 2013.2. Gepop is an STMicroelectronics’ proprietary modular cycle-approximate
simulator engine. The simulator models an heterogeneous platform with an ARM processor as
OpenCL host and the STHORM many-core accelerator as an OpenCL device. The Posix-XP70
configuration of the simulator is used, which is functional for the host, and cycle-approximate
for the device. No cycle-approximate simulator for the host is available in the SDK.

A STHORM prototype board is used for comparison. It counts with an ARM host and a
STHORM device fabricated in STMicroelectronics’s 28 nm process. The L3 memory is connected
via a bridge with a bandwidth of 400 MB/s, while the L2 and L1 memories are integrated into
STHORM. In both cases, STHORM is setup in a configuration with 4 clusters of 16 processing
elements running at 500 MHz.

2.3.6 Results

2.3.6.1 Performance Measurements

The performance measurements reported in this section list the cumulative execution
time for the OpenCL kernels of the face detection application on the STHORM simulator and
prototype. Table 2.2 provides the list of the performance measurements for the worst-case
QVGA image (24 faces) in STMicroelectronics’s test database, for both the collaborative and
individualistic approaches. The results in the leftmost pair of columns are obtained from
simulator runs, while the results in the rightmost pair of columns are obtained from runs on
the prototype board. The kernel processing time reflects effective processor computation time
and local memory accesses, kernel prologue and epilogue accounts for overheads in launching and
terminating kernels, while the time spent in runtime encompasses the asynchronous data transfer
time, as well as the time spent waiting for events and on synchronization barriers.

These results show that the collaborative version is negatively impacted by the synchroniza-
tion barriers, which take roughly a third of the total time in kernels. The individualistic version
provides better overall performance at both simulator and board, mainly due to the reduced
synchronization overhead. The highest source of inefficiency according to the simulator results
is the kernel prologue and epilogue.

The simulator results indicate that the collaborative approach has smaller kernel processing
time (6.9 ms) than the individualistic approach (7.8 ms). However, the prototype results show an
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inversion, with the collaborative approach presenting a higher processing time (44.9 ms) than
the individualistic approach (12.4 ms). Furthermore, while the time spent waiting for events is
close to 1% on the simulator, it can amount to nearly half of the total kernel time on the prototype
board. Thus, although the STHORM simulator is said to be cycle-approximate, a large mismatch
between the simulator and the prototype board results was observed. The inversion in the kernel
processing time for both configurations on the prototype versus the simulator, while not resulting
in an inversion of the total time in kernels, could be problematic as it might possibly lead to the
selection of a worse configuration if a decision is made based solely on simulation results.

2.3.6.2 Detailed Analysis

A detailed analysis of the results listed in Table 2.2 show that on the simulator the highest
contributor to the total time is the time spent in the kernel prologue and epilogue. Figure 2.8
shows a partial trace visualization of the collaborative approach execution, from which it can be
seen that the kernel prologue and epilogue accounts not only for the time to launch and terminate
kernels, but to any interstices between work-group executions where the cluster is idle. These
typically arise due to inter-work-group load imbalance, as the data-dependent behavior causes
some work-groups to finish earlier than others, or due to the interaction with the host processor.

The kernel processing time results on the prototype board are higher than on the simulator.
The reason is that the STHORM simulator does not accurately model memory access times,
which, except for DMA transfers, are accounted for in the kernel processing time. The simulator
does not model memory conflicts. This, together with the higher latency and limited bandwidth
to the global memory on the prototype board, leads to a high mismatch between simulator and
board. Moreover, as synchronization barriers require all processors to reach the barrier call to
proceed, the increased processing time will cause processors on the critical path to take longer
to reach the barriers, and thus lead to increased time waiting on barriers.

The time spent waiting for events is the figure with the highest mismatch between the
simulator and the prototype. When launching a DMA transfer via a non-blocking asynchronous
copy, an event handle is returned by the runtime. Processors can perform other operations
asynchronously and then do a wait call on the event handle, which returns only when the transfer
is complete. Thus, the time spent waiting for events in the experiments actually corresponds to
the time waiting for non-blocking DMA transfers to complete. The high mismatch indicates
that the simulator does not precisely model the DMA transfer times found on the prototype. No
parameters are available in the STHORM SDK to compensate for this mismatch.

The total time lost due to load imbalance cannot be precisely estimated from the figures
provided, since they do not discriminate among different contributing factors. Nonetheless, a
large portion of the kernel prologue and epilogue is relative to inter-work-group imbalance, as
shown in Figure 2.8, and the time lost due to inter- and intra-work-group load imbalance could
amount to up to 70% of the total kernel time for the collaborative approach on the simulator.

The individualistic approach virtually eliminates intra-work-group imbalance, but still
presents high inter-work-group imbalance. Even though the time spent waiting for data transfers
using the individualistic approach on the board is higher, it still yields better performance than
the collaborative approach, as the latter incurs higher memory conflict penalties and presents
worse load balance.

2.3.6.3 Discussion

The face detection application presents a data-dependent behavior, which leads to load
imbalance in parallel platforms. Different parallelization strategies could provide better load bal-
ance, but each strategy would need to be implemented and simulated, which is time-consuming.
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Figure 2.8: Portion of a trace for the face detection collaborative approach on STHORM. It shows the
kernel execution traces of multiple image pyramid iterations for a single image frame, from smaller
pyramid levels on the left to larger pyramid levels on the right.

A larger number of parallelization strategies could however be evaluated even before having a
parallel implementation using tools for early parallel performance estimation.

The OpenCL programming model has limited data placement options, which hinders
optimal data placement. Custom vendor extensions are needed to enable fine tuning of the
data placement. Control over the scheduling is also limited, leading to processing gaps due to
inter-work-group load imbalance. A more dynamic kernel enqueueing mechanism as proposed
in OpenCL 2.0 [115] could provide better load balancing, but was not yet supported by the
STHORM SDK.

As the STHORM SDK provides no cycle-approximate simulator for the host, it is not possible
to estimate the global application-level performance. On the device side, although using a cycle-
approximate simulator of the STHORM processing elements, a large mismatch has been observed
between the simulator and the prototype board results.

The analysis points that the largest mismatches arise from the memory models. The
inclusion – or calibration – of the memory latency and bandwidth parameters in the SDK, the
modeling of local memory conflicts on the simulator and the usage of a cycle-approximate host
simulator could reduce the mismatch and allow to obtain application-level results. Addressing
these issues should enable application-level profiling and optimisation with enough precision,
so that algorithm-architecture co-design trade-offs can be evaluated early in the design flow.

2.4 Observed Issues

The face detection case study and the associated experiments revealed a number of issues
that arise when parallelizing an application onto the STHORM many-core platform. In this
section, the main problems identified are listed and a brief discussion ensues.

No application-level performance measurements and profiling. The STHORM SDK did not
count with a cycle-approximate simulator of the host processor, nor any other means to acquire
timing or profiling data for it via simulation. Only by means of the prototype board was it
possible to acquire precise timing information for the host. The physical prototype, however, has
a fixed architecture and limitations such as the use of an external memory bridge with limited
bandwidth. Additionally, profiling on the board is implemented via sampling, which limits the
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timing resolution for observed effects and might be susceptible to aliasing effects, as discussed
by McCanne et al. in [140].

Large mismatches between Gepop simulation results and prototype board results. The results of
the face detection case study experiments showed a large mismatch between the simulation and
prototype results. Although it is difficult to determine precisely the sources of this mismatch,
several contributor factors were identified, such as no timed- or cycle-approximate simulator for
the host, and an imprecise memory model.

Design space exploration comes late in the flow and is time-consuming. Given the large simu-
lation time mismatches observed and the lack of application-level performance analysis tools
in the STHORM SDK, effective design space exploration of the parallelization strategies and
architectural parameters can only be done late in the flow. A fully-functional parallel version of
the application is necessary for every design point to evaluate, which must then be simulated
individually. Exploring the trade-offs of different parallelization strategies, or determining the
optimal tiling granularity for instance, is thus very time-consuming.

Impossible to discern the processor idle time due to load imbalance. The list of results generated
by the profiling tool for the STHORM OpenCL kernels does not allow to distinguish important
factors for parallel application design, such as the load imbalance.

These are the main issues identified via the face detection case study. Addressing these
will result in consequent time savings that will lead to increased developer productivity. The
latter will translate in cost savings and more performing systems thanks to broader design space
exploration.

2.5 Design Challenges

The design challenges ahead consist in providing solutions for the issues listed in Section 2.4.
In an ideal development environment the designer should be able to:

Obtain fast and accurate application-level performance measurements. As has been shown in
this case study, the STHORM tools were not able to provide application-level performance mea-
surements. The OpenCL kernel-level measurements reported by the simulator were inaccurate,
which might lead a developer to make design decisions that would render suboptimal results in
the final physical implementation. It is thus necessary that the results reported by any of the
tools the user relies to assess application performance are accurate.

Access to detailed profiling tools and measurements for analyzing application hot-spots. Having
access to profiling tools is necessary not only to identify application hot-spots, but also to discover
what causes them and how they can be eliminated or at least mitigated. This is a starting point
in any performance optimization process.

Be able to discern and identify the factors that might limit an application’s speedup. In the
STHORM SDK results, it was not possible to precisely determine the load imbalance time in
data-parallel loops. This is however a critical parameter in parallel application design. It is thus
important to define meaningful categories that allow the precise identification of the factors that
limit an application’s speedup and parallel efficiency.

Quickly perform parallel application and multiprocessor design space exploration as early as
possible in the design flow. While useful to functionally validate an application and to acquire
performance metrics, simulators still require a fully functional parallel version of the application
code. Furthermore, each design point needs to be simulated independently, which can be time-
consuming. Tools for early parallel performance prediction and design space exploration can be
helpful in quickly analyzing and selecting promising parallelization strategies and determining
the multiprocessor configurations early in the design flow.
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Analyze the trade-offs between the data transfers and computation. When partitioning the
application’s data-parallel loop iterations among threads, the developer should be able to
evaluate and determine the partitioning scheme that leads to better platform utilization and
optimal execution time. Determining these factors via simulation is not very efficient as it
requires simulating multiple parameters and then selecting the best option. Modeling the
execution time analytically and including tool support for automatically determining the best
trade-offs in this partitioning would lead to faster and better results.

2.6 Conclusion

This chapter presents the central problems addressed in this thesis. We are particularly
interested in addressing the lack of methods and tools for early, fast and accurate application-
level parallel performance estimation and optimization when developing or porting applications
on STMicroelectronics’ multiprocessors. This claim is supported by a preliminary case study,
which consisted in porting and parallelizing an application onto STMicroelectronics’ STHORM
many-core platform.

The STHORM platform was discontinued in 2013 and gave way to a derived platform, the
STxP70 ASMP. Although the present chapter focuses on problems originally identified on the
STHORM platform, the design challenges identified are also valid for other embedded multi-
processor platforms, including STHORM’s successor, the STxP70 ASMP platform. Subsequent
chapters will present the methods and tools conceived to aid designers in the parallelization
process, by providing early estimates of the parallel performance that are fast and accurate, and
that allow to select optimal parameters for image tiling.

Software developers often focus on writing portable code and try to abstract the low-level
details of the target platform and parallel runtime. However, accounting for the overheads
inherent to the target hardware architecture and low-level software runtimes is necessary for the
accurate evaluation of the performance and efficiency of a system – and specially a parallel one.

In order to help the designer make early parallelization decisions, we propose and evaluate
two methods and associated tools. The first consists in a parallel performance estimation and
analysis tool, Parana, presented in Chapter 5. The second consists in a tool for determining the
best tiling configuration for a given application kernel, Tilana, detailed in Chapter 6. In both
cases, the application and multiprocessor platform timing parameters must be acquired in a
characterization step. This characterization step is described in Chapter 4.
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Chapter 3

Background and Related Work

Abstract

The work developed in this thesis covers a number of fields, from embedded multiprocessor
platform architectures for computer vision applications to parallel software programming and
associated design aid tools. This chapter reviews the main concepts and prominent recent work
on such fields, which are relevant to the work presented in this thesis.
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3.1 Introduction

This thesis’ main goal, as discussed in Chapter 2, is to propose new methods and tools
that aid the development of efficient vision algorithms on embedded multiprocessors. As such
the work in this thesis is multidisciplinary, covering a number of fields from computer vision,
embedded multiprocessor architecture and programming, as well as parallel design aid tools.
This chapter presents the main background concepts in these domains and recent related work.

The first part in section 3.2 aims at providing an overview of important concepts in embed-
ded computer vision and existing software libraries. The second part in section 3.3 describes
the background in embedded multiprocessor architectures, as well as the current state of the
art multiprocessor platforms and dedicated vision processors. The third part in section 3.4
focuses on embedded software parallelization concepts, existing programming models and
benchmarks. Finally, the fourth and final part in section 3.5 covers the methods and tools for
parallel application performance analysis and optimization. These four sections together provide
a global picture of the current state of the art in efficient implementation of computer vision
applications on embedded multiprocessors.

3.2 Embedded Computer Vision

Computer vision applications have long been constrained to run on powerful machines such
as mainframes, servers and workstations. Over the last decade, we have observed a dissemination
of miniaturized CMOS cameras, as well as a dramatic increase in the computational power of
embedded systems. These two factors combined with more efficient algorithms have made it
possible for computer vision applications to cross the barrier into embedded systems. Embedded
computer vision is thus the fusion of two technologies: computer vision and embedded systems.
An alternative definition is given by the Embedded Vision Alliance (EVA) [18] which considers
embedded vision as “the practical use of computer vision in machines that understand their
environment through visual means” [19]. This section presents a review of some key embedded
computer vision concepts important when working in the embedded domain.

3.2.1 Concepts and Characteristics

3.2.1.1 Vision Processing Levels

A vision processing system can be represented as a data processing pipeline composed of a
series of algorithms. Such algorithms are grouped in functional stages or levels. Algorithms in
each level share some characteristics that make it more suitable to implementation on particular
machine architectures. Dipert et al. identify three main levels in [63], namely:

1. image acquisition and optimization;
2. converting pixels into objects;
3. analysis of, and reasoning about objects.

The classification provided by Chitnis et al. in [48] splits the third level in two, with object
recognition in one category and decision making or control as a separate category. They further
establish a rough mapping between the most prominent characteristics of each vision processing
level and the types of machine architectures which are most suitable. Figure 3.1 depicts these
four main vision processing functional levels, as presented by Chitnis et al. in [48] and described
in details in the sequence.
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Figure 3.1: The four main vision processing functional stages or levels as defined by Chitnis et al.
in [48].

Low-Level or Pixel Processing corresponds to the functional level that improves the quality
of or otherwise transforms the input image into an image that is suitable for further object
processing levels. Examples of algorithms performed at this level are noise filtering and contrast
enhancement to improve quality, cropping or scaling to adapt the image dimensions, background
suppression to discard unwanted information. Other types of filters, such as gradient filters for
producing edge images, might also be necessary to transform the image for subsequent levels.
Algorithms in this class are point or local algorithms, simpler and massively parallel, meaning
that they can be very easily parallelized over a large number of processors.

Intermediate Level or Object Processing is the functional level that is responsible for passing
from a purely image based representation to an object representation. Its goal is to pinpoint
potential regions of interest for further high level processing. Thus, it consists of segmentation
algorithms such as blob or bounding box detection, as well as feature extraction algorithms.
Such algorithms still need to treat a vast amount of data, but are more complex than those of the
pixel processing stage, as they present more control flow branches. They are therefore less suited
to Single Instruction Multiple Data (SIMD) machines, being more adapted to Multiple Instruction
Multiple Data (MIMD) architectures which suffer less from control flow changes.

High Level Processing or Object Recognition consists in classifying an object as a member of
a class – i.e. a human face in face detection –, or as a particular instance of an object – i.e. a
specific person in face recognition. These algorithms have a control flow which is still more
complex than those of the intermediate level, and while the cost for processing an object might
be higher, the number of objects to process should be smaller. Thus compared to algorithms in
the previous stage, these algorithms should be more adapted to platforms with higher single-core
performance, but possibly with a lower core count.

Application Control or Decision Making Level forms the last vision processing level. As its
name implies, this level relies on information acquired at previous steps to make high level
decisions and perform additional actions. The algorithms at this level are essentially control
algorithms that are more suited to coarse grained task level parallelism or sequential execution
on more standard, general purpose architectures.

These four levels or categories summarize the main stages of a computer vision pipeline.
Each level presents common characteristics that make it more suited to particular machine
architectures, as discussed. While homogeneous systems are simpler to implement and validate,
heterogeneous architectures might provide a range of processor architectures adapted to each
level of the vision processing pipeline for improved efficiency. Furthermore, in distributed
vision systems the execution of such levels so that higher level functions are done in a central
processor, while lower level functions are offloaded to accelerators close to the camera. Thus, the
system architect needs to determine the partition that best fits the requirements of the target
application.
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3.2.1.2 Data Dependency

Algorithms can be further classified into two groups, static or dynamic, according to the
impact of input data on its control flow and execution time.

Static or Non-Data-Dependent algorithms are those whose control flow and execution time
are not dependent on the contents of the images being processed. The variations in the execution
time for each image location is thus typically much smaller than for data-dependent algorithms.
Common examples of non-data-dependent algorithms are spatial filters – Gaussian, binomial
and sobel filters among others –, as well as SVM classifiers.

Dynamic or Data-Dependent algorithms present a variable execution time from one image,
or image location, to the next. This variability is a result of changes in control flow that are
dependent on the contents of the image being processed. The parallelization of data-dependent
algorithms is to be handle with care, as unlike non-data-dependent algorithms, they are likely
to suffer degradation due to branch divergence and load imbalance. Higher level computer
vision functions with a complex control flow are typically data-dependent. Common examples
of data-dependent algorithms are morphological skeletons in image processing [136], cascaded
classifiers such as the Viola and Jones’ face detector [210], decision tree classifiers [123] and
corner detectors like FAST [175].

Such a data dependency classification depends on the particular implementation of an
algorithm. Two implementations of a same algorithm might react differently to input image
contents, and thus belong to different categories. For example, an originally static algorithm
might have a fast implementation which skips over unpromising solutions or unnecessary com-
putations, thus becoming data-dependent. Conversely, an originally data-dependent algorithm
might be implemented in a context which prefers real-time predictability over performance. An
hypothetical hardware implementation of such algorithm with a fixed latency and throughput
would thus be classified as static or non-data-dependent.

3.2.1.3 Data Locality

Computer vision and image processing algorithms can be further categorized according
to their data locality, which in this context refers to the footprint of input data necessary to
compute a single output pixel. This subsection defines three data locality categories – point,
local and global – and discusses their characteristics.

Point algorithms are those where the computation of any given output pixel depends solely
on the value of a single pixel in the input image. So, its main characteristic is that there is no
dependency on other regions of the input image. Examples of such algorithms are color space
transformations, color filters, or brightness offsets. They typically belong to the lower pixel
processing level and are often massively parallel algorithms, as the amount of parallelism is
high.

Local algorithms rely on an input image region or window around a given point to compute
its output value. The size of the region will depend on the algorithm and its parameters.
Examples of such types of algorithms are spatial kernel filters, convolutions and most image
scaling transformations. They can belong to any of the vision functional processing levels. It is
usual for implementations of such algorithms on embedded multiprocessors to keep the input
local window in the shared memory.

Global algorithms have a dependency on the entirety of the image being processed. Examples
of such algorithms are global contrast enhancement, color balance, histograms. They are typically
harder to implement in a embedded platform, since an entire image frame might not fit in an
embedded multiprocessor’s shared memory. Implementing global algorithms for large images
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in an embedded system requires either multiple passes, which will have a negative impact on
performance and memory bandwidth, or to find a way to decompose the algorithm so that it can
be implemented as a pipeline containing a series of local or point algorithmic steps.

3.2.1.4 Scale and rotation invariance

Computer vision applications often require the system to be capable of detecting and
recognizing objects at different orientations and at a full range of distances from the camera.
This section discusses two of the most common methods to make the algorithms scale and/or
rotation invariant, and the impact of these techniques on the system design.

Rotation invariance, supposing the algorithm is not inherently rotation invariant, can be
achieved by two means. A first technique consists in finding the principal orientation of the
region of interest. Then, either the algorithm can be adapted to take into consideration this
principal orientation, or the image can be rotated so that the principal orientation aligns with a
predetermined axis, executing the algorithm, and then eventually rotating the results back to
the original orientation. A second technique consists in generating multiple views of the input
image at predetermined rotation angles and executing the algorithm separately on each view.
Unless the algorithm can handle the rotation information internally, in both cases the image
needs to be rotated prior to execution. Although it results in a robustness to changes in rotation,
these techniques imply a high computational cost as the system needs to perform some or all of
the following steps:

1. Determine the principal orientation of the input image or window;
2. Produce one or more rotated views of the image;
3. Execute the algorithm on each rotated view of the image.

Scale invariance can be achieved by executing a same algorithm over multiple image scales
and then assembling the results accordingly. This particular technique is called pyramidal image
processing, as the images at successive scales form a pyramid-like shape when stacked. Two
pyramidal image processing approaches exist. The first consists in scaling the input image at
each pyramid level and running an unmodified detector on said level. The second consists in
keeping only a single full resolution image and scaling the detector itself instead, thus emulating
a virtual pyramid. While the second technique is often implemented in more powerful systems,
it requires multiple accesses to the entire image, which might not fit an embedded system’s local
memory.

For embedded systems the first approach of scaling the input image can be more efficient in
terms of memory and bandwidth utilization. Moreover, the required image downscaling can
be efficiently implemented with a dedicated hardware scaler. From a parallelization point of
view, however, processing multiple images at different resolutions might prove challenging, as
larger iterations have more parallelism that can be exploited by platforms with a higher core-
count, while smaller iterations can suffer significant degradation due to increased parallelization
overheads and load imbalance, as well as underutilize the available platform resources.

3.2.1.5 Sliding Window

Several of the computer vision algorithms in the experiments performed in this thesis rely
on this sliding window technique. These algorithms are local algorithms as per the definition
given in Section 3.2.1.3. The scanning window technique consists in applying a local algorithm
sequentially over several image locations using a predefined scan order.

Such sliding window technique has been used for implementing image convolution with a
kernel for many decades. White proposed a programmable digital architecture for a 3x3 kernel
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convolution with an image in 1981 [212]. This technique has since then made the leap into
object detection and localization algorithms, such as in notable works from Viola et al. for face
detection [211] and pedestrian detection [210] and Schneiderman et al. for detection of faces and
cars [181]. In these works an object detector is successively applied at windows scanned over the
entire image with the goal of localizing an object in the image. This technique remains useful
with some recent works by Sudowe et al. [190] and Lampert et al. [125] focusing on optimizing
the search strategy so as to restrain the search locations and therefore reduce the number of
times the detector is evaluated.

When parallelizing an algorithm with a scanning window technique, the local windows
typically represent a natural parallelization granularity. In this case, the parallelization workload
for each processor will be a set of windows over an image that will be processed concurrently.
While the scanning window technique can be applied over the entire image in one pass, it is
often the case that the image does not fit into the system’s local shared memory. In this case,
the image must be partitioned into smaller sub-images and the scanning window technique is
applied on each sub-image.

3.2.1.6 Tiling and Data Partitioning

The partitioning of application data and the transfer of such data across an embedded
system’s memory hierarchy is critical for the final application performance. Although the
computational capacity of current embedded systems has grown significantly, such systems
still have very limited internal memory capacity when compared to general purpose systems.
Furthermore, some embedded platforms have no data cache and require explicit DMA calls to
transfer data across the memory hierarchy. Due to the memory and communication constraints,
embedded applications need to be designed to make efficient use of the available memory space
and hide the communication time to the most. In this context, data parallel loops can be tiled to
adapt the parallelization granularity according to characteristics of the target platform. This
section discusses recent work in data partitioning, tiling and scheduling of associated data
transfers.

According to the definition provided by F. Irigoin in [99] “tiling is a program transformation
used to improve the spatial and/or temporal memory locality of a loop nest by changing its
iteration order, and/or to reduce its synchronization or communication overhead by controlling
the granularity of its parallel execution.” Effectively, tiling consists in subdividing a given
multidimensional loop iteration space into smaller sets of iterations that are executed in a
grouped manner.

F. Irigoin et al. first developed the concept of supernode partitioning in [100]. It consists in
partitioning loop iterations into supernodes, sets of loop iterations that are scheduled atomically
on a given processor. M. Wolfe et al. [216, 217] describe more general iteration space tiling
techniques, also capable of handling imperfectly nested loops.

Feautrier et al. proposed space-time mapping methods for the automatic parallelization
of loop nests based on the polytope model in [69]. The proposed method was able to perform
scheduling and allocation of iterations to processors via linear algebra and linear programming.
Darte et al. proved in [58] that it is possible to build such a schedule with an asymptotically
optimal execution time for cases with uniform dependencies. To handle irregular dependencies,
Griebl, Feautrier et al. proposed the index set splitting method in [79] which partitions the
problem space into parts, so as to build individual schedules for each part, much like a piecewise
placement function. However, none of these methods accounted for communication times.

Recent work on automatic tiling support in compilers aims optimize application perfor-
mance while at the same time easing the burden on the programmer. Bondhugula et al. [40]
propose the use of polyhedral compilation techniques based on the polytope model to automati-
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cally perform loop tiling, which were implemented in the PLuTO framework [41]. In a recent
work, Bondhugula et al. design a framework named PolyMage [153] that relies on polyhedral
compilation of a domain specific language for optimizing entire image processing pipelines.
Another such polyhedral compiler is the R-Stream compiler [184, 14], which targets stream com-
puting applications and uses the polyhedral model for a number of tasks, including [184, 206]:
identifying and extracting parallel tasks; loop transformation and locality optimization; SIMD
and DMA code generation; data layout transformation and communication optimization.

Polyhedral compilers perform affine loop transformations that increase data locality and
memory throughput. However, as shown by Darte et al. in [58], they are only asymptotically
optimal, and therefore suitable only for modeling systems with high iteration/tile counts.
While this is a plausible hypothesis for High-Performance Computing (HPC) applications, this
is less so for real-time embedded vision systems that often work with lower resolution images.
Furthermore, polyhedral compilation cannot integrate non-linear performance models. In [152],
Mullapudi et al. discuss the limitations of current polyhedral compilers, such as PLuTo. The
authors conclude that the current validity conditions for tiling are too conservative and miss
desirable tiling opportunities.

Andonov. et al [27] take a different approach and formulate the problem of finding optimal
tiling dimensions as a constraint optimization problem. A set of analytical expressions is devel-
oped to model the execution time of a system for a given set of input parameters. A constraint
solver is then capable to determine the best solution for the problem, one that minimizes the exe-
cution time. Unlike linear programming solvers typically used in polyhedral compilers however,
a constraint optimization solver can handle non-linear expressions or constraints. In [177], Saïdi
et al. apply this approach for constructing the tiling execution time model for array processing
algorithms in systems with explicitly managed memory and define the analogous constraint
optimization problem. They particularly target the IBM Cell architecture [90, 89] and obtain
timing parameters by characterizing the target platform. In their work, however, they only
model a platform with distributed DMAs. Furthermore, their method assumes tile dimensions
are integer divisors of the image dimensions, a constraint we believe is too limiting and that
more optimal solutions might be found if this restriction was lifted. Lifting this restriction,
however, requires careful modeling of the remaining tiles at the last column and on the last row
of the tiling space.

The use of tiling in heterogeneous GPGPU and embedded accelerator systems have also
been explored in recent work. In [23], Alias, Darte et al. present a method for optimizing data
accesses for offloaded kernels in an Field Programmable Gate Array (FPGA) accelerator platform.
They automatically define the sets of tile data to be read in a remote accelerator system, as
well as a source-to-source code generator that produces C-code that High-Level Synthesis (HLS)
tools can synthesize to FPGA. Grosser et al. propose in [80] an automatic parallelization tool
for General-Purpose computing on Graphics Processing Units (GPGPU) systems that generates
CUDA code implementing index set split tiling. Larabi et al. [126] and Mancini et al. [135] have
proposed 2D cache memory systems for efficient data access management in image processing
applications. Although data partitioning and tiling have been studied for a few decades, active
research is still being conducted in this field for reducing the burden on the programmer and
automatically optimizing data partitioning and communication in newer system architectures.

3.2.2 Computer Vision Libraries

Computer vision libraries facilitate the integration of computer vision functionality to a
software program. This section briefly reviews the main existing computer vision libraries.

OpenCV [42] is an open-source computer vision library written in C/C++. It is among the
largest and most renowned computer vision libraries with a community of over 47,000 users [42].
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It supports a range of systems such as servers, desktops and more recently embedded computing
platforms such as Apple’s iOS and Google’s Android. Semiconductor firms such as NVidia and
Intel provide implementations of OpenCV algorithms optimized for their machine architectures,
with the use of advanced features such as SIMD vectorization via built-in assembly instructions.
The C Application Programming Interface (API) has been deprecated and is now only a wrapper
to the C++ core library. This limits its usage to embedded architectures which count with an
efficient C++ compiler.

Khrono’s OpenVX [113, 117] is an open and standard computer vision acceleration API that
targets low-power and embedded applications. Its goal is to provide a standard framework for
computer vision application development across different machine architectures. Optimized
implementation of OpenVX’s functions are provided by hardware vendors. OpenVX can be used
directly as a standalone library, or indirectly to accelerate other libraries such as OpenCV. It
relies on a graph-based specification and execution model, which allows vendor implementations
to analyze and optimize computations and data transfers on each platform. Furthermore, an user
tiling extension to the standard [116] is provided which allows users to specify tiling properties
for the computation nodes. Rainey et al. [172] have demonstrated the system-level optimization
of OpenVX graphs, while Tagliani et al. [193, 194] focus on optimization of memory bandwidth
with tiling.

FastCV is a mobile-optimized closed source computer vision library developed by Qual-
comm. The library is provided alongside the FastCV Computer Vision SDK [167]. The company
claims the library supports any ARM-based architecture, but that it is optimized for their Snap-
dragon line of application processors. Some of the functionalities provided by this library are:
gesture recognition; face detection, tracking and recognition; text recognition and tracking; and
augmented reality.

VLFeat [207] is an open-source computer vision library written in C. Its main focus is on
image understanding and the extraction of local features. As it is written in C, this library is
more suited to embedded system implementation.

Halcon [154] is a proprietary vision library developed by MVTec Software and targeted pri-
marily at industrial, surveillance and security applications. The company provides an interactive
graphical Integrated Development Environment (IDE), named HDevelop, in which the user can
describe the application graphically and the IDE generates the C, C++, C# or VB.NET code. This
library supports several desktop and embedded platforms, as well as industrial cameras.

Matrox Imaging Library (MIL) [139] is a proprietary vision library developed by Matrox
Imaging. It is targeted at industrial machine vision and medical imaging software.

Cognex Vision Library (CVL) [50] is an industrial machine vision library developed by
Cognex, and written in C++. It includes algorithms for image alignment, measurement, inspec-
tion and identification. This library supports only Microsoft’s Windows XP and Windows 7
operating systems and Intel processors, and is therefore not suitable for embedded systems.

Vision-Something-Library (VXL) [15] is not a computer vision library in itself, but a collection
of C++ libraries where the X letter in the acronym can be substituted to refer to one of VXL’s
libraries. It is a research library developed by a group of international researchers and hosted in
Sourceforge. Some of the included libraries are VNL for numerical applications, VIL for imaging
applications, and VGL for geometrical calculations, among others.

Although this list is non-exhaustive, it is possible to identify a trend for modern computer
vision libraries to be written in C++, and except for Qualcomm’s FastCV and portions of the
OpenCV library, they are not particularly adapted for embedded multiprocessor systems. More
particularly, the multiprocessor architectures targeted in this thesis are the STHORM and the
STxP70 Application-Specific Multiprocessor (ASMP), which are STxP70-based multiprocessors. As
the STxP70’s C++ compiler produces code that runs on average 20% slower than the STxP70
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C compiler, the latter is preferred. Therefore neither FastCV, which officially supports only
ARM-based platforms, and OpenCV, which is C++ based, can be supported by the STHORM and
STxP70 ASMP platforms. There is thus a lack of a C-based computer vision library for efficient
implementation of embedded computer vision applications in these two platforms.

3.3 Multiprocessor Architectures for Vision

Multiprocessor architectures are increasingly adopted in embedded systems. Using a
higher number of small cores that run at a lower frequency is more energy-efficient, in terms
of CPU operations per watt, than using a single processor core running at a higher frequency.
Vision processing, specially the lower levels, often present high intrinsic parallelism that can
be exploited in multiprocessor architectures. This section reviews existing multiprocessor
architectures for vision. It first provides the definitions of architectural characteristics that can
be used to relate and classify multiprocessor architectures. It then discusses the specificities of
embedded multiprocessors targeted for the computer vision domain. Existing embedded vision
multiprocessor architectures are then presented and analyzed.

