
HAL Id: tel-01523568
https://theses.hal.science/tel-01523568

Submitted on 16 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an architecture for tag-based predictive
placement in distributed storage systems

Stéphane Delbruel

To cite this version:
Stéphane Delbruel. Towards an architecture for tag-based predictive placement in distributed storage
systems. Web. Université de Rennes, 2017. English. �NNT : 2017REN1S006�. �tel-01523568�

https://theses.hal.science/tel-01523568
https://hal.archives-ouvertes.fr


2017

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse

présentée par

Stéphane Delbruel
préparée à l’unité de recherche UMR 6074 IRISA

Institut de recherche en informatique et systèmes aléatoires
ISTIC/IRISA

Towards an
Architecture
for Tag-based
Predictive
Placement in
Distributed
Storage
Systems

Soutenance prévue le 27 janvier 2017
devant le jury composé de :

Danny HUGHES
Professeur, KU Leuven/rapporteur

Romain ROUVOY
Professeur, Université de Lille/rapporteur

Sonia BENMOKHTAR
Chargée de Recherche, CNRS/examinateur

Antonio CARZANIGA
Professeur, USI Lugano/examinateur

Davide FREY
Chargé de Recherche, Inria/examinateur

Guillaume PIERRE
Professeur, U. de Rennes 1/examinateur

François TAÏANI
Professeur, U. de Rennes 1/directeur de thèse





Résumé en Français

Introduction

Cette thèse rassemble et présente la part la plus importante de mes recherches

durant ces dernières années, portant sur les systèmes de stockage décentralisés.

Dans cette thèse, nous affirmons que les méta-données générées par les utilisa-

teurs dans les systèmes pleinement distribués de gestion de contenu généré par

les utilisateurs représentent une source d’informations fiable nous permettant

de déterminer lors de la mise en ligne d’un contenu, où il sera consommé dans

le futur. Cela rend donc possible le placement prédictif de contenus proche de

ses futurs consommateurs, augmentant par là-même la pertinence des caches de

proximité.

Motivation Internet a fondamentalement modifié la manière dont les humains

communiquent et ces changements introduits par ce nouveaumédium sont fréquem-

ment comparés à ceux amenés par l’apparition du verbe, de l’écriture ou de

l’imprimerie [52]. Tels ces média auparavant, Internet a modifié l’étendue et

la portée des possibilités de communication précédemment offertes, et a défini

l’émergence d’un âge où l’information connait un renouveau de croissance et de

diffusion. Ce médium en n’étant pas contraint par des frontières géographiques,

et en aplanissant à importance égale la capacité de tout un chacun à s’exprimer

et à être entendu après des décennies de domination par les médias traditionnels

et les gouvernements, a été considéré comme une menace possible à leur propre

souveraineté [51].

Plusieurs tentatives de censure et de contrôle ont été tentées depuis ses débuts,

que ce soit pour forcer un contrôle étatique sur chaque contenu publié 1, pour

1http://www.conseil-constitutionnel.fr/conseil-constitutionnel/francais/les-
decisions/acces-par-date/decisions-depuis-1959/1996/96-378-dc/decision-n-96-378-dc-du-
23-juillet-1996.10818.html
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empêcher des citoyens de communiquer avec le reste dumonde durant des évène-

ments populaires [19] ou bien pour exercer une surveillance massive et intrusive

piétinant l’Article 8 de la Convention Européenne des Droits de l’Homme [63].

Toutefois, unemenace supplémentaire provenant d’acteurs non-étatiques grandit,

et représente à mon sens un plus grand danger à long terme. Il s’agit de la cen-

tralisation et du contrôle des données personnelles des utilisateurs, par des ac-

teurs privés. La collecte de masse des données a permis de construire de grands

data sets, et leur exploitation dans des domaines aussi variés que la recomman-

dation de contenu, les modèles prédictifs et récemment l’apprentissage des in-

telligences artificielles. Une des principales nécessités face à cette situation est

donc de développer des modèles alternatifs pour pallier aux services offerts par

ces grands acteurs privés, tout en s’assurant que ces services alternatifs soient

distribués et respectueux de la vie privée de leurs utilisateurs. Ma thèse s’inscrit

dans cette dynamique et vise à proposer dans le cadre des grandes plateformes de

distribution de contenu généré par des utilisateurs tiers, une solution alternative

et distribuée où aucun acteur n’amasse une connaissance globale des actions du

système, en se concentrant sur le placement prédictif des contenus au plus près

des utilisateurs.

Contexte Les travaux présentés dans cette thèse touchent en particulier trois

domaines distincts. Le premier plutôt généraliste est celui des systèmes de stock-

age distribués. A partir de la deuxième génération de ces systèmes, post-Gnutella

et Napster, on note l’introduction de caractéristiques intelligentes telles qu’un

fort accent sur la vie privée pour Freenet [21] ou bien sur la gestion du stock-

age et des caches de distribution dans PAST [59]. Enfin, récemment, Storj [64]

va au-delà et réussi à réunir des composants clés des deux systèmes précédents

tout en les mariant avec des technologies émergentes comme une chaine de bloc,

permettant d’aller toujours plus loin dans les systèmes décentralisés de stockage

de masse.

Le deuxième domaine abordé est celui de la distribution de contenu, historique-

ment abondamment commenté entre toutes les études de différentes architec-

tures pour les réseaux de distribution. Le troisième domaine met l’emphase sur

le rôle des méta-données, à travers les schémas de consommation et les propriétés

géographiques exploitables.
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Contributions

Dans cette thèse, nous mettons en avant l’exploitation des méta-données at-

tachées volontairement par les producteurs de contenus, avec une attention par-

ticulière portée sur les tags. L’objectif est de démontrer les bénéfices et la viabilité

d’un système distribué comportant un mécanisme de placement prédictif. Pour

cela, trois contributions incrémentielles sont présentées et résumées ci-dessous.

Analyse de données. Une analyse extensive est faite sur un grand jeu de don-

nées de YouTube. Elle met en avant une relation claire entre la distribution géo-

graphique de certains tags et la distribution géographique des vues des vidéos

qui leurs sont relatées. De plus il apparait qu’une grande proportion des vidéos

présentes dans ce jeu de données ainsi que leurs tags associés ont une distribution

géographique très étroite de leurs vues. Une analyse entropique suggère que les

contenus ayant une entropie faible sont associés à desmarqueurs ayant également

une faible entropie. Cette analyse et les diverses observations qui en découlent,

pointent vers la possibilité de se baser sur ces marqueurs pour identifier où et

dans quelles proportions un contenu sera consommé à travers le monde.

Le potentiel prédictif des tags. Cette deuxième contribution introduit plusieurs

approches visant à déterminer si il est possible et efficace de s’appuyer sur les

marqueurs précédemment énoncés comme leviers de prédiction de consomma-

tion, ainsi qu’une évaluation de l’efficacité d’un tel système de placement pro-

actif. Les approches proposées sont volontairement simples et peu coûteuses,

permettant d’obtenir des résultats probants tout en laissant de la place à de fu-

tures optimisations. La deuxième partie de cette contribution démontre que de

telles prédictions peuvent aider à placer du contenu fraichement produit dans un

système distribué de distribution de contenu, le tout en utilisant des ressources

limitées et une infrastructure globalement distribuée. Une des limitations de

cette contribution est son besoin de reposer sur une centralisation de la connais-

sance de la consommation des contenus pour être accessible par chaque acteur.

Cette limitation est levée dans la troisième contribution.

Protocole d’estimation décentralisée. Dans cette dernière contribution, nous

introduisons Mignon, un nouveau protocole ainsi qu’une architecture qui per-

mettent une estimation rapide d’un agrégat d’affinités envers un contenu fraiche-



ment produit au sein d’une communauté d’utilisateurs, ainsi que de placer de

manière pleinement décentralisée le contenu en conséquence. Notre proposi-

tion évite une agrégation coûteuse et explicite en utilisant les propriétés des

réseaux superposés auto-organisés basés sur des similarités, et peut être util-

isée au sein des systèmes pleinement distribués de gestion de contenu généré

par les utilisateurs. Le noyau de ce protocole réside dans la capacité à estimer

l’intérêt des nœuds présents au sein d’une zone géographique délimitée, en se

basant seulement sur des bribes d’informations obtenues via les réseaux super-

posés auto-organisés. Parmi les diverses solutions étudiées, l’utilisation de la

méthode d’interpolation de Gregory-Newton a retenue notre intérêt. Notre propo-

sition d’architecture est désormais libre de tout point central, et permet à n’importe

quel acteur du système de déterminer de manière rapide, peu couteuse et efficace

où dans le monde son contenu produit sera consommé dans le futur.

Conclusion

Cette thèse propose une solution à certains problèmes ouverts relatifs aux sys-

tèmes décentralisés de stockage de contenu. Les trois contributions forment un

tout cohérent proposant une nouvelle approche pour des systèmes de placement

pro-actif de contenu proche des utilisateurs, dans une optique de diminuer les

coûts associés. Cette solution se veut prendre place au sein de systèmes alternatifs

ouverts, visant à participer à l’amélioration globale de leurs performances, dans

leur compétitions contre les systèmes centralisés et propriétaires. Cette solution

s’adresse à des systèmes distribués avec une granularité de l’ordre de l’ordinateur

personnel ou bien du boitier décodeur. La piste sur laquelle repose cette solu-

tion non conventionnelle n’a à notre connaissance à ce jour pas déjà été exploitée.

Nous croyons fermement qu’un mécanisme de placement prédictif au sein d’un

système distribué de gestion de contenu généré par ses utilisateurs, qui place

les contenus produits au sein des zones géographiques où ce contenu à le plus de

chance d’être consommé aide en maximisant la part locale de l’ensemble du trafic

et permet donc de rendre de façon générale le réseau plus flexible et donc plus

apte à accomplir d’autres tâches.
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4 CONTENTS

This thesis gathers and presents the most important part of the research we

carried out over the last few years on decentralised storage systems. In this the-

sis, we argue that user-generated meta-data in fully distributed user-generated-

content systems constitute a reliable source to determine where uploaded content

will be consumed in the future. This makes it possible to predictively place this

content close to future consumers, thereby maximizing the suitability of proxim-

ity caches.

1.1 Motivation

1.1.1 From assessment to research

A human society is defined by the sum of the interactions between the human

beings who compose it, and thus plays a key role in the evolution of the human

species. The Internet has fundamentally changed how humans communicate,

and these changes are frequently described on the same level as the apparition

of language, writing, or printing [52]. Like these media, the Internet has modi-

fied the range of communication possibilities previously offered to societies, and

has defined an age where information starts growing and spreading with greater

momentum. This medium where everyone can contribute represents today an

essential pillar of the information age. This is why every interrogation on the

Internet is considered central.

The emergence of this powerful tool has been noticed by political leaders who

see the Internet as a possible threat to traditional institutions and to sovereignty

itself [51]. For decades, governments and agencies of various countries have tried

to legislate on Internet , adapting it to their own political patterns of governance.

As an example, a list of the various French law projects and proposals can be

found on the website of the Assemblée Nationale.1

The way Internet was designed, without any geographically delimited bor-

ders, flattening to the same importance the ability of each one to express itself

and to be heard after decades of dominant position of the traditional medias

and governments, has been considered as a possible threat to their abilities to

properly govern a people. As for example, François Fillon, former French Prime

Minister and before Minister of Posts and Telecommunications, declared in 1996

about the Internet :

1http://www2.assemblee-nationale.fr/
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It’s not about reconsidering the freedom of use of these new networks,

but we should not let alone develop itself a digital "far west" where

our laws will not be applied. 2

Notably, he tried via a legal amendment to the Law of Regulation of Telecom-

munications to make the Internet Service Providers penally responsible of the

content of the services that haven’t been approved prior publishing by the French

Superior Council of Audiovisual 3. This meant that anyone wanting to publish

content via a website or any other medium, has to have this content approved by a

state sponsored but independent public authority whose members are appointed

by the government, following an undisclosed list of acceptance rules. Which in

terms of nation-wide censorship is quite something. All these various attempts

to control and censor are very common these years, and the public opinion is

no more surprised when a country disconnect itself from the Internet to avoid

its citizen to communicate on the country’s events like it happened in Egypt in

January 2011 [19] or in Syria in 2012 [55], or when a government agency, such

as the GCHQ, by decades-long practices of mass surveillance impinge on Arti-

cle 8 of European Convention of Human Rights and goes well beyond its legal

framework [63].

There is another rising concern about Internet actors, and this one is directly

linked to our online privacy. It concerns the control of the data consumed and

created by each Internet user. Back in 2006, Microsoft was the only tech-related

company to presides in the top ten ranking of the most market-valued companies

in the world. As of today, the third quarter of 2016, the top five spots are taken

by Apple, Alphabet via Google, Microsoft, Amazon and Facebook, all fives being

tech companies, with four out of five handling tremendous amount of user per-

sonal data, and two of them having their entire business model relying on data.

Google revenues solely accountable to ads, growth from 45billions USD in 2014

to 52billions in 20154.

Data has now become highly valuable. One of the reasons is that as both

software and hardware infrastructures where becoming more and more based on

commodity products, the value of the data has grown incredibly, in correspon-

2http://discours.vie-publique.fr/notices/963223000.html
3http://www.conseil-constitutionnel.fr/conseil-constitutionnel/francais/les-

decisions/acces-par-date/decisions-depuis-1959/1996/96-378-dc/decision-n-96-378-dc-du-
23-juillet-1996.10818.html

4https://www.sec.gov/Archives/edgar/data/1288776/000165204416000012/goog10-
k2015.htm
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dence with an age where we have never generated so much data, as demonstrated

by Hilbert et al. [37]. Large and relevant datasets are now extremely valuable,

and this value resides in the various possibility they offers such as providing con-

tent recommendation, price optimization and accurate ad targeting, or providing

actionable insights and predicting models. They can improve categorization or

semantic analysis, and as seen recently help to create and train better artificial

intelligences.

However, these large and relevant datasets are hard to build, contributing to

their value, and any big tech company who wants to build one have to find a

way to attract millions of users in order to collect their informations and interac-

tions. That is what, among others, Alphabet and Facebook have achieved. They

strategically attracts customers through free services for day to day usage, and

collects each action, each metadata on each content. They build tremendously

large databases and analyse or monetize them, and the fact that private compa-

nies collect huge amount of personal data in order to store, analyse and trade

it raises important questions. Data has become a resource, on a similar level

than raw material, and the management of this resource from the collection to

the exploitation has now become primordial, with some private actors having an

heavier role than states, as reminded by Stephane Grumbach 5.

This assessment pushes towards the necessity to develop alternative models,

to propose solutions than can cope with the actual flow of generated and con-

sumed data, and in the same time prevent any form of control over the traffic or

the data that could come from any actor. One of the possible ways to achieve that

is to propose alternative models to the centralisation of data and services around

these large privately-held companies.

In an effort to guarantee freedom of circulation for the data and systems be-

ing resilient to censorship and infrastructure control, previous studies have been

focused on developing distributed and efficient alternatives solutions to the cen-

tralized ones.

My PhD thesis takes place in this dynamic setting.

5http://www.lemonde.fr/idees/article/2013/01/07/les-donnees-puissance-du-
futur_1813693_3232.html
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1.1.2 The rise of User-Generated Content

When we mention big players of the actual Internet, it’s impossible to not

associate them with video content. Whether it be Alphabet via it’s subsidiary

YouTube, Netflix, Twitch or Amazon Video, these services are handling a tremen-

dous amount of downstream internet traffic as pointed by the various Sandvine

reports for Europe, Asia and Americas [9], through millions of hours of content

delivered daily [11, 1, 10]. Among them, Amazon Video and Netflix are services

streaming to their users the content of their choice, this content having being self

produced by these services or contracted from a media company. On the other

half, TwitchTV and YouTube manage a content which is produced in majority

by the users of these services. These type of services are called User-Generated

Content services and are among the most popular online platforms 6. The origi-

nal role of a User-Generated Content service is to collect content under any form

such as chats, podcasts, digital images, audio files, video files and other media

that was created by any of its user, and make them available to every user of the

platform. These services could be collaborative, where users interacts between

each others in order to create, manage and improve a specific content. The free

online collaborative encyclopaedia Wikipedia is the flagship of this type of ser-

vices. The most represented type of service is the non-collaborative one, in which

a given content has one single creator, responsible of its upload on the platform

and of its management. These platforms can charge users to access the various

contents produced by other users, like Meetic, or be free of charge like Flickr.

Among these categories, the most notorious User-Generated Content services are

the ones dealing with video content such as Twitch or YouTube, with the first

reporting 9.7 millions of active users every day watching an average of 106 min-

utes of videos daily [2], and the second reporting hundred of millions of hours of

videos accessed by users every day [1]. These User-Generated Content (UGC) ser-

vices have grown extremely fast over the last few years, both in terms of involved

users and volume [8, 1].

