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Explain ! Explain !! Explain !!!

— The Daleks





A B S T R A C T

In an era of unprecedented deluge of (mostly unstructured) data,
graphs are proving more and more useful, across the sciences, as a
flexible abstraction to capture complex relationships between com-
plex objects. One of the main challenges arising in the study of such
networks is the inference of macroscopic, large-scale properties af-
fecting a large number of objects, based solely on the microscopic in-
teractions between their elementary constituents. Statistical physics,
precisely created to recover the macroscopic laws of thermodynamics
from an idealized model of interacting particles, provides significant
insight to tackle such complex networks.

In this dissertation, we use methods derived from the statistical
physics of disordered systems to design and study new algorithms
for inference on graphs. Our focus is on spectral methods, based on
certain eigenvectors of carefully chosen matrices, and sparse graphs,
containing only a small amount of information. We develop an origi-
nal theory of spectral inference based on a relaxation of various mean-
field free energy optimizations. Our approach is therefore fully prob-
abilistic, and contrasts with more traditional motivations based on
the optimization of a cost function. We illustrate the efficiency of
our approach on various problems, including community detection,
randomized similarity-based clustering, and matrix completion.

Keywords: non-backtracking operator, Bethe Hessian, spectral meth-
ods, community detection, spectral clustering, matrix completion, gra-
phical models, Bayesian inference, mean-field approximations, disor-
dered systems, belief propagation, message-passing algorithms.
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R É S U M É

Face au déluge actuel de données principalement non structurées,
les graphes ont démontré, dans une variété de domaines scientifiques,
leur importance croissante comme language abstrait pour décrire des
interactions complexes entre des objets complexes. L’un des princi-
paux défis posés par l’étude de ces réseaux est l’inférence de pro-
priétés macroscopiques à grande échelle, affectant un grand nombre
d’objets ou d’agents, sur la seule base des interactions microscopiques
qu’entretiennent leurs constituants élémentaires. La physique statis-
tique, créée précisément dans le but d’obtenir les lois macroscopiques
de la thermodynamique à partir d’un modèle idéal de particules en
interaction, fournit une intuition décisive dans l’étude des réseaux
complexes.

Dans cette thèse, nous utilisons des méthodes issues de la physique
statistique des systèmes désordonnés pour mettre au point et analy-
ser de nouveaux algorithmes d’inférence sur les graphes. Nous nous
concentrons sur les méthodes spectrales, utilisant certains vecteurs
propres de matrices bien choisies, et sur les graphes parcimonieux,
qui contiennent une faible quantité d’information. Nous développons
une théorie originale de l’inférence spectrale, fondée sur une relaxa-
tion de l’optimisation de certaines énergies libres en champ moyen.
Notre approche est donc entièrement probabiliste, et diffère considé-
rablement des motivations plus classiques fondées sur l’optimisation
d’une fonction de coût. Nous illustrons l’efficacité de notre approche
sur différents problèmes, dont la détection de communautés, la classi-
fication non supervisée à partir de similarités mesurées aléatoirement,
et la complétion de matrices.

Mots clés : opérateur non retraçant, Hessienne de Bethe, méthodes
spectrales, détection de communautés, partitionnement spectral, com-
plétion de matrices, modèles graphiques, inférence bayésienne, ap-
proximations de champ moyen, systèmes désordonnés, propagation
des convictions, algorithmes de passage de messages.
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They danced down the streets like dingledodies, and I shambled after as I’ve
been doing all my life after people who interest me, because the only people
for me are the mad ones, the ones who are mad to live, mad to talk, mad to

be saved, desirous of everything at the same time, the ones who never yawn
or say a commonplace thing, but burn, burn, burn like fabulous yellow

roman candles exploding like spiders across the stars and in the middle you
see the blue centerlight pop and everybody goes “Awww!”.

— Jack Kerouac
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P U B L I C AT I O N S

This dissertation covers part of my work as a Ph.D. student from
September 2013 to September 2016 in the Laboratoire de Physique
Statistique at the Ecole Normale Supérieure in Paris, under the super-
vision of Florent Krzakala. Some of the ideas and figures presented
here have previously appeared in the following publications, some of
which have been considerably reworked to fit naturally in the general
framework developed in this dissertation.

publications related to this dissertation

1. Alaa Saade, Florent Krzakala, and Lenka Zdeborová. « Spectral
density of the non-backtracking operator on random graphs. »
In: EPL (Europhysics Letters) 107.5 (2014), p. 50005.

We compute the spectral density of the non-backtracking operator
on sparse random graphs using the non-rigorous cavity method. We
show the existence of a phase transition between a region in the com-
plex plane where the spectral density is finite, and another one where
it strictly vanishes. This fact provides a physical explanation of the
superiority of this operator in the clustering of sparse graphs. This
work is presented in section 3.1.4.

2. Alaa Saade, Florent Krzakala, and Lenka Zdeborová. « Spectral
Clustering of graphs with the Bethe Hessian. » In: Advances in
Neural Information Processing Systems (NIPS). 2014, pp. 406–414.

This paper introduces an efficient spectral algorithm for community
detection in sparse networks, based on the Bethe Hessian. It is up
to now the simplest and most efficient optimal spectral method on
the popular stochastic block model. Our approach is based on the
Bethe Hessian, and is reviewed in chapter 5, which however differs
substantially from the paper, and offers in particular more statistical
physics insight into the community detection problem.

3. Alaa Saade, Florent Krzakala, Marc Lelarge, and Lenka Zde-
borová. « Spectral detection in the censored block model. » In:
2015 IEEE International Symposium on Information Theory (ISIT).
IEEE. 2015, pp. 1184–1188.

The censored block model, or planted spin glass (see section 1.6.5)
is a simple inference problem in which we try to recover hidden bi-
nary variables from a small number of noisy pairwise comparisons
between them. An information-theoretic lower bound on the number
of comparisons necessary to partially recover the hidden variables

ix



was known. We prove rigorously that when above this bound, effi-
cient recovery is possible, and introduce two optimal algorithms for
this task. An augmented version of this work is presented in chap-
ter 4, where the relation to the phase diagram of the planted spin
glass is highlighted.

4. Alaa Saade, Florent Krzakala, and Lenka Zdeborová. « Ma-
trix Completion from Fewer Entries: Spectral Detectability and
Rank Estimation. » In: Advances in Neural Information Processing
Systems (NIPS). 2015, pp. 1261–1269.

We consider the problem of reconstructing a low rank matrix from a
minimal number of revealed entries. We address two aspects of this
problem: rank inference, i. e. the ability to reliably estimate the rank of
the matrix from as few revealed entries as possible, and reconstruction
accuracy, i. e. the ability to achieve a small reconstruction error on the
missing entries. We propose a spectral algorithm based on the Bethe
Hessian and analyze its performance for both tasks. In a random ma-
trix setting, we compute analytically the number of revealed entries
required to infer the rank. We also evaluate empirically the recon-
struction error, and show that our algorithm compares favorably to
other existing methods. This work is presented in chapter 8, where
the discussion of the connection of our approach with the Hopfield
model is extended with respect to the original paper. Additional nu-
merical results are also presented.

5. Alaa Saade, Marc Lelarge, Florent Krzakala, and Lenka Zde-
borová. « Clustering from Sparse Pairwise Measurements. » In:
2016 IEEE International Symposium on Information Theory (ISIT).
IEEE. 2016, To appear.

In similarity-based clustering, a similarity graph involving n items
is constructed after computing (typically) all the pairwise similarities
between the items. In this paper, We consider instead the problem
of grouping items into clusters based on few random pairwise com-
parisons between the items. We introduce three closely related algo-
rithms for this task: a belief propagation algorithm approximating
the Bayes optimal solution, and two spectral algorithms based on the
non-backtracking and Bethe Hessian operators. For the case of two
symmetric clusters, we conjecture that these algorithms are asymptot-
ically optimal in that they detect the clusters as soon as it is informa-
tion theoretically possible to do so on a model. We substantiate this
claim with rigorous arguments for the spectral approach based on
the non-backtracking operator. This work is presented in chapter 6,
where the emphasis is on connecting our results to the general theory
developed in the second part of this dissertation.

6. Alaa Saade, Florent Krzakala, Marc Lelarge, and Lenka Zde-
borová. « Fast Randomized Semi-Supervised Clustering. » In:
arXiv preprint arXiv:1605.06422 (2016).
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We investigate a semi-supervised variant of the previous problem,
and introduce a local and highly efficient algorithm, based on the
non-backtracking operator, that allows to cluster large datasets to ex-
cellent accuracy, using a small number of pairwise similarity mea-
sures between the items. On a simple but reasonable model, we prove
rigorous guarantees on the performance of our algorithm, and show
in particular that its error decays exponentially with the number of
measured similarities. Numerical experiments on real-world datasets
show that our approach outperforms a popular alternative by a large
margin. This work is presented in chapter 7, where we emphasize
the connections with the general theory developed in this disserta-
tion, and also include additional real-world experiments. This paper
is currently under review.

7. Alaa Saade, Florent Krzakala, and Lenka Zdeborová. « Spec-
tral Bounds for the Ising Ferromagnet on an Arbitrary Given
Graph. » In preparation. 2016.

This paper, to be submitted shortly, is based on chapter 9 of this
dissertation. We derive rigorous upper bounds on the partition func-
tion, the magnetizations and the correlations in the ferromagnetic
Ising model, on arbitrary graphs. Our bounds hold in a certain high-
temperature region, specified by a condition on the spectral radius
of the non-backtracking operator. Our approach extends previous
bounds on the high temperature expansion of the Ising model, for
which an explicit expression was known only in very special cases.
We compute these bounds explicitly on arbitrary graphs, in terms
of the non-backtracking and Bethe Hessian operators, and show that
they can be computed efficiently. As a by-product, we prove that
in the setting we consider, susceptibility propagation converges to a
solution that admits a closed form expression, and that it yields an
upper bound on the correlations.

scope of this dissertation

In this dissertation, I have tried to develop an original and general the-
ory of spectral inference methods based on relaxations of mean-field
approximations. In particular, chapters 2 and 3 consider a generic
setting that encompasses most of the applications considered in the
previously listed papers. These two chapters, written with a focus
on intuition, present general results that are then illustrated, starting
from chapter 4, on the various problems considered in the papers. In
writing these last chapters, I have tried to precise some of the intuitive
arguments of chapters 2 and 3. In particular, some of these chapters,
although based on previously published work, may be substantially
different from their corresponding paper.

xi



publications unrelated to this dissertation

The following work was completed during my Ph.D. and is not
addressed in this dissertation.

8. Jie Lin, Alaa Saade, Edan Lerner, Alberto Rosso, and Matthieu
Wyart. « On the density of shear transformations in amorphous
solids. » In: EPL (Europhysics Letters) 105.2 (2014), p. 26003.

This paper is based on work started during my research internship
at New York University from April to July 2012, in the group of
Matthieu Wyart. This work studies the stability of amorphous solids,
focusing on the distribution P(x) of the local stress increase x that
would lead to an instability. We argue that this distribution behaves
as P(x) ∼ xθ, where the exponent θ is larger than zero if the elastic
interaction between rearranging regions is non-monotonic, and in-
creases with the interaction range. For a class of finite-dimensional
models we show that stability implies a lower bound on θ, which
is found to lie near saturation. For quadrupolar interactions these
models yield θ ≈ 0.6 for d = 2 and θ ≈ 0.4 in d = 3 where d is the
spatial dimension, accurately capturing previously unresolved obser-
vations in atomistic models, both in quasi-static flow and after a fast
quench. In addition, we compute the Herschel-Buckley exponent in
these models and show that it depends on a subtle choice of dynami-
cal rules, whereas the exponent θ does not.

9. Alaa Saade, Francesco Caltagirone, Igor Carron, Laurent Daudet,
Angélique Drémeau, Sylvain Gigan, and Florent Krzakala. « Ran-
dom Projections through multiple optical scattering: Approxi-
mating kernels at the speed of light. » In: 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2016, pp. 6215–6219.

This contribution, involving a sizable amount of experimental work,
results from a collaboration with Sylvain Gigan (LKB-ENS), and aims
at designing new optical devices able to speed up some bottleneck
computations in machine learning applications. This paper describes
an apparatus that performs random projections at the speed of light
using the scattering properties of a random medium, such as a micro-
scope glass slide covered with white paint pigments. We use this de-
vice on a simple classification task with a kernel machine, and show
that, on the MNIST dataset of handwritten digits, our experimental
results closely match the theoretical performance of the correspond-
ing kernel. We filed a patent describing this device in 2015.

10. Aurélien Decelle, Janina Hüttel, Alaa Saade, and Cristopher
Moore. « Computational Complexity, Phase Transitions, and
Message-Passing for Community Detection. » In: Statistical Physics,
Optimization, Inference, and Message-Passing Algorithms. Ed. by
Florent Krzakala, Federico Ricci-Tersenghi, Lenka Zdeborová,
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Eric W Tramel, Riccardo Zecchina, and Leticia F Cugliandolo.
Lecture Notes of the Les Houches School of Physics - October
2013. Oxford University Press, 2016.

This book chapter is based on the lectures given by Cristopher Moore
at the Les Houches School of Physics in October 2013. It covers topics
in computational complexity (P,NP, andNP-completeness) as well as
phase transitions in random graphs, satisfiability, and community de-
tection.
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N O TAT I O N S

[n] Set of integers larger or equal to 1 and lower or equal
to n

G = (V, E) An undirected graph with vertex set V and edge set
E ⊂ V2

(i→ j) The directed edge between vertices i and j (for
(ij) ∈ E)

~E The set of directed edges of a graph G = (V, E)

∂i The set of neighbors of node i in the graph G

σ A collection of n random variables σi for i ∈ n
X Alphabet, or range of possible values of each

variable σi
Pi(σi) Marginal distribution of the variable σi in the JPD

P(σ)

Pij(σi, σj) Joint marginal distribution of the variables σi, σj in
the JPD P(σ)

|S| Cardinal of the set S

∝ Proportional to

1(P) Indicator function, returns 1 if the proposition P is
true, 0 otherwise

G(n, p) Erdős-Rényi random graph with n vertices and edge
probability p

w.h.p With high probability, i. e. with probability tending
to 1 as n→∞

O(vn) un = O(vn) if there exists a constant C > 0 such that
|un| 6 C |vn| , ∀n

ρ(M) The spectral radius of M, i.e the modulus of its
largest eigenvalue

D
= Equality in distribution between two random

variables

A C R O N Y M S

BP belief propagation

MRF Markov random field

JPD joint probability distribution

i.i.d independent and identically distributed
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w.h.p with high probability

SBM stochastic block model

nMF naive mean-field

TAP Thouless-Anderson-Palmer

lSBM labeled stochastic block model

RMSE root mean square error

KL Kullback–Leibler

SVD singular value decomposition

RBM restricted Boltzmann Machine
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F O R E W O R D

Graphs, sometimes called networks, provide a flexible language
to describe complex systems, composed of many items maintaining
complicated interactions. Examples of such systems abound in all
branches of science, ranging from biological or artificial neural net-
works, to social networks, the Internet and the World-Wide Web,
electrical power grids, ecological networks or telecommunication net-
works... This list could go on without significantly scratching the
surface of the ubiquity of graphs.

In this dissertation, we are interested in inference problems defined
on sparse graphs. While precise definitions will be given in the up-
coming first chapter, these problems can be intuitively thought of as
prediction or estimation tasks based on scarce data, that can be con-
veniently encoded in the form of a graph with “few” edges. A typical
example, studied in this dissertation, is community detection, where
the aim is to identify homogeneous groups of items based on their
connections. An illustration of this problem is shown on figure 0.1,
where we have represented a network of political blogs during the
2004 U.S. presidential election. By using an algorithm developed in
chapter 5, we are able to distinguish the conservative blogs from the
liberal ones based solely on their hyperlinking pattern, represented
as a graph.

Our focus is on spectral methods, which encode the graph in a care-
fully chosen matrix, and use certain eigenvectors of this matrix to
make predictions. In the context of graph clustering, spectral meth-
ods are often introduced as relaxations of certain optimization prob-
lems [98], where a cost function is introduced that promotes grouping
together strongly connected vertices. In contrast with this motivation,
we adopt here a fully probabilistic approach. More precisely, we intro-
duce spectral algorithms approximating the marginals of certain prob-
ability distributions, encoding the similarity between the vertices.

This dissertation is organized into three parts, the last two of which
present original contributions. The first part is composed of chapter 1,
and introduces the general language and framework of inference on
graphs. We review generalities about graphical probabilistic models,
and gradually specialize to the particular models which will be use-
ful in the subsequent applications. We also review some standard
results on sparse random graphs, mean-field approximations, as well
as several variations of the Ising model of statistical physics, which is
the cornerstone of the following analyses.

The second part introduces the original theory underlying our main
contributions. In chapter 2, we identify a class of probabilistic mod-
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Figure 0.1 – Network of political blogs during the 2004U.S. presidential elec-
tion. Each vertex in this network represents a blog, and each
edge represents a hyperlink between two blogs. This visualiza-
tion clearly separates the Democrats (in red) from the Repub-
licans (in yellow). We show in chapter 5 how to recover this
partition with a 93% accuracy. Data collected by [8].

els that exhibit a phase transition, and give necessary conditions for
non-trivial inference to be possible. These conditions are expressed
in terms of two related matrices, one called the non-backtracking op-
erator, and the other called the Bethe Hessian. We give an intuitive
interpretation of their interesting eigenvectors, and propose two gen-
eral spectral algorithms for approximate inference on sparse graphs.
In chapter 3, we study in detail, using the cavity method of statisti-
cal physics, the spectral properties of these two matrices on weighted
random graphs, and further explore their mutual relationship. We
illustrate our general theory on the simple but enlightening example
of the planted spin glass in chapter 4, for which we sketch a rigor-
ous treatment.

The third part of this dissertation is devoted to applications of the
previous general theory. In chapter 5, we introduce an efficient and
optimal algorithm for community detection. In chapter 6, we consider
the problem of classifying items based on a minimal number of com-
parisons between them. We introduce several related algorithms and
illustrate their performance on a model and on toy datasets. Then, in
chapter 7, we consider a semi-supervised version of the same prob-
lem, and introduce a highly efficient algorithm with guaranteed per-
formance on a model. On real world data, we show that our approach
outperforms a state-of-the-art algorithm by a large margin. In chap-
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ter 8, we take a look at the matrix completion problem, and introduce
an efficient algorithm able to infer the missing entries of a matrix
from a small number of revealed entries. Coming back to statistical
physics, we show in chapter 9 that the matrices introduced in this
dissertation allow to derive rigorous upper bounds on many quanti-
ties of interest in the ferromagnetic Ising model, on arbitrary graphs.
We conclude in chapter 10 by outlining a possible direction for fu-
ture applications of the present ideas in the context of unsupervised
learning.

This work applies statistical physics methods and intuition to sta-
tistical inference and machine learning problems. This is an awkward
task, as each of these fields has its own folklore. In section 1.6, we
review at a high level the phenomenology of the Ising model in its
various flavors. We have tried to include in this section most of the
statistical physics background necessary for the discussion of the sec-
ond part of this dissertation. Many of these statistical physics results
are “well known” without being fully rigorously proven yet. We have
tried to clearly separate non-rigorous results from rigorous ones, both
when referring to previous work and in the present contributions.
Throughout the dissertation, we use graffiti in the margin to highlight On the use of graffiti

in this dissertationimportant concepts or quantities and facilitate browsing through the
chapters. We use footnotes to make additional comments.





Part I

I N F E R E N C E O N G R A P H S

This first part introduces the general background for the
methods we develop in the following. We start by in-
troducing the general formalism of (undirected) graphi-
cal models, gradually restricting to pairwise models. We
review some standard results on sparse random graphs,
mean-field theory and the Ising model, and outline the
general approach we adopt in the subsequent parts.





1
M A R K O V R A N D O M F I E L D S

Graphical models are a powerful paradigm for multivariate statis-
tical modeling. They allow to encode information about the condi-
tional dependencies of a large number of interacting variables in a
compact way, and provide a unified view of inference and learning
problems in areas as diverse as statistical physics, computer vision,
coding theory or machine learning (see e.g. [86, 151] for reviews of
applications). In this first chapter, we motivate and introduce in sec-
tion 1.1 the formalism of undirected graphical models, often called
Markov random fields (MRFs). We then focus in section 1.3 on the
particular case of pairwise MRFs which will be particularly important
in the following. The analyses of this dissertation will apply to mod-
els drawn from certain random graph ensembles, and section 1.4 is
devoted to a review of some of their basic properties. Computing
the marginals of pairwise MRFs is computationally hard, and we will
systematically resort to mean-field approximations, reviewed in sec-
tion 1.5. We next turn to a presentation of the Ising model and its
variants, and give in section 1.6 a high level description of their phase
diagram, which will guide our intuition in the following. We finally
outline in section 1.7 the general strategy we will apply to tackle the
various problems in this dissertation.

We note that while MRFs are particularly well-suited to represent
non-causal probabilistic interactions between variables, they are not
the only example of graphical models. In particular, we will not
address Bayesian networks 1, which are defined on directed acyclic
graphs. The reader is referred to [86] for a comprehensive introduc-
tion to graphical models.

1.1 motivation

One of the first goals of a graphical model is to give a high-level,
compact representation of a joint probability distribution (JPD). Far
from being of purely academic concern, this problem has a consider-
able practical importance when dealing with the distribution of even
a moderate number of correlated random variables. Imagine for in-
stance having to represent the JPD of 300 binary variables. In gen-
eral, such a JPD is specified by 2300 numbers — the probabilities of
the different assignments of all the variables. This already requires

1. As shown in [161], Bayesian networks can in fact be transformed into the MRFs

on which we focus.

7
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σ1 σ2 σi0 σn

J1,2 . . . Conditioning

σ1 σi0−1 σi0+1 σn

hi0−1 hi0+1

Figure 1.1 – Graphical model associated with the Ising chain 1.1. After con-
ditioning on the value of the spin σi0 , the JPD splits into two
independent parts, with the addition of local fields hi0−1 and
hi0+1 acting on the neighbors of σi0 .

more bits than the total number of atoms in the observable universe 2.
In practical applications, it is common to face millions or billions of
variables, with hundreds of possible values for each of them. For
instance, in computer vision, the probabilistic analysis of a single
megapixel image in grayscale requires dealing with the JPD of more
than a million variables (the pixels), with 256 values for each one of
them (their intensities).

Fortunately, it is often the case that there is some kind of struc-
ture in the distribution of the variables, which can be stated in terms
of (conditional) independence properties. As a simple example, con-
sider the case of a one-dimensional Ising model on a chain of length
n ∈N, defined by the JPD

Ising chain P(σ) =
1

Z
exp

n−1∑

i=1

Ji,i+1σiσi+1 , (1.1)

where σ = (σi)i∈[n] ∈ {±1}n is a set of binary spins, and the Ji,i+1 ∈
R for i ∈ [n − 1] are called couplings. Z is a normalization called
the partition function. Let us consider the effect of conditioning on a
given spin σi0 . We define two fields hi0−1 = Ji0−1,i0σi0 and hi0+1 =

Ji0,i0+1σi0 which summarize the influence of σi0 on its neighbors.
We can then write

P(σ | σi0) = P(σ1, . . . , σi0−1 | σi0)P(σi0+1, . . . , σn | σi0) , (1.2)

where

P(σ1, . . . , σi0−1 | σi0) ∝ exp
i0−2∑

i=1

Ji,i+1σiσi+1 + hi0−1σi0−1 , (1.3)

P(σi0+1, . . . , σn | σi0) ∝ exp
n−1∑

i=i0+1

Ji,i+1σiσi+1 + hi0+1σi0+1 .

(1.4)

This property, depicted on figure 1.1, means that the spins that are
left of σi0 in the chain are independent of the spins that are right of

2. The current estimate of the number of atoms in the observable universe is
1080 ≈ 2266.
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σi0 , when conditioned on σi0 . It is a special case of a more general
global Markov property, which we state in the next section.

Markov random fields exploit such conditional independence prop-
erties of a JPD to provide a compact, graphical representation of the
distribution. In the following section, we introduce MRFs as a gen-
eralization of the Ising chain example, and state their independence
properties.

1.2 general markov random fields

Throughout the dissertation, we let σ = (σi)i∈[n] ∈ Xn denote n We consider n
random variables
(σi)i∈[n] over a
finite alphabet X

random variables, jointly distributed according to the JPD P. We will
assume that the alphabet X is finite, although many of the results of
the next section can be naturally extended to real random variables.
Our first aim is to find a compact representation of P that highlights
the conditional dependencies between the n variables.

1.2.1 Definition and Markov property

In the Ising chain example of the previous section, global correla-
tions between spins arise as a consequence of local interactions be-
tween neighboring spins on the chain. Such a structural property can
be generalized, and more complex interactions can be modeled by
replacing the chain with a general graph G = (V, E), where V = [n]

is the set of vertices, representing the random variables σi for i ∈ [n],
and the set of edges E represents direct interactions between the ran-
dom variables. We allow for interactions involving more than two
variables by defining compatibility functions on the cliques of the graph.
A clique of G is a fully connected subgraph of G, i. e. a subset C ⊂ V Cliques

of the vertices such that for any i, j ∈ C, (ij) ∈ E. We associate with
each clique C a compatibility function, or potential, ψC : X|C| → R+, Potentials

where |C| is the number of vertices in the clique C. Generalizing exam-
ple (1.1), we define a Markov random field (MRF), also called undirected Definition of a MRF

graphical model, by the following factorization 3

P(σ) =
1

Z

∏

C∈C

ψC ((σi)i∈C) , (1.5)

where C is the set of cliques of the graph G, and the partition function Partition function

Z ensures that the distribution is normalized. Note that we recover
the Ising chain example of the previous section by taking G to be the
chain graph with edge set E = (i, i+ 1)i∈[n−1], and noticing that the
cliques of G consist of pairs of neighboring spins. The corresponding
compatibility functions are, for i ∈ [n− 1],

ψi,i+1(σi, σi+1) = exp Ji,i+1σiσi+1 . (1.6)

3. Note that it is equivalent to require the factorization (1.5) to hold on the maxi-
mal cliques of G, i. e. the cliques that are contained by no other clique.
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σ1

σ2

σ3 σ4

σ5

σ6

σ7

σ1

σ2

σ3 σ4

σ5

σ6

σ7

Figure 1.2 – On the left is an example of a MRF encoding the factorization
P(σ) ∝ ψ123(σ1, σ2, σ3)ψ34(σ3, σ4)ψ4567(σ4, σ5, σ6, σ7), with
its factor graph representation on the right.

The definition (1.5) is justified by the following global Markov property,Global Markov
property that generalizes the conditional independence property (1.2) of the

Ising chain. Let A,B, S ⊂ V be three disjoint sets of nodes of the
graph G. Assume that S separates A and B, in the sense that any path
in the graph G linking a node in A and a node in B must include
a node in S. Then any MRF, i. e. any distribution of the form (1.5)
verifies

P
(
(σi)i∈A∪B | (σi)i∈S

)
= P

(
(σi)i∈A | (σi)i∈S

)
P
(
(σi)i∈B | (σi)i∈S

)
.

(1.7)
The factorization (1.5) can therefore efficiently encode complex inter-
actions and independence properties between a large number of in-
teractions. In fact, under a small additional assumption, it is possible
to show that a JPD that verifies the global Markov property with re-
spect to a graph G must factorize in the form (1.5). This is the content
of the Hammersley-Clifford theorem which we recall here.

Theorem 1.2.1. (Hammersley and Clifford, 1971) Let P be a distribution
over the set Xn verifying the global Markov property (1.7) with respect toHammersley-

Clifford
theorem

a graph G. Assume that P(σ) > 0 for any σ ∈ Xn. Then there exist
compatibility functions ψC indexed by the cliques of the graph G such that
P factorizes into the form (1.5).

A consequence of this theorem is that, as an alternative to the defini-
tion (1.5), (positive) MRFs can equivalently be defined as distributions
verifying the global Markov property, a definition often chosen in the
literature. In fact, the Hammersley-Clifford theorem also implies the
equivalence between the global Markov property and so-called local
Markov properties ([86]), any of which can be used as a definition
for MRFs.

1.2.2 Factor graph representation

One of the main advantages of MRFs is that they can be conveniently
represented graphically (see left panel of figure 1.2 for an example).
However, to recover the factorization associated with a given graphi-
cal representation, one has to look for the cliques of the graph, which
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σ1

σ2

σ3

σ4

σ5

σ6

1(σ1 ∨ σ2 ∨ σ4)

1(σ3 ∨ σ4)

1(σ4 ∨ σ5 ∨ σ6)σ1 σ2 σ3 σ4 σn−2 σn−1 σn

J2 J3 J4 Jn−2 Jn−1

Figure 1.3 – Factor graphs associated with the 3-spin model (1.8) (left) and
the SAT formula (1.9) (right).

can be cumbersome, especially when many variables are involved.
An alternative visual representation of the same factorization prop-
erty is given by factor graphs, which explicitly depict the interactions Factor graph

representationbetween variables. A factor graph is formally defined as a bipartite
graph G = (V, F, E) where V is the set of variable nodes, F is the set of
factor nodes, representing the potentials, and E is the set of edges. To
represent a MRF of the form (1.5) as a factor graph, we associate with
each variable σi (i ∈ [n]) a variable node (represented as a circle on
figure 1.2), and with each potential ψC a factor node (represented as
a square on figure 1.2). We then link each variable to the factors that
depend on it.

1.2.3 First examples

Factor graphs give an explicit and convenient representation of
the conditional independencies of a MRF, and are extensively used
in many fields. Let us illustrate their use on two examples, repre-
sented graphically on figure 1.3. The first example is drawn from
statistical physics, and is called the p-spin model. It is a generalization p-spin model

of the Ising model (1.1) with p-body interactions (p > 2) between the
spins, instead of only pairwise interactions. The probability of a spin
configuration σ ∈ {±1}n in the 3-spin model on a chain is given by

P(σ) =
1

Z
exp

n−1∑

i=2

Jiσi−1σiσi+1 . (1.8)

The factor graph associated with this distribution is depicted on fig-
ure 1.3.

A second example, from the field of theoretical computer science,
is that of satisfiability. A satisfiability problem (or SAT problem for SAT problem

short) is specified by n boolean variables (σi)i∈[n] ∈ {true, false}n,
and a formula, defined as the logical AND of a certain number of
clauses that the variables must satisfy. An example of a SAT formula
over n = 6 variables is

(σ1 ∨ σ2 ∨ σ4)∧ (σ3 ∨ σ4)∧ (σ4 ∨ σ5 ∨ σ6) , (1.9)
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where σi denotes the negation of the variable σi. The problem of
finding an assignment σ of the variables that satisfies a given SAT for-
mula is equivalent to finding the configurations with non-vanishing
probability in an associated MRF. For instance, the MRF associated
with the SAT formula (1.9) is

P(σ) =
1

Z
1(σ1 ∨ σ2 ∨ σ4)1(σ3 ∨ σ4)1(σ4 ∨ σ5 ∨ σ6) . (1.10)

The associated factor graph is shown on figure 1.3.
These two examples barely scratch the surface of the extensive use

of factor graphs in many problems. Whenever the problem at hand
requires performing inference, e.g. computing the marginals or theFactor graphs and

inference modes of a high dimensional distribution, the fist step in finding a so-
lution is usually to draw a factor graph representation of the problem,
and to use it to derive approximate inference algorithms, e.g. belief
propagation (see section 1.5). This approach is standard in problems
as diverse as error-correcting coding [129], compressed sensing [106],
computer vision [119], and many more [86, 151].

In the following, we will be mainly interested in the special case
of pairwise MRFs, both in the interest of simplicity and because the
original contributions of this dissertation are naturally expressed in
terms of pairwise models. In the next section, we motivate the use of
pairwise models, and show that they can in fact be used to represent
any MRF.

1.3 pairwise markov random fields

1.3.1 Definition and examples

An interesting particular case of the general MRF (1.5) is obtained by
setting trivial compatibility functions ψC((σi)i∈C) = 1, for all cliques
with size |C| > 2. On a given graph G = ([n], E), the resulting model,
called a pairwise MRF, reads

Pairwise MRF P(σ) =
1

Z

∏

(ij)∈E

ψij(σi, σj)

n∏

i=1

φi(σi) , (1.11)

where we have separated the single-variable potentials (φi)i∈[n] as-
sociated with cliques of size |C| = 1, from the pairwise potentials
(ψij)(ij)∈E associated with cliques of size |C| = 2. Note that for
convenience, we are slightly abusing our notations by indexing the
pairwise potentials, defined on each edge e ∈ E, by indices i, j ∈ [n]

such that e = (ij). Since the edge (ij) is the same as the edge (ji), for
equation (1.11) to be consistent regardless of the labeling of the edges,
the pairwise potentials must verify the following symmetry

Symmetry of the
potentials

ψij(σi, σj) = ψji(σj, σi) ∀(ij) ∈ E, σi, σj ∈ X . (1.12)
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When the distribution (1.11) is strictly positive for any assignment σ,
it admits the following exponential representation

Exponential
representation

P(σ) =
1

Z
exp


−

∑

(ij)∈E

ǫij(σi, σj) −

n∑

i=1

ǫi(σi)


 , (1.13)

where the energies ǫi, ǫij for i ∈ [n] and (ij) ∈ E are defined as

Energiesǫi(σi) = − logφi(σi) , ǫij(σi, σj) = − logψij(σi, σj) . (1.14)

The choice of the word “energy” highlights the connection with statis-
tical physics. Indeed, expression (1.13) is nothing but the Boltzmann
distribution of the so-called Potts model of statistical physics [159].

We will represent pairwise models of the form (1.11) by simply Representation of
pairwise modelsdrawing the graph G = ([n], E), in which each node (pictured as a

white circle) represents a variable, and each edge (ij) ∈ E carries a
pairwise potential ψij. The single-variable potentials φi for i ∈ [n]

are pictured as black circles connected to a single variable node. We
stress that while the graph Gmay contain cliques of size larger than 2,
they are not associated with potentials in a pairwise MRF model. For
instance, the triangle graph in the margin represents the factorization

σ1

σ2 σ3

P(σ) ∝ ψ12(σ1, σ2)ψ13(σ1, σ3)ψ23(σ2, σ3)φ3(σ3) , (1.15)

which does not include a term of the form ψ123(σ1, σ2, σ3).
The Potts model (1.13) is popular in computer vision [21, 22, 54], Computer vision

examplewhere it is used to denoise a partially observed image by encouraging
nearby pixels to have similar colors. In this case, the graph G is
taken to be a regular lattice where each node, representing a pixel,
is connected with its four adjacent pixels in the image. The single-
variable energies ǫi(σi) are chosen to be minimized when σi = σ̂i,
where σ̂i is the observed value of the pixel. One simple example is

ǫi(σi) = −h 1(σi = σ̂i) , (1.16)

where h > 0 can be interpreted physically as a local field, quantifying
the confidence that we have in the observed value of the pixel. The
pairwise energies ǫi,j(σi, σj) act as smoothing terms, and are chosen
to be minimized when σi = σj, e.g.

ǫij(σi, σj) = −J 1(σi = σj) , (1.17)

where J > 0 is a coupling controlling the strength of the smoothing.
The resulting graphical model is depicted on figure 1.4.

Pairwise models of the form (1.11) provide a principled approach
to the probabilistic analysis of data in which we expect correlations to
arise as a consequence of two-body interactions between random vari-
ables. An interesting application in biology is the so-called direct cou-
pling analysis [109] of co-evolution in protein sequences. The primary



14 markov random fields

Figure 1.4 – Pairwise MRF for computer vision. Each variable node (white)
represents a pixel, and is attached to a single-variable poten-
tial (black) containing the observed value of pixel. Pairwise
potentials promote smoothness by correlating nearby pixels in
the image.

structure of a protein can be regarded as a sequence of n amino acids
(σi)i∈[n] taking values in an alphabet X with 21 possible values (20An example in

biology amino acids plus possible “gaps” arising from insertion or deletion
mutations). The function of the protein is (mainly) determined by its
three-dimensional structure, which, in turn, is determined by a pair-
wise contact map, encoding which pairs of amino acids are in contact
in the folded protein. Although such contacts are the result of com-
plex physical and chemical interactions, they can in fact be inferred
from purely statistical considerations. The key observation is that
evolution strongly constrains these pairs of interacting amino acids.
Indeed, if two amino acids i and j are in contact after the folding
of the protein, then a mutation affecting σi must come with a muta-
tion affecting σj accordingly, otherwise the protein will be denatured,
and the mutation will not be selected. These two-body interactions
result in strong correlations in the sequences of homologous proteins,
i. e. proteins sharing the same function. By sequencing homologous
proteins in various living organisms, it is possible to compute these
correlations, and to learn a model of the form (1.13) that is able to
reproduce these correlations. Using this approach, [109] showed that
the learned pairwise potentials allow to recover, with an impressive
accuracy, the contact map of the protein.

The previous example is an illustration of an inverse, or learningLearning

problem, where we have access to some statistics which we believe
can be explained by a model of the form (1.11), and we try to learn a
graph G = ([n], E) and potentials (ψij)(ij)∈E, (φi)i∈[n] that can repro-
duce the observed data. In the converse direction, it may happen that
we have access to some data in the form of pairwise constraints on
the variables. In this case, we may postulate a model of the form (1.11)
encoding the available data, as well as any belief we may have on the
structure of the data, into the potentials (ψij)(ij)∈E, (φi)i∈[n] of a cer-
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tain graph G = ([n], E), and use this model to make predictions. For
instance, to predict the most probable state of a particular variable σi
for some i ∈ [n], one may compute its marginal distribution Pi(σi)

and look for its mode. This approach is usually called inference, and Inference

will be the main subject of the original contributions of this disser-
tation. This strategy is exemplified by the computer vision example
represented on figure 1.4. Here, the available observed pixels are
encoded into single-variable potentials, and the pairwise potentials
translate our belief that neighboring pixels in an image usually have
similar colors. Similarly, in the following, we will consider graph
clustering problems, in which the pairwise potentials will encode the
similarity (or dissimilarity) between two objects, and the marginals of
model (1.11) will serve to label the objects.

Another motivation for considering pairwise MRFs stems for the
maximum entropy principle, and is the subject of the next section.

1.3.2 Maximum entropy principle

Generalizing the biological example of the previous section, as-
sume that we wish to learn the multivariate probability distribution
P of a random variable σ = (σi)i∈[n] ∈ Xn, given some realizations of
this random variable. More precisely, assume that we have access to p
independent and identically distributed (i.i.d) samples σ(1), . . . , σ(p)

from the distribution P, and that we wish to find a distribution Q

such that, for all α in some index set I,

Moment matching
conditionsEQ [fα(σ)] = µ̂α , (1.18)

where σ has distribution Q, each fα : Xn → R is a fixed function, and
the (µ̂α)α∈I are the empirical averages of the functions (fα)α∈I on
the data we are given, i. e.

Empirical momentsµ̂α =
1

p

p∑

j=1

fα

(
σ(j)

)
. (1.19)

In words, we are looking for a probability distribution Q such that
the expected value of each function fα for α ∈ I is equal to the
empirical average of this function on the data. By the law of large
numbers, in the limit where the number of samples p→∞, we have
µ̂α → EP(fα(σ)), so that Q = P is a solution. However, the system
of equations (1.18) is strongly under-determined, and there exists in
general an infinite number of solutions. As usual in physics and sci-
ence in general, we favor the “least constrained” solution 4, i. e. the
solution that assumes the least additional structure in the distribu-
tion Q.

4. This general principle of parsimony is known as Occam’s razor, and is vividly
criticized, as is the maximum entropy principle.
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To quantify what we mean by “least constrained”, we introduce the
(Gibbs-Shannon) entropy of the distribution Q, defined as

Entropy of a
distribution

S(Q) = −
∑

σ∈Xn

Q(σ) log Q(σ) . (1.20)

The entropy of the distribution Q quantifies the unpredictability of a
variable σ distributed according to Q. The entropy of a determinis-
tic distribution (which support is a single element of Xn) vanishes —
the value of σ can be exactly predicted without doing an experiment.
On the other hand, the uniform distribution on Xn has maximum en-
tropy, as the uncertainty on the value of a realization of σ is maximal
in this case. The principle of maximum entropy states that amongMaximum entropy

principle all the distributions Q that verify the constraints (1.11), we should
favor the distribution that has maximum entropy. Therefore Q is the
solution of a constrained optimization problem which Lagrangian is
given by

L = −
∑

σ∈Xn

Q(σ) log Q(σ) +
∑

α∈I

λα

(
∑

σ∈Xn

Q(σ)fα(σ) − µ̂α

)
, (1.21)

where the λα for α ∈ I are Lagrange multipliers. For any given
σ ∈ Xn, we get by differentiating

∂L

∂Q(σ)
= −1− log Q(σ) +

∑

α∈I

λαfα(σ) , (1.22)

so that Q takes the form of an exponential (or Boltzmann) distribution
The maximum

entropy distribution
belongs to the

exponential family

Q(σ) =
1

Z
exp

(
−
∑

α∈I

λαfα(σ)

)
, (1.23)

for some normalization Z. The general form (1.23) reduces to the
pairwise exponential representation of (1.13) for a certain graph G =

([n], E) when I = ([n]×X)∪ (E×X2), and for any σ ∈ Xn

fi,a(σ) = 1(σi = a), ∀i ∈ [n], a ∈ X , (1.24)

fij,a,b(σ) = 1(σi = a) 1(σj = b), ∀(ij) ∈ E, (a, b) ∈ X2 . (1.25)

The energies (ǫi)i∈[n], (ǫij)(ij)∈E of (1.13) are related to the Lagrange
multipliers of (1.23) by the identities

Relation between the
Lagrange multipliers

and the energies

ǫi(a) = λi,a, ∀i ∈ [n], a ∈ X , (1.26)

ǫij(a, b) = λij,a,b, ∀(ij) ∈ E, (a, b) ∈ X2 . (1.27)

The constraints (1.18) then correspond to prescribing the one-variable
and two-variables marginals of Q, which, in the limit of large number
of samples p, verify for all i ∈ [n], (ij) ∈ E, a, b ∈ X

Qi(σi = a) = µ̂i,a −→
p→∞

Pi(σi = a) , (1.28)

Qij(σi = a, σj = b) = µ̂ij,a,b −→
p→∞

Pij(σi = a, σj = b) . (1.29)
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To sum up, among all the distributions over Xn with prescribed
one-variable and two-variables marginals, the Potts model of equa-
tion (1.13) is the one with maximum entropy.

1.3.3 From general to pairwise Markov random fields

As stated previously, our main motivations for focusing on the pair-
wise model (1.11) instead of the more general MRF (1.5) are both sim-
plicity, and the fact that the contributions we describe in following
are naturally expressed in terms of pairwise models. For complete-
ness however, we show here that any MRF of the general form (1.5)
may in fact be rewritten in the pairwise form (1.11), at the expense of
increasing the size of the dictionary X [160].

We start from the factor graph representation of a general MRF. As
sketched in the margin, the potentials corresponding to cliques of
size 1 and 2 are already of the pairwise form (1.11) and are readily
translated. To deal with factors corresponding to larger cliques, we
introduce a new variable node with a corresponding single-variable
potential, and tune the potentials adequately.

To be definite, consider the MRF depicted on figure 1.5, which is of
the form

P(σ1, σ2, σ3, σ4) ∝ ψ123(σ1, σ2, σ3)ψ34(σ3, σ4)ψ4(σ4) . (1.30)

We replace the ψ123 potential with a new variable node σ5 ∈ X3 (note
that we have enlarged the alphabet), attached to a single-variable po-

tential φ5. We write the components of σ5 as σ5 =
(
σ
(1)
5 , σ

(2)
5 , σ

(3)
5

)
.

The new pairwise model on the right of figure 1.5 factorizes as

P′(σ1, σ2, σ3, σ4, σ5) ∝ φ5(σ5)ψ15(σ1, σ5)ψ25(σ2, σ5)

ψ35(σ3, σ5)ψ34(σ3, σ4)φ4(σ4) .
(1.31)

We tune the newly defined potentials ψi5 for i ∈ [3] in the following
way

ψi5(σi, σ5) = 1
(
σi = σ

(i)
5

)
, (1.32)

so that, in the pairwise MRF, the probability of a configuration van-
ishes unless σ5 = (σ1, σ2, σ3). It only remains to fix the single-
variable potential φ5 to equal the potential ψ123 that we removed

φ5(x5) = ψ123

(
σ
(1)
5 , σ

(2)
5 , σ

(3)
5

)
. (1.33)

With these choices, the distribution represented by the pairwise model
is related to the distribution represented by the original factor graph
by

P′(σ1, σ2, σ3, σ4, σ5) = 1(σ5 = (σ1, σ2, σ3))P(σ1, σ2, σ3, σ4) , (1.34)

so that the marginals of P′ are trivially related to those of P. The
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σ4

σ1

σ2

σ3

σ1

σ2

σ3σ4
σ5

Figure 1.5 – Conversion from a factor graph with a 3-body interaction (left)
to a pairwise MRF (right).

procedure we have described on this example is straightforwardly
adapted to any clique potential, and allows to turn any factor graph
into a pairwise MRF. Note that this is achieved at the expense of an in-
crease in the size of the alphabet, which goes from X to X|C|max , where
|C|max is the size of the largest clique in the original MRF. This cost
is however not completely superfluous, in the sense that an inference
algorithm such as belief propagation (see section 1.5) has a time com-
plexity of O(X|C|max) on general MRFs, while it can be made to run
in time O(X2) on pairwise models. On the other hand, using pair-
wise models simplifies the formulation of belief propagation which
is defined using only one type of messages, whereas in general factor
graphs, there are two types of messages (factor to node and node to
factor). As the previous procedure shows, we can choose without loss
of generality to restrict the presentation to pairwise models, as in the
classical paper [160].

1.4 random graph ensembles

In the applications of the following chapters, we will consider pair-
wise models defined on random graphs. We define here the main
ensembles of random graphs we will be considering, and list some of
their prominent properties that will important to our study.

1.4.1 The Erdős-Rényi model

Perhaps the best known ensemble of random graphs is the so-
called Erdős-Rényi model G(n, p) [41]. In the G(n, p) model, a graphSampling from

G(n, p) G = ([n], E) with n vertices (or nodes) is generated by including in
the edge set E each pair (ij) for 1 6 i < j 6 n with probability p,
independently for each pair. The degree di of vertex i in G is the num-
ber of neighbors of i in G. We write ∂i for the set of neighbors of i,
so that di = |∂i|. In G(n, p), the degree of any node follows the same
binomial distribution, for any i ∈ [n]

The degree
distribution is

binomial
P(di = d) =

(
k

n− 1

)
pd(1− d)n−1−d . (1.35)
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We call E[di] the average connectivity (or simply average degree) of Average
connectivityG. In G(n, p), the average connectivity is p(n − 1). In any graph

(deterministic or random), the number of edges |E| is related to the
degrees by the so-called handshake lemma

Handshake lemma2 |E| =

n∑

i=1

di , (1.36)

so that |E| is a binomial random variable with expectation E [|E|] =

pn(n − 1)/2. In the following, we will be mostly interested in the
limit n→∞, with the scaling

Sparse regimep =
α

n
, (1.37)

where α > 0 is therefore identified with the average connectivity.
When α is fixed, independently of n, we say that the resulting graph
is sparse, as the expected number of edges scales linearly with the
number of vertices

E [|E|] ∼
n→∞

αn

2
. (1.38)

In this regime, the degree of a given node i converges in probability
to a Poisson random variable with mean α

Poissonian degree in
the sparse caseP(di = d) −→

n→∞
e−αα

d

d!
. (1.39)

We say that a property holds with high probability (w.h.p) if it holds
with a probability tending to 1 as n → ∞. The Erdős-Rényi model
undergoes several phase transitions when n → ∞, as the average
connectivity α is varied [41].

— For α < 1, a typical realization G is w.h.p composed of a large
number of small disconnected trees, each containing of the or-
der of logn vertices. Phase transitions in

the Erdős-Rényi
model

— For α > 1, G has w.h.p a unique giant connected component con-
taining a finite fraction of the vertices.

— For α < log(n), G contains w.h.p isolated vertices of degree 0.
— For α > log(n), G is w.h.p connected.

These phase transitions give us a clue about what to expect from an
inference algorithm on a random graph G. As a generic example, an-
ticipating on the following, assume that we are trying to infer latent
labels (σi)i∈[n] carried by the nodes of the graphG, based on informa-
tion (e.g. comparisons or similarities) encoded on the edges of G. If
two vertices i and j belong to different connected components of the
graph G, then there is no way to decide whether σi = σj or not, since
we do not have access to any (even indirect) comparison between the
two vertices. As a consequence, we expect two different regimes.
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i

G(i, 3)

Figure 1.6 – Illustration of the locally tree-like property of a sparse random
graph. The gray dashed circle contains the subgraph G(i, 3) of
all nodes that are at distance at most 3 from i. G(i, 3) contains
no cycle.

— α = O(1) is the regime of so-called detectability, in which we
may hope to correctly infer the labels of a finite fraction of the
vertices, but not all of them.Detectability vs.

perfect recovery — α ∼ κ logn for some constant κ > 1 is the regime of so-called
perfect recovery, in which we may hope to correctly infer the
labels of all the vertices.

This hand-waving argument will be made more precise on the spe-
cific problems we consider in the following. The contributions of this
dissertation are interested in the detectability regime.

One of the most interesting properties of random graphs with small
average connectivity α = O(logn) (including both detectability and
perfect recovery regimes) is that they are locally tree like. More pre-Locally tree-like

property cisely, for a fixed k ∈ N, and for some vertex i chosen uniformly at
random in [n], let Gi,k denote the subgraph of G consisting of all the
vertices and edges of G that are at most k steps away from i. Then forj is k steps away

from i if the shortest
path connecting i

and j in G is of
length k

any fixed k, G(i, k) is w.h.p a tree. This property is depicted graphi-
cally on figure 1.6 and stems from the following heuristic exploration
process. Starting from node i, we discover its neighbors by drawing
(on average) α vertices in [n] uniformly at random. Then we discover
its neighbors’ neighbors by repeating the same procedure for each
neighbor of i. Assuming that each new neighbor has not been dis-
covered before, we have discovered after k iterations of the previous
scheme αk vertices on average. When α = O(logn), the number of
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discovered vertices is o(n), so that w.h.p, they are all distinct, and
there is no cycle in G(i, k). This argument can be made precise, and a
full proof can be found e.g. in [19]. An equivalent popular statement
of the locally-tree like property is that there is w.h.p no cycle of length
smaller than logα n.

We now turn to generalizations of the Erdős-Rényi model that will The previous
considerations about
detectability and
perfect recovery, as
well as the locally
tree-like property,
also hold in the SBM

and lSBM

allow us to encode information in the topology of the graph, or to
assign labels to the edges of the graph. We stress that these general-
ized ensembles will inherit the properties of the Erdős-Rényi model
of same average degree, including the thresholds for the emergence
of the giant component and for the connectedness of the graph, as
well as the locally tree-like property.

1.4.2 The stochastic block model

The stochastic block model (SBM) is a simple generalization of the
Erdős-Rényi model in which the probability of presence of an edge be-
tween two vertices is not uniform, but depends on latent variables car-
ried by the vertices. The stochastic block model (SBM) was first intro-
duced in the context of mathematical sociology in [65] and has played
a major role in the theoretical understanding of the performance of
community detection algorithms [32]. Indeed, unlike the Erdős-Rényi
model, the SBM allows to generate graphs with non-uniform density
of edges, e.g. with communities of nodes more densely connected
than the average. Specifically, an instance of the SBM is specified by

Parameters of the
SBM

n the number of vertices

q the number of communities

(fσ)σ∈[q] the relative sizes of the communities

(pσ,σ′)σ,σ′∈[q] a q× q matrix of edge probabilities.

A graph G = ([n], E) is generated from the SBM in the following
way. First we assign each vertex i ∈ [n] to a community σi ∈ [q] Sampling from the

SBMindependently with probability P(σi = σ) = fσ, for σ ∈ [q]. Then
for each pair of vertices (ij) such that 1 6 i < j 6 n, we include the
edge (ij) in E with probability P

(
(ij) ∈ E | σi, σj

)
= pσi,σj

. The aim
is usually, given the graph, to recover the community memberships
(σi)i∈[n] of the nodes.

We will be mainly interested in the sparse case, i. e. for σ, σ′ ∈ [q]

Sparse casepσ,σ′ =
ασ,σ′

n
, (1.40)

with ασ,σ′ fixed independently of n, although we will occasionally
mention some results in the perfect recovery regime ασ,σ′ ∼ κ logn.
In the sparse case, the average connectivity of the graph is given by

Average connectivity
in the SBM

α =

q∑

σ,σ′=1

fσfσ′ασ,σ′ = O(1) . (1.41)
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In a social network, α can be interpreted as the average number of
friends a person in the network has 5. While the sparse regime is
more challenging, as the graph contains less information, it is also ar-
guably the most relevant in real world applications. Indeed, if the to-Relevance of the

sparse assumption tal number of users of Facebook doubles overnight, we do not expect
that the number of friends of a given user will also double. Said dif-
ferently, the number of friends that a person can have is constrained
by time, location and cognitive skills 6. It is therefore reasonable to
assume this number to be independent of the total number of people
in the world.

The properties of the Erdős-Rényi model G(n,α/n) listed in the
previous section also apply in the SBM with average connectivity α.
In particular, as argued in the previous section, we cannot hope to
perfectly recover the community memberships of all the nodes in the
sparse case. Instead, we may ask what conditions must verify the
parameters (fσ)σ∈[q] and (ασ,σ′)σ,σ′∈[q] to detect the communities,
i. e. to recover the community memberships (σi)i∈[n] better than by
guessing randomly. Remarkably, based on arguments originating in
statistical physics, [32] conjectured a very precise answer to this ques-
tion. To state the result, we consider a particular, symmetric instance
of the SBM, with equally sized communities (fσ = 1/q ,∀σ ∈ [q]), and

Symmetric SBM
ασ,σ′ = αin 1

(
σ = σ′

)
+αout 1

(
σ 6= σ′

)
, (1.42)

for σ, σ′ ∈ [q]. In words, the probability of two nodes being con-
nected takes only two different values, depending on whether the
nodes belong in the same community or not. Therefore, αin is in-
terpreted as the average connectivity inside each community, while
αout is the average connectivity between different communities. The
average connectivity in the whole graph is

α =
αin + (q− 1)αout

q
. (1.43)

The case αin > αout is termed assortative, and corresponds to the case
where the nodes are more densely connected inside a communityAssortative and

disassortative than the average. The opposite case αin < αout is termed disassorta-
tive, and is useful to describe e.g. predator-prey, or mating networks.
Examples of both cases are pictured on figure 1.7.

5. The SBM (sparse or not) has however many other limitations when it comes
to modeling reality, e.g. the fact that it cannot account for the heavy-tailed degree
distributions observed in real world networks.

6. In the 90s, the British anthropologist Robin Dunbar attempted to compute the
maximum number of “stable” friends a person can have. He found a correlation
between the size of a primate’s brain and the average size of its social group [39]. By
extrapolation, Dunbar suggested a cognitive limit of 150 as the maximum number
of close friends a human being can keep. Later studies based on the exchange of
Christmas cards in contemporary Western societies proved in remarkable agreement
with this prediction [63].
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Figure 1.7 – Examples of assortative (left) and disassortative (right) commu-
nities.

The conjecture of [32] states that there exists a phase transition
in detectability, in that a polynomial time algorithm can detect the
communities in the limit n→∞ if and only if

Detectability
threshold in the SBM|αin −αout| > q

√
α . (1.44)

More precisely, if q 6 4 in the assortative case (or q 6 3 in the
disassortative case), the authors of [89] claim that it is information-
theoretically impossible to detect the communities unless (1.44) holds.
For larger q, they argue that when below the transition (1.44), expo-
nential algorithms such as exhaustive search can detect the communi-
ties, but no polynomial time algorithm can. A large part of this con- Rigorous results on

detectability in the
SBM

jecture has now been proved rigorously 7. More precisely, for the case
of q = 2 communities, the impossibility result below the transition
(1.44) was first proved in [110], and the detectability result was proved
shortly later in [100, 111]. For larger q, [4] proved that a polynomial
time algorithm (close to belief propagation, see section 1.5) succeeds
in detecting the communities when (1.44) holds, and also supported
the existence of an information-computation gap 8 for q > 5, by show-
ing the existence of exponential time algorithms that can detect the
communities when (1.44) does not hold.

Finally, we mention for completeness that in the exact recovery
regime α ∼ κ logn, the situation is simpler, as there is no information- Rigorous results on

perfect recovery in
the SBM

computation gap in the limit n → ∞. More precisely, [3] showed
that there exists a fundamental limit, expressed in terms of a certain
divergence function, such that no algorithm can perfectly recover the
communities below this limit, while a polynomial time algorithm can
do so when above this limit.

1.4.3 The labeled stochastic block model

The labeled stochastic block model (lSBM), first introduced in [60],
is a generalization of the SBM that allows to generate labeled graphs.
A graph generated from the labeled stochastic block model (lSBM)

7. Note that a rigorous proof of the full conjecture implies showing that P 6= NP.
8. An information-computation gap is a mismatch between what is information-

theoretically possible and what (known) polynomial time algorithms can achieve.