3.3.1 Definitions

According to the definition of Culler et al. [55], a generic multiprocessor is a collection of
computers – CPU and memory – communicating over an interconnect network. More particularly,
the term embedded multiprocessor, as defined by Wolf in [214] and as used in the context of this
thesis, refers to a system with multiple Processing Element (PE) in a single chip, otherwise known
as Chip Multiprocessor (CMP) or Multiprocessor System-On-Chip (MPSoC).

3.3.1.1 Taxonomy

Flynn’s taxonomy [70] categorizes multiprocessors according to their capacity to handle
multiple instruction and data streams. This yields the following categories:

Single Instruction Single Data (SISD) represents sequential processors that can execute
operations on a single data.

Multiple Instruction Single Data (MISD) represents hypothetical processors that would be
able to execute different instructions on a same data point. Although possible, this is largely
considered impractical.

Single Instruction Multiple Data (SIMD) represents processors that can execute an operation
on multiple data concurrently, such as in vector or array processors, and implies that the data
operations occur in lockstep.

Multiple Instruction Multiple Data (MIMD) represents multiple processors that can execute
different operations or programs on multiple data concurrently, such as in a modern PC’s
multi-core processor.

Note that some architectures might present hybrid characteristics. Modern MIMD multi-
processor cores often possess vector instruction set extensions with SIMD characteristics, such
as ARM’s Neon or Intel’s AVX instruction sets. The aforementioned taxonomy has since been
extended to better represent some modern architectures. New classification includes:

Single Program Multiple Data (SPMD) is a particular case of MIMD where a single program
performs operations on multiple data concurrently, but in which the operations are not done in
lockstep as in SIMD architectures.
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Figure 3.2: The taxonomy of multiprocessors as proposed by Ventroux and David in [208]

Multiple Program Multiple Data (MPMD) is the particular case of MIMD where instructions
on different cores belong to different programs.

Single Instruction Multiple Thread (SIMT) represents SIMD architectures where the parallel
operations are not explicit vector or array operations, but result from the concurrent execution
of multiple standard “sequential” threads concurrently in lockstep. This paradigm has been
introduced in recent GPU architectures from NVidia [132].

Beyond these classification criteria, multiprocessor architectures can also be grouped ac-
cording to the homogeneity or symmetry of processing elements, or according to their memory
hierarchy topology. In [208], Ventroux and David classify the multiprocessor architectures as
depicted in Figure 3.2. Their classification relies on the following criteria:

Homogeneous or Symmetric Multiprocessors are those composed of PE that are multiple
instances of a same processing core.

Heterogeneous or Asymmetric Multiprocessors are composed of PEs with different processor
architectures.

Shared Memory (SHMEM) Multiprocessors possess a memory zone directly accessible by all
of its PEs. Note that even though seen as a single memory address space, it may be implemented
as separate physical memory banks. This leads to a further subdivision:

• Uniform Memory Access (UMA), where all processors observe the same access time accross
the entire memory address space.

• Non-Uniform Memory Access (NUMA), where access time might vary according to the
memory and network topology.

Distributed Memory Multiprocessors contain physically separate local memories for each PEs.
Access to data in these memories by other PEs is done via communication primitives.

3.3.2 Vision Processors

The rise of embedded vision has driven the development of a number of application-
specific multiprocessor architectures. This section reviews some recent embedded multiprocessor
architectures dedicated to vision processing. Processor architectures are grouped according to
the type of specialization used to accelerate vision processing.
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3.3.2.1 Processors with Specialized Instruction Sets

Instruction set extensions allow system designers to customize a processor by adding new
instructions. Such processors are known as Application-Specific Instruction Set Processors (ASIPs).
Designers are then given the option of designing and implementing new instructions to accelerate
a particular application – or ensemble of applications in a particular domain. Cadence/Tensilica’s
IVP [195] is an example of a Digital Signal Processor (DSP) architecture with an instruction set
specialized for vision processing. It has a 4-way Very Long Instruction Word (VLIW) with a 32-way
vector SIMD architecture and has several image processing specific operations to accelerate
operations on 8-, 16- and 32-bit pixel data types and video operation patterns. It supports
further customization with user-defined instructions.

3.3.2.2 Processors with Coupled Hardware Accelerators

A common option to accelerate vision processing is by designing an Accelerated Processing
Unit (APU) that couples a multiprocessor to dedicated hardware accelerators for vision. Analog
Devices’ Pipeline Vision Processor (PVP) [26] is a stream processing engine attached to a DMA
channel that processes the data as it flows through the channel. Eutecus’s Multi-Core Video
Analytics Engine (MVE™) [66] relies on biologically inspired, massively parallel hardware accel-
eration units. Apical Spirit [204] and Assertive Vision Engines [17] implement programmable
hardware engines for real-time detection, classification and tracking of people and objects.
Synopsys’ DesignWare EV5x [192] architecture couples a quad-core Synopsys ARC CPU to up to
eight hardware object detection engines.

3.3.2.3 Processors with VLIW/SIMD Accelerators

The usage of VLIW/SIMD accelerators is also a common way to accelerate low-level pixel
processing layers in APUs. Such architectures can perform multiple operations on data in a
single cycle. Although there is only a single instruction stream, the long instruction word
encodes the operations to be performed by all units. The effort of scheduling the operations on
the several execution units is thus performed offline by the compiler. Some examples of such
architectures that use VLIW/SIMD accelerators are: CEVA’s XM4 [45, 46], CogniVue’s CV220x
Image Cognition Processor [51], MobileEye’s EyeQ4 [49], Toshiba’s MPEs [203] and Videantis
v-MP4000HDX [209].

3.3.2.4 VLIW/SIMD Vector Processors

VLIW/SIMD units can further exist as standalone vector processors or IPs that can be
integrated in an MPSoC. CogniVue’s APEX [142, 34], Movidius’ Streaming Hybrid Architecture
Vector Engine (SHAVE) [146] and Texas Instruments’ AccelerationPac Embedded Vision Engines
(EVEs) [131] are examples of vector processing IPs. The Freescale’s SCP2200 Image Cognition
Processor [73] is a vector processor IC that includes one CogniVue’s APEX core and a number of
peripherals.

3.3.2.5 Vision MPSoCs

A number of complex MPSoCs dedicated to vision processing have been developed in
the last years. Advanced Driver Assistance Systems (ADAS) applications seem to be the driving
force behind these architectures. Such architectures can have multiple subsystems that cover
several vision processing layers. Texas Instruments TDA3x [197, 198] architecture, for instance,
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counts with two ARM Cortex A-15 processors for control level processing; four ARM Cortex
M4 processors for high level processing; two C66x DSPs for signal processing; and a Vision
AccelerationPac with four EVEs for pixel level processing. Examples of other complex MPSoC
architectures for vision are Analog Devices’ BF609 [26], Freescale’s S32V230 Platform [72, 202],
Inuitive’s NU3000 [98], MobileEye’s EyeQ4 [49], Movidius’ Myriad 2 Vision Processor [150, 146],
and Toshiba’s TMPV760 series [203]. For a a list of the aforementioned vision processors and a
description of their main architectural features refer to Appendix D.

3.3.2.6 Discussion

The rise of embedded computer vision applications has pushed companies to develop a
number of vision processing architectures. Algorithms in different vision processing layers
present characteristics that make them suitable to particular machine architectures. Low level
pixel processing is best suited to hardware accelerators or wide VLIW/SIMD units. Intermediate
and high level processing is typically implemented in MIMD multiprocessors with small in-order
processor cores. Finally, higher level control functions can be harder to parallelize and need
greater flexibility and are typically implemented in larger out-of-order processors with fewer
cores.

The architectural trade-offs will ultimately depend on the characteristics of the target
application and its requirements. On application-specific multi- and many-core processors, such
as STMicroelectronics’s STHORM and STxP70 ASMP, the system designers can customize a
number of architectural parameters. They should be able to analyze the application and quickly
evaluate different implementation trade-offs.

3.4 Embedded Software Parallelization

Efficient embedded software parallelization requires careful analysis and design of the
application. As the focus of the work is on analyzing and estimating the parallel performance
of an application so as to select efficient parallel implementations, this section reviews some
important concepts in parallel programming and performance optimization. It further reviews
existing parallel programming models and the microbenchmarks that can be used to characterize
a multiprocessor and its parallel programming models.

Section 3.4.1 discusses the classes of parallelism at varying abstraction levels. Section 3.4.2
describes the theoretical limits of the parallel speedup of data parallel applications, as they are
the main focus of this thesis. Section 3.4.3 lists the types of performance bottlenecks in a parallel
application. Finally, Section 3.4.4 presents the OpenMP and OpenCL parallel programming
models used in this thesis and reviews other existing parallel programming models.

3.4.1 Parallelism Classes

Parallelism can be expressed at different abstraction levels. In [214], Wolf lists the three
main classes of parallelism:

Instruction Level Parallelism (ILP) consists in executing a number of instructions in parallel
on distinct processor lanes. A dual-issue VLIW processor such as the STxP70, for example, can
execute two instructions in parallel and has a maximum theoretical Instructions per Cycle (IPC)
of 2.

Data Level Parallelism (DLP) consists in dividing a given data set across a number of Pro-
cessing Elements (PEs) that process each data subset in parallel. All of the PEs execute the same
operation on the data.
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Task Level Parallelism (TLP) consists in executing different tasks or operations in parallel on
a same input data set. Each PE thus executes distinct tasks or operations on the data.

Pipeline Level Parallelism (PLP) is an additional form of parallelism which consists in execut-
ing dependent tasks or operations in parallel. Tasks are linked so that the output of a task is the
input of the following task. Data is thus read by the first pipeline task and transferred from one
task to the next until the final stage produces the output data.

Data and task parallelism are arguably the most common parallelism types exploited by
software programmers. Parallel programming languages such as OpenMP and OpenCL, as
argued by Thies in [201], focus on task and data parallelism, but do not provide specific mecha-
nisms for software pipeline parallelism which needs to be explicitly coded by the programmer.
Instruction parallelism is very dependent on the machine architecture and on the compiler to
maximize the IPC count.

3.4.2 Maximum Parallel Speedup

Amdahl’s Law [25] models the performance gains that can be achieved by parallelizing an
application on a given number of processors. The execution time model he proposed assumes
the application contains: a serial portion s, whose execution time is constant regardless of the
number of parallel PEs; and a parallel portion p, whose execution time is inversely proportional
to the number of PEs. This yields the following expression for the parallel execution time t(n) on
n PEs for an application with a sequential portion of s:

p=1− s (3.1)

t(n)=t(1) ·
(
s+

p

n

)
(3.2)

The speedup of the parallel execution time over the sequential execution time can be thus
computed as:

S(n) =
t(1)
t(n)

=
1

s+ p
n

(3.3)

As t(n) represents an ideal parallel execution time, S(n) represents the maximum parallel
speedup for the application for a given number of processors. Furthermore, as the number of
PEs in the system grows, the speedup will be eventually limited by the sequential portion of the
application:

lim
n→+∞

S(n) =
1
s

(3.4)

The parallel speedup from Amdahl’s law is applicable to homogeneous architectures and is
valid only if the amount of computation is constant. Several extensions of the Amdahl’s law have
been proposed, as discussed by Al-babtain et al. in [21]. A notable extension is that of Gustafson
in [81], which became known as Gustafson’s law. He argues that as the number of PEs in a
parallel system increases, the system is capable to treat proportionally larger data sets. Assuming
the problem size scales with the number of PEs, the speedup would continually increase and
not be submitted to the bounds from Eq. (3.4). Its applicability is however limited, since not
all applications can benefit from increasingly large data sets. Another notable extension is that
of Marty and Hill which have described in [85] an extension to Amdahl’s law for modeling
asymmetric and dynamic multiprocessors.
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3.4.3 Performance Bottlenecks

Performance bottlenecks represent the factors that limit an application’s performance.
The application’s performance is thus said to be bound by the bottleneck. Determining the
bottleneck of the system allows a designer to modify the application or add resources to increase
performance. Performance optimization flows constantly seek to determine the bottleneck of
the system and eliminate it if possible. Performance bounds can be categorized under four
categories, namely:

CPU Bound means the speed at which an application advances is limited by the speed of the
CPU. A task that executes many operations on a small set of data is likely to be CPU bound.

I/O Bound means that an application’s speed is limited by the latency and/or bandwidth
of the I/O subsystem. A task that counts the number of lines in a given file is likely to be I/O
bound.

Memory bound means that an application’s speed is limited by the memory’s latency and
bandwidth, as well as its capacity. A task that performs few operations on a large set of data is
likely to be memory bound.

Cache bound means the an application’s execution time is limited by the cache memory
subsystem. Tasks that iteratively process a data set larger than can fit in the cache is likely to be
cache bound.

A designer must be able to determine the bottleneck of a particular parallel application on a
multiprocessor system. This information serves as a guide to make architectural or parallelization
design trade-offs so as to improve performance.

3.4.4 Parallel Programming Models

3.4.4.1 OpenMP

OpenMP [12] is a parallel programming model targeted at homogeneous shared memory
systems. It specifies a series of compiler directives, library functions and environment variables
which can be used to express parallelism in Fortran and C/C++ programs. OpenMP handles
parallelism by dispatching the execution of parallel code sections on multiple parallel threads,
usually one thread per processor core. It is based on a fork-join model of computation. The
sequential code sections are executed on a master thread. Upon entering a parallel section
the OpenMP runtime forks execution on worker threads. When leaving a parallel section a
synchronization barrier ensures all threads are done and execution continues on the master
thread.

Parallelism is explicit, meaning the developer inserts compiler directives and library calls
directly to the application code to control the parallelization. An OpenMP compiler interprets
the OpenMP directives in the application code and applies the necessary transformations and
runtime calls.

This thesis focuses on OpenMP 2.5 [159], which is the version the STxP70 ASMP supports.
This version supports both task and data parallelism. A parallel region is created using the
omp parallel directive. Task parallelism is supported via the definition of independent
sections in a parallel region with the omp sections directive. Data parallelism is supported
via the omp for work sharing directive, which schedules for loop iterations on separate worker
threads. OpenMP 3.0 [161] adds support for dynamic task creation, while OpenMP 4.0 [160]
adds support for heterogeneous systems by scheduling threads for execution on GPUs or other
programmable accelerators.
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Listing 3.1: Example of an OpenMP application from [160] that implements a parallel sum.

1 #include <stdio.h>
2 int main (void) {
3 int a, i;
4

5 //Declare a parallel region
6 #pragma omp parallel shared(a) private(i)
7 {
8 //Initialize accumulator variable 'a' on the master thread only
9 #pragma omp master

10 a = 0;
11

12 //Synchronizes all threads
13 #pragma omp barrier
14

15 //Declare a data parallel for loop
16 #pragma omp for schedule(static, 4) num_threads(8) reduction(+:a)
17 for (i = 0; i < 256; i++) {
18 a += i;
19 }
20

21 //Any single thread prints the result (implicit barrier)
22 #pragma omp single
23 printf("Sum is %d\n", a);
24 }
25 }

OpenMP directives apply to the immediately following code section, either a line of code
or a code block delimited by curly brackets. The omp parallel directive defines a parallel
region that encompasses the next code section. The number of threads can be specified by
appending the num_threads(n) option to the directive. Otherwise, the default value will
be used, which can be modified by calling the omp_set_num_threads(n) or by setting the
environment variable OMP_NUM_THREADS. This value represents only an upper bound as the
effective number of threads will depend on how many threads are available upon entering the
parallel region. All threads that participate in a parallel region execute the entire code section,
unless a work sharing directive is used inside the parallel region.

Task Parallelism in OpenMP relies on the definition of independent parallel sections inside a
parallel region. This is done by attaching the omp sections directive to an outer code block,
and marking each independent inner code block with a omp section directive. The compiler
creates individual microtasks for each such section that are scheduled on different thread at
runtime.

Data Parallelism is specified by attaching a omp for directive to for loops inside a parallel
region. The compiler extracts the loop body into a microtask and replaces it with a call to said
microtask. Microtasks will be scheduled on all worker threads, which will execute a subset of the
loop iterations, called chunks. The number of iterations in a chunk will depend on the particular
scheduling chosen, or can be forced by the user. The schedule is determined by appending the
schedule(type [, chunk size]) option to the directive, where type is the scheduling
type and chunk size is an optional integer value. The five OpenMP loop schedules are:

• Static: Allocates chunks statically to each worker thread in a cyclic way. The default
chunk size is the number of loop iterations divided by the number of threads in the parallel
region rounded up to the nearest integer.

Vítor Schwambach TIMA Laboratory / STMicroelectronics 37



Background and Related Work

• Dynamic: Allocates chunks dynamically to each worker thread as they become available.
The runtime needs some form of synchronization or atomic operations to determine the
next chunk to process. The actual implementation is platform dependent. The default
chunk size is one.

• Guided: The guided schedule behaves like a static schedule where the chunk size is
variable and depends on the amount of remaining iterations to process. It strikes a
compromise by starting with larger chunks that show less scheduling overheads, and
gradually decreasing the chunk size to improve load balance.

• Auto: The compiler or runtime is free to determine the best schedule to use – static,
dynamic or guided.

• Runtime: The schedule is determined according to the value of the OMP_SCHEDULE
environment variable at runtime.

Data Access. By default, OpenMP considers that variables declared outside the scope of
a parallel region are shared among all threads. Variables declared in the parallel region are
private to the thread. Access modifiers can be appended to a parallel region definition to specify
if particular variables are shared or private, and to define if their values should be updated upon
entering or leaving a parallel region. OpenMP also defines reduction operations that can be
applied on private thread variables upon termination of a parallel construct.

Synchronization. The main OpenMP synchronization directives are:

• omp barrier: Threads wait until all other threads reach that particular point in the
program before continuing.

• omp master: The code section to which it is applied is executed only by the master
thread.

• omp single: The code section to which it is applied is executed by the a single thread,
the first to reach it.

• omp critical: Any code sections to which it is applied are protected and only one
thread can execute any of the critical sections at a time. A name can be given to the critical
section, in which case only one thread can execute any of the homonym critical sections.
Parallel execution of critical sections with different names is allowed.

• omp atomic: An update to a variable is guaranteed to be executed atomically.

Note that the implementation of these directives depends on a particular OpenMP imple-
mentation and the support offered by the underlying machine architecture. Listing 3.1 shows
an example application from [160] that illustrates the use of several OpenMP directives to
implement a parallel sum.

3.4.4.2 OpenCL

OpenCL [112] is a parallel programming model that targets heterogeneous systems. It
was originally developed for General-Purpose computing on Graphics Processing Units (GPGPU)
applications, but it is increasingly being used as a standard model for programming embedded
multi- and many-core processors as well. OpenCL applications are launched on a host processor
and can offload computation kernels on compute devices. The OpenCL version supported
on STMicroelectronics’s STHORM platform is the version 1.1 [114] of the standard which is
described next.

Compute devices can be GPUs, multi- or many-core processors. OpenCL assumes a compute
device has one or more compute units, each of which is composed of a number of Processing
Elements (PEs). Clusters in many-core or GPU architectures will thus be seen as independent
compute units.

An OpenCL kernel is analogous to a C function, which takes in a number of parameters,
processes them and returns a result. Each kernel is written in a separate file using a subset of
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the C language. A kernel’s workload must be partitioned among work-groups and work-items.
Unlike OpenMP however, OpenCL does not provide any directives that automate the workload
sharing among work-groups and work-items. The OpenCL runtime schedules the execution
of the work-groups and work-items on the compute units and their processing elements and
invokes the kernel, but it is the programmer’s responsibility to explicitly distribute the workload.
Two types of IDs are provided by the OpenCL runtime, the local ID which refers to the ID of the
work-item in its work-group, and the global ID is a unique work-item ID across all work-groups.
The programmer must then explicitly call runtime functions to determine the kernel’s global
and/or local ID and use it to select different subsets of the data to process. A common strategy
to perform fine-grained parallelization of a for loop in a kernel, for example, is to use the
work-item’s global ID as the initial loop index offset and the total number of work-items as the
loop stride. Several work-group level synchronization mechanisms are available, such as barriers,
locks and atomic operations, but global synchronization is discouraged.

Four distinct data address spaces exist that, according to the underlying machine architec-
ture, can be mapped onto different memory hierarchy levels:

• global: a read/write zone accessible by all work-items in a compute device.
• constant: a read-only zone accessible by all work-items in a compute device.
• local: a read/write zone accessible by work-items in a same work-group.
• private: a read/write zone accessible private to a single work-item.

The STHORM OpenCL runtime allocates global data buffers on the L3 host memory, while
constant data are placed on the L2 memory. Local and private data are placed in the L1, the
cluster’s shared memory.

Data transfers among the different memory zones can be programmed via specific OpenCL
data copy functions. The OpenCL API specifies asynchronous work-group level copy functions to
transfer data between such buffers, where a single DMA transfer is launched for the entire work-
group. STHORM’s OpenCL implementation extends the API with a work-item copy function,
allowing individual work-items to launch DMA transfers autonomously.

3.4.4.3 Other Programming Models

APEX Core Framework (ACF) [202] is a development environment for parallel vision appli-
cations on CogniVue’s APEX cores. It uses a graph-based formalism to represent applications as
a processing graph. The development tools compile the graph into a native APU program and
are responsible for parallelizing the application on the APEX cores.

Array Oriented Language (Array-OL) [60] is a graphical formalism for specifying multi-
dimensional signal processing applications. It uses a two-level approach:

1. A global level specifies the structure of the application via a graph whose nodes represent
computations that exchange multidimensional array data.

2. A local level that details the computation performed by each node on the data.

Intel Cilk Plus [92, 174] specifies a number of C/C++ language extensions for specifying task
and data parallelism on multiprocessors. Similarly to OpenMP, it is the compiler that modifies
the generated code to introduce the necessary runtime calls for parallel execution. However,
whereas OpenMP uses compiler pragmas, Cilk relies on new language keywords. Three main
keywords control the parallelization [174]:

1. cilk_spawn: Causes the following statement, such as a function call, to be executed on a
new thread for task parallelism.

2. cilk_for: Loop iterations are executed on parallel threads for data parallelism.
3. cilk_join: Waits for parallel thread completion.
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Halide [170, 168] is a functional language that allows specifying parallel image processing
pipelines. It focuses on the separation of the application’s functionality and parallel schedul-
ing [169]. The authors claim that decoupling the functionality from the parallel specification
allows a more concise description of the application, as well as the customization of the schedules
to better suit different machine architectures. From both specifications, the Halide compiler
applies a series of transformations, such as loop fusion and vectorization, and generates the
application executable.

Heterogeneous System Architecture (HSA) [10] establishes a series of standards that define a
common architecture [87] and parallel programming runtime [86, 88] for heterogeneous systems.
HSA uses a single coherent virtual memory addressing space among the components of the
platform. This enables seamless passage of data pointers across devices without the need for
explicit data transfers or mapping. HSA uses an architecture-independent virtual Instruction Set
Architecture (ISA), the HSA Intermediate Layer (HSAIL), that is compiled Just in Time (JiT) to the
target machine architecture. It is designed to serve as a common framework that supports the
execution of parallel applications written in other languages, such as OpenMP and OpenCL.

Message Passing Interface (MPI) [11] is a communication protocol for parallel programs
on distributed memory systems. It provides message passing communication primitives that
allow program instances running machines to exchange data and collaborate. It is often used in
conjunction with OpenMP in a hybrid model where MPI is used for coarse level parallelism in a
distributed system and OpenMP is used for thread level parallelism.

Pthreads [13] is a language-independent parallel thread execution model. The Pthreads
standard [13] defines an API for thread management and synchronization, directly supported
by POSIX-conformant operating systems or implemented as a software library. It also serves as
an underlying threading mechanism in other parallel runtime implementations.

Intel’s Thread Building Blocks (TBB) [94] is a parallel programming C++ library [53] based on
C++ templates. As a library, it does not require any particular compiler support. TBB provides
functions [96] – such as parallel_for, parallel_while and parallel_reduce among
others – that allow the definition of DLP, TLP and PLP parallelism in C++ applications. A
number of design patterns [95] covering common parallelization scenarios are supported. TBB’s
scheduler implements work stealing for better load balancing.

3.5 Parallel Performance Analysis and Estimation

Embedded system designers have numerous possibilities in terms of architectural and
parallelization design choices. Analyzing and evaluating the impact of these choices early in the
design flow is a challenge. This section reviews recent methods and tools have been proposed to
aid designers in this task.

3.5.1 Parallelism Profiling

Profiling allows to gain insight into the runtime performance and the bottlenecks of an
application. Performance optimization flows typically rely on application profiling to detect hot-
spots that provide the most opportunity for performance improvements and eventual bottlenecks
that must be eliminated. Besides representing a mean for developers to gain insight into the
performance of an application, profiling can be an intermediate step for parallelization analysis
methods and tools described in the following sections.
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Profiling tools need runtime information about the application that can be directly cap-
tured by the execution platform such as a simulator, or that can be obtained via some form of
instrumentation. Saeed et al. [176] identify three major components of a profiler:

1. data collection,
2. data analysis, and
3. presentation.

3.5.1.1 Profiling Analysis

Parallelism profilers can collect data and provide a number of metrics to the developer. This
section focuses on three types of profilers that are targeted at parallel application performance
analysis, as well as loop and data dependency profilers.

Parallel Performance Profiling tools perform dynamic or post-mortem analysis of an appli-
cation run to acquire performance metrics. The OpenMP Profiler (ompP) [75] is an OpenMP
profiling tool that provides a detailed analysis of a parallel program performance. It can deter-
mine the effective parallel computation time, synchronization and idle times, as well as the time
lost due to load imbalance and insufficient parallelism. It relies on an automatic instrumentation
of the OpenMP source code via the Opari [145] source-to-source translation tool. Cilkview [82]
and Cilkprof [180] are performance profiling tools for Cilk Plus parallel applications. Intel
VTune Amplifier [93] is a performance profiler and analysis tool for Intel Central Processing
Units (CPUs). The Score-P [122] tool is a performance measurement runtime that can be used
as a common data acquisition infra-structure for a number of parallel performance analysis
tools, including Vampir [121], Scalasca [76], TAU [185] and Periscope [77]. As with the ompP,
the Score-P runtime is linked with the application itself and produces the traces dynamically at
runtime. These tools however rely on PAPI [151] hardware counters that are not supported on
the STHORM and the STxP70 ASMP architectures targeted in this thesis.

Loop Profiling tools focuses on loop analysis as a means to identify an application’s hot-spots
and potential parallelization candidates. The LoopProf [148] is a loop profiler proposed by
Moseley et al. that relies on Dynamic Binary Instrumentation (DBI) via Intel’s Pin [133] tool for
collection of runtime execution data.

Data Dependency Profiling consists in analyzing an application’s instruction and/or memory
traces to extract data dependencies. A number of frameworks for discovery of potential par-
allelism such as Kremlin [107], Prospector [118] and Cilkprof [180], rely on data dependency
analysis to determine the critical path of an application and predict its scalability or potential
parallel speedup (see Section 3.5.2). Kremlin and Prospector rely on source-to-source transfor-
mations for source code instrumentation, while Cilkprof instruments the code in an Low Level
Virtual Machine (LLVM) compilation pass. Another usage for data dependency analysis is to
pinpoint the sources of potential parallelization bottlenecks, as is the case in the Intel Advisor
XE [97] tool.

None of the aforementioned tools for parallel profiling support the STHORM or the STxP70
ASMP architectures targeted in this thesis. Furthermore, while profiling support exists for the
single-core STxP70, no call-tree or parallel profiling support existed for the STxP70 ASMP
as of the writing of this thesis. Therefore there was a need for adding performance profiling
functionality to the Parana tool, which is based on acquired Gepop simulation traces as discussed
in Section 4.6.1.
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3.5.1.2 Instrumentation and Data Acquisition

As seen, profiling tools need to acquire and process execution trace data. To acquire trace
data, most tools instrument the application so that it automatically collects the necessary data
upon execution. Instrumentation can be performed at various levels:

1. Source level instrumentation.
2. Compiler inserted instrumentation.
3. Dynamic Binary Instrumentation (DBI).

All of these mechanisms result in integrating the data acquisition and trace file generation in
the application binary. As discussed in Section 4.5.2 this direct trace file generation method can
slow the execution time of Instruction Set Simulators (ISSs) in more than one order of magnitude
for fine-grained instrumentation. This is due to the fact that the simulator must interpret the
trace collection infra-structure and associated file I/O calls included in the simulated application
code. If the simulator supports trace generation, a more efficient solution is to have the simulator
write the traces directly on the simulation host, as discussed in Section 4.5.3.

3.5.2 Parallelism Discovery and Bounds

Several approaches have been proposed for the discovery of potential or total parallelism
in sequential applications based on some form of data dependency analysis. Analysis can be
static, such as performed by parallelizing compilers at compilation time, or dynamic, acquired
by execution time data dependency profiling.

Critical Path Analysis (CPA) relies on dynamic data dependency analysis to determine
the critical path of an application. From the critical path, CPA tools are able to estimate the
application’s potential parallelism using a work-span [52] analysis. Early works on CPA include
those of Kumar [124] and Austin [32]. In a work-span analysis, work represents the duration of
the sequential execution t(1) of a program, while the span is the duration of the critical path.
The critical path represents a lower bound on the execution time of the application with infinite
resources t(∞). Therefore, the maximum potential speedup of an application would be bound to:

lim
n→+∞

S(n) ≤ work
span

=
t(1)
t(∞)

(3.5)

However, the maximum speedup results using CPA are excessively optimistic [104]. More
recently, Jeon, Garcia et al. have proposed in [107] an Hierarchical Critical Path Analysis (HCPA)
method for increased accuracy. Their Kremlin [107] parallelism profiling tool generates a list of
the parallelization candidate regions and their maximum speedup. Jeon extended the work with
the Parkour [106] tool, which integrates resource constraints to predict the maximum speedup
at application level. Another extension was proposed by Jeon et al. in the Kismet [105] tool
that introduces the notion of expressible parallelism, which consists in identifying different forms
of parallelism and taking into account only the parallelism that can be expressed in the target
platform. Cilkprof [180] is a parallelism profiler tool for Cilk Plus applications proposed by
Schardl et al. that applies work-span analysis using critical path to determine maximum speedup
bounds.

Dependency Analysis is used in other notable tools for discovering the parallelization poten-
tial of an application. Larus et al.’s pp tool [127] estimates the parallelism in application loop
nests. Zhang et al.’s Alchemist [220] and Kim et al.’s Prospector [118] are tools that rely on data
dependency analysis for parallelism discovery and for suggesting parallelization candidates.

42 TIMA Laboratory / STMicroelectronics Vítor Schwambach



3.5 Parallel Performance Analysis and Estimation

3.5.3 Parallel Speedup Prediction

Parallel speedup estimates can be used to evaluate and compare parallelization oppor-
tunities. Speedup prediction tools allow possible performance bottlenecks and the expected
parallelization gains to be assessed early in the development flow. Some existing tools focus on
analyzing the scalability of already parallelized applications on systems with higher core count
to uncover so-called scalability bugs1 [44]. Simulation can also be used to predict the performance
of the final parallel system, but it requires a fully-functional parallel version of the application.
The focus of the parallel performance prediction work in this thesis is to predict and analyze
the parallel performance of serial applications under different parallelization scenarios. Related
work on parallel performance modeling and prediction are reviewed next.

Emulation and Simulation. Physical prototypes and cycle-accurate simulators can pro-
vide very accurate performance estimates. However, prototypes take time to setup and have
constrained resources, while cycle-accurate simulations are time-consuming. Fast simulation
engines typically trade some timing accuracy for faster simulation times. Dynamic Binary Transla-
tion (DBT) simulators, such as QEMU [35], dynamically translate the instructions from the target
architecture binary into instructions of the simulation host for fast execution. ISS simulators,
such as STMicroelectronics’s STxP70 cycle-approximate simulator, interpret the target binary
instructions and model a number of characteristics of the target processor such as processor
pipelines and memory hierarchies to provide accurate timing estimates. More recent source-
level simulators annotate the code with low-level timing information that can be used by fast
simulators to provide more accurate timing estimation. Stattelmann et al. [188] proposed a fast
source-level simulation technique for estimating the timing of complex MPSoC applications
on a SystemC Transaction Level Modeling (TLM) simulator. Sampling simulators [47] mix two
simulation models, a functional untimed model and a timed model. The timed model is slower
and only used at certain timing sampling intervals to statistically derive the execution time of
the application. All of these approaches, however, require complete, fully-functional parallel
versions of the application for each design point to explore. This translates in a larger effort from
the designer to modify and validate the application for each design point to explore and thus
results in a longer exploration time.

Analytical Performance Models estimate the application execution time algebraically. Early
works on analytical performance modeling of parallel applications include the work of Amdahl
and Gustafson, as previously discussed in Section 3.4.2. Extensions to their work for modeling
more recent multiprocessor and heterogeneous architectures have been proposed by Hill and
Marty [85] and Sun et al. [191]. The work-span analysis and Critical Path Analysis (CPA) can also
be used to estimate an application’s parallel performance, as discussed in Section 3.5.2. HCPA
tools such as Parkour [106], Kismet [105] and Cilkprof [180] are able to predict the parallel
performance of a sequential application. While fast, these tools tend to produce overly optimistic
results.