The resulting traffic now accounts for a substantial proportion of the world’s

network usage with YouTube accounting up to 21.16% and 24.64% of the aggre-

gated traffic respectively in Europe and Asia, and up to 34.70% for Netflix in

North America [9]. Storing, processing, and delivering this amount of data poses

a constant engineering challenge to both UGC service providers and ISPs. One

6http://www.alexa.com/topsites/global
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of the main difficulties is the sheer number of submissions these systems must

process and their staggering growth rates, YouTube for example reported in 2014

receiving 100 hours of video every minute as opposed to 300 hours every minute

in June 2015 [1], most of which need to be served to niche audiences, in limited

geographic areas [18, 40, 61].

The recent expansion of Netflix on the European market brings also his share

of traffic in the infrastructures of the continent. Its presence being noted by its

entrance in the European market in January 2012. Although available at the be-

ginning in only few countries, Netherlands and Nordics as well as the British Isles

where it accounted for over 20% of peak traffic on several networks, it was still

absent of the top ten applications producing the most aggregated traffic at the

end of 2012 [7], but in only one year, it growth to reach the fifth place at the end

of 2013, representing suddenly 3.33% of the aggregated European access on fixed

access lines. This rapid growth is noticeable when we take in count that it took

Netflix four years to achieve that level of share in the United States [8].

In order to support this growth, current services typically exploit private

datacenters owned by large companies such as Alphabet, Sony and Amazon.

These datacenters are further augmented with Content Distribution Networks

(CDNs) (such as Akamai or Cloudfront) and caching servers positioned at points-

of-presence (PoP) within the infrastructure of Internet Service Providers (ISPs) [34].

This approach tends to favour big players, and to concentrate the industry in

the hands of a few powerful actors. For several years now, both academia and

practitioners have therefore sought to explore alternative designs to implement

social online services in general, and UGC video services in particular. One strat-

egy espouses a fully decentralized organization [13, 16, 40, 45, 53], in which

each individual user (through her computer or set-top box) provides storage ca-

pacity and computing resources to the overall system, eschewing the need for any

centralized element, either hosted in the cloud or on replicated servers.

Many individual services have in particular been proposed to move this vision

forward including storage [45, 54, 58], indexing [22], queries [14, 41], recommen-

dation [15, 16, 17], caching [31], and streaming [20, 32]. Because these services

are highly distributed, they cannot rely on any central coordination component

to organize themselves, for instance using a top-down or fixed hierarchical or-

ganization. Instead they typically exploit decentralized adaptation strategies to

shape their structure and behaviour according to the demands placed on them,
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and the resources at their disposal. As such they are a very good example of

modern self-organizing distributed systems.

To ensure their scalability, most of these services primarily rely on limited in-

teractions (e.g. with a small set of neighbouring nodes) and local information (e.g.

users profiles, bandwidth, latency, tags). The use of local information is one of the

key reasons why these services scale, as they do no need to gather and aggregate

data distributed over a large number of nodes to progress, a costly process in fully

decentralized systems. Enforcing a strong focus on locality, however, constrains

the range of decisions that can be taken by individual nodes, and their ability to

adapt to more complex phenomena occurring at a global scale. In an attempt to

address this limitation, my researches have been focused on the particular prob-

lem of global predictions in large-scale decentralized systems, with an application

to the placement of videos in a decentralized UGC service.

In this thesis, we argue that in order to propose a neutral, efficient and decen-

tralized alternative to big players UGC services, one important point is to be able

to anticipate where and in which proportions of an uploaded content will be con-

sumed in the future and then place it accordingly close to its future consumers,

in order to push the traffic to the edges of the decentralized UGC systems. More

precisely we consider the problem of a newly uploaded video that must be stored

and replicated within a peer-to-peer system in the countries where it is more

likely to be viewed. One way to achieve that is the one highlighted by my works,

by non-intrusively leverage the metadata defined by the uploading users, in or-

der to build a decentralized predictive content placement protocol, for further

integration in decentralized UGC services.

1.2 Problem statement

The trade-off between a decentralized UGC service focusing on local informa-

tion and the ability for each user to have a global knowledge of the activity of the

other nodes often results in an increasing amount of traffic generated inside the

network. As stated before in Section 1.1, in UGC services, an important share

of the various contents tend to be consumed by restricted audiences in limited

geographic areas. Considering this observation, it seems important to maximize

the traffic in these delimited geographic zones, in order to avoid obstructing the

core of the network. This not-so-new concept aiming to draw the consumer closer
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to the producer without intervention of a central node or having to follow third-

party determined path, has been found recently at the heart of efforts such as

Edge computing, or Fog computing in our particular case.

In this context, recent trends towards full scale data analysis showed very

promising leads and results when consumption habits are analysed to predict

the future needs, or when past schemes analysis can reveal patterns annunciating

upcoming events. These concepts have been profusely used and developed in the

establishment of accurate recommendation engines [56, 47, 44, 28], among other

examples. The most common practices consist in collecting data related to the

consumption of consumers, and link for each type of content the concerned audi-

ence and their interests towards them. Thus, a newly available product can, with

its own characteristics, be proposed predictively to the consumers that might be

interested in it. In our case, this solution embodies three different problems.

• First, identify what are the markers used in UGC services by the producers

to categorize a content that are linked to the consumption habits of the con-

sumers. We want to analyse and see if among these markers if one can be

related to a geographical pattern of consumption of the content it is linked

to.

• Second, if this marker is reliable enough to be related to the consumption of

the content that it marks, we need to go further and check if we can rely on

this same marker to predict where a given content will be consumed during

her available time, right at the moment when the content is produced and

the markers have just been set. In other words, we need to verify that we

can quantify the future interests of a delimited geographic area towards a

given content freshly produced, just by looking at this particular marker

and the ability to build an efficient content placement mechanism based on

the observation of the marker.

• Third, we need to allow any node to calculate the aggregation of the inter-

ests of any user comprised in any delimited geographic area on a time and

efficient way, without the use of any central element or super-peer node, in

order to implement this placement mechanism in a fully decentralized way.
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1.2.1 Tags as pertinent metadata

Along the years, many markers have been used in various UGC services, in or-

der to help to categorize and to evaluate content. This metadata can be attached

to the content to which it relates by three manners: (i)by being set automatically

by the service itself, (ii)by the consumers or (iii) by the producer. When being

set by the service itself(i), it can be for organisational purpose such as automated

categorization or to indicates the appreciation of the users such as the number of

times a content has been accessed. Automated categorization rely more and more

on an automatic analysis of the uploaded content to determine the most appro-

priate markers to attach via graphical analysis or textual parsing for examples.

As for the rest, it can be an auto incremented counter of visit on a web page or

the number of views gathered by a video. When the metadata is set by the con-

sumers themselves(ii), we find again the two categories, where consumers can

add textual information about a content, generally in form of tags like in Movie-

Lens7 where this system is used to add an external textual information to help

describing and relate any content. Or it can also be of the second form, especially

when users give an appreciation notation to a content, in order to share their ap-

preciation of it. This second form is very common and is used to gather the note

given by any willing consumer for any video in Netflix8, in order to present to any

consumer of a content the aggregation of notes given by others, or on Reddit9 by

a system of upvote/downvote to promote a content to the front page, or on con-

trary to drive a disliked content to oblivion. The third way to attach metadata to

content is through the producer(iii). When one upload content in UGC services,

especially video ones, it usually comes with a title and a short textual description

aimed to orientate the other consumers and provide keyword for search engines,

it can also be a suggestion of category or a set of tags related to the content.

This last way to generate metadata attached to a content is the more inter-

esting for us, as it is the least intrusive one. Actually, the public display of this

metadata is the choice of the producer and only of the producer, we do not need

to know what the uploaded media is made of, or our service to run intrusive anal-

ysis, the metadata as been willingly attached by the producer in full knowledge.

More precisely, we look closer to the tags that are set by the producer, as this free

format of description is designed to embody a concise and precise description of

7www.movielens.org
8www.netflix.com
9www.reddit.com
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the content, and is a widely adopted self-descriptionmean. Our first problemwill

then be to determine if these freely applied markers attached by the producer of

a content can be related to geographic consumption pattern of the content they

are attached to.

1.2.2 Tags as reliable indicator for predicting consumption

patterns

Once we identified an adequate marker that reflects the geographic consump-

tion of the content it is attached to, we need to verify that it can fulfil our hopes.

We want that marker to embody the future geographic consumption pattern of

the content it is attached to. We need to verify whether or not, video content pop-

ularity in our case is reflected by a video’s views and their repartition among the

various geographic areas can be inferred from its tags. Once this potential will

be verified, we will analyse the efficiency of a placement mechanism in UGC sys-

tems that will rely on the previous observations. This mechanism should leverage

the knowledge on content consumption obtained from the marker observation to

maximise the closeness between a content placement and the users that will con-

sume it. Among the various obstacles to that open possibility, three are the most

challenging ones. The fact that any tag can be attached to any video, regardless

of the nature of the content is a challenge that could not be addressed directly.

The study of the prediction potential of any tag has to be a study of consumption.

A grammatical study or a lexical analysis of the tags seems too immutable for us

and does not take in account the actual trends in the use of the various possible

tags. An efficient metric based on the previous use of each tag must be found in

order to discover if tags can help predict the geographic consumption pattern of

their attached content.

Then in a second time, the quantification of the efficiency of this prediction

must be also suitably measured. This step represent the final piece of answer-

ing the question about the promises of relying on tags for our researches. If we

can find a way to measure the predictive potential of tags on which we can rely

on, we can then prove that we can safely build reliable systems on this ground.

Discovering this efficient metric and measuring the accuracy of the prediction is

thus important. Actually, any placement system, proactive or not, comes with

an immediate cost higher than keeping the content on the storage space of the

producer, thus, quantifying the efficiency of the prediction directly impact the
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efficiency of a predictive placement system and thus counter balance its own cost.

And then, in a final step, we will have to propose a predictive placement sys-

tem. After having proved or not the predictive potential of tags, it will then be

time to introduce a placement system using our previous observations as lever-

age. We will have to propose and evaluate a system that can deduce from the sole

observation of the tags attached to any produced content, where in the world, and

in which proportions this precise content will be consumed. This proposition will

have to meet actual architectures, in order to propose a credible mechanism that

can be integrated to current UGC services, and not make assumptions on hypo-

thetical and unachievable situations. Further more this system should be thrifty

and not demand enormous level of knowledge to be able to reach a high accuracy

in its predictions.

1.2.3 Decentralized predictive placement system

One final key difficulty when applying predictive techniques to decentralized

systems is the need to decentralize the prediction itself. When the two firsts

problems will be tackled, we will have a functioning concept. We will have a

predictive content placement mechanism, able to accurately predict where and in

which proportions a newly uploaded content will be consumed in the future, only

by looking at its tags attached to it by the producer, and so be able to place the

replicas close to its future consumers, in order to minimise congestion. However,

having to query a centralized actor for each content upload will be self-defeating,

counter-productive, and besides neglecting privacy issues, will be ignoring the

full potential of such content placement system. Now, decentralizing such system

is equivalent to decentralize the knowledge that we can learn from such a tag

study explained previously. This problem comes in two different parts.

First, we have to explore a way for each node to be able to ask any node about

its interest towards a given set of tags. Because each node cannot keep a record

of the consumption habits of every other user, we have to be able to realize our

tag study in real-time. It means that every user when wanting to upload a pro-

duced content, will have to perform the tag analysis mentioned before on the tags

she want to attach to her content. We want of course to avoid oblivious solution

like flooding the network of queries, using a token-ring approach or any solution

that is not fully scalable and cheap. Again, we want a full decentralized system,

implying in our case that each node is running the exact copy of the system than
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any other node, thus also eliminating the solutions based on proxying the inter-

ests requests or the ones based on super-peers. In addition to impacting as little

as possible the load of traffic in the network, the query operation has to be as fast

as possible and be able to target a precise geographic region or else the respond-

ing nodes should incorporate a way to geographically taint their answers.

Second, the manner how the nodes communicate their interests towards a

given set of tags to the producer has to be extremely concise. Our ideal decen-

tralized system has a granularity of end-user machines or set-top boxes, implying

various hardware characteristics and bandwidth capacities. We cannot afford for

each node uploading a content to receive the entire previous consumption profile

of each other node in the network. The associated costs in term of overall traffic,

free memory space and computing time for the producing node would be unac-

ceptable. As for the number of queries needed to interrogate each node in each

geographic region, the volume of the answers received by the producer should

remain extremely low. We need then to develop a solution allowing each answer

to be as lightweight as possible and in the same time embodying enough informa-

tions for the producer to determine the geographic consumption patterns. This

innovative solution should not focus on condensing a bulk load of data by any

compressing way, but on the contrary try to be as small and efficient right at the

source, leading the way to future developments and upgrades.

This tripartite problem reminds us of the three problems presented in the

following thesis. Each of these three parts will be tackled by a creative solution

and a rigorous analysis in the rest of my thesis, introducing my work along these

three years. My contributions are presented in the following section, making

match face to face each solution and the related publication.

1.3 Contributions

In this thesis, we introduce a predictive content-placement mechanism de-

signed for User-Generated Content services in a distributed environment. To de-

fine such a mechanism, we started by identifying three problems. The first con-

sists in finding, among the various markers available in the metadata attached to

content in UGC services, one that can be related to the geographical consump-

tion pattern of the content it is attached to. The second one is complementary

to the first, and aims at verifying that once this marker has been found, we can
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use it to predict the future consumption pattern of the attached content. The

third one consists in decentralizing this prediction mechanism so it can be incor-

porated into a distributed storage system. This thesis therefore proposes three

contributions, each representing a possible solution to one of these problems.

1.3.1 Metadata analysis of a UGC service

Our first contribution [24, 26] analyses the tags attached to the various videos

that are part of a large YouTube dataset. We focus on the existing relationship

between the geographic distribution of views of a given video and the geographic

distribution of views of the tags associated with it. We use Shannon entropy as

a metric for the geographic spread of the views associated with a video or a tag.

In this first part, we highlight that a large proportion of tags and videos have a

view distributions concentrated in very limited geographic areas. We also reveal

that low-entropy videos are linked to low-entropy tags and vice versa. These two

observations suggest that tags can be used to estimate the geographical areas and

the countries associated with the views of an uploaded video.

1.3.2 Predictive power of tags

The second contribution [24, 27] goes one step further and tackles the ques-

tion of the predictive power of tags. While our first contribution highlights a

link between tags and the geographic distribution of views for a given video, this

second part analyses the possibility to rely on tags to predict the consumption

pattern of a video. This prediction must take place right at the upload when

the producer has decided which tags to attach, before the content starts being

consumed. Through this contribution we demonstrate that tags can predict the

distribution of views with reasonable accuracy. This makes it possible to inte-

grate this prediction model into a proactive placement system, that automatically

stores newly introduced content close to its future viewers.

1.3.3 Distributed prediction mechanism

Our last contribution [23, 25] introduces Mignon, a novel protocol that lever-

ages the two previous contributions in a decentralized context. With our first

two contributions, we are able to predict accurately where a video will be con-

sumed in the future. However, each uploading node needs to compute these pre-
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dictions independently either by relying on a central database that keeps track

of the global consumption, or by maintaining complete knowledge of the view

distribution of each video and each tag. These two cases do not match with a

distributed, efficient, and scalable environment. One of the possible answers to

this problem resides in Mignon. Mignon tackles the problem of estimating the

viewing potential of a video for each country in the world, in a fast and efficient

way with very little overhead in terms network traffic.
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1.5 Organization of the document

This manuscript comprises 6 chapters, organized in three main parts (Context

, Thesis Contributions, and Conclusion).

• The next chapter, Chapter 2, presents the related work in the field of geodis-

tributed content delivery, and decentralized storage systems, highlighting

the challenges required to realized fully decentralized UGC services.

• In Chapter 3, we analyze a rich Youtube datasets containing information

about the geographic distribution of video views, and investigate the rela-

tionship between the tags attached to videos, and the view distribution of

videos.

• Chapter 4 builds on the results of Chapter 3, and explores how tags might

be used to predict the view distribution of a new video, and whether this

ability might be useful in a largely decentralized UGC service.

• Chapter 5 extends the approach proposed in Chapter 4 and presents an

architecture and a novel mechanism to realize a proactive placement pre-

diction in a fully decentralized setting.

• Finally, Chapter 6 concludes and discusses future work.
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The theme of peer-to-peer storage systems emerged way before the appear-

ance of the big data era we are living today. Data was not as big and valuable as

today, so the immediate goal was to explore alternatives to the different central-

ized systems and at the same time continue to promote the research towards a

decentralized Internet, in the right path of its original spirit. Although some ini-

tial peer-to-peer systems adopted a semi-centralized architecture with a central

server proxying requests [60], the interest of peer-to-peer lies in the ability of user

machines to act both as clients and as servers [57]. For the rest of this thesis, we

will thus exclusively refer to the fully decentralized ones every time we mention

peer-to-peer systems.

2.1 Distributed storage systems

The first generation of peer-to-peer applications, like the Gnutella network [57]

has been extensively studied and commented over the years, and particularly crit-

icized for its various flaws, Gnutella being to greedy on the bandwidth thus lim-

iting its scalability and Napster relying partially on central elements. We would

rather start analysing from the second generation of decentralized architectures

emerging at the beginning of the years 2000s, such as Freenet [21] and PAST/-

Pastry [59], and introducing clever features that new generation of decentralized

systems still rely on as of today. Chronologically, the first one to appear was

Freenet at the beginning of the year 2000.