24 markov random fields

contains two sources of information. The first one is encoded in the
topology of the graph, i. e. in the presence or absence of edges, just
like in the original SBM. The second one stems from the values of
the labels carried by the edges, which are assumed to be random
variables with a distribution that depends only on the labels of the
endpoints of the edges. More precisely, an instance of the lSBM is
specified by

Parameters of
the lSBM

n the number of vertices

q the number of communities

(fσ)σ∈[q] the relative sizes of the communities
(
p
(e)

σ,σ′

)
σ,σ′∈[q]

a q× q matrix of edge probabilities

L a set of labels(
p
(ℓ)

σ,σ′

)
σ,σ′∈[q]

a q× q matrix of label probability distributions

The first four parameters are the same as the SBM — note that we
now denote the edge probabilities p(e) to differentiate them from the
label probabilities p(ℓ). We use these parameters to assign each vertex
i ∈ [n] to a community σi, and to generate a graph G = ([n], E) from
the SBM (see section 1.4.2). Then, for each edge (ij) ∈ E, we draw a
label ℓij with probability P(ℓij = ℓ | σi, σj) = p

(ℓ)
σi,σj

(ℓ), for ℓ in the
label set L. Like in the SBM, the aim is, given the thus constructed
labeled graph, to recover the community memberships σ = (σi)i∈[n]

of the nodes. Again, we will be interested in the following scaling,
for σ, σ′ ∈ [q],

p
(e)

σ,σ′ =
ασ,σ′

n
, (1.45)

with ασ,σ′ = O(1) (detectability), and only mention some results in
the regime ασ,σ′ ∼ κ logn (perfect recovery). Like the SBM, this model
is thought to exhibit phase transitions, both for detectability and per-
fect recovery, although it has been comparatively less studied than
the SBM.

In the detectability regime, the different conjectures and results
about this model mostly concern the symmetric lSBM defined for σ, σ′ ∈
[q], ℓ ∈ L by

Symmetric lSBM

fσ =
1

q

ασ,σ′ = αin 1
(
σ = σ′

)
+αout 1

(
σ 6= σ′

)
,

∀ℓ ∈ L, p
(ℓ)

σ,σ′(ℓ) = pin(ℓ) 1
(
σ = σ′

)
+ pout(ℓ) 1

(
σ 6= σ′

)
.

(1.46)

In the symmetric lSBM with q = 2 clusters and discrete edge set L,
[60] first conjectured that detectability is possible if and only if

Conjectured
detectability

threshold in the lSBM
τ =

1

2

∑

ℓ∈L

(αin pin(ℓ) −αout pout(ℓ))
2

αin pin(ℓ) +αout pout(ℓ)
> 1 . (1.47)
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The negative part of this conjecture (impossible detectability when
τ < 1) was proved in [94], who also exhibited three algorithms that
can detect the hidden assignment σ when τ is larger than some con-
stant, strictly larger than 1.

In the following, we will be mostly interested in the special case
where ασ,σ′ = α, ∀σ, σ′ ∈ [q], so that there is no information in
the topology of the graph, only in the labels carried by the edges.
For the case of q = 2 communities, we will introduce provably opti-
mal algorithms that can detect σ as soon as τ > 1, and also extend
the conjecture (1.47) to the case of real labels, and q > 2 commu-
nities. This model includes as a special case the planted spin glass Relation to the

planted spin glass,
or censored block
model

introduced in section 1.6.5, called censored block model in the informa-
tion theory community. In the censored block model, L = {±1}, and
pin(+1) = pout(−1) = 1 − ǫ, for some ǫ > 0. This model was first
studied in the perfect recovery regime α ∼ κ logn in [1, 56], who
showed that there exists a phase transition between a phase in which
no algorithm can perfectly recover σ, and a phase in which efficient
algorithms can. We will study the detectability regime of the planted
spin glass in details in chapter 4. The perfect recovery regime of the
general lSBM was studied in [163] who identified a phase transition
in terms of a divergence function, generalizing the results of [3] for
the SBM.

1.5 mean-field approximations

We now motivate and introduce a general class of approximate
inference methods, and discuss the belief propagation algorithm and
Bethe approximation which play a substantial role in the following.

1.5.1 Intractability of exact inference

We have shown on the example of the previous section that there is
valuable information to be extracted from the marginals of a pairwise
MRF. The gigantic caveat that we have swept under the rug is that the
task of computing the marginals of a multivariate (discrete) distribu-
tion is in general exponentially hard 9 (meaning that this operation
has a time complexity that is exponential in the number of variables).
This follows directly from the definition, since the marginal of σi for
some i ∈ [n] is given by

MarginalPi(σi) =
∑

σ1∈X

. . .
∑

σi−1∈X

∑

σi+1∈X

. . .
∑

σn∈X

P(σ1, . . . , σn) , (1.48)

9. Our applications will require computing single-variable marginals of the form
Pi(σi), which is why we focus here on this problem. However, the following re-
marks apply to other inference problems, such as computing the marginal distribu-
tion of a set of variables (conditioned or not on another set of variables), or comput-
ing modes of a JPD.
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so that computing this marginal requires summing over |X|n−1 terms.
When the JPD has strong independence properties, as in the case of a
pairwise MRF, it is possible to leverage this structure to order the sums
in expression (1.48) in a clever way that reduces the overall complex-
ity of the procedure. An extreme example of such a simplification
is the case where the pairwise MRF factorizes according to a graph
that is a tree. In this case, computing the marginals of the pairwiseTree graphical

models MRF can be done in time linear 10 in the number of variables using a
dynamic programming procedure called the sum-product algorithm, or
belief propagation (BP) [124, 125] 11.

Let us detail the procedure for the pairwise MRF of equation (1.11),
defined on a given graph G = ([n], E), with single-variable potentials
(φi)i∈[n] and pairwise potentials

(
ψij

)
(ij)∈E

. Here and throughout

the dissertation, we denote by ~E the set of directed edges of the graph
G. The BP algorithm iteratively updates beliefs bi→j which are discreteBelief propagation

distributions on X, defined on the directed edges (i → j) ∈ ~E of
the graph G. These beliefs can be interpreted [103] as the marginal
distribution of σi in a “cavity” graph in which the potential ψij has
been removed. When the graph G is a tree, it is possible to show that
that the beliefs must verify the following fixed point equation 12, for
all (i→ j) ∈ ~E

BP fixed point
equations

bi→j(σi) =
1

Zi→j
φi(σi)

∏

k∈∂i\j

∑

σk∈X

ψik(σi, σk)bk→i(σk) , (1.49)

where ∂i denotes the set of neighbors of vertex i in the graph G, and
the normalization Zi→j ensures that the belief bi→j is normalized, i. e.

Zi→j =
∑

σ∈X

bi→j(σ) . (1.50)

If we find beliefs that verify the fixed point equation (1.49), we can
use them to recover the marginals of the pairwise MRF (1.11). More
precisely, when the graph G is a tree, we have Pi(σi) = bi(σi) where

BP estimates for the
marginals

bi(σi) =
1

Zi
φi(σi)

∏

k∈∂i

∑

σk∈X

ψik(σi, σk)bk→i(σk) . (1.51)

In practice, the BP algorithm iterates equation (1.49) until a fixed point
is reached, and outputs the marginals given by (1.51). As long as theBP is exact on trees

10. Each iteration of belief propagation (BP) is linear in the number of variables n
on a tree.

11. A variant of the sum-product algorithm allows to compute the modes of MRF.
12. Note that we write here BP in a “product-sum” rather than “sum-product”

form. We recover the perhaps more usual form of [161], equation (14), by defining
messages mi→j(σj) =

∑
σi∈Xψij(σi, σj)bi→j(σi) for (i → j) ∈ ~E, so that the fixed

point equation (1.49) becomes

mi→j(σj) =
1

Zi→j

∑

σi∈X

φi(σi)ψij(σi, σj)
∏

k∈∂i\j

mk→i(σi) .
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graph G is a tree, this procedure is guaranteed to converge, and to
give exact marginals [103].

When the graph G is not a tree, there exists a general procedure to
associate the pairwise MRF with a distribution that factorizes accord-
ing to a tree. This procedure, called the junction tree algorithm, allows Junction tree

algorithmto perform exact inference, e.g. by running BP on the resulting tree.
A description of this procedure is beyond the scope of this disserta-
tion, and we refer the interested reader to [151] for the details. We
however remark that the complexity of the junction tree algorithm
is exponential in a fundamental graph-theoretic quantity called the
treewidth of the graph, which is one less than the size of the largest Treewidth of a graph

clique in the junction tree representation of the pairwise MRF. Note
that when building a junction tree, we introduce additional edges in
the graph G, so that the treewidth of G is not the size of the largest
clique in G (it is larger). For many practical applications, including
the computer vision problem of the previous section, defined on a
regular lattice, and the problems studied in this dissertation, defined
on random graphs, the treewidth is large [151], so that the junction
tree algorithm is intractable.

In general, we therefore have to resort to approximate inference
methods. For instance, we may close our eyes on the fact that our
pairwise MRF does not factorize according to a tree, and run the BP

algorithm, which in this context, is sometimes called loopy BP 13. As “Loopy” BP

before, we iterate equation (1.49) until we find a fixed point, and use it
to output the pseudo-marginals bi for i ∈ [n] given by equation (1.51).
If the algorithm converges, although we do not expect that Pi(σi) =

bi(σi), we may hope that Pi(σi) ≈ bi(σi), especially if the graph G
is not too different from a tree, i. e. if it has few and long loops. This
will in particular be the case for the sparse random graphs we will
consider in the following. Applying BP as a generic inference engine
on general graphs has often been rewarded with impressive success,
especially in coding theory [101, 129], but not only [32, 103]. It turns
out that this approach is inscribed in a more general approximation
framework originating in statistical physics, from which it inherited
the name of mean-field approximations. It is the purpose of the present
section to introduce this framework.

1.5.2 Variational mean-field

We now show that the distribution P defined by the pairwise MRF

is the unique solution of a variational problem. In this section we let
Q denote an arbitrary trial distribution over Xn.

13. In this dissertation, we will refrain from using the attribute “loopy” since it is
after all exactly the same algorithm.
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We define the KL divergence from P to Q asKullback–Leibler
(KL) divergence

DKL(Q ‖P) =
∑

σ∈Xn

Q(σ) log
Q(σ)

P(σ)
. (1.52)

The KL divergence can be thought of as a sort of distance between
probability distributions, with the caveat that it is not symmetric un-
der the exchange of P and Q. Its most useful property in the follow-
ing is the fact that the KL divergence between any two distributions
P and Q is always non-negative, and it vanishes if and only if P = Q.DKL(Q ‖P) > 0

This result, known as Gibb’s inequality, can be obtained as a conse-
quence of Jensen’s inequality. Inserting in the definition of the KL

divergence the exponential form (1.13) of the pairwise MRF P, with
energies (ǫi)i∈[n] ,

(
ǫij
)
(ij)∈E

given by (1.14), we find

DKL(Q ‖P) =
∑

σ∈Xn

Q(σ) log Q(σ) +
∑

σ∈Xn

Q(σ) logZ

+
∑

(ij)∈E

∑

σ∈Xn

Q(σ) ǫij(σi, σj) +

n∑

i=1

∑

σ∈Xn

Q(σ) ǫi(σi) ,

(1.53)

= logZ+ E[Q] − S[Q] , (1.54)

where S[Q] is the entropy (1.20) of the trial distribution Q, and we
have defined its internal energy E[Q] as the sum of the expectations
(under Q) of the energies ǫi, ǫij, i. e.

Internal energy E[Q] =
∑

(ij)∈E

∑

σ∈Xn

Q(σ) ǫij(σi, σj) +

n∑

i=1

∑

σ∈Xn

Q(σ) ǫi(σi) . (1.55)

We can finally define two quantities that play a major role in statistical
physics. The first one is the Helmholtz free energy

Helmholtz free
energy

F = − logZ , (1.56)

and the second is the Gibbs free energy, which is a functional defined
on the set of probability distributions over Xn and given by

Gibbs free energy G[Q] = E[Q] − S[Q] . (1.57)

We have therefore shown the following variational formulation. ForVariational
formulation any trial probability distribution Q over Xn,

G[Q] > F , (1.58)

with equality if and only if Q = P. In particular, it holds that

P = argmin Q G[Q] , (1.59)

where the optimization is over the set of all probability distributions
on Xn. Once more, this optimization problem is intractable, since the
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mere evaluation of the Gibbs free energy of a distribution requires
summing over Xn terms. However, this variational formulation in-
spired a useful class of approximations termed variational mean-field. Variational

mean-field
approximations

The idea of variational mean-field is to make the optimization prob-
lem (1.59) tractable by restricting the set of possible choices for Q to a
smaller and manageable set. The simplest non-trivial choice is to con-
sider independent (also called factorized 14) distributions of the form

Independent trial
distributions

Q(σ) =

n∏

i=1

bi(σi) , (1.60)

where the bi for i ∈ [n] verify
∑

σi∈X bi(σi) = 1 and are therefore the
marginals of the distribution Q. Solving the optimization problem
(1.59) over this restricted class of distributions amounts to finding the
independent distribution Q⋆ which is closest to the true pairwise MRF

P, in the sense of the KL divergence. By injecting the form (1.60) in
the definition of the Gibbs free energy (1.57), it is straightforward to
check that the solution of the restricted optimization problem is the
distribution Q⋆ that maximizes the so-called naive mean-field (nMF)
free energy

nMF free energy

F nMF ((bi)i∈[n]

)
=

∑

(ij)∈E

∑

σi,σj∈X

bi(σi)bj(σj) ǫij(σi, σj)

+

n∑

i=1

∑

σi∈X

bi(σi) ǫi(σi) +

n∑

i=1

∑

σi∈X

bi(σi) logbi(σi) .
(1.61)

The main advantage of this nMF approximation is that the evaluation
of the Gibbs free energy is now tractable, and the optimization prob-
lem has become overall much easier to solve, since a distribution of
the independent form (1.60) is specified by n(X− 1) real numbers in-
stead of Xn − 1 for a generic distribution. Additionally, once we have
found a solution to the restricted optimization problem, it is trivial to
produce estimates for the marginals of P, which we may approximate
by the marginals b⋆i of Q⋆.

Unfortunately, in practice, employing the nMF approximation is of-
ten a bad idea 15, since we are effectively assuming that the variables
σi are independent. A better approach, which allows for correlation
between the variables, is provided by the Bethe approximation, and is
at the heart of the methods developed in this dissertation.

14. In the next chapter, we give a definition of factorized models that generalizes
condition (1.60). This is why we use the non-standard adjective “independent” to
refer to these trial distributions.

15. A notable exception is the Curie-Weiss, or fully connected ferromagnetic Ising
model, for which the nMF approach is exact (see section 1.6.3).
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1.5.3 The Bethe approximation and belief propagation

The Bethe approximation takes a slightly different route than the
previous nMF approximation. More precisely, let us assume for now
that the graph G = ([n], E) is a tree. Then it can be shown [103] that a
trial distribution Q that factorizes as a pairwise MRF according to the
graph G can be written in the form

Factorization of a
MRF on a tree

Q(σ) =

∏
(ij)∈E bij(σi, σj)

∏n
i=1 bi(σi)

|∂i|−1
, (1.62)

where the bij for (ij) ∈ E and bi for i ∈ [n] are called the beliefs for
reasons that will be made clear shortly, and are equal respectively to
the pairwise and single-variable marginals of Q. In particular, the
beliefs should verify the normalization and consistency conditions

Consistency
constraints on the

beliefs

∑

σj

bij(σi, σj) = bi(σi) , ∀(ij) ∈ E, σi ∈ X ,

∑

σi

bi(σi) = 1 , ∀i ∈ [n] .
(1.63)

Note that these two sets of conditions ensure that the pairwise marginals
are also correctly normalized. Injecting the form (1.62) in the defini-
tion (1.57) of the Gibbs free energy yields the so-called Bethe free energy

Bethe free energy

F Bethe ((bi)i∈[n], (bij)(ij)∈E

)
=

∑

(ij)∈E

∑

σi,σj∈Xn

bij(σi, σj) ǫij(σi, σj)

+

n∑

i=1

∑

σi∈X

bi(σi) ǫi(σi) +
∑

(ij)∈E

∑

σi,σj∈Xn

bij(σi, σj) logbij(σi, σj)

+

n∑

i=1

(|∂i|− 1)
∑

σi∈X

bi(σi) logbi(σi) .

(1.64)
To sum up, as long as G is a tree, we therefore have that P = Q⋆

where Q⋆ is defined by the decomposition (1.62) where the beliefs are
those that minimize the Bethe free energy (1.64), under the constraints
(1.63). In the Bethe approximation, we assume that even when G isBethe approximation

not a tree, we can still approximate P by the “distribution” Q⋆ thus
defined. This is a strong assumption, since the form (1.62) does not
even, in general, define a correctly normalized distribution when G
is not a tree 16.

However, there is reason to believe that the Bethe approximationRelation between the
Bethe approximation

and BP
is useful in many problems, because it is closely related to the very
successful loopy BP strategy introduced previously. More precisely, it
can be shown that there is a deep connection between the marginals

16. In particular, the Bethe free energy is in general not a bound on the Helmholtz
free energy.
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estimated through BP and the stationary points of the Bethe free en-
ergy (1.64). This connection was first intimated by [73] in a special
case, and later formalized by [161] in its full generality. Their result
can be stated informally as follows.

Proposition 1.5.1. There is a one-to-one correspondence between the fixed
points of BP and the stationary points of the Bethe free energy.

In order to make the correspondence explicit, one writes down a
Lagrangian associated with the minimization of the Bethe free energy
(1.64) under the constraints (1.63). By setting the derivatives of this
Lagrangian to 0, one obtains a closed set of equations that allow to
relate bijectively the fixed points of BP to the Lagrange multipliers
[161]. Interestingly, when the graphG is a tree, or when it has a single (Non)-convexity of

the Bethe free energyloop, it is possible to show [62] that the Bethe free energy is convex
over the set of beliefs verifying the constraints (1.63). In particular, in
this case, BP has a unique fixed point, corresponding to the unique
and global minimum of the Bethe free energy. In general however,
the Bethe free energy is non-convex and has multiple local minima.
Approximating these local minima will be our major concern starting
from the next chapter. When the Bethe free energy is not convex, it is
still possible to show that the stable fixed points of BP are local minima
of the Bethe free energy [61]. The converse is in general not true, and
we will see illustrations of this fact in chapter 2.

In the next section, we consider a special pairwise MRF, the Ising
model, and discuss a different approach to mean-field approxima-
tions in this special case, before stating some general results about
the phase diagram of the Ising model in its different flavors.

1.6 the ising model : some physics

Pairwise models of the exponential form (1.13), also called Boltz-
mann distributions, have a century old history in statistical physics,
where they have been studied extensively as idealized models of sys-
tems with interacting particles. In the special case where the alphabet
X consists of 2 possible values X = {±1}, and the pairwise energies
are symmetric, ǫij(σi, σj) = ǫij(σj, σi), the distribution (1.13) can be
written in the familiar form of the celebrated Ising model

Ising modelP(σ) =
1

Z
exp


β

∑

(ij)∈E

Jijσiσj +

n∑

i=1

hiσi


 , (1.65)

where the (Jij)(ij)∈E are called couplings and the (hi)i∈[n] are called
fields. The variables (σi)i∈[n] are usually called spins. The parameter
β controls the strength of the interactions between the spins, and is in-
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terpreted physically as the inverse of the temperature. The expected
value of a spin 17

Magnetizations mi = E[σi] , for i ∈ [n] (1.66)

is called its magnetization. Although the magnetizations alone do not
fully determine the Ising model (1.65) (one also needs to specify the
correlations), we will see that a great deal of insight lies in under-
standing the qualitative behavior of these quantities as we vary the
inverse temperature β. The Ising model is a typical pairwise MRF, and
captures most of the computational challenges of their study. Since
this model will be central in the following, we list here some of its
qualitative properties, and some of its variations, that will make it
interesting for our applications. Before doing so, we introduce a dif-
ferent point of view on the mean-field approximation framework de-
veloped in the previous section. For simplicity (and also because it
suits our upcoming applications), we consider throughout the section
the case of vanishing fields hi = 0 for i ∈ [n].We assume hi = 0.

1.6.1 A different approach to mean-field approximations

In the case of the Ising model, it is possible to derive another
systematic approach to the class of mean-field approximations intro-
duced in section 1.5, which we now present succinctly. This approach
relies on an expansion of a free energy functional expressed in terms
of the magnetizations m = (mi)i∈[n]. More precisely, from the varia-
tional formulation (1.58), it is straightforward [121] to see that

F = inf
m∈[−1,1]n

F(m) , (1.67)

where F is the Helmholtz free energy of the Ising model, and we have
defined a free energy functional F(m) by

Free energy
functional F(m) F(m) = inf

Q |∀i∈[n],EQ[σi]=mi

G[Q] , (1.68)

where G[Q] is the Gibbs free energy of the trial distribution Q. This
amounts to solving the variational problem (1.59) in two steps. We
first minimize the Gibbs free energy over the trial distributions Q

with prescribed magnetizations, and we then minimize the resulting
functional F(m) over the magnetizations. In particular, from (1.67),
the magnetizations of the Ising model (1.65) are those that minimize
the free energy functional F(m). Unfortunately, computing F(m) is
just as intractable as minimizing the full Gibbs free energy.

However, the advantage of this two-step approach is that it is pos-
sible to perform a systematic small couplings expansions [51, 126]Small couplings

expansions
17. There is a catch in this definition related to ergodicity breaking, which we

explain in the following.
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of the free energy functional F(m), which, when truncated at a cor-
rect order depending on the particular instance of the Ising model,
provide tractable approximate free energies. One possible such ex-
pansion is the Plefka expansion [126], which first orders are

F0(m) =

n∑

i=1

1+mi

2
log

1+mi

2
+
1−mi

2
log

1−mi

2
, (1.69)

F1(m) = −
∑

(ij)∈E

Jijmimj , (1.70)

F2(m) = −
1

2

∑

(ij)∈E

J2ij
(
1−m2

i

) (
1−m2

j

)
(1.71)

Note that the zeroth order is simply the entropy of n independent

Plefka expansion up
to order 2

random signs. Truncating the expansion to first order, we recover the
nMF free energy of the Ising model

The first order in the
Plefka expansion is
the nMF

approximation

F nMF(m) = F0(m) +F1(m)

= −
∑

(ij)∈E

Jijmimj

+

n∑

i=1

1+mi

2
log

1+mi

2
+
1−mi

2
log

1−mi

2
.

(1.72)

Indeed, it is straightforward to check that this last expression equals
the nMF free energy F nMF((bi)i∈[n]) of equation (1.61) after noting
that for binary spins σi ∈ {±1}, we can write

bi(σi) =
1+mi σi

2
. (1.73)

Truncating the expansion at second order, we obtain a more accu-
rate mean-field approximation called the Thouless-Anderson-Palmer
(TAP) approximation [149]

The second order in
the Plefka expansion
is the TAP

approximation

F TAP(m) = F0(m) +F1(m) +F2(m)

= −
∑

(ij)∈E

Jijmimj −
1

2

∑

(ij)∈E

J2ij
(
1−m2

i

) (
1−m2

j

)

+

n∑

i=1

1+mi

2
log

1+mi

2
+
1−mi

2
log

1−mi

2
.

(1.74)

This free energy played an important role in the understanding of the
Sherrington-Kirkpatrick model of spin glasses, which we introduce
in the following. Interestingly, by summing a certain family of terms Recovering the Bethe

approximationin the Plefka expansion, including the previous first order terms as
well as other particular terms of arbitrary order in the couplings, one
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can also recover the Bethe free energy of equation (1.64) [126, 128] 18.
In section 2.3.3, we will compare spectral methods derived from the
nMF and the TAP approximations to those derived from the Bethe ap-
proximation, and discuss the superiority of the latter on the sparse
graphs we consider. In the rest of this section, we introduce vari-
ous types of Ising models and discuss the qualitative behavior of the
corresponding magnetizations.

1.6.2 The ferromagnetic Ising model

When the couplings are positive (Jij > 0 for (ij) ∈ E), the Ising
model (1.65) is called ferromagnetic. This case corresponds to the orig-Ferromagnetic Ising

model inal physical motivation of the Ising model, as a toy model for mag-
nets, in which each spin σi for i ∈ [n] represents the magnetic mo-
ment of an atom i composing the medium. In this physical interpre-
tation, the graph G is usually taken to be a regular lattice, mimicking
the positions of the atoms in an ordered medium, and the positive
couplings encourage neighboring atoms to have equal spins. In chap-
ter 5, we will however be interested in an Ising ferromagnet defined
on a sparse random graph. The magnetic quality of an Ising model
is controlled by its total average magnetization, defined as

Total average
magnetization Mn =

1

n

n∑

i=1

mi , (1.75)

Note that the total average magnetization can also be written Mn =

E[m[σ]] were the expectation is over the Boltzmann distribution (1.65),
and m[σ] is the total magnetization of a single configuration

Total magnetization
of a configuration m[σ] =

1

n

n∑

i=1

σi . (1.76)

The average total magnetization (1.75) is therefore a measure of the
global order in the material: a large magnetization (in absolute value)Global order

means that a large number of spins are typically in the same state. At
large temperature (small β), the spins are nearly independent, so that
we expect the magnetization to vanish for a typical configuration of
the material. As we decrease the temperature (increase β), the cou-
plings between neighboring spins become stronger, and large clusters
of aligned spins can appear. Physicists are usually interested in the
so-called thermodynamic limit where the number of atoms n → ∞ 19.Thermodynamic

limit and phase
transitions 18. Note that the Bethe free energy (1.64) is expressed, in the case of the Ising

model, in terms of both the magnetizations and the correlations between spins. The
expression we recover from Plefka’s expansion corresponds to the Bethe free energy
evaluated at the correlations that minimize the Bethe free energy at fixed magnetiza-
tions [154, 155].

19. The thermodynamic limit is justified in practice by the value of the Avogadro
constant: one gram of matter contains approximately 1023 atoms.
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In this limit, an interesting phenomenon known as a phase transition 20

can occur. More precisely, depending on the topology of the graph
G and the values of the couplings, there may exist a critical (inverse)
temperature βc such that,

β < βc =⇒ lim
n→∞

Mn = 0 and mi = 0 , ∀i ∈ [n] (1.77)

β > βc =⇒ lim
n→∞

Mn 6= 0 (1.78)

The Ising model can therefore capture the dependence on tempera-
ture of the magnetic properties of a physical medium. When β < βc , Paramagnetic to

ferromagnetic phase
transition

we say that the medium is in the paramagnetic phase, as the global
magnetization vanishes. On the other hand, when β > βc, the
medium behaves like a magnet, and is said to be in the ferromag-
netic phase. Interestingly, we will see in the following that exactly the
same kind of phase transition phenomena explains why some infer-
ence problems are solvable while some others are not.

The alert reader may have noticed that, under the assumption of The catch in the
definition of the
magnetizations

vanishing fields, the distribution (1.65) is invariant under a global
flipping of the spins σi → −σi, so that for any finite n and any β, the
magnetizations rigorously vanish. The existence of a ferromagnetic
phase with finite magnetization therefore appears impossible at first
sight. What makes it possible is a phenomenon known as ergodicity
breaking. In the limit n→∞ , when β > βc, the support of the Boltz- Ergodicity breaking

mann distribution (1.65) splits into two disconnected sets, called pure
states, or ergodic components 21. One of these sets consists of config- Pure states

urations σ such that m[σ] > 0, while the other consists of configura-
tions such thatm[σ] < 0. The two pure states are separated by a set of
configurations with vanishing probability. When multiple pure states
exist, the Boltzmann distribution (1.65) must be restricted to one of
them, and the magnetization must be computed within each of the
pure states. Ergodicity breaking, and the fact that the Ising model
can have non-vanishing magnetizations, will prove of paramount im-
portance in the following. Apologizing to the reader familiar with
statistical physics, we shall dwell a little more on this phenomenon
by examining, in the next section, a simple special case of the Ising
model for which we can compute analytically the magnetizations.

1.6.3 The Curie-Weiss model

To understand how ergodicity breaks and pure states emerge, it
is instructive to look at one of the simplest realizations of the Ising
model, called the Curie-Weiss model. The Curie-Weiss model corre- Definition of the

Curie-Weiss modelsponds to the Ising distribution (1.65) in the special case where the

20. Phase transitions are signaled by a non-analyticity (as a function of β) of the
Helmholtz free energy.

21. Ergodicity is assumed to hold within each of the pure states.
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graph G is complete (or fully-connected) and the couplings are uni-
form Jij = J/n for 1 < i < j < n, for some J > 0. In particular, the
model in invariant under any permutation of the spins, so that the
magnetizations are uniform mi =Mn, where Mn is the total average
magnetization defined in equation (1.75). The Boltzmann distribution
of the Curie-Weiss model can be written as

Boltzmann
distribution

P(σ) =
1

Z
exp


β J
2n

n∑

i,j=1

σiσj


 ,

=
1

Z
exp

(
nβ J

2
m[σ]2

)
,

(1.79)

where m[σ] is the total magnetization (1.76) of a single configuration
σ. The probability of observing a configuration with total magnetiza-
tion m is therefore given by

Distribution of the
total magnetization P(m) =

1

Z

(
n

n(1+m)
2

)
exp

(
nβ J

2
m2

)
, (1.80)

where the combinatorial factor is the number of configurations σwith
total magnetization m[σ] = m. Using Stirling’s formula, we can write
the distribution of the random variable m for n large enough as

Large deviations of
the total

magnetization

P(m) =
1

Z
exp (−nβ f(m)) , (1.81)

where f is the large deviation (rate) function of m, given for m ∈
[−1, 1] by

f(m) = −
β J

2
m2 +

1+m

2
log

1+m

2
+
1−m

2
log

1−m

2
. (1.82)

Note that n f(m) = F nMF(m) where F nMF is the nMF free energy (1.72),
so that the nMF approximation is exact for the Curie-Weiss model. In-Exactness of the nMF

approximation deed, applying Laplace’s method to the partition function Z, it is
straightforward to check that by (1.81), the distribution P (m) con-
centrates, in the limit n → ∞ on the global minimum m⋆ of f. As
a consequence, when sampling from the Curie-Weiss model, we ob-
serve w.h.p only configurations with total magnetization m⋆, so that,
by symmetry, the magnetization of each spin equals m⋆.

It turns out that depending on the value of the inverse tempera-
ture β, the free energy f(m) of the Curie-Weiss model may take two
qualitatively different shapes, shown on figure 1.8. For β J < 1, f is aShape of f and phase

transition convex function of m, with a unique global minimum at m⋆ = 0. The
Curie-Weiss model is therefore in its paramagnetic phase. For β J > 1
on the other hand, f is no longer convex and has two local minima
±m⋆ 6= 0. The Curie-Weiss model is then in its ferromagnetic phase,
and has finite magnetizations. The transition from paramagnetic to
ferromagnetic takes place at the critical inverse temperature βc = 1/J.
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f(m)

−1

f(m)

0 1
m

−1 m⋆ = 0 1 −m⋆ m⋆

β J < 1 β J > 1

m

Figure 1.8 – Shape of the large deviation function f of equation (1.82) for
the Curie-Weiss model. The shape is qualitatively different de-
pending on the value of the parameter βJ. At high temperature
(paramagnetic phase β J < 1), f is convex and has a unique
global minimum with vanishing magnetization m⋆ = 0. At low
temperature (ferromagnetic phase β J > 1), f is no longer con-
vex, and has two minima ±m⋆ 6= 0 with finite magnetization.
These two local minima correspond to the two pure states in
the ferromagnetic phase.

To understand how the existence of the ferromagnetic phase can
be compatible with the fact that the magnetizations are, for any finite
n, strictly vanishing, it is useful to imagine that we sample config-
urations from the Ising model using a Markov chain Monte Carlo
algorithm such as the Metropolis algorithm 22. When β J > 1, starting A Markov chain

point of viewfrom a configuration σ with arbitrary total magnetization m[σ], the
algorithm would soon start sampling configurations with total mag-
netization approximately equal to ±m⋆, depending on which local
minimum of f is closest. After a number of iterations exponential in
n, the Markov chain will make its way to the other local minimum,
and remain in its vicinity for an exponential number of iterations. If
we were to run the algorithm for a number of iterations exponential in
n, we would therefore be able to explore the entire free energy land-
scape, and we would have as many configurations with positive to-
tal magnetization as configurations with negative total magnetization.
Performing the empirical average of any given spin over this exponen-
tial number of realizations would yield a vanishing magnetization as
expected. However, doing the same after running the algorithm for
any reasonable amount of time would yield a finite magnetization, ei-
ther +m⋆ or −m⋆. The two local minima of f are therefore metastable
states [165], escaped by a Markov chain only in exponentially large
time. In the limit n → ∞, the free energy barrier between the two

22. For the ferromagnetic Ising model, there exist so-called cluster Monte Carlo
algorithms (see chapter 9) that, contrary to the Metropolis algorithm, can make non-
local moves on the free energy landscape. Such algorithms do not remain stuck in
the vicinity of a local minimum of f.
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local minima, and therefore the escape time of the Markov chain, be-
come infinite, causing the breaking of ergodicity, and the appearance
of two pure states.

The analytical solution of the Curie-Weiss model leads us to iden-
tify the pure states with the local minima of a well-suited mean-
field free energy 23. The choice of the mean-field approximation thatThe aim of this

dissertation is to
design spectral

algorithms to
approximate the

local minima of the
(Bethe) free energy.

should be used depends on the instance of the Ising model we are
considering. In our applications, we will be exclusively interested in
models defined on sparse random graphs drawn from one of the en-
sembles introduced previously. Since such graphs are locally tree-like
in the large n limit, we will use use the Bethe free energy, and design
spectral algorithms that approximate its local minima 24.

1.6.4 The Ising spin glass

When the couplings have arbitrary sign, the model (1.65) is usu-
ally called an Ising spin glass. Physically, it can be used to model
disordered media, in which neighboring spins may be coupled posi-
tively or negatively depending on their distance. Such models have
been studied in statistical physics mainly using the not (yet) rigor-
ous replica and cavity methods [103], on cases where the couplings
Jij are random variables with a prescribed distribution. Perhaps the
best known spin glass model for which an analytical solution exists
[122] is the Sherrington-Kirkpatrick model [146]. In this model, theSherrington-

Kirkpatrick
model

graph G is the complete graph with n vertices, and the couplings
are drawn from a Gaussian distribution with mean E[Jij] = J0/n for
some J0 > 0, and variance 1/n. Another model with qualitatively
the same phenomenology is the Viana-Bray model [150], where theViana-Bray model

graph G is drawn from a sparse Erdős-Rényi model with finite aver-
age connectivity (see section 1.4.1), and the couplings Jij ∈ {±1} are
drawn from a Bernoulli distribution 25 with mean E[Jij] > 0. We say
that an Ising spin glass has a ferromagnetic bias if E[Jij] > 0. Since
we will be interested in pairwise models defined on sparse random
graphs, this model will play an important role in the following.

The phenomenology of the spin glass is more complex than the one
of the ferromagnetic Ising model, and is in fact currently only under-
stood in so-called infinite-dimensional models, such as the Sherrington-
Kirkpatrick and Viana-Bray models. In the thermodynamic limit, in

23. This interpretation may break down in the spin glass phase introduced the fol-
lowing. However, in all our applications, we will always make sure to carefully tune
the inverse temperature β in such a way that we are never in the spin glass phase.

24. The actual free energy functional F(m) defined in equation (1.68) can be writ-
ten as a Legendre transform and is in fact a convex (non-analytic) function, corre-
sponding to the convex hull of the function f of figure 1.8. One perhaps unexpected
advantage of mean-field approximations is that they yield non-convex free energies
whose local minima correspond to pure, or metastable states [165]

25. The Viana-Bray model is in fact more generic and allows for more general
distributions of Jij.
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Figure 1.9 – Phase diagram of a spin glass in vanishing fields. On the left
is the phase diagram of the Sherrington-Kirkpatrick model, de-
fined on a fully connected graph, with i.i.d couplings drawn
from a Gaussian distribution with mean J0/n and variance 1/n.
On the right is the phase diagram of the Viana-Bray model, de-
fined on a sparse Erdős-Rényi graph with finite average con-
nectivity α, and ±1 couplings drawn from a Bernoulli distri-
bution with mean E[Jij]. The equations of the paramagnetic
to spin glass, and paramagnetic to ferromagnetic phase bound-
aries of the Viana-Bray model are given by equations (1.85) and
(1.84). The dashed red line is the Nishimori line discussed in
section 1.6.5. It can be noticed that it passes through the tricrit-
ical point without entering the spin glass phase. We note that
the spin glass phase depicted on both phase diagrams in fact in-
cludes a mixed ferromagnetic/spin glass phase that we do not
discuss here.

addition to the ferromagnetic and paramagnetic phases, there may
exist, for large enough β, a third phase called the spin glass phase, Spin glass phase

in which the global magnetization (1.75) vanishes, but the following
quantity, called the Edwards-Anderson order parameter, is finite

Edwards-Anderson
order parameterqn =

1

n

n∑

i=1

E[σi]
2 . (1.83)

In this definition, the expectation is taken first with respect to the
Boltzmann distribution, and then with respect to the distribution of
the graph and couplings, an operation usually termed quenched dis-
order average. Equation (1.83) implies that while there is no global
ordering of the spins (the magnetization vanishes), each individual
spin has a preferred orientation (E(σi) 6= 0). We show on figure 1.9
a cartoon of the typical phase diagram of a spin glass. Note that
generically, the existence of a ferromagnetic phase is conditioned on
a strong enough ferromagnetic bias. This fact will prove important in
the upcoming analyses.

The existence of a spin glass phase stems from the fact that, for
couplings with arbitrary signs, the distribution (1.65) may have many
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modes. This feature differentiates the spin glass from the ferromag-
net, for which the modes are trivially given by the two uniform config-
urations. In the spin glass, a highly non-trivial breaking of ergodicity
may occur. Algorithmically, this leads to a dramatic slowing down ofThe spin glass phase

is very complicated methods based on Markov chain Monte Carlo. It is in fact believed
that the phenomenology of the spin glass phase could explain the
computational hardness of some inference problems [103, 166]. The
statistical properties of the spin glass phase are extremely complex,
and cannot be fully stated without introducing additional concepts
which will not be useful in the following. The reader is referred to
[103, 105] for complete presentations. Our main point about the spinWe will avoid the

spin glass phase glass phase is that we should try to avoid it, which is exactly what all
of the original inference methods presented in the following will do,
by carefully choosing an adequate “temperature”.

In order to be able to avoid the spin glass phase, we need to be able
to locate it. When the underlying graph G is drawn from the sparseLocating transitions

Erdős-Rényi model with average connectivity α, statistical physicists
make a precise (though not yet fully rigorous 26) prediction on the
location of the paramagnetic to ferromagnetic, and paramagnetic to
spin glass transitions. More precisely, when the couplings are i.i.d,
they predict, based on the so-called replica-symmetric cavity method
(see e.g. [168]), that the paramagnetic to ferromagnetic transition hap-
pens at an inverse temperature βF defined by

Para-Ferro
transition

αEJ

[
tanh (βFJ)

]
= 1 , (1.84)

while the paramagnetic to spin glass transition occurs at the inverse
temperature βSG defined by

Para-SG transition αEJ

[
tanh2 (βSGJ)

]
= 1 . (1.85)

These equations are derived by analyzing the stability of the param-
agnetic phase with respect to different types of perturbations. We
detail and generalize these computations in chapter 3. We will reg-
ularly check throughout the dissertation that all of our results are in
agreement with these predictions.

1.6.5 The planted spin glass

As stated previously, this dissertation in interested in designing
inference methods to recover latent variables (σi)i∈[n] based on ob-
servations encoded in the form of a pairwise MRF. We give in this
section a precise example of such a problem, called the planted spin
glass, that will serve as our “drosophila”, on which we will illustrate,Our drosophila

in chapter 4, the effectiveness of the methods developed in chapters

26. A fully rigorous proof for the paramagnetic to ferromagnetic transition of fer-
romagnetic Ising models on locally tree-like random graphs was given by [35].
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Figure 1.10 – The thought experiment of the planted spin glass, with ǫ ≈
23% of lying pairs (left). Solid edges are assigned to the pairs
that answered “yes” to the question “do you have the same
color?”, and dashed edges are assigned to the pairs that an-
swered “no”. After the gauge transformation (1.92) (right), the
problem is equivalent to an Ising spin glass with a strong fer-
romagnetic bias in the couplings. The dashed lines represent
the negative couplings, and correspond to the pairs that lied.

2 and 3. This example corresponds to a special case of the lSBM
previously introduced, and has also been known under the name of
censored block model [1]. One way of introducing the planted spin
glass is through the following thought experiment, borrowed from A thought

experiment[168], and represented graphically on figure 1.10. Assume a playing
card is given to each of n players by a dealer. Each card is, with equal
probability 1/2, either red or blue. The dealer then asks a certain
number of pairs of players whether they have been dealt a card of the
same color or not. Each pair either answers the truth with probabil-
ity 1− ǫ, or lies with probability ǫ. Can the dealer recover who was
given a red card, and who was given a blue card? 27

The connection with the Ising spin glass might not appear obvious
at this point. To make it precise, let us denote by σ⋆ = (σ⋆i )i∈[n] ∈ Connection to the

Ising model{±1}n the colors (+1 for blue, −1 for red) of the cards. We call this
configuration the planted configuration. We assume that this configu-
ration is chosen uniformly at random between the 2n possible config-
urations, and we let G = ([n], E), where E is the set of pairs of players
to whom we ask whether their cards are of the same color. To each of
these pairs (ij) ∈ E, we assign a coupling Jij = ±1, where +1 repre-
sents the answer “yes”, and −1 represents “no”. The distribution of
the couplings is therefore given by

P
(
Jij = J | σ

⋆

i , σ
⋆

j

)
= (1− ǫ) 1(J = σ⋆iσ

⋆

j ) + ǫ 1(J = −σ⋆iσ
⋆

j ) . (1.86)

Defining an inverse temperature β⋆ by

β⋆ =
1

2
log

1− ǫ

ǫ
, (1.87)

we can rewrite the distribution of the couplings as

P
(
Jij = J | σ

⋆

i , σ
⋆

j

)
=

expβ⋆Jσ⋆iσ
⋆

j

2 coshβ
. (1.88)

27. Note that the problem is invariant under the exchange of the colors blue and
red, so that we can only hope to recover these colors up to a global flip.
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Since the couplings are drawn independently from (1.88), we have by
Bayes’ theorem that the posterior distribution of the hidden assign-
ment σ⋆ is given by

Posterior
distribution of the

planted
configuration

P
(
σ⋆ = σ | (Jij)(ij)∈E

)
=

P(σ⋆ = σ)
∏

(ij)∈E P
(
Jij | σi, σj

)

P
(
(Jij)(ij)∈E

) , (1.89)

=
1

Z
exp


β⋆

∑

(ij)∈E

Jijσiσj


 , (1.90)

where we have used that the prior distribution of σ⋆ is uniform. Thus,
the posterior probability of the planted configuration σ⋆ given the
observations (Jij)(ij)∈E is nothing but the Boltzmann distribution of
the Ising spin glass, with the particular distribution (1.88) of the cou-
plings. We will derive in chapter 4 efficient and provably optimal
algorithms to recover the planted configuration from the knowledge
of the couplings. For the time being, we would like to show that
statistical physics offers a precise prediction as to whether the prob-
lem is solvable or not. Intuitively, the problem is solvable if a typical
configuration sampled from the distribution P of equation (1.90) is
correlated with the true planted configuration. The expected correla-
tion between a configuration σ sampled from P and the planted one
is given by the following quantity, called overlap

Overlap with the
planted

configuration
On =

1

n

n∑

i=1

σ⋆i E[σi] , (1.91)

where the expectation is over the distribution P. In the thermody-
namic limit n → ∞, On vanishes e.g. if the probability distribution
P is uniform on {±1}n, and approaches unity as P becomes more
peaked around σ⋆.

We now make use of a general property of the Ising model, called
gauge invariance. This property relies on the fact that the BoltzmannGauge invariance of

the Ising model distribution (1.90) is invariant under the following transformation, for
any τ = (τi)i∈[n] ∈ {±1}n

Gauge
transformation

σi → σ̃i = σiτi for i ∈ [n] ,

Jij → J̃ij = Jijτiτj for (ij) ∈ E .
(1.92)

Indeed, it is readily checked that the thus gauge transformed distri-
bution P̃ verifies P̃(σ̃) = P(σ) for any choice of τ. In particular, we
have Ẽ[σ̃i] = E[σi] for any i ∈ [n], with Ẽ denoting expectation with
respect to P̃. With the special choice τ = σ⋆, we have the additional
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property that the overlap becomes equal to the total average magne-
tization (1.75), in the gauge transformed model

On =
1

n

n∑

i=1

σ⋆i E[σi] =
1

n

n∑

i=1

(σ⋆i )
2

E[σ⋆iσi] , (1.93)

=
1

n

n∑

i=1

Ẽ[σ̃i] = M̃n . (1.94)

Therefore we expect the original problem to be solvable in the ther-

The overlap becomes
the magnetization in
the gauge
transformed model

modynamic limit if and only if the gauge transformed model is in
the ferromagnetic phase. As seen in the previous section, this will de-
pend on two things, namely the distribution of the couplings, and the
value of the (inverse) temperature β⋆. The gauge transformation does
not affect the value of the temperature, but changes the distribution
of the couplings. Since Jijσ⋆iσ

⋆

j = J̃, we get that the couplings in the

gauge transformed model are now i.i.d, with distribution P̃ given by
Distribution of the
gauge transformed
couplings

P̃
(
J̃ij = J̃

)
=

expβ⋆

2 coshβ⋆
1
(
J̃ = 1

)
+

exp−β⋆

2 coshβ⋆
1
(
J̃ = −1

)
(1.95)

To sum up, we have shown that the dealer of our thought experiment
can correctly guess the color of the cards of a finite fraction of the
players if and only if the Ising spin glass, at temperature β⋆ given
by (1.87) and with i.i.d couplings distributed according to (1.95), is in
the ferromagnetic phase. This setting corresponds to the Viana-Bray
model of the previous section, on a particular line of the phase dia-
gram of figure 1.9, since the ferromagnetic bias E

[
J̃ij
]

of the gauge
transformed couplings with distribution (1.95) is linked to the tem-
perature by the identity

E
[
J̃ij
]
= tanhβ⋆ . (1.96)

It turns out that this particular line has a long history in statistical
physics, where it is known under the name Nishimori line [117]. The Nishimori line

analysis of a model on the Nishimori line is greatly simplified, mainly
by the fact that it does not cross the spin glass phase. This can be seen
by showing that on the Nishimori line, the magnetization Mn equals
the Edwards-Anderson parameter qn, so that we cannot have qn > 0
without having Mn > 0 [118, 168]. On the other hand, in the phase The Nishimori line

crosses the
paramagnetic to
ferromagnetic phase
boundary at the
critical point, and
does not enter the
spin glass phase (see
figure 1.9).

diagram of the Viana-Bray model, the Nishimori line interpolates be-
tween the points (β⋆ = 0 , Ẽ[Jij] = 0), and (β⋆ = +∞ , Ẽ[Jij] = 1).
The first point corresponds to a Boltzmann distribution uniform over
{±1}n, which is therefore in the paramagnetic phase. The second
point corresponds to the limit of vanishing temperature of a purely
ferromagnetic model, and is therefore in the ferromagnetic phase.
Consequently, the Nishimori line must cross the paramagnetic to fer-
romagnetic phase boundary. It turns out that it does so precisely at
the tricritical point of the phase diagram of the Viana-Bray model of
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figure 1.9. To see this, one only needs to check that when the cou-
plings are distributed according to (1.95), we have the identity

α ẼJ̃

[
tanh

(
β⋆J̃
)]

= α ẼJ̃

[
tanh2

(
β⋆J̃
)]

. (1.97)

At the paramagnetic to ferromagnetic transition, both quantities there-
fore equal unity, and we have by formulas (1.84) and (1.85) that the
corresponding point in the phase diagram lies at the intersection of
the paramagnetic to ferromagnetic, and paramagnetic to spin glass
boundaries, i. e. at the tricritical point of figure 1.9.

There is an important connection between the Nishimori line and
Bayes optimality. In order to write the posterior probability (1.90) ofNishimori line and

Bayes optimality the planted configuration σ⋆, we have assumed knowledge of β⋆, i. e.
of the parameter ǫ of the model that was used to generate the data
— here, the couplings. This setting, in which we know exactly all the
parameters of the generative model is called Bayes optimal. When we
do not know ǫ, we have to consider the Ising model at general inverse
temperature β, i. e. with a so-called parameter mismatch. In this case,
the posterior probability is no longer on the Nishimori line, and may
be in the spin glass phase. The definition of the Nishimori line can be
extended to more complex models [50], and it is believed to be a gen-
eral fact that in the Bayes optimal setting, a given inference problem
always lies on a generalized version of the Nishimori line, that avoids
the spin glass phase. We refer the reader to the excellent review [168]
for arguments supporting this claim, and some of its algorithmic im-
plications. We will come back to the problem of parameter mismatch
in the planted spin glass in chapter 4.

In the Bayes optimal setting, we can read the statistical physics pre-
diction about the solvability of our problem from the phase diagram
of figure 1.9. Specifically, we expect that the problem is solvable if
and only if the gauge transformed model with couplings distributed
as in (1.95) is in the ferromagnetic phase, i. e.

Transition predicted
by statistical physics

1 < α ẼJ̃

[
tanh2

(
β⋆J̃
)]

= α tanh2 (β⋆)⇐⇒ α >
1

(1− 2ǫ)2
, (1.98)

where we have used the definition (1.87) of β⋆. In chapter 4, we will
show rigorously that this prediction is correct, and give a provably
optimal algorithm that can partially recover the configuration σ⋆ as
long as the condition (1.98) holds. Remarkably, this algorithm will
not require the knowledge of β⋆ (i. e. ǫ).

1.6.6 The Hopfield model

We finally introduce a variant of the Ising model that will be rele-
vant to our application in matrix completion (chapter 8). This variant
corresponds to the Ising spin glass of section 1.6.4 with yet another
particular prescription for the couplings (Jij)(ij)∈E. Specifically, we



1.6 the ising model : some physics 45

assume that there exist r patterns (ξµ)µ∈[r] where each pattern is a Patterns

vector of size n with components ξµ = (ξ
µ
i )i∈[n], and we consider

the Ising model (1.65) in vanishing fields, with couplings given, for
(ij) ∈ E by

Hebb’s ruleJij =

r∑

µ=1

ξ
µ
i ξ

µ
j . (1.99)

This defines a particular instance of the Hopfield model, in which the
couplings are specified by the so-called Hebbian rule. The entries ξµi
of the patterns are usually taken to be i.i.d binary signs ±1 with equal
probability, although we will consider in chapter 8 i.i.d patterns drawn
from a Gaussian distribution with mean 0. We take in this section pat-
terns drawn from a general probability distribution of mean 0. The
main interest of the Hopfield model stems from the fact that, un-
der certain conditions, it has pure states correlated with the patterns
(ξµ)µ∈[r]. We say that a pure state is correlated with a pattern ξµ if
the following overlap Oµ

n is finite in the thermodynamic limit

Overlap between a
pure state and a
pattern

Oµ
n =

1

n

n∑

i=1

sign(ξµi )E[σi] , (1.100)

where the expectation is, as in the case of the ferromagnetic Ising
model of section 1.6.2, understood to be with respect to the Boltz-
mann distribution restricted to the pure state. We say that the pure
state is positively correlated with the pattern ξµ if Oµ > 0, and nega-
tively correlated if Oµ < 0.

To develop an intuition as to why this may be the case, we consider
first the case of a single pattern (r = 1). The probability of a config- Case of a single

patternuration σ = (σi)i∈[n] in the Hopfield model can then be written as
P(σ) ∝ exp (−βE(σ)) where the energy E(σ) is defined by

E(σ) = −
∑

(ij)∈E

Jijσiσj = −
∑

(ij)∈E

ξ1iξ
1
j σiσj . (1.101)

Therefore the ground-states, i. e. the most probable configurations, are
±σ1, with σ1i = sign(ξ1i ) for i ∈ [n]. We would like to find out when
the Boltzmann distribution concentrates around this ground-state. To
do so, we use the invariance of the Boltzmann measure under the
gauge transformation (1.92), which we take here to be

σi → σ̃i = σiσ
1
i for i ∈ [n] , (1.102)

Jij → J̃ij = Jijσ
1
iσ

1
j = |Jij| for (ij) ∈ E . (1.103)

The gauge transformed model is therefore a ferromagnetic Ising model,
akin to the one of section 1.6.2. The overlap (1.100) with the unique
pattern becomes

O1
n =

1

n

n∑

i=1

Ẽ[σ̃i] = M̃n , (1.104)
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Figure 1.11 – Qualitative phase diagrams of the Hopfield model with bi-
nary patterns on the complete graph [11] (left) and on a sparse
Erdős-Rényi graph with finite average connectivity [28] (right).
Notice the different scaling of the number of patterns r be-
tween the two cases.

where M̃n is the total average magnetization, as defined in equa-
tion (1.75), of the gauge transformed model. Therefore, we expect
from the results of section 1.6.2 that in the ferromagnetic phase (i. e.for
β large enough), the Boltzmann distribution will indeed split into two
pure states, one of them positively correlated with the unique pattern,
and the other one negatively.

When r patterns are used, the configurations±σµ with σµi = sign(ξµi )Case of r patterns

for µ ∈ [r], i ∈ [n] are still approximately local minima of the energy
E(σ). Indeed, the energy E(±σµ) of any of these configurations de-
composes into a term similar to (1.101), and a small crosstalk term,
arising from random correlations between the different patterns. This
second term is negligible for a small enough number r of i.i.d patterns
of mean 0. In this case, and for a suitable range of values of β, the
model is in a so-called retrieval phase, which generalizes the ferromag-Retrieval phase

netic phase of the Ising model, and in which the Boltzmann distribu-
tion splits into r pairs of pure states, called in this context retrieval
states, each pair correlated with one of the patterns 28. When in theRetrieval states

retrieval phase, the Hopfield model effectively acts like an associativeAssociative memory

memory, which is the function it was first introduced to perform [66].
In this context, we say that the r patterns have been memorized, and
we can address the associative memory to denoise or complete a noisy
or partial version of one of the patterns. This is usually achieved
using a Markov Chain Monte Carlo algorithm (often at vanishing

28. This is an oversimplification, as upon lowering further the temperature, (many)
spurious pure states appear, corresponding to superpositions of the patterns. How-
ever, these spurious states will not have an impact on the spectral method of chap-
ter 8, since they correspond to linear combinations of the retrieval states, and hence
do not affect the dimension of the vector space spanned by the retrieval states.
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temperature), which can sample the retrieval state to which the ob-
servation belongs, without escaping to another, irrelevant retrieval
state. In a tentative biological identification, the spins (σi)i∈[n] are
identified with neurons, and their binary value reflects whether the
neuron is spiking or not. The couplings (Jij)(ij)∈E are interpreted as
synaptic weights.

As anticipated in the previous heuristic discussion, there is a limit,
called capacity, to the number of patterns than can be memorized by Capacity of the

Hopfield modela Hopfield model. This capacity depends on the distribution of the
patterns, as well as the underlying graph. In the classical case of a
complete graph with n vertices, and random binary patterns, Amit,
Gutfreund and Sompolinsky showed [11] using the replica method
that the maximum number of patterns that can be stored in the ther-
modynamic limit is Cn, where C ≈ 0.138. The same authors also
give the complete corresponding phase diagram, depicted qualita-
tively on figure 1.11. The situation is different for the Hopfield model Sparse Hopfield

modelon a sparse random graph with finite connectivity 29. In this case, the
capacity is finite in the limit of large number of neurons n. The phase
diagram in the case of binary patterns has been computed using the
replica method in [28], and is shown qualitatively on figure 1.11. In
chapter 8, we compute numerically the capacity of a sparse Hopfield
model with Gaussian patterns of mean 0.

1.7 general approach of this work

Before closing this review chapter and beginning the construction
of our theory of spectral inference, let us give a high level descrip-
tion of the scope of the upcoming methods. As previously hinted
at, we will be interested in particular problems whose solutions are
given by the marginals of a pairwise MRF. Generically, our upcoming
applications can be classified into two groups.

The first group consists of problems whose Bayes optimal solution The “Bayes optimal”
approach,
exemplified in
chapters 4,5 & 6

is naturally written as a marginalization problem in a pairwise MRF.
A typical example of such a situation is the lSBM of section 1.4.3. In-
deed, the probability of generating a cluster assignment σ = (σi) ∈
[q]n, a graph G = ([n], E) and labels ℓ = (ℓij)(ij)∈E in this model is
given by

P (G, ℓ, σ | θ) =

n∏

i=1

fσi

∏

(ij)∈E

p
(e)
σi,σi

p
(ℓ)
σi,σi

(ℓij)
∏

i<j
(ij)/∈E

(
1− p

(e)
σi,σj

)
,

29. The sparse Hopfield model has received comparatively less attention, probably
both because it is irrelevant as a model of the brain, and because it has a much
smaller capacity.
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where θ =

{

(fσ)σ∈[q],
(
p
(e)

σ,σ′

)
σ,σ′∈[q]

,
(
p
(ℓ)

σ,σ′(ℓ)
)
σ,σ′∈[q],ℓ∈L

}

is the

set of parameters of the lSBM. The posterior probability of the cluster
assignment σ is therefore given by

Posterior probability
of σ in the lSBM

P (σ | G, ℓ, θ) =
P (G, ℓ, σ | θ)

P (G, ℓ | θ)
,

=
1

Z(G, ℓ, θ)

n∏

i=1

fσi

∏

(ij)∈E

p
(e)
σi,σi

p
(ℓ)
σi,σi

(ℓij)
∏

i<j
(ij)/∈E

(
1− p

(e)
σi,σj

)
.

(1.105)
From standard results in Bayesian inference, the optimal estimator
of the cluster assignments σ, i. e. the estimator that minimizes the
number of misclassified vertices, is given by

σ̂i = argmaxσi∈[q] Pi(σi) , ∀i ∈ [n] , (1.106)

where Pi is the marginal distribution of σi. Therefore the Bayes
optimal solution of the inference problem in the lSBM is naturally
expressed in terms of the marginals of the pairwise MRF of equa-
tion (1.105) 30. Chapters 4,5 and 6 are devoted to the in-depth analysis
of particular cases of this problem.