Empirical Performance Models estimate application performance with a black-box approach.
They rely on a set of acquired performance data to build a performance model. Joseph et al.
use a regression model for processor performance estimation in [162]. A power consumption
estimate using a regression model is proposed by Lee et al. in [130]. Lee et al. also use inference
and machine learning to derive parallel performance models in [128] and propose in [129] a
composable performance regression technique for fast performance prediction towards design
space exploration of multiprocessor architectures. Such models, however, require significant
amounts of input data in order to derive the performance model. Furthermore, such models can
only account for characteristics which have been exercised in the input data set.

Mechanistic Performance Models are white-box models that rely on knowledge on the inner
workings of the multiprocessor platform and its parallel runtime. This knowledge is thus

1A scalability bug is a part of the program whose scaling behavior is unintentionally poor [44]
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explicitly integrated into the model allowing it to account for effects such as scheduling policies
and other platform-dependent behaviors that can be difficult to model with a simple analytical or
regression model. The Intel Advisor XE [97] tool defines a methodology for parallelism discovery
and evaluation that relies on first profiling the code to discover the application’s hot-spots and
then perform a so-called suitability analysis. This suitability analysis relies on dynamic runtime
data obtained from user-inserted instrumentation of parallel regions and loops to estimate the
speedup of the application on a number of x86 architectures. Parallel Prophet [119] is also a
mechanistic parallel performance prediction tool for sequential applications that is part of the
Prospector [118] framework. It relies on user instrumentation to collect application traces, build
a task graph of the application and estimate its parallel speedup. It models memory contention
statistically by introducing a burden factor that penalizes the speedup according to the density of
memory accesses. These tools are focused on desktop and server class machine architectures
with different characteristics from STMicroelectronics’s STHORM and STxP70 ASMP embedded
platforms.

Multiprocessor Platform Characterization is necessary to measure a series of platform-de-
pendent parameters such as memory access and DMA data transfer times and the OpenMP
runtime overheads. A common way to acquire such data is via microbenchmarks. Unlike
benchmarks that focus on measuring and comparing parallel application performance across dif-
ferent architectures [38, 37, 186, 218, 30, 164, 108], microbenchmarks typically exercise specific
functionalities and can be used to measure the overheads of individual parallel constructs. Both
Kismet and Parallel Prophet rely on the Edinburgh Parallel Computing Center (EPCC) OpenMP
microbenchmarks [43] and extensions [62, 65]. The EPCC OpenMP microbenchmarks have C
implementations supported on STMicroelectronics’s STxP70 ASMP with minor modifications
and were thus used as the basis for the characterization work in Chapter 4. While the EPCC
microbenchmark suite exercises a number of OpenMP scheduling and synchronization directives,
it is generic and lacks microbenchmarks for measuring memory access and DMA data transfer
timings. The EPCC microbenchmark suite has thus been extended in this thesis with two new
microbenchmarks, membench and dmabench.

3.5.4 Limitations of Current Approaches

This section reviewed a number of existing tools that support a developer in the discovery
and analysis of an application’s parallelization potential on a desktop or server architecture.
Existing tools typically make use of a combination of application source code or binary instrumen-
tation and hardware counters that is intrusive and not supported in embedded multiprocessor
architectures, particularly the STMicroelectronics’s multiprocessors targeted in this thesis. When
capturing traces on a cycle-approximate simulator the instrumentation intrusiveness translates
in a significant raise in simulation time for fine-grained tracing of functions and loops. The
overhead induced by the instrumentation might further interfere with the scheduling in the
microbenchmarks when characterizing the OpenMP runtime. Another point is that these tools
do not offer enough support for quickly defining and comparing the parallel performance of
different application parallelization scenarios and platform parameters. There is thus a lack
of tools that support efficient instrumentation, profiling and parallel performance analysis of
embedded applications early in the design flow of an application-specific multiprocessor.

3.6 Conclusion

This chapter reviewed the background and the state of the art in embedded vision processing
and dedicated processor architectures for vision. Additionally, it reviewed relevant related work
in embedded software parallelization and early performance prediction. The analysis of the
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work presented in this chapter shows a lack in methods and tools for early parallelization
analysis and parallel performance prediction adapted for embedded multiprocessors. Another
important aspect of the implementation of vision algorithms on resource constrained embedded
architectures is tiling. Current tiling parameter selection methods lack the ability to accurately
model a number of non-linear DMA data transfer characteristics and parallelization overheads
necessary for increased accuracy.

This thesis proposes new methods and tools that facilitate the development of an embedded
application-specific multiprocessor system. The methods proposed in Chapters 4 and 5 allow
the fast and accurate evaluation and analysis of different trade-offs in terms of the application
parallelization strategies and of the architectural parameters. Furthermore, tiling is an important
aspect of the implementation of vision algorithms on resource constrained embedded architec-
tures. Chapter 6 proposes an analytical model and an optimization framework for analyzing
and selecting the best tiling parameters for a particular application kernel.
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Chapter 4

Application and Multiprocessor
Platform Characterization

Abstract

The parallel application performance analysis and tiling analysis methods proposed in this
thesis need prior characterization data of (i) the target multiprocessor platform and its parallel
runtime, and (ii) of the user application. This chapter presents the characterization flow designed
to automatically acquire such characterization data. The first part of the chapter describes the
application source code instrumentation library, two task trace acquisition methods, followed
by a brief discussion on their implementation trade-offs. It then presents the Trace Filter and
Parana tools used to build a call tree profile of an application. The second part details the
microbenchmarks used to characterize the STxP70 ASMP platform and its OpenMP parallel
runtime. The developed characterization library and tools are able to automatically acquire all
the necessary platform characterization data, with low intrusiveness and low simulation time
overheads. The results obtained serve as the base for the parallel performance estimation and
tiling optimization work in Chapters 5 and 6.
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4.1 Introduction

When developing an application-specific multiprocessor system, the system designers
must (i) size the multiprocessor platform and (ii) optimize the application on such platform.
The designers needs to configure the number of cores and additional platform parameters to
ensure the application has enough computing resources available to fulfill its requirements.
Concurrently, they must optimize the application so as to ensure the available resources are used
efficiently. Addressing these two aspects requires in-depth knowledge of the characteristics of
both platform and applications.

This thesis proposes two tools – Parana and Tilana– to aid designers to perform early
application parallelization performance analysis and tiling analysis, presented in Chapters 5
and 6, respectively. However, these tools require characterization data input from both the
platform and the application to perform their analyses.

A common method for acquiring platform metrics is via microbenchmarks. Differently
from benchmarks, which gauge the platform performance over complex application scenarios,
microbenchmarks are composed of small code sections that exercise single features at a time.
Several microbenchmarks exist for standard parallel programming languages and multiprocessor
systems. When characterising a new system which is not supported, however, the microbench-
marks must be ported to the new target architecture. Furthermore, microbenchmarks for parallel
runtimes model only the features covered by this parallel runtime specifications or APIs. In
order to characterise specific platform features, such as its memory hierarchy or DMA data
transfer times, microbenchmarks need to be extended with custom tests.

One of the goals of the work described in this chapter is to characterize the STxP70
Application-Specific Multiprocessor (ASMP) platform and its OpenMP runtime. Although no
particular microbenchmarks existed for this platform, it supports OpenMP applications written
in C. Therefore, a C-based open-source microbenchmark suite was selected, which is easily ex-
tensible: the Edinburgh Parallel Computing Center (EPCC) OpenMP microbenchmark suite. This
suite was ported to the STxP70 ASMP platform and extended with two new microbenchmarks
to characterize its memory hierarchy latencies and DMA transfer times.

While the reports produced by the EPCC OpenMP microbenchmarks provide useful insights
to the designer and allows to compare the performance of different OpenMP implementations,
they do not provide the level of detail necessary to build an accurate performance model of the
platform and its parallel runtime. To overcome this, low-level task traces of the microbenchmarks
were collected and used to generate a complete call tree of the application. Two methods were
developed to acquire these traces, (i) one which relies on an instrumentation library to generate
the task traces directly upon execution, and (ii) the other which parses STxP70 instruction traces
to produce said task traces. For this second method, a Trace Filter tool was developed to parse
instruction traces and produce said task traces. While the first method allows trace acquisition
on the Field Programmable Gate Array (FPGA), where no instruction traces are available, the
second method is faster, less intrusive and allows to monitor memory accesses and function
calls.

Parana reads the collected task traces and uses them to build an application task graph and
call tree profile. Moreover, to automate the extraction of platform characterization parameters,
a characterization mode was added to Parana in which it monitors OpenMP runtime calls to
automatically extract finer-grained parallel runtime parameter values.

Characterization of an user application and of the platform share the same characterization
framework. Both of them use the aforementioned process to collect task traces of either an
user application or microbenchmarks. The platform characterization process then performs an
additional step in which the microbenchmark task traces are analyzed to automatically acquire
the platform characterization data. An additional instrumentation library allows the user to
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Figure 4.1: Overview of the characterization flow conceived to generate the platform and application
characterization databases. In the platform characterization phase, a set of microbenchmarks is executed
on a cycle-approximate simulator, their task traces acquired and processed by a characterization tool
that automatically populates the platform characterization database. In the application characterization
phase, a similar process is used to simulate an user-instrumented application and collect its task traces.

control task trace acquisition and define explicit tasks at the desired granularity level directly
via pragmas in the C source code.

This chapter thus presents the flow used to characterize (i) the STxP70 ASMP platform
and its associated OpenMP parallel runtime, and (ii) an user application. The outputs of this
characterization flow are the characterization databases that will serve as an input for Parana
and Tilana in Chapters 5 and 6.

The remaining of the chapter is organized as follows. Section 4.2 provides an overview of the
characterization flow and the associated tools. Section 4.4 then presents the code instrumentation
Application Programming Interface (API), while Section 4.5 details the task trace formats, the
trace preprocessing stages, and discusses their implementation trade-offs. Section 4.6 shows how
such task traces are used to derive the application call tree and profiling information. Section 4.7
presents how the aforementioned source code instrumentation API and the trace acquisition
infra-structure are used to collect OpenMP microbenchmark traces in order to characterize
the multiprocessor platform. Finally, Section 4.8 summarizes the main points presented and
concludes this chapter.

4.2 Overview of the Characterization Flow

The proposed characterization flow automatically generates the platform and application
characterization databases. Figure 4.1 depicts this flow, and its two phases. The platform
characterization phase characterizes the multiprocessor platform and its parallel runtime by
means of dedicated microbenchmarks used to acquire task traces, which are post-processed in
order to generate a platform characterization database. The latter is independent of the user
application and only needs to be regenerated if either the platform or the parallel runtime are
updated. The application characterization phase characterizes an user-instrumented application
and populates the application trace database. In either phase, an executable binary is first
simulated with a reference cycle-approximate simulator to collect execution traces, which are
then post-processed differently by each phase.

Characterization is performed by running an executable binary compiled for the target
platform on a simulator of said platform in order to produce a task trace of the application
execution. A task trace can be generated either directly upon execution by the instrumentation
library or by post-processing the simulator instruction traces with the Trace Filter tool. This task
trace can then be used to reconstitute a †of the applications’ tasks, from which its call-structure
and profiling information can be extracted as described in Section 4.3.
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Figure 4.2: Overview of the characterization tools

The Trace Filter tool automatically inserts tasks for each function call when parsing the
instruction traces, while the provided instrumentation library allows the user to define addi-
tional tasks via a set of instrumentation macros. User defined tasks are used to instrument
particular code sections of interest to the user, such as loop iterations that constitute potential
parallelization targets in subsequent steps. Another use for the instrumentation is to delimit
and attribute a label to a particular code section, so that it appears as a separate entry in the
call tree. This mechanism can be used to have better control over the characterization and even
acquiring dynamic profiling information. It is useful, for instance, to discern the execution time
of a unique code section executed with different sets of parameters in the profile results, simply
by assigning unique labels for each parameter set. Furthermore, these task traces are compact
and represent only a fraction of the size of the original instruction traces, while still retaining
the necessary information for performance analysis. The result of using a compact trace format
is an improved scalability of the method.

Figure 4.2 details the three phases involved in the characterization of an application and
the associated tools. First the instrumented application code is compiled and linked with the
instrumentation library to produce an STxP70 ASMP binary. Said binary is simulated with the
Gepop cycle-approximate simulator. An application task trace is then generated either directly
by the instrumentation library itself, or by the Trace Filter tool as depicted in Figure 4.2, which
parses the simulator instruction traces and generates the task trace. This task trace constitutes
the application characterization database.

In the case of the platform characterization, the process to generate task traces is the
same as for the application characterization, but an additional step is necessary to extract the
platform parameters from the task traces. The goal in this work is to characterize the STxP70
ASMP platform (§2.2.3) and its associated OpenMP [159] parallel runtime. To characterize this
platform, the characterization flow is executed on a set of microbenchmarks designed to exercise
a number of OpenMP constructs and platform functionalities. The characterization module
of the Parana tool will build a call tree of the microbenchmarks, based on the acquired task
traces, in which OpenMP runtime calls are readily visible. The overheads of the runtime calls are
measured by the characterization framework directly from the task traces, which then collects
first order statistics over all executions of said runtime calls in a microbenchmark and saves the
results into a platform characterization database file.
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Listing 4.1: Reference source code of a vector addition function vAdd. It receives two arrays a and b
and the number of elements n as input and writes the result to the output array r.

1 void vAdd(int *r, int *a, int *b, int n) {
2 int i;
3 for(i=0; i < n; i++) {
4 r[i] = a[i] + b[i];
5 }
6 }

Listing 4.2: Example of a profiling report for a reference vAdd function with no instrumentation (see
Listing 4.1).

1 Profiling of sequential schedule
2 --------------------------------
3 #Calls Cml. Avg. Cml. Self Avg. Self
4 + -1 root
5 + 0 main 1 5561 5371 46 46
6 + 1 vAdd 1 5371 5371 5371 5371

4.3 Function Call Tree Profile

The characterization of an executable binary requires analyzing its runtime information
and call tree structure. A call tree profiling report represents the hierarchical function calls as
a tree for easier visualization. Each entry in a call tree profile typically contains a number of
synthetic information regarding that particular function call. As no profiling support existed for
the target platform, the STxP70 ASMP, particular profiling support was added to the Parana
tool as described in Section 4.6.1. This section describes the call tree profile produced by Parana.

To illustrate the call tree report, Listing 4.1 shows an example of a simple vector addition
function vAdd. Listings 4.2 then shows the profile call tree that would be generated by Parana for
the vAdd function. All timing figures in the profile call trees are reported in terms of processor
cycles. The call tree lists, for each task:

1. its id, function name and label;
2. the number of times it was called (#Calls);
3. its cumulative time (Cml.), which includes its self time and its children time recursively;
4. its self time (Self); and
5. the average cumulative time (Avg. Cml.) and average self time (Avg. Self) per call.

Listing B.1 in Appendix B provides an example of a real profile call tree on STxP70 ASMP for
the Fast Features for Accelerated Segment Test (FAST) corner detector application. This application
is presented in Chapter 5.

4.4 Source Code Instrumentation

An instrumentation library is provided to allow the user to (i) enable or disable trace
acquisition and to (ii) define explicit labeled tasks at the desired granularity. This section
describes the functionality provided by the instrumentation library via a set of macros through
which the user can control the trace acquisition and define new tasks. Two implementations
of the trace library have been developed, one in which the task traces are directly written by
the instrumentation library as the macros are executed, the other by writing to flags in static
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Instrumentation Macro Description
PARANA_INIT() Initializes trace files
PARANA_ENABLE() Enables trace collection
PARANA_DISABLE() Disables trace collection
PARANA_RELEASE() Closes trace files
PARANA_TASK_INIT(var, label) Initializes a labeled task
PARANA_TASK_START(var) Start a labeled task
PARANA_TASK_END(var) End a labeled task

Table 4.1: List of available instrumentation macros.

Listing 4.3: Example of the vAdd function source code with instrumentation at the for loop iteration
level.

1 #include "parana.h"
2

3 void vAdd(int *r, int *a, int *b, int n) {
4 PARANA_TASK_INIT(_parallel0_, "parallel0");
5 PARANA_TASK_INIT(_for0_, "for0");
6 int i;
7 PARANA_TASK_START(_parallel0_);
8 for(i=0; i < n; i++) {
9 PARANA_TASK_START(_for0_);

10 r[i] = a[i] + b[i];
11 PARANA_TASK_END(_for0_);
12 }
13 PARANA_TASK_END(_parallel0_);
14 }

Listing 4.4: Example of a profiling report for a reference vAdd function with instrumentation at the
for loop iteration level (see Listing 4.3).

1 Profiling of sequential schedule
2 --------------------------------
3 #Calls Cml. Avg. Cml. Self Avg. Self
4 + -1 root
5 + 0 main 1 5561 5561 190 190
6 + 1 vAdd 1 5371 5371 46 46
7 + 2 vAdd.parallel0 1 5325 5325 25 25
8 + 3 vAdd.for0 100 5300 53 5300 53

memory positions that are decoded when post-processing the instruction traces. These two
implementations will be covered in sections 4.5.2 and 4.5.3, respectively.

Table 4.1 lists the available macros in the instrumentation library. The PARANA_ENABLE
and PARANA_DISABLE macros control trace collection and are used to bypass trace acquisition
for code sections that are irrelevant for the performance analysis, such as debug code. Macros
with the PARANA_TASK prefix are used to define labeled tasks and mark their start and end in
order to delimit particular code sections.

To illustrate the utilization of the instrumentation library in the user code, Listing 4.3
shows how the vAdd function from Listing 4.1 can be instrumented with two labeled tasks:
parallel0 and for0. These tasks will appear in the application call tree profile and will be
available to serve as parallelization targets for the Parana tool, presented in Chapter 5.
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Task Field Description
id Identifier
tstart Start time
tend End time
f unc Function name
label Label
type Type
idparent Identifier of the parent task
l1_rd Number of L1 read accesses
l1_wr Number of L1 write accesses
l2_rd Number of L2 read accesses
l2_wr Number of L2 write accesses
l3_rd Number of L3 read accesses
l3_wr Number of L3 write accesses

Table 4.2: List of traced task descriptor fields.

Labeled tasks are regarded as regular function calls in that they define hierarchical sub-
regions of the call tree in the acquired trace database and constitute typical parallelization
targets. Listing 4.4 shows the profile call tree that would be generated for the execution of
the instrumented vAdd function. Notice how the instrumentation directives allow to gather
much finer profiling details regarding the loop iteration timings than the original profile from
Listing 4.2.

4.5 Task Trace Acquisition

The task trace plays a central role in the characterization process, which lays the base for
the subsequent work on parallel performance analysis. This section describes the task trace’s
format and how it is generated. Two implementations are presented, the first consisting in direct
generation of the task trace file by the instrumentation library upon application execution, and
the second relying on post-processing of simulator instruction traces to generate the task traces.
These two techniques are described and their benefits and limitations are discussed. While the
file based trace generation is more portable and flexible, the instruction trace based method is
less intrusive and provides more detailed information. The latter can be used to rebuild the
entire application call tree, an important aspect for characterization of both the application and
the multiprocessor platform.

4.5.1 Task Trace Format

The task trace database is stored as a CSV file containing a set of task trace entries. A task
trace entry is a snapshot of the fields listed in Table 4.2. It captures a task’s name, timestamp,
per-zone memory access counts, as well as hierarchical context data that will allow a detailed call
tree graph of the application to be built. One task trace entry is generated at each user defined
task start and end points, specified by the PARANA_TASK_START and PARANA_TASK_END
macros, respectively. Additionally, task trace entries are generated by the Trace Filter tool when
parsing the instruction traces for each function call and return from function instructions.

Vítor Schwambach TIMA Laboratory / STMicroelectronics 53



Application and Multiprocessor Platform Characterization

4.5.2 File Based Task Trace Generation

This section presents the first of two task trace generation approaches, the file based
approach. In this approach, it is the instrumentation library itself that generates the task traces
during the simulation. Upon initializing the instrumentation library, a task trace file is created
on the simulation host. Then, upon execution of the PARANA_TASK_START and PARANA_-
TASK_END macros, the target library writes a trace entry to the trace file at run time. The
timing figures are obtained using the target platform’s cycle counters, which are halted during
the execution of the instrumentation library. An initialization loop determines the overhead in
processor clock cycles for halting/resuming the cycle counter, and each time the library halts the
cycle counter, its value is compensated, reducing the intrusiveness of this method. Finally, when
the application releases the instrumentation library, it flushes and closes the trace file.

The main advantage of this method is that it supports the writing of the task trace files
by means of the explicit instrumentation entries on physical or emulation platforms that do
not support instruction trace file generation, such as CPUs, FPGAs or ASICs. On the STxP70
ASMP’s FPGA prototype, calls to file I/O functions are intercepted by the platform’s debugger
which relays the accesses to the host PC file system.

The disadvantages of this method, however, are numerous and limit its practical utilization.
First, as this method relies on library code executing on one of the simulated platform cores to
write the task trace files directly, and halts the cycle counter in the process, if other cores in the
system are active, it is hard to account for their timing. Therefore, synchronization of the cores
before calling an instrumentation macro would be critical in this case. This makes it difficult
to capture task traces for parallel code, specially with dynamic scheduling, since the iterations
would continue to be executed by other threads while the master thread executes the library
code. If the section to be measured is small, the relative instrumentation overhead could be
so high that all of the loop iterations might be executed dynamically on other threads while
the master thread executes the instrumentation library code. In the case where only a single
thread is executed, such as for the application characterization, this might be a lesser issue, but
specially for the characterization of the platform, which is done with a parallel execution, this
constitutes a major impairment.

Furthermore, since the call tree cannot be saved with this method, apart from instrumenting
the OpenMP library itself, it is impossible to expose the OpenMP runtime calls in the profile
results. However, tracing the OpenMP runtime calls is necessary for the characterization of the
multiprocessor platform and parallel runtime. Finally, the library function calls that write to the
trace files can consume thousands of cycles for each trace entry, and can be very time-consuming,
typically slowing simulation time by one order of magnitude.

This method has been used in the early stages of the project, with great care for synchro-
nization, to generate high granularity profiling information for the microbenchmarks running
on the FPGA, but cannot provide enough information for a full characterization of the OpenMP
runtime.

4.5.3 Instruction Based Task Trace Generation

This section presents an alternative method for generating the task traces based on the online
parsing of the processor instruction traces. This method consists in activating the generation
of instruction traces for the master processor of the STxP70 ASMP simulator and extracting
profiling information from the instruction logs and specifically inserted instrumentation. The
instruction traces are either written to a regular file on the host for later processing by the
Trace Filter tool, or can be redirected to a host Linux FIFO – also called a named pipe – to be
processed concurrently with the simulation. The usage of a FIFO provides the added benefit that
the possibly very large instruction trace file is not written to the disk, but only buffered in the
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Instrumentation Event Signaling Flag Value
TASK_START 0
TASK_END 1

Table 4.3: List of the supported values for signaling between the instrumentation library and the Trace
Filter tool. Signaling is performed by writing such values to the instrumentation flag’s address in
memory.

simulation host memory and treated as it is generated. This has allowed to process instruction
traces in excess of 30 GB for some of the experiments in the thesis with a FIFO of only 4 KB and
produce a more manageable task trace with only tens of MB. Furthermore, as the instruction
trace processing in the Trace Filter tool is typically faster than the simulation itself, and provided
that there are available computing resources in the host machine to allow parallel execution
of both the simulator and the Trace Filter tool, the execution time of the simulation is only
marginally affected.

The Trace Filter tool works by parsing the instruction trace file, in order to produce a task
trace file. The instrumentation library adds signaling information to the instruction traces,
which is detected and interpreted by the Trace Filter. The signaling consists in performing write
operations to flags which are statically assigned in a global static buffer in the shared memory.
Each address in this buffer corresponds to a flag. Table 4.3 lists the supported signaling values
that can be written to a flag.

When a PARANA_TASK_INIT macro is called, it first reserves an address in the static
memory buffer for the flag and then writes its label name and address to a mapping file. This
can be seen as a lazy initialization process and is done only once at the initialization of a flag
producing a singleton instance of the flag. The PARANA_TASK_START macro, when executed,
writes the TASK_START event value of the event types enumeration to the address of the flag.
Analogously, the PARANA_TASK_END macro writes the TASK_END enumerated value to the
flag address.

Upon starting, the Trace Filter tool gets the address of the global static event buffer from
the application binary via the readelf utility. It then monitors the instruction trace for any store
instructions to addresses inside the event buffer. When such a store operation is detected, the
Trace Filter captures the stored value and interprets it as either a task start or end, adding the
corresponding entry to the task trace file. The name of the trace entry is retrieved from the file
written at the initialization, or, if not yet available, a generic name is generated and substituted by
the correct name later in the process. The instrumentation instructions themselves are discarded
and do not contribute to the cycles or memory access statistics collected.

The advantages of this method over direct writing of the task trace file by the instrumenta-
tion library are numerous. It is faster, much less intrusive and does not require any particular
synchronization. It allows capturing the complete application call tree, including the OpenMP
runtime calls, as well as tracking memory accesses, keeping memory access counters for each
zone.

However, as the instruction traces are not available in the FPGA platform, this method
cannot be used to acquire traces when running the application on FPGA. This limitation could
be overcome by adding support for debug cells in the STxP70 ASMP, like a Nexus [138, 16]
debug cell similar to the ARM CoreSight [143, 28] debug and trace solution. A Nexus cell is able
to produce compact traces at the basic block level, at each control flow change. Extracting the
PC addresses and timestamps in the Nexus traces, and matching it to a disassembled code of the
binary application, would allow to generate the task traces. Although the Nexus debug cell is
already supported as an optional feature of the STxP70 single-core processor, it is not currently
supported on the STxP70 ASMP due to the high circuit area overheads that would ensue. The
support of this trace acquisition mechanism on an FPGA platform is thus left as a future work.
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4.6 Application Characterization and Profiling

The application characterization consists in defining a representative test case for the
application, running this test case on the STxP70 ASMP simulator and collecting the task traces.
Note that at this stage the application is still in its original sequential state. The trace acquisition
methods described in the previous section are used to generate a task trace file for the simulator
run of the desired test case. Once a task trace of the application is collected, it can be used to
generate an application profile.

4.6.1 Profiling

The Parana tool parses the task traces to generate the application profile. It first builds
an Hierarchical Task Graph (HTG) of the application in which edges represent parent-child
relationships between tasks. It then computes the profiling statistics from the HTG graph and
generates a profiling call tree. The Parana tool is discussed in further details in Chapter 5.

When given an input application task trace file, Parana reads the task trace entries, matching
start and end entries and creating a Task object to store trace information. Task objects are
added as nodes to an Hierarchical Task Graph (HTG). Parent-child relationships between tasks,
determined via the hierarchical information contained in the task trace, are marked as edges on
the hierarchical task graph.

In order to produce a profiling report of the application, Parana creates a new Profile Task
Graph for storing ProfileTasks – a specialization of a base Task object that stores statistical
summary information for a set of Tasks. The HTG is traversed in a depth-first manner, and each
Task found is added to a corresponding ProfileTask in a Profile Task Graph. The ProfileTask
object will keep track of information about the added tasks such as to be able to generate the
summary statistics for all tasks which have been added to it. In the end of the process, the profile
task graph will be populated with ProfileTasks, one for each set of original tasks with a same
name, and at the same hierarchical level in the call tree. Finally, a reporting module scans the
finalized Profile Task Graph to print a formatted call tree containing the profiling information
into a report file. Listings 4.2 and 4.4 show two examples of call trees, with and without explicit
instrumentation. For a description of the call tree format refer to Section 4.3.

4.6.2 Video Analytics Library (VAL)

The characterization process largely relies on instrumentation of an application’s source
code. The creation of a common framework that included the necessary libraries was thus
envisaged so as to facilitate the development of embedded video analytics and computer vision
applications.

A first requirement for such a library was that it should be entirely developed in C, for
optimal performance on the STxP70 ASMP platform. Moreover, the usage of proprietary libraries
from other vendors was disallowed due to licensing issues. Existing STMicroelectronics vision
libraries focused on providing high-level hardware models and were not optimized for parallel
systems such as the STxP70 ASMP. As none of the vision libraries reviewed in Section 3.2.2 were
adapted to the above requirements, it was necessary to develop a new vision library. This new
Video Analytics Library (VAL) is based on existing STMicroelectronics libraries, but optimized for
the STxP70 ASMP.

VAL defines a common framework to all of the target applications developed and used in
the thesis’ experiments. It is a modular library in which each module provides a set of functions.
Modules can then be combined to produce more complex applications. Automated build scripts
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allow the modules to be built for the native host machine, or for either the STxP70 single-core
processor or the STxP70 ASMP multiprocessor with or without OpenMP compilation enabled.

The library is built around a base vaCore module which is used by all other modules. This
module provides base types such as images, lists, and other data structures, as well as optimized
I/O and other auxiliary functions. Scripts automate the creation of new modules, making it
easier to add new functionality. The isolation provided by modules allows developers to work
concurrently on different modules.

For a seamless use of the instrumentation library described in this chapter, support for it
has been included in the core module of the VAL library, and can be enabled or disabled in
the compilation phase via a simple command-line switch. The applications contained in this
framework and used for the experiments will be detailed as needed in subsequent chapters.

4.7 Multiprocessor Platform Characterization

The multiprocessor platform characterization relies on the same flow described in previous
sections for user application characterization, but applying it to specially crafted microbench-
marks. The task traces of these microbenchmarks are then fed to the Parana tool characterization
module, that automatically extracts platform characterization information from the task trace of
the microbenchmarks. The Parana tool is discussed in further details in Chapter 5.

This section first describes the platform characterization parameters identified so as to
accurately model the platform. Then, it presents the microbenchmarks developed to exercise the
several aspects of the STxP70 ASMP platform and its associated OpenMP runtime. Finally, it
provides and discusses the results of the platform characterization step.

4.7.1 Platform Characterization Parameters

Based on the analysis of the call tree profiling of the OpenMP runtime for several paral-
lelization constructs, a set of parameters was selected to build a mechanistic analytical model
that accounts for the main multiprocessor platform and OpenMP runtime costs. Table 4.4 lists
the platform and OpenMP runtime parameters to be automatically extracted in the platform
characterization step. Note that a set of OpenMP thread management (OP) and for loop schedul-
ing (OF) parameters are gathered separately for OpenMP parallel regions and OpenMP parallel
for loops under different scheduling policies – static and dynamic. The final characterization
of the DMA data transfer costs relies on an interpolation model from the characterization data
points. The description of how the parameters are extracted from the microbenchmarks task
traces by the Parana characterization module, and their meaning is detailed in the sequence.

4.7.2 Microbenchmarks

A set of four OpenMP microbenchmarks has been used to exercise a number of platform
functions and allow automatic extraction of the parameters listed in Table 4.2. These microbench-
marks are derived from the EPCC OpenMP microbenchmark framework [43], which has been
ported onto the STxP70 ASMP platform and adapted to rely on the platform’s cycle counters, so
as to report measurements in terms of processor clock cycles. This EPCC OpenMP microbench-
mark suite was selected because it is a free and open source microbenchmark, entirely written in
ANSI C, the preferred language for programming the STxP70 ASMP. The framework provided
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Benchmark Parameter Description
schedbench OPpar_open Time to open a parallel region

OPpar_close Time to close a parallel region
OPthr_create Time to create a worker thread
OPthr_create_gap Time gap between creation of two threads
OPthr_launch Time to launch worker thread
OPthr_launch_gap Time gap between launch of two threads
OPthr_launch_master Time to launch master thread
OPthr_prologue Overhead at thread prologue
OPthr_epilogue Overhead at thread epilogue
OPthr_f ree Time to release worker thread
OPthr_f ree_master Time to release master thread
OFf or_prologue Overhead at an OpenMP for prologue
OFf or_epilogue Overhead at an OpenMP for epilogue
OFf or_gap Time gap between two OpenMP for iterations
OFf or_next_chunk Time to schedule next chunk in OpenMP for

syncbench OScritical_ovh Overhead for an OpenMP critical section
OSbarrier_ovh Overhead for an OpenMP barrier

membench OMl1_rd L1 memory read latency
OMl1_wr L1 memory write latency
OMl2_rd L2 memory read latency
OMl2_wr L2 memory write latency
OMl3_rd L3 memory read latency
OMl3_wr L3 memory write latency

Table 4.4: List of STxP70 ASMP platform and OpenMP runtime characterization parameters, catego-
rized as: OpenMP thread management (OP), OpenMP for loop scheduling (OF), OpenMP Synchro-
nization (OS) and Memory (OM).

has been found to be very easy to use, to port to the STxP70 ASMP and to extend with new
benchmarks. The four microbenchmarks used in the proposed characterization process are:

1. schedbench. This microbenchmark is part of the original EPCC suite. It exercises a number
of OpenMP scheduling directives such as parallel section creation, for loop scheduling
under several scheduling policies and with increasing chunk sizes.