2.1.1 Freenet

Freenet [21] is an application based on an adaptive distributed network of

nodes, enabling the publication, replication and retrieval of data, with a strong

focus on the anonymity of both readers and authors. Each node is responsible for

maintaining two separate elements: first, a local datastore which it makes avail-

able both for reading and writing to the network, and second, a routing table

containing addresses of other nodes and the keys they are thought to hold. Keys

are used to uniquely identify a file. Nodes are organized upstream and down-

stream as a proxy chain. When a user wants to retrieve a file, she first looks it up

on her local datastore, and if not present, forwards the request to the host found

in her local routing table having the closest key to the one requested. The request

is then oriented hop by hop to nodes having a closer key in their database, until
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reaching the node who actually store the targeted content. Loops and dead ends

in the routing process are handled with backtracking but nonetheless a request

can still fail to find the proper target when exceeding her hops-to-live limit. The

failure is then reported to the requesting node. When the targeted node is found,

the data is returned to be cached in the requesting node, taking for that the short-

est path among the routes used in the requesting sequence, and caching replicas

along the way. This mechanism helps to improve the quality of routing over time

by specializing nodes in locating sets of keys similar to the one attributed to them

in the table of their neighbours, and also tend to become similarly specialized in

storing clusters of files having similar keys.

Adding new content to the system follows a similar strategy as the one used

for routing content. The user first computes a file key for the content she wants

to insert. The key will be propagated as if it was a request along the mechanism

explained before, being directed towards the node having more and more similar

keys. When the key collides with one already present key in the local datastore

of a node, the key is returned back to the uploader node in order to let her try

again with using a different key. When the insert request reach the hops-to-live

limit without a key collision being detected, an "all clear" result is returned to the

uploader node, being this time a successful result. The uploader then send the

data to insert, which will be propagated from node to node following the path

established by the insert query, and the data will be stored in the local datastore

along with the key in the routing table, of each node along the way.

The main drawback of Freenet derives from the use of keys based on hashes

of the descriptive strings attached to a file. This yields to cluster lexicographi-

cally close hashes rather than subjects. As the bright part of this method is by

disseminating around the network similarly described content will ensure that

the failure of a part of the network will have lessened chances of rendering un-

available all the contents associated to given subject, it does not allow the overall

routing scheme to be as nimble as we can get when the consumption traffic is

pushed to the edge of the network like in a similarity-driven overlay. For the

sake of of clarity, we do not detail how FreeNet handles adding a new node in the

network or how it handles the problem of finite storage capacity.
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2.1.2 PAST

PAST [59] is a large-scale decentralized storage utility, and is very interest-

ing due to its strong focus on storage managment and caching mechanisms. It

is built upon Pastry [58], a well-documented scalable distributed object location

and routing overlay, designed to operate in a peer-to-peer network. Pastry has

a slightly different routing mechanism than Freenet detailed before, and runs

by routing an associated message towards the node whose nodeID is numerically

closest to the 128most significant bits of the fileID, which one is obtained by com-

puting the SHA-1 cryptographic hash function of the name of the file, the public

key of the owner and a randomly chosen salt. A PAST node can interact upon

three different ways. When a user, by means of a node, sends an insert request,

the fileID is computed and the client’s storage quota is amputated of the file size

multiplied by the defined k number of replicas. The fileID is used as a destina-

tion to route the file via Pastry, and when the first node among the k required is

reached, it checks the integrity of the message, accepts to store one replica and

forward the request to the others k−1 nodes. The second type of interaction is for

an user to retrieve a given content. The request message is routed with the fileID

as destination. As soon as the message reaches one of the k nodes storing the file,

the requested content is sent back to the requester. A third and last interaction

is the reclaim one, related to how via a reclaim certificate the owner of a file can

reclaim its associated storage space, nevertheless it does not guarantee that the

file is no longer available.

One interesting point in PAST is how the system handles the various prob-

lems linked to content distribution. PAST through its cache management aims to

minimize client access latency, to maximise the query throughput and to balance

the query load in the system. The k replicas of a file are handled by PAST mainly

for reasons of availability, however this number of replicas has to increase for a

highly popular file, in order to sustain its lookup load and minimize client la-

tency. Further more, it’s important to store a copy near each cluster of interested

users. In order to create and maintain such additional copies, cache management

in PAST nodes use the "unused" portion of their advertised disk space. Cached

copies can then be evicted and discarded at any time, it’s typically happening

when a node stores a file or one of its replicas. In order to make room for the new

storage request, the concerned node will enforce the GreedyDual-Size cache pol-

icy. Cache insertion on the contrary happens during a lookup or insert phase, and
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concerns the nodes from whom the request with the file is routed, as long as their

free portion of their own local storage qualify for the different requirements. The

main drawback of this scheme is that the caching performance decreases when

the storage utilisation of the system increases. Nonetheless, the brute and blind

caching policy of PAST brings the advantages of strong persistence and reliability.

2.1.3 Storj

One of the latest andmost interesting decentralized storage network is Storj [64].

Storj’s goal is to be an open-source decentralized cloud storage network allow-

ing each user to transfer and share data without reliance on a third party data

provider. It shares with the two systems presented previously, and especially

Freenet, the goal of getting rid of data providers serving as trusted third parties,

on whom cloud storage on the Internet has come to rely almost exclusively. How-

ever it differs in many points, each one being the direct consequences of years of

research and improvement between the first propositions as the ones explained

earlier, and the weaknesses of a trust-based model as proposed mostly by cloud

storage companies. The firsts points are related to trust and privacy between a

user and the overall system. Storj handles files by their content via a hash, and

enforces end-to-end encryption in order to protect the data in transit and on the

devices not controlled by the user. When uploaded, a file is split into shards –

an encrypted portion of a file with a constant size – and these shards are dis-

seminated along the network, ensuring no node will have a complete copy of the

file, as long as its size is greater than the standardized size of a shard. The meta-

data of each file is stored in a Satoshi-style blockchain, that is to say the location

of each shard, the file hash used for indexing and her Merkle root. To ensure

the integrity of each shard stored on each storage space of each user, audits are

done using Merkle trees [49]. As a blockchain is a public ledger, it’s a very good

tool to achieve a distributed consensus on shards location and dissuades tamper-

ing attack on files. The last main point in which Storj differs from the earlier

distributed storage systems, is its embedded mechanisms designed to cope with

redundancy and so availability. Instead of blindly distributing a fixed number of

replicas across the network, the shards are stored using a K-of-N erasure coding

scheme with multiple nodes. The client may choose K and N to achieve a balance

of robustness and costs. In case of a number of shards from various nodes are

discarded after an audit, due to fault, tampering or simple disconnection, the file
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can still be reconstructed if there is at least K shards among the N produced. To

restore the balance a replication process is applied whereby one of the existing

copies on the network is replicated to a new node, thus the network is able to heal

itself after each audit.

2.2 Content distribution

Besides storage, one of themain problems addressed with decentralized archi-

tectures is content distribution [13]. Delivering content to users on an efficient

way has been studied for many years now. Among the main motivations, the abil-

ity to ensure content delivery, reduce the load on the content provider and the

delays were at the heart of the developments of Content Distribution Networks.

Today, CDNs serve a large fraction of the Internet content: text, documents, me-

dia files and live streaming media for naming a few.

2.2.1 Hybrid CDNs

The constant enhancing of these networks pushed to develop hybrid archi-

tectures using peers to distribute the content, and not stay fixed on a static set of

caching servers allocated in various geographic locations. These hybrid CDNs are

interesting for us because they give a hint on the various problems encountered

when wanting to smartly deliver a content in a distributed environment.

A hint on the complexity of the current architectures has been provided by

Huang et al. [39] by examining the workload of the photo serving stack of Face-

book and the role of the many layers that are part of it. This architecture employs

various layers, in order to provide the content as close as possible from the client.

We first encounter a local cache in the browser or the mobile application of the

client. This limited cache is linked to Facebook Edge, an architecture of cache

servers located in various points of presence (PoPs) around the world running a

FIFO cache replacement policy. If the requested content is not found in the Edge

cache, the request is relayed towards the Origin Cache, a set of cache servers lo-

cated in Facebook’s datacenters also running a FIFO eviction policy. In the final

case where the Origin Cache is not able to serve the requested content, Origin

servers will fetch the content from the storage servers of Facebook, namely the

Haystack.
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This complex solution perfectly describes the various challenges that deliv-

ering a content worldwide close to the consumers represent. The philosophy of

enter deep into ISPs by placing a level of cache directly into the PoPs has been well

enforced by Akamai [38] and represent an effort in pushing the cached contents

as close as possible to the consumers while remaining inside the perimeter of the

company. Pushing the cache levels towards the machines of the consumers break

the barrier of the ISP infrastructure and allows to reduce significantly the costs

and the server load [38].

2.2.2 Content Delivery for alternate systems

The situation detailed in the previous subsection is very efficient and allows

great levels of reliability, however, it lies on a wide and costly infrastructure, that

not everyone can afford. One way to have an efficient delivery infrastructure

without servers is to rely only on peers. One of the difficulties is then to achieve

an efficient placement of content among the peers that agreed to participate, in

order to maximize the proximity between the peer acting as a local cache and

the consumers, thus tending towards high performance. An example of this is

Flower-CDN [30] a locality-aware P2P-based content-distribution network. By

relying as much as possible on peers to deliver content that would otherwise be

provided only by the server, this approach comes closer to a fully decentralized

system than the hybrid CDNs detailed above. In Flower-CDN, peers interested in

some content cache it to later serve it other peers. They are organized in clusters

via content-based overlays, and each consumer relies on a global P2P directory,

based on a DHT, indexing these overlays to be redirected towards one cluster or

another one function of its request. This approach allows Flower-CDN to have

better lookup latency by a factor of 9 and transfer distance by a factor of 2 com-

pared to an existing Hybrid P2P-CDN strictly based on a DHT.

This efforts indicates that when we deal with alternate, fully decentralized

systems, a strong focus has to be put towards geographic locality when it is about

content distribution.

2.3 Metadata in UGC services

The differences between the systems described above witness the evolution of

decentralized storage and content-delivery systems over the year. The strong pen-



26 CONTENTS

chant to secure the communication channels and be able to verify the integrity of

any data without any central authority illustrates perfectly the distrust towards

any decentralized system operated by a major actor, or even more the growing

number of different attacks suffered by any open system as of today. But if the

current systems have evolved to overcome the weaknesses of a trust-based model

and reaches new highs in efficiency, there is still some domains which have been

little to poorly investigated. One particularly is the strategies of placing con-

tent and its replicas right at the upload. We saw previously different approaches,

with PAST placing its replicas along the routing path of the requests-replies mes-

sages, Freenet having a seemingly approach, and Storj distributing the scattering

of replicas to avoid censorship or the loss of a file due to a massive disconnect

from a cluster of users. However, these fixed approaches take into account only

partially the evolution of viewing patterns, legacy of decades-long schemes with

one producer serving multiple consumers. An important point popping from

these previous reviews is that core principles of the design of a decentralized

storage system are different depending how the data is produced and consumed

by the various nodes.

2.3.1 Consumption patterns

As the general model whereby the information produced by one or a limited

set of nodes will be stored and consumed all over the network has been profusely

studied of the past decades, the still recent upcoming of User-Generated Con-

tent services has brought new consumption patterns and studying them is key

towards maximum efficiency. A study by Cha et al. [20] published in 2007 and

relying on a publicly available dataset of YouTube gives some serious insights

about the popularity life-cycle of videos and the intrinsic statistical properties

of requests and their relationship with video age. They oppose the old historical

standard Video-on-Demand systems where content was created and supplied by

a limited number of actors, such as licensed broadcasters and production compa-

nies with marketing campaigns therefore easily controllable, to the UGC model

where users are hundreds of millions of self-publishing consumers, leading to a

content popularity more ephemeral and with a more unpredictable behaviour.

Actually, the most representative part of UGC services as of today is based on

a model where any user can at any time consume any content produced by any

other user at anytime. One of the first side effects observed are content length
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is shortened by two orders of magnitude and so the production time. Hence un-

derstanding the popularity characteristics is important because it can bring for-

ward the latent demand created by bottlenecks in the system. We will detail only

the main parts of the studies presented in [20] for brevity reasons, and because

the legality of the uploaded content and improving centralized UGC via decen-

tralized distribution are outside the scope of this thesis. The datasets used in

their analysis comes from Daum, known as Kakao as of today, and YouTube, both

UGC services. An interesting analysis is produced by observing the evolution of

popularity distributions of UGCs. They first observed that the YouTube distri-

bution seems highly skewed towards popular files, with 10% of videos presents

in the dataset account for more than 80% of views, with Daum data exhibiting a

very similar behaviour. With this observation in mind they delve deeper towards

the observation of popularity distribution of videos for four representative cate-

gories, Entertainment and Science & Technology for YouTube, Food and Travel for

Daum. All of them exhibit a power-law behaviour (a straight line in a log-log

plot) across more than two orders of magnitude, but two of them have a sharp

decay due to exponential cutoff. This consumption cut-off is mainly category-

dependent, nonetheless most of the categories displayed a power-law waist with a

truncated tail fitting best by a power-law with exponential cutoff. The truncated

tail effect described here have been suspected by Gummadi et al. in their study

of file popularity in P2P downloads [36] to be caused by a "fetch-at-most-once"

behaviours of users. This effect could be common to UGC services due to the

immutable nature of the content, having the users less likely to watch the same

video multiple times. The authors then state that so far, the tail truncation for

the popularity distribution of content in popular categories is affected by both

the average requests by users and the number of videos in a category. Next to

that study on popular content, the study shift towards the unpopular ones, con-

stituting the so called "Long Tail" and its embedded opportunities described in

Anderson’s book [12]. The main goal was to identify the underlying distribu-

tion of non-popular items and which phenomena are shaping this distribution.

They obtained the best fit on the distribution with Zipf with an exponential cut-

off, the exponential cut-off being the most relevant to fit the truncated tail. In

analysing the reasons why the distribution has this shape, few reasons have been

mentioned, going from a natural shape due to the very own nature of UGC, its

wide variations in quality and normally being produced for small audiences, to
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other reasons like information filtering. To detail this last one, information filter-

ing here refers to bottlenecks due to post- and pre-filtering, such as recommen-

dation engines typically favouring a small number of popular items in the first

case, and the last one being sampling bias. This study continues with the tem-

poral evolution of the previously cited popularity distributions. As opposed to

standard VoD services where content popularity fluctuation is rather predictable,

UGC video popularity can be ephemeral and has a much more unpredictable be-

haviour. The authors observed an ephemeral popularity for young videos during

a few days after the upload. While interests of users seems to be video-age in-

sensitive on a gross scale, on a one day period, roughly 50% of the top twenty

videos are recent ones, and as the time-wondow increases, the median age shifts

towards older videos, confirming ephemeral popularity of young videos. When

addressing the temporal evolution of the popularity, the authors found that prob-

ability of a given video to be requested decreases sharply over time. In fact, this

indicates that if a video did not get enough requests during its first days, it is

unlikely that they will get many requests in the future. Less than 1% of new

videos make it to the top popular list, the rest having their popularity dimming

over time creating a massive amount of very limited niche audiences, and their

chances of becoming popular in the future being barely existing, although some

few very noticeable exists due to rare and circumstantial phenomena like in this

famous one 1.

2.3.2 Geographic properties

This vast amount of niche audiences presented above could be a real chal-

lenge to distribution components of a decentralized storage systems. However,

some very interesting properties of these niche have been unravelled in various

works. Brodersen et al. in 2012 [18] and Huguenin in the same year [40] are two

important works bringing decisive observations on which we rely. Brodersen fo-

cused his study on the relationship between popularity and locality on YouTube

videos. Their investigation aimed to determine if YouTube videos exhibit geo-

graphic locality on interest, with views arising from a confined spatial area rather

than from a global one. Their results depicts how despite the global nature of the

Internet and with a globally available UGC service like YouTube, online video

consumption is constrained by geographic locality of interest. In a first time, the

1https://www.youtube.com/watch?v=dQw4w9WgXcQ – Stats
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authors investigates to determine if videos of YouTube tend to experience geo-

graphic locality of interest, or rather, a uniform view popularity in the different

countries. They uncover that about 40% of videos in their dataset comprised

of more than 20 millions of videos have at least 80% of their views originating

from a single country, this share lowering only to 70% of the views for the ma-

jority of the videos in their dataset. This strong evidence supports the claim that

videos in large UGC systems tend to be viewed mostly in a limited geographic

area. The temporal evolution depicts video views are more likely to habe their

daily view peak on their first viewing day and second day, with respectively 38%

and 22% of the videos present in the dataset behaving accordingly. The daily

views then decreases on a seemingly exponential form. The spatial observations

related to that phenomenon highlight a spread-and-withdraw effect. When the

peak of daily views is reached, these interest tends to come from a limited geo-

graphic area. Following this peak, the video start to have a much wider audience,

with its views being disseminated to more and more regions. Then more the time

pass, more the origins of the views tends to come from a very specific location,

reaching an even greater specific locality than the one reached during the peak of

focus. Huguenin [40] adds to this observations that in their YouTube dataset, less

a video is popular i.e having a small number of views, and more these views will

be concentrated in one or a few countries. Claiming that more a video is popular,

more she tends to be equally viewed in every country. The impact of social shar-

ing interactions on the geographic properties of a video views by Brodersen are

not developed in this thesis, so does the ability of YouTube content graph to help

predicts the geographic viewing pattern.