The second group of possible applications we consider consists ofThe “ad hoc”
approach,

exemplified in
chapters 7 & 8

problems where we do not assume the data to be generated from
a particular MRF 31, but we define an ad hoc pairwise MRF in which
we expect the configuration σ we are after to have high probability.
An example of this approach is the computer vision problem of sec-
tion 1.3.1, where we consider a pairwise MRF directly translating our
belief that neighboring pixels should have similar colors. One way
of achieving such a model is by assigning a cost (or energy) E(σ) to
each configuration such that the solution we are looking for is a (local)
minimum of E. We may then consider the model

P(σ) =
1

Z
exp (−βE(σ)) , (1.107)

where β is a free parameter. As an example, let us consider the prob-
lem of similarity-based clustering, in which we try to cluster n items
into q groups based on some measure of similarity between two given
items. We may define a weighted graph G = ([n], E) where each edge
(ij) ∈ E carries the similarity sij between items i and j. A standard
approach (see e.g. [98]) is then to consider a cost function of the form

An energy function
for clustering

30. Note that, even when the graph G is sparse, this pairwise MRF is, in general,
defined on the fully connected graph with n vertices, which causes numerical ineffi-
ciencies. We deal with this issue in section 3.1.1.

31. We may analyze the performance of our algorithms on data generated from a
model, but we do not assume, when designing the algorithm, that the data comes
from a model.
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E(σ) = −
∑

(ij)∈E

f(sij) 1(σi = σj) , (1.108)

where f is an increasing function. This cost function encourages items
with a large similarity to be in the same cluster. The probability dis-
tribution (1.107) is then a pairwise MRF, in fact a Potts model. This
approach was considered in [17] who showed that, by computing
the correlation of the Potts model thus defined using Monte Carlo, it
is possible to cluster the items to very good accuracy. In chapter 7,
we introduce a spectral algorithm that clusters the items by estimat-
ing the marginals of this model, eliminating the need to run costly
Monte Carlo simulations. Note that instead of minimizing the cost An important

difference with
optimization

function (1.108) (which would amount to taking the limit β → ∞ in
the distribution (1.107)), we follow a probabilistic approach based on
the marginals of the model (1.107) at finite β. This allows us to over-
come some severe overfitting limitations of methods based on the
optimization of a cost function, which tend to find seemingly good
clusters even when there are none [167]. Another example of this
ad hoc approach in the context of matrix completion will be devel-
oped in chapter 8. Starting from the next chapter, we develop general
spectral approximation schemes that will apply to both the “Bayes
optimal” and the “ad hoc” types of problems.





Part II

S P E C T R A L I N F E R E N C E

In this second part, we outline a general theory of spec-
tral inference. We identify a class of interesting pairwise
MRFs exhibiting phase transitions, controlled by two linear
operators, the non-backtracking operator and the Bethe
Hessian. We study the properties of these operators with
methods drawn from statistical physics, and use them to
introduce new spectral algorithms. We finally illustrate
the performance of these algorithms on the example of
the planted spin glass.





2
FA C T O R I Z E D A N D S Y M M E T R I C M O D E L S

In this chapter, we introduce spectral relaxations that approximate
the marginals of a graphical model using the eigenvectors of certain
linear operators. Our starting point is the pairwise MRF introduced
previously, and defined by the joint distribution, for σ ∈ X

P(σ) =
1

Z

∏

i∈V

φi(σi)
∏

(ij)∈E

ψij(σi, σj) . (2.1)

We will derive in section 2.1 a set of conditions on this pairwise MRF

such that the associated BP algorithm has a trivial and uninformative
fixed point. In this setting, we will identify a necessary condition
for BP to output non-trivial marginals. In section 2.2, we show that
under additional conditions on the pairwise MRF (2.1), the stability
of the trivial fixed point of BP is controlled by a matrix called the
non-backtracking operator, acting on the directed edges of the graph.
We introduce a spectral inference algorithm based on this operator
and motivate it intuitively by relating it to the Ising model. Finally,
in section 2.3, we change our perspective and show that the previ-
ous results can be related to the disappearance of a paramagnetic
local minimum in the Bethe free energy. We show that this approach
yields a smaller, symmetric operator called the Bethe Hessian, tightly
related to the non-backtracking operator. We propose another spec-
tral algorithm based on the Bethe Hessian, and discuss possible gen-
eralizations to other mean-field free energies. In particular, by con-
sidering other classical mean-field approximations, we make contact
with other operators frequently used in graph clustering. To simplify
some of the algebra, we assume throughout the chapter that

∑

σi∈X

φi(σi) = 1 , ∀i ∈ [n] . (2.2)

This is achieved without loss of generality by rescaling the partition
function Z.

2.1 phase transition in belief propagation

We first identify a general condition on the potentials of a pairwise
MRF such that the corresponding BP algorithm fails to provide useful
marginals.

53
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i j

φj

ψij

φi
i

φi

j

φj

P(σi) = φi(σi)

P(σj) = φj(σj)

Figure 2.1 – Graphical representation of the factorized condition. A pair-
wise MRF is factorized if and only if, for any two nodes i and j
such that (ij) ∈ E, the marginals of σi and σj in the subgraph en-
closed by the dashed gray line are given by the single-variable
potentials. Note that this does not imply that σi and σj are
independent in the small graphical model with two variables.

2.1.1 Factorized models

We introduce a subclass of pairwise MRFs, which we call factorized 1,Factorized MRFs

for which BP has a phase transition. Given a model of the form (2.1),
we define, for (ij) ∈ E, σi ∈ X,

ri→j(σi) =
∑

σj∈X

ψij(σi, σj)φj(σj) . (2.3)

We say that the model is factorized if for all (ij) ∈ E and for all σi ∈ X,

Factorized condition ri→j(σi) = ri→j independent of σi . (2.4)

This property has a nice graphical representation depicted on fig-
ure 2.1. For any (ij) ∈ E and σi ∈ X, ri→j(σi)φi(σi) can be inter-
preted as the (unnormalized) marginal probability distribution of σi
in a small graphical model containing only the nodes i and j. The
factorized condition (2.4) therefore corresponds to assuming that in
this small graphical model with two variables, each variable has its
marginal determined by its single-point potential, i. e. the interaction
with any other single variable alone does not influence its marginal.

At first sight, this condition seems very restrictive. Let us therefore
give some examples of interesting problems that fall in the category
of factorized models. A first non-trivial example is the Ising model
in vanishing fields, which corresponds to X = {±1}n, and

The Ising model in
vanishing fields is

factorized

ψij(σi, σj) = exp Jijσiσj , ∀(ij) ∈ E, σi, σj ∈ {±1} ,

φi(σi) =
1

2
, ∀i ∈ [n], σi ∈ {±1} .

(2.5)

1. The word “factorized” does not imply here that the variables σi are indepen-
dent, as in the nMF approximation of section 1.5.2. Our wording is unfortunate, but
motivated by the fact that our definition generalizes the factorized condition of [32].
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In this case, we have for any (ij) ∈ E, σi ∈ {±1},

ri→j(σi) =
1

2

∑

σj∈{±1}

exp Jijσiσj = cosh
(
Jijσi

)
= cosh

(
Jij
)
,

which is indeed independent of σi = ±1.
A generalization of the previous example with an arbitrarily large

alphabet X = [q] for some q ∈ N is given by the “symmetric” Potts
model defined by

The symmetric Potts
model is factorized

ψij(σi, σj) =

{
exp J=ij if σi = σj

exp J 6=ij if σi 6= σj
, ∀(ij) ∈ E, σi, σj ∈ [q] ,

φi(σi) =
1

q
, ∀i ∈ [n], σi ∈ [q] ,

(2.6)

for arbitrary couplings
(
J=ij, J

6=
ij

)
(ij)∈E

, so that for any (ij)∈E, σi∈ [q],

ri→j(σi) =
1

q

∑

σj∈[q]

exp
(
J=ij 1

(
σi = σj

)
+ J+ij 1

(
σi 6= σj

))
, (2.7)

=
1

q

(
exp

(
J=ij
)
+ (q− 1) exp

(
J
6=
ij

))
, (2.8)

again, independent of σi ∈ [q]. We will see that these two examples of
factorized models alone provide significant insight into the solution
(or absence of solution) of various distinct problems in inference and
machine learning.

2.1.2 Trivial fixed point of belief propagation

Recall that a fixed point of the BP recursion for model (2.1) must ver-
ify

bi→j(σi) =
1

Zi→j
φi(σi)

∏

k∈∂i\j

∑

σk∈X

ψik(σi, σk)bk→i(σk) , (2.9)

and the corresponding approximate marginals are given by

bi(σi) =
1

Zi
φi(σi)

∏

k∈∂i

∑

σk∈X

ψik(σi, σk)bk→i(σk) . (2.10)

The justification of the factorized condition (2.4) is that it implies the
existence of a trivial solution of BP. Indeed, if we assume the model
to be factorized, then the assignment

Trivial BP fixed pointb⋆i→j(σi) = φi(σi) , ∀(i→ j) ∈ ~E, σi ∈ X , (2.11)

verifies the fixed point equation (2.9). Indeed, it holds that

φi(σi)
∏

k∈∂i\j

∑

σk∈X

ψik(σi, σk)b
⋆

k→i(σk) = φi(σi)
∏

k∈∂i\j

ri→k ,

= Z⋆

i→j b
⋆

i→j(σi) ,
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True pairwise model Trivial fixed point

Figure 2.2 – The trivial fixed point (2.2) of BP estimates the marginals of the
pairwise model on the left to be equal to the marginals of the
independent model on the right.

with normalization constant given by

Z⋆

i→j =
∏

k∈∂i\j

ri→k . (2.12)

The corresponding beliefs output by BP are given by

b⋆i (σi) = φi(σi) , ∀i ∈ [n], σi ∈ X . (2.13)

In other words, at the trivial fixed point, the marginals computed by

The marginals
estimated by BP at

the trivial fixed
point are those of the

independent model
(2.14)

BP on the pairwise model (2.1) are the same as the marginals of the
independent model 2

P(σ) =

n∏

i=1

φi(σi) =

n∏

i=1

Pi(σi) , (2.14)

represented on figure 2.2 and which does not include any of the infor-
mation encoded on the edges of the graphical model. In the various
applications we consider, φi(σi) represents the prior probability of σi
in the absence of data in the form of pairwise potentials. The solution
(2.2) is therefore uninformative. We will also call this solution paramag-
netic, as it yields a vanishing magnetization (1.75) in the Ising model.
Note that the paramagnetic solution exists for any choice of the cou-
plings. In particular, in an Ising model with a temperature β such
that Jij = βJ′ij, the fixed point exists for any value of β. However, as
we will see in the next section, it is not always reachable by BP.

2.1.3 Phase transition

As explained in section 1.5, we run BP by iterating the fixed point
equations (2.9) starting from an arbitrary initial condition. This it-
eration can be written in a compact form by introducing the map-
ping F : R|~E|×|X| → R|~E|×|X|, such that, for any set of beliefs b =

2. Note that the correlations estimated through BP would by non-trivial, even at
the trivial fixed point.
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(
bi→j(σ)

)
(i→j)∈~E,σ∈X

∈ R|~E|×|X|, F(b) =
(
f
(σ)
i→j(b)

)
(i→j)∈~E,σ∈X

with,

for any (i→ j) ∈ ~E, σ ∈ X,

f
(σ)
i→j(b) =

1

Zi→j
φi(σ)

∏

k∈∂i\j

∑

σk∈X

ψik(σ, σk)bk→i(σk) . (2.15)

The BP recursion starting from an initial condition b0 then simply
writes, for t > 0

bt+1 = F(bt) . (2.16)

If we choose an initial condition b0 = b⋆ + δb0 ∈ R|~E|×X close to the
uninformative fixed point b⋆ = F(b⋆), BP will converge to b⋆ if and
only if it is a stable fixed point of BP. The reachability of the trivial
fixed point is therefore controlled by the Jacobian J of F at b⋆. Some
algebra given in an appendix

Jacobian of BPJ
(σ,σ′)
i→j,k→l = φl(σ)

(
ψkl(σ

′, σ)

rl→k
−
rk→l

rl→k

)
1 (l = i) 1 (k 6= j) , (2.17)

and the perturbations evolve to linear order according to

δbt+1 = J δbt + o
(∥∥δbt

∥∥) . (2.18)

A perhaps friendlier, equivalent statement is the following. For (i →
j) ∈ ~E, we define δbti→j ∈ R|X| to be the vector with elements (δbti→j(σi))σi∈X.
The linearized system (2.18) can then be written equivalently, to linear
order,

δbti→j =
∑

k∈∂i\j

Jk→i δb
t−1
k→i , ∀(i→ j) ∈ ~E , (2.19)

where for each (k→ i) ∈ ~E, Jk→i ∈ R|X|×|X| is the matrix with entries

Matrices
Ji→j ∈ R|X|×|X|(Jk→i)σ,σ′ = φi(σ)

(
ψki(σ

′, σ)

ri→k
−
rk→i

ri→k

)
. (2.20)

We would like to find out if, upon iterating BP, the perturbations
grow, or they decay. This question is readily answered in stability
theory, when the initial perturbation can span the entire vector space
R|~E|×|X|. In this case, the stability of the fixed point is controlled by
the spectral radius ρ(J) of the Jacobian at the fixed point. A small
subtlety arises here from the fact that the beliefs must be normalized,
so that the initial perturbation δb0 must verify, for all (i→ j) ∈ ~E,

Admissible
perturbations

∑

σi∈X

δb0i→j(σi) = 0 . (2.21)

This condition defines a vector subspace H of dimension |~E|× (|X|− 1)

of admissible perturbations. On the other hand, we observe that each
column of Jk→j sums to 0. Indeed,
∑

σ∈X

(Jk→i)σ,σ′ =

∑
σ∈Xφi(σ)ψki(σ

′, σ)

ri→k
−
rk→i

ri→k

∑

σi∈X

φi(σi) , (2.22)

=
rk→i

ri→j
−
rk→i

ri→j
= 0 . (2.23)
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This property can be used to show that Im J ⊂ H, so that the restric-
tion J|H of the Jacobian to the subspace of admissible perturbations
defines a meaningful endomorphism of H, whose spectral radius con-
trols the stability of the trivial fixed point. Moreover, the fact that
Im J ⊂ H implies that any eigenvalue of J is either an eigenvalue of
J|H or is equal to zero. This implies that ρ(J|H) = ρ(J), so that the
trivial fixed point of BP is unstable with respect to admissible pertur-
bations if and only if

Instability of the
trivial BP fixed point

ρ(J) > 1 , (2.24)

where ρ(J) denotes the spectral radius, i. e. the modulus of the largest
eigenvalue of J. There is therefore a phase transition in BP, and (2.24)
is a necessary condition for BP to yield informative marginals.

2.2 symmetric models

We now restrict further the class of factorized models by introduc-
ing a symmetry requirement on the potentials of a pairwise model.
Specifically, we ask that the single-variable and pairwise potentials ver-
ify

Symmetry
assumption

φi(σi) =
1

|X|
, ∀i ∈ [n], σi ∈ X ,

ψij(σi, σj) =

{
ψ=

ij if σi = σj

ψ
6=
ij if σi 6= σj

, ∀(ij) ∈ E, σi, σj ∈ X ,

(2.25)

for some constants ψ=
ij, ψ

6=
ij > 0. When this condition is fulfilled,

we call the resulting model symmetric, and it is readily checked that
symmetric models are factorized. Note that both the Ising and Potts
examples of section 2.1.1 are of this particular form. Under the sym-
metry assumption (2.25), the trivial fixed point (2.11) of BP takes the
simple form

Symmetric trivial BP

fixed point

bi→j(σi) =
1

|X|
, ∀(i→ j) ∈ ~E, σi ∈ [n] , (2.26)

bi(σi) =
1

|X|
, ∀i ∈ [n], σi ∈ X , (2.27)

i. e. the beliefs output by BP are uniform, so that it is impossible to
make a prediction about e.g. the most probable value of any partic-
ular variable σi. In this section, we show that this condition leads
to simplifications in the study of the stability of the fixed point, and
that this study leads to a new spectral algorithm for approximate
inference.
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2.2.1 Tensor decomposition and the non-backtracking matrix

Under the symmetry assumption (2.25), the parameters ri→j of sec-
tion 2.1.1 verify

ri→j =
∑

σj∈X

ψij(σi, σj)φj(σj) , (2.28)

=
1

|X|

(
ψ=

ij + (|X|− 1)ψ
6=
ij

)
, (2.29)

= rj→i . (2.30)

We therefore now denote rij = rji = ri→j = rj→i. The BP recursion
linearized around the trivial fixed point, equation (2.19), reads

δbti→j =
∑

k∈∂i\j

Jk→i δb
t−1
k→i , ∀(i→ j) ∈ ~E , (2.31)

where the matrices Jk→i ∈ R|X|×|X| for (k → i) ∈ ~E verify, under the
symmetry assumption,

(Jk→i)σ,σ′ = φi(σ)

(
ψki(σ

′, σ)

rik
− 1

)
,

=
ψ=

ik −ψ
6=
ik

ψ=
ik + (|X|− 1)ψ

6=
ik

×






|X|− 1

|X|
if σi = σj

−1

|X|
if σi 6= σj

.

(2.32)

Defining weights (wij)(ij)∈E by

wij =
ψ=

ij −ψ
6=
ij

ψ=
ij + (|X|− 1)ψ

6=
ij

, ∀(ij) ∈ E , (2.33)

we can rewrite (2.32) in full matrix form as

Jk→i = wki

(
I|X| −

1

|X|
U|X|

)
, (2.34)

where I|X| ∈ R|X|×|X| is the identity matrix and U|X| ∈ R|X|×|X| has
all its entries equal to unity. The linearized BP recursion therefore
reads

δbti→j =

(
I|X| −

1

|X|
U|X|

)
∑

k∈∂i\j

wki δb
t−1
k→i , ∀(i→ j) ∈ ~E ,

(2.35)
In other words, the full Jacobian of BP at the trivial fixed point

decomposes as
Tensor
decomposition of JJ =

(
I|X| −

1

|X|
U|X|

)
⊗ B , (2.36)



60 factorized and symmetric models

where ⊗ denotes the tensor (or Kronecker) product, and we have
defined a new matrix B ∈ R|~E|×|~E|, called the non-backtracking matrix
(or operator), whose elements are given by

Non-backtracking
matrix Bi→j,k→l = wkl 1 (l = i) 1 (k 6= j) . (2.37)

This operator mimics the way messages are passed in BP. In partic-

k

l = i

j 6= k

wkl

ular, it forbids backtracking immediately to the previous edge (see
illustration in the margin). The non-backtracking matrix was first in-
troduced in graph theory where it bears the name of Hashimoto ma-
trix [59]. It was first used in the context of inference as the basis for
a new spectral method for community detection in [89] — note that
our definition corresponds to the transpose of the matrix they intro-
duce. We will devote a considerable amount of time understanding
the properties of the non-backtracking operator, and its applicability
in various inference problems. For now, we simply remark that B
controls the stability of the trivial fixed point of BP. Indeed, we have
by a standard result in linear algebra that

ρ(J) = ρ

(
I|X| −

1

|X|
U|X|

)
ρ(B) . (2.38)

Since ρ
(

I|X| −
1
|X|

U|X|

)
= 1, the instability of the trivial fixed point is

equivalent to the conditionThe instability of the
trivial BP fixed point

in a symmetric
model is controlled

by ρ(B)

ρ(B) > 1 . (2.39)

2.2.2 Reduction to an Ising model

Let us compute explicitly the non-backtracking operator associated
with the Ising model (2.5). In this case we have ∀(ij) ∈ ENon-backtracking

operator of the Ising
model ψ=

ij = exp Jij ,

ψ
6=
ij = exp−Jij ,

(2.40)

so that
wij = tanh(Jij) . (2.41)

For a general symmetric pairwise model with alphabet X of arbitrary
size, we observe that the weights introduced in equation (2.33) verify

−1 < wij < 1 , ∀(ij) ∈ E , (2.42)

as long as the potentials are finite, and therefore the associated pair-
wise model assigns a positive probability to each σ ∈ Xn. Therefore
we can write

Couplings of
associated Ising

model

wij = tanh
(
J

Ising
ij

)
, ∀(ij) ∈ E , (2.43)
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for some couplings
(
J

Ising
ij

)
(ij)∈E

. In words, the non-backtracking op-

erator of an arbitrary symmetric pairwise model is the same as the
non-backtracking operator of an associated Ising model with properly
chosen couplings. In particular, the onset of the instability of the para-
magnetic solution in both models coincide. As an important example,
the instability of the trivial fixed point in the Potts model (2.6) with

|X| = q and couplings
(
J=ij, J

6=
ij

)
(ij)∈E

is equivalent to the instability of

the trivial fixed point of the Ising model with couplings
(
J

Ising
ij

)
(ij)∈E

defined by

Potts to Ising
reduction

tanh
(
J

Ising
ij

)
=

exp
(
J=ij

)
− exp

(
J
6=
ij

)

exp
(
J=ij

)
+ (q− 1) exp

(
J
6=
ij

) . (2.44)

This reduction to the simpler Ising model will guide our intuition
when defining new approximate inference methods. It also provides
a fruitful interpretation of the leading eigenvectors of the non-back-
tracking matrix, which we now explicit.

The BP algorithm takes a particularly simple form for the Ising
model. Indeed, since σi ∈ {±1}, each belief bi(σi) is completely spec-
ified by a single number,

mi =
bi(+1) − bi(+1)

2
, (2.45)

corresponding to the expectation of σi, and which we will therefore
call (approximate) magnetization. We will denote m ∈ Rn the vector
with entries (mi)i∈[n]. Similarly, the messages bi→j(σi) are written
in terms of their expectation mi→j, and the BP recursion reduces to

BP recursion for the
Ising model

mt
i→j = tanh


 ∑

k∈∂i\j

atanh
(

tanh
(
J

Ising
ik

)
mt−1

k→i

)

 . (2.46)

To differentiate the messages from the final magnetizations (2.45),
we will denote m→ ∈ R|~E| the vector whose entries (mi→j)(i→j)∈~E

are the messages. The trivial fixed point with uniform beliefs corre-
sponds to m→ = 0. Linearizing around this fixed point, we find that
for small ‖m→‖, the BP recursion can be approximated by

mt
i→j ≈

∑

k∈∂i\j

tanh
(
J

Ising
ik

)
mt−1

k→i =
∑

k∈∂i\j

wikm
t−1
k→i , (2.47)

or equivalently, in matrix form,

mt
→ = Bmt−1

→ + o(‖mt−1
→ ‖) . (2.48)

The magnetizations (2.45) are then given to linear order in the mes-
sages by

mi ≈
∑

k∈∂i

tanh
(
J

Ising
ik

)
mt

k→i =
∑

k∈∂i

wikm
t
k→i , (2.49)
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i. e. in matrix form

m = Pmt
→ + o

(
‖mt

→‖
)
, (2.50)

where we have defined a pooling matrix P ∈ Rn×|~E|, that maps, to
linear order, the messages to the magnetizations. The elements of P
are given byPooling matrix

k1

l = i

wk 1l
k2w

k
2 l

k|∂i|

w
k
|∂
i|
l

Pi,k→l = wkl 1 (l = i) , ∀i ∈ [n], (k→ l) ∈ ~E . (2.51)

In the following, we refer to the operation of applying P to an eigen-
vector of B as pooling, and the result is a pooled eigenvector, the compo-
nents of which are called approximate magnetizations. To linear order
(admittedly a crude approximation), the BP recursion for the Ising
model therefore reduces to a power iteration of the non-backtracking
operator. When t → ∞, one of two situations may arise. Either
ρ(B) < 1, in which case all the perturbations converge to 0, or ρ(B) >
1, in which case ‖mt

→‖ →∞. When additionally B has real eigenval-
ues larger than 1, the corresponding eigenvectors are unstable direc-
tions of BP. By unstable direction, we mean that a small perturbationUnstable directions

‖m→‖ ≪ 1 of the trivial fixed point aligned with this direction will
grow when iterating BP, and lead to a different, hopefully informa-
tive fixed point. In general, each of these unstable directions approxi-
mately “points” towards a distinct fixed point of BP. A cartoon of this
argument is shown on figure 2.3.

The leading eigenvectors of the non-backtracking operator there-
fore provide an approximation to the non-trivial fixed points of BP on
the Ising model associated with a symmetric pairwise model. FromThe leading

eigenvectors of B
with real eigenvalues

approximate the
magnetizations of

the associated
Ising model

an eigenvector v ∈ R|~E| of B, we retrieve the corresponding approxi-
mate magnetizations by applying the pooling matrix of equation (2.51)
to obtain a vectorm = P v ∈ Rn. This suggests the existence of a spec-
tral algorithm based on B that performs almost as well as BP. Before
writing down the full algorithm, we need to understand more pre-
cisely what the non-trivial fixed points of BP might look like on an
Ising model deriving from an inference problem.

2.2.3 An example

In this section, we consider a simple generalization of the planted
spin glass (or censored block model) of section 1.6.5, and discuss how
to solve it using the non-backtracking operator. Assume that n ver-
tices are partitioned into q clusters by assigning each vertex i ∈ [n] to
a cluster σi ∈ [q] chosen uniformly at random. We generate a sparse
Erdős-Rényi random graph G = ([n], E) with average connectivity α,
and we assign to each edge (ij) ∈ E a label ℓij = ±1 drawn from the
probability distribution

P(ℓij = 1 | σi, σj) =

{
1− ǫ if σi = σj
ǫ if σi 6= σj

. (2.52)
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m→ = 0

m
(2)
→ ∝∼ v(2)

m
(1)
→ ∝∼ v(1)

m
(3)
→ ∝∼ v(3)

v(1)

v(2)

v(3)

Figure 2.3 – Cartoon of the unstable directions of BP on the Ising model.
Each of the black and white points represents a particular fixed
point of BP, i. e. a vector in R|~E|. The white point at the center
is the trivial fixed point m→ = 0, i. e. mi→j = 0, ∀(i → j) ∈ ~E.
The three black points are non-trivial fixed points of BP, rep-
resented as three vectors m(1)

→ ,m
(2)
→ ,m

(3)
→ ∈ R|~E|. Here, the

non-backtracking operator B has three real eigenvalues larger
than 1, with corresponding eigenvectors v(1), v(2), v(3). Each
of these eigenvectors corresponds to an unstable direction such
that a small perturbation of the trivial fixed point aligned with
this direction leads, upon iterating BP, to a different fixed point.
The dashed gray arrows represent the true trajectory of the mes-
sages in R|~E| as BP is iterated. In our approximate inference
methods, we make the assumption that the these trajectories
don’t deviate too much from their linear approximation at the
origin, so that the non-trivial fixed points are approximately
proportional (denoted here ∝∼ ) to the eigenvectors of B.
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Our aim is to recover the planted partition σ. Note that the case q = 2

is the planted spin glass. For general q, the distribution of the labels
can be rewritten in the Boltzmann form

P(ℓij | σi, σj) =
expβ ℓij

(
2 1(σi = σj) − 1

)

2 cosh(β)
, (2.53)

where the inverse temperature β has the same definition as in the
planted spin glass, and is given by (1.87), i. e.

β =
1

2
log
(
1− ǫ

ǫ

)
. (2.54)

Using Bayes’ theorem, it is straightforward to show that the posterior
probability distribution of σ is

Posterior
distribution

P(σ) =
1

Z

∏

(ij)∈E

exp 2βℓij 1(σi = σj) . (2.55)

Note that this model is a special case of the lSBM in which no in-
formation is encoded in the presence or absence of edges, and the
labels are simple Bernoulli variables. This makes for a simpler first
example, but we shall generalize the claims of the present section to
the general setting in chapter 3. For the moment, let us remark that
this model is of the symmetric form (2.25), so that BP has a trivial
fixed point, whose stability is controlled by the spectral radius of the
non-backtracking operator B (2.37), with weights (2.33) given here by

wij =
exp

(
2βℓij

)
− 1

exp
(
2βℓij

)
+ q− 1

, ∀(ij) ∈ E . (2.56)

The associated Ising model has couplings (Jij)(ij)∈E defined throughAssociated Ising
model equation (2.43), i. e. tanh(Jij) = wij. In particular, the couplings as-

signed to edges carrying a label ℓij = +1 are positive, and they grow
to infinity as β → ∞. On the other hand, the couplings assigned to
edges with a label ℓij = −1 are negative, and as β → ∞, they decay
to −∞ if q = 2, and to a finite negative value if q > 2.

Let us first consider the planted spin glass case q = 2. The IsingCase q = 2

couplings are then given, as expected, by Jij = βℓij. As argued in sec-
tion (1.6.5), when β is large enough, this Ising model is in a partially
ordered phase where typical configurations are correlated with the
planted partition σ. BP should therefore have a stable ferromagnetic
fixed point, at which the beliefs are correlated with the planted parti-
tion. In particular, the trivial, paramagnetic fixed point of BP should
be unstable, and we expect BP to have one unstable direction v ∈ R

~E,
with corresponding approximate magnetizations m = P v ∈ Rn veri-
fying equation (1.91), here

lim
n→∞

1

n

n∑

i=1

(2 1(σi = 1) − 1)mi 6= 0 . (2.57)
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In words, we expectmi to take a different sign depending on whether
σi = 1 or σi = 2. This unstable direction should be signaled a large,
real eigenvalue of B. However, we do not expect this eigenvalue to
be the only one with modulus larger than 1. Indeed, since the model
in on the Nishimori line, statistical physics predicts (see discussion
in section 1.6.5) that whenever the paramagnetic fixed point is unsta-
ble with respect to perturbations correlated with the ferromagnetic
fixed point, it is also unstable with respect to perturbations leading
to glassy states. Since there are potentially many glassy states, we ex-
pect many eigenvalues of B to become larger than 1 simultaneously.
We can check on figure 2.4 that this is exactly what happens. For
small β (i. e. high noise ǫ), the spectral radius of B is smaller than 1,
and the trivial fixed point of BP is stable, so that it is impossible to
detect the clusters using either BP or B. We will sometimes associate
this fact with unsolvability of the problem in the following. On the
other hand, for high enough β, there is one large and real eigenvalue,
and many smaller (mostly complex) eigenvalues with modulus larger
than 1. Additionally, in this case, the approximate magnetizations
corresponding to the leading real eigenvector are strongly correlated
with the planted partition σ, and can be used to recover them (see
next section).

For a larger number of groups q, the situation is qualitatively the Case q > 2

same. A given coupling Jij for (ij) ∈ E is positive if ℓij is, so that the
ground states of the Ising model correspond to configurations where
spins within the same cluster have typically the same value. For large
enough β, we may therefore expect a partially ordered phase to appear,
with magnetizations reflecting the true clustering of the graph. The
numerical simulations of figure 2.4 suggest (on this particular model)
that B has q− 1 large and real eigenvalues, well separated from the
bulk of complex eigenvalues. It can also be checked that the corre-
sponding approximate magnetizations take typically different values
on the different clusters. We will come back in greater details on
what the partially ordered phase looks like in chapter 3, and also
show how to predict the appearance and the number of large and
real eigenvalues of B on a general instance of the lSBM.

Notice the distinctive shape of the spectrum of B. There is a bulk of Shape of the
spectrum of Buninformative (mostly complex) eigenvalues that stays sharply con-

fined in a disk, and well separated from the potential informative
eigenvalues. This property, which we investigate in a special case in
chapter 3, is the main reason why spectral algorithms based on B are
superior to other, more traditional spectral methods, based e.g. on the
adjacency matrix or the Laplacian, for sparse graphs. Indeed, in the
case of the adjacency matrix for example, the bulk of the spectrum is
constrained for large enough connectivity by Wigner’s semi-circle law.
However, for a constant connectivity α = O(1), this law is violated,
and the spectrum exhibits tails that extend beyond the semi-circle,
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Figure 2.4 – Spectrum of the non-backtracking operator on the example of section 2.2.3, with n =

200 variables, on a random Erdős-Rényi graph of average connectivity α = 10. The
dashed pink circle has radius unity, and the dashed gray circle has radius R̂ defined in
equation (2.59). For q = 2, 3, 4, we represent the spectrum of B on a problem generated
with a small β (high noise ǫ), and another generated with a large β (low noise). In the
rightmost column, we represent the approximate magnetizations obtained by pooling
the top q − 1 eigenvectors of B obtained in the large β problem. Generically, we
observe that when the noise is too high, the spectrum of B is strictly included in
the circle of radius unity, so that ρ(B) < 1, and the trivial fixed point of BP is stable.
Upon decreasing the noise (increasing β), the situation changes, and for low enough
noise, there are many eigenvalues of B that are larger than 1. However, there are
only q− 1 eigenvalues that are larger than R̂, they are real, and the corresponding
(pooled) eigenvectors are correlated with the true cluster assignments of the vertices,
in the sense that the approximate magnetizations take typically different values of
the q clusters. We characterize these approximate magnetizations in more details in
chapter 3.
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potentially drowning the informative eigenvalues [89]. By contrast,
we will argue in chapter 3 that, on the sparse models we consider,
the uninformative eigenvalues of B stay sharply confined, in the limit
n→∞, in the circle of radius R given by

Radius of the bulkR =

√
αE [w2] , (2.58)

where w is a random variable that has the same distribution as the
weights wij of the non-backtracking operator. Note in particular that
the associated Ising model has couplings tanh(Jij) = wij so that the
paramagnetic to spin glass transition of equation (1.85) is equivalent
to R > 1. Conveniently, we can estimate this radius from the data

Empirical estimator
of the radius of the
bulk

R̂ =
1

|E|

∑

(ij)∈E

w2
ij −→n→∞

R . (2.59)

We show on figure 2.4 the excellent agreement between this predic-
tion and the the numerical simulations. We call the eigenvalues (and
corresponding eigenvectors) of B that are outside of the circle of ra-
dius R̂ informative.

2.2.4 A linearized belief propagation algorithm

In the previous sections, we have argued that the leading eigenvec-
tors of B with real eigenvalues allow to approximate the marginals
(or rather the mean of the marginals, i. e. the magnetizations) cor-
responding to the non-trivial fixed points of BP, in an Ising model
associated with an arbitrary symmetric MRF. We show in this sec-
tion how to use these observations to design a spectral algorithm for
graph clustering.

As usual in spectral clustering methods (see e.g. [98]), we use the
top eigenvectors of B to define a low dimensional embedding of the Low dimensional

embedding of the
graph

vertices of the graph. Let us detail the procedure on the example in-
troduced in the previous section for the case of q = 3 clusters. We
assume that β is large enough so that there are 2 eigenvalues larger
than R̂, where R̂ is defined in equation (2.59). We denote by v(1) and
v(2) the top two eigenvectors of B. Using the pooling matrix P, we can
define approximate magnetizations m(1) = P v(1) and m(2) = P v(2).
We use these magnetizations as coordinates in R2. More precisely, to

each vertex i ∈ [n], we associate the point
(
m

(1)
i ,m

(2)
i

)
∈ R2. This

defines an embedding of the vertices of the graph in R2 in which we
expect points belonging to the same cluster to be close in the sense
of the Euclidean distance of R2, since we have observed previously
that the magnetizations reflect the true cluster memberships of the
variables. The embedding is represented on the left of figure 2.5 us-
ing the eigenvectors shown on figure 2.4. To cluster the vertices of
the graph, it only remains to cluster the n points in R2, using e.g.
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Embedding of the graph in R2
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Figure 2.5 – Kmeans clustering of the eigenvectors of B on the example of section 2.2.3, for the
case of q = 3 clusters. On the left is the two-dimensional embedding of the vertices
obtained using the approximate magnetizations computed from the (pooled) top two
eigenvectors of B represented on figure 2.4, with colors showing the ground true
cluster assignment. On the right is the clustering obtained using kmeans on this two-
dimensional embedding. The ground true cluster assignments are recovered with a
83.5% accuracy.

the kmeans algorithm. The result is shown on the right part of fig-
ure 2.5, and allows to recover the ground true cluster assignments
with a 83.5% accuracy in this case. This procedure is readily adapted
to the general case of q clusters. As shown numerically in the pre-
vious section, there are in this case q − 1 informative eigenvectors,
with real eigenvalues lying outside of the circular bulk of complex
eigenvalues. We may use these eigenvectors to define an embedding
of the vertices in Rq−1, and use kmeans to approximately recover the
cluster assignments.

Abstracting and generalizing from these examples, we consider aA new spectral
inference algorithm generic graph clustering problem defined on a graph G = ([n], E),

in which we are looking to assign each vertex i ∈ [n] of G to a
cluster σi ∈ [q]. We assume that the probability of a given assign-
ment σ = (σi)i∈[n] ∈ [q]n being correct takes the form of a pair-
wise MRF verifying the symmetry assumption (2.25). The optimal
estimator of the cluster membership of vertex i ∈ [n] is then given by
σ̂i = argmaxσ∈[q] Pi(σ) where Pi denotes the marginal probability
distribution of σi. Note that since the symmetric MRF (2.25) is invari-
ant under any permutation of the alphabet X = [q], we can only hope
to recover the true cluster assignment up to a global permutation. To
compute these estimators, we propose the procedure described in al-
gorithm 1. The performance of this algorithm, which we illustrate on
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various examples in the following, stems from the spectral properties
of the non-backtracking operator, which we study in chapter 3, in the
case of random graphs. In particular, we will argue that for graphs
generated from the lSBM, we can make this algorithm more precise
by predicting the number of eigenvalues that should be computed
(which is for instance q− 1 in the previous example). This algorithm
can be thought of as an alternative, linearized version of BP. Note that
we have assumed here a Bayes optimal setting in which we know both
the number of clusters q and the true posterior probability distribu-
tion of the cluster assignment σ. We come back to these assumptions
in the following and show that they can be relaxed in certain cases.
Finally, we note that we expect this algorithm to perform well when
BP accurately estimates the marginals of the MRF P, therefore, par-
ticularly when the underlying graph G is sparse so that it is locally
tree-like. We briefly discuss other cases in the following.

Algorithm 1 Linearized belief propagation for graph clustering

Input: Number of clusters q, probability P(σ) of each cluster assign-
ment σ ∈ [q]n assumed to be a pairwise MRF of the symmetric
form (2.25)

1: Build the non-backtracking operator B of (2.37) and the pooling
matrix P of (2.51)

2: Compute the estimate R̂ (2.59) of the radius of the bulk of the
spectrum of B

3: Compute all the real eigenvalues of B which are larger (in abso-
lute value) than R̂. Let us call r their number and v(1), . . . , v(r)

their corresponding eigenvectors. If r = 0, raise an error.
4: Pool the eigenvectors to compute the approximate magnetiza-

tions:
5: for µ ∈ [r] do mµ ← P v(µ)

6: Embed the vertices of the graph in Rr by assigning to each vertex
i ∈ [n] the coordinates (m1

i , . . . ,m
r
i) ∈ Rr

7: Cluster the embedded vertices using (e.g.) kmeans

2.3 the free energy point of view

The non-backtracking operator is a large
(
|~E|× |~E|

)
and non-sym-

metric matrix. This causes numerical issues for large problems, as the
fastest and most stable known numerical (sparse) eigensolvers, based
e.g. on the Lanczos algorithm, work only for symmetric matrices. On
the other hand, we are interested only in the eigenvectors v with real
eigenvalues of B, and even more precisely, in their pooled version
m = P v ∈ Rn. We may therefore hope that m is in fact an eigen-
vector of a smaller (n× n), and symmetric operator H. This turns
out to be true, in a certain sense which we explicit in the following.
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Additionally, the smaller and symmetric operator H has a straightfor-
ward interpretation which yields insight into a more general class of
spectral algorithms for clustering.

We assume in this section that we have reduced a symmetric MRF

to its associated Ising model formulation, so that we write the non-
backtracking operator as

Bi→j,k→l = tanh(Jij) 1 (l = i) 1 (k 6= j) , (2.60)

where the couplings are defined by (2.43), so that the (pooled) prin-
cipal eigenvectors of B approximate the magnetizations in the non-
trivial fixed points of BP on the Ising model with couplings (Jij)(ij)∈E,
and vanishing fields.

2.3.1 The Ihara-Bass formula

Let λ > 1 be a real eigenvalue of B with associated eigenvector v ∈
R|~E|, with components (vi→j)(i→j)∈~E

. We are interested in finding an
equation verified by m = P v ∈ Rn, where P is the pooling matrix
defined in (2.51). The components (mi)i∈[n] of m are therefore given
by

mi =
∑

k∈∂i

tanh (Jki) vk→i , ∀i ∈ [n] , (2.61)

and the eigenvector v verifies the set of equations

λvi→j =
∑

k∈∂i\j

tanh(Jki) vk→i , ∀(i→ j) ∈ ~E . (2.62)

This last equation implies the following closed set of equations relat-
ing, for each edge (ij) ∈ E, the magnetizations mi and mj on the one
hand, and the messages vi→j and vj→i on the other

{
λvi→j = mi − tanh(Jij) vj→i

λvj→i = mj − tanh(Jij) vi→j

, ∀(ij) ∈ E . (2.63)

For λ > 1 and finite couplings (Jij)(ij)∈E, this system of equations is
invertible. Inverting it allows to write the messages as a function of
the magnetizations

vi→j =
λmi − tanh(Jij)mj

λ2 − tanh2(Jij)
, ∀(i→ j) ∈ ~E . (2.64)

Injecting this form of the messages in equation (2.61), we find that the
magnetizations must verify
(
1+

∑

k∈∂i

tanh2(Jij)

λ2 − tanh2(Jij)

)
mi −

∑

k∈∂i

λ tanh(Jij)

λ2 − tanh2(Jij)
mj = 0 . (2.65)
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To sum up, we have shown that
(
λ > 1, v ∈ R|~E|

)
is an eigenpair of B

if and only if, for m = P v, we have

H(λ)m = 0 , (2.66)

where, for any x ∈ C\
{
± tanh(Jij)

}

(ij)∈E
, H(x) is an n× n matrix

with elements

The Bethe HessianHij(x) =

(
1+

∑

k∈∂i

tanh2(Jik)

x2 − tanh2(Jik)

)
1(i = j)−

x tanh(Jij)

x2 − tanh2(Jij)
1(j ∈ ∂i)

(2.67)
We will call this matrix the Bethe Hessian, for reasons that will be
made clear in the next section. Note in particular that when x ∈
R\

{
± tanh(Jij)

}

(ij)∈E
, H(x) is a real and symmetric matrix.

The previous calculation is a (poor man’s) version of the so-called
Ihara-Bass formula 3, which, in its generalized form ([153]) relates
the characteristic polynomial of B to the determinant of H(x), for
x ∈ C\

{
± tanh(Jij)

}

(ij)∈E
through

Generalized
Ihara-Bass formula

det
(
xI

|~E|
− B
)
= det (H(x))

∏

(ij)∈E

(
x2 − tanh2(Jij)

)
. (2.68)

We provide a proof of this formula in chapter 3. The task of solving
equation (2.66) simultaneously for λ and m is called a nonlinear eigen-
problem. Although methods for solving such problems exist, they are Nonlinear

eigenproblemtypically slow because they require solving sequentially several (lin-
ear) eigenproblems. In the following, we will argue that it is actually
not necessary to solve the nonlinear eigenproblem.

The spectrum of H(x) is tightly related to the spectrum of B. Let Spectrum of H(x)

us restrict here to x ∈ R, x > 1, so that the definition (2.67) of H(x)

has no poles. First, we observe that for large x, the diagonal entries
of H(x) stay larger than 1, while the non-diagonal entries become
small. Using the Gershgorin circle theorem, we can therefore show
that H(x) has all its eigenvalues strictly positive for x large enough.
As we decrease x, the Ihara-Bass formula implies that H(x) becomes
singular when x becomes equal to an eigenvalue of B. We find empir-
ically (see figure 2.6) that as long as x > R, where R is the radius of
the bulk in the spectrum of B, the smallest eigenvalues of H(x) are a
decreasing function of x. Therefore, H(x) gains a new negative eigen-
value whenever x becomes smaller than a real eigenvalue of B. As a
consequence, at x = R, there is a one to one correspondence between
the (potential) negative eigenvalues of H(R) and the real eigenvalues
of B that are outside of the bulk. We will therefore be particularly in-
terested in the matrix H

(
R̂
)
, where R̂ is the estimator of R defined in

equation (2.59). Note that this matrix can be safely defined whenever

3. The original form of the Ihara-Bass formula [14] only applies to the un-
weighted non-backtracking operator.
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R̂ > 1. Indeed, if R̂ < 1, it is in general close (or maybe even equal)
to a pole of the definition (2.67), so that the resulting matrix is at best
very badly conditioned. On the other hand, when R̂ < 1, we have
argued in 2.2.3 that the trivial fixed point of BP is stable so that both
BP and B fail to output non-trivial solutions.

While there is no obvious relation between the eigenvectors of
H
(
R̂
)

and the (pooled) eigenvectors of B, the previous correspon-
dence suggests that the eigenvectors of H

(
R̂
)

with negative eigenval-
ues may also allow to approximate the magnetizations in the non-
trivial fixed points of BP on the Ising model. In the following, we
clarify in what sense this is the case, and propose an alternative to
algorithm 1 based on H

(
R̂
)
.

2.3.2 The Bethe Hessian

We have obtained algorithm 1 as a linear relaxation of BP around a
trivial fixed point. On the other hand, we have stated in section 1.5.3
that the fixed points of BP are stationary points of the Bethe free en-
ergy. The Bethe free energy of the Ising model in vanishing fields
must therefore have a trivial stationary point, and we may wonder
whether it is a local minimum of the Bethe free energy or not.

Recall that in the Bethe approximation, we approximate the mag-
netizations E[σi] for i ∈ [n] and correlations between neighboring
variables E[σiσj] for (ij) ∈ E respectively by variables mi and χij that
minimize the Bethe free energy, i. e.
(
(E[σi])i∈[n] ,

(
E[σiσj]

)
(ij)∈E

)
≈ argmin

m∈Rn,χ∈R|E|

F Bethe(m,χ) , (2.69)

where the Bethe free energy F Bethe can be written in the case of the
Ising model ([153]) as

Bethe free energy of
the Ising model

F Bethe(m,χ) = −
∑

(ij)∈E

Jij χij +
∑

(ij)∈E
σi,σj∈{±1}

η

(
1+miσi +mjσj + χijσiσj

4

)

+
∑

i∈[n]

(1− |∂i|)
∑

σi∈{±1}

η

(
1+miσi

2

)
, (2.70)

where for x > 0, η(x) = x log x. The gradient of F Bethe is given ([107]),
for all i ∈ [n], (ij) ∈ E by

Gradient of the
Bethe free energy

∂F Bethe

∂mi
= (1− |∂i|) atanh(mi)

+
1

4

∑

j∈∂i

log

(
1+mi +mj + χij

) (
1+mi −mj − χij

)
(
1−mi +mj − χij

) (
1−mi −mj + χij

) ,

∂F Bethe

∂χij
= −Jij +

1

4
log

(
1+mi +mj + χij

) (
1−mi −mj + χij

)
(
1+mi −mj − χij

) (
1−mi +mj − χij

) ,

(2.71)
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Figure 2.6 – Spectrum of the Bethe Hessian H(x) on a single instance of the example of sec-
tion 2.2.3, with n = 300 variables, average connectivity α = 9, noise ǫ = 0.1, and
q = 3 clusters. On top is the spectrum of B, on which we have highlighted 4 real
values xi > 1 for i ∈ [4]. x1 > ρ(B), so that, as argued in the text, H(x1) is positive
definite. As we decrease x, H(x) gains a negative eigenvalue when x becomes smaller
than an eigenvalue λ of B (H(x2),H(x3)). In particular, H(x3 = R̂) has two negative
eigenvalues, corresponding to the informative eigenvalues of B. As we increase fur-
ther x, these negative eigenvalues become positive again, as x crosses real eigenvalues
of B which are smaller than R̂, and H(x4 = 1) is positive definite.
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where we have used that for |x| < 1 atanh(x) = 1
2 log 1+x

1−x . As antici-
pated, the following assignment (m⋆, χ⋆) is therefore always a trivial
(or paramagnetic) stationary point of the Bethe free energy

Trivial stationary
point

m⋆

i = 0 , ∀i ∈ [n] ,

χ⋆ij = tanh(Jij) , ∀(ij) ∈ E .
(2.72)

Whether this stationary point is a local minimum of the Bethe free
energy depends on the Hessian of F Bethe evaluated at the stationary
point. A straightforward computation yields

Hessian of the Bethe
free energy

∂2F Bethe

∂χij∂χkl

∣∣∣∣
m⋆,χ⋆

=
1
(
(ij) = (kl)

)

1− tanh2(Jij)
, ∀(ij), (kl) ∈ E , (2.73)

∂2F Bethe

∂χij∂mk

∣∣∣∣
m⋆,χ⋆

= 0 , ∀(ij) ∈ E, k ∈ [n] , (2.74)

∂2F Bethe

∂mi∂mj

∣∣∣∣
m⋆,χ⋆

= Hij(1) , ∀i, j ∈ [n] . (2.75)

The Hessian of the Bethe free energy therefore has a block diagonal
structure, with a large “χ−χ” block given by equation (2.73) which is
a diagonal matrix with strictly positive entries on the diagonal. The
only non-trivial block in the Hessian is the “m−m” block of equa-
tion (2.75), which equals the matrix H(1) defined in the previous sec-
tion. In particular, the only possible negative eigenvalues λ < 0 of
the full Hessian are negative eigenvalues of H(1), and their corre-
sponding eigenvectors are of the form (v,~0) ∈ Rn+|E|, where v is an
eigenvector of H(1) with eigenvalue λ, and ~0 ∈ R|E| is the vector with
all its entries equal to 0.

Reinterpreting the previous results, we have just shown that the
matrix H(x) is the (only non-trivial part of the) Hessian of the Bethe
free energy, at the trivial, paramagnetic stationary point, of an effective

Ising model, with vanishing fields, and couplings
(
J′ij

)
(ij)∈E

given by

Effective Ising model tanh
(
J′ij
)
=

tanh
(
Jij
)

x
. (2.76)

The parameter x therefore plays the role of a pseudo-temperature, con-Pseudo-temperature

trolling the strength of the interactions. In particular, the Hessian
becomes singular at a phase transition, and we can therefore inter-
pret the real eigenvalues of B as critical pseudo-temperatures in this
effective Ising model (assuming the limit n → ∞). Indeed, from the
fluctuation-dissipation theorem, H(x) is nothing but the inverse of
the susceptibility matrix of the effective Ising model.

Remarkably, the matrix H
(
R̂
)

corresponds to the Hessian of the
Bethe free energy at the paramagnetic to spin glass transition. This fact
justifies the following heuristic picture. As argued previously, BP and
B give meaningful answers when the Ising model associated with the
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Figure 2.7 – Kmeans clustering of the eigenvectors of H
(
R̂
)

on the example of figure 2.6. We use
the 2 eigenvectors v(1) and v(2) with negative eigenvalues of H(x3 = R̂) to embed
the graph in R2. The embedding is shown on the left panel, where each vertex i is
represented as a point (m

(1)
i ,m

(2)
i ) ∈ R2, and the colors represent the ground true

cluster assignment. In the right panel, we show the result of the kmeans algorithm,
which is able to correctly label 91% of the points.

pairwise MRF is in a partially ordered phase. By varying x in the ef-
fective Ising model, we explore its phase diagram. We find that for Phase diagram of the

effective Ising modellarge x, H(x) is positive definite (as shown in the previous section),
so that the paramagnetic stationary point is a local minimum of the
Bethe free energy, and the system is in a paramagnetic phase. As
we lower x from a large value to R̂, the effective Ising model under-
goes phase transitions if B has informative, real eigenvalues λ > R̂.
At x = R̂, the model finally undergoes a paramagnetic to spin glass
transition. From the typical phase diagrams of spin glasses presented
in section 1.6.4, we expect that the ferromagnetic transitions, if any,
must have happened before (i. e. for a larger value of x). Therefore,
we expect that if the Bethe Hessian H

(
R̂
)

has negative eigenvalues,
the associated eigenvectors can be used as proxies for the magneti-
zations of the effective Ising model in its partially ordered phases.
One way of thinking about this approximation is by imagining that
we minimize the Bethe free energy with a second order (e.g. Newton
or quasi-Newton) algorithm, starting from the paramagnetic point.
If H

(
R̂
)

has negative eigenvalues, then this paramagnetic point is a Probing the Bethe
free energy
landscape

saddle point, and the first step of the optimization algorithm can de-
crease the Bethe free energy by moving along the direction of one of
the eigenvectors of H

(
R̂
)

with negative eigenvalues. In a sense, we
use H

(
R̂
)

to probe the Bethe free energy landscape, locally around
the m = 0 point. Somewhat miraculously, in the examples we will
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study, this probe is able to sense all the interesting local minima of
the Bethe free energy, in the same way as the principal eigenvectors
of B give away all the informative fixed points of BP on the associated
Ising model.

By the same arguments as for the non-backtracking operator, weAnother spectral
inference algorithm may use the eigenvectors of H

(
R̂
)

with negative eigenvalues to em-
bed the graph in an Euclidean space, and use kmeans to cluster the
graph. The result for the example of figure 2.6 is shown on figure 2.7,
and allows to recover the true clusters with a 91% accuracy. This
hand-waving heuristic, which we shall detail more in the example
of the planted spin glass in chapter 4, justifies algorithm 2. We will
argue on the specific examples of the following sections that this al-
gorithm is also optimal on some important models., in the sense that
it can detect clusters as soon as it is possible to do so. However, com-
pared to algorithm 1, this algorithm is based on a smaller (n × n),
real, and symmetric matrix, which is easy to build (while the non-
backtracking matrix is not). This results in a sizable speed up of the
whole procedure. Additionally, we will observe that algorithm 2 con-
sistently provides a slightly better reconstruction accuracy, although
a theoretical understanding of this fact is still missing. We will also
discuss extensions of this algorithm in the non-Bayes optimal setting,
where the parameters of the model are not known.

Algorithm 2 Graph clustering with the Bethe Hessian

Input: Number of clusters q, probability P(σ) of each cluster assign-
ment σ ∈ [q]n assumed to be a pairwise MRF of the symmetric
form (2.25)

1: Compute the estimate R̂ (2.59) of the radius of the bulk of the
spectrum of B

2: Build the Bethe Hessian H
(
R̂
)

where H(x) is defined by equa-
tion (2.67)

3: Compute all the negative eigenvalues of H
(
R̂
)
. Let us call r their

number and v(1), . . . , v(r) their corresponding eigenvectors. If r =
0, raise an error.

4: Embed the vertices of the graph in Rr by assigning to each vertex
i ∈ [n] the coordinates (m1

i , . . . ,m
r
i) ∈ Rr

5: Cluster the embedded vertices using (e.g.) kmeans

It is fair to wonder why we do not use instead the true Hessian ofWhy H
(
R̂
)

and not H(1)? the Bethe free energy of the Ising model associated with the pairwise
MRF, i. e. H(1). The simple answer is that this method would not (al-
ways) work, in the sense that it may happen (as we will illustrate in
the following) that H(1) is positive definite, i. e. the trivial stationary
point of the Bethe free energy is stable, but ρ(B) > 1, i. e. the trivial
fixed point of BP is unstable. This is an illustration of the fact that,
while stable fixed points of BP are local minima of the Bethe free en-
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ergy ([61]), the converse is not true in general. Note that this does not
contradict the Ihara-Bass formula. We find numerically that, upon
lowering x from +∞ to 1, H(x) does indeed become singular when-
ever x is equal to an eigenvalue λ of B. However, what happens em-
pirically is that for λ > R, the Hessian gains a new negative eigenvalue
when x becomes smaller than λ, while for 1 < λ < R, the Hessian loses
a negative eigenvalue. It can be checked on figure 2.4 that B may in-
deed have real eigenvalues in the range [1, R], so that H(1) does not,
in general, have as many negative eigenvalues as B has informative
eigenvalues. In particular, we find that the paramagnetic stationary
point of the Bethe free energy may be a local minimum, while the
trivial fixed point of BP is unstable. This is exemplified on figure 2.6,
where H(x4 = 1) is positive definite while the spectral radius of B is
larger than 1.