2. syncbench. This microbenchmark is also part of the original EPCC suite and contains a
number of tests for measuring the impact of several of the synchronization primitives. This
microbenchmark allows to measure the overheads of the critical section and the barrier
synchronization primitives.

3. membench. This microbenchmark consists in a new extension of the EPCC OpenMP
microbenchmark suite designed to characterize memory access latencies across different
hierarchical memory levels of the STxP70 ASMP.

4. dmabench. The EPCC OpenMP microbenchmark suite was further extended with this
microbenchmark to characterize DMA data transfer times across different hierarchical
memory levels of the STxP70 ASMP.

The characterization of the OpenMP parallel runtime using the schedbench and syncbench
microbenchmarks is described in subsection 4.7.3. The characterization of the latencies of read
and write accesses for each memory level of the STxP70 ASMP using the membench microbench-
mark is described in subsection 4.7.4. Finally, the characterization of DMA data transfer costs
using the dmabench is described in subsection 4.7.5.
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Figure 4.3: Timeline graph showing the main phases and steps in an OpenMP parallel region execution.
The dots show the point in time where the homonymous runtime characterization parameters listed in
Table 4.4 appear in a parallel region execution.

4.7.3 Parallel Runtime Characterization

The parallel runtime characterization’s goal consists in identifying the key characteristics of
the platform and its parallel runtime so as to build a parallel performance model and characterize
its main parameters. This is accomplished by inspecting the call trees and task traces of the
OpenMP microbenchmarks described in Section 4.7.2 for a number of simulations using a
range of processors to determine how the platform’s parallel runtime implements parallel
regions and thread management, parallel loop scheduling and synchronization directives. The
following subsections present the findings and results for each of the aforementioned runtime
functionalities.

4.7.3.1 Characterization of OpenMP parallel regions

The parallel runtime model was built from directly inspecting task traces and call tree
profiles of the schedbench microbenchmark. Through these elements, it was possible to describe
a mechanistic model of the OpenMP runtime parallel region creation and for loop scheduling
whose parameters are listed in Table 4.4. Figure 4.3 shows a timeline graph showing the steps
involved in creating an OpenMP parallel region, their dependencies and the related model
parameters. The first line represents the master thread, while the remaining ones represent
three slave threads. The main zones are indicated via colored boxes. A detailed description of
the parameters is given next.

The OPpar_open and OPpar_close parameters represent fixed costs for opening and closing a
parallel region. Just after opening a new parallel region, a first phase is observed in which
the OpenMP runtime first initializes and reserves each thread, sequentially. The OPthr_create
parameter captures this cost, while the OPthr_create_gap models the cost of the operations done in
the interval between two thread creations. From inspecting profiles of parallel regions spanning
different number of threads, the number of OPthr_create instances has been found to be exactly
p−1, with p representing the number of processors in the parallel region. The minus one term is
due to the fact the master thread is already active and doesn’t need to be re-initialized.

Once all threads have been initialized and reserved, the master thread launches the parallel
code section execution on each of the slave threads. It does so by calling an OpenMP microtask
on each slave thread, sequentially. An OpenMP microtask is a wrapper function introduced
at compilation time around the code section encompassed by a parallelization directive. The
time to launch an OpenMP microtask on a slave thread is given by OPthr_launch and the interval
between subsequent launches is given by OPthr_launch_gap. The latter are both executed p − 1
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times, with p being the number of processors in the parallel region and present a constant time
regardless of the target processor. As soon as the OpenMP microtask is called on a slave thread,
the target processor starts executing the parallel section code comprised in said microtask. There
are overheads however both when entering and exiting a microtask. These two overheads are
modeled by the OPthr_prologue and OPthr_epilogue parameters, respectively.

After the master thread has launched a microtask on all slave threads, it will also execute
said microtask. The overhead for launching the microtask on the master thread is given by
OPthr_launch_master . After launching the OpenMP microtask, the master processor behaves exactly
as the slave or worker thread does and thus also perceives the thread prologue and epilogue
costs.

At the end of the execution of a parallel section, a barrier ensures all threads are done before
sequentially releasing the worker threads. Such a barrier cost is comprised in theOPthr_f ree_master ,
the parameter that models the time for releasing the master thread. All other slave threads
are then released sequentially with a cost of OPthr_f ree. Finally, the master thread releases all
allocated resources and exits the parallel region with a cost of OPpar_close.

4.7.3.2 Characterization of OpenMP parallel for loop scheduling

Considering a parallel for loop, the operation is similar to the creation of a parallel
region. The parallel directive will create a new OpenMP parallel region, inside which the
OpenMP microtasks will be launched. The parallel region creation is modeled as described in
Section 4.7.3.1. Then, inside each microtask the loop iterations are distributed according to
the scheduling determined in the OpenMP parallel for directive. In a static scheduling
context, each OpenMP microtask determines which loop iterations to execute, while in a dy-
namic scheduling context they coordinate with other threads in a same work-sharing region to
determine the next chunk of loop iterations to execute.

The overheads when entering and exiting a parallel for loop on a worker thread are
captured by the OPf or_prologue and OPf or_epilogue parameters, respectively. In a parallel for loop,
the loop iterations are first grouped in chunks which are then scheduled on the worker threads.
A chunk represents a subset of the loop iterations that are executed successively on a same
thread. Each thread thus executes only a portion of the loop iterations. The scheduling overhead
between two consecutive loop iterations on a same chunk is modeled by the gap factor OPf or_gap.
To schedule the execution of one chunk, both the scheduling time and order will vary greatly
according to the OpenMP scheduling parameters. The time for scheduling a chunk is given by
the OPf or_next_chunk parameter.

A set of all of the aforementioned parameters relative to thread management and scheduling
is captured for each type of schedule – simple parallel region creation, or for loop scheduling
with static or dynamic scheduling policies. In a static schedule, scheduling a chunk is much
faster, since the scheduling is known statically and therefore threads don’t need to perform
any implicit synchronization. Inversely, in a dynamic schedule, the scheduling of a chunk takes
longer as each thread needs a synchronized access to runtime data structures in order to fetch
the next available chunk.

4.7.3.3 Characterization of OpenMP synchronization directives

The overheads of the OpenMP thread synchronization directives – barrier and critical section
– are captured via the syncbench microbenchmark and modeled by the parameters OSbarrier_ovh
and OScritical_ovh. Note that these represent only the runtime overheads, supposing the calls to
the barrier or critical section are not blocked by other threads. The blocking behavior can be
modeled by dependencies among tasks in Parana’s task graph, plus the measured overhead.
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Parameter
Avg. Value (cycles)

Parallel Region Static For Loop Dynamic For Loop
OPpar_open 1091 1111 1108
OPpar_close 364 366 371
OPthr_create 116 116 116
OPthr_create_gap 28 28 28
OPthr_launch 51 51 51
OPthr_launch_gap 15 15 15
OPthr_launch_master 32 33 33
OPthr_prologue 56 87 86
OPthr_epilogue 297 297 297
OPthr_f ree_master 11 11 11
OFf or_prologue – 367 474
OFf or_epilogue – 689 787
OFf or_gap – 59 59
OFf or_next_chunk – 371 464
OSbarrier_ovh 267 267 267
OScritical_ovh 276 276 276

Table 4.5: Results for the characterization of the platform’s OpenMP thread management (OP) and
synchronization (OS) parameters.

4.7.3.4 Automating the Parallel Runtime Characterization Process

Finally, after the initial investigation phase, specific characterization functionality has been
incorporated into Parana to automate the characterization process. It can parse the task traces of
the microbenchmark executions to rebuild their call tree profile. Parana is thus able to detect the
inner function calls of the OpenMP runtime in the call tree, for any OpenMP-enabled application.
From the knowledge acquired during initial investigations, the OpenMP runtime function calls
on the microbenchmarks’ traces can be mapped to the OpenMP directives they implement in
the source code in a mechanistic fashion.

Parana collects timing information directly from the microbenchmarks task traces via the
start and end timestamps of the associated OpenMP runtime functions. Each microbenchmark
executes an outer-loop which is repeated three times and on each outer loop run, an inner loop
which is also repeated several times. Microbenchmark tests with different sets of parameters,
such as when characterizing the timings of parallel regions for a range of chunk sizes, are
explicitly differentiated via explicit instrumentation directives which assigns different labels
to each parameter set. Parana is thus able to parse the generated microbenchmark task traces
and automatically collect the timing of the parallel runtime parameters over these multiple
executions. Then, at the end of the process, it calculates the summary timing statistics for each
parameter and stores the parameter statistics to the platform characterization database.

4.7.3.5 Parallel Runtime Characterization Results

Table 4.5 summarizes the results of the parallel runtime characterization parameters. Such
parameters have been identified by analyzing the task traces of the OpenMP schedbench and
syncbench microbenchmarks over simulations with a range of one to eight processors. The
characterization has been automated using the Parana tool. The results of Table 4.5 were thus
automatically extracted by the Parana characterization module from task traces of the schedbench
and syncbench microbenchmarks.

Vítor Schwambach TIMA Laboratory / STMicroelectronics 61



Application and Multiprocessor Platform Characterization

Parameter
Avg. Value (cycles)

Gepop simulator FPGA prototype
OMl1_rd 3.0 2.8
OMl1_wr 1.0 0.3
OMl2_rd 14.0 16.4
OMl2_wr 14.0 3.3
OMl3_rd 14.0 –
OMl3_wr 14.0 –

Table 4.6: Results for the characterization of the platform’s memory latency (OM) parameters.

4.7.4 Memory Characterization

A memory characterization microbenchmark has been created based on the EPCC suite
framework. The goal of this microbenchmark is to exercise a number of memory reads and write
accesses in the different memory zones (L1, L2 and L3) to extract the average latencies for each
operation, on each memory zone.

4.7.4.1 Memory Read Latency Characterization

The read latencies have been obtained by executing several runs of a pointer chase loop
with hundreds of iterations. To measure the read latency two loops are implemented, a reference
loop and a measurement loop. The reference loop reads a pointer increment value from a local
variable which is stored in a processor register, sums this value to a pointer variable and accesses
the ensuing pointer location. The measurement loop performs the same operation, but reads the
pointer increment value from memory, then proceeds as the reference loop. The only difference
is thus from where the pointer increment is read, from a register or from a memory location.
The memory read access and the usage of the read value are self-contained in the same loop
iteration, in consecutive instructions. The pointer increment value location has been declared
volatile and loop unrolling was disabled to ensure memory accesses or the pointer computation
is not optimized away or simplified. The difference in the average duration of a reference loop
iteration and of a measurement loop iteration represents the extra latency for a memory read
operation compared to directly accessing a register value. This operation is repeated for each
memory zone in the STxP70 ASMP memory hierarchy.

4.7.4.2 Memory Write Latency Characterization

Measuring the write latency requires a modification of the pointer chase loop used for
characterizing the read latency. To characterize the write latency, the value must first be written
to memory, then it must be read again in the sequence, so as to create an explicit data-dependency
between the write and read operations. This will effectively delay the read operation by the
amount of cycles needed to write the value to memory. In this case, the reference loop for the
write operation thus consists of one memory read operation that reads the pointer increment
value, sums this value to a pointer variable and accesses the ensuing pointer location. The
measurement loop first writes the pointer increment value to memory, and then proceeds as the
reference loop. The only difference is thus that the measurement loop updates the increment
value prior to reading it. The difference between the average duration of the reference loop
iterations and of the measurement loop iterations gives the write latency for the target memory
zone. This operation is repeated for each memory zone in the STxP70 ASMP memory hierarchy.
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4.7.4.3 Memory Characterization Results

Table 4.6 lists the results of the memory characterization microbenchmark for the STxP70
ASMP as measured on the Gepop simulator and on an FPGA prototype. The fact that a write
instruction is directly followed by a read instruction in the L1, does not have a big impact,
probably because the latency is small enough not to halt the CPU pipeline. When accessing
more remote memories, such as the L2, both the read and write latencies show similar amount
of cycles on the Gepop simulator, but on the FPGA prototype the write operation continues to
show a reduced latency compared to the read operation. The FPGA results for the L3 memory
could not be gathered, as declaration of L3 memory resulted in an error while loading the binary
file on the FPGA, error which remains unsolved. As for the L3 memory latency on the Gepop
simulator, the tests showed the latencies are set to be identical to those of the L2 memory. These
latency measurement results could then be used when evaluating the impact of the memory
latency on the parallel performance, such as changing the latency profile of a memory access on
the parallel performance estimation method to perform what-if analysis.

4.7.5 DMA Characterization

Modeling of the DMA data transfer times is necessary to build application performance
models that integrate the memory transfers. This is particularly important in the context of this
thesis for determining the best tiling dimensions so as to be able to overlap computation and
data transfers in a multiprocessor with the Tilana tool, as discussed in Chapter 6.

The DMA performance model presented in this section consist of an empirical models
derived from the DMA characterization data. This is in contrast with the models of the parallel
runtime overheads described in previous sections which were based on mechanistic models. A
method previously proposed by Saïdi et al. in [177] was used to build a first DMA performance
model for the STxP70 ASMP, based on linear regression as described in Section 4.7.5.2. However,
this model resulted in large prediction errors. A mixed interpolation and linear regression model
is then presented in Section 4.7.5.3 which can more accurately predict the data transfer times for
the STxP70 ASMP.

4.7.5.1 DMA Data Transfer Time Measurements

In order to build the performance model of the STxP70 ASMP’s DMA, the first step was to
characterize its data transfer times. As the DMA supports both 1D and 2D data transfers, it was
important to characterize both types of transfers. The 2D data transfers are particularly useful
in the context of this thesis for modeling the transfer times of images and/or image tiles in the
Tilana tool. To accomplish this, a new dmabench microbenchmark was added to the EPCC suite.
The dmabench microbenchmark measures the time taken to launch and wait for the completion
of a DMA transfer for all valid combinations of source and destination memory zones (L1 to
L2/L3, or L2/L3 to L1). It tests a comprehensive set of 1D and 2D tile sizes, for all values of
width and height that are power of 2, from a minimum of 1x1 byte, up to the maximum transfer
size supported by the STxP70 ASMP DMAs (256 KB). The collected information is used to build
a characterization database that contains statistical information of the measured DMA transfer
times over multiple runs. Figure 4.4 shows a plot of the mean timing values for varying tile sizes
for L2 to L1 memory transfers.
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Figure 4.4: DMA transfer times obtained from the characterization with the STxP70 ASMP cycle-
approximate simulator for a set of tile width and height values.

4.7.5.2 Linear Regression Model

The goal of the DMA characterization is to build a model that can accurately predict the
DMA transfer time on the STxP70 ASMP. This subsection presents an empirical model based
on linear regression from the DMA characterization data of Figure 4.4. Although the linear
regression model is very compact, it cannot however accurately model the timings of the DMA
data transfers on the STxP70 ASMP.

The linear regression model developed in this section is derived from a DMA performance
model proposed in previous work by Saïdi et al. in [177] to model an IBM Cell’s DMA data
transfer times. Their model assumes two distinct phases exist. The first is a command initialization
phase, which corresponds to an initial latency that is independent of the amount of data to
transfer. The second is the data transfer phase, whose time is proportional to the amount of data
transferred. The authors thus model the DMA transfer time (tDMA) of a 2D image tile (T ) as a
function of its width (wT ) and height (hT ) by the following equation:

tDMA(wT ,hT ,dsI ) = I0 + I1 · hT +α(dsI ·wT · hT ) (4.1)

where the I0 term is the DMA command initialization cost, I1 is the initialization cost for each
line, α is a fixed transfer cost per byte, dsI is the data size of an image pixel in bytes and wT and
hT represent a tile T ’s width and height in pixels.

Linear regression cannot be directly applied to the model in this form as it presents inter-
actions between variables dsI , wT and hT . The objective is to recast Eq. (4.1) as a multivariate
linear predictor model in the form:

Y=βX (4.2)

=β0 + β1X1 + . . .+ βkXk

An additional interaction variable is thus created according to the procedure described by
Sosa-Escudero in [187]. The variable introduced is the area of the tile T expressed in bytes AbT ,
which is given by:

AbT =dsI ·wT · hT (4.3)
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The linear prediction model thus assumes the following form:

tDMA(hT ,AbT )=β0 + β1 · hT + β2 · AbT (4.4)

which is equivalent to Eq. (4.1) for β = (I0, I1,α).

A linear regression is then performed on the characterization data to estimate the values of
the β coefficients. Figure 4.5(a) shows a plot of the DMA transfer time estimated by the model
for varying tile sizes. This plot shows a clear issue, which is the fact that negative values are
generated for wide tiles with up to two lines.

Figure 4.5(b) shows a plot of the errors in the estimated values for the DMA transfer time,
relative to the observed values. It is possible to notice that the errors are very high for small tile
sizes – up to 260% of error –, but gradually decrease for large tile sizes.

We thus conclude that the linear model is not capable of capturing inherent non-linear
characteristics of the DMA transfer times. These characteristics might arise due to architectural
characteristics or even due to software API characteristics. Regardless of the source of any non-
linear characteristics, the fact is that the model needs to account for them in order to produce
accurate estimations.

4.7.5.3 Mixed Interpolation/Regression Model

This section presents an alternative model that produces more accurate results. To minimize
the error rates, especially for smaller tile sizes, we propose to estimate DMA transfer times by di-
rectly interpolating from characterization values. A simple bilinear interpolation [78] algorithm
was used, a 2D interpolation algorithm traditionally used for image processing applications. As
such, the transfer times of unknown points can be computed from the characterization values of
its four neighbouring points very efficiently.

The DMA however imposes a limit on the maximum transfer data (256 KB). This implies
that the maximum area of a tile cannot exceed a certain threshold, a boundary beyond which no
characterization values exist. A simple bilinear interpolation algorithm is therefore incapable of
predicting the transfer times of points that lie close to or on this boundary, since one of the four
neighbouring points might lie beyond the boundary, and therefore have no characterized value.

To solve this issue, and allow the estimation of the transfer time for any valid point that
lies close to or at such boundary, missing characterization values for points that lie beyond the
boundary are extrapolated using the the predictions of the linear model from Eq. (4.4). As the
error for the linear regression model around the maximum DMA transfer size boundary is low,
this enables the interpolation model to still accurately predict the values of points even on the
boundary.

Figure 4.6(b) shows the error results for the mixed linear regression/interpolation model. At
the characterization points the interpolation error is zero by definition. As the curve is monotonic,
it would be possible to determine error bounds for any point inside a zone delimited by any
four characterization points, but such error bounds would be very pessimistic. An important
point to notice though is that the interpolation allows a trade-off between the density of the
characterization grid and the desired precision. Therefore, the density of the characterization
grid can be increased until the desired precision is reached. A denser characterization grid will
certainly lengthen the characterization time, but the characterization is done offline and only
once for each platform, a longer characterization time is not critical for the user. The observable
impact for the user on the evaluation time of the model on a denser characterization grid is
marginal.
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Figure 4.5: DMA transfer times obtained from the characterization with the linear regression model
for a set of tile width and height values.
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Figure 4.6: DMA transfer times obtained from the mixed interpolation/regression model for a set of
tile width and height values.
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4.8 Conclusion

This chapter presents the process of characterizing the STxP70 ASMP multiprocessor plat-
form, its associated OpenMP parallel runtime, as well as the process to characterize an user
application. The outputs of these characterization steps are the platform and application charac-
terization databases that will be used for the parallel application performance prediction work
in Chapter 5 and for the image tiling optimization work in Chapter 6. This process can also be
used by the user to profile and analyze the user application via the generated profile call trees.

First an instrumentation library is presented that allows the explicit instrumentation of the
source code to control the task trace acquisition and its granularity. Examples are shown of how
the instrumentation library can be used to instrument a user application and to obtain finer
profiling results.

Next, this chapter discusses how the task traces of an application are generated and describes
two methods to achieve this goal. The first method consists in generating the instrumentation
directly in the instrumentation library, which allows the generation of the task traces even in
the FPGA prototype, but which do not allow the capture of function-level information, besides
adding a high overhead to the simulation. A second method which relies on a light-weight
instrumentation via signaling consisting in adding write instructions to static flags which are
intercepted by the Trace Filter tool has thus been preferred. This method, although not allowing
the capture of timing information in the FPGA platform, allows to generate a task trace that
captures the application call tree comprising explicitly instrumented code sections.

Finally, the chapter describes the multiprocessor platform characterization. The platform
characterization relies on the same application task trace acquisition infra-structure to acquire
traces of four EPCC OpenMP microbenchmarks. These microbenchmarks are used to char-
acterize the OpenMP parallel runtime and the STxP70 ASMP memory hierarchy and DMA
transfers. The collected task traces of the microbenchmarks are post-processed by the Parana
characterization module to automatically generate the platform characterization database to be
used in Chapters 5 and 6.
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Chapter 5

Parallel Performance Prediction

Abstract

When designing an application-specific multiprocessor, two key questions arise: (i) how to
size the multiprocessor platform to meet application requirements with lowest area and power
consumption; and (ii) how to parallelize the target application in order maximize the utilization
of the platform. This chapter presents a methodology for early joint parallel application and mul-
tiprocessor Design Space Exploration (DSE) from sequential application traces and parallelization
scenarios. The DSE methodology relies on Parana, a fast and accurate performance estimation
tool. Parana enables the evaluation of what-if parallelization scenarios and determines their
maximum achievable performance limits. Results for a NASA Advanced Supercomputing Divi-
sion (NAS) Parallel Benchmark (NPB) and two computer vision applications show that Parana
provides estimations with a margin of error of less than 10% from the reference simulator, with
lower modeling effort and one order of magnitude faster execution time.
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5.1 Introduction

In recent years, embedded systems have followed the shift to multiprocessor architectures
for their performance and energy efficiency. Nonetheless, the development of efficient and
scalable parallel applications still represents a challenge [29]. An application’s parallel efficiency
and scalability can be severely impacted by load imbalance, as well as synchronization and
communication overheads [83]. If not accurately modeled, such overheads can lead to significant
mismatches between simulation results and the observed performance on physical devices, as
discussed in Section 2.3. For data-parallel applications, it is well known that these overheads
largely result from key software design choices, such as the parallel granularity, the scheduling
policies and the data transfer strategies.

In order to compare among different implementation strategies, developers often rely on
time-consuming cycle-accurate simulations, or prototypes. Fast Instruction Set Simulator (ISS)
or Dynamic Binary Translation (DBT) simulators trade some accuracy loss for faster simulation
speeds. Nonetheless, they all require a working parallel version of the application for each design
point, which can limit the exploration space due to the effort required to produce these versions
in the first place. On the other hand, existing parallel performance prediction tools – such as
Kismet [105], Parallel Prophet [119], and Intel Advisor XE [97] – focus solely on desktop-class
applications and do not support embedded application-specific multiprocessor design space
exploration.

This chapter describes a new methodology for early Design Space Exploration (DSE) of
application parallelization strategies and multiprocessor configurations, that allows developers
to:

1. Estimate the potential speed-up of their applications.
2. Compare different parallelization strategies and multiprocessor configurations.
3. Identify performance bottlenecks and their origins.

The contributions of this chapter may be summarized as follows:

1. It proposes a methodology for joint parallel application and multiprocessor design space
exploration from sequential code that does not require a fully-parallel version of the
application.

2. It shows that said methodology can predict the parallel performance one order of mag-
nitude faster than an ISS simulator, with a margin of error in the order of 10% for the
benchmarked applications.

5.2 Overview of the Proposed Flow

The proposed methodology consists in designing an abstract trace-driven simulator to
accurately estimate the performance of an embedded application under different parallelization
scenarios. The target platform, in the context of this work, is the STxP70 Application-Specific
Multiprocessor (ASMP) platform and the associated OpenMP parallel framework [159]. Figure 5.1
depicts the four steps of the parallelization prediction and analysis flow using the Parana tool,
which are detailed in the sequel.

Step 1: Platform Characterization. The first step is to characterize the target multiprocessor
platform and its parallel programming framework in order to build a characterization database,
as discussed in Section 4.7. This database contains statistical information of the measured
overheads for the OpenMP directives, as well as inherent characteristics of the multiprocessor
platform, such as the memory latency parameters for each memory hierarchy level. For this,
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Figure 5.1: Overview of the four steps of the proposed flow for parallel application performance
prediction and design space exploration with Parana.

an enriched version of the Edinburgh Parallel Computing Center (EPCC) OpenMP microbench-
marks [43] is used. The traces generated by a reference simulator or prototype are fed to a
characterization tool that generates the characterization database. This database only needs to
be generated once for a given multiprocessor platform and can be reused in subsequent steps.

Step 2: Application Trace Collection. This step aims to collect execution traces from the
sequential application, as discussed in Section 4.5. Tasks are created from function calls in the
application, which are annotated with their timestamps and hierarchical information. Summary
memory access statistics are also gathered for each task. This task trace can be enriched by user
inserted instrumentation macros that:

1. control the trace acquisition, and
2. define explicit tasks at lower granularity levels.

Explicit tasks allow to instrument and acquire timing information from loops and critical regions
that will be later used in the parallelization analysis.

Step 3: Parallelization Scenario Specifications. This step consists in defining a number of
parallelization scenarios, comprising the parallelization directives and the multiprocessor con-
figurations the user wishes to evaluate. Two properties files are used – one to specify the OpenMP
directives, the other to specify the multiprocessor parameters. Note that the semantics of
OpenMP directives is adopted to reduce the learning curve of the tool and to enable a direct
comparison with a real implementation, but the directives added at this step represent only an
indication of the desired parallelization strategy to be applied in order to obtain parallel per-
formance estimates. A full parallel implementation would require a more detailed description,
greater care in defining the variable access modes and in its functional validation.

Step 4: Parallelization Analysis. In this last step, Parana uses the platform characterization
and application trace databases, as well as the parallelization scenario specifications, to predict
the parallel performance of the application. Parana first builds a directed acyclic graph (DAG) of
the application’s tasks. Then, for each parallelization scenario, it schedules this DAG to produce
a corresponding parallel schedule. At the end of this process, statistics are gathered from each
parallel schedule to generate a detailed parallelization report. The user can then either try new
parallelization scenarios or refine the application and repeat the process to explore new design
points.
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Listing 5.1: Example of instrumented code for parallelization with the Parana tool (see directives in
Listing 5.2).

1 #include "parana.h"
2

3 void vAdd(int *r, int *a, int *b, int n) {
4 PARANA_TASK_INIT(_parallel0_, "parallel0");
5 PARANA_TASK_INIT(_for0_, "for0");
6 int i;
7 PARANA_TASK_START(_parallel0_);
8 for(i=0; i < n; i++) {
9 PARANA_TASK_START(_for0_);

10 r[i] = a[i] + b[i];
11 PARANA_TASK_END(_for0_);
12 }
13 PARANA_TASK_END(_parallel0_);
14 }

Listing 5.2: Example of a properties file with parallelization directives for the vAdd function (see code
in Listing 5.1).

1 vAdd = #define NUM_THREADS 8
2 vAdd = #define CHUNK_SIZE 1
3 vAdd.parallel0 = #pragma omp parallel num_threads(NUM_THREADS)
4 vAdd.for0 = #pragma omp for schedule(static, CHUNK_SIZE)

5.3 Parallel Scenario Specifications

When evaluating a given parallelization scenario, OpenMP directives can be attached to
the traced tasks – either function calls or explicitly instrumented regions –, adding parallelism,
scheduling and/or synchronization semantics. A properties file is used to specify the paralleliza-
tion directives, consisting in a series of key-value pairs where keys are task names (function
names or user-defined labels), and values are the intended parallelization directives. The second
properties file is used to define ranges of values for the multiprocessor platform parameters,
such as the number of processors and memory latency parameters that can override the values
obtained in the characterization.

As an example, Listing 5.1 shows a vector addition function vAdd, the same as shown in
Listing 4.3 from Chapter 4, instrumented with two labeled tasks: parallel0 and for0. Listing 5.2
shows one possible set of parallelization directives for the vAdd function that creates a parallel
region with 8 threads and a for loop with static scheduling and a chunk size of 1. Multiple such
properties files can be provided to specify different parallelization scenarios and multiprocessor
configurations and then used by the Parana tool to predict the performance in each scenario.

5.4 Parana

Parana is a trace-driven simulator that uses a mechanistic model to emulate the OpenMP
runtime scheduling of an application’s tasks. A number of schedules are produced, one for each
parallelization scenario, and used to generate a detailed parallelization analysis report.
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5.4.1 Performance Modeling

The underlying performance model of the Parana trace-driven simulator is a mechanistic1

model of the multiprocessor platform and of the OpenMP runtime. This model defines how the
OpenMP directives will impact the application task scheduling and, consequently, the execution
time. Its goal is to be able to quickly estimate the performance of an application for different
parallelization scenarios.

The reason for selecting such a model is because it can accurately model the dynamic
data-dependent task times related to a particular input data set as well as the parallel runtime
overheads with enough accuracy for evaluating parallelization trade-offs with less effort and
faster than with an ISS simulator.

The performance model was constructed by analyzing the task traces and the call tree
profiles of the EPCC OpenMP schedbench and syncbench microbenchmarks used to characterize
the OpenMP parallel runtime. Specific characterization functionality has been added to Parana
so that it can automatically extract the values of the characterization parameters. Section 4.7.3
describes the characterization of the platform’s parallel runtime that leads to the performance
model defined herein.

As a mechanistic performance model, this model estimates the parallel performance by
replaying the collected application task traces and emulating the behavior of the OpenMP
parallel runtime on the STxP70 ASMP. Task traces are loaded once and then used to produce
multiple schedules for different parallelization scenarios. Tasks in the generated schedules
are assigned particular categories for reporting purposes so as to enable the user to identify
particular bottlenecks of the application. Therefore, separate categories are defined for the
sequential and parallel computations, for the OpenMP runtime overheads, as well as for load
imbalance and idle time. The duration of tasks that represent load imbalance and idle time
result from inter-task dependencies and are derived from the parallel schedule.

This performance modeling section is structured as follows. First, Section 5.4.1.1 defines
the elements that represent a task, a task graph and a schedule. Then, Section 5.4.1.2 lists the
steps in Parana’s performance estimation flow. Section 5.4.1.3 describes how the memory latency
information can be incorporated to adjust task times analytically. Finally, Section 5.4.1.4 details
the algorithms for constructing the parallel schedule.

5.4.1.1 Definitions

Task T . A Task T stores information from the application characterization, such as its start
and end time in the reference sequential execution, and the memory access summaries. Tasks
are created from the application traces at each application function call and user-instrumented
code section. A distinction is done between hierarchical Tasks and leaf Tasks.

Hierarchical Task Graph (HTG) H . Parana builds an HTG to represent the application
structure, and is an input of Parana’s task scheduler. The HTG is a directed acyclic graph (DAG),
where vertexes are Tasks, and edges represent parent-child relations between Tasks. An HTG is
thus represented as H = G(V ,E), where G is a DAG with a vertex set V and a directed edge set E.
A directed edge from Task Ta to Task Tb is represented as (Ta→ Tb).

Schedulable Task ST . A schedulable task ST is a wrapper that adds scheduling information
to a leaf Task T , such as its start time tstart(T ) and duration w(T ) in a given Schedule, a mapping

1Sarokin provides a concise definition of what is a mechanistic model in [178], where he states that: “A mechanistic
model assumes that a complex system can be understood by examining the workings of its individual parts and the
manner in which they are coupled.” . It is therefore a model that relies on the knowledge of the inner workings of
a system, as opposed to models derived solely from empirical observations. For more information on mechanistic
modeling refer to the works of Craver [54] and Tham [199].
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to a Processor, and a type for reporting purposes. Task types can be one of: sequential processing
(SEQ_P ROC), parallel processing (PAR_P ROC), runtime overhead (RT _OVH), load imbalance
(LD_IMB), or idle time (IDLE). Schedulable Tasks that do not have a defined duration and whose
duration is determined by inter-task dependencies in the Schedule are called Filler Schedulable
Tasks. The latter are mainly used to derive idle and load imbalance time.

Schedule S. A Schedule is the output of Parana’s task scheduler, and consists in a DAG,
where vertexes are Schedulable Tasks and edges represent end-to-start precedence relations
between them.

5.4.1.2 Performance Estimation Steps

Algorithm 5.1 lists the steps in Parana’s performance estimation flow. In order to exemplify
the execution of the estimation flow, consider the code of the Fast Features for Accelerated Segment
Test (FAST) Corner Detection applications in Listing 5.3 and the properties file in Listing 5.4
which defines a static inner-loop parallelization scenario.