2.4 Summary

A large number of works have investigated content delivery architectures,

from traditional Content Delivery Networks (CDNs), to P2P caching systems,

through hybrid solutions combining elements of both strategies. Similarly a

large number of fully decentralized storage systems have been researched over

the years, demonstrating the scalability and robustness of these approaches.

Most of these decentralized storage and delivery systems however either ig-

nore spacial locality issues, or mostly limit themselves to reactive caching strate-

gies. This is problematic as fully decentralized approaches often cannot rely on
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the amount of resources available to large centralized corporate solutions that are

predominant in today’s market. In order to improve the performance of alterna-

tive decentralized solutions, we therefore propose to explore how the meta-data

attached to contentmight help produce an intelligent proactive placement of con-

tent, thus improving the overall locality and hence performance of the resulting

system.

We focus in the remainder of this thesis more particularly on User Generated

Content (UGC) systems delivering videos, and the tags attached to the videos to

investigate this research question. We start our investigation by analyzing the

correlation of tags and geographic view distribution in the next chapter, before

building on the results of this analysis to propose a number of predictive place-

ment mechanisms suited to decentralized storage and delivery systems.
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In order to build better and more reactive decentralized UGC systems, we

propose in this thesis to exploit the meta-data routinely attached to videos in

such systems, with a particular focus on tags. As a first step towards this grand

vision, we present in this chapter a detailed analysis of the relationship between

tags and the geographic view distributions of the videos associated with these

tags, on the basis of an extensive dataset of Youtube videos.

We first present our dataset in Section 3.1, along with some notations and

metrics (Sections 3.1.1, and 3.1.3). We then explain how we derive the view dis-

tribution of each video from the “popularity” information provided by Youtube

in Section 3.1.2. We describe a few statistics of videos and tags in our dataset

(Section 3.2), before moving to an analysis of the geographic distribution of tags,

and its relationship to that of videos (Section 3.3).

3.1 Presentation and preparation of the dataset

Our study uses a Youtube data set collected by our research group in March

2011 [40]. The seeds of the data set are the 10 most popular videos in 25 different

countries, obtained through Youtube’s public API. The data set was then com-

pleted using a breadth-first snowball sampling of the graph of related videos, as

reported by Youtube. For each crawled video, the data set contains, among oth-

ers, the video’s id, its title, its total number of views, its popularity vector (a vector of

integers representing the video’s popularity by country, more on this below), and

a set of descriptive tags provided by the user who uploaded the video [35, 33].

The popularity vector of each video was obtained by crawling the world map

which, at the time1, was provided by Youtube to indicate in which country a video

wasmost popular. Figure 3.1, for instance, shows the worldmap of the video with

the most views in our data set (Justin Bieber - Baby ft. Ludacris). Such maps were

provided using Google’s Map Chart service [3] making it possible to extract for

each of the 235 countries of the ISO 3166-1-alpha-2 standard an integer—from 0

to 61—representing the video’s popularity in this country (Table 3.1).

The original data set contains 1,063,844 unique videos, but not all videos have

a complete set of metadata, with some lacking either tags, or their total number

1This information is unfortunately no longer available since YouTube changed their API and
graphical user interface in September 2013, and closed access to the geographic information re-
garding a video’s views.
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Table 3.1: Popularity vector of the map of Fig. 3.1 (excerpt)

US SG SE RO PT PH PE NL MY MX IL ...
61 61 61 61 61 61 61 61 61 61 61 ...

Figure 3.1: Popularity map of the most viewed video of our data set Justin
Bieber - Baby ft. Ludacris, as provided by Youtube.

of views, or their geographical distribution. Also, it was necessary to merge and

reorganise the different datasets containing all the needed data, in order to forge

our working version. In particular, we filtered out all videos containing no tags

(6,736 videos), or with an incorrect or empty popularity vector. This filtering step

resulted in a data set with 590,897 videos, associated with 705,415 unique tags,

totaling 173,288,616,473 views.

3.1.1 Notation

For the sake of clarity, we use the following notation in the remainder of this

thesis: V is the set of videos in our data set. For each video v ∈ V we use the

following three pieces of information:

• tags(v) is the set of tags attached to the video by the user who uploaded it.

For instance, the most viewed video in our data set (Figure 3.1) is associated

with the tags Justin, Bieber, Island, Def, Jam and Pop.

• tot_views(v) is the total number of views of the video;

• pop(v) is popularity vector of the video as provided by Youtube. pop(v)[c]

is the integer representing the popularity of v in country c.
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From this information, we compute for each tag t the following sets and statis-

tics:

• videos(t) is the set of videos containing t in their tag set.

videos(t) =
�
v ∈ V | t ∈ tags(v)

�
= tags−1(t)

• freq(t) is the number of occurrences of t, i.e.

freq(t) = |videos(t)|

• tot_views(t) is the total number of views associated with t, i.e. the aggre-

gated number of views of the videos containing t.

tot_views(t) =
�

v∈videos(t)

tot_views(v)

3.1.2 From popularity to number of views

The exact meaning of the popularity vector pop(v) is not documented by

Youtube. This vector is however unlikely to capture the proportion of a video’s

views originating from individual countries: applied to Table 3.1, this assump-

tion would imply that the video Justin Bieber - Baby ft. Ludacris has been viewed as

many times in the USA (US, population 318.5M) as in Singapore (SG, population

5.4M).

Instead, taking cue from Google Trends [4], one of the analytics services pro-

vided by Youtube’s parent company Google, we consider a video’s popularity vec-

tor to represent the intensity of this video in individual countries, i.e. a number

proportional to the share of this video’s views in this country’s Youtube traffic:

pop(v)[c] =
views(v)[c]
ytube[c]

×K(v) (3.1)

where views(v)[c] is the number of views of v in country c, ytube[c] is the total

number of Youtube views in country c, and K(v) is a normalization factor, depen-

dent of each video, to scale values in the range [0− 61].

Neither ytube[c] nor K(v) are available to us. To estimate both, we use the

distribution of Youtube traffic provided by Alexa Internet Inc. [5] on July 2014,

an authoritative source of internet traffic, and statistics on internet usage and
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users per country provided by the International Telecommunication Union [6] to

approximate the distribution of Youtube views per country:

ytube[c] = pyt[c]×Tyt ��pyt[c]×Tyt (3.2)

where pyt[c] is the proportion of Youtube view in country c at the time our data

set was collected, Tyt is the total number of Youtube views at the same time, and

�pyt[c] is the Youtube traffic estimated by Alexa for country c.

We also use the fact that we know the total number of views of each video in

our data set:

tot_views(v) =
�

c∈Wolrd

views(v)[c] (3.3)

Injecting (3.2) in (3.1), and (3.1) in (3.3) eliminates ytube[c], K(v) and Tyt, and

yields the following formula:

views(v)[c] �
�pyt[c]×pop(v)[c]�

γ∈World

�
�pyt[γ]×pop(v)[γ]

� × tot_views(v)
(3.4)

This formula provides us with the geographic distribution of the views of each

videos. For each tag t, we derive from these distributions the number of views

associated with t in country c (noted views(t)[c]) using the same proportional

mechanism as above, yelding the aggregated number of views in country c of the

videos containing t as tag.

views(t)[c] =
�

v∈videos(t)

views(v)[c] (3.5)

3.1.3 Metrics used to analyze the dataset

In this analysis, we are particularly interested in capturing a tag’s geographic

spread (resp. concentration), and in contrasting this spread to the videos asso-

ciated with this tag. To this aim, we use Shannon’s entropy H(t) on the view

distribution of a tag t (resp. video v) among countries:

H(x) = −
�

c∈World

pgeo(x)[c]× log2
�
pgeo(x)[c]

�
(3.6)

where x is either a video or a tag, and pgeo(x)[c] represents the proportion of views

of this video or tag in country c:

pgeo(x)[c] =
views(x)[c]
tot_views(x)
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Table 3.2: The 10 most frequent tags

average
tag #occur #views #views
the 30686 13,157,705,562 428,785

video 27239 12,898,383,171 473,526
music 23128 12,640,171,764 546,531
2010 22014 3,349,620,292 152,158
funny 21645 13,550,709,569 626,043

of 19820 5,940,302,641 299,712
new 17943 5,293,119,879 294,996
2011 14572 756,842,996 51,938
live 11614 3,196,117,558 275,195
de 11314 2,726,151,223 240,953

Table 3.3: The 10 most viewed tags
(worldwide)

average
tag #occur #views #views

funny 21645 13,550,709,569 626,043
pop 7877 13,318,507,233 1,690,809
the 30686 13,157,705,562 428,785

video 27239 12,898,383,171 473,526
music 23128 12,640,171,764 546,531

of 19820 5,940,302,641 299,712
records 2478 5,920,162,042 2,389,088

hip 5085 5,615,505,842 1,104,327
hop 5047 5,615,431,517 1,112,627

comedy 9039 5,603,654,002 619,941

A high entropy means a tag (or video) tends to be spread uniformly among

many countries. By contrast, a low entropy denotes a tag (video) whose views

are concentrated in a few countries. For instance, the video with the highest

number of views in our data set, Justin Bieber - Baby ft. Ludacris shown in Fig-

ure 3.1, has an entropy of 5.06. This value is close to the highest possible value of

log2(235) = 7.87, which would correspond to a video equally distributed among

the 235 countries tracked by Youtube. By contrast, the lowest possible entropy

value is log2(1) = 0, corresponding to a tag (video) whose views originate from

one single country.

3.2 Tag and view distributions

Our data set contains 7,717,815 tag occurrences, for an average of 11.18 tags

per video, and a total of 705,415 unique tags. This large number of tags, in line

with earlier findings [33], can be explained by the presence of compound tags

(e.g. “korean pop” is different from “korean” “pop”, which counts as two tags),

spelling mistakes (“(music” or “music�” instead of “music”), and the use of mul-

tiple languages. The frequency distribution of individual tags (Figure 3.2) shows

a typical power-law, which is commonly found in natural languages and folk-

sonomies. About 462,549 tags (66%) only appear once.

Tables 3.2 and 3.3 show, respectively, the 10 most frequent tags and the top

10 tags with the most views. Most tags describe content (video, funny) but some

consist of syntax tools (the, of ). The latter probably result from the former usage

of spaces to separate tags (Youtube now uses commas), which caused compound

terms such as the�rock to be parsed into two tags (the and rock). The tables also
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Figure 3.2: The frequency distribution of tags follow a power law of the shape
y = K × x−α, as often observed in folksonomies and natural languages.
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Figure 3.3: Tags are widely used to describe videos, with 50% of videos show-
ing a least 11 tags.

show that the most viewed tags are not necessarily the most frequent. For ex-

ample, pop, the second most viewed tag (Table 3.2), only occurs 7877 times. The

corresponding videos predominantly belong to the “Music” category, with a high

average number of views per individual video (1,690,809 views, 2.7 times more

than those of videos containing the tag funny). The same comment applies to

related tags such as hip and records.

As mentioned, videos have relatively rich tag descriptions (Figure 3.3) with

11.18 tags on average. One reason may be that users have an incentive to tag their

videos to attract more views. However, and perhaps surprisingly, there seems

to be only a weak link between the number of tags of a video and this video’s
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Figure 3.4: Median number of views for the videos embedding a given number
of tags. Views and size of the tag set seem only weakly correlated, with a clear
growing trend limited to videos with less than 18 tags. The high range results
are not relevant due to the small number of videos having that number of tags,
as show in Figure 3.3

� �� �� �� �� ���

��������������������

�

��

��

��

��

���

�
�
��
�
�
��
�
�
��
��
�
��
�
�
��
��
��
�
�

��������

����

�����

�����

����

� � �� �� �� �� �� ��

��

��

��

��

��

��

Figure 3.5: Cumulative distributions for video’s views, by number of tags. The
number of tags have little to none influence on the views distributions.

viewership (Figure 3.4). The median number of views of a video increases with

up to 18 tags. But this relationship collapses beyond this value. For instance, the

most tagged video in our data set possesses 102 tags, but only 1,220,496 views,

which pales in comparison to the most viewed video—471,208,788 views for only

6 tags. This weak or absent correlation between number of tags and number of
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views is also apparent in Figure 3.5, which shows the proportion of aggregated

views, as a function of the proportion of videos categorized in different ranges of

tag numbers. Figure 3.3 also allows us to note that more than 400,000 unique

tags occurs only once in that dataset. The most plausible reason is a bad syntax

for these tags, as explained earlier.

In the following, in order to avoid artefacts caused by videos with very low

numbers of views, we only consider videos with at least 1000 views. We also limit

our discussion to iso-latin1 tags (91.03% of all tag occurrences). This yields our

final dataset, containing 591,409 videos, 628,101 unique tags, and an aggregated

total of 173,248,620,343 views.

3.3 Comparing the Entropy of Videos and Tags

To understand how tags can provide information to drive the storage of videos,

we now analyse the geographic distributions of videos and tags in our data set.

3.3.1 Video popularity and geographic distribution

We first start by considering videos, and analysing the relationship between

their popularity and their geographic distribution. Figure 3.6 depicts this rela-

tionship in the form of a heat map. The x axis represents the popularity of videos

in terms of their number of views, the y axis measures the geographical distri-

bution in terms of entropy, while colours indicate the density of videos with the

corresponding entropy-popularity values.

As pointed out in earlier work [40], the views of popular videos, in particular

those with more than 107 views, tend to be widely distributed, with average en-

tropy values between 3 and 4. These high entropy values mean that these videos

need to be easily accessible from all over the world, which reduces the interest

in predicting their geographical distribution [20]. However, the plot also shows

that these popular videos constitute a minority. Most of the data points in the

heat map represent videos with less than 106 views. For these videos, the average

entropy remains around the value of 2, with a few high density points around

entropy values of 2.5, 1.5 and 0.

These numbers show that a significant fraction of videos are geographically

concentrated. For example, videos with an entropy below 1.5 constitute 40% of

the data set, with a mean number of views of 155,520, a mean number of tags of 9
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Figure 3.6: Heatmap of each video’s entropy vs. its number of views. Mean
shown as a dashed line.
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Figure 3.7: Heatmap of each video’s entropy vs. its number of embedded tags.
Mean shown as a dashed line.

(vs. 11.18 for the whole data set), and a mean entropy of 0.707. To get a feel of the

meaning of these numbers, we observe that an entropy of 1.5 could, for example,

correspond to a video that is present and uniformly distributed in only 4 coun-

tries. In general, such a low value corresponds to videos that are geographically

concentrated and thus that constitute perfect candidates for proactive placement

strategies. The observations in Figure 3.7 add up to the statement that a signifi-

cant fraction of videos are concentrated in restricted areas. The highlight of two

distinct high-density zones, with one demonstrating a cluster of widely spread

video audiences corresponding to popular content observed before, and a second

with a much higher density, with very low entropy scores. This last graphical

observation allows us to eliminate the possibility of existence of a proportion-
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Table 3.4: The most viewed tags for various countries

country tag total views
United-States funny 7,907,521,226
Germany music 557,388,816
France pop 536,096,206
Canada funny 484,758,340
Australia funny 236,812,186

Table 3.5: Top 3 Videos (views) containing pop

title #views %
Justin Bieber - Baby ft. Ludacris 471,208,788 3.54%
Lady Gaga - Bad Romance 348,924,582 2.62%
Shakira - Waka Waka ... 306,374,501 2.30%
total for top 3 1,126,507,871 8.46%

nal relation between the geographical spread of views and the number of tags

attached to that content.

3.3.2 Tags and geographic distribution

In a second move, we argue that tags can contribute to place these geograph-

ically concentrated videos close to their viewers. To verify this hypothesis, we

start by analysing the most popular tags. Table 3.4 shows that the most viewed

tag in each of five western countries (France, Germany, Canada, Australia, and

USA) is music (entropy of 3.80), pop (entropy of 4.27) or funny (entropy of 3.03).

Based on this example, one might wonder if the popularity of tags correlates

with that of the corresponding videos. But this is not necessarily the case. For

example, the top three videos with the tag pop (Table 3.5) also turn out to be the

most viewed in the entire data set. However, other tags, like funny, appear in

a large number of possibly much less popular videos. To assess the potential of

tags for predicting the consumption of videos we therefore seek for a correlation

between their entropy values.

Figure 3.8 compares the cumulative distribution function (CDF) of the en-

tropy of videos (solid line) with that of tags (dashes) in our data set. The two

curves exhibit very similar trends: entropy values tend to be evenly spread for

values below 3, which correspond to roughly 80% of all videos and tags. Ta-

ble 3.6 complements this information by showing the tags with the highest and

those with the lowest entropy.