2.3.3 Free energy Hessians

We have argued that, in order to cluster a graph into q groups, it
is interesting to consider an associated Ising model defined on this
same graph, and to compute (approximately) its magnetizations in
its ferromagnetic phases. On sparse graphs, a natural choice of ap-
proximation is BP or the Bethe free energy. However, on other types
of graphs, it may be reasonable to resort to a different approxima-
tion. We show in this section that this point of view allows to make
contact with more classical spectral clustering methods. To do so, we
consider the Ising model

P(σ) =
1

Z
exp

∑

(ij)∈E

(
Jijσiσj

)
, (2.77)

where each coupling Jij may be given by equation (2.44), or may sim-
ply be some number that reflects our confidence that i and j belong
in the same cluster. We consider two mean-field approximations, dif-
ferent from the Bethe approximation, both introduced in section 1.6.1.
The first is the simple nMF approximation, whose corresponding free The nMF

approximationenergy reads

F nMF(m) = −
∑

(ij)∈E

Jijmimj +

n∑

i=1

∑

σi=±1

η

(
1+ σimi

2

)
, (2.78)

where η(x) = x log(x) for x > 0. This free energy is defined for any
set of magnetizations m ∈ (0, 1)n. Computing the gradient of F nMF,
we obtain

∂F nMF

∂mi
= −

∑

j∈∂i

Jijmj +
1

2
log

1+mi

1−mi
,

= −
∑

j∈∂i

Jijmj + atanh(mi) .
(2.79)
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Equating the gradient to 0, we find the familiar naive mean-field ap-
proximation to the magnetization

mi = tanh


∑

i∈∂j

Jijmj


 , (2.80)

which admits as a trivial solution the paramagnetic point m = 0. To
understand whether this fixed point is a local minimum of the nMF

free energy, we compute the Hessian (or inverse susceptibility) at this
point

∂2F nMF

∂mi∂mj

∣∣∣∣
m=0

= 1(i = j) − 1(j ∈ ∂i) Jij . (2.81)

Looking for the smallest eigenvalues of the nMF Hessian therefore
amounts to looking for the largest eigenvalues of the matrix A ∈
Rn×n, with elements Aij = 1(j ∈ ∂i) Jij. This is nothing but the adja-
cency matrix of the graph G, potentially weighted. In the unweightedThe nMF

approximation yields
the adjacency matrix

case Jij = 1, ∀(ij) ∈ E, the adjacency matrix has been extensively used
in community detection, and has been shown in [112] to correctly re-
cover the planted partition in the SBM provided the graph is sufficiently
dense, with average connectivity going to ∞ in the large n limit. In
particular, spectral methods based on the adjacency matrix are shown
in [89] to fail significantly above the optimal threshold in the sparse
case where the average connectivities αin, αin are bounded, indepen-
dent of n. Similarly, [94] showed that in the lSBM, a spectral method
based on the adjacency matrix, with weights given by equation (2.44)
(we write these weights explicitly for the lSBM in chapter 3), is opti-
mal, again under the condition that the average connectivity of the
graph tends to ∞ with n. In the sparse case, the same authors show
that the adjacency matrix succeeds in detecting the planted partition
only when above the threshold of the lSBM by a large constant. From
a statistical physics point of view, all these results are not surprising.
Indeed, as we have seen in section 1.6.3, the nMF approximation is
exact on the Curie-Weiss model, i. e. on fully connected graphs with
small ferromagnetic couplings. In general, the nMF approximation
corresponds to assuming that each spin has a large number of neigh-
bors with which it weakly interacts, so that the interaction of each
spin with its neighbors can be replaced by an effective (mean) field,
whose fluctuations are negligible. On sparse graphs, this assumption
is strongly violated, and methods derived from the nMF approxima-
tion can therefore be expected to fail. These observations encourage
us to look at more advanced mean-field approximations.
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The next order approximation in the Plefka expansion of section 1.6.1 The TAP

approximationis the TAP free energy given by

F TAP(m) = −
∑

(ij)∈E

(
Jijmimj +

1

2
J2ij (1−m

2
i )(1−m

2
j )

)

+

n∑

i=1

∑

σi=±1

η

(
1+ σimi

2

)
.

(2.82)

As has become customary, we compute the gradient of F TAP

∂F TAP

∂mi
= −

∑

j∈∂i

(
Jijmj − J

2
ijmi(1−m

2
j )
)
+ atanh(mi) , (2.83)

so that a stationary point of the TAP must verify the following set of
equations, known as the TAP equations

mi = tanh


∑

j∈∂i

Jijmj − J
2
ijmi(1−m

2
j )


 . (2.84)

Without surprise, we find that the paramagnetic point m = 0 is again
a stationary point of the TAP free energy. The Hessian, or inverse
susceptibility, is given by

∂2F TAP

∂mi∂mj

∣∣∣∣
m=0

=

(
1+

∑

k∈∂i

J2ik

)
1(i = j) − 1(j ∈ ∂i) Jij . (2.85)

The problem of finding the smallest eigenvalues of the TAP Hessian is
equivalent to the problem of finding the smallest eigenvalues of the
matrix L̃ = D̃−A, whereA is the adjacency matrix defined previously,
and D̃ is a a diagonal matrix with entries

D̃ii =
∑

k∈∂i

J2ik , ∀i ∈ [n] . (2.86)

The matrix L̃ therefore resembles the classical Laplacian matrix, and The TAP

approximation yields
a sort of Laplacian

is exactly equal to the Laplacian in the unweighted case Jij = 1 for
(ij) ∈ E, which arises naturally and is widely used in community
detection [46, 114]. It is interesting to note that the usual motiva-
tion for the use of the Laplacian follows from a graph cut point of
view [98]. Here, we have instead introduced it from a probabilistic
perspective, as the Hessian of the TAP free energy of an Ising model
defined on the graph to cluster. Note that the Laplacian matrix is al-
ways positive semi-definite, so that this matrix cannot have negative
eigenvalues. The spectral algorithm instead consists in finding the
smallest eigenvalues of the Laplacian (which are different from the
trivial eigenvalue 0 [98]).

Like the adjacency matrix, the Laplacian is observed in [89] to fail
to detect communities in the sparse SBM near the optimal threshold.
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Once more, statistical physics gives an interpretation of this fact. In-
deed, the TAP equations (2.84) can be obtained as a large connectivity
limit of the BP equation for the Ising model. Therefore, they are ex-
pected to provide a good approximation of the magnetizations of the
Ising model only in sufficiently dense graphs. For sparse graphs, the
Bethe approximation should be used instead, i. e. the Bethe Hessian.

Abstracting from these examples, it is in principle possible to gen-
eralize our approach to different types of graphs, e.g. those contain-Generalizing the

Bethe approach ing cliques. Indeed, the Bethe approximation, and therefore the non-
backtracking operator and the Bethe Hessian, are expected to fail on
graphs containing short loops. It was shown in [68] that adding
cliques to the graph causes the appearance of negative eigenvalues
of the Bethe Hessian with very localized eigenvectors, spoiling the
ability of this Bethe Hessian to uncover global structure in a graph.
This localization problem is a standard one, and affects all spectral
methods [89]. On the other hand, the Bethe approximation can be
generalized to take into account densely connected subgraphs. This
class of mean-field approaches, which minimize a so-called Kikuchi
free energy [85], has been used by [161] to propose a generalized be-
lief propagation algorithm, tailored for graphs that contain regions
with many (small) loops. An interesting direction for future work
is the investigation of the existence of trivial fixed points of gener-
alized BP, or trivial stationary points of the Kikuchi free energy. As
we hope to have conveyed in this chapter, the local analysis of such
trivial points may yield insight into the complexity of the problem
at hand, as well as new spectral algorithms, obtained as linear relax-
ations of more involved algorithms such as (generalized) BP, or direct
free energy minimization.

2.4 conclusion

In this chapter, we have identified a general class of factorized pair-
wise MRF for which BP has a trivial fixed point. By studying the
linear stability of this trivial fixed point, we have shown that BP un-
dergoes a phase transition, expressed in terms of the spectral radius
of its Jacobian. Restricting further the class of factorized models, we
have defined a subclass of symmetric models, which contains in par-
ticular interesting special cases of the Potts and Ising models. On
symmetric models, the Jacobian of BP factorizes and can be expressed
in terms of a non-backtracking operator B, acting on the directed edges
of the graph, and controlling the stability of the trivial fixed point of
BP. We have then argued that the leading eigenvectors of B contain
non-trivial information, and allow to design a spectral algorithm for
approximate inference in symmetric pairwise MRFs. In particular, we
have shown that these informative eigenvectors of B can be thought
of as approximating the magnetizations of an associated Ising model.
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Adopting a different point of view based on mean-field free energy
approximations, we have related the non-backtracking operator B to
a smaller, symmetric matrix H(x) called the Bethe Hessian, which
controls the stability of a paramagnetic stationary point in the asso-
ciated Ising model, in the Bethe approximation. Generalizing our
approach to other mean-field approximations, we have shown that
we recover classical linear operators used in graph clustering, and we
gave an interpretation of their expected performance based on the ac-
curacy of the mean-field approximation from which they derive. In
the next chapter, we study in details the spectral properties of the
non-backtracking operator and the Bethe Hessian on sparse random
graphs. These results will allow us, in the applications of the follow-
ing chapters, to design and study the efficiency of spectral algorithms
based on B and H(x).





3
S P E C T R A L P R O P E RT I E S O F T H E
N O N - B A C K T R A C K I N G O P E R AT O R A N D T H E
B E T H E H E S S I A N O N R A N D O M G R A P H S

The performance of algorithms 1 and 2 relies crucially on their spec-
tral properties on sparse graphs. In this chapter, we study heuristi-
cally these properties on graphs generated from the sparse lSBM, and
show that both the spectra of B and H(x) are well-behaved, in the
sense that we can control the location of both their informative and
uninformative eigenvalues. In particular, their noisy eigenvalues are
sharply separated from the informative ones in the limit where the
size of the graph n grows to infinity, allowing algorithms 1 and 2 to
perform well, even on very sparse graphs.

This is in sharp contrast with other matrices typically used for spec-
tral clustering. As a simple example, let consider again the adjacency Why classical

spectral methods fail
on sparse graphs

matrix A of a sparse Erdős-Rényi graph. As explained in the pre-
vious chapter, a typical spectral algorithm based on the adjacency
matrix looks for its leading eigenvalues, and uses the corresponding
eigenvectors to cluster the graph. On sparse Erdős-Rényi graphs, this
strategy fails, due to the presence of large eigenvalues of A whose
eigenvectors are localized on high degree vertices, and therefore do
not allow to find any global structure in the graph. A simple ar-
gument to justify this claim is the following ([34]). Using classical
results on the extreme value statistics of the Poisson distribution, it is
straightforward to see that the largest degree dmax of a vertex in the
graph is of order logn/ log logn. Let us call i the vertex with maxi-
mum degree, and x ∈ Rn the vector whose only non-zero component
is xi = 1. The quantity x⊺A2x =

(
A2
)
ii

is equal to the number of 2-
steps walks on the graph G that start and end at i. Therefore, we have

dmax = x⊺A2x . (3.1)

Since A2 is a real and symmetric matrix, x can be orthogonally de-
composed as a linear combination of eigenvectors of A2, so that the
previous argument shows thatA has an eigenvalue larger than

√
dmax,

unbounded as n→∞. Therefore, due to the presence of heterogene-
ity in the degree of the vertices of a sparse random graph, A has
large eigenvalues, that are uninformative since they exist even when
there is no cluster structure in the graph. Note that equation (3.1)
holds because the adjacency matrix allows backtracking, and there-
fore coming back to the vertex i right after leaving it.

In the following, we argue that the situation is different for the
non-backtracking operator B and the Bethe Hessian H(x), in the sense

83
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that their uninformative eigenvalues are constrained in a well defined
region, allowing to easily detect the potential useful eigenvalues. We
first consider the non-backtracking operator in section 3.1, and turn
to the Bethe Hessian in section 3.2.

3.1 the non-backtracking operator

We start by studying the spectral properties of the non-backtracking
operator. We first derive the explicit expression of the matrix B aris-
ing from the stability analysis of the trivial BP fixed point on graphs
G generated from the lSBM, and discuss some subtleties arising from
the presence of interactions on so-called “non-edges” of G. We then
use the cavity method of statistical physics to study analytically the
stability of the trivial BP fixed point. This allows us to derive a precise
picture of the spectrum of B on graphs generated from the lSBM. Fi-
nally, we show how to compute, using non-rigorous statistical physics
methods, the spectral density of B on the unlabeled SBM.

3.1.1 Non-backtracking operator of the symmetric labeled stochastic block
model

In this section, we write down the non-backtracking operator of a
graph G generated from the symmetric lSBM. Strictly speaking, the
resulting non-backtracking matrix is defined on a fully connected
graph, due to the presence of interactions on the “non-edges” of G
(see following). However, we argue that in the limit n → ∞, we can
instead use a non-backtracking operator corresponding to the graph
G, retaining only a subset of its eigenvectors.

Recall that a graph G = ([n], E) is generated, in the symmetricSampling from the
symmetric lSBM lSBM, as follows. First, we assign each vertex i ∈ [n] to a cluster

σi ∈ [q] with uniform probability 1/q. For each pair of vertices i and
j with 1 6 i < j 6 n, we include the edge (ij) in E with probability

P
(
(ij) ∈ E | σi, σj

)
=
αin

n
1(σi = σj) +

αout

n
1(σi 6= σj) . (3.2)

The average connectivity of the graph is therefore

α =
αin + (q− 1)αout

q
. (3.3)

Finally, we assign each edge (ij) ∈ E a random label ℓij ∈ L drawn
from the distribution

P
(
ℓij = ℓ | σi, σj

)
= pin(ℓ) 1(σi = σj) + pout(ℓ) 1(σi 6= σj) , (3.4)

where pin and pout are two probability distributions over L.
We have shown in chapter 1 that the posterior distribution (1.105)

of the cluster assignment σ given the labeled graph G = ([n], E) is
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a pairwise MRF on the fully connected graph with n vertices, with
potentials given by

Posterior of the
symmetric lSBM

∀(ij) ∈ E ,ψij(σi, σj) =






αin

n
pin(ℓij) if σi = σj

αout

n
pout(ℓij) if σi 6= σj

,

∀(ij) /∈ E ,ψij(σi, σj) =






1−
αin

n
if σi = σj

1−
αout

n
if σi 6= σj

,

∀i ∈ [n] , φi(σi) =
1

q
.

(3.5)

Note that, whenever αin 6= αout, the absence of an edge between two
vertices also encodes information about the planted assignment σ.
As a consequence, there are potentials ψij associated to non-edges Non-edges

(ij) /∈ E, so that the labeled lSBM of equation (3.5) is a pairwise MRF

with respect to the complete graph with n vertices, but not with re-
spect to the graph G generated from the lSBM. However, it is still of
the symmetric form (2.25), so that the analysis of the previous section
shows that BP has a trivial fixed point, and that its stability is con-
trolled by the (huge) non-backtracking operator Bc of the complete
graph, with elements given by (2.33), for i 6= j, k 6= l ∈ [n],

Non-backtracking
operator Bc of the
complete graph

Bc
i→j,k→l = wkl 1(l = i)1(k 6= j) , with weights (3.6)

wkl =






αin pin(ℓkl) −αout pout(ℓkl)

αin pin(ℓkl) + (q− 1)αout pout(ℓkl)
if (kl) ∈ E ,

−
αin −αout

nq−αin − (q− 1)αout
if (kl) /∈ E .

(3.7)

An eigenpair (λ, V) with real eigenvalue λ of this large matrix must
verify, for all (i→ j) such that (ij) /∈ E

Eigenvalue
equations for the
non-edges

λVi→j =
∑

k∈∂i

wkiVk→i +
∑

k/∈∂i
k6=i,j

wkiVk→i , (3.8)

where only the last term depends on the target node j, i. e.

∑

k/∈∂i
k6=i,j

wkiVk→i = −
αin −αout

nq−αin − (q− 1)αout

∑

k/∈∂i
k6=i,j

Vk→i (3.9)

= −
αin −αout

nq

∑

k/∈∂i
k6=i

Vk→i +O

(
1

n

)
(3.10)

Notice that in the last line, we have included back the contribution
Vj→i, which is negligible since the sum contains of the order of n
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terms. As a consequence, in the limit n → ∞, the components Vi→j

corresponding to non-edges do not depend on the target node j, and
we can write equation (3.8) as

Vi→j =Mi +O

(
1

n

)
, ∀(ij) /∈ E , (3.11)

where we have defined n parametersMi. The system of equations (3.8)
then reduce to n equations on Mi for i ∈ [n]

The eigenvalue
equations for the

non-edges reduce to
a system of n

equations on Mi

λMi =
∑

k∈∂i

wkiVk→i −
αin −αout

nq

∑

k/∈∂i
k 6=i

Mk +O

(
1

n

)
, (3.12)

=
∑

k∈∂i

wkiVk→i −
αin −αout

nq

n∑

i=1

Mk +O

(
1

n

)
. (3.13)

The components Vi→j for (ij) ∈ E write

Eigenvalue
equations for the

edges

λVi→j =
∑

k∈∂i\j

wkiVk→i +
∑

k/∈∂i
k6=i

wkiVk→i , (3.14)

=
∑

k∈∂i\j

wkiVk→i −
αin −αout

nq

∑

k/∈∂i
k6=i

Mk +O

(
1

n

)
, (3.15)

=
∑

k∈∂i\j

wkiVk→i −
αin −αout

nq

n∑

i=1

Mk +O

(
1

n

)
. (3.16)

Therefore, when n → ∞, (λ, V) is an eigenpair of Bc if and only if it
verifies the system

Equivalent
eigenproblem in the

limit n→∞

∀(i→ j) ∈ ~E , λVi→j =
∑

k∈∂i\j

wkiVk→i −
αin −αout

nq

n∑

i=1

Mk ,

∀(i→ j) /∈ ~E , Vi→j =Mi ,

∀i ∈ [n] , λMi =
∑

k∈∂i

wkiVk→i −
αin −αout

nq

n∑

i=1

Mk .

(3.17)

Let us now define the more natural non-backtracking operator B of
the graph G by its elements, for (i→ j), (k→ l) ∈ ~E

Non-backtracking
operator B of the

graph G
Bi→j,k→l = wkl 1(l = i)1(k 6= j) , (3.18)

with weights wkl given by equation (3.7) for (kl) ∈ E only. Remark
that if (λ, v) is an eigenpair of B, and if n−1

∑n
i=1mi = 0, were m =

P v, then (λ, V) is an eigenpair of Bc, where

Eigenvectors with
vanishing total
magnetization

∀(i→ j) ∈ ~E , Vi→j = vi→j ,

∀i ∈ [n] , Mi =
mi

λ
.

(3.19)
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Indeed, it is readily checked that the previous assignment satisfies
the set of equations (3.17). In particular, in the large n limit, the
(potential) real eigenvectors of B with large real eigenvalue are unsta-
ble directions of the BP algorithm if the condition n−1

∑n
i=1mi = 0

holds. In the next section, we show that we indeed expect to find
such eigenvectors of B, so that a spectral algorithm algorithm based
on the non-backtracking operator B of the graph G succeeds in recov-
ering the hidden clustering of the vertices. The arguments exposed
in the present section suggests that the non-edge interactions simply
suppress the globally ordered eigenvectors of B, i. e. those whose total
magnetization is finite (see next sections).

To sum up, we will therefore, somewhat improperly, call non-back-
tracking operator of the lSBM the matrix B ∈ R|~E|×|~E| defined by equa-
tion (3.18), which we write as

Non-backtracking
operator of the lSBMB(i→j),(k→l) = wkl 1(l = i)1(k 6= j) , ∀(i→ j), (k→ l) ∈ ~E , (3.20)

where the weights wkl for (kl) ∈ E are given by

wkl =
αin pin(ℓkl) −αout pout(ℓkl)

αin pin(ℓkl) + (q− 1)αout pout(ℓkl)
, ∀(kl) ∈ E . (3.21)

The corresponding pooling matrix is

Pooling matrixPi,(k→l) = wkl 1(l = i) , ∀i ∈ [n], (k→ l) ∈ ~E . (3.22)

3.1.2 Cavity approach to the stability of the paramagnetic fixed point

We study heuristically the statistical properties of the eigenvec-
tors of B on the lSBM, in the limit n → ∞. We stress that our ap-
proach in non-rigorous, and based on the cavity method of statistical
physics [103]. However, we believe these claims to be correct, and will
give rigorous arguments supporting them in some special cases in the
following. We consider in this section a general non-backtracking op- We consider a

non-backtracking
operator with
general weights
wkl = w(ℓkl) for
(kl) ∈ E, with w a
generic weighting
function

erator B ∈ R|~E|×|~E| defined by its elements, for (i → j), (k → l) ∈ ~E

Bi→j,k→l = wkl 1(l = i)1(k 6= j) , (3.23)

where for (kl) ∈ E, wkl = w(ℓkl) is an arbitrary weight, defined
through a weighting function w of the observed label ℓkl. We call
Bayes optimal the choice of weighting function w = w⋆, where w⋆ is
given by

Bayes optimal
weightsw⋆(ℓ) =

αin pin(ℓ) −αout pout(ℓ)

αin pin(ℓ) + (q− 1)αout pout(ℓ)
, ∀ℓ ∈ L . (3.24)

With this choice of weighting function, the non-backtracking opera-
tor is the one obtained in the previous section by linearizing BP in
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the Bayes optimal setting. We expect (and will check) that the per-
formance of a spectral algorithm based on the non-backtracking op-
erator will be best for this particular choice of weights. However, it
is interesting to understand how the performance is degraded if we
do not assume this Bayes optimal setting, e.g. in the case where the
distributions pin and pout are unknown. We therefore consider in the
following a generic weighting function w.

Starting from an arbitrary initial condition v(0) ∈ R|~E|, we consider
the power iteration, for 0 6 l 6 t− 1

Power iteration
v(l+1) =

1

x
B v(l) , (3.25)

where x > 0 is a real constant. As shown in chapter 2, this power
iteration controls the stability of the paramagnetic fixed point of BP in
the Ising model with couplings Jij related to the weights wij of the
non-backtracking operator through

Effective Ising model tanh
(
Jij
)
=
wij

x
, ∀(ij) ∈ E . (3.26)

As argued in section 2.3.2, when we vary the pseudo-temperature x,
this Ising model undergoes phase transitions when x equals an in-
formative eigenvalue of B. As we will see, these phase transitions
are signaled by an instability of the paramagnetic fixed point with re-
spect to ordered, or partially ordered perturbations. We will compute
explicitly the values of x for which these instabilities happen, and this
will give us a precise picture of the spectrum of B.

From the vector v(t) constructed by iterating equation (3.25), we
obtain approximate magnetizations m(t) ∈ Rn by using the pooling
matrix of equation (3.22)

Approximate
magnetizations m(t) =

1

x
P v(t) . (3.27)

Our aim is to say something about the statistics of the components
of m(t), as a function of the choice of the initial condition v(0). In
particular, we are interested in finding out whether, starting from an
initial condition “correlated” with the true cluster assignment of the
vertices, this correlation grows or decays as we iterate B. We shall fix
a vertex I ∈ [n] chosen uniformly at random among the n vertices,
and investigate the distribution of its magnetization m(t)

I conditioned
on the cluster assignment σI ∈ [q] of vertex I.

As noted in section 1.4, the graph G is locally tree-like, so that it is
possible to show ([103, 129]) that for any finite number of iterations t,
m

(t)
I converges in probability to a random variable

P

(
m

(t)
I | σI = σ

)
−→
n→∞

P

(
m

(t)
σ

)
, (3.28)



3.1 the non-backtracking operator 89

where the distribution of the random variables m(t)
σ for σ ∈ [q] is

given in terms of the distribution of other random variables v(t)σ by

m
(t)
σ

D
=
1

x

din∑

i=1

wi,in v
(t)
i,σ +

1

x

∑

τ∈[q]\σ

dτ,out∑

i=1

wi,τ,out v
(t)
i,τ , (3.29)

where D
= means equality in distribution. In this expression, din is

a Poisson random variable with mean αin/q, and the dτ,out for τ ∈
[q]\σ are i.i.d Poisson random variables with mean αout/q. The wi,in

(resp. wi,τ,out) are i.i.d copies of a random variable win (resp. wout)
with distribution

win and wout
P(win = w) = P

(
wij = w | σi = σj

)
,

P(wout = w) = P
(
wij = w | σi 6= σj

)
,

(3.30)

where the wij are the weights of the non-backtracking operator of
equation (3.23). Finally, the variables v(t)σ have the same distribution
as the components v(t)i→j for a randomly chosen directed edge (i→ j),
conditioned on σi = σ. Their distribution is given recursively, for
0 6 l 6 t− 1 by

Distributional
recursionv

(l+1)
σ

D
=
1

x

din∑

i=1

wi,in v
(l)
i,σ +

1

x

∑

τ∈[q]\σ

dτ,out∑

i=1

wi,τ,out v
(l)
i,τ , (3.31)

Note in particular that m(t)
σ has the same distribution as v(t+1)

σ . This
follows from the fact that the excess degree (i. e. the quantity |∂i\j| for
(ij) ∈ E) in a Poissonian graph has the same distribution as the degree.
Equation (3.31) is rigorously valid only for a finite number of itera-
tions l 6 t. However, within the replica symmetric cavity method, Replica symmetric

cavity methodwe will assume that we can take the limit l→∞. Heuristically, since
the smallest loops in a graph generated from the lSBM are of size of
the order of logn, this is justified when the correlations between the
components of the vector v(l) decay fast enough as a function of the
distance between the edges. We will be interested in the evolution of
the total magnetizationM(l), and Edwards-Anderson parameterQ(l)

defined here by

Total magnetization
M(l) and
Edwards-Anderson
parameter Q(l)

M(l) =
1

q

∑

σ∈[q]

E

[
v
(l)
σ

]
,

Q(l) =
1

q

∑

σ∈[q]

E

[(
v
(l)
σ

)2]
.

(3.32)

These quantities are analogous to those defined in chapter 1, and they
control part of the phase diagram of the associated Ising model, as
we will see. We also introduce another parameter which we call P(l),
given by

P(l) = lim
n→∞

=
1

q

∑

σ∈[q]

E

[
v
(l)
σ

]2
. (3.33)
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When P(l) 6= 0 with M(l) = 0, the approximate magnetizations arePartial order
parameter P(l) partially ordered, in the sense that their average on some of the clus-

ters is finite, while their total average vanishes. In particular, the
expected value of the magnetizations on different clusters must be
different. This case corresponds to the informative unstable direc-
tions of chapter 2. Indeed, when the magnetizations take typically
different values on the different clusters, they can be used as (noisy)
indicator functions of the clusters. In the following, we investigate the
evolution of the quantities M(l), Q(l) and P(l) upon iterating B, as a
function of the distribution of the initial conditions v(0)σ , for σ ∈ [q].

Equations of the form (3.31), sometimes called distributional re-
cursions, or density evolution, allow in principle to compute all the
moments of the random variables v(l)σ . In coding theory, they are
the main ingredient allowing to study the performance of BP-based
decoders on sparse graphical codes [103, 129]. The situation is here
greatly simplified by the fact that our equations are linear, which
stems from the fact that we have first linearized belief propagation.
In particular, the first moments evolve according to the linear system,
for σ ∈ [q]

First moments E

[
v
(l+1)
σ

]
=
αin

qx
E[win]E

[
v
(l)
σ

]
+
αout

qx
E[wout]

∑

τ∈[q]\σ

E

[
v
(l)
τ

]
,

(3.34)
This linear system can be written in terms of a q× q matrix whose
eigenvalues are

Eigenvalues of the
first moments

system

λ1 =
1

xq
(αin E [win] + (q− 1)αout E [wout]) =

αE[w]

x
,

λ2 =
1

qx
(αin E [win] −αout E [wout]) =

α∆(w)

x
,

(3.35)

where α is the average connectivity of the graph, given by (3.3), and,
with an abuse of notation, E[w] is the expected value of the weights
in the non-backtracking operator, i. e. the expected value of a random
variable w with distribution

Random variable w P(w) = P
(
wij = w

)
. (3.36)

The parameter ∆(w) defined in equation (3.35) is given by

Parameter ∆(w) ∆(w) =
1

αq
(αin E[win] −αout E[wout]) . (3.37)

The eigenvector associated with λ1 is v1 = (1, 1, . . . , 1)⊺, while λ2 has
an eigenspace of dimension q− 1 equal to the orthogonal of v1. The
second moments of the variables v(l)σ for σ ∈ [q] evolve according to

Second moments

E

[(
v
(l+1)
σ

)2]
=
αin

qx
E
[
w2

in
]

E

[(
v
(l)
σ

)2]

+
αout

qx
E
[
w2

out
] ∑

τ∈[q]\σ

E

[(
v
(l)
τ

)2]
+ E

[
v
(l+1)
σ

]2
.

(3.38)
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We examine three interesting choices of initial conditions, and their
consequences on the spectrum of B. First, we study the stability of
the paramagnetic point with respect to a noisy perturbation , of the Noisy perturbation

form, for σ ∈ [q]

E

[
v
(0)
σ

]
= 0

E

[(
v
(0)
σ

)2]
= Q(0) > 0 , independently of σ

(3.39)

This perturbation is neither globally, nor partially ordered, and we
have M(0) = P(0) = 0. From equation (3.34), it follows that for any

σ ∈ [q], l > 0, E

[
v
(l)
σ

]
= 0, so that M(l) = P(l) = 0. The evolution of

the Edwards-Anderson parameter is given by equation (3.38), which
implies

Q(l+1) =

(
R(w)

x

)2

Q(l) , (3.40)

where R(w) is defined by

R(w)2 =
1

q

(
αin E

[
w2

in
]
+ (q− 1)αout E

[
w2

out
])

= αE
[
w2
]

. (3.41)

Here, w is the random variable introduced in equation (3.36), so that
R(w) is the radius of the bulk of eigenvalues of B conjectured in equa-
tion (2.58). We find that that as long as x > R(w), Q(l) → 0 when the
number of iterations l → ∞. By Chebyshev’s inequality, this implies
that the random variables v(l)σ converge to 0 in probability. In statis-
tical physics terms, the paramagnetic fixed point of the Ising model
with couplings (3.26) is stable with respect to noisy perturbations as
long as x > R(w), and we recover that x = R(w) is the critical pseudo-
temperature associated with the paramagnetic to spin-glass transi-
tion. We expect that any real initial condition that can be written as
a linear combination of the (complex) uninformative eigenvectors of
B will verify the condition (3.39), in the limit n → ∞. Therefore, the
previous argument supports our conjecture that all the uninformative
eigenvectors of B have their associated eigenvalues constrained to the
disk of radius R(w). In the following, we restrict to x > R(w) and
study other types of instability of the paramagnetic fixed point.

As a second choice of initial condition for the power iteration (3.25),
we consider a ferromagnetic, or globally ordered perturbation of the Ferromagnetic

perturbationparamagnetic fixed point, defined for σ ∈ [q] by

E

[
v
(0)
σ

]
=M(0) > 0 , independently of σ ,

E

[(
v
(0)
σ

)2]
= Q(0) > 0 , independently of σ

(3.42)
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From the evolution of the expectations in equation (3.34), it is straight-

forward to check that for all l > 0, σ ∈ [q], we have E

[
v
(l)
σ

]
= M(l),

where the magnetization M(l) is given by

M(l) =

(
αE[w]

x

)l

M(0) . (3.43)

The evolution of the second moments in equation (3.38) implies that

for all l > 0, σ ∈ [q], E

[(
v
(l)
σ

)2]
= Q(l) where the Edwards-Anderson

parameter Q(l) is given recursively for l > 0

Q(l+1) =

(
R(w)

x

)2

Q(l) +

(
αE[w]

x

)2 (
M(l)

)2
. (3.44)

In the limit where the number of iterations l grows to infinity, one of
two things may happen. First, if R(w) > |αE[w]|, we have

(
M(l)

)2

Q(l)
−→
n→∞

0 . (3.45)

In this case, the expected value of v(l)σ is negligible with respect to its
standard deviation, and the initial global order is washed away as the
number of iterations increases. Additionally, for any x > R(w), both
M(l) and Q(l) tend to 0, so that the random variables v(l)σ converge to
0 in probability by Chebyshev’s inequality. We therefore say that for
x > R(w), the paramagnetic fixed point is stable with respect to a fer-
romagnetic perturbation. On the other hand, if R(w) < |αE[w]|, then

(
M(l)

)2

Q(l)
−→
n→∞

(αE[w])2 − R(w)2

(αE[w])2
> 0 . (3.46)

In this case, the standard deviation of v(l)σ is of the same order as its
expected value. Additionally, it holds that

Q(l+1) ∼
l→∞

(
αE[w]

x

)2

Q(l) . (3.47)

In particular, when x > |αE[w]|, both M(l) and Q(l) converge to
0, and the paramagnetic point is stable with respect to a ferromag-
netic perturbation. On the other hand, when R(w) < x < |αE[w]|,
both

∣∣M(l)
∣∣ and Q(l) tend to +∞, so that the paramagnetic point be-

comes unstable. Therefore, whenever |αE[w]| > R(w), B should have
a real eigenvalue αE[w] outside of the bulk of radius R. Note that
this eigenvalue can be positive or negative, depending on whether
the associated Ising model has a ferromagnetic, or anti-ferromagnetic
bias. The approximate magnetizations computed by pooling the cor-
responding eigenvectors are expected to exhibit global order, in the
sense that their average should not vanish in the limit n→∞.
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Finally, we consider a third class of initial conditions corresponding
to a partially ordered perturbation of the trivial fixed point, defined by Partially ordered

perturbationthe conditions

∃σ ∈ [q] ,E
[
v
(0)
σ

]
6= 0

∑

σ∈[q]

E

[
v
(0)
σ

]
= 0

∀σ ∈ [q] ,E

[(
v
(0)
σ

)2]
= Q(0) > 0 .

(3.48)

The first condition ensures that this choice of initial condition is dif-
ferent from the noisy perturbation first considered. Together, the first
two conditions imply that M(0) = 0, but P(0) 6= 0, so that the ini-
tial condition is partially ordered, but not globally ordered. Using
equation (3.34), it is then straightforward to show that for all l > 0,
M(l) = 0, and

P(l) =

(
α∆(w)

x

)2l

P(0) (3.49)

The evolution of the Edwards-Anderson parameter follows

Q(l+1) =

(
R(w)

x

)2

Q(l) +

(
α∆(w)

x

)2

P(l) . (3.50)

Following the same reasoning as for the ferromagnetic perturbation,
we can show that if |α∆(w)| < R(w), then P(l) becomes negligible
compared to Q(l) as l → ∞, so that the partial order disappears.
Additionally, in this case, for any x > R(w), the random variables v(l)σ

converge in probability to 0. On the other hand, when |α∆(w)| > R,
then Q(l) and P(l) stay of the same order as we iterate, with

P(l)

Q(l)
−→
n→∞

(α∆(w))2 − R(w)2

(α∆(w))2
> 0 . (3.51)

and the Edwards-Anderson parameter Q(l) verifies

Q(l+1) ∼
l→∞

(
α∆(w)

x

)2

Q(l) , (3.52)

so that when x < |α∆(w)|, the paramagnetic fixed point is unstable
with respect to partially ordered perturbations. In this case, we expect
B to have an eigenvalue equal to α∆(w) outside of the bulk of radius
R(w). Additionally, we expect this eigenvalue to have multiplicity
q− 1, since it is the dimension of the eigenspace associated with the
eigenvalue α∆(w) in the linear system (3.34). Note that α∆(w) may
be positive or negative. In contrast with the case of the ferromagnetic
perturbation, the approximate magnetizations obtained from pooling
the corresponding eigenvectors should not exhibit global order, but
rather partial order, in the sense that their average on each cluster
should not vanish in the limit n → ∞, while their total average van-
ishes.
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3.1.3 Non-backtracking spectrum of the labeled stochastic block model

Let us summarize the conclusions of the cavity reasoning of the
previous section in the form of a conjecture about the spectrum of
the non-backtracking operator. In the limit n → ∞, we conjecture
that the non-backtracking operator defined in equation (3.23) with a
generic weighting function w has the following rich spectral prop-
erties, depending on the parameters of the symmetric lSBM and the
choice of the weighting function w.

— If |αE[w]| < R(w) and |α∆(w)| < R(w), the whole spectrum of B
lies inside of the disk of radius R(w), and there is no informative
eigenvector of B.

— If |αE[w]| > R(w) and |α∆(w)| < R(w), there is one real eigen-
value of B outside of the bulk of radius R(w). This eigenvalue,
which we call ferromagnetic is equal to αE[w]. The correspond-Ferromagnetic

eigenvalue with
globally ordered

eigenvector

ing approximate magnetizations m ∈ Rn verify

lim
n→∞

1

n

n∑

i=1

mi 6= 0 . (3.53)

We call this eigenvector globally ordered, or ferromagnetic, and it
does not allow to recover the clusters.

— If |αE[w]| < R(w) and |α∆(w)| > R(w), there is one real eigen-
value outside of the bulk of radius R(w). This eigenvalue equals
α∆(w) and has multiplicity q−1. In practice, for finite n, we ob-
serve q− 1 distinct real eigenvalues outside of the bulk, and we
call them informative. For each of these eigenvalues, the corre-Informative

eigenvalue with
partially ordered

eigenvector

sponding approximate magnetizations m ∈ Rn are not globally
ordered, but verify

lim
n→∞

∑

σ∈[q]


q
n

∑

i,σi=σ

mt
i




2

6= 0 . (3.54)

We call these eigenvectors partially ordered, and they allow to de-
tect the clusters using the embedding described in algorithm 1.

— If |αE[w]| > R(w) and |α∆(w)| > R(w), both the ferromag-
netic and the informative eigenvalues are outside of the bulk
of radius R, so that there are q eigenvalues outside of the bulk,
counted with their multiplicity.

To be more explicit, let us write down the expression of the differ-
ent parameters controlling the spectrum in terms of the distribution
pin (resp. pout) of the labels within a cluster (resp. between different
clusters). The bulk of uninformative eigenvalues of B is constrained
to a disk of radius R(w) where

R(w)2 = αE
[
w2
]

=
1

q

∫

L

dℓ
(
αin pin(ℓ) + (q− 1)αout pout(ℓ)

)
w(ℓ)2 .

(3.55)
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When |αE[w]| > R(w), there is a ferromagnetic eigenvalue αE[w]

outside of the bulk of radius R(w), and it equals

αE[w] =
1

q

∫

L

dℓ
(
αin pin(ℓ) + (q− 1)αout pout(ℓ)

)
w(ℓ) . (3.56)

Finally, when |α∆(w)| > R(w), there is an informative eigenvalue
α∆(w) with multiplicity q − 1 outside of the bulk of radius R(w),
and it equals

α∆(w) =
1

q

∫

L

dℓ
(
αin pin(ℓ) −αout pout(ℓ)

)
w(ℓ) . (3.57)

As a corollary of the previous conjecture, we find that a spectral
method based on the non-backtracking operator with weighting func-
tion w succeeds in detecting the clusters if and only if it has informa-
tive eigenvalues outside of the bulk of radius R(w), i. e. if and only if

Detectability
threshold of the
non-backtracking
operator

τ(α,w) =

(
α∆(w)

R(w)

)2

> 1 . (3.58)

Consequently, an optimal weighting function w should maximize the
quantity τ(α,w). Unsurprisingly, it is straightforward to check that
there exists a unique weighting function w that maximizes τ(α,w),
and that it is equal to the Bayes optimal choice w⋆ of equation (3.24).
With the Bayes optimal choice of weighting function, the radius of the
bulk and the informative eigenvalue become equal to

R(w⋆)2 =
1

q

∫

L

dℓ

(
αin pin(ℓ) −αout pout(ℓ)

)2

αin pin(ℓ) + (q− 1)αout pout(ℓ)
,

α∆(w⋆) =
1

q

∫

L

dℓ

(
αin pin(ℓ) −αout pout(ℓ)

)2

αin pin(ℓ) + (q− 1)αout pout(ℓ)
.

(3.59)

Remarkably, with the Bayes optimal weighting function, we have

R(w⋆)2 = α∆(w⋆) , (3.60)

so that the non-backtracking operator with Bayes optimal weights
detects the clusters as soon as Detectability

threshold in the
Bayes optimal
setting

τ(α,w⋆) = R(w⋆)2 > 1 , (3.61)

This transition corresponds to the paramagnetic to spin glass transi-
tion of equation (1.85) in the associated Ising model. The fact that the
paramagnetic to spin glass transition coincides with the detectability
transition, like in the case of the planted spin glass of section 1.6.5, is
specific to the Bayes optimal setting. Indeed, it stems from the fact
that the paramagnetic to ferromagnetic transition on the one hand,
and the paramagnetic to spin glass transition on the other, coincide,
for a gauge transformed model on the Nishimori line. The onset of
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sensitivity to noise of BP, which corresponds to the spin glass tran-
sition, has been used e.g. in [60] to conjecture the detectability tran-
sition (1.47) in the lSBM, in the case of q = 2 clusters. In particular,
for q = 2, detectability is information-theoretically impossible when
R(w⋆) < 1, so that we conjecture the non-backtracking operator to be
optimal, in that it achieves the information-theoretic threshold. For a
larger number of clusters, the situation can more complicated, as we
now discuss.

When the non-backtracking operator with Bayes optimal weightsEasy, hard and
impossible inference fails to detect the clusters (i. e. when R(w⋆) < 1), it also has a spectral

radius smaller than 1. In this case, as shown in chapter 2, the trivial,
paramagnetic fixed point of BP is stable, so that BP also fails to de-
tect the clusters. When this happens, detecting the clusters is either
information-theoretically impossible, as in the case of q = 2 clusters,
or (believed to be) possible but hard [32], depending on the number
of clusters q. This distinction has a simple statistical physics explana-
tion, based on the order of the paramagnetic to ferromagnetic phase
transition in the planted Potts model. Here, the ferromagnetic phase
refers to the detectable phase, in which the marginals of the Potts
model are correlated with the planted clustering. For an “assortative”
Potts model with ∆(w⋆) > 0, this transition is second order for q 6 4,
and first order for q > 5. When the detectability transition is second
order, the instability of the paramagnetic fixed point of BP coincides
with the appearance of a ferromagnetic, informative and stable fixed
point, so that the two fixed points are never both stable. In this case,
detecting the clusters is either impossible (when below the detectabil-
ity transition), or easy (when above), since nothing prevents BP from
converging to its informative fixed point. When the detectability tran-
sition is first order, on the other hand, there is a range of values of the
parameters of the model for which there are two stable fixed points
of BP, namely the paramagnetic one, and another, informative one.
In this range, inference is possible, since the informative fixed point
is stable, but it is believed to be hard, in the sense that the basin
of attraction of the informative fixed point is much smaller than the
one of the paramagnetic fixed point, so that one has to resort to an
exhaustive search to find it. In this case, there exists a information-
computation gap, as explained in chapter 1. A typical way to test for
the existence of this hard phase is to compare the result of BP when
initialized randomly on the one hand, or close to the planted solu-
tion on the other. When the former fails to detect the clusters while
the latter succeeds, the problem is in its hard phase. The problem
becomes easy again above a second transition, the spinodal, at which
the paramagnetic fixed point becomes unstable. Detailed considera-
tions about the impossible, easy and hard phase in various inference
and optimization problems can be found in [166, 168]. The condition
R(w⋆) > 1 computed above corresponds to this spinodal, or hard to
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easy transition. In particular, we conjecture that the spectral method
based on the non-backtracking operator with Bayes optimal weights
is optimal, in the sense that when it fails to detect the clusters in the
symmetric lSBM, then no other polynomial time algorithm can suc-
ceed.

Let us make the link with section 3.1.1, where we have argued that Link with the
non-backtracking
operator of the
complete graph

we could consider the non-backtracking operator B of the graph G,
while the stability analysis in fact yielded the non-backtracking op-
erator Bc of the complete graph. We have seen that the informative
eigenvectors of B are also eigenvectors of Bc provided the correspond-
ing approximate magnetizations verified n−1

∑n
i=1mi = 0. From the

analysis of the previous section, it follows that the q− 1 eigenvectors
corresponding to the partially ordered instability do verify this con-
dition, while the ferromagnetic eigenvector does not. Therefore, we
can interpret the main purpose of the non-edges introduced in the
previous section as to remove the purely ferromagnetic eigenvector
(if it exists). In this case algorithms 1 and 2 can be adapted to define
an embedding in Rq−1 using only the partially ordered eigenvectors.
In practice, it is in general safe to include this eigenvector and use
algorithms 1 and 2 as they are [89].

It is fair to wonder how the condition (3.58) relates to the results Relation to the
necessary condition
ρ (Bc) > 1

of the previous chapter, where we have shown that a necessary con-
dition for BP to recover the clusters is that ρ (Bc) > 1. This condition
corresponds to the instability of the trivial, paramagnetic fixed point
of BP. According to the previous conjecture, we expect that this con-
dition is not sufficient when outside of the Bayes optimal setting, i. e.
with weights w different from the optimal weights w⋆. Indeed, we
may then have R(w) > 1 with τ(α,w) < 1, so that we expect the
spectrum of B to be fully contained in the disk of radius R(w), except
perhaps for an uninformative ferromagnetic eigenvalue, absent from
the spectrum of Bc. In this case, the trivial fixed point of BP is unsta-
ble, since Bc has eigenvalues close in norm to R(w) > 1, but neither
B nor Bc have any informative eigenvalue. Thus we have ρ (Bc) > 1,
but the large eigenvalues of B then correspond to the noisy pertur-
bations identified in the previous section. The behavior of BP in this
situation is unclear. On the one hand, since the trivial fixed point is
unstable, BP will not converge to it. However, the fact that the lead-
ing eigenvalues of Bc are uninformative suggests that BP will either
converge, under sufficient damping, to an uninformative (“glassy”)
solution, or more probably fail to converge at all. Interestingly, this
problem is avoided when using the Bayes optimal weights w⋆. In-
deed, in this case, we have by equation (3.61) that R(w⋆) > 1 if, and
only if τ(α,w⋆) > 1. In particular, we find that both B and Bc have
informative eigenvalues as soon as the trivial fixed point of BP is un-
stable, so that the condition ρ (Bc) > 1 is both necessary and sufficient
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to recover the clusters. This fact is in fact not surprising, and stems
from the previously mentioned properties of the Nishimori line.

Finally, we note that the conjecture presented in this section is
consistent with previous rigorous results in some particular cases.Rigorous results

The rigorous foundations for the study of the spectrum of the non-
backtracking operator on random graphs were laid by Bordenave,
Lelarge and Massoulié in [19], who studied the non-backtracking op-
erator associated with the unlabeled SBM. In this case, the label setSpectrum of the

unweighted
non-backtracking

operator on the SBM

L is reduced to a single element, so that varying the weighting func-
tion w only amounts to multiplying the non-backtracking operator
by a global factor, without affecting its spectral properties. With the
choice wkl = 1 , ∀(kl) ∈ E, the non-backtracking operator is said to
be unweighted, and its elements are given, for (i→ j), (k→ l) ∈ ~E, by

Bi→j,k→l = 1(l = i)1(k 6= j) . (3.62)

This corresponds to the non-backtracking operator as first introduced
in [89] and considered in the rigorous analysis of [19] 1. In this case,
our conjecture predicts that the ferromagnetic eigenvalue, the infor-
mative eigenvalue, and the edge of the bulk are given respectively by

αE[w] = α ,

α∆(w) =
αin −αout

q
,

R(w) =
√
α ,

(3.63)

so that the detectability condition becomes

τ(α,w) =

(
αin −αout

q
√
α

)2

> 1 , (3.64)

which is equivalent to the conjecture (1.44) of [32]. When above this
transition, [19] proved that the leading eigenvalue of B is α, that the
second largest eigenvalue is αin−αout

q , with multiplicity q− 1, and that
all other eigenvalues are smaller than

√
α in modulus. When below

the transition, they proved, in agreement with the previous conjec-
ture, that the leading eigenvalue of B is α, and that all other eigen-
values are smaller in modulus than

√
α. The proof technique of [19]

relies heavily on a certain symmetry of the non-backtracking operator,
which they call “PT-invariance”, where “PT” stands for parity-time.PT-invariance

More precisely, we denote by M the involution of R|~E| with matrix
elements

Mi→j,k→l = 1(l = i)1(k = j) . (3.65)

This operator maps a directed edge (k → l) onto its inverse (l → k),
so that it is clear that M⊺ = M and M2 = I

|~E|
. The PT-invariance

states that, while B is not a symmetric matrix, the matrix MBl for any

1. [19, 89] consider the transpose of this matrix, which has the same eigenvalue
spectrum.



3.1 the non-backtracking operator 99

l > 0 is symmetric. The proof of this invariance is straightforward,
and uses the fact that all the non-zero entries of the unweighted non-
backtracking operator are equal to unity. In the rest of this disserta-
tion, we extend some of the techniques of [19] to a particular case of
the lSBM. An important step in these extensions will be the general-
ization of the PT-invariance to a weighted non-backtracking operator.

In the next section, we show that the spectral density of the un-
weighted non-backtracking operator can be computed using statisti-
cal physics methods.

3.1.4 Cavity approach to the spectral density of the non-backtracking oper-
ator

In this section, we continue our investigation of the spectral prop-
erties of the unweighted non-backtracking operator defined in equa- We consider in this

section the
unweighted
non-backtracking
operator.

tion (3.62). The results presented here were published in [140]. We in-
vestigate the spectral density of B on locally tree-like random graphs
using the non-rigorous cavity method, and show that it is non-vanish-
ing only in a disk of radius

√
ρ(B) where ρ(B) is the spectral radius

of B. In the case of the SBM, ρ(B) = α, so that we recover the results of
[19, 89] that the bulk of the spectrum of B is constrained to the disk
of radius

√
α.

Analytical results for spectral densities on sparse random graphs
are largely based on the replica or cavity methods, and were mostly
developed and studied for symmetric random matrices [40, 91, 130,
132, 145]. The result most relevant to the present section is that the
tails of the spectrum of the commonly studied matrices associated
with random graphs (including the adjacency and Laplacian matrices)
are extended, see e.g. [84, 91, 145]. The spectral density of the non-
backtracking operator, on the other hand, has a finite support, and
we would like to provide a statistical-physics based explanation to
this fact.

We derive the spectral density of the non-backtracking operator for
random locally tree-like graphs G = ([n], E) in the limit of large size
n→∞. We use the methods of [40, 91, 130, 132] based on expressing
the spectral density as the internal energy of a disordered system with
quenched disorder. In particular we use the method applied to non-
symmetric matrices as developed in [113, 131]. The corresponding
disordered system is then studied using the cavity method and the
associated BP algorithm.

Our main result is the discovery of a phase transition in the disor-
dered system associated with the spectrum of the non-backtracking
operator which translates to the fact that the spectral density can be
finite only inside a circle of radius equal to the square root of the
leading eigenvalue (a fact that was indeed proven in [89]). This is
fundamentally different from the spectral properties of the commonly
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considered operators associated with a sparse random graph where
the tails of the spectrum are unbounded in the limit of large size. The
presence of this phase transition provides a physics-based explana-
tion of the superior performance of spectral methods based on the
non-backtracking operator.

Statistical physics formulation

We map the computation of the spectral density to a problem of
statistical physics of disordered systems. We use straightforwardly
the method of [131], with the only difference that we use the Ihara-
Bass formula, which is specific to the non-backtracking operator, to
simplify slightly the subsequent analysis. Using the results of sec-
tion 2.3.1, it is straightforward to show that in this unweighted case,
all the eigenvalues λi of the B that are different from ±1 are the roots
of the polynomial, for z ∈ C,

det
[
D− zA− (1− z2) In

]
=

2n∏

i

(z− λi) . (3.66)

where A is the adjacency matrix of the graph, and D is the diagonal
matrix with entry Dii = |∂i| for i ∈ [n]. We define the spectral density
of B at z ∈ C as

Spectral density ν(z) =
1

2n

2n∑

i=1

δ(z− λi) . (3.67)

We use the complex representation of the Dirac delta

δ(z− µ) =
1

π
∂z̄(z− µ)

−1 , (3.68)

where, for z = x+ iy, ∂z̄ = 1/2 (∂x + i∂y) is the Wirtinger derivative,
so that

ν(z) =
1

2πn
∂z̄∂z log det

[
(D− zA− (1− z2)In)

†
(D− zA− (1− z2)In)

]
,

(3.69)
whenever z is not an eigenvalue of B. Here and in the rest of this
section, we denote by X† the conjugate-transpose of X. To make this
formula valid for all z ∈ C, we add an infinitesimal regularizer ǫ2In
in the determinant, so that one can rewrite

ν(z) = lim
ǫ→0

1

2πn
∂z̄∂z log detMǫ , (3.70)

where Mǫ is a 2n× 2n matrix given by

Mǫ(z,A) =

(
ǫ1 i(D− zA− (1− z2)In)

i(D− zA− (1− z2)In)
†

ǫ1

)
.
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All the eigenvalues of this matrix have a strictly positive real part
equal to ǫ, so we can use the complex Gaussian representation of the
determinant

(detMǫ)
−1 =

(
1

π

)2n
∫

exp


−

2n∑

j,k=1

ψjMjkψk




2n∏

j=1

d2ψj , (3.71)

where for z = x+ iy ∈ C, d2z = dxdy. It will prove convenient ([131])
to group the complex variables ψj for j ∈ [2n] in pairs

χj =

(
ψj

ψj+n

)
, ∀j ∈ [n] . (3.72)

Finally, the computation of the spectral density has been mapped to
a statistical physics problem

ν(z) = − lim
ǫ→0

1

2πn
∂z̄∂z logZǫ , (3.73)

where we have introduced a partition function

Zǫ =

∫

Dχ exp
(
−Hǫ(χ)

)
, (3.74)

where

Dχ =

2n∏

j=1

d2ψj (3.75)

and the corresponding Hamiltonian (or energy) is given by

Hamiltonian

Hǫ(χ) =

n∑

j=1

χj
†

(
ǫ idj − i(1− z

2)

idj − i(1− z̄
2) ǫ

)
χj

+ i
∑

(jk)∈E

χj
†

(
0 −z

−z̄ 0

)
χk .

(3.76)

In this last expression, and in the following, we denote by dj = |∂j| the
degree of vertex j in the graph G. Computing the derivative with re-
spect to z, we can express, as in [131], the spectral density in terms of
“expectations” with respect to the (complex) Boltzmann distribution
exp

(
−Hǫ(χ)

)
/Zǫ, as

Spectral density as a
function of
expectations

ν(z) = lim
ǫ→0

i

πn
∂z̄


z

n∑

j=1

E

[
χ
†
jσ+χj

]
−

∑

(jk)∈E

E

[
χ
†
jσ+χk

]

 , (3.77)

where σ+ is a so-called Pauli matrix

σ+ =

(
0 1

0 0

)
, (3.78)
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and the expectation of a function f(χ) is defined formally as

E
[
f(χ)

]
=

∫

Dχ f(χ)
exp (−Hǫ(χ))

Zǫ
(3.79)

While the “Boltzmann distribution” happens to be complex here, the
problem is formally reduced to computing the expectations of the one
and two-points marginals Pj(χj) and Pjk(χj, χk), for j ∈ [n], (kl) ∈ E,
of a pairwise MRF defined by the energy function (3.76). Since the
graph is assumed to be sampled from a locally tree-like random en-
semble, we will compute these marginals using the replica symmetric
cavity method, i. e. BP.

The cavity method

We write the energy (3.76) as

Hǫ(χ) =

n∑

j=1

Hj(χj) +
∑

(jk)∈E

Hjk(χj, χk) , (3.80)

where we have defined the single variable and pairwise energies

Single variable and
pairwise energies

Hj(χj) = χ
†
j

(
ǫ idj − i(1− z

2)

idj − i(1− z̄
2) ǫ

)
χj

Hjk(χj, χk) = −i χ
†
j

(
0 z

z̄ 0

)
χk − i χ

†
k

(
0 z

z̄ 0

)
χj .

(3.81)

The BP fixed point equations then read, for (j→ k) ∈ ~E

BP equations bj→k(χj) ∝ e−Hj(χj)
∏

l∈∂j\k

∫

e−Hjl(χj,χl) bl→j(χl)Dχl , (3.82)

where Dχl = d2ψl d
2ψl+n. When a fixed point of BP has been

found, we obtain an approximation to the single point marginals
Pj(χj) ≈ bj(χj) (with equality if the graph is a tree [133]) where

bj(χj) ∝ e−Hj(χj)
∏

l∈∂j

∫

e−Hjl(χj,χl) bl→j(χl)Dχl . (3.83)

Since the Hamiltonian (3.76) is quadratic, the variables χi for i ∈
[n] are bi-variate complex Gaussians with mean 0, so that we can
parametrize

Gaussian
parametrization of

the beliefs

bj→k(χj) =
1

π2 det∆j→k
e−χ

†
j(∆j→k)

−1
χj , (3.84)

bj(χj) =
1

π2 det∆j
e−χ

†
j(∆j)

−1
χj , (3.85)
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where the 2× 2 matrices ∆ are constrained by symmetry arguments
(see [131]) to the form

∆ =

(
x iȳ

iy x

)
, (3.86)

where x is real and non-negative, and y ∈ C. Injecting this form
in (3.82)-(3.83), we find that the BP fixed point equations translate
into the following fixed point equations for the parameters x and y

BP fixed point
equations as a
function of x and y

xj→k

x2j→k+|yj→k|2
= ǫ+ |z|2

∑

l∈∂j\k

xl→j , (3.87)

yj→k

x2j→k+|yj→k|2
= (1− dj − z

2) − z2
∑

l∈∂j\k

yl→j , (3.88)

xj

x2j+|yj|2
= ǫ+ |z|2

∑

l∈∂j

xl→j , (3.89)

yj

x2j+|yj|2
= (1− dj − z

2) − z2
∑

l∈∂j

yl→j . (3.90)

In the following, we take ǫ = 0. To obtain an expression for the
spectral density (3.77), it only remains to express the expectations

E

[
χ
†
jσ+χj

]
and E

[
χ
†
jσ+χk

]
in terms of the variables x and y. From (3.85),

we find that
E

[
χ
†
jσ+χj

]
= iyj . (3.91)

To express E

[
χ
†
jσ+χk

]
, we need the two-points marginal Pjk(χj, χk).

Since (jk) ∈ E, this is simple to estimate from the BP beliefs

Pjk(χj, χk) ∝ bj→k(χj)bk→j(χk)e
−Hjk(χj,χk) . (3.92)

Some algebra then yields

E

[
χ
†
jσ+χk

]
= i
(
−zyk→jyj + z̄xk→jxj

)
. (3.93)

Replacing in (3.77) and using the BP recursions (3.87) - (3.90), the
spectral density takes the form

ν(z) = −
1

2πnz

n∑

j=1

(
1− dj + z

2
)
∂z̄ yj . (3.94)

By differentiating (3.87)-(3.90), we obtain a set of closed form equa- Fixed point
equations for the
derivatives of
x and y

tions for the derivatives of the variables x and y, which we iterate to
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compute these derivatives without resorting to numerical differentia-
tion

∂z̄xj→k =− xj→k

(
xj→kAj→k − yj→k Bj→k

)
(3.95)

+ yj→k

(
xj→kCj→k + yj→kAj→k

)
,

∂z̄yj→k =− xj→k

(
yj→kAj→k + xj→k Bj→k

)
(3.96)

− yj→k

(
−yj→kCj→k + xj→kAj→k

)
,

∂z̄yj→k =− yj→k

(
xj→kAj→k − yj→k Bj→k

)
(3.97)

− xj→k

(
xj→kCj→k + yj→kAj→k

)
,

where we have defined messages A,B and C which verify

Aj→k =
∑

l∈∂j\k

(zxl→j + |z|2∂z̄xl→j) , (3.98)

Bj→k = 2 z̄+
∑

l∈∂j\k

(2 z̄ yl→j + z̄
2∂z̄yl→j) , (3.99)

Cj→k = z2
∑

l∈∂j\k

∂z̄yl→j . (3.100)

The expressions for the derivatives of the variables xj and yj are sim-
ilar, expect that the quantities Aj→k, Bj→k and Cj→k are replaced by
Aj, Bj and Cj, whose definition is given by (3.98)-(3.100), with the
only difference that the sums become over all the neighbors of j.