Upon launch, Parana loads the platform and application databases and builds an hierarchical
task graph H . Figures 5.2 and 5.3 depict an execution timeline for the FAST application and the
corresponding hierarchical task graph H . In H , hierarchical Tasks encompass their children,
and as such, present a timing overlap with them. In order to eliminate these overlaps, the
segmentation process adds, to each parent Task, new leaf Tasks which cover the regions where
the parent Task does not overlap with its children, so as to allow scheduling. Figures 5.4 and 5.5
show the segmented tasks added in a timeline view and in the segmented hierarchical task graph
Hseg .

After H has been segmented to produce Hseg , a parallelization scenario is loaded, and the
tasks in Hseg are annotated with the specified parallelization directives to produce the annotated
hierarchical task graphHann. Figure 5.6 illustrates the annotated hierarchical task graphHann for
the FAST application, whose annotated tasks are denoted by the # symbol. The new annotated
HTG Hann is the input of Parana’s task scheduler, which produces a number of Schedules S
for each set of platform configuration parameters. The task scheduler takes into account the
OpenMP overheads and the memory model of the platform characterization database to produce
precise estimations. Figure 5.7 depicts sequential and parallel schedules generated for the FAST
application. Finally, the parallel schedules are used to produce a detailed parallelization report,
and the process is repeated for each parallelization scenario.

5.4.1.3 Memory Latency Modeling

As the sequential execution traces are acquired from a cycle-approximate simulator of
the same target platform, a leaf task’s instruction sequence and timing are assumed to remain
roughly unchanged inside parallel sections. The execution time w of a schedulable task ST
introduces memory latency overheads, allowing the user to estimate the impact of a different set
of memory latency parameters, and is given by:

w(ST ) = w(T ) +
∑

`∈{l1,l2,l3}
θ∈{rd,wr}

T`_θ ×OM`_θ (5.1)

where T is a leaf Task, ST is a Schedulable Task, w(T ) is the execution time of T , T`_θ is the
number of accesses of type θ ∈ {rd,wr} in memory level ` ∈ {l1, l2, l3} in Task T , and OM`_θ is
the memory latency parameter for accesses of type θ in memory level `.
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Algorithm 5.1 Parana’s Performance Estimation Steps

1: Open the platform characterization database;
2: Open the application trace database;
3: Build an hierarchical task graph H of the application;
4: SegmentH intoHseg by introducing hierarchically non-overlapping leaf Tasks for scheduling;
5: Load a parallelization scenario;
6: Annotate the tasks in Hseg with the parallelization directives to produce Hann
7: Perform a baseline sequential scheduling of Hann for one set of platform parameters;
8: Write results to the report;
9: Perform a parallel scheduling for a given number of cores with the same platform parameters;

10: Write results to the report;
11: Repeat steps 9-10 for each target number of cores;
12: Repeat steps 7-11 for each set of platform parameters;
13: Repeat steps 5-12 for each parallelization scenario;
14: Exit;

Listing 5.3: Example of instrumented code for parallelization with the Parana tool (see directives in
Listing 5.2).

1 #include "parana.h"
2 ...
3

4 void fastCornerDetect(...) {
5 PARANA_TASK_INIT(y_e, "for_y");
6 PARANA_TASK_INIT(x_e, "for_x");
7 ...
8 //Outer loop over lines
9 for (y = 3; y < height - 2; y++) {

10 PARANA_TASK_START(y_e);
11 ...
12 //Inner loop over pixels
13 for (x = 3; x < width - 3; x++) {
14 PARANA_TASK_START(x_e);
15 //Compute FAST corner at point (x,y)
16 ...
17 PARANA_TASK_END(x_e);
18 }
19 ...
20 PARANA_TASK_END(y_e);
21 }
22 ...
23 }

Listing 5.4: Example of a properties file with parallelization directives for the vAdd function (see code
in Listing 5.1).

1 fastCornerDetect.for_x = \
2 #pragma omp parallel for schedule(static) num_threads(8)
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fastCornerDetect

fastCornerDetect.for_y

fastCornerDetect.for_x

Time

Task EndTask Start

Figure 5.2: Representation of a FAST Corner Detection execution timeline and the Parana task trace
events generated.

fastCornerDetect
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Figure 5.3: Representation of a Parana’s Hierarchical Task Graph H for the FAST Corner Detection
application.
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Figure 5.4: Representation of a segmented FAST Corner Detection execution timeline and the Parana
task trace events.
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Figure 5.5: Representation of a Parana’s Segmented Hierarchical Task GraphHseg for the FAST Corner
Detection application.
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Figure 5.6: Representation of a Parana’s Annotated Hierarchical Task GraphHann for the FAST Corner
Detection application.
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Figure 5.7: Simplified representation of sequential and parallel Parana schedules for the FAST Corner
Detection application.

5.4.1.4 Task Scheduling
Parana’s task scheduler is a key element in the parallel performance estimation flow. Parana

initially builds a sequential schedule that will serve as a reference for computing speedup and
parallel efficiency figures. Then, it repeats the process to build one parallel schedule for each
parallelization scenario. When constructing a parallel schedule, Parana’s task scheduler emulates
the scheduling performed by the OpenMP runtime in a mechanistic way.

The task scheduler builds a schedule by traversing the annotated hierarchical task graph
Hann in a depth-first order and, for each leaf Task found, wrapping it in a Schedulable Task and
adding it to the schedule. As Schedulable Task are added to the schedule, their start and end
times are updated according to the constraints defined in Eqs. (5.2)–(5.4).

w(ST ) = tend(ST )− tstart(ST ) = texe(ST ) ≥ 0 (5.2)

tstart(ST )≥max(tend(STin)),∀STin∈V | (STin→ST )∈E (5.3)

tend(ST )≤min(tstart(STout)),∀STout ∈V | (ST→STout)∈E (5.4)

Upon encountering tasks with attached OpenMP directives while traversing the hierarchical
task graph, the scheduler will enforce the OpenMP scheduling policies and will add tasks to
model the OpenMP runtime overheads. Figure 5.7 exemplifies the sequential and the parallel
schedules for the FAST application with a static inner-loop parallelization from Listings 5.3
and 5.4. Algorithms 5.2–5.3 exemplify the creation of a schedule, the scheduling of a sequential
task and its children, as well as the scheduling of a new parallel region. The schedule of parallel
for loops is similar, using the same principles to throttle the launch of threads and loop iterations,
and adding OpenMP for loop (OF) scheduling overheads listed in Table 4.5 from Section 4.7.3.
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Algorithm 5.2 Parana’s Task Graph Scheduling

Input: A Task Graph HTG and number of processors n
Output: A schedule S

1: function Schedule(HTG,n)
2: S←NewEmptySchedule(HTG,n)
3: P ←GetProcessors(S)
4: Pmaster ←GetMasterProcessor(P )
5: Troot←GetRootTask(HTG)
6: ScheduleSequentialTask(Troot , Pmaster ,S)
7: return S
8: end function

Input: A Task T , a processor P and a schedule S
1: function ScheduleSequentialTask(T ,P ,S)
2: if HasDirective(T ,parallel) then
3: ScheduleParallelRegion(T ,P ,S)
4: else
5: if IsLeaf(T ) then
6: AddTailNode(NewSchedTask(T ), P ,S)
7: else
8: for all Tchild ∈ ChildrenOf(T ,S) do
9: ScheduleSequentialTask(Tchild , P ,S)

10: end for
11: end if
12: end if
13: end function

Algorithm 5.3 Parana’s Parallel Region Scheduling

1: function ScheduleParallelRegion(T ,P ,S)

// 1. Create sub-schedule and open parallel region
2: nthr ←GetOMPDirectiveValue(T ,num_threads)
3: nthr ←Min(nthr ,NumProcessors(S))
4: Ssub←NewSubSchedule(nthr , P ,S)
5: AddTailNode(NewSchedTask(OPpar_open), P ,Ssub)

// 2. Create worker threads
6: for all Pi ∈ Processors(Ssub) | Pi , P do
7: STthr_create←NewSchedTask(OPthread_create)
8: AddTailNode(STthr_create, Pi ,Ssub)
9: STthr_create_gap←NewSchedTask(OPthr_create_gap)

10: AddTailNode(STthr_create_gap, Pi ,Ssub)
11: STidle←NewFillerSchedTask(IDLE)
12: AddTailNode(STidle, Pi ,Ssub)
13: STf ork_wait ←NewFillerSchedTask(RT _OVH)
14: AddTailNode(STf ork_wait , Pi ,Ssub)

15: AddEdge(
(
STthr_create→ STf ork_wait

)
,Ssub)

16: end for
(To be continued on the next page)
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Algorithm 5.2 (Continued) Parana’s Parallel Region Scheduling

// 3. Launch worker threads
17: for all Pi ∈ Processors(Ssub) | Pi , P do
18: STthr_launch←NewSchedTask(OPthread_launch)
19: AddTailNode(STthr_launch, P ,Ssub)
20: STthr_launch_g ←NewSchedTask(OPthr_launch_gap)
21: AddTailNode(STthr_launch_g , P ,Ssub)
22: STf ork_done←NewFillerSchedTask(RT _OVH)
23: AddTailNode(STf ork_done, Pi ,Ssub)

24: AddEdge(
(
STthr_launch→ STf ork_done

)
)

25: end for

// 4. Launch master thread
26: STthr_launch_m←NewSchedTask(OPthr_launch_master )
27: AddTailNode(STthr_launch_m, P )

// 5. Schedule parallel task on each thread
28: for all Pi ∈ Processors(Ssub) do
29: ScheduleParallelTask(T ,Pi ,Ssub)
30: STld_imb←NewFillerSchedTask(LD_IMB)
31: AddTailNode(STld_imb, Pi )
32: end for

// 6. Join parallel threads
33: STjoin←NewSchedTask(RT _OVH)
34: AddTailNode(STjoin, P )
35: for all Pi ∈ Processors(Ssub) | Pi , P do
36: STld_imb← LastTask(Pi ,Ssub)
37: AddEdge(

(
STld_imb→ STjoin

)
)

38: end for

// 7. Release master thread
39: STthr_f ree_master←NewSchedTask(OPthr_f ree_master )
40: AddTailNode(STthr_f ree_master , P ,Ssub)

// 8. Release worker threads
41: for all Pi ∈ Processors(Ssub) | Pi , P do
42: STthr_release_i ←NewSchedTask(OPthr_f ree)
43: AddTailNode(STthr_f ree_i , P ,Ssub)
44: end for

// 9. Close parallel region
45: STpar_close←NewSchedTask(OPpar_close)
46: AddTailNode(STpar_close, P ,Ssub)

47: end function
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5.4.2 Parallelization Analysis Report

Parana’s parallelization analysis reports provide detailed information for any given paral-
lelization scenario estimation. The information in such reports is used to build cycle stacks, a
graph that clearly shows the execution time breakdown and helps the user identify performance
bottlenecks. Parana’s task schedules are the primary source of information for the parallelization
analysis reports, which list for each scenario:

1. the total execution time for the schedule;
2. the speedup and parallel efficiency with respect to the baseline sequential schedule;
3. Amdahl’s law’s [25] maximum theoretical speedup; and
4. separate execution time statistics for the sequential and the parallel portions of the sched-

ule, broken down into processing time, idle time, and runtime overheads.

Additionally, Parana can produce similar reports per parallel or work sharing region. This
gives the user the ability to view, in a single report, the detailed statistics at application-level,
as well as for each OpenMP parallel region and more readily assess parallelization gains and
bottlenecks. An example of a Parana’s output report for the FAST application – for the paral-
lelization scenario consisting of an outer-loop parallelization with dynamic scheduling – is given
in Appendix A, Listing A.1.

5.5 Experimental Setup

5.5.1 Platform Architecture

The target platform is the STxP70 ASMP from STMicroelectronics, which is analogue to a
single cluster of the STHORM many-core platform [149]. The STxP70 ASMP is a configurable
Symmetric Multiprocessing (SMP) architecture with up to 16 STxP70 cores – 32-bit dual-issue
Reduced Instruction Set Computer (RISC) CPUs. Its architectural template is depicted in Figure 5.8.
The experiments are done on an STxP70 ASMP configuration with 512 KB of shared data memory,
organized into 32 memory banks. For more details on the STxP70 ASMP platform and its parallel
runtime refer to Section 2.2.3.

5.5.2 Execution Vehicles

Gepop Simulator. Gepop is a cycle-approximate simulator for the STxP70 ASMP platform
and constitutes the reference platform for the platform characterization in Parana. It is built over
STxP70 ISS simulators and integrates hardware device models for other platform components
such as DMAs, memories and interconnects. Its margin of error is evaluated to be in the order of
10% from that obtained from a physical device.

Field Programmable Gate Array (FPGA) Prototype. A prototype of the STxP70 ASMP on the
Xilinx VC707 FPGA is used for comparison. Due to device occupancy constraints, the core count
and the L1 shared data memory size in the FPGA prototype are limited to 8 STxP70 cores and
512 KB, respectively. FPGA prototype runs are used to validate the timing figures provided by
Gepop and the Parana estimates.

Parana. The proposed tool is a trace-diven simulator that can estimate the parallel perfor-
mance of an application from its sequential execution traces and a set of OpenMP directives for
different parallelization scenarios. It uses Gepop produced traces for characterization, as well as
for the reference sequential traces for its parallelization estimates.
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Figure 5.8: Architectural template of the STxP70 ASMP.

5.5.3 Applications

Integer Sort (IS). The NASA Advanced Supercomputing Division (NAS) Parallel Benchmark
(NPB) suite’s [108] IS benchmark was selected as a parallel OpenMP version implemented in C
is directly provided. Two adaptations were made to the original version. First, due to the limited
shared L1 data memory size, a smaller data class has been implemented to fit the memory
constraints, which was named Tiny class, or T class. Second, as the STxP70 ASMP’s OpenMP
runtime does not yet support the threadprivate OpenMP directive used in the random function
that generates the values to be sorted, they were replaced with the rand_r function.

Fast Features for Accelerated Segment Test (FAST). A 9-16 FAST corner detector commonly
used in computer vision to select key points in a number of tracking and detection applications
has been ported onto the STxP70 ASMP. The reference implementation is that provided in
OpenCV [42] version 2.4.6, which has been rewritten in C for the STxP70 ASMP and parallelized
with OpenMP. Four parallelization scenarios are tested:

1. Inner-loop parallelization with static scheduling.
2. Inner-loop parallelization with dynamic scheduling.
3. Outer-loop parallelization with static scheduling.
4. Outer-loop parallelization with dynamic scheduling.

Edge Detection (ED). The edge detection application contains three main kernels: the first is
a 3×3 low-pass filter; the second is a 3×3 separable Sobel filter used to compute edge orientation
and magnitude, and then mark edge pixels and assign them a weight; and the third is a non-
maxima suppression kernel that keeps only the strongest edge pixels in a 3×3 neighborhood. The
kernels execute in sequence and are parallelized independently. Four parallelization scenarios
are tested, which are the same as for the FAST application.

5.6 Results

5.6.1 Speedup Estimates

Figures 5.9–5.11 provide the application parallel speedup results for the selected appli-
cations, as well as the relative error of Parana’s estimations relative to the reference Gepop
simulator. The application parallel speedup for n processors is computed as S(n) =

tseq
tpar (n) , or the

ratio between the duration of the sequential baseline schedule and the duration of the parallel
schedule with n processors in parallel. From these results, we conclude that Parana’s parallel
speedup estimates have an average mean percentage error of 5.2%, with a maximum absolute
error of 12.4%.
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NPB Integer Sort (IS) class ’T’
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Figure 5.9: Comparison of the NPB IS benchmark speedup estimates from Parana against measure-
ments from the Gepop ISS simulator and an FPGA prototype. Left: speedup relative to the sequential
version. Center: Speedup error relative to Gepop. Right: Cycle stacks showing the impact of different
overhead sources.

The NPB Integer Sort benchmark presents a high portion of sequential code, which can be
seen in the cycle stack in Figure 5.9. The high proportion of sequential code limits the maximum
theoretical parallel speedup attainable to ∼ 3.5x for 8 cores, as can be seen in the Amdahl’s Law
speedup curve. The low portion of parallel code incurs from the small data set used. The overall
speedup for this data set is thus very poor. From the speedup and error curves it is possible
to see that Parana’s speedup predictions follow the Gepop and FPGA measurements. Higher
mismatches occur with increasing number of threads, which are mostly due to a reduction
operation that is dependent on the number of threads. This operation is not executed in the
sequential version of the application, and thus not captured in the application traces used by
Parana. The contribution of the runtime overheads are significant for such a reduced dataset,
especially for higher processor counts.

The FAST Corner Detection application in Figure 5.10, has a very high parallel portion
for an outer-loop parallelization, which enables a good parallel efficiency. For the inner-loop
parallelization, the maximum attainable speedup factor as per the Amdahl’s Law is just above
6x, but both the static and the dynamic scheduling policies saturate under 3.5x speedup due to
the increased overheads for a finer-grained scheduling. It is possible to see that the sources of
the overheads differ for both scheduling policies. While the static configuration presents a lower
runtime overhead, it also presents a poor load balancing. The dynamic configuration virtually
eliminates the load imbalance, but incurs higher runtime overheads.

The Edge Detection application in Figure 5.11, also presents a very high parallel portion
for an outer-loop parallelization, enabling nearly ideal speedups. Due to the high granularity
and the absence of load imbalance, the scheduling policies are not critical and present almost
identical results. For the inner-loop scheduling, the parallel portion drops, but is still higher than
for the FAST application. This results in a high parallel efficiency even using a finer granularity.
Differently from the FAST application, the static scheduling in the inner-loop parallelization
shows no significant load imbalance, with the highest overhead remaining the runtime itself.
Since scheduling costs for the dynamic scheduling policy are significantly higher, the speedup
achieved in scenario 2 saturates at ∼ 4x speedup for 8 cores.

Overall, Parana performance estimates show a good precision when compared to the Gepop
and FPGA measurements. The Amdahl’s Law figures computed by Parana provide clear guidance
to the programmer on the maximum speedup that can be expected. Moreover, effects that
negatively impact the parallel performance can be easily identified with the provided cycle
stacks.
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FAST Corner Detection
Scenario 1: Inner-loop Parallelization with Static scheduling

●●

●

●

●
●

●
●

●

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Processors

S
pe

ed
up

 o
ve

r 
S

eq
ue

nt
ia

l

● Amdahl
FPGA
Gepop
Parana

−40%

−30%

−20%

−10%

0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8
Processors

S
pe

ed
up

 E
rr

or

FPGA
Gepop
Parana

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8
Processors

C
yc

le
 S

ta
ck

Sequential
Parallel Processing
Load Imbalance
Runtime Overheads
Idle Time

Scenario 2: Inner-loop Parallelization with Dynamic scheduling
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Scenario 3: Outer-loop Parallelization with Static scheduling
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Scenario 4: Outer-loop Parallelization with Dynamic scheduling
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Figure 5.10: Comparison of the FAST Corner Detection speedup estimates from Parana against
measurements from the Gepop ISS simulator and an FPGA prototype. Left: speedup relative to the
sequential version. Center: Speedup error relative to Gepop. Right: Cycle stacks showing the impact of
different overhead sources.
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Edge Detection
Scenario 1: Inner-loop Parallelization with Static scheduling
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Scenario 2: Inner-loop Parallelization with Dynamic scheduling
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Scenario 3: Outer-loop Parallelization with Static scheduling
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Scenario 4: Outer-loop Parallelization with Dynamic scheduling
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Figure 5.11: Comparison of the Edge Detection speedup estimates from Parana against measurements
from the Gepop ISS simulator and an FPGA prototype. Left: speedup relative to the sequential version.
Center: Speedup error relative to Gepop. Right: Cycle stacks showing the impact of different overhead
sources.
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Tool Type Inputs Design + Setup DSE
Application Instr. Time Effort Exe. Time Productivity Error Accuracy

FPGA Hardware Prototype Parallel No Days High 4:16s Low < 5% High
— Cycle-Accurate Sim. Parallel No Hours High — Low < 5% High

Gepop Cycle-Approximate Sim. Parallel No Hours Medium 4:33s Medium < 10% Medium
Kismet Critical Path Analysis Sequential No Seconds Low — Low > 10% Low

Parallel Prophet Mechanistic Analytical Model Sequential Yes Minutes Medium — Low < 10% Medium
Parana Mechanistic Analytical Model Sequential Yes Minutes Low 0:12s High < 10% Medium

Table 5.1: Comparison of simulation methods and related tools for parallel performance prediction.
Setup effort: time needed to prepare the software and platform for each design point (low: no modifica-
tions to original code; medium: some modification required; high: fully-functional version required).
Productivity: overall efficiency to setup and evaluate multiple design points (low: time-consuming;
high: fast). Accuracy: reported results accuracy compared to the final system performance (low: >10%
error; medium: <10% error; high: <5% error).

5.6.2 Execution Time

Table 5.1 lists the average execution time for all design points evaluated in the experiments
with the Gepop simulator, the FPGA prototype and Parana. Parana’s execution time was in
average 22x faster than the Gepop simulator. The emulation with the FPGA prototype is not
much faster than Gepop due to the time it takes to load the application code and to interactions
with the host PC in system calls, resulting in a 20.5x faster execution time with Parana on
average.

5.6.3 Key Benefits

The proposed methodology provides accurate parallel performance estimates early in the
design flow, even before having a working parallel version of the application. It allows for
fast design space exploration of both application parallelization scenarios and multiprocessor
configurations. The support of instruction set extensions demands only reacquiring the traces
with a rebuilt application on the extended platform. The cycle stacks aid system architects to
identify the most important parallel performance bottlenecks in the application.

5.6.4 Known Limitations

A key limitation of the methodology described herein is that it does not properly model
applications that circumvent standard OpenMP constructs to implement other sort of explicit
or dynamic parallel workload distribution. Memory contention and DMA transfers are not
currently modeled, but will be addressed in the near future. The applications in the experiments
do not make use of the DMA and do not seem to suffer from degradation due to memory
contention. Calls to the DMA Application Programming Interface (API) can be easily intercepted
with the proposed methodology and scheduled onto a dedicated resource in Parana’s schedule to
model a DMA.

As for memory contention modeling, although a detailed memory contention analysis would
require tracing individual memory accesses timestamps, we believe the current model can be
easily extended to add a burden factor that estimates the contention overhead. This factor would
be determined by a statistical model based on the memory load in a given time interval, similar
to the cache modeling approach in [119].
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5.7 Conclusion

This section presents a methodology and a tool – Parana– for early joint design space
exploration of application parallelization strategies and multiprocessor platform’s parameters
from sequential application traces. The results of the proposed methodology were compared
against metrics obtained from the execution of three OpenMP applications on the Gepop
cycle-approximate simulator and on an FPGA prototype of the STxP70 ASMP, under multiple
parallelization scenarios. We have demonstrated the accuracy of the solution in estimating the
parallel speedup, with a margin of error in the order of 10% from the reference ISS simulator,
as well as its interest in identifying the sources of scalability issues via the cycle stacks. Parana
is thus accurate enough to help the designer to select only the most promising parallelization
strategies very early in the design process, an order of magnitude faster and with less effort than
with a traditional ISS simulator.

Our future explorations will aim at modeling DMA transfers and shared memory conflicts
to increase Parana’s domain of addressable applications and prediction accuracy. We also
wish to investigate the usage of Parana’s task graphs to estimate the effect of higher-level loop
transformations, such as loop fusion or loop tiling.
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Chapter 6

Image Tile Sizing Based on
Non-Linear Constraints

Abstract
Tiling is a key aspect of the design of embedded image processing applications, due to local

memory constraints. To maximize system performance, the designer must select a suitable tile
size that balances data transfers and computation. This chapter presents a method for optimal 2D
image tile sizing using constraint programming. Unlike previous algebraic methods, like those
from Darte et al. [57] and Feautrier [67, 68], and recent models based on constraint optimization,
such as proposed by Saïdi et al. [177], the model proposed herein is a constraint optimization
model that integrates non-linear DMA data transfer times and parallel scheduling overheads for
an increased accuracy. The experiments with a binomial filter demonstrates that the proposed
method allows to compute the optimal tiling dimensions that minimize the execution time
for different image sizes and internal memory constraints. This technique provides invaluable
information for both application developers and system architects that can quickly explore
design trade-offs.
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6.1 Introduction

Image processing applications that run on embedded multiprocessor platforms often use
input/output data buffers that are located in an external memory. Such data buffers are used
either as a way to exchange data between different subsystems, or simply because the amount of
data is too large to fit a system’s limited data memory. As an external memory’s access time is
much higher than that of the local memory, the data needs to be transferred to the local memory
to be processed locally. The output data are then written back to the external memory. In systems
with explicitly managed memory, with no data caching mechanism, it is up to the programmer
to manage all data transfers between external and internal memory spaces. A common solution
to this problem is to apply the tiling technique, which consists in subdividing the data into
smaller subregions, also called tiles, that are small enough to fit the local memory and that can
be processed independently.

In order to make a better use of the available resources, tile processing is usually imple-
mented as a three-stage pipeline whose stages are: (i) read input data from the external memory
and store it in a temporary local memory buffer; (ii) process the data locally; and (iii) write the
output data back to the external memory. Figure 6.1 illustrates such a three-stage tile processing
pipeline. Tiling benefits include reducing the footprint of local memory buffers and reducing
the application’s latency by allowing the overlap of data transfers and computation.

The question is how to select optimal tiling dimensions? Larger tiles present better data
sharing, but result in larger latencies for the read and write stages. Conversely, smaller tiles incur
higher overheads and their transfer time might be dominated by the DMA latency. Moreover,
the tile aspect ratio is also important. While a square tile might improve data sharing, wider
tiles tend to present lower transfer times. This is due to the asymmetry in DMA data transfer
times, which incur additional overheads when accessing a different line. All of these factors
must be jointly considered when selecting the tile size, making it difficult for the programmer to
find the optimal solution.

To ease the burden on programmers, some compilers have integrated automatic tiling sup-
port, via recent polyhedral compilation techniques. Examples of such compilers are PLuTO [40]
and PolyMage [153], both from Bondhugula et al., as well as the commercial R-Stream com-
piler [184, 14] from Reservoir Labs. Such compilers perform affine loop transformations that
increase data locality and memory throughput in cached architectures. Darte et al. proved in [58]
that polyhedral compilation techniques can produce asymptotically optimal schedules for cases
with uniform dependencies. Their optimality is therefore not guaranteed for system schedules
with low iteration (or tile) counts. While a high number of iterations is a plausible hypothesis for
High Performance Computing (HPC) applications, this is less so for real-time embedded vision
systems that often work with fairly low resolution images. Furthermore, polyhedral compilation
cannot integrate non-linear performance models, which as the experiments from Section 4.7.5
show, are necessary to obtain a higher accuracy. Other methods use tiling to obtain a coarser
scheduling granularity in parallel systems [111, 152]. None of these methods, however, is able
to model explicit data transfers and scheduling dependencies with non-linear characteristics.

In a recent work by Saïdi et al. [177], the authors propose an analytical model for optimizing
the tiling of array processing algorithms in systems with explicitly managed memory and
define the analogous constrained optimization problem. However, their work relies on a linear
regression model of the DMA data transfer times that, as shown in section 4.7.5, can yield poor
results in some architectures. Furthermore, this method assumes tile dimensions are integer
divisors of the image dimensions, a constraint I believe is too limiting and that more optimal
solutions might be found if this restriction was lifted. Removing this restriction, however,
requires careful modeling of the remaining tiles at the last column and on the last row.
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Figure 6.1: Overview of the tiling pipeline concept as presented by Ievgen in [91]. It consists in
subdividing the image in a series of tiles, each of which can is (i) read from the external memory,
(ii) processed locally, and the results (iii) written back to the external memory to recompose an output
image.

This chapter describes a method for selecting the tiling parameters that minimizes the
execution time of a tiled parallel application kernel on an embedded multiprocessor. First, a
new accurate analytic model of the execution time is presented. The model presented here
differs from the work of Saïdi et al. [177] in that it targets an embedded multiprocessor platform
with a centralized DMA. It further integrates more accurate non-linear models of the DMA
transfer times and can handle any valid tile sizes. This model is then translated into a constraint
optimization problem and implemented in the Tilana tool using the Choco3 [200] constraint
optimization framework.

The contributions in this chapter are:

1. provide a new analytical model to estimate the execution time of an application kernel
that implements tiling, for any valid tile dimensions;

2. integrate a non-linear DMA performance model, described in section 4.7.5, for higher
accuracy in DMA timing estimations;

3. derive and integrate a model of the parallel overheads and of the tile scheduling depen-
dencies in a multiprocessor platform;

4. define and implement a constrained optimization model based on non-linear constraints
that allows to determine the optimal tile dimensions that minimize the execution time of
the parallel application kernel.

The remainder of this chapter is organized as follows. Section 6.2 states the problem and
section 6.3 provides the preliminary definitions. Section 6.4 details the step-by-step construction
of the execution time model for an application kernel that implements tiling. This initial model
is gradually extended to integrate tile scheduling constraints and overheads. Section 6.5 presents
how the analytical model is translated into a constrained optimization problem and implemented
in Tilana using the Choco3 [200] constraint optimization framework. Section 6.6 presents the
experiments done and the results obtained. A discussion ensues on how the model can be used to
analyze the impact of tiling dimensions on the performance in several cases. Finally, section 6.7
summarizes and concludes this chapter.
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Figure 6.2: Architectural template of the STxP70 ASMP.

6.2 Problem Definition

The problem addressed in this chapter is that of finding optimal tile dimensions that
minimize the execution time of an application kernel on an embedded multiprocessor platform
with explicitly managed memory. In this context, an application kernel is an user-defined code
section or function that takes a given set of input data, processes it, and returns a set of output
data based on the input data. It is assumed that a kernel is a non data-dependent point or local
algorithm that processes each point of the image iteratively. Furthermore, it is assumed that
kernel iterations are independent, that is, the computation of a given kernel iteration does not
depend on the results of any other iteration of the same kernel, and can therefore be executed in
parallel.

6.2.1 Target Multiprocessor Architecture and Programming Model

The work developed in this chapter focuses on embedded multiprocessor platforms with
explicitly managed memory. Figure 6.2 depicts the target architectural template. It is an
homogeneous multiprocessor architecture with a number of independent Multiple Instruction
Multiple Data (MIMD) processing elements. There exist at least two memory zones: an internal
shared memory with lower access latency but a limited capacity; and an external memory
with higher capacity but also increased access latency. Processing elements have access to
both internal and external memory zones. The internal memory is a multi-banked memory
which allows simultaneous access to independent banks and access conflicts are assumed to
be negligible. A centralized DMA handles data transfers between the internal and external
memories. It has independent read and write channels that handles data transfer requests
sequentially, in arrival order. The term read designates a transfer from the external memory to
the internal memory. Conversely, the term write designates a transfer from the internal memory
to the external memory.

The target parallel programming model is OpenMP [159]. Application kernels are assumed
to be parallelized via OpenMP data-parallel constructs, such as OpenMP parallel for loops. The
OpenMP parameters are acquired by the characterization process described in section 4.7.3.

More particularly, the platform modeled in this work is STMicroelectronics’s STxP70 ASMP,
detailed in section 2.2.3. Nonetheless, this work is not limited to this particular platform, and
can model any embedded multiprocessor platform matching the aforementioned architectural
criteria. The platform’s memory access times and DMA data transfer timing model are obtained
via the characterization process described in sections 4.7.4 and 4.7.5, respectively.
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Figure 6.3: Dependency graph between software pipeline stages for reading a tile into the local memory
(R), computing the tile (C), and writing back the results (W ).

6.2.2 Application Kernel Tiling as a Software Pipeline

The analytical model assumes an application kernel’s input and output data are located
in the external memory. Processing these data directly in the external memory is not a viable
option as the access latency can be orders of magnitude higher than that of the local memory. It
is thus necessary to first move the input data to the local memory, process it locally, and then
copy the results back to the output buffers in the external memory. This results in three software
stages: Read (R), Compute (C) and Write (W ). Performing these three stages sequentially on the
entirety of the data, however, would not be efficient, as it would lead to an underutilization of
the processing elements and of the DMA read and write channels.

A more efficient solution is to use tiling so as to subdivide the data into smaller chunks
and to implement a software pipeline where the three aforementioned stages can be executed in
parallel. This solution achieves a higher utilization of the available resources and reduces the
execution time of the application kernel. Figure 6.3 shows the dependency relations between the
three software pipeline stages when using the tiling software pipeline solution to implement
the application kernel. Note that in a multiprocessor platform, compute stages can execute
in parallel, thus only their starting order is defined. As the target platform possesses a single
centralized dual-channel DMA, only one read and one write operation can execute at any given
time, hence the end-to-start relations between subsequent read and write nodes.

6.2.3 Finding the Optimal Tiling Parameters

The tile dimensions can have a deep impact in the final application kernel execution time
and need to be carefully selected. Depending on the kernel and target platform characteristics,
the execution time can be dominated by either one of the three pipeline stages. Such tiling
parameters must be adjusted for each combination of application kernel and multiprocessor
platform. The optimization of tile dimensions is addressed by defining a constrained optimiza-
tion problem with the goal of determining the width and height of the main tile type T 0 that
minimizes the execution time of the application kernel on the target platform.