44 CONTENTS

Table 3.6: The 5 tags with the most (above) resp. least (below) entropy (for
#occurrences > 100)

average
tag H(t) #occurs #views views

recovery 4.90 230 557,870,332 2,425,523
dominic 4.87 103 338,555,233 3,286,944

fifa 4.83 2722 690,092,931 253,524
passat 4.79 142 41,809,394 294,432
afraid 4.78 131 244,659,961 1,867,633

average
tag H(t) #occurs #views views

piologo 0.04 101 3,985,341 39,458
mundo canibal 0.06 134 4,147,866 30,954

kvarteret 0.10 102 7,313,481 71,700
skatan 0.11 106 7,741,235 73,030
partoba 0.18 272 7,183,083 26,408
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Figure 3.8: CDF of videos (solid line) and tags (dashes) versus entropy
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Figure 3.9: Heatmap of the mean views for every occurrences of a given tag,
versus the mean entropy of every occurrences of that tag. Mean showed as a
dashed line.
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Table 3.7: Top 5 countries (views) for
bollywood

country #views %age
India 200,956,055 39.8%
United-States 124,461,447 24.7%
United-Kingdom 29,506,586 5.8%
Pakistan 25,218,518 5.0%
Germany 12,842,983 2.5%

Figure 3.10: Videos associated with
the tag ’bollywood’ tend to be viewed
mainly in India, USA and UK.

Table 3.8: 5 top countries (views) for
favela

country #views %age
Brazil 19,834,633 47.9%
United-States 14,468,608 34.9%
United-Kingdom 1,701,496 4.1%
Canada 785,725 1.9%
Mexico 639,375 1.5%

Figure 3.11: Videos associated with
the tag ’favela’ are mostly viewed in
Brazil

3.3.3 Tags as reliable markers of geographic specificity

Figure 3.9 depicts the relationship between the entropy and the popularity of

tags in the form of a heat map. As for videos, popular tags constitute a minor-

ity: most tags have entropy values around 2, and an average of 100,000 views.

We provide two examples of such specific tags in Table3.7 and Figure 3.10, and

in Table 3.8 and Figure 3.11. The two tables and figures show the top-5 view-

ing countries and the viewership distribution for tags bollywood (entropy of 3.24)

and favela (entropy of 2.22). In the figures, a higher color saturation indicates a

higher proportion of views for the corresponding country. The views of bollywood

mostly occur in India and the United-States (64.5%), as expected for cultural and

language reasons, with three additional countries with important South Asian

minorities accounting for another 11.3%. The views of favela are even more con-

centrated with Brazil responsible for almost 48% of all views, followed by the

United-States with 34.9%. On the other side, when we visualize the distribu-

tion of views for very popular tags such as pop that are widely spread and con-

summed, with an entropy of 4.27 in this case, we observe different caracteristics.

Table 3.9 demonstrate a very high interest in one country, with the United-States

counting for 35.2% of the views, but then the following top countries in shares
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Table 3.9: Top 5 countries (by views) for pop

country #views %age
United-States 4,700,159,350 35.2%
United-Kingdom 759,449,112 5.7%
Brazil 751,342,295 5.6%
Mexico 603,876,310 4.5%
India 586,339,771 4.4%

Figure 3.12: Videos associated with the tag ’pop’ tend to be uniformly dis-
tributed over the globe, taking into account the number of YouTube users in a
country.
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Figure 3.13: Tag entropy versus video entropy

of consumption have little to no differences between them. The scattering of

consumption presented in Figure 3.12 appears almost equal within the countries

having a rather generally democratized access to Internet. This tag is a marker

of a very wide interest towards contemporary successful and famous artists, pro-

ducing pop-music. The predominance of consumption from the United-States

could be explained by the fact that the three most viewed videos of our dataset

are incorporating the tag pop are produced by United-States artists.

These graphical representations push forward that some tags indicates clearly

that their attached contents are consummed in very restricted areas. These cat-
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egory of tags are not among the most popular but are the most numerous. The

figures supports for the most part this claim. An extend of that observation is to

note that these figures suggest that caching or storing copies of videos containing

these tag in the respective top countries would significantly benefit UGC video

systems.

This claim is backed up by the correlation of entropy observed in this last

figure. Figure 3.13 plots the mean entropy of each unique tag versus the mean

entropy of all the videos this tag appears in. The plot exhibits mainly a linear

shape, indicating that for most pair (tag, video), the tag’s entropy and the video’s

entropy are strongly correlated.

A thin spread-belt surrounds the relation, with an almost constant width, point-

ing in advance towards the level of reliability of the tags as geographic consump-

tion markers of a content. The overall relation is strong with the higher density

concentration being found on the diagonal. This strong link reinforces our con-

jecture that tags can predict the geographic distribution of the associated videos.

3.4 Possible mitigation of the results

We acknowledge that the entire validity of our work can be discussed in var-

ious ways. First, we understand that we rely on a large data set, but not large

enough to be entirely meaningful with respect to the current size of YouTube. It

is still possible that our observations may be an artefact of the particular choice

of videos that constitute our data set. The changes in the YouTube API that hap-

pened in 2013 prevented us from crawling a new dataset or from enhancing the

one we presented.

A second point that may raise some discussion lies in the way we used the

geographic vector provided in the metadata to obtain the proportion of views per

country for each video. To the best of our knowledge, the only way to make a

more informed choice would require having access to YouTube’s inner functions.

Another limitation of our work derives from the fact that our dataset has a

country-level granularity. Previous studies, that we already cited in Chapter 2

demonstrate that consumption trends tend to be homogeneous inside a country.

Nonetheless, we recognise that having a granularity at the level of metropolitan

areas could improve the proximity of content placement, on a geographic and

network scale.
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We recognise that the above points can have a direct influence on our results.

For this reason, we took some proactive measures, such as testing Mignon, the

contribution in Chapter 5 on two different datasets, to further support our con-

clusions.

3.5 Summary

Our analysis of a large dataset of Youtube videos has confirmed that user-

defined tags were widely used to describe videos, and that an important pro-

portion of tags and videos showed distribution concentrated in a few geographic

areas. Furthermore, it appears that a video with a low entropy tends to be as-

sociated with tags that also have a low entropy, and reciprocally. This last point

suggests that tags can be used to estimate whether the views of a new video will

be widely distributed or concentrated in only a few countries, and in this second

case, what these countries might be.

This raises however two questions: how might such a tag-based prediction

of video-views work? Does it holds the potential to help construct decentral-

ized UGC systems? These are the two questions we investigate in the next chap-

ter.
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In the previous chapter, we analysed a rich dataset from YouTube collected by

our team in 2011, in order to highlight the strong correlation relations between

a video’s views geographic distribution and the ones of the associated tags. This

fundamental part allowed us to have an inkling of the predictive possibilities that

tags can give us on the geographic consumption of contents. In this chapter, we

go one step further and we establish the potential of tags to rely on, in order to

predict the geographic consumption pattern of a video content and their ability

to be used as a core element of a proactive video placement system.

In the rest of the chapter, we first propose in Section 4.1 a simple approach

to predict view distributions from the tags attached to a video, and evaluate this

approach on the datasets presented in Chapter 3. We then explore how the pre-

dictive power of tags could be used to improve the cache behavior of a decentral-

ized UGC system (Section 4.2), and evaluate our proposal on the same dataset.

Section 4.3 concludes the chapter with a brief summary.

4.1 Predicting views shares from tags

The problem we wish to solve is the following: Given a new video v, and v’s

tags, we wish to predict the geographic distribution of v’s future views, know-

ing the distribution of past videos with the same tags. Because we eventually

would like to distribute this prediction in a decentralized setting, it should re-

main as simple as possible, while still providing suitable results.

To compute this prediction, we use a basic additive prediction technique that

exploits the tags associated with videos (Section 4.1.1), and compare it with a

baseline prediction mechanism (Section 4.1.2). To evaluate both approaches, we

use a cross-validation technique. We split the dataset into a testing set Vtest and

a training set Vtrain. We then process the information (views and tags) in the

training set, and use it to guess the view distributions of the videos in the testing

set.

4.1.1 General approach

When a new video v is uploaded, we predict the geographic distribution of v’s

views �pgeo(v) as the average of the geographic distribution of v’s tags in the set of

videos already known to the system V : For a video v ∈ Vtest associated with a set

of tags tags(v), we predict the geographic distribution of v’s views �pgeo(v) as the
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Table 4.1: YouTube traffic share according to Alexa

country share
United-States 19.0%

India 8.6%
Japan 4.7%
Russia 4.1%
Brazil 3.8%

country share
United-Kingdom 3.2%

Mexico 3.0%
Germany 3.0%
France 2.5%
Spain 2.3%

average of the geographic distribution of v’s tags in the training set Vtrain:

�pgeo(v) = Et∈tags(v)

�
pVgeo(t)

�
(4.1)

where pVgeo(t) is the geographic distribution vector of tag t in the dataset. V . Our

aim is for �pgeo(v) to be as close as possible to pgeo(v), v’s actual view distribution

vector.

4.1.2 Baseline

As a baseline prediction, we use the average distribution of global YouTube

views, estimated from the YouTube network traffic reported by Alexa Internet

Inc. [1]. Table 4.1 lists the 10 countries having the biggest shares of traffic. We

use this data as viewing probabilities. With reference to Table 4.1, a content has

19% of probabilities to be viewed in the USA, 8.6% chances to be viewed in India,

and so on. Alexa only provides for YouTube the top 40 countries generating the

most traffic, totalling 85.2% of global YouTube network usage. We apportion the

remaining portion of 14.8% to the 217 countries not covered by Alexa propor-

tionally to their share of internet users, as reported by the International Telecom-

munication Union [6]. This process yields the same baseline view prediction for

all videos, that we compare against the results returned by (4.1).

4.1.3 Evaluation and metric

We evaluate the tag-based prediction strategy and compare it with the base-

line using a cross-validation method. We divide our dataset into two equal parts:

a training set Vtrain and a testing set Vtest. By ranking the videos by number of

views, and attributing each odd rank order to the Vtrain and each even rank order

to Vtest we obtain a training set and a testing set containing 295,449 (±1) videos

each, and a very close number of views for both 86,624,310,171 (±20,000,000).
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Figure 4.1: CDF of prediction accuracy (top) and mean and median (bot-
tom) for the tag-based and distribution-based approaches for view prediction
(higher is better). Tags clearly yield better predictions over a simple average
distribution vector.

We then use (4.1) to predict the view distribution of each video v in Vtest from

the tag distribution extracted from Vtrain (which plays the role of known videos

in the formula).

To evaluate the accuracy between a prediction �pgeo(v) and the actual geo-

graphic distribution of a video pgeo(v) we compute the proportion of views cor-

rectly placed by the prediction (what we term the prediction’s accuracy):

pcorrect(v) = 1−
1
2
×

�

c∈World

�����pgeo(v)[c]−�pgeo(v)[c]

����� (4.2)

where pgeo(v) is the actual geographic distribution of video v, and the division

by 2 normalizes the result. An accuracy of 1 means that the prediction and the

actual distributions match (no misplaced views); a value of 0 instead indicates

there is no overlap in terms of countries between the predicted and actual views

(all views were misplaced).

In the following, we present our results and show how prediction accuracy

can be influenced by parameters such as the number of views, the number of

tags, or the entropy of tags and videos.
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(a) Tag-based prediction
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(b) Distribution-based prediction

Figure 4.2: Prediction accuracy vs video views. The dashed lines show the
average accuracy. The tag-based approach outperforms the baseline across the
range of video views.

4.1.4 Results

We start presenting our results by comparing the distributions of prediction

accuracy for our tag-based approach and for the baseline view prediction. Fig-

ure 4.1 plots the cumulative distribution of prediction accuracy obtained by our

approach (Tag-based prediction) and by the baseline (Distribution-based prediction)

with the corresponding mean and median values indicated below. Our approach

clearly outperforms the baseline, yielding a median accuracy (65.9%) that is al-

most twice that of its competitor (33.9%). We note that our Tag-based prediction

leads us to obtain more than 50% of accuracy for 73% of videos compared to
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(b) Distribution-based prediction

Figure 4.3: Prediction accuracy vs video entropy. The dashed lines show the
average accuracy. The benefit of tags is particularly strong for low entropy
values.

only 19% for the Distribution-based prediction. This confirms that tags hold the

promise of predicting the geographic distribution of UGC videos.

Figures 4.2 and 4.3 delve deeper into the results and show the effect of the

number of views and of the entropy of a video (see Chapter 3), respectively, on

the accuracy of prediction for both approaches. The heat maps show the distri-

bution of individual videos, while the dashed lines indicate the average accuracy

obtained for a given number of views, resp. entropy.

Figure 4.2 indicates that tag-based prediction significantly outperforms the
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baseline regardless of a video’s popularity with the absolute difference between

the accuracy values of the two approaches remaining at about 30% over all pop-

ularity values. Both plots further show a weak positive correlation between the

number of views of a video and its accuracy. This correlation probably stems

from the link between popularity and entropy. Highly popular videos tend to be

scattered all over the world (high entropy), and are therefore easier to predict, as

when the interest towards a content is shared by everyone all around the world,

the consumption tends to copy the same pattern as the share of internet users per

country.

By contrast, Figure 4.3 shows that tag-based prediction works best for video

with an average to medium-high entropy (between 2 and 3, accuracy above 70%),

with lower results both for both highly concentrated andwidely distributed videos

(corresponding to low resp. high entropy values). This behaviour is in stark con-

trast to that of the baseline, whose performance is directly linked to that of en-

tropy, indicating that the predicting value of tags is particularly interesting for

videos with low to medium entropy, which tend to diverge from the average be-

haviour. It can be explained by the fact that tags with a very high entropy are not

specifically related to highly viewed content. This tags tend to belongs to com-

mon description as seen before in Table 3.6, recovery, afraid and fifa belongs to

content who found interested consummers in almost every country in the world,

but with a weaker fondness of the population than for popular pop singers. The

interest for them is so high among any population that the consumption scheme

of their contents tends to match the connectivity pattern. That is why tags be-

longing to content with low or medium view scores but high geographic spread

benefits from a less precise prediction ability.

4.2 Potential of tags for proactive video placement

The results of Section 4.1 show that the tags attached to videos can be used to

predict where individual videos will be most viewed with a reasonable accuracy,

using a very direct and simple approximation method.

Building on this result, we now explore whether tags can help design better

UGC systems by determining where to place new videos. This ability will become

increasingly important as more and more applications manage short-lived con-

tent preferentially in locations closed to where they are likely to be most viewed.
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4.2.1 System model

Our scenario considers a company that must decide where to store the pri-

mary copies of a set of new videos Vnew on its global storage infrastructure (i.e.

these copies form the reference storage of the UGC service, in contrast to caching

copies, which might be evicted), using tag information extracted from videos al-

ready served by the service Vknown.

In the following we focus on the placement and storage of the videos in Vnew,

since those are the video for which the company has no viewing information, and

where predictions are likely to be most useful.

We need some illustrations. Can you reuse some of those you drew for your

presentations? (and refer to them in the text.)

In terms of infrastructure, we consider an extreme case, in which each coun-

try has some storage capacity available for new videos (a datacenter, or share of

datacenter for small countries). We assume the system’s overall available capac-

ity (Sworld) is able to store R copies of each new video. For the rest of the chapter,

we will consider the replica factor R as R = 3, being a typical value for R used in

cloud storage systems (e.g. GFS, HFS). For simplicity’s sake, we also consider that

all videos has the same size (an obvious simplification), and measure our storage

capacity in number of videos.

We assume that the service’s revenues, and hence its investment, will be roughly

proportional to the number of views in one country, reflecting the level of activ-

ity. We therefore set the storage capacity Sc of each country c proportional to the

country’s view shares:

Sc = Sworld ×pglobal[c]

where pglobal[c] is the proportion of views in country c with Sworld representing

the aggregated storage capacity of each coutry :

Sworld =
�

c∈World

Sc = R× |Vnew|

and |Vnew| representing the number of videos we want to store and serve, present

in our testing set. UGC providers typically rely on multiple layers of caches

(within browsers, at Internet Points-of-Presence, within datacenters), in addition

to their primary storage system [39]. In our model, we aggregate all these caches

in one single layer located within each country, set to an LRU eviction policy. We

set the capacity of this caching layer to 10% of each country’s primary storage.
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This value is relatively low on purpose in order to better analyze the effect of tags

on the system.

4.2.2 Placement mechanism

Our goal consists in finding a good placement for the copies of the videos in

Vnew by using the tag information contained in Vtrain. A good placement is one

that maximizes the number of video requests that are served from a copy stored

in the country’s local storage infrastructure.

To demonstrate the potential of tags to help organize the video storage of a

UGC service, we propose to use the following simplistic approach.