Equations (3.87)-(3.88) and (3.95)-(3.100) are self-consistent BP equa-
tions which, when iterated, converge to a set of solutions xj→k, yj→k,
∂z̄xj→k, ∂z̄yj→k, ∂z̄yj→k. We then compute the variables xj, yj, ∂z̄xj,
∂z̄yj, ∂z̄yj using equations (3.89)-(3.90) and the counterpart of equa-
tions (3.95)-(3.100) for the variables Aj, Bj and Cj as explain previ-
ously. This finally allows us to compute the spectral density using
expression (3.94).

The paramagnetic phase

It is straightforward to check that the following assignment of the
messages is a fixed point of the belief propagation equations

Paramagnetic fixed
point of BP

xj→k = 0 ∀(j→ k) ∈ ~E ,

yj→k = −
1

z2
∀(j→ k) ∈ ~E .

(3.101)

We call this the factorized fixed point. The corresponding variables xj
and yj verify

xj = 0 ∀j ∈ [n] ,

yj =
1

1− z2
∀j ∈ [n] .

(3.102)

With this solution, we have ∂z̄yj = 0 for all j ∈ [n] so that, from (3.94),
the spectral density is ν(z) = 0. As a consequence, for any z ∈ C
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such that the fixed point (3.101) is stable, the corresponding spectral
density ν(z) vanishes. We will refer to this region of the complex
plane as the paramagnetic phase. To study the stability of this solution,
we linearize the belief propagation equations (3.87)-(3.88) around the
trivial fixed point. Writing xj→k = 0+ δx0j→k , yj→k = −1/z2+ δy0j→k

where δx0j→k ∈ R, δy0j→k ∈ C are infinitesimal initial perturbations,
the evolution of these perturbations when iterating the BP equations
is given by the system

Linearization around
the paramagnetic
fixed points

δxt+1
j→k =

1

|z|2

∑

l∈∂j\k

δxtl→j ,

δyt+1
j→k =

1

z2

∑

l∈∂j\k

δytl→j .
(3.103)

As usual, we can write the perturbations as vectors δxt, δyt ∈ R|~E|,
and we obtain that the evolution of the perturbations is governed by
the unweighted non-backtracking operator B through the iteration

δxt+1 =
1

|z|2
B δxt ,

δyt+1 =
1

z2
B δyt .

(3.104)

Therefore, we find that the paramagnetic phase corresponds to the
region |z|2 > ρ(B), where ρ(B) is the spectral radius of the non-
backtracking operator. As a consequence, the support of the spectral
density, i. e. the bulk of eigenvalues of B, is contained in the disk

Radius of the disk
supporting the
spectral density

|z| 6
√
ρ(B) , (3.105)

at the boundary of which there is a phase transition in the model de-
fined by the Hamiltonian (3.76). We expect the above result to hold for Validity of the

previous resultsthe unweighted non-backtracking operator of any graph such that the
cavity method provides asymptotically correct predictions. We expect
this to encompass at least all locally tree-like ensembles. In particular,
for an Erdős-Rényi random graph, we have ρ(B) = α where α is the
average connectivity of G, so that our results our consistent with the
rigorous results of [19].

The existence of a factorized fixed point, and hence of a paramag- Comparison with
other linear
operators

netic phase in which the spectral density is exactly 0, seems to be a
special feature of the non-backtracking matrix. For instance, one can
compute the spectral density for the (symmetric) adjacency matrix A,
see e.g. [132]. The Hamiltonian is then again quadratic, and couples
n Gaussian variables, whose marginals are completely determined by
their (complex) variance ∆j for j ∈ [n]. The spectral density can then
be shown to be proportional to the average of the quantities Im

(
∆j

)

over the graph. More precisely, to compute the spectral density at
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Figure 3.1 – Spectral density of the non-backtracking matrix in log z-scale.
Comparison between the result of belief propagation and direct
diagonalization, on graphs of average degree α = 3. Figure
(a) is the result of applying BP to a single graph of size n =

10000, on a grid of 600× 600 different points z ∈ C. Figure (b)
was obtained by diagonalizing 1000matrices of size 3000× 3000.
The origins of the differences are discussed in the text. Figure
taken from [140].

λ ∈ R, we need to find a solution to the fixed point equations, for
z ∈ C such that Re (z) = λ,

∆j→k =


z−

∑

l∈∂j\k

∆l→j




−1

. (3.106)

These equations in general do not admit a factorized (site-independent)
solution, expect on regular graphs. The spectral density of the ad-
jacency matrix instead exhibits Lifshitz tails [84] that spoil the gap
between the bulk and the informative eigenvalues, associated with
the cluster structure of the graph. Similar results hold for the other
matrices commonly used for spectral clustering. In section (3.2.1), we
show that the analog of equation (3.106) for the Bethe Hessian H(x) of
equation (2.67) does admit a “trivial solution”, yielding a vanishing
spectral density ν(λ) = 0 for λ in an open neighborhood of 0, for a
certain range of values of x. Therefore, like the non-backtracking op-
erator, and contrary to e.g. the adjacency matrix, we expect the Bethe
Hessian to have a well-behaved bulk of uninformative eigenvalues,
well separated from the potential informative eigenvalues.

Numerical results

We solve the belief propagation equations on a single graph. We
discretize a chosen z-domain using a grid of points at which we com-
pute the spectral density by iterating (3.87)-(3.88) and (3.95)-(3.97) un-
til convergence, and finally outputting (3.94).
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Figure 3.2 – Slices of the spectral density of B along two lines: compari-
son between BP (black line), and histograms of the eigenval-
ues of B on graphs of various sizes n, and average connectivity
α = 3. For each n, we diagonalized a number of random ma-
trices B such that the total number of eigenvalues obtained is
equal to 106. We then extracted the eigenvalues close to the
line Im(z) = 0.8 for the left panel, and those close to the line
Im(z) = 1.3 for the right panel. BP was run on a single graph of
size n = 104 for the figure of the right panel, and the spectral
density was computed at 1000 points along the line Im(z) = 1.3.
For the figure of the left panel, we used BP to compute the spec-
tral density at 200 points along the line Im(z) = 0.8, and we
averaged the results obtained for 500 different graphs of size
n = 104. For the left figure, we additionally smoothed the result
of BP by setting to the spectral density to the average spectral
density computed at 5 neighboring points, to reduce the strong
finite size effects that we observed. Figure taken from [140].
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Figure 3.3 – Convergence time and spectral density computed by BP at 500
points along the line Im(z) = 0 .8, on a single graph of size
n = 10000 nodes, and with an average degree of α = 3. Com-
parison with figure 3.2 shows that the location of the peaks
inside the circle depends on the instance of the graph. The con-
vergence time is defined as the number of iterations of BP that
are needed for the variation of the messages of equations (3.87)-
(3.88) and (3.95)-(3.100) to be smaller than 10−7 , between two
consecutive iterations. Figure taken from [140].

The left panel of figure 3.1 shows the results of BP for a typical
random graph of size n = 10000, with average connectivity α = 3.
For comparison, we show on the right panel of figure 3.1 the spec-
tral density estimated by histogramming the eigenvalues of the non-
backtracking operator for many different realizations of the graph
G. The discrepancies between the two figures are of two types. TheTwo types of

discrepancies first type consists of the tails that extend beyond the black circle in
the direct diagonalization case. These represent sub-extensive contri-
butions to the spectral density as can be seen from figure 3.2, that
disappear in the thermodynamic limit, in agreement with the predic-
tion of BP. The second type of discrepancy consist of the internal tails
inside the circle in the right panel of figure 3.1, that are absent from
the left panel of the same figure. As can be seen from 3.2, these tails
do not seem to vanish in the large n limit.

We investigated several possible explanations for this second kind
of discrepancy. The first was the possibility of a replica symmetry
breaking (RSB), for which we found no evidence. Figure 3.3 showsNo evidence of

replica symmetry
breaking

the convergence time of BP along the line Im(z) = 0.8, which stays
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Figure 3.4 – Inverse participation ratio (IPR) of the eigenvectors of B, ob-
tained by direct diagonalization of a graph of size n = 3000.
The color scale represents the logarithm of the IPR of the (nor-
malized) eigenvectors, defined as the sum of the fourth power
of their components. The internal tails consist of eigenvalues
whose corresponding eigenvectors are localized (IPR close to 1).
Figure taken from [140].

finite on the internal tails. In our different numerical experiments,
the algorithm always converged. Note that the peaks in the conver-
gence time correspond to phase transitions in the statistical physics
system, taking place at the boundary of the support of the spectral
density. Outside of the disk of radius

√
ρ(B), we find that BP does

indeed converge to the trivial solution (3.101). However, there seems
to be another region with vanishing spectral density inside the disk of
radius

√
ρ(B), where BP converges to a non-trivial fixed point such

that the expression (3.94) also vanishes.
Our second line of investigation focused on very localized peaks Localized peaks

that we see in rare cases in the BP solution for z in the range of the
internal tails, an example of which is shown on figure 3.3. If a peak
in the spectral density is very localized then we might miss it simply
because of the finite resolution of the grid used to discretize the z-
domain. By averaging the result of BP over 500 graphs, as in figure
3.2, we recover a non-vanishing spectral density on the internal tails,
although the finite size effects are strong.

Lastly, we investigated the localization of the eigenvectors corre- Localized
eigenvectors of B
inside the disk

sponding to eigenvalues located in the inner tails. Figure 3.4 shows
the inverse participation ratio of the eigenvectors of B. We found
that the eigenvectors corresponding to the inner tails are more lo-
calized than the others. It is unclear to us how this influences the
behavior of BP on a single graph and if it can explain the discrepancy
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Figure 3.5 – Spectral density of B computed by BP for increasing values of
the average connectivity α. For each value of α, BP was run on
a single realization of an Erdős-Rényi graph with average con-
nectivity α and n = 104 vertices. When α becomes larger, the
support of the spectral density becomes closer to the circle of
radius

√
α, as expected by comparison with the case of random

regular graphs. Figure taken from [140].

we see between the single graph runs and their averages over many
runs. On the other hand in population dynamics [103] (which is an
alternate way of solving the cavity equations), which we also imple-
mented, this is clearly a possible source of problems. Equation (3.94)
expresses the spectral density as a sum of complex variables, the sum
of which should have a vanishing imaginary part, since the spectral
density must be a real and non-negative number. We found that the
cancellation of the imaginary parts indeed takes place when we run
BP on a single graph, but not in our implementation of population
dynamics with populations of size up to S = 106 and equilibration
time 104×S per point. It is possible that the events that correspond to
localized eigenvectors are encountered only very rarely in the popu-
lation dynamics and hence usual magnitudes of population sizes and
equilibration time are not sufficient here.

In the case of random regular graphs of connectivity d, it is straight-Large connectivity
limit forward to show that the spectral density of B is non-zero only pre-

cisely on the circle of radius
√
d− 1 ([89]). For an Erdős-Rényi graph,

when the average connectivity α becomes larger, the fluctuations of
the degrees of the nodes become negligible compared to the average
connectivity, so that spectral density to become non-zero only in a
region close to the circle of radius

√
α (recall that for a Poissonian

graph, the excess degree has the same distribution as the degree). It
can be checked on figure 3.5 that this is indeed what happens.

As a conclusion, the study of the spectral density of the non-back-
tracking operator in the thermodynamic limit by means of the cav-
ity method allows to understand better its remarkable efficiency to
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perform spectral clustering. A phase transition-like behavior at the
boundary of the circle of radius

√
ρ(B) provides physical insight on

why its spectral density vanishes sharply instead of exhibiting Lif-
shitz tails, like other popular choices of spectral methods. Addition-
ally we identified puzzling properties of the interior tail of the spec-
trum. Their more complete understanding requires further work. In
principle, the method used here in the case of the unweighted non-
backtracking operator can be extended to a general non-backtracking
operator with arbitrary weights, although the analysis becomes more
complex. In the following, we will instead study the spectral density
of the Bethe Hessian with arbitrary weights, which will turn out to
be much simpler, owing to the fact that it is a symmetric matrix.

3.2 the bethe hessian

Recall the definition of the Bethe Hessian H(x), with elements, for Bethe Hessian and
associated
non-backtracking
operator

x ∈ C\
{
± tanh

(
Jij
)}

(ij)∈E

Hij(x) =

(
1+

∑

k∈∂i

tanh2(Jik)

x2 − tanh2(Jik)

)
1(i = j)−

x tanh(Jij)

x2 − tanh2(Jij)
1(j ∈ ∂i)

(3.107)
In the previous expression, the couplings Jkl for (kl) ∈ E are arbi-
trary real numbers. In chapter 2, we have shown that this matrix is
tightly related to the non-backtracking operator with elements, for
(i→ j), (k→ l) ∈ ~E

Bi→j,k→l = wkl 1(l = i)1(k 6= j) , (3.108)

where the weights verify, for (kl) ∈ E,

wkl = tanh(Jkl) . (3.109)

Conversely, given an arbitrarily weighted non-backtracking operator
of the form (3.108), we may, without affecting the spectral properties
of B, rescale it by a global positive constant such that all the weights
verify |wkl| < 1, for (kl) ∈ E. We may then define couplings through
equation (3.109), and the corresponding Bethe Hessian through equa-
tion (3.107). We will therefore say that the weighted non-backtracking
operator (3.108) and the Bethe Hessian (3.107) are associated, provided
the couplings of the Bethe Hessian are related to the weights of B
by (3.109).

The point of this section is to explore and formalize the relation-
ships between the two matrices, that we began to uncover in chap-
ter 2. We first show that the spectral density of the Bethe Hessian
can be computed via methods similar to those used for the non-
backtracking operator in section 3.1.4. This will allow us to relate
the spectral properties of H(x) to those of B, justifying in part the
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heuristic picture of section 2.3.1 about the evolution of the spectrum
of H(x) as we decrease x from a large positive value. In the second
part of this section, we show rigorous identities relating H(x) and B,
including the generalized Ihara-Bass formula used in section 2.3.1.

3.2.1 Cavity approach to the spectral density of the Bethe Hessian on the
labeled stochastic block model

We consider here the same setting as in section 3.1.2. More pre-
cisely we assume that the graph G is generated from the sparse
lSBM, and take the non-backtracking operator of equation (3.108) with
weights wkl = w(ℓkl) for (kl) ∈ E, where w is an arbitrary weighting
function of the observed labels ℓkl. The associated Bethe Hessian is
given by equation (3.107), with couplings defined through (3.109).

Using the same kind of techniques as those described in section 3.1.4,
it is possible to argue [132, 133] that in the limit n → ∞, the smooth
part (in which potential delta peaks have been removed) of the spec-
tral density νx(λ) of the Bethe Hessian H(x) on sparse graphs verifies

Spectral density of
the Bethe Hessian

νx(λ) = lim
n→∞

1

n

n∑

i=1

δ(λ− λi) ,

= lim
n→∞

1

πn

n∑

i=1

Im(∆i) .

(3.110)

where the λi are the eigenvalues of H(x), and we have introduced
complex variables ∆i, which depend on x and λ although we do not
write the dependence explicitly to lighten the notations. The ∆i ∈ C

for i ∈ [n] verify

∆−1
i =− λ+ 1+

∑

k∈∂i

tanh2(Jik)

x2 − tanh2(Jik)

−
∑

k∈∂i

(
x tanh(Jik)

x2 − tanh2(Jik)

)2

∆k→i ,

(3.111)

and the ∆i→j ∈ C for (i → j) ∈ ~E are the linearly stable solution of
the system

Fixed point equation
for the ∆i→j

∆−1
i→j =− λ+ 1+

∑

k∈∂i

tanh2(Jik)

x2 − tanh2(Jik)

−
∑

k∈∂i\j

(
x tanh(Jik)

x2 − tanh2(Jik)

)2

∆k→i .

(3.112)

The steps to derive these equations are very similar (but simpler
because H(x) is symmetric) to the computations performed in sec-
tion 3.1.4, and can be found in [132]. The main idea is once more
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to map the computation of the spectral density to a marginaliza-
tion problem in a certain statistical physics problem with a complex,
quadratic Hamiltonian, and then solve this marginalization problem
using BP, which we believe to be exact on sparse random graphs, in
the limit n → ∞. In this case, running BP amounts to iterating the
fixed point equation (3.112) until convergence, starting from a ran-
dom initial condition. The solution found by BP must therefore be
linearly stable. Numerical simulations showing the very high accu-
racy of this approach will be presented in chapters 5 and 8.

It is worth noting that, unlike the previous, non-symmetric case,
this approach to the computation of the spectral density of a sparse
symmetric matrix has been made rigorous in some cases. In partic- Rigorous results

ular, in the unweighted setting, corresponding to uniform couplings
Jij for (ij) ∈ E, when the underlying graph is random and locally
tree-like, it is possible to show that the variables ∆i for i ∈ [n] and
∆i→j for (i → j) ∈ ~E converge in probability to random variables
verifying a distributional fixed point equation. It was shown by [18]
that this distributional fixed point equation has a unique solution,
and that this solution allows to compute the spectral density in the
limit n → ∞ 2. The same authors show that these rigorous results
generalize to weighted sparse and symmetric matrices when their di-
agonal elements vanish, which is not the case for the Bethe Hessian.
However, we will see numerically in chapter 8 that, although not yet
rigorous, the present approach based on BP allows to estimate very
accurately the spectral density of H(x).

The aim of this section is to justify analytically part of the heuris-
tic picture presented in section 2.3.1, where we have argued that, as Qualitative

evolution of the
spectral density of
H(x) with x

we decrease x from a large positive value, the bulk of uninformative
eigenvalues of H(x) is shifted to the left, until its left edge reaches the
λ = 0 axis precisely at x = R(w), where R(w) the radius of the bulk of
uninformative eigenvalues of the associated non-backtracking opera-
tor B. An idealized cartoon of this picture is presented in figure 3.6 3.

From the results of section 3.1.3, the radius R(w) is given by

Radius of the
bulk of B

R(w) =

√
αE [w2] ,

=

√
αE

[
tanh2(J)

]
,

(3.113)

where we recall that we abuse our notation by also calling w a ran-
dom variable with the same distribution as the weights wkl for (kl) ∈
E of B, and similarly, J is a random variable with the same distribu-
tion as the couplings Jkl for (kl) ∈ E of H(x). In partial justification

2. We show in chapter 5 how to solve numerically this distributional equation.
3. We solve numerically equation (3.112) in two different settings in chap-

ters 5 and 8, and show that the corresponding spectral density is indeed qualitatively
close to the cartoon of figure 3.6.
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Figure 3.6 – Cartoon of the spectral density of the Bethe Hessian H(x) for
various values of x, in the limit n → ∞. For large enough x,
H(x) is positive definite. As we decrease x, the bulk of uninfor-
mative eigenvalues if shifted to the left, and reaches the λ = 0

axis when x = R(w), where R(w) is the radius of the bulk of the
spectrum of the associated non-backtracking operator B, with
weights related to the couplings of the Bethe Hessian by (3.109).

of this picture, we now show that whenever x > R(w), there exists an
open set around λ = 0 in which the spectral density vanishes.

From equation (3.110), a sufficient condition for the spectral density
to vanish is for equation (3.112) to have a real and stable solution.
We will show that such a solution exists for λ close to 0, whenever
x > R(w). To this end, we introduce first, for each λ ∈ R, a function
Gλ : ∆ ∈ R|~E| → Gλ(∆) ∈ R|~E|, where for ∆ ∈ R|~E| the components of
Gλ(∆) are given, for (i→ j) ∈ ~E by

Gλ : R|~E| → R|~E|

(Gλ(∆))i→j =

(
− λ+ 1+

∑

k∈∂i

tanh2(Jik)

x2 − tanh2(Jik)

−
∑

k∈∂i\j

(
x tanh(Jik)

x2 − tanh2(Jik)

)2

∆k→i

)−1

,

(3.114)

so that ∆ is a real solution of the fixed point equation (3.112) if, and
only if

Gλ(∆) = ∆ . (3.115)

We also require a function F : (λ,∆) ∈ R|~E|+1 → F(λ,∆) ∈ R|~E| where,
for λ ∈ R, ∆ ∈ R|~E|

F : R|~E|+1 → R|~E|
F(λ,∆) = Gλ(∆) −∆ . (3.116)

The fixed point equation (3.115) is therefore equivalent to

F(λ,∆) = 0 . (3.117)
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As has become customary in this dissertation, the first step of our ar-
gument is to remark that the previous equation has a trivial solution
at λ = 0, namely ∆⋆ with components

Trivial fixed point
∆⋆ at λ = 0

∆⋆

i→j =
x2 − tanh2(Jij)

x2
, ∀(i→ j) ∈ ~E . (3.118)

Indeed, injecting this expression in (3.114), we find, for any directed
edge (i→ j) ∈ ~E

(G0(∆
⋆))i→j =

(
1+

∑

k∈∂i

tanh2(Jik)

x2 − tanh2(Jik)

−
∑

k∈∂i\j

(
x tanh(Jik)

x2 − tanh2(Jik)

)2

∆⋆

k→i

)−1

,

=


1+

∑

k∈∂i

tanh2(Jik)

x2 − tanh2(Jik)
−

∑

k∈∂i\j

tanh2(Jik)

x2 − tanh2(Jik)




−1

,

=

(
1+

tanh2(Jij)

x2 − tanh2(Jij)

)−1

,

=

(
x2

x2 − tanh2(Jij)

)−1

= ∆⋆

i→j ,

so that F(0, ∆⋆) = 0. We now show that this fact implies the existence
of a real solution in the vicinity of λ = 0. To see this, we first note that
the Jacobian JF of F at (λ,∆) = (0, ∆⋆) is an |~E|× (|~E|+ 1) real matrix
which can be written as

Jacobian of FJF(0, ∆
⋆) =




−1 0 · · · 0

0
... JG0

(∆⋆) − I
|~E|

0



, (3.119)

where JG0
(∆⋆) is the |~E|× |~E| Jacobian of G0 at ∆ = ∆⋆, given by

JG0
(∆⋆) = DB . (3.120)

In the last expression, we have introduced two matrices D,B ∈ R|~E|×|~E|

whose elements, for (i→ j), (k→ l) ∈ ~E, can be written as

Di→j,k→l =
(
∆⋆

i→j

)2
1(i = k)1(j = l) ,

Bi→j,k→l =

(
tanh(Jkl)
x∆⋆

k→l

)2

1(l = i)1(k 6= j) .
(3.121)

Let us assume for now that the Jacobian JF(0, ∆
⋆) is full rank. Then,

since F is continuously differentiable at (0, ∆⋆), by the implicit func-
tion theorem, there exists an open set V ⊂ R containing 0 such
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that for any λ ∈ V , there exists a vector ∆(λ) ∈ R|~E| such that
F(λ,∆(λ)) = 0. Additionally, the map λ → ∆(λ) is continuous on
V , and ∆(0) = ∆⋆. In other words, there exists a real fixed point ∆(λ)
of Gλ for λ ∈ V , where 0 ∈ V . It is additionally a stable fixed point if
and only if

ρ
(
JGλ

(∆(λ))
)
< 1 , (3.122)

where ρ denotes the spectral radius. By continuity of the spectral
radius and of the map λ → ∆(λ), it is straightforward to check that
the map λ→ ρ

(
JGλ

(∆(λ))
)

is continuous on an open set U ⊂ V such
that 0 ∈ U. As a consequence, if we can show that

ρ
(
JG0

(∆⋆)
)
< 1 , (3.123)

then there will finally exist an open set W containing 0 such that for
all λ ∈ W, condition (3.122) holds. As a consequence, for any λ ∈ W,
∆(λ) is a real and stable fixed point of Gλ, so that the spectral density
of H(x) vanishes on W. Indeed, if (3.123) holds, then it also holds
that the Jacobian JF(0, ∆

⋆) of equation (3.119) is full rank, because
then JG0

(∆⋆) − I
|~E|

is invertible, so that our previous application of
the implicit function theorem was legitimate.

It turns out that we know how to compute ρ
(
JG0

(∆⋆)
)
. Indeed, we

have that 4

ρ
(
JG0

(∆⋆)
)
= ρ(DB) ,

= ρ(BD) .
(3.124)

The matrix BD ∈ R|~E|×|~E| has a familiar structure. Its elements, for
(i→ j), (k→ l) ∈ ~E, are given by

(BD)i→j,k→l =
tanh2(Jkl)

x2
1(l = i)1(k 6= j) . (3.125)

This is a non-backtracking operator, with a particular choice of weights.
Using the results of section 3.1.3, it is straightforward to check that
its leading eigenvalue is unique, and given by

αE

[
tanh2(J)

x2

]
=
R(w)2

x2
, (3.126)

where R(w) is the radius of the bulk of uninformative eigenvalues
of the non-backtracking operator associated with the Bethe Hessian
H(x), recalled in equation (3.113). Note that this eigenvalue is a fer-
romagnetic one in the sense of section 3.1.3, i. e. with a correspond-
ing globally ordered eigenvector. This is consistent with the Perron-
Frobenius theorem which states that, since BD is non-negative 5, it

4. Note that the matrix DB does not have the same structure as the non-
backtracking matrix, so that the inversion of the order of the matrix product is
necessary here.

5. The Perron-Frobenius theorem applies to non-negative and irreducible matrices.
For BD to be irreducible, we need the graph G to be 2-connected, meaning that any
vertex or pair of vertices are part of a cycle [19].
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should have a unique eigenvalue equal to its spectral radius, with a
corresponding eigenvector which whose are all positive.

Let us wrap up our argument. From (3.126), it holds that whenever Summary of
argumentx > R(w), we have ρ

(
JG0

(∆⋆)
)
< 1, so that there exists an open set

around λ = 0 on which the spectral density of H(x) vanishes. Coming
back to the cartoon picture of figure 3.6, we have justified that as we
lower x from a large positive value, the moment where the bulk of
uninformative eigenvalues of H(x) reaches the λ = 0 axis is precisely
x = R(w). At this point, any potential informative eigenvalue of H(x),
i. e. any eigenvalue smaller than the uninformative eigenvalues, must
have become negative. This gives an alternative justification of the
graph clustering algorithm 2, based on the Bethe Hessian. We discuss
what happens for x < R(w) on the applications of the upcoming
chapters 5 and 8.

3.2.2 Ihara-Bass type formulas

We prove here two identities relating the non-backtracking operator
and the Bethe Hessian. The first one is a general matrix identity re-
lating the resolvent of the non-backtracking operator to the inverse of
the Bethe Hessian, i. e. the susceptibility (in the paramagnetic phase
and in the Bethe approximation) of the Ising model. This formula
will be useful in chapter 9, where we show in particular that this ap-
proximate susceptibility is an upper bound on the true susceptibility
for the ferromagnetic Ising model, in a certain high temperature re-
gion. The second identity is the Ihara-Bass formula, which we show
as a corollary of the first identity. This formula will also be useful in
chapter 9, as the involved determinant will be shown to provide an
upper bound on the partition function of a ferromagnetic Ising model
in a high temperature region.

We stress that both the formulas stated in the two following propo-
sitions are algebraic identities, which are valid on any graph, deter-
ministic or random, of any size, with any topology. In addition to the
Bethe Hessian of equation (3.107) and the non-backtracking operator
of equation (3.108), the following results are expressed in terms of the
corresponding pooling matrix P ∈ Rn×|~E| with elements

Pooling matrixPi,(k→l) = tanh(Jkl) 1(l = i) , ∀i ∈ [n], (k→ l) ∈ ~E , (3.127)

and another matrix Q ∈ Rn×|~E| with elements, for i ∈ [n], (k→ l) ∈ ~E

Matrix QQi,k→l = 1(i = k) . (3.128)

Proposition 3.2.1. Let G = ([n], E) be arbitrary couplings. Let B be
the non-backtracking operator of equation (3.108), P be an arbitrary graph A matrix identity

between B and H(x)and (Jij)(ij)∈E the pooling operator of (3.127), H(x) the Bethe Hessian of
(3.107), and Q the matrix defined in equation (3.128). The following equality
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holds for any x ∈ C\
{
± tanh

(
Jij
)}

(ij)∈E
such that x is not an eigenvalue

of B

P
(
x I

|~E|
− B
)−1

Q⊺ + In = H(x)−1 (3.129)

Proof. The fact that x I
|~E|

− B is invertible follows from the fact that x
is assumed not to be an eigenvalue of B. For an arbitrary u ∈ Cn, we
let

v =
(
x I

|~E|
− B
)−1

Q⊺u ∈ C|~E| . (3.130)

The fact that H(x) is invertible, as well as the proposition, will follow
if we show

H(x)P v+ H(x)u = u . (3.131)

We denote (Pv)i for i ∈ [n] the i-th component of the vector P v, we
have

(P v)i =
∑

k∈∂i

tanh (Jik) vk→i . (3.132)

From (3.130), v verifies
(
x I

|~E|
− B
)
v = Q⊺u, so that for any (i→ j) ∈

~E,

x vi→j −
∑

k∈∂i\j

tanh (Jik) vk→i = ui (3.133)

For any (ij) ∈ E, we therefore have

x vi→j − (Pv)i + tanh
(
Jij
)
vj→i = ui , (3.134)

x vj→i − (Pv)j + tanh
(
Jij
)
vi→j = uj . (3.135)

Together, these two questions form a closed, linear system of equa-
tions which we solve for vi→j and vj→i. The fact that this system is
invertible follows from the assumption that x 6= ± tanh

(
Jij
)

for any
(ij) ∈ E. Carrying out the inversion, we obtain

vi→j =
1

x2 − tanh2
(
Jij
)
(
x (ui + (Pv)i) − tanh

(
Jij
) (
uj + (Pv)j

) )
.

(3.136)

Inserting this expression in (3.132), we obtain

(Pv)i =
∑

k∈∂i

tanh (Jik) vk→i ,

=
∑

k∈∂i

tanh (Jik)

x2 − tanh2 (Jik)

(
x (uk + (Pv)k) − tanh (Jik) (ui + (Pv)i)

)
.

(3.137)
Rearranging this last expression, we obtain

(
1+

∑

k∈∂i

tanh2 (Jik)

x2 − tanh2 (Jik)

)
(P v)i −

∑

k∈∂i

x tanh (Jik)

x2 − tanh2 (Jik)
(P v)k

=
∑

k∈∂i

x tanh (Jik)

x2 − tanh2 (Jik)
uk −

(
∑

k∈∂i

tanh2 (Jik)

x2 − tanh2 (Jik)

)
ui ,

(3.138)
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or equivalently, in matrix form,

H(x)P v = −H(x)u+ u (3.139)

which completes the proof.

We now turn to the proof of the generalized Ihara-Bass formula,
first stated in [153], which we used in chapter 2. The proof uses the
first identity, and is close to the one of [153].

Proposition 3.2.2 (Generalized Ihara-Bass formula). Let G = ([n], E)

be an arbitrary graph and (Jij)(ij)∈E be arbitrary couplings. Let B be the Generalized
Ihara-Bass formulanon-backtracking operator defined by equation (3.108), and H(x) the Bethe

Hessian defined by equation (3.107). Then the following equality holds for
any x ∈ C\

{
± tanh

(
Jij
)}

(ij)∈E

det
(
x I

|~E|
− B
)
= det (H(x))

∏

(ij)∈E

(
x2 − tanh2(Jij)

)
. (3.140)

Proof. We first note that the formula holds if x is an eigenvalue of

B, since in this case, det
(
x I

|~E|
− B
)

= 0, and the argument leading
to equation (2.66) in section 2.3.1 is straightforwardly adapted to any
eigenvalue λ ∈ C of B which is not in the set

{
± tanh

(
Jij
)}

(ij)∈E
. We

can therefore assume that x is not an eigenvalue of B. From proposi-
tion 3.2.1, it holds that

det
(

P
(
x I

|~E|
− B
)−1

Q⊺ + In

)
= det

(
H(x)−1

)
. (3.141)

From Sylvester’s determinant theorem, it holds that

det
(

P
(
x I

|~E|
− B
)−1

Q⊺ + In

)
= det

((
x I

|~E|
− B
)−1

Q⊺ P + I
|~E|

)
,

= det
((
x I

|~E|
− B
)−1

)
det

(
x I

|~E|
− B + Q⊺ P

)
.

(3.142)
The crux of the proof is then to notice that

Q⊺ P = B + M (3.143)

where M is an operator that maps a directed edge (i → j) onto the
reciprocal edge (j → j). More precisely, the elements of M are given,
for (i→ j), (k→ l) ∈ ~E, by

M(i→j),(k→l) = tanh (Jkl) 1(i = l)1(j = k) . (3.144)

We therefore have that

det
(
H(x)−1

)
= det

((
x I

|~E|
− B
)−1

)
det

(
x I

|~E|
− B + Q⊺ P

)
,

= det
((
x I

|~E|
− B
)−1

)
det

(
x I

|~E|
− B + B + M

)
,

= det
((
x I

|~E|
− B
)−1

)
det

(
x I

|~E|
+ M

)
.

(3.145)
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Since M is almost an involution, the last determinant is easy to com-
pute. More precisely, we may order the canonical basis of R|~E| by
putting the vector corresponding to the directed edge (i→ j) next to
the one corresponding to the directed edge (j → i). In this basis, the
matrix x I

|~E|
+ M is block-diagonal, with diagonal blocks of size 2× 2.

The block corresponding to the subspace spanned by the vectors rep-
resenting the two directed edges (i → j) and (j → i), for (ij) ∈ E
given by (

x tanh
(
Jij
)

tanh
(
Jij
)

x

)
, (3.146)

so that

det
(
x I

|~E|
+ M

)
=

∏

(ij)∈E

(
x2 − tanh2

(
Jij
))

. (3.147)

This completes the proof.

3.3 conclusion

In this chapter, we have analyzed non-rigorously the spectral prop-
erties of the non-backtracking operator and the Bethe Hessian on
sparse weighted random graphs. We have argued, that contrary to
more classical operators such as the adjacency matrix or the Lapla-
cian, the spectra of these matrices are well-behaved in the limit where
the size of the graph tends to infinity, even on very sparse graphs.

For the non-backtracking operator, we argued that its noisy, un-
informative eigenvalues are constrained, in the complex plane, in a
disk of a certain radius, depending on the statistical properties of
the weighted random graph. We gave an analytical expression for
the radius of this disk. We also discussed the possible presence of
informative eigenvalues outside of this disk, and predicted a precise
threshold for their appearance, again in terms of the statistical prop-
erties of the weighted graph. We computed, using the cavity method,
the spectral density of the non-backtracking operator on Erdős-Rényi
random graphs.

In a second part, we characterized the spectral density of the Bethe
Hessian H(x). In particular, we argued that its bulk of uninformative
eigenvalues does not contain any eigenvalue close to 0 as long as
x < R, where R is the radius of the bulk of uninformative eigenvalues
of the associated non-backtracking operator. We also gave rigorous
results relating the non-backtracking operator and the Bethe Hessian.

Thanks to our newly gained understanding of the spectral proper-
ties of B and H(x), we are now ready to look at particular applications.
We start by going back to the simple planted spin glass introduced in
section 1.6.5, and show how the methods introduced thus far allow
to solve it.



4
C A S E S T U D Y: T H E P L A N T E D S P I N G L A S S , O R
C E N S O R E D B L O C K M O D E L

In this chapter, we come back to the planted Ising spin glass prob-
lem introduced in section 1.6.5, and show how the ideas exposed
thus far allow to design a provably optimal algorithm to recover the
planted configuration. This chapter is based on the publication [137],
although we adopt here a different perspective.

Recall that the planted spin glass (or censored block model) is a special
case of the symmetric lSBM of equation (1.46) with q = 2 groups,
average connectivity α = αin = αout, edge labels set L = {±1}, and
label distributions

Distribution of the
binary labels

pin(ℓ) = (1− ǫ) 1(ℓ = 1) + ǫ 1(ℓ = −1) ,

pout(ℓ) = (1− ǫ) 1(ℓ = −1) + ǫ 1(ℓ = 1) .
(4.1)

The posterior probability distribution of the hidden assignment σ
takes the form of an Ising spin glass

Posterior
distribution of the
planted
configuration

P(σ) =
1

Z
exp


β

∑

(ij)∈E

ℓijσiσj


 , (4.2)

where the inverse temperature β = β⋆ is related to the noise ǫ through

Bayes optimal
temperatureβ⋆ =

1

2
log

1− ǫ

ǫ
. (4.3)

As shown in section (1.6.5), with this choice of inverse temperature,
corresponding to the Bayes optimal setting, the (gauge transformed)
Ising spin glass is on the Nishimori line, so that it cannot be in the
spin glass phase. However, defining β⋆ requires knowing the noise
parameter ǫ, which we will not assume in this chapter. Instead, we
will consider the planted spin glass (4.2) at a general inverse tempera-
ture β, and show that we can still design an optimal algorithm.

Finally, recall that the statistical physics prediction for the detectabil-
ity transition of this model (which also corresponds to the conjecture
of [60]) is given by (1.98), i. e.

Conjectured
transition

α >
1

(1− 2ǫ)2
= αdetect . (4.4)

It was shown in [94] that this condition is necessary, in the sense that
when α < αdetect, it is impossible to distinguish a graph generated
from the planted spin glass from a completely random graph with
random ±1 labels, so that detectability is information-theoretically
impossible. In this chapter, we show rigorously that this condition is

121
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also sufficient. More precisely, we introduce two algorithms, based
respectively on the non-backtracking operator and the Bethe Hessian,
that output an estimate σ̂ ∈ {±1}n that has a finite overlap with the
planted assignment σ whenever (4.4) holds, where the overlap is de-
fined as

Overlap
lim
n→∞

1

n

n∑

i=1

σiσ̂i . (4.5)

Note that this quantity is a rescaled version of the accuracy, that van-
ishes when σ̂ is a random guess, and equals unity if the reconstruc-
tion is perfect.

There are various interpretations and models that connect to this
problem. One example is a particular community detection problem
[2], in which we try to recover the community membership of the
nodes of a graph based on noisy (or censored) observations about
their relationship. Another example is correlation clustering [12], in
which we try to cluster the graph G by minimizing the number of
“disagreeing edges” (here ℓij = −1) in each cluster. These examples,
and others such as synchronization, are discussed in details in [1].

In the rest of this chapter, we introduce the particular forms of the
non-backtracking and Bethe Hessian operators on the planted spin
glass, and make some of the intuitive arguments of chapters 2 and 3

more precise. We end this chapter by sketching a rigorous proof of the
optimality of the algorithm based on the non-backtracking operator,
and discuss the implications of this result for the Bethe Hessian.

4.1 the non-backtracking operator

The non-backtracking operator of the symmetric lSBM was com-
puted in section 3.1.3, and reads in general, for (i → j), (k → l) ∈ ~E,

B(i→j),(k→l) =
αin pin(ℓkl) −αout pout(ℓkl)

αin pin(ℓkl) + (q− 1)αout pout(ℓkl)
1(l = i)1(k 6= j) .

On the particular case of the planted spin glass, this expression con-
siderably simplifies to

B(i→j),(k→l) = (1− 2ǫ) ℓkl 1(l = i)1(k 6= j) .

Interestingly, the noise parameter ǫ appears only as a global con-
stant. We will therefore refer to the following matrix as the non-
backtracking operator of the planted spin glass

Non-backtracking
operator of the

planted spin glass
B(i→j),(k→l) = ℓkl 1(l = i)1(k 6= j) . (4.6)

This matrix has the same eigenvectors as the “true” non-backtracking
operator (4.6), and their respective eigenvalues are related by a trivial
scaling factor (1 − 2ǫ). The great advantage of this last expression
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is that it depends only on the data we are given, and not on the
parameter ǫ that was used to generate it.

In chapter 3, we made precise predictions on the spectrum of B in Spectrum of the
non-backtracking
operator on the
planted spin glass

a general instance of the symmetric lSBM. Their implications for the
matrix B of equation (4.6) on a graph generated from the planted spin
glass are as follows.

— The uninformative eigenvalues of B are constrained in a disk of
radius R given here by

R =

√
αE[ℓ2] , (4.7)

where ℓ denotes a random variable with the same distribution
as the labels ℓij for (ij) ∈ E. Since these labels are here equal
to±1, we have

R =
√
α , (4.8)

independently of the distribution of the labels.
— There is an informative eigenvalue α∆(ǫ) outside of the bulk of

radius R if and only if α∆(ǫ) > R, where

∆(ǫ) =
1

2
(E[ℓin] − E[ℓout]) , (4.9)

where ℓin (resp. ℓout) is a random variable that has the same
distribution as the labels between points in the same group
(resp. different groups). From rules in equation (4.1), we have
E[ℓin] = −E[ℓout] = 1 − 2ǫ, so that the potential informative
eigenvalue is equal to

α∆(ǫ) = α (1− 2ǫ) . (4.10)

— For any choice of ǫ, there is no ferromagnetic eigenvalue, since
αE[ℓ] = 0 < R for any ǫ.

We therefore expect that a spectral method based on B can detect
the planted partition if and only if

Detectability
threshold of B

τ(α, ǫ) =

(
α∆(ǫ)

R

)2

> 1 , (4.11)

or equivalently, α (1−2ǫ)2 > 1, i. e. from (4.4), as soon as it is informa-
tion-theoretically possible. More precisely, the previous predictions
imply that when below the previous transition, the spectrum of B is
entirely constrained in the disk of radius

√
α, while when above the

transition, there is a single informative eigenvalue α (1− 2ǫ) outside
of the bulk. An illustration of both situations in provided in figure 4.1.
We will see in the following that we can, in this case, prove this pic-
ture rigorously.
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Figure 4.1 – Spectrum of B for a problem generated with ǫ = 0.25, n =

2000. We used α = 3 (left side) and α = 8 (right side), to be
compared with αdetect = 4 for this value of ǫ. In both cases,
the bulk of the spectrum is confined in a circle of radius

√
α.

However, when α > αdetect, a single isolated eigenvalue appears
out of the bulk at α (1− 2ǫ) (see the arrow on the right plot) and
the corresponding eigenvector is correlated with the planted
assignment. Figure taken from [137].

4.2 the bethe hessian

The Bethe Hessian (3.107) associated with the non-backtracking op-
erator defined in equation (4.6) reads here

Hij(x) =

(
1+

∑

k∈∂i

ℓ2ik
x2 − ℓ2ik

)
1(i = j) −

x ℓij

x2 − ℓ2ij
1(j ∈ ∂i) ,

=
1

x2 − 1

( (
x2 − 1+ |∂i|

)
1(i = j) − x ℓij 1(j ∈ ∂i)

)
.

(4.12)

Disregarding the trivial, positive factor (x2 − 1)−1, we will in fact call
Bethe Hessian of the planted spin glass the matrix

Bethe Hessian of the
planted spin glass

H(x) = (x2 − 1) In − xA+D , (4.13)

where A is the (weighted) adjacency matrix of the graph, with non-
zero entries Aij = ℓij for (ij) ∈ E, andD is the diagonal degree matrix,
with entries Dii = |∂i| for i ∈ [n].

We will be particularly interested in the matrix H(R) = H
(√
α
)
.

Note that as usual (see equation (2.59)), the quantity R can be easily es-
timated from the data, without knowing the parameters of the model.
Here, one only needs to take the empirical average of the degrees
of the vertices in the graph. From the arguments of section 2.3.2, we
expect that H

(√
α
)

has one negative eigenvalue whenever B has an in-
formative eigenvalue (outside of the bulk). The corresponding eigen-
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vector is an unstable direction of the Bethe free energy at the paramag-
netic point, pointing toward an informative, partially ordered phase
(in fact the ferromagnetic phase of the gauge transformed model, as
explained in section 1.6.5). More precisely, from the arguments of Spectrum of H(R)

section 3.2, we expect that the bulk of uninformative eigenvalues of
H
(√
α
)

is supported on a subset of R+, with its left edge precisely
at 0. Consequently, any negative eigenvalue of H(x) is potentially
informative. Once more, the advantage of using a spectral algorithm
based on H

(√
α
)

rather than B is that H
(√
α
)

is a smaller 1 and sym-
metric matrix. Additionally, we will see numerically in the following
that the overlap provided by the Bethe Hessian is slightly larger than
the one given by B, although we lack a theoretical understanding of
this fact.

As explained in section 2.3.2, the presence of negative eigenvalues
of H

(√
α
)

has an intuitive statistical physics interpretation, related to Statistical physics
interpretation of the
Bethe Hessian

the instability of the paramagnetic phase in the Bethe approximation.
On a model as simple as the planted spin glass, it is possible to give a
transparent graphical representation of this interpretation which we
sketch now. We have shown in section 2.3.2 that H(x) is the Hessian of
the Bethe free energy at the paramagnetic point of an associated Ising
model with couplings (Jij)(ij)∈E given by equation (2.76), i. e. here

tanh(Jij) =
ℓij

x
. (4.14)

On the other hand, the true posterior (4.2) takes the form of an Ising
model with true couplings β⋆ℓij, which verify

tanh(β⋆ℓij) = (1− 2ǫ) ℓij . (4.15)

Therefore, had we known ǫ, we could have evaluated the Bethe Hes-
sian H(x) at x = (1− 2ǫ)−1. Indeed, in the Bethe approximation, the
matrix H

(
(1− 2ǫ)−1

)
controls the stability of the paramagnetic sta-

tionary point of the true posterior distribution (4.2) , and the presence
of a negative eigenvalue of H

(
(1− 2ǫ)−1

)
indicates that the param-

agnetic point is not a local minimum of the Bethe free energy, so that
the problem is solvable. However, we dot not assume here that we
know ǫ. Comparing equations (4.14) and (4.15), we see that by con-
sidering the matrix H(x), we are in fact investigating the stability of
the paramagnetic stationary point of the planted spin glass (4.2) at a
temperature β different from β⋆, and defined by the equation

tanh(βℓij) = tanh
(
Jij
)
,

⇐⇒ tanh(β) = x−1 ,
(4.16)

where we have used that the labels are equal to ±1. Recall the phase
diagram of the planted spin glass represented on figure 4.2, obtained

1. When the weights of B are equal to ±1, as is the case here, it is possible to
reduce B to a smaller (2n× 2n) matrix B′, as explained in [89, 137]. This matrix is
however still non-symmetric, and still larger than H

(√
α
)
.
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from the phase diagram of the Viana-Bray model after gauge trans-
forming, as discussed in section 1.6.5. The true (Bayes optimal) pos-Relation to the phase

diagram of the
planted spin glass

terior of equation (4.2) lies somewhere on the Nishimori line, repre-
sented in red, say at a point (ǫ, β⋆), where β⋆ is related to epsilon
by equation (4.3). In section 1.6.5, we have argued that an instance
of the planted spin glass is solvable if (ǫ, β⋆) ∈ F, and unsolvable
if (ǫ, β⋆) ∈ P, where F and P denote respectively the ferromagnetic
and the paramagnetic regions depicted on figure 4.2. By changing the
temperature, we enter a parameter mismatch regime, and we venture
outside the Nishimori line. More precisely, when using the matrix
H(x), we are effectively considering a model that is somewhere on
the vertical line passing through the point (ǫ, β⋆), specifically at the
point

(
ǫ, atanh

(
x−1

))
of this phase diagram. To design an optimal

non-parametric approach based on H(x), we need to find a magical
value of x, independent of ǫ (since we dot not know it), and such that

(ǫ, β⋆) ∈ P⇐⇒
(
ǫ, atanh

(
x−1

))
∈ P ,

(ǫ, β⋆) ∈ F ⇐⇒
(
ǫ, atanh

(
x−1

))
∈ F .

(4.17)

It turns out that there is one, and only one, value of x that does the
job, as can be seen from figure 4.2, and that this value is given by

x =
√
α . (4.18)

This corresponds to setting the Ising model (4.2) on the edge of the
paramagnetic to spin glass transition. With this value, the condi-
tions (4.17) hold. Consequently, the presence of a negative eigenvalue
of H

(√
α
)

is equivalent to the presence of negative eigenvalue of
H
(
(1− 2ǫ)−1

)
. In particular, a spectral algorithm based on H

(√
α
)

should be optimal in that it detects the hidden assignment as soon as
the true posterior is in the ferromagnetic phase, i. e. as soon as (4.4)
holds. However, remarkably, such an algorithm does not require the
knowledge of ǫ.

In the next section, we write down explicitly the spectral proce-
dures (based on B and H

(√
α
)
) suggested by the remarks of the

previous sections, and show numerical simulations comparing the
overlap achieved by these methods with the overlap achieved by BP.

4.3 algorithms

For completeness, we spell out explicitly the procedures described
in algorithms 1 and 2 for the special case of the planted spin glass. Al-
gorithm 3 presents our procedure for the non-backtracking operator.
Recall that to form an estimate for each vertex from the eigenvectors
of B, we use the pooling matrix P ∈ Rn×|~E| whose definition is here

Pooling matrix Pi,k→l = ℓkl 1(l = i) . (4.19)
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(
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α

)

Figure 4.2 – Cartoon of the phase diagram of the planted spin glass, ob-
tained from the phase diagram of the Viana-Bray model af-
ter performing a gauge transformation, as explained in sec-
tion 1.6.5. The true posterior of equation (4.2), with Bayes opti-
mal temperature β⋆ given by (4.3), lies somewhere on the red
Nishimori line. The two red dots represent two instances of
the true posterior, one corresponding to a solvable problem (in
the ferromagnetic phase) and another corresponding to an un-
solvable problem (in the paramagnetic phase). The Bethe Hes-
sian H

(√
α
)

controls the stability of the paramagnetic station-
ary point of a different model (blue dot), obtained by projecting
the true posterior on the spin glass line β = atanh

(
1/
√
α
)
. This

choice preserves the solvability (or unsolvability) of the model,
as the projected model is always in the same region (paramag-
netic or ferromagnetic) of the phase diagram as the true poste-
rior.
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Note that since we are dealing only with 2 clusters, we have replaced
the use of kmeans in the last step of algorithm 1 by a partitioning
based on the sign of the components of the pooled informative eigen-
vector of B.

Algorithm 3 Non-backtracking spectral algorithm for the planted
spin glass

Input: Graph G = ([n], E), labels ℓij = ±1 for (ij) ∈ E
1: Build the non-backtracking operator B of (4.6) and the pooling

matrix P of (4.19)
2: Compute the leading eigenvalue λ1 of B and its corresponding

eigenvector v. If λ1 ∈ C\R or λ1 <
√
α, raise an error.

3: Pool the eigenvector v to compute the approximate magnetiza-
tions m = P v

4: Output the assignments σ̂i = sign(mi) for i ∈ [n]

The spectral method based on the Bethe Hessian is presented in
algorithm 4. Note that both algorithms 3 and 4 use the value of
the average connectivity α which in practice is easily estimated from
the graph.

Algorithm 4 Bethe Hessian spectral algorithm for the planted spin
glass

Input: Graph G = ([n], E), labels ℓij = ±1 for (ij) ∈ E
1: Build the Bethe Hessian H

(√
α
)

where H(x) is defined by equa-
tion (4.13)

2: Compute the (algebraically) smallest eigenvalue λ1 of H
(√
α
)

and its corresponding eigenvector v. If λ1 > 0, raise an error.
3: Output the assignments σ̂i = sign(vi) for i ∈ [n]

Before turning to proofs, we show on figure 4.3 the numerical per-Numerical
simulations formance of our two algorithms, and compare them with the asymp-

totic performance of BP, estimated with a population dynamics algo-
rithm [103]. Here, BP is run on the true posterior distribution (4.2)
with β = β⋆ so that its marginal (are believed to) provide an asymp-
totically correct estimate of the Bayes optimal assignment in the limit
n → ∞. We find that both algorithms 3 and 4 are able to achieve
partial recovery as soon as α > αdetect, and that their overlap is simi-
lar to that of BP, though of course strictly smaller. Note again that
BP requires here the knowledge of ǫ while the two spectral algo-
rithms 3 and 4 do not. Additionally, they are trivial to implement,
run faster, and avoid the potential non-convergence problem of belief
propagation while remaining asymptotically optimal in detecting the
hidden assignment. We also observe, empirically, that the overlap
given by the Bethe Hessian seems to be always superior to the one
provided by the non-backtracking operator.
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Figure 4.3 – Overlap as a function of α: comparison between algorithm 3

(based on the non-backtracking operator B), algorithm 4 (based
on the Bethe Hessian H

(√
α
)

called here H), and BP. The noise
parameter ǫ is fixed to 0.25 (corresponding to αdetect = 4), and
we vary α. The overlap for B and H

(√
α
)

is averaged over
20 graphs of size n = 105. The overlap for BP is estimated
asymptotically using the standard method of population dy-
namics (see for instance [103]), with a population of size 104.
All three methods output a positively correlated assignment as
soon as α > αdetect. The spectral algorithms 3 and 4 have an
overlap similar to that of BP, with the same phase transition,
while being simpler and not requiring the knowledge of the
parameter ǫ. Figure taken from[137].
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4.4 spectral properties of the non-backtracking oper-
ator on the planted spin glass

In this section, we state results concerning the spectrum of B and
show that algorithm 3 outputs an assignment σ̂i that has a finite over-
lap with the planted one, in the limit n → ∞, whenever (4.4) holds.
In fact, the following result makes rigorous the predictions of sec-
tion 3.1.3 in the special case of the planted spin glass, extending some
of the proof techniques of [19] to the case where the non-backtracking
operator is weighted, with weights in {±1}.
Theorem 4.4.1. Consider an Erdős-Rényi random graph G = ([n], E)

with average degree α, variables assigned to vertices σi = ±1 uniformly
at random independently from the graph and where the edges carry labels
(ℓij)(ij)∈E sampled from (4.1). We denote by B the non-backtracking oper-
ator defined by (4.6), and by |λ1| > |λ2| > · · · > |λ

|~E|
| the eigenvalues of

B in order of decreasing magnitude. Then, with probability tending to 1 as
n→∞, we have:

(i) if α < αdetect then |λ1| 6
√
α+ o(1).

(ii) if α > αdetect, then λ1 ∈ R, λ1 = α(1 − 2ǫ) + o(1) >
√
α, and

|λ2| 6
√
α+o(1). Additionally, denoting v the eigenvector associated

with λ1, the following assignment has a finite overlap with the planted
variables σi:

σ̂i = sign


∑

j∈∂i

vj→i


 . (4.20)

This theorem is illustrated on figure 4.1. It is then straightforward
to show the following guarantee for algorithm 3.

Corollary 4.4.2. The assignment output by algorithm 3 has a finite overlap
with the planted assignment in the limit n→∞ if and only if

α > αdetect . (4.21)

We now give a brief sketch of proof for theorem 4.4.1. The proof
relies heavily on the techniques developed in [19], and we try to use
notations consistent with [19]. For an oriented edge e = (u→ v) ∈ ~E,
we set e1 = u, e2 = v and e−1 = (v → u). We start with a simple
observation, which translates the gauge invariance property exposed
in section 1.6.5. If t is the vector in R|~E| defined by te = σe2

and ⊙ is
the Hadamard product, i.e. (t⊙ x)e = σe2

xe, we have

B x = λx⇐⇒ B̃(t⊙ x) = λ(t⊙ x), (4.22)

with B̃ defined by B̃ef = Befσf1σf2 . In particular, B an B̃ have the
same spectrum and there is a trivial relation between their eigenvec-
tors. It will be easier to work with B̃ so to lighten the notation, we
will denote (throughout the proof)

Bef = wf 1(f2 = e1)1(f1 6= e2), (4.23)
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where wf = σf1ℓfσf2 , and we write, with a abuse of notation, ℓf =

ℓf−1 = ℓf1f2 . Note that the random variables wf are now i.i.d with
P(wf = 1) = 1−P(wf = −1) = 1− ǫ. With this formulation, we have
gauge transformed the problem which now lies on the Nishimori
line [90, 117].

For the case α (1− 2ǫ)2 < 1, the proof is relatively easy. Indeed,
from [94], we know that our setting is contiguous to the setting with
ǫ = 1/2. In this case, the random variables wf are centered and a
version of the trace method will allow to upper bound the spectral
radius of B. Note however, that one needs to condition on the graph
to be k-tangle-free, i. e. such that every neighborhood of radius k
contains at most one cycle in order to apply the first moment method.

We now consider the case α (1 − 2ǫ)2 > 1 and denote by M the
linear mapping on R|~E| defined by (M x)e = we xe−1 , i. e. the matrix
associated with M has elements Mef = we 1

(
f = e−1

)
. Note that

M⊺ = M and since w2
e = 1, M is an involution so that M is an or-

thogonal matrix. A simple computation shows that Bk M = M (B⊺)
k,

hence Bk M is a symmetric matrix. This symmetry generalizes the
PT- invariance discussed in the unweighted case in equation (3.65),
and will be crucial in adapting the analysis of [19].