Figure 6.4 shows three scheduling cases for four tiles of type T i , assuming a single com-
puting resource. In each case the execution time is dominated by a particular pipeline stage.
The execution time of the read and write stages are computed using the DMA performance
model described in section 4.7.5.3. The read stage time R(T i) is the time to perform a 2D DMA
data transfer of the dimensions of tile T i from the STxP70 ASMP’s L3 or L2 memory to the L1
memory. Conversely, the write stage time W (T i) is the time to perform a 2D DMA data transfer
of the dimensions of tile T i from the STxP70 ASMP’s L1 memory to the L2 or L3 memory. The
execution time of the compute stage C(T i) is a function of the T i tile dimensions and of the time
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Figure 6.4: Example of a scheduling for four tiles of type T i , assuming a single compute resource.
Three different cases are shown, where the time for R, C and W , respectively, dominate the other
two. Notice how the highlighted critical path changes in each case. In cases 1 and 3, the system is
memory-bound, while in case 2, the system is compute-bound.

to process the application kernel on a single point of the image, which is an input parameter of
the model and can be obtained by profiling the application. In the following sections, the details
of the application’s execution time analytical model are presented.

6.3 Preliminaries

6.3.1 Input Parameters

The problem of finding optimal tile dimensions is addressed in this thesis by defining a
constrained optimization problem with the goal of minimizing the execution time texe(K,I) of
the application kernel K on an input image I. A kernel K represents the data footprint needed to
compute a single output pixel.

Table 6.1 lists the complete set of input parameters for the tiling optimization, which
consist in: the input image width (wI ), height (hI ) and data type size (dsI ); kernel width (wK),
height (hK) and kernel execution time per iteration (tK); and the tiling memory size (ms).

Parameter Description
wI , hI , dsI Image width, height and data type size
wK, hK, tK Kernel width, height and iteration execution time
ms Memory size for tiling buffers

Table 6.1: List of input parameters for tiling optimization.
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6.3.2 Iteration and data footprint spaces

A distinction is made between the loop iteration space variables and data footprint space
variables. The former are used to count the number of loop iterations in a tile, where each loop
iteration processes a single point in the image. The latter are used to compute the dimensions
of the input data window necessary to process the tile. As an image processing kernel needs
surrounding data to process a single image point, the tile data footprint might exceed its
dimensions in loop iteration space. The convention established herein is that the 2D loop
iteration space for a tile is represented as an ordered pair (x,y), while data footprint is denoted
by the ordered pair (w,h).

is(K)=(xK, yK) =(1,1) (6.1)

df(K)=(wK,hK) (6.2)

is(I )=(xI , yI ) (6.3)

df(I )=(wI ,hI ) (6.4)

(6.5)

where is(obj) is a function that retrieves the size of a given object obj in iteration space, and df
is a function that retrieves the size of the parameter object in data footprint space. A kernel’s
iteration space is a single point, while its data footprint corresponds to the dimension of the
input data necessary to compute said point. Variables wK, hK, wI and hI are input parameters,
and the xI and yI values are computed as:

xI=wI −wK + 1 (6.6)

yI=hI − hK + 1 (6.7)

6.3.3 Tile types

The full iteration space of the image (is(I)) is divided into tiles of four types. Figure 6.5
depicts the four tile types: regular tiles (T 0), tiles in the last column (T 1), tiles in the last row
(T 2), and the last bottom right tile (T 3). The relation between the tile dimensions and the
number of tiles of each type in the image is given by:

xI=a · x0 + b · x1 (6.8)

yI=c · y0 + d · y1 (6.9)

is(I )=(xI , yI ) (6.10)

is(T 0)=(x0, y0) (6.11)

is(T 1)=(x1, y0) (6.12)

is(T 2)=(x0, y1) (6.13)

is(T 3)=(x1, y1) (6.14)
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Figure 6.5: Example of a 2D image tiling instantiation.

An image I of type I , has a set of tiles T. The subset of all tiles of type T i in I is denoted
as Ti . A function η (Ti) is defined to retrieve the number of tiles T i in a set of tiles Ti , with ηx
further representing the number of tiles in the horizontal direction, and ηy the number of tiles
in the vertical direction:

η(T0)=a · c (6.15)

η(T1)=b · c (6.16)

η(T2)=a · d (6.17)

η(T3)=b · d (6.18)

ηx(T0)=a (6.19)

ηx(T1)=b (6.20)

ηx(T2)=a (6.21)

ηx(T3)=b (6.22)

ηy(T0)=c (6.23)

ηy(T1)=c (6.24)

ηy(T2)=d (6.25)

ηy(T3)=d (6.26)

The data footprint for each tile type is related to the tile iteration space dimensions and the
kernel data footprint by:

wi=H(xi − 1) · (xi +wK − 1), ∀i ∈ {I ,0,1} (6.27)

hi=H(yi − 1) · (yi + hK − 1) , ∀i ∈ {I ,0,1} (6.28)

df(I )=(wI ,hI ) (6.29)

df(T 0)=(w0,h0) (6.30)

df(T 1)=(w1,h0) (6.31)

df(T 2)=(w0,h1) (6.32)

df(T 3)=(w1,h1) (6.33)

where H(i) is the Heaviside step function, defined as:

H(i)=
{

0 if i < 0,

1 if i ≥ 0.
(6.34)
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Area values for each tile type in loop iteration space of data footprint space – denoted by
A(is(T )) and A(df(T )) – are computed by multiplying the respective width and height:

v=(v0,v1) (6.35)

πi(v)=vi (6.36)

A(v)=
∏
i

πi(v) (6.37)

A(is(I ))=
∏
i

πi(is(I )) = xI · yI (6.38)

A(df(I ))=
∏
i

πi(df(I )) = wI · hI (6.39)

Appendix C provides a summary list of the tiling parameters and mathematical definitions,
each followed by their associated descriptions.

6.4 Execution Performance Model

This section details the step-by-step construction of the execution performance model for an
application kernel that implements tiling. This initial model is gradually extended to integrate
tile scheduling constraints and overheads. Initially, subsection 6.4.1 defines the time of the
compute pipeline stage execution for a single tile, which is referred to in subsection 6.4.2 for
defining the isolated computation time of a single tile. Then, subsection 6.4.3 presents the model
for computing the execution time for a set of tiles of a same type in an unbounded schedule,
that is, a schedule considering an unlimited number of processing elements. Subsequently,
subsection 6.4.4 derives the model for computing the execution time for a set of tiles of a same
type in a bounded schedule, one in which the number of processors is fixed. The combination
of the bounded execution time model for all tile types in an image is given in subsection 6.4.5,
considering no parallel runtime overheads. The final subsection 6.4.6 introduces the OpenMP
parallel overheads, producing the complete execution performance model for an application
kernel that implements tiling. This model will serve as a basis for deriving the constraint
optimization problem in section 6.5.

6.4.1 Single Tile Computation Time

The analytical model assumes the computation time for one kernel execution to be constant
and given by the input kernel execution time parameter (tK). The total time for completing the
execution of the compute stage is thus the sum of the kernel computation time at each iteration
point in a tile of class T i :

C(T i)=tK · A(is(T i)) (6.40)

6.4.2 Single Tile Execution Time

The execution time of a single tile tsexe(T i) for a tile of class T i , assuming no inter-tile
dependencies, is a sum of the duration of the three pipeline stages R, C and W for such a tile,
and is given by:

tsexe(T i) = R(T i) +C(T i) +W (T i) (6.41)
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Figure 6.6: Example of unbounded and bounded tile scheduling. From the unbounded tile schedule,
which assumes one computing resource per tile, it is possible to determine the initiation interval (ii) –
the time interval between two iterations in the steady-state.

6.4.3 Unbounded Tile Scheduling

To compute the execution time for the schedule of all tiles Ti of a given class T i , let’s assume
initially an unbounded number of processors. As the DMA is centralized, it is a shared resource
that can only be used to read and write one tile in each channel at a time. Figure 6.6 shows an
example of one such unbounded schedule. The time interval between the start of two consecutive
tiles of a same class is modeled by the initiation interval ii. This factor is simply the maximum
between the read stage R and write stage W times:

ii(T i) = max(R(T i),W (T i)) (6.42)

The unbounded execution time tuexe(Ti) for the set of tiles Ti of class T i can then be written
as:

tuexe(Ti)=H(η(Ti)− 1) · tsexe(T i) +R(η(Ti)− 1) · ii(T i) (6.43)

where R(i) is the ramp function:

R(i) = max(i,0) (6.44)
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6.4.4 Bounding the Number of Processors

When building a schedule with a bounded number of processors p, if all p processors are
busy, the next tile can only be schedule once one of the processors is done. Figure 6.6 provides
an example of a bounded schedule with two computing resources. It is possible to see from the
schedule that C2 could not start by the next initiation interval since all computing resources
were busy, and had to be delayed until C0 was completed. The resulting time shift induced by
these dependencies can be thought of as gaps in the schedule, and are modeled by a gap factor.
As C3 is already one initiation interval after C2, its start time coincides with the end time of C1,
resulting in no additional gaps.

In such a bounded schedule, two cases might arise. If the duration of the compute stage
C(T i) for a given tile class T i is inferior or equal to its initiation interval ii(T i), the computation
is memory-bound and increasing the number of processing elements should bring no benefits.
In this case, the initiation interval alone will throttle the execution of subsequent iterations
and the gap factor will be zero. If, however, the compute stage’s duration C(T i) is superior to
the initiation interval ii(T i), the schedule of loop iterations might present dependencies with
previous iterations. Such dependencies are modeled by the gap factor gap(T ,p), a function of a
given tile class T i and the number of processors p, defined as follows:

gap(T i ,p)=R(C(T i)− ii(T i) · R(p − 1)) (6.45)

The number of times a gap will occur on the schedule, during the execution of a set of tiles
Ti of class T i on p processors is given by ηgap(Ti ,p) as follows:

ηgap(Ti ,p)=
⌊
R(η(Ti)− 1)

p

⌋
(6.46)

Reintroducing these two factors in the expression of the unbounded tile execution time
tuexe(Ti) from Eq. (6.43) leads to the following expression for the bounded tile execution time
tbexe(Ti ,p):

tbexe(Ti ,p)=H(η(Ti)− 1) · tsexe(T i) +R(η(Ti)− 1) · ii(T i) + ηgap(Ti ,p) · gap(T i) (6.47)

6.4.5 Combining All Tile Types

Computing the execution time for the entire image tallexe(I ) thus requires the combination
of the execution times of all of the image tiles. This model assumes a grouped execution of all
image tiles of a same type T i , therefore belonging to subset Ti . Therefore, the first tile of a class
T i in Ti will only be scheduled after the last tile of the previous class T i−1 in Ti−1. Thus, tallexe(I )
is computed by summing the bounded execution time tbexe(Ti) from Eq. (6.43) for all tile types.

The implementation of such a scheduling order is possible via the definition of a mapping
function from a linear iteration index, to the location of the corresponding tile in the image, as
per the scheduling order established herein. Such a mapping function would be needed in any
case, unless the parallel 2D loop is collapsed via OpenMP directives, in which case the compiler
generates the necessary mapping functions. Defining this particular iteration order, however,
has the added benefit of grouping tiles with similar execution times together for improved load
balance. Furthermore, it enables the construction of a simpler accurate analytical model, than
would otherwise be possible if a simple raster scan order was used.

When assembling the combined scheduling of tiles of different types, two further aspects
need to be modeled. The first is the starting processor in which the first tile of a type is allocated,
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which might impact the number of gaps observed for a given tile type. The second is the
overlapping of the last tile of a type with the first tile of the following type in the schedule.

To compose the execution times of all tile types, first the end time in the schedule tallend(Ti ,p)
is defined for a set of tiles Ti . This end time is defined in relation to the start time tallstart(Ti ,p)
and to the execution time tallexe(Ti ,p) as follows:

tallend(Ti ,p)=tallstart(Ti ,p) + tallexe(Ti ,p) (6.48)

Addressing the first point requires taking into account the processor in which the first tile
of a given tile type will execute. A gap will only occur when trying to schedule a new tile when
all of the processors are already busy. Changing the starting processor might thus impact the
number of gaps in the schedule of tiles in a given tile set Ti . A gap offset factor gapof f is thus
added to the expression of the number of gaps – ηgap(Ti ,p) from Eq. (6.46) – for tiles in a given
tile set Ti with i larger than zero1, what yields:

gapof f (Ti ,p)=



 ∑
j=0...i

η(Tj )

 mod p if i > 0,

0 if i ≤ 0.

(6.49)

ηallgap(Ti ,p)=

R(η(Ti)− 1) + gapof f (Ti−1,p)

p

 (6.50)

The expression for the bounded tile execution time tbexe(Ti ,p) in Eq. (6.47) can then be
rewritten to consider the modified expression for the number of gaps in Eq. (6.50) as follows:

tallexe(Ti ,p)=H(η(Ti)− 1) · tsexe(T i) +R(η(Ti)− 1) · ii(T i) + ηallgap(Ti ,p) · gap(T i) (6.51)

The second point relative to the overlapping of the last tile of a type with the first tile of
the following type in the schedule can be more easily addressed by separating the problem in
two. First, the earliest possible start time tallearliest(T

i ,p) for tiles in Ti is computed. For this, it is
assumed the first tile’s write stage starts as soon as the last tile of the previous type in Ti−1 has
completed the execution of its write stage:

tallearliest(T
0,p)=tallstart(T0,p) (6.52)

tallearliest(T
i ,p)=tallend(Ti−1,p)−H(η(Ti)− 1) · [R(T i) +C(T i)] ,∀i , 0 (6.53)

Second, the time tallnext(Ti ,p) at which one next tile of class T i could be scheduled is computed,
supposing Ti contained one more tile:

tallnext(Ti ,p)=H(η(Ti)− 1) · [tend(Ti ,p)−C(T i)−W (T i) +Z(gapof f (Ti ,p)) · gap(Ti ,p)] (6.54)

where Z is an indicator function of the value zero defined as:

Z(i)=
{

1 if i = 0,

0 if i , 0.
(6.55)

1The gap offset factor gapof f is always zero for the first set of tiles T0.
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Finally, the starting time tallstart(Ti ,p) for the first tile in Ti is the latest time among the earliest
time a tile of the same type could start tallearliest(T

i ,p) and, tallnext(T j ,p), the time the next tile in Tj
would start, for all previous tile sets Tj where j ∈ {0 . . . i − 1}:

tallstart(Ti ,p)=max(tallearliest(T
i ,p), max

j=0...i−1
(tallnext(Tj ,p)) (6.56)

Assuming no parallelization overheads, the timings for the entire image are related to the
individual tile type times by:

tallstart(I ,p)=tallstart(T0,p) (6.57)

tallend(I ,p)=tallend(T3,p) (6.58)

tallexe(I ,p)=tallend(I ,p)− tallstart(I ,p) (6.59)

=tallend(T3,p)− tallstart(T0,p)

6.4.6 Introducing Parallel Scheduling Overheads

The OpenMP parallel runtime introduces a number of scheduling overheads which need
to be accounted for in the model. Such overheads are characterized using the methodology
described in section 4.7.3 of this thesis. It is assumed the application kernel loops are parallelized
with an OpenMP parallel for directive, with a static schedule, over all available processors. The
scheduling overheads needed to account for the OpenMP parallel for loop are collapsed into
the following three factors: OPopen, the overhead to open an OpenMP parallel region; OPsched ,
the overhead at each OpenMP tile loop iteration; and OPclose, the overhead to close the parallel
region. Therefore, this section redefines some of the expressions from previous sections to
include these overheads.

Parallel regions open and close overheads occur upon entering and exiting the application
kernel’s processing loop. To model these overheads, two new variables are defined, namely:
tparstart(I ) and tparend(I ). These two variables are used to add such overheads around the start and
end times of the image on the original bounded schedule, tbstart(I ) and tbend(I ) from Eq. (6.57)
and (6.58), as follows:

tparstart(I )=tparstart(T
0)−OPopen (6.60)

tparend(I )=tbend(T3) +OPclose (6.61)

The next step is to model the overhead of a each OpenMP tile loop iteration. To achieve this,
first the value of OPsched is added to the execution time of the first tile of any given tile class
tsexe(T i) from Eq. (6.41). Then, the OPsched value is added to the initiation interval for subsequent
tiles ii(T i) from Eq. (6.42) as well. The new expressions for the ts,parexe and iipar then become:

iipar (T i)=ii(T i) +OPsched (6.62)

ts,parexe (T i)=tsexe(T i) +OPsched (6.63)
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Finally, the execution time of the application kernel on an image, including OpenMP
overheads, can be expressed as:

gappar (T i ,p)=R(C(T i)− iipar (T i) · R(p − 1)) (6.64)

tparearliest(T
0,p)=tparstart(T

0,p) (6.65)

tparearliest(T
i ,p)=tparend(Ti−1,p)−H(η(Ti)− 1) · [R(T i) +C(T i)] ,∀i , 0 (6.66)

tparnext(T
i ,p)=H(η(Ti)− 1) (6.67)

· [tparend(Ti ,p)−C(T i)−W (T i) +Z(gapof f (Ti ,p)) · gappar (Ti ,p)]

tparstart(T
i ,p)=max(tparearliest(T

i ,p), max
j=0...i−1

(tparnext(T
j ,p)) (6.68)

tparexe (Ti ,p)=H(η(Ti)− 1) · ts,parexe (T i) +R(η(Ti)− 1) · iipar (T i) + ηgap(Ti ,p) · gappar (T i)(6.69)

tparend(Ti ,p)=tparstart(T
i ,p) + tparexe (Ti ,p) (6.70)

tparexe (I ,p)=tparend(I ,p)− tparstart(I ,p) (6.71)

=tparend(T3,p)− tparstart(T
0,p) +OPopen +OPclose

This model presented in this section is able to determine the execution time of the ap-
plication kernel tiling for a given image and number of processors. The performance model
also indirectly models the impact of changing tile dimensions via the definition of the tile size
parameters previously established in section 6.3. The tile sizes will impact the durations of the
three pipeline stages, as well as the number of tiles of each class, which are directly used in the
model defined in this section. This model is the base for the constraint optimization problem
presented in section 6.5.

6.5 Constraint Optimization

6.5.1 Objectives

The execution model described in Section 6.4 allows to compute the execution time given a
set of tiling, application and platform parameters. However, in order to determine the values
of the input parameters that minimize the execution time, an optimization problem must be
defined. This section presents the transformation of the analytical execution performance
model into a constrained optimization problem. Figure 6.7 depicts the constraint optimization
flow and the relationships between its components and the execution model. This constrained
optimization problem is then processed by a constraint optimization solver, which is able to
determine the optimal solution(s) that satisfies a given minimization condition.

The analytical model for the application kernel’s execution time has been implemented
in the Choco3 [200] Constraint Programming (CP) framework. A CP solver performs a search
over the domain of possible values for the variables that satisfy all of the given constraints.
Several advanced techniques are used in the solver engine to optimize the search strategy, and
thus enable it to handle large search spaces [166]. This is the main advantage of relying on a
constraint solver to find a solution, rather than exploring the entire search space and, for each
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Figure 6.7: Constrained Optimization Flow

point, computing the output variables using the analytical model. Furthermore, and contrarily
to an Linear Programming (LP) solver, a CP solver is capable of handling non-linear constraints,
which enables its usage for the model described in this work.

The CP solver is used to, given a min-max range of values for the input parameters in
Table 6.1, find the tile size wT and hT that minimize the parallel execution time of the kernel
computation over the entire image on p processors, tparexe (I ,p) from Eq. (6.71).

6.5.2 Constrained Optimization Problem Definition

The implementation of the analytical model consists in defining boolean or integer variables
in the CP solver for every analytical model variable and determining their domain bounds [165].
Then, the arithmetic and logical expressions of the analytical model are implemented as con-
straints on the previously defined CP variables. When defining the CP variables, care must be
taken when initializing the domain ranges for the bounded integer variables. In this implemen-
tation, the integer variable’s domain ranges are determined programmatically, from the values
of the input parameters, upon initialization of a new solver instance.

A particular issue encountered, was that of multiplying inversely proportional variables,
such as A(df(T 0])) and η(T 0). As the tile size increases, the number of tiles decreases, so that
the multiplication of the two is always less than the image size A(df(I )). The regular integer
times constraint in the CP solver updates the domain of the product naively by multiplying the
lower bounds and upper bounds of the multiplicand variables. It is often the case, especially for
higher values variables, that the resulting upper bound for the product variable overflows the
integer range. To avoid this problem, the solution was to implement a times constraint that lazily
evaluates and updates the domain of the variables, only restricting the product variable’s domain
when portions of it are unreachable. Moreover, internal calculations are done with 64-bit long
variables to detect and report 32-bit integer overflows.

The DMA model presented in section 4.7.5 is implemented as a new user-defined constraint
between input variables representing the 2D data transfer size and an output variable, repre-
senting the time for the data transfer. The input variables are then bound to the tile sizes, and
the output variables to their respective read and write stage time variables.
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6.5.3 Constraint Propagation, Solving and Optimization

After the solver has been instantiated with all variables and constraints, two main phases
take place: constraint propagation and constraint solving/optimization. The constraint propaga-
tion phase, performs a first propagation of the variable domains over the constraints with the
goal of reducing variable domains to only attainable values that respect the imposed constraints.
Constraint optimization is performed by first solving to find a feasible solution and, at each
subsequent solver run, imposing that the new solution be strictly better than the previous one.

Notice that additional constraints can be easily added to impose new restrictions or simply
to reduce the search space. For instance, subsampling the domains of the input variables to
speed-up resolution can be achieved by specifying two additional constraints where the modulo
of both T 0 width and height by a subsampling coefficient are zero. The system is thus very
flexible.

6.6 Results

6.6.1 Experimental Setup

The method described in this chapter was applied to a binomial filter [137] kernel, a com-
monly used image processing kernel, so as to find optimal tile dimensions. The binomial filter
kernel was profiled to obtain the kernel timing parameter (tK) on a cycle-approximate simulator
of the target platform, the STxP70v4 ASMP multiprocessor [103] described in Section 2.2.3.
The performance of the said kernel is analyzed for a varying number of processors, from 1 to
8 processors, with QVGA and VGA images, and both with or without considering OpenMP
overheads.

The first set of results in Figure 6.8 are presented as roofline graphs [213], providing a
straightforward way to visually compare the performance of several design points. In these
results, the line defined by the maximum nominal computational performance of the system
and the performance limits due to the maximum system memory bandwidth define the so-called
roofline. The roofline model thus indicates when the system is memory-bound – performance
limited by the memory bandwidth – or compute-bound, where performance is limited by the
computing resources. The maximum computational performance is obtained by estimating
the execution time for a given image using the same analytical expressions, but considering
DMA read and write transfers are instantaneous, so that R(T i) =W (T i) = 0 for any tile type T i .
Similarly, to obtain the performance limits due to the memory transfers, the execution time is
computed considering the computation stage is instantaneous, that is, C(T i) = 0.

A second set of results in Figure 6.9 compares the execution time for varying kernel exe-
cution time (tK) values. This is particularly useful to show that what-if analysis can be easily
performed to evaluate the trade-offs when increasing the number of processors, versus adding
instruction-set extensions or dedicated accelerators that would reduce the kernel execution
time (tK) value.

Finally, the last set of results in Figures 6.10–6.12 provide a number of Pareto graphs of the
execution time versus the total data transfer amount or the tile width. From these results it is
possible, for example, to select a trade-off between data transfer amount and execution time.
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6.6.2 Performance Analysis

Figure 6.8 shows the roofline graphs of the Binomial Filter estimated performance in terms
of frames per second versus the tile width, for (a-b)QVGA and (c)VGA images. A fixed tile aspect
ratio of 4:3 is assumed, thus resulting in a cross-section of the 2D tile size space. From the
Figure 6.8, it is possible to see that the maximum computational performance curves (shown as
straight dashed lines) only cross the maximum bandwidth curve (top-most dashed curve) for
small tile sizes and high processor counts. Only the 8-processor performance curve actually
meets the maximum memory bandwidth, and is thus fully memory-bound. As tile size increases,
the number of tiles to process decreases and load imbalance appears, generating some loss of
performance that varies irregularly with the tile size, a consequence of the non-linear behavior of
the system. Increasing the tile size further limits the available parallelism due to an insufficient
number of tiles, up to the point where performance drops back to that of a single processor.

Overall, performance is maximized at intermediary tile sizes, with all cases from 1 to 8
processors showing good scalability and nearly reaching the nominal computational performance
of the system at some ranges. However, the tile width range that maximizes the performance
shifts towards :

• lower values when increasing the number of processors, or
• higher values when increasing the input image size.

Binomial Filter Kernel Results (tK = 157)
Performance (Frames per Second @500Mhz) × Tile Width (fixed 4:3 aspect ratio)
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(a) QVGA image (no OpenMP ovh.)
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(b) QVGA image (with OpenMP ovh.)
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(c) VGA image (with OpenMP ovh.)

Figure 6.8: Execution time of the Binomial Filter kernel on QVGA and VGA images with and without
OpenMP scheduling overheads.
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For cases (b) and (c), that take into account the OpenMP parallelization overheads, a larger
impact in performance is observed for smaller tile sizes, a result of the finer parallelization
granularity. Increasing the tile size, and thus coarsening the parallelization granularity, amortizes
the parallelization overheads to the point where they eventually become negligible and the
performance virtually matches that of case (a) with no OpenMP overheads.

6.6.3 Exploring Implementation Trade-offs

Figure 6.9 shows the execution time results for varying kernel execution times (tK) from 1
to 8 processors. With this type of graph it is possible to perform what-if scenarios and evaluate
the expected performance gains to be obtained by decreasing the kernel time via hardware
accelerators and instruction-set extensions, versus increasing the number of processor cores.
Comparing the performance of the 8-core configuration in (a), versus the 1-core configuration in
(c), it is possible to see that the first presents better results for smaller tile sizes, while the second

Kernel Time vs. Processor Count Trade-Off Analysis
Performance (Frames per Second @500MHz) × Tile Width (fixed 4:3 aspect ratio)
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(a) tK = 800 cycles
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(b) tK = 400 cycles
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(c) tK = 100 cycles

Figure 6.9: Trade-off analysis of accelerating the execution time of a kernel (tK) either by increasing the
number of processors, or by using co-processors or dedicated accelerators to reduce the tK value. Results
shown are for processing a VGA image and take into account OpenMP static scheduling overheads.
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will present less load imbalance and be more efficient when processing larger tiles. The method
described herein thus allows to select appropriate tile sizes so as to maximize performance in
each case.

6.6.4 Execution Time versus Transferred Data or Tile Size

A trade-off exists between the amount of transferred data and the execution time. Figure 6.10
shows Pareto plots that allows the evaluation of such trade-offs for the Binomial Filter kernel.
These plots show the trade-offs between total transferred data in bytes and the execution time
for a single image processed by the Binomial Filter kernel in an STxP70 ASMP platform with
8 processors. Plots are shown for both QVGA images in Figure 6.10(a) and VGA images in
Figure 6.10(b). Yellow crosses and lines represent the result data points, while the darker red
line represents the Pareto frontier.
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Figure 6.10: Binomial Filter kernel’s Pareto frontier for minimum Execution Time vs. Data Transfer
Amount for a clock frequency of 500 Mhz.
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Figure 6.11: Binomial Filter kernel’s Pareto Frontier for minimum Execution Time vs. Tile Width for
a fixed 4:3 aspect ratio and a clock frequency of 500 Mhz.
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Figure 6.12: Binomial Filter kernel’s Pareto frontier for minimum Execution Time vs. Tile Width for a
free aspect ratio and a clock frequency of 500 MHz.

It is further possible to analyze the trade-offs between execution time and the tile size.
Figure 6.11 shows a Pareto plot of the execution time versus the tile width for a fixed aspect ratio
of 4:3. Figure 6.12 depicts the same trade-offs obtained by releasing the aspect ratio constraint.
Removing the aspect ratio constraint allows the solver to adjust the tile height so as to maintain
low execution times over a larger range of tile widths.

Overall, the proposed system is very flexible and can aid the designer in exploring several
scenarios. It allows designers to have a better understanding of the system behavior and to
determine the optimal tile size parameters for maximizing the system performance under a
given set of constraints. Unlike previous methods for determination of optimal data partitioning
and tiling, such as those proposed by from Andonov et al. [27] and Saïdi et al. [177], ours is
capable of accounting for the non-linear characteristics of the measured DMA data transfer
times so as to better model the platform and the application kernel execution time under tiling.

6.7 Conclusion

This chapter described a method for computing optimal 2D image tile sizes, suitable for
embedded image processing and computer vision applications. The proposed method expands
on previous methods as it :

1. Provides an analytical model which can estimate the application kernel performance under
tiling for any valid tiling dimensions, accounting for remaining last row/column tiles.

2. Integrates an accurate DMA performance model based on a mix of linear regression and
interpolation from DMA characterization data.

3. Models the intrinsic non-linear behavior of the system in a constraint optimization prob-
lem.

It was shown how a designer might use such a system to gain insights into the behavior
of the system, explore system architecture trade-offs, and finally select appropriate tile sizes
that maximize the system performance. The benefits of using Constraint Programming (CP) over
methods relying on polyhedral compilation is that CP can handle non-linear constraints and
provide optimal solutions, whereas polyhedral compilers only handle linear constraints and are
only guaranteed to provide asymptotically optimal solutions.
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6.7 Conclusion

As a further work, the method described in this chapter can be integrated in a joint applica-
tion and architecture design-space exploration flow. The goal being to automatically characterize
the application and determine the tiling strategy that provides the best trade-off between appli-
cation performance, data transfer amount and shared memory buffer sizes.
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Chapter 7

Conclusions and Perspectives

Abstract

This section presents the conclusions of the thesis and the future work.
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7.1 Conclusions

The objective of this thesis was to develop new methods and tools to aid in the parallelization
of embedded computer vision applications on application-specific multiprocessor systems. More
particularly, the work targeted STMicroelectronics multi- and many-core platforms. Initially, the
STHORM many-core platform was evaluated in order to determine the main problems when
porting an embedded application onto a parallel system. As the STHORM many-core platform
was discontinued in 2013, the work was redirected towards STHORM’s successor, the STxP70
Application-Specific Multiprocessor (ASMP) platform.

Several problems were identified in Chapter 2 from an initial critical case study that
consisted in porting and parallelizing a face detection application on STHORM. These problems
were restated in terms of design challenges – the capabilities and features that new methods
and tools needed to provide to the user in order to address the identified issues. The design
challenges identified and listed in Section 2.5 were:

Obtain fast and accurate application-level performance measurements. As has been discussed in
Section 2.3, the STHORM tools were not able to provide application-level performance measure-
ments for OpenCL applications, as they did not model the platform’s ARM host. The introduction
of the STxP70 ASMP platform and the change to the OpenMP parallel programming model
dispensed the need for an external host and made the collection of application-level performance
measurements possible. The method described in Chapter 4 for task trace collection and appli-
cation profiling allowed to gather detailed performance measurements of the application and
function level execution time via the generated function call trees profiles with low overheads.
Furthermore, the parallel performance estimation method described in Chapter 5 allowed to
obtain fast and accurate performance measurements for a number of different parallelization
scenarios and platform configurations.

Access to detailed profiling tools and data for analyzing application hot-spots. Neither STHORM
nor STxP70 ASMP had profiling tools capable of producing a function call tree profile for
analysis of application hot-spots. Chapter 4 presented a trace collection framework that relied
on the Trace Filter tool to process low-level instruction traces and produce high-level task traces
of the application. These task traces were then used in the Parana tool to produce reports with
function-level traces and function call tree profiling. This functionality is used both to allow
users to analyze their applications, as to automatically collect platform and parallel runtime
characterization information from microbenchmark traces.

Be able to discern and identify the factors that might limit an application’s speedup. In the
STHORM Software Development Kit (SDK) results, it was not possible to precisely determine the
contribution due to some important factors such as the load imbalance time in data-parallel
loops. A series of categories was defined for the Parana parallelization analysis reports in
Section 5.4.2. The information contained in these reports allows the user to identify the sources
of parallelization overheads and to determine their impact on the application’s execution time.

Quickly perform parallel application and multiprocessor design space exploration as early as
possible in the design flow. While useful to functionally validate an application and to acquire
performance metrics, simulators still require a fully functional parallel version of the application
code. Furthermore, each design point needs to be simulated independently, which can be
time-consuming. In Chapter 5 a method for fast parallel performance estimation and Design
Space Exploration (DSE) of application parallelization strategies and multiprocessor architectural
parameters was presented. The method relied on the Parana tool, a trace-driven simulator that
integrates a mechanistic model of the STxP70 ASMP’s OpenMP parallel runtime to accurately
estimate the parallel performance of an application. This method further allows to automatically
determine the Amdahl’s Law maximum theoretical speedup for that configuration and to
compute the parallel efficiency of the configuration.
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Analyze the trade-offs between the data transfers and computation. When partitioning the
application’s data-parallel loop iterations among threads, the developer needs to evaluate and
determine the partitioning scheme that leads to better platform utilization and optimal execution
time. A method for optimal 2D tiling parameter selection using constraint programming was
thus presented in Chapter 6. The method uses non-linear constraints to more accurately model
the DMA data transfer times and the OpenMP parallel runtime overheads. It allows the designer
to minimize the execution time of an image processing application kernel that uses tiling, as well
as to evaluate different trade-offs between the execution time and the amount of data transfers.