We place each new video v according to an estimation of its per-country view-

ing vector ( �views(v)[c])c∈World. This estimation uses the geographic distribution of

tags observed in the videos already served by the service Vknown. More precisely,

we compute for each tag t an average per-video and per-country “contribution”

of this tag to the views of the known videos in which t appears: For this estima-

tion, we use the training set to compute viewsVknown(t)[c], the aggregated number

of views in country c of the videos of Vknown containing t as tag (Equation (3.5)

from Section 3.1.2). From viewsVknown(t)[c], we then compute the average number

of views in country c of the videos containing t:

views_p_vidVknown(t)[c]

=
viewsVknown(t)[c]

|{v ∈ Vknown : t ∈ tags(v)}|
= E

v∈Vknown:
t∈tags(v)

�
viewsVknown(v)[c]

�

We then estimate �views(v) for v ∈ Vtest as:

�views(v)[c] = E
t∈tags(v)

�
views_p_vidVknown(t)[c]

�
(4.3)

The placement works then as follows: we iterate over the videos of Vnew, and

place R copies of each video v in the first R countries in which v is predicted to

get most of its views, among the countries with some remaining storage.

4.2.3 Experiment, metrics, baseline

As in Section 4.1, we split our dataset in two, using the same reference (Vtrain),

and testing sets (Vtest). Vtrain plays the role of known videos Vknown. Because



58 CONTENTS

Vtest remains particularly large (295448 videos, and 86,624,310,171 views), we

sample it down while conserving the distribution of views across countries and

tags. We first generate a trace T of 10 millions requests for the videos of Vtest that

respects the distribution of views between videos and countries. In other words,

the probability to generate a request for video v in a country c in T is proportional

to the number of views of v in c:

P(generate request(v,c)) =
views(v)[c]�

v�∈Vtest
tot_views(v�)

We then choose Vnew as the set of unique videos present in the trace T .

As baseline, we use a random placement policy, which randomly allocates each

of the R replicas of a video in Vnew to any country with some remaining storage

capacity.

We evaluate the quality of a placement by replaying the trace T , and counting

how often a request can be served from the country it originates from (a hit). In

the case where we cannot serve the request (a miss), we store the video in the

local country cache for future use under the LRU cache policy. We use the hit

ratio (#hits/(#hits +#misses)) as our quality metric.

4.2.4 Results

We start by comparing the average hit ratios obtained by our placement ap-

proach and by the baseline across all countries for different values of R. Results

are shown in Figures 4.4–4.6. Figure 4.4 plots the average hit ratio obtained by

each approach for different replication factors (R ∈ [1,5]). It shows that a tag-

based placement clearly outperforms the baseline with an improvement that os-

cillates between 5.6% (R = 1) and 6.8% (R = 5). This advantage remains roughly

constant as R increases, although for very large values of R, the difference be-

tween them will decrease. The two approaches will achieve the same 100% hit

ratio when R will be so large that all videos could be stored in every country,

obviously.

Figure 4.5 charts the cache performance of the 6 countries receiving the most

views (US, India, Japan, Russia, Brazil and Great Britain), for three values of R

(1, 3 and 5). The left bar above each country corresponds to the performance

of the tag-based placement, and the right bar to that of the random placement.

Each bar shows the absolute number of misses (top black line), of hits served by

the LRU cache (middle red hatched section), and of hits served by the primary
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(c) R = 5

Figure 4.5: Hits and misses for the top 6 countries for R ∈ {1,3,5}, for the tag-
based (left bars) and random placement (right bars). The green and red por-
tions denotes respectively the contributions of the permanent storage Sc and
of the cache Cc.

storage (bottom green solid section). The results show that tag-based prediction

provides the most advantage for countries that view the most videos. For R = 1,

the US obtain a hit ratio of 79% with our model and only 45% with the baseline.

The composition of this hit ratio also changes: our approach achieves 64% of

hit ratio through the primary storage and only 15% through the LRU cache; the

baseline achieves only 18% through the primary storage and as much as 27%

through the cache.

Increasing the number of replicas, R, yields an improvement for both ap-

proaches in every country. However, our tag-based placement ends up providing

better results in all countries except Russia. This likely results from the fact that

we had to ignore a large number of Cyrillic tags from our dataset.

Figure 4.6 provides a different perspective on the results over the entire set

of countries. Each circle in the figure represents a country and its surface is pro-
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(c) R = 5

Figure 4.6: Hit ratios obtained through random placement (x-axis) vs. tag-
based placement (y-axis) for all country (individual bubbles) for R ∈ {1,3,5}.
The bubbles’ area shows the number of views of individual countries.

portional to the number of requests from that country. The x axis represents the

accuracy of the baseline approach and the y axis represents that of the tag-based

approach. The figure shows that the countries with the biggest share of views

benefit the most from our solution. With R = 1 the improvement remains limited

to the US, but as R increases more and more countries see an improvement in

their results. For R = 5, we also observe that the US reaches almost 100% with

both approaches. This clearly limits the improvement that can be provided by

any protocol.

Both Figures 4.5 and 4.6 show that tag-based placement works best for coun-

tries with many views, and that the number of benefiting countries increases with

R (from one—the USA—with R = 1, to more than ten and twenty respectively for

R = 3 and R = 5 ). This phenomenon directly results from our greedy placement

algorithm: countries with many views are predicted more often as a top coun-

try and thus attract more “good” primary copies. With a single copy per video

(R = 1), runner-up countries (such as India, or Japan) are thus prevented from

storing videos that would be good matches for their viewership, because these

have been preferentially attracted to the US. When R increases this phenomenon

moves down the list of countries. The overall effect remains an average increase

in hit ratio (Figure 4.4).

4.3 Summary

The approaches and results presented in this chapter show that the tags at-

tached to videos can be exploited to predict where a new video might be most
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viewed. The approaches we have proposed are simple and cheap (relying on

sums and averages), while delivering a reasonable accuracy. Our second exper-

iment also demonstrates that such predictions can help place new videos in an

intelligent manner, in particular in distributed delivery system with a limited

amount of resources, and a globally distributed infrastructure.

One limitation however of the placement mechanism we have presented is

that the computation of view predictions assumes that the view distribution of

previous videos and previous tags is globally known to all participants in the

storage system. This assumption is difficult to implement in an efficient and scal-

able manner in a fully decentralized systems. In the next chapter, we therefore

turn to the problem of estimating the viewing potential of a new video using

a decentralized prediction protocol in order to remove this limitation.





5

Decentralized Estimation of

Geographic Video Views

Contents

5.1 Motivation and general system architecture . . . . . . . . . . . . . 65

5.1.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.2 Background: Self-organizing overlays . . . . . . . . . . . . . 67

5.1.3 A decentralized placement protocol . . . . . . . . . . . . . . 68

5.2 Mignon: Fast Sum Estimation . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Trapezoidal rule. . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Gregory-Newton Interpolation. . . . . . . . . . . . . . . . . 73

5.2.3 Polynomial Least Squares Fit. . . . . . . . . . . . . . . . . . 73

5.3 Mignon Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Accuracy Comparison . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Mignon Sensitivity Analysis . . . . . . . . . . . . . . . . . . 78

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Influence of Sample & Collide . . . . . . . . . . . . . . . . . 87

5.4.2 Convergence speed . . . . . . . . . . . . . . . . . . . . . . . 87

63



64 CONTENTS

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



5.1. MOTIVATION AND GENERAL SYSTEM ARCHITECTURE 65

In this chapter we put into practice part of the results of the previous chapter

on tag-based placement in the context of a decentralized architecture. Our results

suggest that the placement approach of Chapter 4 holds the potential to improve

the behavior of decentralized storage systems for UGC videos. This placement

approach requires however to compute the likely geographic view distribution of

each new video. In a truly decentralized system, such as the ones we advocate in

this thesis, this computation itself should be decentralized. The question of how

such a decentralized view prediction should occur is the one we turn to in this

chapter.

5.1 Motivation and general system architecture

5.1.1 System model

We consider a global decentralized P2P UGC service, in which each user con-

tributes her ressources to the system, whether it be a set-top box, a connected

device or a personnal computer. As we focus on content placement—explicitly

here on videos—and view prediction, we assume our service can store and re-

treive videos from users’ machines in a decentralized manner [60, 62, 54], but

we do not detail these mechanisms any further in the rest of the chapter. As is

now common inmany on-line services, we also assume that each user who desires

to upload content to the system is free to attach a set of tags of her choice, lim-

ited neither by the size of the set nor by the nature of tags itself. Each node keep

track locally of the previsouly consummed content. More precisely, the individ-

ual devices of users (label 1) store the list of videos they have consumed (their

video profile, label 2). Each video is associated with a set of descriptive tags pro-

vided by its uploading user [35, 33] (label 3). The tags of the videos viewed by a

user form her tag profiles (label 4). We rely on a tag-based affinity function, f, that

measures a user’s affinity with new videos (5) based on her previous consumed

videos. A number of such rating functions exist, from cosine similarity [16] to

average views per tags [24]. The only assumptions we make about f is it uses the

tags profiles of individual users and of the new video, and its result is correlated

with the probability that this user will watch the video (6).

When uploading a new video, copies of this video should ideally be placed

in storage locations close to where it might be most consumed. This is because

the viewing patterns of many videos in UGC services present clear geographic
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Figure 5.1: Using tags to predict users’ affinity with a new video
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Figure 5.2: Placing new videos based on aggregated affinity

trends [18], which are strongly correlated with a video’s tags as analyzed in the

previous chapter. In Fig. 5.2 for instance, Dave must decide whether to store his

new video in the USA or in France. The decision process has to be determined

by the video’s likely future popularity in the different countries, which can be

estimated by the sum of all user affinities in each country. Obtaining this aggre-

gated sum efficiently is unfortunately challenging in a large P2P system. Dave

could trigger a P2P aggregation in the USA and France [50], but such an approach

would require computing the similarity between the new video and every user in

each country, a slow and costly operation.

In this chapter, we therefore investigate how such a sum can be efficiently,

rapidly, and accurately estimated in a fully decentralized system while involving

only a small subset of the users in a given country. Our proposal exploit the ca-

pabilities of similarity-driven self-organizing overlays to estimate the aggregated

affinity of a new video within a community of users (here located in the same

country) while avoiding a full-fledged decentralized aggregation procedure.

Instead of launching an expensive aggregation every time a new video is up-

loaded, we propose a cheaper mechanism to estimate the aggregated affinity of a

video. Our approach exploits a similarity-driven overlay [16] that interconnects

all the users in a country. In the following we first briefly describe similarity-

driven overlays, and then present the details of our approach.
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Figure 5.3: A self-organizing overlay

5.1.2 Background: Self-organizing overlays

Peer-to-peer overlay networks extend the capabilities of an underlying net-

work (e.g. based on TCP-IP) with additional indexing and routing capabilities

to provide richer services, typically in user space. They do so by organizing a

large number of machines (known as peers or nodes) in a flat topology in which

each peer is connected to a small number of other peers (known as the view or

neighborhood of the peer).

The scalability and robustness of peer-to-peer overlays have made them well

adapted to large scale distributed systems such as decentralized social networks.

Similarity-driven overlay networks organize peers according to their similar-

ity between the interests of their associated users [42], with a wide range of data-

oriented applications [16, 14, 17, 31, 29] like decentralized query expansion [16],

peer-to-peer search [14], news recommendation [17], and CDNs [31, 29]. In this

thesis, we consider gossip-based similarity driven overlays, whose behavior is il-

lustrated in Figures 5.3-5.5.

The machine of each user (e.g. a user’s set-top box) holds the user’s profile:

in our case the list of viewed videos and their attached tags (Fig. 5.3). Alice has

viewed two videos associated with the tag ‘World’, and one associated with ‘Ani-

mals’. Bob has viewed one video associated with ‘World’, and one associated with

‘Animals’. Starting from random neighbourhoods (which depend on how each

node joined the network) the goal of the overlay is to eventually connects each

peer to its k most similar other peers in the network, according to some similarity

metric (e.g. Jaccard’s coefficient, or Cosine Similarity). We use cosine similarity

in the following.

This neighbourhood construction uses two epidemic protocols executing on

each peer (Figures 5.4 and 5.5). With the first mechanism, a peer (e.g. Alice) reg-
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Figure 5.4: Overlay Architecture
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Figure 5.5: Peer-to-peer neighborhood optimization

ularly polls an underlying and constantly evolving Random Peer Sampling (RPS)

overlay [43] to obtain a set of random peers from the rest of the system. In Fig. 5.4

for instance, Alice might discover Dave through the RPS layer. If Dave turns

out to be a better neighbour for Alice than Bob (upper self-organizing layer),

Alice will replace Bob by Dave in her neighbourhood. This stochastic process

ensures that, if all user profiles remain equal, the system eventually converges

to an optimal state. In large networks the convergence might however be very

slow. To speed up convergence, peers use a second ‘neighbor-of-neighbor’ mecha-

nism (Fig. 5.5). The intuition is that if Alice is similar to Bob, and Bob to Carl,

then Carl might be similar to Alice. Peers therefore periodically exchange their

current neighbours lists (Step 1 in Fig. 5.5), and use the new peers they discover

to optimize their neighbourhoods (Step 2). This mechanism greatly accelerates

convergence (usually in log(N ) rounds [42]), where N is the size of the network,

but might get stuck in a local minimum, and is therefore complementary to the

stochastic mechanism of Fig. 5.4.

5.1.3 A decentralized placement protocol

In order to implement our sum estimation mechanism in a fully distributed

storage system, each node runs the exact same architecture than any node present
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Algorithm 1: Algorithm of the daemon running on each node

1 if TimeOutLocalKNN then
2 LocalKNNT imer← def ault
3 viewlocal ←MaintainLocalListof Peers()
4 ExecuteLocalKNN (ownprof ile)
5 end
6 if TimeOutGlobalView then
7 GlobalV iewT imer← def ault
8 viewglobal ←MaintainGlobalListof Peers()
9 end

in the system. This architecture is structured on two distincts levels, each beeing

responsible of one of the two main roles described previously in Section 5.1.2.

Each node encompass these two different levels in his permanently running dae-

mon, described in Algorithm 1. In an idle state, each node periodically executes

a maintenance routine on these two elements.

The first main element (lines 1-5) is executed everytime LocalKNNTimer comes

to its end and signals it via TimeOutLocalKNN. Its role is to maintain a similarity-

based overlay network of peers inside a country (local level), allowing each peer

to keep in its local list of neighbours (viewlocal) the k peers having the higher

similarity measure with it’s ownprofile. The similarity between two peers is com-

puted by having them exchange their personal record composed of the different

tags encountered in the contents consumed by the peer so far, and the respec-

tive number of occurrences of each of these tags, englobed in a personal profile,

denoted ownprofile. A Random Peer Sampling (RPS) service is used on this local

level in order to avoid local minimum as described in Fig. 5.4.

The second main element in Algorithm 1 is triggered by TimeOutGlobalView

and act on an inter country overlay or level (global level). This element is responsi-

ble to maintain a global view of the system denoted viewglobal allowing each node

to be in contact with a least 1 peer in each different country. For this end, it rely

on a RPS service, operating over a geographic overlay. We assume that geographic

overlay, not detailed in this thesis, allows each node to contact at least one peer

in each various geographic zone local level, with a given static zone identification,

such as via a prefix in the node identification allowing to broadcast a message to

the peers in a particular country.

Apart from the daemon running continuously inside each connected node,
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Algorithm 2: Algorithm for the Upload and Placement parts

1 on receive upload(file) request do
2 Pv = CreateVirtualPeer()
3 world←∅
4 world = RequestCountriesKNN(Pv ,viewglobal)
5 bp← ExtractBestPlaces(world,R)
6 ask store(f ile.inf o) to bp

Function RequestCountriesKNN
Input: Pv ,viewglobal

Output: Partial Similarity graph for each country
1 from viewglobal select Nodes

2 for node in Nodes do
3 SendKNNOrder(node,Pv)
4 end
5 while not all Nodes responded and !T imeOutAsnwers do
6 world← ReceiveAnswerGraph()
7 end
8 return world

and maintaining for each node the two overlays, each peer have the ability to

upload a file and place it to the geographical area where it will be the most con-

sumed is described in Algorithm 2.

When a peer uploads a video v, she first attaches a set of self-defined tags to it,

and use these tags to build a virtual peer Pv , whose profile contains the user-

defined tags and attributing of value of 1 for their number of occurrences. As

detailed in Function RequestCountriesKNN the uploader sends Pv to at least

one node in each existing geographic area by relying on the peers comprised in

viewglobal . It receives in return from each contacted foreign node an estimation of

the corresponding country interest towards the profile of Pv . Based on these esti-

mations, R best geographic areas are extracted, with R being the replication level

of the system, and a storage request is send to each previously contacted node in

these elected best places. In case an elected node for various reasons, could not

store the content, he will rely on his own viewlocal to relay the storage request to

the next interested peer, as described in Algorithm 3.

To compute the interest of each country towards Pv , we simply estimate the

sum of the similarities between Pv and every other user in the country. To com-

pute this sum exhaustively, either at peer Pv or using a standard aggregation pro-
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tocol, we would either have to collect the profiles of all other nodes at Pv , or

disseminate the profile of Pv to every other node. In both cases, the delay and the

resulting network cost would be prohibitive for very large networks.