We define α̃ = α (1− 2ǫ) and χ ∈ R|~E| with χe = 1 for all e ∈ ~E. The
proof strategy is then similar to section 5 in [19]. Consider a sequence
k ∼ κ logα̃ n for some small positive constant κ. Let

ϕ =
Bk χ

‖Bk χ‖ , θ = ‖Bk Mϕ‖, ζ =
Bk Mϕ

θ
. (4.24)

If R = Bk − θ ζMϕ⊺ and we can prove that ‖R‖ is small compared
to θ, then we can use a theorem on the perturbation of eigenvalues
and eigenvectors adapted from the Bauer-Fike theorem (see section 4
in [19]) to show that Bk has an eigenvalue close to θ.

More precisely, for y ∈ R|~E| with ‖y‖ = 1, write y = sMϕ+ x with
x ∈ (Mϕ)⊥ and s ∈ R. Then, we find

‖Ry‖ = ‖Bkx+ s(Bk Mϕ− θ ζ)‖ 6 sup
x:〈x ,Mϕ〉=0,‖x‖=1

‖Bkx‖ . (4.25)

This last quantity can be shown to be upper bounded by (logn)cαk/2

for some constant c > 0, similarly to proposition 12 in [19]. Moreover,
we can also show that w.h.p, for some constants c1 > c0 > 0,

ζ (Mϕ)⊺ > c0, c0α̃
k
6 θ 6 c1α̃

k. (4.26)

Using the Bauer-Fike theorem, these bounds allow to show that
B has an eigenvalue |λ1 − α̃| = O(1/k) and that |λ2| 6

√
α + o(1).

Note that

θ =
‖Bk (B⊺)

k Mχ‖
‖Bkχ‖ , (4.27)
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so that in order to show the bounds (4.26), we need to compute quan-
tities of the type ‖Bkχ‖. We now explain the main ideas to compute
these quantities. First note that (Bkχ)e depends only on the ball of
radius k around the edge e. For k not too large, this neighborhood
is w.h.p a tree, which can be coupled with a Galton-Watson branch-
ing process with offspring distribution Poisson(α). It is then natural
to consider this Poisson Galton-Watson branching process with i.i.d

weights wuv ∈ {±1} with mean 1− 2ǫ, on each edge (uv). For u in
the tree, we denote by |u| its generation and let Y(u) =

∏t
s=1wγs,γs+1

where γ = (γ1, . . . , γt) is the unique path between the root o = γ1
and u = γt. Then (Bk χ)e is well approximated by

Zk =
∑

|u|=k

Y(u). (4.28)

It is easy to check that Xt = Zt/α̃
t defines a martingale (with respect

to the natural filtration) with unit mean. Moreover we have, by a
computation similar to lemma 5.1 in [42], that

E
[
Z2
t

]
= E


 ∑

u,v:|u|=|v|=t

Y(u)Y(v)


 (4.29)

=

t∑

i=0

αt−i(1− 2ǫ)2iα2i = O
(
α̃2t
)
, (4.30)

where the last equality is valid only if α (1 − 2ǫ)2 > 1. So in this
case, we have E

[
X2
t

]
= O(1) and by Doob’s martingale convergence

theorem, the martingale Xt converges almost surely and in L2 to a
limiting random variable X(∞) with unit mean and finite variance.
Following the arguments of [19], this reasoning leads to (4.26).

We now consider the eigenvector associated with λ1. It follows
from the Bauer-Fike theorem (section 4 in [19]) that the eigenvector x

associated to λ1 is asymptotically aligned with Bk(B⊺)kMχ

‖Bk(B⊺)kMχ‖
. Thanks

to the coupling with the branching process, we can prove that

‖Bk (B⊺)
k Mχ‖ ≈ α̃2k (4.31)

and moreover, we have for e ∈ ~E,

(Bk (B⊺)
k Mχ)e

α̃2k
≈ α̃

α(1− 2ǫ)2 − 1
X(∞), (4.32)

where X(∞) is the limit of the martingale defined above and has
mean one. We can now undo the gauge transformation to translate
this result for the eigenvector of the original non-backtracking opera-
tor thanks to (4.22): ve = σe2

xe where xe is approximated by (4.32).
In particular, we see that

∑
e,e2=v ve is correlated with σv. This com-

pletes our sketch of proof.
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Let us finally briefly mention the implications of the previous the- Implications for the
Bethe Hessianorem for the spectral method of algorithm 4 based on the Bethe Hes-

sian. As we have already argued in chapter 2, for x large enough,
H(x) is positive definite. Then as x decreases, by the Ihara-Bass for-
mula 2.68, the determinant of H(x) vanishes if and only if x becomes
equal to an eigenvalue of B. Theorem 4.4.1 allows to control the sign
of the characteristic polynomial of B, i. e., by the Ihara-Bass formula,
the sign of the determinant of H(x). Using continuity arguments, we
can show the following corollary.

Corollary 4.4.3. Under the same conditions as theorem 4.4.1, if α < αdetect,
then for any η > 0, H

(√
α+ η

)
is w.h.p definite positive. Conversely, if

α > αdetect, then there exists η0 > 0 such that for any η0 > η > 0,
H
(√
α+ η

)
has w.h.p a unique strictly negative eigenvalue.

Strictly speaking, if we denote by λ1 the leading eigenvalue of B,
theorem 4.4.1 combined the computation presented in section 2.3.1
only allows to show that the eigenvector with eigenvalue 0 of H(λ1)

is correlated with the planted variables if α > αdetect. Indeed, in
this case, the null space of H(λ1) is spanned by P v where P is the
pooling matrix (4.19) and v is the leading eigenvector of B. However,
we observe numerically (as shown on figure 4.3) that the eigenvector
with negative eigenvalue of H

(√
α
)

also has a positive, and in fact
slightly larger overlap with the planted configuration. This fact will
have to be clarified in future work.

4.5 conclusion

In this chapter, we have illustrated the performance of spectral algo-
rithms based on the non-backtracking operator and the Bethe Hessian
on the planted spin glass problem. In particular, we have argued that
these algorithms are optimal in that they can detect the hidden as-
signment as soon as it is information-theoretically possible to do so.
For the case of the non-backtracking, we were able to rigorously and
fully substantiate this claim, while the rigorous results for the Bethe
Hessian are only partial. On the other hand, we were able to explic-
itly connect the algorithm based on the Bethe Hessian to the phase
diagram of the planted spin glass, therefore giving a transparent gra-
phical justification of the Bethe Hessian approach.

In the next, and final part of this dissertation, we examine vari-
ous applications of our spectral methods, in the fields of community
detection, similarity-based clustering, and matrix completion, before
going back to statistical physics to prove rigorous bounds for the fer-
romagnetic Ising model on arbitrary graphs.





Part III

S O M E A P P L I C AT I O N S

This last part is devoted to applications of the theory of
spectral inference developed previously. We consider in-
ference problems in community detection, unsupervised
and semi-supervised similarity-based clustering and ma-
trix completion before returning to statistical physics. In
a final outlook chapter, we outline possible future applica-
tions in unsupervised learning.





5
C O M M U N I T Y D E T E C T I O N A N D T H E I S I N G
F E R R O M A G N E T

We consider community detection under the SBM, as introduced
in section 1.4.2. This problem experienced a surge of interest after
the work of [32] who conjectured the phase transition (1.44) for the
symmetric SBM, and proposed an optimal inference algorithm based
on BP. This algorithm, however, requires knowing the parameters of Limitations of BP for

community detectionthe model used to generate the problem, and, although these can be
learned using an expectation-maximization approach [32, 33], this in-
curs a non-negligible cost in complexity 1 and makes the whole pro-
cedure non-trivial to implement. Additionally, since the SBM is, as
argued in section 1.4.2, a bad model for real world network, fitting an
instance of the SBM on a real world problem may not always make a
lot of sense.

Among the popular non-parametric methods for community de- Spectral methods,
and their limitationstection are spectral approaches, based e.g. on the computation of a

few eigenpairs of the adjacency or modularity matrices [94, 112, 115],
or the Laplacian [46, 98, 114, 116]. Such methods are popular be-
cause of their simplicity and scalability. Indeed, highly optimized
sparse linear algebra libraries are widely available, and randomized
or distributed matrix-free methods, akin to those developed for the
PageRank algorithm, exist for (very) large scale problems. However,
as explained in 2.3.3, these traditional spectral methods are severely
suboptimal on the sparse SBM, and fail to detect the communities even
hen significantly above the transition (1.44). This gap was closed in
[89], who first proposed using a spectral method based on the non-
backtracking operator, and conjectured that it achieves the optimal
threshold (1.44). This conjecture was later proved rigorously in [19].
We review this approach in the first section of this chapter.

These results are, however, not entirely satisfactory. First, the use a
of a high-dimensional matrix (of dimension |~E| rather than n, as for
more traditional spectral methods) can be expensive, both in terms of
computational time and memory. Secondly, numerical eigensolvers
are typically faster and more efficient for symmetric matrices than
non-symmetric ones. In the second section of this chapter, we show
that there in fact exists a symmetric n × n operator that performs
optimally well in the SBM, namely the Bethe Hessian. Finally, in a

1. When running BP with the correct parameters, we are on the Nishimori line,
and BP converges [32]. On the other hand, when using an expectation-maximization
approach, we explore a potentially wide region of the phase diagram and may end
up (depending on the initial choice of parameters) in the spin glass phase where BP

fails to converge.

137
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third and last section, we show numerical simulations comparing the
performance of various spectral algorithms as well as BP, on both
synthetic and real world networks. The second and third part of this
chapter are based on the publication [139], but follow a different route
inspired by the theory developed previously in this dissertation.

5.1 the non-backtracking operator

We quickly recall the results of section 3.1.3 on the spectrum of B
in the symmetric SBM. Disregarding a global multiplicative factor, we
define B by its elementsNon-backtracking

operator of the SBM
B(i→j),(k→l) = 1(l = i)1(k 6= j) . (5.1)

The spectrum of B, in the limit n→∞ is composed of
— a bulk of uninformative eigenvalues constrained to the disk of

radius
√
α where α = q−1 (αin + (q− 1)αout) is the average con-

nectivity of the graph.
— a leading ferromagnetic eigenvalue α, with a correspondingSpectrum of the

unweighted
non-backtracking

matrix

globally ordered eigenvector.
— a potential informative real eigenvalue q−1 (αin −αout) with mul-

tiplicity q− 1. This eigenvalue can be positive (assortative case)
or negative (disassortative case), and exists if and only if

Detectability
transition

|αin −αout| > q
√
α , (5.2)

which corresponds to the detectability transition of the symmet-
ric SBM, equation (1.44).

Figure 5.1 shows the spectrum of B in the case of q = 2 communi-
ties, both in the detectable and undetectable regimes. This spectrum,
consistent with our general derivation of chapter 3, was first conjec-
tured by [89] and later proved by [19]. In the next section, we provide
an additional independent derivation, in the case of q = 2 communi-
ties, based on a statistical physics analysis of the Ising model associ-
ated with B, introduced in section 2.2.2.

5.2 the bethe hessian

The Bethe Hessian (3.107) associated with the non-backtracking op-
erator (5.1) is given byBethe Hessian of the

SBM

Hij(x) =

(
1+

∑

k∈∂i

1

x2 − 1

)
1(i = j) −

x

x2 − 1
1(j ∈ ∂i) ,

=
1

x2 − 1

( (
x2 − 1+ |∂i|

)
1(i = j) − x 1(j ∈ ∂i)

)
.

(5.3)

Just like for the planted spin glass, we will disregard the trivial, pos-
itive factor (x2 − 1)−1, and call Bethe Hessian of the SBM the matrix

H(x) = (x2 − 1) In − xA+D , (5.4)
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Figure 5.1 – Spectrum of B on two instances of the SBM with q = 2 communi-
ties, n = 1000 vertices and average connectivity α = 3. The left
figure corresponds to an undetectable problem, while the right
one is detectable (above the transition (5.2)). In both cases, the
spectrum of B has its bulk of uninformative eigenvalues con-
strained to the disk of radius

√
α ≈ 1.732, with a ferromagnetic

eigenvalue at α = 3. In the detectable case, there is in addition
an informative eigenvalue at q−1(αin −αout) = 2.

where A is the adjacency matrix of the graph, with non-zero entries
Aij = 1 for (ij) ∈ E, and D is the diagonal degree matrix, with en-
tries Dii = |∂i| for i ∈ [n]. This matrix is a deformed version of
the Laplacian, equal to the standard Laplacian when x = 1. We will
however be more interested in the matrix H(

√
α), which, as we will

see, has much more desirable spectral properties than the Laplacian.
Indeed, according to the study of the spectral density of H(x) which Spectral density of

the Bethe Hessianwe performed in section 3.2.1, we expect that, as we lower x from a
large positive value, the left edge of the bulk of eigenvalues of H(x)

is shifted to the left, and reaches 0 exactly at x =
√
α. As noted in

section 3.2.1, in the case of the unlabeled SBM, the fixed point equa-
tion (3.112) can be turned into a distributional fixed point equation
specifying the distribution of ∆i→j for a randomly chosen (i→ j) ∈ ~E.
Moreover, this approach has been shown rigorously in [18] to give the
right spectral density in the limit n → ∞ for locally tree-like graphs
such as those generated by the SBM. In particular, in the case of the
SBM, all the steps of the argument of section 3.2.1 can be made rigor-
ous, so that the spectral density νx(λ) of H(x) vanishes in an open set
around λ = 0 for any x >

√
α.

To compute the spectral density of H(x), we solve the distributional
fixed point equation numerically using the standard population dy-
namics algorithm [103]. The results, presented in figure 5.2 are in
striking agreement with a direct estimation of the spectral density ob-
tained from a histogram of the eigenvalues of a realization of the ma-
trix H(x). In particular, this figure illustrates that, by taking x =

√
α,

we maximize our chances of finding informative negative eigenvalues
(see the caption of figure 5.2).
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Figure 5.2 – Spectrum of the Bethe Hessian H(x) of equation (5.4) for various values of x > 1, on
graphs generated from the SBM. The red dots are the result of the direct diagonaliza-
tion of the Bethe Hessian for a graph with n = 104 vertices and q = 2 communities,
with α = 4, αin = 7, αout = 1. The black curves are the solution of the distributional
fixed point equation (see text), obtained from population dynamics (with a popula-
tion of size 105). We isolated the two smallest eigenvalues, represented as small red
bars for convenience. The dashed black line marks the λ = 0 axis, and the inset is a
zoom around this axis. At large value of x (x = 5 in the top left panel), H(x) is positive
definite and all its eigenvalues are positive. As x decays, the spectrum moves towards
the λ = 0 axis. The smallest eigenvalue (corresponding to the uninformative ferromag-
netic eigenvalue of B) reaches zero for x = α = 4 (middle top), followed, as x decays
further, by the second (informative) eigenvalue at x = (αin − αout)/q = 3, which is
the value of the second largest eigenvalue of B in this case. Finally, as shown by the
computation of section 3.2.1, the bulk reaches the λ = 0 axis at x =

√
α = 2 (bottom

left). At this point, the information is in the negative part, while the uninformative
bulk is in the positive part. Interestingly, if x decays further (bottom middle and right)
the bulk of the spectrum remains positive, but the informative eigenvalues blend back
into the bulk. The best choice is thus to consider the matrix H

(√
α
)
. Figure adapted

from [139].
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The fact that H(x) is the Hessian of the Bethe free energy at the
paramagnetic stationary point of an Ising model in fact allows us to
give a simple derivation of the transition (5.2) based on the gauge
invariance property of the Ising model. This argument, which we Statistical physics

interpretation of the
informative
eigenvector of B
for q = 2

now explicit, also sheds a slightly different light on the informative
eigenvectors of B than the original motivation of [89]. To make the
argument simple, we consider the case of q = 2 communities. Recall
(as shown in section 2.3.2) that the matrix H(x) controls the stability
of the paramagnetic phase (in the Bethe approximation) of an Ising
model with couplings given by (2.76), here

Associated
(ferromagnetic)
Ising model

tanh(Jij) =
1

x
, ∀(ij) ∈ E , (5.5)

where x plays the role of a temperature, and we assume that x > 1.
This is a ferromagnetic Ising model, with positive couplings that tend
to infinity as x → 1. From the classical results summed up in sec-
tion 1.6.2, we expect that this model is for large enough x (high tem-
perature) in its paramagnetic phase, so that H(x) is positive definite.
As already mentioned, this is indeed the case, as can be shown using
the Gershgorin circle theorem. As we lower x (lower the temperature),
we expect generically that the model will undergo a paramagnetic to
ferromagnetic phase transition, corresponding to the onset of a global Paramagnetic to

ferromagnetic phase
transition

ordering of the spins. When this happens, the susceptibility diverges,
i. e. H(x) becomes singular and the paramagnetic stationary point of
the Bethe free energy becomes a saddle point. The statistical physics
prediction (1.84) (which is in fact rigorous for the sparse ferromag-
netic Ising model [35]), is that this transition happens at a value of x
specified by the condition

1 = αE [tanh(J)] =
α

x
, (5.6)

where J is a random variable with the same distribution as the cou-
plings of equation (5.5), i. e. here a deterministic one. We find that
the onset of the ferromagnetic instability is x = α. On the other hand,
by the Ihara-Bass formula, det H(x) vanishes if and only if x is an
eigenvalue of B so that we recover the ferromagnetic eigenvalue of
B, equal to α. From the previous arguments, we can interpret the
corresponding eigenvector of B as an instability of the paramagnetic
fixed point of BP, revealing the existence of a different, ferromagnetic
fixed point.

Generically, the ferromagnetic Ising model has only two phases
(the paramagnetic and the ferromagnetic ones). However, this does
not mean that the paramagnetic phase does not have other types of
instabilities. More precisely, let us suppose for the sake of intuition
that the graph G is drawn from the SBM with αin ≫ αout. In this
case, although the ground state (i. e. the mode) of the Ising model
is still a perfectly ordered configuration with all spins equal, there
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Spin +1 Spin −1

Partially ordered configuration Gauge transformed model

Negative couplings

Figure 5.3 – In additional to the purely ferromagnetic ground state, an Ising
model defined on a graph generated from a strongly assorta-
tive SBM has a low energy (high probability) partially ordered
configuration, represented on the left. After gauge transform-
ing, the resulting model is an Ising spin glass with a strong
ferromagnetic bias (right).

is another, partially ordered configuration, that also has low energy
(or high probability). This configuration, represented on figure 5.3,Partially ordered

configuration corresponds to setting the spins in one community to 1, and those in
the other community to −1. Then, the only frustrated edges are those
connecting the two communities, and there are comparatively few of
them. For low enough pseudo-temperature x, we may therefore sus-
pect the existence of a local minimum of the (Bethe) free energy, cor-
responding to partially ordered configurations 2. These local minima
are informative, since they correspond to configurations that have a
finite overlap with the planted partition.

We can in fact even compute for which value of x this local mini-
mum starts having a lower free energy than the paramagnetic point.
To do so, we use the gauge transformation introduced in section 1.6Gauge

transformation to map the partially ordered configuration of figure 5.3 to the glob-
ally ordered, ferromagnetic one. In doing so, we create negative cou-
plings on the edges connecting the two communities (see figure 5.3).
We therefore have an Ising spin glass, but with a strong ferromagnetic
bias. More precisely, the gauge transformed couplings J̃ij for (ij) ∈ E
now verify tanh

(
J̃ij

)
= ±1/x, and the fraction of negative couplings

is αout/(2α), which is the fraction of edges that connect vertices from
different communities. From equation (1.84), the paramagnetic to fer-
romagnetic transition in the gauge transformed model is given by

1 = αE

[
tanh

(
J̃
)]

=
α

x

(
1−

αout

2α
−
αout

2α

)
,

=
α−αout

x
,

=
αin −αout

2x
.

(5.7)

2. The global minimum of the free energy at low temperature is still the ferromag-
netic one. In fact, it is not entirely clear that the partially ordered local minimum
is really a local minimum, and not e.g. a saddle. The important point is that the
paramagnetic stationary point is unstable with respect to a partially ordered pertur-
bation.
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The previous argument suggests that when x < (αin − αout)/2, there
is a second unstable direction of the paramagnetic stationary point
of the Bethe free energy, pointing towards a partially ordered local
minimum. By the Ihara-Bass formula, (αin − αout)/2 is therefore an
eigenvalue of B, and its corresponding eigenvector signals the exis-
tence of a partially ordered (therefore informative) fixed point of BP.

Interestingly, the choice x =
√
α corresponds to the onset of the

paramagnetic to spin glass instability in the gauge transformed model.
The detectability threshold (5.2) implies that if the partial ordered in-
stability has not happened before the spin glass instability, the prob-
lem is not solvable, as in the case in the planted spin glass of the
previous chapter.

5.3 algorithm and numerical simulations

Based on the previous considerations, we propose the spectral algo-
rithm 5 to perform community detection in the SBM. This algorithm
includes two subtleties. First, in the case where the SBM is disassor-
tative (αout > αin), we have shown in section 3.1.3 that the informa- Disassortative

communitiestive eigenvalues of B are negative, and smaller than −
√
α. From the

Ihara-Bass formula, to find these eigenvalues, we need to consider
the Bethe Hessian at a negative pseudo-temperature x = −

√
α (see

details in [139]). In the statistical physics interpretation of the pre-
vious section, this corresponds to an anti-ferromagnetic Ising model.
In order to cluster a general graph generated from the SBM, we look
at the negative eigenvalues of both H

(√
α
)

(which reveal the assor-
tative communities) and H

(
−
√
α
)

(which reveal the disassortative
ones). The other subtlety included in algorithm 5 is the estimation of
the number of communities. By the heuristic analysis of section 3.1.3, Estimating the

number of
communities

and by the rigorous results of [19], when the problem is solvable, the
non-backtracking operator has q eigenvalues outside of the disk of
radius

√
α. Their number therefore gives away the number of com-

munities in the graph. We expect the number of negative eigenvalues
of H

(√
α
)

and H
(
−
√
α
)

to be the same as the number of informative
eigenvalues of B, allowing us to infer the number of communities.
Note that when q = 2, the last step of the algorithm involving kmeans
can be replaced by a classification based on the signs of the entries
of the eigenvector corresponding to the second smallest eigenvector,
similarly to algorithm 4.

We illustrate the accuracy of algorithm 5 on graphs generated by Experiments on
synthetic networksthe SBM on figure 5.4, which also shows the performance of standard

spectral clustering methods, as well as that of the BP approach of
[32], believed to be asymptotically optimal in large tree-like graph.
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Algorithm 5 Bethe Hessian spectral algorithm for the SBM

Input: Graph G = ([n], E)

1: Build the Bethe Hessians H
(√
α
)

and H
(
−
√
α
)

where H(x) is
defined by equation (5.4)

2: Compute the negative eigenvalues of both H
(√
α
)

and H
(
−
√
α
)
.

If there are none, raise an error, otherwise call q̂ their number,
and v1, v2, . . . , vq̂ their eigenvectors.

3: Cluster the eigenvectors v1, v2, . . . , vq̂ into q̂ clusters using
kmeans.

The performance is measured in terms of the overlap with the true
labeling, defined here as

(
1

n

n∑

i=1

1(σ̂i = σi) −
1

q

)/(
1−

1

q

)
, (5.8)

where σ̂i ∈ [q] is the estimate of the community membership of ver-
tex i output by algorithm 5, and σi is the ground true community
membership. This overlap is scaled so that a random guess yields
a zero overlap, and a perfect clustering has an overlap of 1. Note
that since we can only hope to cluster the vertices up to a global per-
mutation of the cluster labels, we maximize this overlap over all q!
permutations of these labels.

Figure 5.4 shows that the Bethe Hessian systematically outperforms
the non-backtracking operator B and does almost as well as BP, a
more complicated algorithm, which we have run here assuming the
knowledge of “oracle parameters”: the number of communities, their
sizes, and the parameters αin and αout, which are needed to write
down the posterior distribution (1.105). The Bethe Hessian, on the
other hand is non-parametric and infers the number of communities
in the graph by counting the number of negative eigenvalues (like the
non-backtracking operator).

We finally turn to real world graphs to illustrate the performanceReal-world
experiments of our approach, and to show that even though the SBM is not a good

model for real networks, the Bethe Hessian remains a useful tool. Our
results on common benchmarks are presented in table 1, where we
also give the overlap achieved by the non-backtracking operator for
comparison. We limited our experiments to this list of networks be-
cause they have known, “ground true” communities. For each case
we observed a large correlation with the ground truth, and at least
equal (and sometimes better) performance compared with the non-
backtracking operator. The overlap was computed assuming knowl-
edge of the number of ground true communities. We note however
that the number of communities was correctly given by the number
of negative eigenvalues of the Bethe Hessian in all the presented
cases except for the political blogs network (10 predicted commu-
nities) and the football network (10 predicted communities). These
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Figure 5.4 – Performance of various clustering methods on graphs of size n = 105 generated from
the SBM. Each point is averaged over 20 such graphs. On the left is the assortative case
with q = 2 communities (theoretical transition at αin − αout = 3.46). In the middle is
the disassortative case with q = 2 (theoretical transition at αin −αout = −3.46). Finally,
on the right is assortative case with q = 3 communities (theoretical transition at αin −

αout = 5.20). While both the standard adjacency (A) and symmetrically normalized
Laplacian (D−1/2(D − A)D−1/2) approaches fail to identify the communities in a
large relevant region, both the non-backtracking operator (B) and the Bethe Hessian
(BH) identify the communities almost as well as using the more complicated belief
propagation algorithm (BP) with oracle parameters. Note, however, that the Bethe
Hessian systematically outperforms the non-backtracking operator, and has a lower
computational cost. We note that while clustering with the adjacency matrix and the
normalized Laplacian requires first extracting the giant component of the graph G,
the Bethe Hessian does not require any kind of preprocessing of the graph. While
our theory explains why clustering with the Bethe Hessian gives a positive overlap
whenever clustering with B does, we currently do not have an explanation as to why
the Bethe Hessian overlap is actually larger. Figure taken from [137].
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Table 1 – Overlap with human-made group assignments for some com-
monly used benchmarks for community detection. The non-
backtracking operator detects communities in all these networks,
with an overlap comparable to the performance of other spectral
methods [89]. The Bethe Hessian systematically either matches or
outperforms the results obtained by the non-backtracking operator.
Table taken from [137].

Network Non-backtracking [89] Bethe Hessian

Polbooks (q = 3) [8] 0.742857 0.757143

Polblogs (q = 2) [97] 0.864157 0.865794

Karate (q = 2) [164] 1 1

Football (q = 12) [52] 0.924111 0.924111

Dolphins (q = 2) [115] 0.741935 0.806452

Adjnoun (q = 2) [88] 0.625000 0.660714

differences either question the statistical significance of some of the
human-decided labeling, or suggest the existence of additional rel-
evant communities. It is also interesting to note that our approach
works not only in the assortative case but also in the disassortative
ones, for instance for the word adjacency network, whose two com-
munities consist of adjectives on the one hand, and nouns on the
other, so that neighbors in the graph are often in different communi-
ties.

5.4 conclusion

In this chapter, we have examined the problem of detecting commu-
nities in the SBM, for which an optimal spectral algorithm based on
the non-backtracking operator was already introduced by [89]. We
introduced a related algorithm based on the Bethe Hessian, which
takes a particularly simple form for this problem. In particular, the
computation of the spectral density can be made rigorous, thanks to
techniques developed by [18]. While this fact does not guarantee the
optimality of the algorithm presented here, it strongly supports our
approach, which is also validated by statistical physics arguments, as
well as numerical simulations on both synthetic and real world net-
works. In practice, we found that the Bethe Hessian systematically
provides slightly better performance than the non-backtracking oper-
ator, and has lower computational cost. Additionally, we showed in
the case of 2 communities how the phase transition can be understood
in terms of the stability of the paramagnetic phase of an associated



5.4 conclusion 147

Ising model, further motivating our algorithm. A rigorous guarantee
of the optimality of the Bethe Hessian on the SBM is an interesting
direction for future work. In the following, we turn to other types of
applications, in which the available data is encoded as labels on the
edges of a graph, rather than in its topology.





6
R A N D O M I Z E D C L U S T E R I N G F R O M S PA R S E
M E A S U R E M E N T S

In this chapter, we consider the general framework of similarity-
based clustering, in which the aim is to group items in a dataset
based the pairwise similarities between the items. After defining
and motivating this problem, we introduce three algorithms for this
task, based respectively on BP, the non-backtracking operator and the
Bethe Hessian. We illustrate numerically the optimality of all three
algorithms on a model, and substantiate this claim with rigorous ar-
guments in the case of the non-backtracking algorithm. This chapter
is based on results published in [143].

6.1 motivation and definition of the problem

Similarity-based clustering is a standard approach to label items in Similarity-based
clusteringa dataset based on some measure of their resemblance. In general,

given a dataset {xi}i∈[n] ∈ Xn, and a symmetric measurement func-
tion s : X2 → R quantifying the similarity between two items, the aim
is to cluster the dataset from the knowledge of the pairwise measure-
ments sij = s(xi, xj), for 1 6 i < j 6 n. This information is conve-
niently encoded in a similarity graph, whose vertices represent items
in the dataset, and the weighted edges carry the pairwise similari-
ties. Typical choices for this similarity graph are the complete graph
and the nearest neighbor graph (see e.g. [98] for a discussion in the
context of spectral clustering). In both cases, building the similarity
graph requires computing (and storing if we use the fully connected
graph) of the order of n2 similarities.

Here, on the contrary, we will not assume knowledge of the mea- Our setting

surements for all pairs of items in the dataset, but only for O(n) of
them chosen uniformly at random. In particular, instead of compar-
ing each items in the dataset to all of the other items, we only compare
each item to a constant (independent of n) number of other items,
considerably reducing the cost of building the similarity graph. In
fact, we will not even assume the measurement function s to quantify
the similarity between items, but more generally ask that the measure-
ments be typically different depending on the cluster memberships of
the items, in a way that will be made quantitative in the following.
For instance, s could be a distance in an Euclidean space or could
take values in a set of colors (i. e. s does not need to be real-valued).

The ability to cluster data from as few pairwise comparisons as
possible is of broad practical interest [29]. First, there are situations

149
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where all the pairwise comparisons are simply not available. This is
particularly the case if a comparison is the result of a human-based ex-
periment. For instance, in crowdclustering [53, 162], people are asked
to compare a subset of the items in a dataset, and the aim is to cluster
the whole dataset based on these comparisons. Clearly, for a large
dataset of size n, we can’t expect to have all O(n2) measurements.
Second, even if these comparisons can be automated, the typical cost
of computing all pairwise measurements is O(n2d) where d is the
dimension of the data. For large datasets with n in the millions or bil-
lions, or large dimensional data, like high resolution images where d
can easily equal tens of millions, this cost is often prohibitive. Storing
all O(n2) measurements is also problematic. Our upcoming results
support the idea that if the measurements between different classes of
items are sufficiently different, a random subsampling of O(n) mea-Random

subsampling surements might be enough to accurately cluster the data. Random
subsampling methods are a well-known means of reducing the com-
plexity of a problem, and they have been shown to yield substantial
speed-ups in clustering [38] and low rank approximation [5, 6, 57]
The main challenge is to choose the lowest possible sampling rate
while still being able to detect the signal of interest. In the following,
we compute explicitly this fundamental limit for a simple probabilis-
tic model and present three algorithms allowing partial recovery of
the signal above this limit.

The link between this problem and the results exposed thus far in
this dissertation is also provided by the model, which we expose now.Model

We consider n items i ∈ [n], each of them in a cluster σi ∈ [q], where
all q clusters are assumed to be of equal size n/q. We choose the ob-
served pairwise measurements uniformly at random, by generating
an Erdős-Rényi random graph G = ([n], E) ∈ G(n,α/n). The average
degree α corresponds to the sampling rate: pairwise measurements
are observed only on the edges of G, and α therefore controls the dif-
ficulty of the problem. From the base graph G, we build a measure-
ment graph by weighting each edge (ij) ∈ E with the measurement
sij, assumed to be a random variable drawn from a probability distri-
bution pσi,σj

, dependent only on the cluster assignments σi and σj
of items i and j. The aim is to recover the cluster assignments σi for
i ∈ [n] from the measurement graph thus constructed.

We consider the sparse regime α = O(1), and the limit n→∞ with
fixed number of clusters q. As explained in section 1.4.1, with high
probability, the graph G is disconnected, so that exact recovery of the
clusters, as considered e.g. in [29, 69], is impossible. As usual, we
address here instead the question of how many measurements are
needed to partially recover, or detect the clusters, i. e. to infer cluster
assignments σ̂i such that the following overlap is strictly positive:

max
σ∈Sk

1
n

∑
i 1(σ(σ̂i) = σi) −

1
q

1− 1
q

, (6.1)
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where Sq is the set of permutations of [q]. This quantity, identi-
cal to the one considered in the previous chapter for the SBM, is
monotonously increasing with the number of correctly classified items.
In the limit n→∞, it vanishes for a random guess, and equals unity
if the recovery is perfect. Finally, we note an important special case
for which analytical results can be derived, which is the case of sym-
metric clusters: ∀σ, σ′ ∈ [q]

Symmetric modelpσ,σ′(s) = 1(σ = σ′)pin(s) + 1(σ 6= σ′)pout(s), (6.2)

where pin(s) (resp. pout(s)) is the probability density of observing
a measurement s between items of the same cluster (resp. different
clusters). In this case, the model we consider is nothing but a special
case of the symmetric lSBM introduced in section 1.4.3, in the special
case where

αin = αout , (6.3)

so that there is no information in the topology of the graph (which is
simply a random Erdős-Rényi random graph), but only in the labels.

From the statistical physics analysis of section 3.1, we therefore
predict that the problem is (efficiently) solvable if and only α > αc,
where

Conjectured
detectability
threshold

1

αc
=
1

q

∫

K

ds

(
pin(s) − pout(s)

)2

pin(s) + (q− 1)pout(s)
, (6.4)

where K is the support of the function pin +(q−1)pout. This equation
translates the general threshold (3.58) to the present setting. More
precisely, as explained in section 3.1.3, we expect that for a small
number of clusters q, equation (6.4) marks the transition between a
phase were detection is information-theoretically impossible, and a
phase where it is easy. For larger q, we expect that this transition
separates the possible but hard phase from the easy phase.

6.2 algorithms

In this section, we list the three methods discussed previously for
solving an instance of the lSBM and give their particular form and
properties for the problem defined in the previous section. The three
methods will be tested numerically on the experiments of the next
section. We assume for now that the measurement distributions pin

and pout are known and discuss ways to estimate them in the follow-
ing.

6.2.1 Belief propagation

The posterior distribution of the cluster assignment σ is a special
case of the general posterior of the lSBM given by equation (1.105).
The Bayes optimal clustering of the graph is given by the mode of the
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marginals of this pairwise MRF, which we can estimate using BP. The
BP fixed point equation (2.9) reads here

BP fixed point
equations

bi→j(σi) =
1

Zi→j

∏

l∈∂i\j

q∑

σl=1

pσi,σl
(sil)bl→i(σl) . (6.5)

As usual, starting from a random initial assignment of the beliefs, we
iterate (6.5) until convergence, and use (2.10) to estimate the marginals.

6.2.2 The non-backtracking operator

As shown in section 3.1.1, the model introduced in section 6.1 is fac-
torized and symmetric, so that the previous BP recursion has a trivial
fixed point, whose stability is controlled by the non-backtracking op-
erator (3.20) which writes here, for (i→ j), (k→ l) ∈ ~E,

Non-backtracking
operator B(i→j),(k→l) = w(skl) 1(l = i)1(k 6= j) , (6.6)

with a weighting function w corresponding to the Bayes optimal 1

setting of equation (3.24), given here by

∀s,w(s) = pin(s) − pout(s)

pin(s) + (q− 1)pout(s)
. (6.7)

The predictions of section 3.1.3 concerning the spectrum of this
matrix in the limit n→∞ are as follows.

— B has a bulk of uninformative eigenvalues constrained to the
disk of radius R(w) where R(w) is given by

R(w) =

√
αE[w2] ,

=

√
α

αc
.

(6.8)

where we have used the definition (6.4) of αc.Spectrum of the
non-backtracking

operator
— When R(w) > 1, i. e. when α > αc, there is an informative

eigenvalue of B with multiplicity q− 1, outside of the bulk of
radius R(w). With the notations of section 3.1.3, this eigenvalue
is given by

α∆(w) = R(w)2 ,

=
α

αc
.

(6.9)

Once more, note that when α < αc, there are no informative eigenval-
ues of B, but we also have that ρ(B) < 1, so that the trivial fixed point
of BP is stable, and BP also fails to detect the clusters. The approach

1. In the next chapter, we discuss in a semi-supervised setting the non-Bayes
optimal case where pin, pout are unknown, and we consider a general weighting
function w.
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we propose based on the non-backtracking operator is summarized
in algorithm 6. It requires the pooling matrix, for i ∈ [n], (k→ l) ∈ ~E

Pi,k→l = w(skl) 1(l = i) . (6.10)

In the following, we will give rigorous arguments to support the pre-
vious claim about the spectrum of B in the special case of q = 2

clusters, justifying the performance of this algorithm.

Algorithm 6 Non-backtracking spectral algorithm for randomized
clustering from sparse measurements

Input: Graph G = ([n], E), measurements sij for (ij) ∈ E
1: Build the non-backtracking operator B of (6.6) and the pooling

matrix P of (6.10)
2: Compute the eigenvalues of B which are larger in modulus than
R(w) defined by equation (6.8). If there are none, raise an error.
Otherwise, call q̂ their number and v1, v2 . . . , vq̂ the correspond-
ing eigenvectors.

3: Pool the eigenvectors vi for i ∈ [q̂] to compute the approximate
magnetizations mi = P vi

4: Output the assignments σ̂i = sign(mi) for i ∈ [n]

6.2.3 The Bethe Hessian

The Bethe Hessian associated with the non-backtracking operator (6.6)
reads here

Bethe HessianHij(x) =

(
1+

∑

k∈∂i

w(sik)
2

x2 −w(sik)2

)
1(i = j) −

xw(sik)

x2 −w(sik)2
1(j ∈ ∂i)

(6.11)
From the analysis of section 3.2.1, we expect the left edge of the bulk
of uninformative eigenvalues of H(x) to reach 0 when x = R(w)

where R(w) is given by equation (6.8). We therefore consider the
matrix H(R(w)) and look for its negative eigenvalues.

Algorithm 7 Bethe Hessian spectral algorithm for randomized clus-
tering from sparse measurements

Input: Graph G = ([n], E), measurements sij for (ij) ∈ E
1: Build the Bethe Hessians H (R(w)) where R(w) is defined in equa-

tion (6.8)
2: Compute the negative eigenvalues of H (R(w)). If there are none,

raise an error, otherwise call q̂ their number, and v1, v2, . . . , vq̂
their eigenvectors.

3: Cluster the eigenvectors v1, v2, . . . , vq̂ into q̂ clusters using
kmeans.



154 randomized clustering from sparse measurements

0 1 2 3 4 5 6
α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
ve

rl
a p

q = 2, αc 2. 63

BP
H
B

3 4 5 6 7 8 9 10
α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
ve

rl
a p

q = 3, αc 5. 5

BP
H
B

≈ ≈

Figure 6.1 – Performance in clustering model-generated measurement
graphs. The overlap is averaged over 20 realizations of graphs
of size n = 105, with q = 2, 3 clusters, and Gaussian pin, pout
with mean respectively 1.5 and 0, and unit variance. The theo-
retical transition (6.4) is at αc ≈ 2.63 for q = 2, and at αc ≈ 5.5
for q = 3. All three methods achieve the theoretical transi-
tion, although the Bethe Hessian (H) and belief propagation
(BP) achieve a higher overlap than the non-backtracking opera-
tor (B). Figure taken from [143].

The procedure based on the Bethe Hessian is summarized in algo-
rithm 7. We investigate numerically the accuracy of this algorithm, as
well as the two previous ones, in the next section.

6.3 numerical results

Figure 6.1 shows the performance of all three algorithms (BP, algo-Model-generated
data rithm 6 and algorithm 7) on model-generated problems. We consider

the symmetric lSBM with q = 2, 3, fixed pin and pout, chosen to be
strongly overlapping Gaussians, and we vary the sampling param-
eters αin = αout = α. All three algorithms achieve the theoretical
threshold 6.4.

While all the algorithms presented in this chapter assume the knowl-Toy data not
generated from the

model
edge of the parameters of the model, namely the functions pσ,σ′ for
σ, σ′ ∈ [q], we argue that the BP algorithm is robust to large impre-
cisions on the estimation of these parameters. To support this claim,
we show on figure 6.2 the result of the BP algorithm on standard toy
datasets where the parameters were estimated on a small fraction of
labeled data.
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Figure 6.2 – Clustering of toy datasets with q = 2 clusters using BP. Each dataset is composed
of n = 20000 points, 200 of which come labeled and constitute a training set used to
learn the distribution of the measurements. We used the Euclidean distance as the
measurement function s, and estimated the probability densities pσ,σ′ for σ, σ′ ∈ [2]

on the training set, using kernel density estimation (middle row). Note that we do not
assume here the symmetric setting (6.2). Although these estimates are very noisy and
overlapping, BP is able to achieve a very high accuracy using a random measurement
graph G of small average degree α (top row). For comparison, we show in the third
row the result of spectral clustering with the normalized Laplacian, using a 3-nearest
neighbors similarity graph (see e.g. [98]) built from G, i. e. using only the available
measurements. Figure taken from [143].
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6.4 spectral properties of the non-backtracking oper-
ator

The accuracy of all three previous algorithms is related to the de-
sirable spectral properties, conjectured in section 3.1.3, of the non-
backtracking operator on graphs generated from the lSBM. In this
section, we sketch some rigorous arguments supporting these claims
on the graphs considered in this chapter, i. e. those generated from
the symmetric lSBM with αin = αout. In the following, we restrict our
analysis to the case of q = 2 clusters, and assume that pin and pout

are distributions on a finite alphabet S.

Claim 1. Consider an Erdős-Rényi random graph on n vertices with av-
erage degree α, with variables assigned to vertices σi ∈ [2] uniformly
at random independently from the graph and measurements sij between
any two neighboring vertices drawn according to the probability density:
pσi,σj

(s) = 1(σi = σj)pin(s) + 1(σi 6= σj)pout(s) for two fixed (i. e. in-
dependent of n) discrete distributions pin 6= pout on S. Let B be the matrix
defined by (6.6) and denote by |λ1| > |λ2| > · · · > |λ

|~E|
| the eigenvalues of

B in order of decreasing magnitude. Recall that αc is defined by (6.4). Then,
with probability tending to 1 as n→∞:

(i) If α < αc, then |λ1| 6
√

α
αc

+ o(1).

(ii) If α > αc, then λ1 = α
αc

+ o(1) and |λ2| 6
√

α
αc

+ o(1). Addition-

ally, denoting by v the eigenvector associated with λ1, P v is positively
correlated with the planted variables (σi)i∈[n], where P is the pooling
matrix defined in equation (6.10).

Note that this claim contains as a special case theorem 4.4.1 of chap-
ter 4 for the planted spin glass, which it generalizes. The main idea
which substantiates our claim is to introduce a new non-backtracking
operator, with binary weights, and with spectral properties close to
those of B, and then apply to it the techniques developed in [19] and
extended in chapter 4. We use the same notations as in the proof of
theorem 4.4.1: for an oriented edge e = (u→ v), we set e1 = u, e2 = v

and e−1 = (v→ u). For simplicity we also redefine the cluster labels
σi ∈ [2]→ 2σi − 3 ∈ {±1}, for i ∈ [n].

We start by our usual gauge transformation: if t is the vector in R|~E|

defined by te = σe1
and ⊙ is the Hadamard product, i. e. (t⊙ x)e =

σe1
xe, then we have

B⊺x = λx⇔ BX(t⊙ x) = λ(t⊙ x) , (6.12)

with BX defined by BX
ef = Bfe σe1

σe2
. In particular, BX and B have

the same spectrum and there is a trivial relation between their eigen-
vectors. Defining Xe = σe1

w(se)σe2
, we have:

BX
ef = Xe 1(e2 = f1)1(e1 6= f2) . (6.13)
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Moreover, note that the random variables (Af = σf1σf2)f∈E are ran-
dom signs with P(Af = 1) = 1/2 and the random variables (Xf)f∈E

are such that

E [Xf] = E
[
X2
f

]
=
1

2

∑

s

(pin(s) − pout(s))
2

pin(s) + pout(s)
=
1

αc
. (6.14)

The fact that the random variables Xf have equal first and second
moments is a manifestation of the Nishimori conditions alluded to in
section (1.6.5), see [168] for details.

The main difficulty in adapting the proof of theorem 4.4.1 to the
present situation stems from the fact that we are now dealing with
general weights (not only ±1 as before) in the non-backtracking op-
erator. This breaks the PT-invariance, which plays a central role in
the various bounds of [19]. To remedy the situation, we now define
another non-backtracking operator BY . First, letting

ǫ(s) =
pout(s)

pin(s) + pout(s)
∈ [0, 1] , (6.15)

we define a sequence of independent random variables {Ỹe}e∈E with
P(Ỹe = +1|se) = 1− P(Ỹe = −1|se) = 1− ǫ(se), so that E

[
Ỹe|se

]
=

w(se). We define Ye = Ỹeσe1
σe2

, so that the expected value of the
variables Ye equals the weights in the gauge transformed operator
BX. Finally, we define

BY
ef = Yf 1(e2 = f1)1(e1 6= f2) , (6.16)

so that E
[
BY |G, {se}e∈E

]
= BX. We recover a non-backtracking op-

erator with ±1 weights, whose conditional expectation is the matrix
used in our algorithm. For the matrix BY , the PT-invariance holds,
and its spectrum can be analyzed with the tools developed in [19],
in a way similar to the proof of theorem 4.4.1. More precisely, we
call M the linear mapping on R|~E| defined by (M x)e = Ye xe−1 , i. e.
in matrix form Pef = Ye 1

(
f = e−1

)
. Since M⊺ = M and (Me)

2 = 1,
M is an involution so that M is an orthogonal matrix. As for the
planted spin glass, a simple computation shows that for any integer

k > 0,
(
BY
)k M = M

(
BY⊺)k, hence

(
BY
)k M is a symmetric matrix.

If (τj,k) for 1 6 j 6 |~E| denote the eigenvalues of
(
BY
)k M and (xj,k)

is a corresponding orthonormal basis of eigenvectors, we deduce as
in [19] that

(
BY
)k

=

|~E|∑

j=1

τj,k xj,k
(
M xj,k

)⊺ . (6.17)

Since M is an orthogonal matrix (M xj,k) for 1 6 j 6 |~E| is also an
orthonormal basis of R|~E|. In particular, (6.17) gives the singular value
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decomposition of
(
BY
)k. Indeed, if we set tj,k = |τj,k| and yj,k =

sign(τj,k)M xj,k, then we get

(
BY
)k

=

|~E|∑

j=1

tj,k xj,k yj,k
⊺ , (6.18)

which is precisely the singular value decomposition of (BY)k. As
shown in [19], for large k, the decomposition (6.17) carries structural
information on the graph.

A crucial element in the proof of [19] is the result of Kesten and
Stigum [82, 83] and we give now its extension required here which
can be seen as a version of Kesten and Stigum’s work in a random
environment. We write N⋆ = {1, 2, . . .} and U = ∪n>0(N

⋆)n the
set of finite sequences composed by N⋆, where (N⋆)0 contains the
null sequence ∅. For u, v ∈ U, we denote |u| = n the length of u
and we denote uv the sequence obtained by juxtaposition of u and v.
Suppose that {(Nu, Au1, Au2, . . . )}u∈U is a sequence of i.i.d random
variables with value in N× {±1}N⋆

such that Nu is a Poisson random
variable with mean α and the Aui are independent i.i.d random signs
with P(Au1 = 1) = P(Au1 = −1) = 1

2 . We then define the following
random variables: first su such that P(su|Au = 1) = pin(su) and
P(su|Au = −1) = pout(su), then Xu = Auw(su) and Yu = Au Ỹu
where P(Ỹu = 1|su) = 1− P(Yu = −1|su) = 1− ǫ(su). We assume
that for all u ∈ U and i > Nu, Aui = sui = Xui = Yui = 0. Nu will be
the number of children of node u and the sequence (su1, . . . , suNu

)

the measurements on edges between u and its children. We set for
u = u1u2 . . . un ∈ U,

PX∅ = 1, PXu = Xu1
Xu1u2

. . . Xu1...un ,

PY∅ = 1, PYu = Yu1
Yu1u2

. . . Yu1...un .
(6.19)

We define (with the convention 0
0 = 0) ,

Q0 = 1, Qt =
∑

|u|=t

PYu
αtPXu

. (6.20)

Then conditionally on the variables (su)u∈U, Qt is a martingale (gen-
eralizing the martingale Xt of section 4.4) converging almost surely
and in L2 as soon as α > αc. The fact that this martingale is bounded
in L2 follows from an argument given in the proof of theorem 3

in [60].
In order to apply the technique of [19], we need to deal with the

k-th power of the non-backtracking operators. As in our proof of
section 4.4 for the planted spin glass, for k not too large (of the or-
der of logn), the local structure of the graph (up to depth k) can
be coupled to a Poisson Galton-Watson branching process, so that
the computations done for Qk above provide a good approximation
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of the k-th power of the non-backtracking operator and we can use
the algebraic tools about perturbation of eigenvalues and eigenvec-
tors, i. e. the Bauer-Fike theorem and its variations listed in Section 4

of [19].

6.5 conclusion

In this chapter, we have considered the problem of clustering items
based on a minimal number of comparisons between them, chosen
uniformly at random. Our main result is that it is possible to par-
tially cluster the n items using only O(n) comparisons, instead of
computing all of the O(n2) comparisons. We introduced three re-
lated algorithms for this task, and gave a precise prediction about
their performance on a model, supported by numerical experiments
on synthetic networks. For one of the algorithms, based on the non-
backtracking operator, we gave rigorous arguments supporting this
prediction. Finally, we showed that our approach is useful outside
of our model, by illustrating the ability of BP to cluster, to excellent
accuracy, toy datasets not generated from the model, even in the pres-
ence of large imprecisions in its parameters. In the next chapter, we
consider a semi-supervised variant of the same problem, and show
that a highly efficient and local algorithm is rigorously guaranteed to
achieve a low error from a small number of measurements.





7
R A N D O M I Z E D S E M I - S U P E RV I S E D C L U S T E R I N G

As in the previous chapter we consider here a randomized simi-
larity-based clustering problem where the aim is to cluster a dataset
{xi}i∈[n] of n items from the knowledge of the pairwise similarities
sij = s(xi, xj), for (ij) ∈ E, where s is a similarity function, and E is a
random subset of the

(
n
2

)
possible pairs of items. In this chapter, we

build upon the approach of chapter 6 by considering two variations
motivated by real world applications.

The first question we address is how to incorporate the knowledge
of the labels of a small fraction of the items to aid clustering of the
whole dataset, resulting in a more efficient algorithm. This question,
referred to as semi-supervised clustering, is of broad practical inter- Semi-supervised

settingest [15, 170]. For instance, in a social network, we may have pre-
identified individuals of interest, and we might be looking for other
individuals sharing similar characteristics. In biological networks,
the function of some genes or proteins may have been determined
by costly experiments, and we might seek other genes or proteins
sharing the same function. More generally, efficient human-powered
methods such as crowdsourcing can be used to accurately label part
of the data [76, 77], and we might want to use this knowledge to
cluster the rest of the dataset at no additional cost.

The second question we address is the number of randomly cho-
sen pairwise similarities that are needed to achieve a given classifi-
cation error. Previous work has mainly focused on two related, but We are interested in

the error decay rate
in the detectability
regime.

different questions. One line of research has been interested in ex-
act recovery, i. e. how many measurements are necessary to exactly
cluster the data. Note that for exact recovery to be possible, as dis-
cussed in section 1.4.1, it is necessary to choose at least O(n logn)
random measurements for the similarity graph to be connected with
high probability. On simple models, [1, 56, 163] showed that this
scaling is also sufficient for exact recovery. At the sparser end of the
spectrum, [60, 94, 137, 143] have focused on the detectability thresh-
old, i.e. how many measurements are needed to cluster the data bet-
ter than chance. As shown in the previous chapter, on simple mod-
els, this threshold is typically achievable with O(n) measurements
only. While this scaling is certainly attractive for large problems, it is
important for practical applications to understand how the expected
classification error decays with the number of measurements.

To answer these two questions, we introduce a highly efficient, local
algorithm based on a power iteration of the non-backtracking opera-
tor. For the case of two clusters, we show on a simple but reasonable

161
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model that the classification error decays exponentially with the num-
ber of measured pairwise similarities, thus allowing the algorithm to
cluster data to arbitrary accuracy while being efficient both in terms
of time and space complexities. We demonstrate the good perfor-
mance of this algorithm on both synthetic and real world data, and
compare it to the popular label propagation algorithm [170]. This
chapter closely follows the presentation of the publication [138], with
an added note on the link with the general approach outlined at the
beginning of this dissertation.

7.1 algorithm and guarantee

For simplicity, we start by introducing our procedure in the case of
q = 2 clusters. On a model which generalizes the lSBM to the semi-
supervised setting, we present strong guarantees on the performance
of the algorithm. When then generalize the approach to a larger num-
ber q > 2 of clusters.

7.1.1 Algorithm for 2 clusters

Consider n items {xi}i∈[n] ∈ Xn and a symmetric similarity func-
tion s : X2 → R. The choice of the similarity function is problemSimilarity function s

dependent, and we will assume that one has been chosen. In this
chapter, contrary to the previous one, we really think of s as quan-
tifying the resemblance between items, so that s(xi, xj) is typically
larger if xi and xj belong to the same cluster. For concreteness, s can
be thought of as a decreasing function of a distance if X is an Eu-
clidean space. We give explicit examples of such similarity functions
in the upcoming numerical experiments. The analysis we perform,
however, applies to a generic function s, and our bounds will depend
explicitly on its statistical properties. We assume that the true labels
(σi = ±1)i∈L of a subset L ⊂ [n] of items is known 1. Our aim isLabeled set L

to find an estimate (σ̂i)i∈[n] of the labels of all the items, using a
small number of similarities. More precisely, let E be a random sub-Random

subsampling set of all the
(
n
2

)
possible pairs of items, containing each given pair

(ij) ∈ [n]2 with probability α/n, for some α > 0. As in chapter 6, we
compute only the αn/2 similarities (sij = s(xi, xj))(ij)∈E of the pairs
thus chosen.

We can now define a weighted similarity graph G = ([n], E) where
the vertices represent the items, and each edge (ij) ∈ E carries a
weight wij = w(sij), where w is a weighting function. Once more,Weighting

function w we will consider a generic function w in our analysis, and discuss the
performance of our algorithm as a function of the choice of w. In

1. In this chapter, L refers to the set of items i ∈ [n] whose labels σi are known,
and not to a set of labels carried by the edges of the graph, as in the definition of the
lSBM in section 1.4.3
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particular, we show in section 7.1.2 that there is an optimal choice of
w when the data is generated from a model, corresponding to the
Bayes optimal setting of the previous chapter. However, in practice,
the main purpose of w is to center the similarities, i.e. we will take Centering the

similaritiesin our numerical simulations w(s) = s− s̄, where s̄ is the empirical
mean of the observed similarities. The advantage of centering the
similarities is discussed in the following. Note that the graph G is
a weighted version of an Erdős-Rényi random graph with average
degree α, which controls the sampling rate: larger α means more
pairwise similarities are computed, at the expense of an increase in
complexity. Algorithm 8 describes our clustering procedure for the
case of 2 clusters.

Algorithm 8 Non-backtracking local walk for 2 clusters

Input: n,L, (σi = ±1)i∈L, E, (wij)(ij)∈E, kmax

Output: Cluster assignments (σ̂i)i∈[n]

1: Initialize the messages v(0) = (v
(0)
i→j)(i→j)∈~E

2: for all (i→ j) ∈ ~E do
3: if i ∈ L then v(0)i→j ← σi

4: else v(0)i→j ← ±1 uniformly at random

5: Iterate for k = 1, . . . , kmax

6: for (i→ j) ∈ ~E do v(k)i→j ←
∑

l∈∂i\jwilv
(k−1)
l→i

7: Pool the messages

8: for i ∈ [n] do v̂i ←
∑

l∈∂iwilv
(kmax)
l→i

9: Output the assignments

10: for i ∈ [n] do σ̂i ← sign(v̂i)

This algorithm is in fact nothing but a power iteration of a non- Relation with the
non-backtracking
operator

backtracking operator B, with elements for (i→ j), (k→ l) ∈ ~E

B(i→j),(k→l) = wkl 1(l = i)1(k 6= j) . (7.1)

If we let the number of iterations kmax grow to infinity, then algo-
rithm 8 computes the leading eigenvector of this non-backtracking
operator. This procedure is therefore close in spirit to the unsuper-
vised spectral methods introduced in chapters 4 and 6, which also
rely on the computation of the principal eigenvectors of B. However,
in contrast with these spectral approaches, algorithm 8 is local, in that Local nature of

algorithm 8the estimate σ̂i for a given item i ∈ [n] depends only on the messages
on the edges that are at most kmax + 1 steps away from i in the graph
G. This fact will prove essential in the upcoming analysis. Indeed,
we will show that in the semi-supervised setting, a finite number of
iterations (independent of n) is enough to ensure a low classification
error. On the other hand, in the unsupervised setting, we expect local
algorithms not to be able to find large clusters in a graph, a limitation
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that has already been highlighted on the related problems of finding
large independent sets on graphs [48] and community detection [75].