The contributions of this thesis can thus be summarized as follows:

1. Extension of the Edinburgh Parallel Computing Center (EPCC) OpenMP microbenchmarks
with DMA and memory microbenchmarks for platform characterization and development
of a trace collection framework and a characterization tool to automatically extract platform
and parallel runtime characterization parameters from the microbenchmark traces.

2. A method for fast and accurate parallel performance prediction and early DSE of embedded
multiprocessor architectural parameters and application parallelization strategies from
sequential code;

3. A method for optimal tiling parameter selection that relies on non-linear constraints to
minimize the execution time of an image processing application kernel.

7.2 Future Work

Include DMA data transfer models in Parana. The input and output data for a given com-
putation are exchanged with external devices via the external memory, but due to the high
access latency should be processed in the local shared memory. Transferring the data in and out
of the local memory can often represent a bottleneck in the application. Although Tilana has
support for the DMA data transfer models, this support still needs to be added for the parallel
performance estimation flow in Parana. Two ways can be envisaged to achieve this:

1. In a simpler implementation, the user could simply annotate the tasks in the parallel
scenario specifications with DMA input and output transfers. The timing of such transfers
would then be estimated using the DMA performance model and taken into consideration
by the Parana tool when performing the parallel task schedules.

2. In a more automated implementation, the data buffers to be handled would need to be
instrumented in the source code, so that accesses to these buffers could be intercepted
in the instruction traces by the Trace Filter tool. A bounding box geometry around the
memory accesses could be added to the task traces, which would then be used by the
Parana tool to estimate the DMA data movement costs when generating the schedule.

Integrate Tilana 2D tiling optimization with Parana. Parana can profile an application to
extract a function call tree. With the help of instrumentation, it could automatically extract the
necessary input parameters to the tiling analysis in Tilana. It could then, upon user request via
specific directives in the parallel scenario specs, invoke the Tilana tool to determine the best
tiling parameters and estimate the impact of said tiling inside the application-level parallel
performance estimation flow.

Include support for data-dependent kernels in Tilana. The tiling optimization model currently
used by Tilana assumes application kernels have constant execution times. Modeling data-
dependent kernels would require either using probabilistic models for kernel execution times or,
like Parana, the task trace of a particular application simulation run.

Detection of data-dependencies between loop iterations in Parana. Parana, like the OpenMP
programming model, cannot handle data-dependencies between different iterations. Some
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parallelization design aid tools such as Intel’s Advisor can detect such data-dependencies and
warn users so that they can take the appropriate measures.

Automatic parallel source code generation from the parallelization scenario specs. The OpenMP
directives in the parallelization scenario specifications could be combined to the original sequen-
tial code of the application to automatically generate a parallel source code.

Automatic application code instrumentation. Adding automatic instrumentation to all possible
parallelization candidate loops and sections might reduce the burden on the user and can lead
to a further automation of the parallelization DSE process. Several methods can be envisaged to
perform automatic instrumentation:

1. Using a code transformation tool like Coccinelle or OPARI to preprocess the source code
and instrument it before calling the compiler.

2. Adding a CLANG compiler pass to instrument the code during the compilation process.
3. Doing binary instrumentation with a program like Pin. Either a new program specific to

STMicroelectronics’s processors would need to be built, or support for STxP70’s binary
code would have to be added to Pin.

In any case, a method for selecting the loops and code sections to which apply the instrumentation
would need to be determined. Critical path analysis tools such as Kismet and Parkour instrument
all loops in the source code, but this might lead to unnecessarily large task trace files as very
small loops would rarely constitute good parallelization candidates.

Automatic Design Space Exploration (DSE). If automatic identification of potential paral-
lelization targets and automatic instrumentation are available, a DSE methodology could be
envisaged in which Parana could automatically generate and evaluate several parallelization
scenarios. Genetic algorithms could be used to select suitable candidates and evolve towards a
practical solution.

Include hardware IP models support. In a previous work by Ishikawa et al.[101], the authors
include hardware IP models in a cross platform performance estimation tool. A parametrizable
performance model of the hardware IP function is used to predict its execution time. A stub
function is used in acquiring application characterization data. Upon predicting the application-
level performance with the IP model, the stub function time is substituted with the timing
estimated by the analytical performance model. This method effectively allows to estimate the
gains that would be produced by replacing a software implementation of a particular function
by a hardware IP that implements the same function. The integration of such functionality in
Parana would allow the user to explore trade-offs in using IP models in different parallelization
scenarios and multiprocessor configurations.

Include energy consumption estimates. Characterizing the STxP70 ASMP’s energy consump-
tion for different operating modes and for each instruction could allow to quickly estimate the
energy consumed in a particular application parallelization scenario in Parana. Herglotz, Fey et
al. [84] propose a similar mechanism for functional simulators. Ducroux et al. [64] describe a
method for providing power estimations on the STHORM simulator, while more recently Atital-
lah et al. [31] proposed a power estimation methodology based on STHORM traces. Therefore,
such energy consumption information of the instructions could be collected directly from the
simulator or included by the Trace Filter tools upon processing the instruction traces. If tasks in
the application task traces were annotated with such information, we believe the Parana tool
could be extended to provide fairly accurate application energy consumption estimates in its
parallelization reports.
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Appendix A

Example of a Parana’s
Parallelization Analysis Report

Listing A.1: Example of Parana’s parallelization analysis report for the FAST application. This
report refers to the parallelization scenario consisting of an outer-loop parallelization with dynamic
scheduling. Refer to Chapter 5, Section 5.5 for more details on the experimental setup.

1 --------------------------------------------------------------------------------
2 PARANA
3 Parallel Analyzer
4 --------------------------------------------------------------------------------
5

6 Module: <module name>
7 SVN Revision: <svn revision tag>
8 Build Configuration:<cmake build configuration>
9 Compiler: <compiler name>

10 Executable: <executable file>
11 Command line: <command line arguments>
12 Simulator: <simulator name>
13 Core Configuration: <core configuration register values>
14 Date: <simulation date>
15

16 --------------------------------------------------------------------------------
17 Parallelization Analysis
18 --------------------------------------------------------------------------------
19

20 Sequential schedule
21 -------------------
22

23 Number of processors 1
24 Execution time (cycles) 18,644,418
25 Sequential time (cycles) 12,757 ( 0.1%)
26 Parallel time (cycles) 18,631,661 ( 99.9%)
27 - Processing (cycles) 18,631,661 ( 99.9%)
28 - Load imbalance (cycles) 0 ( 0.0%)
29 - Limited parallelism (cycles) 0 ( 0.0%)
30 Scheduling runtime (s) 5.3
31

32 Parallel schedule with 1 processor
33 ----------------------------------
34

35 Number of processors 1
36 Execution time (cycles) 18,689,291
37 Speedup 1.0x
38 Amdahl's Law Max. Speedup 1.0x
39 Parallel efficiency 99.8%
40 Sequential time (cycles) 12,757 ( 0.1%)
41 Parallel time (cycles) 18,676,534 ( 99.9%)
42 - Processing (cycles) 18,631,661 ( 99.7%)
43 - Load imbalance (cycles) 0 ( 0.0%)
44 - Limited parallelism (cycles) 0 ( 0.0%)
45 - Overhead (cycles) 44,873 ( 0.2%)
46 - Idle (cycles) 0 ( 0.0%)
47 Scheduling runtime (s) 4.3
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48

49 Parallel Region: 42 vaFastCornerDetect.for_y [PARALLEL]
50 -------------------------------------------------------
51 [*0] 1 __asmp_ind_crt0.
52 [+1] 13 main.
53 [+2] 14 vaFastCornerDetect.
54 [=3] 42 vaFastCornerDetect.for_y [PARALLEL]
55 Number of processors 1
56 Number of calls 1
57 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
58 Total time 6,019,785 32.2% 6,019,785 32.2%
59 Execution time 18,676,534 100.0% 18,676,534 100.0%
60 Sequential time 0 0.0% 0 0.0%
61 Parallel time 18,676,534 100.0% 18,676,534 100.0%
62 - Processing 5,974,912 32.0% 5,974,912 32.0%
63 - Load imbalance 0 0.0% 0 0.0%
64 - Limited parallelism 0 0.0% 0 0.0%
65 - Overhead 44,873 0.2% 44,873 0.2%
66 - Idle 0 0.0% 0 0.0%
67

68

69 Parallel Region: 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
70 --------------------------------------------------------------------
71 [*0] 1 __asmp_ind_crt0.
72 [+1] 13 main.
73 [+2] 14 vaFastCornerDetect.
74 [+3] 42 vaFastCornerDetect.for_y [PARALLEL]
75 [=4] 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
76 Number of processors 1
77 Number of calls 1
78 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
79 Total time 6,018,475 32.2% 6,018,475 32.2%
80 Execution time 18,675,224 100.0% 18,675,224 100.0%
81 Sequential time 0 0.0% 0 0.0%
82 Parallel time 18,675,224 100.0% 18,675,224 100.0%
83 - Processing 5,974,912 32.0% 5,974,912 32.0%
84 - Load imbalance 0 0.0% 0 0.0%
85 - Limited parallelism 0 0.0% 0 0.0%
86 - Overhead 43,563 0.2% 43,563 0.2%
87 - Idle 0 0.0% 0 0.0%
88

89 Parallel schedule with 2 processors
90 -----------------------------------
91

92 Number of processors 2
93 Execution time (cycles) 9,364,866
94 Speedup 2.0x
95 Amdahl's Law Max. Speedup 2.0x
96 Parallel efficiency 99.5%
97 Sequential time (cycles) 12,757 ( 0.1%)
98 Parallel time (cycles) 9,352,109 ( 99.9%)
99 - Processing (cycles) 9,315,831 ( 99.5%)

100 - Load imbalance (cycles) 12,884 ( 0.1%)
101 - Limited parallelism (cycles) 0 ( 0.0%)
102 - Overhead (cycles) 23,233 ( 0.2%)
103 - Idle (cycles) 162 ( 0.0%)
104 Scheduling runtime (s) 4.1
105

106 Parallel Region: 42 vaFastCornerDetect.for_y [PARALLEL]
107 -------------------------------------------------------
108 [*0] 1 __asmp_ind_crt0.
109 [+1] 13 main.
110 [+2] 14 vaFastCornerDetect.
111 [=3] 42 vaFastCornerDetect.for_y [PARALLEL]
112 Number of processors 2
113 Number of calls 1
114 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
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115 Total time 3,023,735 32.3% 3,023,735 32.3%
116 Execution time 9,352,109 100.0% 9,352,109 100.0%
117 Sequential time 0 0.0% 0 0.0%
118 Parallel time 9,352,109 100.0% 9,352,109 100.0%
119 - Processing 2,987,456 31.9% 2,987,456 31.9%
120 - Load imbalance 12,884 0.1% 12,884 0.1%
121 - Limited parallelism 0 0.0% 0 0.0%
122 - Overhead 23,233 0.2% 23,233 0.2%
123 - Idle 162 0.0% 162 0.0%
124

125 Parallel Region: 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
126 --------------------------------------------------------------------
127 [*0] 1 __asmp_ind_crt0.
128 [+1] 13 main.
129 [+2] 14 vaFastCornerDetect.
130 [+3] 42 vaFastCornerDetect.for_y [PARALLEL]
131 [=4] 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
132 Number of processors 2
133 Number of calls 1
134 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
135 Total time 3,022,387 32.3% 3,022,387 32.3%
136 Execution time 9,350,761 100.0% 9,350,761 100.0%
137 Sequential time 0 0.0% 0 0.0%
138 Parallel time 9,350,761 100.0% 9,350,761 100.0%
139 - Processing 2,987,456 31.9% 2,987,456 31.9%
140 - Load imbalance 12,870 0.1% 12,870 0.1%
141 - Limited parallelism 0 0.0% 0 0.0%
142 - Overhead 22,061 0.2% 22,061 0.2%
143 - Idle 0 0.0% 0 0.0%
144

145

146 Parallel schedule with 3 processors
147 -----------------------------------
148

149 Number of processors 3
150 Execution time (cycles) 6,259,883
151 Speedup 3.0x
152 Amdahl's Law Max. Speedup 3.0x
153 Parallel efficiency 99.3%
154 Sequential time (cycles) 12,757 ( 0.2%)
155 Parallel time (cycles) 6,247,126 ( 99.8%)
156 - Processing (cycles) 6,210,554 ( 99.2%)
157 - Load imbalance (cycles) 20,285 ( 0.3%)
158 - Limited parallelism (cycles) 0 ( 0.0%)
159 - Overhead (cycles) 16,071 ( 0.3%)
160 - Idle (cycles) 216 ( 0.0%)
161 Scheduling runtime (s) 4.1
162

163 Parallel Region: 42 vaFastCornerDetect.for_y [PARALLEL]
164 -------------------------------------------------------
165 [*0] 1 __asmp_ind_crt0.
166 [+1] 13 main.
167 [+2] 14 vaFastCornerDetect.
168 [=3] 42 vaFastCornerDetect.for_y [PARALLEL]
169 Number of processors 3
170 Number of calls 1
171 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
172 Total time 2,028,210 32.5% 2,028,210 32.5%
173 Execution time 6,247,126 100.0% 6,247,126 100.0%
174 Sequential time 0 0.0% 0 0.0%
175 Parallel time 6,247,126 100.0% 6,247,126 100.0%
176 - Processing 1,991,637 31.9% 1,991,637 31.9%
177 - Load imbalance 20,285 0.3% 20,285 0.3%
178 - Limited parallelism 0 0.0% 0 0.0%
179 - Overhead 16,071 0.3% 16,071 0.3%
180 - Idle 216 0.0% 216 0.0%
181
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182

183 Parallel Region: 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
184 --------------------------------------------------------------------
185 [*0] 1 __asmp_ind_crt0.
186 [+1] 13 main.
187 [+2] 14 vaFastCornerDetect.
188 [+3] 42 vaFastCornerDetect.for_y [PARALLEL]
189 [=4] 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
190 Number of processors 3
191 Number of calls 1
192 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
193 Total time 2,026,798 32.5% 2,026,798 32.5%
194 Execution time 6,245,714 100.0% 6,245,714 100.0%
195 Sequential time 0 0.0% 0 0.0%
196 Parallel time 6,245,714 100.0% 6,245,714 100.0%
197 - Processing 1,991,637 31.9% 1,991,637 31.9%
198 - Load imbalance 20,267 0.3% 20,267 0.3%
199 - Limited parallelism 0 0.0% 0 0.0%
200 - Overhead 14,893 0.2% 14,893 0.2%
201 - Idle 0 0.0% 0 0.0%
202

203

204 Parallel schedule with 4 processors
205 -----------------------------------
206

207 Number of processors 4
208 Execution time (cycles) 4,709,628
209 Speedup 4.0x
210 Amdahl's Law Max. Speedup 4.0x
211 Parallel efficiency 99.0%
212 Sequential time (cycles) 12,757 ( 0.3%)
213 Parallel time (cycles) 4,696,871 ( 99.7%)
214 - Processing (cycles) 4,657,915 ( 98.9%)
215 - Load imbalance (cycles) 26,191 ( 0.6%)
216 - Limited parallelism (cycles) 0 ( 0.0%)
217 - Overhead (cycles) 12,522 ( 0.3%)
218 - Idle (cycles) 243 ( 0.0%)
219 Scheduling runtime (s) 4.1
220

221 Parallel Region: 42 vaFastCornerDetect.for_y [PARALLEL]
222 -------------------------------------------------------
223 [*0] 1 __asmp_ind_crt0.
224 [+1] 13 main.
225 [+2] 14 vaFastCornerDetect.
226 [=3] 42 vaFastCornerDetect.for_y [PARALLEL]
227 Number of processors 4
228 Number of calls 1
229 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
230 Total time 1,532,684 32.6% 1,532,684 32.6%
231 Execution time 4,696,871 100.0% 4,696,871 100.0%
232 Sequential time 0 0.0% 0 0.0%
233 Parallel time 4,696,871 100.0% 4,696,871 100.0%
234 - Processing 1,493,728 31.8% 1,493,728 31.8%
235 - Load imbalance 26,191 0.6% 26,191 0.6%
236 - Limited parallelism 0 0.0% 0 0.0%
237 - Overhead 12,522 0.3% 12,522 0.3%
238 - Idle 243 0.0% 243 0.0%
239

240

241 Parallel Region: 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
242 --------------------------------------------------------------------
243 [*0] 1 __asmp_ind_crt0.
244 [+1] 13 main.
245 [+2] 14 vaFastCornerDetect.
246 [+3] 42 vaFastCornerDetect.for_y [PARALLEL]
247 [=4] 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
248 Number of processors 4
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249 Number of calls 1
250 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
251 Total time 1,531,208 32.6% 1,531,208 32.6%
252 Execution time 4,695,395 100.0% 4,695,395 100.0%
253 Sequential time 0 0.0% 0 0.0%
254 Parallel time 4,695,395 100.0% 4,695,395 100.0%
255 - Processing 1,493,728 31.8% 1,493,728 31.8%
256 - Load imbalance 26,171 0.6% 26,171 0.6%
257 - Limited parallelism 0 0.0% 0 0.0%
258 - Overhead 11,309 0.2% 11,309 0.2%
259 - Idle 0 0.0% 0 0.0%
260

261 Parallel schedule with 5 processors
262 -----------------------------------
263

264 Number of processors 5
265 Execution time (cycles) 3,794,241
266 Speedup 4.9x
267 Amdahl's Law Max. Speedup 5.0x
268 Parallel efficiency 98.3%
269 Sequential time (cycles) 12,757 ( 0.3%)
270 Parallel time (cycles) 3,781,484 ( 99.7%)
271 - Processing (cycles) 3,726,332 ( 98.2%)
272 - Load imbalance (cycles) 44,474 ( 1.2%)
273 - Limited parallelism (cycles) 0 ( 0.0%)
274 - Overhead (cycles) 10,418 ( 0.3%)
275 - Idle (cycles) 259 ( 0.0%)
276 Scheduling runtime (s) 4.4
277

278 Parallel Region: 42 vaFastCornerDetect.for_y [PARALLEL]
279 -------------------------------------------------------
280 [*0] 1 __asmp_ind_crt0.
281 [+1] 13 main.
282 [+2] 14 vaFastCornerDetect.
283 [=3] 42 vaFastCornerDetect.for_y [PARALLEL]
284 Number of processors 5
285 Number of calls 1
286 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
287 Total time 1,250,134 33.1% 1,250,134 33.1%
288 Execution time 3,781,484 100.0% 3,781,484 100.0%
289 Sequential time 0 0.0% 0 0.0%
290 Parallel time 3,781,484 100.0% 3,781,484 100.0%
291 - Processing 1,194,982 31.6% 1,194,982 31.6%
292 - Load imbalance 44,474 1.2% 44,474 1.2%
293 - Limited parallelism 0 0.0% 0 0.0%
294 - Overhead 10,418 0.3% 10,418 0.3%
295 - Idle 259 0.0% 259 0.0%
296

297

298 Parallel Region: 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
299 --------------------------------------------------------------------
300 [*0] 1 __asmp_ind_crt0.
301 [+1] 13 main.
302 [+2] 14 vaFastCornerDetect.
303 [+3] 42 vaFastCornerDetect.for_y [PARALLEL]
304 [=4] 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
305 Number of processors 5
306 Number of calls 1
307 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
308 Total time 1,248,594 33.0% 1,248,594 33.0%
309 Execution time 3,779,944 100.0% 3,779,944 100.0%
310 Sequential time 0 0.0% 0 0.0%
311 Parallel time 3,779,944 100.0% 3,779,944 100.0%
312 - Processing 1,194,982 31.6% 1,194,982 31.6%
313 - Load imbalance 44,453 1.2% 44,453 1.2%
314 - Limited parallelism 0 0.0% 0 0.0%
315 - Overhead 9,159 0.2% 9,159 0.2%
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316 - Idle 0 0.0% 0 0.0%
317

318

319 Parallel schedule with 6 processors
320 -----------------------------------
321

322 Number of processors 6
323 Execution time (cycles) 3,163,801
324 Speedup 5.9x
325 Amdahl's Law Max. Speedup 6.0x
326 Parallel efficiency 98.2%
327 Sequential time (cycles) 12,757 ( 0.4%)
328 Parallel time (cycles) 3,151,044 ( 99.6%)
329 - Processing (cycles) 3,105,277 ( 98.2%)
330 - Load imbalance (cycles) 36,460 ( 1.2%)
331 - Limited parallelism (cycles) 0 ( 0.0%)
332 - Overhead (cycles) 9,037 ( 0.3%)
333 - Idle (cycles) 270 ( 0.0%)
334 Scheduling runtime (s) 4.6
335

336 Parallel Region: 42 vaFastCornerDetect.for_y [PARALLEL]
337 -------------------------------------------------------
338 [*0] 1 __asmp_ind_crt0.
339 [+1] 13 main.
340 [+2] 14 vaFastCornerDetect.
341 [=3] 42 vaFastCornerDetect.for_y [PARALLEL]
342 Number of processors 6
343 Number of calls 1
344 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
345 Total time 1,041,586 33.1% 1,041,586 33.1%
346 Execution time 3,151,044 100.0% 3,151,044 100.0%
347 Sequential time 0 0.0% 0 0.0%
348 Parallel time 3,151,044 100.0% 3,151,044 100.0%
349 - Processing 995,819 31.6% 995,819 31.6%
350 - Load imbalance 36,460 1.2% 36,460 1.2%
351 - Limited parallelism 0 0.0% 0 0.0%
352 - Overhead 9,037 0.3% 9,037 0.3%
353 - Idle 270 0.0% 270 0.0%
354

355

356 Parallel Region: 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
357 --------------------------------------------------------------------
358 [*0] 1 __asmp_ind_crt0.
359 [+1] 13 main.
360 [+2] 14 vaFastCornerDetect.
361 [+3] 42 vaFastCornerDetect.for_y [PARALLEL]
362 [=4] 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
363 Number of processors 6
364 Number of calls 1
365 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
366 Total time 1,039,982 33.0% 1,039,982 33.0%
367 Execution time 3,149,440 100.0% 3,149,440 100.0%
368 Sequential time 0 0.0% 0 0.0%
369 Parallel time 3,149,440 100.0% 3,149,440 100.0%
370 - Processing 995,819 31.6% 995,819 31.6%
371 - Load imbalance 36,438 1.2% 36,438 1.2%
372 - Limited parallelism 0 0.0% 0 0.0%
373 - Overhead 7,726 0.2% 7,726 0.2%
374 - Idle 0 0.0% 0 0.0%
375

376 Parallel schedule with 7 processors
377 -----------------------------------
378

379 Number of processors 7
380 Execution time (cycles) 2,717,958
381 Speedup 6.9x
382 Amdahl's Law Max. Speedup 7.0x
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383 Parallel efficiency 98.0%
384 Sequential time (cycles) 12,757 ( 0.5%)
385 Parallel time (cycles) 2,705,201 ( 99.5%)
386 - Processing (cycles) 2,661,666 ( 97.9%)
387 - Load imbalance (cycles) 35,189 ( 1.3%)
388 - Limited parallelism (cycles) 0 ( 0.0%)
389 - Overhead (cycles) 8,069 ( 0.3%)
390 - Idle (cycles) 278 ( 0.0%)
391 Scheduling runtime (s) 4.1
392

393 Parallel Region: 42 vaFastCornerDetect.for_y [PARALLEL]
394 -------------------------------------------------------
395 [*0] 1 __asmp_ind_crt0.
396 [+1] 13 main.
397 [+2] 14 vaFastCornerDetect.
398 [=3] 42 vaFastCornerDetect.for_y [PARALLEL]
399 Number of processors 7
400 Number of calls 1
401 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
402 Total time 897,094 33.2% 897,094 33.2%
403 Execution time 2,705,201 100.0% 2,705,201 100.0%
404 Sequential time 0 0.0% 0 0.0%
405 Parallel time 2,705,201 100.0% 2,705,201 100.0%
406 - Processing 853,559 31.6% 853,559 31.6%
407 - Load imbalance 35,189 1.3% 35,189 1.3%
408 - Limited parallelism 0 0.0% 0 0.0%
409 - Overhead 8,069 0.3% 8,069 0.3%
410 - Idle 278 0.0% 278 0.0%
411

412

413 Parallel Region: 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
414 --------------------------------------------------------------------
415 [*0] 1 __asmp_ind_crt0.
416 [+1] 13 main.
417 [+2] 14 vaFastCornerDetect.
418 [+3] 42 vaFastCornerDetect.for_y [PARALLEL]
419 [=4] 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
420 Number of processors 7
421 Number of calls 1
422 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
423 Total time 895,426 33.1% 895,426 33.1%
424 Execution time 2,703,533 100.0% 2,703,533 100.0%
425 Sequential time 0 0.0% 0 0.0%
426 Parallel time 2,703,533 100.0% 2,703,533 100.0%
427 - Processing 853,559 31.6% 853,559 31.6%
428 - Load imbalance 35,166 1.3% 35,166 1.3%
429 - Limited parallelism 0 0.0% 0 0.0%
430 - Overhead 6,702 0.2% 6,702 0.2%
431 - Idle 0 0.0% 0 0.0%
432

433 Parallel schedule with 8 processors
434 -----------------------------------
435

436 Number of processors 8
437 Execution time (cycles) 2,391,652
438 Speedup 7.8x
439 Amdahl's Law Max. Speedup 8.0x
440 Parallel efficiency 97.4%
441 Sequential time (cycles) 12,757 ( 0.5%)
442 Parallel time (cycles) 2,378,895 ( 99.5%)
443 - Processing (cycles) 2,328,958 ( 97.4%)
444 - Load imbalance (cycles) 42,295 ( 1.8%)
445 - Limited parallelism (cycles) 0 ( 0.0%)
446 - Overhead (cycles) 7,359 ( 0.3%)
447 - Idle (cycles) 284 ( 0.0%)
448 Scheduling runtime (s) 4.1
449
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450 Parallel Region: 42 vaFastCornerDetect.for_y [PARALLEL]
451 -------------------------------------------------------
452 [*0] 1 __asmp_ind_crt0.
453 [+1] 13 main.
454 [+2] 14 vaFastCornerDetect.
455 [=3] 42 vaFastCornerDetect.for_y [PARALLEL]
456 Number of processors 8
457 Number of calls 1
458 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
459 Total time 796,801 33.5% 796,801 33.5%
460 Execution time 2,378,895 100.0% 2,378,895 100.0%
461 Sequential time 0 0.0% 0 0.0%
462 Parallel time 2,378,895 100.0% 2,378,895 100.0%
463 - Processing 746,864 31.4% 746,864 31.4%
464 - Load imbalance 42,295 1.8% 42,295 1.8%
465 - Limited parallelism 0 0.0% 0 0.0%
466 - Overhead 7,359 0.3% 7,359 0.3%
467 - Idle 284 0.0% 284 0.0%
468

469

470 Parallel Region: 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
471 --------------------------------------------------------------------
472 [*0] 1 __asmp_ind_crt0.
473 [+1] 13 main.
474 [+2] 14 vaFastCornerDetect.
475 [+3] 42 vaFastCornerDetect.for_y [PARALLEL]
476 [=4] 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
477 Number of processors 8
478 Number of calls 1
479 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
480 Total time 795,069 33.4% 795,069 33.4%
481 Execution time 2,377,163 100.0% 2,377,163 100.0%
482 Sequential time 0 0.0% 0 0.0%
483 Parallel time 2,377,163 100.0% 2,377,163 100.0%
484 - Processing 746,864 31.4% 746,864 31.4%
485 - Load imbalance 42,272 1.8% 42,272 1.8%
486 - Limited parallelism 0 0.0% 0 0.0%
487 - Overhead 5,934 0.2% 5,934 0.2%
488 - Idle 0 0.0% 0 0.0%
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Appendix B

Example of a Parana’s
Application Profile Report

Listing B.1: Example of Parana’s application profile report for the FAST application. This profile refers
to the parallelization scenario consisting of an outer-loop parallelization with dynamic scheduling with
a single processor. All timing figures are reported in processor cycles. Average (Avg.) is relative to the
number of calls. Cumulative (Cml.) includes self and children times, while Self time excludes children
times. Child tasks which are the result of segmentation – those with prologue, epilogue or interstice
label suffixes – do not count twice towards the cumulative times. Refer to Chapter 5, Section 5.5 for
more details on the experimental setup.