Instead we propose that the uploading user simply impersonates the virtual

peer by having it join the similarity-based overlay of each country, by sending

a similarity-measure request detailed in Algorithm 4 to one peer in each coun-

try, relying on peers present in viewglobal . If convergence in a similarity-based

overlay is generally fast (generally logarithmic in the size of the network [42]),

it is even faster for Pv to converge to obtain its k-nearest-neighbours in an al-

ready converged network. Once this happens, the uploading user exploits the

content of the KNN and RPS neighbourhoods of Pv to estimate the video’s aggre-

gated affinity without any further network exchanges. This last element uses a

new decentralized sum estimation protocol we have termed Mignon, which al-

lows a peer to estimate the aggregated interest of a group of peer is central in our

architecture, and is introduced in more detail in the following section.

5.2 Mignon: Fast Sum Estimation

In this section, we present the key contribution of this chapter: Mignon, a

decentralized protocol for efficiently estimating the sum of a set of values. The

key feature of Mignon consists in considering the affinity values of users found

in the KNN and RPS views of Pv as samples taken from a monotonically decreas-

ing function. Mignon uses these values to interpolate the function’s shape, from

which we derive an aggregated affinity by integration. The values obtained from

the KNN neighbours constitute the first k consecutive samples, while those in the

RPS represent randomly chosen samples distributed along the rest of the x-axis.

To associate each of them with an x-coordinate (which the RPS does not indi-

Algorithm 3: Algorithm handling the Request for Storage

1 on receive store(file.info, file.size) request do
2 if free space > file.size then
3 StoreFile(f ile.inf o, requester)
4 end
5 else
6 ask store(f ile.inf o,f ile.size) to bestneighbor
7 end
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Algorithm 4: Algorithm for the estimation of a local interest

1 on receive CountryKNN request do
2 prof s← ExecuteLocalKNN (Pv)
3 CreateTrendGraph(prof s)
4 SendGraph(prof s,requester)

cate), we rely on a network-size estimation protocol [46] that provides us with

the length of the x-axis, and assume that the RPS samples are equally spaced

along this axis.

We observe that the need to rely on a size-estimation protocol does not off-

set the benefits of Mignon in terms of delay and network cost. First, the size-

estimation protocol does not need to be run for every video upload. Rather, in

a setup consisting of set-top boxes that are almost always on, the protocol can

run every few days. Second, protocols like Sample & Collide [46] can estimate

the size of the network within a reasonable error margin at a minimal cost. We

evaluate the impact of protocols like Sample & Collide in Section 5.4.1.

In the following we focus on three different techniques we use in Mignon that

can estimate the unknown affinity values based on the KNN and RPS samples.

We then evaluate their accuracy levels in Section 5.3.

5.2.1 Trapezoidal rule.

The first technique we consider is the trapezoidal rule, a well-known method

for approximating the integral of a function. The rule replaces the function to be

integrated with a sequence of linear segments and computes the integral as the

sum of the areas of the corresponding trapezoids.

� b

a

f (x)dx ≈
1
2

N−1�

k=1

(xk+1 − xk)(f (xk+1) + f (xk)) (5.1)

In our case, we do not have a function defined over a continuous interval of

real number, but a discrete set of score values. As a result, in addition to the esti-

mation error associated with the trapezoidal rule, our estimate will also include

an error that results from the imprecise linearised placement of the samples taken

from the RPS view. We evaluate this impact in Section 5.3.
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5.2.2 Gregory-Newton Interpolation.

As a second estimation mechanism, we consider a polynomial interpolation.

Specifically, we compute the polynomial of degree n − 1 that goes through all of

the n samples in the KNN and RPS. We then use this polynomial to compute the

values associated with the users that are not among the samples. The Gregory-

Newton Forward difference approach requires to calculate a difference table. This

table is filled by the differential operator ∆fi . For the first order, this operator is :

∆fi = fi+1 − fi

and towards the k order:

∆
kfi = ∆

k−1fi+1 −∆
k−1fi

The order is given by the number of points n used for the interpolation with k

equals n− 1. The polynomial equation look like:

Pk(x) = f0 +∆f0
x − x0
h

+
∆
2f0
2!

x − x0
h

(
x − x0
h
− 1) + · · ·

· · ·+
∆
kf0
k!

x − x0
h

(
x − x0
h
− 1) · · · (

x − x0
h
− k − 1)

(5.2)

with h being the step between two samples, and must remain constant, such as

x1 = x0 + h and xn = x0 + nh. To solve this condition, we will first apply the trape-

zoidal rule to integrate the values of the k-firsts interests, these values given by

the KNN having a constant spacing of 1 between them, then apply this interpola-

tion to the linearised interval of the scores given by the RPS service, the linearisa-

tion allowing us to maintain a constant gap between two measures. We will then

add the two area interpolated.

5.2.3 Polynomial Least Squares Fit.

Our last technique in Mignon is to consider a least squares regression on a

degree-two polynomial. In short, we compute the degree-two polynomial coeffi-

cients that minimize the square error with respect to the samples in the KNN and

RPS, and sum the values that the polynomial associates with each of the users in

the system.

This method try to fit the given matrix of coordinates inside a polynomial.

The form is:
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p(x) = ax2 + bx + c

s.t.(a,b,c) = argmin
(a,b,c)

�k
j=0 |p(xj )− yj |

2 (5.3)

The choice of using a degree-two polynomial was motivated by the general

shapes of the graphs of interests, as we considered them sorted, we obtain a graph

representing a decreasing function.

5.3 Mignon Evaluation

We evaluate Mignon on two distinct datasets. The first consists of the YouTube

dataset we introduced and analysed in Chapter 4. To evaluate Mignon, we “rein-

terpreted” this dataset by considering each country as if it was a single user. Our

modified dataset therefore consists of 257 users in a single country with the inter-

est rating of a video for each country beeing the number of views in this country.

Our second dataset, MovieLens, consists of a trace from a personnal movie

recommendation system1. MovieLens started as a project from GroupLens2, a

well known research lab in the Department of Computer Science and Engineering

at the University ofMinnesota, fromwhom the datasets are widely used in experi-

mental research on recommender systems. It contains a set of 22,000,000 ratings

and 580,000 tag occurrences applied to 33,000 movies by 240,000 users. The

second part of the dataset is denoted as a tag genome, and contains 11,000,000

computed tag-movie relevance scores from a pool of 1,100 tags applied to 10,000

movies. Each movie is associated with a vector of ratings (1 to 5 integers) by a

subset of the users, and a set of n pairs, each consisting of a tag and a real-valued

relevance score. The rating, Ru(m), expresses the rating of a movie m by a user u,

while the relevance score, rm(t), expresses the importance of a tag, t, for a given

movie, m. Based on this information, we compute the interest score ut of a user u

for a tag t by averaging the product of rating and relevance over all theNu movies

seen by user u as follows.

ut =
1
Nu

Nu�

m=1

(rm(t) ∗Ru(m)) (5.4)

1www.movielens.org
2http://grouplens.org/datasets/movielens/
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(a) MovieLens
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(b) YouTube

Figure 5.6: Interest curve for MovieLens(a) and YouTube(b) datasets. Black
vertical lines represent KNN and RPS samples.

Since we want to evaluate Mignon’s ability to estimate the aggregation of a

score value, we consider a synthetic set of new “videos”, whose profile only com-

prises a single tag taken from the dataset.

Since we want to evaluate Mignon’s ablity to estimate the agregation of a score

value, we use two approaches for each dataset. For MovieLens, we select all the

tags available and consider that each of them plays the role of an hypothetical

new video that would only have this particular tag attached to it. For each of these

tags, we build an appreciation profile for each of them, from the aggregated users

interests mentionned before, obtained via Equation 5.4, and then consider a set

of “videos” embedding each one a tag from the above set . We use the same tag-

profile approach for YouTube dataset only this time we only consider a randomly

picked subset of 1,000,000 tags embedded in at least 1,000 different videos.

For each such video v, we first select the set of users in its KNN and RPS views,

and then compute its affinity with these users. We use this sample of affinity

values to produce an estimate (noted âv) of the video’s aggregated affinity with all

the users in the system (which we note av). To assess the performance of different

estimation techniques, we define an estimation ratio: ERv =
âv
av
. We evaluate ERv in

a variety of configurations on each of our datasets. Let n be the number of tags in

a dataset (and hence of synthetic videos), we present the distribution of ERv , its

mean ER = 1
n

�n
i=1 ERvi , as well as its standard deviation

�
ER

2 − ER
2.

Figure 5.6 exemplifies the affinity score distribution of particular tags (inter-

preted as videos) in each of the two dataset. The curve depicts the affinity score

of each user for the tag in decreasing order, while the vertical bars represent the
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(a) Error of the mean ratio for
the three Mignon’s approaches
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(b) Error of the mean ratio for
three Baselines approaches

Figure 5.7: Evaluation of the error for both datasets MovieLens and YouTube

data available in the KNN and RPS views.

5.3.1 Accuracy Comparison

We start our evaluation by comparing the results obtained by Mignon with

those obtained by three baseline approaches that exploit either the KNN or the

RPS views but not both. For Mignon, we consider the three estimation techniques

presented in Section 5.2 (the Trapezoidal andGregory-Newton interpolations along

with Polynomial Least Squares regression). For the baselines, we tested both these

techniques as well as linear and quadratic regression and selected the three that

obtained the best performance.

Specifically, KNN-Trapezoid applies the trapezoid rule on a KNN view with-

out using the RPS, RPS-Trapezoid also applies the trapezoid rule but on an

RPS view with no KNN, while RPS-Mean simply computes the average simi-

larity of the nodes in the RPS view and multiplies it by the size of the network.

We configured our techniques to use a KNN view size of 15 and an RPS size

of 10, while all the baselines use a single view (RPS or KNN) of size 25. Fig-

ure 5.7 shows the results on both of our datasets, depicting the error on the

mean estimation ratio, that is |ER − 1|, and shows that combining the KNN and

the RPS views allows Mignon to adapt to multiple data sets. Specifically, all three
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techniques, the Trapezoidal rule, Gregory-Newton interpolation and Polynomial

Least Squares obtain very good estimates on MovieLens dataset with an error

on the mean ratio respectively of 0.006 (0.6%), 0.01 (1%) and 0.016 (1.6%) on

MovieLens. For YouTube dataset, althought the Trapezoidal rule and Gregory-

Newton interpolation performs well with an error of mean ratio respectively of

0.143 (14.3%) and 0.114 (11.4%), the Polynomial Least Squares approach per-

forms poorly, with an error of 1.86 (186%), due to the inability of this regres-

sion in degree-two to deal with the skewness of YouTube’s views distribution, as

shown in Figure 5.6b.The baselines, on the other hand, can achieve good perfor-

mance on one of the datasets but not on both. KNN-Trapezoid achieves a very low

error of 0.09 (9%) on YouTube, but a very high error of 0.7 (70%) on MovieLens.

RPS-Mean achieves a very low error of 0.02 (2%) on MovieLens but a high er-

ror of 0.30 (30%) on YouTube, while RPS-Trapezoid achieves errors of 0.13 (13%)

on MovieLens and of 0.21 (21%) on YouTube, worse than both of Mignon’s ap-

proaches on both datasets.

Figure 5.8 completes the picture by showing the standard deviation of the esti-

mation ratio for both Mignon and the three baselines. Again, the three Mignon’s

techniques obtains low standard deviations on both data sets, with the Polyno-

mial Least Square regression performing best on MovieLens (7%) and worst on
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(a) Standard deviation for the
three Mignon’s approaches
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(b) Standard deviation for the
three Baselines approaches

Figure 5.8: Evaluation of the standard deviation for both datasets MovieLens
and YouTube
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YouTube (21%), Trapezoidal rule performing best on YouTube’s dataset (14.5%)

and Gregory-Newton interpolation scoring worst on MovieLens (8.2%). Regard-

ing the baselines aproaches, they generally scores worse than Mignon on both

MovieLens and YouTube, with two notables exceptions. For YouTube, KNN-

Trapezoid obtains a good standard deviation of 2.2%, far from Mignon’s best ob-

tained by the Trapezoidal rule(14.5%), and for MovieLens RPS-Mean obtains a

stadanrd deviation of 6% closely outperforming Mignon’s best with the Polyno-

mial Least Squares reaching 7%.

5.3.2 Mignon Sensitivity Analysis

Now that we have shown the effectiveness of Mignon’s estimation approach

on multiple datasets, we analyse how the KNN and RPS views impact its per-

formance. We present our results in the form of whisker plots. Each box in the

plot covers the values between the lower and the upper quartiles; the point in

the box represents the mean, while the line the median. The endpoints of the

whiskers represent the lowest datum still within 1.5∗InterQuartile Range (IQR)

of the lower quartile, and the highest datum still within 1.5∗IQR of the upper

quartile, while the points outside the whiskers represent outliers.

Trapezoidal rule. Figure 5.9 shows how the effectiveness of the trapezoid rule

varies when we vary the sizes of the KNN and RPS views. For fairness we main-
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Figure 5.9: Fast Decentralized Area Estimation using the trapezoid rule in the
MovieLens dataset(a) and YouTube dataset(b).
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Figure 5.10: Influence for the Trapezoid Rule of varying the size of the KNN(a)
and RPS(b) for the MovieLens dataset.

tain a total view size of 25 and vary the proportion of nodes in the two views

from |KNN|=2 |RPS|=23 to |KNN|=23 |RPS|=2. Figure 5.9a shows that larger

KNN views slightly tend to overestimate the total affinity, while larger RPS views

slightly tend to underestimate it, with the best performance being achieved with

a KNN view of 15 and an RPS view of 10. We observe the good accuracy and the

relative narrowness of the distribution of ratio extrapolated area on original area,

already highlighted in Figure 5.7 and 5.8.

Figure 5.10 highlights that in the MovielLens dataset the estimation error de-

pends primarily on the size of the RPS view. Figure 5.10a shows the results with

increasing KNN sizes with an RPS size of 10. Results appear almost independent

of the KNN size, even though larger sizes slightly reduce the variance. Even if not

shown in the plot for the sake of clarity, we verified that KNN view sizes as low

as 2 yield a good mean estimate, even though with a larger variance. Figure 5.10b

examines instead the impact of the RPS view size with a fixed KNN of 10. Unlike

in the previous case, the quality of the mean estimate heavily depends on the size

of the RPS view. Once again, we remark that the best trade-off between accuracy

and skewness of the distribution is achieved for Figure 5.10a and Figure 5.10b

when the sum of the KNN and RPS sizes reaches 25, whether it be for a RPS size

of 10 and a size of 15 for the KNN or the contrary.

Figure 5.9b complements the above results with the performance of the Trape-

zoid rule on the YouTube dataset. Again, we obtain the best performance with a

KNN-to-RPS ratio of 3/2. With a KNN view of 15 and an RPS view of 10, the
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Figure 5.11: Influence for the Trapezoid Rule of varying the size of the KNN(a)
and RPS(b) for the YouTube dataset

mean estimation ratio settles at 1.14. Moreover, slightly smaller or slightly larger

KNN-to-RPS ratios impact this result only to a limited extent. In our tests, we

observed that this results from the fact that when one view remains constant,

performance consistently improves when increasing the size of the other.

These observations are detailed in Figure 5.11. The varying sizes of both RPS

and KNN views have a direct impact on the accuracy of the estimation of aggre-

gated interests. Although the mean values remains closely the same, we observe

in Figure 5.11b that when keeping a constant KNN size of 10 and varying the RPS

size, the accuracy of the estimation improves with the size of the RPS view, with

the resulting estimations being more scattered than in Figure 5.11a, implying a

higher variance, with a notable exception with low values of RPS size. The global

aspect remain the same when keeping the RPS size at 10 and varying the KNN

size. Figure 5.11a shows that varying the size of the KNN has a similar impact. A

KNN view of 5 results in a significant estimation error of 1.5 times, while KNN

views of more than 20 yield mean error ratios of less than 7%. The estimation

error decreases with increasing view sizes but to a higher extent than in the case

of the RPS view (mean error ratio of 11% with a view size of 20).

Polynomial Least Squares regression. Next, we evaluate the sensitivity of our

second approach, the Polynomial Least Squares regression model. The results

are displayed in 5.12, and as already observed in the previous paragraph in Fig-

ure 5.9, this method produce two distinct behaviours for the different datasets.
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Figure 5.12: Fast Decentralized Area Estimation using Polynomial Least
Squares regression in the MovieLens dataset(a) and YouTube dataset(b).