It is possible to connect this algorithm with the general approachLink with general
approach of
section 1.7

of this dissertation outlined in section 1.7 by noting that the leading
eigenvector of the non-backtracking operator defined in equation (7.1)
approximates the magnetizations of the Ising model defined by the
Boltzmann distribution

P(σ) =
1

Z
exp


 ∑

(ij)∈E

atanh(wij)σiσj


 , (7.2)

where we have assumed |wij| < 1 for (ij) ∈ E (which can be assumed
without loss of generality by rescaling B). Since atanh is an increas-
ing function, this model promotes assigning the same label to pairs
of vertices sharing a large weight (i. e. a large similarity if w is an
increasing function of the similarity s, e.g. w(s) = s− s̄). The algo-
rithm we describe here is therefore an instance of the “ad hoc” type of
problems introduced in section 1.7. Indeed, instead of computing the
marginals of the true posterior distribution of the labels σ, as we have
done in the previous chapters, we are here trying to approximate the
marginals of an ad-hoc Ising model which encodes the available data.
Another example of such an approach will be provided in the next
chapter, in the context of matrix completion.

7.1.2 Model and guarantee

To evaluate the performance of algorithm 8, we consider the follow-
ing semi-supervised variant of the symmetric lSBM. Assign n items to
2 predefined clusters of same average size n/2, by drawing for each
item i ∈ [n] a cluster label σi ∈ {±1} with uniform probability 1/2.
Choose uniformly at random ηn items to form a subset L ⊂ [n] ofSemi-supervised

variant of the lSBM items whose label is revealed. η is the fraction of labeled data. Next,
choose which pairs of items are compared by generating an Erdős-
Rényi random graph G = ([n], E) ∈ G(n,α/n), for some constant
α > 0, independent of n. As usual, we will assume that the simi-
larities are random variables, with symmetric distribution given by

P(sij = s|σi, σj) = 1(σi = σj)pin(s) + 1(σi = −σj)pout(s) , (7.3)

where pin (resp. pout) is the distribution of the similarities between
items within the same cluster (resp. different clusters). The propertiesOrder parameters

∆(w) and Σ(w)2 of the weighting function w will determine the performance of our
algorithm through the two following quantities. Define ∆(w) and
Σ(w) as

2∆(w) = E
[
wij|σj = σj

]
− E

[
wij|σj 6= σj

]
,

Σ(w)2 = E
[
w2
]

.
(7.4)
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2∆(w) is the difference in expectation between the weights inside a
cluster and between different clusters, and Σ(w)2 is the second mo-
ment of the weights. We have come across these quantities before
in the study of the spectrum of the non-backtracking operator B of
equation (7.1). More precisely, according to the results of section 3.1.3, Relation with the

spectrum of BR(w) =
√
αΣ2(w) is the radius of the bulk of uninformative eigen-

values of B. When α∆(w) > R(w), there is an informative eigenvalue
α∆(w) of B outside of the disk of radius R(w). In the unsupervised
setting, when the number of iterations of algorithm 8 is allowed to
grow to infinity, this algorithm detects the cluster if α∆(w) > R(w).
Our first theorem extends this result to the semi-supervised setting,
where algorithm 8 is run for a finite number of iterations.

Theorem 7.1.1. Assume a similarity graph G with n items and a labeled set Guarantee in the
small α regimeL of size ηn to be generated from the symmetric model (7.3) with 2 clusters.

Define τ(α,w) = α∆(w)2

Σ(w)2
. If ∆(w) > 0, then there exists a constant C > 0

such that the estimates σ̂i from k iterations of algorithm 8 achieve

1

n

n∑

i=1

P(σi 6= σ̂i) 6 1− rk+1 +C
αk+1 logn√

n
, (7.5)

where r0 = η2 and for 0 6 l 6 k,

rl+1 =
τ(α,w)rl

1+ τ(α,w)rl
. (7.6)

The proof relies on an analysis of the evolution of the distribu-
tion of the messages v(k)i→j and the Cantelli bound (see section 7.3).
Note again that our bound depends on the same signal to noise
ratio τ(α,w) as identified in section 3.1.3. To understand the con-
tent of this bound, we consider the limit of a large number of items
n → ∞, so that the last term of (7.5) vanishes. Note first that if
τ(α,w) > 1, then starting from any positive initial condition, rk con-
verges to (τ(α,w) − 1)/τ(α,w) > 0 in the limit k → ∞. A random
guess on the unlabeled points yields an asymptotic error of

lim
n→∞

1

n

n∑

i=1

P(σi 6= σ̂i) =
1− η

2
, (7.7)

so that a sufficient condition for algorithm 8 to improve the initial Sufficient condition
to improve the initial
labeling

partial labeling, after a certain number of iterations k(τ(α,w), η) in-
dependent of n, is

τ(α,w) >
2

1− η
. (7.8)

Let us compare this bound in the limit of small supervision η → 0 Comparison with
optimal
unsupervised
threshold

with the transition of the previous chapter for the unsupervised case.
We have already stated in section 3.1.3 that there is an optimal choice
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of weighting function w which maximizes the signal to noise ratio
τ(α,w), namely the Bayes optimal choice

w∗(s) =
pin(s) − pout(s)

pin(s) + pout(s)
=⇒ τ(α,w∗) =

α

2

∫

ds
(pin(s) − pout(s))

2

pin(s) + pout(s)
,

(7.9)
whose definition however requires knowing pin and pout. In the limit
of vanishing supervision η → 0, the bound (7.8) guarantees improv-
ing the initial labeling if τ(α,w∗) > 2 +O(η). On the other hand,
in the unsupervised setting, we have argued in the previous chapter
that detectability is possible if and only if τ(α,w∗) > 1. In the limit
of small supervision, the bound (7.8) is off by a constant factor of 2.

On the other hand, the bound (7.5) applies to any weighting func-
tion w. In particular, while the optimal choice (7.9) is not practical,Generality of the

result for any
reasonable w

theorem 7.1.1 guarantees that algorithm 8 retains the ability to im-
prove the initial labeling from a small number of measurements, as
long as ∆(w) > 0. With the choice w(s) = s− s̄ advocated for in sec-
tion 7.1.1, we have 2∆(w) = E

[
sij|σj = σj

]
− E

[
sij|σj 6= σj

]
. There-

fore algorithm 8 improves over random guessing for α large enough
if the similarity between items in the same cluster is larger in expec-
tation than the similarity between items in different clusters, which is
a reasonable requirement. Note that the hypotheses of theorem 7.1.1
do not require the weighting functionw to be centered. However, it isAdvantage of

centering the
weights

easy to check that if E[w] 6= 0, defining a new weighting function by
w′(s) = w(s) − E[w], we have τ(α,w′) > τ(α,w), so that the bound
(7.5) is improved.

While theorem 7.1.1 guarantees improving the initial clustering
from a small sampling rate α, it provides a rather loose bound on the
expected error when α becomes larger. The next theorem addresses
this regime. A proof is given in section 7.4.

Theorem 7.1.2. Assume a similarity graph G with n items and a labeled set
L of size ηn to be generated from the symmetric model (7.3) with 2 clusters.
Assume further that the weighting function w is bounded: ∀s , |w(s)| 6 1.Exponentially

decaying error Define τ(α,w) =
α∆(w)2

Σ(w)2
. If α∆(w) > 1 and αΣ(w)2 > 1, then there

exists a constant C > 0 such that the estimates σ̂i from k iterations of
algorithm 8 achieve

1

n

n∑

i=1

P(σi 6= σ̂i) 6 exp
[
−
qk+1

4
min

(
1,
Σ(w)2

∆(w)

)]
+C

αk+1 logn√
n

,

(7.10)
where q0 = 2 η2 and for 0 6 l 6 k,

ql+1 =
τ(α,w)ql

1+ 3/2max(1, ql)
. (7.11)

Note that by linearity of algorithm 8, the condition ∀s, |w(s)| 6 1

can be relaxed to w bounded. It is once more instructive to consider
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the limit of large number of items n → ∞. Starting from any initial Implications of the
bound in the
n→∞ limit

condition, if τ(α,w) < 5/2, then qk −→
k→∞

0 so that the bound (7.10)

is uninformative. On the other hand, if τ(α,w) > 5/2, then starting
from any positive initial condition, qk −→

k→∞

2
3(τ(α,w) − 1) > 0. This

bound therefore shows that on a model with a given distribution of
similarities (7.3) and a given weighting function w, an error smaller
than ǫ can be achieved from αn/2 = O(n log 1/ǫ) measurements, in
the limit ǫ → 0, with a finite number of iterations k(τ(α,w), η, ǫ) in-
dependent of n. We note that this result is the analog, for a weighted
graph, of the recent results of [24] who show that in the SBM, a lo-
cal algorithm similar to algorithm 7.1.1 achieves an error decaying
exponentially as a function of a relevant signal to noise ratio.

7.1.3 More than 2 clusters

Algorithm 9 gives a natural extension of our algorithm to q > 2

clusters. In this case, as argued in section 3.1.3, we expect the non- Deflation method to
approximate q− 1
leading eigenvalues
of B

backtracking operator B defined in equation (7.1) to have q− 1 large
eigenvalues, with eigenvectors correlated with the types σi of the
items. We use a deflation-based power iteration method ([148]) to
approximate these eigenvectors, starting from informative initial con-
ditions incorporating the knowledge drawn from the partially labeled
data. Numerical simulations illustrating the performance of this al-
gorithm are presented in section 7.2. Note that each deflated matrix
Bc for c > 2 is a rank-(c− 1) perturbation of a sparse matrix, so that
the power iteration can be carried out efficiently using sparse linear
algebra subroutines. In particular, both algorithms 8 and 9 have a
time and space complexities linear in the number of items n.

7.2 numerical simulations

In addition to the theoretical guarantees presented in the previous
section, we ran numerical simulations on two toy datasets consisting Datasets used for the

experimentsof 2 and 4 Gaussian blobs (figure 7.1), and two subsets of the MNIST
dataset ([93]) consisting respectively of the digits in {0, 1} and {0, 1, 2}

(figure 7.2). We also considered the 20 Newsgroups text dataset [92],
consisting of text documents organized in 20 topics, of which we se-
lected 2 for our experiments of figure 7.3. All of these datasets differ
considerably from the model we have studied analytically. In particu-
lar, the random similarities are not identically distributed conditioned
on the true labels of the items, but depend on latent variables, such
as the distance to the center of the Gaussian, in the case of figure 7.1.
Additionally, in the case of the MNIST dataset of figure 7.2, the clus-
ters have different sizes (e.g. 6903 for the 0’s and 7877 for the 1’s).
Nevertheless, we find that our algorithm performs well, and outper-
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Algorithm 9 Non-backtracking local walk for q > 2 clusters

Input: n, q,L, (σi ∈ [q])i∈L, E, (wij)(ij)∈E, kmax

Output: Cluster assignments (σ̂i)i∈[n]

1: B1 ← B where B is the non-backtracking matrix defined in equa-
tion (7.1)

2: for c = 1, · · · , q− 1 do
3: Initialize the messages v(0) = (v

(0)
i→j)(ij)∈E

4: for all (i→ j) ∈ ~E do
5: if i ∈ L and σi = c then v(0)i→j ← 1

6: else if i ∈ L and σi 6= c then v(0)i→j ← −1

7: else v(0)i→j ← ±1 uniformly at random

8: Iterate for k = 1, . . . , kmax

9: v(k) ← Bcv
(k−1)

10: Pool the messages in a vector v̂c ∈ Rn with entries (v̂i,c)i∈[n]

11: for i ∈ [n] do v̂i,c ←
∑

l∈∂iwilv
(kmax)
l→i

12: Deflate Bc

13: Bc+1 ← Bc −
Bcv

(kmax)v(kmax)
⊺

Bc

v(kmax)
⊺Bcv(kmax)

14: Concatenate V̂ ← [v̂1| · · · |v̂q−1] ∈ Rn×(q−1)

15: Output the assignments (σ̂i)i∈[n] ← kmeans(V̂)

forms the popular label propagation algorithm ([170]) in a wide range
of values of the sampling rate α.

In all cases, we find that the accuracy achieved by algorithms 8

and 9 is an increasing function of α, rapidly reaching a plateau at
a limiting accuracy. Rather than the absolute value of this limiting
accuracy, which depends on the choice of the similarity function, per-
haps the most important observation is the rate of convergence of the
accuracy to this limiting value, as a function of α. Indeed, on these
simple datasets, it is enough to compute, for each item, their simi-
larity with a few randomly chosen other items to reach an accuracy
within a few percents of the limiting accuracy allowed by the quality
of the similarity function. As a consequence, similarity-based cluster-
ing can be significantly sped up. For example, we note that the semi-A wall-clock timing

example supervised clustering of the 0’s and 1’s of the MNIST dataset (repre-
senting n = 14780 points in dimension 784), from 1% of labeled data,
and to an accuracy greater than 96% requires α ≈ 6 (see figure 7.2),
and runs on a laptop in 2 seconds, including the computation of the
randomly chosen similarities. Additionally, in contrast with our algo-Robustness in the

small η regime rithms, we find that in the strongly undersampled regime (small α),
the performance of label propagation depends strongly on the frac-
tion η of available labeled data. We find in particular that algorithms



7.2 numerical simulations 169

Figure 7.1 – Performance of algorithms 8 (denoted Algorithm q = 2) and 9 (denoted Algorithm
q > 2) compared to label propagation on a toy dataset in two dimensions. The
left panel shows the data, composed of n = 104 points, with their true labels. The
right panel shows the clustering performance on random subsamples of the complete
similarity graph. Each point is averaged over 100 realizations. The accuracy is defined
as the fraction of correctly labeled points. We set the maximum number of iterations
of our algorithms to kmax = 30. α is the average degree of the random similarity graph
G, and η is the fraction of labeled data. For all methods, we used the same similarity
function sij = exp−d2ij/σ

2 where dij is the Euclidean distance between points i and j
and σ2 is a scaling factor which we set to the empirical mean of the observed squared
distances d2ij. For algorithms 8 and 9, we used the weighting function w(s) = s− s̄

(i.e. we simply center the similarities, see text). Label propagation is also run on
the random similarity graph G. We note that we improved the performance of label
propagation by using only, for each point, the similarities between this point and its
three nearest neighbors in the random graph G. Figure taken from [138].
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Figure 7.2 – Performance of algorithms 8 (denoted Algorithm q = 2) and 9 (denoted Algorithm
q > 2) compared to label propagation on a subset of the MNIST dataset. The left
panel corresponds to the set of 0’s and 1’s (n = 14780 samples) while the right panel
corresponds to the 0’s,1’s and 2’s (n = 21770). All the parameters are the same as
in the caption of figure 7.1, except that we used the Cosine distance in place of the
Euclidean one. Figure taken from [138].

8 and 9 outperform label propagation even starting from ten times
fewer labeled data.

7.3 proof of theorem 7 .1 .1

Consider the model introduced in section 7.1 for the case of two
clusters. We will bound the probability of error on a randomly chosen
node, and the different results will follow. Denote by I an integer
drawn uniformly at random from [n], and by σ̂(k)I = ±1 the decision
variable after k iterations of algorithm 8. We are interested in the
probability of error at node I conditioned on the true label of node I,
i.e. P(σ̂(k)I 6= σI|σI). As noted previously, the algorithm is local in the
sense that σ̂(k)I depends only on the messages in the neighborhood
of I consisting of all the nodes and edges of G that are at most k+ 1
steps aways from I. By bounding the total variation distance between
the law of GI,k+1 and a weighted Galton-Watson branching process,
we show (see proposition 31 in [19])

P
(
σ̂
(k)
I 6= σI|σI

)
6 P

(
σIv̂

(k)
σI

6 0
)
+C

αk+1 logn√
n

, (7.12)
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Figure 7.3 – Performance of algorithm 8 (denoted Algorithm q = 2)
compared to label propagation on a subset of 20 News-
groups dataset with q = 2 clusters. We consider the top-
ics “misc.forsale” (975 documents) and “ soc.religion.christian”
(997 documents), which are relatively easy to distinguish, to
illustrate the efficiency of our subsampling approach. The re-
sulting dataset consists of n = 1972 text documents, to which
we applied a standard “tf-idf” transformation (after stemming,
and using word unigrams) to obtain a vector representation of
the documents. We used the same similarity (based on the Co-
sine distance) and weighting functions as in figure 7.2.
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where C > 0 is a constant, and the random variables v̂(k)σ for σ = ±1
are distributed according to

v̂
(k)
σ

D
=

d1∑

i=1

wi,inv
(k)
i,σ +

d2∑

i=1

wi,outv
(k)
i,−σ , (7.13)

where D
= denotes equality in distribution. The random variables v(k)i,σ

for σ = ±1 have the same distribution as the message v(k)i→j after
k iterations of the algorithm, for a randomly chosen edge (i → j),
conditioned on the type of node i being σ. They are i.i.d. copies of
a random variable v(k)σ whose distribution is defined recursively, for
l > 0 and σ = ±1, throughNote that we use the

same distributional
recursion as in

section 3.1.2, but
make our arguments

rigorous thanks to
the local nature of

algorithm 8.

v
(l+1)
σ

D
=

d1∑

i=1

wi,inv
(l)
i,σ +

d2∑

i=1

wi,outv
(l)
i,−σ . (7.14)

In equations (7.13), d1 and d2 are two independent random variables
with a Poisson distribution of mean α/2, and wi,in (resp. wi,out) are
i.i.d copies of win (resp. wout) whose distribution is the same as the
weights wij, conditioned on σi = σj (resp. σi 6= σj). Note in particu-
lar that v̂(k)σ has the same distribution as v(k+1)

σ .
Theorem 7.1.1 will follow by analyzing the evolution of the first and

second moments of the distribution of v(k+1)
+1 and v(k+1)

−1 . Equations
(7.14) can be used to derive recursive formulas for the first and sec-
ond moments. In particular, the expected values verify the following
linear system




E

[
v
(l+1)
+1

]

E

[
v
(l+1)
−1

]


 =

α

2




E[win] E[wout]

E[wout] E[win]







E

[
v
(l)
+1

]

E

[
v
(l)
−1

]


 . (7.15)

The eigenvalues of this matrix are E [win] + E [wout] with eigenvector
(1, 1)⊺, and E [win] − E [wout] with eigenvector (1,−1)⊺. With the as-

sumption of our model, we have E

[
v
(0)
+1

]
= η = −E

[
v
(0)
−1

]
which

is proportional to the second eigenvector. Recalling the definition of
∆(w) from section 7.1, we therefore have, for any l > 0,

E

[
v
(l+1)
+1

]
= α∆(w)E

[
v
(l)
+1

]
, (7.16)

and E

[
v
(l)
−1

]
= −E

[
v
(l)
+1

]
. With the additional observation that

E

[(
v
(0)
+1

)2]
= E

[(
v
(0)
−1

)2]
= 1 , (7.17)

a simple induction shows that for any l > 0,

E

[(
v
(l)
+1

)2]
= E

[(
v
(l)
−1

)2]
, (7.18)
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and that, recalling the definition of Σ(w)2 from section 7.1, we have
the recursion

E

[(
v
(l+1)
+1

)2]
= α2∆(w)2E

[
v
(l)
+1

]2
+αΣ(w)2E

[(
v
(l)
+1

)2]
. (7.19)

Noting that since we assume ∆(w) > 0, we have σE

[
v
(k+1)
σ

]
> 0 for

σ = ±1, the proof of theorem 7.1.1 is concluded by invoking Cantelli’s
inequality

P
(
σv

(k+1)
σ 6 0

)
6 1− rk+1 , (7.20)

with, for l > 0,

rl = E

[
v
(l)
σ

]2
E

[(
v
(l)
σ

)2]−1

, (7.21)

where rl is independent of σ, and is shown to verify the recursion
(7.6) by combining (7.16) and (7.19).

7.4 proof of theorem 7 .1 .2

The proof is adapted from a technique developed in [76]. We show
that the random variables v(l)σ are sub-exponential by induction on
l. A random variable X is said to be sub-exponential if there exist
constants K > 0, a, b such that for |λ| < K

E[eλX] 6 eλa+λ2b . (7.22)

Define f(l)σ (λ) = E

[
eλv

(l)
σ

]
for l > 0 and σ = ±1. Define two se-

quences (al)l>0, (bl)l>0 by a0 = η, b0 = 1/2 and for l > 0

al+1 = α∆(w)al ,

bl+1 = αΣ(w)2
(
bl +

3

2
max(a2l , bl)

)
.

(7.23)

Note that since we assume α∆(w) > 1 and αΣ(w)2 > 1, both se-
quences are positive and increasing. In the following, we show that

f
(k+1)
σ (λ) 6 eσλak+1+λ2bk+1 , (7.24)

for |λ| 6
(
2max

(
ak,
√
bk
))−1. Theorem 7.1.2 will follow from the

Chernoff bound applied at

λ∗σ = −σ
ak+1

2bk+1
min

(
1,
Σ(w)2

∆(w)

)
. (7.25)

The fact that |λ∗σ| 6
(
2max

(
ak,
√
bk
))−1 follows from (7.23). Noting

that σλ∗σ < 0 for σ = ±1, the Chernoff bound allows to show

P
(
σv

(k+1)
σ 6 0

)
6 f

(k+1)
σ (λ∗σ) ,

6 exp
[
−
qk+1

4
min

(
1,
Σ(w)2

∆(w)

)]
,

(7.26)
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where qk+1 = a2k+1/bk+1 is shown using (7.23) to verify the recur-

sion (7.11). We are left to show that f(k+1)
σ (λ) verifies (7.24). First,

with the choice of initialization in algorithm 8, we have for any λ ∈ R

f
(0)
+1(λ) = f

(0)
−1(−λ) =

1+ η

2
eλ +

1− η

2
e−λ

6 eηλ+λ2/2. (7.27)

where the last inequality follows from the fact that for x ∈ [0, 1], λ ∈ R

x eλ + (1− x) e−λ
6 e(2x−1)λ+λ2/2 . (7.28)

Therefore we have f(0)σ (λ) 6 exp (σλa0 + λ
2b0). Next, assume that

for some l > 0, and ∀ |λ| 6
(
2max

(
al−1,

√
bl−1

))−1

f
(l)
σ (λ) 6 exp

(
σλal + λ

2 bl
)
, (7.29)

with the convention a−1 = b−1 = 0 so that the previous statement
is true for any λ ∈ R if l = 0. The density evolution equations (7.14)
imply the following recursion on the moment-generating functions,
for any λ ∈ R, σ = ±1,

f
(l+1)
σ (λ) = exp

(
−α+

α

2

(
Ewin

[
f
(l)
σ (λwin)

]
+ Ewout

[
f
(l)
−σ(λwout)

]))
.

(7.30)

We claim that for |λ| 6
(
2max

(
al,
√
bl
))−1 and σ = ±1,

1

2

(
Ewin

[
f
(l)
σ (λwin)

]
+ Ewout

[
f
(l)
−σ(λwout)

])
6

1+ σal∆(w) λ+ λ
2Σ(w)2

(
bl +

3

2
max(a2l , bl)

)
.

(7.31)

Injecting (7.31) in (7.30) yields f(l+1)
σ (λ) 6 exp (σλal+1 + λ

2bl+1), for
|λ| 6

(
2max

(
al,
√
bl
))−1, with al+1, bl+1 defined by (7.23). The

proof is then concluded by induction on 0 6 l 6 k. To show (7.31),
we start from the following inequality: for |a| 6 3/4,

ea 6 1+ a+ (2/3)a2 . (7.32)

With |w| 6 1 as per the assumption of theorem 7.1.2, we have that
for |λ| 6

(
2max

(
al,
√
bl
))−1 and σ = ±1, |σλwal + λ2w2bl| 6 3/4.

Additionally, since al and bl are non-decreasing in l, we also have

|λ| 6
(
2max

(
al−1,

√
bl−1

))−1
, so that by our induction hypothesis,

for σ = ±1,
f
(l)
σ (λw) 6 eσλwal+λ2w2bl , (7.33)

6 1+ σλwal + λ
2w2bl +

2

3

(
σλwal + λ

2w2bl
)2
, (7.34)

6 1+ σλwal + λ
2w2bl +

2

3
λ2w2 (al + |λ|bl)

2 , (7.35)

6 1+ σλwal + λ
2w2bl +

3

2
λ2w2 max(a2l , bl) , (7.36)

where we have used that (al + |λ|bl)
2
6 9/4max(a2l , bl). (7.31) fol-

lows by taking expectations.
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7.5 conclusion

In this chapter, we have considered a semi-supervised similarity-
based clustering problem, and have argued that a small number of
randomly chosen similarity measures are enough to cluster the data
to high accuracy. In particular, we introduced a highly efficient local
algorithm based on a power iteration of the non-backtracking opera-
tor, and gave rigorous guarantees regarding its performance on a sim-
ple model. We also illustrated the good performance of this algorithm
on other types of data, including real world datasets, and showed that
it compares favorably with the popular label propagation algorithm.
In the next chapter, we come back to the Bethe Hessian and consider
an application in matrix completion.





8
M AT R I X C O M P L E T I O N A N D T H E H O P F I E L D
M O D E L

We consider here the (noiseless) matrix completion problem, where
the aim is to infer the missing entries of a (low rank) matrix from a
small number of revealed entries. More precisely, we are looking to
reconstruct a rank-r matrix Mtrue ∈ Rn×m written as

Mtrue = XY⊺ , (8.1)

for some (unknown) tall matrices X ∈ Rn×r and Y ∈ Rm×r. We as-
sume that we observe only a small fraction of the elements of Mtrue,
chosen uniformly at random, and we wish to infer the missing en-
tries using the low rank assumption. This problem has witnessed a
recent burst of activity (see e.g. [26, 27, 80]) motivated by many ap-
plications such as collaborative filtering [26], quantum tomography
[55] in physics, or the analysis of a covariance matrix [26]. Perhaps
the most widely considered question in this setting is perfect recovery,
i. e. how many entries need to be revealed in order for the matrix to
be completed exactly in a computationally efficient way [26, 80]. The
main questions we investigate in this chapter are different.

The first question we address is detectability, which here can be Detectability

stated as: how many random entries do we need to reveal in order
to be able to estimate the rank r reliably? This is motivated by the
more generic problem of detecting structure (in our case, low rank)
hidden in partially observed data. As argued in section 1.4.1, it is
reasonable to expect the existence of a region where exact completion
is hard or even impossible yet the rank estimation is tractable. A
second question we address is what is the minimum achievable root
mean square error (RMSE) in estimating the unknown elements of the Reconstruction error

matrix. In practice, even if exact reconstruction is not possible, having
a procedure that provides a very small RMSE might be quite sufficient.

Like in the previous chapter, our approach to this problem differs
considerably from the strategy we adopted for the first clustering
problems presented in this dissertation. For these, we were able to
write down the posterior probability of the true cluster assignment
on a probabilistic model, and to solve it either using BP or spectral
methods tightly related to BP. For matrix completion, the situation is Unlike previously,

we do not attempt
here to approximate
the marginals of a

“true” posterior.

different. While we can still consider a generative model and write
the posterior distribution of the missing entries, the marginalization
problem turns out to be intractable, even using BP. This is because, un-
like the previous clustering problems, the hidden assignment is here
real valued, so that the BP messages are now full-fledged real distri-
butions, instead of finite distributions, which could be represented
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as vectors. To solve the BP equations, one would have store a large
number of populations, representing the marginals of the problem,
and iteratively update these populations which is very expensive in
practice 1. Instead, we use here the available data to define a tractable
pairwise model, whose marginals, we believe, may help us solve the
problem. This approach is similar in spirit to the computer vision
example of section 1.3.1, and corresponds to the “ad hoc” type of ap-
plications introduced in section 1.7 when describing the general ap-
proach of this dissertation. Anticipating on the following, the modelWe approximate the

marginals of a
Hopfield model

encoding the
available data

we will consider is a Hopfield model, where the patterns will corre-
spond to the factors X and Y of equation (8.1). When in the retrieval
phase, as explained in section 1.6.6, the free energy of this model has
interesting local minima, correlated with the patterns. The number of
these local minima gives away the number of patterns, i. e. here the
rank r of the matrix. We use a spectral method based on the Bethe
Hessian to detect all these interesting local minima at once.

The resulting algorithm, called MaCBetH (for Matrix Completion
with the Bethe Hessian), allows to infer the rank and reconstruct the
missing entries of Mtrue, and is the main subject of this chapter. For
a random model, we will compute explicitly the number of obser-
vations required for the algorithm to correctly infer the rank r. In
particular, we will show that MaCBetH efficiently detects the rank r
of a large n×m matrix from C(r) r

√
nm entries, where C(r) is a con-

stant close to 1, which we compute numerically. Additionally, we will
show on numerical simulations that MaCBetH compares favorably to
state-of-the-art matrix completion approaches in terms of reconstruc-
tion RMSE. Our presentation follows the publication [141], with some
remarks and numerical simulations. We formally define the matrix
completion problem and present generally our approach in the con-
text of existing work in section 8.1. In section 8.2, we describe our
algorithm and motivate its construction via a spectral relaxation of
the Hopfield model. Next, in section 8.3.1 we show how to compute
the phase transition in rank estimation, and also compute the spectral
density of the Bethe Hessian on the sparse Hopfield model. Finally,
in section 8.4 we present numerical simulations that demonstrate the
accuracy of MaCBetH. Implementations of our algorithm in the Julia
[16] and Matlab programming languages are available on the SPHINX
webpage http://www.lps.ens.fr/~krzakala/WASP.html.

8.1 problem definition and relation to other work

Let Mtrue be given by equation (8.1), where X and Y are called the
factors. Recall that we observe only a small fraction of the elements of

1. An interesting approach was proposed by Keshavan in his dissertation [81].
This approach iteratively computes the most probable value of the missing item
using a message-passing algorithm. The messages are in this case vectors.

http://www.lps.ens.fr/~krzakala/WASP.html
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Mtrue, chosen uniformly at random. We call E the subset of observed
entries, and M the (sparse) matrix supported on E whose nonzero
elements are the revealed entries of Mtrue. The aim is to reconstruct
the rank r matrix Mtrue = XY⊺ given M. An important parameter Definition of α

which controls the difficulty of the problem is α = |E|/
√
nm. In the

case of a square matrix M, this is the average number of revealed
entries per line or column. In our numerical examples and theoreti-
cal justifications we shall generate the low rank matrix Mtrue = XY⊺,
using tall matrices X and Y with i.i.d Gaussian elements, and call this
the random matrix setting. The MaCBetH algorithm is, however, non- Random matrix

settingparametric and does not use any prior knowledge about X and Y. The
analysis we perform applies in the limit n → ∞ while m/n is fixed
and r = O(1).

The matrix completion problem was popularized by [26] who pro-
posed nuclear norm minimization as a convex relaxation of the prob-
lem. The algorithmic complexity of the associated semidefinite pro-
gramming approach is, however, O

(
n2m2

)
. A low complexity pro-

cedure to solve the problem was later proposed by [23] and is based
on a singular value decomposition (SVD) of the observed matrix M.
A considerable step towards the theoretical understanding of ma-
trix completion from few entries was achieved by [80] who proved
that with the use of trimming (see following), the performance of
SVD-based matrix completion can be improved and a RMSE propor-
tional to

√
nr/|E| can be achieved. The algorithm of [80] is referred to

as OptSpace, and empirically it achieves state-of-the-art RMSE in the
regime of very few revealed entries.

OptSpace proceeds in three steps [80]. First, one trims the observed The OptSpace
algorithmmatrix M by setting to zero all rows (resp. columns) with more re-

vealed entries than twice the average number of revealed entries per
row (resp. per column). Second, a SVD of the matrix M is used to com-
pute the r pairs of singular vectors with largest singular value. When
the rank r is unknown, it is estimated as the index for which the ratio
between two consecutive singular values has a minimum. Third, a
local minimization of the discrepancy between the observed entries
and the estimate is performed (see following). The initial condition
for this minimization is given by the top r left and right singular
vectors from the second step.

The advantage of trimming is that it allows to avoid the localiza- On trimming

tion phenomenon discussed in the introduction of chapter 3 by re-
moving the high degree vertices of the Erdős-Rényi graph G = (n, E).
However, this improvement comes at the cost of erasing part of the
available data. On the other hand, we have been discussing at length
two operators that do not suffer from the localization problem, even
on very sparse graphs, namely the non-backtracking operator and
the Bethe Hessian. In this work we improve upon OptSpace by re-
placing the first two steps by a different spectral procedure, based on
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the Bethe Hessian, that detects the rank and provides a better initial
condition for the discrepancy minimization. We find that this new
approach to matrix completion provides an improvement analogous
to the one obtained in clustering by using the Bethe Hessian (or the
non-backtracking) operator instead of more traditional matrices.

8.2 algorithm and motivation

We start by introducing our algorithm, and motivate it by making
the connection with the Hopfield model explicit.

8.2.1 The MaCBetH algorithm

A standard approach to the completion problem (see e.g. [80]) is to
minimize the cost function

Cost function min
X,Y

∑

(ij)∈E

[Mij − (XY⊺)ij]
2 , (8.2)

over factors X ∈ Rn×r and Y ∈ Rm×r. This function is non-convex,
and global optimization is hard 2. One therefore resorts to a local
optimization technique with a careful choice of the initial conditions
X0, Y0. In our method, given the matrix M, we consider a weighted bi-
partite undirected graph with adjacency matrix A ∈ R(n+m)×(n+m)

Adjacency matrix of
the associated

bipartite graph
A =

(
0 M

MT 0

)
. (8.3)

We will refer to the graph thus defined as G. We now define the
Bethe Hessian matrix H(β) ∈ R(n+m)×(n+m) to be the matrix with
elements, for i, j ∈ [n]

Bethe Hessian

Hij(β) =

(
1+

∑

k∈∂i

tanh2 βAik

1− tanh2 βAik

)
1(i = j) −

tanhβAij

1− tanh2 βAij

,

=

(
1+

∑

k∈∂i

sinh2 βAik

)
δij −

1

2
sinh(2βAij) ,

(8.4)
where β is a parameter that we will fix to a well-defined value β̂SG de-
pending on the data, and ∂i stands for the neighbors of i in the graph
G. We justify the form of this matrix in the next section. The MaC-
BetH algorithm that is the main subject of this chapter is described in
algorithm 10. In step 1 of this procedure, β̂SG is an approximation

2. It was recently proved [49] that when α = polylog(n), this cost function has
no spurious local minimum, so that a simple local optimization of the cost function
(8.2) starting from any initial condition allows to perfectly recover the matrix M. In
practice, and for the very sparse regimes we consider in our numerical tests, we will
see that the initial condition plays an important role.
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Algorithm 10 MaCBetH algorithm for matrix completion

Input: Partially observed matrix M, which we assume to be centered
1: Solve for the value of β̂SG such that F

(
β̂SG

)
= 1, where

F(β) =
1√
nm

∑

(i,j)∈E

tanh2(βMij) . (8.5)

2: Build the Bethe Hessian H
(
β̂SG

)
of equation (8.4).

3: Compute all the negative eigenvalues λ1, · · · , λr̂ of H
(
β̂SG

)
and

their corresponding eigenvectors v1, · · · , vr̂. r̂ is our estimate for
the rank r. Set X0 (resp. Y0) to be the first n lines (resp. the last
m lines) of the matrix [v1 v2 · · · vr̂].

4: Perform local optimization of the cost function (8.2) with rank r̂
and initial condition X0, Y0.

to the optimal value of β, for which H(β) has a maximum number
of negative eigenvalues (see section 8.3.1). Instead of this approxi-
mation, β can be chosen in such a way as to maximize the number
of negative eigenvalues. We however observed numerically that the
algorithm is robust to some imprecision on the value of β̂SG. Note
that in step 2, we could also use the associated non-backtracking ma-
trix with weights tanh

(
βMij

)
(see section 8.3.1). The Bethe Hessian is

however smaller and symmetric, which reduces the complexity of the
spectral part of our algorithm. In the next section, we will motivate
and analyze this algorithm in the setting where Mtrue was generated
from element-wise random factors X and Y. We will argue that in this
case MaCBetH is able to infer the rank whenever α > αc, where αc

is a (small) constant, independent of n. Figure 8.1 illustrates the spec-
tral properties of the Bethe Hessian that justify this algorithm. With
the choice β = β̂SG, the informative eigenvalues of H(β) are nega-
tive, and well separated from the bulk of uninformative eigenvalues,
which stays positive.

8.2.2 Motivation from a Hopfield model

As shown in section 2.3.2, the matrix H(β) is closely related to the
pairwise MRF

Hopfield modelP(σ, τ) =
1

Z
exp


β

∑

(ij)∈E

Mijσiτj


 , (8.6)

where the σ = (σi)i∈[n] and τ = (τ)i∈[n] are two collections of binary
variables, and β is an inverse temperature controlling the strength
of the interactions. This model is a (generalized) Hebbian Hopfield
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model (see section 1.6.6) on the bipartite sparse graph G, with r pat-
terns given by

ξµ =


 Xµ

Yµ


 ∈ Rn+m , ∀µ ∈ [r] , (8.7)

where Xµ (resp. Yµ) denotes the µ-th column of the factor X (resp. Y).
From the analysis of section 2.3.2, H(β) is the Hessian (or suscepti-
bility) of the Bethe free energy at the trivial, paramagnetic stationary
point of this model.

Let us recall here the salient features of the Hopfield model, sum-Phase diagram of the
Hopfield model marized in the phase diagram 1.11, which justify algorithm 10. For

β small enough, model (8.6) is in its paramagnetic phase, meaning
that the paramagnetic stationary point of the Bethe free energy is a
(global) minimum. Therefore, we expect (and can check by the Ger-Paramagnetic phase

shgorin circle theorem) that H(β) is positive definite. As we lower β,
model (8.6) may enter its retrieval phase, in which we expect the para-Retrieval phase

magnetic stationary point to become a saddle point. In this phase,
the Bethe free energy has local minima correlated with the factors
X and Y. We therefore expect that in the corresponding range of
(inverse) temperature β, H(β) has negative eigenvalues, with corre-
sponding eigenvectors approximating the magnetizations of model
(8.6) in the various retrieval states. These retrieval states have a finite
overlap (1.100) with the patterns (8.7). Therefore, the eigenvectors
of H(β) with negative eigenvalues are suitable initial conditions for
the optimization of the cost function (8.2). Additionally, as argued
in section 1.6.6, we expect the dimension of the subspace of Rn+m

spanned by these retrieval states to be r, so that we expect H(β) to
have exactly r negative eigenvalues, from which we can infer the rank.
Finally, as we increase β above a critical value βSG the Hopfield model
eventually enters its spin glass phase, marked by the appearance ofSpin glass phase

many spurious minima. In particular, for low enough β, the paramag-
netic stationary point may become a local minimum again. Figure 8.1
summarizes the consequences of the phase diagram of the Hopfield
model for the spectrum of H(β). The choice of β = β̂SG used in algo-
rithm 10 approximates the critical temperature corresponding to the
paramagnetic to spin glass instability (see section 8.3.1). As in the
previous clustering examples, we expect from the phase diagram of
figure 1.11 that if the retrieval phase exists, then the paramagnetic to
retrieval transition happens for β < βSG. Another justification for this
particular choice of β is provided in section 8.3.1.

Note that a similar approach was used in [169] to detect the re-
trieval states of a Hopfield model using the weighted non-backtracking
matrix, which linearizes the belief propagation equations rather than
the Bethe free energy, resulting in a larger, non-symmetric matrix.
The Bethe Hessian, while mathematically closely related, is also sim-
pler to handle in practice.
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The black curves are the solutions of (8.18) computed with belief propagation on a
graph of size 105. We isolated the 5 smallest eigenvalues, represented as small bars
for convenience, and the inset is a zoom around these smallest eigenvalues. For β
small enough (top plots), the Bethe Hessian is positive definite, signaling that the
paramagnetic stationary point is a local minimum of the Bethe free energy. As β
increases, the spectrum is shifted towards the negative region and has 5 negative
eigenvalues at the approximate value of β̂SG = 0.12824 (to be compared to βR =

0.0832 for this case) evaluated by our algorithm (lower left plot). These eigenvalues,
corresponding to the retrieval states, eventually become positive again as β is further
increased (lower right plot), while the bulk of uninformative eigenvalues remains at
all values of β in the positive region. Figure taken from [141].
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Interestingly, if we solve the Hopfield model (8.6) in the nMF ap-nMF approximation
and SVD of M proximation instead of the Bethe approximation, we have seen in sec-

tion 2.3.3 that the Hessian of the free energy at the paramagnetic
point is then straightforwardly related to the weighted adjacency ma-
trix (8.3) of the bipartite graph G, i. e. (a symmetrized version of) the
observed matrix M. Finding the smallest eigenvalues of the nMF Hes-
sian is therefore equivalent to solving for the largest singular values
of M, which sheds a new light on the matrix completion algorithms
based on the SVD of M, such as OptSpace. Consistently with the dis-
cussion of section 2.3.3, when there are enough revealed entries so
that the graph G is dense enough, the spectrum of the nMF Hessian
is well behaved, and the informative eigenvalues are those lying out-
side of the bulk that can be derived form the Marchenko-Pastur law
[20, 99]. In the sparse case, however, we will see that replacing the
nMF approximation by the Bethe approximation leads, once more, to
substantial improvements.

8.3 analysis of performance in detection

We now show how to analyze the performance of MaCBetH using
statistical physics tools to compute the rank detectability transition.
We then give an independent justification of our choice of β = β̂SG in
algorithm 10 based on the analysis of the spectral density of H(β).

8.3.1 Analysis of the phase transition

We investigate here the minimal value of α from which algorithm
10 starts inferring the rank r correctly. As noted previously, the BetheAssociated

nonbacktracking
operator

Hessian of equation (8.4) is closely related to the non-backtracking
operator defined for (i→ j), (k→ l) ∈ ~E by

Bi→j,k→l = tanh (βMkl) . (8.8)

In particular, by the Ihara-Bass formula, the appearance of negative
eigenvalues of H(β) is related to the appearance of eigenvalues of B
with modulus larger than 1, i. e. to the instability of the paramagnetic
fixed point of BP for model (8.6). Assuming a random matrix setting
in which the entries of the factors X and Y are i.i.d random variables
with mean 0, the stability of this paramagnetic fixed point can be
studied by means of the cavity method, using the same arguments as
in section 3.1.2 [10, 28, 156, 169]. The only two differences here are,
first, that we are considering a bipartite graph, and second, that since
the patterns of the Hopfield model are real-valued, the weights of
the non-backtracking operator (8.8) are correlated random variables.
As a consequence, the definition of the various parameters of sec-
tion 3.1.2 need to be adapted. In particular, we find that the bulk ofRadius of the bulk of

B and function Σ
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uninformative eigenvalues of B is constrained in the disk of radius
R(β) =

√
αΣ(β)2, where

Σ(β)2 = lim
t→∞

E




t∏

l=1

tanh2


β

r∑

µ=1

x
µ
l y

µ
l


 tanh2


β

r∑

µ=1

x
µ
l+1y

µ
l






1
2t

.

(8.9)
In the last expression, the expectation is with respect to the distribu-

tion of the i.i.d random variables xµl
D
= x and yµl

D
= y for l ∈N , µ ∈ [r],

where x (resp. y) has the same distribution as the entries of the factor
X (resp. Y). The parameter R(β) =

√
αΣ(β)2 thus defined equals the

growth rate of a noisy perturbation of the paramagnetic fixed point,
uncorrelated with the patterns of the Hopfield model, as we iterate
the non-backtracking operator. Additionally, there is an informative Informative

eigenvalue of B and
function ∆

eigenvalue α∆(β) of B, with multiplicity r, outside of the disk of
radius R(β) if and only if α∆(β) > R(β), where

∆(β) = lim
t→∞

E

[
t∏

l=1

tanh


β

∣∣x1ly1l
∣∣+β

r∑

µ=2

x
µ
l y

µ
l




× tanh


β

∣∣x1l+1y
1
l

∣∣+β
r∑

µ=2

x
µ
l+1y

µ
l



] 1

2t

,

(8.10)

where the expectation is positive since we assume the variables x and
y to be centered. With this definition, the parameter α∆(β) controls
the growth rate of the overlap (1.100) with the first pattern ξ1 defined
in (8.7), as we iterate the non-backtracking operator, starting from an
initial condition correlated with the patterns of the Hopfield model.
We may now define the critical temperature βR (resp. βSG) marking Critical

temperatures
βR and βSG

the onset of the paramagnetic to retrieval instability (resp. param-
agnetic to spin glass). These temperature are defined implicitly as

αΣ(βSG)
2 = 1

α∆(βR) = 1 ,
(8.11)

so that for β > βR (resp. β > βSG), a perturbation initially correlated
with the patterns (resp. a noisy perturbation) grows when iterating
B. From the phase diagram of the sparse Hopfield model 1.11, the Existence of the

retrieval phaseretrieval phase exists if the paramagnetic to retrieval instability hap-
pens at larger temperature (smaller β) than the paramagnetic to spin
glass instability. This is equivalent to the condition

βSG > βR . (8.12)

Note that this condition implies the existence of a range of values of
β for which B has an informative eigenvalue outside of the bulk of
radius R(β). More precisely, since Σ and ∆ are increasing functions
of β, for β = βSG, we expect under condition (8.12) that B has an
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Figure 8.2 – Rank detectability threshold for factors X, Y with Gaussian en-
tries of mean 0 and unit variance. MaCBetH is able to estimate
the correct rank from |E| > C(r)r

√
nm known entries, where

the value of C(r) is represented as red dots. The gray dashed
line gives the asymptotic value C(r) = 1 in the limit r → ∞

(see text). We used a population dynamics algorithm with a
population of size 106 to compute the functions Σ and ∆ from
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informative eigenvalue α∆(βR) > 1with multiplicity q outside of the
bulk of uninformative eigenvalues of radius R(β) =

√
αΣ(βSG)2 = 1.

As a consequence, we expect that under condition (8.12), H(βSG) has
an informative, negative eigenvalue with multiplicity r.

We define the critical value αc of α such that βSG > βR if andCritical value αc
only if α > αc. In general, there is no closed-form formula for
this critical value, which is defined implicitly in terms of the func-
tions Σ and ∆. We can however compute αc numerically using a
population dynamics 3 algorithm [102] which allows to compute the
parameter C(r) = αc/r. The results are presented on figure 8.2. Quite
remarkably, with the definition α = |E|/

√
nm, the critical value αc

does not depend on the ratio m/n, only on the rank r.
In the limit of large α and r, it is possible to obtain a simple closed-Explicit value of αc

for large r form formula for αc. In this case the observed entries of the matrix

3. We use a population dynamics algorithm to iterate the linear distributional
recursion (3.31) for the non-backtracking operator (8.8). We monitor the evolution of
the overlap with a pattern to compute ∆, and the evolution of the Edwards-Anderson
parameter to compute Σ.
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become jointly Gaussian distributed, and uncorrelated, and therefore
independent. Expression (8.9) then simplifies to

Σ(β)2 ∼
r→∞

E


tanh2


β

r∑

µ=1

xµyµ




 . (8.13)

Note that in step 1 of algorithm 10, we use an empirical estimator
F(β) ≃ αΣ(β)2 of the quantity (8.13) to compute a simple approxi-
mation β̂SG of βSG from the revealed entries. In the large r, α regime,
both βSG, βR decay to 0, so that we can further approximate

1 = αΣ(βSG)
2 ∼

r→∞
α rβ2

SG E[x2]E[y2] , (8.14)

1 = α∆(βR) ∼
r→∞

αβR

√
E[x2]E[y2] , (8.15)

so that we obtain the simple asymptotic expression αc = r, in the
large α, r limit, or equivalently C(r) = 1. Interestingly, the same re-
sult was obtained for the detectability threshold in the completion of
rank r = O(n) matrices from O(n2) entries in the Bayes optimal set-
ting in [72]. Notice, however, that exact completion in the setting of
[72] is only possible for α > r(m+ n)/

√
nm. Clearly detection and

exact completion are different phenomena, with different transitions.
The previous analysis can in principle be extended beyond the ran-
dom setting assumption, as long as the empirical distribution of the
entries is well defined, and the lines of X (resp. Y) are approximately
orthogonal and centered. This condition is related to the standard
incoherence property of matrix completion [26, 80].

8.3.2 Computation of the spectral density

The spectral density νβ(λ) of H(β) can be computed using the
method presented in section 3.2.1. We find that νβ(λ) verifies

νβ(λ) = lim
n,m→∞

1

π(n+m)

n+m∑

i=1

Im∆i(λ) , (8.16)

where the ∆i are complex variables living on the vertices of the graph
G, given by

∆i =
(
− λ+ 1+

∑

k∈∂i

sinh2 βAik −
∑

l∈∂i

1

4
sinh2(2βAil)∆l→i

)−1

.

(8.17)

The ∆i→j for (i → j) ∈ ~E are the (linearly stable) solution of the
following fixed point equation

∆i→j =
(
− λ+ 1+

∑

k∈∂i

sinh2 βAik −
∑

l∈∂i\j

1

4
sinh2(2βAil)∆l→i

)−1

.

(8.18)
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The previous fixed point equation can be solved using BP, which al-
lows to accurately compute the spectral density of H(β), as shown
on figure 8.1. Using the same arguments as in section 3.2.1, we can
argue that the spectral density νβ(λ) vanishes on an open set sur-
rounding λ = 0 for any β < βSG, where βSG has been defined in the
previous section. To see this, we note that ∆i→j = cosh−2(βAij) is a
real solution of (8.18), yielding a vanishing spectral density. By fol-
lowing the same steps as in section 3.2, we can show that this implies
the existence of a real and stable solution of (8.18) in a an open set
surrounding λ = 0 whenever ρ (B) < 1, where B is defined by

Bi→j,k→l = tanh2 (βMkl) . (8.19)

This is a non-backtracking operator whose spectral radius can be com-
puted using the methods explained in section 3.1.2. As noted in the
previous section, we only have to deal with the additional subtlety
that the graph G is a bipartite graph, and that the weights carried by
the non-backtracking operator (8.19) are correlated random variables.
We find that

ρ (B) =

√
αΣ(β)2 , (8.20)

where Σ(β)2 is defined in equation (8.9). This formula generalizes
equation (3.126) to the case of correlated weights. Since Σ is an in-
creasing function of β, we have ρ (B) < 1 for any β < βSG, implying
the existence of an open set U ∋ 0 such that for λ ∈ U, νβ(λ) = 0.
As we increase β from a small value, we therefore expect the bulk of
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uninformative eigenvalues of H(β) to reach λ = 0 at β = βSG, so that
the informative eigenvalues of H(βSG) are negative, as illustrated on
figure 8.1. As explained in the previous section, the choice β = β̂SG

in algorithm 10 approximates the critical value. Interestingly, this fig-
ure suggests that for β > βSG, the bulk of uninformative eigenvalues
shifts back to the right on this problem.

8.4 numerical tests

Figure 8.3 illustrates the ability of the Bethe Hessian to infer the Rank inference

rank rabove the critical value αc defined in section 8.3.1, in the limit
of large size n,m→∞.

In figure 8.4, we demonstrate the suitability of the informative Reconstruction
accuracyeigenvectors of the Bethe Hessian as starting point for the minimiza-

tion of the cost function (8.2). We compare the final RMSE achieved on
the reconstructed matrix XY⊺ with 4 other initializations of the opti-
mization, including the top singular vectors of the trimmed matrix M

as used in the OptSpace algorithm [80]. In all cases, the optimization
of the cost function is carried out using an off-the-shelf quasi-Newton
algorithm (see caption of figure 8.4). MaCBetH systematically outper-
forms all the other choices of initial conditions, providing a better
initial condition for the optimization of (8.2). Remarkably, the perfor-
mance achieved by MaCBetH with the inferred rank is essentially the
same as the one achieved with an oracle rank. By contrast, estimat-
ing the correct rank from the (trimmed) SVD is more challenging. We
note that for the choice of parameters we considered, trimming had
in practice a negligible effect.

We also investigated the effect of choosing a different optimization Effect of the
optimization routineprocedure for the minimization of the cost function (8.2). As shown

in figure 8.5, when using the popular Alternating Least Squares (ALS)
method [58, 67] as the optimization method, we also obtained a sim-
ilar improvement in reconstruction by using the eigenvectors of the
Bethe Hessian, instead of the singular vectors of M as initial condi-
tion. Along the same lines, OptSpace [80] uses yet another minimiza-
tion procedure, close in spirit to ALS, and that had, in our tests, the
same performance.
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1000. The initial conditions compared are MaCBetH with oracle rank (MaCBetH OR)
or inferred rank (MaCBetH IR), SVD of the observed matrix M after trimming, with
oracle rank (Tr-SVD OR), or inferred rank (Tr-SVD IR, note that this is equivalent to
OptSpace [80]), and random initial conditions with oracle rank (Random OR). For the
Tr-SVD IR method, we inferred the rank from the SVD by looking for an index for
which the ratio between two consecutive eigenvalues is minimized, as suggested in
[79]. Figure taken from [141].
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Figure 8.5 – RMSE as a function of the average number of revealed entries per
row α: comparison between different choices of optimization
routines for the minimization of the cost function (8.2). Like in
figure 8.4, the probability that the output RMSE is smaller than
10−6 is estimated as the frequency of success over 100 samples
of matrices XY⊺ of size 10000× 10000, with the entries of X, Y
drawn from a Gaussian distribution of mean 0 and variance 1.
The rank is here fixed to r = 3. The blue curve (Tr-SVD (OR)
+ ALS) was obtained by using Alternating Least Squares (ALS)
as the optimization routine, initialized from the singular value
decomposition of the trimmed observed matrix M, using the
oracle rank. By replacing this initialization by the eigenvectors
of the Bethe Hessian, we obtain a significant improvement in
reconstruction accuracy as shown by the red curve, even using
the rank inferred by our algorithm instead of the oracle rank
(MaCBetH (IR) + ALS). We show for comparison in purple the
result of using MaCBetH with the off-the-shelf L-BFGS algo-
rithm (MaCBetH (IR) + L-BFGS) used for figure 8.4.
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8.5 conclusion

In this chapter, we have introduced MaCBetH, a matrix completion
algorithm based on the Bethe Hessian. We have argued that MaC-
BetH is efficient for two distinct and complementary tasks. First, it
has the ability to infer the rank of a strongly subsampled matrix from
fewer entries than any existing approach. In particular, on synthetic
problems, we were able to make a precise prediction about the exact
number of entries that are needed, and showed numerical simula-
tions in excellent agreement with our predictions. Second, we found
empirically that MaCBetH provides a lower reconstruction RMSE than
its competitors.

In the next chapter, we come back to statistical physics, and show
how the non-backtracking operator and the Bethe Hessian can be
used to prove rigorous bounds on several quantities of interest in the
ferromagnetic Ising model.



9
S P E C T R A L B O U N D S O N T H E I S I N G
F E R R O M A G N E T

We have used extensively the non-backtracking operator and the
Bethe Hessian to approximate the magnetizations of an Ising model
associated with a given inference problem. For both operators, this
approach is based on the Bethe approximation, which, although it is
believed to be accurate for sparse random graphs, does not in gen-
eral provide bounds on the magnetizations (see section 1.5.3). In this
chapter, we show that in the special case of the Ising ferromagnet, we
can establish algorithmic upper bounds on the partition function, the
magnetizations, and the correlations, which are expressed in terms
of the non-backtracking operator and the Bethe Hessian. The gen-
eral approach we follow is not new, and is based on a bound on the
so-called high temperature expansion due to Fisher [44], which we
review in section 9.3.1. However, up to now, and to the best of our
knowledge, this approach has not yielded explicit bounds that could
be computed efficiently, except in very particular regular graphs [44]
with particular couplings. In the following, we explicitly compute the
upper bound obtained using the approach of [44] on arbitrary graphs,
yielding a simple algorithmic upper bound expressed in terms of the
non-backtracking and Bethe Hessian operators, which can be com-
puted efficiently.

9.1 introduction

Our starting point is the general Ising model in non-vanishing
fields defined by the pairwise MRF

Ising modelP (σ) =
1

Z
exp


 ∑

(ij)∈E(G)

Jijσi σj +
∑

i∈V

hi σi


 , (9.1)

where G = ([n], E(G)) is an arbitrary graph, with n vertices and edge
set E(G), σ ∈ {±1}n is a collection of binary spins, and the partition
function Z is defined by

Partition functionZ =
∑

σ∈{±1}n

∏

(ij)∈E(G)

exp Jijσiσj
∏

i∈V

exphiσi . (9.2)

We say that the Ising model (9.1) ferromagnetic if both the couplings
(Jij)(ij)∈E(G) and the fields (hi)i∈[n] are all positive. Recall ([151]) Magnetizations and

susceptibility matrixthat an Ising model of the form (9.1) is completely specified by its

193
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magnetizations (ma)a∈[n] and its susceptibility matrix χ ∈ Rn×n, de-
fined by

ma = E(σa) =
∑

σ∈{±1}n

σa P(σ) for a ∈ [n] , (9.3)

χab = E(σaσb) =
∑

σ∈{±1}n

σaσb P(σ) for a, b ∈ [n] . (9.4)

We are interested in upper bounding the quantities (9.2,9.3,9.4).

9.1.1 Significance and prior work

The task of computing the quantities (9.2, 9.3, 9.4) knowing the joint
probability distribution (9.1) is a typical inference problem. Its appli-A short reminder of

the importance of the
Ising model

cations, alluded to in chapter 1, include e.g. reconstructing partially
observed binary images in computer vision [54], or similarity-based
clustering into 2 groups [17]. Conversely, the task of computing the
joint probability distribution (9.1) knowing the magnetizations (9.3)
and correlations (9.4) is usually called learning, or inverse problem.
The practical importance of this inverse task stems in part from the
fact that model (9.1) is the maximum entropy model with constrained
means and correlations, as shown in section 1.3.2. In particular, it
has found numerous applications in biology [13, 109], from predict-
ing the three-dimensional folding of proteins, to identifying neural
activity patterns. In machine learning, a variant of this inverse prob-
lem is usually referred to as Boltzmann machine learning [7], and
is a typical unsupervised learning problem. In practice, learning is
done through a local optimization of the likelihood function, which
involves the partition function (9.2), and whose gradients involve the
magnetizations (9.3) and correlations (9.4) (see next chapter).