1 --------------------------------------------------------------------------------
2 PARANA
3 Parallel Analyzer
4 --------------------------------------------------------------------------------
5

6 Module: <module name>
7 SVN Revision: <svn revision tag>
8 Build Configuration:<cmake build configuration>
9 Compiler: <compiler name>

10 Executable: <executable file>
11 Command line: <command line arguments>
12 Simulator: <simulator name>
13 Core Configuration: <core configuration register values>
14 Date: <simulation date>
15

16 --------------------------------------------------------------------------------
17 Parallelization Analysis
18 --------------------------------------------------------------------------------
19

20 Parallel schedule with 1 processor
21 ----------------------------------
22

23 Number of processors 1
24 Execution time (cycles) 18,689,291
25 Speedup 1.0x
26 Amdahl's Law Max. Speedup 1.0x
27 Parallel efficiency 99.8%
28 Sequential time (cycles) 12,757 ( 0.1%)
29 Parallel time (cycles) 18,676,534 ( 99.9%)
30 - Processing (cycles) 18,631,661 ( 99.7%)
31 - Load imbalance (cycles) 0 ( 0.0%)
32 - Limited parallelism (cycles) 0 ( 0.0%)
33 - Overhead (cycles) 44,873 ( 0.2%)
34 - Idle (cycles) 0 ( 0.0%)
35 Scheduling runtime (s) 4.3
36

37 Parallel Region: 42 vaFastCornerDetect.for_y [PARALLEL]
38 -------------------------------------------------------
39 [*0] 1 __asmp_ind_crt0.
40 [+1] 13 main.
41 [+2] 14 vaFastCornerDetect.
42 [=3] 42 vaFastCornerDetect.for_y [PARALLEL]

Vítor Schwambach TIMA Laboratory / STMicroelectronics 121



Example of a Parana’s Application Profile Report

43 Number of processors 1
44 Number of calls 1
45 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
46 Total time 6,019,785 32.2% 6,019,785 32.2%
47 Execution time 18,676,534 100.0% 18,676,534 100.0%
48 Sequential time 0 0.0% 0 0.0%
49 Parallel time 18,676,534 100.0% 18,676,534 100.0%
50 - Processing 5,974,912 32.0% 5,974,912 32.0%
51 - Load imbalance 0 0.0% 0 0.0%
52 - Limited parallelism 0 0.0% 0 0.0%
53 - Overhead 44,873 0.2% 44,873 0.2%
54 - Idle 0 0.0% 0 0.0%
55

56 Parallel Region: 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
57 --------------------------------------------------------------------
58 [*0] 1 __asmp_ind_crt0.
59 [+1] 13 main.
60 [+2] 14 vaFastCornerDetect.
61 [+3] 42 vaFastCornerDetect.for_y [PARALLEL]
62 [=4] 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)]
63 Number of processors 1
64 Number of calls 1
65 Total (cycles) Total (%) Avg. (cycles) Avg. (%)
66 Total time 6,018,475 32.2% 6,018,475 32.2%
67 Execution time 18,675,224 100.0% 18,675,224 100.0%
68 Sequential time 0 0.0% 0 0.0%
69 Parallel time 18,675,224 100.0% 18,675,224 100.0%
70 - Processing 5,974,912 32.0% 5,974,912 32.0%
71 - Load imbalance 0 0.0% 0 0.0%
72 - Limited parallelism 0 0.0% 0 0.0%
73 - Overhead 43,563 0.2% 43,563 0.2%
74 - Idle 0 0.0% 0 0.0%
75

76 Profiling of parallel schedule with 1 processor
77 -----------------------------------------------
78

79 Function Call Tree \
#Calls #Cml. #Avg. Cml. #Self #Avg. Self

80 + -1 root.
81 + 1 __asmp_ind_crt0. \

1 18689291 18689291.0 3546 3546.0
82 + 2 __asmp_runtime_init. \

1 3208 3208.0 125 125.0
83 + 3 __asmp_rt_thread_init. \

1 2906 2906.0 1200 1200.0
84 - 4 __asmp_rt_thread_init.__asmp_rt_thread_init_memset_prologue \

1 95 95.0 95 95.0
85 - 5 memset. \

24 1706 71.1 1706 71.1
86 - 6 __asmp_rt_thread_init.memset_memset_interstice \

23 1048 45.6 1048 45.6
87 - 7 __asmp_rt_thread_init.memset___asmp_rt_thread_init_epilogue \

1 57 57.0 57 57.0
88 - 8 __asmp_runtime_init.__asmp_runtime_init___asmp_rt_thread_init_prologue \

1 48 48.0 48 48.0
89 - 9 __asmp_runtime_init.__asmp_rt_thread_init___asmp_rt_lock_table_init_in...\

1 16 16.0 16 16.0
90 - 10 __asmp_rt_lock_table_init. \

2 177 88.5 177 88.5
91 - 11 __asmp_runtime_init.__asmp_rt_lock_table_init___asmp_rt_lock_table_in...\

1 4 4.0 4 4.0
92 - 12 __asmp_runtime_init.__asmp_rt_lock_table_init___asmp_runtime_init_epi...\

1 57 57.0 57 57.0
93 + 13 main. \

1 18682148 18682148.0 98 98.0
94 + 14 vaFastCornerDetect. \

1 18682050 18682050.0 4725 4725.0
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95 + 15 vaMAlloc. \
1 507 507.0 20 20.0

96 + 16 malloc. \
1 487 487.0 301 301.0

97 + 17 __malloc_lock. \
1 50 50.0 20 20.0

98 - 18 __malloc_lock.__malloc_lock___asmp_rt_lock_acquire_re_prologue \
1 10 10.0 10 10.0

99 - 19 __asmp_rt_lock_acquire_re. \
1 30 30.0 30 30.0

100 - 20 __malloc_lock.__asmp_rt_lock_acquire_re___malloc_lock_epilogue \
1 10 10.0 10 10.0

101 + 21 malloc_extend_top. \
1 142 142.0 106 106.0

102 + 22 _sbrk_r. \
1 36 36.0 18 18.0

103 - 23 _sbrk_r._sbrk_r__sbrk_prologue \
1 8 8.0 8 8.0

104 - 24 _sbrk. \
1 18 18.0 18 18.0

105 - 25 _sbrk_r._sbrk__sbrk_r_epilogue \
1 10 10.0 10 10.0

106 - 26 malloc_extend_top.malloc_extend_top__sbrk_r_prologue \
1 45 45.0 45 45.0

107 - 27 malloc_extend_top._sbrk_r_malloc_extend_top_epilogue \
1 61 61.0 61 61.0

108 + 28 __malloc_unlock. \
1 52 52.0 20 20.0

109 - 29 __malloc_unlock.__malloc_unlock___asmp_rt_lock_release_re_prologue \
1 10 10.0 10 10.0

110 - 30 __asmp_rt_lock_release_re. \
1 32 32.0 32 32.0

111 - 31 __malloc_unlock.__asmp_rt_lock_release_re___malloc_unlock_epilogue \
1 10 10.0 10 10.0

112 - 32 malloc.malloc___getreent_prologue \
1 7 7.0 7 7.0

113 - 33 __getreent. \
1 9 9.0 9 9.0

114 - 34 malloc.__getreent___malloc_lock_interstice \
1 39 39.0 39 39.0

115 - 35 malloc.__malloc_lock___divw_interstice \
1 37 37.0 37 37.0

116 - 36 __divw. \
1 36 36.0 36 36.0

117 - 37 malloc.__divw_malloc_extend_top_interstice \
1 33 33.0 33 33.0

118 - 38 malloc.malloc_extend_top___malloc_unlock_interstice \
1 57 57.0 57 57.0

119 - 39 malloc.__malloc_unlock_malloc_epilogue \
1 25 25.0 25 25.0

120 - 40 vaMAlloc.vaMAlloc_malloc_prologue \
1 7 7.0 7 7.0

121 - 41 vaMAlloc.malloc_vaMAlloc_epilogue \
1 13 13.0 13 13.0

122 + 42 vaFastCornerDetect.for_y [PARALLEL] \
1 18676534 18676534.0 1310 1310.0

123 + 43 vaFastCornerDetect.for_y [FOR SCHEDULE(DYNAMIC)] \
1 18675224 18675224.0 45915 45915.0

124 + 44 vaFastCornerDetect.for_y [FOR_ITERATION SCHEDULE(DYNAMIC)] \
235 18629309 79273.7 934006 3974.5

125 + 45 vaMAlign. \
1 168 168.0 20 20.0

126 - 46 vaMAlign.vaMAlign___modw_prologue \
1 9 9.0 9 9.0

127 - 47 __modw. \
1 148 148.0 148 148.0

128 - 48 vaMAlign.__modw_vaMAlign_epilogue \
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1 11 11.0 11 11.0
129 + 49 vaFastCornerDetect.for_x \

73476 17418377 237.1 14945798 203.4
130 - 50 vaFastCornerDetect.for_x_vaFastCornerScore_prologue \

3129 2199313 702.9 2199313 702.9
131 - 51 vaFastCornerScore. \

3129 2472579 790.2 2472579 790.2
132 - 52 vaFastCornerDetect.vaFastCornerScore_for_x_epilogue \

3129 89736 28.7 89736 28.7
133 - 53 vaFastCornerDetect.for_y_vaMAlign_prologue \

1 12 12.0 12 12.0
134 - 54 vaFastCornerDetect.vaMAlign_memset_interstice \

1 23 23.0 23 23.0
135 - 55 memset. \

236 276758 1172.7 276758 1172.7
136 - 56 vaFastCornerDetect.memset_memset_interstice \

1 56 56.0 56 56.0
137 - 57 vaFastCornerDetect.memset_for_x_interstice \

234 5880 25.1 5880 25.1
138 - 58 vaFastCornerDetect.for_x_for_x_interstice \

73242 442510 6.0 442510 6.0
139 - 59 vaFastCornerDetect.for_x_for_y_epilogue \

234 475930 2033.9 475930 2033.9
140 - 60 vaFastCornerDetect.for_y_memset_prologue \

234 6318 27.0 6318 27.0
141 - 61 vaFastCornerDetect.memset_for_y_epilogue \

1 3277 3277.0 3277 3277.0
142 - 62 vaFastCornerDetect.for_y_for_prologue_P0 \

1 260 260.0 260 260.0
143 - 63 vaFastCornerDetect.for_y_for_y_interstice \

234 2352 10.1 2352 10.1
144 - 64 vaFastCornerDetect.for_y_for_next_chunk \

234 42822 183.0 42822 183.0
145 - 65 vaFastCornerDetect.for_y_load_imbalance_P0 \

1 0.0 0.0
146 - 66 vaFastCornerDetect.for_y_for_epilogue_P0 \

1 481 481.0 481 481.0
147 - 67 vaFastCornerDetect.for_y_parallel_fork \

1 0.0 0.0
148 - 68 vaFastCornerDetect.for_y_init_parallel_region \

1 652 652.0 652 652.0
149 - 69 vaFastCornerDetect.for_y_launch_master_worker_thread \

1 0.0 0.0
150 - 70 vaFastCornerDetect.for_y_worker_thread_prologue_P0 \

1 26 26.0 26 26.0
151 - 71 vaFastCornerDetect.for_y_worker_thread_epilogue_P0 \

1 281 281.0 281 281.0
152 - 72 vaFastCornerDetect.for_y_release_master_worker_thread \

1 27 27.0 27 27.0
153 - 73 vaFastCornerDetect.for_y_load_imbalance_P0 \

1 0.0 0.0
154 - 74 vaFastCornerDetect.for_y_release_parallel_region \

1 324 324.0 324 324.0
155 - 75 vaFastCornerDetect.for_y_parallel_join \

1 0.0 0.0
156 + 76 vaFree. \

1 252 252.0 161 161.0
157 + 77 __malloc_lock. \

1 50 50.0 20 20.0
158 - 78 __malloc_lock.__malloc_lock___asmp_rt_lock_acquire_re_prologue \

1 10 10.0 10 10.0
159 - 79 __asmp_rt_lock_acquire_re. \

1 30 30.0 30 30.0
160 - 80 __malloc_lock.__asmp_rt_lock_acquire_re___malloc_lock_epilogue \

1 10 10.0 10 10.0
161 - 81 vaFree.vaFree___getreent_prologue \

1 30 30.0 30 30.0
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162 - 82 __getreent. \
1 9 9.0 9 9.0

163 - 83 vaFree.__getreent___malloc_lock_interstice \
1 26 26.0 26 26.0

164 - 84 vaFree.__malloc_lock___asmp_rt_lock_release_re_interstice \
1 95 95.0 95 95.0

165 - 85 __asmp_rt_lock_release_re. \
1 32 32.0 32 32.0

166 - 86 vaFree.__asmp_rt_lock_release_re_vaFree_epilogue \
1 10 10.0 10 10.0

167 - 87 vaFastCornerDetect.vaFastCornerDetect_vaGetImageType_prologue \
1 69 69.0 69 69.0

168 - 88 vaGetImageType. \
1 16 16.0 16 16.0

169 - 89 vaFastCornerDetect.vaGetImageType_vaGetImageDataType_interstice \
1 15 15.0 15 15.0

170 - 90 vaGetImageDataType. \
1 16 16.0 16 16.0

171 - 91 vaFastCornerDetect.vaGetImageDataType_vaMAlloc_interstice \
1 4490 4490.0 4490 4490.0

172 - 92 vaFastCornerDetect.vaMAlloc_for_y_interstice \
1 104 104.0 104 104.0

173 - 93 vaFastCornerDetect.for_y_vaFree_interstice \
1 4 4.0 4 4.0

174 - 94 vaFastCornerDetect.vaFree_vaFastCornerDetect_epilogue \
1 43 43.0 43 43.0

175 - 95 main.main_vaFastCornerDetect_prologue \
1 67 67.0 67 67.0

176 - 96 main.vaFastCornerDetect_main_epilogue \
1 31 31.0 31 31.0

177 + 97 exit. \
1 3545 3545.0 64 64.0

178 + 98 _cleanup_r. \
1 3391 3391.0 300 300.0

179 + 99 __sfp_lock_acquire. \
1 50 50.0 20 20.0

180 - 100 __sfp_lock_acquire.__sfp_lock_acquire___asmp_rt_lock_acquire_re_pr...\
1 10 10.0 10 10.0

181 - 101 __asmp_rt_lock_acquire_re. \
1 30 30.0 30 30.0

182 - 102 __sfp_lock_acquire.__asmp_rt_lock_acquire_re___sfp_lock_acquire_ep...\
1 10 10.0 10 10.0

183 + 103 fclose. \
4 2989 747.3 540 135.0

184 + 104 __sfp_lock_acquire. \
4 180 45.0 80 20.0

185 - 105 __sfp_lock_acquire.__sfp_lock_acquire___asmp_rt_lock_acquire_re_p...\
4 40 10.0 40 10.0

186 - 106 __asmp_rt_lock_acquire_re. \
4 100 25.0 25 6.3

187 - 107 __sfp_lock_acquire.__asmp_rt_lock_acquire_re___sfp_lock_acquire_e...\
4 40 10.0 40 10.0

188 + 108 __libc_lock_acquire_recur. \
4 200 50.0 81 20.3

189 - 109 __libc_lock_acquire_recur.__libc_lock_acquire_recur___asmp_rt_loc...\
4 41 10.3 41 10.3

190 - 110 __asmp_rt_lock_acquire_re. \
4 119 29.8 119 29.8

191 - 111 __libc_lock_acquire_recur.__asmp_rt_lock_acquire_re___libc_lock_a...\
4 40 10.0 40 10.0

192 + 112 _fflush_r. \
4 727 181.8 342 85.5

193 + 113 __libc_lock_acquire_recur. \
4 180 45.0 81 20.3

194 - 114 __libc_lock_acquire_recur.__libc_lock_acquire_recur___asmp_rt_lo...\
4 41 10.3 41 10.3

195 - 115 __asmp_rt_lock_acquire_re. \
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4 99 24.8 99 24.8
196 - 116 __libc_lock_acquire_recur.__asmp_rt_lock_acquire_re___libc_lock_...\

4 40 10.0 40 10.0
197 + 117 __libc_lock_release_recur. \

4 205 51.3 81 20.3
198 - 118 __libc_lock_release_recur.__libc_lock_release_recur___asmp_rt_lo...\

4 41 10.3 41 10.3
199 - 119 __asmp_rt_lock_release_re. \

4 124 31.0 124 31.0
200 - 120 __libc_lock_release_recur.__asmp_rt_lock_release_re___libc_lock_...\

4 40 10.0 40 10.0
201 - 121 _fflush_r._fflush_r___libc_lock_acquire_recur_prologue \

4 123 30.8 123 30.8
202 - 122 _fflush_r.__libc_lock_acquire_recur___libc_lock_release_recur_int...\

4 163 40.8 163 40.8
203 - 123 _fflush_r.__libc_lock_release_recur__fflush_r_epilogue \

4 56 14.0 53 13.3
204 + 124 __sclose. \

4 412 103.0 176 44.0
205 - 125 __sclose.__sclose___errno_prologue \

4 68 17.0 68 17.0
206 - 126 __errno. \

12 132 11.0 132 11.0
207 - 127 __sclose.__errno___errno_interstice \

4 20 5.0 20 5.0
208 - 128 __sclose.__errno__close_interstice \

4 16 4.0 16 4.0
209 - 129 _close. \

4 104 26.0 104 26.0
210 - 130 __sclose._close___errno_interstice \

4 24 6.0 24 6.0
211 - 131 __sclose.__errno___sclose_epilogue \

4 48 12.0 48 12.0
212 + 132 __libc_lock_release_recur. \

4 209 52.3 81 20.3
213 - 133 __libc_lock_release_recur.__libc_lock_release_recur___asmp_rt_loc...\

4 41 10.3 41 10.3
214 - 134 __asmp_rt_lock_release_re. \

4 128 32.0 128 32.0
215 - 135 __libc_lock_release_recur.__asmp_rt_lock_release_re___libc_lock_r...\

4 40 10.0 40 10.0
216 + 136 __libc_lock_close_recursi. \

4 118 29.5 98 24.5
217 - 137 __libc_lock_close_recursi.__libc_lock_close_recursi___asmp_rt_loc...\

4 45 11.3 45 11.3
218 - 138 __asmp_rt_lock_destroy. \

4 20 5.0 20 5.0
219 - 139 __libc_lock_close_recursi.__asmp_rt_lock_destroy___libc_lock_clos...\

4 53 13.3 53 13.3
220 + 140 __sfp_lock_release. \

4 204 51.0 80 20.0
221 - 141 __sfp_lock_release.__sfp_lock_release___asmp_rt_lock_release_re_p...\

4 40 10.0 40 10.0
222 - 142 __asmp_rt_lock_release_re. \

4 124 31.0 124 31.0
223 - 143 __sfp_lock_release.__asmp_rt_lock_release_re___sfp_lock_release_e...\

4 40 10.0 40 10.0
224 - 144 fclose.fclose___getreent_prologue \

4 28 7.0 28 7.0
225 - 145 __getreent. \

4 36 9.0 36 9.0
226 - 146 fclose.__getreent___sfp_lock_acquire_interstice \

4 96 24.0 96 24.0
227 - 147 fclose.__sfp_lock_acquire___libc_lock_acquire_recur_interstice \

4 71 17.8 71 17.8
228 - 148 fclose.__libc_lock_acquire_recur__fflush_r_interstice \

4 51 12.8 51 12.8
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229 - 149 fclose._fflush_r___sclose_interstice \
4 60 15.0 60 15.0

230 - 150 fclose.__sclose___libc_lock_release_recur_interstice \
3 72 24.0 72 24.0

231 - 151 fclose.__libc_lock_release_recur___libc_lock_close_recursi_interstice\
4 12 3.0 12 3.0

232 - 152 fclose.__libc_lock_close_recursi___sfp_lock_release_interstice \
4 8 2.0 8 2.0

233 - 153 fclose.__sfp_lock_release_fclose_epilogue \
4 56 14.0 56 14.0

234 + 154 _free_r. \
1 363 363.0 245 245.0

235 + 155 __malloc_lock. \
1 50 50.0 20 20.0

236 - 156 __malloc_lock.__malloc_lock___asmp_rt_lock_acquire_re_prologue \
1 10 10.0 10 10.0

237 - 157 __asmp_rt_lock_acquire_re. \
1 30 30.0 30 30.0

238 - 158 __malloc_lock.__asmp_rt_lock_acquire_re___malloc_lock_epilogue \
1 10 10.0 10 10.0

239 - 159 _free_r._free_r___malloc_lock_prologue \
1 18 18.0 18 18.0

240 - 160 _free_r.__malloc_lock___divw_interstice \
1 156 156.0 156 156.0

241 - 161 __divw. \
1 36 36.0 36 36.0

242 - 162 _free_r.__divw___asmp_rt_lock_release_re_interstice \
1 61 61.0 61 61.0

243 - 163 __asmp_rt_lock_release_re. \
1 32 32.0 32 32.0

244 - 164 _free_r.__asmp_rt_lock_release_re__free_r_epilogue \
1 10 10.0 10 10.0

245 - 165 fclose.__sclose__free_r_interstice \
1 34 34.0 34 34.0

246 - 166 fclose._free_r___libc_lock_release_recur_interstice \
1 52 52.0 52 52.0

247 + 167 __sfp_lock_release. \
1 52 52.0 20 20.0

248 - 168 __sfp_lock_release.__sfp_lock_release___asmp_rt_lock_release_re_pr...\
1 10 10.0 10 10.0

249 - 169 __asmp_rt_lock_release_re. \
1 32 32.0 32 32.0

250 - 170 __sfp_lock_release.__asmp_rt_lock_release_re___sfp_lock_release_ep...\
1 10 10.0 10 10.0

251 - 171 _cleanup_r._cleanup_r___sfp_lock_acquire_prologue \
1 32 32.0 32 32.0

252 - 172 _cleanup_r.__sfp_lock_acquire_fclose_interstice \
1 64 64.0 64 64.0

253 - 173 _cleanup_r.fclose_fclose_interstice \
3 104 34.7 104 34.7

254 - 174 _cleanup_r.fclose___sfp_lock_release_interstice \
1 81 81.0 81 81.0

255 - 175 _cleanup_r.__sfp_lock_release__cleanup_r_epilogue \
1 19 19.0 19 19.0

256 - 176 exit.exit___call_exitprocs_prologue \
1 18 18.0 18 18.0

257 - 177 __call_exitprocs. \
1 90 90.0 90 90.0

258 - 178 exit.__call_exitprocs__cleanup_r_interstice \
1 11 11.0 11 11.0

259 - 179 exit._cleanup_r_exit_epilogue \
1 35 35.0 35 35.0

260 - 180 __asmp_ind_crt0.__asmp_ind_crt0___syscall_prologue \
1 168 168.0 168 168.0

261 - 181 __syscall. \
1 43 43.0 43 43.0

262 - 182 __asmp_ind_crt0.__syscall___asmp_runtime_init_interstice \
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1 53 53.0 53 53.0
263 - 183 __asmp_ind_crt0.__asmp_runtime_init_main_interstice \

1 25 25.0 25 25.0
264 - 184 __asmp_ind_crt0.main___asmp_runtime_fini_interstice \

1 23 23.0 23 23.0
265 - 185 __asmp_runtime_fini. \

1 70 70.0 70 70.0
266 - 186 __asmp_ind_crt0.__asmp_runtime_fini_exit_interstice \

1 8 8.0 8 8.0
267 - 187 __asmp_ind_crt0.exit___asmp_ind_crt0_epilogue \

1 0 0.0 0 0.0

128 TIMA Laboratory / STMicroelectronics Vítor Schwambach



Appendix C

List of Tiling Parameters and
Mathematical Definitions

Object Classes Description
I An image class
K A kernel class
T A tile class
T i The ith tile class

Table C.1: Tilana’s object classes list and their description.

Object Sets and Instances Description
I An image instance
T A set of tiles T
Ti The subset containing all tiles of class T i in the T set
T A tile instance
Tji The jth tile of type T i in the T set

Table C.2: Tilana’s object sets and instances list and their description.

Parameters and Variables Description Unit
t A time value Seconds
ms Memory size Bytes

Table C.3: Tilana’s parameters and variables list and their description.

Vítor Schwambach TIMA Laboratory / STMicroelectronics 129



List of Tiling Parameters and Mathematical Definitions

Functions Description Unit
A(df(T)) A Area of a T’s data footprint Pixels2

A(is(T)) A Area of a T’s iteration space Pixels2

η(T) Number of elements in a set T
H(i) Heaviside step function of i
R(i) Ramp function of i
max(i, j) Maximum between i and j
min(i, j) Minimum between i and j
gap(T ,p) Gap time for tile class T on p processors Seconds
ii(T ,p) Initiation interval time for tile class T on p processors Seconds
is(T ) 2D iteration space of tile class T Iterations
isx(T ) Horizontal value of the 2D iteration space of a tile of class

T
Iterations

isy(T ) Vertical value of the iteration space of a tile of class T Iterations
df(T ) 2D data footprint of a tile of class T Pixels
dfx(T ) Horizontal data footprint of a tile of class T Pixels
dfy(T ) Vertical data footprint of a tile of class T Pixels
sz(T ) 2D size of a tile of class T Pixels
szx(T ) Width of a tile of class T Pixels
szy(T ) Height of a tile of class T Pixels
tstart(T) Start timestamp of tile T Seconds
tend(T) End timestamp of tile T Seconds
texe(T) Execution time (duration) of a given tile T Seconds

Table C.4: Tilana’s function list and their description.
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Analog Devices’ Pipeline Vision Processor (PVP) [26] is a streaming engine that provides
hardware implementations of a number of image and vision processing algorithms. It processes
data directly from DMA streams. The hardware functions implemented are: 5x5 convolution,
polar coordinate conversion, edge classification, arithmetic, threshold and integral operations,
image scaling and data format conversion.

Analog Devices’ BF609 [26] is an heterogeneous Multiprocessor System-On-Chip (MPSoC) for
vision applications. It counts with two Freescale Blackfin processor cores and the Pipeline Vision
Processor (PVP) streaming engine for vision processing. Programming is done in C/C++ and
supports Analog Devices’ VisualDSP++ operating system.

Apical’s Spirit [204] and Assertive Vision Engines [17] are programmable hardware engines for
real-time detection, classification and tracking of people and objects. They contain 16 dedicated
classifier engines that provide information for higher level software layers running on an ARM
Cortex-M4 CPU.

Cadence/Tensilica’s IVP [195] is a Very Long Instruction Word (VLIW)/Single Instruction
Multiple Data (SIMD) DSP core with specialized instructions for computer vision and pixel pro-
cessing applications. Programming is done with a C/C++ compiler with automatic vectorization
support.

CEVA’s XM4 [45, 46] is a VLIW/SIMD vision processor IP developed by CEVA. It contains
four scalar processing units, two load/store units and two vector processing units. As a SIMD
processor, a single instruction word encodes the operations to be executed by all units. It can
perform vector gather/scatter memory accesses with up to eight data points. Programming is
done directly using a C compiler which supports vector intrinsics or auto-vectorization. It can be
coupled to a host processor and used to accelerate calls to the CEVA-CV library, offloading them
to the XM4. A service layer named SmartFrame automatically performs tiling and programs
DMA data transfers between the host and the XM4.

CogniVue’s APEX [142, 34] cores are massively parallel processors. The “Opus” APEX-1282
core counts with two Array Processor Units (APUs) each of which has an array control processor
and 64 VLIW/SIMD compute units (CUs). APUs are interconnected with an AXI-like fabric to a
shared data management engine with multi-channel and streaming DMAs.

CogniVue’s CV220x Image Cognition Processor [51] is an heterogeneous multiprocessor
platform with an ARM9 processor coupled to a CogniVue’s APEX core for image processing
acceleration.

Eutecus’s Multi-Core Video Analytics Engine (MVE™) [66] is an heterogeneous accelerator for
embedded video analytics. A 32-bit RISC processor executes the Instant Vision Embedded library
and is coupled to C-MVA™and C-MVA-F™IP cores. The company states that C-MVA™and C-
MVA-F™have a cascade of optimized processing blocks in massively biologically inspired parallel
cellular array structures for low-level vision processing. The company provides the MVE™as
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either an IP core for Field Programmable Gate Array (FPGA) implementation or integration on a
clients’ Application-Specific Integrated Circuit (ASIC).

Freescale’s SCP2200 Image Cognition Processor [73] is a processor integrating CogniVue’s
APEX core and a series of peripherals in an ASIC package.

Freescale’s S32V230 Platform [72, 202] is an heterogeneous MPSoC for Advanced Driver
Assistance Systems (ADAS). It contains a mix of CPUs, GPUs, and image processors. It has a
quad-core ARM Cortex-A53, an ARM Cortex-M4 microcontroller, an Image Signal Processor (ISP),
a CogniVue’s APEX core and Vivante’s GC3000 GPU. It has a 4 MB scratchpad memory, as well as
instruction and data caches, with Error-Correcting Code (ECC) features for safety. Programming
relies on the OpenCL programming model.

Inuitive’s NU3000 [98] is an heterogeneous multiprocessor with an ARM Cortex A5 host pro-
cessor with Neon vector instructions support, two CEVA MM3101 vector DSPs and a proprietary
3D image multiprocessor.

MobileEye’s EyeQ4 [49] is an heterogeneous platform IP with a diverse range of processor
cores. It counts with four 32-bit InterAptiv MIPS CPUs from Imagination and ten specialized
processors. These processors are six Vector Microcode Processors (VMPs), two Multithreaded
Processing Cluster (MPC) cores, and two Programmable Macro Array (PMA) cores.

Movidius’ Streaming Hybrid Architecture Vector Engine (SHAVE) [146] is a Movidius’ 128-bit
VLIW/SIMD vector processor with variable length instructions and two 64-bit memory ports.

Movidius’ Myriad 2 Vision Processor [150, 146] is an heterogeneous multiprocessor architec-
ture based on twelve Movidius’ 128-bit vector VLIW “SHAVE" processors optimized for vision
processing workloads, a number of configurable hardware accelerators for image and vision
processing, two 32-bit Reduced Instruction Set Computer (RISC) processors, with a 2 MB shared
memory.

Synopsys’ DesignWare EV5x [192] is a vision multiprocessor IP. It counts with a quad-
core Synopsys ARC CPU and up to eight hardware object detection engines. EV5x use a shared
memory architecture and have a single DMA with an external AXI interconnection. Programming
relies on OpenCV and OpenVX libraries.

Texas Instruments’ AccelerationPac [131] with up to four Embedded Vision Engines (EVEs) for
lower level vision processing. Each EVE unit has a 32-bit RISC core and a vector coprocessor
interconnected to three 32 KB memory banks with 256-bit width data ports, plus a dedicated
DMA.

Texas Instruments TDA3x [197, 198] is an MPSoC targeted at ADAS applications. It contains:
two ARM Cortex A-15 processors for control level processing; four ARM Cortex M4 processors
for high level processing; two C66x DSPs for signal processing; and a Vision AccelerationPac. Pro-
gramming is based on a “Links and Chains” framework [48] for interprocessor communication
via message passing.

Toshiba’s MPEs [203] is an homogeneous multiprocessor composed of multiple Toshiba’s
MeP scalar processors, each with a dedicated floating-point VLIW/SIMD co-processor.

Toshiba’s TMPV760 series [203] are image recognition processors. The TMPV7608XBG
model counts with two 32-bit Toshiba MeP RISC control CPUs, an MPE multiprocessor and 14
dedicated hardware accelerators for common vision processing functions.

Videantis v-MP4000HDX [209] is a multiprocessor IP core architecture. It is an heteroge-
neous architecture which combines multiple VLIW/SIMD media processors (v-MPs) for vision
processing and stream processors (v-SPs) for video bitstream encoding/decoding. The v-MP
has three dual-issue 64-bit or single-issue 128-bit VLIW/SIMD units, a local memory and a
dedicated multi-channel DMA engine. No data cache is present in the architecture.
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Glossary

ACF APEX Core Framework

ADAS Advanced Driver Assistance
Systems

API Application Programming
Interface

APU Accelerated Processing Unit

ASIC Application-Specific Integrated
Circuit

ASIP Application-Specific Instruction
Set Processor

ASMP Application-Specific
Multiprocessor

CEA Atomic Energy and Alternative
Energies Commission

CMP Chip Multiprocessor

CP Constraint Programming

CPA Critical Path Analysis

CPU Central Processing Unit

DBI Dynamic Binary Instrumentation

DBT Dynamic Binary Translation

DLP Data Level Parallelism

DSE Design Space Exploration

DSP Digital Signal Processor

DVFS Digital Voltage and Frequency
Scaling

ECC Error-Correcting Code

ED Edge Detection

EPCC Edinburgh Parallel Computing
Center

EVA Embedded Vision Alliance

EVE Embedded Vision Engine

FAST Fast Features for Accelerated
Segment Test

FIFO “First In, First Out”

FPGA Field Programmable Gate Array

GPGPU General-Purpose computing on
Graphics Processing Units

HCPA Hierarchical Critical Path Analysis

HLS High-Level Synthesis

HPC High-Performance Computing

HSA Heterogeneous System
Architecture

HSAIL HSA Intermediate Layer

IDE Integrated Development
Environment

LP Linear Programming

ILP Instruction Level Parallelism

IoT Internet of Things

IPC Instructions per Cycle

IS Integer Sort

ISA Instruction Set Architecture

ISP Image Signal Processor

ISS Instruction Set Simulator

IVSS Intelligent Video Surveillance
Systems

ITS Intelligent Transportation Systems

JiT Just in Time

LLVM Low Level Virtual Machine

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MPI Message Passing Interface

MPMD Multiple Program Multiple Data

MPPA Multi-Purpose Processor Array

MPSoC Multiprocessor System-On-Chip

NoC Network On Chip
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NAS NASA Advanced Supercomputing
Division

NPB NASA Advanced Supercomputing
Division (NAS) Parallel Benchmark

NUMA Non-Uniform Memory Access

ompP OpenMP Profiler

PE Processing Element

PLP Pipeline Level Parallelism

RISC Reduced Instruction Set Computer

SDK Software Development Kit

SHMEM Shared Memory

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SISD Single Instruction Single Data

SMP Symmetric Multiprocessing

SPMD Single Program Multiple Data

TBB Thread Building Blocks

TLM Transaction Level Modeling

TLP Task Level Parallelism

UMA Uniform Memory Access

VAL Video Analytics Library

VLIW Very Long Instruction Word
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Methods and Tools for Rapid and Efficient Parallel Implementation of
Computer Vision Algorithms on Embedded Multiprocessors

Abstract Embedded computer vision applications demand high system computational power
and constitute one of the key drivers for application-specific multi- and many-core systems. A
number of early system design choices can impact the system’s parallel performance – among
which the parallel granularity, the number of processors and the balance between computation
and communication. Their impact in the final system performance is difficult to assess in early
design stages and there is a lack for tools that support designers in this task. The contributions of
this thesis consist in two methods and associated tools that facilitate the selection of embedded
multiprocessor’s architectural parameters and computer vision application parallelization strate-
gies. The first consists of a DSE methodology that relies on Parana, a fast and accurate parallel
performance estimation tool. Parana enables the evaluation of what-if parallelization scenarios
and can determine their maximum achievable performance limits. The second contribution
consists of a method for optimal 2D image tile sizing using constraint programming within the
Tilana tool. The proposed method integrates non-linear DMA data transfer times and parallel
scheduling overheads for increased accuracy.

Keywords: Performance Modeling, Computer Vision, Multiprocessing, Parallel Programming, Con-
straint Optimization.

Méthodes et outils pour implémentation rapide et efficace d’algorithmes de
vision par ordinateur sur des multiprocesseurs embarqués

Résumé Les applications de vision par ordinateur embarquées demandent une forte capacité de
calcul et poussent le développement des systèmes multi- et many-cores spécifiques à l’application.
Les choix au départ de la conception du système peuvent impacter sa performance parallèle finale
– parmi lesquelles la granularité de la parallélisation, le nombre de processeurs et l’équilibre
entre calculs et l’acheminement des données. L’impact de ces choix est difficile à estimer dans les
phases initiales de conception et il y a peu d’outils et méthodes pour aider les concepteurs dans
cette tâche. Les contributions de cette thèse consistent en deux méthodes et les outils associés
qui visent à faciliter la sélection des paramètres architecturaux d’un multiprocesseur embarqué
et les stratégies de parallélisation des applications de vision embarquée. La première est une
méthode d’exploration de l’espace de conception qui repose sur Parana, un outil fournissant une
estimation rapide et précise de la performance parallèle. Parana permet l’évaluation de différents
scénarios de parallélisation et peut déterminer la limite maximale de performance atteignable.
La seconde contribution est une méthode pour l’optimisation du dimensionnement des tuiles
d’images 2D utilisant la programmation par contraintes dans l’outil Tilana. La méthode proposée
intègre pour plus de précision des facteurs non-linéaires comme les temps des transferts DMA
et les surcoûts de l’ordonnancement parallèle.
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