When applied to MovieLens as detailed in Figure 5.12a, the second approach be-

have exactly like the Trapezoidal rule, with an extrapolated aggregated interests

area slightly superior to the original when the size of the KNN view is superior to

the one of the RPS, and tending to the contrary when we increase the size of the

RPS to the detriment to KNN. In that case however, the overall dispersion of the

ratios have a smaller amplitude around the value of 1, indicating a more overall

accurate estimation than the method of the Trapezoidal rule. The best results are

obtained this time for a couple of values of 15 for the RPS and only 10 for the

KNN, leading to a mean error ratio of only 0.4% and a median one of 0.26%. The

application of this method for the YouTube dataset is illustrated in Figure 5.12b

and scores very poorly compared to the previous method. As expected, the re-

gression in this case is limited by it’s low degree-depth of 2, and cannot cope

with the steepness of a YouTube’s distribution. The best results are achieved for

having the largest size of KNN view, as when ordered decreasingly, the appreci-

ation scores diminish drastically fast. The estimation error increase very quickly

with the size of the RPS view is growing, to reach a mean error ratio of 734% for

a KNN size of 2 and a RPS one of 23, compared to 53% for the same settings in

the Trapezoidal rule. This settings being the worst case for both methods. The

impossibility for this case of regression to fit the curve makes it non suitable for

this type of distribution.

The detailed observation of the influence of the settings for this approach
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Figure 5.13: Influence for the Polynomial Least Squares regression of varying
the size of the KNN(a) and RPS(b) for the MovieLens dataset.

when applied to aMovieLens dataset is detailed in Figure 5.13. Again, we witness

in Figure 5.13a the almost non existent influence of the KNN size when studied

with a minimum value of 5, the difference between the lower and the upper quar-

tile of the distribution of the ratios being close to constant. On the other hand, the

overall decreasing attitude observed in Figure 5.12a is caused mostly by varying

the RPS size, as described in Figure 5.13b.

When analysing the influence of the settings for YouTube’s dataset, the re-

sults presented in Figure 5.14 reveal a much larger difference of impact between

the KNN size and the one of the RPS. As it has been slightly hinted before in

Figure 5.12b, we observe in Figure 5.14a the more neighbours we have in our

KNN view, the more we are able to compensate the difficulty of the regression to

fit such a tight curve, offered by a YouTube’s distribution. We also observe the

shrinking of the dispersion of the ratios along with the diminishing mean error

when increasing the KNN size, tending towards the ratio value of 1. This obser-

vation coupled with the ones ensuing from Figure 5.14b highlight the inefficient

role of the RPS in this regression when applied to YouTube: increasing the KNN

view seems to be the only reliable settings to reach an accuracy of 1. However,

Mignon aims at providing an accurate estimation with the smallest possible sizes

for the KNN and RPS views, whichmakes it unreasonable to use a very large KNN

to counteract the unreliability of RPS samples. We therefore conclude that Poly-

nomial Least Squares regression cannot be successfully applied to a very steep

distribution like the one in our YouTube dataset.
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(b)
YT

Figure 5.14: Influence for the Polynomial Least Squares regression of varying
the size of the KNN(a) and RPS(b) for the YouTube dataset.
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Figure 5.15: Fast Decentralized Area Estimation using Gregory-Newton inter-
polation in the MovieLens dataset(a) and YouTube dataset(b).

Gregory-Newton interpolation. Last, we evaluate the effectiveness of Mignon

using polynomial interpolation. To this end, we used the Gregory-Newton inter-

polation forward difference algorithm as detailed in Equation 5.2. Figure 5.15

shows the results. Both datasets exhibit similar behaviours. For low RPS sizes,

results resemble those obtained with the trapezoid rule, whether it be for Movie-

Lens dataset of YouTube dataset, with the best performance being achieved with

an RPS of 10 and a KNN of 15. However, results start diverging as soon as the RPS
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Figure 5.16: Influence for the Gregory-Newton interpolation of varying the
size of the KNN(a) and RPS(b) for the MovieLens dataset.

size goes beyond 15. We experimentally verified in Figure 5.16 and Figure 5.17

that this also occurs when increasing the RPS size with a constant KNN size, but

not when increasing the KNN size with a constant RPS size. When we analyze the

influence of varying the different settings for this method on a MovieLens dataset

as Figure 5.16, the influence of the RPS view is pretty straight forward. When we

fix the RPS size to 10, the influence of varying the KNN size seems nonexistent.

As for the two firsts methods analyzed above, this method is not responsive to

a variation of the KNN size, due to the shape of the MovieLens dataset. On the

other hand we observe in Figure 5.16b the great influence of the RPS size on the

area estimation. When it grows beyond a value of 15, the error ratios are quickly

skyrocketing, along with their overall dispersion. The best values for the mean

error and the standard deviation being reached as encountered before for a RPS

size of 10.

When applied to a YouTube dataset, this sensitivity analysis reveals a more

complex behavior, as show in Figure 5.17. In this case, both settings have their

own and distinct influence on the accuracy of the results. In the first case, when

we fix the RPS view and vary the KNN one, the mean error and the dispersion

of the values improvement are coupled with the increase in KNN size. More we

have nodes in the KNN view, the closer the mean and median ratios tend towards

the ideal value of 1. The dispersion tends to shrink following a logarithmic shape

when the KNN size increase. In our case, the best values are encountered for the
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maximumKNN value of 30 reachin a mean error of the extrapolated ratio of 4.1%

and a median one of 2.8%.

In the case of varying the RPS size we observe on the contrary that the in-

crease of this settings cause a drastic increase in the error ratios distribution and

their mean value. As encountered for the MovieLens case in Figure 5.16b, when

we increase the value of RPS size beyond 15 the methods become less and less

efficient, with a fast augmentation of the mean error and the dispersion of the es-

timation values. This overall behaviors when confronted to a distribution shaped

like YouTube’s one, can be explained by the method itself. Actually, the interpo-

lation requires a constant spacing between the values serving the method, and as

the YouTube distribution decrease very fast, it explains the need for a minimum

size of the KNN view. On the other hand, the RPS size is directly responsible of

the degree of the interpolated polynomial form, and the following analysis will

demonstrate the instability of this method when confronted to a high RPS size.

To understand the high variability associated with high RPS sizes, we exam-

ine two runs of the Gregory-Newton interpolation algorithm in Figure 5.18. Fig-

ure 5.18a shows a run with 10 RPS nodes, while Figure 5.18b shows one with 30.

In both figures, the diamonds represent the real abscissas of the samples on the

curve, while the crosses represent those taken into account by our protocol (see

Section 5.2). For KNN samples, the two coincide (points at the extreme left of the
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Figure 5.17: Influence for the Gregory-Newton interpolation of varying the
size of the KNN(a) and RPS(b) for the YouTube dataset.
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Figure 5.18: Details of the Gregory-Newton interpolation with different RPS
sizes in the Movielens dataset.

curve), but for the RPS the difference can be very large. This, together with the

numerical instability of the Gregory-Newton’s method causes oscillations at the

right end of the curve. Some oscillations are visible even with an RPS of 10, but

with an RPS of 30, they completely disrupt the estimation.

5.4 Discussion

We proposed three different methods to estimate the aggregated interest of

a country towards a content, with only morcelar informations. We analyzed the

strengths and weaknesses when confronted to two different datasets, each one

with it’s own shape of distribution.

The Trapezoidal rule and the Polynomial Least Squares regression can per-

form very well under certain conditions, each one having its own domain of

predilection where to perform best. The third method, on the contrary appears

as the best trade-off for the different situations. Able to perform relatively well in

all the cases, this method represent our predilection choice among the others. As

we want a fast and fully decentralized system, we cannot afford that each node

successively try the three methods and pick the most adapted to the situation.

Moreover, as we noted that the biggest flaw of the Gregory-Newton interpo-

lation is the instability brought by a large RPS view, bringing a high degree res-

olution, we are convinced that by working on gradually determining the best

degree for the interpolation we can outperform the others methods. Even more,
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Error 0% +10% -10%
MovieLens -0.8% +8.8% -11%
YouTube +12.4% +14.9% +8.7%

(a)

Error 0% +10% -10%
MovieLens -0.6% +8.9% -11.1%
YouTube +14.3% +10.4% +17%

(b)

Table 5.1: Mean error percentage for various size-estimation errors, for
Gregory-Newton interpolation(a) and Trapezoidal rule(b).

as the Gregory-Newton forward difference is a sumwhere each element represent

one degree of the polynomial, gradually increasing the number of degrees of the

polynomial in order to determine which degree is the most fit for each case have

exactly the same cost than calculating a n degree polynomial when we have an

RPS view of n nodes, as we currently do.

5.4.1 Influence of Sample & Collide

We now assess the impact of errors on the network-size estimation. As previ-

ously stated, nodes do not need to recompute the size of the network for every

new upload as we assume the network to be relatively stable. Nonetheless, it is

possible to limit the cost of size estimation by means of protocols like Sample &

Collide [48]. Such a protocol yields an estimate with a 10% error at a very limited

network cost. We estimate the impact of this error in Table 5.1 where we shows

the absolute value of the error on the mean estimation ratio for the two most rel-

evant Mignon’s approaches in the presence of a positive or negative error on the

estimation size. The data shows that the error on the network size has almost no

impact on YouTube, and a relatively low one on MovieLens.

5.4.2 Convergence speed

We conclude by evaluating the time required to compute the estimate using

Mignon. First, let us consider a baseline system that would simply compute the

sum of the affinities of the uploaded video with all the other nodes in the country.

Such a systemwould either require the uploading node to contact each other node

in the country to compute its affinity, or it would have to disseminate the video’s

profile so that other nodes could evaluate the video’s affinity with them. Both of
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these approaches would clearly be difficult to scale to large numbers of nodes and

their convergence time would be comparable, if not worse, than that required by

a KNN protocol to converge from a completely random configuration.

Mignon, on the other hand, takes advantage of the presence of an already con-

verged KNN protocol. This overlay allows the uploading node to quickly reach

its closest neighbours. To evaluate this difference, we counted the number of gos-

sip cycles required by a KNN protocol to reach convergence from scratch with

6000 nodes. In each cycle, a node contacts one other node, and is, on average,

contacted by another one. We then added one random node, and counted the cy-

cles it took to reach convergence again. Convergence from scratch took between

150 and 190 gossip cycles, while convergence after adding a node to an already

converged network took an order of magnitude less (10− 20).

5.5 Summary

In this Chapter we introduced different approaches to implement Mignon, a

new protocol and an architecture to rapidly estimate the aggregate affinity of a

newly uploaded video in a community of users, and place this video accordingly

in a fully decentralized manner. Our proposal avoids an explicit and costly ag-

gregation by relying on the properties of similarity-based self-organizing overlay

networks, and can be used to decide where to place content in a decentralized

UGC system. The core of this protocol resides in the ability to estimate the in-

terest of the nodes present in a geographically limited area, in our case a coun-

try, with only partial informations obtained from the self-organizing overlay net-

works. We studied different approaches to solve this problem, and chose to use

the Gregory-Newton interpolation for this role. Our architecture is now free of

any central point, and allow any node in the system to determine when upload-

ing a new content where in the world this content will be most consumed in the

future.
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General Conclusion

This thesis aimed to tackle some open issues related to alternatives distributed

storage systems. The goal was to investigate a solution aiming at performing pre-

dictive placement in a distributed User-Generated Content (UGC) service, in or-

der to place the produced content close to where it is likely to be consumed in

the future. The approach we proposed does not seek to compete with big place-

ment and distribution systems operated by large tech companies, but rather to

explore an alternative way applicable to distributed systems with a granularity

of the scale of a personal computer or a set-top box. We firmly beleive that an ef-

ficient predictive placement mechanism in a distributed UGC service that places

the content within the geographic areas in which this content is more likely to be

consumed helps in maximizing the share of overall local traffic, thus delivering

an overall network that is more flexible and more apt to accomplish other tasks.

We choose to take an unconventionnal approach, by studying metadata in large

UGC systems like YouTube or MovieLens, especially tags as reliable consump-

tion markers, because as far as we known, this way to tackle the problem has

never been explored before. We further describe the three main obstacles and

their respective solutions that allowed to present in this thesis out Architecture

for Tag-Based Predictive Placement in Distributed Storage Sytems.

Tags as reliable consumption markers

The first challenge was to discover a reliable consumption marker, able to

gives us hints about the geographic distribution of views shares of a given con-

tent. Modern UGC contains a variety of metadata comprised of various markers.

91
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Among them, we wanted to focus on user-generated metadata, in a front will to

keep our system reliant on informations provided freely and voluntarily by the

users producing the contents. As described in Chapter 3, our interest turned to-

wards the tags, as this system of contextualisation of content is widely admitted

and adopted, since its introduction in 1997 and its popularisation by del.icio.us1

in 2007. We conducted our study by analysing a large dataset from YouTube,

where users can freely attach tags to their uploaded videos. We first reconstructed

the geographic distribution of videos views from the geographic popularity vec-

tors. We analysed the distribution of video views via an entropy analysis of the

distribution of views. We then performed the same analysis for each unique tag

present in the dataset, and identified the presence of a correlation between the

geographical distribution of views of a given video, and the ones of each unique

tag embedded in the metadata of this video. This first part allowed us to con-

firm that tags could be used as reliable markers of the geographic distribution of

views in UGC systems.

Tag-based consumption prediction

The second challenge we needed to overcome related directly to the resolution

of the first one. Having found a reliable non-intrusivemarker allowing us to use it

as a reflection of the geographic distribution of users’ interests towards a content,

we could now go further. We wanted to establish the viability of these markers

to be used as a base to predict where a new video might be viewed. In short, we

knew that tags could reflect the geographic spread of a video content, we then

wanted to know if we could predict the future geographic dispersion of views for

a given content, just by looking at the tags attached to it by the producer. We

investigated this question in Chapter 4, by dividing the problem in two parts.

The first part aimed at establishing the extent to which we could rely on tags

to predict the geographic distribution of a content. To do so, we split our dataset

in two equal parts, both in terms of the number of videos as of the number of total

views, and used one half as a training set to learn about the geographic distribu-

tion of the tags present inside. We then projected the videos from the second

half — the testing set — on this knowledge, and with our metric, we evaluated

the gap between the accuracy of prediction using our tag-based method and our

baseline. The results highlighted that via a simple study and the basics manipu-

1Delicious.com
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lations contained in our tag-based approach, we were able to predict the actual

shares of views with a minimum of 65.9% of accuracy for half of our testing set,

greatly outperforming our baseline.

Building upon these results, we attacked the second part of this challenge.

We wanted to study how we could integrate this ability given by the tags, inside a

proactive placement system, and have the possibility to design an efficent proac-

tive placement system based on these results. To do so, we had to design a system

where each user can produce and consume content. In this first simplified design,

we assumed that the produced content is be sent to a central entity where the at-

tached tags are analyzed and confronted to the training set, before being placed

to a local cache, one per country, made of limited storage and cache parts ruled

by an eviction policy. By replaying the requests attached to videos in the testing

set, we were able to determine if the consummers were able to find the requested

content close to them in their local cache, or if it was a miss and their local cache

had to fetch it from the central entity. Our metric measuring the hit/miss ratios

between our approach and the baseline, confirmed the potential of our approach.

Distributed predictive placement system

Our last challenge consisted of implementing our prediction and proactive

placement approach in a decentralized environnement. We had been able to rely

on tags to perform an accurate proactive placement system, we now needed to

perform these operations in a fast and scalable way inside a distributed storage

system. We proposed two complementray approaches to tackle this problem.

The first one was to rely self-organising overlays, to organize peers inside a

particular geographic area (in our case countries) according to the similarity of

their previously consumed content. By allowing any node to reach at least one

node inside each self-organized overlay, we addressed the problem of scalability

and robustness. We used these per-country similarity overlays to compute an

extrapolation of each country’s interest in newly uploaded videos. This extrap-

olation uses a novel decentralized approach to estimate sums in large networks

which we showed to be fast and efficient, while incurring little traffic as the video

content is only moved as many times as the number of replicas. Taken together

these different mechanisms pave the way for a practical predictive content place-

ment solution for fully decentralized systems, based solely on the observation of

the tags attached to videos.
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Perspectives

Although promising, our results do not provide a final answer to problem

of designing efficient and scalable decentralized UGC services. In the following

we review some of the future lines of research we think might be interesting to

pursue in the light of the contributions presented in this thesis.

First, most of our analysis and our evaluation is based on a single dataset

obtained from Youtube in 2011. Although extremely valuable, and of reason-

able size, this dataset pales in comparison to the actual size of the information

available to Youtube. The practice and behavior of uses might also have evolved

since 2011, and it would therefore be interesting to confirm our findings on other,

larger and more recent datasets, even though such detailed information regard-

ing UGC services is particularly difficult to obtain.

In terms of actual evaluation, our results were obtained using simulation. Be-

cause of its versatility, and ease of use, simulation is particularly attractive to

rapidly obtain useful results. Simulation does however abstract away many crit-

ical features of real systems, in particular when applied to distributed applica-

tions. A next step building on the presented work would therefore be to deploy

some of the mechanisms we have presented in a real infrastructure to better un-

derstand their strengths and weaknesses in terms of performance and applicabil-

ity.

More generally the work we have presented hints at the role that meta-data

can play to improve the execution and performance of large-scale decentralized

systems. This thesis has focused on a specific type of meta-data (tags), but a

large variety of additional information could be used to make scheduling and

resource allocation decisions beyond the mere placement of videos. In a similar

vein, the approaches we have used for our predictions are rather basic (essentially

average-based linear interpolations), and could be improved by exploiting more

fully modern machine learning techniques, thus opening promising avenues for

future research work on intelligent decentralized systems.
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