Despite their considerable practical importance, the estimation of
these three quantities in general is a notoriously intractable problem,
except in particular cases, notably when the graph G is planar andThe planar case

the external fields (hi)i∈[n] vanish. In the latter case, explicit expres-
sions exist, originating in the work of Kac and Ward [43, 74, 78], and
allowing to devise polynomial-time inference algorithms [144]. Re-
cently, [70] proposed a greedy algorithm to approximate an arbitrary
graph by a planar one, thus making inference and learning tractable
in a more general setting. Their approach, however, does not provide
bounds on their estimates.

For the case of the ferromagnetic Ising model (9.1) with positiveFerromagnetic Ising
model and graph

cuts
couplings (Jij)(ij)∈E(G) and fields (hi)i∈[n], it is well known [87] that
the ground-state, i.e. the configuration of the spins with minimum
energy, can be found in polynomial time via graph cuts. This method
has been used successfully in a number of computer vision problems,
(see e.g. [21, 22, 54]), where a ferromagnetic Ising model is used to
denoise a partially observed image. Under the same ferromagnetic
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assumption, sometimes called attractive or log-supermodular in the
machine learning community, [135, 157] showed that the stationary
points of the Bethe free energy allow to lower bound the partition
function (9.2). The proof of [157] relies on a loop series expansion
of the partition function first derived by [30]. In this paper, we show
how to upper bound the marginals, correlations and partition function
of the ferromagnetic Ising model. Interestingly, our results also have
a strong connection with the Bethe approximation (see section 9.2.3).

The difficulty of inference and learning in the Ising model (9.1) Numerical methods

has prompted the development of a wealth of numerical methods to
approximate the quantities (9.2, 9.3, 9.4). In the ferromagnetic case,
a particularly important breakthrough came from the so-called clus-
ter Monte Carlo methods of [147, 158]. By updating a whole clus-
ter of spins instead of a single one, these algorithms can make non-
local moves in the space of spin configurations, while still verifying
the detailed balance condition. Therefore, they provided a substan-
tial speed-up over conventional Markov Chain Monte Carlo methods,
especially when the model (9.1) is near criticality. Other numerical
methods are typically based on a low or high temperature expansion
of the quantities of interest, and an exhaustive enumeration of an
increasing number of the terms contributing to this expansion [25].
On the learning side of the problem, [31] introduced a principled
and accurate approximation scheme based on the identification of
the clusters of spins that contribute the most to the entropy of the
model. While potentially allowing to reach an arbitrary accuracy in
the determination of the quantities (9.2,9.3,9.4), these numerical ap-
proaches do not, by nature, admit a closed-form solution, and do not
in general provide bounds on their estimates.

In this chapter, we prove explicit upper bounds on the three quan-
tities of interest (9.2,9.3,9.4) for arbitrary graphs. These bounds are
valid under two assumptions. First, we consider the particular case
where the couplings (Jij)(ij)∈E(G) and the fields (hi)i∈[n] are positive.
Second, we require the model (9.1) to be in a well-defined high tem-
perature region, specified by a condition on the spectral radius of the
non-backtracking operator of model (9.1). Our results use the same
starting point as some the intensive numerical methods described
previously, but are much simpler in nature, and provide a simple
and efficient closed-form bound, valid on any finite graph, as long as
the couplings and the fields are positive. We therefore expect these
results to find natural applications, e.g. in the inference and learn-
ing examples listed above, where the computation of quantities such
as the partition function (9.2) and the expectations (9.3, 9.4) play a
central role.

Our approach is based on the high temperature expansion of the
Ising model, reviewed in section 9.3.1. For ferromagnetic models, this
expansion is composed of positive contributions corresponding to cer-
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tain paths on the graph G. Our upper bounds are obtained by noting
that the set of such paths is included in a tractable set of more gen-
eral walks, for which an analytical expression can be derived. In this
sense, our work is closely related to [44] who derived similar upper
bounds. However, unlike [44] who derived formulas only for some
regular lattices, our approach generalizes to arbitrary topologies and
arbitrary positive couplings.

9.1.2 Assumptions and definitions

It will prove convenient to restrict our analysis to the Ising model
in vanishing external fields, defined by

Reduction to an
Ising model in

vanishing fields
P(σ) =

1

Z
exp


 ∑

(ij)∈E(G)

Jijσiσj


 . (9.5)

While this may look like a severe restriction, the addition of a sin-
gle spin makes model (9.5) as expressive as model (9.1) [44]. More
precisely, we will use proposition 1 in [70], which we recall here for
completeness.

Proposition 9.1.1. (proposition 1 in [70]) Consider the Ising model (9.1)
on the graph G = ([n], E(G)), with couplings (Jij)(ij)∈E(G) and fields
(hi)i∈[n], and corresponding partition function Z, magnetizations (ma)a∈[n],
and correlations (χab)(a,b)∈[n]2 . Define another Ising model on the graph
Ĝ =

(
[n+ 1], E(G)∪ {(i, n+ 1)}i∈[n]

)
with vanishing fields, and couplings

Ĵij =

{
Jij if j < n+ 1

hi if j = n+ 1
. (9.6)

Call Ẑ its partition function, and (χ̂ab)(a,b)∈[n+1]2 its correlations. Then
Ẑ = 2Z and

χ̂ab =

{
χab if a < n+ 1 and b < n+ 1

ma if a < n+ 1 and b = n+ 1
. (9.7)

We will therefore consider model (9.5) in the following, and bound
its partition function and correlations, which will yield a bound on
the partition function, magnetizations and correlations of model (9.1).
Note also that from proposition 9.1.1, the new couplings (Ĵij)(ij)∈E(Ĝ)

are positive if and only if both the original couplings (Jij)(ij)∈E(G)

and original fields (hi)i∈[n] are positive.
The upcoming results are expressed in terms of the non-backtrackingNon-backtracking

operator and Bethe
Hessian

operator and Bethe Hessian of model (9.5), which definition we now
recall. For a given graph G, we denote throughout the chapter by
E(G) its set of edges, and by ~E(G) its set of directed edges. The non-
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backtracking operator B ∈ R|~E(G)|×|~E(G)| of model (9.5) is defined by
its elements, for (i→ j), (k→ l) ∈ ~E(G)

B(i→j),(k→l) = tanh(Jkl) 1(i = l)1(j 6= k) . (9.8)

In this chapter, we will call Bethe Hessian the matrix H ∈ Rn×n

defined by its elements 1

Hij = 1(i = j)

(
1+

∑

k∈∂i

tanh(Jik)2

1− tanh(Jik)2

)
− 1(j ∈ ∂i) tanh(Jij)

1− tanh(Jij)2
.

(9.9)
As shown in section 2.3.2, this matrix is (the only non-trivial block
of) the Hessian of the Bethe free energy at the paramagnetic fixed
point of model (9.5). In other words, it is also the inverse of the
susceptibility matrix, in the Bethe approximation.

Our results hold for arbitrary finite graphs G, provided the two Assumptions

following conditions hold.
— First, we assume that all the couplings (Jij)(ij)∈E(G) as well as

the external fields (hi)i∈[n] are non-negative, so that the Ising
model in vanishing field (9.5) given by proposition 9.1.1 has
positive couplings.

— Second, we assume that the model (9.1) is in a high tempera-
ture region, specified by the condition ρ(B) < 1. This condition
corresponds to assuming that the paramagnetic fixed point of
BP is stable.

9.2 main results

We now state our main results and some of their consequences,
leaving the proofs to the next section. Recall that throughout the
chapter, we denote by E(G) the set of edges of a graph G, and by
~E(G) its set of directed edges.

9.2.1 Bound on the partition function

Our first result is an upper bound on the partition function (9.2). Bound on the
partition function

Theorem 9.2.1. Consider model (9.5) with positive couplings Jij > 0 for
(ij) ∈ E(G). Assume that ρ(B) < 1, where B is the non-backtracking matrix
defined in (9.8), and let H be the Bethe Hessian defined in (9.9). Then

Z 6 2n det (I − B)−1/2
∏

(ij)∈E(G)

cosh(Jij) ,

6 2n det(H)−1/2
∏

(ij)∈E(G)

cosh(Jij)2 .
(9.10)

1. This matrix corresponds to the Bethe Hessian H(x) of equation (3.107) evalu-
ated at x = 1.
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Note that for graphs that are not sparse, the non-backtracking op-

erator is a large
(
|~E(G)|× |~E(G)|

)
, non-symmetric matrix, non-trivial

to build or manipulate. The equality in (9.10) allows to compute this
bound without having to build the non-backtracking matrix, by us-
ing instead the smaller (n× n) and symmetric Bethe Hessian. This
last equality is a simple consequence of the Ihara-Bass formula 3.2.2,
which states here that

Ihara-Bass formula det(I − B) = det(H)
∏

(ij)∈E(G)

cosh(Jij)−2 , (9.11)

where I is the identity matrix in dimension |~E(G)|. In particular, this
formula implies that on any finite graph, H is non-singular under
the condition ρ(B) < 1. In the thermodynamic limit n → ∞, some
subtleties arise, as discussed in the next section.

As will be apparent from the proof, this bound is based on an over
counting of the subgraphs of G contributing to the high temperature
expansion of the partition function (see section 9.3.1). These sub-
graphs correspond to closed paths (i. e. closed self-avoiding walks),
and are notoriously hard to count [45]. To derive an analytical upper
bound on the partition function, the set of contributing subgraphs
must be included in a larger set of walks on the graph G whose
contribution can be computed analytically. A simple bound can beA simpler bound

based on the
adjacency matrix

obtained by including the set of closed paths in the set of all closed
walks on the graph G. This approach yields an analytical bound simi-
lar to theorem 9.2.1 expressed in terms of the adjacency matrix of the
graph, namely

Z 6 2ndet (I −A)−1
∏

(ij)∈E(G)

cosh(Jij) , (9.12)

whenever ρ(A) < 1, where A is the weighted adjacency matrix of the
graph G, with entries Aij = tanh(Jij) 1(i ∈ ∂j) (see section 9.3.2 for de-
tails). This bound is however too loose, because it counts many spuri-
ous contributions, in particular walks that are allowed to go back and
forth on the same edge. In particular, by the argument explained in
the introduction of chapter 3, on sparse Erdős-Rényi random graphs,
the spectral radius of A in unbounded with the size n of the graph,
so that the bound (9.12) is not useful. We considerably improve this
bound by forbidding that the walk immediately backtracks to the pre-
vious edge. This is achieved by replacing the adjacency matrix with
the non-backtracking operator. From the proof of section 9.3.2, it is
straightforward to see that the bound (9.10) is less tight if the graph
G contains more loops. In practice, however, figure 9.1 shows that
using the non-backtracking operator instead of the adjacency matrix
leads to a dramatic improvement, even in the case of a 3D lattice Ising
model, which has many loops.
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9.2.2 Bound on the susceptibility

We now state our upper bound on the correlations, encoded in the
susceptibility matrix χ of equation (9.4).

Theorem 9.2.2. Consider model (9.5) with positive couplings Jij > 0 for Bound on the
susceptibility with B(ij) ∈ E(G). Assume that ρ(B) < 1, where B is the matrix defined in

(9.8). Define the matrices P,Q ∈ Rn×|~E(G)| by their elements, for a ∈
[n], (ij) ∈ E(G)

Pa,(i→j) = tanh(Jij)1(a = j), Qa,(i→j) = 1(a = i) . (9.13)

Then
χ 6 P(I − B)−1Q⊺ + In×n , (9.14)

where the inequality holds element-wise.

Note that P is the pooling matrix (3.127) associated with the non-
backtracking operator. Once more, it is possible to express this last
result in terms of the Bethe Hessian rather than the non-backtracking
operator, yielding a surprisingly simple result.

Corollary 9.2.3. Let H be the matrix defined in (9.9). Under the same Bound on the
susceptibility
with H

assumptions as theorem 9.2.2, it holds that H is invertible, and

χ 6 H−1 , (9.15)

where the inequality holds element-wise.

This corollary results from applying proposition 3.2.1 to the in-
equality (9.14). As for the partition function, these bounds rely on the
inclusion of the set of paths between two spins in a larger, tractable
set of walks on the graph G (see section 9.3.3). More precisely, expres-
sion (9.14) follows from the inclusion of the set of paths between two
fixed spins a, b ∈ [n] in the set of non-backtracking walks starting at
a and ending at b. If we allow these walks to backtrack, i.e. if we in- A simpler bound

based on the
adjacency matrix

clude the set of paths in the set of all walks, we get the looser bound

χ 6 (In −A)−1 , (9.16)

whenever ρ(A) < 1 where A is the weighted adjacency matrix with
elements Aij = tanh(Jij) 1(i ∈ ∂j). Once more, forbidding backtrack-
ing allows to dramatically improve the bound on the susceptibility,
as shown in figure 9.1. In fact, we have seen in section 2.3.3 that the
Hessian of the nMF free energy at the paramagnetic point is given
by I −A, so that equation (9.16) bounds χ by the nMF susceptibility.
By contrast, the corollary (9.15) bounds χ by the susceptibility in the
Bethe approximation. We come back to this point in section 9.2.3.

While valid only on finite graphs, the previous results allow us, in Bound on the scalar
susceptibilitycertain cases, to derive a bound on the paramagnetic to ferromagnetic
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phase transition of the Ising model. More precisely, for a sequence of
Ising models, the previous results allow to bound the scalar suscepti-
bility, defined as

χ̄ =
1

n

n∑

x,y=1

χxy . (9.17)

Corollary 9.2.4. Consider a sequence (Ip)p∈N of Ising models of the form

(9.5), each of them defined on a graph Gp, with positive couplings J(p)ij > 0,
for (ij) ∈ E(Gp), and scalar susceptibility (9.17) denoted χ̄p. Denote Bp

the non-backtracking operator defined in (9.8) for the Ising model Ip, and
assume that ∀p ∈ N, ρ(Bp) < 1. Define Hp to be the Bethe Hessian
defined in (9.9) for the Ising model Ip, and let λmin(Hp) denote its smallest
eigenvalue. Assume that there exists ǫ > 0 such that ∀p ∈N, λmin(Hp) >

ǫ. Then for any p ∈N,

χ̄p 6
1

ǫ
(9.18)

Proof: for any fixed p ∈ N, let np be the number of vertices of the
graph Gp. Defining Up ∈ Rnp to be the vector with all its entries
equal to 1, and denoting by ||.||p the euclidean norm, we have from
corollary 9.2.3

χ̄p 6
1

np

np∑

x,y=1

(Hp)
−1
xy =

Up
⊺ H−1

p Up

||Up||2p
6 ρ

(
H−1

p

)
=

1

λmin(Hp)
6
1

ǫ
,

(9.19)
where we have used that the matrix Hp is symmetric.

For sequences of graphs that admit a thermodynamic limit, corol-Bound on the
paramagnetic to

ferromagnetic phase
transition

lary 9.2.4 implies a condition under which the infinite Ising model is
in the paramagnetic phase, therefore yielding a bound on the para-
magnetic to ferromagnetic transition. As an explicit example, let us
consider the case of a sequence (Gp)p∈N of d-regular graphs with
uniform couplings Jij = β. We assume that the number of vertices in
Gp goes to infinity as p → ∞. It is straightforward to check that, for
any p ∈N,

ρ(Bp) = (d− 1) tanh(β) and λmin(Hp) = 1−
d tanh(β)
1+ tanh(β)

.

(9.20)
By application of corollary 9.2.4, it follows that if

(d− 1) tanh(β) < 1 , (9.21)

the scalar susceptibility χ̄p remains bounded. Equivalently, if the
sequence of Ising models admits a thermodynamic limit with a phase
transition at βc, then

βc > atanh
1

d− 1
. (9.22)
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Interestingly, the right hand side of the last equation corresponds to
the critical inverse temperature in the Bethe approximation, which is
already known to be a lower bound on βc for certain ferromagnetic
models on hypercubic lattices [44]. Our contribution generalizes such
previous results, giving a simple algorithm to derive a lower bound
on arbitrary graphs, with arbitrary (positive) couplings. It is worth
noting that, perhaps unsurprisingly, this bound is tight on sparse ran-
dom d-regular graphs with uniform couplings ∀(ij) ∈ E(G), Jij = β.
Indeed, on such locally tree-like graphs, the existence of the thermo-
dynamic limit has been proved, and the critical temperature has been
shown to verify (d− 1) tanh(βc) = 1 [35, 37].

From the Ihara-Bass formula (9.11), it holds that on any finite graph,
λmin(H) > 0 as long as ρ(B) < 1. Therefore one may expect that the
condition on the smallest eigenvalue of Hp in corollary 9.2.4 could
be relaxed, e.g. by assuming instead that ρ(B) < 1 − ǫ for some
ǫ > 0. This relaxation turns out to be not possible, because it may
happen that the spectral radius of B is bounded away from 1, while
the smallest eigenvalue of H tends to 0, the limit p → ∞. As an
example, take Gp to be the star graph with np = p + 1 spins and
edges (i, p + 1) for i ∈ [p], and uniform couplings Jij = β. Since
Gp is a tree, and the non-backtracking operator is nilpotent on trees, The star graph Gp

σ1 σ2 σp

σp+1it holds that ρ(Bp) = 0 for all p. On the other hand, the spectrum
of Hp can be computed explicitly, and its smallest eigenvalue shown
to verify

λmin(Hp) ∼
p→∞

1

p tanh(β)2
−→
p→∞

0 . (9.23)

9.2.3 Relation to belief propagation and susceptibility propagation

Recall from section 2.2.2 that a standard approach to compute the
magnetizations of the Ising model (9.5) is to use BP, which approxi-
mates the magnetizations mi = E(σi) as

mi ≈ tanh

(
∑

l∈∂i

atanh (ml→i tanh Jil)

)
, (9.24)

where the messages (mi→j)(i→j)∈~E(G)
verify the fixed point equation

BP fixed point
equation

mi→j = tanh


 ∑

l∈∂i\j

atanh (ml→i tanh Jil)


 . (9.25)

In practice, starting from a random initial condition, one iterates equa-
tion (9.25) until convergence, and outputs the result of (9.24). BP is
known to be exact on trees, and widely believed to yield asymptot-
ically accurate results for sparse, locally-tree like graphs with few,
large loops, as well as models with small couplings [103].

This message-passing approach can be extended to allow the com- Susceptibility
propagation



202 spectral bounds on the ising ferromagnet

putation of the correlations χij for any i, j ∈ [n] using the fluctuation
dissipation theorem. The resulting algorithm is called susceptibility
propagation [104, 108], and approximates χij as

χij ≈
(
1−m2

i

)
(

1(i = j) +
∑

l∈∂i

χl→i,j tanh Jil
1−m2

l→i tanh2 Jil

)
, (9.26)

where the (mi→j)(i→j)∈~E(G)
are the fixed point of (9.25), the (mi)i∈[n]

are the BP estimates of the magnetization derived from (9.24) and the
(χi→j,k)(i→j)∈~E(G),k∈[n]

verify the fixed point equation

χi→j,k =
(
1−m2

i→j

)

1(i = k) +

∑

l∈∂i\j

χl→i,k tanh Jil
1−m2

l→i tanh2 Jil


 ,

(9.27)
Similarly to BP, starting from a random initial condition, equation
(9.27) is first iterated until convergence, and the correlations are then
estimated from equation (9.26). Note that it is possible to invert the
relation between the susceptibilities and the couplings, resulting in
an inference algorithm for solving the inverse Ising model. This al-
gorithm has been shown to yield better results than other mean field
approaches on certain problems [108, 128].

While only exact on trees, both BP and susceptibility propagation
have been observed to yield good approximate results on more gen-
eral topologies, when they converge. However, these algorithms are
based on the Bethe approximation [160], which, unlike the naive
mean-field approach, does not provide bounds on the actual partition
function [151]. The following result might therefore appear surpris-
ing.

Corollary 9.2.5. Consider model (9.5) with positive couplings Jij > 0 forBehavior of
susceptibility

propagation in the
paramagnetic phase
of the ferromagnetic

Ising model

(ij) ∈ E(G). Assume that ρ(B) < 1, where B is the non-backtracking
matrix defined in (9.8). Then (mi→j = 0)(i→j)∈~E(G)

is a stable fixed point
of the BP recursion (9.25). Additionally, the corresponding susceptibility
propagation algorithm converges, and yields an upper bound on the true
correlations, regardless of the topology of the graph.

Proof: the fact that (mi→j = 0)
(i→j)∈~E(G)

is a fixed point of BP is
readily checked on equation (9.25). To see that it is stable, we repeat
the arguments developed at length in chapter 2. Starting from a small
perturbation δm0

i→j, we have at first order at iteration t > 1

δmt
i→j =

∑

l∈∂i\j

tanh Jil δmt−1
l→i , (9.28)

which in matrix form can be written δmt = B δmt−1. The stabil-
ity of this fixed point follows from the assumption ρ(B) < 1. The
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corresponding BP solution is mi = 0, ∀i ∈ [n]. The corresponding
susceptibility propagation recursion reads

χi→j,k = 1(i = k) +
∑

l∈∂i\j

χl→i,k tanh Jil . (9.29)

This defines a linear system which we now write in matrix form. For
k ∈ [n], define a vector χk ∈ R|~E(G)| with elements χi→j,k, for (i →
j) ∈ ~E(G), and call Qk the k-th line of the matrix Q defined in theorem
9.2.2. Then equation (9.29) can be rewritten in matrix form as

χk = Qk
⊺ + Bχk . (9.30)

whose solution χk = (I − B)−1Qk
⊺ exists and is unique, since ρ(B) <

1. Iterating equation (9.29) starting from the initial condition χ0k, we
get at iteration t > 1

χtk − χk = B
(
χt−1
k − χk

)
, (9.31)

so that χtk → χk as t → ∞, using again that ρ(B) < 1. Finally,
using equation (9.26), it is straightforward to check that the correla-
tions output by susceptibility propagation are given in matrix form
by P(I − B)−1Q⊺ + In×n, which is, by theorem 9.2.2, an upper bound
on the true correlations 2.

9.3 proofs

We now detail the proof of our two main theorems, involving the
non-backtracking operator. We start by reviewing the high tempera-
ture expansion of the Ising model. We then use it to prove theorems
9.2.1 and 9.2.2.

9.3.1 High temperature expansion

Central to our results is the high temperature expansion of the par-
tition function, which we quickly rederive here. We use the following
rewriting of the Boltzmann weight, relying on the fact that the spins
are binary variables equal to ±1

exp Jijσiσj = aij(1+ bijσiσj) , (9.32)

2. The fact that, when susceptibility propagation converges, its estimates for the
correlations can be expressed in terms of the inverse of the Bethe susceptibility, is
still true outside of the paramagnetic phase, and was first noticed by [128].
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Figure 9.1 – Numerical simulation of the 3D lattice Ising model with n = 323 spins, with periodic
boundary conditions, and uniform couplings Jij = β. The left panel is the scalar
susceptibility χ̄ of equation (9.17), and the right panel is the log of the partition func-
tion defined in equation (9.2). For both quantities we represented the exact value
computed via a Monte Carlo simulation (using the Wolff algorithm [158]), and the
upper bounds (9.10) and (9.15) expressed in terms of the Bethe Hessian operator. The
dashed lines signal the critical temperature βc of the 3D Ising model as computed nu-
merically in [127], and the lower bound on this critical temperature provided by the
Bethe Hessian (9.22). Finally, we included for comparison the upper bound obtained
by using the adjacency matrix A instead of the non-backtracking matrix (equations
(9.12) and (9.16)).
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with aij = cosh(Jij), bij = tanh(Jij). The partition function of model
(9.5) is given by

Z =
∑

σ∈{±1}n

∏

(ij)∈E(G)

exp Jijσiσj (9.33)

=


 ∏

(ij)∈E(G)

aij


 ∑

σ∈{±1}n

∏

(ij)∈E(G)

(1+ bijσiσj) (9.34)

=


 ∏

(ij)∈E(G)

aij


 ∑

σ∈{±1}n

[
1+

∑

(ij)∈E(G)

bijσiσj

+
∑

(ij),(kl)∈E(G)

bijbklσiσjσkσl + · · ·

]
.

(9.35)

After summing on the spin configurations σ ∈ {±1}n, the only terms
in the expansion that do not vanish are the ones supported on a sub-
graph of G where all nodes have even degree. These are closed paths
(not necessarily connected). Each of these closed paths contribute a
factor 2n to the partition function. We can therefore rewrite the parti-
tion function in the following form, called high temperature expansion

Z = 2n


 ∏

(ij)∈E(G)

aij




1+

∑

g∈C

∏

(ij)∈E(g)

bij


 , (9.36)

where C is the set of closed paths, possibly disconnected.

9.3.2 Proof of theorem 9.2.1

We now introduce the set Cc
l of connected closed paths of length l.

We denote by Wc
l the sum of all contributions to the partition function

coming from connected closed paths of length l > 1, i.e.

Wc
l =

∑

g∈Cc
l

∏

(ij)∈E(g)

bij . (9.37)

We have the inequality

Z 6 2n


 ∏

(ij)∈E(G)

aij




×


1+

∑

l>1

∑

nc>1

1

nc!

∑

l1+l2+···+lnc=l

Wc
l1
Wc

l2
· · ·Wc

lnc


 ,

6 2n


 ∏

(ij)∈E(G)

aij




1+

∑

nc>1

1

nc!


∑

l>1

Wc
l




nc

 . (9.38)
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Indeed, the product Wc
l1
Wc

l2
· · ·Wc

lnc
contains all the contributions

coming from disconnected closed paths whose connected components
are of size l1, · · · , lnc . The factor nc! accounts for all the permutations
of the factors in this product. This is only an inequality because we
are counting graphs in which some edges appear more than once.
However, the factors Wc

l are still hard to compute, and we will look
for an upper bound. A simple upper bound can be derived by consid-
ering a weighted version of the adjacency matrix of the graph. Define
A ∈ Rn×n by its entries

Aij =

{
bij if (ij) ∈ E(G)
0 otherwise

, (9.39)

then it holds that

Wc
l 6

TrAl

l
. (9.40)

Indeed, the right hand side contains all contributions coming from
closed walks that start and end at the same point. The factor 1/l
accounts for the choice of the starting point. However, as hinted at in
section 9.2.1, this upper bound is loose, because the adjacency matrix
allows backtracking, and therefore going back and forth on the same
edge, whereas such contributions do not appear in the partition sum.
To improve this bound, we use a matrix that forbids backtracking:
the operator B of equation (9.8). Since connected closed paths are
closed non-backtracking walks (although the converse is not true), it
holds that

Wc
l 6

TrBl

2l
. (9.41)

where the additional factor 1/2 accounts for the degeneracy due to
the orientation of the non-backtracking closed walk. Under the as-
sumption that ρ(B) < 1, the following bound holds

∑

l>1

Wc
l 6

∑

l>1

TrBl

2l
= −

1

2
Tr log(I − B) = −

1

2
log det(I − B) , (9.42)

where I ∈ R|~E(G)|×|~E(G)| is the identity matrix. This, along with the
Ihara-Bass formula (9.11) completes the proof of theorem 9.2.1.

9.3.3 Proof of theorem 9.2.2

The correlation functions are given, for any x, y ∈ [n], by

E(σxσy) =

∑

σ∈{±1}n
σxσy

∏

(ij)∈E(G)

(1+ bijσiσj)

∑

σ∈{±1}n

∏

(ij)∈E(G)

(1+ bijσiσj)
=

∑

g∈Pxy+C

∏

(ij)∈E(g)

bij

1+
∑

g′∈C

∏

(ij)∈E(g′)

bij

(9.43)

where
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— Pxy is the set of paths from x to y.
— C is, as in the previous section, the set of closed paths.
— Pxy + C is the set of diagrams made of a path from x to y and

any number of disconnected closed paths such that each edge
is selected at most once. The closed paths therefore do not in-
tersect the path from x to y.

We assume without loss of generality that x 6= y. From the previous
definitions, we have that

E(σxσy) 6

(
∑

g∈Pxy

∏

(ij)∈E(g)

bij

)(
1+

∑

g′∈C

∏

(ij)∈E(g′)

bij

)

1+
∑

g′∈C

∏

(ij)∈E(g′)

bij
,

6
∑

g∈Pxy

∏

(ij)∈E(g)

bij .

(9.44)

Indeed, developing the product at the numerator gives a sum of
positive contributions including the ones in Pxy + C and also (posi-
tive) spurious contributions coming from diagrams where the closed
loops intersect the path from x to y. We now introduce the set
Nl

(x→x′),(y′→y) of non-backtracking walks of length l, starting on
the directed edge (x → x′) and terminating on the edge (y′ → y).
For a non-backtracking walk w, we denote by E(w) the list of edges
crossed by w, where each edge appears with a multiplicity equal to
the number of times w crosses this edge. Since any path in Pxy is a
non-backtracking walk (though the reverse is again, in the presence
of loops, not true), it holds that

E(σxσy) 6
∑

l>1

∑

x′∈∂x
y′∈∂y

∑

w∈Nl
(x→x′),(y′→y)

∏

(ij)∈E(w)

bij (9.45)

where ∂x denotes the set of neighbors of x in the graph G. In order to
write this last expression in terms of the non-backtracking operator,
we introduce the vector ux→x′ ∈ R|~E(G)| with entries all equal to
0 except for the (x → x′) entry, which is equal to 1. Similarly, we
introduce the vector vy′→y ∈ R|~E(G)| whose only non-zero entry is
equal to byy′ , in position (y→ y′). Then we have

∑

g∈Nl
(x→x′),(y′→y)

∏

(ij)∈E(g)

bij = vy′→y
⊺Bl−1ux→x′ , (9.46)

so that

E(σxσy) 6


 ∑

y′∈∂y

vy′→y




⊺
∑

l>1

Bl−1

(
∑

x′∈∂x

ux→x′

)
(9.47)

6


 ∑

y′∈∂y

vy′→y




⊺

(I − B)−1

(
∑

x′∈∂x

ux→x′

)
(9.48)
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where we have used the assumption ρ(B) < 1, so that the series of
powers of B is summable. To write this last equation in a more com-
pact way, recall the definition of the susceptibility matrix χ ∈ Rn×n,
with elements χxy = E(σxσy). Then it holds element-wise that

χ 6 P(I − B)−1Q⊺ + In×n (9.49)

where P,Q ∈ Rn×|~E(G)| are defined in equation (9.13). Note that the
addition of an identity matrix ensures that the inequality also holds
on the diagonal of χ. This completes the proof of theorem 9.2.2.

9.4 conclusion

In this chapter, we have considered the ferromagnetic Ising model,
and used the non-backtracking operator and Bethe Hessian to derive
rigorous bounds on the partition function, the magnetizations, and
the correlations, valid on arbitrary graphs, in a certain high temper-
ature region specified by the spectral radius of the non-backtracking
operator. Our approach builds upon previous work by explicitly com-
puting an upper bound which was known, but for which a tractable
expression existed only in very special cases. By contrast, our bounds
can be easily implemented and efficiently computed on arbitrary fi-
nite graphs, with arbitrary (positive) couplings. As a by-product, we
were able to show that, in the same high temperature region, the pop-
ular susceptibility propagation algorithm converges to approximate
correlations that admit an analytical expression, and that these corre-
lations are an upper bound on the true correlations. In the next, and
final chapter of this dissertation, we hint at a possible application of
some of the previous ideas to a learning problem.



10
O U T L O O K : L E A R N I N G A N D T H E N AT U R A L
G R A D I E N T

Throughout the dissertation, we have been interested exclusively
in inference, i. e. the task of computing the marginals of a given pair-
wise MRF. In this last, short chapter, we hint at the possible appli-
cability of some of the ideas developed previously in the context of
learning, where the aim is to recover a pairwise MRF from a dataset as-
sumed to be sampled from it. After presenting succinctly the learning
problem in exponential families, we introduce the concept of natu-
ral gradient, which modifies the usual maximum likelihood learning
rule to take into account information geometry considerations. We
show how to give a mean-field approximation to the natural gradi-
ent, and illustrate our computation on a binary restricted Boltzmann
Machine (RBM). Our very preliminary results still lack an empirical
validation, but may hopefully serve as a basis for future investiga-
tions.

10.1 learning in exponential models

We consider here an exponential model with so-called canonical pa-
rameters θ = (θα)α∈I ∈ R|I|, for some index set I, defined by the
joint probability distribution

Exponential modelPθ(σ) = exp (〈θ, f(σ)〉+F(θ)) (10.1)

where σ ∈ Xn is a collection of random variables, f(σ) = (fα(σ))α∈I ∈
R|I| is a vector-valued function of σ called sufficient statistics, and the
angular brackets denote the canonical inner product in R|I|. Recall
that, as seen in section 1.3.2, the exponential model (10.1) is the max-
imum entropy distribution with constrained expectations

EPθ
[fα(σ)] , for α ∈ I . (10.2)

In particular, when the sufficient statistics f(σ) contain only functions
of single variables σi or pairs of variables (σi, σj), the model (10.1)
defines a pairwise MRF in its exponential representation (1.13). The
quantity F(θ) enforces the normalization of the probability distribu-
tion and equals the Helmholtz free energy of the model

Helmholtz free
energy

F(θ) = − log

(
∑

σ∈Xn

exp 〈θ, f(σ)〉
)

(10.3)

We assume that we are given p i.i.d samples σ̂ =
(
σ̂(i)

)
i∈[p]

drawn
from the distribution (10.1), and we are looking to learn the param-

209
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eter θ from these samples. It can be shown [152] that the optimal
estimator θ̂ of θ that minimizes the mean square error is given by

Optimal
estimator of θ θ̂ = argmaxθ ℓ (θ, σ̂) , (10.4)

where ℓ (θ, σ̂) is the log-likelihood of the observed samples, given by

Log-likelihood
ℓ (θ, σ̂) =

1

p

p∑

i=1

log Pθ

(
σ̂(i)

)
, (10.5)

= 〈θ, µ̂〉+F(θ) , (10.6)

where µ̂ = (µ̂α)α∈I ∈ R|I| is a vector of empirical means

µ̂α =
1

p

p∑

i=1

fα

(
σ̂(i)

)
. (10.7)

To maximize the log-likelihood in (10.5), a popular algorithm isGradient ascent

(stochastic 1) gradient ascent. With a small, time-dependent learning
rate ηt, we iteratively update θt+1 ← θt +∆θt where for α ∈ I,

Classical
learning rule

∆θtα = ηt (∇ℓ (θ, σ̂))α ,
= ηt

(
µ̂α − EPθt

[fα(σ)]
)
,

(10.8)

where we have used that

∂F(θ)

∂θα
= −EPθt

[fα(σ)] . (10.9)

In particular, the algorithm has converged when the moments of the
exponential distribution (10.1) match the empirical means (10.7).

10.2 natural gradient

It is easy, but instructive, to re-derive heuristically the previousRationale behind the
classical

learning rule
learning rule. At each iteration t, we are looking for a small move
∆θt in the Euclidean space R|I| that maximally increases the log-
likelihood. Therefore, we are solving

∆θt = argmax
∆θ∈R|I|

‖∆θ‖=ǫ

ℓ
(
θt +∆θ, σ̂

)
, (10.10)

where ‖∆θ‖ is the Euclidean norm of ∆θ. We are therefore solving a
constrained optimization problem with Lagrangian

L = ℓ
(
θt +∆θ, σ̂

)
− λ

(
‖∆θ‖2 − ǫ2

)
,

≈ ℓ(θt) +∆θ∇ℓ (θ, σ̂) − λ
(
‖∆θ‖2 − ǫ2

)
.

(10.11)

1. Stochastic gradient ascent considers, at each iteration, a random subset of the
samples, called a mini-batch.
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where λ is a Lagrange multiplier, and we have used that ǫ is small
to expand, to first order, the log-likelihood. Note that we neglect
here the second order term in the expansion of ℓ, which would give
us a (regularized) Newton algorithm. Equating the gradient of this
Lagrangian to 0, we obtain the classical learning rule

∆θ ∝ ∇ℓ (θ, σ̂) . (10.12)

When deriving this learning rule, we have identified our probabil- The natural gradient
approachity distribution with its vector θ of canonical parameters, i. e. with

an element of an Euclidean space. A fruitful approach, pioneered by
Amari [9], is to consider instead that the optimization takes place on
the manifold of exponential models of the form (10.1). In other words,
instead of considering that we optimize over θ, we optimize directly
over the probability distribution Pθ. The geometry of this manifold is
non-trivial, as there is no clear notion of distance between probability
distributions (recall that the KL-divergence introduced in section 1.5.2
is not symmetric). Still, we can endow the manifold of exponential
models of the form (10.1) with a local Riemannian structure by show-
ing [9, 123] that, locally, the KL-divergence defines a metric F given in
matrix form by

DKL(Pθ ‖Pθ+∆θ) ∼
∆θ→0

DKL(Pθ+∆θ ‖Pθ) ∼
∆θ→0

1

2
∆θ⊺F∆θ , (10.13)

where F is the Fisher information matrix (hereafter the Fisher)

F = EPθ

[
−
∂2 log Pθ(σ)

∂θ2

]
. (10.14)

The natural gradient approach seeks to find a small update ∆θ that
minimizes ℓ(θ + ∆θ, σ̂) under the constraint that DKL(Pθ ‖Pθ+∆θ)

(rather than the euclidean norm of ∆θ) is fixed. The Lagrangian (10.11)
then becomes

L ≈ ℓ(θt) +∆θ∇ℓ (θ, σ̂) − λ
(
1

2
∆θ⊺F∆θ− ǫ2

)
, (10.15)

so that the update rule, with a time-dependent learning rate, becomes

Natural gradient
learning rule∆θt = ηt F−1∇ℓ(θ) . (10.16)

The natural gradient approach enjoys desirable properties such as
invariance with respect to the parametrization of the exponential
model (10.1) [9], and it has proven to speed up learning in various
problems [9, 123, 134]. One major drawback, however, of this method
is that it requires to store and, more importantly, to invert the very
large matrix F. Several approximation schemes have therefore been
proposed. Notably, the authors of [36] tune the architecture of a deep
neural network in such a way that the natural gradient is approxi-
mately equal to the classical gradient. As a consequence, the usual
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(stochastic) gradient ascent learning rule (10.8) is approximately iden-
tical to the natural gradient learning rule. The authors report an im-
pressive improvement in training time on various popular datasets.
In the rest of this chapter, we would like to argue that we can com-
pute directly an approximation of the inverse Fisher F−1 using mean-
field approximations, eliminating the need to invert it. Additionally,
our approximation turns out to be sparse, making its implementation
efficient both in terms of time and memory complexities.

It is worth noting that in the case of exponential models definedEquivalence with
Newton’s method on

exponential models
by (10.1), the natural gradient approach is equivalent to Newton’s
method. Indeed,

F = EPθ

[
−
∂2 log Pθ(σ)

∂θ2

]
(10.17)

= −
∂2F(θ)

∂θ2
(10.18)

= −
∂2ℓ(θ, X)

∂θ2
(10.19)

so that −F is in fact the Hessian of the objective function. We note
that this fact is not general [134] and stems from the log-linear nature
of model (10.1).

10.3 mean-field approximation to the natural gradient

Using the variational approach developed in section 1.5.2, it can be
shown (see chapter 3 of [151] for the details) that the Helmholtz freeLegendre transform

and entropy energy F(θ) is related to entropy by the following Legendre transform

F(θ) = inf
µ∈M

{−〈θ, µ〉− S(µ)} (10.20)

where, with an abuse of notations, we write S(µ) for the entropy of
the distribution Pθ(µ), where θ(µ) is defined by the conditions

EPθ(µ)
[fα(σ)] = µα , ∀α ∈ I . (10.21)

In equation (10.20), M is the set of realizable mean parameters, i. e. the
set of mean parameters µ that can be written as the moments of a
certain exponential model

M = {µ ∈ R|I| | ∃θ ∈ R|I| such that ∀α ∈ I, EPθ
[fα(σ)] = µα} (10.22)

The main ingredient of our approach is the following standard result
in conjugate duality

Inverse of the Fisher
and Hessian of the

entropy

F−1 = −

(
∂2F(θ)

∂θ2

)−1

= −
∂2S(µ)

∂µ2

∣∣∣∣
µ=µ⋆

, (10.23)

where the last derivative has to be evaluated at µ⋆ such that

∇F(θ) = −µ⋆ ⇐⇒ ∂S(µ)

∂µ

∣∣∣∣
µ=µ⋆

= −θ . (10.24)
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We therefore have an explicit formula for the inverse of the Fisher. Un-
fortunately, computing this entropy is still intractable in any interest-
ing problem. However, we have seen various mean-field approxima-
tions to the entropy in chapter 1, and we illustrate here how they can Mean-field

approximation to the
natural gradient

be used to approximate the inverse Fisher. For instance, within the
Bethe approximation 2, we may try to approximate equation (10.23) as

F−1 ≈ −
∂2SBethe(µ)

∂µ2
, (10.25)

where the derivative is evaluated at µ⋆ given by equation (10.24),
which translates, in our approximation, as

∂SBethe(µ)

∂µ

∣∣∣∣
µ=µ⋆

= −θ . (10.26)

In other words, µ⋆ is a stationary point of the Bethe free energy, since
the previous relation can be written as

∂F Bethe(θ, µ)

∂µ

∣∣∣∣
µ=µ⋆

= 0 , (10.27)

where by its definition (1.64), the Bethe free energy reads

F Bethe(θ, µ) = −〈θ, µ〉− SBethe(µ) . (10.28)

Note that we have made here the dependence of F Bethe on the canon-
ical parameters explicit. Finally, since the internal energy −〈θ, µ〉 is
linear in θ, we may rewrite equation (10.25) as

F−1 ≈ ∂2F Bethe(θ, µ)

∂µ2

∣∣∣∣
µ=µ⋆

, (10.29)

where µ⋆ is a local minimum 3 of the Bethe free energy (over a corre-
sponding set M of realizable parameters translating the consistency
constraints (1.63) on the beliefs, which we write explicitly on an ex-
ample in the following). We have therefore expressed the natural
gradient in terms of the Hessian of the Bethe free energy, a matrix
we have become well-acquainted with. Note that contrary to our past
approaches, we evaluate here the Hessian at a non-trivial value of µ,
which is always a local minimum of the Bethe free energy, so that this
Hessian should always be positive definite.

2. These arguments can be adapted to other mean-field approximations.
3. The “true” free energy −〈θ, µ〉− S(µ) where µ is defined by (10.21) is convex,

and has a unique stationary point specified by the condition (10.24), which is also a
global minimum. In our mean-field approximation, we have to deal with the non-
convex Bethe free energy, which may have multiple saddle points and local minima
that all verify the condition (10.27), so that it is not obvious how to make sense
of this definition of µ⋆. It is reasonable to require, in addition to the stationarity
condition (10.27), that µ⋆ be a local minimum (not a saddle) of F Bethe, since the
Fisher should be positive definite in well-defined problems.
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Let us illustrate our approach on a simple binary example. We
consider a Boltzmann machine (i. e. an Ising model) on a graph G =

([n], E), where E is the set of edges of the corresponding pairwise
MRF. The Boltzmann distribution is then given by

Boltzmann machine Pθ(σ) = exp




n∑

i=1

θiσi +
∑

(ij)∈E

θijσiσj +F(θ)


 . (10.30)

where the sufficient statistics are here fi(x) = σi, fij(σ) = σiσj for
i ∈ [n], (ij) ∈ E. As is usual in the machine learning literature, we
assume here that σi ∈ {0, 1} for i ∈ [n]. The canonical parametersσi ∈ {0, 1}

are here the θi, θij for i ∈ [n], (ij) ∈ E. The Bethe free energy can
be written in terms of mean parameters µi, µij, for i ∈ [n], (ij) ∈ E
as 4 ([154])

Bethe free energy of
the Boltzmann

machine

F Bethe(θ, µ) =

n∑

i=1

θi µi +
∑

(ij)∈E

θij µij +

n∑

i=1

(1− |∂i|) [η(µi) + η(1− µi)]

+
∑

(ij)∈E

η(µij) + η(µij + 1− µi − µj) + η(µi − µij) + η(µj − µij) .

(10.31)
where |∂i| is the degree of vertex i in the graph G, and η(x) = x log x.
The set of realizable mean parameters is here ([154])

Realizable mean
parameters

M =
{

(µi, µij) ∈ [0, 1]n+|E|
∣∣ ∀(i, j) ∈ E ,

max(0, µi + µj − 1) 6 µij 6 min(µi, µj)
}

.
(10.32)

Computing the Hessian of the Bethe free energy is then a simple
matter of algebra. We find

Hessian of the Bethe
free energy

∂2FBethe(θ, µ)

∂µiµj
= 1(i = j)

1− di

µi(1− µi)
+

1(j ∈ ∂i)
µij + 1− µi − µj

, (10.33)

∂2FBethe(θ, µ)

∂µijµk
=− 1(i = k)

1− µj

(µi − µij)(µij + 1− µi − µj)

− 1(j = k)
1− µi

(µj − µij)(µij + 1− µi − µj)

, (10.34)

∂2FBethe(θ, µ)

∂µijµkl
=

1(i = k)1(j = l)

µij(µi − µij)(µj − µij)(µij + 1− µi − µj)
. (10.35)

To compute the natural gradient, one only needs to find a local
minimum µ⋆ of the Bethe free energy, and evaluate the previous Hes-
sian at µ⋆. This local minimum can be computed in various ways,
from the BP algorithm (which however may output a saddle point of
the Bethe free energy), to the direct (constrained) optimization of the

4. Note that this expression is slightly different from the one used in section 2.3.2
because we consider here “spins” σi ∈ {0, 1}.
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Bethe free energy on the set M [154]. A simple and efficient approach
is to use the TAP approximation of [47], which approximates (to good
accuracy when the couplings θij for (ij) ∈ E are small enough 5) the
stationary points of the Bethe free energy [154].

Finally, we note that although the Hessian (10.33) is of size (n+ |E|)2, Sparsity of the
Hessianit is very sparse (even when G is a dense graph), and contains only

n+ 7|E| non-zero elements. For example, for a RBM 6 trained on the
MNIST dataset of handwritten digits, with nv = 784 visible units and
nh = 500 hidden units 7, the Hessian is of size (500 + 784 + 500 ×
784)2 = 3932842, but it contains only 2745284 non-zero entries, i. e.
less than 0.002% of the total number of entries. Since the natural
gradient learning rule requires multiplying the gradient of the log-
likelihood by this matrix at each iteration, the sparsity of the Hessian
is a very important feature in practice.

10.4 conclusion

In this chapter, we have outlined a possible application of the ideas
developed previously in this dissertation to a learning problem. In
particular, we have argued that the Hessian of the Bethe free en-
ergy may allow to approximate the natural gradient, thus providing
a more efficient learning rule. We ran some preliminary numerical
tests of the MNIST dataset of handwritten digits, and found that this
mean-field natural gradient approach allows to train a RBM to good
accuracy. It is however still unclear whether this approach improves
the speed of convergence, compared to the classical contrastive di-
vergence approach [64] (which uses a short Markov chain to sample
from the Boltzmann distribution), or the TAP approach of [47]. The
problem we found is that, as is well-known, the training speed largely
depends on the learning rate η in all of these methods, which should
be chosen in different ways depending on the precise learning rule.
Before being able to perform a consistent comparison between these
methods, it is important to find a principled way to fix this learning
rate. This problem is interesting both in theory and in practice, and
should be the focus of future work.

5. It is good practice to regularize the log-likelihood by adding a penalty term
favoring small couplings.

6. A RBM is defined on the complete bipartite graph with nv visible spins (or
neurons) and nh hidden ones.

7. When dealing with hidden units σ = (v, h), various approaches to the natu-
ral gradient are possible [123]. We could ascend the manifold of probability dis-
tributions on the visible units by integrating out the hidden units, i.e. Pθ(v) =
∑

h Pθ(v, h). We choose instead to consider the manifold of joint probability distri-
butions Pθ(v, h).





C O N C L U D I N G R E M A R K S

In this dissertation, we have considered the problem of estimating
the marginals of a pairwise MRF using spectral methods derived from
mean-field approximations. We have identified a class of factorized
and symmetric models for which BP possesses a trivial, uninformative
fixed point. By analyzing the stability of this fixed point, we have un-
covered a phase transition expressed in terms of the spectral radius
of a certain operator, called the non-backtracking operator. We have
linked this operator to another, smaller and symmetric matrix which
we called the Bethe Hessian. This latter operator controls the sta-
bility of the paramagnetic phase of an Ising model associated with
the original pairwise MRF, in the Bethe approximation. By studying
the spectral properties of these two operators on random graphs, as
well as their relationship to each other, we have argued that both al-
lowed to design accurate and efficient spectral algorithms on sparse
graphs. We have finally illustrated the performance of these algo-
rithms on various problems, in the fields of community detection,
similarity-based unsupervised and semi-supervised clustering, and
matrix completion. In some cases, we have been able to produce rig-
orous guarantees for the performance of the algorithms based on the
non-backtracking operator.

There are various natural directions for further investigations. On
the theoretical side, although we have presented several indirect ar-
guments for the optimality of the Bethe Hessian, we still lack rigor-
ous guarantees. In addition to its impact on the inference problems
where the Bethe Hessian is applicable, a rigorous result on the neg-
ative eigenvalues of this operator might also have consequences on
(part of) the phase diagram of sparse Ising spin glasses, which are
notoriously hard to obtain. For the non-backtracking operator, the sit-
uation is better. Relying heavily on the techniques developed in [19]
in the case of the SBM, we were able to sketch rigorous arguments
concerning the spectrum of the (weighted) non-backtracking opera-
tor of the lSBM, in the special case of q = 2 clusters, with αin = αout,
i. e. in the case where the graph is a homogeneous weighted Erdős-
Rényi random graph. Adapting these results to a general instance
of the lSBM (i. e. proving the conjectures of section 3.1.3) is still an in-
teresting open problem, which should be attainable by adapting the
techniques developed in [19] and extended in this dissertation.

On the practical side, one of the most pressing point is to under-
stand how to adapt the methods presented here to more realistic
graphs. In particular, it was shown in [68], perhaps unsurprisingly,
that the methods presented here, which rely on the Bethe approxi-
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mation, are very sensitive to the addition of loops in the graph. A
possible way out, based on more complex Kikuchi approximations,
was hinted at in section 2.3.3. Another possibility is to systematically
improve the mean-field approximation used with adaptive methods
such as those presented by [120] in the context of the TAP approxima-
tion. Note that when we get to choose the graph, e.g. in the context
of randomly subsampled clustering as in chapters 6 and 7, the issue
raised by [68] does not apply. Finally, it would be interesting to find
more applications of the ideas developed here. One idea, sketched
as an outlook in chapter 10, is to use free energy Hessians to approx-
imate the natural gradient and speed up learning. This direction is
attractive, since the use of ideas closely related to the natural gradient
has recently been shown to provide important improvements in deep
learning applications [36]. More generally, the ideas developed in this
dissertation can be though of as an approximate optimization scheme.
As argued in section 1.7, when given a cost function (or energy) E, we
may define a probabilistic model of the form

P(σ) ∝ exp (−βE(σ)) .

It is reasonable to expect that, for a carefully chosen range of values
of β, the distribution thus defined will concentrate around configura-
tions that are good approximations to the minimizers of E. We may
therefore minimize E by computing approximate marginals using the
methods introduced in this dissertation. Finding interesting use cases,
with accurate corresponding mean-field approximations suited to the
structure of the energy E, may provide a promising family of exten-
sions of the present work.



A P P E N D I X : J A C O B I A N O F B E L I E F P R O PA G AT I O N
AT T H E T R I V I A L F I X E D P O I N T O F FA C T O R I Z E D
M O D E L S

We compute the Jacobian J of the function F, whose components
are defined in equation (2.15), at the fixed point b⋆ of equation (2.11).
We use throughout the computation the symmetry property of pair-
wise potentials, equation (1.12), i. e. ψlk(σ, σ

′) = ψkl(σ
′, σ) for any

(kl) ∈ E, σ, σ′ ∈ X. We have for (i→ j), (k→ l) ∈ ~E, σ, σ′ ∈ X,

J
(σ,σ′)
i→j,k→l =

∂f
(σ)
i→j(b)

∂bk→l(σ′)

∣∣∣∣∣∣
b=b⋆

By the definition of f(σ)i→j in equation (2.15), this quantity is non-zero
only if l = i and k 6= j. In this case we have, for all k ∈ ∂i\j, σ, σ′ ∈ X,

∂f
(σ)
i→j(b)

∂bk→i(σ′)
=

1

Zi→j
φi(σ)ψik(σ, σ

′)
∏

l∈∂i\{j,k}

∑

σl∈X

ψil(σ, σl)bl→i(σl)

−
1

Z2
i→j

∂Zi→j

∂bk→i(σ′)
φi(σ)

∏

l∈∂i\j

∑

σl∈X

ψil(σ, σl)bl→i(σl) ,

and the derivative of the normalization is given by

∂Zi→j

∂bk→i(σ′)
=

∂

∂bk→i(σ′)

∑

σi∈X

φi(σi)
∏

l∈∂i\j

∑

σl∈X

ψil(σi, σl)bl→i(σl)

=
∑

σi∈X

φi(σi)ψik(σi, σ
′)

∏

l∈∂i\{j,k}

∑

σl∈X

ψil(σi, σl)bl→i(σl) .

We recall that the factorized condition imposes that the following
quantities are independent of σ

∑

σl∈X

ψil(σ, σl)φl(σl) = ri→l ∀l ∈ ∂i, σ ∈ X

When evaluating the previous quantities at the fixed point b⋆, we
have, recalling that we assume ∀i ∈ [n],

∑
σ∈Xφi(σ) = 1,

Zi→j

∣∣
b=b⋆ =

∏

l∈∂i\j

ri→l .

∂Zi→j

∂bk→i(σ′)

∣∣∣∣
b=b⋆

= rk→i

∏

l∈∂i\{j,k}

ri→l =
rk→i

ri→k
Zi→j

∣∣
b=b⋆ .
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Evaluating the non-zero elements of the Jacobian at the fixed point,
we therefore get

∂f
(σ)
i→j(b)

∂bk→i(σ′)

∣∣∣∣∣∣
b=b⋆

=φi(σ)ψik(σ, σ
′)

∏
l∈∂i\{j,k} ri→l
∏

l∈∂i\j ri→l

−φi(σ)
rk→i

ri→k

∏
l∈∂i\j ri→l

∏
l∈∂i\j ri→l

,

=φi(σ)

(
ψik(σ, σ

′)

ri→k
−
rk→i

ri→k

)
.

The full Jacobian can therefore finally be written as

J
(σ,σ′)
i→j,k→l = φl(σ)

(
ψkl(σ

′, σ)

rl→k
−
rk→l

rl→k

)
1 (l = i) 1 (k 6= j) .
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Résumé
Face au déluge actuel de données principale-
ment non structurées, les graphes ont démon-
tré, dans une variété de domaines scientifiques,
leur importance croissante comme language ab-
strait pour décrire des interactions complexes en-
tre des objets complexes. L’un des principaux dé-
fis posés par l’étude de ces réseaux est l’inférence
de propriétés macroscopiques à grande échelle,
affectant un grand nombre d’objets ou d’agents,
sur la seule base des interactions microscopiques
qu’entretiennent leurs constituants élémentaires.
La physique statistique, créée précisément dans
le but d’obtenir les lois macroscopiques de la ther-
modynamique à partir d’un modèle idéal de par-
ticules en interaction, fournit une intuition déci-
sive dans l’étude des réseaux complexes.
Dans cette thèse, nous utilisons des méthodes
issues de la physique statistique des systèmes
désordonnés pour mettre au point et anal-
yser de nouveaux algorithmes d’inférence sur
les graphes. Nous nous concentrons sur les
méthodes spectrales, utilisant certains vecteurs
propres de matrices bien choisies, et sur les
graphes parcimonieux, qui contiennent une faible
quantité d’information. Nous développons une
théorie originale de l’inférence spectrale, fondée
sur une relaxation de l’optimisation de certaines
énergies libres en champ moyen. Notre approche
est donc entièrement probabiliste, et diffère con-
sidérablement des motivations plus classiques
fondées sur l’optimisation d’une fonction de coût.
Nous illustrons l’efficacité de notre approche sur
différents problèmes, dont la détection de com-
munautés, la classification non supervisée à par-
tir de similarités mesurées aléatoirement, et la
complétion de matrices.

In an era of unprecedented deluge of
(mostly unstructured) data, graphs are
proving more and more useful, across the
sciences, as a flexible abstraction to cap-
ture complex relationships between com-
plex objects. One of the main challenges
arising in the study of such networks is
the inference of macroscopic, large-scale
properties affecting a large number of ob-
jects, based solely on the microscopic in-
teractions between their elementary con-
stituents. Statistical physics, precisely cre-
ated to recover the macroscopic laws of
thermodynamics from an idealized model
of interacting particles, provides signifi-
cant insight to tackle such complex net-
works.
In this dissertation, we use methods de-
rived from the statistical physics of disor-
dered systems to design and study new al-
gorithms for inference on graphs. Our fo-
cus is on spectral methods, based on cer-
tain eigenvectors of carefully chosen ma-
trices, and sparse graphs, containing only
a small amount of information. We de-
velop an original theory of spectral in-
ference based on a relaxation of various
mean-field free energy optimizations. Our
approach is therefore fully probabilistic,
and contrasts with more traditional mo-
tivations based on the optimization of a
cost function. We illustrate the efficiency
of our approach on various problems,
including community detection, random-
ized similarity-based clustering, and ma-
trix completion.

Non-backtracking operator, Bethe Hessian,
spectral methods, community detection,
spectral clustering, matrix completion,
graphical models, Bayesian inference,
mean-field approximations, disordered
systems, belief propagation, message-
passing algorithms.

Opérateur non-rétrograde, Hessienne de Bethe,
méthodes spectrales, détection de communautés,
partitionnement spectral, complétion de matri-
ces, modèles graphiques, inférence bayésienne,
approximations de champ moyen, systèmes dé-
sordonnés, propagation des convictions, algo-
rithmes de passage de messages.

Mots Clés Keywords
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